il
DIGITAL
RESEARCH"

Concurrent CP/M-86™

Operating System

Programmer’s Utilities Guide




COPYRIGHT

Copyright © 1983 by Digital Research. All rights reserved. No part of this publication
may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated
into any language or computer langusge, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manusl or otherwise, without the prior written
permission of Digital Research, Post Office Box 579, Pecific Grove, Californiz, 93250.

DISCLAIMER

Digital Rescarch makes no representations or warranties with respest to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness for
any particular purpose, Further, Digital Research reserves the right to revise this publi-
cation and to make changes from time to time in the content hereof without obligation
of Digital Research to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research. ASM-86, Concurrent CP/M-86,
DDT-86, and MAC are trademarks of Digital Research. Intel is a registered trademark
of Intel Corparation. MCS-86 is a tradernark of Intel Corporation. Z80 is a registered
wademark of Zilog, Inc. IBM Personal Computer is a tradename of International
Business Machines.

The Concurrent CP/M-86 Programmer's Utilities Guide was prepared using the
Digital Research TEX Text Formatter and printed in the United States of America,

First Edition: March 1983



Foreword

The Concurrent CPIM-86™ Programmer’s Utilities Guide documents the 8088 and
8086 assembly language instruction set, rules for use of the Digital Research ASM-86™
assembler, and rules for useof the Digital Research dynamicdebuggingtool, DDT-86™.

Section 1 contains an introduction to the Diigital Research assembler, ASM-86, and
the various options that can be used with . Through one of these options, ASM-86 can
generate BO86 machine code in cither Intel® or Digital Research format. Appendix A
describes these formats.

Section 2 discusses the elements of ASM-86 assembly language. It defines the ASM-86
character set, constants, variables, identifiers, operators, expressions, and statements.

Section 3 describes the ASM-86 housekeeping functions, such as conditional assem-
bly, multiple source file inclusion, and control of the listing printout format.

Scction 4 summarizes the 8086 instruction mnemonics accepted by ASM-86. These
mnemonics are the same as those used by the Intel assembler, except for fourinstructions:
the intrasegment short jump, intersegment jump, return, and call instructions. Appendix B
summarizes these differences.

Section 5 discusses the Code-macro facilities of ASM-86, including Code-macro
definition, specifiers, and modifiers, and nine special Code-macra directives. This infor-
mation is also summarized in Appendix G.

Section 6 discusses DD'T-86, the Dynamic Debugging Tool that allows the user to

test and debug programs in the 8086 environment. The section includes a sample
debugging section.



Concurrent CP/M-86 is supported and documented through four manuals:

B The Concurrent CP/M-86 User's Guide documents the user’s interface to Con-
current CP/M-86, explaining the various features used to execute applications
programs and Digital Research urility programs.

® The Concurrent CP/M-86 Programmer’s Reference Guide documenis the appli-
cazions programmet’s interface to Concurrent CP/M-86, explaining the internal
file scructure and system entry points, information essential to create applications
programs that run in the Concurrent CP/M-86 environment.

B The Concurrent CPIM-B6 Programmer’s Utilities Guide documents the Digital
Reseerch utility programs programmers use to write, debug, and verify applica-
tions programs written for the Concurrent CP/M-86 environment.

B The Concurrent CP/M-86 System Guide documents the internal, hardware-
dependent structures of Concurrent CP/M-86.



Table of Contents

1 Introduction to ASM-86

1.1 AssemblerOperation .. ... .. .... ... ...t aan 1-1
1.2 Oprional Run-time Paramerers . . . . .. .o v v v v n w v v 0 s s .14
1.3 Ending ASM-86 . . . . . .. ... ... e . 1-5
2 Elements of ASM-86 Assembly Language
2.1 ASM-86CharacterSet . . . v v v v v v v s s v v bt 2-1
2.2 Tokensand Separators . . . . .- . ... i e 2-1
23 Belimiters .. ... .. 0 e e s i e e e e 2-1
24 COnSMaNIE . . . . vt v v v v aaa m it en e e e 2-3
241 NumericConstants . . .. . . .o oo v ot v v s s o v uun 2-3
242 CharacterStrings . . . ... ... ... i 24
25 Identifiers . . . . .. 0 vt e e e e e e e e 2-4
251 Keywords . . . . . . oot it i e e e e 2-5
2.5.2 Symbaols and Their Attributes . . . . . . ... . oo, 2-6
26 Operators . . . . oo ot v v oo 2
2.6.1 OperatorExamples . ............. Cee e 212
2.6.2 OperatorPrecedence . ... . v v vt vt asr 0.4 2-14
27 Expressions ... ......00000¢:.. e s e a e 216
28 Statements . . ... i v v e e i s e s 216
3 Asscmbler Directives
31 Imroduction . . . . . .. . ..o e i e e e e 341
3.2 SegmentStartDirectives . . . . . . . ... i e e e 31
3.2.1 TheCSEGDirective . . . . . ... ¢ i v i i o amannann 3-2
322 TheDSEGDirectve . . . . . . . v ot v i vt vue s n oo 32
3.2.3 TheSSEGDirective . . .. . ... . c .ot ncecnnnn. 33
324 TheEBSEGDirective . . . . . i .t i i v it it iaaanaans 33
3.3 The ORG Diractive . ...... B T T T
34 ThelF and ENDIF Directives . . « . v » + = - « e e s 34
3.5 TheINCLUDEDIrective . . « -« « v« s e o v v vt s s n s s s oo 35
36 TheENDDirective . ... ... ¢c oo vt mmenncnnnaenans 3-5
37 TheEQUDINeCHYE . . - . v v v v u v ottt o v v s o o a v s aun 3-5
38 TheDBDIirective : . . v v v v v m s v vt ia sttt e et naan 3-6
3.9 TheDWDIrechve . . - « & ¢ & o o v v v v e et v vt s me e n s o 3-7
310 The DD DIrective . . - - & & & 4 v 4 v v e oo v s v s s oo v v s e 3-8



Table of Contents (continued)

311 The RS DHrective . . . . . . i v i e e e e e m e e e e e 3-8
312 The BBDHIECHVE . . . & v v v v v vt v ot e et t et s an 3-9
313 The RWDIrectve . . . & o i i i i i v e e et e e e et e e e 39
314 The TTTLEDITECHVE . . . . @ v i v v v e vt e et a s e et nnn e 3.9
315 ThePAGESIZE Directive . . . . . . . . . s i it i i e e m e n 3-10
3.16 The PAGEWIDTHDirective . . . . . . . . v o v v v i v v v e e 3-10
317 TheBJECTDIrective . . . v v v v v v v v vt e et e emae s 3-10
318 TheSIMFORM Directive . . . . v v vt o bt v vt e et e vt an 310
319 The NOLISTand LIST Directives . . . . « . . v« i v v v v v v v v 3-11
3.20 The IFLIST and WNOIFLIST Directives .« . . . v v v v v v v v v v vt 3.11
The ASM-86 Instruction Set
41 Introduction . . . . . . . . ... e e e e e e e e 41
42 DataTransferInstructions . . . ... .. . ¢ ¢t i v i o r e u e 43
4.3 Arichmetic, Logical, and Shift Ingtructions . . . . . ., ... ... ., 4.5
44 Stringlnsoructions . . . . . . . . . ... i e i i e e ee e 4-10
4.5 Control TraneferInstructions . . . . . . . .. v v o v v v e v o nun 412
4.6 Processor Controllnstructions . . ... ... ... ....c0eu. 416
4,7 MnpemonicDifferences . . . . . .. it e 4-18
Code-macro Facilities
5.1 Introductionto Code-m=acIos . & - - & ¢ & v c v v v v et e m a0 o 51
52 SPOGIAEIE + . v h e e e 5-2
53 Modififers .. . v v i v it i e e e e e e e 54
54 RangeSpecifiess . .. ... ... ... ... .. . i, 54
5.5 Code-macra Directives - . . v v i v v v v vt e e e e, 5-5
5.5, SEGEIX . ... .t e e e e a e e 5-5
5.5.2 NOSEGFIX .. ...ttt it vttt st mnaaseeens 5-5
5.5.3 MODRM . ... @it it e e e e e e 5-6
554 RELBand REL . .. .. . i i i i it i en et e 5-7
555 DB, DWandDD ... ... ... i i 3-8
556 DBIT .. . i i ittt i ittt et e e e e 58

vi



Table of Contents (continued)

6 DDT-86
61 DDT-86O0peration . ...... ..ot weereens e 6-1
6.1.1 StartingDDT-86 . . .. .. ... ' ctusnoenarnnas 6-1
612 DDT-86Command Conventions . . . . « v s v v s v s s 0 v 6-1
6.1.3 Specifyinga20-BitAddress . .. ... ... ... ....... 6-3
6.1.4 TerminatingDDT-86 . . .. . . ..« ci v i cnonnnann 6-3
6.1.5 DDT-86Operatonwithlnterrupts . . . ... ......... 6-3
62 DDT-86Commands . ..........¢¢cceuceecnonaas 64
621 TheA(Assemble)Command . ........ ... 040 64
6.2.2 TheB (Block Compare) Command .. ............. 64
6.2.3 TheD (Display) Command . .......000eiusnnns 6-5
6.2.4 TheE (Load for Execution) Command . , . . ..,....... 66
625 TheF(Fill)Command . ... ... ...t enn 6-6
6.2.6 TheG(Go)Command . . .o oo v v vvaseeenennns 67
6.2.7 The H (Hexadecimal Math) Command ., . .. .. .. ... .. 6-8
6.2.8 Thel (Input Command Tail) Command ............ 68
629 TheL(List) Command ... .-« ¢ v v et iensernn 6-8
6.2.10 TheM (Move)Command . . . . ... . .0t i e e, 69
6.2.11 The Qf, QO (Query VO)Commands . . . ... ........ 6-9
6212 TheR{Read)Command . . .. ¢t e v vt v eeeran 6-10
6.2.13 TheS(Set)Command . . .. ................. 6-11
6.2.14 The SR (Search) Command ., . . ... .......... .. 6-12
6.2.15 The T(Trace) Command . . .. ... .....cc.0.., 6-12
6.2.16 The U{Untrace) Command . .. ... ..« ...c...... 6-13
6217 The V{Value) Command . ... ............... 6-13
6.2.18 The W{Write)Command . ................., 6-14
6.2.19 The X (Examine CPU State) Command , . .......... 6-14
63 DefaultSegmentValues . . .. ... ... it v, 6-16
6.4 Assembly Language Syntax for Aand L Commands .. ... ..., 6-18
65 DDT-86SampleSession . . . ... . iovi vt ransnesns 6-19

vii



T O m ®m g N = o

L

Appendixes
Starting ASM-86 ..... Cee s . e v et eraaaen A-1
Mnemonic Differences from the Intel Assembler . . ... .......... B-1
ASM-86 Hexadecimal Quetput Format . . . . . o v o v i s v v v neeus s c1
Reserved Words . . . . ... .. P e s e e cerene D1
ASM-86Instruction SUMMATY . . . s 1 s e v e e s s s s s nm e EA1
Sample Program APPF.AB6 . . . . . ... ccv v v vt Cr e E-1
Code-macro Defiition Svatax . . Ce s e s e s G-
ASM-86FErrorMessages . . . « st v s 05 u s et e s e H-1
DDT-86 Error Messages . . . . .. e e e e e e e s I-1

viii



Table of Contents (continued)

Tables

1-1. Run-timeParameter Summary . ... .. ... P
1-2, RuntimeParameterExamples . ... .. 00 vv vt aorosoas 18

2-1. Separators and Defimiters . ... ... v 22

2-2, RadixIndicatorsforConstants . . . . o v o s v v v v v a v v s a sy 23
2-3, String Constant Examples ... ... ....... . . 0a 24
24, RegisterKeywords ... ...+ .. ¢ ¢ o1 s sreraas1ases 26
2-5. ASM-86Operators . .. ........ e e X
2-6. Precedence of Operations in ASM-86 .., .. ... ... v ... 2-15

4-1. OperandTypeSymbols . .. ....... ...

4-2, FlagRegisterSymbols . .. .. . v i et v aea 43
4-3. Data TransferInstructions . .. ... . c et e e s s e 43
4-4, Effects of Arithmetic InstructionsonFlags . . -+ - ¢« v c v v v v v v + 45
4-5. ArithmeticInstructions . .. .. . . v e s vt s s e et a1 0300 46
4-§, Logical and ShiftInstructions . . .« ¢ - vt - b e b v e n . 48
4-7. StringInstructions . . . . . v 0 v i i s v b s s e e 10
48, PrefixINStructions  « « v s v v v s 0 0 v o v a v n v a s . 412
49, Control TransferInstructions .+ . . « v o v v v s v o v s v e 413

410, Processor Control Instructions - . - « + v v v v e v v v e 416
411, MnemonicDifferences . . . .+ . . v v s v b v i s s e 418

5-1. Code-macro Operand Specifiers . . .« v v v v v v v v v a v v w0 s 3-3
5-2. CodemacroOperandModifiers ... .. .+ c vt v ouwes. 52

6-1. DDT-86Command Summary - ... .. .. . c vt cvnnnnn- 6-2
6-2. Flag Name Abbreviations . . . .., ... .. ov e vt vv v nnnn 6-15
6-3. DDT-86DcfaultSegment Values . .. .. .. .. ... ....... 6-17




Table of Contents (continued)

Tables
A-1. Paramerer TypesandDevices .. ... ... ............. A-1
A-2, Parameter TYPes . . .« v v v i i i it t e i e e e i e, A2
A3, DeviceTyPes . . . . . o o v i i i it et st et e A-2
A4, InvocationExamples . . . . ... . .. L i o e A3
B-1. MnemonicDifferences . . . . .. ... ... i e B-1
C-1, Hexadecimal RecordContents . . .. . . ... oot vein . Cc1
C-2. Hexadecimal Record FOrmats . . . v v v v v v v e v v ae v nn s C-2
C-3. SegmentRecordTypes . . . . .. .. ... i it iitinn.n C3
D-1. KeywordsorReservedWords . . ... ................ D-1
E-1. ASM-86 InstructionSwmmary . . .. ... .............. E1
H-1. ASM-36 DiagnosticErrorMessages . . . . .. ... ........ H-1
IF1. DDT-36Frror MOSBAEES <« « « o 4 4 ¢ 2 v o a0 v v v v mnaaea I-1
Figure
1-1. ASM-86SourceandObjectFiles . ... .o . oo v v v v v ... 11
Listing
F-1, SampleProgram APPF.AB6 . .. .. .. ... ... .0t F-1



Section 1
Introduction to ASM-86

1.1 Assembler Operation

ASM-86 processes an 8086 assembly language source file in three passes and produces
three output files, including an 8086 machine langnage file in hexadecimal format. This
object file can be in either Intel or Digital Research hex formats, which are described in
Appendix C. ASM-86 is shipped in two forms: an 8086 cross-assembler designed to run
under CP/M® on the Intel 8080 or the Zilog Z80® based system, and an 8086 assembler
designed to run under Concurrent CP/M-86 on an Intel 8086 or 8088 based system.
ASM-86 cypically produces three output files from one input file as shown in Figure 1-1;

- LIST FILE

SOURCE [—»| ASM-86 -t HEX FILE

SYMBOL FILE

filename.A86 - contains source

filename LST — contains listing

filename H86 — contains assembled program in
hexadecimal format

filename.SYM — contains al! user-defined symbols

Figure 1-1, ASM-86 Source and Object Files

M DIGITAL RESEARCH™




1.1 Assember Operation Concurrent CF/M-86 Utilities Guide

Figure 1-1 also lists ASM-86 fletypes. ASM-86 accepts a source file with any three-
letter extension, but if the filetype is omitted from the starting command, ASM-86 looks
for the specified fllename with the filetype .A86 in the directory. If the file has a filetype
other than .A86 or has no filetype at all, ASM-86 returns an error message.

The other filetypes listed in Figure 1-1 identify ASM-86 output files. The .LST file
containg the assembly language listing with any error messages. The .H86 file contains
the machine language program in cither Digital Rescarch or Intel hexadecimal format,
The .SYM fle lists any user-defined symbols.

Start ASM-86 by entering a command of the following form:

ASM86 source filespec [ § paramerers |

Section 1.2 explains the optional parameters. Specify the source file using the follow-
ing form:

[d:] filename [.type]

where
[d:] iz an oprional valid drive lerter specifying the source file’s location.
Not needed if source is on current drive.
filename is a valid CP/M filename of 1 to 8 characters.
[.typel is an optional valid filetype of 1 to 3 characters (usually .A86).

Some examples of valid ASM-86 commands are

ArASME8E B:810588
A>AEME86 BIOSAA.ABE $FI AA HB PB 58
AXASMEE O:TEST

Note that if you try to assemble an empty source file, ASM-86 generates empry lis¢, hex,
and symbol files.

3 B DIGITAL RESEARCH™



Concurrent CP/M-86 Utilities Guide 1.1 Assember Operation

Once invoked, ASM-B6 responds with the message:
CP/M 8086 ASSEMBLER VER x.x

where x.x is the ASM-86 version number. ASM-86 then attempts to open the source
file_ If the file do=s not exist on the designated drive or does not have the correct filetype
as described above, the assembler displays the message:

ND FILE

If an invalid parameter is given in the optional parameter list, ASM-86 displays the
message:

PARAMETER ERROR

After opening the source, the assembler creates the outpue files. Usually these are
placed on the current disk drive, but they can be redirected by opticnal parameters or
by a drive specification in the source filename. In the latter case, ASM-86 directs the
output files to the drive specified in the source filename,

During assembly, ASM-86 halts if an error condition, such as disk full or symbol table
overflow, is detected, When ASM-86 detects an crror in the source file, it places an
error-message line in the listing file in front of the line containing the srror. Each error
message has a number and gives a brief explanation of the error. Appendix H lists
ASM-86 error messages. When the assembly is complete, ASM-86 displays the message:

END OF ASSEMELY. NUMBER OF ERRORS: n

# DIGITAL RESEARCH™



1.2 Optional Run-time Parametcrs Concurrent CP/M-86 Utilities Guide

1.2 Optional Run-time Parameters
The dollar-sign character, $, flags an optional string of run-time parameters. A param-

cter is a gingle letter followed by a single-letter device name specification. Table 1-1 lists
the parameters.

Tablc 1-1, Run-time Parameter Summary

Parameter l To Specify | Valid Arguments
A source file device AB,C,..P
H hex output file device ALPRX Y Z
P list file device A.PXY,Z
S symbol file device A..BLX,Y,Z
F format of hex output file LD

All parameters are optional and can be entered in the command line in any order.
Enter the dollar sign only once at the beginning of the parameter string. Spaces can
separate parameters but are not required. No space is parmitted, however, between a
parameter and its device name.

A device name must follow parameters A, H, P, and S. The devices are labeled
ABC,...PorX Y, Z
Device names A through P, respectively, specify digk drives A through P. X specifies
the user console (CON:), Y specifics the line printer (LST:), and Z suppresses output
{NUL:).
If output is directed to the console, it can be temporarily stopped at any time by

entering a CTRL-S. Restart the output by chtering a second CTRL-S or any other
character.

# DIGITAL RESEARCH™

14



Concurrent CP/M-86 Utilities Guide 1.2 Optional Run-time Parametcrs

The F parameter requires cither an 1 or a D argument. When [ is specified, ASM-86
produces an object file in Intel hex format. A D argument requests Digital Research hex
format. Appendix C details these formats. If the F parameter is not entered in the
command line, ASM-86 produces Digital Research hex format.

Table 1-2, Run-time Parameter Examples

Command Line l Result

ASMBE IO Assemble file I0.A86, and produce IO.HES,
10.LST, and 10.5YM, all on the default drive.

ASMBE I0.AEM $ AD SZ Assembile file 10.ASM on device D, and produce
[0.LST and I10.H86. No symbol file.

ASMBB 10 ¢ PY SX Assemble file 10.A86, produce 10.H8S, route
listing directly to printer, and output symbols on
console,

ASMBE IO $ FD Produce Digital Research hex format.

ASMBB IO % FI Produce Intel hex format.

1.3 Ending ASM-86

You can hait ASM-86 execution at any time by pressing any key on the console
keyboard. When a key is pressed, ASM-86 responds with the question:

USER BREAK. DK{Y/N)"?

A Y response stops the asgsembly and returns to the operating system. An N response
continnes the assembly.

End of Section 1

B DIGITAL RESEARCH™




Section 2
Elements of ASM-86 Assembly Language

2.1 ASM.-86 Character Set

ASM-86 recognizes a subset of the ASCH character set. The valid characters are the
alphanumerics, special characters, and nonprinting characters shown below:

ABCDEFGHI JKLMNOPQRSTUVWXYZ
abcdefghijklmnopgqrstuvwsxysz
0123456789

+—*/=(}[1s7-L, @8
space, tab, carriage returmn, and line-feed

Lower-case lemters are teated as upper-case, except within strings. Only
alphanumerics, special characters, and spaces can appear in a string.

2.2 ‘Tokens and Separators

A token is the smallest meaningful unit of an ASM-86 source program, much as a
word is the smallest meaningful unit of an English composition. Adjacent tokens are
commonly separated by a blank character or space. Any sequence of spaces can appear
wherever a single space is allowed. ASM-86 recognizes horizontal tabs as separators and
interprets them as spaces. Tabs are expanded to spaces in the list file. The tab stops are
at each eighth column.

2.3  Delimiters

Delimiters mark the end of a token and add special meaning to the instruction, as
opposed to separators, which merely mark the end of a token, When a delimirter is
present, separators need not be used, However, using separatocs after delimiters makes
yaur program easicr to read.

The following table, Table 2-1, describes ASM-B6 separators and delimiters. Some
delimiters are also operators and are explained in greater detail in Section 2.6,

B DIGITAL RESEARCH™

2-1



2.3 Delimiters Concurrent CP/M-86 Utilities Guide
Table 2-1. Scparators and Delimiters
Character I Name I Use
20H space separator
05H tab legalin source files,
expanded in list files
CR carriage return terminate source lines
LF line-feed legal after CR if within
source lines, interpreted
asaspace
H scmicolon starts comment field
colon identifies a label,
used in segment override
specification
period forms variables from
numbers
$ dollarsign notation for present value
1 oflocation pointer
+ plus arithmetic operator for
addition
- minus arithmetic operator for
subtraction
* asterigk arithmetic operator for
multiplication
/ slash arithmetic operator for
division
@ “at” sign legal in identifiers
- underscore legal in identifiers
! exclamation logically terminates a
point staternent, allowing
multiple statementsona
singlesourceline
: apostrophe delimits string constants

22

M DIGITAL RESEARCH™



Concurrent CP/M-86 Utilities Guide 2.4 Constants

2.4 Constants

A constant is a value known at assembly ime that does not change while the assembled
program is executed. A constant can be ejther an integer or a character string,

2.4.1 Numeric Constants

A numeric constant is a 16-bit value in one af several bases. The base, called the radix
of the constant, is denoted by a trailing radix indicatot. The radix indicators are shown

in Table 2-2:

Table 2-2. Radix Indicators for Constants

Indicator Constant Type Base
B binary 2
0 octal L
Q octal 3
b decimal 10
H hexadecimal 16

ASM-B6 assumes that any numeric constant not terminated with a radix indicator is
a decimal constant. Radix indicators can be upper- or lower-case.

A constant is thus a sequence of digits followed by an optional radix indicator, where
the digits are in the range for the radix. Binary constants must be composed of 0s and
1s. Octal digits range from 0 to 7; decimal digits range from O to 9, Hexadecimal
constants contain decimal digits and the hexadecimal digits A (10D), B (11D), C (12D),
D (13D, E{14D), and F (15D). Mote that the leading character of a hexadecimal constant
must be a decimal digit, se that ASM-86 cannot confuse a hex constant with an identifier.
The following are valid numeric constants:

1234 12340 11008 1111000011110000B
1234H OFFEH 33770 137720
33770 QFE3H 1234d Offffh

B DIGITAL RESEARCH™
2-3



2.4 Conitants Concurrent CP/M-B6 Utilities Guide

2.4,2 Character Strings

ASM-86 trears an ASCII character string delimited by apostrophes as a string constant.
All instructions accept only one- or two-character constants as valid arguments. [nstruc-
tions treat a one-character string as a 8-bit number. A two-character string is treated as
a 16-bit number with the value of the sacond character in the low-order byte, and the
value of the first character in the high-order byte.

The numeric value of a character is its ASCII code. ASM-86 does not tranglate case
in character strings, so it accepts both upper- and lower-case letters. Note that only
alphanumerics, special characters, and spaces are allowed in strings.

A DB assembler directive is the only ASM-86 statement that can contain strings longer
than two characters. The string cannot exceed 255 bytes. Include any apostrophe you
want printed in the string by entering it twice. ASM-86 interprets the two keystrokes ™’ as
a single apostrophe. Table 2-3 shows valid strings and haw they appear after processing:

Table 2-3, String Constant Examples

String in Source Text J After Processing by ASM-B6
Jal .
JAbf!cdl Abn‘cd
T AR Y Y 4
'ONLY UPPER CAEE * ONLY UPRPERCASE
‘only loweroase”’ gnly lowsr case

2.5 Identifiers

Identifiers are character sequences that have special symbolic meaning to the assem-
blet. All identifiers in ASM-86 must obey the following rules:

1. 'The first character must be alphaberic (A,...Z, a,...2).

2. Any snbsequent characters can be either alphabetic or a numeral {0,1,.....9).
ASM-86 ignores the special characters @ and _ but they are still legal. For
example, a_b becomes ab.

3. Identifiers can be of any length up to the limit of the physical line.

W DIGTTAL RESEARCH™

24



Concarrent CP/M-86 Utilities Guide 2.5 Jdentifiers

Identifiers are of two types. The first type ate keywords that the assembler recognizes
as having predefined meanings. The second type are symbols defined by the user. The
following are all valid identifiers:

NOLIST

WORD

AH

Third_street
How_mre__vou__taday
variableBnumber@l1234587890

2.5.1 Keywords

A keyword is an identificr that has a predefined meaning to the assembler, Keywords
are reserved; the user cannot define an identifier identical to a keyword, For a complete
list of keywords, sec Appendix D,

ASM-86 recognizes five types of keywords: instructions, directives, operators, tegis-
ters, and predefined numbers. 8086 instruction macmonic keywords and the actions
they initiate are defined in Section 4. Directives are discussed in Section 3. Section 2.6
defines aperators. Table 2-4 lists the ASM-86 keywords that identify BO86 registers.

Three keywords are predefined numbers: BYTE, WORD, and DWORD. The values
of these numbers are 1,2, and 4, respectively. In addition, a type ateribute is associated
with cach of these numbers, The keyword’s type attribute is equal to the keyword's
numeric value.

B DIGITAL RESEARCH™

25



2.5

Identifiers

Tabic 2-4. Register Keywords

Concurrent CP/M-86 Utilities Guide

Register Numeric

Symbol Size Value Meaning
AH 1byte 100B Accamularor-High-Byte
BH 1 byte 1118 Base-Register-High-Byte
CH 1byte 101B Count-Register-High-Byte
DH 1byte 110B Data-Register-High-Byte
AL 1byte 000B Accumulator-Low-Byte
BL 1byre 011B Base-Register-Low-Byte
cL 1byte 001B CountRegister-Low-Byte
DL 1byte 0108 Data-Register-Low-Byte
AX 2bytes 000B Accumulator {full word)
BX 2bytes 0118 Base-Register (full word)
X 2bytes 0018 Count-Register (full word)
DX 2 bytes 010B Data-Register {full word)
BP 2bytes 101B Base Pointer
Y 2bytes 100B Stack Pointer
SI 2bytes 110B SourceIndex
D1 2bytes 11138 Destination Index
CS 2byteg 01B Code-Segment-Register
DS 2bytes 118 Data-Segment-Register
s 2byres 10B Stack-Segment-Register
ES 2bytes 008 Extra-Segment-Register

2.5.2 Symbols and Their Attributes

A symbol is a user-defined identifier that has attributes specifying the kind of informa-
tion the symbol represents. Symbols fall into three categories:

m variables
u labels
B numbers

B DIGITAL RESEARCH™



Concurrent CP/M-86 Utilitics Gaide 2.5 Ildentificrs

Variables

Variables identify data stored at a particular location in memory. All variables have
the following three ateributes:

W Segment tells which segment was being assembled when the variable was defined.

m Offset tells how many bytes there are between the beginning of the segment and
the location of this variable.

B Type tells how many bytes of data are manipulated when this variable is referenced.

A segment can be a Code Segment, a Data Segment, a Stack Segment, or an Extra
Segment, depending on its contents and the register that contains its starting address.
See Section 3.2. A segment can start at any address divisible by 16. ASM-86 uses this
boundary value as the segment portion of the variable’s definition,

The offset of a variable can be any number between 00H and OFFFFH
(65535 decimal). A variable must have one of the following type attributes:

u BYTE

u WORD
® DWORD

BYTE specifies a one-byte variable; WORD, a two-byte vatiable, and DWORD, a
four-byte variable, The DB, DW, and DD directives, respectively, define variables as
these three types. Sce Section 3.2.2. For example, a variable is defined when it appears
as the name for a storage directive:

VARIABLE DB O

A variable can also be defined as the name for an EQU directive referencing another
label, as shown below:

VARIABLE EQU ANDTHER_VARIABLE
Labels

Labels identify iocations in memory that contain instruction statements. They are
referenced with jumps or calls. All labels have two attributes: segment and offset.

M DIGITAL RESEARCH™



2.5 Ideatifiers Concurrent CP/M-86 Utilities Guide

Labe] segment and offser armributes are essentially the same as variable scgment and
offser artributes. In general, a label is defined when it precedes an instruction. A colon,
1, separates the label from the instruction. For example,

LABEL1 ADD AX:BX

A label can also appear as the name for an EQU directive referencing another label,
For example,

LABEL EQU ANDTHER_LABEL
Numtbers

Numbers can alsa be defined as symbols. A number symbol is treated as though you
had explicitly coded the number it represents, For example,

Number__ftive EQU 5
MOV AL +Numbwry_ _fTive

equals
mov AL 5

Section 2.6 describes operators and their effects on numbers and number symbols.

2.6 Opcrators

ASM-E6 operators fall into the following catsgories: arithmetic, logical, and relational
Operatars, segment override, variable manipulators, and creators. The following table
defines ASM-86 operators, In this table, a and b represent two elements of the expression.
The validity column defines the type of operands the operator can manipulate, using the
OR bar character | to separate alternatives.

EDIGITAL RESEARCH™
2-8



Concurrent CP/M-86 Utilitics Guide 2.6 Operators
Table 2-5. ASM-86 Opcrators
Syntax Result r Validity
Logical Operators

a XOR b bit-by-bit logical EXCLUSIVE a,b = number
ORofaandb

OR b bit-by-bit logical OR of a a,b = number
andb

a AND b bit-by-bit logical AND of a a,b = number
andb

NOT a logicalinverse ofa: all Os a = 16-bitnumber
become 1s, 1sbecome 08

Relational Operators

aEQb returns OFFFFH ifa = b, a,b = vnsigned
otherwise 0 number

alThb returns OFFFFH ifa < b, a,b = unsigned
otherwise 0 number

alEb returnsOFFFFH ifa <<= b, a,b = unsigned
otherwise 0 number

aGTh returns OFFFFHifa > b, a,b = unsigned
otherwise 0 number

aGEb returns OFFFFHifa>=b a,b = unsigned
otherwise 0 number

a NE b returns OFFFFH ifa <> b, a,b = unsigned
otherwise 0 number

@IDIGITAL RESEARCH™

29



2.6 Operatons Concurrent CP/M-86 Utilities Guide
Table 2-§. (continued)
Symtax Result Validity
Arithmetic Operators
a+b arithmeticsumofaand b a = variable,
label or number
b = number
a-b arithmetic difference of a = variable,
aandb labelor number
b = number
a*h does unsigned multiplication a,b = number
ofaandb
alb does unsigned division of a a,b = number
andb
a MOD b recurns remainder of a/b a,b = number
a2 SHL b returns the value which a,b = number
results from shiftinga to
left by an smountb
a SHR b returns the value which a,b = number
results from shifting a ta
the rightbyanamount b
+a givesa a = number
—-a gives0—a a = number
Segment Override
<segreg>: overrides assembler’s choice <HGreg> =
<addrexp> of segment register. CS, DS, 58
orES
W DIGITAL RESEARCH™

Z-10



Concurrent CP/M-86 Utilities Guide

Table 2-5. (continued)

2.6 Operators

Symtax

Resselt

Validity

Variable Manipulators, Creators

SEG a

OFFSET a

TYPE a

LENGTH a

LAST a

a PTR b

creates anumber whosevalue isthe
segment valueof the variable or
label a. The variable or label
mustbedeclaredinan absolute
segment (i.e. CSEG 1234H);
otherwise the SEG operatoris
undefined,

creates anumber whose valne
is the offset valuc of the

variableor label a.

creates anumber. [fthe van-
ableaisof type BYTE, WORD

or DWORD, the value of the num-
beris 1,2, or 4, respectively,
creates anumber whose value
isthelength attribute of the
variablea. Thelength attribute

is thenumber of bytes associated
with the variable.

if LENGTH a> 0,then LAST
a =LENGTH a-1;if LENGTH
a=10,thenLAST 2 =0.

creates virtual variable or Jabel with
typeof aand attributes of b,

creates variable with an offset attri-
buteof a; segment attributeis
current scgment.

creates labef with offset

equzl to current value of

location counter; segment
attribute is current segment.

a = labe] |variable

a = label |variable

a = label | variable

a = label]variable

a = label | variable

a=BYTE|
WORD, | DWORD
b = <addrexp>

a = number

noargument

M DIGITAL RESEARCH™

2-11



2.6 Operators Concurrent CP/M-86 Utilities Guide

2.6.1 Opcerator Examples

Logical operators accept only numbers as operands. They perform the Boolean logic
operations AND, OR, XOR, and NOT, For example,

0OFC MASK EQU QFCH

ocBe BIGNBIT EQU 80H
0000 BiBC HMovV CL +MASK AND BIGNBIT
0002 BGD3 MOV AL + NOT MABK

Relational operators treat all operands as unsigned numbers. The relational operators
are EQ {eqnal), LT (less than), LE (less than or equal}, GT (greater than), GE (greater
than or equal), and NE (nat equal). Each operator compares two operands and returng
all ones {0FFFFH) if the specified relation is true, and all zeroaif ic is not. For example,

Q00 A LIMIT1 EQU 10
Q018 LIMITZ EQU 25
L]
L]
0004 BSFFFF MOV AXLIMIT1 LT LIMITZ
0007 BEOOOD (el AXLIMITLI GTLEMITZ

Addition and subtraction operators compute the arithmetic sum and difference of two
aperands. The first aperand can be a variable, label, or number, but the second operand
must be 2 number. When a number is added to a variabie or label, the result is 1 variable
or labal, the offset of which is the numeric value of the second operand plus the offset
of the first operand. Subtracrion from s variable or label returns 4 variable or label, the
offset of which is that of first operand decremented by the number specified in the second
operand. For example,

0002 COUNT EQU 2
0005 LISP1 EQU 5
O00A FF FLAG LB QFFH
0008 ZEACOOBOC mav AL FLAG+]
COOF ZEBACEOFCD MOV CLsFLAG+OISFI
0014 B303 MOV BLODISP1-COUNT

B DIGITAL RESEARCH™

2-12



Concurrent CP/M-86 Utilitics Guide 2.6 Operatons

The multiplication and division operators *, /, MOD, SHL, and SHR accept only
numbers as operands. * and / treat all operands as unsigned numbers, For example,

0016 BESS00 MoV 81.,258/3
0019 B310 mMov BL :E4/4
0050 BUFFERSIZE EQU 8o
018 BHAQOC Mov AKX BUFFERSIZE * 2

Unary operators accept both signed and unsigned operators, as shown in the following
example:

Q01E B123 MOV CL ++35
0020 BOOY MOV AL 12--3
0022 BZFA4 MOV DL:-12

When manipulating variables, the assembler decides which segment register to use.
You can override the assembler’s choice by specifying a different register with the
segment override operator. The syntax for the override operartor is

<segment register> : <address expression>
where the <segment register™ is CS, DS, SS, or ES. For example,

0024 358B472D Mav AX :55: WORDBUFFEREBX1]
0028 ZBBBOESBOO0 Mav CX:ES5:ARRAY

A variable manipulator creates a number equal to one attribute of its variable operand.
SEG extracts the variable’s segment value; OFFSET, its offset value; TYPE, its type value
(1, 2, or 4); and LENGTH, the number of bytes associated with the variable, LAST
compares the variable’s LENGTH with 0 and, if greater, then decrements LENGTH by
one. If LENGTH equals 0, LAST leaves it unchanged. Variable manipulators accept
only variables as operators. For example,

DIGITAL RESEARCH™
2-13



2.6 Operators Concurrent CP/M-86 Utilities Guide

1234 08EC 1234H
0020 000000000000 WIRDBUFFER DH 0:040
0033 01020304083 BUFFER DB 1:2:344.4+5

+

0038 BBO50QD MoV AX sLENGTH BUFFER
0038 BBO4AOO MoV AXLAST BUFFER
Q03E BEO10Q0 MOV AXTYPE BUFFER
0041 BB0O200 MOV AX»TYPE WORDBUFFER
0044 BB341Z Mav AX :BEG BUFFER

The FTR operator creates a virtual variable or label that is valid only during the
exceution of the instruction. It makes no changes to either of its operands, The temporary
symbol hag the same Type attribute as the left operator and all other attributes of the
right operator as shown in the following example:

¢044 CBG705 MoV BYTE PTR [BX1. &
0047 8A07 MOY AL BYTE FTR [BX]
2049 FFo4 INC WORD PTR L[S11

The period operator cregtes a varigble in the current data segment, The new variable
has a segment attribute equal to the current data segment and an offser amvibute equal
to its operand. The operand of the new variable must be a number. For example,

0C4E AI0000 MOy AXy .0
OC4E 288B1LE0Q40 Moy BX+ ES: +400Q00H

The dollar-sign operator, §, creates a label with an offset attribute equal to the current
value of the location counter. The label’s segment value is the same as the current
segment. This operator takes no operand. For example,

00T3 EIFDFF JMP $
0058 EBFE JHPS $
0038 ESFDZF JMP $+3000H

2.6.2 Operator Precedence

Expressions combine variables, labels, or numbers with operators. ASM-86 allows
several kinds of expressians. See Section 2.7. This section defines the order in which
operations are executed if more than one operator appears in an expression.

8 DIGITAL RESEARCH™
2-14



Concurrent CP/M-86 Utilities Guide 2.6 Operators

ASM-86 evaluates cxpressions left to right, but operators with higher procedence are
evaluated before operators with lower precedence. When two operators have equal
precedence, the leftmost is evaluated first. Table 2-6 presents ASM-86 operators in order
of increasing precedence.

Parentheses can averride rules of precedence. The part of an expression enclosed in

parentheses is evaluared first. If parentheses are nested, the innermost expressions are
evaluated first. Only five levels of nested parentheses are legal. For example,

13/3+1B/89=5+2=7
15/13+418/8) =15/(3+2) =13/5=13

Table 2-6. Precedence of Operations in ASM-86

Order Qperator Type I Operatars
1 Logical XOR,0R
2 Logjcal AND
3 Logical NOT
4 Relational EQ,LT,LE,GT,
GE,NE
5 Addition/subtraction +,—
Multiplication/division * I\ MOD,SHL,
SHR
7 Unary +,-
Segment override <segmentoverride™>:
9 Variable manipulators, SEG, OFFSET, PTR,
creators TYPE,LENGTH,LAST
10 Parentheses/brackets ()]
11 Periodand Dollar 3
# DIGITAL RESEARCH™

2-15



1.7 Expressions Concurrent CP/M-86 Urilities Guide

2.7 Expressions

ASM-8¢ allows addrass, numeric, and brackered expressions. An address expression
evaluates to a memory address and has three components:

N segment value
N offset value

™ type

Both variables and labels are address expressions. An address expression is not a
number, but its components are numbers. Numbers can be combined with operstors
such as PTR to make an address expression,

A numeric expression evaluates to a number. It does not contain any variables or
labels, only numbers and operands.

Bracketed expressions specify base- and index-addressing modes. The base registers
are BX and BP, and the index registers are DI and 51. A bracketed expression can consist
of a base register, an index register, or both a base register and an index register. Use
the + aperator between a base register and an index register to specify both base- and
index-register addressing. For example,

MOV AX.LBX+DI]
May AX.£S811

2.8 Statements

Juer as tokens in this assembly langnage correspond to words in English, statements
are analogous to sentencas. A statement tells ASM-86 what actionto perform. Statements
can be instuctions or directives. Instructions are translated by the agsembier into 8086
machine language instructions. Ditectives are not cranslared into machine code, bur
instead direct the assembler to perform certain clerical functions.

Terminate each assembly language statement with a carriage return, CR, and line-feed,
LP, or with an exclaination point, ). ASM-86 treats these as an end-of-line. Multiple
assembly language statements can be written on the same physical line if separated by
exclamation points.

W DIGITAL RESEARCH™

2-16



Conrurremt CP/M-86 Utilities Guide 1,8 Swtements

The ASM-86 instruction set is defined in Section 4. The syntax for an instruction

statement is

[label:] [prefix] mnemonic [ operand(s)] [;comment]

where the fields are defined as

B label
® prefix

H mnemonic

W opecrands

M comment

B DIGITAL RESEARCIT™

A symbol followed by : defines a label at the current value of the
location counter in the current segment. This field is optional.

Certain machine instructions such as LOCK and REP can prefix
other instructions. This field is optional.

A symbol defined as a machine instruction, cither by the assembler
or by an EQU directive. This field is optional unless preceded by
a prefix inscruction. If it is omitted, no operands can be present,
although the other fields can appear. ASM-86 mnemonics are
defined in Section 4.

An instruction mnemonic can require other symbols to represent
operands to the instruction. Instructions can have zero, one, or
two operands.

Any semicolon appearing outside a character string begins a
comment. A comment ends with a carriage retamn. Comments
improve the readability of programs. This field is optional.

2-17



1.8 Statements Concurrent CP/M-86 Utilities Guide

ASM-86 directives are described in Section 3. The syntax for a directive statement is
[name] directive operand(s) [;comment)

where the fields are defined as

N pame Unlike the label ficld of an instruction, the name field of a directive
is never terminated with a colon. Directive names are legal only
for DB, DW, DD, RB, RS, RW, and EQU. For DB, DW, DD, and
RS, the name is optional; for EQU, it is required.

B directive One of the directive keywords defined in Section 3.

N operands Analogous to the operands for instruction mnemonics. Some
directives, such as DB, DW, and DD, allow any operand; others
have special requirements,

m gomment Exactly as defined for ingtruction statements.

End of Section 2

WDIGITAL RESEARCH™
2-18



Section 3
Assembler Directives

3.1 Introduction

Directive statements caunse ASM-36 to perform housekeeping functions, such as
assigning portions of code to logical segments, requesting conditional assembly, defining
data items, and specifying listing file format. General syntax for diractive szatements
appears in Section 2.8.

In the sections thar follow, the specific syntax for each directive statement is given
under the heading and before the explanarion. These syntax lines use special symbols
10 represent possible argumenrs and other alternatives. Square brackets, [], enciose
optional arguments.

3.2 Segment Start Directives

At run-time, every 3086 memory reference must have a 16-bit segment base value and
a 16-bir offser value. These are combined ta produce the 20-bit effactive address needed
by the CPU to physically address the location, The 16-bit segment base value or boundary
is contained in one of the segment registers CS, DS, 88, or ES. The offset value gives the
offset of the memory reference from the segment boundary. A 16-byte physical segment
is the smallest relocatable unit of memory.

ASM-86 predefines four logical segments: the Code Segment, Data Segment, Stack
Segment, and Extra Segments, which are addressed respectively by the CS, DS, S5, and
ES registers. Future versions of ASM-86 will support additional scgments, such as
multiple data or code segments. All ASM-86 statements must be assigned to one of the
four currently supported segments so that they can be referenced by the CPU. A segment
directive statement, CSEG, DSEG, SSEG, or ESEG, specifics that the statements following
it belong to a specific segment, The statements are then addressed by the corresponding
segment register. ASM-86 assigns statements to the specified segment until it encounters
another segment dircctive.

DIGITAL RESEARCH™




3.2 Scgment Start Directives Concurrent CP/M-86 Utilities Guide

Instruction statements must be asgigned ta the Code Segment. Directive statements
can be assigned to any scgment. ASM-86 uses these assignments to change from one
segment register to another. For example, when an instruction accesses a memory
variable, ASM-86 must know which segment contzins the variable so ir can generate a
sepment-override prefix byte if necessary.

3.2.1 The CSEG Directive

Syntax:

CSEG  numeric expression
CSEG
CSEG §

This directive tells the assembler that the following statements belong in the Code
Segment. All instruction statements must be assigned to the Code Segment. All directive
statements are legal in the Code Segment.

Use the first form when the location of the segment is known at assembly time; the
code generated is not relocatable, Use the second form when the segment location is not
known at assembly time; the code generated is relocatable. Use the third form to continue
the Code Segment after it has been interrupted by s DSEG, SSEG, or ESEG direcrive.
The continuing Code Segment starts with the same ateributes, such as location and
instruction pointer, as the previous Code Segment.

3.2.2 The DSEG Directive

Syntax:
DSEG  numeric expression
DSEG
DSEG §

This directive specifies that the following statements belong to the Data Segment. The
Data Segiment conrains the data allocation directives DB, DW, DD, and RS, but all other
directive statements are also legal. Instruction statements are iflegal in the Data Scgment,.

Use the first form when the location of the segment is known at assembly time; the
code generated is not relocatable, Use the second form when the segment location is not
known at assembly time; the code generated is relocatable. Use the third form to continue
the Data Segment after it has been interrupted by a CSEG, S5EG, or ESEG directive.
The continuing Data Segment starts with the same attributes as the previous Data

®egment.

B DIGITAL RESEARCH™

32




Concurrent CP/M-86 Utiliries Guide 3.2 Segment Start Directives

3.2.3 The SSEG Dircctive

Syntax:
SSEG  numeric expression
SSEG
SSEG %

The SSEG directive indicates the beginning of source lincs for the Stack Segment. Use
the Stack Segment for all stack operations. All directive statements arc legal in the Stack
Segment, but instruction statements are illegal.

Use the first form when the location of the segment is known at assembly time; the
code generated is not relocatable. Use the second form when the segment location is not
known at assembly time; the code generated is relocatable. Use the third form to continue
the Stack Segment after it has been interrupted by a CSEG, DSEG, or ESEG directive.
The continving Stack Segment srarts with the same attributes as the previous Stack

Segment.

3.2.4 'The ESEG Directive

Syntax:
ESEG  numeric expression
ESEG
ESEG §

This directive initiates the Extra Segment. Instruction statements are not legal in this
segment, bur all directive starements are legal.

Use the first form when the location of the segment is known at assembly time; the
code generated is not refacatabie. Use the second form when the segment location is not
known at assembly time; the code generated is relocatable. Use the third form to continue
the Extra Segment after it has been interrupted by a DSEG, SSEG, or CSEG directive.
The continuing Extra Segment starts with the same attributes as the previous Extra
Segment.

@ DIGITAL RESEARCH™




3.3 The ORG Directive Concurrent CP/M-86 Utilities Guide

3.3 The ORG Directive
Syntax:
ORG  nnmeric expression
The ORG directive sets the offser of the location counter in the current scgment to
the value specified in the numeric expression. Define all alements of the expression befare
the ORG directive beceuse forward references can be ambiguous,
In most segmencs, an ORG directive is unnecessary. If no ORG is included befare the

first instruction or data byte in a segment, assembly begins at location zero relative to
the beginning of the segment. A segrnent can have any number of ORG directives.

3.4 The IF and ENDIF Directives

Szntax:
¥ numeric expression
source line 1
source line 2
source line n
ENDIF

The [F and ENDIF directives allow a group of source lines to be included ar excluded
from the assembly. Use conditional directives to assemble several different versions of
a single source program.

When the assembler finds an IF directive, it evaluates the numeric expression follawing
the IF keyword. If the expression evaluates to a nonzero value, then source line 1 through
source line n are mssembled. If the expression evaluates to zero, the lines are nat
assembled, but are listed unless a NOIFLIST directive is active. All elements in the
numeric expression must be defined before they appear in the IF directive. IF directives
can be nested to a maximom depth of five levels.

@ DIGITAL RESEARCH™
34



Concurrent CP/M-86 Utilities Guide 3.5 The INCLUDE Directive

3.5 The INCLUDE Directive
Syotax:
INCLUDE  filespec
This directive includes another ASM-86 file in the source text. For example,
INCLUDE EQUALS.A8B6

Use INCLUDE when the source program resides in several different files. INCLUDE
directives cannot be nested; a source file called by an INCLUDE directive cannot contain
another INCLUDE statement. If filespec does not contain a filetype, the filerype is
assumed to be .A86. If the file specificarion does notinclude a drivespecificadon, ASM-86
assumes that the file resides on the drive containing the source file,

3.6 The END Directive

Syntax:
END

An END direcrive marks the end of a source file, Any subsequent lines are ignored by
the agsembler. END is optional. If not present, ASM-86 processes the source until it
finds an end-of-file characrer (1AH).

3.7 The EQU Directive

antnx:

symbol EQU numeric expression
symbol EQU address expression
symbol EQU register

symbol EQU instruction mnemonic

The EQU, equate, directive assigns values and attributes to user-defined symbols. The
required symbol name cannot terminate with a colon. The symbol cannot be redcfined
by a subsequent EQU or another directive. Any elements used in numetric or address
expressions must be defined before the EQU directive appears.

B DIGITAL RESEARCH™
35



3.7 The EQU Directive Concurvent CP/M-86 Utilities Guide

The first form assigns a numeric value to the symbol. The second assigns a memory
address. The third form essigne a new name to an 8086 register. The fourth form defines
£ new instruction {sub)set, The following are examples of these four forms:

0005 FIVE EQU Z%2+]
0033 NEXT EQU BUFFER
0001 COUNTER EQU CX
MOUVY EQU Moy
L]
¢+
J05D 8BC3 MOouuy AX :8X

3.8 The DB Dircctive
Syntax:

[symbol] DB numeric expression[,numeric expression...]
[symbol] DB string constant].string constant...]

The DB directive defines initialized storage areas in byte format, Numeric expressions
are evaluated to 8-bit values and sequentially placed in the hex output file. String
constants are placed in the output file according to the rules defined in Section 2.4.2.
A DB directive is the only ASM-86 statement that accepts a string constant longer than
two bytes. There is no translation from lower- to upper-case within strings. Muldple
expresgions or constants, separated by commas, can be added to the definition, but
cannot exceed the physical line length.

Use an optional symbol to reference the defined data area throughout the program.
The symbol has four attributes: the segment and offset attributes determine the symbol’s
memory reference, the type attribute apecifies single bytes, and the length atrribute tells
the number of bytes (allocation units) reserved.

S DIGITAL RESEARCH™



Concurrent CP/M-86 Utilities Goide 3.8 The DB Directive

The following statements show DB directives with symbols:

C05SF 43502F4D2073 TEXT DB ‘CP/M system’ 0
79737485D00

Q0BB E1 AA DB ‘a’ + B0OH

006C 0102030405 X DB 1:2+3:4,5

0071 B8CCOO Mav CK+LENGTH TEXT

3.9 The DW Directive

Synrax:

[symbol] DW numeric expression[,numeric expression...]
[symbol] DW string constant],string constant...]

The DW directive initializes two-byte words of storage. String constants longer than
two characrers are illegal. Otherwise, DW uses the same procedure as DB to initialize
storage. The following are examples of DW statements:

0074 0000 CNTR DWW 0O

0076 B3C186C168C1 JMPTAB DW SUBRL ,SUBRZ :SUBR3

007C 0100020QQ300 DWH 1:2:3:4:5:8
040005000600

BEDIGITAL RESEARCH™




3.10 The DD Directive Concurrent CP/M-86 Utilities Guide

3.10 The DD Directive
Syntax:
[symbol} DD numeric expression[,zddress expression...]
The DD directive initializes four bytes of storage. The offset attribute of the address

expression is stored in the two lower bytes; the segment attribute is stored in the two
upper bytes. Otherwise, DD follows the same procedure 28 DB. For example,

1234 CBEG 1Z34H

0000 BCC134128FC1 LONG_JMFTAB QD ROUTL,ROUTZ
3412

0008 72C1341273C1 o]y ROUTY ROUTA
3412

3.11 The RS Directive
Syntax:
[symbol] RS numeric expression
The RS ditective allocates storage in memory bur does not initialize it. The numeric

expression gives the number of byres to be reserved. An RS starement does not give a
byte attribute to the optional symbol. For example,

ooic BUF RE 80
COED RS 4000H
40E0 RS 1

H an RS statement is the last statement in & segment, you snust follow it with a DB
statement in order for GENCMD 1o allocate the memory space.

H DIGITAL RESEARCH™




Concurrent CP/M-86 Utilities Guide 3.12 The RB Directive

3.12 The RB Directive
Syntax:
[symbol] RB numetic expression

The RB directive allocares byte storage in memory without any initialization. This
directive is identical o the RS direcdve excepr that it gives the byte artribure.

3.13 The RW Directive
Syntax:
[symbol] RW numeric expression

The RW diractive allocates two-byte word storage in memory but does not initialize
it. The numeric expression gives the number of words to be reserved. For example,

49861 BUFF RW 128
4161 RHW 4000H
cigi RW 1

3.14 The TITLE Directive
Syntax:
TITLE string constant
ASM-86 prints the string constant defined by a TITLE directive statement at the top
of each printout page in the listing file. The title character string should not exceed 30
characters. For example,

TITLE ‘CF/M monitor”

If the title is too long, the ASM-86 page number overwrites the title.

DIGITAL RESEARCH™
39



3.15 Thc PAGESIZE Directive Concurreat CP/M-8¢ Utlities Guide

3.15 The PAGESIZE Directive
PAGESIZE numetic expression
The PAGESIZE directive defines the number of lines to be included on each printout
page. The default page size is 66.

3.16 The PAGEWIDTH Directive
Syntax:
PAGEWIDTH numeric expression
The PAGEWIDTH directive defines the number of columns printed across the page
when the listing file is output. The default page width is 120, unless the listing is routed
directly o the terminal, when the default page width is 78.
3.17 The EJECT Directive
Syntax:
EJECT
The EJECT directive performs s page eject during printout. The EJECT directive itself
is printed on the first line of the next page.

3.18 The SIMFORM Dhrective
Szntax:
SIMFORM

The SIMFORM directive replaces a form-feed (FF) character in the print fila with the
correct number of line-feeds (LF}. Use this directive when printing out o a printer unable
ta interpret the form-feed character.

8l DIGITAL RESEARCH™
310



Concurrent CP/M-86 Utilities Guide 3.19 The NOLIST and LIST Directives

3.19 The NOLIST and LIST Directives
Syntax:

MNOLIST
LIST

The NOLIST directive blocks the printout of the following lines. Restart the listing
with a LIST directive.

3.20 The IFLIST and NOIFLIST Directives
Syntax:

IFLIST
NOIFLIST

The NOIFLIST dizective suppresses the printout of the contents of IF-ENDIF blocks
that are not assembled. The IFLIST dircctive resumes printout of IF-ENDIF blocks.

End of Section 3

@ DIGITAL RESEARCH™

3-11



Section 4
The ASM-86 Instruction Set

4.1 Introduction

The ASM-86 instruction set inciudes all 3086 machine instructions. This section
bricfly describes ASM-86 instructions; these descriptions are organized into fanctional
groups. The general syntax for instruction statements is given in Section 2.8,

The following sections define the spedific syntax and required operand types for each
instruction, without reference to labels or comments. The instruction definitions are
presented in tables for easy reference. For a more detailed description of each instruction,
see Intel's MCS-86™ Assembly Language Reference Manual. For descriptions of the
instruction bit patterns and operations, see Incel’s MCS-86 User’s Manual.,

The instruction-definition tables present ASM-86 instruction statements as combina-
tions af mnemonics and operands. A mnemonic is a symbolic representation for an
instruction; its operands arc its required parameters. Instructions can take zero, one, ot
two operands. When two operands are specified, the left operand is the instruction’s
destination operand, and the two operands are separated by a comma,

‘The instruction-definition tables organize ASM-86 instructionsinto functional groups.

In each table, the instructions are listed alphabetically. Table 4-1 shows the symbols
used in the instruction-definition tables to define operand types.

Tablc 4-1. Operand Type Symbols

Symbol Opetand Type
numb any numeric expression
numb4 any numeric expression which evaluates to an 8-bit number
acc accumulator register, AX or AL
reg any general purpose register, not segment register
reglé a 16-bit general purpose register, not segment register
segreg any segment register: CS, DS, $S, or ES
B DIGITAL RESEARCH™

4-1



4.1 Introduction Concurrenit CP/M-86 Utilities Guide
Table 4-1. (continued)

Symbol | Operand Type

mem any ADDRESS expression, with or without base- and/or index-
addressing modes, such a5
variable
variable+3
variable[bx]
variable[S]]
variable[BX +5I]
[BX]
[BP +DI]

simpmem any ADDRESS expresgion WITHOUT base- and index-addressing
modes, such as
variable
varigble + 4

mem|reg any expression symbolized by reg or mem

mem|regl 6 any expression symbolized by mem|reg, but must be 16 bits

label any ADDRESS expression that evaluates to 2 label

lab8 any label that is within * 128 bytes distance from the instruction

The 8086 CPU has nine single-bit Flag registers that reflect the state of the CPU. The
user cannot access these registers directly, bur the user can test them to determine the
effects of an executed instruction npon an operand or register. The effects of instructions
on Flag registers are also described in the instruction-definition rablea, using the symbols
shown in Table 4-2 to represent the nine Flag registers.

8 DIGITAL RESEARCH™




Concurreat CF/M-B6 Utilities Guide

4.2 Data Transfer Instructions

4.1 Introduction

Table 4-2. Flag Register Symbeals
Symbol Meaning
AF Avxiliary-Carry-Flag
CF Carry-Flag
DF Direction-Flag
1F Interrupt-Enable-Flag
OF Overflow-Flag
PF Parity-Flag
SF Sign-Flag
TF Trap-Flag
ZF Zero-Flag

There ate four classes of data transfer operations: general purpose, accumulator
specific, address-object, and Hag. Only SAHF and POPF affect flag settings. Note in
Tablc4-3 thatif acc = AL, abyteistransferred,butif acc = AX, awordis transferred,

Table 4-3. Data Transfer Instructions

Syntax | Result

N acc,numb8|numb16 Transfer data from input port by numb8 or
mamb16 {0-255) to accumulator.

IN acc,DX Transfer data from inpur port given by DX
register (0-0FFFFH) to accumulator.

LAHF Transfer flags to the AH register.

LDS regl6,mem Transfer the segment part of the memaory
address (DWORD variable) to the DS segment
register; transfer che offset part to a general
purpose 16-bit register.

LEA reglé,mem Transfer the offset of the memory address to a
(16-bit) register.

LES reglé,mem Transfer the segment part of the memory
address to the ES segment register; transfer the
offsetpart to a 16-bit general purpose register.

B DIGITAL RESEARCH™

4-3



4.2 Dat Trwnsfer Instructions Concurrent CP/M-86 Unilities Guide

Table 4-3. (continued)

Syntax | Result

MOV reg.memjreg Move memory or register to register.

MOV memireg.reg Move register to memory or register.

MoV memireg,numb Move immediate data to memory or register.

MOV segreg memijreg16 Move memory or register to segment register.

MOV mem|reg16,3cgrog Move segment register to memory or register.

ouT numb8/numb16,acc Transfer data from accumulator to output port
(0-255) given by numb8 or numb16.

ouT DX, acc Transfer dats from accumulator to output port
(0-OFFFFH) given by DX register.

POP mem|reglé Move top stack element to memory or register.

POP segreg Move top stack element to segment rogister.
Note that CS segment register is not allowed.

POPF Transfer top stack elemnent to fags.

PUSH mem|reg16 Move memory or register to top stack eiement.

PUSH SCEICE Move segment register to top stack element.

PUSHF Tranafer flags 1o top stack element.

SAHF Transfer the AH register to flegs.

XCHG  regmemireg Exchange register and memory or register.

XCHG mem|reg,reg Exchange memory or register and register.

XLAT memi|reg Perform table lookup translation, table given
by mem|reg, which is always BX. Replaces
AL with AL offset from BX.

BDIGITAL RESEARCH™




Concurrent CP/M-86

Utilities Guide 4.3 Arithmeric, Logical, and Shift Inscructions

4.3 Arithmetic, Logical, and Shift Instructions

The 8086 CPU performs the four basic mathematical operations in several different
ways. [t supports both 8-and 16-bit operations and also signed and unsigned arithmetic,

Six of the nine flag bits are set or cleared by most arithmetic operations to reflect the
result of the operation. Table 4-4 summarizes the effects of arithmetic instructions on
flag bits. Table 4-5 defines arithmetic instructions. Table 4-6 defines logical and shift

instructions.
Table 4-4. Effects of Arithmetic Instructions on Flags
Flag Bit Result

CF set if the operation resuited in a carry out of (from addition) or a
borrow into (from subtraction) the high-order bit of the result.
Otherwise, CF is cleared.

AF set if the operation resulted in a carry out of (from addition) or a
borrow into (from subtraction) the low-order four bits of the result.
Orherwise, AF is cleared.

ZF setif the result of the operation is zero. Otherwise, ZF igcleared.

Sk set if the result is negative.

FF sct if the modulo 2 sum of the low-order eight bits of the resulr of
the operation is 0 (even parity). Otherwise, PF is cleared (odd
parity).

OF set if the operation resulted in an overflow; the size of the result
exceeded the capacity of its destination.

A DIGITAL RESEARCH™




#.3 Arithmetic, Logical, and Shift Instructions

Concarrent CP/M-86 Utilities Guide

Table 4-5. Arithmetic Instructions
Symiax I Resulr
AAA Adjust unpacked BCD (ASCII) for addition;
adjusts AL,
AAD Adjust unpacked BCD {ASCII) for division;
adjusts AL.
AAM Adjust unpacked BCD {ASCII) for multiplica-
tion; adjusts AX.
AAS Adjust unpacked BCD (ASCI) subtraction;
adjusts AL.
ADC regmem|reg Add (with carry) memory or register to regiater.
1 ADC mem|reg,reg Add (with carry) register to memory or register, !
|
ADC meml|reg,iumb Add (with carry) immediate data to memory or |
register.
ADD reg,mem|reg Add memory or register to register.
{ ADD mem|reg,reg Add register to memory or register.
ADD mem|reg.numb Add immediate dats to memory or register.
CBW Convert byte in AL to word in AH by sign
extension.
CWD Convert word in AX to double word in DX/AX
by sign extension.
CMP reg,memireg Compare register with memory or register.
CMP mern|reg,reg Compare memory ot register with register.
CMP mem|reg,numb Compare data constant with memory or
register.
DAA Decimal adjust for addition; adjusts AL.
DAS Decimal adjust for subtraction; adjusts AL.

M DIGITAL RESEARCH™




Concurrent CF/M-86 Utilities Guide 4.3 Arithmetic, Logical, and Shift Instrnctions

Table 4-5. (continued)

Syntax Result

DEC mem|reg Subtract 1 from memory or register.

INC mem|reg Add 1 to memory or register.

DIV mem]reg Divide (unsigned) accumulator (AX or AL) by
memory or register. If byte results, AL = guo-
tient, AH = remainder. If word results,
AX = quotient, DX = remainder.

DIV mem|reg Divide (signed) accumulator (AX or AL) by

memoty or register. Quotient and remaindet
stored as in DIV.

IMUL mem|reg Multiply (signed) memory or register by
accumulator {AX or AL), I byte, resules in AH,
AL. If word, results in DX, AX,

MUL mem|reg Multiply (unsigned) memory or register by
accumulator (AX or AL). Results stored as
in IMUL.

NEG mem|reg Two’s complement memory or register.

SBEB teg,mem|reg Subtract (with borrow) memory or regiater
from register.

SBB mem|reg,reg Subtract (with borrow) register from memory
OF register.

SBB mem|reg,numb Subtract (with borrow) immediate data from
mMemory or register,

SUB reg,memjreg Subtract metmory or register from register.

SUB mem|reg,reg Subtract register from memory or register.

SUB mem|regnumb Subtract data constant from memoty or
register.

@ DIGITAL RESEARCH™

4-7



4.3 Arithmetic, Logical, and Shift Instructions

Concurrent CP/M-86 UtiliGes Guide

Table 46. Logical and Shift Instractions

Syntax ] Result

AND reg.mem|reg Perform bitwise logical AND of a regisrer and
METNOTY Or register.

AND mem)|reg.reg Perform bitwise logical AND of memory or
register and register.

AND mem|reg,numb Perform bitwise logical AND of memory or
register and data constant,

NOT mem|reg Form one’s complement of memory or register.

OR reg,memireg Perform bitwise fogical OR of a register and
merory or register,

OR mem|reg,reg Perform bitwise logical OR of memaory or regis-
ter and register.

OR memjregnumb Perform bitwise logical OR of memory ragister
and data constant.

RCL merm|reg,1 Rotate memory or register 1 bit left through
carry flag.

RCL mem|reg,CL Rotate memory or register left throngh carry
flag; number of bits given by CL register.

RCR mem|reg,1 Rotate memory or register 1 bit right through
carry flag.

RCR mem|reg, CL Rotate memory or register right through carry
flag; number of bits given by CL register.

ROL memjreg,1 Rotate memory or register 1 bit loft.

ROL mem|reg, CL Rotate memory or register left; number of bits
given by CL register.

ROR mem|teg,1 Rotate mernory or register 1 bit right.

ROR memjreg,CL Rotate memory or register right; number of
bits given by CL register.

SAL memjreg, 1 Shift memory or register 1 bit left; shift in
low-order zero bits,

4-8

B DIGITAL RESEARCH™



Concurrent CP/M-86 Utilices Guide

4.3 Arithmetic, Logical, and Shift Instructions

Table 4-6, (continued)

Result

Shift memory or register left; number of bits
given by CL register; shift in low-order zero
bits.

Shift memory or register 1 bit right; shift
in high-order bits equal to the original high-
order bit.

Shift memory or register right; number of bits
given by CL register; shift in high-order bits
equal to the original high-order bic.

Shift memory or register 1 bit left; shift in
low-order zero bits. Note that SHL is a different
mnemonic for SAL.

Shift memory or register left; number of birs
given by CL register; shift in low-order zero
bits. Note that SHL is a different mnemonic
for SAL.

Shift memory or register 1 bit right; shift in
high-order 2ero bits.

Shift memoty or register right; number of bits
given by CL register; shift in high-order zero
bits.

Perform bitwise logical AND of a register and
memory or register; set condition flags, but do
not change destination.

Perform bitwise logical AND of memory regis-
ter and register; set condition flags, but do not
change destination.

Perform bitwise logical AND of memory regis-
ter and data constant; set condition flags, but
do not change destination.

Perform bitwise logical exclusive OR of a regis-
ter and memory or register.

Syntax
SAL mem|reg,CL
SAR memreg,1
SAR mem|reg,CL
SHL mem|reg, 1
SHL memijreg,CL
SHR mem|reg, 1
SHR memireg,CL
TEST reg,mem|reg
TEST memi|reg,reg
TEST mem|reg,numb
XOR reg,mem|reg
B DIGITAL RESEARCH™




4.3 Aritvnetic, Logical, and Shift Instructions Conturrent CP/M-36 Utilities Guide

Table 46. (continued)

Syntax [ Resuit
XOR mem|reg,reg Perform bitwise logical exclusive OR of mem-
ory register and register.
XOR mem|reg,numb Perform bitwise logical exclusive OR of mem-
ory register and data constant,

4.4 String Instructions

String instrucrions take zero, one, of two operands. The operands specify only the
'operand type, determining whether the operation is on bytes of words. If there ate two
operands, the source operand is addressed by the SI register and the destination oparand
‘is addressed by the D1 register. The DI and S1 registers are always used for addressing,
Note that for string operations, destinarion operands addressed by DI must always reside

in the Extre Segment (ES).

‘Table 4-7. String Instructions

LODS mem|reg
LODSB

LODSW

Synizx | Result
CMPS mem|reg,imem|reg Subztact saurce from destination; affect flags,
but do not return result,
CMPSB An alternate mnemonic for CMPS, which
assumes a byte operand.
CMPSW An alternace mnemonic for CMPS, which

asmumes a word operand.

Transfer a byte or word from the source
operand to the accumulator,

An alternate mnemonic for LODS, which
assumes a byte operand.

An alternate mnemonic for LODS, which
assumes a word operand,

8 DIGITAL RESEARCH™

410



Concurrent CP/M-86 Utilities Guide

4.4 String Instrncrions

Table 4-7. (continued)

Syntax

Result

MOVS mem|reg,mem|reg
MOVSB
MOVSW

SCAS mem|reg

SCASB
SCASW

STOS memjreg

Move 1 byte (ot word) from source to destina-
tion.

An altemate mnemonic for MOVS, which
assumes a byte operand.

An altermate mnemonic for MOVS, which
assumes a word operand.

Subtract destination operand from accumu-
lator (AX or AL); affect flags, but do not return
result,

An alernate mnemonic for SCAS, which
assumes a byte operand.

An alternate mnemonic for SCAS, which
assumes a word operand.

Transfer a byte or word from accumulator to
the destination operand.

STOSB An alternate mnemonic for STOS which
assumes a byte operand.

STOSW An alrernate mnemonic for STOS which
assumes a word operand.

@ DIGITAL RESEARCH™




4.4 String Instructions Concurrent CP/M-86 Udlitiey Guide

Table 4-8 defines prefixes for etring instructions. A prefix repeats its string instruction
the number of times contained in the CX register, which iz decremented by 1 for each
ireration. Prefix mnemonics precede the string instruction mnemonicin the statement line.

Table 4-8. Prefix Ingtructions

Syntax Result

REP Repeatuntil CX register is zero.

REPE Equalto REPZ

REPNE Equal to REPNZ..

REPNZ Repeat until CX register is zero and zero flag (ZF) is zero.
REPZ Repeat until CX register is zero and zero flag (ZF) isnot zero.

4.5 Control Transfer Instructions
There are four classes of control transfer instructions:

m calls, jumps, and returns
m conditional jumps

W jterational control

W interrupts

All control tremsfer instructions cause program execution to continue at some new
location in memory, possibly in a new code segment. The transfer can be absolute or it
can depend upon a certain condition. Table 4-9 defines conirol transfer instructions. In
the definitions of conditional jumps, above and below refer to the relationship between
unsigned values. Greater than and less than refer to the relationship between signed
values.

S DIGITAL RESEARCH™

412




4.5 Control Transfer Instructions

Control Transfer [nstructions

Result

Push the offset address of the next instruction
on the stack; jump to the target label.

Push the offset address of the next instruction
on the stack; jump to location indicated by
contents of specified memory or register,

Push CS segment register on the stack, push the
offset address of the next instruction on the
stack {after CS), and jump to the target label.

Push CS register on the stack, push the offset
address of the next instruction on the stack,
and jump to location indicated by contents of
specified double word in memory,

Push the flag registers (as in PUSHF), clear TF
and IF flags, and transfer control with an in-
directcall through any one of the 256 interrupt-
vector elements. Uses three levels of stack.

If OF (the overflow flag) is set, push the flag
registers (as in PUSHF), clear TF and IF flags,
and transfer conrrol with an indirect call
through interrupt-vector element 4 (location
10H). If the OF flag is cleared, no operation
takes place,

Transfer control to the return address saved by
a previous interrupt operation and restore
saved flag registers, as well as CS and IP. Paps
three levels of stack,

Jump if not below or equal ar above ( (CF or
ZF)=0).

Jumpif notbelaw or above orequal {CF=0),
Jump ifbelow or notabove orequal (CF=1).

Jump if below or equal or not above ({CF or
ZF)=1).

Concurrent CP/M-86 Utilities Guide
Table 4-9.
Syntax
CALL label
CALL mem|regl 6
CALLF label
CALLF mem
INT numb$
INTO
IRET
JA lab8
JAE labg
JB lab8
JBE lab8
® DIGITAL RESEARCH™

413




4.5 Controf Trsnsfer lortrnctions

Concurrent CP/M-86 Utilities Gnide

Table 4-9. (continued)

Syntax [ Result

JC lab8 Same as B,

JCXZ lab8 Jump to target label if CX register is zero,

JE lab8 Jump if equal or zero ( ZF=1 ).

IG lab8 Jump if not less or equal or greater {((SF xor
OF or ZF) =0).

JGE lab8 Jump if not less or greater or equal ((SF xor
OF) =0).

I labB Jump if legs or not greater or equal ((SF xor
OF)=1).

JLE lab8 Jump if less or equal or not greater (((SF xor
OF)or ZF) =1).

JMP label Jump 1o the targer label.

MP mem|regl6 Jump to location indicated by contents of
spetified memory or register.

JMPE label Jump to the turget label, poasibly in another
code segment.

JMPS 1ab3 Jump to the target label within * 128 bytes
from instruction.

JNA lab8 Same a2 JBE.

JNAE lab8 Same as jB.

JNB lab3 Same as JAE.

JNBE lab8 Same as JA.

JNC lab8 Same as JNB.

JNE lab8 Jump if not equal or not zero ( ZF=0),

NG lab8 Same as JLE.

B DIGITAL RESEARCEH™

414




Concurrent CP/M-86 Utilities Guide

4.5 Conmtrol Transfer Instractions

‘Tahie 4-9. (continned)

Syntax Result
JNGE lab8 Same as JL.
JNL lab8 Same as JGE,
JNLE Iab8 Same as JG.
JNO lab8 Jump if not overflow { OF=0),
JNP lab8 Jump if not parity or parity odd.
JNS lab8 Jump if not sign.
JNZ lab8 Same as JNE.
Jo lab8 Jump if overflow { OF=1 ).
JP lab8 Jump if parity or parity even ( PF=1),
JPE lab8 Same as JP.
JPO 1ab8 Same as JNP.
Js lab3 Jump if sign { SF=1).
JZ tab8 Same as JE.
LOOP lab8 Decrement CX register by one; jump to target
label if CX is not zero,
LOOPE  lab8 Decrement CX register by one, jump 1o target
label if CX is not zero and the ZF flag is get,
Loop while zero or loop while equal.
LOOPNE lab8 Decrement CX register by one; jump to target
label if CX is not zero and ZF flag is cleared.
Loap while not zero or [vop while not equal,
LOOPNZ lab8 Same as LOOPNE.
LOOPZ  lab8 Same as LOOPE.
RET Refurn to the return address pushed by a pre-
vious CALL instruction; increment stack
pointer by 2.
B DIGITAL RESEARCH™

4-15



4.5 Conatrol Transfer Instructions

Concurrent CP/M-86 Udlities Guide

Table 4-9. (continued)

Rasult

Syntax
RET humb
RETF
RETF numb

Return to the address pushed by a previous
CALL; increment stack poinger by 2 +numb,
Return to the address pushed by a previous
CALLF instruction; increment stack pointer
by 4.

Return to the address pushed by a previous
CALLF instruction; increment stack pointer by
4+ numb.

4.6 Processor Control Instractions

Processor control instructions manipulate the flag registers, Moreover, some of these
instructions synchronize the 8086 CPU with external hardware.

‘Table 4-10. Processor Control Instructions

Syntax 1 Result

CLC Clear CF flag.

CLD Clear DF flag, causing string instructions to
suto-increment the operand pointers.

CLI Clear IF flag, disabling maskable external
intetrupts.

CMC Complement CF flag.

ESC numb§,mcmireg Do no operation other than compute the cffec-
tive address and place it on the address bus
{ESC is used by the 8087 numeric coprocessor).
numb8 must be in the range 0, 63.

HLT 8086 processor enters halt state untl an inter-
rupt is recognized.

416

B DIGITAL RESEARCH™




Concarreat CP/M-86 Utilities Guide

4.6 Processor Control Instructions

Table 4-10, (continued)

Syntax Result

LOCK PREFIX instruction; cause the 8086 processor
to assert the buslock signal for the duration of
the operation cansed by the following instruc-
tion. The LOCK prefix instruction can precede
any other instruction. Buslock prevenis co-
processors from gaining the bus; this is useful
for shared-resource semaphores.

NOP No operation is performed.

STC Set CF flag.

STD Sct DF flag, causing string instructions to auto-
decrement the operand pointers.

ST1 Sec IF flag, enabling maskable external
incerrupts.

WAIT Cause the 8086 processor to enter a wait state
if the signal on its TEST pin is not asserted.

8 DIGITAL RESEARCH™

4-i7




4.7 Mnemonic Differcnces Concurrent CP/M-86 Utilitics Guide

4.7 Mbpemonic Differences

The CP/M 8086 assembler uses the same instruction moemonics as the Intel B086

assembler except for explicitly specifying far and shorr jumps, calls, and recurns. The
following table shows the four differences:

Table 4-11. Mnemonic Differences

MnemonicFunction |  CPIM | Insel
Intrasegment shortjump: JMPS JMP
Intersegment jurnp: JMPE JMP
[ntersegment return: RETF RET
[ntersegmentcall: CALLF CALL
End of Section 4
B DIGITAL RESEARCH"™




Section $
Code-macro Facilities

5.1 Introduction to Code-macros

A macro simplifies using the same block of instructions over and overagain throughout
a program. ASM-86 does not support traditional sssembly-language macros, but it does
allow you to define your own instructions by vsing the Code-macro directive. An ASM-86
Code-macro sends a bit stream to the output file, adding a new instruction to the
assembler.

Like traditional macros, Code-macros are assembled wherever they appear in assembly
language code, but there the similarity ends. Traditional macros contain assembly
language instructions, but a Code-macro contains only Code-macro directives. Macros
are usually defined in the user’s symbol table; ASM-86 Code-macros are defined in the
assembler’s symbol table,

Because ASM-86 trears a Code-macro as an instruction, you can start Code-macros
by using them as instructions in your program, The example below shows how to start
MAC™, an instruction defined by a Code-macro.

+

L]

XCHG BXsWORD3
MAC JAR 1 sPARZ
MUL AX sMORDA

*
*

*

Note that MAC accepts two operands. When MAC was defined, these two operands
were also classified by type, size, and so on by defining MAC’s formal parameters. The
names of formal parameters are not fixed. They are stand-ins that are replaced by the
names or values supplied as operands when the Code-macro starts. Thus, formal
parameters hold the place and indicate where and how to use the operands.

B DIGITAL RESEARCH™ 1



4.1 Introduction to Code-macros Concurrent CP/M-86 Utilities Guide

The definition of a Code-macao starts with a line specifying its name and any formal
parameters:

CODEMACRO name [formal parameter list]
where the optional formal parameter list is defined:
formal name ; specifier letter [modifier letter] [range]

The formal name is not fixed, but represent a place holder. If formal parameter list is
present, the specifier letter is required and the modifier letter is optional. Possible
specifiers are A, C, D, E, M, R, §, and X. Possible modifier letters are b, d, w, and sb.
The sssembler ignores case except within strings, but this section shows specifiers in
upper-case and modifiers in lower-case. Following sections describe specifiers, modifiers,
and the optional range in detail.

The body of the Code-macro describes the bit pattern and formal parameters. Only
the following directives are legal within Code-macros:

SEGFIX
NOSEGFIX
MODRM
RELRB
RELW

DB

Dw

bD

DRIT

These directives are unique to Coda-macros. Those thar appear to duplicate ASM-86
directives (DB, DW, and DD) have diffarent meanings in Code-macro context. These
directives are derailed in later sections. The definirion of a Code-macro ends with a line:

EndM
CoedeMacra, EndM, and the Code-macro directives are all reserved words. Code-

macro definition syntax is defined in Backus-Naur-like form in Appendix G. The
following examples are typical Code-macro definitions.

I BIGITAL RESEARCH™



Concurrent CP/M-86 Utilities Guide 5.1 Introduction to Code-macros

CodeMaacroc AAA
08 37H
EndM

CodeMacro DIV divisor:Eb
SEGFIX divisor

DB BFH
MODRM divisor
EndM

CodaMacra ESC opcade: Db(Q:B3) +sre:Eb
SEGFIX src
DBIT 5 (1BH):3 {(oPcode(3))
MODRM oPcodestre

EndM

5.2 Specifiers

Every formal parameter must have a specifier letter that indicates the type of operand
needed to match the formal parameter. Table 5-1 defines the eight possible specifier
letters.

Table 5-1. Code-macro Operand Specificrs
Operand Type

Accumulator register, AX or AL,

Code, a label expression only.

Data, a number to be used as an immediate value.

Effective address, either an M (memory address) or an R (register),

Memory address. This can be either a variable or a bracketed register
expression.

A gencral register only.
Segment register only.
A direct memory reference.

% » gmco>§

B DIGITAL RESEARCH™
5-3



3.3 Modifiers Concurrent CP/M-86 Utlities Guide

5.3 Modifiers

The optional modifier letter is a further requirement on the operand. The meaning of
the modifier letter depends on the type of the operand. For variables, the modifier requires
the operand to be of type b for byte, w for word, d for double-word, and sb for signed
byte. For numbers, the modifiers require the number to be of a certain size: b for —256
to 255 and w for other numbers, Table 5-2 summarizes Code-macro modifiers.

Table 5-2. Code-macro Operand Modifiers

Variables Numbers
Modt'ﬁerL Type Modifier J Size
b byte b -256 to 253
w word w anything elee
d dword
sb signed
byte

5.4 Rangc Specifiers

The optional range is specified in parentheses by one expression, or by two expressions
separated by a comma. The following are valid formats:

(numberh)

(register)
(numberb,numberb)
{numberb, register)
{register,numberb)
(register,register)

Numberb is 8-bit number, not an address. The following example specifies that the
input port must be idendfied by the DX register:

CodeMacro IN dst:Awsrart:Rw(DX)

E DIGITAL RESEARCH™

54



Concurrent CP/M-86 Utilities Guide 5.4 Range Specifiers

The next example specifies that the CL register is ta contain the count of rotation:

CodeMacro ROR dst:Ewscount:Rb(CL)

The last example specifies that the opcode is to be immediate data and ranges from 0 to
63, inclusive:

CadeMacrp ESC opcodesDb(063) sadds1ED

5.5 Code-macro Directives

Code-macro directives define the bit pattern and make further requirements on how
the operand is to be treated. Directivesare reserved words. Those that appear to duplicate
assembly language instructions have different meanings in a Code-macro definition.
Only the nine directives defined here are legal in Code-macro definitions.

§.5.1 SEGFIX

If SEGFIX is present, it instructs the assembler to determine whether a segment-over-
ride prefix byte is needed to access a given memory location. If so, it is output as the
first byte of the instruction. If not, no action is taken. SEGFIX takes the form:

SEGFIX formal name

where formal name is the name of a formal parameter that represents the memory
address. Because it represents a memory address, the formal parameter must have one
of the specifiers E, M, or X.

5.5.2 NOSEGFIX

Use NOSEGFIX for operands in instructions that must use the ES register for that
operand. This 2pplies only to the destination operand of these instructions: CMPS,
MOVS, SCAS, and STOS. The form of NOSEGFIX is

NOSEGFIX segreg,formal name

B DIGITAL RESEARCH™

55



5.5 Code-macro Directives Concurrent CP/M-86 Utilities Guide

where segreg is one of the segment registers ES, CS, 88, or DS and formal name is the
name of the memory-addrese formal parameter, which must have a specifiec E, M, or
X. No code is generated from this directive, but an error check is performed. The
following is an example of NOSEGFIX use:

CodeMacro MOVYS si_PtriEwrdi_pPtriEw
NDEEGFIX EBsdi_ptr

SEGFIX si_ptr
DB DASH
EndM
553 MODRM

This directive instructs the assembler to generate the MODRM byte that follows the
opcode byte in many 8086 instructions. The MODRM byte contains either the indexing
type or the register number to be used in the instruction. It also specifies the register to
be used or gives more information to specify an ingtruction,

The MODRM byte carries the information in three fields, The mod field occupies the
two most significant bite of the byte and combines with the register memory field to
form 32 possible values: 8 registers and 24 indexing modes.

The reg field occupies the three next bits following the mod field. It specifies either a
register number or three more bits of opcode information. The meaning of the reg field
is determined by the opcode byte.

The register memory field occupies the last three bite of the byte. It specifies a register
as the location of an operand or forms a part of the address-mode in combination with
the mod field described above.

For further information on 8086 instructions and their bit patterns, see the Inte 8086
Assembly Language Programming Manual and the Intel 8086 Family User’s Manual.

The forms of MODRM are:

MODEM formal name, formal name
MODRM NUMBER7, formal name

N DIGITAL RESEARCH™
5-6



Concurrent CP/M-86 Utilities Guide 5.5 Code-macro Directives

where NUMBERY is a value O to 7 inclusive, and formal name is the name of a formal
parameter. The following examples show how to use MODRM:

CadeMacrp RCR dst:Ewscount:Rb(CL)

SEGFIX dst
DB OD3H
MODRM 3:dst
EndM
CodeMacro OR dst:Rw:srociEw
SEGFIX S ID
DB OBH
MODRHM dstisra
EndM

5.5.4 RELB and RELW

These directives, used in [P-relative branch instructions, instruct the assembler ro
generarte displacement between the end of the instruction end the label supplied as an
operand. RELB generates one byte and RELW two bytes of displacement. The directives
take the following forms:

RELB formal name
RELW formal name

where formal name is the name of a formal parameter with a C (code) specifier, For
cxample,

CodeMacro LOOP mlace:Ch

DB 0EZH
RELB rlace
EndM
W DIGITAL RESEARCH™




5.5 Code-macro Directives Concurrent CP/M-86 Utilities Guide

5.5.5 DB,DW,and DD

These directives differ from those that occur outside of Code-mecros. The forms of
the directives arc

DB formal name | NUMBERB
DW formal name | NUMBERW
DD formal name

where NUMBERR is a single-byte number, NUMBERW is a two-byte number, and
formal name is a nare of a formal parametzr, For example,

CodeMacrn XOR dst:EwssroeDb

SEGFIX det
0B B1lH
MODRM Basdst
Dy ETD
EndM
5.5.6 DBIT

This directive manipulates bits in combinations of a byte or less. The form is
DBIT field description|,field description]
where a Seld description has two forms:

number combination
number (formal name{rshift))

number ranges from 1 to 16 and specifies the oumber of bits to be set. Combination
specifics the desired bit combination. The total of all the numbers listed in the field
descriptions must not exceed 16. The second form shown above contains formal name,

8l DIGITAL RESEARCH™
5-8




Concurrent CP/M-36 Utilides Guide 5.5 Code-macro Directives

a formal parameter name instructing the assambler to put a certain number in the
specified position, This number usually refers to the register specified in the first line of
the Code-macro, The numbers used in this special case for each register are

AL: 0
CL:
DL:
BL:
AH:
CH:
DH:
BH:

=)
-]
LN R O WMAWNE OSSO WL LW

A rshift, contained in the innermost parentheses specifies a number of right shifts,
For example, 0 specifies no shifr, 1 shifts right one bit, 2 shifts right two bits, and so
on. The following definirion uses this form:

CodeMacrn DEC dst:iRw
DBIT S(8H) »3{(dst(0))
EndM

# DIGITAL RESEARCH™
59



5.5 Cade-macro Directives Concarrent CP/M-86 Utilities Guide

The first five bits of the byre have the value 9H., If the remaining bits are zero, the hex
value of the byte will be 48H. If the instruction

DEC oX

iz assembled and DX hes a value of 2H, then 48H + 2H == 4AH, the final value of the
byte for execution. If this sequence had been present in the definition

DBIT 5 (89H) +3{dst (1))

then the register nrumber would have been shifted right once, and the result would had
been 48H + 1H = 49H, which is erronecus.

End of Section §

M DIGITAL RESEARCH™
5-10



Section 6
DDT-86

6.1 DDT-86 Operation

The DDT-86 program allows you to test and debug programs interactively in a
Concurrent CP/M-86 environment, You should be familiar with the 8086 processor,
ASM-86, and the Concurzent CP/M-86 operating system before using DDT-86.

6.1.1 Starting DDT-86
Start DDT-86 by entering a command in one of the following forms:

DDT86
DDT86 filename

The first command simply loads and executes DDT-86. After displaying its sign-on
message and the prompt character (-}, DDT-86 is ready to accept operator commands.
The second command is similar to the first, except that after DDT-86 is loaded it loads
the file spedfied by filename. If the filerype is omirred from the filename, .CMD is
assurmed. Note that DDT-86 cannot load a file of type .H36. The second form of the
starting command is equivalent to the sequence:

A>DDTBE
DDTBE s.x
-E tilenane

At this point, the program that was loaded is ready for execution.

6.1.2 DDT-86 Command Conventions

When DDT-86 is ready to accept a command, it prompts the operator with a hyphen {-).
In response, you can type a command line, or a CTRL-C to end the debugging session.
See Section 6.1.4. A command line can have up to 64 characters and must terminate with
a carriage return. While entering the command, use standard CP/M line-editing funcrions,
such as CTRL-X, CTRL-H, and CTRL-R, to correct typing errors. DDT-86 does not process
the command line untif you enter a carriage return,

) DIGITAL RESEARCH™




6.1 DDT-86 Operation Concurrent CP/M-86 Utiliies Guide

The first character of each command line determines the command action. Table 6-1
summarizes DDT-86 commands. DDT-86 commands are defined individually in
Section 6.2,

Table 6-1. DDT-86 Command Sammary
Action

Enter rssembly language staterments.
Compare blocks of memaory.

Display memory in hexadecimal and ASCII.
Load program for execution.

Fill memory block with a coostant.

Begin execution with optional breakpoints,
Hexadecimal arithmetic.

Sctup File Control Block 2nd command tail.
List memory wsing 8086 mnemonics.
Movememory block.

Read 'O port.

Write /O port.

Read disk file into memory.

Set memeory to new values.

Search for string.

Trace program execution.

Untraced program monitoring.

Show memory layout of disk file read.
‘Write contents of memory block to disk.
Examine and modify CPU state.

NQ<GH%MW8QEF"‘IOWNUW> g

The command character can be followed by one or more arguments. Thase can be
hexadecimal values, filenames, or other informarion, depending on the command.
Argnments are separated from each other by commas or spaces. No spaces are allowed
between the command character and the first argument.

B DIGITAL RESEARCH™

6-2



Concurrent CP/M-86 Uslitics Guide 6.1 DDT-86 Operation

6.1.3 Specifying a 20-Bit Address

Most DDT-86 commands require one or more addresses as operands. Because the
8086 can address up to 1 megabyre of memory, addresses musr be 20-bit values. Enter
a 20-bit address as follows:

8585:0000

where ssss represents an optional 16-bit segment number and oooo is a 16-bit offset.
DDT-86 combines these values to produce a 20-bit effective address as follows:

55550
+ 0000
ceeee

The optional value ssss can be 2 16-bit hexadecimal value or the name of a segment
register. If a segment register name is specified, the value of ssss is the contents of that
register in the user’s CPU state, as indicated by the X command. If omitted, the value
of ssss is a defanlt value appropriate to the command being executed, as described in
Section 6.3.

6.1.4 Terminating DDT-86

Terminate DDT-86 by typing a CTRL-C in response to the hyphen prompt. This
returns control to the CCP. Note that Concurrent CP/M-86 does not have the SAVE
facility found in CP/M for 8-bit machines, Thus if DDT-86 is used to parch a file, write
the file to disk using the W command before exiting DDT-86.

6.1.5 DDT-86 Operation with Interrupts

DDT-86 operates with interrupts enabled or disabled and preserves the interrupt state
of the program being executed under DDT-86. When DDT-86 has control of the CPU,
cither when it starts, or when it regains control from the program being tested, the
condition of the interrupt flag is the same as it was when DDT-86 started, except fora
few critical regions where interrupts are disabled. While the program being tested has
control of the CPU, the user’s CPU state, which can be displayed with the X command,
determines the state of the interrupt flag.

8 DIGITAL RESEARCH™



62 DDT-86 Commands Concurrent CP/M-86 Utilities Guide

6.2 DDT-86 Commands

This section defines DDT-86 commands and their arguments. DDT-86 commands
give you control of program exccution and allow you to display and modify system
memory and the CPU state.

6.2.1 The A (Assemble) Command

The A command assembles 8086 mnemonics directly into memory. The form is
As

where s is the 20-bit address where assembly is to start. DDT-86 responds to the A
command by displaying the address of the memory location where assembly is to begin.
At this point the operator enters assernbly language statements as described in Section
2.8, When a statement is entered, DDT-86 converts it to binary, places the values in
memory, and displays the address of the next available memory location. This process
continues until you enter a biank line or a line containing only a period.

DDT-86 responds to invalid statements by displaying a question mark ? and redisplay-
ing the current assembly address.

6.2.2 The B (Block Comnpare) Command

The B command compares two blocks of memory and displays any differences on the
screen. The form is

Bs1,f1,52
where 51 is the 20-bit address of the start of the first block; f1 is the offset of the final
byte of the first block, and s2 is the 20-bit sddress of the start of the second block. I
the segment is not specified in 52, the same valuc is used that was used for sl.
Any differences in the two blocks are displayed at the screen in the following form:
sl:olbl  s2:02 b2

where sl:o01 and s2:02 are the addresses in the blocks; b1 and b2 are the values at the
indicated addresscs. if no differences arc displayed, the blocks are identical.

B DIGITAL RESEARCH™



Concurrent CP/M-86 Utilitics Guide 6.2 DDT-86 Commands

6.2.3 The D (Display} Command

The D command displays the contents of memory as 8-bit or 16-bit valnes and in
ASCIIL. The forms are

D

Ds
Ds,f
DwW
D'Ws
DWs,f

where s is the 20-bit address where the display is to start, and f is the 16-bit offset within
the segment specified in s where the display is to finish.

Memory is displayed on one or more display lines. Fach display line shows the values
of up to 16 memory locations. For the firat three forms, the display line appears as
follows:

ssss:oooobbbb...bbcc...c

where ssis is the scgment being displayed and o0ooo is the offset within segment sses.
The bb’s represent the contents of the memory locations in hexadecimal, and the c's
represent the contents of memory in ASCII. Any nongraphic ASCII characters are
represented by periods,

In regponse to the first form shown above, DDT-86 displays memory from the current
display address for 12 display lines. The response to the second form is similar to the
first, except that the display address is first set to the 20-bit address 5. The third form
displays the memory block between locations s and f, The next three forms are analogous
to the first three, except that the contents of memory are displayed as 16-bit values,
rather than 8-bit values, as shown befow:

§855:0000 WWWW WWWW ... WWWW CCCC. .. CC

During a long display, you car abort the D command by typing any character at the
console,

M DIGTTAL RESEARCH™ o5



6.2 DDT-86 Commands Coocarreat CP/M-86 Utilities Guide

6.2.4 The E (Load for Execution) Command

The E command loads a file into memory so that a subsequent G, T, or U command
can begin program execution. The E command takes the forms;

E filename
E

where filename is the name of the file to be loaded. If no filerype is specified, .CMD is
assumed, The contents of the user segment registers and IP register are altered according
to the information in the header of the file loaded.

An E command releases blocks of memory allocated by previous E or R commands
or by programs executed under DDT-86. Thus only one file at a time can be loaded for
execution.

'When the load is complete, DDT-86 displays the start and end addresses of each
scgnentin the file loaded. Use the V command to redisplay thisinformation ata later time,

If the file does pot exist or cannot be successfully loaded in the available memory,
DDT-36 issuts an error message. Files are closed after an E command.

E with no filename frees sll memery allocations made by DDT-86, withoutloading a file.

62.5 ‘TheF (Fill) Command

The F command fills an area of memory with a byte or word constant. The forms are

Fufb
FWgfw

where 8 is a 20-bit starting address of the block to be filled, and f is a 16-bit offset of
the final byte of the block in the segment specified in s.

In response to the firse form, DDT-86 stores the 8-bit value b in locations s through f.
In the sacond form, the 16-bir value w is stored in locations ¢ through f in standard form,
low 8 bies firse, followed by high 8 bits.

If s is greater than f or the value b is greater than 255, DDT-86 responds with a
question mark. DDT-36 issues an error message if the value stored in memory cannor
bereadback successfully, indicating faulty or nonexistent RAM at the Jocationindicated.

M DIGITAL RESEARCH™
6-6



Concurrent CP/M-86 Utilitics Guide 6.2 DDT-86 Commands

6.2.6 The G (Go) Command

The G command transfers control to the program being tested and optionally sets one
or two breskpoints. The forms are

G

Gb1
G,b1,b2
Gs

Gs,b1
Gs,b1,b2

where 3is & 20-bit address where program execution is to start, and b1 and b2 are 20-bit
addresses of breakpoints. If no segment valuc is supplicd for any of thesc three addresses,
the segment value defaules co the contents of the CS register,

In the first three forms, no starting address is specified, so DDT-86 derives the 20-bit
address from the user’s CS and IP registers. The first form transfers control to your
program without setting any breakpoints, The next two forms set one and two break-
points, respectively, before passing control to your program. The next three forms are
analogous to the first three, except that your CS and IP registers are first set to s.

Once contral has been transferred to the program under test, it executes in real time
until a breakpoint is encountered. At this point, DDT-86 regains control, clears all
breakpoints, and indicates the address at which execution of the program under test was
interrupted as follows:

*5885:0000
where ssss corresponds to the C5, and cooo corresponds to the [P where the break

occurred, When a breakpoint returns control to DDT-86, the instruction at the break-
point address has not yet been executed.

B DIGITAL RESEARCH™ 57




6.2 DDT-36 Commands Concurrent CP/M-86 Utlities Guide

6.2.7 The H (Hexadecimal Math) Commmand
The H command cotmnputes the sum and difference of rwo 16-bit values. The form is
shown below:

Hab

where a and b are the values the sum and difference of which are being compured.
DDT-86 displays the sum (ssss) and the difference {dddd) truncated to 16 bits on the
next line, as shown below!:

ssss dddd

6.2.8 TheI (Input Command Taill} Command

The | command prepares a File Control Block and cormand ¢zil buffer in DDT-86%
Base Page and copies this information into the Base Page of the last file Joaded with the
E command. The I command takes the form:

1 comumand tail

where command il is a character string which usually contsins one or more filenames.
The first filename is parsed into the default File Control Block at 005CH. The optional
second filename, if specified, is parsed into the second pare of the default File Contral
Block beginning at 006CH. The characters in command tail are also copied into the
default command buffer at 0080H. The length of command cail is stored ac 0080H,
followed by the character string ending with a binary zero.

If a file bhas been loaded with the E command, DDT-86 copies the File Control Block
and command buffer from the Base Page of DDT-86 to the Base Page of the program
loaded. The location of DDT-86’s Base Page can be obtsined from the 16-bit value at
absolute memory location 0:6. The location of the Base Page of a program loaded with
the E command is the value displayed for DS upon completion of the program load.

6.2.9 ThelL (List) Command

The L. command lists the contents of memory in assembly langnage. The forms are

L

Ls
Lsf

W DIGITAL RESEARCH™




Concurrent CP/M-86 Utilities Gnide 6.2 DDT-86 Commands

where s is a 20-bit address where the list is to start, and f is a 16-bit offset within the
segment specified in s where the list is to finish.

The first form lists twelve lines of disassembled machine code from the current list
address. The second form sets the list address to 5 and then lists twelve lines of code.
The last form lists disassembled code from s through £. Inall three cases, the list address
is set to the next unlisted location in preparation for a subsequent L command. When
DDT-86 regains control from a program being tested {set G, T, and U commands), the
list address is ser ro the current value of the CS and IP regisrers.

Long displays can be aborted by typing any key during the list process. Or, enter
CTERL-S o halr the display temporarily.

6.2.10 The M (Move) Command

The M command moves a block of data values from one area of memory to another.
The form is

Ms,f,d

where s is the 20-bit searting address of the block to be moved, f is the offset of the final
byte to be moved within the segment described by s, and d is the 20-bit address of the
first byte of the area vo receive the data. If the segment is not specified in d, the same
value is used that was used for s. Note that if d is between s and £, part of the block
being moved will be overwritten before it is moved because data is transferred starting
from locarion s.

62.11 The QL QO (Query I/O) Commands

The QI and QO commands allow access to any of the 65,536 input/output ports, The
QI command reads data from a port; the QO command writes data to a port, The forms
of the QI command are

Qin
QIWn

where n is the 16-bit port number. In the first case, DD'T-86 displays the 8-bit value read
from port n. In the second case, DDT-86 displays a 16-bit value from port n.

B DIGITAL RESEARCH™

6-9



6.2 DDT-86 Commands Concurrent CP/M-86 Utilities Guide

The forms of the QO command are

QOn,v
QOWn,v

where n is the 16-bit part number, and v is the value to ourput. In the first case, the 8-bit
value v is written to port n. [f v is greater than 255, DDT-86 responds with 2 question
mark. In the second case, the 16-bit value v is written to part n.

6.2.12 TheR (Read) Command
The R command reads a file into a contiguous block of memory. The forms are

R filename
R filename,e

where filename is the name and type of the file to be read, and s is the location to which
the file is read. The first form lets DDT-86 determine the memory location into which
the file is read.

The sccond form eells DDT-86 to read the file into the memory segment beginning at
5. This address can have the standard form (ssss:0000). The low-order four bits of s are
agsumed to be zero, so DIDT-86 reads files on a paragraph boundary. If the memory at
s is not available, DDT-86 issues the message:

MEMORY REQUESBT DENIED

DDT-86 reads the file into memory and displays the start and end addresses of the
block of memory occupied by the file. A V command can redisplay this information at
a later ime. The defaule display poinrer {f or subsequent D commands) is set to the start
of the black occupied by the file,

The R command does not frez any memory previously allocated by another R or E
command. Thus a number of files can be read into memory without overlapping.

1f the file does not exist or there is not enough memory to load the file, DDT-86 issucs
an error message. Files are closed after an R command, even if an error occurs,

Bl DIGITAL RESEARCH™

6-10



Concurrent CP/M-86 Utilities Guide 6.2 DDT-86 Commands

The following are examples of the R command, followed by a brief explanation.
rddt86.cmd Readfile DDT86.CMD into memory.
rtest Readfile TEST into memory.

rtest1000:0  Readfile TEST into memory, starting
atlocation 1000:0.

6.2.13 'The S {Set) Command
The S command can change the contents of bytes or words of memory. The forms are

Ss
SWs

where g is the 20-bit address where the change is to occur.

DDT-86 displays the memory address and its currene contents on the following line.
[n response to the first form, the display is

ssgs:0000 bb
In response to the second form, the display is
5555:0000 WWWW
where bb and wwww are the contents of memory in byte and word formats, respectively.
In. response to one of the above displays, the operator can choose to alter the memory
location or to leave it unchanged. If 2 valid hexadecimal value is entered, the contents
of the byte or word in memory is replaced with the value. If no value is entered, the
contents of memory arc unaffected, and the contents of the next address are displayed.
In either case, DDT-86 continues to display successive memory addresses and values

until either a period or an invalid value is entered.

DD'T-86 issues an error message if the value stored in memory cannot be read back
successfully, indicaring faulty or nonexistent RAM at the location indicated.

M DIGITAL RESEARCH™
e-11



6.2 DDT-86 Commands Concurrent CP/M-86 Utilitiey Guide

6.2.14 The SR (Search) Command

The SR (Search) command searches @ block of memory for a given pattern of numeric
or ASCII values and lists the addresses where the pattern occurs. The form is

SRs.f,pattem

where s is the 20-bit starting address of the block to be searched, f is the offset of the
final address of the block, and pattern is a list of one or more hexadecimal values and/or
ASCII strings. ASCII strings are enclosed in double quotes and can be zny length.
For example,

SRZ00:3001"The form" +0dsDa

For each occurrence of pattern, DDT-86 displays the 20-bit address of the first byte
of the pattern, in the form:

£588:0000
If no addresses are listed, pattern was not found.

6.2.15 The T {Trace) Command

The T command traces program exccution for 1 to 0FFFFH program steps. The
forms are

T
Tn
TS
TSn

where n is the number of instructions to execute before returning control to the console,

Before an instruction is executed, DDT-86 displays the current CPU state and the
digagsembled instruction. In the first rwo forms, the segment registers are not displayed,
allowing the entire CPU state to be displayed on one line. The next two forms are
anslogous to the first two, except therall the registers are displayed, forcing the disessem-
bled instruction to be displayed on the next line, as in the X command.

B DIGITAL RESEARCEH™
&12



Concurrent CP/M-86 Utilities Guide 6.2 DDT-86 Commands

In all of the forms, control transfers to the program under test at the address indicated
by the CS and IP registers. If n is not specified, one instruction is executed. Otherwise,
DDT-86 executes n instructions, displaying the CPU state before each step. A long trace
can be aborted before n steps have been executed by pressing any character at the console.

After a T command, the list address used in the L command is set to the address of
the next instruction to be executed.

Note that DDT-86 does not trace through a BDOS inrerrupt instruction because
DDT-86 itself makes BDOS calls, and the BDOS is not reentrant. Instead, the entire
sequence of instructions from the BDOS interrupt through the return from BDOS is
treated as one traced instruction.

62.16 'The U (Untrace) Command

The U command is identical to the T command except that the CPU state is displayed
only before the first instruction is executed, rather than before every step. The forms are

u
Un
Uus
USn

where n is the number of instructions to execute before returning control to the console.
The U command can be aborred before n steps have been executed by pressing any key
at the console.

62.17 The V (Valae) Command

The V command displays information about the last file loaded with the E or R
commands. The form is

v

If the last file was loaded with the E command, the V command displays the start and
end addresses of each of the segments contained in the file. If the last file was read with
the R command, the V command displays the start and end addresses of the block of
memory where the file was read. If neither the R nor E commands have been used,
DDT-86 responds to the V command with a question mark.

B DIGITAL RESEARCH™
6-13



6.2 DDT-85 Commands Concurrent CP/M-86 Utilities Guide

6.2.18 The W {Write} Command

The W command writes the contents of a contiguous block of memary to disk. The
forms are

W filename
W filename,s,f

where filename is the filename and filstype of the disk file to receive the data, and s and
f are the 20-bir first and last addresses of the block to be written. If the segment is not
specified in f, DIDT-86 uses the same value that was used for s.

If the first form is used, DDT-86 assumes the 5 and f values from the last file read with

an R command. If no file was read with an R command, DDT-86 responds with a
question mark. This form is useful for writing out files after patches have been installed,
assuming the overall kngth of the file is unchanged.

In the second form where s and f are specificd as 20-bit addresses, the low four bits
of 3 are assumed to be 0, Thus the block being written must always start on a paragraph
boundary.

If a file by the name specified in the W command already exigts, DDT-86 deletes it
before writing a new file.

6.2.19 The X (Examine CPU State) Command

The X command allows the operator to examine and alter the CPU stare of the
program under test. The forms are

X
X
Xf

where r is the name of one of the 8086 CPU registers, and f is the abbreviarion of one
of the CPU flags. The first form displays the CPU stare in the formar:

AX BX CX.,..88 BS IP
ingtruction

@ DIGITAL RESEARCH™

G-14



Concurvent CP/M-B6& Utilities Guide 6.2 DDT-86 Commands

The nine hyphens at the beginning of the line indicate the state of the nine CPU flags.
Kach position can be a hyphen, indicating that the corresponding flag is not set (0), or
a 1-character abbreviation of the flag name, indicating that the flag is set (1). The
abbreviations of the flag names are shown in Table 6-2,

Instruction is the disassembled instruction at the next location to be executed, indicated
by the CS and IP registers.

Table 6-2. Flag Namc Abbreviations

Character [ Name
O Overflow
D Direction
1 Interrupt Enable
T Trap
s Sign
Z Zero
A Auxiliary Carry
P Parity
C Carry

The second form allows the operator to alter the ragisters in the CPU state of the
program being tested. The r following the X is the name of one of the 16-bit CPU registers.
DDT-86 responds by displaying the name of the register, followed by its current value.
If a carriage return is typed, the value of the register is not changed. If a valid value is
typed, the contents of the register are changed o that value, In either case, the next
register is then displayed. This process continues until a period or an invalid value is
entered, or until the last register is displayed.

The third form allows the operator to alter one of the flags in the CPU state of the
program being tested. DDT-86 responds by displaying the name of the flag, followed
by its current state, If a carriage return is typed, the state of the flag is not changed. If a
valid value is typed, the state of the flag is changed to that value, Only one flag can be
examined or altered with cach Xf command. Set or reset flags by enteringa value of 1 or 0.

After an X command, the typel and type2 segment values are set to the contents of
the CS and DS registers, respectively.

H DIGITAL RESEARCH™
6-15




6.3 Default Segmnent Values Coocmrrent CP/M-86 Utilities Galde

6.3 Default Segment Values

DDT-86 has an internal mechanism that keeps track of the current segment value,
making segment specification an optional part of a DDT-86 command. DDT-86 divides
the command set into two types of commands, according to which segment a command
defaults if no segment vilue is specified in the command line.

The first type of command pertaing to the Code Segment: A {Assemble), L (List
Mnemonics), and W (Write). These commands use the internal typel segment value if
no scgment value is specified in the command.

‘When started, DDT-86 sets the typel scgment value to 0 and changes it when ane of
the following actions is taken:

N When & file is Joaded by an E command, DIDT-86 sets the typel segment value
ta the value of the C8 register,

¥ When a file is read by an R command, DDT-86 sets the typel segment value to
the base segment where the file was read.

W After an X command, the typel and type2 segment values are set to the contents
of the CS and DS registers, respectively.

8 When DDT-86 regains control from a user program after a G, T or U command,
it pets the rypel segment value to the value of the CS register.

M When a segment value is specified explicitly in an A or L. command, DDT-86
sets the typel segment value to the segment value specified.

The second type of command pertaing to the Data Segment: B (Block Compare),
D (Display), F (Fill), M (Move), S (Set), and SR (Search). These commands use the
internal type2 segment value if no segment value is specified in the command.

When started, DDYT-86 sets the type2 segment value to 0 and changes it when one of
the following actions is taken:

8 When a file is loaded by an E command, DDT-86 scts the type2 segment value
to the value of the DS register.

® When a file is read by an R command, DDT-86 sets the type2 segment value to
the base segment where the file was read.

® When an X command changes the value of the DS register, DDT-86 changes the
typel segment value to the new value of the DS register.

B DIGITAL BESEARCEH™

6-1¢




Concurrent CP/M-86 Utilities Guide 6.3 Dciank Scgment Values

® When DDT-86 regains contzol from auser program aftera G, T, or U command,
it sets the typeZ segment value to the value of the DS register.

B When a segment valug is specified explicitly in a B, D, F, M, §, or SR com-
mand, DDT-86 scts the type2 segment value to the segment value specified.

When evaluating programs that use identical values in the CS and DS registers, all
DDT-86 commands default to the same segment value unless explicitly overridden.

Note that the G {Go) command does not fall into either group because ic defaults to
the CS register.

Table 6-3 summarizes DDT-86s default segment values.

Table 6-3. DDT-86 Default Segment Values

Command type-1 type-2
A x
B x
D X
E c [
F X
G c c
H
I
L X
M X
R c <
S X
SR X
T < c
u C c
v
W x
X [ c

x — Use this segment default if none specified; change default if
specified explicitly.

¢ — Change this segment defaulkt.

B DIGITAL RESEARCH™
6-17




6.4 Syntax Concarrent CP/M-86 Utilities Guide

6.4 Assembly Language Syntax for A and L. Commands

The syntax of the assembly language statements used in the A and L commands is
standard 808€ assembly language. Several minor exceptions are listed below.

® DDT-86 assumes that all numeric values entered are hexadecimal.

u Up to three prefixes (LOCK, repear, segment override) can gppear in one state-
ment, but they all must precede the opcode of the statement. Alternarely, 8 prefix
can be entered on a line by itself,

m The distinction between byte and word string instructions is made as follows:
byte word

LODSB LODSW
STOSB STOSW
SCASB SCASW
MOVSB MOVSW
CMPSE CMPSW

B The mnemonics for near and far control transfer instructions are as follows:
short normal far

JMPS  JMP  JMFF
CALL  CALLF
RET  RETF

® If the operand of a CALLF or JMPF instruction is a 20-bit absolute address, it
is entered in the form:

SE8B8:0000

where ssss is the segment and o000 is the offsct of the address.

W Operands that could refer either to a byte or word are ambignous and must be
preceded by cither the prefix BYTE or WORD., These prefixes can be abbreviated
BY and WO. For example,

INC BYTE [BP]
NQT WORD £12341]

Failure to supply a prefix when needed results in an error message.

618

@ DIGITAL RESEARCH™



Concurrent CP/M-86 Utilities Guide 6.4 Syotax

8 Operands that address memory directly are enclosed in square brackets to
distinguish them from immediate values. For example,

(2101 AX T fadd S to remister AX
ADD AX :L51] fadd the contents af location 5 tao AX

B The forms of register indirect memory operands are
(pointer register]

[index register]
[pointer register + index register]

where the pointer registers are BX and BP, and the index registers are SI and DI
Any of these forms can be preceded by a numeric offset. For example,

ADD BX+[BF+EI]
ADD BX +3[BP+811
ADD BX:1D47[BP+8L ]

6.5 DDT-86 Sample Session

In the following sample session, you interactively debug a simple sort program.
Comments explain the steps involved.

B DIGITAL RESEARCH™

6-19



6.5 DDT-86 Sample Session

Source file of program to test.

APtryee sart.aBg

simrle sort Prodram

Concurrent CP/M-86 Utilities Guide

sorti
[ 11 1.0 iinit1alize index
Mpy bxsoffset nlist tbx = base of 1int
[ 11] sw 0 jclear switeh flag
CDMPY
mov al[bxtsald Jset byte fromlist
[1.1] al +1[bx+6il jcompare with next brie
Jna ined fdon‘t switoh 1f 1norder
Kchy al +10bx+sil Jdo first eart af switch
v {bx+sil;al Yda second mart
nay KWl fset switch flay
incis
ina L ¥1 fincrement index
cMp s1count fend pf 118t?
Inz name Sno: keep Jainyg
test swil sdone - any awitches?
Jnz sort §yess sOTt saue more
danet
Jup done Jyet here whin list qgrdared
1
dsmn
ory 100h 1leave sraaer for base page
5
nlist db 9:8+4,8:31 81481
aaunt [ 131 affspet & - offant
nlist
L "] [ 1] 0
and
Assemble program.

A>aseBE sart

CP/N 8088 ASSEMBLER VER 1.1

END DF PASS 1

END OF PAES 2

END OF ASSEMBLY « NUMBER OF ERRORE1 ©

W DIGITAL RESEARCH™
6-20



Concurrent CP/M-86 Utilities Guide 6.5 DDT-86 Sample Scssion

Type listing file generated by ASM-86.
Adtyme surt. Nt

CP/M ASMBE 1.1 S0URCE: Sort.ABE

aimrle sort Prosranm

oris
0000 BEDDQO mav 5140 Jinitialize index
0003 BBOOO1L MoV bxsoffasetlbw=haseof list
nlist
0006 CBO80BO1GO mov swil) 5o0lear awitoh flas
come:
0008 8A00 Mav als[bxu+sl] Boaes byte from list
000D 3A4001 omr al,i1Cbx+si]l fcourare with naxt brte
0010 780QA dna insa {don’t switoh if inorder
0012 BB4001 xohd als1Cbx+tsil jdofirst rart of switch
0013 B80O mov [bx+s5ils,al 3do second sart
0017 CBOB0BO101 mav sw>l jset switchflays
in ois
o01C 48 incg 8i fincrement 1ndex
Q01D B3FEDB cMr siespount Yend af 1ast®?
0020 7SES Jinz come ino: Keem doinyg
Q022 FBOB0B0O101 test suWel idone - any switohes?
0027 507 inz sort Ives: sort spMe mDIE
dores
QO0Z9 ESFOFF Jme done fset here when 1ist ordered
H]
dsey
ars 100h Ileave srace for base pase

@ DIGITAL RESEARCH™

PAGE 1

6-21



6.5 DDT-26 Sample Session Concurrent CP/M-86 Utiliies Guide

Q100 DIDHOAOEIFOEB niLst db 3181483185441
0401
paoB count fauy affset & - cffset nlint
o108 00 W dbd 0
end

END OF ABSEMELY. NUMBER OF ERRDRB1 0

Type symbol table file generated by ASM-86.

A>type sl i

Q000 VARTABLES
0100 NLIST 0108 BW

0000 NUMBERS
0008 COUNT

0000 LABELE
0008 COMP 0028 DONE 001C INCI 0000 SORT

Type hex file penerated by ASM-§6.
AXtrrs 50rt. K88

10400000300000000FB
11B0000B1BEOODDBED001CE080B0100BACA3A40017E0AEE4001 BHOOCEOBOEDLEC

:11001BB1014EBIFEOB7YEBFE0E0H010173D7ESFOFFEE
108010082030804061F0604010035
10000000Q1FF

Generate CMD file from .H86 file;
Adsenond sort

BYTEB READ 0038
RECORDS WRITTEN 04

Invoke DDT-86 and load SORT.CMD,

A>ddtEE sart
DOTEB 1.0
BTART END
CB 047010000 Q470 1Q0ZF
DB 048010000 CA4BOrOLOF

M DIGITAL RESEARCH™

622




Concurrent CP/M-86 Utilities Guide 4.5 DDT-86 Sampk Session

Display initial register values.
-K
AL BX CX DX SF BP SI DI CB DS 88 E5 IP
--------- 0000 0000 0000 0000 115E 0000 0000 000D 0470 0ABO 0481 0ARY 0O0D
Mav 91,0000

Disassemble the beginning of the code segment,
-1
047010000 MOY SI:0000
047010003 MDY B¥,0100
0470:0008 MDY BYTE LOLOB1/0C
047010008 MOV AL [BX+811
047D:000D CMP AL IOLLBN+51]
047010010 JBE 0O0IC
04710012 XOHG ALOILCBX+3I]
047010015 HOY [BX+§I1,AL
047D:0017 HOV BYTE [O10B1,01
04701001C INC SI
04a7zpi0a1D  CMP SI1,0008
047010020 JNZ 000B

Display the start of the data segment.
-q100:107
04BO$0100 0308 0A OB XF OB 0A 01 Q0 00 00 00 OO D0 OO s raunrervsassas

M DIGITAL RESEARCH™
623



&5 DDT-86 Semple Session Coacurrent CP/M-86 Utilitiey Guide

Disazsemble the rest of the code.
-1
0470:0022 TEST BYTE [010B).01
0a70:0027 JNZ 0OOC
047030029 JMP 0028
0470¢002C ADD [BX+511,AL
04701002E ADD [BX+5I1,AL
047010030 DAR
047010031 ADD [BX+BI1.AL
047010033 “?= BC
0470:0094 FOF EB
C47010035 ADD [BX],CL
Q47D10037 AD [BX+BI1:AX
047010038 ?7= BF

Execute program from IP (=0) setting breakpoint at 29H
-¥:28

#047D10028 Breakpoint encountered.
Display sorted list.
-d100,00¢
04H0:0100 00 00 0O OO OO0 00 OO 00 QO 0O 0O OO0 G0 00 00 00 svsasrrisess
Doesn’t look good; reload file
asars
BTART END

B 047Dt 0000  047D:1002F
DB 048010000 0480:010F

‘alTaceS instructions.

AX BX LCX DX BP BP 81 DI 1P
-——--Z-P- 0000 0100 0000 0000 11SE D000 DOOD DOOO 0000 MOV
=====Z-P- 0000 0100 0000 0000 115E 0000 0DOO D000 00T MDY
-----Z-P- 0000 0100 0000 0000 119E 00Q0 0000 DOCO 0005 MOV
#047D9 000B

6-24

§1,0000
BX 0100
BYTE [01081.,00

 DIGITAL RESEARCH™



Concurrent CP/M-86 Utilities Guide 6.5 DDT-B6 Sampls Scasion

Trace somc more,
-t3
AX BX CX DX SF BP SI DI 1P
—=—=-=-Z.F- 0000 0100 0000 0Q0C 119E 0000 0000 0000 000E MOV
-——-==Z-P-~ 0003 0100 0000 0000 115E 0000 O000 DOOD 000D CMF
--~-B-A-C 0003 0100 DDOO 0OCO L1SE 000D DDGO 0000 D010 JBE
*0470:001C

Displiay unsorted fist
-d100,10¢

AL :[BX+8I1
AL :0ICBX+EL]
00I1C

0480:0100 03 0B 04 O5 1F 0B 04 01 00 00 00 0D 00 00 00 00 svivsrrseran

Display next instructions to be executed.
-1
047D1001C INC 81
047010010 CMP 81,0008
047010020 JNZ 000B
Ca47D10022 TEST BYTE [010B1 .01
047010027 JNZ 0000
047010028 JNP 0028
04701002C ADD [BX+SIT.AL
047D1002E ADD [BX+SI1I.AL
0470:0030 DAS
047010031 ADD [BX+SIT (AL
0470:0033 7%= EC
047010038 POP €S

Trace some more
'3 RX BX CX DX 8P BP 9I DI IP
-==~B-A-C 0003 0100 0000 0000 119E 000CQ 0000 0000 001C INC
-------- C 0003 0100 0000 G000 119E 0000 GOCL 0000 DOID CHP
-=--~8-APC 0003 0100 0000 0000 118E 0000 0001 0000 00Z0 JNZ
#0470 : 0008

M DIGITAL RESEARCH™

51
8I.0008
o008

6-25



6.5 DDT-86 Sample Session Concurrent CP/M-86 Utiliies Guide

Display instructions from current IP.

-1

047010008 MOV AL CBX+E11]
0470310000 CMP ALOLLBX+ET)
047D10010 JBE 001C
047010012 XCHG AL +O1LBK+ET]
047010015 MOV [BX+811 AL
047Di0017 MOV BYTE [010B7.01
047D10Q1C INC 81

047D:0010 CHP BI 0003
047010020 JINZ 0o0n
0a7Ps0022 TEBY BYTE [0108]7+01
047010027 JUNZ 0000
047030028 JMP 0025

-t

AX BX ©CX DX B8P BP B1 DI 1IP
----8~APC 0003 010Q¢ 0000 0000 {18E 0000 0001 0000 QOOR MOV AL [BX+BI1]
----5-APC 0008 0100 0000 0000 {18BE 0000 0OOL 000D DOOD CMP AL sOLLBX+BI]
--------- 0008 0100 0000 0000 19E 0000 GQQL 000Q Q10 JBE 001C
«0470e0012
~1
D47D10012 ACHG AL :01LBN+B1]
04a7D: 0018 MOV [BX+E8I1:AL
047010057 MOV BYTELOIOB].01
047D0:001C INC BI
04703000 CMP 51:0008
047D: 0020 JNZ 000B
047010022 TESTBYTE LO10B1:01
047010027 JNZ 0000
047010028 JMP 0028
04A7D:002C ADD [BX+E81).AL
047D:002E AaADD [BX+811,AL
047010030 ORAS
Go until switch has been performed.
-2120
#047010020
Display list.
-d100.:107
048010100 03 04 08 08 1F 08 04 01 01 QOO0 00 Q000 0D OD eusavravernsasae
Il DIGITAL RESEARCH™

§-26



Concurrent CP/M-86 Utilities Guide

Looks like 4 and 8 wete switched okay. (And roggle is true.)

AX BX CX DX 8pF BP 49I DI [P

-t

----8-APC 0004 0100 QOO0 D000 119E 0000 0002 0000 0020 UNZ 0008

#0470:000B

Display next instructions,

-1
047D:000B MOV
047D1000D CHP
047D:0010 JBE
0470:0012 XCHG
047010015 MOV
047D:0017 MOV
047D1001C INC
Q47D:001D CMP
047D1Q020 JINZ
047D:0022 TEST
0470s Q027 JNZ
0470: 0028 JMP

AL [BX+81I]
AL:0LLBX+491]
opicC
AL:01[BX+8I]
[BX+SIT AL
BYTE [01087:01
81

S1.+00908

oooY

OYTE [0108B1,01
0000

0028

Since switch worked, let's reload and check boundary conditions.
~¢30re
START END
C8 047010000 0470 1002F
'S 0480:0000 04BO:010F

6.5 DDT-86 Sample Session

I DIGITAL RESEARCH™

6-27



6.5 DDT-86 Sample Sexsion Concurrent CP/M-86 Utilides Guide

Make it quicker by setting list length to 3. (Could also have used s47d = 1e
to patch.)

-nld

0470:0010 cmr 5153

0470:0020

Display unsorted list.
-d100
04BC10100 03 0804 0B 1F OB 04 01 G0 00 DO 00 DG OA 00 00 v (revivonrrrrrs
0480¢0110000000 00 00QA 0000 QA 000000 CQDAA 0000 s vnunvnnnsny
0480:0120 00 00 00 CO GO OO DO VO 00 0O 00 90 0D 20 20 20 1 uvrsvirerrer

Set breakpoint when first 3 elemenits of list should be sorted.

-¥:28
«0470: 0028

Sce if list is sorted.
-d100.i0¢
048010100 03 04 05 08 LF OB 03 01 00 00 0O 00 DO DO 00O rvverasrrasassns

Interesting, the fourth element seems to have been sorted in.
-¥nort
START END
G8 047030000 0A7D1002F
08 08010000 04BOIOIOF

Let’s try again with some tracing.
-ald
047010010 omp 5123
047D: 0020

8 DIGITAL RESEARCH™

6-28



Concurrent CP/M-86 Utilities Guide

AX BX CX DX Sp 8P 491 DI Ip
----- Z-P- 0006 0100 0000 §000 118E 0000 0003 0000 0000 MOV
----- Z2-P- 000G 0100 0000 00UY 119E 0000 0000 0000 G003 MOV
----- Z-P- 0008 0100 0000 0000 118E 0000 G000 UOGQ 0006 MDYV
----- Z-P- 0005 0100 0000 0000 113E 000D 000Q 0000 COOB MOV
----- Z-P-~ 0003 0100 0000 0000 118E 0000 0000 0000 000D CMP
----B-A-C 0003 0100 0000 0000C 11BE 0000 Q0Q0 0000 0010 JBE
---=-85-A-C 0003 0100 0000 0000 1 19E Q0000 0000 0000 CD1C INC
-------- C 0003 0100 0000 CCQ0 113E 0000 0001 0000 0O1D CMP
--~-B-A-C Q003 0100 0000 0000 119E Q000 0061 0000 0QZ0 NZ

2047020008

-1

0470:0008 MOV
0470:000D CHMP
0470:0010 JBE
04700012 XCHG
0470:0015 MOV
Q470:0017 MOV
0470:001LC INC
0470:0Q1D CHP
0470:0020 JNZ
Q47010022 TEBT
0470:0027 UNZ
Q47010029 JMP

-t3

AL (BX+ET]

AL 01 TBX+E]]
oo1C
ALOLIBK+E]I]
CBX+SI1+AL
BYTE LQ1083 .01
g1

81.0003

oopoB

BYTE [Q1087:01
0000

0029

AX BX ©[CX DX 8P BP &8I DI IP
----8-A-C 0003 0100 0000 0COQ 118E 0000 0001 QOO0 Q0OB MOV
----5-A-C 0008 0100 00OO0 9000 119E 0000 0001 0000 0OCD CMP
————————— 0008 0100 0000 0000 113E 0000 0001 0000 0010 JBE

*047D20012

-1

0470:0012 XCHG
047D:0015 MOV
047030017 MOV
047D:001C INC
047030010 CHP
Q47D:0020 JNZ
047D:0022 TEST

# DIGITAL BESEARCH™

AL OLL[BXR+SI]
[BX+S11.AL
BYTE [01081/01
SI

§1,0003

Q00B

BYTE [Q10QB]1,01

6.5 DDT-86 Sample Session

81 :0000

BX :0100
BYTELO01081.00
AL 1LBX+911]

AL +Q1LBN+SII
oo1C

81

8I 0003

oooB

AL [BX+SI3
AL +01[BX+SI1
OOIE

6-29



6.5 DDT-B6 Sample Session Concurrent CP/M-86 Utilities Guide

-t3

AKX BK CX DM BP @®BP 81 DI IP
--------- 0008 D100 0000 DOOO 118E 0000 COCL Q0QC Q012 XCHG AL ,Q1EBX+8I]
--------- 0004 0100 0000 0000 11BE 0000 0001 0000 0013 MOV [BX+BI1 .AL

--------- Q004 010D 0000 QODD 118E OO0 0001 Q0CC 0017 MOV BYTEIQ108] .01
#047D01001C

-d100:101
04803010003 02 0B OB LF 0B 040101 000000000000 00 vevssasesrtvnnns

So far, so good.
-t3
AX 8X €M DX sP BP &I DI IP
--------- 0004 0100 0000 0000 119E 0000 0001 0000 001C INC g1
--------- 0004 0100 000D 0DDS 11SE 0000 000Z 0QO0 001D CMP 81,0003
--------- 0004 100 0000 QOO0 118E 0000 Q002 000D 0020 JNZ 000B
047010000

-1

047010008 MOV AL,LCEX+811
Qavmiocbob  CMP AL,O1[BX+BII
0470:0010 JBE o001C
047010012 XCHG AL.OILBN+BI]
0470:0015 MOV [EM+SL1.AL
0470:0017 MOV BYTE (01087 .01
047D1001IE INC BI

047D:001D CMP B8I.0003
047010020 JNZ 000B
0470:002Z TEST B8YTE [01081.01
04700027 JNZ 0400
047030028 JMF 0028

-t3

A BH ©CX DA 8P BF &I DI ik
---=-8-APC 0004 0100 0000 0000 118E 0000 0002 Q000 0005 MDV AL ([BX+BI1]
----6-APC 0008 0100 0000 0000 118E 0000 DDQZ 00040 QOLD CHP AL 0LLBX+BI]
--------- Q008 0100 DODC Q000 118E 0000 OHOZ 00CO 0010 JBE gaic
#0470 0012

# DIGITAL RESEARCH™

6-30



Concurrent CP/M-86 Utilities Guide

Sure enough, it's comparing the third and fourth clements of the list.

Reload program,
-e90rt
ETART END

CH9 047010000 04701 002F
D8 048010000 04B01010F

-1

047030000 MOV
047030003 MOV
047010008 MOV
047010003 MOV
0470: 000D CHP
047010010 JBE
047D:001Z XCHG
04701001 MDV
0470:0017 MOV
04701001C INC
047D:001D CHP
047010020 JNZ

Patch length.

-ald

81 .0000
B¥,0100

BYTE [Q10B1.00
AL +[BX+B11

AL +0ICBX+511
001C

AL +O1CBX+511
CBK+811 +AL
BYTE I010B1,01
81

S1.0008

000B

0470:001D cmp 81,7

0470:0020

Try it out.
~4¢289
*#0470:0028

M DIGITAL RESEARCH™

6.5 DDT-86 Sample Sessicn

6-31



6.5 DDT-86 Sampic Session Codcarrent CP/M-86 Utilities Guide

See if list is sorted.
-d100,{0f

0480:010001 03 0404 0B DB OB IF 0000 00ROQRQO 0000 thvvasserrrrasas

Looks better; let’s install patch in disk file. To do this, we
must read CMD file including header, so we use R command,
-rgori.omd
START END
200010390 2000101FF

First 80h bytes contain header, so code starts at 80h.
-180
2000:0080 MOV  BI.0000
200010083 MOV BX,0100
2000:0086 MOV BYTE [01081,00
200010088 MOV AL (IBX+511
2000:0080 CMF AL :01CBK+EL]
200010080 JBE  DOHC
2000310082 XCHG AL +01LBX+SI]
2000:008% MOV [BX+511,AL
200010087 MOV BYTE [01081,01
20001006C I[NC  BI _
200010080 CMP  ©1.,0008
200030040 JNZ  OOBB

Install patch,
-ald
Z0004008D cur 8§17

Write file back to disk. {Length of file assumed to be unchanged
since no length specified.)

~ugart,ond

6-32

B DIGITAL RESEARCH™



Concurrent CP/M-B6 Utilities Guide 6.5 DDT-86 Sample Sesgion

Reload file.

~eqort

START END
CS 047D:0000 047D:002F
DS 04B0:0000 0480:010F

Verify that patch was installed.

Q47010000 MOV §I+0000

0470 :0003 MOV BX +0100

047D 10008 MOV BYTE [01081] .00
047D:000B MOV AL r[BX=SI1]
047D 10000 CMP AL +01(BX=BI]
Q470:0010 JBE Qo1C
047010012 XCHG AL »01R8X=811
047D:0015 MOV CBX=8I1:AL
047D 20017 MOV BYTE 101081 .01
D47D:001C INC 81

047D1G01D CMP 81,0007

047D: 0020 JNZ ooop

Run it.
-44+28

Still fooks good. Ship it!
-d100+10f
0480:0106 01 03 04 04 05 O 08 IF 00 00 00 00 00 00 00 00 scrrarecrerirres

-¥¢28
+047D10029

-di00:10F
0480:0100 03 08 04 06 IF OE 04 01 00 GO 00 00 00 00 00 90 svesernnrass

-"C
R>

End of Section 6

M DIGITAL RESEARCH™
6-33



Appendix A
Starting ASM-86

Command: A>ABM&S

Syntax:
ASMBE6 filespec [ $ parameters ]

where
filespec is the 8086 assembly source file {drive and filetype are aptional).

parameters  isaone-letter type followed by a one-letter devios from the table below.

Default ﬁlme:
AB6
Parameters:
$Td where T = type and d = device
Tablc A-1. Parameter Types and Devices
TYPES: A H P S F
DEVICES:
A-P X X b X
X X x b 4
Y X X X
Z X X X
| x
D d
x = valid, d = default
@ DIGITAL RESEARCH™

A-l



A Starting ASM-85 Concurrent CP/M-86 Utilities Guide

Valid Parameters

Except for the F type, the default device is the current default drive,

Table A-2. Parameter Types

Type | Punction
A controls location of ASSEMBLER source file.
H controls location af HEX fila.
P controls location of PRIN'T file.
5 controls location of SYMBOL file.
F controls type of hex output FORMAT.
Table A-3. Device Types
Name Meaning
A-P Drives A-P
X console device
Y printer device
Zz bytebucket
[ Intel hex format
D Digital Research hex format

@ DIGITAL RESEARCH™



Concurrent CP/M-86 Utilities Guide A Starring ASM-86

Table A-4. Invocation Examples
Example Result

ASMBE 10 Assembles file 10.A86 and produces 10.H86
10.LST and IO.SYM.

ASMEE I0.ASM $ AD 82 Assembles file I0.ASM on device D and produces
1I0.LST and 10.H86. No symbol file.

ASMBE 10 % PY 5X Assembles file 10.A86, produces [0.H86, routes
listing directly to printer, and outputs symbols on
console.

ASMBE 10 $ FD Produces Digital Research hex format.

ASMBE I0 %F1 Produces Intel hex format,

End of Appendix A
B DIGITAL RESEARCH™



Appendix B
Mnemonic Differences from the
Intel Assembler

The CP/M 8086 assemnbler uses the same instrucdon mnemonics as the Intel 8086
assembler except for explicitly specifying far and short jumps, calls, and retnmns. The
following table shows the four differences.

Table B-1. Mnemonic Differences

Mpnemonic Function | CP/M | Intel
Intrasegment short jump: JMPS e
Intersegment jump: JMPF JMP
Intersegment return: RETF RET
Intersegment call; CALLF CALL
End of Appendix B
BDIGITAL RESEARCH™

B-1



Appendix C
ASM-86 Hexadecimal Output Format

ASM-86 produces machine code in either Intel or Digital Research hexadecimal
format, The Intel format is identical to the format defined by Intel for the 8086, The
Digital Research format is nearly identical to the Intel format, but Digital adds segment
information to hexadecimal records. Qutput of either format can be input to the
GENCMD, but the Digital Research format automatically provides segment identifica-
tion. A scgment is the smallest unit of a program that can be relocated.

Table C-1 defines the sequence and contents of bytes in a hexadecimal record. Each
hexadecimal record has one of the four formats shown in Table C-2. An example of a
hexadecimal record is shown below:

Byte number=>01234567 82 .ounmrreens n
Contents=>:1laaaattddd .. ccCRLF

Table C-1. Hexadecimal Record Contents

Byte | Contents I Symbol
0 record mark :
12 tecord length H
36 load address aaaa
7-8 record type tt
9-(n-1) data bytes dd....d
n-(n+1) checksum cc
n+2 carriage return CR
n+3 line-feed LF

8 DIGITAL RESEARCH™
C-1



C ASM-86 Onzput Format Concurrent CP/M-86 Utilities Gitide

Table C-2. Hexadecima! Record Formats

Type l Content [ Format
00 Datarecord +laaaa DT <data...>cc
01 End-of-file : 00000001 FF
Extended address
02 mark £02 0000 ST sssscc
03 Starraddress : 04 0000 03 ssssiiii cc
11 =>  record length - number of data bytes
cc =>  checksum-sum of all record bytes
aaaa =>  16-bitaddress
asss =>  16-bitsegmentvalue
iiii = offset value of start adidress
DT = data record type
ST =>  scpment address record type

It is in the definition of record type (DT and ST} that Digital Research hexadecimal
format differs from Intel. Intel defines one value each for the data record type and the
segment address type. Digital Research identifies each record with the segment that
contains it, as shown in Table C-3.

B DIGITAL RESEARCH™
C-2



Concurrent CP/M-86 Utifitica Guide C ASM-86 Output Format

Table C-3. Scgment Record Types

Intel Digital
Symbol | Value Value Meaning
DT 00 for data belenging to all 8086 segments

81H for dara balonging to the CODE segment

82H for data belonging to the DATA segment

83H for daca belonging ro the STACK segment

84H for data belonging to the EXTRA segment
ST 02 for all segment address records

85H fora CODE absolute segment address

86H foraDATA segment address

87H fora STACK segment address

88H fora EXTRA segment address

End of Appendix C

W DIGITAL RESEARCH™




Appendix D

Reserved Words
Table D-1. Keywords or Rescrved Words
Predefined Numbers
BYTE WORD DWORD
Operatars
AND LAST MOD OFFSET SHR
EQ LE NE OR TYPE
GE LENGTH NOT SEG XOR
GT LT PTR SHL
Assembler Directives
CODEMACRO EJECT IF NOLIST RS
CSEG END IFLIST ORG RW
DB ENDIF INCLUDE PAGESIZE SIMFORM
DD ENDM LIST PAGEWIDTH SSEG
DSEG ESEG NOIFLIST RB TITLE
DWW EQ
Code-macro Directives
DB DD MODRM SEGFIX RELW
DBIT DWwW NOSEGFIX RELB
8086 Registers
AH BL CL DI ES
AL BP CS DL SI
AX BX CX DS SP
BH CH DH DX SS
Instruction Mnemonics — Sce Appendix E.
End of Appendix Dr
B DIGITAL EESEARCH™




Appendix E

ASM-86 Instruction Summary
Table E-1. ASM-86 Instruction Summary
Mnemonic l Description | Section
AAA ASCIl adjust for Addidon 4.3
AAD ASClIadjust for Division 4.3
AAM ASCI adjust for Multiplication 4.3
AAS ASCIl adjust for Subtraction 4.3
ADC Add with Carry 4.3
ADD Add 4.3
AND And 43
CALL Call (intrasegment) 4.5
CALLF Call (intersegment) 4.5
CBW Convert Byte to Word 4.3
CLC Clear Carry 4.6
CLD ClearDirection 4.6
CLI Clear Interrupt 4.6
CMC Complement Carry 4.6
CMP Compare 43
CMPS Compare Byte or Word {of string) 4.4
CMPSB Compare Byte of string 4.4
CMPSW Compare Word of string 44
CWD Convert Word to Double Word 4.3
DAA Decimal Adjust for Addition 43
DAS Decimal Adjust for Subtraction 4.3
DEC Decrement 4.3
DIv Divide 43
ESC Escape 4.6
HLT Halt 4.6
IDIV Integer Divide 4.3
IMUL Integer Multiply 4.3
IN Input Byte or Word 42
INC Increment 4.3
INT Interrupt 4.5
INTO Interrupt on Overflow 4.5
IRET Incerrupt Return 4.5
8 DIGITAL RESEARCH™

E-1



Concurrent CP/M-86 Utilities Guide

Table E-1. (continned)

Mnemonic l Description Section
JA Jumpon Above 4.5
JAE Jumpon Aboveor Equal 4.5
B Jump onBelow 4.5
JRE Jump onBelow or Equal 4.5
JC Jump on Carry 4.5
JCXZ Jumpon CX Zero 4.5
JE Jump on Equal 4.5
JG Jump on Greater 4.5
JGE Jump on Greater or Equal 4.5
JL JumponLess 4.5
JLE Jump on Less or Equal 4.5
JMP Jump (intrasegment) 4.5
JMPF Jump (intergegment) 4.5
JMPS Jump (B-bit displacament) 4.5
JNA Jump on Nat Above 4.5
JNAE Jump onNot Above or Equal 4.5
JNB Jump on NotBelow 4.5
JNBE Jump on Not Below or Equal 4.5
JNC Jump onNot Carry 4.5
JNE Jump on NotEqual 435
ING Jump on Not Greater 4.5
JNGE Jump on Not Greater or Equal 45
JNL JumponNot Less 4.5
JNLE Jump onNot Less ar Equal 4.3
JNO Jump onNot Overflow 45
NP Jump on Not Parity 4.5
JNS Jump on Not Sign 4.5
JNZ Jump onNot Zero 4.5
Jo Jump on Overflow 4.5
JP Jump on Parity 4.5
JPE Jump on Parity Even 4.5
PO Jump on Parity Odd 4.5
J5 Jumpon Sign 4.5
IZ Jumpon Zero 4.5
LAHF Load AH with Flags 4.1
LDS Load Pointerinto DS 42
LEA LoadEffective Address 4.2
LES Load Pointer into ES 42

@ DIGITAL RESEARCH™

E-2



Concnrrent CP/M-86 Utilitics Guide

Table E-1. (continued)

E hutroction Summary

Mpnemonic Description T Section
LOCK LockBus 4.6
LODS Load Byte or Word {of string) 4.4
LODSB Load Byte of string 4.4
LODSW Load Word of string 4.4
LOOP Loop 4.5
LOOPE Loop While Equal 4.5
LOOPNE Loop While Not Equal 4.5
LOOPNZ Loop While Not Zero 4.5
LOOPZ Loop While Zero 45
MOV Move 42
MOVS MoveByte or Word (of siring) 44
MOVSB MoveByre of string 4.4
MOVSW Move Word of string 44
MUL Multiply 43
NEG Negate 43
NOT Not 4.3
OR Or 4.3
ouT OutpucByte or Word 4.2
pOP Pop 4.2
PQOPF PopFlags 4.2
PUSH Push 4.2
PUSHF Push Flags 4.2
RCL Rotate through Carry Left 4.3
RCR Rotate through Carry Right 4.3
REP Repeat 4.4
RET Return (intrasegment) 4.5
RETF Return (intersegment) 4.5
ROL Rotate Left 43
ROR Rorate Right 4.3
SAHF Store AH into Flags 4.2
SAL Shift Arithmetic Lefe 43
SAR Shift Arithmetic Right 4.3
SBB Subtract with Borrow 4.3
SCAS Scan Byte or Word (of string) 4.4
SCASB Scan Byte of string 4.4
SCASW Scan Word of string 4.4
SHL ShifrLeft 4.3
SHR ShifeRight 4.3
M DIGITAL RESEARCH™

E3



Councurrent CP/M-B6 Utlities Guide

Tablec E-1. (comtinued)

Mnemonic ] Description r Section
STC SetCarry 4.6
STD SetDirection 4.6
STI SetInterrupt 4.6
STOS Store Byte or Word (of string) 44
STOSB Store Byteof string 4.4
STOSW Store Word of string 44
SUB Subtract 4.3
TEST Test 4.3
WAIY Wait 4.6
XCHG Exchange 42
XLAT Translate 4.2
XOR Exclusive Or 43
End of Appendix E
B DIGITAL RESEARCH™



LCR/% ABMEBB 1,08 8OURCE: APPF.ABB

0000 EH0800
0Q03 ES1900
aQoe E8zZn00

@DIGITAL RESEARCH™

Sample Program APPF.A86

Appendix F

Teruinal Input/Dutrut

title ‘Taruinal Input/Qutput”’
raresize 350
rassuidth 79

sinfors

lesesea Terminal 170 subrautines #¥Fessss

g () v am -m e s ar W W o W wmr A W e

The Tollowing subroutines
are inciuded:

CDNSTAT - corsole status
CONIN -~ ¢onsele inmus
CONOQUT - ocansule outeut

Each routine revuires CONSODLE NUMBER

in the BL register,

FERERRERERRRRRSAS
* Juwp table: *
HEEFREESERRARTEN
83EG i atast of cods sesuent
Jup_tab:
Jue oobnstat
Jur eonin
Jne conout

FERBRERFHERREFERFRRANEDS
* 1/D rort numbers L4
AFERERERERIISRERHRREEDR

Listing F-1. Sample Program APPF.A86

PACE




F Sample Program Concutrrent CP/M-86 Utlitics Guide
EP/N ABMBB 1.0P SDURCE: APPF.ABB Tarainzl Inmyt/Output AAGE 2

i
i Tarminal 11
!

QoLo0 instatl 29u 10k { {nrut status roct
11§ indatal |y 1ih i ineut sort
0011 sutdatal L1 11b I outeul port
0001 ruadyinmaskl LTI 0ih 1 inesut rendr aask
0002 raadvoutmaskl [L1) 0Zh | outrut ready musk
1
s Tarminal 21
¢
o012z instat Yy 12h § ineut status Pors
0013 indata2 "y 13h 1 ineuy POt
0013 outdata? (L1 13b | cutrut wors
9004 raadyinnask? [L11) 0dh I inrut resdy mask
Q008 ruadroutmask2  amy 08h | outrut ready musk
3
1
H SHEFFEEIAND
§ + CONBTAT *
L FRHENSERERRT
§
] Ent:ryx BEL - rasf ¢ terninal no
! Enxitt AL - r#¥ = 0 It not ready
Offh 1f raady
L
constat!
0008 SJIESIFQO rush bx ! tall okterminal
constatl:
opoD E2 rush dx
Q00E BBODO mov dh0 ! resd status rort
0010 BA1? mov  d)sinstatustab CAXI
aolzZ EC in alsdx
Q013 224708 and  nlsrazdyinmxsktad [bal
0DLE 7402 Jz constatout
0018 BOFF mov  als0fth

Listing F-1. {continued)

B DIGITAL RESEARCH™



Caoncurrene CP/M-86 Utilities Guide F Sample Program
CP/M AOWEE 1,08 BOURCE: RPPF,ABE Terminal Inputr/Outrut PAGE 23

constatouts:
001A SASBDOACOCR por dx | rom b T oap alsal ! oret

EAREREEAS
% CONIN =
EETRRREEY

Entryr BL « raf = tarminal ne
Exits AL - rax - rend ocharapisr

00IF 33EBZBOC paninr mosh bx ! call alitarminal |
0023 EBEJFF poninls oxll ponstatl f test status
ODZE 74FB Jz peninl
00z8 %2 rush dx | read akarsatar
0029 BBOO mov  dk 0
Q028 9ANTOZ wov  dlsindatatab IBX]
002E EC in al ydx
002F 247F and  al7th i strir murity bhis
0031 TASBC3 ror dx | ror bx | ret

FHEREREREE

% CONDUT »

SRR RRRES

Entev: BE - rag = terminz]l no
AL - red = character to erint

Q034 S3EBLA0O onout: push bx [ call okterminal

Q038 52 Push dx
Q038 50 mush ax
Q03A BEGD mov  dh0 T test status
QD3C AAL7 mav  dlsinstetustab [BX]
ponbutls:
Q03E EC m al ,dx

Listing F-1. (continued)

H DIGITAL RESEARCH™



F Sample Program Coucurrent CP/M-86 Utdlities Guide

CP/M AEMEE 1.0B BOURCE: APPF.A8E Torminal Ineut/Dutrut PAGE 4
003F 224708 and alsreadvoutmnsXtab [BX]
0042 74FA 4z conoutl
0044 38 POP  AX Y write bvte
0043 8aA¥704 mav  dlsoutdatatab [BX)
004E EE out dxesl
Q04F JASBCI FoP X | mpop bx | red
LI T Lt L LT
+ UKTERMINAL +
L R n g

Entrye BL - red = terminal ne

Kterminaly

004C OADE [} bl:bl
Q0ZE 7404 Jz et
0030 BOFBO3 omr blslansth inntetustab + 1
00¥3 7303 Jan  error
0055 FECB desc bl
Q0%7 B700 wov  bBRD
0038 C3 ret
1
00¥a SBSDCI wrrozc mop bx | rop bx ! ret ! do nothing
1
FAERARRERLEENER pnd of ocodw smfdment FERRRRBEASHEEEH
L]
] EREREEEARERR AT
L] ¢ Rata seFmgnt +
¥ FREEFFRERANRERES
¥
dsey
} HERRRRREERRNAREERELERRALE
} * Data for evaoh terminal »
] LILIEE I EITE SR LT A Y P

Ligting F-1. (continued)

8 DIGITAL RESEARCH™
F4



Concurrent CP/M-86 Utilities Guide

CP/M ABMEBH 1.0B 8UURCE: APFF.AZE

0000 1012
0002z 1113
0004 1113
0008 0104
0008 0zo08

instatusrtab db
indatatab 1]
autdatatab db

readrinwnakinb db
readyouimanktab db
§

F Sample Program

Terninal Inrut/Outrut FAGE 5

instaslsinntat2
indatalindataZ

outdatal routdatnz
readrinmankl sready innaskz
raadyoutwankirreadvoutmusk2

JRRERARERRELREIAE And OF flle ESRSFEAFEEESRBALLREFED

wnd

END OF ASBEMBLY, NUMBER OF ERRORS:1 0

B DIGITAL RESEARCH™

Listing -1, (continued)

End of Appendix F

F-§



Appendix G
Code-macro Definition Syntax

<codemacro> 1= CODEMACRO <name>> [<formal$list>>]
<list§of$macro$directives>]
ENDM

<name> :: = IDENTIFIER
<formal$list> :: = <parameter§descr>[{,<parameter§descr>}]

<parameter§descr> ;= <form$name>:<specifier§letter>
<modifier§letter>[(<range>]

<specifier§letter> ::= A|C[D|E|M|R|S| X
<modifierSletier=>> ::= b | w|d|sb

<range> ;= <single$range>|<double$range>
<single$range> :: = REGISTER | NUMBERB

<double$range> :: = NUMBERB,NUMBERB | NUMBERB,REGISTER |

REGISTER,NUMBERB | REGISTER REGISTER

<list§of$macroddirectives™ :: = <macro$directve>
{<macro$directive>}

<macro$directive> 1= <db> | <dw>| <dd> | <segfix>>|
<nosegfix> | <modrm> | <relb>
| <relw> | <dbit>

B DIGITAL RESEARCH™

G-1



G Code-macro Syntax Councurrent CP/M-86 Uilities Guide

<db> ::= DB NUMBERB | DB <form$name>
<dw> ::= DW NUMBERW | DW <form$name>
<dd> ;;= DD <form$name>

<segfix> 11 = SEGFIX <form$name>
<noscghix> :: = NOSEGFIX <form$name>>

<modrm> ::= MODRM NUMBER7,<form$name> |
MODRM <formSname>,<form$name>

<relb> :: = RELB <form$name>
<relw> :: = RELW <form$name>>
<dbic> :: = DBIT <field§descr=>{, <field$descr>}

<field§descr> ::= NUMBER1S { NUMEERB ) |
NUMBERI1S { <form$name> { NUMBERS ) )

<form$name> :; = IDENTIFIER

NUMBERSB is § bits

NUMBERW is 16 birs

NUMBER?7 are the values 0, 1,.., 7
NUMBER1S are the values 0, 1,. ., 15

End of Appendix G

W DIGITAL RESEARCH™

G-2




Appendix H
ASM-86 Error Messages

ASM-86 produces two types of error messages: fatal errors and diagnostics. Fatal
errors oceut when ASM-36 s unable ro contdnue assembling. Diagnostics messages
report problems with the syntax and semantics of the program being assembled. The
following messzges indicare fatal errors ASM-86 encounters during assembly:

NO FILE

DIBKETTE FULL
DIRECTORY FULL
OISKETTE READ ERRGR
CANNDT CLOSE

SYMBOL TABLE OVERFLOW
PARAMETER ERRDR

ASM-36 reports semantc and synrax errors by placing a numbered ASCII message in
front of the erroneous source line. If there is more than one error in the line, only the
first one is reported. Table H-1 summarizes ASM-86 diagnostic error messages.

Table H-1. ASM-86 Diagnostic Error Messages

Number Meaning
0 ILLEGAL FIRSTITEM
1 MISSING PSEUDO INSTRUCTION
2 ILLEGAL PSEUDO INSTRUCTION
3 DOUBLE DEFINED VARIABRLE
4 DOUBLE DEFINED LABEL
5 UNDEFINED INSTRUCTION
é GARBAGE ATEND QF LINE-IGNORED
7 QOPERANDS MISMATCHINSTRUCTION
8 ILLEGAL INSTRUCTION OPERANDS

M DIGITAL RESEARCH™



H ASM-B6 Error Messages

Concarrent CP/M-86 Utilities Guida

Tabk H-1. ({continued)

Number |

Meaning

9
10
1
12
13
14
15

16

17
18
13
20

21
22
23

24

MISSING INSTRUCTION

UNDEFINED ELEMENT OF EXPRESSION
ILLEGAL PSEUDO OPERAND

NESTED IF ILLEGAL - [F IGNORED
ILLEGAL IF OPERAND - IF IGNORED
NO MATCHING IF FOR ENDIF

SYMBOL ILLEGALLY FORWARD REFERENCED -
NEGLECTED

DOUBLE DEFINED SYMBOL - TREATED AS
UNDEFINED

INSTRUCTION NOT IN CODE SEGMENT

FILE NAME SYNTAX ERROR

NESTED INCLUDE NOT ALLOWED

ILLEGAL EXPRESSION ELEMENT

MISSING TYPE INFORMATION IN OPERAND(S)
LABEL OUT OF RANGE

MISSING SEGMENT INFORMATION IN
OPERAND

ERROR IN CODEMACRO BUILDING

End of Appendix H

H-2

& DIGITAL RESEARCH™



Appendix I
DDT-86 Error Messages

Table I-1.

DDT-86 Error Mesiages

Error Message —[

Meaning

AMBIGUOUS OPERAND

CANNOT CLOSE

DISK READR ERROR

DIEBK WRITE ERROR

INSUFFICIENT MEMORY

MEMGRY REQUEST DENIED

An attempr was made to assemble a command
with an ambiguous operand. Precede the oparand
with the prefix BYTE or WORD.

The disk file written by a W command cannot be
closed. This s a faral error that terminates
DDT-86 execution, Take appropriate action after
checking to see if the corxrect disk is in the drive
and that the disk is not write-protected.

The disk file specified in an R command could not
be read properly. This is usually the result of an
unexpected end-of-file. Correct the problem by
regenerating the H36 file,

A disk write operation could not be sucoessfully
performed during a W command, probably due
to a full disk. Erase files or obtain a disk with
greater capacity.

There is not enough memory to load the file
specified in an R or E command,

A request for memory during an R command
could not be fulfilled. Up to eight blocks of
memory can be allocated at a given tme.,

B DIGITAL RESEARCH™

I-1




1 DDT-86 Ecror Messages Concurrent CP/M-86 Utilities Guide

Table I-1. (continued)
Error Message l Meaning

ND FILE The file specified in an R or E command could not
be found on the disk.

NO 8PACE There is no space in the directory for the file being
written by a W command.

VERIFY ERROR AT s 10 The value placed in memory by a Fill, Set, Mave,
or Assemble command could nat be read back
correctly, indicating bad RAM or attempting ta
write to ROM or nonexistent memory at the
indicated locaton.

End of Appendix 1

W DIGITAL RESEARCH™



Index

“a” sign, 2-2
20-Bit Address

specification of in DD'T-86, 6-3
8036 Registers, D-1

A

A (Assemble) Command (DDT-86),
64, 6-16, 6-18

AAA, 4-6

AAD, 4-6

AAM, 4-6

AAS, 4-6

ADC, 46

ADD, 4-6

address conventions in ASM-86, 3-1

address expression, 2-16

allocadng storage, 3-3

alphanumerics, 2-1

AND, 4-8B

apostrophe, I-2

arithmetic instructions, 4-3

arithmetic operators, 2-8, 2-10

ASCII character set, 2-1

ASM-86 character set, 2-1

ASM-86 error messages, 1-3, H-1

ASM-86 fletypes, 1-2

ASM-86 instruction set, 4-1, E-1

ASM-86 opcrators, 2-8

ASM-46 output files, 1-1

assembler directives, D-1

assembler aperation, 1-1

assembly langnage source file, 1-1

assembly langnage statements, 2-16

assembly langnage syntax, 6-18

asterigk, 2-2

B

B {Block Compare} Command
(DDT-86}, 64

BDOS interrupt instruction, 6-13

binary constant, 2-3

bracketed expressions, 2-16

BYTE, 2-5, 1-7, 6-18

C

CALL, 4-13

carriage return, 2.2

CBW, 4-6

character string, 2-3

CLC, 416

CLD, 4-16

Cll], 416

CMC, 416

CMP, 4-6

CMPS, 4-10

Code Segment, 2-7, 3-2, 6-16

code-macro directives, 5-1, 5-2,
5-5,D-1

CodeMacro directive, 5-2

colon, 2-2

conditional assembly, 3-4

console output, 14

constants, 2-3

contro] transfer instructions, 4-13

creation of output files, 1-3

CSEG directive, 3-2

CWD, 4-6

@ DIGITAL RESEARCH™

Index-1




D

D (Display) Command (DDT-86),
6-5, 617

DAA, 46

DAS, 4-6

data allocation directives
(ASM-86), 3-2

data scgment, 2-7, 3-1, 3-2, 6-16

data transfer instructions, 4-3

DB directive (ASM-86), 2-7, 3-8

DB directive (code-macro), 5-8

DBIT directive, 5-8

DD directive (ASM-86), 2-7, 3-8

DD directive (code-macro), 5-8

DDT-86 command summary, 6-2

DDT-86 error messages, I-1

DDT-86 operation, 6-1, 6-3

DDT-36

termijnation of, 6-3

DEC, 4-7

default segment values, 6-16, 6-17

delimiters, 2-1

device name, 1-4

device types (ASM-36), A-2

DI regiater, 4-10

diagnostic error messages, H-1

Digital Research hex format, 1-2, C-1

directive statement, 2-18, 3-1

directives (ASM-86), 2-16

DIv, 4-7

dollar-sign character §, 14, 2-2

dollar-sign operator, 2-14

DSEG Directive (ASM-86), 3-2

DW Directive (ASM-86), 2-7, 3-7

DW directive {Code-Macro), 5-8

DWORD, 2-§, 2.7

E

E (Load for Execution) Command
(DDT-86), 6-6, 616

effective address, 3-1

EJECT directive, 3-10

END directive, 3-5

end-of-line, 2-16

ENDIF directive, 3-4

Ending ASM-86, 1-5

EndM directive, 5-2

EQ, 2-9

EQU directive (ASM-86), 2-7, 3-5

error condition, 1-3

ESC, 4-16

ESEG Direstive (ASM-36), 3-3

exclamation point, 2-2

expressions, 2-16

extra segment (ES), 2-7, 3-1,
3-3, 410

F

F (Fill) Command (DDT-86),
6-6, 6-17

F parameter, 1-§

futal error, H-1

file name extensions, 1-2

flag bits, 4-2, 4-5

Flag Name Abbreviations, 6-15

flag registers, 4-2

formal parameters, 5-1

G
G (Go) Command (DDT-86),

6-7, 6-17
GT, 2-9

Index-2

B DIGITAL RESEARCH™



H

H (Hexadecimal Math) Command
(DDT-86), 6-8

hexadecimal format, 1-1

HLT, 416

I

I (Input Command Tail) Command
(DDT-86), 6-8

identifiers, 24

IDIV, 47

IF Directive, (ASM-85), 34

IFLIST, 3-11

IMUL, 47

N, 4-3

INC, 47

INCLUDE Directive, (ASM-86), 3-§

initialized storage, 3-6

instruction statement, 2-16, 2-17, 3-2

INT, 4-13

Intel hex format, 1-5

INTO, 4-13

invalid parameter, 1-3

invocation examples (ASM-86), A-3

invoking ASM-86, 1-2

IRET, 4-13

J

JA, 413
IB, 4-13
JCXZ, 4-14
JE, 4-14
]G, 4-14
JL, 4-14
JLE, 4-14
JMP, 4-14

H DIGITAL RESEARCH™

TNA, 4-14
NB, 4-14
INE, 4-15
NG, 4-15
INL, 4-15
JNO, 415
NP, 4-15
JNS, 4-15
INZ, 415
JO, 415
P, 415
35, 415
1Z, +15

K

keywords, 2-5, 2-6, D-1

L

L. (List) Command (DDT-86), é-8,
6-16, 6-18

labels, 2-7, 2-17

LAHF, 4-3

LDS, 4-3

LE, 2-9

LEA, 4-3

LES, 4-3

line-feed, 2-2

LIST, 3-11

location counter, 3-4

LOCK, 4-17

LODS, 4-10

Jogical instructions, 4-5

logical operators, 2-8, 2-9

logical segments, 3-1

LOOP, 4-15

LT, 29

Index-3



M

M (Move) Command (DDT-86),
6-9, 6-17

MAC, 5-1

macros, 5-1

minus, 2-2

mnemonic, 2-17

mnemonic differences, 4-18

mnemonic differences from the Intel
assembler, B~1

mnemonics, 4-1

mod field, 5-6

modifiers, 54

MODRM directive (code-macro), 5-6

MOV, 44

MOVS, 4-11

MUL, 4-7

N

name field, 2-18

NEG, 4-7

NOIFLIST, 3-11

NOLIST, 3-11

nonprinting characters, 2-1
NOT, 4-8

number symbols, 2-8
numbers, 2-8

numeric constants, 2-3
numeric expreasions, 2-16

o

offset, 2-7
offset value, 3-1
operands, 4-1

operator precedence, 2-14

operators, 2-8

optional run-time parameters,
13,14

OR, 4-8

order of operations, 2-14

ORG Directive (ASM-86), 34

OUT, 44

output fles, 1-1, 1-2

P

PAGESIZE directive (ASM-86), 3-10

PAGEWIDTH directive
{ASM-86), 3-10

parameter list, 1-3

parametet types (ASM-86), A-2

period, 2.2

period operator, 2-14

plus, 2-2

POP, 44

predefined numbers, 2-5

prefix, 2-17, 4-11

Prefix instructions, 2-17, 4-12

prefix mnemonics, 4-11

printer output, 1-§

PTR operator, 2-14

PUSH, 44

Q

QI and QO {Query I/O) Commands
(DDT-86), 6-9

Tndex—4

B DIGITAL RESEARCH™



R

R (Read) Command (DDT-86),
6-10, 6-16

radix indicators, 2-3

range specifiers (code-macro}, 54

RB directive (ASM-86), 3-9

RCL, 4-8

RCR, 4-8

regisier memory field, 5-6

registers, 2-§

relational operators, 2-8, 2-10

RELB directive (code-macro), 5-7

RELW directive (code-macro), 5-7

REP, 4-12

reserved words, D-1

ROL, 4-8

ROR, 4-8

RS directive (ASM-86), 3-8

run-time options, 1-4

rn-time parameters, 1-4

RW directive (ASM-86), 3-9

S

S {Set) Command (DDT-86),
6-11, 6-17

SAHF, 4-4

SAL, 4-8, 4-9

SAR, 4.9

SBB, 4-7

SCAS, 4-11

SEGFIX directive (code-macro), 5-5

segment, 2-7

segment base values, 3-1

segment directive statement, 3-1

segment override, 2-8, 2-10, 2-13

segment record types, C-3

segment start directives 3-1

semicolon, 2-2
separators, 2-1

shift instructions, 4-5
SHL, 49

SHR, 49

51 register, 4-10

SIMFORM directive (ASM-86), 3-10

slash, 2-2

space, 2-2

special characters, 2-1

specifiers, 5-3

SR {Search) Command
(DDT-86), 6-12

SSEG Directive, 3-3

stack segment, 2-7, 3-1, 3-3

gtarting ASM-86, 1-2, A-1

starting DDT-86, 6-1

statements, 2-16

STC, 4-17

STD, 4-17

STI, 4-17

STOS, 411

string constant, 2-4

string operations, 4-10

SUB, 4-7

symbol table, 5-1

symbols, 2-4, 2-6, 3-§

T

T {Trace) Command (DDT-86),
6-12, 6-16

tabs, 2-1

TEST, 4-9

TITLE directive (ASM-86), 3-9

tokens, 2-1

type, 2-7

typel segment value, 6-16

B DIGITAL RESEARCH™

Index-5



U

U {Untrace) Command (DDT-86),
613, 6-16

unary operators, 2-13
underscore, 2-2

v

Y (Value) Command (DDT-86), 6-13
variable manipulators, 2-8, 2-10, 2-13

variables, 2-7

w

W (Write) Command (DDT-86),
6-14, 6-16

WAIT, 4-17

WORD, 2-5, 2-7, 6-18

X

X (Examine CPU State) Command
(DDT-86), 6-14, 6-16

XCHG, 4-4

XLAT, 44

Index-6

W DIGITAL RESEARCH™



