
Release 1.0, 1/13/98

Network Computer Login

THIS INFORMATION IS PROVIDED WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
OR NON-INFRINGEMENT. Please click on the "Legal" on this website for other terms and
conditions relating to information on this website.

Detailed Description

1. Overview

The Network Computer Login (NCL) facility consists of a login client (NCL client) running
on a network computer and a login server (NCL server) running on a server used to support
network computers. Together the login client and server authenticate a user and customize
the client for that user. The login client and login server communicate by means of a remote
authentication protocol (RAP). The remainder of this document describes the RAP protocol,
the behavior and design of the client, and the behavior and design of the server.

2. Remote Authentication Protocol (RAP)

An NCL client will initiate a TCP connection with an NCL server, using a well-known port
for remote authentication protocol. The well-known TCP port for a RAP server is 256. A
RAP session consists of the login client sending a single request packet to an authentication
server, followed by the server sending one or more reply packets to the client. The end of a
RAP session is marked by termination of the underlying TCP connection. Note that we refer
to "packets" that are exchanged between the client and server for simplicity. Since the
underlying TCP connection is stream-oriented, these packets may not correspond to the IP
packets actually transmitted. This is merely a high-level view of the data exchange.

In this document, we use 8-bit bytes corresponding to octets of data transmitted over the
network. All multi-byte integer data shall be transmitted in network byte order (i.e.,
high-order byte first). All string data is case-sensitive, unless otherwise specified. A
particular application receiving string data may ignore case, but string data transmission must
be presumed case-sensitive.

2.1. Requests:

A request packet has the structure shown in the figure below.

 1 byte 1 byte 2 bytes 16 bytes 2 bytes variable length

| majcode | mincode | client id | reserved | data length | data |

The majcode is a 1 byte unsigned integer value representing the request class. The mincode
is a 1 byte unsigned integer value representing a particular request operation with the class
specified by the major code.

In the initial implementation, the only defined major code is the value 1, indicating an
authentication request (AUTH). The only defined minor code for AUTH requests is the value
1, indicating a simple authentication request for POSIX identification data (AUTH_SIMPLE).

The client id is a 2 byte unsigned integer value representing a client workstation type. This
value may be used by the server for server-specific purposes. In the initial implementation,
the only defined client id is the value 1.

The data length is a 2 byte unsigned integer value indicating the length of the data contained
in the data field that follows.

The content of the data field is dependent upon the major and minor codes specified.

2.1.1. AUTH_SIMPLE requests:

The data for an AUTH_SIMPLE authentication request consists of a null terminated username
string, followed by a null-terminated password string, as shown in the figure below.

 string string

| username |0 | password | 0 |

Both strings must be represented using ISO8859-1. The maximum total length of an
AUTH_SIMPLE data field is 256 bytes, including null terminators.

2.2. Reply directives:

A reply packet has the structure of the figure below.

 1 byte 1 byte 2 bytes variable length
--
|major code | minor code | data length | data |
--

The major code is a 1 byte unsigned integer value representing a reply directive.

In the initial implementation, the following major codes are defined:

major code directive
--
 1 termination directive (DONE)
 2 error directive (ERROR)
 3 identification directive (ID)
 4 file system mount directive (MOUNT)
 5 environment variable directive (ENV)
 6 information display directive (INFO)

The minor code is a 1 byte unsigned integer value representing the reply subtype. Defined
minor codes are documented below in the sections documenting defined reply packet types.

The data length is a 2 byte unsigned integer value specifying the length of the data field that
follows.

The content of the data field is dependent upon the directive type specified by the major and
minor codes.

2.2.1. ID directives:

The ID directive provides the client with identification information for the authenticated user.

In the initial implementation, the only defined minor code for ID directives is the value 1,
indicating standard POSIX identification data (ID_POSIX).

2.2.1.1. ID_POSIX data:

The data field of an ID_POSIX directive consists of a uid and gid as shown in the figure
below.

 4 bytes 4 bytes

| uid | gid |

2.2.2. ENV directives:

An ENV reply directs the client to modify a local environment variable. This may be used to
pass a variety of system-specific information, such as the path to a user's home directory or
where preferences are stored. The client may or may not actually modify a local environment
variable, in response.

In the initial implementation, the only defined minor code for ENV directive is the value 1,
indicating an environment variable definition directive (ENV_SET).

The data for all ENV reply packets, regardless of minor code, shall consist of a null
terminated variable name string, followed by a null-terminated value string, as shown in the
figure below.

 string string

| variable | 0 | value | 0 |

Both strings must be represented using ISO8859-1. The login server may refer to the value
of a previously set environment variable, in a subsequent ENV directive. This is done by
prepending a "$" character to the variable name. (For example, if HOME was previously
defined via an ENV directive, "$HOME" may be used to represent the value of that variable
in a subsequent directive.)

2.2.2. MOUNT directives:

The MOUNT reply directs the client to mount a specified file system.

In the initial implementation, the following minor codes for MOUNT directives are defined:

minor code Mount type
--
 1 NFS-accessed file system (MOUNT_NFS)
 2 TFTP-accessed file system (MOUNT_TFTP)

2.2.3.1. MOUNT_NFS data:

The data field of a MOUNT_NFS directive consists of a null-terminated server address, a
null-terminated remote mount point, and a null terminated environment variable name, as
shown in the figure below:

 string string string
--
| server address | 0 | remote mount point | 0 |variable | 0 |
--

The server address may be represented as either a domain name or as a dotted-decimal
address (represented as a string). A null string may be used to specify use of the login server
as the file server.

The remote mount point must consist of an absolute path to the mountpoint. The pathname

must use a forward slash ("/") as a directory delimiter.

The variable field consists of an environment variable to be associated with the mounted file
system. The login client must associate the local mount point for the file system with the
specified variable name, as with ENV directives. A null string may be used to specify that
no environment variable is to be associated with the local mount point.

All three strings must be represented using ISO8859-1.

2.2.3.2. MOUNT_TFTP data:

The data field of a MOUNT_TFTP directive is identical to that of the MOUNT_NFS
directive.

2.2.4. INFO directives:

An INFO reply directs the client to display information to the user. This may be used to
convey important information to the user, such as account status or a system's message of the
day.

In the initial implementation, the only defined minor code for INFO directives is the value 1,
indicating a string display directive (INFO_STRING).

2.2.4.1. INFO_STRING data:

The data field of an INFO_STRING directive consists of a reserved field and a
null-terminated message string, as shown in the figure below:

 16 bytes string

| reserved | message | 0 |

The reserved field is a 16 byte field, and should be represented as a null string in ISO8859-1.
The message string must be null-terminated. End of line (EOL) must be represented as a
carriage return followed by a line feed (CR/LF).

2.2.5. ERROR directives:

An ERROR directive indicates an unrecoverable error, and signals termination (on failure) of
the RAP session. The client should display an error message to the user and terminate the
login process upon receiving an ERROR directive.

In the initial implementation, the following minor codes for ERROR directives are defined:

minor code error type

--
 1 system-specific login error (ERR_SYS)
 2 unsupported major code (ERR_MAJCODE)
 3 unsupported minor code (ERR_MINCODE)
 4 unsupported client (ERR_CLIENT)
 5 malformed request (ERR_REQUEST)
 6 incorrect login (ERR_LOGIN)
 7 unknown user (ERR_USER)
 8 incorrect password (ERR_PASSWD)

All ERROR directives use the data format shown in the following figure, regardless of the
minor code.

 16 bytes string

| reserved | message | 0 |

The format of ERROR directive data is the same as that described in Section 2.2.4.1 for
INFO_STRING directive data.

For standard errors (i.e., those that are not system specific, minor codes 2 through 8), the
server may optionally return a null message string. For standard errors, the client may also
opt to display a standard, locally-defined error message in place of any transmitted error
message.

2.2.6. DONE directives

A DONE directive signals the successful completion of a RAP session.

A DONE directive never contains any data. Correspondingly, the data length field must
always be 0. The minor code field is reserved, and should be set to 0.

3. NCL server

The NCL server will act as a RAP authentication server. The NCL server will accept and then
process incoming TCP connections on the RAP well-known port.

3.1. Successful-case behavior

For a successful authentication request, the NCL server will do the following:

1) Receive an AUTH_SIMPLE request.

2) Authenticate the username and password combination, retrieving POSIX identification data,
information necessary to mount the user's home directory and the user's preferences directory,
as well as a user-specific account status string, if any.

3) Send the POSIX identification data to the client as an ID_POSIX directive

4) If normalization of the username is required, send an ENV directive to the client for the
USER environment variable.

5) Send one or more MOUNT directives to the client, containing mount data to account for
user home directory and possible seperate preference directory.

6) Send the user-specific account status string, if any, to the client as an INFO_STRING
directive.

7) Send a DONE directive to the client, terminating the RAP session.

3.2. Error-case behavior

In case an authentication or other error is detected, the NCL server will log the error and send
the client an appropriate ERROR directive.

4. Client

The client will initiate a RAP session with an NCL server, in order to authenticate a user and
obtain information necessary to customize the NC environment for that user.

4.1. Basic client behavior

During a successful login process, the client will do the following:
1) Lock the screen with a username/password entry screen. In addition to the username and
password, this screen may allow the user to optionally specify a login server.

2) Upon receiving user input, the client will establish a TCP connection with the specified
NCL server, at the RAP well-known port. The client will send the server an AUTH_SIMPLE
authentication request including the specified username and password. The client may

provide a "Cancel" button to allow the user to terminate an authentication attempt.

3) Enter a loop to process all additional reply packets received from the NCL server.

4) Unlock the screen.

4.2. Reply packet processing

Reply directives from the NCL server will be processed as follows:

 directive response

ID_POSIX Set the uid, and gid for the login process.
MOUNT_NFS Set up NFS mount information.
MOUNT_TFTP Set up TFTP mount information.
SET_ENV Set the specified environment variable as directed.
INFO_STRING Display the specified message string to the user.
ERROR Display the specified message string to the user and

terminate the login process.

4.3. Termination on failure

Termination of login on failure shall result in the client presenting a new login screen.

