
IO

DIGITAL
RESEARCH'"

Concurrent CPiM-86'"

Programmer's Utilities Guide
Operating System

COPYRIGHT

Copyright @ 1983 by Digital Research. Al! rights reserved. 'No part of this publication
may bc reproduced, transmitted, aanscribcd, stored in a retrieval system, or translated
into any language or computer language, in any form or by any means, dectronic,
mechanical, magneric, oprical, chemical, manual or otherwise, without rhe prior written
permission of Digital Research, Post Office Box 579, Pacific Grove, California, 93950.

DISCIAIMPJt

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disciaims anyimpliedwarranties of mcrchantability or fitness for
any particular purpose. Further, Digital Research reserves the right to revise this publi­
cation and to make changes from time to time in the content hereof without obligation
of Digital Research to notify any person of such revision or changes.

CP/M is a registered trademark of Digital Research. ASM-86, Concurrent CP/M-86,
DDT-86, and MAC are trademarks of Digital Research. Intel is a registered trademark
of Intel Corporation. MCS-86 is a trademark of Intel Corporation. Z80 is a registered
trademark of Zilog, Inc. IBM Personal Computer is a tradenarne of International
Business Machines.

The Coecarrent CP/M-86 Programmer's Unties Guide was prepared using the
Digital Research TEX Text Formatter and printed in the United States of hmerica,

First Edition: March 1983

Foreword

The Concurrerrr CPIM-86 Programmer's Utilities Guide documents the 6088 and
8086 assembly! anguage instruction set, rules for use of the Digital Research ASM-66
assembler, and rules for use of the Digital Researchdynamic debuggingtool, DDT-86™ .

Section I contains an introduction to the Digital Research assembler, ASM-86, and
the various options that mn be used with <t, Through one of these options, ASM-86 can
generate 8086 machine code in either Intel+ or Digital Research format. Appendix A
describes these formats,

Section 2 discusses the elements of ASM-86 assemblylanguage.It defines the ASlVI-8 6
character set, constants, variables, identifiers, operators, expressions, and statements.

Sectton 3 describes the ASM-86 housekeeping functions, such as conditional assem­
bly, multiple source file inclusion, and control of the listing printout format.

Section 4 summarizes the 8086 instruction mnemonics accepted by ASM-86. These
mnemonics are the same as those used by rhe Intel assembler, except for four instmctions:
the intrasegment short jump, intersegment jump, return, and call instructions. Appendix B
sutnmarizes these differences.

Section 5 discusses the Code-macro facilities of ASM-86, including Code-macro
definition, specifiers, and modifiers, and nine special Code-macro directives. This infor­
mation is also summarized in Appendix G.

Section 6 discusses DDT-86, the Dynamic Debugging Tool that allows the user to
test and debug programs in the 8086 environment. The section includes a sample
debugging section.

Concurrent CP/M-86 is supported and documented through four manuals:

8 The Conacrrear CP/M-86 Usa"s Guide documents the user's interface to Con­
current CP/M-86, explaining the various features used to execute applications
programs and Digital Research utility programs.

• The Cottnmmt CP(M-/i6 Programer's Referena Guide documena the appli­
cations programmer's interface to Concurrent CP/M-86, explaining the internal
61e structure and system entry points, information essential to create applications
programs that run in the Concurrent CP/M-86 environment.

• The Concsrrmr CP/M-86 Programmer's Vtiliries Grade documents the Digital
Research utility programs programmers use to write, debug, and verify applica­
tions programs written for the Concurrent CP/M-86 environment.

• The Concurrent CP/M-86 Systrm Guide documents the internal, hardware­
dependent structures of Concurrent CP/M-86.

Table of Contents

1 Introduction to ASM-86

Assembler Operation
Optional Run-time Parameters
Ending ASM-86

. . 1-1

. . 1-4

. . 1-5

1.1
1.2
1.3

2 Elements of ASM-86 Assembly Language

2.1
2.2
2.3
2.4

2.5

2.6

2.7
2.8

3 Assembler Directives

ASM-86 Character Set
Tokens and Separators
Dclirnitcrs
Constants
2.4.1 Numeric Constants
2.4.2 Character Strings
IdentiRers
2.5.1 Keywords
2.5.2 Symbols and Their Attributes
Operators
2.6 1 Operator Examples
2.6.2 Operator Precedence
Expressions
Statements.

• •

• •

• •

. 2-1

. 2-1

. 2-1

. 2-3

. 2-3

. 24

. 24

. 2-5

. 2-6

. 2-8
2-12
2-14
2-16
2-16

• •

3.1
3.2

3.3
3A
3.5
3.6
3.7
3.8

Introduction
Segment Start Directives. . .
3.2.1 The CSEG Directive
3.2.2 The DSEG Directive .
3.2.3 The SSEG Directive
3.2.4 The ESEG Directive
The ORG Directive
The IF and ENDIF Directives
Thc INCLUDE Directive
The END Directive
The EQU Directive
The DB Directive

3.9 The DW Directive
3.10 The DD Directive

3-1
3-1
3-2
3-2
3-3
3-3
3-4
34
3-5
3-5
3-5
3-6
3-7
3-8

• • •

Table Of COntentS (contiaued)

3.11 The RS Directive
3.12 The RB Directive
3.13 The RW Directive
3.14 The TITLE Directive
3.15 'The PAGESIZE Directive
3.16 The PAGEWIDTH Directive
3.17 The EJECT Directive
3.18 The SIMFORM Directive
3.19 &e NOUST and LIST Directives.. . . .
3.20 The IFLIST and NOIFLIST Direcnves

4 TIre ASM-86 Instruction Sst

4.1 Introductiou ,
4.2 Data Transfer Instrucnons
4.3 Ar ithmetic, Logical, and Shift Instructions
4.4 String Insrruaions
4.$ Control Transfer Instructions
4.6 Processor Control Instructions
4.7 Mnemonic Differences

5 Code-macro Facilities

5.1 Introduction to Code-macros
$.2 Speci6ers
S.3 Modi6ets
5.4 Range Speci6ers
$.5 Code-macro Directives

5,5.2 NOSEGHX
$.$.3 MOD RM
$.5.4 RELB and RELW
$.$.$ DB, DW and DD
$2.6 DBH'

• \ . 5-1
. $-2
. $-4
. 54
. $-5
. 5-5
. $-5
. 5-6
. 5-7
. $-8
. $-8

. 41
43

. 45
4-10
412
4.16
4-18

. 3-8

. 3-9

. 3-9

. 3-9
3-10
3-10
3-10
3-10
3-11
3-11

$.5.1 SEGHX

Tab1e of Contents (contmued)

6 DDT-$6

6.1

6.2

DDT-86 Operaticm
6.1.1 Starting DDT-86
6.1.2 DDT-86 Command Conventions
6.1.3 Specifying a 20-Bit Address
6.1.4 Terminating DDT-86
6.1.5 DDT-86 Operation with interrupts
DDT-86 Conunands
6.2.1 The A (Assemble) Command
6.2.2 The B (Block Compare) Command
6.2.3 The D (Display) Command
6.2.4 The E (Load for Execution) Command
60.5 Tbe F (Fill) Command.
6.2.6 The C (Go) Command
6.2.7 Thc H (Hexadecimal Math) Cotnmand
6.2.8 The I (Inpu.t Command Tail) Command
6.2.9 Thc L (List) Command
6.2.10 The M (Move) Command.
6.2.11 The Ql, QO (Query UO) Commands
6.2.12 Thc R (Read) Command
6.2.13 The S (Sct) Command.
6.2.14 Thc SR (Search) Command
6.2.15 The T (Trace) Command
6.2.16 The U (Untrace) Command
6 2.17 The V (Value) Command
6.2.18 The W (Write) Command.
6.2.19 The X (Examine CPU State) Command
Default Scgmcnt Values
Assembly Language Syntax for A and L Commands
DDT-86 Sample Session.

. 6-1

. 6-1

. 6-1

. 6-3

. 6-3

. 6-3

. 6-4

. 64

. 6-4

. 6-5

. 6-6

. 6-6

. 6-7

. 6-8

. 6-8

. 6-8

. 6-9
. 6-9
6-10
6-11
6-12
6-12
6-13
6-13
6-14
6-14
6-16
6-18
6-19

6.3
6.4
6,5

Table of Contents (continued)

Appendixes

A Statuary ASN6 • A-1

• 3-1

D

C ASM-86 Heauhc'aaal Output Fcemat

R Ncfvctl WDB4 s •

E ASM46 lasttucaoa Summary

. . • C-1

• • • • • • • • D 1

• r E 1

F SNaplc P?ogwB APPPeA$6 • • • • • • • • • • • • • • r • • • • • F 1

G CDJNaucto Dc6$ttoa S)%tm e • G 1

H AS N6 E f fof1Hcs tages • • • • • • • • • • • • • •
• • • •

I DDT - 86 Error Messages • • ,

. 8-1

Table Of COntentS (con>i ued)

Tables

2-1.
2-20
2-3.
24.
2-5.
2-6.

1-1.
1-2.

4-1.
4-2.
43.
4Q
4-5.
4Q,
4-7.
48.
49.

Run-time ParameterSummary
Run-time ParameterExamples
Separators and Delimiters
Radix Indicators for Constants. . . .
String Constant Examples
Register Keywords • I a • • • • • •

ASM-86 Operators
Precedence of Operations in ASM-86

Operand Type Symbols.
Flag Register Symbols
Data Transfer Instructions
Effects of Arithmetic Instructions
Arithmetic Instructions
Logical and Shift Instructions
String Instructions
Prefu: Instructions
Control Transfer Instructions

4-10. Processor Control Instructions
411. Mnemonic Differences

5-1 •
5-2.

on Flags • • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• •

• •

. 1%
• 1-5

• 2 2
• 2"3
• 2A
. 2W
. 2-9
2-15

• 4-1
• 4-3
• 43
, 45
. 4-6
. 4-8
410
4-12
4-13
416
418

, 5-3
. 5-2

6-1.
6-2.
6-3.

Code-macro Operand Speci6crs
Code-macro Operand Modifiers

DDT-86 Command Summary
Flag Name Abbreviations
DDT-86 Default Segment Values

. 6-2
6-15
6-17

Table Of Contents (continued)

Tables

. h-1

. h-2

. A-2

. A-3

A-1. Parameter Types and Devices
A-2. Parameter Types
A-3. Device Types.
A4. I n. vocation Examples

B-i. Mnemonic Differences

C-1. Hexadecimal Record Contents.
C-2. Hexadecimal Record Formats
C-3. Segment Record Types

D-1. Keywords or Reserved Words

E-1. ASM-86 Instruction Summary

H-1. ASM-86 Diagnostic Error Messages

I-1. DDT-86 Rector Messages

. G-3

• • • • o • • C 1

. D- 1

Figure

I-l . A SM-86 Source and Object Files . 1-1

Listing

F-1. Smnple Program APPF.A86 F-1

Section 1
Introduction to ASM-86

i. i A ssembler Operation

ASM-86 processes an 8086 assembly language source file in three passes and produces
duce output Ales, induding an 8086 machine language file in hcxadecunal format. This
object file can be in either Intel or Digital Research hex formats, which are described in
Appendix C. ASM-86 is shipped in two forms: an 8086 cross-assembler designed to run
Imdcr CP/M® on thc Intel 8080 or thc Zilog Z804 basedsystem, and an 8086 assembler
designed to run under Concurrent CP/M-86 on an Intel 8086 or 8088 based system.
ASM-86 typically produces three output file from one input file as shown in Figure 1-1;

UST FILE

SOURCE HEX FILE

SYMBOL FILE

filenam.A86 — contains source
filename, LST — contains listing
filename.H86 — contains assembled program in

filename.SYM — contains all user-definedsymbols
Figure 1-1. ASM-86 Source and Object Files

hexadecimal format

0 DIGITAL RESEARCH
1-1

Ccxsa>rrsat CP/M<6 UtiHties Gmde

Figure 'l-l also lists ASM-86 filetypes. ASM-86 accepts a source fil with any three­
letter extension, but if the filetype is omitted from the starting command, ASM-86 looks
for the spccified filename with the filetype .A86 in the directory. lf thc fil has a filetypc
other than .A86 or has no filctype at all, ASM-86 returns an error message.

Thc other filetypes listed in Figurc 1-1 identify ASM-86 output files. The .LST file
contains the assembly language listing with any error messages. The .H86 fil contains
the machine language program in either Digital Research or intel hcxadccimal fortnat.
Thc .SYM filc lists any user-defmcd symbols.

Start ASM-86 by entering a command of the following form:

ASM86 source filespec [$ parameters]

Section 1.2 explains the optional paratneters. Specify the source file using the follow­
ing form:

[d:] filenam [.type]

l.l Asscasbcr Operation

where

[d:j is an optional valid drive letter speci&jing the source file's location.
Not needed if source is on currtnt drive.

filename is a valid CP/M filename of 1 to 8 characters.

[.type] is an optional valid filetype of 1 to 3 characters (usually .A86).

Some examples of valid ASM-86 cotntnands are

A>ASW88 ar8>as88
A>ASPf88 Bl0588iA88 tFI AA HB P8 S8
A>ASff88 0r TEST

Note that if you try to assemble an empty source fil, ASM-86 generates empty list, hex,
and symbol files.

S DIGITAL RR$RARCH
1-2

Concurrent CP/M46 VnTiYiss Gmdc

OIIce invoked, ASM-86 responds with the message:

CF/M 8086 ASSEMBLER VER x.x

where x.x is the ASM-86 version number. ASM-86 then attempts to open the source
file. If the file does not exist on the designated drive or does not have the correct filetype
aa described above, the assembler displays the message:

NO FILE

If an invalid parameter is given in the optional parameter list, ASM-86 displays thc

1.1 Asscxnbcr Operation

message:

PAR4tfETER ERROR

Aftet opening the source, the assembler createa the output files. Usually these arc
placed on the current disk drive, but they can be redirected by optional parameters or
by a drive spcafication in thc source fifenamc. In thc latter case, ASM-86 directs thc
output fitcs to thc drive spccified in thc source filename.

During assembly, ASM-86 halts if an error condition, such as disk fuff orsymboltable
overflow, is detectccL When ASM-86 detects an error in the source file, it places an
error-message line in the listing fil in front of the line containing the error. Each error
message hss a number snd gives a brief explanation of the error. Appendix H fists
ASM-86 error messages. When the assembly iscomplete, ASM-86 displays the message:

END OP ASSEMBLY. NUMBER QP ERRORS: n

0 DIGITAL RESEARCH
1-3

CasIcynrcat CP/M-86 Utifitiss GaiCk1D Optional RIHnas Parsm«sera

1.2 Opt iomd Run-time Parameters

The dollar-sign character, Sy f(ags an optional string of run-timc parameters. A paraIn­
ctcr is a single letter followed by a single-lcttcr device name specification. Table 1-1 lists
the parameters.

Table 1-1. Run-time Parameter Summary

A

H p S

source file device
hcxoutput file device
list filc device
symbol file dcvicc
format of hcx output filc

Parameter To Specify VysMArgsmants

Ay By Cyirr P
A...P,X, Y,Z
A...P,Xy Y,Z
A...l',X, Y,Z
I,DF

AO parameters are optional and can be entered in the command line in any order.
Enter thc dollar sign only once at the beginning of the parameter string. Spaces can
separate parameters but are not required. No space is permitted, however, between a
parameter and its device name.

A device name must follow parameters A, H, P, and S. The devices are labe(ed

A,B,C,...PorX, Y,Z

Device names A through P, respectively, specify disk drives A through P. X specifie
the user console (CON:), Y specifies the linc printer (LST:), and Z suppresses output
(NUL:).

lf output is directed to the console it can be temporarily stopped at any time by
entering a CTRL-S. Restart the output by en~ a se cond CI A - S or any other
character.

5 DIGITAL RESEARCH

CancLurent CP/M-86 Viiities Cuide 12 Optional Ran-time Panuoeiers

The F parameter requires either an I or a D argument. When I is specified, ASM-86
produces an object file in Intel hex format. A D argument requests Digital Research hex
format. Appendix C details these formats. If the F parameter is not entered in the
command line, ASM-86 produces Digital Research hex format.

Table i-2. Run-tune Parameter Examples

ResultCommand Line

46MB6 10

ASMBB 10 5 PY SII

4BMBS 10i4BM 5 4D BZ

Assemble file IO.A86, and produce IO.H86,
IO.LST, and 10,5YM, all on the default drive.

Assemble file IO.ASM on device D, and produce
IO.LST and IO.H86. No symbol file.

Assemble file IO.A86, produce IO.H86, route
listing directly to printer, and output symbols on
console.

Produce Digital Research hex format.

Produce Intel hex format.

ABMB6 10 S FD

4SMSS 10 5 FI

1.3 Ending ASM-86

You can halt ASM-86 execution at any time by pressing any key on the console
Iteyboard. When a Itey is pressed, ASM-86 responds with the question:

USER SR E4K a DK I Y/N) '?

A Y response stops the assembly and returns to the operating system. An N response
continues the assembly.

End of Section I

R DlGrrAL ass EAR CH
1-5

Section 2
Elements of ASM-86 Assembly Language

2,1 A SM-86 Character Set

ASM-86 recognizes a subset of thc ASC11 character set. The valid characters are the
alphanumerics, special characters, and nonprinting characters shown below:

A B C D E F G H 1 J KL M N O P QR ST U V W X Y Z
a b c d e f g h i j k l mnopqr st u v w x y z
0 1 2 3 4 5 6 7 8 9

+ — '/ = () [] ; ' . I , : I 0

space, rab, carriage return, and line-feed

Lower-case letters are t reated as upper-case, except within s tr ings. Only
alphanumerics, special characters, and spaces can appear in a string.

2.2 Tokens and Separators

A token is the smallest meaningful unit of an ASM-86 source program, much as a
word is the smallest meaningful unit of an English composition. Adjacent tokens are
comtnonly separated by a blank character or space. Any sequence of spaces can appear
wherever a single space is allowed. ASM-86 recognizes horizontal tabs as separators and
interprets them as spaces. Tabs are expanded to spaces in the list 6Ie. The tab stops are
at each eighth colutnn.

2.3 Delimiters

Delimiters mark the end of a token and add special meaningto the instruction, as
opposed to separators, which merely mark the end of a token. When a delimiter is
present, separators need not be used. However, using separators after delimiters mates
your program easier to read.

The following table, Table Z-1, describes ASM-86 separators and delimiters. Some
delimiters are also operators and are explained in greater detail in Section Z.6.

0 DIGITAL RSSEARCH
2-1

Concurrent CP/at-86 Utlhries Guide

Table 2-1. Separators and Delinriters

Charrrcter

20H

09H

space

tab

carrrage return

line-feed

colon

dollar sign

"at" sign

underscore

exclamation
point

Use

separator

legal in source 6les,
expanded in list 61es

terminate source lines

legal after CR if within
source lines, interpreted
as a space

starts comment6eld

identi6es a labd,
used in segment override
speci6cation

forms variables from
numbers
notation for present value
of location pointer

arithmetic operator for
addition

arithmetic operator for
subtraction

arithmetic operator for
multiplication

arithmetic operator for
division

legal in identi6ers

legal in identl6ers

logically terminatesa
statement, aHowing
multiple statements on a
singlesource line

delimits string constantsapostrophe

• DIGrfhL RESEARCH'

2.4 ConstantsConcurrent CP/M-86 Utilities Gaide

2.4 C onstants

A constant is s value known at assembly nme that does not change while the assembled
program is executed. A constant can be either an integer or a character string.

2.4.1 Numeric Constants

A numeric constant is a 16-bit value in one af several bases. The base, called the radix
of the constant, is denoted by a trailmg radix indicator. The radix indicators are shown
in Table 2-2:

Table 2-2. Radix indicators for Constants

IrrCkcator

0
Q

CorIstaIIt Type B ase

binary
octal
octal
decimal
hexadecimal

2 8 8

10
16

ASM-86 assumes that any numeric constant not terminated with a radix indicator is
a derima) constant. Radix indicators can be upper- or lower-case.

A constant is thus a sequence of digits followed by an optional radix indicator, where
the digits are in. Ihe range for the radix. Binary constants must be composed of Os and
1s. Octal digits range from 0 to 7; decimal digits range from 0 to 9. Hexadecimal
constants contain decimal digits and the hexadecimal digits A (10D), B (11D), C (12D),
D (13D), E (14D), and F (1SD). Note that the)eadingchar aeter of a hexadecimal constant
must be a decimal digit, so that ASM-86 cannot confuse a hex constant with an identifier.
The following ate valid numeric constams:

1234 17340 1 10 05 i l l l 0000 1 1 1 100005
1234H OFFEH 3 3 7 70 1377 2 0
33770 O FE3H 1 2 34 d Of f f f h

RI DIGITAL RESEARCH
2-3

CancLureat CP/hl-E6 Utilities Gaide2A Constants

2.4.2 Character Strings

ASM-86 treats an ASCII character string delimited by apostrophes as a string constant.
All Instructions accept only one- or ~ arac ter constants as valid arguments. Instruc­
tioas treat a one-character string as e 8-bit number. A two-character string is treated as
a 16-bit number with the value of the second character in the lowmrder byte, and the
value of the 6rst character in the high-order byre.

We numeric value of a character is its ASCII code. ASM-86 does not translate case
in character strings, so it accepts both upper- and lower-case letters. Note that only
aiphanumerics, special characters, and spaces are allowed in strings.

A DS assembler directive is the only ASM-86 statement that can contain strings longer
than two characters. The string cannot exceed 255 bytes. Indude any apostrophe you
want printed in the string by entering it twice. ASM-86 interprets the two keystrokes " as
a angle apostrophe. Table 2-3 shows valid strings and how they appear after processing:

Table 2-3. String Constant Examples

Stringin Source Tent After Processing by ASM-86
I a I a

Ab'Cd' Ab ' ' C d '
I

'QNLY UPPER CASE'
'onl v Louise r oas • '

OHLY UPPERCASE
onlr l o v e r oa a •

2,5 JdrntiSera

ldenti6ers are character sequences that have special symbolic meaning ro the assem­
bler. All identi6ers in ASM-86 must obey the following rules:

1. The Erst character must be alphabetic (A,...Z, a,...z).
2. Any subsequent characters can be either alphabetic or a numeral (0,1,.....9).

ASM-86 ignores the special characters I and b u t they are still legal. For
example, ~ becomes ab.

3. Identifiers can be of any length up to the limit of the physical line.

8 DIGrfhL RR58ARCH

Caetcerreat CP/h4-$6 UuTitics Guide

Identificrs are of two types. The first type are keywords that the assembler recognizes
as having prcde6ned meanings. Thc second type are symbols defined by the user. The
fallowing are all valid idcnnfiers;

NOL IBT
WORD
AH
Thir d s t r e et
How sr e s ou t adav
v e T i eb I • gn ulab e rI 1 23OSe /890

2.5.1 Keywords

A kcyword is an idcntificr that has s prcdcfincd nrcaning to thc asscmblcr. Keywords
are reserved; the user csnnot de6ne an idcnti6cr identical to s kcyword. Pnr acomplete
list of keywords, scc Appendix D.

ASM-g6 rccogniscs fivc types of keywords: instructions, dir~vcs, operators, regis­
ters, and predcfincd numbers. 80S6 instruction mnemonic keywords and the actions
they initiate are dcfined in Section 4. Dircctivcs are discussed in Section 3. Section 2.6
defincs operators. Table 2-4 lists the ASM-86 keywords that identify 8086 registers.

Three keywords are predcfined numbers: BYTE, WORD, and DWORD. The values
of these numbers are 1, 2, and. 4, respectively. In addition, a type amibute is associated
with each of these numbers. Thc keyword's type amibntc is equal to the kcyword's
nutneric value.

4 ojarraL assama~
2-5

2.5 hLeatlgscs

Table 2-4. Register Keywords

AH
BH
CH
DH

AL
BL
CL
DL

AX
BX
CX
DX

BP
SP

SI
DI

CS
DS
SS
ES

1 byte
1 byte
1 byte
1 byte

1 byte
1 byte
1byt
1 byte

2 bytes
2 bytes
2 bytes
2 bytes

2byta
2 bytes

2 bytes
2 bytes

2 bytes
2 bytes
2 bytes
2 bytes

1008
1118
1018
1108

0008
011B
0018
0108

0008
011 B
0018
0108

1018
1008

1108
1118

018
118
108
008

Accumulator-High-Byte
Base-Register-High-Byte
Count Register-High-Byte
Data-Register-High-Byte

Accumulator-Low-Byte
Base-Register-Low Byte
Count Register-Low-Byte
Data-Register-Low-Bt|te

Accumulator gull word)
Base-Register (full word)
Count-Register (full word)
Data-Register (fuS word)

Base Pointer
Stack Pointer

Code-Segment Register
Data4tgment-Register
Stack-Segment-Register
Extra~cegment-Register

2.54 Symbols and Their Affributa

A symbol is a useWefmed identi6er that has attributes specifying the kind of informa­
tion the symbol represents. Symbols fall into three categories:

• variables
n labels
• numbers

5 narra. azssAaar
2-6

Concurrent CP/M-$6 UaTiYics Guide

Variables

Variables identify data stored at a particular location in memory. All variables have
the following three attributes:

• Segment tells which sqpnent was being assembled when the variable was defined.
• Offset tells how many bytes there are between the beginning of the sqpnent and

the location of this variable.
• Type tells how many bytes of data are maaipulated when this variable is referenced.

A scgmcnt can be a Code Segment, a Data Segment, a Stadt Segment,or an Extra
Segment, depending on its contents and the register that contains its starting address.
See Section 3.2. A segment can start at any address divisible by 16. ASM-86 uses this
boundary value as the segment portion of the variable's definition.

The offset of a v a r iable can be any number between OOH and OFPFFH
(6$535 decimal). h variable must have one of the following type attributes:

• BVEK
• WORD
• DWORD

BYTE specifies a one-byte variable; WORD, a two-byte variable, and DWORD, a
four-byte variable. The DB, DW, and DD directives, respectively, define variables as
these three types. Sce Section 3.2.2. For example, a variable is defined when it appears
as thc name for a storage directive:

VARIABLE Ob 0

A variable can also be define as the name for an EQU directive rdercncing another
label, as shown below:

VAR I45LE EQU ANOTHER VARIABLE

Labels

Labels identify locations in memory that contain instruction statements. They are
referenced with jumps or calls, All labels have two attributes: segment and offset.

5 tuQThL RssEARQP
2-7

2.5 Idsutifisrs Ccucunmt CP/M46 shies Gehk

Labe] segment and offset attributes are eMentially the carne as variable segment and
offset artributes. In general, a label is defined when it precedes an Instruction. A colon,
:, separates the label from rhe instrucdoa. For ecample,

L ABEL> ADD AX b X

A label can also appear ss the name for an EQU directive referencing another label.
For example,

LABEL EQU A NOTHER LABEL

Numbers

Numbers can also bc dcfined as symbols. A number symbol is treated ss though you

hsd explicitly mded thc number it represents, For cxsmplc,

Numb e r t ' i v • EAU 5
HOV AL >Nus>bc r f i u a

I IOV AL > 5

Section 2.6 dcscribcs operators and their effects on numbers and number symbols,

2.6 Operators

ASM-86 operators fall into the following categories: arithmeti logical, and relational
operators> segment override, variable manipulators, and creators. The following table
defines ASM-86 operators. In this table, a and b represent two elements of the expression.
Ihe validity column defines the type of operands thc operator can manipulate, using thc
OR bar character ~ to separate ahernatives.

• DIGS hL RasahRCH
2-8

Concurrent CP/M-86 Utifities Guide

Table 2 5. ASM-86 Operators

Resllt

a XOR b bit-by-bit logical EXCLUSIVE
ORofaandb

bit-by-bit logical OR of a
andb

bit-by-bit logical AND of a
andb

logical inverse of a: all Os
become 1s, 1s become Os

OR b

NOT a

a, b = number

a, b = number

a,b n umber

a = 16-bit number

aEQb

a LT b

aGTb

returns OFFFFH if a= b,
otherwise 0

returns OFFFFH if a < b,
otherwise 0

rcturnsOFFFFHifa< = b,
othcrwisc 0

returns OFFFFH if a) b,
otherwise 0

rcturnsOFFFFHifa) = b
otherwise 0

eeturmOFFFFHifa <> b,
otherwise 0

a,b = unsigned
number
a, b = unsigned
number

a,b = unsigned
number
a,b = unsigned
number

a,b = unsigned
number

a, b unsigned
number

aGEb

%DIGITAL aliSEARCH
2-9

Caacarreat CP/M-86 Ut9ities Chide

Table 2 5. (continued)

Rcsllr

a+b aridunetic sum of a and b

a'b

a/b

a SHR b

a MOD b

aSHL b

ofaandb

ari*mctic difference of
a and b

doesunsigned multiplication

docs unsigned division of a
and b

returns remainder of a/b

returns thc value which
results from shifting a to
left by an amount b

returns the value which
results from shifting a to
*e right by an amount b

a, b = number

s,b =number

a = variable,
label or number
b = number

a = variable,
label or number
b = number

a,b = number

a,b = number

a,b = number

a number
s number

gtves a

gives 0-a

Segment Override

overrides assembler's choice
of segment register.

(segreg> =

CS,DS,SS
or ES

<seg rag>:
<addr acp>

Concanent CP/M46 Utilities Gubk

Table 2-5. (continued)

Rcsrdt Validity

SEG a

LAST a

a PTR b

OFFSET a

LENGTH a

Variable Manipulators, Creators

creates a number whose value is the
segment value of the variable or
label a. 'Ihe variable or label
must be dedared in an absolute
segment (i.e. CSEG 1234H);
otherwise thc SEG operator is
undefined.

creates a number whose value
is the offset value of thc
variable or label a.

creates a number. If the vari­
able a is of type BYTE, WORD
or DWORD,thc valueofthenum­
bcr is 1,2, or4, respectively.

creates a number whose value
is the length attribute of the
variable a. The tengtb attribute
is the number of bytes associated
with thc variable.

if LENGTH a) 0, then LAST
a = LENGTH a-1 ; i fLENGTH
a = 0, then LAST a = 0.
creates virtual variable or label with
type of sand attributes of b.

a = labdI variable

a = label) variable

a = labd) variabl

a = label(variable

a = labelI variable

creates variable with an offset attri­
bute of a; segment attribute is
cu trent segnMnt.

creates label with offset
equal to current value of
location counter; segment
attribute is current segnznt.

.a

a = BYTE I
WORD, i DWORD
b = <addrexp>

a = number

no argument

8 DIGITAL RESEARCH™
2-11

Cosscsrsvnc CP/M~ Utihcics Guide2.6 Opcaacss

2.6.1 Operator Examples

Logical operators accept only numbers as operands. They perform the Boolean logic
operations AND, OR, XOR, and NOT. Par example,

M4SK EQU
S IGNBIT EQ U

MDV
MDV

OOFC
OOSO

0000 51BO
0002 5003

Relationaloperatorstreat all operands as unsigned numbers. The relational operators
are EQ (equal), LT (less than), LE (less than or equal), GT (greater chan), GR (greater
than or equal), and NE (nat equal). Each operator compares twa operands and returcN
all ones (OFFFFH) if the'apecified relacian is true, and all zeros if it is not. Por example:,

OFCH
80H
CL tM48K AND BIGNbIT
AL s NDT MASK

000 A
00f8

L IMIT 1 f QU 10
L IMIT 2 EQU 25

0004 5SFFFF
0007 580000

Addiaon and subccacuon operators compute the arithmecic sum encl dieercnce of two
operands. The first operand can be a variable, labd, or number, but the second operand
must be a number. When a number is added co a variable ar label, the result is s variable
or label, thc offset of which is the numeric value of thc second operand plus thc oHsec
of the firsc o perancL Subtraction from a variable ar label returns a variabl or label, thc
offset of which is that of first operand decrcmcntcd by the number specifie in the second
operand. Por example,

MDV
MDV

A X >LIMIT1 LT L I M I T 2
A X iLIMIT i GT L I M I T 2

CDUNT EQU
DISP1 EQU
FL4G 05

2
5
OFFH

0002
0005

0004 FF

I

MDV
MDV
MOV

AL iFLAG+1
CL ~FLAG+DISPi
5L ~DIBP1-COUNT

000b 2E400500
000F 2E840EOF00
0014 5303

• DIGrfAL assEARGH
2-12

Coacrurear CP/M-86 UriTiucs Guide

The multiplication and division operators ', /, MOD, SHL, and SHR accept only
numbers as operands. ' and/ treat all operands as unsigned numbers. For example,

0016 5E5500
0019 5310

0050
015 58A000

Unary operators accxpr borh signed and unsigned operators, as shown in the following
example:

BUFFERSIZE EQU 80

M OV BI > 2 5 6 / 3
MOV BL i64/4

MQV AX iBUFFERBIZE 4 2

MOV
MQV
MQV

CL i+35
AL <2­ -5
DL I -12

001E 5123
0020 B007
0022 52F4

When manipulating variables, the assembler decides which segment register to use.
You can override the assembler's choice by specifying a different register with the
segment ovemde operator. The syntax for the override operator is

(segment register>: (address expression>

where the (segment register) is CS, DS, SS, or ES. For example,

0024 3 6 8 5472 0 MQV AX i66i WORDBUFFEREBXI
0028 2 6 8 50E550 0 MOV CX~ESsARRAY

A variable manipulator creates a number equal to one attribute of its variable operand.
SEG extracts the variable's segment value; OFFSET, its offset value; TYPE, its type value
(I, 2, or 4); and LENGTH, the number of bytes associated with the variable. LAST
compares the variable's LENGTH with 0 and, if greater, then decrernents LENGTH by
one. If LENGTH equals 0, LAST leaves it unchanged. Variablemanipulatorsaccept
only variables as operators. Forexample,

ss DIGrrAL RESEARCH
2-13

Cm«c««nu««t CP/M46 UtiTities Guide2.6 Operators

1234
002D 000000000000
0033 010203040S

DSEG 1234H
DW 0«0«0
DB 1 «2 t3 «4 «5

WORDBUFFER
BUFFER

0038 580500
003B 880400
003E 580100
0041 B80200
OOAA b83412

The PTR operator creates a virtual variable or label that is valid only during the
execution of the instruction. It makes no changes to either of its operands. The temporary
symbol has the same Type attribute as the left operator and all other attributes of the
right operator as shown in the following example =

0044 C80705
0047 SA07
0049 FF04

The period operator creates a variable in the current data segment. The uew variable
has a segment attribute equal to the current data segment and an offset attribute equal
to its operand. The operand of the new variable must be a number. For example,

MOV
MOV
MOV
MOV
MOV

ÃDV
MOV
INC

AX «LENGTH BUFFER
AX «LAST BUFFER
AX «TYPE BUFFER
AX «TYPE WORDBUFFER
AX «SEC BUFFER

BYTE PTR L'BX1 «5
AL «BYTE PTR lBX I
WORD PTR LSI I

004B A10000
004E 288B1E0040

The dollar-sign operator, S, creates a label with an offset attribute equal to the current
value of the location counter. The labd's segment value is the same as the current
segment. This operator takes no operand. For example,

0053 ESFDFF
0058 EBFE
0058 ESFD2F

2.6.2 Operator Precedence

Expressions combine variables, labels, or nmnbers with operators. ASM-86 allows
several kinds of expressions. See Secuon 2.7. This section de6nes the order in which
operations are executed if more than one operator appears in an expression.

MDV AX« i0

MOV BX > ES . "• 4000H

AMP
JMPS
AMP a+3000H

S DIGIfAL RESEARCH
2-14

Qoacsurent CP/M-86 Utitities Guide

ASM-86 evaluates expressions left to rigbt, but operators with higher precedence are
evaluated before operators with lower precedence. When two operators have equal
precedence, the leftmost is evaluated first. Table 2-6 presents ASM-86 operators in order
of increasing precedence.

Parentheses can override rules of precedence. The part of an expression enclosed in
parentheses is evaluated first. If parentheses are nested, the innermost expressions are
evaluated first. Only fivc levels of nested parentheses are legal. For example,

2A Operators

15/3 + 1 9 / 9 i 5+ 2 a 7
15/ (3 + 19 / 9) = 15 / < 3 + 2> = 1 5 / 5 ~ 3

Order

Table 2-6. Precedence of Operations in ASM-86

Operators

XOR,OR

Operator Type

Logical

Logical

Logical

Relational

NOT

EQ, LT, LE, GT,
GE,NE

5 Addit i on/subtraction

6 M ulti p l ication/division

7 Unary

8 Segment override

9 Var ia b le manipulators,

+

', l, MOD, SHI
SHR

+­

<segment override>:

SEC, OFFSET, FI'R,

TYPE, LENGTH, LASTcreators

10 Paren theses/brackets

l l Period and Dollar ,,$

R DIGIThL RESEhRCH
2-15

Coucurreat CP/M<6 ViEies Guide

2.7 ExPf csstons

ASM-86 allows address, numeric, and bracketed expressions. An address expression
evaluates to a memory address and has three components:

• segment value
• offset value
• type

Both variables and labels are address expressions. An address expression is not a
number, but its components are numbers. Numbers can be combined with operators
such as FIR to make an address expression.

A numeric expression evaluates to a number. It does not contain any variables or
labels, only numbers and operands.

Bracketed expressions specify base- and index-addressing modes. Tbe base registers
are BX and BP, and the index registers are DI and SI. A bracketed expression can consist
of a base register, an index register, or both a base register and an index register. Use
the + operator between a base register and an index register to specify both base- and
index-register addressing. For example,

MQV 4X iK5X+DI3
NGV 4X r LBI3

2.8 Statements

Just as tokens in this assemblylanguage correspond to words in English, statements
are analogous to sentences. A statement tells ASM-86 what action to perform. Statements
can be instructions or directives. Instructions are translated by the assembler into 8086
machine language instructions. Direcuves are not translated into machine code, but
instead direct the assembler to perform certain clerical functions.

Terminate each assembly language statement with a carriage return, CR, and line-feed,
LF, or with an exclamation point, L ASM-86 treats these as an end-of-line. Multiple
assembly language staterneuts can be written on the same physical line if separated by
exclamation points.

• DlGITAL RESEARCH
2.-16

Cenamrent CP/M-86 Utihtiea Guide 2,g Sunements

The ASM-86 instruction set is defined in Section 4. The syntax for an instruction
statement is

[labeh] [prefix] mnemonic [operand(s)] [;comment]

where the field are define as

• label

+ prefix

• operands

• mnemonic

A symbol followed by: defines a label at the current value of the
location counter in the current segment. This ficld is optional.

Certain machine instructions such as LOCK and REP can prefix
other instructions. This field is optional.

A. symbol define as a rnachine instruction, either by the assembler
or by an EQU directive. This field is optional unless preceded by
a prefi instruction. If it is omitted, no operands can be present,
although, the other fields can appear. ASM-86 mnemonics are
defined in Section 4.

An instruction mnemonic can require other symbols to represent
operands to the instruction. Instructions can have zero, one, oz
twooperands.
Any semicolon appearing outside a character string begins a
conMnent. A comment ends with a carriage return. Comments
improve the rtadability of programs. This field is optionaL

m comment

2-17

Caacarrer» CP/M-86 UuTines Grade

hSM-86 directives are described in Section 3. The syntax for a directive statement is

[name] directive operand(s) [;comment]

where the fidds are dcfincd as

• name

• directive
• operands

Unldcc the label ficld of an instruction, Ihe name field of a dirertive
is never terminated with a colon. Directive names are legal only
for DB, DW, DD, RB, RS, RW, and EQU. For DB, DW, DD, and
RS, the name is optional; for EQU, it is required.
Onc of thc directive keywords define in Section 3.
Analogous to thc operands for instruction mnemonics. Some
directives, such as DB, DW, and DD, allow any operand; others
have special requirements.
Exactly as defined for instr»ainu statements.• comment

&uf of Section 2

a martlet. azsaAatst­
2-18

Section 3
Assembler Directives

3, j I n troduction

Directive statetnents cause ASM-86 to performhousekeeping functions, such as
assigning portions of code to logical sqpnents, requesting conditional assembly, defining
data items, and specifying listing file format. General syntax for directive statements
appears in Section 2.8.

ln the sections that follow, the specific syntax for each directive statement is given
under the heading and before the explanation. These syntax lines use special symbols
to represent possible arguments and other alternatives. Square br~ P, en c lose
optional arguments.

3.2, Segment Start Directives

At run-time, every 8086 memory reference must have a 16-bit segment base value and
a 16-bit offset value. Nese are combined to produce the 20-bit eHective address needed
by the CPU to physically address the location. The 16-bit segment base value or boundary
is contained in one of the segment registers CS, DS, SS, or ES. The oHset value gives the
offset of the memory reference from the segment boundary. A 16-byte physical segment
is the smallest relocatable unit of memory.

ASM-86 predefines four logical segments: the Code Segment, Data Segment, Stack
Segment, and Extra Segments, which are addressed respectively by the CS, DS, SS, and
KS registers, Future versions of ASM-86 will support additional segments, such as
multiple data or codesegments. All ASM-86 statements must be assigned to one of the
four currently supported segments so that they can be referenced by the CPU. A segment
directive statement, CSKG, DSEG, SSEG, or KSEG, specifies that the statemeuts following
it belong to a specific segment. The statements are then addressed by the corresponding
segment register. ASM-86 assigns statements to the specified segment until it encounters
another segment directive.

8 D<GrrhL RESEARCH™
3-1

Cccccarcvnt CP/M-86 UciTiciss Guide3.2 Scgcucct Scarc Directives

instruction statements must bc assigned to the Code Segment. Directive statements
can be assigned to any segment. ASM-86 uses these assignments to change from one
segment register to another. For example, wheu an instruction accesses a memory
variable, hSM-86 must know which segment contains the variable so it can generate a
segment-override prefix byte if necessary.

3.2,.1 The CSEG Directive

Syntax:

CSEG nu meric expression
CSEG
CSEG $

This directive tells the assembler that the following statements belong in thc Code
Segment. hll instruction statements must be assigned to the Code Segment. All directive
statements are legal in the Code Scgmcnt.

Use thc first form when the location of the sqpncnt is lcnown st assembly time; the
code generated is not rclocatsblc, Usc the second form when thc scgmcnt location is not
known at assembly time; th» code gee.crated is reiocatable. Use the third fotm to continue
the Code Segment after it has bccn interrupted by s DSRG, SSEG, or ESEG directive.
'Ae continuing Code Segment starts with the same attribute, such as location and
instruction pointer, as the previous Code Segment.

32.2 The DSEG Directive

Syntax:

DSEG nu m eric expression
DSRG
DSEG $

This direcuve speci6es that the following statements belong to the Data Segment. Ihc
Data Segment contains the data aHocation directives DB, DW, DD, and RS, but all other
directive statements are also legaL instruction statements are illegal in the Data Segment.

Use the first form when the location of the segment is known at assembly time; the
code generated is not relocatable. Use the second form when thc segment location is not
known at assembly time; the code generated is rclocatablc. Usc the third forcn to continue
the Data Segment after it has been interrupted by a CSEG, SSEG, or ESEG directive.
Me connnuing Data Segrncnt starts with the sane attributes as the previous Data
Segment.

• nx'rrtu. aamacH­
3-2

Concurrent CP/M-g6 Utiiuies Guide 3.2 Segment Start Directives

3.7..3 Thc SSEG Directive

Syntax:

SSEG n u m eric expression
SSEG
SSEG $

The SSEG directive indicates the beginning of source lines for the Stack Segment. Usc
the Stack Segment for all stack operations. All directive statements are legal in tbe Stack
Segment, but instruction statements arc iUegaL

Usc the 6rst form when the location of thc segment is known at assembly time; the
code generated is not relocatable. Use the second form when tbe segment location is not
known at assembly time; the code generated is rclocatable. Use the third form to continue
the Stack Segment after it has been interrupted by a CSEG, DSEG, or ESEG direcnvc.
The continuing Stack Segment starts with thc same attributes as the previous Stack
Segment.

3.2A Tbc ESEG Directive

Syntax:

ESEG nu m eric expression
ESEG
ESEG $

This directive initiates the Extra Segment. Instruaion statcmencs are not legal in this
segment, but aU directive statemems are legal.

Use the Erst form when the location of the segment is known at assembly time; the
code generated is noc relocatablc. Use the second form when the segment location is not
known ac assembly time; the code generated is relocatable. Use the third form to continue
the Extra Segment after ic has been interrupted by a DSEG, SSEC, or CSEG directive.
The continuing Extra Segment starts with the same attributes as the previous Excra
Segment.

8 DlGrl'hL RESEARCH
3-3

Ccsearrsat CP/M-86 Uuhties Guide3.3 The ORG Oirscuvc

3.3 'Axe ORG Directive

Syntax:

QRG nume r ic expression

The ORG directive sets the of&et of the location counter in the current segment to
the value specified in the numeric expression. Defme all elements of the expression before
the ORG directive because forvvard references can be ambiguous.

1n most segments, an ORG directive is unnecessary. 1f no ORG is included before the
Rrst instruction or data byte in a segment, assembly begins at location zero relative to
the beginning of the segment. h mynent can have any nutnber of QRG directives.

3A The IF sad ENDIF Directives

Syntax:

numeric expression
source line 1
source line 2

source line n
ENDIF

The IF and ENDIF directives allow a group of source lines to be included or excluded
from the assembly. Use conditional directives to assemble several different versions of
a sin.gle source program.

When the assembler iinds an IF directive, it evaluates thc numeric expression following
the IF Iteyword. If the expression cvaluates to a nonzcro value, then source line 1 through.
source linc n are assembled. If the expression evaluates to zero, the lines are not
assembled, but are listed unless a NOIFUST directive is active. All elements in thc
numeric expression must be dcfmed before they appear in the IF directive. IF directives
can be nested to a maximum depth of Bve levels.

• DLGIThL aESEIBKH

3.5 The INCLUDE DirectiveCaiicaxrcat CP/M-86 UtiTitics Gmde

3.$ The 1NCLUDE Directive

Syntax:

INCLUDE f iic spec

This directive indudes another ASM-86 fil in the source text For example,

INCLUDE EQU4LSe466

Use INCLUDE when the source program resides in several different iles. INCLUDE
directives cannot be nested; a source file csHed by an INCLUDE directive cannot contam
another INCLUDE statement. If filespec does not contaiu a filetype, the filetype is
assumed to be .A86. If the file specification does not�indud a drive specificatio, ASM-86
assumes that the file resides on the drive containmg the source file.

3.6 The END Directive

Syntax:

An END directive marks the eod of a source file. Any subsequent lines are ignored by
the assembler. END is opdonal. If not present, ASM-86 processes the source until it
finds an cnd-of-file character (1AH).

3.7 The EQU Directive

Syntax:

symbol EQU numeric expression
symbol EQU address expression
symbol EQU rcgistcr
symbol EQU instruction mnemonic

The EQU, equate, directive assigns values and attributes to user-dcfincdsymbols. The
required symbol name cannot terminate with a colon. Thc sytnbnl cannot bc tcdcfiucd
by a subsequent EQU or ariothcr directive. Any eleinciits used in nuineric or address
expressions must bc dcfincd before the EQU dirccnve appears.

8 txGB AL RESEARCH
3-5

1

Cmecarrent CP/M-86 Unlines Guide3.7 The RQU Dhective

The first form assigns a numeric value to thesymbol. '1%e second assigns a memory

address. The third form assigns a new name to an 8086 register. The fourth form defines
a new instruction (sub)set. The following are examples of these four forms:

0005
0033
000 I.

F IVE EQU
NEXT EQU
COUNTER ECIU
MOVVV EQU

2«'2+ I
BUFFER
CX
MOV

005D 8BC3 M QVVV 4X ~ B X

3,8 The DS Directive

Syntax:

[sytnbol] DB numeric expression[numeric expression...]
[symbol] DB string mnstant[,string constant...]

The DB directive defines initiatised storage areas in byte format. Numeric expressions
are evaluated to 8-bit values and sequentially placed iu the hex autput 6le. String
constants are placed in the output file according to the rules defined in Section 2.4.2.
A DB directive is the only ASM-86 statement that accepts a string constant longer than
two bytes. There is no translation fram lower- to upper-case within strings. Multiple
expressions or constants, separated by commas, can be added to the definiYion, but
caunot exceed the physical line length.

Use an optional symbol to reference the defined data area throughout th» program.
The symbol has four attributes= the segment and offset attributes determine the symbol's
memory reference, the type attribute specifies single bytes, and the length attribute tens
the number of bytes (allocation units) reserved.

• DlGfThL sssshRCK
3-6

S.S 'ITie DB DirexiwConeerient CP/M-86 Utilities Gaide

The following stateineiits show DB directives with syinbols:

005F 43502F4D2073
79737485DOO

TEXT 'CP/M svstem' ~0

0065 E i
006C 0102030405

AA
X

D5
D5

'a ' + BO H
1 ~2 ~3 e4 i5

I

MDV CX sLENGTH TEXT0071 580COO

3.9 Th e DW Directive

Syntax:

[symbol] DW numeric expression[,numeric expression...]
[symbol] DW string constant[,string constant...]

'Ihe DW directive initialiaes two-byte words of storage. String constants longer than
two characters are illegal. O*erwise, DW uses the same procedure as DB to initialize
storage. Tbe following are examples of DW statements:

0074 0000 CNTR Dii 0
0076 6 3 C166C16SC1 JMPTA5 Di i SU 5 R i) S U5R2sSV5R3
007C 010002000300 DW 1 t2 >3> 4r 5 's8

040005000800

e Dtcrrhr. azszhacH
3-7

3.10 The DD Directive Coaeurrenc CP/M-86 UciHcies Cni*

3.10 The DD Directive

Syntax:

[SymbOl] DD aumeriC CXprCSSinn[,addICSS CxprCSSiOn...]

&e DD directive initiaiiscs four bytes of storage. The offset attribute of the address
expression is stored in the two lower bytes; thc segment attribute is stored in thc two
upper bytes. Othcrwisc, DD foHows the same procedure as DB. For example,

1234 CSEC 1234H

0000 BCC134128FCi L ONG J NPTAB DD RDUTi~AOUT2
3412

0008 72C1341275Ci DD ADUT3rROUT4
3412

3.11 The RS Xhrective

S~ tax:

[symbol] RS numeric expression

The RS directive allocates storage in memory but does not initialize it. The numeric
expression. gives the aumber of bytes to be reserved. An RS statement does noc give a
byte attribute to che optional symboL For example,

5UF AS 800010
0060
4060

RS 4000H
RS

If an RS statemeat is the last statement in a segment, you must follow it with a DB
scatemenc in order for GENCMD to aHocate che memory space.

• DIGITAL assEAXCH
3-R

3.12 The RB DirecnveConcarreat CP/M-86 Utilities Guide

3.12 The RB Directive

Syntax:

[symbol] RB numeric expression

The RB direcnve allocates byte storage in memory without any initialization.'Ihis
directive is identical to the RS directive except that it gives the byte attribute.

3.13 The RW Directive

Syntax:

[symbol] RW numeric expression

The RW directive allocates two-byte word storage in memory but does not initialize
it. Ae numeric expression gives the number of words to be reserved. For example,

RW
RW
RW

128
4000H
1

4061
4181
C181

3.14 The Tn'LE Directive

Syntax:

TITLE string constant

ASM-86 prints the string constant debned by a TITLE directive statement at the top
of each printout page in the listing file. The title character string should not exceed 30
characters. Forexample,
TITLE 'CP/M mani to r '

If the title is too long, the ASM-86 page number overwrites the title.

8 DlGITAL RESEARCH
3-9

3.1S Wc PAGESIZR Directive Cancttrrsat CP/M-86 Vehtiss Gtndc

3.15 ihe PAGESIZE Directive

Syntax.

PAGESIZE num eric expression

The PAGESIZE directive defines the number of lines to be included on each printout
page. Thc default page size is 66.

3.16 The PAGEWIDTH Directive

Syntax:

PAGEWIDTH numeric expression

The PAGE%IDTH directive dcfincs the number of columns printed across the page
when the listing file is output. Tbc default page width is 120, unless thc listing is routed
directly to the terminal, when the default page width is 78.

3.17 The EJECT Directive

Syntax:

EJECT

The EJECT directive performs a page eject during printout. The EJECI directive itself
is printed on the first line of the next page,

3.18 The SIMFORM Directive

Syntax:

SIMFORM

The SIMFORM direcrive replaces a form-feed (FF) character in the print file with the
correct number of linc-feeds (LF). Use this directive when printing out on a printer unable
to interpret the form-feed character.

8 DlorrAL atL5RIRCH
3-10

3,19 The NOUST and LKf DirectivesCoacarrcnt CP/M-86 UIilitics Guide

3,19 T he NOLEST and LEST Directives

Syntax:

NOLIST
LIST

The HOLIST directive blocks the printout of the following lines. Restart the listing
with a LIST directive.

3.20 The KFUST and NOEFLEST Directives

Syntax:

IF LIST
NOIFLIST

The NOIFLIST directive suppresses the printout of thc contents of IF-ENDIF blocks
that are not assembled. The IFLIST directive resumes printout of IF-ENDIF blocks.

Endof Section 3

II DIGffAL RESEARCH™
3-11

Section 4
The ASM-86 Instruction Set

4.1 Intmdnction

'Ike ASM-86 instruction set indudes all 80$6 niachine instructions. 'IBs section
bricfiy describes ASM-86 instructions; these descriptions are organized into functional
groups. Thc general syntax for instruction statements is given in Section 2.8.

The following sections define the specifi syntax and required operand types for each
insttuaion, without reference to labels or comments. 'Itic instruction definitions arc
presented in tables for easy reference. For a more detailed description of each instruction,
sce Intel's MCS-86 Assembly Luegsagc Reference Meal. For descriptions of the
instrucnon bit patterns and operations, sec Intel's MCS-S6 Ussr's Manful.

The instructionWfinition tables present ASM-86 instruction statements as combina­
tions of mnemonics and operands. A mnemonic is a symbolic representation for an
inatrucnon; its operands arc its rcquircd panunetcrs. Instructions can take zero, one, or
two operands. When two operands are specified, the left operand is the instruction's
destination operand, and the two operands arc separated by a couuua.

Gc instruction-definitio tables organize ASM-86 instructions into functional groups.
In each table, the instructions arc listed alphabetically. Table 4-1 shows thc symbols
used iu the instructionWfinition tables to define operand types.

Table 4-1. Operand Type Symbols

Operand TypeSymbol

numb

numb8

any numeric expression

any numeric cxprcssion which evaluates to an 8-bit number

accumulator register, AX or AL

any general purpose register, not segment register

a 16-bit general purpose register, not segment register

any segment register: CS, DS, SS, or ES

rcg

reg16

• D%7rAL MSEARCfP
4-1

Caaearrcau CP/M~ UaTiYiaa Guide4.1 tatnxhcuon

Tabb 4-1. (continued)

Opened 7}rPtSymbol

mem

sunpmem

any ADDRESS exp~ w ith o r w i thout base- aud/or index­
addressing moder, such aa

variable
variable+ 3
variable[bx]
variable[SI]
variable [BX+ SI]
[SX]
[BP+ Dl]

any ADDRESS expression WZMOUT base- and index-addressing
modes, such aa

variable
variable+ 4

any expression symbolized by teg or mem

any expression symbolized by uzm)reg, but must be 16 bits

any ADDRESS expression that evaluatea to a label

any label that is within ~ 128 bytes distance from the iustriiction

mam~rag

memlregl6

label

lab8

The 8086 CPU has nine single-bit Flag registers that re6ect the state of the CPU. The
user cannot access these registers directly, but the user can test them to determine the
effects of an executed instruction upon an operand or register. The effects of instrucuons
on Hag registers are also described in the inatrucuon~ tion tablea, using*a symbols
shown in Table 4-2 to represent the nine Flag registers.

Concurrent CP/M-86 UtiliYies Guide

Table 4-2. Flag Register Symbols

Symbol Mcaeircg

AF
CF
DF
IF

OF
PF
SF
TF
ZF

Auxiliary-Carry-Flag
Carry-Flag
Direction-Hag
Interrupt-Kna hie-Hsg
Overf(ow-Flag
Parity-Flag
Sign-Hag
Trap-Hag
Zero-Hag

4.2 Da ta Transfer Instmctiotts

'&etc are four classes of data transfer operations: general purpose, accumulator
specific, address-object, and flag. Only SAHF and POPF affect Hag settings. Note in
Table4-3 that if ace= AL, abyteis transferred,but if acc= AX, a wotdis transferred.

Table 4-3. Data Trausfer htstrucnons

Result

IN

LDS

a~ X

reg16,mern

acc,numbgjnumb16 Tran sfer data from input port by numb8 or

Transfer data from input port given by DX
register (0-OFFFFH) to accumulato.

Transfer flags to the AH register.

Transfer the segment part of the memory
address (DWORD variable) to the DS segroent
register; transfer the offset part to a general
purpose 16-bit register.

Transfer the offset of the memory address to a
(16-bit) register.

Transfer the segment part of the memory
address to the ES segment register; transfer the
offset part to a 16-bit general purpose register.

numb16 (0-255) to accumulator.

regl6,mern

reg16,mern

8 DIGrrAL RESEARCH

4& Data Transfer Iaatrnctiaas Concurrent CP/M~ Uti8aes Guide

Table 4-3. (contmued)

Result

regpnem(reg
mern(regpeg

memIreg>umb

segregpnem~16

mern~ rcg16,scgreg

numb gjnumb16,acc

MOV

MOV

MOV

MOV

OUT

XLAT

XCHG

PUSH mem lreg16

PUSH segr cg

OUT DX,ac c

POP memjr eg16

POP s egreg

regpnem(reg

Move memory or register to register.

M ove register to memory or register.

Move immediate data to memory or register.

Move memory or register to segment register.

Move segment register to memory or register.

Transfer data from accumulator to output port
(0-255) given by numb8 or numb16.

T~ data f rom accumulator to output port
(0-OPFPPH) given by DX register.

Move top stack element to me|tuory or register.

Move top stack clement to segment register.
Note that CS segment register is not allowed.

Transfer top stack element to Rags.

Move memory or register to top stack a)ament.

Move segment register to top stack element.

Transfer Rags to top stack element.

Transfer the AHregis' to Rags.

Exchange register and memory or register.

Exchange memory or register snd register.

Perform table lookup translation, table given
by mern)reg, which is always BX. Replaces

mern/reg

AL with AL offset from BX.

8 D jGB'AL RESEARCH

Concurrent CP/M-86 Utihtica Guide 4.3 hrirhruetic, Logical, aad Shift InstrucrMars

4.3 A r i thmetic, Logical, and Shift Instrttctiorts

1lre 8086 CPU performs the four basic mathematical operations in several different
ways. It supports both 8-and 16-bit operations and also signed and unsigned arithmetic.

Six of the nine flag bits are set or cleared by most arithmetic operations to reflect the
result of the operation. Table 4-4 summarizes rhe effects of arithmetic instructions on
Hag bits. Table 4-5 defines arithmetic instructions. Table 4-6 defines logical and shift
instructions

Table M. E f f ects of Arithmetic Instructions on Bags

RarrdtFlag Bir

CF

SF

set if the operation resulted in a carry out of (from addition) or a
borrow into (from subtraction) the high-order bit of the result.
Otherwise, CF is cleared.

set if the operation resulted in a carry out of (from addition) or a
borrow into (from subtraction) the low-order four bits of the result.
Otherwise, AF is deared.

set if the result of the operation is zero. Otherwise, ZF is deared.

set if the result is negative.

sct if the rnodulo 2 sum of the low-order eight bits of the result of
the operation. is 0 (even parity). Otherwise, PF is deared (odd
parity),

set if the operation resulted in ao overHow; the size of the result
exceeded the capacity of its destmation.

OF

+ DIGrrAL RESEARCH
4-5

Concert»nt CP/M46 UtUincs Gmdc43 Aridunetic, Logical) and SItift Instrucnons

Table 4-5. Arithmetic Instructions

Res>dr

ADC rcgpn em)reg
' ADC memjreg)reg

ADC m»m jamb

ADD regpn em~reg

' ADD memjreg,reg

ADD mern j rhumb

Adjust unpacked BCD (ASCII) for addition;
adjusts AL.

Adjust unpacked BCD (ASCII) for division;
adjusts AL

Adjust unpacked BCD (AS(Z) for multiplica­
tion; adjusts AX.

Adjust unpacked BCD (ASCII) subtraction;
adjusts AL

Add (with carry) memory or register to register.

Add (with carry) register to memory or register.,

Add (with carry) immediate data to m»rnory or '
r»gu)ter.

Add memory or register to register.

Add register to memory or register.

Add itnmediat» data to memory or register.

Convert byte in AL to word in AH by signCB%'

CMP reg gae m]reg

CMP mern jreg,reg

CMP mern~ reg,numb

extension.

Convert word in AX to double word in DX/AX
by sign exterNion.

Compare register with memory or register.

Comparememory or register with register.

Compare data constant with memory o r
register.

Decimal adjust for addition; adjusts Al

Decimaladjust for subtraction; adjusts AL.DAS

• DIGITAL RESEhRCH
4-6

Corrcurreat CP/M-S6 UtiliYies Grridc 4.3 Arithmetic, Lagicrd, and Shift Instructions

Table 4-5. (continued)

Result
DEC mern(reg

INC mern(reg

DIV memlMg

SBB

MUL mern~ reg

1DIV mer n(reg

I MUL mer n)reg

N EG mern [reg

SBB reg,rnemlreg

mern)reg,reg

mern(regnumb

SUB reg, mern(reg

SUB memlregpeg

SUB mem~relhnumb

Subtract 1 from memory or register.

Add 1 to memory or register.

Divide (unsigned) accrrrnulator (AX or AL) by
memory or register. If byte resu)ts, AL = quo­
tient, AH = remainder. If word results,
AX = quotient, DX = remainder.

Divide (signed) accumulator (AX or AL) by
memory or register. Quotient snd remainder
stored ss in DIV.

Multiply (signed) memory or register by
accumulator (AX or AL). If byte, results in AH,
AL If word, results in DX, AX

Multiply (unsigned) memory ar register by
accumulator (AX or AL). Results stored as
in IMUL.

Two's complement memory or register.
Subtract (with borrow) memory or register
from register.

Subtract (with barrow) register from memory
or register.

Subtract (with barrow> immediate data from
memory or register.

Subtract rnernory or register fram register.

Subtract register from memory or register.

Subtract data constant f ronr memory or
register.

SBB

0 nmrrsL rrzsssrrcrr­
47

Gxncaxxwxt CP/M-86 UnT ties GInde4.3 Axi~ Logi cal, snd Shift Iasxructlans

Table 46. Logical and Shift Instructions

Rexxdx

OR

AND ~e m }reg

AND mer n }reg,rag

A ND mer n}reg,numb

N OT mer n}reg

OR re~em}reg

mern}~

mern}crumb

RCL mer n}reg,1

RCL mer n}xeg,CL

RCR mern}reg,1

RCR mern} reg,CL

ROL mern}reg,1

ROL mern}reg,CL

ROR mern}reg,1

ROR mern}reg,CL

SAL mex n }xeg,1

Perform bitwise logical AND of a register and
memoxy or register.

Perform bitwise logical AND of memory or
register and rqpmx.

Perfoxm bitwise logical AND of memory or
register aud data constant,

Form one's complement of memory or register.

Perform bitwise logical OR of a register and
memory or register.

Perform bitwise logical OR of memory or regis­
ter and register.

Perform bitwise logical OR of memory mgiam
and data constant.

Rotate memory or register 1 bit left through
carry flag.

Rotate memory or register ldt through carry
flag; number of bits given by CL register.

Rotate memory or register 1 bit right through
carry flag.

Rotate memoxy or xegister right throIxgh carry
flag; numbex of bits given by CL xeglster.

Rotate mexnory or register 1 bit left.

Rotate memory or register left; number of bits
given by CL register.

Rotate xuemory or register 1 bit right.

Rotate memory ox register right; number of
bits given by CL register.

Sbift memory or register 1 bit left; shift in
low-order aero bits.

OR

• DIGITAL asxHhRCH

Concurrent CP/M-86 Utilities Guide 4.3 Aridmeuc, Logical, and Shift Iustrucuons

Table 4-6. (continued)

Rassdt

SAL

Syntax

mem~reg,CL

SAR mern)reg,1

SHL mem~ reg,1

TEST reg,mern(reg

T EST me r n)reg,reg

SAR mem~ reg,CL

SHL memireg,CL

SHR memjr eg,1

SHR mem I reg,CL

T EST mern (reg,numb

Shift memory or register left; number of bits
given by CL register; shift in low-order zero
bits.

Shift memory or register 1 bit r ight; shift
in high-order bits equal to the original high­
order bit.

Shift memory or register right; number of bits
given by CL register; shift in high-order bits
equal to the original high-order bit.

Shift memory or register 1 bit left; shift in
low-order zero bits. Note that SHL is a different
mnemonic for SAL

Shift memory or register left; number of bits
given by CL register; shift in low-order zero
bits. Note that SHL is a different mnemonic
for SAL.

Shift memory or register 1 bit right; shift in
high-order zero bits.

Shift memory or register right; number of bits
given by CL register; shift in high-order zero
bits.

Perform bitwise logical AND of a register and
memory or register; set condition flags, but do
not change destination.

Perform bitwise logical AND of memory regis­
ter and register; set condition Gags, but do not
change destinauon.

Perform bitwise logical AND of memory regis­
ter and data constant; set condition flags, but
do not change destination.

Perform bitwise logical exdusive OR of a regis­
ter and memory or register.

XOR reg,m ern(reg

ll DIGrrAL RESEARCH
4-9

Concurrent CP/M-$6 Ut(Htics Gmric43 Ari ~ Logic sl, and Shift iastnasians

Table ~. (c ontinu«d)

Remit

XOR rnem(reg,reg

XOR mer n(reg,numb

Perform bitwise logical exclusive OR of mem­
ory register snd register.

Perform bitwise logical exclusive OR of mem­
ory register and data constant.

4.4 Str ing Instrnctions

String instructxms take zero, one, or two operands. The operands specify only thc
'operand type, deteruuning whether the operation is on bytes or words. If there sr« two
operands, the source operand is addressed by the SI register and the desunation operand
is addressed by the DI register. The Dl and Sl registers are always used for addressing.
Note that for string operations, destination operands addressed by Dl must always reside
in the Extra Segment (ES).

Table 4-7. String Instructions

CMPS mer n)reg,mern~ rcg Subtract source from destination; ~ Hags,

LODSB

CMPSW

LODS mern(rcg

but do not return result.

An alternate mnemonic for CMPS, which
assumes a byte operand.

An alt«mate mnemonic for CMPS, which
assumes a word operand.

Transfer a byte or word from the source
operand to the accumulator.

An alt«mate mnemonic for LODS, which
assumes a byte operan.d.

An alternate mnemonic for LODS, which
assumes a word operand.

LODS%'

Concurrent GP/M-86 Utilities Guide 4.4 Scring hscmcnous

Table 4-1. (continued)

Result

SCASB

STOSB

MOVSS

MOVSW

SCAS mec n~reg

SCASW

S TOS mer n(re

tion.
MOVS mern~res,mem~re8 M ove 1 byte (or word) from source co destina­

An alternate mnecnonic for MOVS, which
assumes a byte operand.

An alternate mnemonic for MOVS, which
assumes a word operand.

Subtract destination operand from accumu­
lator (AX or AL); aHect Bags, but do not return
result.

hn alternate mnemonic for SCAS, which
assumes a byte operand.

An alternate mnemonic for SCAS, which
assumes a word operand,

Transfer a byte or word from accumulator to
th» destination operand.

An alternate mnecnonic for STOS which
assumes a byte operand.

An ahecnate mnemonic for STOS which
assumes a word operand.

STOSW

ss OPG11AL RESEhRCH

4-11

Caacarrsat CP/M-86 Unliies Gaide4A Smug Inwructions

Table 4-8 de6nes preflxes for string instructions. A pteflx repeats its string instruction
the ruunber of times contained in the CX register, which is decremented by 1 for each
iteration. Preflx mnemonics precede the string instruction mneruonic in the statement line.

Table 4-8. Pre6x Instructions

Result
Repeat until CX regtster ts zero.

Equal to RKPZ.

Equal to RKPNZ.

Repeat until CX register is zero and zero flag (ZF) is zero.

Repeat until CX register is zne aud zero flag (ZF) is not zero.

4.5 G m trol Transfer jiMtnactioas

There are four classes of control transfer iustrucnonsi

n calls, jumps, and returns
a conditional jumps
a iterational control
5 mterfupls

AH control ~ inst r uctions cause program execution to continue at some new
location in metnory, possibly in a new code segment. The transfer can be absolute or it
csn depend upon a certain condition. Table 4-9 da6nes control transfer instructions. In
the deflnitions of conditional jumps, above and below refer to the relationship between
unsigned values. Greater than and less than refer to the relationship hetman signed
values.

• DlorIAL @SEARCH
4-12

Cosrcurreut CP/M-86 UtiTities Chide 4.5 Ccmtrol Transfer tustructiuns

Table 4-9. Control Transfer Instrucuoas

Rcsslr

CALL l a bel

IRET

C ALLF labe l

CALLF tne m

CALL rne m(reg16

labs

lab8

labs

lab8

numbg

three levels of stack.

Push the offset address af the next instruction
on the stack; jump to the target label.

Push the offset address af the next instruction
on the stack; jump to location indicated by
contents of specifled memory or register.

Push CS segment register on the stack, push the
offset address of the next instrucaon on the
stack (after CS), aad jump to the target label.

Push CS register on the stack, push the offset
address of the next instruction on tbe stack,
and jump to location indicated by contents of
specified double word in mematy,

Push the Gag registers (as in PUSHF), dear TF
and IF flags, and transfer control with an in­
direct call through any ane of the 256 interrupt­
vector elements. Uses three levels af stack.

If OF (the overflow flag) is set, push the flag
registers (as in PVSHF), dear TF and IF flags,
and transfer control with an indirect call
through interrupt-vector element 4 (location
10H). If the OF flag is cleared, uo operation
takes place.

Transfer control to the return address saved by
a previous interrupt operation aad restore
saved flag registers, as we(I as CS and IP. Pops

Jump if not belaw or equal or above ((CF or
ZF) =0).

Jump if notbelow or abave or equal (CF= 0).

Jurnp ifbelowornataboveorequal (CF = 1).

Jump if below or equal or not above ((CF or
ZF) =1).

JAR

JB

JBR

e DtGrrAL azssaaus"
4-13

4.5 Caatrd Transfer lnatnsc6ons Cancans CP/hl46 UnTrliss Gait

Table 4-9. (continswd)

JC l b8

JCXZ lab 8

JE lab 8

JG lab g

J GE lab 8

labg

Same as JB.

Jump to target label if CX register is zero.

Jump if equal or zero (ZF ~ 1).

Jump if not less or equal or greater (((SF xor
OF) or ZFI =0) •

Jump if not less or greater or equal ((SF xor
OF) =0).

Jump if less or not greater or equal ((SF xor
OP) 1).

jump if less or equal or not greater (((SF xor
OF) or ZF) 1).

Jump eo the uLrget labeL

Jump to location indicated by contents of
speci&ed memory or register.

Jump to the target label, possibly in another
code segment.

Jump to the target labd within ~ 128 bytes
fmm instruction.

Same as JBE.

Same as JB.

Same as JAE.

Same as JA.

Same as JNB.

Jump if not equal or not zero (ZF=0).

Same as JLE.

J MP labe l

JMP meml regl6

JMPF l a bel

JMPS lab 8

JNA labS

JNAE lab8

J NB lab 8

JNBE lab 8

J NC lab 8

JNE lab8

J NG lab 8

0 DIGrrhl REKRALCH
4-14

Cmcunent CP/M46 Utihles Gmde 4.S ~ Tran dsr Inswaciam

Table 4-9. (continued)

Same as JL

Same as JGE.

Same as JG.

Jutnp if not overf)ow (OF = 0).
Jump if not parity or parity odd.

Jump if not sign.

Same as JNE.

Jump if overllow (OF = 1).

Jump if parity or parity even (PF= 1).

JNGE labS

JNL labg

JNLE lab 8

J NO lab 8

JNP lab8

J NS lab g

JNZ lab8

JO lab 8

JP labg

J PE lab 8

J PO lab g

JS lab g

JZ lab g

LOOP lab 8

LOOPNK la bg

L OOPE lab g

Same as JNF.

Jump if sign (SF 1).

Same as JE.

Decrement CX register by one; jump to target
label if CX is not zero.

Decrement CX register by one, jump to target
label if CX is not zero and the ZF flag is set.
Loop while zero or loop while aquak

Decrement CX register by one; jump to target
label if CX is not zero and ZF flag is deared.
Loop while not zero or loop while not ~uah

Same as LOOPNE.

Same as LOOPE.

Return to the return address pushed by a pre­
vious CALL instruction; increment stack
pointer by 2.

LOOPNZ lab 8

L OOPZ lab S

Q D<GIThL RESEARCH
4-<S

Caaacurnnt CP/M~ UaTnies (Idee4.5 Caetrol Traasfer lustrecuaas

Table 4-9. (continued)

h s I t

Rerum eo rhe address pushed by a previous
CALL; increment stack pointer by 2+ numb.

Return to the address pushed by a previous
CALLF instruction; increment stack pointer
by 4.

Return to thc address pushed by a previous
CALLF instruction; increment stack pointer by
4+ numb.

RETF numb

4.6 Processor Control Instructions

Processor control instructions manipulate the Aag registers. Moreover, some of these
instructions synchronize the 8086 CPU with external hardware.

Table 4-10. Processor Control Instructions

Resglt

CLC

CLD

ESC numbS ,mcm~rcg

Clear CF Aag.

Clear DF Aag, causing string instructions to
auto"increment the operand pohltcrs.

Char IF Aag, disabling maskable ~
Illtcrrupts.

Complement CF Aag.

Do no operation other than compute the caco
tive address and place it on thc address bus
(ESC is used by the 8087 numeric coprocessor).
nurnbg must bc in the range 0, 63.

8086 processor enters halt state until an inter­
rupt is recognized.

HLT

• DJGlrhl. sssshaCH­
4-16

46 PIOCesSor Coaxal Inetruc6oascanisnrcut CP/M-86 UuTitics Guik

TaMc 4-i0. (contuiucd)

LOCK PRKHX instruction; cause thc 8086 procaumr
to assert thc buslock signal for thc duration of
thc operation caused by the following instruc­
tion. Thc LOCK prefix instruction can precede
any other instruction. Buslock prevents co­
processors from gaining the bus; this is useful
for shared-resource SeinaphereS.

Nooperationis pcrformcd.

Set CF Sag.

Sct DF Rag, causing string instructions to auto­
decrement the operand pointers.

Set IF f lag, enabling maskablc extern'
ill terrupts.

Cause the 8086 processor Io enter s w ait state
if the signal on its TEST pin is not asscrtcd.

Nop
STC

• DIGITAL RESEARCH
s-l 7

Cusauxmat CP/M~ Uthisics lhsib4.7 h4nemonic DiSacaccs

4.7 Mnemoaic Di8ereaccs

The CP/M 8086 assembler uses th» same instruction mnemonics as the Intel 8086
assembler except for explicitly specifying far aud short jumps, calls, and returns. The
following table shows the four differences:

Table 4-11. Mnemonic Differences

binet/to/nc Pascticm CPIM

JMPS

JMPP

intel

JMP

JMP

RRT

fntrasegment short jump:

Intersegment jurnp:

tutersegment return:

Iutersegment call. CALlP

Ead of Section 0

• DOTAL REisARCH
4-18

Section 5
Code-macro Facilities

5.1 Introductioa to Code-rnacros

A inacro simplifies using thc sainc block of instructions over and over again throughout
a prograui. ASM-86 docs not support traditional assembly-language macros, but it does
allow you to ddine your own instructions by using the Code-macm directive. An ASM-86
Code-macro sends a bit stream to the output file, adding a ncw instruction to the
assembler.

Like traditional inacros, Code-macr os are assembled wherever they appear in assembly
language code, but there the similarity ends. Traditional macros contain assembly
language instruaions, but a Code-macro contains only Code-macro dirccnves. Macros
are usually defined in the user's symbol table; ASM-86 Code-macros are defined in the
assembler's sym bol table.

Because ASM-86 treats a Code-macro as an instruction, you can start Code-macros
by using them as instructions in your program, We example below shows how ta start
MAC , an instruction defined by a Code-niacro.

XCHG BX~ WDRD3
HAG ~ARl iPAR2
PIUL AXsW DRD4

Note that MAC accepts two operands. When MAC was defined, these two operands
were also classified by type, size, and so on by defining MAC's formal parameters. '%e
names of forinal parameters are not fixed. They are stand-ins that are replaced by the
names or values supplied as operands when the Code-macro starts. Thus, formal
parameters hold the place and indicate where and how to usc the operands.

% DIGlTAL REiKARCH"
5-1

CoacLIrxeat CP/M46 UuTiucs Guide

The de6nition of a Code-tnacro starts with a line specifying its naxne and any formal
parametets:

CODEMACRO name [formal parameter list]

where the optional formal parameter list is de6ned:

h)rmal name; spcci6ef letter [lnodl6cr letter] [range]

Thc formal usmc is not 6xcd, but represent a place holder. lf formal parameter list is
present, the spcci6cr letter is required and the modi6cr letter is optional, Possible
speci%era arc A, C, D, E, M, R, 5, and X. Possible modiSer letters ate b, d, w, and sb.
Thc assembler ignores case except within strings, but this section shows spcci6ers in
upper~ a n d modi6czs in lower-case. Pollowiugscctions dcscribe spcci6crs, modi6crs,
and the optional range in detail.

The body of thc Code-macro describes thc bit pattern and formal parameters. Only
the following directives are legal within Code-macros:

$.1 htroducsica tc Code­Icscros

SEGFIX
NOSEGFIX
MODRM
RELY
RELY
DB
D%
DD
DMT

'lime directives are unique to Code-mactos. Those that appear to duplicate ASM-86
direcnves (DB, DW', and DD) have different meanings in Code-macro context. These
directives are detailed in later sections. The dc6nition of a Code-macro ends with a line:

End tl

CodeMacM, EudM, and the Code-macro directives are all reserved words. Code­
macro dc6nition syntax is de6ncd iu Backus-Naur-like form in hppendix G. 9m
following examples are typical Code-macro de6nitions.

5 DIGITAI RRSEIRCH
S-2

Concurrent CP/M46 Utilities Gmde 5.1 Inttodnadon ta Code-ntscros

C odeMacra 4 4 A
05 37H

EndM

C adeMacra DI V d i v i s or sE b
SEGFIX d t v i s a t
DD 6 FH
MODRM d tvisar

EndM

C adeMacra ESC aF cade t D b (o i 8 3 > i s r o t E b
SEGFIX s r c
D (>IT 5 (1 B H >i3 (o r c a d e (3))
MODRM a»cade is rc

EndM

5.2 Speci%era
Every formal parameter must have a specifier letter that indicates the type of operand

needed to match the formal paratneter. Table 5-1 defines the eight possible specifier
letters.

Table 5-1. Code-macro Operand Specifiers

Operand Type

Accumulator register, AX or AL

Code, a label expression only.

Data, a number to be used as an immediate value.

Effective address, either an M (memory address) or an R (register).

Memory address. This can be either a variable or a bracketed register
expression.

A general register only.

Segment register only.

A direct memory reference.X

I DIGIThL RRiEARCH
5-3

Ccnciixrent CP/M-86 Utihnes Guide$3 Modi6crs

5.3 ModiSers

The optional modi6cr letter is a further requirement on the operand. The meaning of
thc modi6er letter depends on the type of the operand. For variables, the modificrrequires
thc operand to be of type b for byte, w for word, d for double-word, and sb for signed
byte. For numbers, the modifiers require the number to be of a certain size: b for-256
to 255 and w for other numbers. Table 5-2 summarizes Code-maao modifiers.

Table 5-2. Code-macro Operand Modificrs

Variables

Modifier Type

byt»

word

dword

signed
byte

Modifier

-256 to 255

anything dse

sb

5.4 Range SpccL6ers

The optional range is specified in parentheses by one expression, or by two expressions
separated by a comma.'Ihe following are valid formats:

(num bcrb)
(register)
(numb«rb,numberb)
(nwnbcrb,reyster)
(reglstcr~umbcrb)
(register register)

Numberb is 8-bit nuinber, not an address. The following example spccifies that thc
input port must be idennfied by the DX register:

CodeHao ra 1N dst s4 ie inert : R w (DX)

• DiurI'AL szszhRCH
54

Concurrent CP/h4-86 UriTities Guide 5.4 Range Specifiers

The next example specifies that the CL register is ta contain the count of ratationi

CodeMacrc RUB dst:Ev~countiRb(CL)

The last example specifies that the opcode is to be inunediate data and ranges from 0 to
63, inclusive:

C odeMacro ESC opccdesob (083) i a d d s i E b

5.5 Code-ro.acro Directives

Cade-macro directives define the bit pattern and maire further requirements on how
the operand is to be treated. Directives are reserved words. Those that appear to duplicate
assembly language instructions have different meanings in a Code-macro definition.
Only the nine directives defined herc are legal in Code-macro definitions.

5.5.1 SEGFIX

If SEGFIX is present, it instructs the assembler to determine whether a segment-over­
ride prefix byte is needed to access a given memory location. If so, it is output as th»
first byte of the instruction. If not, no action is taken. SEGHX takes the form.

SEGFIX formal name

where formal name is the name of a formal parameter that represents the memory
address. Because it represents amemory address, the formal parameter must have one
of the specifiers E, M, or X.

5.5.2 NOSEGFIX

Use NOSEGFIX for operands in instructions that inust use the ES register for that
operand. This applies only to the destination operand of these instructions: CMPS,
MOVS, SCAS, and STOS, The form of NOSEGHX is

NOSEGFIX segreg,formal name

II moffhi. RESFARCH
5-5

5.5 Cade->nacra Dhrecnves Co>scaxrw>t CP/M<6 Utilities Guide

where segreg is onc of the segment registers KS, CS> SS, ar DS and formal name is the
name of thc memory-address formal parameter, which must have a spcci6er E, M, ar
X. Na code is generated from this direcnve, but an error check is performed. The
following is an example of NOSEGHX usc:

Cadel>laura HOVB si r t r >E >s >di r t r t Ev
HDBEGFIli EB> d i r t r
BEBF Ill s i rt r
Dn OA5k

Er> dN

5.5.3 MODRM

This directive instructs the assembler ta gcnerat» the MODRM byte that follows the
opcode byte in many 8086 instructions. The MODRM byte contains either the indexing
type or tbe register number to be used in the instruction. It also speci6es the register to
be used or gives morc information to specify an instruction.

The MQDRM byte camcs the mfarmation in three 6cids. The mod 6eid accupies the
two most signi6cant bits of the byte and combines with thc register memory 6eld to
farm 32 possible values: 8 registers and 24 indexing modes.

'Ihe reg 6eld occupies the three next bits following the mod 6eld. It speci6es either a
register number or three more bits of apcode information. The meming of the rcg 6eld
is determined by the apcode byte.

The register memory 6eld occupies the last three bits of the byte. It spccl6es a register
as the location of an operand or forms a part of the address-mode in combination with
the mod 6eld described above.

Por further information an 8086 instructions and*sir bit panama, secthe Intel 8086
Assembly Iaegtatgc Prograrrrmisg hhmsal and the Intel 8086 Farnil'y Vscr's MsrnurL

The forms of MQDRM are:

MODRhl formal name, formal name
MOD RM NUMBER7, formal name

Cottcarrcat CP/M46 Utilitics Guide

where NUMBKR7 is a value 0 to 7 indusive, and formal name is the name of a formal
parameter. The following examples show how to use MODRM:

5.5 Code-macro Dircctiva

CcdeMac rc RCR dst : Ew ~count : Rb(L'L)
SEGFIX d st
Oe OD3H
MODRM 3 ~dst

EndM

CcdeMacro OR dstIRu ~ere rEv
SEGFIX s rc
D5 05H
MQDRM dst ~src

EndM

$.5.4 RELB and RELW

These directives, used in IP-relative branch instructions, instruct the assembler to
generate displacement between the end of the instruction and the label supplied as an
operand. RELB generates one byte and RELW two bytes of displacement. 'Ae directives
take the following forms:

RELB formal name
RELW forrnal name

where formal name is the name of a formal parameter with a C (code) speci6er. For
example,
CcdeMacrc LOOP rlacetCb

DB 0E2H
REL5 p lace

EndM

ls DIGrfaL RESEARCH
5-7

5. 5 Cadcmmcro Dirccivcs Cannarvcnt CP/M-g6 UNitia Guide

5.5.5 DB, DW, and DD

Thcsc directives differ from those that occur outside of Code.macros. Thc forms of
the directives arc

DB formal name) NUMBERB
DW forraal usmc ~ NUMBERW
DD fora' name

where NUMBERB is a single-byte nurabcr, NUMBERW is a two-byte number, and
formal name is a name of a formal parameter, For example,

CudeNacru XQR dsttEu~sra<Ob
SEGFIX d st
D5 81H
RUDRA' 8 ~dst
OH are

EndN

5.5.6 DBlf

This directive manipulates bits in combinations of a byte or less. Tkc form is

DBIT field description f,field description]
where a 6eld descriptio has two fonna:

number combination
number (formal name(rshift))

number ranges from 1 to 16 and speci6es the number of bits to bc set. Combination
spcciRcs the desired bit combination. The total of all the numbers listed in the field
descriptions must not exceed 16. The second form shown above contains formal name,

8 DIGrrAL RESEAXCfP

Coacmrcat CF'/M46 UuBiea Guide

a formal parameter name instructing the assembler to put a certain number in the
speci6cd position. 'Ibis number usually refers to thc register spccificd in the 6rst line of
the Code-macro, Thc numbers used in. this special case for each register arc

AL: 0
CL: 1
DL: 2
BL: 3

A H: 4
CH: 5
DH: 6
BH: 7
AX: 0
CX: 1
D X: 2
BX: 3
SP: 4
BP: 5
S I: 6

DI: 7
E S: 0
CS: 1
SS: 2
DS: 3

A rshift, contained in the innermost parentheses speci6es a number of right shifts.
For example, 0 speci6es no shift, 1 shifts right one bit, 2 shifts right two bits, and so
oo. Thc following de6nition uses this form:

C odeMacra DE(: d s t t R v
D SIT S(BH) i3 (d s t (0))

EndM

Q MGO'Al aESshaCH
5-9

Comaaeet CFlM46 UaTuics Qaide

Yhe first five bits of the byte have the value 9K If the tetnaining bits atc sero, thc hex
valtm of the byte wiH be 48H. If the instruction

OEC D)<

is assembled and DX has a value of 2H, then 48H + 2H = AH , t he fmal value af the
byte for execution. If this setluence had been Inesenr in the de6nition

<)5IT 5 <SH) i3< dst < l))

then thc tegsstcr number would have been shifted right ance, and the result would had
been 46H + IH = 49H, which is ctroncotm.

End of Samos S

5 DIGITAL MSBhaat
5-10

Section 6
DDT-86

6.1 DDT-86 Operation

The DDT-86 progrstn allows you to test and debug programs interactively in a
Concurrent CP/M-86 environment. You should be familiar with the 8086 processor,
ASM-S6, and the Concurrent CP/M-86 operating system before using DDT-86.

6.1.1 Starting DDT'

Start DDT-86 by entering a command in one of the foHowing forms:

DDT86
DDT86 filename

The first command simply loads and executes DDT-86. After displaying its sign-on
message and the prorupt character (-l, DDT-86 is ready to accept operator commands.
The second command is similar to the first, except that after DDT-86 is loaded it loads
the file specified by filename. If the filetype is omitted from the filename, .CMD is
assumed. Note that DDT-86 cannot load a file of type .H86. The second form of the
starting command is equivalent to the sequence:

A >DOT88
DOTBB x. x
-E ff 1 ensare

At this point, the program that was loaded is ready for execution.

6.1.2 DD T-86 Command Conventions

When DDT-86is ready to accept a command, it prompts the operamr with a hyphen (-).
In response, you can type a conunand line, or a CTRL-C to end the debugging session.
See Section 6.1.4. A command line can have up to 64 characters and must terminate with
a carriage return. While entering the co~ use standard CP/M limediting funcuons,
such as CTRL-X, CTRL-H, snd CTRL-R, to correct typing errors. DDT-86 does not process
the command hne until you enter a caniage return,

rs DIGITAL RssahRCH
6-1

Ceacanwat CP/M46 VnTinss Gaih6.1 DIyf46 Operation

llew 6rst character of each corumand line determines the command acnan. Table 6-1
• ummarues DDT-86 commands. DDT-86 commands are dc6ncd individually in
Section 6.2.

Table 6-1. DDT-86 Canmiand Summary

F
G

H I

h 8 D

L M QI

R S SR

T U V W

Enter assembly language statements.
Compare blocks of memary.
Dispiay meuary in hexadecimal and ASCII.
Load program for execution.
Fill memory block with a constant.
Begin execution with optional breakpoints.
Hexadecimal arithmetic.
Setup File Control Block and command taiL
Listmemoryusing8086 mnemonics.
Move memory block.
Read VO port.
Write VO port.
Read disk 6le into memory.
Set memory to new vahes.
Search for string.
Trace program execution.
Untraced program monitoring.
Show memory layout of disk 6ie read,
Write contents of memory block to disk.
Examine and inodify CPU state.

QO

The command character can be followed by ane or more arguments. 'Ihese can be
hexadecimal values, 6lenames, or other infarmaaon, depending on the coinmand.
Arguments are separated from each ather by commas or spaces. No spaces are allowed
between the command character and the 6rst argument.

• DIGlTAL XESRAaCH
6-2

Concurrent CP/M-86 Vtfllties Guide

6.1.3 Specifying a 20-Sit Address

Most DDT-86 commands require one or more addresses as operands. Because the
8086 can address up m I megabyte of memory, addresses must be 20-bit values. Enter
a 20-bit address as follows:

6.1 DDT46 Operation

SSSS! 0000

where sass represents an optional 16-bit segment number aud oooo is a 16-bit offset.
DDT-86 combines these values to produce a 20-bit dfective address as follows:

The optional value ssss can be a 16-bit hexadecimal value or the name of a segment
register. If a segment register name is specifled, the value of sass is the contents of that
register in the user's CPU state, as indicated by the X command. If omitted, the value
of ssss is a default value appropriate to the command being executed, as described in
Section 6.3.

6.1A Terminating DDT 86

Terminate DDT-86 by typing a CTRL-C in response to the hyphen prompt. This
returns control to the CCP. Note that Concurrent CP/h4-86 does not have the SAVE
facility found in CP/M for 8-bit machines. Thus if DDT-86 is used to patch a flle, write
the Qe to disk using the W command before exiting DDT-S6.

6.1.$ DDT-86 Operation with Interrupts

DDT-86 operates with interrupts enabled or disabled snd preserves the interrupt state
of the program being executed under DDT-86. When DDT-86 has control of the CPU,
either when it starts, or when it regains control from the program being tested, the
condition of the interrupt flag is the same as it was when DDT-86 started, except for a
few critical regions where interrupts are disabled. While the program being tested has
control of the CPU, the user's CPU state, which can be displayed with the X command,
deternuues the state of the interrupt flag,

8 DIGrrhL RESEARCH
6-3

62 DDT46 Gmmaads Casscunmt CP/hl<6 U6Wies Guide

6.2 DDT-86 Commands

This section dc6aes DDT-86 conaaaads and their aryuncnts. DDT-86 commands
give you control of program execution snd allow you to display and modify system
meaMry and the CPU state,

62.1 ' Ihe A (Assemble) Cranmand

The A command assembles 8086 mnemonics directly into memory. The form is

where s is the 20-bit address where assembly is to start DDT-86 responds to the A
cnmmand by displaying the address of the memory location where assembly is to begin.
At this point thc operator enters assembly language statements as described ia Section
2.8. When a statcmeat is entered, DDT-86 converts it to binary, places the values in
memory; and displays the address of the next available memory location. This process
continues until you cater a blank line or a line containiag only a period.

DDT-86 responds to invalid statements by displaying a question mark 3 and redisplay­
iag the current assembly address.

6D2 Th e 8 (IIlock Comimre) Cosnmaad

'Ihe B command compares two blocks of memory and displays any differences on the
screen. The form is

Bsl,fip2

where si is the 20-bit address of the start of thc 6rst block; fi is thc offset of the anal
byte of the Grst block, and s2 is the 20-bit address of thc start of thc second block If
thc segment is not spcciRcd in s2, thc same value is used that was used for si.

Any diHcrcaces in the two blocks are displayed at thc screen in thc followiag form:

si:oi b i s2: o 2 b2

where si:a1 aad s2:o2 are the addresses in the blocks; bi aad b2 are the values at the
indicated addresses. lf no differences are displayed, the blocks are identical.

• DIGJTAL RESEARCH

Concurrent CP/M46 UoliYics Guide M DOT-86 Gnmsaads

6.23 Thc D (Display) Command

The D command displays thc contents of memory as 8-bit or 16-bit values and in
ASCH. The forms are

D
Ds
Ds,f
DW
DW8
DWs,f

where s is the 20-bit address where the display is to start, and f is the 16-bit offset within
the segment specified in s where the display is to finish.

Memory is displayed on one or more display lines. Each display linc shows the values
of up to 16 memory locations. For the Brat three forms, the display bne appears as
follows:

sass:oooo bb bb... bbcc. . . c

whcrc sass is the ~t bein g displayed and oooo is the oHset within segment sass.
The bb's represent the contents of the memory locations in hexadecimal, and the c's
represent the contents of memory in ASCII. Any nongraphic ASCII characters are
represented by periods.

In response to the first form shown above, DDT-86 displays memory from the current
display address for 12 display lines. The response to thc second form is similar to the
first, except that the display address is Brat set to the 20-bit address s. 'Ihc third form
displays the memory block between locations s and f. Thc next tbrcc forms are analogous
to the first three, except that the contents of memory are displayed as 16-bit values,
rather than 8-bit values, as shown below:

During a tong display, you can abort thc D command by typing any character at the
console.

62 DDT C casuwuds

6ZA Thc E i,'Load for Execution) Cotnsnand

The E command loads s Sle into memory so that a subsequent G, T, or U command
can begm progratn execution. 'Ae E command takes tbe forms:

where Siename ia the name of rhe Sie co be loaded. If no Sletype ia apeciSed, .CMD is
aaaumetL 'Ihe contents of tbe user segment registers and IP regiacer are slmred according
ta the information in the header of the Sle loaded.

An E couunand releases blocks of memory allocated by previous E or R conunands
or by programs executed under DDT-86. Thus only one Sle at a time can be loaded for
execution.

When the load ia complete, DDT-86 displays the start and end atklreascs of each
segment in the Sle loaded. Usc the V command to redisplay this mformation at a later tune.

If the Sle does not exist or cannot be successfully loaded in the available memory,
DDT-86 issues an error message. Files src dosed after sn E command.

E with no Sleclmc frees all meusnty alhcatldnmade by DDT46, wlthoutlaadiugaSIe.

62,.5 The F (Fill) Command

The F command SHs sn area of memory with a byte or word constant. Thc forms atc

F+b
FWa,f,w

where s ia a 20-bit starting address of the blodt to bc Sled, and f is a 16-bit o8aec of
the Snal byte of the blodt in the acgmcnt apeciSed in a.

In response to the Srac form, DDT-86 stores the 8-bit value b in locations a through f.
In the second form, the 16-bit value w is stored in locations a through f in standard form,
low 8 bits Sist, followed by high 8 bits.

If s is greater than f or the value b is greater than 255, DDT-86 responds with a
question mark. DDT-86 issues an error message if the value stored in memory auuxot
be read baric suaesafuHy, indicating faulty ornonexistent RAM at theiocation indicated.

S DIGiTAL ssaEARCH

6.2 DDT-86 ColnmaadsCeucurtent CP/M46 Utilitaa Guide

6.2.6 Thc G (Go) Command

The G command transfers control to the program being tested and optionally acts one
or two breakpoints 'Ae forms are

G
C,bl
G,bl,b2
Gs
Gs,bl
Gs,bl,b2

where s is a 20-bit address whet'. program exmtion is to start, and bI and b2 are 20-bit
addresses of breskpoints. if no segment value issupplied for any of these three addresses,
the segment value defaults to the contents of the CS register,

ln the first thrcc forms, no starting address is specified, so DDT-g 6 derrves the 20-bit
address from thc user's CS and IP registers. The first forte. transfers control to your
program without setting any breakpoints. The next two fonna set one and two break­
points, respectively, before passing control to your program. The next three forms are
analogous to the first three, except that your CS and IP registers are first set to s.

Once control has been transferred to the program under test, it executes in real time
until a breakpoint is encountered. At this point, DDT-86 regains control, clears all
breakpoints, and indicates the address at which execution of the program under test was
interrupted as follows.

ssss:oooo

where sass oortesponds to the CS, and oooo corresponds to the fP where the break
occurred.. When a breakpoint returns control to DDT-66, the instruction at the break­
point address has not yet been executed.

ss DlGB'AL RESEhRCH
6-7

Cancurreat CPIM-86 UiTiaea Guide62 DDT-S6 Conunailde

6.2.7 The H (Hexadeciassl Math) Command

The H command computes the sum and difference of two 16-bit values. The form is
shown below:

Ha,b

where a and b are the values the sum and difference of which are being computed.
DDT-86 displays the sum (sass) and the difference (dddd) truncated ta 16 bits on the
next line, as shown below:

6.2.8 The I (Input Corn~and Tail) Command

The I command prepares a File Control Black and command tail buffer in DDT-86'a
Base Page and copies this information inta the Base Page of the last file laaded with the
E command. Thc I canunand takes the form:

I command tail

where command tail is a character string which usually contains one or more filenames.
The first filename i • parsed into the default File Control Block at 005CH. The apnonal
second fiiename, if specified, is parsed into the second pare of the default File Contru(
Block beginning at 006CH. The characters in command tail are also copied inta the
default command buffer at 0080H. The length of command rail is stored sc 0080H,
fallowed by the character string ending with a binary zero.

If a file has been loaded with the R command, DDT-86 copies the File Control Black
and command buffer fram the Base Page of DDT-86 to tbe Base Page of the pragrani
loaded. The location. af DDT-86's Base Page can be obtained from the)6-bit value at
absolute memory location 0:6. The location of the Base Page af a prograru loaded with
the E coinmand is the value displayed far DS upon completiou of the program load.

629 The L (est) Conunand

The I. command lists th» contents of mcniory in sssenibly language. The farms are

0 DIGITAL RBSFARCH

Cannrrrcnt CP/M-86 Utilitics Guide 6.2 DDT-86 Couunauds

where s is a 20-bit address where the list is to start, and f is a 16-bit offset within the
segment spccificd in s where the list is to finish.

The first form Hsts twdve Bnes of disassembled machine code from the current list
address. The second form sets the list address to s and then lists twelve lines of code.
'Ihe last form lists disassembled code from s through f. In all three cases, the list address
is set to the next unlisted location in preparation for a subsequem L command. When
DDT-86 regains control from a program being tested (sec G, T, and U commands), the
list address is set ro the current value of th» CS and IP registers.

Long displays can be aborted by typing any key during the list process. Or, enter
CTRL-S to halt the display temporarily.

6.2.10 The M (Move) Command

Thc M command moves a block of data values from one area of memory to another.
The form is

Ms,f,d

where s is the 20-bit starung address of the blodr. to be moved, f is the offset of thc fina
byte to be moved within the segment described by s, and d is the 20-bit address of the
first byte of the area to receive the data. If the segment is not specified in d, thc same
value is used that was used for s. Nate that if d is between s and f, part af the block
being moved will be overwriuen before it is moved because data is transferred starting
from location s.

6.2.11 The QI, QO (Query VO) Commands

Thc QI and QO commands allow auess to any of thc 65,536 input/output ports. The
QI command reads data from a port; the QO command writes data to a port, The forms
of the QI command arc

where n is the 16-bit port number. In the first case, DDT-86 displays the 8-bit value read
from port n. In the second case, DDT-86 displays a 16-bit value from port u.

ss DIGlTAL RESEARCH
6-9

Concurrent CP/M-86 UtiTitics Guide6.2 DDT-86 Carnasnds

The forms of the QO command are

QOn,v
QOWn,v

where n is the 16-bit port number, and v is the value to output. In the first case, the 8-bit
value v is written to port n. If v is greater than 255, DDT-86 responds with a question
raark. ln the second case, the 16-bit value v is written to port n.

6.2.12 Thc R (Read) Command

The R command reads a file into a contiguous block of memory. The forms are

R filename
R filename,s

where filcname is the name and type of thc file to be read, and s is the location to which
the file is read. The first farm lets DDT-86 determine the memory location into which
tb.c filc is read.

The second form tdls DDT-86 to read the filc into the memorysegment beginning at
s. This address caa have thc standard farm (ssss:oooo). Thc lowwrdcr four bits of s are
assumed to be aero, so DDT-86 reads Blas on a paragraph boundary. If the memory st
s is not available, DDT-86 issues the message:

MEMORY REQUEST DEHIED

DDT-86 reads the file into memory and displays the start and end addresses of the
block of memory occupied by the file. A V cormnand can redisplay this infonnadou at
a later time. The default display pointer (f or subsequent D commands) is set to the start
of the black occupied by the file.

The R command does not free any memory previously aHocated by another R or E
command. Thus a number of files can be read into memory without overlapping.

1 f thc file docs uot exist or there is not enough memory to load the filc, DDT-86 issues
an error message. Files are dosed after an R command, even if an error occurs.

8 DIGITAL 1KSEARCH
6-10

6.2 DDT-86 Commauds

The following are examples of the R command, followed by a brief explanation.

rdd t88 • »d Readfi l e D DT86.CMDintomemory.

Caantrreut CP/M-86 Utllines Guide

r tes t

r t s s t i 1000 **0 Readfile TESTinto memory,statting

Read file TEST mto memory.

at location 1000:0.

6,2.13 The S (Set) Command

The S command can change the contents of bytes or words of memory. The forms are

Ss
SWs

where s is the 20-bit address where the change is to occur.

DDT-86 displays the memory address and its current contents on the following line.
In response to the first form, the display is

ssss:oooo bb

ln response to the second form, the display is

where bb and wwww are the contents of memory in byte and word formats, respectively.

ln response to one of the above displays, the operator can choose to alter the memory
location or to leave it unchanged. If a valid hexadecimal value is enured, the contents
of the byte or word in memory is replaced with the value. If no value is entered, the
contents of memory are unaffected, and the contents of the next address are displayed.
In either case, DDT-86 continues to display successive memory addresses and values
until either e period or an invalid value is entered.

DDT-86 issues an error message if the value stored in memory cannot be read bade
successfully, indicating faulty or nonexistent RAM at the location indicated.

• DIG LTAL RESEARCH
6-11

Cassxursat CP/M46 Uu%Yiss Guide

6Z.24 The SR (Search) CanMsand

The SR (Search) command searches a black of memory for a given pattern of numeric
or ASCII values and lists the addresses where the pattern occurs. Tbe form is

Slbgpsttern

where s is tbc 20-bit starting address of the black to be searched, f is the offset of the
final address of the block, and pattern is a bst of oue ar tnare hexadecimal values and/or
ASCII strings. ASCII strings are endosed in double quotes and can bc any length.
For example,

BRROO r300 t Th • to rn" tOd >Oa

por each ocaureuce af pattern, DDT-86 displays the 20.bit address of the Brat byte
of rhe pattern, in rhe farm:

If na addresses are listed, pattern was uot found.

62..29 The T (Trace) Casnmand

The T command traces program execution for I to OFPFPH program steps. The
farms aie

T
Tn
TS
TSn

where n is the number of instructions to execute before retnrrung control to the console.

Before an instrucnon is execu.ted, DDT-86 displays the current CPU state and the
disassembled instruction. In the first two forms, the segment reg4ners are not displayed,
allowing the enure CPU state ra be displayed an one line. The next two forms are
analogous to tbe first two, except that all the registers are displayed, forcing the disassem­
bled instruction to be displayed on the next line, as in the X command.

0 nrolTAL RESRhRCH
6-12

62 DDT' Cosuuands

In all of the forms, control transfers to the program under test at the address indicated
by the CS and IP registers. If n is not specified, one instruction is cxccuted. Otherwise,
DDT-86 executes n instructions, displaying the CPU state before each step. h long trace
can be aborted before n steps have been executed by pressing any character at the cxmsole.

Aher a T command, the list address used in the L command is sct to the address of
the next instruction to be executed.

Note that DDT-86 does not crace through a BDOS interrupt instruction because
DDT-86 itself makes BDOS calls, and the. BDOS is not reentrant. Instead, the entire
sequence of instructions fram the BDOS interrupt through the return from BDOS is
treated as ane traced instruction.

6Z.16 Thc U (Untrace) Conunand

The U corn~and is identical to thc T conunand except that thc CPU state is displayed
only before the first instruction is executed, rather than before every step. Thc forms arc

Concurrent CP/M-86 Utilitics Guide

U
Un
US
USn

where n is the number of instructions to execute before returning control to the console.
The U command can be aborted bdore n steps have been executed by pressing any key
at the console.

62..1'F The V (Value) Connnand

The V conunand displays inforcnation about the last filc loaded with thc E or R
commands. The form is

If the last file wss loaded with the P. command, thc V command displays the start and
end addresses of each of the segments contained in the filc. If thc last file was read with
the R command, the V command displays the start and cnd addresses af the block of
memory where the file was read. If neither thc R nor E commands have been ued,
DDT-86 responds to thc V command with a question mark.

6-13

Caaccrrcnt CP/M46 Uu8liss Gm*62 DDT46 Camausds

60.18 The W (Write> Carnmand

The W command writes the contents of a contiguous block of memory ta disk. The
foam are

W Glename
W Glensme,s,f

where Glename is the Gleasmc and Gletype af thc disk Gle ta receive the data, snd s and
f are the 20-bit Grst and last addresses of the block to be written. If the segment is aat
speciGed in f, DDT-86 uses the same value that was used far s.

If the Grat form is used, DDT-86 assumes thc s and f values from the last Gle read with
an R command.. If ao Gle wss read with an R mmmsnd, DDT-86 responds with a
question mark. This form ia useful for writing out Glcs after patches have been installed,
assujaing the overall Iength of the Glc is unchanged.

In thc second form whcrc s and f arc speci&cd ss 20-bit addresses, thc low four bits
of s arc assumed to bc 0. Thus thc black beiag written must always start on a paragraph
boundary.

If a Rlc by the name spcciGed in the W command already exists, DDT-86 deletes it
before writing a new Ble.

62.19' 'Xhc X (Examine CPU State) Command

Tbc X command allows the operator to examine and alter the CPU state of thc
program under test. The forras are

X

Xf

where r is the name af one of the 8086 CPU registers, and f is the abbreviatioa of ane
of the CPU fiags. The Grat form displays the CPU state in the fortnat:

AX BX CX . . . SS ES IP
xxxx xxxx x xxx. . .xxxx x xxx x x xx

instrucnoa

• z iarrm assstuar
6-14

Gascarrsnt CP/M-86 UuTitics Guide

Thc nine hyphens at the beginning of the linc indicate thc state of the nine CPU Rags.
1pch position csn bc a hyphen, indicating that thc corresponding flag is not set (0), or
a 1-character abbreviation of thc flag name, indicating that thc flag is sct (1). The
abbreviations of the flag names are shown in Table 6-2.

Instruction is the disassembled Instruction at the next location to be executed, indicated
by the CS and lP registers.

Table 6-2. Hag Name Abbreviations

D I

T S

A P

Z

0

Name

Overflow
Direction
Interrupt Enable
Trap
Sign
Zero
Auxiliary Carry
Parity
CarryC

The second form allows the operator to alter the registers in the CPU state of the
program being tested. The r following the X is the name of one of the 16-bit CPU registers.
DDT-86 responds by displaying the name of the register, followed by its current vslue.
If a carriage return is typed, thc value of the register is not changed. If a valid value is
typed, the contents of the register are changed to that value. In either case, the next
register is then displayecL This process continues until a period or an invalid value is
entered, or until the last register is displayed.

The third form allows the operator to alter one of the flags in the CPU state of the
program being tested. DDT-86 responds by displaying the name of the flag, followed
by its current state, If a carnage return is typed, the state of thefag is not changed. If s
valid value is typed, the state of the flag is changed to that value, Only onc flag can bc
examined or altered wish each Xf conunand. Sct or reset flags by entering a value of 1 or 0,

After an X command, the typel and typc2 sqynent values are set to the contents of
the CS and DS registers, respectively.

II DIGrrAL RsrahRCH
6-15

Caacarrcnt CP/M~ Utilidcs Chdde63 Dcfaalt Scgaustt Vsbcs

6.3 Dcfaa1t Scgmcnt ValtMs

DDT-86 has an internal mechanism that keeps track of the current segment value,
making segmentspecificationan optional Input of a DDT-86 command. DDT-86 divides
the command set into two types of commands, according to which segment a command
defaults if no segment value is spcci6cd in thc conunand line.

'Ihc Rrst type of command pertains to the Code Scgmcnt: A (Assemble), L (List
Mnemonics), snd W (Write). These commands usc the internal typc1 segment value if
no segment value is speci&ed in the command.

When started, DDT-86 sets thc typc1 segment value to 0 and changes it when onc of
tbc following acuons ls taken:

I When a Sc is loaded by an E command, DDT-86 sets the typel segment value
ta thc value of the CS register.

• When a Rlc is read by an R command, DDT-86 acts the typcl segment value to
thc base segment where the Sc was read.

I After an X command, the typc1 and type2 segment values arc set to thc contents
of tbc CS and DS registers, respectively.

• When DDT-86 regains control from a user program after a G, T or U conznand,
it sets the typel segment value to the value af the CS register.

u When a segment value is specified explicitly in an A or L command, DDT-86
sets the typel segment value to the segment value spea6ed.

Thc second type of command pertains to the Data Segment: B (Block Compare),
D (Display), F (Fill), M (Move), S (Sct), and SR (Search). These commands usc the
internal type2 segmen.t value if no segment value is speci6ed in the command.

When started, DDT-86 seta the type2 segment value to 0 and changes it when one of
the following actions is taken:

• When a 6lc is loaded by an E command, DDT-86 sets tb» type2 segment value
to the value of thc DS register.

• When a Sle is read by an R command, DDT-86 sets the type2 segment value to
the base segment where thc 6lc was read.

+ When an X conunand ~ r he va lue af the DS register, DDT-86 changes thc
type2 segment value to rhc new value of the DS register.

• DIGB'AL slssAlLCH
6-16

Concurrent CP/M46 UiMss GuMa 6.3 Delauh Salpnent Values

• When DDT-86 regains control from a u.ser program after a G, T, or U command,
it sets thetypes' segment value to the value of the DS register.

• When a segment value is specified explicitly in a B, D, F, M, S, or SR com­
mand, DDT-86 sets thc type2 segment valueto the segment value specified.

When evaluating programs that use identical values in the CS aud DS registers, aii
DDT-86 commands default to rhe same segment value unless explicitly overridden.

Note that rhe G (Gn) command does not fall into either group because it defaults ro
the CS register.

Table 6-3 summarites DDT-86's default segment values.

Table 6-3. DDT-86 Default Segment Values

Cossmasd type-1 type 2

A B

D E F

G

SR

H I

R S

T U

W X

L
h4

V

x — Use this segment default if none specified; change default if
specified explicitly.

c — Change this segment default.

ss rxGrrhL RESEARCH
6-l7

Caacaraat CP/M-86 UtiTitics Aide

6.4 Assanbly 4mluagc Syatax hr A and L Conunancb
The syntax of the assembly language statements used in th» A and L couunands is

standard 8086 assembly language. Several tninor exceptions are listed below.

• DDT-86 assumes that all numeric values entered are hexadecimaL

w Up to three pre6xes (LOCK, repear. segment ovenide) can appear in one state­
ment, but they all mustprecede the opcodc of the atannnent. Alternately, spre6x
can be entered on a line hy itself.

• The distinction between byte and ward string instructions ia made as follows:

byte word

LODSB L ODSW
STOSB STOSW
SCASB SCASW
MOVSB MQVSW
CMPSB CMPSW

• The mnemonics for near and far control transfer instructions are as follows:

short norm a l far

JMPS JMP JMPF
CALL CALL P
R ET RET F

+ If the operand of a CALLF or JMPP inatrucnon is a 2,Gait absolute address, it
is entered in thc form:

sass:oooo

where asaa ia tb,c sqpncnt and oooo ia thc offset of thc address.

5 Operands that coukl refer either to a byte or word areambiguousand must be
preceded byeither the prc6x BYTE or WORD. These pre6xcs can bc abbreviated
BY and WO. For example,

INC 5VTE [5PI
NOT NORD f,1234j

Failure to supply a prc6x when needed results in an error message.

• DJGIThL lU%HARCH
6-13

Concurrent CP/M-86 UciMes Caide 6.4 Syataz

• Operands that address memory dirccdy are enclosed in square brackets to
distinguish them from immediate values. For example,

4DD 4X ~5 ledd 5 to resister 4X
4DD 4X >L5 3 $add the contents of location 5 to 4X

• The forms of ~t e r i ndirect memory operands are

[painter register]
[index register]
[pointer register + index register]

where the painter registers are BX and BP, and the index registers arc SI and DI.
Any of these forms csn be preceded by a numeric offset. For example,

4DD
4DD
4DD

5X > L'5P+8 I)
5 Xt3I5P+s r i
5X~ID47L'5P+SI3

6.5 DDT-86 Sample Session

In the following sample session, you interactively debug a simple sort program.
Comments explain the steps involved.

ss mGrrhL RESEARCH
6-19

6.S DDT-86 Sample Session

SOurCe file OE pragram tO tear.

Ctxscorrcna CP/M-86 Utiliios Gus4C

A>tvre ser t«aee

• 1 MP 1 • 5 o r't P I'0 r I'CCI
I
sort I

si «0
bx«offset nlist
OU «0

I ih l t 1a l i te in d • x
lbx ~ has • of l i s t
lclsar O Uitch f l a x

MDC

MDV

MDC

CD«PI
al «lbx+sr I
o l« l l b x + s i l
in oi
al« l l b x + • i l
Cbx+si l «a l
OU«l

Plot br te f r a» l i s t
Ioo«Pore vxth n • x'1 brta
I don' t s U i t c h t f t n o r d e r
Ido f1rst Part af s«1tch
Ido second rar t
Iset OUitch fl • r

MDV

caIp
Jn •
Kchr
«av
MOO

i nc i t
in a si

• 1 • C C 11 n 'I
aa«r
CU «1

SC1't

l i ner • Ment index
lend cf 11 • to
Ino«haer ra ins
Idone - sa r CU1tcha s?
Iyea «Sort sa«e More

OMP

Jnz
test
Jnz

dana1
JM • dan • Iret hara Uhan list ard • red

daeva
orr 100h Il • ava OI'aoe far b • so Pare

nl ist
CO IInt

db
e«II1

Ifb
• nd

3 «8 «4 «8 «31 «8 «4 «1
off • at e - offs • t
nl is t
0• U

Assemble program.
A>arree as rt

CP/II 8088 ASSEIISLER I/ER 1 • 1
ENO OF PASS 1
ENO OF PASS 2
ENO OF ASSEIIQLY s NUIISER OF ERRORS I 0

• DIGITAL RESEARCH
6-20

Gmcsrrcsst CP/M46 Uiilidcs Guide

TyPc listing 6lc gcimratcd by ASM-86.

6.5 DDT-86 Sample Session

/I11rra sari>iat
CP/M ASMSB 1.1 SOURCE: Sari, ASS PAGE I

I
sis r l e sa rt I ra a ra s

I
• ort:

0000 5E0000
0003 550001

OOOB CB05090100 SCV

SCV

SCV

ss >0
bx > off a s
n list
sv>0

l ins t i a l t z a i n dex
t Ibx base of list

0005 SA00
GOOD 3A4001
0010 7IBOA
0012 BB4001
0015 8800
0017 CBOBOB0101

1n ci I

CC • P

al>[bx+st]
a 1 > I t b x+ s 1
incl
al >I tbx+ • I
[bx+s i] > a i
• v>l

Iole • r svitoh tlat

I sat brte f res l i s t
) icos • aI' • IJ1th next b r t •
Iden't svitah if in order

) Ida first tart af snitch
Idc seaand tart
Iset sv i t c h f l a t

SCV
CNI>

Jna
x ah a
Iac v
alc v

0010 4B
001D 83FE08
0020 75EB
0022 FBOS080101
0027 7507

she
CSP

Jnz
test
• Inz

si
si >anent

Iiha res • ht Index
lend Of lists
I no> Reer i a i n a
I done - anr sv t t c h e a 7
Ir t s > sor t e ase acre

c as>>
sv >1
sort

dane I
0029 E9FOFF J sr don t 1$ • t her • v hen l i s t or d e r e d

I
d • ea
a rr i o oh Ileave Seaae far ba tt ra a •

0 DIGITAL RESEARCH
6-21

Concurrtstt CP/M46 VrlXtres Guide6.S DDT-$6 Srrrxrpir Session

0401
0100 030804081FOB

0008
0108 00

END DF 4SSEhSLY, NURSER OF ERRORS)

ni rst

ooont
sr

db 3 iB ia ie ~31 s9 i4 t I

orI' • • t e - sI ' root n11 • t
0

s • U
db
snd
0

Type symbol table Rlc gencratcd by ASM-86.

4)taro sort sv »
0000 VARIABLES
0 100 NL IST 0 10 8 SII I

0000 NUNSEPS
0008 COUNT

0000 LABELS
0005 CQNP 0029 DDRE 001C I NCI 0000 SORT

Type hex Rile generated by ASM-86.
4)tens s or t i h 8 8
l04000003000DOOOOFB
rl.50000915E0000550001CBOBOS01008400344001780ABS4001880OCS0808018C
: 11001581014883FE0875EBF9080801017507ESFDFFEE
r 08010082030804081FQBO4010035
r00000001FF

Generate CMD 6lc &orn .H86 6le;
4)oonord sor t

5YTES RE4D 0038
RECORDS WRITTEN 04

Involte DDT-86 and load SORT.CMD.
A > d rr S 88 s o r S
DDT88 1,0

START END
C8 047Dsoooo 047Dr002F
De OaeOrOOOO 048OroIOF

5 DIGITAL SE$SARCSt

Conc«rre«c CP/M-86 Uc<T<ie< Guide 6.5 DDT-86 Sa«<pk Sessio«

Display initial register values.
-K

AX S X CX DX SP SP SI DI CS D S SS ES I P
--------- 0000 0000 OOOO 0000 11SE 0000 0000 0000 047D 0480 0481 0480 0000

XDV 8I < 0 000

Disassemble the beginning of the code segment.

047D<0000
047D<0003
047D<0008
047D<0008
047D<OOOD
047D<0010
047DiOOIR
047DiOOIS
047D<0017
047D<001C
047D<001D
047D<0020

Display the start of the data segment.
-dIOO>Ior
0480<0100 03 08 04 08 IF 08 04 01 00 00 00 00 00 00 00

P DIGIThL SESEARCH

68 DDT-$6 Ssaaplc Sassiest Corscscsscsst CP/M46 Utihtics Gssisic

Disassemble the rest of the code.
-l
047Dc0022
047Dca027
047Ds0029
047Dr002C
047DI002E
o47D<0030
0470raa31
047DI0033
047D:0034
047Ds0035
047DI0037
047Ds0039

Rttecstte program frotn IP (= 0) setting breakpoint at 29H

c047os0028 Breakpoint encountered.

Display sotted list.

-rr2$

-4100raar
O48O:OtoO ao ao Oa 00 00 oo oo oo ao oo 00 oo aa ao oo ao,...,...

Doesn't look good; reload Sle
• sect

DS 047Dsoaao 047DI002F
D8 0480soaao 0 4 90 r010F

START END

Treae 3 iostrllcticHlL
te

AX S X CX DX SP bP Sl Dl l P
-----Z-P- OOOO O1OO OOOO OOOO 119E OOOO OOOS OOOO OOOO ltaV
-- - - - Z - P - 0000 0100 0000 0000 118E 0000 0000 0000 0003 IIDV
-- - - - Z - P - Oaaa 0100 0000 0000 119E aoaa 0000 0000 0009 NOV
40470saaob

SI iooao
bXrataO
bYTE 101081 rao

• DIGITAL IsstEARCH­

Coacarreat CP/hl-$6 Ufpiies Gaide 63 DDT-96 Sanpk Scaaiaa

TIQCC SO222C nlOIC.
-c3

-- - - - Z - P - 0000 0100 0000 0000 118E 0000 0000 0000 0005 NDV
-- - - - Z — P- 0003 0100 0000 0000 119E 0000 0000 0000 POOD CNP
----S-A-C 0003 0100 0000 0000 118E 0000 OOOO 0000 0010 JSE
«o47D:001C

AX 5X CX DX SP 5P SI DI I P
4L 815X+8 I I
AL.OI I SX+812
001C

Display unsoxtc8l liav
-dfPP8 f Pf
0480 • 0100 03 08 0 4 0 6 1F 0 6 0 4 01 00 00 00 00 00 00 00 Oo s • s • • • • • s • • •

Display
-I
047D8002C
047D 8 0010
047DIO020
047D80022
047D80027
047D 8 0028
047DioOZC
047D8002E
0470:0030
047D80031
047D:0033
047Di0034

INC BI
CNP Si r0009
J NZ 0 0 0 5
TEST BYTE Iof 09l 801
J NZ 0 0 0 0
JNP 0029
ADD I S X+SI I 84L
A DD 15X+SI I 8 4 L
DAS
ADD I S X+SI I 84L
2'| = SC
POP ES

TtkCC 80822C 11101C
-CS

-- - - 9 - 4 - C 0003 0100 0000 0000 129E 0000 0000 0000 002C INC
-- - - - - - - C 0 00 3 0100 0000 0000 218E 0000 0001 0000 001D CNP
-- - - 8 - APC 0003 Of 00 0000 0000 2 2 9E 0000 0001 0000 0020 JNZ
~047D:0005

4X 5X CX DX SP 5P B I DI I P
SI
S I • 0009
0005

se DIGITAL RESEARCH

Co>+anent Cp/M46 UtTiitics Gui*6.5 DOT-86 Ssmp/e Session

Display instructions fmm current IP.

0470>0008 NDV
0470tDOOD CMP
047D>0010 JSE
0470 > 0012 XCHG
047D> 0018 NDV
047D > 0017 NGV
0470) 00 I C INC
047D < 001D CNP
047DI0020 JHZ
047Dr 0022 TEST
047D • 0027 JHZ
047Dt0029 JNP

08

-- - - 8 - I PC 0003 01000000 0000 118E 0000 0001 0000 000b NQV
-- - - S -APC 0008 0100 0000 0000 11BE 0000 0001 0000 DODD CNP
-- - - - - - - - 0 008 0100 0000 0000 118E 0000 0001 0000 0010 JBE
I 0470 • 0012

AX S X CX DX BP BP 81 Dl I P
AL > lbX+Bi l
AL >OIISXt811
001C

-1
047D t 0012
047D>DQIB
047D<0017
047D: 001C
047Di 001D
0470)0020
047Dl0022
0470s0027
047Ds0028
047D>002C
047Dt002E
0470>0030

XCHC AL >01I SX+811
NQV L'dX+81] >AL
NQV BYTE IOIOBO >et
IHC BI
CMP 81 >0008
JHZ 000b
TEST BYTE IOIOBI>OI
JH2 0000
JNP 0028
ADD ISX+91] AL
ADD ISX+811>AL
DAB

Go until awritch hss been performed.
- /) 2 0

N047DL0020

Display list.
-droo>lop
0480>0100 03 04 09 08 IF OB 04 01 01 00 00 00 00 00 OD 00 • >e • • • • • • • • • • • • •

Goncarreat CP/M-86 Utilities Gtside

Looks like 4 and 8 were switched okay. (And toggle is true,)

6.5 DDT-86 Sample Scsion

t
AX 5 X CX DX SP 5P SI DI I P

-- - - 5 - R Pc 0004 0100 0000 0000 119E 0000 0002 0000 0020 JNZ 0005
s047Dsooob

Display next

0470:0005 NDU
047D>OOOO CNP
047D:0010 J5E
047D:0012 XCHG
0479iOOIS NOV
047D:0017 NDU
047Ds001C INC
047D:OOID CNP
047Dso020 JNZ
047D:0022 TEST
047DsO027 JNZ
047D<0028 J'NP

4L it bx+813
aL Oir,5X+BI I
001C
4L ~oirbX+SI I
rbs+SII aAL
5YTE [0108'I to i
BI
SI >OOOB
0005
5YTE L'01 OB I i 01
0000
0028

Since switch worked, let's reload and check boundary conditions.
"seers

START END
CS 047Dsoooo 047D<002F
DS 048O OOOO 048OsolOF

II DIGrrAL aESnucH"
6-27

Couearreat CPIM-86 UiTities Guide6.S DDT-86 Ssfapls Sessioa

l4Cke it quicjter by setting list length to 3. (Could also have used &7d = Ie
to patch.)

-sfd
0470<0010 sar sf s3
0470<0020

Display uffsorted list.
-dfOP
0460<01 00 03 08 04 08 1 F 06 04 Ol 00 00 00 00 00 00 00 00 s s s s s • s • • • • • • • •
OLRO (01 10 OO OO OO OO OO OO 00 00 00 00 OO OO OO 00 OO 00 s s s s s s s s s s s s s s s s
0480: 0120 00 00 00 00 00 00 00 00 00 00 00 90 00 20 20 20 s •s • • s s s s • s • s

Set breakpoint when 61st 3 elemefits of list should be sorted.
- r i 28
w0470(0028

See if list is sorted.
-df 00 s for
0480l0100 03 04 06 08 1F 06 04 01 00 00 00 00 00 00 OO 00 s • • s s s s • s • • • s •

Iuterestufg, the fourth element seems to have been sorted in.
-4 • otf

CS 04/0 • 0000 047D i 002F
DS 0460f0000 0460<01OF

STAST ENO

LeA try again with some tracing.
- • Id
0470iOOfo ass sf ~3
0470:OOZO

6-28

Coacimm CP/ht-86 UaTiYica Gilide 6.$ DDT-86 Samph Seaaam

-c8
4X bx CX DX S P SP SI DI I P

SI ~0000
bX ~0100
BYTE IOIOSI • 00
AL Itbx+813
AL GI I BX+SI >
001C
SI
SI I0003
OI005

-----Z-P- 0008 0100 OOOO 0000119E 0000 0003 OooOOOOo MOv
— — ---Z-P- 0006 0100 0000 OOGG 119E 0000 0000 0000 0003 MUV

-----Z-P — OOOS 0100 0000 0000 119E 0000 0000 0000 0008 MOV
-- - - - 2 - P - 0 0 08 0100 0000 0000 11BE 0000 0000 0000 0005 HOV
-----Z-P- 0003 0100 0000 OOOO 119E 0000 0000 0000 0000 CMP
-- - - 8 - 4 - C 0003 0100 0000 0000 118E 0000 0000 0000 0010 JSE
— — --S-A-C 0003 0100 0000 0000 11BE 0000 0000 0000 001C INC
-- - - - - - - C 0 003 0100 0000 0000 119E 0000 0001 0000 0010 CMP
-- - - 8 - A-C 0003 0100 0000 0000 118E 0000 0001 0000 0020 JNZ
a0470 • 0005

047D:0005 MDV
047DiooOD CMP
047Di0010 JBE
047Di0012 XCHG
047D:0015 MDV
047Di0017 MDV
047Di001C INC
047DtooiD CMP
047Di0020 JNZ
047Di0022 TEST
047D:0027 JNZ
047Di0029 JMP

4L i l OX+BI]
4L • 01 l'5X+S I l
001C
4L iol (bx+Sl l
I bX+9 I l i AL
BYTE 10109l t o i
SI
SI I0003
0009
BYTE 10108l sot
0000
0029

-c3

— — — -8-4-C 0003 0100 0000 OOOOI 1 l. BE 0000 0001 0000 0005 MOV
----5-4-C 0008 0100 0000 0000 119E 0000 0001 0000 GOOD CMP
-- — — — ---- 0008 0100 0000 0000 119E 0000 0001 0000 0010 JBE

a0470a 0012

Ax 5X CX DX SP 5P SI DI I P
AL, lbX+SI I
AL >01[BX+SII
001C

-I
047D:0012 XCHG
047D:0015 MOV
047D:0017 MOV
047D:001C INC
047D:OOIO CMP
047D:0020 JNZ
047D:0022 TEST

4L Io ilbx+Sl l
I BX+S I I • AL
BYTE 10108I Io i
SI
SI i0003
0005
BYTE 101081 >01

e OiarraL XESEAXCV™
6-29

Coacurxmc CP/M~ Vfdities Guide6.5 DDY46 Sample Scssioa

-C3
AK b K CX DX SP SP SI DI I P

-- - - - - - - - 0 0 0 8 0100 0000 0000 119E 0000 0001 0000 0012 XCH4
-- - - - - - - - 0 0 04 0100 0000 0000 118E 0000 0001 0000 0015 HQV
-- - - - - - - - 0 0 0 4 0 100 0000 0000 119E 0000 0001 0000 0017 HOLI
+047DLOOIC

Al. iof I5X+SI 1
IBX+Sil ~4L
bYTE I01081 tOI

-4100 tf Ot
0490toloo 03 04 08 OB 1F 08 04 01 Ol 00 00 00 00 00 00 00 • • • • i • ++ s • • • i i • •

So far, so m,oaci.
-t3

--------- 0004 0100 0000 0000 118E 0000 0001 0000 OOIC INC
-- - - - - - - - 00 0 4 01 00 0000 0000 I I SE 0000 0002 0000 001D CHP
-- - - - - - - - 0004 Of 00 0000 0000 118E 0000 0002 0000 0020 JHZ
t0470)OOOb

AX dX CX DK S P SP SI DI I P
81
9 I • 0003
0005

-I
047DLOOOB
047DIOOOD
0470>oofo
047DI0012
047D:0015
047DI0017
047DIOOIC
047D:001D
047DIOO20
047D 0022
0470>0027
047os0025

HDV AL s I bX+9 I I
CHP AL i Of IBX+BI]
J 5E 0 0 1 C
XCHG AL soi lBX+Sll
HQV I'BX+SI l iAL
HQV BYTE IO IOSI ioi
IkC SI
CHP 91 i0009
Jkz 0005
TEST BYTE I01081 so I
JkZ 0000
JHP 0028

-13
AX B X DK DX SP bP SI DI I I'

AL r I'BX+8 I 1
AL OIIBK+Slc
001C

-- - - 8 - APC 0004 0100 0000 0000 119E 0000 0002 0000 0005 HDV
-- - - 8 -APC OOOBof OO OOOo Oooo 119E Oooo oOO2 0000 OOaQ QHP
-- - - - - - - - 00 0 8 0 100 0000 0000 119E 0000 0002 0000 0010 J5E
s 047D I oof 2

• DIGITAL RESEARCH
6-30

C0$$curreur CP/M-86 UuhYier Guide 6.5 DDT-S6 Sample S$$$$ie$$

Sure enough, it's comparing the third aud fourth clemente of the list.
Rdoad program.

-eeoi t
BTART END

CB 047D$0000 0475$002F
DB 0480$0000 0480$010F

047D$0000 NOV
0470$0003 NOV
047D$0008 NOV
047D$0005 NOV
047D $000D CNP
047D$0010 JBE
0470$0012 XCHQ
047D)001,5 NDV
047D$0017 NOV
0478$001C INC
0470 001D CNP
0470$0020 JNZ

81 $0000
BX $0100
BYTE E01081 $00
AL $LBX+81)
4L >0115X+811
001C
AL $0II 5X+811
CDX+81) $AL
BYTE 101081 101
81
51 • 0008
0005

- el $/
047D:001D aaP tx $7
047D:0020

T+ 1t ouf
-d$28
+0475$0028

8 DICH'hL RESEARCH
6-31

Cosamsnt CP/M-86 Uilies Gage6S DDT' S smpk Sssuaa

See if liat is sortecL
- dI OO r I 0 F
0480'0100 Oi 03 04 04 OB 08 05 IF 00 00 00 00 00 00 OO QO I s • • • • < • • • • • • t • •

Locks better; let'4 inst' patch in disk Gie. To do due, wc
must read GMD Sc inciuciing header, so ere use R mmmancL

-csssc • sed
START

200010000

Cnntain header, so cOde Starte at Soh.soh bye
-ISO
2000>0080 hQV
2000>OD83 hOV
2000c0086 hQV
2000s0085 hQV
2000cOOSQ ChP
200010080 JSE

2000c0082 XCHC

2000c0085 hQV
2000(0087 hDV
2000cOQSC INC
2000 • 0080 CRP
2000c0040 JNZ

BI ~0000

BX ~0100
5YTE t 01081 «00

AL st OK+BI 1
AL «01 t5X+et I
OQBC

ALtnl t e X+81l

tbX+Bl l >AL

BYTE t 01OBl i01

61
SI >0008

0085

hatall patch
-sed
200010080 esF • I i7

Write file back to disk. (Length of Se assumed to be unchangsd
since no iength specifnxi.)

QSd tl • sed

• DIGITAL EIE ARCH
6-32

Couerrnenr CP/M-86 Ut
» ries Guide 6.5 DDT-86 Sample Session

Reload file.
-crore

START END

CS 047D:0000 0470 > 0 02F

DS 0480:0000 0480 : 0 1 OF

Verify that patch was installed.

81 <OOOO
bX <0100
5YTE 101081 <00
AL <rbx~bll
AL <OI (5X<817
OO IC
AL <01ISX~SI 1
tbX~SI I <AL
5VTE IOIOS> <OI
61
BI <0007
0005

047D I OOOO IIDV
047D:0003 I IDV
047D sOOOB IIDV
047D:0005 PIDV
047D sOOOD CIIP
0 47D:0010 J 5 E
047D >0012 XCHG
047D:0015 NDV
047DsOO17 IIOV
047D 00 1C INC
047D >ooiD CHP
0 47D 0020 J N Z

Run it.
d <24I

Still looks good. Ship it!
-dIOO <I Oi'
odeo: oroo ox oo od od oe oe oe IF oo oo oo oo oo oo oo oo « ... , . . . „ . » >,

-c Zle
• 047Di0029

- dl OO pi OF
0480:0100 03 06 04 06 IF 06 04 Ol 00 00 00 OO 00 00 00 00 «« « «

, . . •

C

A>

End of Section 6

R DIGrrhL RE$EARCB™
6-33

Appendix A
Starting ASM-86

Syntax:
ASM86 filespec [$ parameters i

where

filespec is th e 8086 assembly source file (drive and filetype are optional).

parameters i s a one-letter type followed by a one. letter device fmm the table below.

Default fil e:

.A86

Parameters:

$Td where T = type and d = device

Table A-1. Parameter Types and Devices

TYPES: A H P S F

DEVICES:

A-P

X

X X X X

X X X

X X X

X X X

D

x = valid, d= default

SS DIGITAL RBSBARCH
A-1

h Starting ASM46

Valid Parameters

Except for the F type, the default device is the current default drive.

Table A-2. Parameter Types

Typic
A

H P S

X Y Z I

F

A-P

Table A-3. Device Types

controls location of ASSEMBLER source Ble.
controls location of HEX fde.
controls location of PRINT Rle.
controls location of SYMBOL 6le.
controls type ofhex output FORMAT.

Drives h- P
console device
printer device
byte bucket
Intel hex format
Digital Research hex formatD

• o/GlrhL RL%JLRCH

Cancumnt CP/M-86 Unlines Guide A Starting ASM-86

Table AA. Irtvocation Examples

RdsQltExampk

ASM86 IO Assembles file IO.A86 and produces IO.H86
IO.LST and IOSYM.

A SM86 I 0 i 4SM S 40 SZ A ssem bles fIIe IO.ASM on device D and produces

ASM88 IO S PY SX

IO.LST and IO.H86. No symbol 6!c.

Assembles file IO.A86, produces IO.H86, routes
hating directly to printer, and outputs symbols an
console,

Pradueea Digital Reaeardi hex format.

Produces Intel hex format,

ASM86 IO S FD

ABM86 IO SFI

End of Appe/tdix A

SS DIGITAL RE%ARCH
h-3

Appendix B

Intel Assembler
Mnemonic DiRerences &om ihe

The CPM 8086 assembler uses the same instruction runemonics as the Intel 8086
assembler except for explicitly specifying far and short jumps, calls, and returns. '&c
foIIowing table shaws thc four differences.

Table 8-1. Mneoaonic Differeaces

Mnemonic Functus

Intrasegmentshort jump:

Intersegment jump:

Intcrscgmcnt return:

Intcrscgmcnt call:

CP/M terat

JMPS JMP

JMPF JMP

RKTF RET

CALLF CALL

End of Appendix B

• DICITat REiRARCH

Appendix C
ASM-86 Hexadecimal Output I'on+at

ASM-86 produces machine code in either Intel or Digital Research hexadecimal
format. Mc Intel format is identical to the format dined by Intel for the 8086, The
Digital Research format is nearly identical to the Intel format, but Digital adds segment
information to hexadecimal records. Output of either format can be input to the
GENCMD, but the Digital Rcscarch format automatically provides segment idennfica­
tion. A segment is the smallest unit of a program that can be relocated.

Table C-1 dcfmcs the sequence and contents of bytes in a hexadecimal record. Each
hcxsdccima! record has onc of the four formats shown in Table C-2. An euunple of a
hcxadccimal record is shown below:

Byte number=) 0 1 2 3 4 5 6 7 8 9n
Contents= >: l l a a a a t t d d d . • .„... • c c CR LF

Byte

0
1-2
3-6
7-8
9-(n-1)
n-(n+1)
n+2
n+3

Table C-1. Hexadecimal Record Contents

Coatertts Symbol

record mark
record length
load address
record type
data bytes
checksum
carriage return
linc-feed

dd.....d

aaaa
tt

CC

CR
LF

C hSM-86 Output Format

Tahie C-2. Hexadecimal Record Formats

ForrrrutTyPe' Corr terrt

00 Dat a record . ll aa aa DT <data...) cc

01 En d-of-64 : 00000001 FF

Extended address
02 mark : 02 0000 ST ssss cc

03 Sta r t address : 04000003ssss iiii cc

record length-number of data bytes
checksum- sum of all record bytes
16-bit address
16-bit segment value
offset value of start address
data record type
segment address record type

sass
nil =)

DT
ST

It is in the de6nitian of record type (DT and ST) that Digital Research hexadeamal
format differs from InteL Intel defmes one value each for the data record type and the
•egment address type. Digital Research idcnti6es each record with the segment that
contains it, as shown in Table C-3.

• DIGrrhL RBSBARCH
C-2

Cannarrcnt CP/M46 Uti5ties Gmde C ASM46 On@mt Format

intel
Symbol V a l ue

Table C-3. Segment Record Types

Digital
Value Meaning

DT 00

ST 02

81H

82H

83H

84H

for data belonging to all 8086 segments

for data belonging to the CODE segment

for data belonging to the DATA segment

for data belonging to*e STACK sqpnent

for data belonging to the EXTRA segment

for all segment address records

for a CODE absolute segment address

for a DATA segment address

for a STACK segment address

for a E~lA segment address

85H

86H

87H

88H

End of Appendix C

• DIGrrAL RESEARCH
C-3

Appendix 0
Reserved Words

TabIc D-1. Keywords ar Rcscrved Words

Predet&ud Numbers

WORD D WOR D

LAST MOD

LENGTH N OT
LT PTR

OFFSET
OR
SEG
SHL

SHR
TYPE
XOR

AND
FQ
GE
GT

CODEMACRO
CSEG
DB
DD
DSEG
DW

Asse¹sbkr Directives

IF
IFLIST
INCLUDE
LIST
NOIFLIST

NOLIST
ORG
PAGESIZE
PAGEWIDTH
RB

RS
RW
SIMFORM
SAG
TITLE

EJECT

ENDIF

KSEG
EQ

Code-mucro Directives

DB
DBIT

DD
DW

BL
BP
BX

M OD RM SEGH X
N OSEGFIX RELB

8086 Registers

CL

CX
DH

KS
SI
SP
SS

DI
DL
DS
DX

Instruction Mnemonics — Scc AppcndisL' E.

E¹dof Appendie D

H DIGITAL RESEARCH
D-1

Appendix E
ASM-86 Instruction Suamzary

Table E-1. ASM-86 Instruction Smntnary

AAA
AAD
AAM
AAS
ADC
ADD
AND
CALL
CALLF
CBW
CLC
CLD
CLI
CMC
CMP
CMPS
CMPSB
CMPSW
CWD
DAA
DAS
DEC
DIV
ESC
HLT
IDIV
IMUL

Decrement

Descriptioe

ASCII adjust for Addition
ASCII adjust for Division
ASCH adjust for Muluplication
ASCH adjust for Subtraction
Add with Carry
Add
And
Call (intrasegment)
CaH (intetseipnent)
Convert Byte to Word
Clear Carry
Clear Direction
Clear Interrupt
Complement Carry
Compare
Compare Byte or Word (of string)
Compare Byte of string
Compare Word of string
Convert Word to Double Word
Decimal Adjust for Addition
Decimal Adjust for Subtraction

Divide
Escape
Halt
Integer Divide
Integer Multiply
Input Byte or Word
Increment
Interrupt
Interrupt on Overflow
Interrupt Return

Section

4.3
4.3
4.3
4.3
4.3
4.3
4.3
4.5
4S
4.3
4.6
4.6
4.6
4.6
4.3
4.4
4.4
4.4
4.3
4.3
4.3
4.3
4.3
4.6
4.6
43
4.3
4.2
4.3
4.$
4.5
4.S

INC

INTO
IRET

0 DIGITAL RESEARCH

Concurrent CP/M-86 UriL'rres Gee

Table E-1. (conrlrrued)

JA
JAE
JB
JBE
JC
JCXZ
JE
JG
JGE
JL
JLK
JMP
JMPF
JMPS
JNA
JNAE
JNB
JNBE
JNC
JNE
JNG
JNGE
JNL
JNLE
JNQ
JNP
JNS
JNZ
JO
JP
JPE
JPO
JS
JZ

LDS

Sec6orr

4.$
4.5
4.$
4.5
4.$
4.5
4.5
4.$
4.5
4S
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4,5
4.5
4.5
4.5
4.$
4S
4Q
4.2
4.2
4.2
4.2

Jump an Above
Jurnp on Above or Equal
Jump an Below
Jump on Below or Equal
Jump au Carry
Jumpaa CXZero
Jump au Equal
Jump on Greater
Jump on Greater or Equal
Jump on Less
Jump on Less or Equal
Jump (intrasegment)
Jump (in~ cut)
Jump (8-bit displacement)
Jump on Not Abave
Jump on Not Above or Equal
Jmnp on Nat Below
Jump on Not Below or Equal
Jump on Not Carry
Jump onNot Equal
Jump on Not Greater
Jurnp on Not Greater or Equal
Jump on Not Lear
Jump on Not Less ar Equal
Jump an Not OverSow
Jump an Not Parity
Jump on Not Sign
Jump on Not Zero
Jump on Over6ow
Jurnp on Parity
Jump on Parity Even
Jump on Parity Odd
Jmnp on Sign
Jurnp an Zero
Load AH with Hags
Load Pointer into DS
Load Effective Address
Load Pointer into ES

• DIGITAL RESEARCH

Concurrent CP/M-S6 Utiities Guide

Table E-1. (centsnued)

LOCK
LODS
LODSB
LODSW
LOOP
LOOPE
LOOPNE
LOOP NZ
LOOPZ
MOV
MOVS
MOVSB
MOVSW
MUL
NEG
NOT
OR
OUT
POP
POPF
PUSH
PUSHF
RCL
RCR
REP
RET
RETF
ROL
ROR
SAHF
SAL
SAR
SBB
SCAS
SCASB
SCASW
SHL
SHR

Descrrptiorr

Uxor. Bus
Load Byte or Word (of string)
Load Byte of string
Load Word of string
Loop
Loop While Equal
Loop While Not Equal
LoopWhile Not Zero
Loop While Zero
Move
Move Byte or Word (of suing)
Move Byte of smug
Move Word of suing
Multiply
Negate

Or
Output Byte or Word
Pop
Pop Hags
Push
Push Hags
Rotate through Carry Left
Rotate through Carry Right
Repeat
Return (intrasegment)
Return (intersegtnent)
Rotate Left
Rotate Right
Stare AH into Hags
Shift Arithmetic Left
Shift Arithmetic Right
Subtract with Borrow
Scan Byte or Word (af string)
Scan Byte of string
Scan Word of smng
Shift Left
Shift Right

4.4
4.3
4.3
4.3
4.3
4.2
4.2
4.2
4.2
4.2
4.3
4.3
4.4
4.5
4.5
4.3
4.3
4.2
4.3
4.3
4.3
4.4
4.4
4.4
4.3

Section

4.6
4,4
4.4
4.4
4.5
4.5
4,5
4.5
4.5
4Z
4.4

Not

P DIGrrhL RES EhRCH

Caocmrent CP/M-B6 UuTiYiss Guide

Table E-1. [continued)

M¹e¹o¹ ic

STC
STD
STI
STQS
STGSB
STOSW
SUB
TESl'
WA1T
XCHG
XLAT
XOR

Dsscriptio¹

4.6
4.6
4.6
4.4
4.4
4.4
4.3
4.3
4.6
4.2
4.2
4.3

Sct Carry
Set Direction
Sct interrupt
Store Byte or Word (of string)
Store Byte of string
Store Word of string
Subtract
Test
Wait
Exchange
Translate
Exclusive Or

&sd ofhpps¹dix 5

Appendix I'
Sample Program APPF.A86

CP/II ASIISB 1 Oa SOURCEs APPP ABB Te rui n e l l n r u t / Out ru t

ti t I • 'Ter%in%I lnrut/Outrut '
Paesslxk 50
Pa • suidth 79
stuf o ru
I
I%%keek Torainai I / O subroutines k kkkk k k k

I
I The follouind subroutines
I are ino ludsd:

I CONSTAT ­ ooosol • st%su •
CONIN ­ CoOSole inrut
CONOUT ­ oonsa I • outrut

I
I
I
I
I
I
I
I
I
I
I
C9EG
I
J1P 'tab I

k kkk k k k k k k k k k k k k k

k Ju ur t a b le s
%%%%%%fee%keek%%

Each routine resuires CONBOLE NUBBER
in the SL resister

• tart at OOd • See%ant

0000 E80800
0003 E91900
OOOS ESZSOO

oohsta't
eonin
oonaut

J • P

J1P

J1P

%kkkk%%kkkkkkfkkkkkkfkk

I/O Port hu1ber •
k kkkkk k k k k k k k k + k k k k k k k k

Ustiag F-1. Sample Program hPPFJL86

PDICITAL RESEARCH™
F-I

Conclrrr«at CP/M-86 UtiTisirn Gnid«

CP/h ABYSS 1 >OS SOUBCE: 4PPF ISR T • reine l Innut/Out Put PSSE

'I

I Tsraln • 1 l l

001.0
0011
OOL1
0001
0002

Lnttnt 1 • 1u
indat • I
cutdnlal s1u
ra Sdr innaski a uu
re ndr autsass 1 • 1u
I
5

10h
1 ih
1 lh I
Oih
02h I

• 1ll

input status pert
inrut Pert
a utput p a r t
tnrut raadr Mas'I
outru!, readr Mask

Ts rain el

OOLZ
0013
0013
0004
0008

lnataLZ e'1U

indata2
autdate2
readvinnaskk
r • • dreutsask2
I
I

12h I
13h I
l 3h I
Odh I
O eh I

lhPU'I sia'Lus Ps r't
inPUL Pu r'L
cutpu'5 pcr'I
inrut readr Mask
outnut r • adr Mask

a1u
• 1U

• 1u
• 1U

aeeseeensnn
e CO!IBT4T •
saesaeeaenn

I
I
I

Entrrs SL - r si
Exit I 4 L raf

n tsraln • 1
= 0 i t n e t

orth

nn
re • dr

readr

l0000 E2
000E eso0
0010 BII17
OOLZ EC
0013 224708
OOLS 7402
lOOIB BOFF

0008 33EBBFOO
censtat l
Push bn ! nai l Ckters inai
can • '5 • 'Lll
• ush dn
• n v d h i O
Mev dlrinstatuatab (BX7
ln • 1 r d x
• nd • 1Iraadrlnaasktab [bn1
Jz cans t a t nut
Mnv el IOf fh

I r • ad • tutus Port

Listing F-1. tc ontiLLLIed)

• DIG!T4L RSSEIRCH
F-2

Coxreonene CI /M-86 Utihtiea Guide

PACK 3CP/!I 49IIBB 1 09 BCURCEr APPF 488 Tt rei n a l l n r u t / Cutrv t

nuns'tutuutr
rar dx I ru v bx ! ar al > al ! r • t0014 5ASBOACOC3

I

I
I ttaun f r uf

t CCI!lhi •
I

001F 53EB2800
0023 2897FF
0028 74FB
0028 52
0028 BBOO
0028 BA8702
002E EC
002F 247F
0031 5455C3

I
I
I
I
aunint
eon in la

Entrr r BL - ree = t • t u i n a l n a
Exist A L - ru e - rea d ahauaat • r

rush hx ! u • 11 aht • rainel I
u • ll aanatatl I t l • us sta'tuu
Jx a u n l e l
rush dx
eav dh i0
eav d l i i ndatatah MK)
i n e l <d u
and a l i 7 f h
• sr du I ror bx I rtt

I read uh • ranter

I esrlr rarltr bit

tttttttttt

t CONOUT
Ht t ttttttI

I
Entrrr 6L I' • I = tareinal na

4L - raa - uharauttr tu rrint

0034 S3EB1400
0038 52
0038 SO
0034 8600
003C BA17

I

I
I
uunuut> • ush hx

rush dx
rush ax

iOeuv dh
• au d l

t

>instatustah SBX1

I eal l u k t a r e i na l

I teat states

uanauti
idx• I003E KC

Listing F-1. (Caatintmtl)

R DIGITAL RESEARCH
F-3

Coacacrcrtt CP/M-S6 UtiBrics Guide

CP/II ABII88 1 • 08 BOURCE< APPF • 488 T • cni na l I n » a t /Dutout

003F 224708
0042 74FA
0044 58
OO45 8457od
0048 EE
0048 545805

coo ax

and a l c ceadroutaashtab 1'BX7
J» o e nout l

I ucit • bvto
aeo dlcoutdatatab (BX7
o ut d r c s l
re» d» I ro n b» ! ro t

I
I
I +%++++t++++++t
I + OXTERIIIIIAL +
I +0+tf +to o+t++t

I
I Entrrr SL - red o I • rain%i ne

oht • cain • lr
o r bl c b l
Jz e rr a r
oar bl el%neth ih • t • tustab + 1

Jne • rrer
doo b l
nov bh iO
ret

004C OAOB
004E 7404
OOBO eOFBO3

0058 7305
0055 FECB
OO57 8700
0058 C3

I
• rror< nor bx I roe bx I ret I do nothind
I
It%tee%et%%tete ond of oodo sod%ant est%et%etta%tee
I
I %%%%%%%t%%t%%%%%

I • Data • ofneht

0054 5855C3

%%%%%%%%%%%%%%%%

deer

eetttee%%%%eetttettt%%%%t%

t Data foc cash terainal %
tttttttttee%%tetttttttetee

Liatirtm F-1. (COntinrred)

8 DIGITAL 88$EARCH

Cancssssuat CP/M-86 UciSIieu Chide

CP/N ASNBB 1,OB ROURCEs APPF ABB Tsreinal Inset/Outrut PACE 5

0000 1012
0002 1113
0004 1113
SOON 0104
0008 02OB

I hs'La'La%tab 4b
104 • 'Let • b db
%usda L • Lab d b
ra • 4 rinhasktab 4 b
readrauteaektab db

in%tati s inst at2
In d at a I sin d at a2
Sut4 • 'L • I laut4 • ta2
re • dr ines% k 1 s read r lnese k2
readruuteaeki s rsadvautuask2

I%%%%%%%%%%%%%%% ah d

and
u r I l 1 • %%%%%% %%%%%%%%%%%%%%%%

ENO OF ASBENBLY NBNSER OF ERRQRSs 0

Listing F-|, (cotltinIMd)

Zsd of APPBNdh' F

a OIGtrAI. SRSBASCH­

Appendix G
Code-macro De6jnition Syntax

(codemacro>:: = CODEMACRO <name> [<fotma1$1ist>]
(listofmacro$directives>]
ENDM

(name>:: = IDENHFIER

(forma1$1ist>:: <parameter$descr>[[,<parameter$descr>)]

(parameter$descr >; : (for m $name>:(speci6er$1etter>
(modi6er$1etter> [((range>)]

~ sr 6 e r $~ r> :: = ~ I C ID I E IMIRI S I ~
(modi6er$letter>;: = b f w (d f sb
(range>:: = (single$range> f(double$range>

(single$range>:: = REGISTER ~ NUMIERB

(double$range>:: = NUMBERB,NUMBERB ~ NUMBERBPEGISTER (
REGIS'IKR,NUMBERB ~ REGISTKR+EGISTER

(I istofmacro$directives>:: = (m acro$directive>
((macro$directive>)

<macro$directive>:: = (db> ((dw>] (dd> [(seg6X>J
cnoseg6x> I (modrm> [(relb>
~ <relw> ((dbit>

• DIGITAl RESEARCH

Ccxsaarmr CF'/M-96 UtiTisiss GaideG Ccdoaaaero Syntax

<db>: : = DB NUMSERBI DB (form$name>

(dw> : : = DW NUMBER%) DW <fortn$narne>

<dd>; : = DD <foxm$natne>

<seg6x>:: = SEGHX (form$name>

<noses6x>: : N C 5 KGPlX (form$name>

<tnodrm> i : M OD R M NUh6KR7,<form$name>I
MODRM (formSname>,(fonn$mne>

(relb> : : = RKLB (form$name>

<relw>: : = RELW <form$name>

(dbir> : : = DBX7 (6eid$descr>{,(6eldSdeax>)

< fidd$d e> : : = NUMBKRIS{NUMBKRB))
NUMBER15 ((forni$name> (NUMBERS))

< formSn arne>:: I D ENTK K R

NUMSERB is 8 bits
NUMSERW is 16 bits
NUMBER7 are the values 0, 1..., 7
NUMBKRIS are the values 0, 1, , 1$

Esd of Appendix G

G-2

Appendix H
ASM-86 Error Messages

ASM-86 produces two types of error messages: fatal errors and diagnostics. Fatal
errors occur when ASM-86 is unable to continue assembling. Diagnostics tnessages
report problems with the syntax and semantics of the program being assetnbled. The
following messages indicate fatal errors ASM-86 encounters during assembly:

MG FILE
DISKETTE FULL
GIRECTGRY FULL
DIBKETTE REAG ERRGR
GeNVGT LLGBL­
SYMBGL TABLE GVERFLGR
PARAMETER ERRDR

ASM-86 reports semantic and syntax errors by placing a numbered ASCII tnessage in
front of the erroneous source line. If there is more than one error in the line, only the
first one is reported. Table H-l summarizes ASM-86 diagnostic error messages.

Table H-1. ASM-86 Diagnostic Error Messages

Number
ILLEGAL FIRST ITKM

MISSING PSEUDO INSTRUCTION

ILLEGAL PSEUDO INSTRUCTION

DOUBLE DEFINED VARIABLE

DOUBLE DEFRAUD LABEL

UNDEFINED INSTRUCIlON

GARBAGE AT END OF LINK- IGNORED

OPERANDS MISMATCH INSTRUCTION

ILLEGAL INSTRUCTION OPERANDS

% DtnrthL RESEARCH
H-1

Concuaaeat GP/M-$6 UdhYics CuideH hShI-86 Eaor Mcsaeiea

Table H-1. (coatmuod)

Nosher

9
10

11
12

13

14

15

16

MISSING INSlRUCIION

UNDEFINED EIZMRNT OF EXPRESSION

ILLEGAL PSEUDO OPERAND

NESTED IF ILLEGAL - IF IGNORED
ILLEGAL IF OPHUAD - IF IGNORED

NO MATCHING IF FOR ENDIF
SYMBOL ILLEGALLY FORWARD REFERENCED­
NEGLKCIED
DOUBLE DEFII~ SYMBOL - TREATED AS
UNDEFINED
INSTRUCIION NOT IN CODE SEGMENT

HLK NAME SYNTAX ERROR
NESTED INCLUDE NOT ALLOWED

ILLEGAL EXPtuKSION EUQHKNT
MISSING TYPE INFORMATION IN OPERAND(S)
LABEL OUT OF RANGE

MISSING SEGMENT INFORMATION IN
O PEEVING)
ERROR IN CQDEMACRO BUILDING

17

18
19

20
21
22

23

End of Appendix H

• DJGffiu. REsEARCH
H-2

Appendix I
DDT-86 Error Messages

Table I-I. DDT-86 Error Messages

AMBICUOUB OPERAND

CANNOT CLOSE

DIBK READ ERROR

DIBK hlRITE ERROR

INBUFFICIENT MEMORY

An attmnpt was made to assemble a command
with an ambiguous operand. Precede the operand
with the prefix BYE or %'ORD.

'Ihe disk file written by a W command cannot bc
closed. This is a fa tal error that terminates
DDT-86 execution. Take appropriate action after
checking to sce if thc correct disk is in the drive
and that thc disk is not wri~ r o tccted.

The disk fiie specified in an R command could not
be read properly. 'Ibis is usually the result of an
uncctpected end-of-61e. Correct the problem by
regeneratiug the H86 6le.

A disk write operadon could not be successfully
performed during a W command, probably due
m a full disk. Erase files or obtain a disk with
greater capacity.

There is not enough memory to load the fiic
specified in an R or E command.

h request far memory during an R command
could not be fu16lled. Up to eight blocks of
memory can be allocated at a given titne.

MEMORY REQUEBT DENIED

8 DrorrhL RESEARCH
I-1

I DDI'46 Irrcr h%asssss

Yah' I-1. (continued)

Meaning&ror Message

NO FILE

NO SPACE

Ac fiic specificd in an R or E command could not
bc found on thc dialr.

There is no space in the directory for the fil being
written by a W command.

Thc value placed in memory by a FN, Sct, Move,
or Assemble command could not be read back
correctly, indicating bad RAM or attempting to
write to ROM or nonexistent memory at the
indicated location.

VERIFY ERROR AT s r a

Esd of Appendix 1

• DKrrhl RHSRARCH
I-Z

Index

"at" s~ 2 - 2
20-Bit Address

speciRcatioa of in DDT-86, 6-3
8086 Registers,D-1

B (Slack Compare) Command

BDOS interrupt instruction, 6-13
binary constant, 2-3
bracketed expressions, 2.16
BYTE, 2-5, 2-7, 6-18

(DDT-86), 64

64, 6-16, 6-18
A (Assemble) Command (DDT-86),

AAA, 4-6
AAD, 4-6
AAM, 4-6
AAS, 4-6
ADC, 46
ADD, 4-6
address conventions in ASM-86, 3-1
address expression, 2-16
allocating storage, 3-$
alphanumcrics, 2-1
AND, 48
apostrophe, 2-2
arithmetic instructions, 4-5
arithmetic operators, 2-8, 2-10
ASCII character set, 2-1
ASM-86 character ser, 2-1
ASM-86 error messages, 1-3, H-1
ASM-86 61etypes, 1-2
ASM-86 instruction set, 4-1, E-1
ASM-86 operators, 2-8
ASM-86 output files, 1-1
assembler directives, D-1
assembler operation, 1-1
assembly language source 8)e, 1-1
assembly language statemeuta, 2-16
assembly language syntax, 6-18
asterislt> 2-2

CALL, 4-13
carriage return, 2-2
CBW, 4-6
character string, 2-3
CLC, 416
CLD, 4-16
CU, 416
CMC, 416
CMP, 4-6
CMPS, 4-10
Code Segment, 2-7, 3-2, 6-16
code-macro dircctivcs, 5-1, 5-2,

CodeMacro directive, 5-2
colon, 2-2
conditional assembly, 3-4
console output, 14
constants, 2-3
control transfer instrucnons, 413
creation of output files, 1-3
CSEG direaive, 3-2
CWD, 4-6

5-5, D-1

I otGrrAL RESFARcfP'
Iadsx-]

6-5, 6-17

(ASM-86), 3-2

D (Display) Cammand (DDT-66),

DAA, 4-6
DAS, 4-6
data a)location directives

data segment, 2-7, 3-1) 3-2| 6-16
data transfer instructions, 4-3
DB directive (ASM-86), 2-7, 3-8
DB directive (code-macro), $-6
DBIT directive, 5-8
DD directive (ASM-86), 2-7, 3-8
DD directive (code-macro), $-8
DDT-86 command scunmary, 6-2
DDT-86 error messages, I-1
DDT-86 operation, 6-1, 6-3
DDT-86

tenninatian of, 6-3
DEC, 4-7
default segment values, 6-16, 6-17
delimiters, 2.-1
device name, 1%
device types (ASM-86), h-2
DI register, 4-10
diagnostic error messages, H-1
Digital Research hex format, 1-2, C-1
directive statement, 2-18, 3-1
directives (ASM-86), 2-16
DKV, 4-7
dollar-sign character $, 14, 2-2
dollar-sign operator, 2-14
DSEG Directive (ASM-86), 3-2
DW Directive (ASM46), 2-7, 3-7
DW directive (Code-Macro), 5-8
DWORD, 2-S, 2-7

(DDT-86), 6-6, 6-16
E (Load for Execution) Command

effective address, 3-1
FJECT directive, 3-10
END directive, 3-5
endef-line, 2-16
END IF directive, 3-4
Ending ASM-86, 1-$
EndM directive, 5-2
EQ, 2-9
EQU directive (ASM-86), 2-7, 3-5
error condition, 1-3
ESC, 4-16
ESEG Directive (ASM-86), 3-3
exclamation paint, 2-2
expressions, 2-16
extra segment (RS), 2-7, 3-1,

3-3, 4-10

F (FN) Command (DDT-86),
6-6, 6-17

F parameter, 1S
fatal ertor, H-1
Sle name extensions, 1-2
f(sg bits, 4-2, 4-S
Flag Name hbbreviatians, 6-1S
flag registers, 4-2
formal parameters~ 5- 1

G (Go) Conunand (DDT-66),
6-7, 6-17

GT, 2-9

le des-2

H (Hexadecimal Math) Command
(DDT-86), 6-8

hexadecimal format, 1-1
HLT, 4-16

I (Input Command Tail) Command

identifiera, 2-4
IDIV, 47
IF Directive, (ASM-86), 3X
IFLIST, 3-11
IMUL, 4-7
IN, 4-3
INC, 47
INCLUDE Directive, (ASM-86), 3-5
lnitialired storage, 3-6
instruction statement, 2-16, 2-17, 3-2
INT, 4-13
Intel hex format, 1-5
INTO, 4-13
invalid parameter, 1-3
invocation examples (ASM-86), A-3
invoking ASM-86, 1-2
IRET, 4-13

(DDT-86), 6-8

JNA, 414
JNB, 4-14
JNE, 4-15
JNG, 4-15
JNL, 4-15
JNO, 415
JNP, 4-15
JNS, 4-15
JNZ, 415
JO, 4-15
JP, 415
JS, 415
JZ, 415

keywords, 2-5, 24, D-1

6-16, 6-18
L (List) Command (DDT-86), 6-8,

labds, 2-7, 2-17
LAHF, 4-3
LDS, 4-3
LE, 2-9
LZA, 4-3
LES, 4-3
line-feed, 2-2
LIST, 3-11
location counter, 34
LOCK, 4-17
LODS, 4-10
logical instructions, 4-5
logical operators, 2-8, 2-9
logical segments, 3-1
LOOP, 4-15
LT, 2-9

JA, 4-13
JB, 4-13
JCXZ, 4-14
JZ, 414
JGI 4-14
JL, 4-14
JLE, 4-14
JMP, 414

P DIClrht. RESEARCH
Index-3

M (Move) Conunand (DDT-86),
6-9, 6-17

MAC, 5-1
~ 5-1
nnnus) 2-2
mnemomc) 2-17
mnemonic differences, 4-1 8
mnemonic differences from the Intel

assembler, B-1
mnemonics) 4-1
mod Geld, 5%
modiGers, 54
MODEM directive (code-macro), 5-6
MOV, 44
MOVS) 4-11
MUL) 4-7

1-3) '14

operator precedence, 2-14
operators) 2 8
optional run-tune parameters,

OR, 4-8
order of operations, 2-14
ORG Directive (ASM-86), 3R
OUT, 4-4
output Eiles, 1-1, 1-2

PAGESIZE directive (ASM-86), 3-10
PAGEWIDTH directive

(ASM-86), 3-10
parameter list, 1-3
parameter types (ASM-86), A-2
period) 2 2
period operator, 2-14
plus, 2-2
POP, 44
predeGned numbers, 2-5
preGx, 2-17, 4-11
PreGx instructions, 2-17, 4-12
preGx mnemonics, 4-11
printer output, 1-5
FIR operator, 2-14
PUSH, M

name Geld, 2-18
NBG, 4-7
NOIFLIST, 3-11
NOUST, 3-11
nonprinting characters, 2-1
NOT, 4-8
number symbols, 2-8
numbers, 2-8
numeric constants, 2-3
numeric expressions, 2-16

QI and QO (Query VO) Commands
(DDT-86), 6-90

offset, 2-7
ofhet value, 3-1
operands, 4-1

• nrcrraL aEssattcH™
ladeaH

6-10) 6-16
R (Read) Command (DDT-86),

radix indicators, 2-3
range spccifiers (code-macro)) 54
RB directive (ASM-86), 3-9
RCL, 4-8
RCR, 4-8
register memory field, 5-6
registers, 2-5
relational operators, 2-8, 2-10
RELB dircctivc (code-macro), 5-7
RELW directive (code-macro), 5-7
REP, 4-12
reserved words, D-l
RQL, 4-8
ROR, 4-8
RS directive (ASM-86), 3-8
run-time options, 1-4
run-time parameters, 1.4
RW directive (ASM-86), 3-9

semicolon, 2-2
separators, 2-1
shift instructions, 4-5
SHL, 4-9
SHR, 4-9
Sl register, 4-10
SIMPORM directive (ASM-86), 3-10
slash, 2-2
space, 2-2
special characters, 2-1
speclficrs) 5" 3
SR (Search) Conunand

(DDT-86), 6-12
SSEG Directive, 3-3
stacir segulcnt) 2 7) 3-1) 3-3
starting ASM-86, 1-2, A-1
starting DDT-86) 6-1
statements, 2-16
STC, 4-17
STD, 4-17
STI, 4-17
STOS) 4-11
string constant, 2-4
stringoperations, 4-10
SUB, 4-7
symbol table, 5-1
symbols, 2-4, 2-6, 3-5

6-11, 6-17
S (Sct) Coinmsnd (DDT-86),

SAHF, 4-4
SAI„4-8, 4-9
SAR, 4-9
SBB, 4-7
SCAS, 4-11
SEGPlX directive (codh-macro), 5-5
segment, 2-7
segment base values, 3-1
segment directive sratement, 3-1
segment override, 2-8, 2-10, 2-13
segment record types, C-3
segment start directives 3-1

T (Trace) Command (DDT-86),

tabs, 2-1
TEST, 4-9
llTLE dirccnve (ASM-86), 3-9
tokens) 2-1
type 2-7
typc2segment value, 6-16

6-12, 6-16

• DIGITAL RESEhRCH
Index-5

U (Untrace) Command (DDT-86),

unaqr operators, L13
underscore, L2

6-13, 6-16

V Pfalue) Command (DDT-86), 6-i3
variable manipulators, 2-8, 2-10, 2-i3
variables, 2-7

W (Write) Command (DDT-86),

WALT, 4-17
WORD, 2-5, 2-7, 6-18

6-14, 6-16

X (Examine CPU State) Command
(DDT-86), 6-14, 6-16

XCHG> ~
XLAT> 4-4

Iadcx<

