Advanced Micro Devices

Algorithm Details for
The Am9511 Arithmetic
Processing Unit

By Richard O. Parker and Joseph H. Kroeger

Copyright © 1978 by Advanced Micro Devices, Inc.

Advanced Micro Devices cannot assume responsibility for use of any circuitry described other than circuitry entirely
embodied in an Advanced Micro Devices’ product.

AM-PUB072

INTRODUCTION
Data formats
Status Register
DataStack
Command Format........

ALGORITHM DISCUSSION .

TABLE OF CONTENTS

DERIVED FUNCTION ERROR PERFORMANCEot e

COMMAND DESCRIPTIONS
COMMANDS

INTRODUCTION
The Am8511 APU is a complete, high performance, complex
arithmetic processor contained within a single chip. It is de-
signed to enhance the number manipulation capability of a o S
wide variety of processor systems. It includes not only @0y vss ——— 11 #[}— &
floating-point operations but fixed-point as well; not only basic (+svyvee ——{ |2 2 [crlock
add, subtract, mult.lply and C.]IVIde operations, but a group' of 1] s 2] RESET
transcendental derived functions plus control and conversion SeAvicE e . CONTROL/
commands as well. This Application Brief provides detailed "ACKNOWLEDGE 'DATA
descriptions of all the commands that can be executed by the SERVICE REQUEST ———{ 15 20 []=— READ
Am9511 and indicates the error performance of the derived s Am95T1 18 [J=—— WRITE
X (DO NOT USE) m
functions. i+ 18 [}=—— CHip sELECT
DATABUSO = |38 17 [}—e PAUSE
The Am9511 is packaged in a standard, 24 pin, dual in-line DATABUS 1 <—e[| 9 18 [vop(+12v)
package with .6 inch between rows. Figure 1 shows the pack- DATA BUS 2 ~—m | 10 15 [J—e DATABUS?
age pin assignments. Details on the operation of each inter- oa
. N . TA BUS 3 ~a—| " 14 ~=—== DATA BUS 6
face pin will be found in the data sheet. H —
DATABUS 4 ——[| 12 13| J~—= DATABUSS
The block diagram in Figure 2 shows the internal structure of
the APU. The part is addressed as two ports selected by the
C/D control line. When C/D is high (Control Port), a read op- MOs-oo1
Figure 1. Connection Diagram.
CONSTANT ROM TWO PORT DATA STACK CLOCK CLK
128 X 16 8X16 GENERATOR
v 16 BIT BUS \ l
{ ‘] #1 42
voo [>
vee [>
vss [>
WORKING REGISTERS ARITHMETIC UNIT
10X 16 16 BITS
fe———— SVACK
MUX
—— SVREQ
ARITHMETIC INSTRUCTION DECODE
SEQUENCER AND CONTROL f=———~ EACK
8-BIT BUS _
3 |—— &
3
3
16-BIT & |>——— Reser
STATUS MICROINSTRUCTION m
REGISTER REGISTER g _
5 [—— C/D
80— 2 3 _
L |t CS
DB1 ~w—me— i
DB2 =— =1 © COMMAND 32 RD
> 2 [~——— RD
DB3 ; :> REGISTER §
[}
0B4 -———e! § z :> CONTROL ROM fe———— WR
m 704 X 16
0B —=———| § 3
. SUBROUTINE = |~———= PAUSE
STACK]
DB7 ~—————a= axiwo 3
MOS-002

Figure 2. Arithmetic Processing Unit Block Diagram.

1

eration accesses the status register and a write operation en-
ters a command. When C/D is low (Data Port), a read opera-
tion accesses data from the top of the data stack and a write
operation enters data into the top of the data stack.

Data Formats

The APU executes both 16- and 32-bit fixed-point operations.
All fixed-point operands and results are represented as binary
two's complement integer values. The 16-bit format can ex-
press numbers with a range of —32,768 to +32,767. The
32-bit format can express numbers with a range of
—2,147,483,648 to +2,147,483,647.

The floating-point format uses a 32-bit word with fields as
shown in Figure 3. The most significant bit (bit 31) indicates
the sign of the mantissa. The next seven bits form the expo-
nent and the remaining 24 bits form the mantissa value.

The exponent of the base 2 is an unbiased two’s complement
number with a range of —64 to +63. The mantissa is a
sign-magnitude number with an assumed binary point just to
the left of the most significant mantissa bit (bit 23). All
floating-point values must be normalized, which makes bit 23
always equal to 1 except when representing a value of zero.
The number Zero is represented with binary zeros in all 32 bit
positions.

Data Stack

Figure 5 shows the two logical organizations of the internal
data stack. It operates as a true push-down stack or FILO
stack. That is, the data first written in will be the data last read
out. Within each stack entry, the least significant byte is en-
tered first and retrieved last.

Figure 6 shows a typical sequence for 32 bit operations. 6a
represents the stack prior to entry of data. 6b shows the stack
following entry of the LS Byte of operand C. 6c illustrates the
stack contents following the entry of four bytes of operand C.
When operands C, B and A are all fully entered the stack ap-
pears as in 6e. If a command is then issued, to add B to A for
example, the stack contents look like 6f where R is the result
of B + A. When the first (MSB) byte of R is removed the
stack appears as in 6g. 6h shows the stack following the
complete retrieval or R. An even number of bytes should al-
ways be transferred for any data operation.

=+—— TOP OF STACK (TOS)

[~&—— NEXT ON STACK (NOS)

MANTISSA SIGN
EXPONENT SIGN
| r-EXPONENTAL MANTISSA |
llLlJ lllllllllll[lllllllllll
0

3130

MOS-003

Figure 3. Floating Point Format.

Status Register

The Am9511 Status register format is shown in Figure 4.
When the Busy bit (bit 7) is high, the APU is processing a
previously entered command and the balance of the Status
register should not be considered valid. When the Busy bit is
low, the operation is complete and the other status bits are
valid.

INEEEEER

T I—
1 = Carry or Borrow
—— 1 = Overflow
1 = Underflow Error
Field
01 = Negative Argument
10 = Zero Divisor
11 = Argument too Large
1 = Top of Stack is Zero
1 = Top of Stack is Negative
1 = Busy
MOS-004

Figure 4. Status Register.

32

T

32 BIT OPERANDS

-a—~—— TOP OF STACK (TOS)
[~=——— NEXT ON STACK (NOS)

T——

16 BIT OPERANDS

MOS-005

Figure 5. Stack Configurations.

Command Format

Each command executed by the APU is specified by a single
byte with the format shown in Figure 7. Bits O through 4 indi-
cate the operation to be performed. Bits 5 and 6 specify the
data format. Bit 7 is used to control the Service Request inter-
face line. When bit 7 is a one, the SVREQ output will go true
when the execution of the command is complete.

-y —

o]

TOS ——» | i TOS —| A4 A3 A2 Al
| L B4 B3 B2 B1
1 |
l‘ 32
TOS ——==1 C1 | i TOS —=| R4 R3 R2 R1
A [Cc4 C3 c2 C1
(b)] | ()
1]
TOS —=| C4 C3 | c2 | C1 TOS —| R3 R2 R1 C4
A | C3 c2 C1
(c) 1] {(¢)]
l 1
TOS ——= Bt c4 | C3 | c2 TOS —| C4 Cc3 c2 C1
C1 | |
@ | | (h)
] |
MOS-006
Figure 6. Stack Data Sequence Example.
OPERATION .
SVREQ SINGLE FIXED CODE
) I R
7 6 5 4 3 2 1

MOS-007

Figure 7. Command Format.

3

Command Hex Code Hex Code Execution Summary
Mnemonic (sr=1) (sr=0) Cycles Description
16-BIT FIXED-POINT OPERATIONS

SADD EC 6C 16-18 Add TOS to NOS. Result to NOS. Pop Stack.

SsuB ED 6D 30-32 Subtract TOS from NOS. Result to NOS. Pop Stack.

SMUL EE 6E 84-94 Multiply NOS by TOS. Lower result to NOS. Pop Stack.

SMUU Fé 76 80-98 Multiply NOS by TOS. Upper resuit to NOS. Pop Stack.

SDiIV EF 6F 84-94 Divide NOS by TOS. Result to NOS. Pop Stack.

32-BIT FIXED-POINT OPERATIONS

DADD AC 2C 20-22 Add TOS to NOS. Result to NOS. Pop Stack.

DsuB AD 2D 38-40 Subtract TOS from NOS. Result to NOS. Pop Stack.

DMUL AE 2E 194-210 Multiply NOS by TOS. Lower result to NOS. Pop Stack.

DMUU B6 36 182-218 Muiltiply NOS by TOS. Upper result to NOS. Pop Stack.

DDIV AF 2F 196-210 Divide NOS by TOS. Result to NOS. Pop Stack.
32-BIT FLOATING-POINT PRIMARY OPERATIONS

FADD 90 10 54-368 Add TOS to NOS. Result to NOS. Pop Stack.

FSuB 91 11 70-370 Subtract TOS from NOS. Result to NOS. Pop Stack.

FMUL 92 12 146-168 Multiply NOS by TOS. Result to NOS. Pop Stack.

FDIV 93 13 154-184 Divide NOS by TOS. Result to NOS. Pop Stack.
32-BIT FLOATING-POINT DERIVED OPERATIONS

SQRT 81 01 782-870 Square Root of TOS. Result to TOS.

SIN 82 02 3796-4808 Sine of TOS. Result to TOS.

COS 83 03 3840-4878 Cosine of TOS. Result to TOS.

TAN 84 04 4894-5886 Tangent of TOS. Result to TOS.

ASIN 85 05 6230-7938 inverse Sine of TOS. Result to TOS.

ACOS 86 06 6304-8284 Inverse Cosine of TOS. Result to TOS.

ATAN 87 07 4992-6536 Inverse Tangent of TOS. Result to TOS.

LOG 88 08 4474-7132 Common Logarithm of TOS. Result to TOS.

LN 89 09 4298-6956 Natural Logarithm of TOS. Result to TOS.

EXP 8A 0A 3794-4878 e raised to power in TOS. Result to TOS.

PWR 8B oB 8290-12032 NOS raised to power in TOS. Result to NOS. Pop Stack.
DATA AND STACK MANIPULATION OPERATIONS

NOP 80 00 4 No Operation. Clear or set SVREQ.

FIXS 9F 1F 90-214 } . . .)

Convert TOS from floating point format to fixed point format.
FIXD 9E 1E 90-336
FLTS 9D 1D 62-156 }))))
Convert TOS from fixed point format to floating point format.

FLTD 9C 1C 56-342

CHSS F4 I 22-24 } Change sign of fixed point operand on TOS.

CHSD B4 34 26-28

CHSF 95 15 16-20 Change sign of floating point operand on TOS.

PTOS F7 77 16

PTOD B7 37 20 Push stack. Duplicate NOS in TOS.

PTOF 97 17 20

POPS F8 78 10

POPD B8 38 12 Pop stack. Old NOS becomes new TOS. Old TOS rotates to bottom.

POPF 98 18 12

XCHS F9 79 18

XCHD B9 39 26 Exchange TOS and NOS.

XCHF 99 19 26

PUPI 9A 1A 16 Push floating point constant 7 onto TOS. Previous TOS becomes NOS.

Figure 8.

4

ALGORITHM DISCUSSION

Computer approximations of transcendental functions are
often based on some form of polynomial equation, such as:

F(X) = Ag + AX + ApX2 + AKX + AXY ... (1-1)

The primary shortcoming of an approximation in this form is
that it typically exhibits very large errors when the magnitude
of | X1 is large, although the errors are smali when |X| is
small. With polynomials in this form, the error distribution is
markedly uneven over any arbitrary interval.

Fortunately, a set of approximating functions exists that not
only minimizes the maximum error but also provides an even
distribution of errors within the selected data representation in-
terval. These are known as Chebyshev Polynomials and are
based upon cosine functions.'”? These functions are defined
as follows:

Th(X) = Cos ng; wheren = 0,1,2... (1-2)
8 = Cos™'X

The various terms of the Chebyshev series can be computed
as shown below:

To(X) = Cos (0« 6) = Cos (0) = 1 (1-4)

T4(X) = Cos (Cos™'X) = X (1-5)

To(X) = 003 29 = 2Cos? § — 1 = 2Cos? (Cos ™ 'X) ~ 1 (1-6)
=2x% -1

In general, the next term in the Chebyshev series can be re-
cursively derived from the previous term as follows:

Th(X) = 2X [To—1(X)] =~ Th—2 (X); n= 2 (1-7)
The terms T3, T4, Ts and Tg are given below for reference:

T3 = ax3 - 3X (1-8)
Ty =8X* ~ 8X2 + 1 (1-9)
Ts = 16X5 — 20%3 + 5X (1-10)
Te = 32x° — 48x* + 18X2 — 1 (1-11)

Chebyshev polynomials can be directly substituted for corre-
sponding terms of a power series expansion by simple alge-
braic manipulation:

1=T, (1-12)
X=T, (1-13)
X2 = 12 (Ty + To) (1-14)
X3 = 1/4 (3T + Ta) (1-15)
X* = 1/8 3Ty + 4T, + Ty) (1-16)
X3 = 1116 (10Ty + 5T3 + Ty) (1-17)
X8 = 1/32 (10Ty + 15T, + 6T, + Tg) (1-18)

Each of the derived functions except square root implemented
in the Am9511 APU has been reduced to Chebyshev poly-
nomial form. A sufficient number of terms has been used to
provide a mean relative error of about one part in 107.

Each of the functions is implemented as a three-step process.
The first step involves range reduction. That is, the input ar-
gument to the function is transformed to fall within a range of
values for which the function can compute a valid result. For
example, since functions like sine and cosine are periodic for
multiples of #/2 radians, input arguments for these functions
are converted to lie within the range of —=%/2 to +u/2. Pro-
cessing of the range-reduced input argument according to the
appropriate Chebyshev expansion is done in the second step.
The third step includes any necessary post processing of the
result, such as sign correction in sine or cosine for a particular
quadrant. Range reduction and post processing are unique to
each of the functions, while processing the Chebyshev ex-
pansion is performed by an algorithm that is common to all
functions.

DERIVED FUNCTION ERROR PERFORMANCE

Since each of the derived functions is an approximation of the
true function, results computed by the Am9511 are not always
exact. In order to more comprehensively quantify the error
performance of the component, the following graphs have
been prepared. Each function has been executed with a
statistically significant number of diverse data values, span-
ning the allowable input data range, and resulting errors have
been tabulated. Absolute errors (that is, the number of bits in
error) have been converted to relative errors according to the
following equation:

Absolute Error
True Result

Relative Error =

This conversion permits the error to be viewed with respect to
the magnitude of the true result. This provides a more objec-
tive measurement of error performance since it directly trans-
lates to a measure of significant digits of algorithm accuracy.

For example, if a given absolute error is 0.001 and the true
result is also 0.001, it is clear that the relative error is equal to
1.0 (which implies that even the first significant digit of the re-
sult is wrong). However, if the same absolute error is com-
puted for a true result of 10000.0, then the first six significant
digits of the result are correct (0.001/10000 = 0.0000001).

Each of the following graphs was prepared to illustrate relative
algorithm error as a function of input data range. Natural
Logarithm is the only exception; since logarithms are typically
additive, absolute error is plotted for this function.

Two graphs have not been included in the following figures:
common logarithms and the power function (XY). Common
logarithms are computed by multiplication of the natural
logarithm by the conversion factor 0.43429448 and the error
function is therefore the same as that for natural logarithm.
The power function is realized by combination of natural log
and exponential functions according to the equation:
XY = e¥lnx

The error for the power function is a combination of that for
the logarithm and exponential functions. Specifically, the rela-
tive error for PWR is expressed as follows:

|REpwr| = [REexp| + |X (AELN)|

where:

REpwg = relative error for power function
REexp = relative error for exponential function
AE(n = absolute error for natural logarithm

X = value of independent variable in X"

Notes:

1. Properties of Chebyshev polynomials taken from: Applied Numer-
ical Methods; Carnahan, Luther, Wikes; John Wiley & Sons, Inc.
1969.

2. Derived function algorithms adapted from: Algorithms for Special
Functions (I and II); Numerische Mathematic (1963); Clenshaw,
Miller, Woodger.

10° [~ 100
_, i
107° 1072
o
3 S
£ &
& &
2ot - ERC
E E
5
g H
-6 _
107° - 10 -
1078 ! 1 1 L | 108 1 L L L | |
_1g° _10? ~107 10 10720 10710 100 10'° —10"® —10° —10710 10720 10710 10° 10'®
DATA VALUES (RADIANS) DATA VALUES (RADIANS)
MOS-008 MOS-009
SINE COSINE
.‘uﬂ —
10—2 -
o
o
[
[+ 4
w
FRT
=
<
=
w
o
10-6 -
ot | . L ! | |
—10"0 ~10° 10710 10720 10710 10° 10'°
DATA VALUES (RADIANS)
MOS-010
TANGENT
-6 — _
10 10 e~
4
['4
¢ §
[o
o w
w0l W,
E Z 10
S b
o 2
1078 L L | 108 | | 1)
—10® 077 10720 10710 10° —10"° ~10° 10720 10710 10°
DATA VALUES DATA VALUES
MOS-011 MOS-012

INVERSE SINE

INVERSE COSINE

!
H
|
i
!

1078~

RELATIVE ERROR
3
T

J | | | L] 1]
102 _10"° -10° —10710 10720 10710 10° 10'° 10%°
DATA VALUES
MOS-013
INVERSE TANGENT
1078 — 1078
o
]]
[£
:]
5 07— w7 |-
3 g
& =
2 2
108 L i I ! - ! |
1072 10710 10° 10'0 10%0 10720 10710 10° 10"° 1020
DATA VALUES DATA VALUES
MOS-014 MOS-015
NATURAL LOG SQUARE ROOT
107
[4
g
o
o
w
w7
=
<
<
w
'3
108 ! ! L L ; J
—10'® —10° —10710 10720 10710 10° 100
DATA VALUES
MOS-016

COMMAND DESCRIPTIONS

This section contains detailed descriptions of the APU com-
mands. They are arranged in alphabetical order by command
mnemonic. In the descriptions, TOS means Top Of Stack and
NOS means Next On Stack.

All derived functions except Square Root use Chebyshev
polynomial approximating algorithms. This approach is used
to help minimize the internal microprogram, to minimize the
maximum error values and to provide a relatively even dis-
tribution of errors over the data range. The basic arithmetic
operations are used by the derived functions to compute the
various Chebyshev terms. The basic operations may produce
error codes in the status register as a result.

Execution times are listed in terms of clock cycles and may
be converted into time values by multiplying by the clock
period used. For example, an execution time of 44 clock cy-

cles when running at a 4MHz rate translates to 11 micro-
seconds (44 x .25us = 11us). Variations in execution cycles
reflect the data dependency of the algorithms.

In some operations exponent overflow or underflow may be
possible. When this occurs, the exponent returned in the re-
sult will be 128 greater or smaller than its true value.

Many of the functions use portions of the data stack as
scratch storage during development of the results. Thus pre-
vious values in those stack locations will be lost. Scratch loca-
tions destroyed are listed in the command descriptions and
shown with the crossed-out locations in the Stack Contents
After diagram.

Figure 8 is a summary of all the Am9511 commands. It shows
the hex codes for each command, the mnemonic abbrevi-
ation, a brief description and the execution time in clock cy-
cles. The commands are grouped by functional classes.

Figure 9 lists the command mnemonics in alphabetical order.

ACOS ARCCOSINE

ASIN ARCSINE

ATAN ARCTANGENT

CHSD CHANGE SIGN DOUBLE
CHSF CHANGE SIGN FLOATING
CHSS CHANGE SIGN SINGLE
cos COSINE

DADD DOUBLE ADD

DOoIV DOUBLE DIVIDE

DMUL DOUBLE MULTIPLY LOWER
DMUU DOUBLE MULTIPLY UPPER
DSUB DOUBLE SUBTRACT

EXP EXPONENTIATION (e¥)
FADD FLOATING ADD

FDIV FLOATING DIVIDE

FIXD FIX DOUBLE

FIXS FIX SINGLE

FLTD FLOAT DOUBLE

FLTS FLOAT SINGLE

FMUL FLOATING MULTIPLY
FSUB FLOATING SUBTRACT

LOG COMMON LOGARITHM

LN NATURAL LOGARITHM

NOP NO OPERATION

POPD POP STACK DOUBLE

POPF POP STACK FLOATING

POPS POP STACK SINGLE

PTOD PUSH STACK DOUBLE

PTOF PUSH STACK FLOATING

PTOS PUSH STACK SINGLE

PUPI PUSH =

PWR POWER (X")

SADD SINGLE ADD

SDIV SINGLE DIVIDE

SIN SINE

SMUL SINGLE MULTIPLY LOWER
SMUU SINGLE MULTIPLY UPPER
SQRT SQUARE ROOT

SSUB SINGLE SUBTRACT

TAN TANGENT

XCHD EXCHANGE OPERANDS DOUBLE
XCHF EXCHANGE OPERANDS FLOATING
XCHS EXCHANGE OPERANDS SINGLE

Figure 9. Command Mnemonics in Alphabetical Order.

ACOS

32-BIT FLOATING-POINT INVERSE COSINE

7 6 5 4 3 2 1 0
Binary Coding: st | 0 [oJo o1]1] o]

Hex Coding: 86 with sr = 1

06 with sr = 0
Execution Time: 6304 to 8284 clock cycles
Description:

The 32-bit floating-point operand A at the TOS is replaced by the
32-bit floating-point inverse cosine of A. The result R is a value in
radians between 0 and #. Initial operands A, B, C and D are lost.
ACOS will accept all input data values within the range of —1.0to
+1.0. Values outside this range will return an error code of 1100
in the status register.

Accuracy: ACOS exhibits a maximum relative error of 2.0 x

10~7 over the valid input data range.
Status Affected: Sign, Zero, Error Field

STACK CONTENTS

ATAN
32-BIT FLOATING-POINT
INVERSE TANGENT

7 6 5 4 3 2 1 0
Binary Coding: sr | 0 [0 [o Jo [1 1] 1]

Hex Coding: 87 with sr = 1

07 with sr = 0
Execution Time: 4992 to 6536 clock cycles
Description:

The 32-bit floating-point operand A at the TOS is replaced by the

32-bit floating-point inverse tangent of A. The result Ris a value in

radians between —#/2 and +/2. Initial operands A, C and D are

lost. Operand B is unchanged.

ATAN will accept all input data values that can be represented in

the floating point format.

Accuracy: ATAN exhibits a maximum relative error of 3.0 x
1077 over the input data range.

Status Affected: Sign, Zero

STACK CONTENTS

BEFORE AFTER
A TOS R
B
c
D
| 32 J ! 32 |

ASIN

32-BIT FLOATING-POINT INVERSE SINE

7 6 5 4 3 2 1 0
Binary Coding: | sr | 0 [o [o o[1o 1]

Hex Coding: 85 withsr = 1

05 with sr = 0
Execution Time: 6230 to 7938 clock cycles
Description:

The 32-bit floating-point operand A at the TOS is replaced by the

32-bit floating-point inverse sine of A. The result R is a value in

radians between —=/2 and +a/2. Initial operands A, B, C and D

are lost.

ASIN will accept all input data values within the range of —1.0 to

+1.0. Values outside this range will return an error code of 1100

in the status register.

Accuracy: ASIN exhibits a maximum relative error of 4.0 x
1077 over the valid input data range.

Status Affected: Sign, Zero, Error Field

STACK CONTENTS

BEFORE AFTER
A TOS R
B B
c
D
} 32 ! 32 !

CHSD

32-BIT FIXED-POINT SIGN CHANGE

7 6 5 4 3 2 1 0
Binary Coding: st [0 [1 [1 o1 o] o]

Hex Coding: B4 with sr =1

34 with sr = 0
Execution Time: 26 to 28 clock cycles
Description:

The 32-bit fixed-point two’s complement integer operand A at
the TOS is subtracted from zero. The result R replaces A at
the TOS. Other entries in the stack are not disturbed.
Overflow status will be set and the TOS will be returned un-
changed when A is input as the most negative value possible
in the format since no positive equivalent exists.

Status Affected: Sign, Zero, Error Field (overflow)

STACK CONTENTS

BEFORE AFTER
A TOS R
B B
C C
D D

BEFORE AFTER
A TOS R
B
c
D
I 32 | } 32 !

CHSF

32-BIT FLOATING-POINT SIGN CHANGE

7 6 5 4 3 2 1 0
Binary Coding: [sr [0 [o[1 [o[1] o] 1]

Hex Coding: 95 with sr = 1

15 withsr = 0
Execution Time: 16 to 20 clock cycles
Description:

The sign of the mantissa of the 32-bit floating-point operand A at
the TOS is inverted. The result R replaces A at the TOS. Other
stack entries are unchanged.
If A is input as zero (mantissa MSB = 0), no change is made.
Status Affected: Sign, Zero

STACK CONTENTS

BEFORE AFTER
A TOS R
B B
c c
D D
I 32 ! I 32 j

COS

32-BIT FLOATING-POINT COSINE

7 6 5 4 3 2 1 0
Binary Coding: st [0 J[o Jo oo | 1] 1]

Hex Coding: 83 with sr = 1

03 withsr = 0
Execution Time: 3840 to 4878 clock cycles
Description:

The 32-bit floating-point operand A at the TOS is replaced by

R, the 32-bit floating-point cosine of A. A is assumed to be in

radians. Operands A, C and D are lost. B is unchanged.

The COS function can accept any input data value that can

be represented in the data format. All input values are range

reduced to fall within an interval of —n/2 to +#/2 radians.

Accuracy: COS exhibits a maximum relative error of 5.0 x
10~7 for all input data values in the range of —2x
to +2x radians.

Status Affected: Sign, Zero

STACK CONTENTS

CHSS

16-BIT FIXED-POINT SIGN CHANGE

7 6 5 4 3 2 1 0
Binary Coding: | st [1 [1 [1 [o[1]o] o]

Hex Coding: F4 with sr = 1

74 with sr = 0
Execution Time: 22 to 24 clock cycles
Description:

16-bit fixed-point two’s complement integer operand A atthe TOS
is subtracted from zero. The result R replaces A at the TOS. All
other operands are unchanged.

Overflow status will be set and the TOS will be returned un-
changed when A is input as the most negative value possible in
the format since no positive equivalent exists.

Status Affected: Sign, Zero, Overflow

STACK CONTENTS

BEFORE
A TOS

AFTER

s}

I|OMmMmioOl®
I|®OMmMmO|O|®

I
{
|
i

BEFORE AFTER
A TOS R
B B
c
D
I 32 | I 32 |

DADD

32-BIT FIXED-POINT ADD

7 6 5 4 3 2 1 0
Binary Coding: st [0 [1 Jo [1 [1] o] o]

Hex Coding: AC with sr = 1

2C withsr =0
Execution Time: 20 to 22 clock cycles
Description:

The 32-bit fixed-point two’s complement integer operand A at the
TOS is added to the 32-bit fixed-point two’s complement integer
operand B at the NOS. The result R replaces operand B and the
Stack is moved up so that R occupies the TOS. Operand Biis lost.
Operands A, C and D are unchanged. If the addition generates a
carry it is reported in the status register.

If the result is too large to be represented by the data format, the
least significant 32 bits of the result are returned and overflow
status is reported.

Status Affected: Sign, Zero, Carry, Error Field

STACK CONTENTS

BEFORE AFTER
A TOS R
B o]
o] D
D A

DDIV

32-BIT FIXED-POINT DIVIDE

7 6 5 4 3 2 1 0
Binary Coding: | sr [0 [1 Jo [11] | 1]
AF with sr = 1
2F with sr = 0

Execution Time: 196 to 210 clock cycles when A # 0
18 clock cycles when A = 0.

Hex Coding:

Description:

The 32-bit fixed-point two’'s complement integer operand B at
NOS is divided by the 32-bit fixed-point two's complement in-
teger operand A at the TOS. The 32-bit integer quotient R re-
places B and the stack is moved up so that R occupies the
TOS. No remainder is generated. Operands A and B are lost.
Operands C and D are unchanged.

If Ais zero, R is set equal to B and the divide-by-zero error
status will be reported. If either A or B is the most negative
value possible in the format, R will be meaningless and the
overflow error status will be reported.

Status Affected: Sign, Zero, Error Field

STACK CONTENTS

BEFORE AFTER
A TOS R
B c
c D
D
[32 ' e 32 |

DMUL
32-BIT FIXED-POINT MULTIPLY, LOWER

7 6 5 4 3 2 1 c
BinaryCoding:Lsrl O|_1 |0| 1 | 1 | 1|0—|

Hex Coding: AE with sr = 1

2E withsr = 0
Execution Time: 194 to 210 clock cycles
Description:

The 32-bit fixed-point two's complement integer operand A at the
TOS is multiplied by the 32-bit fixed-point two's complement in-
teger operand B at the NOS. The 32-bit least significant half of the
product R replaces B and the stack is moved up so that R oc-
cupies the TOS. The most significant half of the product is lost.
Operands A and B are lost. Operands C and D are unchanged.
The overflow status bit is set if the discarded upper half was
non-zero. If either A or B is the most negative value that can
be represented in the format, that value is returned as R and
the overflow status is set.

Status Affected: Sign, Zero, Overflow

STACK CONTENTS

DMUU
32-BIT FIXED-POINT MULTIPLY, UPPER

7 6 5 4 3 2 1 0
Binary Coding: | st [0 | 1 |1 o[1] 1] o]

Hex Coding: B6 with sr = 1

36 with sr = 0
Execution Time: 182 to 218 clock cycles
Description:

The 32-bit fixed-point two’s complement integer operand A at
the TOS is multiplied by the 32-bit fixed-point two’s comple-
ment integer operand B at the NOS. The 32-bit most signifi-
cant half of the product R replaces B and the stack is moved
up so that R occupies the TOS. The least significant half of
the product is lost. Operands A and B are lost. Operands C
and D are unchanged.

If A or B was the most negative value possible in the format,
overflow status is set and R is meaningless.

Status Affected: Sign, Zero, Overflow

STACK CONTENTS

BEFORE AFTER
A TOS R
B c
o} D
D
| 32 | ' 32 |

DSUB
32-BIT FIXED-POINT SUBTRACT

7 6 5 4 3 2 1 0
BinaryCoding:|sr|0‘1|0|1|1 ‘OJ 1|

Hex Coding: AD with sr = 1

2D with sr = 0
Execution Time: 38 to 40 clock cycles
Description:

The 32-bit fixed-point two’s complement operand A at the
TOS is subtracted from the 32-bit fixed-point two’s comple-
ment operand B at the NOS. The difference R replaces
operand B and the stack is moved up so that R occupies the
TOS. Operand B is lost. Operands A, C and D are un-
changed.

If the subtraction generates a borrow it is reported in the carry
status bit. If A is the most negative value that can be rep-
resented in the format the overflow status is set. If the result
cannot be represented in the data format range, the overflow
bit is set and the 32 least significant bits of the result are re-
turned as R.

Status Affected: Sign, Zero, Carry, Overflow

STACK CONTENTS

BEFORE AFTER
A TOS R
B c
c D
D
| 32 | I 32

1

BEFORE AFTER
A TOS R
B c
o] D
D A
32 ! fe 32

EXP

32-BIT FLOATING-POINT &*

7 6 5 4 3 2 1 0
Binary Coding: | sr | 0 [0 Jo [1o 1] o |
Hex Coding: 8A with sr = 1

OA withsr =0

Execution Time: 3794 to 4878 clock cycles for |Al < 1.0 x 25
34 clock cycles for |Al > 1.0 x 25

Description:

The base of natural logarithms, e, is raised to an exponent value

specified by the 32-bit floating-point operand A at the TOS. The

result R of e* replaces A. Operands A, C and D are lost. Operand

B is unchanged.

EXP accepts all input data values within the range of —1.0 x 2*5

to +1.0 x2%3, Input values outside this range will return a code of

1100 in the error field of the status register.

Accuracy: EXP exhibits a maximum relative error of 5.0 x
1077 over the valid input data range.

Status Affected: Sign, Zero, Error Field

STACK CONTENTS

32-BIT FLOATING-POINT DIVIDE
7 6 5 4 3 2 1 0
BinaryCodIng:Lsr|0|0|1|0[0|1| 1 |
Hex Coding: 93 with sr = 1
13 withsr =0

Execution Time: 154 to 184 clock cycles for A # 0
22 clock cycles for A = 0

Description:

32-bit floating-point operand B at NOS is divided by 32-bit
floating-point operand A at the TOS. The result R replaces B and
the stack is moved up so that R occupies the TOS. Operands A
and B are lost. Operands C and D are unchanged.)

If operand A is zero, R is set equal to B and the divide-by-zero
error is reported in the status register. Exponent overflow or
underflow is reported in the status register, in which case the
mantissa portion of the result is correct and the exponent portion
is offset by 128.

Status Affected: Sign, Zero, Error Field

STACK CONTENTS

BEFORE AFTER
A TOS R
B B
C
D
! 32 ! I 32 !

FADD

32-BIT FLOATING-POINT ADD

7 6 5 4 3 2 1 0

Binary Coding: | s [0 [o [1[o[o[o]o
Hex Coding: 90 with sr = 1
10 withsr = 0
Execution Time: 54 to 368 clock cycles for A # 0
24 clock cycles for A =0

Description:

32-bit floating-point operand A at the TOS is added to 32-bit
floating-point operand B atthe NOS. The result R replaces B and
the stack is moved up so that R occupies the TOS. Operands A
and B are lost. Operands C and D are unchanged.

Exponent alignment before the addition and normalization of the
result accounts for the variation in execution time. Exponent
overflow and underflow are reported in the status register, in
which case the mantissa is correct and the exponent is offset by
128.

Status Affected: Sign, Zero, Error Field

STACK CONTENTS

BEFORE AFTER
A TOS R
B c
c D
D
| 32 I 32 I

FIXD

32-BIT FLOATING-POINT TO
32-BIT FIXED-POINT CONVERSION

7 6 5 4 3 2 1 0
t]1]o]

BinaryCoding:lE | 0 | 0 | 1 | 1 |

Hex Coding: 9E with sr = 1

1E withsr = 0
Execution Time: 90 to 336 clock cycles
Description:

32-bit floating-point operand A at the TOS is converted to a
32-bit fixed-point two’s complement integer. The result R re-
places A. Operands A and D are lost. Operands B and C are
unchanged.

If the integer portion of A is larger than 31 bits when con-
verted, the overflow status will be set and A will not be
changed. Operand D, however, will still be lost.

Status Affected: Sign, Zero Overflow

STACK CONTENTS

BEFORE AFTER
A TOS R
B c
C D
D
| 32 ! ! 32

BEFORE AFTER
A TOS R
B B
c c
D
! 32 | [32 I

12

|

FIXS

32-BIT FLOATING-POINT TO
16-BIT FIXED-POINT CONVERSION

7 6 5 4 3 2 1 0
ERER

Binary Coding: Lsr ’ 0 l 0 | 1 [! |

Hex Coding: 9F with sr = 1

1F with sr = 0
Execution Time: 90 to 214 clock cycles
Description:

32-bit floating-point operand A at the TOS is converted to a
16-bit fixed-point two’s complement integer. The result R re-
places the lower half of A and the stack is moved up by two
bytes so that R occupies the TOS. Operands A and D are
lost. Operands B and C are unchanged, but appear as upper
(u) and lower (l) halves on the 16-bit wide stack if they are
32-bit operands.

If the integer portion of A is larger than 15 bits when con-
verted, the overflow status will be set and A will not be
changed. Operand D, however, will still be lost.

Status Affected: Sign, Zero, Overflow

STACK CONTENTS

BEFORE AFTER
A |- TOS -~ R
B Bu
c BI
D Cu
fe—— 32— cl
fe— 16 |

FLTD

32-BIT FIXED-POINT TO
32-BIT FLOATING-POINT CONVERSION

7 6 5 4 3 2 1 0
BinaryCoding:[sr|0l0]1|1|1|0|0|

Hex Coding: 9C with sr = 1

1C withsr =0
Execution Time: 56 to 342 clock cycles
Description:

32-bitfixed-point two’s complement integer operand A atthe TOS
is converted to a 32-bit floating-point number. The result R re-
places A atthe TOS. Operands A and D are lost. Operands B and
C are unchanged.

Status Affected: Sign, Zero

STACK CONTENTS

FLTS

16-BIT FIXED-POINT TO
32-BIT FLOATING-POINT CONVERSION

7 6 5 4 3 2 1 0
BinaryCoding:Lsr { 0 | 0 { 1 '1 |1 |0 \ 17

Hex Coding: 9D with sr = 1

1D withsr =0
Execution Time: 62 to 156 clock cycles
Description:

16-bit fixed-point two’s complement integer A at the TOS is
converted to a 32-bit floating-point number. The lower half of the
result R (Rl) replaces A, the upper half (Ru) replaces H and the
stack is moved down so that Ru occupies the TOS. Operands A,
F, G and H are lost. Operands B, C, D and E are unchanged.
Status Affected: Sign, Zero

STACK CONTENTS

BEFORE AFTER

A TOS Ru
B RI
o} B
D c
E D
F E
G

H

f— 16— 16—

FMUL

32-BIT FLOATING-POINT
MULTIPLY

7 6 5 4 3 2 1 0
BinaryCoding:li|0|0l1|0|0|1|0|

Hex Coding: 92 with sr = 1

12 withsr = 0
Execution Time: 146 to 168 clock cycles
Description:

32-bit floating-point operand A at the TOS is multiplied by the
32-bit floating-point operand B at the NOS. The normalized resuit
R replaces B and the stack is moved up so that R occupies the
TOS. Operands A and B are lost. Operands C and D are un-
changed.

Exponent overflow or underflow is reported in the status register,
in which case the mantissa portion of the result is correct and the
exponent portion is offset by 128.

Status Affected: Sign, Zero, Error Field

STACK CONTENTS

BEFORE AFTER
A TOS R
B B
c c
D
| 32 | 32 !

13

BEFORE AFTER
A ~—TOS —» R
B c
c D
)
| 32 | } 32 |

FSUB

32-BIT FLOATING-POINT SUBTRACTION

7 6 5 4 3 2 1 0
BinaryCoding:lsr‘0|0|1 ‘0\0|0| 1 ‘
Hex Coding: 91 with sr = 1

11 withsr = 0

Execution Time: 70 to 370 clock cycles for A # 0
26 clock cycles for A = 0

Description:

32-bit floating-point operand A at the TOS is subtracted from
32-bit floating-point operand B at the NOS. The normalized
difference R replaces B and the stack is moved up so that R
occupies the TOS. Operands A and B are lost. Operands C
and D are unchanged.

Exponent alignment before the subtraction and normalization
of the result account for the variation in execution time.
Exponent overflow or underflow is reported in the status regis-
ter in which case the mantissa portion of the result is correct
and the exponent portion is offset by 128.

Status Affected: Sign, Zero, Error Field (overflow)

STACK CONTENTS

BEFORE AFTER
A TOS R
B c
C D
D
32 | | 32

LOG

32-BIT FLOATING-POINT
COMMON LOGARITHM
7 6 5 4 3 2 1 0
BinaryCoding:isr|0|0‘O|1‘0\0|0|
88 with sr = 1
08 withsr =0

Execution Time: 4474 to 7132 clock cycles for A > 0
20 clock cycles for A< 0

Hex Coding:

Description:

The 32-bit floating-point operand A at the TOS is replaced by R,

the 32-bit floating-point common logarithm (base 10) of A.

Operands A, C and D are lost. Operand B is unchanged.

The LOG function accepts any positive input data value that can

be represented by the data format. If LOG of a non-positive value

is attempted an error status of 0100 is returned.

Accuracy: LOG exhibits a maximum absolute error of 2.0 x 1077
for the input range from 0.1 to 10, and a maximum
relative error of 2.0 x 1077 for positive values less
than 0.1 or greater than 10.

Status Affected: Sign, Zero, Error Field

BEFORE STACK CONTENTS AFTER
A TOS R
B B
o]
D
| 32 ! [32 -]

LN

32-BIT FLOATING-POINT
NATURAL LOGARITHM

7 6 5 4 3 2 1 0
Binary Coding: [sr [0 [0 [o [1 [o Jo [1|
89 with sr = 1
09 with sr = 0

Execution Time: 4298 to 6956 clock cycles for A > 0
20 clock cycles for A< 0

Hex Coding:

Description:

The 32-bit floating-point operand A at the TOS is replaced by

R, the 32-bit fioating-point natural logarithm (base e) of A.

Operands A, C and D are lost. Operand B is unchanged.

The LN function accepts all positive input data values that can

be represented by the data format. If LN of a non-positive

number is attempted an error status of 0100 is returned. ’

Accuracy: LN exhibits a maximum absolute error of 2 x 1077
for the input range from e ' to e, and a maximum
relative error of 2.0 x 1077 for positive values less
than e or greater than e.

Status Affected: Sign, Zero, Error Field

STACK CONTENTS

BEFORE AFTER
A TOS R
B B
c
D
! 32 | [32 |
NO
OPERATION

7 6 5 4 3 2 1 0
Binary Coding: [sr [0 o [0 Jo [o [o [o]

Hex Coding: 80 with sr = 1

00 with sr = 0
Execution Time: 4 clock cycles
Description:

The NOP command performs no internal data manipulations. It
may be used to set or clear the service request interface line
without changing the contents of the stack.

Status Affected: The status byte is cleared to all zeroes.

POPD

32-BIT
STACK POP

7 6 5 4 3 2 1 0
Binary Coding: | st [0 [1 [1 [1[o] o] o]

Hex Coding: B8 with sr = 1

38 withsr = 0
Execution Time: 12 clock cycles
Description:

The 32-bit stack is moved up so that the old NOS becomes the
new TOS. The previous TOS rotates to the bottom of the stack. All
operand values are unchanged. POPD and POPF execute the
same operation.

Status Affected: Sign, Zero

STACK CONTENTS

BEFORE AFTER
A TOS B
B c
c D
D A
. 32 | ! 32 !

POPF

32-BIT
STACK POP

7 6 5 4 3 2 1 0
rBinaryCoding:l;sr|0|0|1|1|0|0l0|

Hex Coding: 98 with sr = 1

18 with sr = 0
Execution Time: 12 clock cycles
Description:

The 32-bit stack is moved up so that the old NOS becomes the
new TOS. The old TOS rotates to the bottom of the stack. All
operand values are unchanged. POPF and POPD execute the
same operation.

Status Affected: Sign, Zero

STACK CONTENTS

POPS

16-BIT
STACK POP

7 6 5 4 3 2 1 (o]
BinaryCoding:|jr|1i111|1‘0|0|0|

Hex Coding: F8 with sr = 1

78 withsr = 0
Execution Time: 10 clock cycles
Description:

The 16-bit stack is moved up so that the old NOS becomes the
new TOS. The previous TOS rotates to the bottom of the stack. All
operand values are unchanged.

Status Affected: Sign, Zero

STACK CONTENTS

BEFORE
A TOS

AFTER

(o]

IT|®@MmMmOO®
PIT(O|MIMOO

|
'
!
i

PTOD

PUSH 32-BIT
TOS ONTO STACK

7 6 5 4 3 2 1 0
Binary Coding: [sr | 0 [1 [1 [o[1 [1] 1]

Hex Coding: B7 with sr = 1

37 withsr =0
Execution Time: 20 clock cycles
Description:

The 32-bit stack is moved down and the previous TOS is
copied into the new TOS location. Operand D is lost. All other
operand values are unchanged. PTOD and PTOF execute the
same operation.

Status Affected: Sign, Zero

STACK CONTENTS

BEFORE AFTER
A TOS B
B o}
c D
D A
| 32 - 30—

15

BEFORE AFTER
A TOS A
B A
c B
D c
I 32 I f 32

PTOF

PUSH 32-BIT
TOS ONTO STACK

7 6 5 4 3 2 1 0
Binary Coding: |sr | 0 [0 [1 o [1 [1] 1]

Hex Coding: 97 with sr = 1

17 withsr = 0
Execution Time: 20 clock cycles
Description:

The 32-bit stack is moved down and the previous TOS is copied
into the new TOS location. Operand D is lost. All other operand
values are unchanged. PTOF and PTOD execute the same op-
eration.

Status Affected: Sign, Zero

STACK CONTENTS

PUPI

PUSH 32-BIT
FLOATING-POINT 7

7 6 5 4 3 2 1 0
Binary Coding: [sr [0 [0 [1 [1 [o[1] o]

Hex Coding: 9A withsr = 1

1A withsr =0
Execution Time: 16 clock cycles
Description:

The 32-bit stack is moved down so that the previous TOS oc-
cupies the new NOS location. 32-bit floating-point constant = is
entered into the new TOS location. Operand D is lost. Operands
A, B and C are unchanged.

Status Affected: Sign, Zero

STACK CONTENTS

BEFORE AFTER
A TOS A
B A
c B
D c
[32 ! } 32

PTOS

PUSH 16-BIT
TOS ONTO STACK

7 6 5 4 3 2 1 0
Binary Coding: [sr | 1 [1 [1 Jo |1 [1] 1]

Hex Coding: F7 with sr = 1

77 with sr = 0
Execution Time: 16 clock cycies
Description:

The 16-bit stack is moved down and the previous TOS is copied
into the new TOS location. Operand H is lost and ali other
operand values are unchanged.

Status Affected: Sign, Zero

STACK CONTENTS

BEFORE
A TOS

AFTER

>

T|®(mMmo|o|m
OmMMoO|O|o|>»

!
!
!
i

16

BEFORE AFTER
A TOS b
B A
c B
D c
| 32 | } 32 I

PWR

32-BIT
FLOATING-POINT XY

7 6 5 4 3 2 1 0
Binary Coding: st | 0 [o [o[1]o[1] 1]

Hex Coding: 8B with sr = 1

OB with sr = 0
Execution Time: 8290 to 12032 clock cycles
Description:

32-bit floating-point operand B at the NOS is raised to the power
specified by the 32-bit floating-point operand A at the TOS. The
result R of B replaces B and the stack is moved up so that R
occupies the TOS. Operands A, B, and D are lost. Operand C is
unchanged.

The PWR function accepts all input data values that can be
represented in the data format for operand A and all positive
values for operand B. If operand B is non-positive an error status
of 0100 will be returned. The EXP and LN functions are used to
implement PWR using the relationship B* = EXP [A(LN B)].
Thus if the term [A(LN B)] is outside the range of —1.0 x 25 to
+1.0x2%5 an error status of 1100 will be returned. Underflow and
overflow conditions can occur.

Accuracy: The error performance for PWR is a function of
the LN and EXP performance as expressed by:
[(Relative Error)pwgl=|(Relative Error)gxp+|A(Absolute
Error) |
The maximum relative error for PWR occurs when
A is at its maximum value while [A(LN B)] is near
1.0 x 25 and the EXP error is also at its maxi-
mum. For most practical applications the relative
error for PWR will be less than 7.0 x 1077,

Status Affected: Sign, Zero, Error Field

STACK CONTENTS

BEFORE AFTER
A TOS R
B o}
c
D
[32 I I 32 |

17

SADD

16-BIT
FIXED-POINT ADD

7 6 5 4 3 2 1 0
Binary Coding: | sr [1 [1 o[1 [1o o]

Hex Coding: EC withsr =1

6C withsr =0
Execution Time: 16 to 18 clock cycles
Description:

16-bit fixed-point two's complement integer operand A at the
TOS is added to 16-bit fixed-point two’'s complement integer
operand B at the NOS. The result R repiaces B and the stack
is moved up so that R occupies the TOS. Operand B is lost.
All other operands are unchanged.

If the addition generates a carry bit it is reported in the status
register. If an overflow occurs it is reported in the status regis-
ter and the 16 least significant bits of the result are returned.

Status Affected: Sign, Zero, Carry, Error Field

STACK CONTENTS

BEFORE
A TOS

AFTER

o)

I|OMmMmoO|®
P|II|OQ{iMM OO

!
L
!
4

SDIV

16-BIT
FIXED-POINT DIVIDE

7 6 5 4 3 2 1 0
BinaryCoding:|sr|1|1‘0‘1l1I1|1|
EF with sr = 1
6F withsr = 0

Execution Time: 84 to 94 clock cycles for A # 0
14 clock cycles for A = 0

Hex Coding:

Description:

16-bit fixed-point two’s complement integer operand B at the
NOS is divided by 16-bit fixed-point two's complement integer
operand A at the TOS. The 16-bit integer quotient R replaces B
and the stack is moved up so that R occupies the TOS. No
remainder is generated. Operands A and B are lost. All other
operands are unchanged.

If Ais zero, R will be set equal to B and the divide-by-zero error
status will be reported.

Status Affected: Sign, Zero, Error Field

STACK CONTENTS

BEFORE AFTER
A TOS R
B c
c D
D E
E F
F G
G H
H
l— 16— f=—16—

18

7 5 3

SIN

32-BIT
FLOATING-POINT SINE

7 6 5 4 3 2 1 0
BinaryCoding:‘sr|O|O|0|0l0|1|0|

Hex Coding: 82 withsr =1
02 with sr = 0
Execution Time: 3796 to 4808 clock cycles for Al > 2712
radians
30 clock cycles for IAl < 272 radians
Description:

The 32-bit floating-point operand A at the TOS is replaced by

R, the 32-bit floating-point sine of A. A is assumed to be in

radians. Operands A, C and D are lost. Operand B is un-

changed.

The SIN function will accept any input data value that can be

represented by the data format. All input values are range re-

duced to fall within the interval —«/2 to +#/2 radians.

Accuracy: SIN exhibits a maximum relative error of 5.0 x
10~ for input values in the range of —27 to +27
radians.

Status Affected: Sign, Zero

STACK CONTENTS

BEFORE AFTER
A TOS R
B B
c
D
[32 ! | 32 |

SMUL

16-BIT FIXED-POINT
MULTIPLY, LOWER

7 6 5 4 3 2 1 0
BinaryCoding:lsr|1 |1 l0|1|1|1|0|

Hex Coding: EE with sr = 1

6E with sr = 0
Execution Time: 84 to 94 clock cycles
Description:

16-bit fixed-point two’s complement integer operand A atthe TOS
is multiplied by the 16-bit fixed-point two’s complement integer
operand B at the NOS. The 16-bit least significant half of the
product R replaces B and the stack is moved up so that R
occupies the TOS. The most significant half of the product is lost.
Operands A and B are lost. All other operands are unchanged.
The overflow status bit is set if the discarded upper haif was
non-zero. If either A or B is the most negative value that can be
represented in the format, that value is returned as R and the
overflow status is set.

Status Affected: Sign, Zero, Error Field

STACK CONTENTS

BEFORE AFTER
A TOS - R
B c
c D
D E
E F
F G
G H
H
16— fe—16—=

18

SMUU

16-BIT FIXED-POINT
MULTIPLY, UPPER

7 6 5 4 3 2 1 0
BinaryCoding:lsr|1|1|1|0|1l1|0|

Hex Coding: F6 with sr = 1

76 with sr = 0
Execution Time: 80 to 98 clock cycles
Description:

16-bit fixed-point two's complement integer operand A at the
TOS is multiplied by the 16-bit fixed-point two’s complement
integer operand B at the NOS. The 16-bit most significant half
of the product R replaces B and the stack is moved up so that
R occupies the TOS. The least significant half of the product
is lost. Operands A and B are lost. All other operands are un-
changed.

If either A or B is the most negative value that can be rep-
resented in the format, that value is returned as R and the
overflow status is set.

Status Affected: Sign, Zero, Error Field

STACK CONTENTS

BEFORE AFTER
A TOS R
B c
c D
) E
E F
F G
G H
H
16— 16—

SQRT

32-BIT FLOATING-POINT SQUARE ROOT

7 6 5 4 3 2 1 0
Binary Coding: [sr [0 [o [o o o o] 1]

Hex Coding: 81 with sr = 1

01 withsr =0
Execution Time: 782 to 870 clock cycles
Description:

32-bit floating-point operand A at the TOS is replaced by R, the
32-bit floating-point square root of A. Operands A and D are iost.
Operands B and C are not changed.

SQRT will accept any non-negative input data value that can be
represented by the data format. If A is negative an error code of
0100 will be returned in the status register.

Status Affected: Sign, Zero, Error Field

BEFORE STACK CONTENTS AFTER
A TOS R
B B
c c
D
! 32 32—

! !
SSUB
16-BIT FIXED-POINT SUBTRACT

7 6 5 4 3 2 1 0
Binary Coding: [sr | 1 [1 Jo [1 [1[0 1]

Hex Coding: ED with sr =1

6D with sr = 0
Execution Time: 30 to 32 clock cycles
Description:

16-bit fixed-point two’s complement integer operand A at the
TOS is subtracted from 16-bit fixed-point two’s complement in-
teger operand B at the NOS. The result R replaces B and the
stack is moved up so that R occupies the TOS. Operand B is
lost. All other operands are unchanged.

If the subtraction generates a borrow it is reported in the carry
status bit. If A is the most negative value that can be rep-
resented in the format the overflow status is set. If the resuit
cannot be represented in the format range, the overflow
status is set and the 16 least significant bits of the result are
returned as R.

Status Affected: Sign, Zero, Carry, Error Field

BEFORE STACK CONTENTS
A TOS

AFTER

sl

ITIOMMO|IO|®
>PIT|OMMO|O

|
¢
!
;

20

TAN

32-BIT FLOATING-POINT TANGENT

7 6 5 4 3 2 1 0
BinaryCoding:Isr|0|0|0|0‘1|0|0l

Hex Coding: 84 withsr = 1
04 withsr = 0
Execution Time: 4894 to 5886 clock cycles for Al > 2712
radians
30 clock cycles for 1Al <= 272 radians
Description:

The 32-bit floating-point operand A at the TOS is replaced by
the 32-bit floating-point tangent of A. Operand A is assumed
to be in radians. A, C and D are lost. B is unchanged.
The TAN function will accept any input data value that can be
represented in the data format. All input data values are
range-reduced to fall within —=/4 to +#/4 radians. TAN is un-
bounded for input values near odd multiples of #/2 and in
such cases the overflow bit is set in the status register. For
angles smaller than o112 radians, TAN returns A as the tan-
gent of A. '

Accuracy: TAN exhibits a maximum relative error of 5.0 x
10~7 for input data values in the range of —27 to
+27 radians except for data values near odd mul-
tiples of =/2.

Status Affected: Sign, Zero, Error Field (overflow)

BEFORE STACK CONTENTS AFTER
A TO8 R
B B
c
D
! 32 ! ! 32 |

XCHD

EXCHANGE 32-BIT STACK OPERANDS

7 6 5 4 3 2 1 0
Binary Coding: sr [0 [1 [1 [1 [o o[1]

Hex Coding: B9 with sr = 1

39 with sr = 0
Execution Time: 26 clock cycles
Description:

32-bit operand A at the TOS and 32-bit operand B at the NOS
are exchanged. After execution, B is at the TOS and A is at
the NOS. All operands are unchanged. XCHD and XCHF
execute the same operation.
Status Affected: Sign, Zero

BEFORE STACK CONTENTS AFTER
A TOS B
B A
c c
D D
! 32 | 32 |

XCHF

EXCHANGE 32-BIT
STACK OPERANDS

7 6 5 4 3 2 1 0
Binary Coding: sr [0 [0 [1 [1 Jo o] 1]

Hex Coding: 99 with sr = 1

19 withsr =0
Execution Time: 26 clock cycles
Description:

32-bit operand A at the TOS and 32-bit operand B at the NOS
are exchanged. After execution, B is at the TOS and A is at
the NOS. All operands are unchanged. XCHD and XCHF
execute the same operation.
Status Affected: Sign, Zero

STACK CONTENTS

BEFORE AFTER
A TOS B
B A
c c
D D
[32 | ! 32

21

' XCHS

EXCHANGE 16-BIT
STACK OPERANDS

7 6 5 4 3 2 1 0
BinaryCoding:[sr|1|1|1|1|0|0|1|

Hex Coding: F9 with sr = 1

79 with sr = 0
Execution Time: 18 clock cycles
Description:

16-bit operand A at the TOS and 16-bit operand B at the NOS
are exchanged. After execution, B is at the TOS and A is at
the NOS. All operand values are unchanged.

Status Affected: Sign, Zero

STACK CONTENTS

BEFORE
A TOS

AFTER

@

I QMM OoOO|m
IT|@I M MO]O;|>

!
¢
!
|

