&

Advanced Micro Devices

Am9511A/Am9512
Floating Point
Processor Manual

By Steven Cheng

The International Standard of Quality |
guarantees these electrical AQLs on all !
ararmeters over the ogerating tempera-]
:01% on MOS RAMS & ROMs;)
0.2% onBipolar Logic & Interface; 0.3%
on Linear, »0gic &other memories,

© 1981 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in its products without
notice in order to improve design or performance characteristics. The company
assumes no responsibility for the use of any circuits described herein.

901 Thompson Place, P.O. Box 453, Sunnyvale, California 94086
(408) 732-2400 TWX: 910-339-9280 TELEX: 34-6306

Printed in U.S.A. 5/81 RMC-615

TABLE OF CONTENTS

CHAPTER 1 — AN INTRODUCTION TO FLOATING POINT
1.1 What Is a Floating Point Number?
1.2 When Should Floating Point Be Used?

CHAPTER 2 — FLOATING POINT FORMATS

2.1 Commonly Used Floating Point Bases

2.2 Comparisons of the Three Commonly Used Bases
2.3 Different Exponent Formats

2.4 “Implied 1”7

CHAPTER 3 — FLOATING POINT ARITHMETIC
3.1 Introduction

3.2 Floating Point Add and Subtract

3.3 Floating Point Multiply

3.4 Floating Point Divide

CHAPTER 4 — DATA CONVERSION

4.1 Introduction

4.2 Binary Fixed Point to Floating Point

4.3 Floating Point to Binary Fixed Point

4.4 Decimal to Binary Floating Point Conversion
4.5 Binary to Decimal Floating Point Conversion

CHAPTER 5 — SINGLE-CHIP FLOATING POINT PROCESSORS
5.1 Introduction

5.2 Am9511A Arithmetic Processor

5.3 Am9512 Floating Point Processor

CHAPTER 6 — SOME INTERFACE EXAMPLES
6.1 Introduction

6.2 AmI080A to AmI511A Interface
6.3 AmM9080A to Am3512 Interface
6.4 AmB80B5A to Am9511-1 Interface
6.5 AmM8085A to Am9512-1 Interface
6.6 Z80 to Am9511A Interface

6.7 Z80 to Am9512 Interface

6.8 MC6800 to Am9511A Interface
6.9 MC6800 to Am9512 Interface
6.10 AmZ8002 to Am9511A Interface
6.11 AmZ8002 to Am9512 Interface

CHAPTER 7 — Am9511A INTERFACE METHODS
7.1 Introduction

7.2 Demand/Wait

7.3 Poll Status

7.4 Interrupt Driven

7.5 DMA Transfer

CHAPTER 8 — FLOATING POINT EXECUTION TIMES
8.1 Introduction

8.2 Floating Point Add/Subtract Execution Times

8.3 Floating Point Muitiply/Divide Execution Times
8.4 Double-Precision Floating Point Execution Times

CHAPTER 9 — TRANSCENDENTAL FUNCTIONS OF Am9511A
9.1 Introduction

9.2 Chebyshev Polynomials

9.3 The Function CHEBY and ENTIER

9.4 Sine

9.5 Cosine

9.6 Tangent

9.7 Arcsine

9.8 Arccosine

9.9 Arctangent

9.10 Exponentiation

9.11 Natural Logarithm

9.12 Logarithm to Base 10 (Common Logarithm)
9.13 X to the Power of Y

TABLE OF CONTENTS (Cont.)

9.14 Square Root
9.15 Derived Function Error Performance

REFERENCES
APPENDIX A. Am9511A DATA SHEET
APPENDIX B. Am9512 DATA SHEET

ILLUSTRATIONS

FIG. TITLE

3.1 Floating Point Add/Subtract Flowchart

3.2 Floating Point Multiply Flowchart

3.3 Floating Point Divide Flowchart

4.1 Fix To Float Conversion Flowchart

4.2 Float To Fix Conversion Flowchart

4.3 Fix To Float/Float To Fix Conversion Subroutines

4.4 Decimal To Binary Floating Point Conversion Flowchart
4.5 Decimal to Binary Floating Point Conversion Programs
4.6 Binary To Decimal Floating Point Conversion Flowchart
4.7 Binary To Decimal Floating Point Conversion Programs
6.1 Am9080A To Am9511A Interface

6.2 AmM9080A To Am9512 Interface

6.3 Am8085A To Am9511-1 Interface

6.4 AmB8085A To Am9512-1 Interface

6.5 780 To Am9511A Interface

6.6 Z80 To Am9512 Interface

6.7 MC6800 To Am9511A Interface

6.8 MC6800 To Am9512 Interface

6.9 AmZ8002 To Am9511A Interface

6.10 AmZ8002 To Am9512 interface

7.1 Demand/Wait Programming

7.2 Status Poll Programming Interface

7.3 Interrupt Driven Programming

7.4 DMA Interface Programming

7.5 High-Performance Configuration

9.1 Tangent

9.2 X

9.3 Natural Logarithm

9.4 Square Root

9.5 Square Root Computation

TABLES

8.1 AmMO9511A vs LLL BASIC Floating Point Add/Subtract Execution Time Comparison
8.2 Am9512 vs Intel FPAL LIB Floating Point Add/Subtract Execution Time Comparison
8.3 AmM9511A vs LLL BASIC Floating Point Multiply/Divide Execution Time Comparison
8.4 Am9512 vs Intel FPAL LIB Floating Point Multiply/Divide Execution Time Comparison
8.5 Am9512 Double Precision Add/Subtract Execution Times

8.6 Am9512 Double Precision Multiply/Divide Execution Times

CHAPTER 1
AN INTRODUCTION TO FLOATING POINT

1.1 WHAT IS A FLOATING POINT NUMBER?

The numbers we encounter every day, such as 12, 34.56, 0.0789,
etc., are known as fixed point numbers because the decimal point
is in a fixed position. Such numbers are fairly closely matched in
magnitude and within about ten orders of magnitude from unity.
Examples of such numbers are found in bank accounts, unit
prices of store items and paychecks.

In scientific applications, the numbers encountered can be very
large. Avogadro’s number expressed in fixed point notation is
approximately 602,250,000,000,000,000,000,000. A scientist
may also use Planck’s constant which would be approximately
0.000000000000000000000000006626196 erg sec in fixed point
notation. These examples demonstrate the undesirability of writ-
ing fixed point notation and why most scientists use the concise
floating point notation to represent numbers such as Avogadro’s
number and Planck’s constant.

When a scientist writes the value of Avogadro’s number, he writes
6.0225 x 1023. Similarly he would express Planck’s constant as
6.626196 x 10—27 erg sec.

As we can observe, the number +6.0225 x 1023, consists of 4
parts:
Sign —
The sign of the number (+ or —). The plus sign is usually
assumed when no sign is shown,
Mantissa —
Sometimes also known as the fraction. The mantissa describes
the actual number. In the example, the mantissa is 6.0225.
Exponent —
Sometimes also known as the characteristic. The exponent
describes the order of magnitude of the number. In the exam-
ple, the exponent is 23.
Base —
Sometimes also known as the radix. The base is the number
base in which the exponent is raised. In the example, the base
is 10.

The parts of a floating point number can then be represented by
the following equation:

F=(-1)SxMxBE
where

F = floating point number

S = sign of the floating point number, so that S = 0 if the
number is positive and S = 1 if the number is negative

M = mantissa of the floating point number

B = base of the floating point number

E = exponent of the floating point number

1.2 WHEN SHOULD FLOATING POINT BE USED?

Although floating point numbers are useful when numbers of very
different magnitude are used, they should not be used indiscrim-
inately. There is an inherent loss of accuracy and increased
execution time for floating point computations on most compu-
ters. Floating point computation suffers the greatest loss of ac-
curacy when two numbers of closely matched magnitude are
subtracted from each other or two numbers of opposite sign but
almost equal magnitude are added together. Therefore, the As-
sociative Law in arithmetic

A+(B+C)=(A+B)+C

does not always hold true if B is of opposite sign to A and C and
very similar in magnitude to either A or C.

In most computers, hardware floating point multiply and divide
takes approximately the same amount of execution time as
hardware fixed point multiply and divide, but hardware floating
point add and subtract usually takes considerably more time then
hardware fixed point add and subtract. If the computer lacks
floating point hardware, all floating point computations will con-
sume more CPU time than fixed point computations.

CHAPTER 2
FLOATING POINT FORMATS

2.1 COMMONLY USED FLOATING POINT BASES

The following three number bases are commonly used in floating
point number systems:

1) Binary — The base is 2.
2) Binary Code Decimal (BCD) — The base is 10.
3) Hexadecimal — The base is 16.

2.2 COMPARISONS OF THE THREE
COMMONLY USED BASES

Binary —

The main advantages of the binary floating point format are
relative ease of hardware implementation and maximum ac-
curacy for a given number of bits. On the negative side, the
conversion of an ASCII (American Standard Code for Informa-
tion Interchange) decimal string to and from a binary floating
number is difficult and time consuming. In commercial applica-
tions where input and output are always decimal character
strings, the binary floating point numbers will have an inherent
rounding error because numbers such as 0.119 cannot be
represented exactly with a binary floating point number.

BCD —

The advantages and disadvantages of the BCD floating point
numbers are just the opposite of the binary floating point num-
bers. BCD floating point is most commonly used in commercial
applications where the computations involved are usually sim-
ple and input/output is always in the form of decimal ASCI|
strings.

Hexadecimal —

The hexadecimal floating point numbers have similar advan-
tages and disadvantages as the binary floating point when
compared with the BCD floating point format. When the same
number of bits of exponent and mantissa are used, the
hexadecimal floating point gives a considerably larger dynamic
range than the binary floating point format. For example, for a
7-bit exponent, the largest positive number that can be rep-
resented in the hexadecimal floating point is approximately
1664 (approximately 1.16 x 1077. The smallest non-zero posi-
tive number that can be represented is 16—64 (approximately
8.64 x 10— 78). By comparison, the largest and smallest positive
numbers that can be represented in a 7-bit exponent binary
system are approximately 1.84 x 1019 and 5.42 x 10—20 re-
spectively.

An advantage of the hexadecimal floating point system over the
binary point system is that during normalization and denormali-
zation of the floating point numbers the hexadecimal system
requires far fewer shifts compared with the binary system, be-
cause the hexadecimal system shifts four places at a time and
most binary systems shift only one place at a time. For more
sophisticated systems where normalization and denormalization
can be done in one operation, this advantage does not exist. Most
present-day systems do not fall in this category.

This disadvantage of the hexadecimal system is the loss of preci-
sion as compared with the binary system when the number of
mantissa bits are the same. Since the three most significant bits
could be zero when the first digit of the hexadecimal is a 1, this
leads to a loss of 3 bits of accuracy in the worst case. However,
assuming uniform distribution of numbers, the average loss of
accuracy is only 11/15 bits. The above comparison assumes the
binary system does not use an “implied 1” (Section 2.4). The loss
of accuracy in a hexadecimal system compared with a binary
system using an “implied 1” and same number of bits of mantissa
is 4 bits in the worst case and 1 and 11/15 bits on the average.

2.3 DIFFERENT EXPONENT FORMATS

Two types of exponents used in floating point number systems
are the biased exponent and the unbiased exponent. An un-
biased exponent has a two’s complement number. An exponent
said to be biased by N (or excess N notation), means that the
coded exponent is formed by adding N to the actual exponent in
two’s complement form. Any overflow generated from the addi-
tion is ignored. The result becomes an unsigned number. Most
common floating point systems use a biased exponent. Biased
exponents are used to simplify floating point hardware. During
floating point computations, arithmetic operations such as add
and subtract need to be performed on the exponents of the
operands. If a biased exponent is used, the arithmetic logic unit
(ALU) needs only to perform unsigned arithmetic. If an unbiased
exponent is used, the ALU must perform two’'s complement
arithmetic, and overflow conditions are more difficult to detect.

2.4 “IMPLIED 17

Most floating point numbers must always be presented to the
computer in “normalized” form (i.e., the most significant digit of
the mantissa is always non-zero, except if the number is zero).
For a binary floating point system, this would mean the leading
binary bit of the mantissa is always 1 (except when the number is
zero). In some floating point number systems, such as Am9512
format, this 1 bit is not represented on input or output to the
floating point processor. The extra bit can be used for one more
bit of precision or one more bit of exponent range.

CHAPTER 3
FLOATING POINT ARITHMETIC

3.1 INTRODUCTION

This chapter describes the basic principles of performing arith-
metic with floating point numbers. First, the internal mechanism of
floating point is analyzed. The following discussion uses the
Amg512 single precision format although the discussion can
apply to other formats with only minor modifications. The
operands are assumed to be located in a stack. The first operand
is called TOS (top of stack) and the second operand is called NOS
(next on stack).

3.2 FLOATING POINT ADD AND SUBTRACT

Floating point add and subtract use essentially the same al-
gorithm. The only difference is that floating point subtract
changes the sign of the floating point number at top of stack and
then performs the floating point add.

The following is a step-by-step description of a floating point add
algorithm (Figure 3.1):

Unpack TOS and NOS.

The exponent of TOS is compared to the exponent of NOS.
If the exponents are equal, go to step f.

Right-shift the mantissa of the number with the smaller expo-
nent.

Increment the smaller exponent and go to step b.

Set sign of result to sign of larger number.

Set exponent of result to exponent of larger number.

If sign of the two numbers are not equal, go to m.

Add mantissas.

Right-shift resultant mantissa by 1 and increment exponent of
result by 1.

apow

T oge o

‘ FSUB)

SIGN (TOS) = EXP =
SIGN (TOS) EXP (TOS)
UNPACK SIGN (TOS) =
TOS & NOS SIGN (NOS)?

EXP (TOS) =
EXP {NOS)?

SIGN = SIGN (TOS)
MAN =

MAN (TOS) + MAN (NOS})

l

MAN (TOS)
MAN (NOS)

SIGN = SIGN (NOS)
MAN =

MAN (NOS) — ﬁAN (TOS)

|
e

SIGN = SIGN (TOS)
MAN =

MAN (TOS) — MAN (NOS)

LEFT SHIFT
MAN

1

EXP =
EXP — 1

RIGHT SHIFT
MAN
RIGHT SHIFT EXP =
MAN (TOS) EXP + 1
EXP (TOS) = \
EXP (TOS) + 1
I "
ADDITION
ROUNDING
RIGHT SHIFT
MAN (NOS)
EXP (NOS) =
EXP (NOS) + 1

SET
OVERFLOW
STATUS

SUBTRACTION

S

ROUNDING

MOS-205

Figure 3.1. Floating Point Add/Subtract Flowchart

3

k. Ifthe most significant bit (MSB) of exponent changes from 1 to
0 as a result of the increment, set overflow status.

. Round if necessary and exit.

m. Subtract smaller mantissa from larger mantissa.

n. Left-shift mantissa and decrement exponent of result.

o. If MSB of exponent changes from 0 to 1 as a result of the

decrement, set underflow status and exit.

If the MSB of the resultant mantissa = 0, go to n.

Round if necessary and exit.

3.3 FLOATING POINT MULTIPLY

Floating point multiply basically invoives the addition of the expo-
nents and multiplication of the mantissas. The following is a
step-by-step description of a floating point multiplication al-
gorithm (Figure 3.2):

a. Check if TOS or NOS = 0.

b. I either TOS or NOS = 0, Set result to 0 and exit.

c. Unpack TOS and NOS.

Convert EXP (TOS) and EXP (NOS) to unbiased form:
EXP (TOS) = EXP (TOS) - 12719
EXP (NOS) = EXP (NOS) — 12749
Add exponents:
EXP = EXP (TOS) + EXP (NOS)
If MSB of EXP (TOS) = MSB of EXP (NOS) = 0 and MSB of
EXP = 1, then set overflow status and exit.
If MSB of EXP (TOS) = MSB of EXP (NOS) = 1 and MSB of
EXP = 0, then set underflow status and exit.
Convert exponent back to biased form:
EXP = EXP + 12719
lfsign of TOS = sign of NOS, set sign of resultto 0; otherwise ,
set sign of result to 1.
Multiply mantissas.
If MSB of resultant mantissa = 1, right-shift mantissa by 1 and
increment exponent of resultant.
If MSB of exponent changes from 1 to 0 as a result of the
increment, set overflow status.

. Round if necessary and exit.

N =
SIGN (TOS) P SIGN (NOS)

MAN (TOS)*MAN {NOS)

MAN
OVERFLOW?

UNPACK =
TOS & NOS RESULT = 0

RIGHT SHIFT

!

EXP (TOS) =
EXP (TOS) — 127,

MAN

l

EXP =

l

EXP (NOS) =
EXP (NOS) — 1274

EXP + 1

1

P =
EXP (TOS) + EXP (NOS)

MULTIPLICATION
ROUNDING

SET
OVERFLOW? OVERFLOW
STATUS
SET
UNDERFLOW? UNDERFLOW
STATUS

EXP =
EXP + 1279

L

‘ EXIT ’

MOS-206

Figure 3.2. Floating Point Multiply Flowchart

4

3.4. FLOATING POINT DIVIDE

The floating point divide basically involves the subtraction of
exponents and the division of mantissas. The following is a step-
by-step description of a division algorithm (Figure 3.3):

a.

b.
c.
d

If TOS = 0, set divide exception error and exit.
If NOS = 0, set result to 0 and exit.
Unpack TOS and NOS.
Convert EXP (TOS) and EXP (NOS) to unbiased form:
EXP (TOS) = EXP (TOS) — 12719
EXP (NOS) = EXP (NOS) — 12749
Subtract exponent of TOS from exponent of NOS:
EXP = EXP (NOS) — EXP (TOS)
If MSB of EXP (NOS) = 0, MSB of EXP (TOS) = 1, and MSB
of EXP = 1, then set overflow status and exit.

If MSB of EXP (NOS) = 1, MSB of EXP (TOS) = 0, and MSB
of EXP = 0, then set underflow status and exit.

. Add bias to exponent of result:

EXP = EXP + 12749
If sign of TOS = sign of NOS, set sign of result to O, eise set
sign of result to 1.
Divide mantissa of NOS by mantissa of TOS
If MSB = 0, left-shift mantissa and decrement exponent of
resultant, or else go to n.
If MSB of exponent changes from 0 to 1 as a result of the
decrement, set underflow status.

. Gotok.

Round if necessary and exit.

SIGN =
SIGN (TOS) @ SIGN (NOS)
SET DIVIDE _
EXCEPTION =
STATUS MAN (NOS)/MAN (TOS)
RESULT = 0
UNPACK
TOS & NOS
LEFT SHIFT
l MAN
EXP (TOS) = ‘
EXP (TOS) — 1274
EXP =
‘ EXP — 1
EXP (NOS) =
EXP (NOS) — 127y,
N @
Y
EXP =
EXP (NOS) — EXP (TOS)
SET
Y DIVISION
UNDERFLOW? UNDERFLOW
STATUS ROUNDING
Y SET
OVERFLOW? OVERFLOW
STATUS
EXP =
EXP + 1279 (ExiT)

MOS-207

Figure 3.3. Floating Point Divide Flowchart

CHAPTER 4
DATA CONVERSION

4.1 INTRODUCTION

This chapter describes how to convert fixed point binary integer to
floating point, floating point to fixed point binary integer, decimal
ASCIl (American Standard Code for Information Interchange)
string to floating point and floating point to decimal ASCII string.
These conversion methods are useful because few real-world
inputs and outputs are in floating point format. When human
interface is involved, the real-world interface is usually a decimal
ASCII string. If the data are collected through some automatic
means such as an A/D converter, counters, etc., the input is
usually in the form of fixed point binary or BCD integers. In this
chapter, the floating point format is assumed to be the Am9512
single precision format.

4.2 BINARY FIXED POINT TO FLOATING POINT

The input to this routine is assumed to be a 32-bit two's comple-
ment number and the output is a binary floating point number of

Am8512 format. Figure 4.1 shows the flow chart of such a pro-
gram and Figure 4.2 shows an Am9080A assembly language
subroutine that accomplishes this task.

The data format used in the assembly language conversion is as
follows:

Fixed Point —

Two’s complement number that occupies 4 consecutive mem-
ory locations with the most significant byte residing in low
memory. To address the number, the pointer points to the low
address.

Floating Point —

Am9512 floating point format that occupies 4 consecutive
memory locations. The sign and 7 bits of the exponent resides
inthe low address. To address the number, the pointer points to
the low address.

START

FLOAT = FIX
EXP = 15049
SIGN = 0

FLOAT = 07

BIT 31 = 07

BIT 23 — 30
= EXP

1

BIT 31
= SIGN

]

SIGN = 1
FLOAT =

‘ RETURN ’

—FLOAT

BIT24 — 31

ALL 0?7

.

RIGHT SHIFT
LOAT
EXP = EXP + 1

LEFT SHIFT
FLOAT
EXP = EXP — 1

L |

BIT 24 — 31
ALL 0?

MQOS-639

Figure 4.1. Fix to Float Conversion Flowchart

6

LoC O0BJ LINE

WO -JTRAW i AN

gees C5 25
2091 DS 2€
@oez E5 27
gee2 CDooeod
@026 EB 29
2007 CDoooe
G00A CA4DEE

=t
N
o]

=

@o0r 0609 35
200F Q@E96 3€

po11 7E 40
9012 B? 41
9013 F21R00 C ~ 42

po16 0680 47
ge1i8 CDeeeo) 48

@O1E 7E 52
2@1C BR7 53
981D CAZC@g@ C 54

SOURCE STATEMENT
PAGEWIDTE (80) MACROFILE

ke 3 o o ol 2 e e 38 oo i o 3 e 3o e sk e o o e o s e o s ofe e sk o e e

SUBROUTINES TO CONVERT FIX TO FLOAT
AND FLOAT TO FIX POINT FORMATS

s Xeae e aje i e e ok o 3k 3 3 We e 364 s e e e e e e 3 e e e e e sfege Xe ok ¢

e s we we e s ws we (N

NAME CONVT

-

PUBLIC FXTOFL,FLTOFX

-e

EXTRN QMOVE,QTEST,QNEG,QLSL,QLSR,QCLR

CSEG PAGE

FIX TO FLOAT CONVERSION ROUTINE

TO CALL THE PROGRAM,

HL = POINTER TO TEE FIXED POINT NUMEER

DE = POINTER TO THE FLOATING POINT NUMBER
ACC AND PSW ARE ALTERED BY THE SUEBROUTINE
ALL OTHER REGISTERS ARE NOT DISTURRED

P we e s o W ws we e

XTOFL: PUSH B ySAVE BC REGISTER PAIR

PUSHE D 3 SAVE DESTINATION POINTER
PUSH E 3 SAVE SOURCE POINTER

CALL QMOVE $COPY FIXED PT NO. INTO FLOAT
XCHG 3PUT FLOAT POINTER IN HIL

CALL QTEST y TEST IF NO. = 07

JZ RETN ' YES - JUMP

s we e

MVI B,2
MVYI C,23+127

3B REG
1C REG

SIGN
EXPONENT + BIAS

TEST IF THE NUMBER IS NEGATIVE

s me e

MOV A,M 3GET MSE FROM FLOAT
ORA A y SET FLAGS
JP FX1¢ jJUMP IF NO. IS POSITIVE

THE FIXED POINT NUMBER IS NEGATIVE
NEGATE NUMBER AND SET SIGN = 1

Y

MVI B,80H
CALL QNEG

; SET SIGN TO 8@B
yNEGATE NUMBER IN FLOAT

H

’ TEST IF MCST SIGNIFICANT BYTE OF FLOAT =
?
FY10: MOV A ,M 3GET MSB OF FLOAT

CRA A 7 SET FLAGS
JZ FX20 $JUMP IF MSB = 9

THE NUMBER IS NOT ZERO, INIT. SIGN AND EXP

2

Figure 4.2. Float to Fix Conversion Flowchart

7

LOC OBJ LINE SCURCE STATEMENT
55 3
56 3 MSB NOT ZERO, RIGHT SHIFT REQUIRED
57 3
2229 ¢C 58 FXi5: INK C sINC. EXP BY 1
9021 CDeOQe E 58 CALL QISR $+ LOGICAL SHIFT RIGHT OF FLOAT
0024 7E 60 MOV A M yTEST IF MSR = @&
2025 B7 61 ORA A 3 SET FLAGS
0e26 C22020 C 62 JNZ FX15 +NOT ZERO, SHIFT SOME MORE
0029 C33BOY C 63 JMP FX30 + ZERO, SHIFT COMPLETE
64 3
65 3 MSB = ¢, TEST IF LEFT SHIFT REQUIRED
66 ;
222C 54 67 FX29: MCV D,H
#@2D 5D 68 MOV E,L s PUT FLOAT POINTER INTO DE
BOZE 13 66 INX D yPOINT TO NEXT MSB OF FLOAT
PO2F 1A 7@ FX25: IDAX D $GET NEXT MSB
0830 RB7 71 ORA A + SET FLAGS
00231 FA3ROQ C 72 - JM FX3@ iyDONE IF BIT 23 = 1
20834 @D 73 ICR C yDEC. EXP BY 1
2035 CDoCoo E 74 CALL QISL +LOGICAL LEFT SHIFT OF FLOAT
2038 C32Fr99 C 75 JMP FX25 s TRY AGAIN
76 3
77 SHIFT COMPLETE, MANTISSA FORMED IN FLOAT
78 3
@038 1A 7S FX30: IDAX D yGET NEXT MSB OF F;OéT
903C E67F 80 ANI 7FH sSTRIP OFF HIDDEN 1
@O3E 12 81 STAX D yPUT IT BACK IN MEMORY
@33F 79 82 MOV A,C $1GET EXPONENT
¢040 OF 83 PRC yROTATE RIGHT
0041 4F 84 MOY C,A sPUT ROTATED EXP. BACK IN C
0042 EE80 85 ANI 89H # EXTRACT LSB OF EXPONENT
0044 EB 86 XCHG 1 PUT NEXT MSB POINTER IN HL
2045 B6 87 CRA M ; COMBINE MSB OF MANTISSA WITH EX
P
0246 77 88 MOV M,A
2047 ER 89 XCHG sRESTORE POINTERS
2048 79 99 MOV A,C +GET ROTATED EXPONENT
9049 E67F 91 ANI 7FH y STRIP OF LSB
0048 BO 02 ORA B 3 COMBINE EXP WITH SIGN
204C 77 93 MOV M,A + SET MSB OF FLOAT
94 3
a5 3 CONVERSION COMPLETE, RETURN TO CALLER
96 ;
284T E1 S7 RETN: POP H yRESTORE ALL REGISTERS
2p4E D1 98 POP D
@04F C1 99 POP B
20658 C9 109 RET s RETURN TO CALLER
191 3
192 ; FLOAT TO FIX CONVERSION ROUTINE
103 3 TO CALL THE PROGRAM
194 35 HL = POINTER TO THE FLOATING POINT NUMRER
185 3 TE = POINTER TO THE FIXED POINT NUMBER
1€ 3 ON RETURN
187 3 A REG = @ AND Z FLAG = 1 IF NO ERROR
128 ; A =1 AND Z FLAG = ¢ IF OVERFLOW ERROR
Figure 4.2. Float to Fix Conversion Flowchart (Cont.)

8

10C

2051
2052
@053
9054
8057
Ba5A

@850
@0O5F
@o5F
pe61
0062
2063
0064
066
peew
2068
2069
PR6A
286D
2O6E
@O6F
go71
porz
0e73
2075
geve
aa78
2878
207D
go8a
2082
2085
2086

2089
2e8¢
2e8D
0299

8293
2096
gos7

20GA

OBJ

c5
D5
ES
CDogeo
Choodee
CAAZQO

79
DE7F
FAA7 0@
FE1F
D2ALD0®
D617
CAOAD®
4F
DA93 00

CDhooee
2D

28920
C39A00

CDzooeo
oC
€29308

78

LINE

109
110
111
112
113
114
115
11€
117
118
116
12¢
121
122
123
124
1258
12€
127
128
128
130
131
132
133
134
135
13€
137
138
136
140
141
142
143
144
145
146
147
148
149
1506
151
152
153
154
153
15€
157
158
159
160
161
162
183

X} we e

~s e e

ef s we s

i we e -

2 e we oo

SOURCE STATEMENT
OTHER REGISTERS

PUSH B
PUSH D
PUSH B
CALL QMOVE
CALL QTEST
JZ Fl40

ARE NOT DISTURBED

$SAVE ALL REGISTERS

+ COPY FLOAT TO FIX
y TEST IF INPUT NO. = @7
RETURN IF INPUT IS ZERO

EXTRACT SIGN AND EXPONENT FROM FLOATING PT NO.

XCHG
MOV A M
ANI 80H
MOV B,A
MOV A,M
RLC

ANI QFEH
MOV C LA
INX B
MOV A,M
RLC

JNC $+4
INR C
MOV A, M
ORI 8¢H
MOV M,A
ICX H
MVI M,@
MOV A,C
SUI 127
JM ZERO
CPI 31
JNC OVFL
SUI 23
JZ FL30
MOV C,A
JC FL2@

COUNT > @, LEFT

CALL QLSL
ICR C

JNZ F119
JMP FL32

3 HL POINTS TO FIX

;GET MSB

s EXTRACT SIGN BIT

$ SAVE SIGN IN B

3GET MSB AGAIN

iMULTIPLY BY 2

ySTRIP OF LSB

FSAVE IN C

+POINT TO NEXT MSB

yGET NEXT MSB

yMOVE LSB OF EXP INTO CARRY
3 SKIP IF NO CARRY

sPROPAGATE CARRY INTO EXP
yGET NEXT MSB

SET EIDDEN BIT

yRESTORE NEXT MSB

sNOW EL POINTS TO MSB AGAIN
» CLEAR MSB

3yGET BIASED EXPONENT

iSTRIP OFF BIAS

JEXP < @, RETURN ZERO AS RESULT
; CEECK IF EXP > 31

yJUMP IF NUMBER IS TOO LARGE
s SUBTRACT EXP BY 23

iNO SHIFT REQUIRED, CHECK SIGN
ySAVE SHIFT COUNT

yCOUNT < @, RIGHT SHIFT

SHIFT REQUIRED
yLOGICAL SHIFT LEFT

COUNT < @, RIGHET SHIFT REQUIRED

CALL QLSR
INR C
JNZ FLze

SHIFT COMPLETE,

MOV A,B

jLOGICAL SHIFT RIGHT

CHECK SIGN AND EXIT

3GET SIGN

Figure 4.2. Float to Fix Conversion Flowchart (Cont.)

9

LoC

@09
2e9C
PE9F

20A2
QBA3
2oA4
@0OA5
B0OAE

@OA7
BOAA

@OAD
QEAF
0080

PURLIC

0BJ

B7

F2A200

CD

AF
El
D1
C1
co

CcD
C3

SE
B7

00ee

geece
A200

o1

C2A300

SYMBOLS

FLTOFX C ¢@51

EXTERNAL SYMBOLS

QCLR E oece
QONEG E ¢o09
USER SYIMBOLS
FL10 C ¢e89
FLTOFX C 2051
FX25 C 292F
QCLR E oede
QNEG E 0000
ASSEMBLY

LINE

164
165
16€
167
168
169
170
171
172
173
174
178
176
177
178
17¢
180
181
182
183
184
18¢
i8¢

FXTOFL

QLSL
QTEST

F120
FX19
FX30
QLSL
QTEST

COMPLETE, NO

ef we s we

c
C
c
E
E

L4@:

ERO:

VFL:

2¢00

2000
o002

2093
Ge1R
2038
2020
peoe

ERRORS

SOURCE STATEMENT

ORA A
JP FL4Q
CALL QNEG

7 SET FLAGS

$PLUS SIGN, SKIP NEGATION
NEGATE NUMBER

yMINUS SIGN,

CLEAR ERROR FLAG AND RETURN

XRA A
POP H
POP D
POP B
RET

s RESTORE ALL REGISTERS

ZERO FIX POINT NUMBER AND RETURN

CALL QCLR
JMP FL4O

SET OVERFLOW FLAG ANT RETURN

MVI A,1
ORA A
JMP FL4@+
END

1

0000

2e oA
0020
2000
ol
2¢4D

7 CLEAR FIX POINT NUMBER

RETURN

s SET A REG

3 SET Z FLAG
$RESTORE REG. AND RETURN

QMOVE

FL4o
FX20¢
OVFL
QMOVE
ZERO

E

oMoO0

pooe

2OA2
202C
ZOAD
2000
BOAT

Figure 4.2. Float to Fix Conversion Flowchart (Cont.)

10

LCcC

0eeo
0001
9002
0233
0ee5
2006
geew
@oes
80229
PO0A
280D
QBOE
Q02F
2010

2211
@012
2013
2214
@215
9016
@017
geo18
2019
2214

2018
po1C
@210
QO1E
@o1F

OBJ

€5
D5
ES
P64
7E
12
23
13
25
C23509 C
F1
D1
C1
c9

E5
7E

e s
el

B6
23
RE
23
B6
El
ce

Cc5
23

&
23
0624

=
—
z
=4

OO0 -IMUL AN

SCURCE STATEMENT
PAGEWIDTH(82) MACROFILE

3l 36 3 ok 2 3 ol she 3k o e o ol o o e e e e o o e e ole e e e S o

CUADRUPLE PRECISION SUBROUTINES

e %53 3ol NEe 3 e A el e djesle e e e e e R R e e R

“e me ws we ws we wo {N-

PURLIC QMOVE,QTEST,QNEG,QLSL,QLSR,QCLR

CSEG

MOVE 4 RYTES POINTED TO BY EL
T0O 4 BYTES POINTETL BY DE

M(DE) = M(HL)
MOVE: PUSH B 3 SAVE ALL REGISTERS
PUSH D
PUSE H
MVI B,4
QM1g: MOV A ,M }GET BYTE FROM M(HL)
STAX T } STORE BYTE IN M(DE)
INX H 7 BUMP SOURCE POINTER
INX D ;RUMP DESTINATION POINTER
ICR B
JNZ QM1g yUNTIL 4 TIMES
FOP H $RESTORE ALL REGISTERS
POP D
POP B
RET
y
’ TEST 4 BYTES POINTED TO HL FOR &
} M(HEL) = @7
)
QTEST: ©PUSH H ySAVE EL
MOV AL,M yGET FIRST RYTE
INX H
ORA M y COMRINE WITH 2ND BYTE
INX H
ORA M y COMBINE WITH 3RD BYTE
INX E
CRA M 3 COMBINE WITH 4TH BYTE
FOP H yRESTORE HL
RET
?
5 NEGATE THE QUAD PRECISION NUMBER PCINTED TC BY H
L
) M(HL) = - M(EL)
’
ONEG: PUSE B 7SAVE BC
INX B MOVE BL TO LSB
INX E
INX H
MVI B,4

Figure 4.2. Float to Fix Conversion Flowchart (Cont.)

1

LOC 0BJ LINE SCURCE STATEMENT
2021 B7 54 ORA A s CLEAR CARRY
go22 2ECQ 55 QN1@: MVI A,p ;CLEAR A WITHOUT AFFECTING CARRY
2924 9OF 56 SBE M
2825 77 57 MOV M,A
@026 23 58 DCX H
2227 85 59 ICR B
2028 C22208 C 69 JNZ QN1g
ge23 23 €1 INX H ;RESTORE HL
282C C1 62 FOP B ; RESTORE EC
g02T €9 63 RET
64 ;
65 ; LOGICAL SEIFT LEFT 4 BYTES POINTED TO HL
66 ; M(EL) = LSL(M(HL))
67 ;
PO2E €5 68 QLSL: FUSE B ; SAVE BC
go2F 23 69 INX H ;MOVE POINTED TO LSB
2030 23 g INX H
pB31 23 71 INX H
2032 @604 w2 MVI B,4
@234 B7 7z ORA A $ CLEAR CARRY
2035 7E 74 QLSL10: MOV A,M
2936 17 75 RAL
2037 77 76 MOV M,A
2038 2B 77 ICX H
8239 @5 78 DCR B
PO3A C2350@ C 7S JNZ QLSL1g
P83L 23 8@ INX H ;RESTORE HL
P03E C1 81 POP B $RESTORE BC
223F €9 82 RET
83 ;
84 ; LOGICAL RIGHT SHIFT OF 4 BYTES POINTED T0 BY HL
85 3 M(HL) = LSR(M(HL))
8€ ;
2249 C5 87 QLSR: PUSE B $SAVE BC
0041 E5 88 FUSE H $ SAVE HL
2042 9604 89 MVI B,4
@044 B7 o9 ORA A ; CLEAR CARRY
0045 7E 91 QLSR1@: MOV A ,M
2046 1F 92 RAR
go4ar 77 83 MOV M, A
2048 23 94 INX H
9049 05 95 DCR B
04N C24500 C g€ JNZ QLSR1g
994 E1 97 POP H $RESTORE HL
Q@04 C1 o8 POP B iRESTORE BC
gP4F C9 99 RET
1290 ;
181 ; CLEAR 4 BYTES POINTED TO BY HL
182 ; M(EL) = @
1832 ;
2050 ES 104 QCLR: FUSH H
2251 AF 125 XRA A
pas2 77 12€ MOV M,A
0853 23 107 INX H
@954 77 198 MOV M,A

Figure 4.2. Float to Fix Conversion Fiowchart (Cont.)
12

L0C O©BJ LINE
2052 23 128
ge56 77 11@
JBE? 23 111
@258 77 112
2059 E1 113
0e54 C9 114
115 3
11€
PURLIC SYMECLS
GQCLR C 205¢ QLSL C 20Z2F
QNEG C 201E QTEST € @211
EXTERNAL SYMBOLS
USER SIMBOLS
QCLR C 80597 QLSL C 922F
QLSR10 C @045 QM1e C oeges
UNEG C 2013 QTEST C 2011
ASSEMBLY COMPLETE, NO ERRORS

SCURCE STATEMENT

INX
MOV
INX
MoV
POP
RET

ENT

QLSR

QLSL1g C @e35
CMOVE

mXEmTaA

C 2042 QMOVE (C 02029

QLSH
QN12

C geag

C gece C o022

Figure 4.2. Float to Fix Conversion Flowchart (Cont.)

The following is a step-by-step description of the algorithm used
in the conversion example:

a.

coovw

Copy the fixed point number into the location of the floating
point number.

Test the floating point number to see if it is zero.

Return to caller if the number is zero.

The sign is defaulted to 0 (plus).

Default the actual exponent to 23. This is the exponent that
would be valid if no shift is required, i.e., the most significant 1
is in bit position 23. Since the Am3512 format has a bias of
12749 the bias is added to the default value to make the
default exponent 234 + 12719 = 1501p.

If bit 31 in the floating point register = 1, then the input number
is a negative number. The number in the floating point register
is negated (two’s complement negation) and the sign is
setto 1.

If bits 24-31 of the floating point register are all zeroes, then

B

the input number has an exponent less than or equal 23. The
program transfers to step j for possible left shifts. Otherwise
the program falls through to h.

Bits 24-31 are not all zeroes. This means the magnitude of the
fixed point number is greater than 223, The floating point
register is right-shifted one place and the exponent is in-
cremented by 1.

Test bits 24-31 again for all zeroes. If they are not all zeroes,
repeat step h. If bits 24-31 are all zeroes, shifting is complete
and the program transfers to step |.

Bits 24-31 are all zero. If bits 23 = 1, no more shifting is
required and the program transfers to step I.

Left-shift floating point register. Decrement exponent by 1 and
repeat step j.

Shifting is complete. The exponent is stored into bits 23-30.
(The original bit 23, the “hidden 1” is overwritten).

. Store the sign into bit 31 of the floating point register.

Return to caller.

4.3 FLOATING POINT TO BINARY FIXED POINT

Figure 4.2 shows the flowchart of a floating point to fixed point
conversion flowchart. An Am9080A assembly language sub-
routine that implements to flowchart is shown in Figure 4.3. The
following is a step-by-step description of the algorithm:

a.
b.
c.

@™o

Copy the floating point number into the fixed point register.
If the floating number is zero, return to caller.

Unpack the floating point number from the fixed point register
by removing the exponent and sign. The exponent (in the
unbiased form) and the sign are stored in CPU registers. The
“Hidden 1" is restored in the fixed point register.

If exponent is less than 0, zero fixed point register and exit.
If exponent is larger than 31, set overflow flag and exit.
Subtract 23 from exponent to derive the shift count.

If the adjusted exponent is greater than zero, the original

exponent is greater than 23, the program transfers to step j to
left shift fixed point register, or else it falls through to step h.
It the exponent = 0, shift is complete and the program trans-
fers to step 1.

Right-shift the fixed point number one position and increment
the exponent by 1. Repeat step h.

Left-shift the fixed point number by one position and decre-
ment the exponent by 1.

If the exponent is not zero, repeat step j; or else, the pro-
gram falls through to step I.

Test the original sign of the floating point number. If sign is
positive skip step m.

- If the sign is negative, negate the number in the fixed point

register (two’'s complement).
Return to caller.

START

FIX = FLOAT

EXTRACT
SIGN,

EXP = EXP — 23

EXP = 0?

EXPONENT

SET
OVERFLOW
FLAG

FIX=0

LEFT SHIFT

EXP = EXP — 1

FIX

SIGN = 1

RIGHT SHIFT

FIX
EXP = EXP + 1

L

—

FIX = —FIX

‘ RETURN)

MOS-640

Figure 4.3. Fix to Float/Float to Fix Conversion Subroutines

14

4.4 DECIMAL TO BINARY FLOATING POINT CONVERSION

When a programmer works with binary floating point numbers, it
is often necessary to convert decimal numbers into binary floating
point notation to enter the desired numbers into the machine.
Figure 4.4 shows the flowchart of such a conversion program and
Figure 4.5 shows a BASIC program that does the conversion.

The program uses an array A of 32 elements. Each element of the
array corresponds to one bit of the floating point number: A(31) is
the sign bit, A(30) to A(23) represent the exponent and A(22) to
A(0) represent the mantissa. Other variables used are as follows:

D — The decimal number entered from console

E — The exponent of the binary floating point number

H — An index to the hexadecimal string with range 0-15

H$ — An ASCII string of all hexadecimal characters used for
hexadecimal output

! — An integer used for loop index

J — A number used for comparison when unpacking the
exponent and the mantissa

M - The mantissa of the binary floating point number

The following equation converts a floating point number from one
base to another:

Let Ep = Exponent of new number
Mo = Mantissa of new number
Bo = Base of new number
Ny = Original number

Given Ny and By, the equations used to solve Ez and Mg are:

Ep = INT (LOG (N1)LOG (By))
Mo = Ny/(B2 * * Ep)

(START)

ZERO ARRAY
A(0) — A(31) = 0

GET UNBIASED
EXPONENT

INT (LOG D/LOG 2)

l

OUTPUT
00000000

INPUT
DECIMAL NO.
D

GET MANTISSA
M=D21E

l

GET BIASED
EXPONENT
E=E +127

l

CONVERT EXP
TO BINARY
A(30) - A(23) = E

l

CONVERT MANT
if;)s'_G'f TO BINARY
= A22) - A0) = M
OUTPUT
NEGATE D AGY) — A(Q) IN
bD=-D HEXADECIMAL

I

MOS-641

Figure 4.4. Decimal to Binary Floating Point Conversion Flowchart

15

19

20

30

40

50

60

73

8¢

90

190
110
1ze
130
142
150
1€2
170
180
169
200
210
220
230
240
259
2€Q
270
289
299
2ee
319
320
32

340
350
360
370
380
3980
400
410
420
439
440
450
460

REM
REM

DIM A(3zZ)

Hy = "g12345678SABCDEF"

PRINT "INPUT DECIMAL NO. ";

INPUT ©

REM CLEAR BINARY ARRAY

FOR I = @ T0 31

A(I) =2

NEXT I

IF D = @ THEN 45@

IF D < @ THEN A(@) = 1

L = ABS(D)

REM TFIND THE EXPONENT

E = INT(LOG(D)/LOG(2)) + 1

M = D/2"E

REM FORM RINARY ARRAY FOR EXPONENT
IF E < 1 THEN 250

J = 128

FOR I =1 T07

J =J/2

IFE> J THEN A(I) =1 : E=E-J
NEXT I

GOTO 220

REM E IS LESS THAN 1

A(1) =1

J = - 64

FOR I =2 T0 7

J =J/2

IF E >= J THEN A(I) = 1 ELSEE =E - J
NEXT I

REM FORM BINARY ARRAY FOR MANTISSA
J -

FoO 8 TO 31

I
bt
&

J /

IF M >= J THEN A(I) =1 : M=M=

NEXT I

REM FORM HEXADECIMAL NUMBER AND OUTPUT IT
FOR I = @ TO 31 STEP 4

E = 8%A(I) + 4*A(I+1) + 2%A(I+2) + A(I+3)
PRINT MID$ (HS,H+1,1);

NEXT I

PRINT

GOTO 5¢ .

PRINT "00000000

GOTO 50

a) Decimal String to Am9511A Floating Point Format

Figure 4.5. Decimal to Binary Floating Point Conversion Programs

16

10

20

30

40

50

60

K¢

80

990

100
110
120
132
140
15¢
168
179
18¢
190
200
219
220
230
2490
250
<60
279
=8¢
250
380
310
328
3309
340
358
360
370
380
390
400
410
420
420
440
450
460
479
480
490
500
519
520
530
540
550
569
570
580
590
€ee
610
€20
638
€49
€59

REM

REM

REM

REM

DEFINT A,I,H

DIM A(32)

H$ = "0123456789ABCDEF"

REM

REM CLEAR BINARY ARRAY A(g) TO A(31)
REM

FOR I = ¢ TO 31

A(I) = @

NEXT I

REM

REM INPUT A DECIMAL NUMBER FROM CONSOLE

REM

PRINT .

INPUT "ENTER DECIMAL NUMBER";D

REM

REM CHECK IF INPUT NUMBER IS ZERO
REM

IF D <> ¢ THEN 280

PRINT "@0000000"

GOTO 18@

REM

REM INPUT IS NOT ZERO, CHECK IF IT IS NEGATIVE
REM

IF D < @ THEN A(31) =1 : D = =D

REM

REM FIND THE UNBIASED EXPONENT

REM

E = INT(LOG(D)/LOG(2))

REM

REM FIND TBE MANTISSA

REM R

M = D/2"E

REM

REM FIND THE BIASED EXPONENT

REM

E=E + 127

REM

REM FORM BINARY ARRAY FOR EXPONENT
REM

J = 256

FOR I = 3@ TO 23 STEP — 1

J=1J/2

IF ED>=J THEN A(I) =1 : E=E - J
NEXT I

REM

REM FORM BINARY ARRAY FOR MANTISSA
REM

M=M-1: REM STRIP OFF "HIDDEN 1"
J =1

FOR I = 22 TO @ STEP -1

J =J/2

IFM> J THEN A(I) =1 : M=M-7]
NEXT I

REM

REM FORM HEXADECIMAL NUMBER AND OUPUT TO CONSOLE

REM

FOR I = 31 TO @ STEP -4

H = 8%A(I) + 4*A(I-1) + 2%A(I-2) + A(I-3)
PRINT MIDS(H$,H+1,1);

NEXT I

GOTO 110

b) Decimal String to Am9512 Floating Point Format

Figure 4.5. Decimal to Binary Floating Point Conversion Programs (Cont.)

17

19

20

30

40

5@

60

79

8¢

1)

100
110
120
13¢
140
150
160
17¢
189
190
200
219
220
230
240
229
2€0
279
289
290
300
319
320
330
340
350
360
370
380
3908
400
410
420
430
440
459
460
479
480
499
50¢
518
520
538

REM
REM

REM

REM

DEFINT H,I,S : DIM H(8)

REM

REM INPUT BINARY FLOATING POINT IN HEXADECIMAL
REM

INPUT "ENTER AN € DIGIT HEXADECIMAL NUMBER";HS

REM

REM UNPACK HEXADECIMAL NUMBER INTO A BINARY ARRAY
REM

FORI =8 T0 7

C$ = MIDS$(HS,I+1,1)

E(I) = ASC(CS)

IF (H(I) < 48 OR H(I) > 76) THEN 530
IF (E(I) > 57 AND H(I) < 65) THEN 538
E(I) = H(I) - 48

IF B(I) > 9 TBEN H(I) = H(I) - 7

NEXT I

REM

REM FIND THE SIGN OF THE NUMBER

REM

S =0

IF H(@) > 7 THEN S = 1

REM

REM FIND THE EXPONENT OF THE NUMBER
REM

E = 32%(H(@) AND 7) + 2%H(1) + (H(2) AND 8)/8 - 127

REM

REM FIND THE MANTISSA OF THE NUMBER
REM

H(Z) = H(2) AND 7

M

=1
FOR I =2 T0 7_

M =M+ H(I)/27(3+4%(1-2))
NEXT I

REM

REM FIND THE NUMBER BY COMBINING EXPONENT & MANTISSA
REM

N=(27E) * M

REM

REM CHECK SIGN TO SEE IF NEGATION REQUIRED

REM

IF S = 1 THEN N = =N

REM

REM OUTPUT DECIMAL NUMRER

REM

PRINT N : GOTO 99

REM

REM ILLEGAL INPUT DETECTED, ABORT

REM

PRINT "INPUT ERROR, UNKNOWN CHARACTER “";C%;"°" : GOTO 9¢

b) Hexadecimal Floating Point

Figure 4.5. Binary to Decimal Fioating Point Conversion Program

18

10
20
30
40¢

€9

70

8¢

9e

100
110
120
120
140
158
1€0
179
180
19¢
200
21¢
220
230
24¢
250
268
270
280
259
300
210
3209
339
240
356
3€0
37¢
380
390
400
419
420
420
440
450
4€EQ
479
480
450
5006
510
520
530
549
5508

REM

REM

REM

DEFINT A,I

DEFLBL B~H,J-Z

DIM A(64) .

H$ = "912345678SABCLEF .
INPUT "ENTER DECIMAL NUMBER™;D
REM CLEAR BINARY ARRAY

FOR I = @ T0 63

IF D = @ THEN 540

IF D < @ THEN A(@) = 1

T = ABS(D)

REM FIND THE UNBAISED EXPONENT

E = INT(LOG(D)/LOG(2)) N

REM USE ITERATIVE LOOP TO FIND 2 E BECAUSE
REM EXPONENTIATION IS NOT EXACT T = 2"E
T =1

IF E = @ THEN 322

IF E > @ THEN 280

REM THE EXPONENT IS NEGATIVE

FOR I = -1 TO E STEP -1

T = T/2

NEXT I

GOTO 329

FORI =1 TO E

T = 2%T

NEXT I

REM FIND TEE MANTISSA AND BIASED EXPONENT
M = D/T

E=E + 1023

REM FORM BINARY ARRAY FOR EXPONENT

J = 2048

FORI =1 TO 11

J =J/2

IF E >=J THEN A(I) =1 : E=E -~ J
NEXT I

REM FCRM BINARY ARRAY FOR MANTISSA
M=M= 1#

J =1

FOR I = 12 T0O 63

J =J/2

IFM> JTHEN A(I) =1 : M =M -]
NEXT I

REM TFORM HEXADECIMAL NUMBER AND OUTPUT IT
FOR I = @ TO 63 STEP 4

H = 8%A(I) + 4*%A(I+1) + 2%A(I+2) + A(I+3)
PRINT MIDS$(HS$,B+1,1);

NEXT I

PRINT

GOTO 8¢ .

PRINT "0200000000000000

GOTO 8¢

c) Decimal String to Am9512 Floating Point — Double Precision Format

Figure 4.5. Decimal to Binary Floating Point Conversion Programs (Cont.)
19

10
20
30
35
40
50
€0
70
80
90
1006
118
120
130
140
150
160
170
180
150
208
210
220
2308
240
259
2€0
rald]
289
299
30¢

REM

REM

DEFDBL A-G,K-2Z

CEFINT I,J

DIM C(16) -

INPUT "INPUT 16 DIGIT HEXADECIMAL NUMBER “;HS

REM UNPACK HEXADECIMAL NUMBER INT A BINARY ARRAY
FORI =0 TO 15

C$ = MIDS(HS,I+1,1)

C(I) = ASC(CS) - 48

IF C(I) < @ THEN 2¢9p

IF C¢(I) > 1@ THEN C(I) = C(I) - 7
IF C(I) > 15 THEN 29¢

NEXT I

REM TFIND SIGN OF NUMBER

S=9

IF C(2) > 7 THEN S = 1

REM FIND EXPONENT OF NUMEBER

E = 256%(C(0) AND 7) + 16%C(1) + C(2) - 1823
REM FIND MANTISSA OF NUMBER

€{2) = ¢{2) AND 7

M=
FOR I = 3 T0 15

M =M+ C(I)/27(4%(1-2))
NEXT I_

N = (27E) * M

IF S = 1 THEN N = =N
PRINT N

GOTO 5¢ - .
PRINT "INPUT ERROR
GOTC 5@

c) Double Precision Decimal Number

Figure 4.5. Binary to Decimal Floating Point Conversion Program (Cont.)
20

4.5 BINARY TO DECIMAL FLOATING POINT CONVERSION

In order to read the value of a binary floating point number stored
in a computer, it is often useful to convert it to a decimal number
SO a person can visualize the number. The conversion from
binary to decimal is somewhat simpler than from decimal to
binary. The following is an algorithm to convert a binary number
into a decimal number:

The flowchart in Fig. 4.6 and the basic program in Fig. 4.7 illus-
trate an example of such a conversion. The following is a descrip-
tion of the variables used in the basic program:

C$ — A single ASCIi character used during unpacking
of the input string.

E — The exponent of the binary floating point number.

H(0)-H(7) — Each element of the array represents the value of

a. Unpack the binary floating point number into sign (S), un- each hexadecimal ASCII character entered. That
biased exponent (E) and mantissa (M).)] is, each element has the value 0 to 15.
b. tham the dgcnmal value _of the gxponent using an integer HS — The input string, which should be an 8-digit
binary to decimal conversion routine.)] hexadecimal number. Characters entered after
c. thaln the dgmmal value pf the njanhssa using a fractional the eighth character are ignored.
blnar_y to decmal conversmr? routine. I — An integer used for loop index.
d. Obtain the decimal value using M — The mantissa of the binary floating point number.
(-1)Sx2ExM N — The decimal floating point number.
‘ START ’
EXTRACT
Ag‘;r;THREII)‘I(G UNBIASED EXP
Hs FROM
HEX ARRAY
UNPACK EXTRACT
HEX STRING MANTISSA
INTO HEX ARRAY FROM
H(0) - H(@) HEX ARRAY
DEFAULT =
SIGN = 0 @TE*M
N
Y
SIGN = 1 OUTNPUT ‘________l

MOS-642

Figure 4.6. Binary to Decimal Floating Point Conversion Flowchart

19

20

30

40

50

(57]

79

8¢

S0

100
118
128
13e
140
150
1€0
170
188
199
200
219
<20
238
240
259
262
27
<80
290
300
310
320
330
340
350
3€0
379
380

REM
REM

REM

DIM C(8) .
PRINT "INPUT 8 DIGIT HEXADECIMAL NUMBER: ";
INPUT B$

REM UNPACK HEXADECIMAL NUMBER INTO BINARY ARRAY
FOR I =0 T0 7

C$ = MID$(BS,I+1,1)

REM CHECK IF INPUT IS ZERO

IF B% <> "00000800" THEN 148

PRINT "@

GOTO 5@

C(I) = ASC(CS) - 48

IF ¢(I) < @ TEEN 37¢

IF C(I) > 1@ THEN C(I) = ¢{(1) - %7
IF C(I) > 15 THEN 370

NEXT I

REM CHECK IF INPUT IS NORMALIZED

IF (C(2) AND 8) > ¢ THEN 23¢ .
PRINT “"INPUT NOT NORMALIZED FLOATING POINT NO.
GOTO 5@

REM FIND SIGN OF NUMBER

S =0

IF C(@) > 7 THEN S = 1

REM FIND EXPONENT OF NUMBER

E = 16%(C(2) AND 7) + C(1)

REM FIND MANTISSA OF NUMBER

M=20

FOR I = 2 T0 7

M =M+ 0(I)/27(4%(I~1))

NEXT

IF S
PRINT N
GOTO 5@ .
PRINT "INPUT ERROR
GOTO 50

Figure 4.7. Binary to Decimal Floating Point Conversion Programs

22

CHAPTER 5
SINGLE-CHIP FLOATING POINT PROCESSORS

5.1 INTRODUCTION

Until recently, floating point computation has been implemented
either in software or in hardware with MSI/SSI (medium-scale
integration/small-scale integration) devices. The former method
involves considerable programming effort and the resulting pro-
ductis usually very slow. It also consumes valuabie main memory
space for the floating point routines. The latter method involves
using hundreds of ICs, which requires considerable development
effort, and the resuiting product is expensive to manufacture and
requires considerable power and space. With the advent of LSI
(large-scale integration) technology in recent years, it becomes
possible to put a complete hardware floating point processor into
a single IC.

The advantages of the single-chip LS| floating point processor
compared to previous hardware implementation are as follows:

Low development cost —

The cost of developing an interface to a single-chip floating
point processor should be less than 10 percent of the cost of
developing a complete hardware floating point processor.

Low production cost ~

The cost of producing and testing of hardware floating point
boards is at least several hundred dollars whereas the cost of a
single-chip processor is only a small fraction of that cost.

Improved reliability —~

Most electronic failures occur at the interface level. By com-
bining all the logic inside a single device, the number of con-
nections in the system is drastically reduced. Hence reliability
is increased.

Less power consumption —
The single-chip processor typically draws less than 5 percent of
the power of an MSI/SSI implementation.

Less space —

The single-chip processor usually fits on the same board as the
CPU, thus requiring one or two fewer boards than the MSI/SSI
solution.

Get product to market sooner —

Due to less effort required both for development and produc-
tion, using single-chip processors will shorten the design cycle
of a new product.

The advantages of the single-chip LSI floating point processor
over software floating point computation methods are:

Enhanced execution speed —

Hardware floating point processors typically execute floating
point arithmetic five to 50 times faster than software. If the
floating point processor allows concurrent CPU execution, the
overall throughput is even further enhanced for applications

*Z8000 is a trademark of Zilog, Inc.

23

where the CPU can do other meaningful tasks during a floating
point computation.

Low development cost ~—

The cost of developing a comprehensive software floating point
package often involves many manmonths of programming ef-
fort. With a hardware processor, programming is drastically
reduced because the floating point computation algorithm is
precoded inside the hardware processor.

Less main memory required —

Since the floating point processors contain the computation
algorithm on chip (often in microcode), it could save a few
thousand bytes of main memory. This should be important in
applications where CPU has limited addressing space.

Improved portability —

With the advent of new microprocessors in rapid frequency,
software often must be rewritten when upgrading from one
CPU to another. When using the hardware processors, rewrit-
ing the floating point routines is eliminated.

The first LS| single-chip floating processors available commer-
cially were introduced by Advanced Micro Devices. AMD intro-
duced the Am9511 Arithmetic Processor unit in 1977 and the
Am9512 Floating Point Processor unit in 1979.

5.2 Am9511A ARITHMETIC PROCESSOR

This pioneer single-chip arithmetic processor interfaces with
most popular 8-bit microprocessors such as Am9080A, Am8085,
MC6800 by Motorola and Z80 by Zilog. It can also be used for
16-bit microprocessors such as AmZ8000,* but its performance
with such 16-bit microprocessors is somewhat hindered by its
8-bit external data bus.

Although the external interface is only 8 bits wide, the Am9511A
internally is a 16-bit microprogrammed, stack-oriented floating
point machine. It includes not only floating point operations but
fixed point as well. In addition to the basic add, subtract, multiply
and divide operations, transcendental derived functions are also
included. A data sheet of Am9511A is included in Appendix A.

5.3 Am9512 FLOATING POINT PROCESSOR

The Am9512 is a foliow-up to the Am9511A. Although the
hardware interface between the two chips is similar, the data
formats are different.

The Am9512 supports two data types: 32-bit binary floating point
and 64-bit binary floating point. The formats adopted are com-
patible with one of the proposed IEEE formats. Unlike the
Am9511A, the Am9512 does not have any of the derived trans-
cendental functions. A description of the Am9512 is included in
Appendix B.

CHAPTER 6
SOME INTERFACE EXAMPLES

6.1 INTRODUCTION

This chapter describes examples of interfacing some of the
popular microprocessors to the Am9511A and Am9512 single-
chip floating point processors. The examples given are for con-
ceptual illustration only, minor timing details may need to be
modified for systems running at nonstandard clock rates.

6.2 Am9080A TO Am9511A INTERFACE

Figure 6.1 illustrates a sample interface for an Am9080A 8-bit
microprocessor to an Am9511A. The system controller that inter-
faces to the Am9511A is an Am8238 and not an AmB8228 because
the 10W (or MEMW) from the Am8228 will appear too late to put
the Am9080A into the WAIT state. This could cause possible
overwriting of Am9511A internal registers.

In the example illustrated, the CS input comes from an address
comparator Am25L.52521 (8-bit comparator). Note that the chip
select decoder must not be strobed with IOR or IOW, because
doing so will cause CS to go LOW after IOR or IOW went LOW.
The Am9511A chip select to read or write time has a minimum
setup time of 0. Strobing the chip select decoder will cause the
setup time to be negative and cause the Am9511A to malfunction.

Note that the Am9511 CS (but not the Am9511A) requires a
high-to-low transition for every read or write cycle. This means
that the address decode should be as explicit as possible to
guarantee a low-to-high transition on the address decode. In Fig.
6.1, only low-order address locations are used and an Am9080A
program cannot form a read/write loop in 2 bytes; a transition on
the address comparator is guaranteed. If using 4-bit comparator
instead of 7-bit comparator, the program could form a read/write
loop in 16 bytes. If the loop memory address always coincides
with the Am3511)/O address, there will not be a transition on the
comparator output and the Am9511 will not function properly.
Although the Am9080A duplicates the I/O address on Ag-Ays,
these address lines should not be used for Am9511 address
decode because if the program is executing in a region where the
upper 7 bits of address match the Am9511 I/O port number, no
chip-select transition may occur.

The example shows an interrupt driven interface. At the end of
every Am9511A operation, the END signal goes LOW. This
causes the Am9080A to go into an interrupt-acknowledge se-
quence. Since the INTA on the Am8238 is pulled to +12V through
a1K resistor, the data bus is pulled to all 1’s during the interrupt-
acknowledge cycle. This generates an RST 7 instruction to the

74L504 M 4.7K
—o—0—— o—AN—4
INT +5V ‘
Am25L82521 oG
——o—— 4
Ay — A7 AAM-A B -B|l— o0 |
o0
o5
Eour o
Am9080A T —
18MHz qcs END Jo—!
Ag c/D
D WR jo—
HLDA
DBIN
b1 L2 ‘
Am8224 —
b2 &2 DBIN HLDA WR
Amg511 -
SYNC SYNC
Do.7 Do.7 DBg.7 DBy.;
READY READY
RESET RESET AmB238
ORjo——— oD
RDYIN STSTB Jo— o STSTB oW o——————————=0| WR
6o TTL 1K - 10K - o
+12V O——AM—0] INTA +5V O——AAN——0| EACK PAUSE
RESET CLK

MOS-643

24

Figure 6.1. Am9080A to Am9511A Interface

Am9080A. The Am9080A stores the current program counter on
the stack and jumps to location 38H to execute the interrupt
handling routine. By pulling the EACK HIGH, the END output will
stay LOW until the first read/write operation is performed on the
AmMI9511A, thus clearing the interrupt request.

6.3 Am9080A TO Am9512 INTERFACE

Figure 6.2 illustrates an example of interfacing the Am9512 to the
AMS080A. The principal timing difference between the Am9511A
and the Am9512 is that the PAUSE follows RD or WR in the
AM9511A whereas the PAUSE follows CS in the Am9512.

Two additional gates (74LS08 and 74L.S32) are inserted in the
PAUSE to RDYIN line. Otherwise, during a memory cycle in
which the memory address bits 1to 7 match the /O address of the
AmM9512, the PAUSE will go LOW. Since there will be no IOR or
IOW in that cycle to reset the PAUSE, the system will be dead-
locked. The additional gates allow the PAUSE to pass through
only if the current cycle is an)/O cycle. Strobing the chip select
decoder with IOR or IOW will not work because that will create a
negative chip select to RD or WR setup time, which is not permit-
ted with the Am9512. Other considerations about the chip-select
decoding are the same as discussed in Section 6.2.

The 74L.S32 gate shown at the top of Figure 6.2 allows either END
or ERR to interruptto CPU. The CPU can read the status register
of the Am9512 to determine the source of the interrupt.

6.4 Am8085A to Am9511-1 INTERFACE

In a typical Am8085A system, the system clock rate is 3MHz. The
Am9511-1 is selected because the Am9511-1 has as a maximum
clock rate of 3 MHz. The AmBO085A has an earlier ready setup
window compared with the Am9080A. If the PAUSE signal is
connected directly to the READY input to the Am8085A, the ready
line will be pulled down too late for the Am8085A to go into the
WAIT state. The 74L.S74 is used for forcing one WAIT state when
the Am9511-1is accessed. After the first WAIT state, the 74L.574
Q output is reset to HIGH and the PAUSE of the Am9511-1
controls any additional wait states if necessary. The chip-select
decoder is strobed with 10/M signal to prevent Am9511-1 re-
sponding to memory accesses when bits 9 to 15 of the memory
address coincides with Am9511-1 /O address.

6.5 Am8085A TO Am9512-1 INTERFACE

The Am9512 is designed specifically to interface to
Am8085A.The interface is straightforward and no additional logic
is required. The Am9512-1 is used instead of Am9512 because
the typical Am8085A system runs at 3 MHz.

The ERR output and END output are connected to separate
interrupt inputs so that the CPU can identify the souce of interrupt
without reading the status register of the Am9512-1.

Since the chip-select decoder is strobed with the 10/M signal, a
transition is guaranteed with each 1/O operation without the con-
cern of insufficient address decode as in the Am3080A to
Am9511A or Am3512 interfaces.

741832 ﬁ
En o5
INT °
Am25L52521 %
oo~
Ay - A7 A A1 -A7 B -8y oo
oo
Eout
- AmS080A T o z§ eno —!
|z —
(5} ERR

Ag
D WR [o-
HLDA
b1

|

+12V O——ANN——O

DBIN HLDA WR

Dg.7

5TsTB IR o——¢—————0| RD

DBIN
hq
AmB224
b2 $2
SYNC SYNC
Do.7
READY READY
RESET RESET
RDYIN STSTB [0
g TTL 1K

INTA

Amg512

Am8238 10K
+5v O——WA—0 EACK

PAUSE
RESET CLK

ow [o o WR
741508

e) =

TS ~F
N

MOS-644

Figure 6.2. Am9080A to Am9512 Interface

25

74L504
10/M G1 5V
RST5.5 Al5 f——————0] G2A
PRV N 47K
ANl C Am25LS138
Al0 B
x1 A9 A Y {O Q| Cs
[6mHz AmB8085A A8 c/b END Jo—
x2 ADO-AD? '\ DB0-DB7
v AmMI511A-1
RD jo— o| rRD
WR Jo- o] WR
RESET OUT RESET
CLK OUT CLK
READY ALE
+5V +5V
10K
EACK
1K 7S S PAUSE
D Q D
74LS74 740574 74L502
CK cK Q
74LS04
CR CR
[74LS02
MOS-645
Figure 6.3. Am8085A to Am9511-1 Interface
10/M Gt
Als 0l G3A
A f—————— 0ol GZB
Al ¢ Am25LS138
A10 B
A9 A Y O———=0| C5
X1
smHz [] Am8085A 4
ADO-AD7) pBo-DB7
X2 \l
_ __ Am9512-1
AD o~ O] RD
WR O O WR
RST6.5 CLKOUT CLK ERR
RST5.5 RESET OUT RESET END
10K
READY +5V O——AAA——C) EACK PAUSE
MOS-646

Figure 6.4. Am8085A to Am9512-1 Interface
26

6.6 Z80 TO Am9511A INTERFACE

Figure 6.5 illustrates a programmed /O interface technique for
Am9511A with a Z80 CPU.

The Chip Select (CS) signal is a decode of Z80 address lines
A1-A7. This assigns the Am9511A to two consecutive addresses,
an even (Data) address, and the next higher odd (Command)
address. Selection between the Data (even) and the Command/
Status (odd) ports is by the least significant address bit AQ.

The IORQ (Input/Output Request) from the Z80 is an enable input
to the Am25LS139 decoder. The WR and RD from the Z80 are the
two inputs to the decoder. The outputs Y1 and Y2 are tied to WR
and RD of the Am9511A. The PAUSE output of the Am9511 is
connected to WAIT line of Z80. The Am9511A outputs a LOW on
PAUSE 150ns (max) after RD or WR has become active. The
PAUSE remains LOW for 3.5 TCY + 50ns (min) for data read and
is LOW for 1.5 TCY + 50ns (min) for status read from Am9511A
where TCY is the clock period at which Am9511A is running.
Therefore, Z80 will insert one to two extra WAIT states. The
Am9511A PAUSE output responds to a data read, data write, or
command write request received while the Am9511A is still oc-
cupied (executing a previous command) by pulling the PAUSE
output LOW. Since PAUSE and WAIT are tied together, as soon
as Z80 tries to interfere with APU execution, Z80 enters the WAIT
state.

6.7 Z80 TO Am9512 INTERFACE

The Am9512 interface to Z80 (Fig. 6.6) requires two more gates
than the Am9511A interface to Z80. An inverter is added to the
interrupt request line because the sense of the END/ERR signals

are different. The 74L832 is added in the wait line because the
AmMZ512 PAUSE will go LOW whenever chip select on the
Am9512 goes LOW. In Fig. 6.6 the chip-select input can go LOW
during second or third cycles of an instruction when the memory
address matches the Am9512 |/O addressed. If the 74LS32 OR-
gate is omitted, the WAIT input on the Z80 will go LOW and the
system wili be deadlocked. Strobing the chip-select decoder will
not work because this would cause a negative chip selectto RD or

WR time on the Am9512.

The chip select decoder in this example is strobed with M1. This
accomplishes a dual purpose. It not only guarantees a chip select
transition on every I/O cycle, it also prevents the chip select to go
LOW during an interrupt acknowledge cycle. This is vital because
IORQ is also LOW during that cycle. Without the M1 strobe, CS
might go LOW and cause PAUSE to go LOW which will again

cause the system to deadlock.

6.8 MC6800 TO Am9511A INTERFACE

Figure 6.7 shows interface of a Motorola MC6800 microproces-
sor to an Am9511A. The MC6800 has no expilicit I/O instructions.
All I/O devices are treated as memory locations. Therefore the
chip-select input of the Am9511A is derived from a decode of
address lines Aq to Ay5. The decoder is strobed by VMA (Valid
Memory Address) to produce a glitch-free output. The C/D input
of the Am9511A is connected directly to the Aj of the MC6800 so
that the even address selects the data port and odd address
selects the status or command port. The RD and WR inputs to the
Am9511A is derived by demultiplexing the 0, and VMA and the

R/W signals.

A3 [
A2 B8
Al A

A7 G1
A f———=0 G2A
A5 [———0O G2B

Am25L5138

A0 cib
280 /‘
D0-D7 \J > DBO-DB7
CLK
4 Am9511A oy
RESET — I ~
S of RESET iORG I 3 o
. v2 WR
INT RD B Am25LS139 _ 1
—Q WAIT v 10K RD Tk <
WR |O——{ A
Yo [0 +5V O—AWN—C] EACK _
END [O—¢

l_—> CLK
PAUSE
>c74L504 I-» RESET

MOS-647

Figure 6.5. Z80 to Am9511A Interface

27

O

IR

i Gi
A7 fpo——=0 G2A
A6 o| GzB
Am25L5138
A3 c
A2 B
A1 A cs
A0 /1 c/D
DO-D7 DB0-DB7
oLk \J >
b
RESET J— ~
S o RESET ORA jo———94——O1 G v3 o— Amos12
_ Y2 Of WR
—qi RD JO— B Am25L$139 _
1 |p————+0 "D
. END
WATT WR o A Yo fjo— RESET
PAUSE
CLK
741532 EACK
10K
+5V
04 74L.504
74LS04
74LS04
Do MOS-648
Figure 6.6. Z80 to Am9512 Interface
47K
+5V
iRQ
Am25L82521
2x)
A1-A15 CHIP EouT O cs END
SELECT
DECODE
——O EiN
A0 c/0
D0-D7 /‘ J\ DB0-DB7
6800 \7 /]
Am9511A
lo—
VMA Dc B
Amzsisize O _
_ A vi [o RD
R/W _
¢ Yo jo— of WR
E
RESET 74L504
——e—Of RESET
. CLK
1 2 R
¢ ¢ PAUSE
100pF RESET
P 10K +5V EACK
=500ns 45V 10K
$1 92
$2TTL
68714 Am26502 74L508
—=} MEMRDY 2XFC Q
CR
Q
DC 74L504
MOS-649

Figure 6.7. MC6800 to Am8511A Interface

28

(
i
t

The Am9511A has a relatively long read access time. To read the
Am9511A data or status registers, the RD pulse to the Am9511A
must be stretched and the clock to the Am9511A clock must keep
running because the read access time is a function of the propa-
gation delay and the number of clock cycles. The MC6871A clock
driver chip provides a perfect solution to the problem. It has a
memory ready input to stretch the 0, HIGH time and a 2XFC
free-running clock output that is not affected by memory ready
input. The standard MC6800 uses a TMHz clock so that 2XFC is
at 2MHz, which is the ideal frequency for an Am9511A. When a
CS to the Am9511A is decoded, the Am26S02 one-shot is
triggered to pull the memory ready line LOW for approximately
500ns. This allows the PAUSE output to take control of the
memory ready. The one-shot is necessary because PAUSE will
not go LOW soon enough to stretch out O, in the current cycle.

Since the MC6800 is a dynamic device and the clock input must
not be stopped for more than 5 microseconds, the programmer
must not perform operations other than a status read while a
current command is still in progress. This avoids producing a
PAUSE output longer than 5 microseconds. The programmer
should check the status register to verify that the Am9511A is not
busy before performing any operation other than a status read.

6.9 MC6800 TO Am9512 INTERFACE

The MC6800 interface to Am9512 (Fig. 6.8) is somewhat simpler
than the MC6800 to Am9511A interface. All the discussions in
Section 6.8 also apply to this section except for the one-shot.

Since the PAUSE output from the Am9512 follows the CS instead
of RD or WR, the memory ready signal can be directly driven by
the PAUSE output. The only other addition is the inverter between
the END output of the Am9512 to the IRQ input.

The software considerations concerning the possibility of exces-
sive PAUSE time discussed in the previous section also apply to
the Am9512 interface.

6.10 AmZ8002 TO Am9511A INTERFACE

The Am9511A can also be interfaced to a 16-bit microprocessor
such as the AmZ8002. Since the data bus of the Am9511A s only
8 bits wide, the operations performed must be byte-oriented.

The RD and WR inputs to the Am9511A can be obtained by
demuitiplexing the data strobe (DS) output of the AmZ8002. The
data bus of the Am9511A can be connected to either the upper 8
bits or the lower 8 bits of the AmZ8002 data bus. If the Am9511A
data bus is connected to the upper 8 bits (Fig. 6.9), the 1/O
address of the Am9511A is always even. if the Am9511A data bus
is connected to the low 8 bits, the /O address is always odd.
The chip select is derived from a decode of Ao to Ays. A1 is
used to select between data/status during READ and data/
command during WRITE.

Due to the long READ access time of the Am9511A, the AmZ8002
must be put in a WAIT state for each READ access to the
Am9511A. If the PAUSE output of the Am9511A is connected
directly to the WAIT input of the AmZ8002, the PAUSE output will

741.504
iRG A1-A15 N CHIP
—— /] seLect
DECODE
AM25LS2521
(2X)
—=Of EIN EOUT cs END
A0 c/D
6800
D0-D7 < > DB0-DB7
Am9512
74L504
o—
VMA Dc B
o—
Am25L8139
RESET __ _ vi RD
——Of RESET R/W A o
Yo O——— Q] WR
1 2 E
[[E oLk
PAUSE
RESET
EACK
>t b2 74LS04 j)
$2TTL +5V
6871A 10K
(—=] MEMRDY 2XFC
74LS04
MOS-650

Figure 6.8. MC6800 to Am9512 Interface

29

20BLIAU| VILGEWY O} 2008ZWY "6°9 8inbBij

I JO~=—

0

10
s —12
VS6LS1SZWY
ap o o oy
a o
—|A “WA—0 A5+
I8
AS+
—————0a A v
a0 e seis1seuy ©
2
ana 13534 [}
an "
v
Q
Nig
300930 E
1037138 v Hoivl
dHO | ssauaav
SO 1nog A a
(x2) Sty-2y (xe)
12182WY £218ZWY
8
0gq \
m—.nn<
Si-0qy %
b
um O Of % v
ay o O tA
a
ogisIsZWyY

oLs
1S
z1s
€1s

Si-0gy

b e i3s3y

2008Zwy

1o

43834

MOS-651

30

arrive too late to put the AmZ8002 into the WAIT state. The
Am25LS195A 4-bit shift register is used to solve this problem.
During each address strobe, the Qp output will be forced LOW if
chip select to the Am9511A is present. The Qp will remain LOW
for two clock periods. If PAUSE is LOW during this period, the
WAIT line wili remain LOW because the Am25LS195A is held at
the reset state. Ater the PAUSE returns to high the Qp output will
go HIGH after two clocks and the AmZ8002 can proceed with the
current operation. An alternative method of handling the PAUSE
line is use a one shot as in Fig. 6.7.

6.11 AmZ8002 TO Am9512 INTERFACE

The AmZ8002 to Am9512 interface is similar to the AmZ8002 to
Am9511A interface, except the PAUSE output of the Am9512 can
be connected directly to the WAIT input of the AmZ8002. This is
because the PAUSE output of the Am9512 follows the chip select
instead of RD or WR and the AmZ8002 has sufficient time to go
into the WAIT state. Figure 6.10 illustrates interfacing the Am9512
with the AmZ8002.

B
= Am26L.5139 7o d m
R/W A — Yo o O WR
ADO-AD15
DS o——?
16 /8 N
ADO-AD15 / DBO-DB7
ADO-AD7
A2-A15
D v
AmZ8002 J— > Ang:;ﬂ Am512
(2X) CHIP EOUT[O—————— O CS
ADDRESS
DoREs SELECT
s DECODE
741504 _
EIN
[*]
At
c/B END Jo——
——O Nvi T3 ———=0 G RESET
sT2 c PAUSE |O—en
Am25L5138
—Of WA sT1 g A™ CLK
sTo A wlo— | EACK
RESET CLK f
T 4BV
RESET »c 74LS04 10K
+5V O——AA
" 1
PS
Lo Q
Am74LS74
CLK cK q —
CR
74L504 04
MOS-652

Figure 6.10. AmZ8002 to Am9512 Interface

31

CHAPTER 7
Am9511A INTERFACE METHODS

7.1 INTRODUCTION

Interfacing the Am9080A to the Am3511A can be accomplished in
one of the following ways:

1. Demand/wait

2. Poll status

3. Interrupt driven

4. DMA transfer

The various tradeoffs of these methods are discussed below.
Although only the Am9080A and Am9511A are used as an exam-
ple, the principle applies to any of the processors discussed in
Chapter 6.

7.2 DEMAND/WAIT

This interface is the simplest both in terms hardware and
software. The connection is shown in Fig. 6.1, except that the
interrupt input to the Am9080A need not be connected to the END
output of the Am9511A. When this interface is used, the pro-
grammer can regard the Am9511A as always ready for READ and
. WRITE operations. If the Am8511A is not ready, the PAUSE will
‘go LOW to put Am9080A in the WAIT state. When the Am9511A
has completed the current operation, the PAUSE will go HIGH
and the suspended READ and WRITE will proceed. Figure 7.1
shows an example of a program that loads the data into the
Amg511A, executes a command and retrieves the data from the
Am9511A.

The drawback of this method is that concurrent processing by the
CPU is not allowed, and the CPU also cannot respond to other
interrupts or DMA requests in the system while it is in the WAIT
state. In systems where above considerations are not important,
this would be the preferred method. This interface is not applica-
‘ble to MC6800 systems because the clock of the MC6800 may
not be stretched beyond 5 microseconds.

7.3 POLL STATUS

The hardware interface of this method is the same as demand/
wait. The software (Fig. 7.2) is slightly more complicated. When
the CPU wants to READ or WRITE to the Am9511A, the status
register is first read. If the most significant bitis a 1, the Am9511A
is executing a command. The CPU should refrain from perform-
ing any operation on the Am9511A except loop back for another
status read. When the MSB of the status is a 0, the Am9511 has
finished executing the command and the program can fall through
to perform a READ or WRITE to the Am9511A.

This method does not allow the CPU to perform useful concurrent
tasks, but it does allow the CPU to respond to interrupts and DMA
requests when it is in the status poll loop.

7.4 INTERRUPT DRIVEN

The hardware configuration of the interrupt driven method is
shown in Fig. 6.1. The CPU would first load the APU data stack
and then issue a command. During the command execution, the
CPU would be able to perform other useful tasks in the system.
When the Am9511A has finished the command, the END output
goes LOW to issue an interrupt request. When the interrupt
request is acknowledged by the CPU, the CPU executes a routine
to fetch from the Am9511A data stack and, if necessary, load up
the data stack and issue another command.

This method is most suitable for real-time multitasking systems
because concurrent execution of the CPU and APU is allowed.
Figure 7.3 shows an example interrupt handler for Am9511A.

32

7.5 DMA TRANSFER

If ultimate system performance is required, the Am9511A data
stack can be loaded and unioaded by a DMA controller such as
the Am9517. To achieve maximum throughput, two channels of
the Am9517 DMA controller are used in the configuration shown.
Channel 2 is used to load the Am9511A and channel 3 is used to
unload the Am9511 result into the main memory. For real-time
interrupt driven systems, an interrupt controller such as the
Am9519A should also be used. Figure 7.4 shows the connection
diagram of such a system and Fig. 7.5 shows a sample program
to drive such a system.

The following is the initializing sequence required only after
power up or system reset:

1. The Command Register
Bit 0 = Don't care (applies to memory to transfer option)
Bit 1 = Don't care (applies to memory option)
Bit 3 = 0, Enable DMA controller
Bit 4 = 0, Normal timing
Bit 5 = 1, Extended write
Bit 6 = 0, DREQ active HIGH
Bit 7 = 0, DACK active LOW
2. The mode register of channel 2:
Read mode, auto initiaiize, address decrement, block mode
3. The mode register of channel 3:
Write mode, auto initialize, address increment, block mode
4. The word count register of channel 2:
Initialized to a count of 8
5. The word count register of channel 3:
Initialized to a count of 4
6. Mask register:
Channels 2 and 3 cleared

The word count registers may need to be modified iater if the word
count desired is not the default value.

The following is a sequence of operations required for each
Am9511A operation:

1. The operand address is written to the base address register of
channel 2 of the Am9517.

2. If the word count of the operand is different from the previous
operation, the new word count is written to channel 2 of the
Am9517.

3. The address of the result is written to the channel 3 base

address register.

. A software request is sent to channel 2.

. The CPU performs other tasks.

. Aninterrupt is received from channel 2 end of operation signal.

. The CPU writes the command word into the command register

with MSB of the command word set to 1 to indicate DMA
service required at end of operation.

. The CPU is free to perform other tasks.

9. Aninterruptis received from channel 3 end of operation signal.
The result is now is the desired location in main memory.

~NOoO O

w

The above method offers maximum concurrent operation of an
Am9080A and Am9511A system. If Am9511 or Am9512 is used
instead of Am9511A, the mode of transfer of the Am9517 must be
in single transfer mode to obtain a transition at the chip select
input of the Am9511 or Am9512.

Loc¢

@ece
goC1
20C1

@OR0
28B4
@0B5
POR6
@0oB?
0938
@089
22BB
@@BD
@OBF

gecz2
20C3
@a3C3

LINE

[(eRo o dEN RO NS RV NV o

e e e o e ey e wa ()

“o we we a0

APUDR
APU R
APUCR

oo e e

’
DMAC
CH2ADR
CHZCNT
CH3ADR
CH3CNT
CMD17
REQ17
MOD17
CLR17"
MSK17

e we we

y

UICDR
UIC R
UICCR

W NS e e WS we WO WS e WS s ws we ws

SOURCE STATEMENT
PAGEWIDTH(8¢) MACROFILE NOOBJECT

25 e 3 o 3 i o o e e e e e e A 4 e ol o e s o e e e ol o o e e o 3

PROGRAMS FOR CHAPTER 7 OF
FLOATING POINT TUTORIAL

e Aol A e AN AN RN A HR A e e R e
NAME CHAP?

AMS511A ARITHMETIC PROCESSING UNIT
I/0 PORT ASSIGNMENT

EQU eCe¢H s AM9511A DATA PORT
EQU APUDR+1 $AMO511A STATUS PORT
EQU APUSR yAM95114 COMMAND PORT

AMO517A MULTIMODE DMA CONTROLLER
I/0 PORT ASSIGNMENT

EQU @B@H $AM9517A BASE ADDRESS
EQU DMAC+4 7 CHANNEL 2 ADDRESS
EQU DMAC+5 CBANNEL 2 BYTE COUNT
EQU DMAC+6 s CHANNEL 3 ADDRESS
EQU DMAC+7 » CHANNEL 3 BYTE COUNT
EQU DMAC+8 s COMMAND REGISTER

EQU DMAC+S {REQUEST REGISTER

EQU DMAC+@BE #MODE REGISTER
EQU DMAC+@DH fMASTER CLEAR
EQU DMAC+@FH $MASK REGISTER

AMG519 UNIVERSAL INTERRUPT CONTROLIER
I1/0 PORT ASSIGNMENT

EQU @C2H 1AM9519 DATA PORT
EQU UICDR+1 1AM9519 STATUS PORT
EQU UICSR # AMS519 COMMAND PORT
CSEG

PROGRAM EXAMPLE FOR DEMAND WAIT INTERFACE
#adokkk FICURE 7.1 ok

TO CALL THE FOLLOWING PROGRAM,
ON ENTRY:

HL = POINTER TO TPE FIRST OPERAND (NOS)
DE = POINTER TO THE SECOND OPERAND (TOS)
BC = POINTER TO THE RESULT

A = THE 2 OPERAND OPCODE

ON RETURN:

A = THE STATUS REGISTER OF AMS5114
ALL POINTERS ARE DESTROYED

Figure 7.1. Demand/Wait Programming

33

LOC O0BJ LINE SOURCE STATEMENT
55 3
2082 C5 5€ DEMAND: FPUSH R # SAVE RESULT POINTER
@801 ¥5 5% PUSH PSW 1 SAVE OPCODE
0002 012300 58 LXI B,3
2205 29 59 DAD B #+MOVE SOURCE POINTER TO LSRB
68 ;3
61 3 PUSH OPERAND #1 ONTO APU DATA STACK
62 ;3 .
2206 0604 63 MVI B,4 # INIT LOOP1 COUNTER
2028 7E €4 DLOOP1: MOV A ,M sFETCH A BYTE FROM OPEPR 1
2869 L3Co €5 OUT APUDR i PUSH ONTO APU DATA STACK
@008 2B 66 ICX ¥ + DEC. BYTE POINTER
89eC 25 67 DCR B ;DEC. LOOP COUNTER
0¢eD C20800 c 68 JNZ DLOOP1
€66 ;
2210 EB 70 XCHG iPUT OPERAND 2 POINTER IN HL
0011 2103092 71 IXI 8,3
2014 09 72 DAD B +MOVE POINTER TO LSR
72 3
74 3 PUSH OPERAND #2 ONTO APU DATA STACK
75 3
2015 0604 7€ MVI B,4
2017 7E 77 DLOOP2: MOV A,M sFETCH A BYTE FROM OPER 2
2218 D3CY 78 OUT APUDR + PUSE ONTO APU. DATA STACK
@014 2B 79 DCX H ;s DEC. BYTE POINTER
201B 05 8¢ DCR B sDEC. LOOP COUNTER
g21C C21700 ¢ 81 JNZ DLOOPZ
82 j
83 3 OPERAND LOAD COMPLETE, WRITE COMMAND
84 ;
@O1F F1 85 POP PSY yRETRIEVE COMMAND OPCODE
2020 D3C1 86 CUT APUCR fWRITE TO APU COMMAND PORT
87 3
88 ; READ DATA FROM STACK
89 ; 1F THE APU IS NOT READY, THE PAUSE
9% ; SIGNAL WILL PUT AM9@S@A INTO THE
81 ; WAIT STATE UNTIL THE DATA IS READY
92
@22 C1 93 POP B yRETRIEVE RESULT POINTER
0023 1E04 94 MVI E,4 # INIT LOOP3 COUNTER
2225 DBCO - 95 DLOOP3: IN APUDR fREAD APU STACK
o827 22 9€ STAX B + STORE RESULT IN MEMORY
0028 83 97 INX B
9229 1D 98 DCR E
P22A C22500 ¢ 99 JNZ DLOOP3
100 ;
191 5 RETURN STATUS IN A
192 3
#62D DBC1 103 IN APUSR
@82F C9 124 RET
195 % EJECT

Figure 7.1. Demand/Wait Programming (Cont.)
34

LoC

2830
2231
2832
2235

2036
2838
2039

203C
B23E
go3¥
2041
or42
@242

0046
2047
oe4A

2043
B04T
Q@4E
2058
2951
2052

P@e55
@e56

2838
2@59

2053
205T
@05E
0061

0BJ

€5
F5
g1e30¢
29

DBC1
7
FA3600 c

2604

L3Co

2B

85

C23E2e v

EB
910300
29

2604

7E

D3CO

2B

25

C24De0 C

F1
D3cC1

c1
1E04

DRC1

B7

FAS5ROQ C
F5

LINE

106
1g7
108
1es
110
111
112
113
114
115
116
117
118
118
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
136
149
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
15¢
160

Y e e er we

OLL:

€3 oo e -s

HEX1:

e e en

PLOOP1:

o e nee

PLOOP2:

- oo we

—e we we

€ ~o e s

EX2:

SOURCE STATEMENT

SUBROUTINE FOR POLL STATUS INTERFACE
wkak FIGURE 7.2 *kkwsk

PUSH B
PUSH PSW
IXI B,3
DAD B

$SAVE RESULT POINTER
s SAVE OPCODE

yMOVE POINTER TO LSB

CHECX IF AM9511A IS READY TO ACCEPT DATA

IN APUSR
ORA A
JM CHK1

THE AMS511A

MVI B,4
MOV A M
OUT APUDR
DCX H

DCR B

JNZ PLOOP1

XCHG
1XI B,3
TAD B

yREAT APU STATUS
ySET CPU FLAGS
; LOOP BACK IF NCT READY

IS READ IF FALLEN THROUGH
7 INIT LOOP1 COUNTER
s FETCH FROM OPERAND 1
s PUSH ONTC APU DATA STACK
i DEC. BYTE POINTER
5DEC. LOOP COUNTER
7 PUT OPERAND 2 POINTER IN HL

$MOVE POINTER TO LSB

PUSE OPERAND #2 ONTO APU DATA STACK

MVI B,4
MOV A,M
OUT APUDR
DCX H

ICR B

JNZ PLOOP2

OPERANDS LOADED,

POP PSW
CUT APUCR

3 INIT LOOPZ COUNTER
yFETCH FROM OPERAND 2
yPUSH ONTO APU DATA STACK
yDEC. BYTE POINTER

i DEC. LOOP COUNTER

WRITE COMMAND

sRETRIEVE OPCODE
JWRITE COMMAND TO APU

SET UP RESULT POINTER AND LOOP3 COUNTER

POP B
MVI E,4

$RETRIEVE RESULT POINTER
s INIT LOOPZ COUNTER

WAIT UNTIL AM9511A FINISH EXECUTION

IN APUSR
ORA A

JM CHK2
PUSH PSW

{READ APU STATUS PORT

7 SET STATUS FLAGS

yLOOP BACK IF NOT READY
y SAVE APU STATUS

THE AMO511A EAS FINISHED EXECUTION

Figure 7.2. Status Poll Programming Interface

35

LOC O0BJ LINE SOURCE STATEMENT

161 3 READ RESULT

162 ;
g@6z DBCO 163 PLOOP3: IN APUDR iREAD APU DATA STACK
go64 @2 164 STAX B i STORE RESULT IN MEMORY
@065 @3 165 INXI B 3 INC. MEMORY POINTER
9066 1D 166 DCR E yDEC. LOOP COUNTER
0267 26200 ¢ 167 JNZ PLOOP3

168 ;

16¢ ; EXECUTION COMPLETE, RESTORE STATUS IN A

170 ;
@06A F1 171 POP PSW 'y RESTORE APU STATUS
20638 C9 172 RET

173 % EJECT

Figure 7.2. Status Poll Programming interface (Cont.)
36

Lo¢

20328

2038
2029
B23A
2033
023D

2040
0042
2043
2044
2045

0048
204A
0o4C
B04E
DO4F
8050

@860
996D
QO6F

@PEF
9@72

@e73
0875

0BJ

F5

C5

ES

pe o4
2A200¢

DBCE
77

23

25
C24000

3E@1
3202008
E1

C1

F1

co

ES
D5
F5

1108¢¢
19

DBC1
B?

LINE

174
175
176
177
17
179
180
181
182
183
184
188
18€
187
188
189
190
191
192
183
194
195
19€
197
108
199
200
201
282
203
204
285
20€
207
2@8
206
2190
211
212
213
214
215
216
217
218
216
220
221
222
223
224
22%
22¢
227
228

“e WE we el e e

-o W me

S e W e e WO e es ws W we ws wy

-e

-.

SOURCE STATEMENT

SUBROUTINES FOR INTERRUPT DRIVEN INTERFACE
wikdk FIGURE 7.3 %k

LOCATE INTERRUPT HANDLER IN RST 7 LOCATION

ASEG

ORG 38H

PUSH PSW $SAVE ALL REGISTERS USED
PUSH B

PUSH H

MVI B,4 3y INIT LOOP COUNTER
LHID RSTPTR s FETCH RESULT POINTER
IN APUDR READ RESULT FROM APU
MOV M,A STORE IT IN MEMORY
INX H #+ BUMP MEMORY POINTER
ICR B #+ DEC. LOOP COUNTER
JNZ ILOOP1

DONE, SET DONE FLAG AND RESTORE REGISTERS

MVI A,1
STA DONE
POP H
POP B
POP PSW
RET

SUBROUTINE TO LOAD APU STACK AND SEND
COMMAND WORD

CALLING SQUENCE:

ON ENTRY HL = POINTER T0O MSB OF 8 BYTES

OF OPERAND

POINTER TO 4 BYTES OF RESULT
EXECUTION OPCODE

DE
A

no

ON RETURN: ALL REGISTER ARE NOT AFFECTED,
DONE FLAG CLEARED.

CSEG

PUSH E 3 SAVE OPERAND POINTER

PUSH D i SAVE RESULT POINTER

PUSE PSW $SAVE OPCODE

IXI »o,8 yOPER. OFFSET, E = LOOPZ2 CTR
DAD D yMOVE OPERAND POINTER TO LSB

CHECK AM9511A STATUS

IN APUSR yREAD AM9511 STATUS REG.
ORA A +TEST FOR BUSY

Figure 7.3. Interrupt Driven Programming

37

LOC OBRJ LINE SQURCE STATEMENT

@076 FA?Z80 C 226 JM LLOOP1 FWAIT UNTIL NOT BUSY
230 ;
231 ; LOAD AM9511 STACK
232 ;
2879 23 233 LLOOP2: DCX H ;DEC. OPERAND POINTER
@074 7E 234 MOV A,M ;FETCH 1 BYTE OF OPERAND
@07R D3CO 235 CUT APUDR 5LOAD APU DATA STACK
@070 1D 23€ DCR E ;DEC. LOOP COUNTER
@@7E C27988 C 237 JNZ LLOOP2
23e ;
0081 F1 239 POP PSW ;GET OPCODE
#@82 D3C1 240 OUT APUCR jWRITE TO APU COMMAND REG.
@084 2122066 D 241 IXI H,DONE
2087 3600 242 MVI M,0 ;CLEAR DONE FLAG
2089 E1 243 POP H ;GET RESULT POINTER
@08A 220000 D 244 SELD RSTPTR ; STORE IN RESULT POINTER
@@8T EB 245 XCEG jRESTORE DE REG. PAIR
@@8E E1 246 PPH i RESTORE HL
@esF C9 247 RET
248 ;
; 249 ; RAM AREA
250 ;
251 DSEG
252 ;
0000 253 RSTPTR: DS 2 SRESULT POINTER
0002 254 DONE: DS 1 ;DONE FLAG, 1 = DONE
255 & EJECT

Figure 7.3. Interrupt Driven Programming (Cont.)
38

ISIS-II 808@/8085 MACRO

LOC OBJ

2090 F5

2291 D3BD
2093 JEZ8
9995 D3E8
0897 3EBA
2099 D3EB
9098 3E97
989D D3RB
@@SF 3E@8
22A1 D3B5
@OAZ AT

¢2A4 D3B5S
PPA6 3EQ4
@0oA8 D3R7
@OAA AF

@OAB D3B7
@OAD 3EQ3
PBAF D3EF
@@B1 F1

@or2 C9

@283 F3

@984 F5

P@BS AF

@086 D3Ce
99B8 3E88
@@BA D3C2
@0BC 3ECO
@0BE D3C3
00Ce 3EB3
20C2 Dacz2
90C4 3ERO

LINE

256
257
258
258
260
261
262
263
264
265
26€
267
268
269
279

271

272
273
274
275
276
277
278
278
289
281
282
283
284
285
28€
287
288
28¢
29¢
291
292
293
294
295
29€
297
298
299
g9
301
302
303
304
305
306
3a7
3@8
3@9
310

ASSEMBLER, V3.9

- ws we we wo

et 0 0e ws e wp e we we we

i we o e we WO ws wy el e

NIT19: DI

CHAP?

SOURCE STATEMENT

PAGE 7

HIGE PERFORMANCE INTERFACE WITH
AMO517A AND AM9519
®kkk FIGURE 7.4 *kxx

CSEG

AM9517A INITIALIZATION ROUTINE

CALLING SEQUENCE:

NO PARAMETERS REQUIRED ON ENTRY.
SOURCE OPERANDS ASSUMED TO BE 8 BYTES AND
RESLUT OPERAND ASSUMED TO BE 4 BYTES

ON RETURNED:

NIT17: PUSH PSW j SAVE
OUT CLR17
MVI A,Q0100000B ;LOAD
OUT CMD17
MVI A,1£111018B ;LOAD
OUT MOD17 y INIT
MVI A,10€12111B ;LOAD
CcUT MOD17 FINIT
MVI A,8 y LOAD
OUT CH2CNT y INIT
XRA A
OUT CH2CNT s INIT
MVI A,4 y LOAD
OUT CH3CNT FINIT
XRA A
OUT CH3CNT yINIT
MVI A,00000011B ;LOAD
OUT MSK17 yINIT
POP PSW
RET

NO REGISTER AFFECTED

PSw

MASTER CLEAR

COMMAND WORD

s WRITE TO COMMAND REG.

CH 2 MODE WORD
CHANNEL 2 MODE
CH 3 MODE WORD
CHANNEL 3 MODE
CH 2 BYTE COUNT
CH LOW BYTE COUNT

2
CH 2 EIGH BYTE COUNT
CE 3 BYTE COUNT
CHE 3 LOW BYTE COUNT

CE 3 HIGH BYTE COUNT
MASK REGISTER PATTERN
MASK REGISTER

$RESTORE PSW

SUBROUTINE TO INITIALIZE AM9519

CALLING SEQUENCE:
ON ENTRY:

HL = STARTING ADDRESS OF WRITE

COMMAND SUBROUTINE
DE = STARTING ADDRESS OF SET
DONE FLAG SUBROUTINE
ON RETURN: NO REGISTERS ARE AFFECTED

PUSH PSW
XRA A

OUT UICCR
MVYI A,10021000B iMODE
0UT UICCR

y SAVE

3 DISABLE ALL CPU INTERRUPTS

PSwW

3 SOFTWARE RESET AMS519

WORD FOR M@-M4

» SET MO~-M4

MVI A,11000008B ; SELECT AUTO CLFAR REG

OUT UICCR

MVI A,00000011B ;SELECT CH @ & 1 FOR AUTO CLR

OUT UICDR

MVI A,10110000B ;SELECT MASK REGISTER

Figure 7.4. DMA interface Programming
39

1S1S-11 8¢89/8¢85 MACRO ASSEMRLER, V3.0 CHAP7 PAGE 8

LOC OBRJ LINE SOURCE STATEMENT
09C6 D3C2 311 oUT UICCR
80C8 3EFC 312 MVI A,11111100B ;CLR CH & & 1 MASK REG.
pPCA D3C2 313 OUT UICDR
g8CC 3EF@ 314 MVI A,11110000B ;SEL CE @ FOR 3 BYTES
@goCE D3C3 315 OUT UICCR
20D@ 3ECD 316 MVI A,8CDH 790884 “CALL” OPCODE
goD2 D3C2 317 CUT UICDR
20D4 7B 318 MOV A,E sGET CHE @ LOW ADDRESS
9005 D3C2 319 OUT UICDR
@eDp7 7A 320 MOV A,D $GET CH @ HIGH ADDRESS
a0D8 D3Cz2 321 OUT UICDR
20DA 3EF1 322 MVI A,11110201B SEL CH 1 FOR 3 BYTES
@8DC D3C3 323 OUT UICCR
29DE 3ECD 324 MVI A,@CDRH $9080A “CALL” OPCODE
@2k8 D3C2 325 0UT UICDR
@0E2 7D 32€ MOV A,L $GET.CH 1 LOW ADDRESS
@0E3 D3C2 327 CUT UICDR
@OoES 7C 328 MOV ALH JGET CH 1 BIGH ADDRESS
@OE6 D3C2 32¢ OUT UICDR
@eE8 3EA1 330 MVI A,10100001B ;ARM AM9519
@OEA D3C3 331 0UT UICCR
@0EC F1 332 FOP PSW yRESTORE PSW
Q0EL FB 333 EI y ENABLE CPU INTERRUPTS
PBEE C9 334 RET
335 3
336 ; SUBROUTINE TO PERFORM AN EXECUTION WITH
337 3 8 BYTES OF OPERANDS AND 4 BYTES OF RESULT
338 ;- CALLING SEQUENCE:
339 ; 0 ENTRY: HL = ADDRESS OF OPERANDS
340 3 DE = ADDRESS OF RESULT
341 3 A = OPCODE
342 5 ON RETURN: ALL REGISTERS ARE NOT AFFECTED
343 3
QOEF F5 244 EXEC: PUSH PSW ? SAVE OPCODE
Q0F0 320300 D 345 STA OPCODE 3 INIT OPCODE STORAGE
POF3 AT 346 XRA A
PBF4 320400 D 347 STA DONE2 7 CLEAR DONE FIAG
@eF? 7D 348 MOV A,L
PoF8 D3R4 349 0UT CH2ADR + INIT CH 2 LOW ADDR
@0FA 7C 350 MOV ALH
@0FB D3R4 351 OUT CHZADR s INIT CH 2 HIGH ADDR
@OFD 7B 352 MOV A,E
@OFE D3B6 353 CUT CH3ADR s INIT CH 3 LOW ADDR
2102 7A 354 MOV A,D
2101 D3BE 355 0UT CH3ADR s INIT CH 3 HIGE ADDR
2103 3E86 356 MVI A,00000110B
9105 D3BY 357 OUT REQ17 s SOFTWARE REQ TO CH 2
8107 F1 358 POP PSW s RESTORE PSW
2108 C9 358 RET
360 1
361 ; INTERRUPT HANDLER #1 TO WRITE COMMAND WORD
362 TO AM9S511A WHEN AM9S517A HAS FINISHED
363 ; LOADING THE OPERANDS
364 ;
2109 F5 365 INTR1: ©PUSH PSW 1 SAVE PSW

Figure 7.4. DMA Interface Programming (Cont.)
40

ISIS-I1 89806/8285 MACRO

LOC OBRJ LINE
B1OA 3AB300 D 36€
212D D3C1 367
B10F F1 368
@119 FB 369
2111 C9 37¢
371
372
373
374
9112 F5 375
p113 3E21 37€
0115 320400 D 377
2118 F1 378
2119 FB 379
8114 CO 286
381
382
383
384
385
Po03 38€
o004 387
388
389

PUBLIC SYMBOLS

EXTERNAL SYMBOLS

USER SYMBOLS

APUCR A @0C1 APUDR
CH2CNT A @@B5 CH3ADR
CHK2 C 20538 CLR17
DLOOP1 C p@0@8 DLOOP2
DONE D goe2 DONE2
INIT17 C @090 INIT1S
LLOOP1 C @073 LLOOPZ2
MSK17 A Q@BF OPCODE
PLOQP3 C @062 POLL

RSTPTR D 0020 UICCR
ASSEMBLY COMPLETE, NO

ASSEMBLER, V3.2

4o e me s

-e we we

?
OPCODE:

NTRZ:

DONEZ:

FOQUOOD O >

00Co
POB6
@e2BD
eo17
2004
P2B3
8a79
@023
0e30
P0C3

ERRORS

SOURCE STATEMENT

1DA OPCODE
OUT APUCR

POP
EI
RET

PSW

CHAP®? PAGE 9

i GET OPCODE

;s WRITE TO COMMAND REGISTER
sRESTORE PSW

jRE-ENABLE CPU INTERRUPTS

INTERRUPT HANDLER #2 TO SET DONE FILAG
TO INDICATE OPERATION IS COMPLETE

PUSHE PSW

MVI A,1

STA DONE2

POP PSW

EI

RET

RAM AREA

DSEG

DS 1

s 1

END
APUSRE A 20C1
CH3CNT A 0OB7
CMD17 A ©@B8
DLOOP3 C @025
EXEC C OPEF
INTR1 C 21029
LOAD C 2886C
PLOOP1 C 2@3E
REQ17 A @@RS
UICDR A @oC2

¥ SAVE PSW

7 SET DONE FLAG
s+ RESTORE PSW
sRE-ENABLE CPU INTERRUPTS

sAPU OPCODE SAVE AREA
» DONE FLAG

CHZADR A 0034
CHK1 C P@36
DEMAND C 00090
DMAC A 00232
ILOOP1 A 00490
INTRZ € #2112
MOD17 A QOBB
PLOOP2 C 004D
RST? A 2038
UICSR A 08GC3

Figure 7.4. DMA Interface Programming (Cont.)

4

uonenBijuos asueuopad-ubiH g2 ainbig

Aavay |_.|J

MOS-653

1383y

Lgq-0 Z,
‘ga-%aqa 9a-aa 1L
= 41818 o < a1sis
HITIOHINGD H3AMA
fo o W31SAS %0010
w
%ov3 8a 3snvd isH Pkl 3Isnvd €4 gezswy pezeWY
" HOVI IO=—————(] VINI Zga%aa £g-0q 13s3yY 13s3d
Ndv VIISEWY s o ~q o3l - -
2IN 6156WY ————| mol AQvay AaQv3d]
o w
o, E
m‘ 3 ~q oz o ——d o 2 20
M ay ao = o $3 di¥ O/3 HM g S2 o Niga NIga o "
T 7 M O=——71—C um NiAQY |=—
—c] swaw ONAS INAS
Mok vaH
- X x
‘ 1Nl
AS+
4dge i
Mol . fD N
=01 ndo st < |
MWW v0806WY
dwaw
AS ~

M 0 O O nf s
o o 1= o P m m_ o = 4 ke
w 288 5% YASEE Eoom o al
L & = g I Z
N7 H vaH
a HITTOHLNOD VWG VLISEWY
NG+
f15ay
HOLY1 V100 © 03HH a10H
eESIY 5, Nav b Shy-Oy
A Ly-ry Ey-Oy s2 >
v ron i

9618752 v

wy
9 m«
e ® 7Y 2 5
- v

[2 v
L——Qg ' 2o ’l—
— % veo -
v
Oy
Sly-Oy

CHAPTER 8
FLOATING POINT EXECUTION TIMES

8.1 INTRODUCTION

This chapter offers some numerical values of comparing execu-
tion times between Am9511A, Am9512 and their software coun-
terparts. The software packages selected are the Intel
FPAL LIB(R) floating point library and the Lawrence Livermore
Laboratory BASIC (LLL BASIC). These two software packages
are selected because the Intel format is the same as the Am9512
single precision format and the LLL BASIC format is the same as
the Am9511A floating point format. This should offer a reasonably
comprehensive comparison.

In the execution-time cycles tables, the cycles given for the
AmM9511A and Am9512 are from the issue of the command to the
completion of the command execution. The times for loading and
unioading the operands are not included because these times
depend on external hardware and also depend on whether the
calculation is a chain calculation. Similarly, the software cycles
are counted from the “Call” instruction.to the “Ret” instruction of
the floating point package. Operand setup time is also not
counted.

The measurement is conducted on an Inte! MDS 800(R) system
with an Advanced Micro Computers 95/6011 APU board and
95/6012 FPU board. The hostis a 2-MHz 8080A. The clock for the
95/6011 or 95/6012 board is derived from the 9.8304-MHz bus
clock divided by five to achieve a frequency of 1.96608 MHz.
Because the main memory of the MDS 800 is dynamic, thersds
approximately +0.5% uncertainty of software timing measure-
ments. Because the bus clock is asynchronous to the CPU clock
and the internal clock of the Am9511A and Am9512is a two-phase
clock derived from the single phase bus clock, there is a +2-clock
uncertainty in the hardware measurements,

8.2 FLOATING POINT ADD/SUBTRACT
EXECUTION TIMES

Floating point add and subtract usually share the same routine.
Fioating point subtract is merely a change of sign of the sub-
trahend and is performed as floating point add. For the sake of
discussion in this chapter, we assume the two operands are of
like signs. If the operands are different signs, the discussion
about addition will apply to subtraction and vice versa.

The execution time of floating point addition is mostly dependent
on exponent alignment time of the two operands, maximum of

one shift would be required for post-normalization. If the addend
and the augend have the same exponent, no exponent alignment
time is required. If the magnitude of the addend and the augend
are fairly close, only a few alignment shifts are required. If the
addend and augend are very different, the number of required
shifts is large, hence longer execution time.

The execution time of floating point subtraction not only has the
same exponent alignment time as in the floating point addition, it
also has a post-normalization time. Like floating point addition,
the execution time lengthens as the magnitude of the minuend
diverges from the magnitude of the subtrahend. Unlike the float-
ing point add routine, the execution time also lengthens as the
subtrahend approaches the value of the minuend. This is due to
the number of left shifts required to produce a normalized result.

Table 8.1 shows the cycie times of Am9511A and LLL BASIC
floating point add and subtract routines. Table 8.2 shows the
cycle time of Am9512 and Intel floating point library execution
times. The software execution times given have been normalized
for a 2-MHz 8080A.

8.3 FLOATING POINT MULTIPLY/DIVIDE
EXECUTION TIMES

Unlike floating point add or subtract, the execution times of float-
ing point multiply or divide falls within a relatively narrow range
and is not dependent on the relative magnitudes of the operands.
Most multiplication algorithms use a shift and add method. For
such algorithms, the execution time dependency is mainly on the
number of 1's in the multiplier. The number of 1’s in the multip!i-
cand would not affect the execution time. The division execution
time dependency is more complicated because of the number of
division algorithms in use. In general, there is no simple way to
predict the division execution time of a particular pair of operands
(Tables 8.3 and 8.4).

8.4 DOUBLE-PRECISION FLOATING POINT
EXECUTION TIMES

The Am9512 supports a double-precision (64-bit) floating point
format. No known 64-bit floating point library routines are avail-
able at this time. Some sample execution times are given. The
operands are selected over a representative range to give a
comprehensive average (Tables 8.5 and 8.6).

TABLE 8.1. Am9511A vs LLL BASIC FLOATING POINT ADD/SUBTRACT EXECUTION TIME COMPARISON

OPERAND #1

DEC. HEX.
5 BIAB0L00
5 B3A20202
5 23A02000
5 B3ACOCG0
5 23A0020¢
5 03A0000¢
5 23A00C00
5 B3A2B000
123 @7FEROBR
.123 7DFEE?6C
123 o7repoee
12345 2ECQE420
1.3579 @1ADCFAA
.200012 73095394
234 Z8EAGOOQ
-1.234 819DF3B6

OPERAND #2
DEC. HEX .
.000¢€ 7ESD4951
.08 79C49BA4
.26 7CF5C28E
.€ 22999999

€ AZCe00090

69 PEFCO0ae
€00 BASEC0BY
€008 ZLBEBORO

456 d9F400e0

456 29540000

. 456 7FES78D4
€789¢ 11849920
24€88 grCcepeoe
340000 134604092

~-678 8AASR Q0D
12345 @ECZE420
TOTAL

AVERAGE

AMO511
FADL FSUB
214 228
179 192
143 15€

95 18

57 91
116 120
152 169
189 204
123 108
213 227
154 169
1¢€ 131
238 253
344 347
118 96
238 229
26€9 2828
166.2

176.8 2858.5

LLIBASIC
FADD FSUB
3395 3884
3000 3506
2608 3088
2100 2578
1826 2185
2362 2281
2549 2825
2945 3186
2215 2137
3229 3467
2748 3241
2038 2462
3469 3727
4783 5025
2695 1929
389¢ 3ZE7

45736 48777

3¢48.€

TABLE 8.2. Am9512 vs INTEL FPAL LIB FLOATING POINT ADD/SUBTRACT EXECUTION TIME COMPARISON

OPERAND #1 OPERAND #2 AMOS512 FPAL.LIB

DEC. HEX. DEC. HEX. SADD SSUB FADD FSUB

5 4CA00000 .0006 3A1D4952 254 275 2351 2568

5 40A00000 .00€ 3BC49RA6 229 217 1914 2152

5 40A0C000 .26 3D75C28F 171 178 2506 2724

5 40A00000 .6 3F19999A 98 11e 1954 2178

5 40A00220 6 42C00020 $ 58 g9 1430 1734

5 40ACOCO0 (514 42700008 128 123 2002 2165

5 40020000 €ge 4416000C¢ 169 177 2455 2712

5 40A000200 6200 458880¢0 212 219 1866 2159
123 42F62000 45€ 43E40000 114 1¢9 1844 293¢
123 3DFBE76D 456 43E40000¢ 264 283 2145 2424
123 42FEQR00Q .456 3EE978D4 192 183 1651 1878
12345 4640E400 67890 478499¢0 114 140 1889 2279
1.3579 3FADCFAB 2468¢ 46C2D 000 300 329 2435 2715
802312 3748538¢ 340300 48460400 475 477 1953 2231
234 42640000 ~678 C420800¢ 124 ie1 2155 1811
-1.234 BFODF3R6 12245 4640CE400 284 297 2564 2284

TOTAL 3186 3296 33114 26159

AVERAGE 199.1 206.2 2@69.6 2259.4

45 ;

TABLE 8.3. Am9511A vs LLL BASIC FLOATING POINT MULTIPLY/DIVIDE EXECUTION TIME COMPARISON

OPERAND #1 OPERAND #2 AMO511 LLLBASIC
DEC. HEX. DEC.V HEX. FMUL FDIV FMUL FDIV
5 03AC0000 .0006 769D4951 174 157 8451 13013
5 A3ACC002 .g06 79049BA4 174 178 8441 12856
5 BOAOGO020 .26 7CF5C28E 149 177 8264 12887
5 B3A00000 .6 @09995999 174 157 8407 13382
5 22ZA00000 6 23000000 173 178 8423 12835
5 A3A00000 €0 @EF20000 148 179 8218 12892
5 @3A02000 690 PASE6E200 173 155 8415 12214
5 Q30000008 €200 20BBBORO 175 179 8437 1302¢
123 27F602020 456 @0E40000 148 156 8839 12713
.123 7DFRE76C 456 09F40000 148 157 19948 13373
123 7F60000 .45€ 7FEC78D4 149 155 8965 12878
12345 GECOE400 67850 11849900 173 157 9163 14305
1.3578 21ADCTFAA 24680 oFCcepoee 147 179 12591 12149
.000012 76095394 240000 12460400 149 157 10218 13395
234 P8EAQ02D -678 8AACBE20 148 156 8781 13509
-1.234 819DF3R6 12345 CECPE42Q 175 178 12971 12952

TOTAL 2577 2655 145432 209273
AVERAGE 161.1 165.9 9089.5 13@79.6€

TABLE 8.4. Am9512 vs INTEL FPAL LIB FLOATING POINT MULTIPLY/DIVIDE EXECUTION TIME COMPARISON

OPERAND #1 OPERAND #2 AMS512 FPAL.LIB

DEC. HEX. DEC. HEX. SMUL SDIV FMUL FDIV

5 40A00000 .0006 3A1D4952 234 25¢ 3206 7757

5 40400000 026 3EC49BAB 256 235 3252 7905

5 40A00000 .26 3D76C28F 168 247 30@88 7975

5 40A02008 .6 3F199994A 234 248 3245 7708

5 4020000 6 40Ce00082 229 232 352 7955

5 40400000 €0 42700000 209 246 2897 7999

5 40A00020 606 44160000 | 229 248 3972 7799

5 4CA20020 €200 45BEBQO0R 220 246 3137 7853
122 42F60000 456 43E40000 201 248 2903 7820
.123 3DFBE76D 456 42E40000 199 243 3087 7834
123 42FE0000 .456 3EEQ78D4 218 236 3072 7822
12345 4640E400 67898 47849900 242 249 3124 7585
1.2579 3FADCFAB 24680 4800D220 253 249 3139 7854
20ego12 37495398 3400082 484604069 219 228 3131 Ka(a(ds]
234 436A0000 -€78 42908000 201 234 2925 7721
~1.234 BFODF3B6 12345 4640E400 223 227 3314 7852

TOTAL 3539 2857 40644 125215

AVERAGE 221.2 241.1 3102.8 7825.9

47

TABLE 8.5. Am9512 DOUBLE PRECISION ADD/SUBTRACT EXECUTION TIMES

DEC.

;m O wm

[¢)]

OPERAND #1

HEX.
4014200000000000
4014000000000000
4014000000000020
40140000200000¢9
4014000000000000
4014000000000000
4014000000002000
4014000000002000
495EC Q0000000000
3FBF7CEDO16872E2
405EC00C00000000
40081C800000¢000
3FFS5ROF559B3D@7C
3EEQ2Z2A727110E453
406T4000000020000
RFF3BE76C8B43958

OPERAND #2

DEC. HEX.
. 0006 SF43A02A30553261
.@26 3F789274BC6A7PEFS
.26 SFAEBB851ER851 ER8
.6 3FE3333333333333
6 4018000000000022
60 404E0000000020080
€60@ 40R2CPE000200000
€000 4QR7700000000R00
456 4¢7CBR2000000000
426 4070800000002 000
.456 3FDD2F1AGFBE76(8
67890 40F 3932000000000
24680 40DB1A000CA00000
3420¢0 4114008000000000
-€78 C2853002000000000
12348 40(81C8000000000
TOTAL
AVERAGE

AMG512
DADD DSUB
1273 1310
1174 1211
1938 1185

868 891
720 7?3
951 922
1¢91 1187
1229 1244
906 877
1233 128¢
1e72 1103
9@ 960
1322 1352
2158 2232
914 861
13e9 1290
18165 18518
1135.3 1157.4

48

TABLE 8.6. Am9512 DOUBLE PRECISION MULTIPLY/DIVIDE EXECUTION TIMES

OPERAND #1 OPERAND #2 AMSSB12
DEC. EEX. DEC. HEX. DMUL DDIV
5 4014000000000200 .0006 3F43A92A30553261 1819 4857
5 4014000000000000 . 026 3F789374BC6ATEFO 1814 4983
5 4214000000000000 .@6 3FAEB851 EB851ER8 1779 5048
5 4014000000000090 .6 SFE3333333333332 1841 5087
5 4014000000000000 € 4218000000200000 1785 4700
5 4014000000000020 €0 404500000200 00000 1751 4699
5 40140200000000002 6¢0 4p820CQ2220000200 1787 4618
5 4014000000000 000 6ge0 4QB7TO0000000002 1786 47¢2
122 405ECO00000002000 456 4070800000000000 175¢ 4671
.123 JFBF7CEDS16872R0 456 407C800002000000 1756 4748
123 4P5EC22000000220 .456 SFDD2F1ASFRE76C8 1744 4936
12345 40C8108000020¢20 67890 4QFQ@932000000000 1827 4696
1.3379 SFF5ROF55SB3T07C 24689 40DE1A2BC00020000 1762 4788
.202012 3EEQ92A737118E453 340200 4114C08000000200 1755 4764
224 4¢6D400000020000 -678 Co852000002020C0Q 1750 4670
~1.234 BFF3RE7€EC8B43958 12345 403C81C80220000022 18@2 4768
TOTAL 28479 76655
AVERAGE 1779.8 479¢.9
49

CHAPTER 9
TRANSCENDENTAL FUNCTIONS OF Am9511A

9.1 INTRODUCTION

The word “‘transcendental” is defined as “a function that cannot
be expressed by a finite number of algebraic operations.” Three
examples of such functions are sine, logarithmic and exponentia-
tion. The Am9511A performs a number of such functions, and this
chapter describes the algorithms adopted by the device.

9.2 CHEBYSHEV POLYNOMIALS

Computer approximations of transcendental functions are often
based on some form of polynomial equations, such as

f(x) = ag + a;x + apx? + agx® + axt +
The most well-known polynomial for evaluating transcendental
functions is the Taylor series

#(a) (X — a)*
k!

Where fK(a) is the kth derivative of the function f. Taylor series
usually works well when {x — a) is a small number. When the
value of (x — a) is large, the number of Taylor series terms
required to evaluate to a given accuracy becomes large. To avoid
this shortcoming, there is a set of approximating functions that not
only minimizes the maximum error but also provides an even
distribution of errors within the selected data representation inter-
val. These are known as Chebyshev polynomial functions and
are based upon the cosine functions. The Chebyshev polyno-
mials T(x) are defined as follows

f(x) = f(a) +

T,(x) = cos(ncos~'x)
The various terms of the Chebyshev series can be computed as

To(x) = cos(0) = 1

Ty(x) = cos(cos~1x) = x

Ta(x) = cos(2c0s™ 1x) = 2cos2(cos™1x) —1 = 2x2 — 1
in general

Tax) = 2x(Ty_1(x)) —
the terms Ta(x), Ty(x), Ts(x) and Tg(x) are given below for
reference

Ta(x) = 4x3 — 3x

Ta(x) = 8x% — 8x2 + 1

T5(x) = 16x5 — 20x3 + 5x

Tex) = 32x8 — 48x4 + 18x2 — 1
It is not the intent of this book to go into the detailed derivation of
the Chebyshev series. For readers interested in the formal deri-

vation, references 1 and 3 are recommended. The Chebyshev
series is given as follows:

Th—o) forn =2

o
) ==Co + £ Cala)
n=1
where
2 f(x) 0 T
-2 e

For a given accuracy, onIy a finite number of terms is required.
The Am9511A selects the number of terms required by different
functions to provide a mean relative error of about one partin 107.
The coefficients C,, are all precalculated and stored in the con-
stant ROM.

Each of the transcendental functions in the Am9511A uses the
Chebyshev polynomial series except the square root function.
Each function is a three-step process as follows:

Range Reduction —

The input argument of the function is transformed to fall within a
range of values for which the function can be computed to a
valid result. For example, since functions like sine and cosine
are periodic for multiples of radians, input arguments for these
functions are converted to lie within a range of

ks il

-5 to+ -

Chebyshev polynomial evaluation —

This step is the same for all functions. The algebraic sum of
the appropriate number of terms of the Chebyshev series is

computed.

Otowor—

Postprocessing —
Some functions, such as sine and cosine, need postprocessing
of the result such as sign correction.

The foliowing sections give a detailed function-by-function de-
scription of each transcendental function in the Am9511A,

9.3 THE FUNCTIONS CHEBY AND ENTIER

Two functions are used in the following sections. The first one is
CHEBY. This function evaluates the Chebyshev polynomial
series

n—1

fx) = 1/2C5 + I CT(x)

The function is called by CHEBY (x, ¢, n) where x is the input
argument after any necessary preprocessing; ¢ is the coefficient
list for the given function; and n is the number of Chebyshev
polynomial terms used.

The FORTRAN program to implement the cheby function is as
follows:

FUNCTION CHEBY (X, C, N)
Dimension C(12), T(12)
TA) = 1

TE) = X
CHEBY = 0.5 * X(1) -+ C(2) * T(2)
DO 1001 =3, N

TH=2*X*T(1-1)-T(1 - 2)
100 CHEBY = CHEBY + C(I) * T())
This program is not written to minimize execution time or code

space butfor its clarity. A program thatimproves execution speed
but is somewhat more obscure is as follows:

FUNCTION CHEBY (X, C, N)
DIMENSION C(12), T(12)

B=0
D = C(N)
X2 =2*X
DO 1001 =N, 2, 1
A=B
B=D
100D=X2*B—-A+0C(-1)
CHEBY = (D - A)2

END

The second function is called ENTIER. Entier is the French word
for integer. The entier function is similar to the FORTRAN integer
function, except the integer function rounds down to the nearest
integer closer to zero whereas the entier function rounds down to
the nearest integer of a lower value. in other words, if the number
is greater than or equal to zero, both functions are identical. If the
number is negative, such as —2.5, INT (—2.5) = —2, ENTIER
(—2.5) = -3.
A FORTRAN program to implement the entier function is as
follows:

FUNCTION ENTIER (X)

IF (X.LT.0y X = X = 1

ENTIER = INT (X)

END

9.4 SINE
Any argument of the sine function can be reduced to a value from
—7/2 to +7/2. Hence the range reduction is

X =X*2m

X = X — 4 * Entier ((X + 1)/4)

fX.GTH)X=2-X
This reduces the input argument to a range from —1to +1. The
Chebyshev polynomial evaluation is

Sin (X) = X * CHEBY (2X2 — 0.1, Csin, Nsin)
there Csinis an array of precalculated Chebyshev coefficients for
sine, and Nsin is the number of Chebyshev polynomial series
used. In the case of Am9511A

Nsin = 6

Csing = 2.5525579

Csiny = —0.2852616

Csiny = 9.118016 x 103

Csing = —1.365875 x 10~4

Csing = 1.184962 x 1076

Csing = —6.702792 x 109
9.5 COSINE

Any argument of cosine function can be reduced to arange from 0
to 7. Hence, the formulas for cosine range reduction are
X=X*2/n
X = 4 * Entier (X + 2)/4) — X +1
fX.GTNHX =2 - X

The cosine function is now evaluated the same way as the sine
function

cos(x) = X * CHEBY (2x2 — 1, Csin, Nsin)

where Csin and Nsin are the same as the sine function

9.6 TANGENT

Any argument for tangent can be reduced to a value from —#/2 to
+7/2. This is the same range reduction algorithm as the sine
function (Figure 9.1).

X =X*2/r
X = X — 4 * Entier ((X + 1)/4)
Y=X

F(Y.GT.)X =2 - X
The Chebyshev polynomial evaluation is
Tan(X) = X * CHEBY(2X2 — 1, Ctan, Ntan)
A postprocessing step is also required
If (Y.GT.1)Tan(X) = 1/Tan(X)

The constants used in the Am3511A are as follows:

Ntan = 9

Ctang = 1.7701474

Ctany = 1.0675393 x 10~
Ctan, = 7.5861016 x 103

Ctang = 5.4417038 x 1074

I

3.9066370 x 1075

Ctany
Ctang = 2.8048161 x-10~©
Ctang = 2.0137658 x 1077
Ctan; = 1.4458187 x 1078
Ctang = 1.0380510 x 10~°

9.7 ARCSINE

The argument of arcsine must be less than or equal to 1, or else
an input error is detected. Hence, range reduction is not neces-
sary.

There are two different Chebyshev polynomial expansion used
depending on the initial value of X. If X2 < 1/2 then the following
formula is used

Asin(X) = x* 2 * CHEBY (4x2 — 1, Casin, Nasin)

1078

RELATIVE ERROR
3
<
T

s ! 1 !

10

20 _1010 ~10

20

107 10'° 10%°

DATA VALUES

MOS-013

Figure 9.1. Tangent

51

If1/2 < x2 < 1 then

Asin (X) = sign (X) * 5~ * /2 2x2*

CHEBY (3 — 4x2, Casin, Nasin)

Where sign (X) is the sign of X. The values of Casin and Nasin
used in the Am9511A are as follows:

Nasin = 10

Casing = 1.4866665

Casiny = 3.8853034 x 102

Casiny = 2.8854414 x 1073

Casing = 2.8842183 x 1074
Casing = 3.3223672 x 1075
Casing = 4.1584779 x 10~
Casing = 5.4965045 x 1077
Casin; = 7.5500784 x 108
Casing = 1.0671938 x 108
Casing = 1.5421800 x 109

9.8 ARCCOSINE
The arccosine is obtained from arcsine by using the trigonometric
identity.

Arccosine (x) = g— — arcsine (x)

9.9 ARCTANGENT

The range reduction of the arctangent function involves taking the
reciprocal of the input argument if the absolute value of the input
argument is greater than 1.

U=X
If (ABS (U).GT.1)X = 1/X

The Chebyshev polynomial evaluation is
Atan(X) = X * Cheby(2X2 — 1, Catan, Natan)
The postprocessing requirement is

If (U.GT.1) Atan (X) = #/2 — Atan (X)
If (ULT.—1) Atan (X) = —#/2 — Atan (X)

The value of Natan and Catan used in the Am9511A are:

Natan = 11
Catany = 1.7627472
Catan; = —1.0589292 x 101
Catan, = 1.1135842 x 102
Catany = —1.3811950 x 1073
Catan, = 1.8574297 x 104
Catang = —2.6215196 x 105
Catang = 3.8210366 x 10~6
Catan; = —5.6991862 x 1077
Catang = 8.6488779 x 108
Catang = —1.3303384 x 108
Catanyy = 2.0685060 x 10~9
Catany; = —3.2448600 x 10710

9.10 EXPONENTIATION (Figure 9.2)

The range reduction for the exponentiation function is performed
by the following formulas

X = X* Logye

N = 1 + Entier (X)

52

The Chebyshev polynomial evaluation is

Exp(X) = 2N * Cheby (2*(N — X) — 1, Cexp, Nexp)
No postprocessing is required for the exponentiation function.
The values of Nexp and Cexp used by Am9511A are:

Nexp =8

Cexpg = 1.4569999

Cexpy = —2.4876243 x 10~

Cexp, = 2.1446556 x 102

Cexpg = —1.2357141 x 103

Cexpy= 5.3453058 x 1075

Cexpg = —1.8506907 x 10~6

Cexpg = 5.3411877 x 108

Cexpy= —1.3215160 x 10~9

1076

RELATIVE ERROR
B
]
4
I

| i L 1 J
10 20

168 |
10 _10?

—10 —1w0~ 10~ 10° 10'°

DATA VALUES

MOS-016

Figure 9.2. eX

9.11 NATURAL LOGARITHM (Figure 9.3)

Any input argument to a logarithm function that is less than or
equal to zero will be returned as an error input. No preprocessing
or postprocessing is necessary for all positive input X.

LN(X) = CHEBY (4*Mant(X) — 3, CLN, NLN) + (Expo(X) — 1)
*LN2

Where Mant(X) is the mantissa value of X and expo (X) is the
exponent value of X.

The value of NLN and CLN used in the Am9511A are:

NLN = 11
CLNy = 7.5290563 x 10"
CLN; = 3.4314575x 10!
CLNy, = —2.9437253 x 1072
CLNg = 3.3670893 x 1073
CLN, = -4.3327589 x 104
CLN; = 59470712 x 1075
CLNg = —8.5029675 x 106
CLN; = 1.2504674 x 1076
CLNg = —1.8772800 x 107
CLNg = 2.8630251 x 10~8
CLNjg = —4.4209570 x 1079

1075

-7 =

ABSOLUTE ERROR
3

-8] |] J
10 20

10° 10
DATA VALUES

MOS-014

6 —

—7

RELATIVE ERROR
E

-8 1 |
10 20

10° 10
DATA VALUES

MOS-015

Figure 9.3. Natural Logarithm

9.12 LOGARITHM TO BASE 10 (COMMON LOGARITHM)
The common logarithm is derived from the natural logarithm by
the equation
LOG(X) = LN(X) * LOGyge
where
LOGpe = 0.4342945

9.13 X TO THE POWER OF Y

The function X to the power of Y is derived from the following
equation
XY = e(Y*LN(X)

9.14 SQUARE ROOT

The square root function (Figure 9.4) in the Am9511A is the only
derived function that does not use the Chebyshev polynomials. It
uses a combination of linear approximation and the Newton-
Ralfson successive approximation methods. The square root
algorithm adopted is divided into three parts:

(a) Range reduction —
The input argument is divided into the exponent and the
mantissa. If the exponentis odd, the exponentis incremented
by 1 and the mantissa is divided by 2. If the input exponent is
even, the above step is skipped.

(b

-~

Linear Approximation —

The mantissa is now a number greater than or equal to 1/4
and less than 1. The curve line in Figure 9.5 represents the
square root of all numbers between 1/4 and 1. The straight
line represents the first-order approximation for the square
root of the number. To select the best straight line, we must
minimize the maximum relative error between the straight
line and the curve line. This would reduce the worst case error
to a minimum. This line is known as the minimax line.

The method used to compute the best linear approximation line is
as follows:

Let m = Slope of the minimax line

Letb = Y intercept of the minimax line

Let Y = The function of the minimax line
such that

Y =mx +b

53

Figure 9.4. Square Root

The relative error between the actual square root value and the
first-order approximation is

mx + b — /X
X
Figure 9.5 shows that the absolute value of E(x) is a maximum at

the two extremities (x = 1/4 and x = 1) and at a point where the
slope of the curve E(x) = 0, or dE/dx = 0.

E(X) =

dE _ d (mX+b-/X) ©1)
dX dX JX '
d ! d 1t d
= — mx +—bx 7 - — (1
dx 2 dx 2 dx M
- d 1 d 1
= mEX—X 2 + bm x 2 -0
4 e 1 -3 _
> mx > bx 0
therefore
mx12 = px—82
_ b
X = =
m

The relative errors at the extremities are given by

m oLy - /L
4

4

M

—~

STpe

S—r’
I

9.2)

)= =m+b-1 (93

The minimax line requires these maximum errors to be equal

D 2 -1=m+b -1
2
b- T —p
2
b 1
- == (9.4)
m 2
m = 2b (9.5)
from equations 9.1 and 9.4
o b _ 1
m 2

Therefore, the maximum error in the middle occurs when X = 1/2.
The minimax line requires these errors to be equal in magnitude.
Thus

SOREIERLE

E(E) R
a2
V7
Since m = 2b from equation 9.5
1
2b — —
| JE
E ?) =— (9.7)
1
2
From equations 9.3 and 9.5
E(1) = 3b — 1 (9.8)

From equations 9.6, 9.7 and 9.8

2b — \/;:=~(3b—1)=1—3b
1
2
2/2b-1=1-23b
=—2 . 034314575
2/2+3
From 9.5

m = 2b = 0.6829150

Therefore, the minimax line is given by
Y = 68629150 X + 0.34314575

This is the equation used in Am9511A for the first-order linear
approximation. Therefore

Xo = 0.68629150X + 0.34314575
(¢) Newton-Ralfson successive approximation —
After the first-order approximation (Xg) is obtained, the

Am9511A executes two iterations of the Newton-Ralfson ap-
proximation

X1 = (X/XO + Xo)/2
Xo = (X/Xy + Xq)/2
And the result is given by
SQRT(X) = x, * 2E/2

54

1.1
1.0 %
9 l/
8 74
7 e
1 ‘ // T mX + b
£ d
=
& s /
W
4 |~ {
mX +b - /X
3 \/ X 0294
N i
2 0
1] .0294
0 12 3 4 5 & 7 8 s 10
X —
MOS-654

Figure 9.5. Square Root Computation

A FORTRAN function to illustrate the above algorithm is given
below:

FUNCTION ROOT (X)
INTEGER EXPO, LSB
REAL MANT, X0, X1, X2
EXPO = INT (LOG(X)/LOG(2)) + 1
MANT = X/2**EXP
LSB = MOD(EXPO, 2)
IF (LSB.EQ.0) GOTO 100
C EXPONENT (S ODD
EXPO = EXPO + 1
MANT = MANT/2.0

0.68629150* Mant + 0.34314575
X1 = (X/X0 + X0)/2.0
X2 = (X/X1 + X1)/2.0

Root = (2**(EXPO/2))*X2
End

100 X0 =

9.15 DERIVED FUNCTION ERROR PERFORMANCE

Since each of the derived functions is an approximation of the true
function, results computed by the Am9511A are not always exact.
In order to quantify the error performance of the component more
comprehensively, the following graphs have been prepared.
Each function has been executed with a statistically significant
number of diverse data values, spanning the allowable input data
range, and resulting errors have been tabulated. Absolute errors
(that is, the number of bits in error) have been converted to
relative errors according to the following equation:

. Absolute Error
Relative Error = ——— ———

True Resuit
This conversion permits the error to be viewed with respect to the
magnitude of the true result. This provides a more objective
measurement of error performance since it directly translates to a
measure of significant digits of algorithm accuracy.

For example, if a given absolute error is 0.0001 and the true result
isalso 0.0001, itis clear that the relative error is equal to 1.0 (which
implies that even the first significant digit of the result is wrong.
However, if the same absolute.error is computed for a true result
of 10000.0, then the first six significant digits of the result are
correct (0.001/10000 = 0.0000001).

Each of the following graphs was prepared to illustrate relative
algorithm error as a function of input data range. Natural

power function is realized by combination of natural log and
exponential functions according to the equation

XY = gVInx)

The error for the power function is a combination of that for the
logarithm and exponential functions. Specifically, the relative
error for PWR is expressed as

logarithm is the only exception; since logarithms are typically REpwr = REgxp + X(AE)

additive, absolute error is plotted for this function. where

Two graphs have not been included in the following fig- RE — relative error for power function

ures: common logarithms and the power function (XY). Common PWR =) P _ _

logarithms are computed by multiplication of the natural REgxp = relative error for exponential function

logarithms by the conversion factor 0.43429448 and the error AE|, = absolute error for natural logarithm

function is therefore the same as that for natural logarithm. The X = value of independent variable in xY
REFERENCES

1. Pennington, Ralph H. Introduction to Computer Methods and

Numerical Analysis. Macmillan Company, 1970.

2. Clenshaw, Miller and Woodger. “Algorithms for Special Func-

tions (I and 1),” Numerische Mathematic, 1963.

55

3. Parker, Richard O. and Joseph H. Kroeger. Algorithm Details
for the Am9511A Arithmetic Processing Unit. Advanced Micro
Devices, 1978.

