
IBM MQSeries® Adapter for Secure Financial
Messaging Gateway

Installation and Programming Guide
Version 1 Release 1

SH12-6731-00

���

IBM MQSeries® Adapter for Secure Financial
Messaging Gateway

Installation and Programming Guide
Version 1 Release 1

SH12-6731-00

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix D.
Notices” on page 119.

First Edition, May 2001

This edition applies to Version 1 Release 1 of IBM MQSeries Adapter for Secure Financial Messaging Gateway
(5799-GKZ) and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book v

Chapter 1. Introducing MQSeries
Adapter 1
Process initiation and message flow 3

Message flow when using InterAct 3
Message flow when using local file transfer . . . 4
Message flow when using FileAct 6
Message flow when using the client hub 6
Message flow when using the server request
handler 7

Synchronous and asynchronous calls 8
Portability 9
Client hub and server request handler 9

Starting a client hub or server request handler . . 9
Stopping a client hub or server request handler 10

Data conversion 11
Authorization checking 13

Levels of authorization checking 14
Example of using authorization checking . . . 15
Determining which RACF profile controls access
to a protected resource 15

Chapter 2. Planning for and installing
MQSeries Adapter 17
Planning for MQSeries Adapter. 17

Hardware requirements 17
Software requirements 17

Installing MQSeries Adapter. 17
Connect MQSeries Adapter to SAG 18
Copy DTD files to MVS 18
CICS and IMS dependencies and restrictions . . 18
Implementing authorization checking. 20

Chapter 3. Creating client and server
profiles 21

Chapter 4. Writing MQSeries Adapter
clients and servers, and SwCallback
functions. 25
Data structures 25

AGHResponse 25
AGHLFTCmdParm 26
AGHFileHeader 27

XML messages 28
Sample programs 29

Chapter 5. MQSeries Adapter C++
classes and methods 31
AGHClient 31

Constructors 31
Methods 32

AGHServer 39

Constructors 40
Methods 40

Chapter 6. MQSeries Adapter functions
for C and COBOL 49
AGHClientGetConditionCode—Get condition code
for client 50

Format for C 50
Coding examples 50

AGHClientGetErrorMessage—Get error message for
client 51

Format for C 51
Coding examples 51

AGHClientSetClientName—Set a client name . . . 52
Format for C 52
Coding examples 52

AGHClientSetUserId—Set a client user ID 54
Format for C 54
Coding examples 54

AGHFCall—Initiate a FileAct transfer 56
Format for C 56
Coding examples 56

AGHLFTCmd—Issue an LFT command 58
Format for C 58
Coding examples 58

AGHServerClientHub—Start a client hub 61
Format for C 61
Coding examples 61

AGHServerGetConditionCode—Get condition code
for server 62

Format for C 62
Coding examples 62

AGHServerGetErrorMessage—Get error message for
server 63

Format for C 63
Coding examples 63

AGHServerInit—Initialize a server. 64
Format for C 64
Coding examples 64

AGHServerRelease—Release the server’s message
buffer 65

Format for C 65
Coding examples 65

AGHServerReply—Place a response in the reply-to
queue 67

Format for C 67
Coding examples 67

AGHServerRequestHandler—Start a server request
handler 69

Format for C 69
Coding examples 69

AGHServerRetrieve—Retrieve a request 70
Format for C 70
Coding examples 70

AGHServerSetUserId—Set a user ID for a server . . 72

© Copyright IBM Corp. 2001 iii

||

Format for C 72
Coding examples 72

AGHServerTerm—Terminate server 74
Format for C 74
Coding examples 74

SwACall—Initiate an asynchronous InterAct transfer 75
Format for C 75
Coding examples 75

SwAWait—Retrieve a response from an
asynchronous call 77

Format for C 77
Coding examples 77

SwCall—Initiate a synchronous InterAct transfer . . 79
Format for C 79
Coding examples 79

SwXmlBufferFree—Free client buffer 81
Format for C 81
Coding examples 81

Chapter 7. User-written functions . . . 83
SwCallback 83

Coding examples 83
AppXmlBufferFree—Free server buffer 85

Format 85
Variables 85
Coding examples 85

Chapter 8. Message logging and
tracing 87
Message logging. 87

Administering data in the system logger stream 88
Tracing 90

Appendix A. Messages and codes . . . 95
Messages 95
Condition codes 104
SWIFT status codes 105
Return codes 105

Appendix B. Process flows 107

Appendix C. Considerations when
implementing authorization checking . 113
Authorization checking SVC routine 113
Installation-defined RACF classes. 114

RACF class definition source 114
Generating the ICHRRCDE 115
Activating installation-defined classes 116
Defining AGH.RS 117
Permit a user to access an application resource 117

Appendix D. Notices 119
Trademarks 120

Glossary of terms and abbreviations 121

Bibliography. 125

Index 127

iv Installation and Programming Guide

About this book

This manual describes how to install, customize, and write programs that use IBM
MQSeries Adapter for Secure Financial Messaging Gateway, abbreviated to
MQSeries Adapter in this manual.

Readers of this manual should be familiar with the information contained in the
following manuals:
v SWIFTAlliance Gateway Developer Guide Release 1.2.0

v SWIFTAlliance Gateway Interface Specification Release 1.2.0

v SWIFTAlliance Gateway MQHA Application Programming Guide Release 1.2.0

v SWIFTAlliance Gateway MQHA Installation and Configuration Release 1.2.0

v SWIFTNet Link User’s Guide

© Copyright IBM Corp. 2001 v

vi Installation and Programming Guide

Chapter 1. Introducing MQSeries Adapter

IBM MQSeries Adapter for Secure Financial Messaging Gateway, abbreviated to
MQSeries Adapter in this manual, provides an application programming interface
(API) that lets programs running on OS/390® systems exchange messages via the
SWIFT Secure Internet Protocol Network (SIPN). Application programmers who
write programs that request or provide services via the SIPN do not want to have
to deal with communication-layer processes. The MQSeries Adapter API shields
them from such processes.

A requesting application program (the client) located on an OS/390 system uses
functions provided by MQSeries Adapter to pass requests, via MQSeries queues, to
an instance of SWIFTAlliance Gateway (SAG). SAG, in turn, uses SWIFTNet Link
(SNL) to route each request to its destination via the SIPN.

Inbound messages are received from the SIPN by an SAG and are forwarded to the
receiving OS/390 system, where they are put into an MQSeries request queue. This
triggers a responding application program (the server), which uses MQSeries
Adapter to retrieve the request from the request queue, processes the request, and
uses MQSeries Adapter to send its response back to the client. Because the
MQSeries queues are located on the OS/390 system, only one MQSeries queue
manager (which runs on the OS/390 system) is needed.

In addition to the dynamic link libraries (DLLs) that comprise the API, MQSeries
Adapter provides the following programs to help you simplify your request
processing:

MQSeries hub for client requests
Instead of using the MQSeries Adapter API directly, clients can instead
place their requests into an MQSeries queue that serves as their site’s
single point of access to the SIPN. MQSeries Adapter provides a program
called the MQSeries hub for client requests (abbreviated to client hub) that

Figure 1. The MQSeries Adapter API lets application programs exchange messages via the
SIPN

© Copyright IBM Corp. 2001 1

can then act as a single, centralized message processor. It handles the
sending of requests and the routing of the responses back to the clients,
while taking advantage of MQSeries Adapter’s authorization checking and
logging capabilities. Processing messages centrally in this way reduces the
complexity of each individual client. It also increases flexibility, because the
MQSeries queues that are used can be accessed not only from the system
on which they are located, but from other systems as well.

Server request handler
If you prefer, instead of writing your own server, you can run a program
provided by MQSeries Adapter called a server request handler. A server
request handler continually retrieves requests from the request queue at its
site and, for each request, calls a user-written function called SwCallback
that processes each request according to your needs.

MQSeries Adapter supports:

Different environments
Programs that use the MQSeries Adapter API can run as MVS™ batch jobs, or
in CICS® or IMS™ environments.

Basic and SNL messages
MQSeries Adapter can handle both basic messages (character strings) and
SWIFTNet Link (SNL) messages (XML strings that conform to the rules
established by S.W.I.F.T.).

InterAct and FileAct services
Programs that use MQSeries Adapter can take advantage of both SWIFT
InterAct services (to send messages) and SWIFT FileAct services (to transfer
files).

Local file transfer
Programs can use functions provided by MQSeries Adapter to put files onto
an SAG workstation (for example, in preparation for a FileAct transfer), or to
get, list, or delete such files.

MQSeries Adapter provides:

Authorization checking
MQSeries Adapter can be set up to use an external security manager (ESM)
such as Resource Access Control Facility (RACF®) to control whether a client
or server is granted access to the information needed to send messages to
certain destinations, or to act on behalf of certain persons or institutions.

Message logging
To satisfy your auditing requirements, whenever MQSeries Adapter sends or
receives a message, it can write a copy of the message, plus a header
containing logging information, to a system logger stream, sequential data set,
or both.

Data conversion
MQSeries Adapter converts XML messages as needed. It also converts
messages to and from:
v Client and server applications that use EBCDIC code pages such as

ibm-1047 or ibm037-s390
v SAG, which uses UTF-8 encoding

2 Installation and Programming Guide

Additionally, clients and servers can use the built-in conversion function
provided by MQSeries to translate basic messages from ASCII to EBCDIC, and
vice versa.

Process initiation and message flow
When you start a client or server, for example by running a batch job or by
executing a transaction in a CICS or IMS environment, one of the first things
MQSeries Adapter does is read the profile named in the job and extract the
parameters for the specified client or server. These parameters determine such
things as:
v The name of the correspondent (message partner)
v Whether to convert the message data
v The names of the MQSeries queue manager and queues
v Whether message logging is to be activated

For a complete list of these parameters and their descriptions, see “Chapter 3.
Creating client and server profiles” on page 21.

The subsequent message flow between clients and servers depends on the nature
of the service that is to be performed.

Message flow when using InterAct
Figure 2 shows a typical message flow between clients and servers using InterAct
service with MQSeries Adapter.

The client uses the functions provided by the MQSeries Adapter API (1) to place a
request into the request queue at its site (3), while taking advantage of the message
logging and authorization-checking services provided by MQSeries Adapter (2).
For example, MQSeries Adapter can check whether the user ID associated with the
client is authorized to send messages to the correspondent. An SAG at the client’s

Figure 2. Message flow using InterAct when the client uses a local request queue

Chapter 1. Introducing MQSeries Adapter 3

site uses its MQSeries Host Adapter (HA) component to retrieve the request (4)
and passes it to SNL, which routes it via the SIPN (5) to an SNL and SAG at the
server’s site (6). The SAG at the server’s site places the request into the request
queue at that site (7). The server uses the functions provided by the MQSeries
Adapter API to retrieve the request from the request queue (8), while taking
advantage of the message logging services provided by MQSeries Adapter (9).
After receiving (10) and processing the request, the server uses the MQSeries
Adapter API (11) to place its response into the reply-to queue at its site (12), taking
advantage of the message logging and authorization checking services provided by
MQSeries Adapter (9). An SAG at the server’s site retrieves the response (13) and
routes it via the SIPN (14) to an SAG at the client’s site (15). The SAG places the
response into the client site’s reply-to queue (16). The client uses the MQSeries
Adapter API (17) to retrieve the response from the reply-to queue (18), again
taking advantage of the services provided by MQSeries Adapter (2).

The client need not run on the OS/390 system where the request queue is located.
Instead, request and response messages can be passed between MQSeries message
queue managers (MQMs) running on different systems, as shown in Figure 3.

The client uses the functions provided by the MQSeries Adapter API (1) to place a
request into the request queue at its site (3a). This queue is a local definition of a
remote queue. The local MQM retrieves the request from this queue (3b) and
passes it to the remote MQM (3c), which places it into a remote request queue (3d).
An SAG at the client’s site retrieves the request (4), and processing continues as
described in steps 5 through 15 in Figure 2. After the response arrives at the
client’s site, the SAG at that site passes it to the remote MQM (16a), which passes
it to the local MQM (16b), which places it into the reply-to queue (16c). The client
uses the MQSeries Adapter API (17) to retrieve the response from the reply-to
queue (18).

Message flow when using local file transfer
MQSeries Adapter provides local file transfer (LFT) functions that you can use to
transfer files from an OS/390 to the workstation on which SAG runs, or vice-versa.

Figure 3. Message flow using InterAct when the client uses a remote request queue

4 Installation and Programming Guide

Usually this is done in preparation for transferring the file to a remote system via
the SIPN.

The client retrieves file data from a file (a), then uses the LFT PUT command
provided by the MQSeries Adapter API (b) to place file data into its system’s file
queue (d), while taking advantage of the logging and authorization-checking
services provided by MQSeries Adapter to log and check the LFT request (c).
MQSeries Adapter then places a request containing the PUT command into the
request queue (e). An SAG instance at the client’s site retrieves the request (f),
retrieves the corresponding file data (g), writes the data into the local file named in
the PUT command (h), and writes a response to the reply-to queue (i). The client
uses the MQSeries Adapter API to retrieve the response (j,k). To transfer the file to
its destination, the client must then issue a FileAct request.

In addition to transferring files, you can also use MQSeries Adapter to:
v List all the files in the file directory on the SAG system
v Delete a file in the file directory on the SAG system
v Get a file from the file directory on the SAG system

For more information about the file directory, refer to SWIFTAlliance Gateway
MQHA Installation and Configuration Release 1.2.0.

Figure 4. Message flow for a local file transfer

Chapter 1. Introducing MQSeries Adapter 5

Message flow when using FileAct
The message flow when using FileAct service with MQSeries Adapter is similar to
that using InterAct, except that after the SAG at the client’s site receives the
response (step 15 in Figure 2 on page 3), it not only places the response into the
reply-to queue (step 16 in Figure 2), it also issues a begin file transfer message to the
server request queues for file transfer events at both sites (a1 and a2,a3,a4), and
begins the file transfer (b1,b2,b3,b4). When the file transfer is complete, the SAG at
the server’s site issues an end file transfer message to the server request queues at
both sites (c1 and c2,c3,c4); this marks the end of the file transfer.

To access the information in the server request queues (for example, if the server
needs to know when the file transfer is complete so that it can process the
transferred data), a server program at the client or server site can use the retrieve
server function to retrieve the end file transfer from the server request queue (d1,f1
and d2,f2). As always, the server can take advantage of the message logging
service provided by MQSeries Adapter (e1 and e2).

Message flow when using the client hub
Rather than having clients use MQSeries Adapter functions, you can instead
arrange for them to place their requests in a central MQSeries request queue, and
use an MQSeries Adapter program called a client hub to handle the sending of
requests and the routing of the responses back to the clients. The message flow
when using the client hub is similar to that using InterAct or local file transfer
(LFT), except that the clients use a central request queue and their own reply-to
queues instead of using MQSeries Adapter directly.

Figure 5. Message flow using FileAct

6 Installation and Programming Guide

For an InterAct request, a client places the request into the central request queue
(1a). The client hub retrieves requests from the central request queue (1b) and uses
the functions provided by the MQSeries Adapter API (1c) to place a request into
the request queue at its site (3). Processing continues as described in steps 4
through 17 in Figure 2 on page 3. After a response arrives at the client’s site, the
client hub uses the MQSeries Adapter API to retrieve it (18a) and place it into the
reply-to queue of the corresponding client (18b), after which the client can retrieve
it (18c).

The client hub can also be used for LFT commands. This way, only one program
(the client hub), not each of your back-office client applications, needs to use
MQSeries Adapter. LFT commands are indicated by the MQSeries message type
MQMT_APPL_FIRST (65536). A separate queue (called a file queue) is used to
transfer the files. The correlation between an LFT command and a file in the file
queue is established by copying the MQSeries message ID of the file to the
MQSeries correlation ID of the request containing the LFT command.

Message flow when using the server request handler
At the server’s site, you can run a program provided by MQSeries Adapter called
the server request handler, which continually retrieves requests from the request
queue and, for each request, calls the SwCallback function. SwCallback is a
user-written function that must be located in the DLL AGHCASCB, and that
processes requests according to your needs.

The message flow when using the MQSeries Adapter server request handler is
similar to that using InterAct, except that instead of a user-written server retrieving
and processing the request, the server request handler retrieves it and calls a
function to process it.

Figure 6. Message flow using the client hub

Chapter 1. Introducing MQSeries Adapter 7

Processing proceeds as described in steps 1 through 7 in Figure 2 on page 3. After
the request arrives in the request queue at the server request handler’s site, the
server request handler uses the MQSeries Adapter API to retrieve the request (8)
and pass it to the server request handler (10a). It then calls the user-written
SwCallback function (10b), which processes the request, and passes its response
back to the server request handler (11a). The server request handler uses the
MQSeries Adapter API (11b) to place the response in the reply-to queue (12), and
processing continues as described in steps 13 through 18 in Figure 2.

Synchronous and asynchronous calls
When sending an InterAct request, a client can issue either a synchronous or an
asynchronous call:

Synchronous call (SwCall)
Control is given back to the client after MQSeries Adapter retrieves the
response and passes it to the client (step 17 in Figure 2 on page 3). This
process flow is shown in Figure 25 on page 107.

Asynchronous call (SwACall)
Control is given back to the client after the request has been put into the
MQSeries request queue (step 3 in Figure 2 on page 3), and a message
handle is passed back to the application. To retrieve the corresponding
response, the program issues an SwAWait call specifying this message
handle. After issuing an SwAWait call, control passes to MQSeries Adapter;
control is given back to the client after either the response has been
retrieved or a time-out has occurred. This process flow is shown in
Figure 26 on page 108.

Figure 7. Message flow using the server request handler

8 Installation and Programming Guide

Portability
The MQSeries Adapter API is compatible with the API provided by SAG. As a
result, application programs that currently run on a workstation and access SAG
directly can be ported to an OS/390 system and can instead access SAG via
MQSeries Adapter. Depending on how you choose to run your program (as a
batch job, or as a CICS or IMS transaction), minor code changes might be required.
The sample programs listed in “Sample programs” on page 29 illustrate such
changes.

Client hub and server request handler
MQSeries Adapter provides two ready-to-use programs:

Client hub
As an alternative to writing your own client, you can use the client hub
provided by MQSeries Adapter. For InterAct requests, all your application
program needs to do is place standard SWIFT requests in an MQSeries queue
and receive the responses in its reply-to queue. Using LFT commands with a
client hub is somewhat more complicated, because the client must perform
additional processing in order to provide the client hub with the data it needs
to correlate a request with the corresponding file data (this is illustrated by the
sample AGHCAAF2).

A sample client hub is defined in the profile SERVER02. A job to start it is
contained in the member AGHMZRS1, which executes the program
AGHCAAS1.

Server request handler
A server request handler is a program that retrieves requests from the request
queue, passes them to the SwCallback function for processing, and places the
responses generated by SwCallback into the reply-to queue.

Both a client hub and a server request handler will run as long as there are
messages in its input queue. If its queue becomes empty and no messages arrive
within the time-out interval specified in its profile, it checks in its profile whether
the console interface is to be used:
v If so (Console=Y), it continues to run until the operator terminates it
v If not (Console=N), it stops

Starting a client hub or server request handler
Both the client hub (see Figure 6 on page 7) and the server request handler (see
Figure 7 on page 8) are started using the same program. Whether the program
starts a client hub or a server request handler is determined by a parameter that
you specify when you run the program. Two forms of this program are located in
the MQSeries Adapter sample library SAGHSAMC:
v AGHCAAS1 (written in C++)
v AGHCAAS2 (written in C)

This program accepts two parameters, which are specified following the slash (/)
in the parameter string of the EXEC statement:
v The first parameter specifies the name of the client hub or server request

handler. This name must correspond to a label in the profile data set.
v The second parameter can be one of the following:

Chapter 1. Introducing MQSeries Adapter 9

REQUESTHANDLER
Starts a server request handler.

CLIENTHUB
Starts a client hub.

LOOP Starts a loop server, which is a simple server that merely returns
received data. This is provided for test purposes only, for example to
verify that the installation was successful.

The following is an example of an EXEC statement of a batch job used to start a
client hub that uses the profile with the name SERVER02 (refer also to the sample
job AGHMZRS1, which is located in SAGHRUNS).

The POSIX(ON) run-time option and timezone need to be set only if you use the
console interface (see “Stopping a client hub or server request handler”).

When running this program as a:
v Server request handler, there is no need to use the MQSeries Adapter API calls

in your server; it is sufficient to implement the SwCallback function in a DLL
that is called by the server request handler. This DLL must have the name
AGHCASCB, and must implement the SwCallback function according to the
specifications defined by S.W.I.F.T.

v Client hub, no additional coding effort is needed; only the profile parameters for
the client hub must be set. The client hub profile definitions are identical to
those for a server, except that the client hub uses an additional parameter
(ClientName) to specify the name of a client profile in the same data set. This
client profile contains the parameters that are used by the client.

Stopping a client hub or server request handler
You can use the system console to terminate a running client hub or server request
handler, provided all the following are true:
v The parameter Console=Y was set for that client hub or server request handler

in its profile.
v The process user has an OMVS segment.
v The batch job used to start the client hub or server request handler sets the

POSIX(ON) run-time option (see Figure 8).

Make sure that the timezone information is also set correctly (an example is shown
in Figure 8), otherwise the timestamp in the log might be incorrect.

If you specify in the client hub or server request handler’s profile:

Console=N The client hub or server request handler terminates as soon as its
request queue has been empty for the interval specified for its
TimeOut parameter (this parameter is described in

//MRC$CLT JOB ...
//GOSTEP EXEC PGM=AGHCAAS1,REGION=0M,
// PARM='POSIX(ON),ENVAR(''TZ=CET-1'')/SERVER02 CLIENTHUB'

Figure 8. EXEC statement of a batch job used to start a client hub

10 Installation and Programming Guide

Table 1 on page 22). The LOOP function always terminates as soon
as the request queue is empty, regardless of the setting of the
Console profile parameter.

Console=Y The client hub or server request handler remains active until it is
stopped. To stop a client hub or server request handler, issue the
MVS MODIFY command from the operator console. The value of
this command’s APPL parameter determines how the program is to
terminate:

APPL=STOP
The program terminates immediately after the current request
message has been processed.

APPL=SHUT
The program terminates as soon as its request queue has been
empty for the interval specified for the TimeOut parameter in
its profile (this parameter is described in Table 1 on page 22).

For example, to use the command in the TSO SDSF application to immediately
stop a client hub with the name MRC$CLT, enter the MODIFY command as
follows:

COMMAND INPUT ===> /f MRC$CLT,APPL=STOP

NP JOBNAME STEPNAME PROCSTEP JOBID OWNER C POS DP REAL PAGING
MRC$CLT GO JOB03735 MRC A IN C3 2362 0.00
.
.
.

The program responds with a message that indicates when it expects to terminate:

COMMAND INPUT ===>
RESPONSE=SYS1
BPXM023I (MRC)
AGH1132I: Request to terminate server request handler or client hub accepted,

remaining wait time in seconds: 21

If the console interface is not active (that is, if Console=N was set in the request
handler’s profile), the system messages will indicate this:

RESPONSE=SYS1 IEE341I MRC$CLT NOT ACTIVE
RESPONSE=SYS1 IEE342I MODIFY REJECTED-TASK BUSY

In this case, you must terminate the job by some other means, for example an
operator-initiated cancel command.

Data conversion
When necessary, MQSeries Adapter converts (or arranges for MQSeries to convert)
the data that comprises the message being transferred. MQSeries Adapter
differentiates among the following types of messages:
v Basic messages (simple strings encoded in EBCDIC format)
v SNL messages encoded in EBCDIC format, for example containing the EBCDIC

string <?xml version="1.0" encoding="IBM-1047"?>

Chapter 1. Introducing MQSeries Adapter 11

v SNL messages encoded in UTF-8 format (the S.W.I.F.T. standard), for example
containing the ASCII string <?xml version="1.0" encoding="UTF-8"?>

When discussing data conversion, the following situations must be considered
separately:

Clients sending requests, servers sending responses, or clients receiving
responses

The MQSeries Adapter determines what type of data conversion to
perform based on the contents of the message. If the message contains the
beginning of an XML encoding declaration (that is, the string <?xml) in
either EBCDIC or UTF-8, MQSeries Adapter treats the message as an SNL
message. In all other cases, it treats the message as a basic message (that is,
a simple EBCDIC string). For each request a client sends, it assumes the
response will have the same format. For each request a server receives, it
creates a response with the same format.

Servers receiving requests
Because the contents of the request message are not known to MQSeries
Adapter at the time when it must decide which data conversion method to
use (at that time the request is still in the request queue), the server must
specify the data conversion method in advance. It does this via the
Convert profile parameter, which is described in Table 1 on page 22. The
value of this parameter must correspond to the SAG settings that
determine whether basic or SNL messages are to be transferred.

The conversion processing for the three possible scenarios is shown in Figure 9,
Figure 10, and Figure 11. Note that because each message format requires a special
type of data conversion, and because a server can perform only one type of data
conversion, there must be a separate server for each message format used. In this
case, each server has its own request queue, and SAG must be configured so that it
places a message of a particular format into the appropriate request queue.

Figure 9. Basic messages (simple strings)

12 Installation and Programming Guide

For basic messages and EBCDIC SNL messages, the CCSID parameter specified in
the client or server profile determines which EBCDIC code page is to be used for
conversion (see Table 1 on page 22). For basic messages MQSeries carries out the
conversion, and MQSeries Adapter passes the name of the code page to be used to
MQSeries via the CodedCharacterSetId field of the MQMD. Note that MQSeries
conversion does not support all code page combinations. If the code page
combination you need is not supported, consider using the CCSID parameter to
specify a different code page, but one that contains the characters used in your
messages (for example, the MQSeries code page 500).

Authorization checking
The SAG table with the name correspondents.dat contains a series of entries, each
of which has a unique correspondent name. Each correspondent name is associated
with a list of distinguished names (DNs). The DNs used by MQSeries Adapter are:

Requestor The name of the institution issuing the request

Responder The name of the institution to which the request is to be sent, and
from which the response is to come

Sign The name of the person or institution on whose behalf the request
is issued

Figure 10. SNL messages encoded in EBCDIC format

Figure 11. SNL messages encoded in UTF-8 format

Chapter 1. Introducing MQSeries Adapter 13

A user who is authorized to use a correspondent name is automatically authorized
to use the corresponding DNs. For SNL messages, and when running as a batch
job or in an IMS environment, you can also authorize users for individual DNs of
the types listed above. MQSeries Adapter uses RACF resource profiles in
proprietary RACF resource classes to control a client user’s access to correspondent
names and DNs.

The correspondent name is specified in the client’s MQSeries Adapter profile; the
DNs are extracted from SNL messages. There must be a resource class defined in
RACF for correspondent names, and for requestor, responder, and sign DNs. The
resource class names used by MQSeries Adapter all start with AGH$:

AGH$CORN For correspondent names

AGH$RQDN For requestor DNs

AGH$RSDN For responder DNs

AGH$SGDN For sign DNs

Levels of authorization checking
The MQSeries Adapter authorization checking service is itself controlled by RACF
definitions. These definitions are specified in the profile AGH.RS in the FACILITY
class. If AGH.RS is not defined, MQSeries Adapter authorization checking is
disabled, and access to resources is not restricted. If PROTECTALL is active in
RACF, AGH.RS must be defined.

If AGH.RS is defined, whether a client is granted access to a resource depends
upon (1) its access authority for that resource and (2) the access authority of the
process user (that is, of the user to whom the batch, CICS, or IMS environment
belongs) for AGH.RS:
v If the process user has no access authority for AGH.RS, the client is denied

access to all protected resources.
v If the process user has READ, UPDATE, or CONTROL access authority for

AGH.RS, the client is granted access to the protected resource only if the client
user has the requisite authorization for that resource. An access request that is
denied is logged by RACF.

v If the process user has ALTER access authority for AGH.RS, the client can access
all protected resources.

In a batch environment, the client has the same user ID as the process user; in an
IMS or CICS environment, you can specify the client user ID via the
AGHClient::setUserId method (for C++) or AGHClientSetUserId function (for C or
COBOL).

14 Installation and Programming Guide

|
|
|
|
|

Example of using authorization checking

[1] The process user, who has the user ID pro_user, must have at least READ
access to FACILITY(AGH.RS). The resource profile must contain the
following entry:
FACILITY Name AGH.RS

Access READ
Userid pro_user

[2] The default client user is the process user. To access the correspondent
name CN, the resource profile must contain the following entry:
AGH$CORN Name CN

Access READ
Userid pro_user

[3] The client user ID can be set explicitly via the AGHClient::setUserId
method (for C++) or AGHClientSetUserId function (for C or COBOL). To
be able to access the correspondent name CN, the client user, who has the
user ID clt_user, must have at least READ access to the resource. The
RACF resource profile must contain the following entry:
AGH$CORN Name CN

Access READ
Userid clt_user

Determining which RACF profile controls access to a
protected resource

Access to protected resources is controlled by RACF profiles, which are located in
RACF resource classes. The profiles that control access to correspondents have the
same names as the correspondents themselves. The profiles that control access to
DNs have names that are based on the DNs, but that are structured differently:
v A requestor, responder, or sign DN is a sequence of from 1 to 6 directory nodes

(including a node-type identifier, for example cn= or o=) separated by commas.
It specifies a path in an X.500 directory from leaf to root, for example:

...

//... JOB ...,USER=pro_user [1]...

//AGHEAPRO DD *...

CorrespondentName=CN...

AGH Client Program [2]...

status=SwCall(...,...);...

AGHClientSetUserId("clt_user"); [3]...

status=SwCall(...,...);...

Figure 12. Example of using authorization checking in an OS/390 process

Chapter 1. Introducing MQSeries Adapter 15

cn=dept023,cn=branch03,o=bank01,o=swift

Blanks between nodes and case (whether characters are uppercase or lowercase)
are ignored.

v A RACF profile for such a DN has a name that is comprised of a sequence of
from 1 to 6 directory nodes (without the node-type identifier) separated by
periods, in uppercase, and specifying the path in the X.500 directory from root to
leaf. The profile name that corresponds to the DN in the example above would
be:
SWIFT.BANK01.BRANCH03.DEPT023

Profile names can contain one or more asterisks (*) as wildcard characters that
represents any string of characters. Profiles with such names are called generic
profiles. If more than one profile applies to a single resource name (because of
wildcard characters), the profile with the name that is most specific is used. For
example, if there are profiles with the following names:
SWIFT.BANK01.*
SWIFT.BANK01.BRANCH*
SWIFT.BANK01.BRANCH03.DEPT02*

the resource cn=dept023,cn=branch03,o=bank01,o=swift would use the profile
SWIFT.BANK01.BRANCH03.DEPT02*, because of the three profile names that apply, it is
the most specific.

16 Installation and Programming Guide

Chapter 2. Planning for and installing MQSeries Adapter

This chapter describes the things you need to consider before and while you install
MQSeries Adapter.

Planning for MQSeries Adapter
Before you install MQSeries Adapter, check that your systems fulfill the hardware
and software requirements, and that both of the following products are installed,
configured, and available on the workstations that are to be connected to the SIPN:
v SWIFTAlliance Gateway Release 1.2.0
v SWIFTAlliance Gateway MQSeries Host Adapter Release 1.2.0

Hardware requirements
You need an ESA/390 processor (or a compatible processor) that can run OS/390
Version 2.6 or higher, and with enough processor storage to meet the combined
requirements of the host operating system, the data communication (DC) system
(CICS TS or IMS), and your application programs.

Software requirements
The base requirements are:
v OS/390 Version 2.6 (5647-A01)
v SMP/E Release 8 (5668-949)
v IBM Language Environment for OS/390 & VM Release 8 (5647-A01)
v MQSeries for OS/390 Version 2.6 (5655-A95), with the Client Attachment feature

You might want to use either of the following DC systems:
v CICS Transaction Server (CICS TS) for OS/390 Release 3 (5655-147)
v IMS/ESA Version 6 (5655-158)

Depending on the DC system, programming languages, and utilities you use, you
might also require any of the following:
v C/C++ Compiler for OS/390 Version 2.6 (included in OS/390 Version 2.6)
v IBM COBOL for OS/390 & VM Version 2 (5648-A25)
v XML Toolkit for OS/390 (5655-D44); necessary if transferring SNL messages
v RACF Version 2.6 (5695-039)

Installing MQSeries Adapter
The information contained in the MQSeries Adapter program directory covers
installation up to the point where the various product libraries have been stored on
the host system. However, if you plan to use MQSeries Adapter in a CICS or IMS
environment, or if you want to use the MQSeries Adapter authorization checking
capability, there are some additional installation tasks that need to be carried out
first.

© Copyright IBM Corp. 2001 17

Connect MQSeries Adapter to SAG
MQSeries Adapter uses the SAG MQSeries Host Adapter interface to connect a
client or server to an SAG instance. How to set up such a connection is described
in the SWIFTAlliance Gateway MQHA Installation and Configuration Release 1.2.0.

Copy DTD files to MVS
MQSeries Adapter uses the following document type definitions (DTDs) when
retrieving DNs from SNL messages:
v Sw.dtd
v SwGbl.dtd
v SwSec.dtd
v SwInt.dtd

On an SAG workstation, these DTDs are located in either of the following
locations:
v On a Windows NT® workstation, in the directory

C:\SWIFT\SagRls12\data\dtd, where C:\SWIFT\SagRls12 is the default
installation directory (this might have been changed for your installation)

v On a UNIX® workstation, in the directory /home/SWIFT/SagRls12/data/dtd,
where /home/SWIFT/SagRls12 is the default installation directory (this might
have been changed for your installation)

If you plan to transfer SNL messages, you must first copy these DTDs as binary
files from a workstation on which SAG is installed to your MVS system into one of
the following locations:
v If, in a client or server profile, the DTDFile parameter is specified, or if the

run-time parameter POSIX(ON) is set, the DTDs must be located in the MVS
hierarchical file system (HFS). In this case, the path and file names are case
sensitive. Normally, the files are stored in the home directory of the process user;
only if they are stored in a different directory do you need to specify the
DTDFile parameter (see Table 1 on page 22).

v If POSIX(ON) is not set, the files must be stored as a local data set owned by the
processing user. In this case, the data set names must consist of uppercase
characters only. Each filename will have the form uid.name.DTD, where uid is
the user ID of the process user and name is the name of the DTD. For example,
if the user ID is AGH, the data set name of the first DTD is AGH.SW.DTD.

To avoid a DTD file mismatch, it is good practice to keep all SAGs at the same
level.

CICS and IMS dependencies and restrictions
If you use MQSeries Adapter in a CICS or IMS environment, certain dependencies
and restrictions apply.

CICS dependencies and restrictions
Before you can run the CICS versions of the samples, you must do the following:
1. Use the CICS system definition (CSD) utility DFHCSDUP to define resources

for both OS/390 Language Environment and MQSeries. The CICS resource
definitions for:
v OS/390 Language Environment are located in member CEECCSD of the

Language Environment library SCEESAMP. For more information on setting
up the CICS environment for Language Environment, refer to the Language
Environment for OS/390 Customization manual.

18 Installation and Programming Guide

v CICS definitions for MQSeries are located in member CSQ4B100 of the
MQSeries library SCSQPROC. For more information on setting up the CICS
environment for MQSeries, refer to the ″MQ and CICS″ section of the
MQSeries for OS/390 System Management Guide.

2. Add the necessary libraries to the CICS startup JCL. The DFHRPL and STEPLIB
concatenations in your CICS startup JCL would then look like this:

In the DFHRPL concatenation, the SAGHLODC library must precede the
SAGHLOAD library. The SAGHLODC library contains the DLLs for the client
and server functions that are to be used under CICS, which in turn use the MQ
CICS DLLs IMQS23DC and IMQB23DC. The connection from MQSeries to
CICS must have been established before the DLLs can be used.

If you use MQSeries Adapter in a CICS environment, the following apply:
v The MQSeries Adapter server and client functions use OS/390 functions such as

the system logger, RACF interface, and QSAM file access. Therefore, transactions
and programs using the client and server functions must be defined with
EXECKEY(CICS).

v The user ID of the user issuing the request (the client user) should be set using
the AGHClient::setUserId method (for C++) or AGHClientSetUserId function
(for C or COBOL); otherwise the user ID under which CICS runs will be used
for authorization checking. The sample program AGHCAAEC shows how to
extract the user ID and set the user ID.

v Because overflows of trace and message logging data sets cannot be detected, it
is recommended that, instead of using data sets, you route trace output to
SYSOUT, and route log records to a system logger stream.

In a CICS environment, the following restrictions apply:
v XML Toolkit for OS/390 does not run as a CICS transaction. As a result,

MQSeries Adapter cannot transfer SNL messages in a CICS environment.
v You cannot use the MQSeries Adapter server console interface. You must instead

use standard CICS methods (such as CICS temporary storage queues) to
communicate with a running server transaction.

To use a DLL in a CICS environment:

...

//STEPLIB DD DSN=SYS1.CICS.SDFHAUTH,DISP=SHR
// DD DSN=SYS1.SCSQANLE,DISP=SHR MQ IN THIS ORDER:1
// DD DSN=SYS1.SCSQAUTH,DISP=SHR .. 2
// DD DSN=SYS1.SCEERUN,DISP=SHR LE
//DFHRPL DD DSN=hlq.LOADLIB,DISP=SHR private
//* MQSeries Adapter uses the following 2 load libraries:
// DD DSN=hlq.SAGHLODC,DISP=SHR CICS DLLs
// DD DSN=hlq.SAGHLOAD,DISP=SHR DLLs
// DD DSN=SYS1.CICS.SDFHLOAD,DISP=SHR
// DD DSN=SYS1.SCSQANLE,DISP=SHR MQ IN THIS ORDER:1
// DD DSN=SYS1.SCSQCICS,DISP=SHR .. 2
// DD DSN=SYS1.SCSQAUTH,DISP=SHR .. 3
// DD DSN=SYS1.SCEECICS,DISP=SHR LE IN THIS ORDER:1
// DD DSN=SYS1.SCEERUN,DISP=SHR .. 2
//DFHCSD DD DSN=hlq.DFHCSD,DISP=SHR CICS sys.defs....

Chapter 2. Planning for and installing MQSeries Adapter 19

v Define the DLL as PROGRAM in the CSD, with LANGUAGE(LE370).
v Concatenate the load library containing the DLL to DFHRPL.
v Use OS/390 LE run-time libraries.
v Call the DLL using the call interface for your programming language (not EXEC

CICS LINK).

For COBOL, the DLL cannot use the DISPLAY functions. For more information
about this function, refer to “Programming Considerations for CICS” in the OS/390
COBOL Programming Guide.

IMS dependencies and restrictions
The IMS client and server samples run as IMS message processing program (MPP)
transactions. Before you can run the IMS versions of the MQSeries Adapter
samples, ask your IMS administrator to define IMS transactions, PSBs, and ACBs
for the following:

AGHCAAA7 InterAct client sample (for C)

AGHCAAA9 InterAct client sample (for COBOL)

AGHCAAEI InterAct server sample (for C++)

Examples of IMS transaction definitions are shown in the SWIFTAlliance Gateway
MQHA Application Programming Guide Release 1.2.0.

The JCL to start an IMS MPP for an MQSeries Adapter client or server transaction
must include the MQSeries Adapter load library in the STEPLIB, as shown in the
following example:

Implementing authorization checking
The steps you need to undertake to enable your ESM to provide MQSeries Adapter
authorization checking services are described in “Appendix C. Considerations
when implementing authorization checking” on page 113.

...

//STEPLIB DD DSN=hlq.LOADLIB,DISP=SHR private
// DD DSN=hlq.SAGHLOAD,DISP=SHR DLLs
// DD DSN=SYS1.IMS.RESLIB,DISP=SHR
// DD DSN=SYS1.SCSQLOAD,DISP=SHR
//DFSESL DD DSN=SYS1.IMS.RESLIB,DISP=SHR

DD DSN=SYS1.SCSQLOAD,DISP=SHR...

20 Installation and Programming Guide

Chapter 3. Creating client and server profiles

The parameters for each client and server is contained in the file named in the DD
statement AGHEAPRO. This file contains the profiles for the clients and servers
(one profile for each). Each profile consists of a label that identifies the client or
server, followed by a series of parameters of the form keyword=value. The label
can be up to 32 bytes long; the last character must be a colon (:). The keywords are
case insensitive. The parameter values must not contain any blanks, because the
characters following the first blank are interpreted as a comment. Also, lines
beginning with a pound sign (#) are interpreted as comments. An example is
shown in Figure 13.

SERVER01: Server01 RequestHandler
MQMName = CSQ1 Queue manager name
MQMRequestQ = AGH.SERVER.REQUEST Request queue name
MQMReports = COA,COD MQSeries reports (debug)
CorrespondentName = MQBasicServer Message partner name
TraceLevel = 30 Trace level (Debug)
TimeOut = 60 Time out in seconds
Expiry = 60 Expiry in seconds
Log = Y Audit log Y or N
LogDDName = AGHEALOG DD name log data set
LogStreamName = AGH.LOG System logger stream
LogFinInst = BANKNAME Institution (log record)
LogFinBrch = IT-Test Branch (log record)
LogFinDept = Server Department (log record)
SecSVCNum = 215 SVC number for Security
CEEPrefix = SYS1 Prefix of ICONV tables
DTDFile = /u/agh/dtd/DTD DTDs
Console = Y Console Interface Y or N
Convert = Y Conversion Y (basic mode)

Figure 13. Example of a file containing client and server profiles (Part 1 of 3)

SERVER02: Server02 ClientHub
MQMName = CSQ1 Queue manager name
MQMRequestQ = AGH.CLIENTHUB.REQUEST Request queue name
MQMRequestFileQ = AGH.CLIENTHUB.FILE File Queue for ClientHub
MQMReports = COA,COD MQSeries reports (debug)
TraceLevel = 30 Trace level (Debug)
TimeOut = 60 Time out in seconds
Expiry = 60 Expiry in seconds
Log = Y Audit log Y or N

LogDDName = AGHEALOG DD name log data set
LogStreamName = AGH.LOG System logger stream
LogFinInst = BANKNAME Institution (log record)
LogFinBrch = IT-Test Branch (log record)
LogFinDept = ClientHub Department (log record)
SecSVCNum = 215 SVC number for Security
CEEPrefix = SYS1 Prefix of ICONV tables
DTDFile = /u/agh/dtd/DTD DTDs
Console = Y Console Interface Y or N
ClientName = CLIENT01 Client Name for ClientHub

Figure 13. Example of a file containing client and server profiles (Part 2 of 3)

© Copyright IBM Corp. 2001 21

The parameters and the values they can have are described in the following tables.
The lengths shown are in characters.

Table 1. General Parameters

Parameter Description Length Client Server

CCSID The coded character set identifier (CCSID) is the number of
the code page to be used when converting basic or EBCDIC
SNL messages (see “Data conversion” on page 11).

4 default=
1047

default=
1047

CEEPrefix MQSeries Adapter uses the ICONV utility to convert data
from the IBM-1047 code page to UTF-8 and vice versa. This
utility stores its conversion tables in the data sets
hlq.SCEEUMAP and hlq.SCEEUTBL, where hlq is a
high-level qualifier. To enable MQSeries Adapter to find
these data sets, specify this high-level qualifier with this
parameter.

44 optional;
no
default

optional;
no
default

ClientName The client hub uses this parameter to indicate which set of
client profile parameters are to be used for the requests it
processes. The name specified must correspond to the label
of a client profile.

32 not
applicable

default=
CLIENT01

Console This parameter determines whether to activate the console
interface for starting and stopping a client hub or server
request handler. Specify Y to activate it; any other character
not activate it.

1 not
applicable

default=N

Convert This parameter determines whether the server is to use the
MQSeries conversion facility to convert the messages it
receives from SAG and, if so, which type of conversion to
use:
Y For basic messages
X For SNL messages encoded in EBCDIC format
N For SNL messages encoded in UTF-8 format
For more information, see “Data conversion” on page 11.

1 not
applicable

default=N

CorrespondentName The name of the correspondent (message partner):

v For a client, this name is passed to SAG and used as a
key to find the correspondent’s SAG profile.

v For a server, this name is only used to check whether the
process user is authorized to send responses.

24 mandatory optional;
no
default

CLIENT01: Client01 parameter
MQMName = CSQ1 Queue manager name
MQMRequestQ = AGH.CLIENT.REQUEST Request queue name
MQMReplyToQ = AGH.CLIENT.REPLYTO ReplyTo queue name
MQMFileQ = AGH.CLIENT.FILE LFT File queue name
MQMReports = COA,COD MQSeries reports (debug)
CorrespondentName = MQBasicClient Message partner name
TraceLevel = 30 Trace level (Debug)
TimeOut = 60 Time out in seconds
Expiry = 60 Expiry in seconds
Log = Y Audit log Y or N
LogDDName = AGHEALOG DD name log data set
LogStreamName = AGH.LOG System logger stream
LogFinInst = BANKNAME Institution (log record)
LogFinBrch = IT-Test Branch (log record)
LogFinDept = Client Department (log record)
SecSVCNum = 215 SVC number for Security
CEEPrefix = SYS1 Prefix of ICONV tables
DTDFile = /u/agh/dtd/DTD DTDs

Figure 13. Example of a file containing client and server profiles (Part 3 of 3)

22 Installation and Programming Guide

Table 1. General Parameters (continued)

Parameter Description Length Client Server

DTDFile This parameter is needed only if MQSeries Adapter is to
process SNL messages, and if the DTDs it needs to do this
are located in a directory other than the home directory of
the process user. For more information about DTDs, see
“Copy DTD files to MVS” on page 18.

This parameter specifies the directory in which the DTDs
are stored, plus a dummy file name of your choosing. For
example, if the DTDs are stored in the directory /u/agh/dtd,
specify DTDFile=/u/agh/dtd/DTD, where DTD is a dummy
file name. This file name is ignored, except when an
attempt to access a DTD file results in an error, in which
case this file name is shown in the resulting error message.

48 optional;
no
default

optional;
no
default

Expiry Maximum amount of time (in seconds) that a message
(request or response) can remain in a queue before it will
no longer be retrieved. An expired message remains in a
queue until the next MQSeries Browse or Read command,
at which time it is purged.

If this parameter is not specified, or if its value is 0, there is
no limit on the amount of time messages can remain in
queues.

9 default=0 default=0

SecSVCNum The security SVC number. Specify this if you access
resources using a user ID other than that of the process user
(that is, the user to whom the batch, CICS, or IMS
environment belongs). This is possible only when using the
client hub, or when running under IMS or CICS. The SVC
number must be in the range from 200 to 255.

3 optional;
no
default

optional;
no
default

TimeOut One of the following:

v For a client, the number of seconds that MQSeries
Adapter will wait for a response from SwCall or
SwAWait

v For a client hub or server request handler, the number of
seconds that MQSeries Adapter will wait before shutting
down the client hub or server request handler after
either:

– Its request queue is empty (if Console=N)

– It was stopped via the MODIFY command with the
parameter APPL=SHUT (if Console=Y)

v For a server, the number of seconds the server will wait
for a retrieve function to complete before continuing its
processing

If this parameter is not specified, or if its value is 0, there is
no time limit.

9 default=0 default=0

Table 2. MQSeries Parameters

Parameter Description Length Client Server

MQMFileQ Name of the SAG file queue. This is the queue into which
the AGHLFTCmd puts file data that is to be moved to the
system on which SAG runs (usually in preparation for a
FileAct transfer). If the application uses a remote queue, this
is the local definition of that remote queue.

48 optional;
no
default

not
applicable

Chapter 3. Creating client and server profiles 23

Table 2. MQSeries Parameters (continued)

Parameter Description Length Client Server

MQMName Name of the MQSeries queue manager that manages the
queue to which the request is to be sent.

48 optional;
no
default

optional;
no
default

MQMReports Which types of reports MQSeries is to create:

COA Confirm on arrival only

COD Confirm on delivery only

COA,COD
Both confirm on arrival and confirm on delivery

3 or 7 optional;
no
default

optional;
no
default

MQMReplyToQ Name of the reply-to queue. This is the local queue in which
SAG stores responses.

48 mandatory not
applicable

MQMRequestFileQ Name of the local MQSeries Adapter queue in which
back-office applications can store file data that the client hub
is to transfer using LFT commands.

48 not
applicable

optional;
no
default

MQMRequestQ For a client or server, the name of the queue in which the
request is to be placed at the client or server site. If the client
or server uses a remote queue, this is the local definition of
that remote queue.

For a client hub, the name of the central request queue; that
is, the queue from which it retrieves requests.

48 mandatory mandatory

Table 3. Message logging and tracing parameters

Parameter Description Length Client Server

Log Whether MQSeries Adapter is to log messages. Specify Y to
activate message logging; N to deactivate message logging. If
you activate message logging, you must also specify either or
both LogDDName or LogStreamName. See “Message
logging” on page 87 for more information.

1 default=N default=N

LogDDName DD name of the sequential log data set to which log records
are to be written. The log entry is written to the sequential
data set allocated to the specified DD name.

8 optional;
no
default

optional;
no
default

LogFinBrch User-defined information about the user’s branch, for
example its name. The value of this parameter is included in
the header of each log record, and can be used for further
processing of the log records.

12 optional;
no
default

optional;
no
default

LogFinDept User-defined information about the department, for example
its name. The value of this parameter is included in the
header of each log record, and can be used for further
processing of the log records.

12 optional;
no
default

optional;
no
default

LogFinInst User-defined information about the financial institution, for
example its bank identifier code (BIC). The value of this
parameter is included in the header of each log record, and
can be used for further processing of the log records.

12 optional;
no
default

optional;
no
default

LogStreamName Name of the system logger stream to which log records are
to be written.

48 optional;
no
default

optional;
no
default

TraceLevel The trace level (see “Tracing” on page 90 for more
information).

2 default=0 default=0

24 Installation and Programming Guide

Chapter 4. Writing MQSeries Adapter clients and servers, and
SwCallback functions

After you have installed MQSeries Adapter (see “Installing MQSeries Adapter” on
page 17) and have defined a profile for each of the clients and servers you intend
to use (see “Chapter 3. Creating client and server profiles” on page 21), you can
begin writing the clients and servers:
v If coding in C++, use the classes and methods described in “Chapter 5.

MQSeries Adapter C++ classes and methods” on page 31.
v If coding in C or COBOL, use the functions described in “Chapter 6. MQSeries

Adapter functions for C and COBOL” on page 49.

If, instead of writing your own server, you elect to use the server request handler
provided by MQSeries Adapter, you must provide both an SwCallback function to
process the retrieved requests, and an AppXmlBufferFree function to release the
response buffer that the SwCallback function allocates. For more information about
these functions, see “Chapter 7. User-written functions” on page 83.

Clients and servers use the data structures described in the following sections.
MQSeries Adapter provides samples of clients and servers, as well as of client
hubs, server request handlers, and SwCallback functions. These are described in
“Sample programs” on page 29.

Data structures
The data structures described in this section comprise the interface that clients use
to exchange data with MQSeries Adapter. They are located in the sample library:
v For C and C++, in the header file with the name AGHCCTYP
v For COBOL, in the copybook AGHEACB1

AGHResponse
AGHResponse is used by the functions SwACall and SwAWait, and is shown in
Figure 14 and Figure 15.

typedef struct
{

CHAR *Resp; /* Pointer to the response */
CHAR MsgId[24]; /* Message id passed from MQPut */
LONG lCodePageId; /* Code page for msg from SwACall */

} AGHResponse;

Figure 14. AGHResponse data structure (C and C++)

© Copyright IBM Corp. 2001 25

This data structure contains the following fields:

Resp In this field MQSeries Adapter stores the pointer to the response
buffer allocated by MQSeries Adapter. In case of an error, the
response buffer contains the error response.

MsgId This information is used for the SwAWait to identify the response
message in the reply-to queue. This field is filled by MQSeries
Adapter during the SwACall.

lCodePageId This information is used to make sure that the response from
SwAWait is passed back using the same code page as was used to
pass the request to SAG. This field is filled by MQSeries Adapter
during the SwACall.

AGHLFTCmdParm
Use AGHLFTCmdParm to pass an LFT command to MQSeries Adapter. MQSeries
Adapter uses AGHLFTCmdParm to pass back to you its return code and response.

The AGHLFTCmdParm data structure is shown in Figure 16 and Figure 17.

This data structure contains the following fields:

cLFTVersion
Whether issuing a command or receiving a response, this field contains a
string indicating the version of the LFT interface provided by SAG.

cLFTCmd
When issuing a command, this field contains one of the following (padded
with trailing blanks):

01 AGHResponse.
* Pointer to the response

02 Resp POINTER.
* Message id passed from MQPut

02 MsgId PIC X(24).
* Code page for msg from SWACall

02 lCodePageId PIC S9(9) BINARY.

Figure 15. AGHResponse data structure (COBOL)

typedef struct
{

CHAR cLFTVersion[3]; /* Version of LFT interface */
CHAR cLFTCmd[7]; /* Command or return code */
CHAR cLFTText[1]; /* Begin command or return text */

} AGHLFTCmdParm;

Figure 16. AGHLFTCmdParm data structure (C and C++)

01 AGHLFTCmdParm.
* Version of LFT interface

02 cLFTVersion PIC X(3).
* Command or return code

02 cLFTCmd PIC X(7).
* Command or return text

02 cLFTText PIC X(512).

Figure 17. AGHLFTCmdParm data structure (COBOL)

26 Installation and Programming Guide

PUT Put a file from an OS/390 system onto an SAG workstation

GET Get a file from an SAG workstation and move it to an
OS/390 system

LIST List the files on an SAG workstation that meet the
specified criteria

DELETE Delete one or more files from an SAG workstation

When receiving a response, this is the SAG return code padded with
trailing blanks.

cLFTText
When issuing a command, this field contains a null-terminated string
specifying the complete relative file name (for PUT, GET, and DELETE
commands) or the relative path (for a LIST command).

When receiving a response:
v In case of an error, this field contains an error description.
v In case of a successful PUT command, this field contains the

fully-qualified file name.
v In case of a successful LIST command, this field contains the full path

followed by the directory entries. The path and entries are separated by
EBCDIC carriage-return line-feed (CRLF) characters (X'0D25').

For a more detailed description of these fields, see the description of LFT
commands in the SWIFTAlliance Gateway MQHA Application Programming Guide
Release 1.2.0.

AGHFileHeader
AGHFileHeader is used for LFT commands:
v When you issue a PUT command, you use AGHFileHeader to pass to MQSeries

Adapter:
– The length of the file data in the field lDataLength
– A pointer to the buffer containing the file data in the field pData

v MQSeries Adapter uses AGHFileHeader to pass to you, in response to a:
– PUT command, the name of the reply-to queue (szReplyTQ), and of the

queue manager to which the reply-to queue belongs (szToMQM). You might
require this data for subsequent processing, for example to ensure that a
subsequent FileAct request is sent to the correct SAG instance (the one
running on the system where the file is stored).

– GET command, the length of the file data and a pointer to the buffer
containing the file data (lDataLength and pData).

The AGHFileHeader data structure is shown in Figure 18 and Figure 19.

Chapter 4. Writing MQSeries Adapter clients and servers, and SwCallback functions 27

XML messages
If a request is an SNL message, its response will be an XML message. If the
response contains an error message, it will have a format similar to that shown in
Figure 20 (if issued by the client) or Figure 21 on page 29 (if issued by the server).

typedef struct
{

LONG lDataLength; /* Length of file data */
CHAR *pData; /* Pointer to the file data */
CHAR lFileOpt; /* Option for future use */
CHAR szToMQM[49]; /* Reply to queue manager */
CHAR szReplyTQ[49]; /* Reply to queue name */

} AGHFileHeader;

Figure 18. AGHFileHeader data structure (C and C++)

01 AGHFileHeader.
* Length of file data

02 lDataLength PIC S9(9) BINARY.
* Pointer to the file data

02 pData POINTER.
* Option for future use

02 lFileOpt PIC X(1).
* Reply-to queue manager

02 szToMQM PIC X(49).
* Reply-to queue name

02 szReplyTQ PIC X(49).

Figure 19. AGHFileHeader data structure (COBOL)

<?xml version= "1.0" encoding= "IBM-1047" ?>
<!DOCTYPE SwInt:ExchangeResponse SYSTEM "Sw.dtd" >
<SwInt:ExchangeResponse>
<SwGbl:Status>
<SwGbl:StatusAttributes>
<SwGbl:Severity>Transient</SwGbl:Severity>
<SwGbl:Code>AGH.Client.ErrorMessage</SwGbl:Code>
<SwGbl:Parameter>AGHxxxxE Error message.</SwGbl:Parameter>
<SwGbl:Text>For more information see client JOB output or client tracefile.</SwGbl:Text>
<SwGbl:Action></SwGbl:Action>
</SwGbl:StatusAttributes>
</SwGbl:Status>
</SwInt:ExchangeResponse>

Figure 20. Example of an XML message from a client

28 Installation and Programming Guide

|

|
|
|
||

For more information about SNL messages, see the SWIFTAlliance Gateway Interface
Specification Release 1.2.0.

Sample programs
MQSeries Adapter provides the following sample application programs for the
following programming languages (note that some programs apply to more than
one language or environment):

Table 4. Sample application programs

Sample Programming Language Description

C C++ COBOL

InterAct client

batch AGHCAAA1 AGHCAAA2 AGHCAAA3 Initiates a synchronous InterAct message
exchange; that is, uses the function SwCall
to send a message to a partner and receive
the partner’s response.

CICS AGHCAAA4 AGHCAAA4 AGHCAAA6

IMS AGHCAAA7 AGHCAAA7 AGHCAAA9

InterAct server
SwCallback
function

batch AGHCAAB1 AGHCAAB1
AGHCAAB3
AGHCAAB4

Provides the SwCallback function as a DLL.
The server passes a message to this
program, and this program returns a
response to the server.

For COBOL, a second sample is also
provided. It uses the AppXmlBufferFree
function (see page 85) to release the
response buffer allocated by the SwCallback
function.

CICS AGHCAAB1 AGHCAAB1
AGHCAAB6
AGHCAAB7

IMS AGHCAAB1 AGHCAAB1 AGHCAAB3

InterAct server

batch AGHCAAEB Retrieves requests from the request queue
and for each places a response into the
reply-to queue. The programs for CICS and
IMS can be triggered by MQSeries.

CICS AGHCAAEC

IMS AGHCAAEI

LFT client batch AGHCAAF1

A batch program that demonstrates the use
of the AGHLFTCmd interface for local file
transfer (LFT). Compared to the client hub
sample program for LFT (AGHCAAF2), this
program does not use the MQSeries queues
that serve as the interface to the client hub.

<?xml version="1.0" encoding="IBM-1047" ?>
<!DOCTYPE SwInt:HandleResponse SYSTEM "Sw.dtd" >
<SwInt:HandleResponse>
<SwInt:Response>
<SwInt:ResponsePayload>
<SwGlb:Status>
<SwGlb:StatusAttributes>
<SwGlb:Severity>Transient</SwGlb:Severity>
<SwGlb:Code>AGHServerError</SwGlb:Code>
<SwGlb:Parameter>AGHxxxxE Error message.</SwGlb:Parameter>
</SwGlb:StatusAttributes>
</SwGlb:Status>
</SwInt:ResponsePayload>
</SwInt:Response>
</SwInt:HandleResponse>

Figure 21. Example of an XML message from a server

Chapter 4. Writing MQSeries Adapter clients and servers, and SwCallback functions 29

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|

Table 4. Sample application programs (continued)

Sample Programming Language Description

C C++ COBOL

LFT client for
client hub

batch AGHCAAF2

A batch program that demonstrates the use
of the client hub for a local file transfer
(LFT). The interface to the client hub
consists of several MQSeries queues. This
program:

v Reads or writes a file being transferred to
or from one MQSeries queue

v Writes the corresponding SAG LFT
command to a second MQSeries queue

v Reads the response to the LFT command
from a third MQSeries queue

Client hub batch AGHCAAS2 AGHCAAS1
A program that starts an MQSeries Adapter
client hub.

Server request
handler

batch AGHCAAS2 AGHCAAS1
A program that starts an MQSeries Adapter

The sample programs are located in the following libraries:
v For C and C++, in the library with the low-level qualifier SAGHSAMC
v For COBOL, in the library with the low-level qualifier SAGHSAMB

30 Installation and Programming Guide

Chapter 5. MQSeries Adapter C++ classes and methods

MQSeries Adapter provides the following C++ classes:
v AGHClient, which is used to create client objects, is contained in the DLL

AGHCADLC.
v AGHServer, which is used to create server objects, is contained in the DLL

AGHCADLS.

The condition codes issued by clients and servers are described in “Condition
codes” on page 104. To see the accompanying error message, check the trace or
retrieve the error message using the getErrorMessage method. If you require more
information, consider setting a higher trace level as described in “Tracing” on
page 90.

AGHClient
The class AGHClient encapsulates a client object. The client class definitions are in
the header file AGHCASWD.

Constructors
When you create your first client object, an internal logger service object is created
that writes trace and log entries. If you create a second client object, and if you
want both to use the same logging and trace data sets, you must pass the logger
service object from the first client object. To get the logger service object, use the
getLoggerObj method as shown in the example below.

Syntax:
AGHClient(CHAR * pszClientName, AGHLoggerService * pLog = NULL);
AGHClient(AGHLoggerService * pLog = NULL);

where:

pszClientName (input)
A pointer to a null-terminated string containing the name of the client
object. If you do not specify a name, you can specify one later via the
setClientName method (see “AGHClient::setClientName” on page 35). If
you don’t specify a name, the client name is set to CLIENT01 during the
first call that initiates a message transfer. Whether you specify a name or
use the default name, your profile data set must contain a profile for a
client with that name (see “Chapter 3. Creating client and server profiles”
on page 21).

pLog (input)
A pointer to the logger object of a previously created AGHClient object. If
this is not specified, a new logger object is created for the client.

Coding example:
#include <aghcaswd.hpp>...

pClient01 = new AGHClient();

© Copyright IBM Corp. 2001 31

pClient02 = new AGHClient("CLIENT02", pClient01->getLoggerObj());...

Methods

AGHClient::AGHFCall
This method initiates a FileAct transfer for a file that is already on an SAG
workstation. This file might have been moved to that system by an AGHLFTCmd
call, but not necessarily. To make sure that the request is sent to the same instance
of SAG that processed the corresponding AGHLFTCmd, the same AGHFileHeader
structure that was used by that AGHLFTCmd must be used by this method. For
more information about local file transfers, see:
v “AGHLFTCmdParm” on page 26
v “AGHFileHeader” on page 27
v “AGHClient::AGHLFTCmd” on page 33

Syntax:
SwStatus AGHFCall(AGHSTRING req, AGHPSTRING pResp, AGHFileHeader* fhead);

where:

req (input)
The name of the file stored on the SAG workstation, and that is to be
transferred via the SIPN to a remote location (that is, for which a FileAct is
to be started). For information on how to specify such names, refer to the
SWIFTAlliance Gateway MQHA Application Programming Guide Release 1.2.0.

pResp (output)
A pointer to the address of the response buffer. MQSeries Adapter allocates
memory for the response buffer; the program must free this memory after
it is no longer needed.

fhead (input)
A pointer to the AGHFileHeader structure, which contains the name of the
queue manager and the name of the target queue to which this request
must be sent (see “AGHFileHeader” on page 27).

Return values: SwOperationSucceed or SwOperationFailed.

Coding example:
...

#include <iostream.h>
#include <aghcaswd.hpp>...

AGHClient * pClient01 = NULL;
AGHFileHeader file01;
AGHCHAR szReqBuffer[512];
AGHSTRING Response;
SwStatus status;

pClient01 = new AGHClient();

memset(szReqBuffer, '\0', sizeof(szReqBuffer));
strcpy(szReqBuffer, "x:/path/file.ext");

status = pClient01->AGHFCall(szReqBuffer, &Response, &file01);
if(status == SwOperationSucceed)
{

32 Installation and Programming Guide

/* ok */
cout << "AGHFCall response: "<<Response <<endl;

}
else {

/* failed */
cout << "AGHFCall error response: "<<Response <<endl;

}

pClient01->SwXmlBufferFree(Response);
delete pClient01;

AGHClient::AGHLFTCmd
This method is used to put files onto an SAG workstation (for example, in
preparation for a FileAct transfer), or to get, list, or delete such files.

Syntax:
SwStatus AGHLFTCmd(AGHSTRING req, AGHPSTRING pResp, AGHFileHeader* fhead);

where:

req (input)
A pointer to the local file transfer (LFT) command to be issued. These
commands are described in “AGHLFTCmdParm” on page 26.

pResp (output)
A pointer to an area containing the address of another area where the
response is to be stored (the response buffer). The contents of this buffer
can be read using the AGHLFTCmdParm data structure (see
“AGHLFTCmdParm” on page 26). MQSeries Adapter allocates memory for
the response buffer; the program must free this memory after it is no
longer needed.

fhead (input/output)
The address of the data structure containing the length and address of the
data to be put (see “AGHFileHeader” on page 27). If a PUT command is
issued in preparation for a FileAct request (AGHFCall), information
needed by the FileAct request (for example, the names of the queue
manager and the request queue to be used) is returned in this data
structure.

Return values: SwOperationSucceed or SwOperationFailed.

Coding example:
...

#include <stdio.h>
#include <aghcaswd.hpp>...

AGHClient * pClient01 = NULL;
AGHFileHeader file01;
AGHLFTCmdParm * pParm01;
AGHCHAR szReqBuffer[512];
AGHSTRING Response;
CHAR szFileBuffer[]="Test file Test file Test file Test file Test file";
SwStatus status;

file01.lDataLength = sizeof(szFileBuffer);
file01.pData = szFileBuffer;
pParm01 = (AGHLFTCmdParm*)szReqBuffer;
pClient01 = new AGHClient();

Chapter 5. MQSeries Adapter C++ classes and methods 33

memset(szReqBuffer, ' ', sizeof(szReqBuffer));
memcpy(pParm01->cLFTVersion, AGHLFTVERSION,

sizeof(pParm01->cLFTVersion));
memcpy(pParm01->cLFTCmd, "PUT", 3);
strcpy(pParm01->cLFTText, "x:/path/file.ext");

status = pClient01->AGHLFTCmd(szReqBuffer, &Response, &file01);
if(status == SwOperationSucceed)
{

/* ok */
cout << "AGHLFTCmd response: "<<Response <<endl;

}
else {

/* failed */
cout << "AGHLFTCmd error response: "<<Response <<endl;

}

pClient01->SwXmlBufferFree(Response);
delete pClient01;

AGHClient::getConditionCode
MQSeries Adapter saves the last condition code that it issues. A client can use this
method to retrieve this condition code. Possible values are described in Table 10 on
page 104.

Syntax:
LONG getConditionCode();

Coding example:
...

#include <aghcaswd.hpp>...

AGHClient * pClient01 = NULL;
LONG lCCode;...

pClient01 = new AGHClient();...

lCCode = pClient01->getConditionCode();...

delete pClient01;

AGHClient::getErrorMessage
Use this method to retrieve a pointer to the error message that MQSeries Adapter
last issued. The error messages are described in “Appendix A. Messages and
codes” on page 95. The maximum size of the error message buffer is 256 bytes.

Syntax:
CHAR * getErrorMessage();

Coding example:
...

#include <aghcaswd.hpp>...

AGHClient * pClient01 = NULL;

34 Installation and Programming Guide

CHAR * pszErrorMessage;...

pClient01 = new AGHClient();...

pszErrorMessage = pClient01->getErrorMessage();...

delete pClient01;

AGHClient::getLoggerObj
Returns a pointer to the logger object of the client instance. A single logger object
can be shared by several clients.

Syntax:
AGHLoggerObject * getLoggerObj();

For a coding example, see “Constructors” on page 31.

AGHClient::setClientName
Use this method to overwrite the label for the profile entry that is used to initialize
the MQSeries Adapter client. If you overwrite the default name CLIENT01, you
must do so as the first call to MQSeries Adapter.

Syntax:
LONG setClientName(CHAR * pszClientName);

where:

pszClientName (input)
A pointer to a null-terminated string containing the client name. This name
can be at most 32 characters long.

Return values: AGHOK (0) if successful; AGHERRORCLIENT (10) if length
exceeds 32 characters.

Coding example:
...

#include <aghcaswd.hpp>...

AGHClient* pClient01 = NULL;
CHAR szClientName[] = "CLIENT02";
LONG lCCode;...

pClient01 = new AGHClient();...

lCCode = pClient01->setClientName(szClientName);
if(lCCode == AGHOK)
{

/* ok */
}
else
{

/* failed */
}

Chapter 5. MQSeries Adapter C++ classes and methods 35

...

delete pClient01;

AGHClient::setUserId
Use this method to set the user ID for which access authority is to be checked (see
“Authorization checking” on page 13). If this method is not used, the user ID of the
process user is assumed as a default. This method can only be called when
running in CICS or IMS environment. Clients that process messages created by a
CICS or IMS application should set the client user ID to the process user ID of the
corresponding CICS or IMS environment.

Syntax:
LONG setUserId(CHAR * pszUid);

where:

pszUid (input)
A pointer to a null-terminated string that is the user ID that is to be used
for all subsequent authorization checking. This string can be at most 8
characters long.

Return values: AGHOK (0) if successful; AGHERRORSECURITY (16) if the length
was greater than 8 characters, or if this method was called from a batch
environment

Coding example:
...

#include <aghcaswd.hpp>...

AGHClient* pClient01 = NULL;
CHAR szUserId[]="USERID";...

pClient01 = new AGHClient();...

lCCode = pClient01->setUserId(szUserId);
if(lCCode == AGHOK)
{

/* ok */
}
else {

/* failed */
}...

delete pClient01;

AGHClient::SwACall
This method is used to pass a request to MQSeries Adapter that is to be treated
asynchronously; that is, control is to be passed back to the client immediately after
the request has been added to the request queue. To retrieve the response
associated with a request submitted using this call, use the SwAWait method (see
“SwAWait—Retrieve a response from an asynchronous call” on page 77).

Syntax:
SwStatus SwACall(AGHSTRING req, AGHResponse* pAsyncResp);

36 Installation and Programming Guide

where:

req (input)
The address of the area containing the message to be sent (the request
buffer). This message can be a basic or an SNL message.

pAsyncResp (output)
The address of the AGHResponse structure where the message ID and
code page information from SwACall is stored (see “Data structures” on
page 25). In case of an error, this structure contains a pointer to the error
buffer. MQSeries Adapter allocates memory for the response buffer; the
program must free this memory after it is no longer needed.

Return values: SwOperationSucceed or SwOperationFailed.

Coding example:
...

#include <iostream.h>
#include <aghcaswd.hpp>...

AGHClient pClient01 = NULL;
AGHResponse AsyncResp;
SwStatus status;
AGHCHAR szMsgBuffer[] = "Hello World from client";

pClient01 = new AGHClient();
status = pClient01->SwACall(szMsgBuffer, &AsyncResp);
if(status == SwOperationSucceed)
{

/* ok */
}
else
{

/* failed */
cout << "SwACall error response: "<<AsyncResp.Resp <<endl;

}
pClient01->SwXmlBufferFree(AsyncResp.Resp);...

delete pClient01;

AGHClient::SwAWait
This method retrieves the response that resulted from a previously issued
SwACall. This method uses the pointer to the area containing the address of the
response area that was used by SwACall.

Syntax:
SwStatus SwAWait(AGHResponse* pAsyncResp);

where:

pAsyncResp (input/output)
A pointer to the AGHResponse structure that contains the address of the
response from SwACall or, in case of an error, the address of the error
buffer. MQSeries Adapter allocates memory for the response buffer; the
program must free this memory after it is no longer needed.

Return values: SwOperationSucceed or SwOperationFailed.

Chapter 5. MQSeries Adapter C++ classes and methods 37

Coding example:
...

#include <iostream.h>
#include <aghcaswd.hpp>...

AGHClient pClient01 = NULL;
AGHResponse AsyncResp;
SwStatus status;
AGHCHAR szMsgBuffer[] = "Hello World from client";...

status = pClient01->SwACall(szMsgBuffer, &AsyncResp);...

status = pClient01->SwAWait(&AsyncResp);
if(status == SwOperationSucceed)
{

/* ok */
cout << "SwAWait response: " << AsyncResp.Resp << endl;

}
else
{

/* failed */
cout << "SwAWait error response: " << AsyncResp.Resp << endl;

}...

pClient01->SwXmlBufferFree(AsyncResp.Resp);
delete pClient01;

AGHClient::SwCall
This method is used to pass a request to MQSeries Adapter that is to be treated
synchronously; that is, control is not to be passed back to the client until after SAG
returns the response. It is compatible with the native SAG interface.

Syntax:
SwStatus SwCall(AGHSTRING req, AGHPSTRING pResp);

where:

req (input)
The address of the area containing the message to be sent (the request
buffer). This message can be a basic or an SNL message.

pResp (input)
A pointer to an area containing the address of another area where the
response is to be stored (the response buffer). MQSeries Adapter allocates
memory for the response buffer; the program must free this memory after
it is no longer needed.

Return values: SwOperationSucceed or SwOperationFailed.

Coding example:
...

#include <iostream.h>
#include <aghcaswd.hpp>...

38 Installation and Programming Guide

AGHClient pClient01 = NULL;
AGHSTRING Resp;
SwStatus status;
AGHCHAR szMsgBuffer[] = "Hello World from client";

pClient01 = new AGHClient();
status = pClient01->SwCall(szMsgBuffer, &Resp);
if(status == SwOperationSucceed)
{

/* ok */
cout << "SwCall response: " << Resp << endl;

}
else
{

/* failed */
cout << "SwCall error response: " << Resp << endl;

}...

pClient01->SwXmlBufferFree(Resp);...

delete pClient01

AGHClient::SwXmlBufferFree
This method is called by the client to release the response buffer allocated by an
SwCall, SwACall, SwAWait, AGHLFTCmd, or AGHFCall method.

Syntax:
VOID SwXmlBufferFree(VOID * pBuffer);

where:

pBuffer (input)
A pointer to the buffer to be freed.

Coding example:
...

#include <aghcaswd.hpp>...

AGHClient pClient01=NULL;
AGHCHAR szMsgBuffer[] = "Hello World from client";
AGHSTRING Resp;
pClient01 = new AGHClient();...

pClient01->SwCall(szMsgBuffer,&Resp);...

pClient01->SwXmlBufferFree(Resp);
delete pClient01;

AGHServer
The class AGHServer encapsulates a server object. The server class definitions are
in the header file AGHCASVD.

Chapter 5. MQSeries Adapter C++ classes and methods 39

Constructors
When you create your first server object, an internal logger service object is created
that writes trace and log entries. If you create a second server object, and if you
want both to use the same logging and trace data sets, you must pass the logger
service object from the first server object. To get the logger service object, use the
getLoggerObj method as shown in the example below.

Syntax:
AGHServer(CHAR * pszServerName, AGHLoggerService * pLog = NULL);
AGHServer(AGHLoggerService * pLog = NULL);

where:

pszServerName (input)
A pointer to a null-terminated string containing the name of the server
object. If you do not specify a name, you can specify one later in one of the
following ways:
v Via the setServerName method
v During initialization

If you don’t specify a name, the server name is set to SERVER01 during
the first request retrieval (see “AGHServer::retrieve” on page 46). Whether
you specify a name or use the default name, your profile data set must
contain a profile for a server with that name (see “Chapter 3. Creating
client and server profiles” on page 21).

pLog (input)
A pointer to the logger object of a previously created AGHServer object. If
this is not specified, a new logger object is created for the server.

Coding example:
#include <aghcasvd.hpp>...

AGHServer * pServer01;
AGHServer * pServer02;...

pServer01 = new AGHServer("SERVER01");...

pServer02 = new AGHServer("SERVER02", pServer01->getLoggerObj());...

Methods

AGHServer::clientHub
Starts a client hub. For a description of a client hub, see “Client hub and server
request handler” on page 9.

If a name was already specified for a client hub, either when it was created or via
the init method (see “AGHServer” on page 39), do not specify a name with the
clientHub method; any name you specify will be ignored. If a name for the client
hub was not already specified, specify a name with the clientHub method,
otherwise the default name SERVER01 will be used. Whether you specify a name
or use the default name, your profile data set must contain a profile for a client
hub with that name (see “Chapter 3. Creating client and server profiles” on
page 21).

40 Installation and Programming Guide

Syntax:
LONG clientHub();
LONG clientHub(CHAR * pszServerName);

where:

pszServerName
A pointer to a null-terminated string containing the name of a server
profile in the profile data set (see “Chapter 3. Creating client and server
profiles” on page 21).

Return values: The condition code AGHOK (0) indicates that the operation was
successful; the condition code 2033 indicates that the request queue is empty; any
other condition code usually indicates an error (see Table 11 on page 104).

Coding example:
#include <aghcasvd.hpp>...

AGHServer pServer01;
LONG lCCode;...

pServer01 = new AGHServer("HUB01");...

lCCode = pServer01->clientHub();...

delete pServer01;

AGHServer::getConditionCode
MQSeries Adapter saves the last condition code that it issues. A server can use this
method to retrieve this condition code. Possible values are described in Table 11 on
page 104.

Syntax:
LONG getConditionCode();

Coding example:
...

#include <aghcasvd.hpp>...

AGHServer * pServer01 = NULL;
LONG lCCode;...

pServer01 = new AGHServer();...

lCCode = pServer01->getConditionCode();...

AGHServer::getCorrespondentName
This method returns a pointer to a null-terminated string containing the
correspondent name.

Chapter 5. MQSeries Adapter C++ classes and methods 41

Syntax:
CHAR * getCorrespondentName();

AGHServer::getErrorMessage
This method returns a pointer to the error message that MQSeries Adapter last
issued. The error messages are described in “Appendix A. Messages and codes” on
page 95. The maximum size of the error message buffer is 256 bytes.

Syntax:
CHAR * getErrorMessage();

Coding example:
...

#include <aghcasvd.hpp>...

AGHServer * pServer01 = NULL;
CHAR * pszErrorMessage;...

pServer01 = new AGHServer();...

pszErrorMessage = pServer01->getErrorMessage();...

delete pServer01;

AGHServer::getLog
This method returns a pointer to a one-character string that indicates whether
message logging is set on (Y) or off (N).

Syntax:
CHAR * getLog();

AGHServer::getLoggerObj
This method returns a pointer to the logger object of the server instance. A single
logger object can be shared by several servers.

Syntax:
AGHLoggerObject * getLoggerObj();

For a coding example, see “Constructors” on page 40.

AGHServer::getMqmName
This method returns a pointer to a null-terminated string containing the MQSeries
queue manager name. The MqmName can only be set as a profile parameter.

Syntax:
CHAR * getMqmName();

AGHServer::getReplyToQueueName
This method returns a pointer to a null-terminated string containing the MQSeries
reply-to queue name. The reply-to queue name cannot be set; its name is taken
from the information provided with a request message.

Syntax:

42 Installation and Programming Guide

CHAR * getReplyToQueueName();

AGHServer::getRequestQueueName
This method returns a pointer to a null-terminated string containing the MQSeries
request queue name. The request queue name can only be set as a profile
parameter.

Syntax:
CHAR * getRequestQueueName();

AGHServer::getServerName
This method returns a pointer to a null-terminated string containing the server
name. The server name can be set only before the AGHServer::init method has
been executed.

Syntax:
CHAR * getServerName();

AGHServer::getTraceLevel
Returns the current trace level. See “Tracing” on page 90 for more information.

Syntax:
ULONG getTraceLevel();

AGHServer::getUserId
This method returns a pointer to a null-terminated string containing the current
user ID.

Syntax:
CHAR * getUserId();

AGHServer::init
This method is used to initialize a server object that was created using the server
constructor, but for which no server name parameter was specified. The
parameters in the profile for the server being initialized overwrite any parameters
that were set by other means, for example using set methods.

The default server name is SERVER01, so if you initialize a server without
specifying a name, your profile data set must contain a profile with the name
SERVER01.

Syntax:
LONG init();
LONG init(CHAR * pszServerName);

where:

pszServerName (input)
A pointer to a null-terminated character string containing the name of a
server profile in the profile data set (see “Chapter 3. Creating client and
server profiles” on page 21).

Return values: The condition code AGHOK (0) indicates that the operation was
successful; any other condition code usually indicates an error (see Table 11 on
page 104).

Coding example:

Chapter 5. MQSeries Adapter C++ classes and methods 43

#include <aghcasvd.hpp>...

AGHServer *pServer01;
LONG lCCode;...

pServer01 = new AGHServer();
lCCode = pServer01->init("SERVER01");...

AGHServer::release
This method releases the message buffer created by the retrieve method (see
“AGHServer::retrieve” on page 46).

Syntax:
LONG release(AGHSTRING req);

where:

req (input)
A pointer to the message buffer to be released; this pointer was returned
with the retrieve method.

Return values: The condition code AGHOK (0) indicates that the operation was
successful; any other condition code usually indicates an error (see Table 11 on
page 104).

Coding example:
#include <aghcasvd.hpp>...

AGHServer * pServer01;
LONG lCCode;
AGHSTRING req;...

pServer01 = new AGHServer("SERVER01");...

lCCode=pServer01->retrieve(&req);...

lCCode = pServer01->release(req);...

delete pServer01;

AGHServer::reply
This method places a response into the reply-to queue.

Syntax:
LONG reply(AGHSTRING resp);

where:

resp (input)
A pointer to the response.

44 Installation and Programming Guide

Return values: The condition code AGHOK (0) indicates that the operation was
successful; any other condition code usually indicates an error (see Table 11 on
page 104).

Coding example:
#include <aghcasvd.hpp>...

AGHServer * pServer01;
LONG lCCode;
AGHSTRING resp;...

resp = new szBuffer[512];
strcpy(szBuffer,"response message");...

pServer01 = new AGHServer("SERVER01");...

lCCode = pServer01->reply(resp);...

delete pServer01;
delete resp;

AGHServer::requestHandler
Start a server request handler. For a description of a server request handler, see
“Client hub and server request handler” on page 9.

If a name was already specified for a server request handler, either when it was
created or via the init method (see “AGHServer” on page 39), do not specify a
name with the requestHandler method; any name you specify will be ignored. If a
name for the server request handler was not already specified, specify a name with
the requestHandler method, otherwise the default name SERVER01 will be used.
Whether you specify a name or use the default name, your profile data set must
contain a profile for a server request handler with that name.

Syntax:
LONG requestHandler();
LONG requestHandler(CHAR * pszServerName);

where:

pszServerName (input)
A pointer to a null-terminated character string containing the name of a
server profile in the profile data set.

Return values: The condition code AGHOK (0) indicates that the operation was
successful; the condition code 2033 indicates that the request queue is empty; any
other condition code usually indicates an error (see Table 11 on page 104).

Coding example:
#include <aghcasvd.hpp>...

AGHServer * pServer01;
LONG lCCode;

Chapter 5. MQSeries Adapter C++ classes and methods 45

...

pServer01 = new AGHServer("SERVER01");...

lCCode = pServer01->requestHandler();...

delete pServer01;

AGHServer::retrieve
This method retrieves the next message from the request queue.

If the server was not initialized when it was created (see “AGHServer” on page 39)
or via the init method (see “AGHServer::init” on page 43), the retrieve method
initializes the server and assigns it the name SERVER01. In this case, your profile
data set must contain a profile with the name SERVER01.

Syntax:
LONG retrieve(AGHSTRING * pReq);

where:

pReq (output)
A pointer to the address of the retrieved message. After the data is no
longer needed, the buffer must be released with the release method.

Return values: The condition code AGHOK (0) indicates that the operation was
successful; the condition code 2033 indicates that the request queue is empty; any
other condition code usually indicates an error (see Table 11 on page 104).

Coding example:
#include <aghcasvd.hpp>...

AGHServer * pServer01;
LONG lCCode;
AGHSTRING Req;...

pServer01 = new AGHServer("SERVER01");...

lCCode = pServer01->retrieve(&Req);...

lCCode = pServer01->release(&Req);...

delete pServer01;

AGHServer::setCorrespondentName
Sets the correspondent name; a null-terminated string with a maximum length of
24 characters can be specified. The correspondent name is used for authorization
checking only.

Syntax:
LONG setCorrespondentName(CHAR * pszCorrespondent);

46 Installation and Programming Guide

where:

pszCorrespondent (input)
A pointer to a null-terminated string containing the correspondent name.

Return values: The condition code AGHOK (0) indicates that the operation was
successful; any other condition code usually indicates an error (see Table 11 on
page 104).

AGHServer::setLog
If message logging is activated (that is, if the Log parameter in the server profile is
set to Y), you can use this call to switch message logging off and on.

Syntax:
LONG setLog(CHAR * pszLog);

where:

pszLog (input)
A pointer to a null-terminated string containing the character N (to switch
logging off) or Y (to switch logging on).

Return values: The condition code AGHOK (0) indicates that the operation was
successful; any other condition code usually indicates an error (see Table 11 on
page 104).

AGHServer::setServerName
The server name can be set only before the init method is executed. The default
name is SERVER01.

Syntax:
LONG setServerName(CHAR * pszServerName);

where:

pszServerName (input)
A pointer to a null-terminated string containing the server name.

Return values: The condition code AGHOK (0) indicates that the operation was
successful; any other condition code usually indicates an error (see Table 11 on
page 104).

AGHServer::setTraceLevel
Set the trace level for the server. See “Tracing” on page 90 for more information.

Syntax:
LONG setTraceLevel(ULONG ulLevel);

where:

ulLevel (input)
An integer that corresponds to the trace level.

Return values: The condition code AGHOK (0) indicates that the operation was
successful; any other condition code usually indicates an error (see Table 11 on
page 104).

Chapter 5. MQSeries Adapter C++ classes and methods 47

AGHServer::setUserId
Use this method to set the user ID for which access authority is to be checked (see
“Authorization checking” on page 13). If this method is not used, the user ID of the
process user is assumed as a default. This method can only be called when
running in CICS or IMS environment.

Servers that process messages created by a CICS or IMS user should set the user
ID to that of the creating user. The server must retrieve the user ID that started the
CICS or IMS transaction. For a client hub, the user ID is taken from the MQMD
(message descriptor) of the message.

Syntax:
LONG setUserId(CHAR * pszUid);

where:

pszUid (input)
A pointer to a null-terminated character string containing the user ID that
is to be used for all subsequent authorization checking.

Return values: The condition code AGHOK (0) indicates that the operation was
successful; any other condition code usually indicates an error (see Table 11 on
page 104).

Coding example:
#include <aghcasvd.hpp>...

AGHServer * pServer01;
LONG lCCode;...

pServer01 = new AGHServer("SERVER01");...

lCCode = pServer01->setUserId("USERID");...

delete pServer01;

48 Installation and Programming Guide

Chapter 6. MQSeries Adapter functions for C and COBOL

The API provided by MQSeries Adapter contains functions for C and COBOL that
let clients and servers running on OS/390 systems send requests, transfer files, and
process responses. These functions are contained in the following DLLs:
v AGHCADLC contains the functions used by clients.
v AGHCADLS contains the functions used by servers.

The condition codes issued by clients and servers are described in “Condition
codes” on page 104. To see the accompanying error message, check the trace or
retrieve the error message using the AGHClientGetErrorMessage or
AGHServerGetErrorMessage functions. If you require more information, consider
setting a higher trace level as described in “Tracing” on page 90.

Table 5. Functions used by clients

Name and description Page

SwXmlBufferFree—Free client buffer 81

AGHClientGetConditionCode—Get condition code for client 50

AGHClientGetErrorMessage—Get error message for client 51

AGHFCall—Initiate a FileAct transfer 56

SwACall—Initiate an asynchronous InterAct transfer 75

SwCall—Initiate a synchronous InterAct transfer 79

AGHLFTCmd—Issue an LFT command 58

SwAWait—Retrieve a response from an asynchronous call 77

AGHClientSetClientName—Set a client name 52

AGHClientSetUserId—Set a client user ID 54

Table 6. Functions used by servers

Name and description Page

AGHServerGetConditionCode—Get condition code for server 62

AGHServerGetErrorMessage—Get error message for server 63

AGHServerInit—Initialize a server 64

AGHServerReply—Place a response in the reply-to queue 67

AGHServerRelease—Release the server’s message buffer 65

AGHServerRetrieve—Retrieve a request 70

AGHServerSetUserId—Set a user ID for a server 72

AGHServerClientHub—Start a client hub 61

AGHServerRequestHandler—Start a server request handler 69

AGHServerTerm—Terminate server 74

© Copyright IBM Corp. 2001 49

AGHClientGetConditionCode—Get condition code for client
MQSeries Adapter saves the last condition code that it issues. A client can use this
function to retrieve this condition code. Possible values are described in Table 10 on
page 104.

Format for C
#include <aghcadef.h>
LONG AGHClientGetConditionCode();

Coding examples

Coding example for C
...

#include <aghcadef.h>...

LONG lCCode;...

lCCode = AGHClientGetConditionCode();...

Coding example for COBOL
...

data division.
working-storage section.
01 CCode pic s9(9) binary....

procedure division....

call 'AGHClientGetConditionCode'
returning CCode...

50 Installation and Programming Guide

AGHClientGetErrorMessage—Get error message for client
Use this function to retrieve a pointer to the error message that MQSeries Adapter
last issued. The messages are described in “Appendix A. Messages and codes” on
page 95. The maximum size of the error message buffer is 256 bytes.

Format for C
#include <aghcadef.h>
CHAR * AGHClientGetErrorMessage();

Coding examples

Coding example for C
...

#include <aghcadef.h>...

CHAR * pszErrorMessage;...

pszErrorMessage = AGHClientGetErrorMessage();...

Coding example for COBOL
...

data division.
working-storage section.
77 msgLength pic s9(9) binary.
01 pErrorMsg pointer....

linkage divison.
errorMsg pic x(256)....

procedure division....

call 'AGHClientGetErrorMessage'
returning pErrorMsg

set address of errorMsg to pErrorMsg...

Chapter 6. MQSeries Adapter functions for C and COBOL 51

AGHClientSetClientName—Set a client name
Use this function to overwrite the label for the profile entry that is used to
initialize the MQSeries Adapter client. If you overwrite the default name
CLIENT01, you must do so as the first call to MQSeries Adapter.

This function returns a condition code: AGHOK (0) if successful;
AGHERRORCLIENT (10) if unsuccessful.

Format for C
#include <aghcadef.h>
LONG AGHClientSetClientName(CHAR * pszClientName);

where:

pszClientName (input)
A pointer to a null-terminated character string containing the client name.

Coding examples

Coding example for C
...

#include <aghcadef.h>...

CHAR szClientName[] = "CLIENT02";
LONG lCCode;...

lCCode = AGHClientSetClientName(szClientName);
if(lCCode == AGHOK)
{

/* ok */
}
else {

/* failed */
}...

Coding example for COBOL
...

data division.
working-storage section.
01 clientName pic x(32).
01 CCode pic s9(9) binary....

procedure division....

move z'CLIENT02' to clientName
call 'AGHClientSetClientName' using clientName

returning CCode
if CCode = AGHOK then
* ok
else
* failed

52 Installation and Programming Guide

end-if...

Chapter 6. MQSeries Adapter functions for C and COBOL 53

AGHClientSetUserId—Set a client user ID
Use this function to set the user ID for which an ESM such as RACF is to check
access authority (see “Authorization checking” on page 13). This function is valid
only when running in a CICS or IMS environment. Clients that process messages
created by a CICS or IMS application should set the client user ID to the process
user ID of the corresponding CICS or IMS environment.

This function returns a condition code: AGHOK (0) if successful;
AGHERRORSECURITY (16) if unsuccessful.

Format for C
#include <aghcadef.h>
LONG AGHClientSetUserId(CHAR * pszUserId);

where:

pszUserId (input)
A pointer to a null-terminated character string containing the user ID that
is to be used for all subsequent authorization checking.

Coding examples

Coding example for C
...

#include <aghcadef.h>...

CHAR szUserId[8+1]="USERID";
LONG lCCode;...

lCCode = AGHClientSetUserId(szUserId);
if(lCCode == AGHOK)
{

/* ok */
}
else {

/* failed */
}...

Coding example for COBOL
...

data division.
working-storage section.
01 userId pic x(9).
01 CCode pic s9(9) binary....

procedure division....

call 'AGHClientSetUserId' using userId
returning CCode

if CCode = AGHOK then
* ok
else

54 Installation and Programming Guide

* failed
end-if...

Chapter 6. MQSeries Adapter functions for C and COBOL 55

AGHFCall—Initiate a FileAct transfer
This function initiates a FileAct transfer for a file that is already on an SAG
workstation. This file might have been moved to that system by an AGHLFTCmd
call, but not necessarily. To make sure that the request is sent to the same instance
of SAG that processed the corresponding AGHLFTCmd, the same AGHFileHeader
structure that was used by that AGHLFTCmd must be used by this function. For
more information about local file transfers, see:
v “AGHLFTCmdParm” on page 26
v “AGHFileHeader” on page 27
v “AGHLFTCmd—Issue an LFT command” on page 58

This function returns SwOperationSucceed or SwOperationFailed.

Format for C
#include <aghcadef.h>
SwStatus AGHFCall(AGHSTRING req, AGHPSTRING pResp, AGHFileHeader* fhead);

where:

req (input)
The name of the file stored on the SAG workstation, and that is to be
transferred via the SIPN to a remote location (that is, for which a FileAct is
to be started). For information on how to specify such names, refer to the
SWIFTAlliance Gateway MQHA Application Programming Guide Release 1.2.0.

pResp (output)
A pointer to an area containing the address of another area where the
response is to be stored (the response buffer). MQSeries Adapter allocates
memory for the response buffer; the program must free this memory after
it is no longer needed.

fhead (input/output)
A pointer to the AGHFileHeader structure, which contains the name of the
queue manager and the name of the target queue to which this request
must be sent (see “AGHFileHeader” on page 27).

Coding examples

Coding example for C
...

#include <stdio.h>
#include <aghcadef.h>...

AGHFileHeader file01;
AGHCHAR szReqBuffer[512];
AGHSTRING Response;
SwStatus status;

memset(szReqBuffer, '\0', sizeof(szReqBuffer));
strcpy(szReqBuffer, "x:/path/file.ext");

status = AGHFCall(szReqBuffer, &Response, &file01);
if(status == SwOperationSucceed)
{

/* ok */
printf("AGHFCall response: %s\n", Response);

}

56 Installation and Programming Guide

else {
/* failed */
printf("AGHFCall error response: %s\n", Response);

}...

SwXmlBufferFree(Response);...

Coding example for COBOL
...

data division.
working-storage section.
copy agheacb1.
77 msgLength pic s9(9) binary.
01 requestMsg pic x(100).
01 responseMsgAddr pointer.
01 status pic s9(9) binary.

linkage section.
01 responseMsg pic x(100).

procedure division.

* build the request *

move z'x:/path/file.ext' to requestMsg

call 'AGHFCall' using requestMsg
responseMsgAddr
AGHFileHeader

returning status

if status = SwOperationSucceed then
* ok

set address of responseMsg to responseMsgAddr...

else
* failed...

end-if

* release the response's storage *

call 'SwXmlBufferFree' using responseMsgAddr...

Chapter 6. MQSeries Adapter functions for C and COBOL 57

AGHLFTCmd—Issue an LFT command
This function is used to put files onto an SAG workstation (for example, in
preparation for a FileAct transfer), or to get, list, or delete such files.

This function returns SwOperationSucceed or SwOperationFailed.

Format for C
#include <aghcadef.h>
SwStatus AGHLFTCmd(AGHSTRING req, AGHPSTRING pResp, AGHFileHeader* fhead);

where:

req (input)
A pointer to the local file transfer (LFT) command to be issued. These
commands are described in “AGHLFTCmdParm” on page 26.

pResp (output)
A pointer to an area containing the address of another area where the
response is to be stored (the response buffer). The contents of this buffer
can be read using the AGHLFTCmdParm data structure (see
“AGHLFTCmdParm” on page 26). MQSeries Adapter allocates memory for
the response buffer; the program must free this memory after it is no
longer needed.

fhead (input/output)
The address of the data structure containing the length and address of the
data to be put (see “AGHFileHeader” on page 27). If a PUT command is
issued in preparation for a FileAct request (AGHFCall), information
needed by the FileAct request (for example, the names of the queue
manager and the request queue to be used) is returned in this data
structure.

Coding examples

Coding example for C
...

#include <stdio.h>
#include <aghcadef.h>...

AGHFileHeader file01;
AGHLFTCmdParm *pParm01;
AGHCHAR szReqBuffer[512];
AGHSTRING Response=NULL;
CHAR szFileBuffer[]="data to be moved to file on SAG workstation";
SwStatus status;

file01.lDataLength = sizeof(szFileBuffer);
file01.pData = szFileBuffer;
pParm01 = (AGHLFTCmdParm*)szReqBuffer;

memset(szReqBuffer, ' ', sizeof(szReqBuffer));
memcpy(pParm01->cLFTVersion, AGHLFTVERSION,

sizeof(pParm01->cLFTVersion));
memcpy(pParm01->cLFTCmd, "PUT", 3);
strcpy(pParm01->cLFTText, "x:/path/file.ext");

status = AGHLFTCmd(szReqBuffer, &Response, &file01);

58 Installation and Programming Guide

if(status == SwOperationSucceed)
/* ok */
printf("AGHLFTCmd response: %s\n", Response);

}
else {

/* failed */
printf("AGHLFTCmd error response: %s\n", Response);

}

SwXmlBufferFree(Response);...

Coding example for COBOL
...

data division.
working-storage section.
copy agheacb1.
77 msgLength pic s9(9) binary.
01 requestMsg pic x(100).
01 fileData pic x(100).
01 responseMsgAddr pointer.
01 status pic s9(9) binary.
01 pErrorMsg pointer.
01 CCode pic s9(9) binary.

linkage section.
01 responseMsg pic x(100).
01 errorMsg pic x(256).

procedure division.

* build the request *

move z'data to be moved to file on SAG workstation' to fileData
move z'' to requestMsg

set pData of AGHFileHeader to address of fileData
inspect fileData tallying msgLength

for characters before x'00'
move msgLength to lDataLength of AGHFileHeader

move AGHLFTVERSION to cLFTVersion of AGHLFTCmdParm
move z'PUT ' to cLFTCmd of AGHLFTCmdParm
move z'x:/path/file.ext' to cLFTText of AGHLFTCmdParm

call 'AGHLFTCmd' using requestMsg
responseMsgAddr
AGHFileHeader

returning status

if status = SwOperationSucceed then

* handle the response *

set address of responseMsg to Resp of AGHResponse
move 0 to msgLength
inspect responseMsg tallying msgLength

for characters before x'00'
display '..response has length ' msglength ':'
display responseMsg(1:msgLength)
move 0 to return-code

else
display 'AGHLFTCmd returned ' status
call 'AGHClientGetConditionCode'

Chapter 6. MQSeries Adapter functions for C and COBOL 59

returning CCode
call 'AGHClientGetErrorMessage'

returning pErrorMsg
set address of errorMsg to pErrorMsg
move 0 to msgLength
inspect errorMsg tallying msgLength

for characters before x'00'
display 'AGHClient condition code=' CCode
display 'AGHClient error message=' errorMsg(1:msgLength)
move 8 to return-code

end-if

* release the response's storage *

call 'SwXmlBufferFree' using responseMsgAddr...

60 Installation and Programming Guide

AGHServerClientHub—Start a client hub
For a description of a client hub, see “Client hub and server request handler” on
page 9.

For a client hub, the user ID used for authorization checking is taken from the
MQMD (message descriptor) of the message.

This function returns a condition code. The condition code AGHOK (0) indicates
that the operation was successful. The condition code 2033 indicates that the
request queue is empty. Other condition codes usually indicate an error (see
“Condition codes” on page 104).

Format for C
#include <aghcadef.h>
LONG AGHServerClientHub(CHAR * pszServerName);

where:

pszServerName
A pointer to a null-terminated string containing the name of a server
profile in the profile data set (see “Chapter 3. Creating client and server
profiles” on page 21).

Coding examples

Coding example for C
#include <aghcadef.h>...

LONG lCCode;...

lCCode = AGHServerClientHub("HUB01");...

Coding example for COBOL
...

data division.
working-storage section....

01 szServerName pic x(32).
01 CCode pic s9(9) binary....

procedure division.

move z'HUB01' to szServerName
call 'AGHServerClientHub' using szServerName

returning CCode...

Chapter 6. MQSeries Adapter functions for C and COBOL 61

AGHServerGetConditionCode—Get condition code for server
MQSeries Adapter saves the last condition code that it issues. A server can use this
function to retrieve and return this condition code. Possible values are described in
“Condition codes” on page 104.

Format for C
#include <stdio.h>
#include <aghcadef.h>
LONG AGHServerGetConditionCode(AGHSRVHANDLE handle);

where:

handle (input)
A pointer to the handle returned with the AGHServerInit call.

Coding examples

Coding example for C
#include <aghcadef.h>...

AGHSRVHANDLE pServer01;
LONG lCCode;...

pServer01 = AGHServerInit("SERVER01");...

lCCode = AGHServerGetConditionCode(pServer01);
printf("Error Code: %d\n",lCCode);...

Coding example for COBOL
...

data division.
working-storage section....

01 szServerName pic x(32).
01 pServer pointer.
01 CCode pic s9(9) binary....

procedure division.

move z'SERVER01' to szServerName
call 'AGHServerInit' using szServerName

returning pServer...

call 'AGHServerGetConditionCode' using pServer
returning CCode...

62 Installation and Programming Guide

AGHServerGetErrorMessage—Get error message for server
Use this function to retrieve a pointer to the error message that MQSeries Adapter
last issued. The messages are described in “Appendix A. Messages and codes” on
page 95. The maximum size of the error message buffer is 256 bytes.

Format for C
#include <aghcadef.h>
CHAR * AGHServerGetErrorMessage(AGHSRVHANDLE handle);

where:

handle (input)
A pointer to the handle returned with the AGHServerInit call.

Coding examples

Coding example for C
#include <stdio.h>
#include <aghcadef.h>...

AGHSRVHANDLE pServer01;
CHAR * pszErrMsg;...

pServer01 = AGHServerInit("SERVER01");...

pszErrMsg = AGHServerGetErrorMessage(pServer01);
printf("Error: %s\n",pszErrMsg);...

Coding example for COBOL
...

data division.
working-storage section....

01 szServerName pic x(32).
01 pServer pointer.
01 pErrMsg pointer....

procedure division.

move z'SERVER01' to szServerName
call 'AGHServerInit' using szServerName

returning pServer...

call 'AGHServerGetErrorMessage' using pServer
returning pErrMsg...

Chapter 6. MQSeries Adapter functions for C and COBOL 63

AGHServerInit—Initialize a server
This function initializes a server and must be the first function that is called. Your
profile data set must contain a profile with the name specified. This function
returns a handle that is used as an input parameter for other functions.

Format for C
#include <aghcadef.h>
AGHSRVHANDLE AGHServerInit(CHAR * pszServerName);

where:

pszServerName (input)
A pointer to a null-terminated string containing the name of a server
profile in the profile data set (see “Chapter 3. Creating client and server
profiles” on page 21).

Coding examples

Coding example for C
#include <aghcadef.h>...

CHAR szServerName[32];
AGHSRVHANDLE pServer01;...

strcpy(szServerName,"SERVER01");
pServer01 = AGHServerInit(szServerName);...

Coding example for COBOL
...

data division.
working-storage section....

01 szServerName pic x(32).
01 pServer pointer....

procedure division.

move z'SERVER01' to szServerName
call 'AGHServerInit' using szServerName

returning pServer...

64 Installation and Programming Guide

AGHServerRelease—Release the server’s message buffer
This function releases the message buffer created for the AGHServerRetrieve call
(see “AGHServerRetrieve—Retrieve a request” on page 70).

The condition code AGHOK (0) indicates that the operation was successful (that is,
that the message buffer was released).

Format for C
#include <aghcadef.h>
LONG AGHServerRelease(AGHSRVHANDLE handle, AGHSTRING req);

where:

handle (input)
A pointer to the handle returned with the AGHServerInit call.

req (input)
A pointer to the message buffer to be released; this pointer was returned
with the AGHServerRetrieve call.

Coding examples

Coding example for C
#include <aghcadef.h>...

AGHSRVHANDLE pServer01;
AGHSTRING Req;
LONG lCCode;...

pServer01 = AGHServerInit("SERVER01");
lCCode = AGHServerRetrieve(pServer01,&Req);...

lCCode = AGHServerRelease(pServer01,Req);...

Coding example for COBOL
...

data division.
working-storage section....

01 szServerName pic x(32).
01 pServer pointer.
01 requestMsgAddr pointer.
01 CCode pic s9(9) binary.

linkage section.
01 requestMsg pic x(100)....

procedure division.

move z'SERVER01' to szServerName
call 'AGHServerInit' using szServerName

returning pServer

Chapter 6. MQSeries Adapter functions for C and COBOL 65

...

call 'AGHServerRetrieve' using pServer
requestMsgAddr

returning CCode
set address of requestMsg to requestMsgAddr...

call 'AGHServerRelease' using pServer
requestMsg

returning CCode

66 Installation and Programming Guide

AGHServerReply—Place a response in the reply-to queue
This function places a response into the reply-to queue.

The condition code AGHOK (0) indicates that the operation was successful, and
that a response was put into the reply-to queue. Any other condition code
indicates an error (see “Condition codes” on page 104).

Format for C
#include <aghcadef.h>
LONG AGHServerReply(AGHSRVHANDLE handle, AGHSTRING Resp);

where:

handle (input)
A pointer to the handle returned with the AGHServerInit call.

Resp (input)
A pointer to the response.

Coding examples

Coding example for C
#include <aghcadef.h>...

AGHSRVHANDLE pServer01;
LONG lCCode;...

pServer01 = AGHServerInit("SERVER01");...

lCCode = AGHServerReply(pServer01,"Hello client");...

Coding example for COBOL
...

data division.
working-storage section....

01 szServerName pic x(32).
01 pServer pointer.
01 responseMsg pic x(100).
01 CCode pic s9(9) binary....

procedure division.

move z'SERVER01' to szServerName
call 'AGHServerInit' using szServerName

returning pServer...

move z'Hello client' to responseMsg
call 'AGHServerReply' using pServer

responseMsg

Chapter 6. MQSeries Adapter functions for C and COBOL 67

returning CCode...

68 Installation and Programming Guide

AGHServerRequestHandler—Start a server request handler
For a description of a server request handler, see “Client hub and server request
handler” on page 9.

This function returns a condition code. The condition code AGHOK (0) indicates
that the operation was successful. The condition code 2033 indicates that the
request queue is empty. Other condition codes usually indicate an error (see
“Condition codes” on page 104).

Format for C
#include <aghcadef.h>
LONG AGHServerRequestHandler(CHAR * pszServerName);

where:

pszServerName (input)
A pointer to a null-terminated string containing the name of a server
profile in the profile data set.

Coding examples

Coding example for C
#include <aghcadef.h>...

LONG lCCode;...

lCCode = AGHServerRequestHandler("SERVER01");...

Coding example for COBOL
...

data division.
working-storage section....

01 szServerName pic x(32).
01 CCode pic s9(9) binary....

procedure division.

move z'SERVER01' to szServerName...

call 'AGHServerRequestHandler' using szServerName
returning CCode...

Chapter 6. MQSeries Adapter functions for C and COBOL 69

AGHServerRetrieve—Retrieve a request
This function retrieves the next message from the request queue.

This function returns a condition code. A condition code of 0 indicates successful
operation. The condition code 2033 indicates that the request queue is empty and
there are no further messages to be processed. Other condition codes usually
indicate an error (see “Condition codes” on page 104).

Format for C
#include <aghcadef.h>
LONG AGHServerRetrieve(AGHSRVHANDLE handle, AGHSTRING * pReq);

where:

handle (input)
A pointer to the handle returned with the AGHServerInit call.

pReq (output)
A pointer to the address of the retrieved message. After the data is no
longer needed, the buffer must be released with the AGHServerRelease
function.

Coding examples

Coding example for C
#include <aghcadef.h>...

AGHSRVHANDLE pServer01;
AGHSTRING Req;
LONG lCCode;...

pServer01 = AGHServerInit("SERVER01");...

lCCode = AGHServerRetrieve(pServer01,&Req);...

Coding example for COBOL
...

data division.
working-storage section....

01 szServerName pic x(32).
01 pServer pointer.
01 requestMsgAddr pointer.
01 CCode pic s9(9) binary.

linkage section.
01 requestMsg pic x(100)....

procedure division.

move z'SERVER01' to szServerName
call 'AGHServerInit' using szServerName

70 Installation and Programming Guide

returning pServer...

call 'AGHServerRetrieve' using pServer
requestMsgAddr

returning CCode
set address of requestMsg to requestMsgAddr

Chapter 6. MQSeries Adapter functions for C and COBOL 71

AGHServerSetUserId—Set a user ID for a server
This function sets the user ID for which authorization to access protected resources
is checked. This function can only be called when running in CICS or IMS
environment. Applications processing messages created by CICS or IMS users
should set the user ID of the creating user. The application must retrieve the user
ID which has started the CICS or IMS transaction.

This function returns a condition code. The condition code AGHOK (0) indicates
that the operation was successful; other condition codes usually indicate an error
(see “Condition codes” on page 104).

Format for C
#include <aghcadef.h>
LONG AGHServerSetUserId(AGHSRVHANDLE handle, CHAR * pszUserId);

where:

handle (input)
A pointer to the handle returned with the AGHServerInit call.

pszUserId (input)
A pointer to a null-terminated string containing the user ID that is to be
used for all subsequent authorization checking.

Coding examples

Coding example for C
#include <aghcadef.h>...

AGHSRVHANDLE pServer01;
LONG lCCode;...

pServer01 = AGHServerInit("SERVER01");...

lCCode = AGHServerSetUserId(pServer01,"USERID");...

Coding example for COBOL
...

data division.
working-storage section....

01 szServerName pic x(32).
01 pServer pointer.
01 szUserId pic x(9).
01 CCode pic s9(9) binary....

procedure division.

move z'SERVER01' to szServerName
call 'AGHServerInit' using szServerName

returning pServer

72 Installation and Programming Guide

...

move z'USERID' to szUserId
call 'AGHServerSetUserId' using pServer

szUserId
returning CCode...

Chapter 6. MQSeries Adapter functions for C and COBOL 73

AGHServerTerm—Terminate server
This function terminates a server and frees all resources used by the server. It must
be the last call. It returns a condition code that indicates whether the operation
was successful (see “Condition codes” on page 104).

Format for C
#include <aghcadef.h>
LONG AGHServerTerm(AGHSRVHANDLE handle);

where:

handle (input)
A pointer to the handle returned with the AGHServerInit call.

Coding examples

Coding example for C
#include <aghcadef.h>...

AGHSRVHANDLE pServer01;
LONG lCCode;...

pServer01 = AGHServerInit("SERVER01");...

lCCode = AGHServerTerm(pServer01);...

Coding example for COBOL
...

data division.
working-storage section....

01 szServerName pic x(32).
01 pServer pointer.
01 CCode pic s9(9) binary....

procedure division.
move z'SERVER01' to szServerName
call 'AGHServerInit' using szServerName

returning pServer...

call 'AGHServerTerm' using pServer
returning CCode...

74 Installation and Programming Guide

SwACall—Initiate an asynchronous InterAct transfer
This function is used to send a request that is to be treated asynchronously; that is,
control is to be passed back to the client immediately after the request has been
added to the request queue. To retrieve the response associated with a request
submitted using this call, use the SwAWait function (see “SwAWait—Retrieve a
response from an asynchronous call” on page 77).

This function returns SwOperationSucceed or SwOperationFailed.

Format for C
#include <aghcadef.h>
SwStatus SwACall(AGHSTRING req, AGHResponse* pResp);

where:

req (input)
The address of the area containing the message to be sent (the request
buffer). This message can be a basic or an SNL message.

pResp (output)
The address of the AGHResponse structure where the message ID and
code page information from SwACall is stored (see “Data structures” on
page 25). In case of an error, this structure contains a pointer to the error
buffer. MQSeries Adapter allocates memory for the error buffer; the
program must free this memory after it is no longer needed.

Coding examples

Coding example for C
...

#include <stdio.h>
#include <aghcadef.h>

AGHResponse AsyncResp;
SwStatus status;
AGHCHAR szMsgBuffer[] = "Hello World from client";

status = SwACall(szMsgBuffer, &AsyncResp);
if(status == SwOperationSucceed)
{

/* ok */
}
else
{

/* failed */
printf("SwACall error response: %s\n", AsyncResp.Resp);

}
SwXmlBufferFree(AsyncResp.Resp);...

Coding example for COBOL
...

data division.
working-storage section.
copy agheacb1.
77 msgLength pic s9(9) binary.
01 requestMsg pic x(100).

Chapter 6. MQSeries Adapter functions for C and COBOL 75

01 responseMsgAddr pointer.
01 status pic s9(9) binary.
01 pErrorMsg pointer.
01 CCode pic s9(9) binary.

linkage section.
01 responseMsg pic x(100).
01 errorMsg pic x(256).

procedure division.

* build the request *

move z'Hello world from client.' to requestMsg

call 'SwACall' using requestMsg
AGHResponse

returning status

if status = SwOperationSucceed then

* handle the response *

set address of responseMsg to Resp of AGHResponse
move 0 to msgLength
inspect responseMsg tallying msgLength

for characters before x'00'
display '..response has length ' msglength ':'
display responseMsg(1:msgLength)
move 0 to return-code

else
display 'SwACall returned ' status
call 'AGHClientGetConditionCode'

returning CCode
call 'AGHClientGetErrorMessage'

returning pErrorMsg
set address of errorMsg to pErrorMsg
move 0 to msgLength
inspect errorMsg tallying msgLength

for characters before x'00'
display 'AGHClient condition code=' CCode
display 'AGHClient error message=' errorMsg(1:msgLength)
move 8 to return-code

end-if

* release the response's storage *

call 'SwXmlBufferFree' using Resp of AGHResponse...

76 Installation and Programming Guide

SwAWait—Retrieve a response from an asynchronous call
This function retrieves the response that resulted from a previously issued
SwACall. This function uses as a handle the pointer to the area containing the
address of the response area that was returned by SwACall.

This function returns SwOperationSucceed or SwOperationFailed.

Format for C
#include <aghcadef.h>
SwStatus SwAWait(AGHResponse * pResp);

where:

pResp (input/output)
The address of the AGHResponse structure that contains a pointer to the
response from SwAWait or, in case of an error, the address of the error
buffer. MQSeries Adapter allocates memory for the response or error
buffer; the program must free this memory after it is no longer needed.

Coding examples

Coding example for C
...

#include <stdio.h>
#include <aghcadef.h>

AGHResponse AsyncResp;
SwStatus status;
AGHCHAR szMsgBuffer[] = "Hello World from client";...

status = SwACall(szMsgBuffer, &AsyncResp);...

status = SwAWait(&AsyncResp);
if(status == SwOperationSucceed)
{

/* ok */
printf("SwAWait response: %s\n", AsyncResp.Resp);

}
else
{

/* failed */
printf("SwAWait error response: %s\n", AsyncResp.Resp);

}...

SwXmlBufferFree(AsyncResp.Resp);...

Coding example for COBOL
...

data division.
working-storage section.
copy agheacb1.
77 msgLength pic s9(9) binary.
01 status pic s9(9) binary.
01 pErrorMsg pointer.

Chapter 6. MQSeries Adapter functions for C and COBOL 77

01 CCode pic s9(9) binary.

linkage section.
01 responseMsg pic x(100).
01 errorMsg pic x(256).

procedure division.

...

call 'SwAWait' using AGHResponse
returning status

if status = SwOperationSucceed then

* handle the response *

set address of responseMsg to Resp of AGHResponse
move 0 to msgLength
inspect responseMsg tallying msgLength

for characters before x'00'
display '..response has length ' msglength ':'
display responseMsg(1:msgLength)
move 0 to return-code

else
display 'SwAWait returned ' status
call 'AGHClientGetConditionCode'

returning CCode
call 'AGHClientGetErrorMessage'

returning pErrorMsg
set address of errorMsg to pErrorMsg
move 0 to msgLength
inspect errorMsg tallying msgLength

for characters before x'00'
display 'AGHClient condition code=' CCode
display 'AGHClient error message=' errorMsg(1:msgLength)
move 8 to return-code

end-if

* release the response's storage *

call 'SwXmlBufferFree' using Resp of AGHResponse...

78 Installation and Programming Guide

SwCall—Initiate a synchronous InterAct transfer
This function is used to pass a request to MQSeries Adapter that is to be treated
synchronously; that is, control is not to be passed back to the client until after SAG
returns the response. It is compatible with the native SAG interface.

This function returns SwOperationSucceed or SwOperationFailed.

Format for C
#include <aghcadef.h>
SwStatus SwCall(AGHSTRING req, AGHPSTRING pResp);

where:

req (input)
The address of the area containing the message to be sent (the request
buffer). This message can be a basic or an SNL message.

pResp (input)
A pointer to the address of the response buffer. MQSeries Adapter allocates
memory for the response buffer; the program must free this memory after
it is no longer needed.

Coding examples

Coding example for C
...

#include <aghcadef.h>

AGHSTRING Resp;
SwStatus status;
AGHCHAR szMsgBuffer[] = "Hello World from client";

status = SwCall(szMsgBuffer, &Resp);
if(status == SwOperationSucceed)
{

/* ok */
printf("SwCall response: %s\n", Resp);

}
else
{

/* failed */
printf("SwCall error response: %s\n", Resp);

}
SwXmlBufferFree(Resp);...

Coding example for COBOL
...

data division.
working-storage section.
copy agheacb1.
77 msgLength pic s9(9) binary.
01 requestMsg pic x(100).
01 responseMsgAddr pointer.
01 status pic s9(9) binary.
01 pErrorMsg pointer.
01 CCode pic s9(9) binary.

Chapter 6. MQSeries Adapter functions for C and COBOL 79

linkage section.
01 responseMsg pic x(100).
01 errorMsg pic x(256).

procedure division.

* build the request *

move z'Hello world from client.' to requestMsg

call 'SwCall' using requestMsg
responseMsgAddr

returning status

if status = SwOperationSucceed then

* handle the response *

set address of responseMsg to responseMsgAddr
move 0 to msgLength
inspect responseMsg tallying msgLength

for characters before x'00'
display '..response has length ' msglength ':'
display responseMsg(1:msgLength)
move 0 to return-code

else
display 'SwCall returned ' status
call 'AGHClientGetConditionCode'

returning CCode
call 'AGHClientGetErrorMessage'

returning pErrorMsg
set address of errorMsg to pErrorMsg
move 0 to msgLength
inspect errorMsg tallying msgLength

for characters before x'00'
display 'AGHClient condition code=' CCode
display 'AGHClient error message=' errorMsg(1:msgLength)
move 8 to return-code

end-if

* release the response's storage *

call 'SwXmlBufferFree' using responseMsgAddr...

80 Installation and Programming Guide

SwXmlBufferFree—Free client buffer
This function is called by the client to release the response buffer allocated by an
SwCall, SwACall, SwAWait, AGHLFTCmd, or AGHFCall function.

Format for C
#include <aghcadef.h>
VOID SwXmlBufferFree(VOID * pbuffer);

where:

pbuffer (input)
A pointer to the buffer to be freed.

Coding examples

Coding example for C
...

#include <aghcadef.h>...

AGHCHAR szReqBuffer[512];
AGHSTRING Response;...

SwCall(szReqBuffer,&Response);...

SwXmlBufferFree(Response);...

Coding example for COBOL
...

data division.
working-storage section....

01 responseMsgAddr pointer.

procedure division....

call 'SwXmlBufferFree' using responseMsgAddr...

Chapter 6. MQSeries Adapter functions for C and COBOL 81

82 Installation and Programming Guide

Chapter 7. User-written functions

If you elect to use a server request handler (see “Client hub and server request
handler” on page 9), you need to provide both an SwCallback function to process
the retrieved requests, and an AppXmlBufferFree function to release the response
buffer that the SwCallback function allocates.

SwCallback
After the server request handler retrieves a message from the request queue, it
calls the user-written function with the name SwCallback, which must be located
in the DLL AGHCASCB. This function processes the request and creates a response
before returning control to the server request handler. When the server request
handler calls SwCallback, it passes to it the following parameters:
v A pointer to the area that contains the request data
v A pointer to the area in which SwCallback is to place the address of the

response

Coding examples
The following sections show examples of SwCallback functions.

Coding example for C
...

#include <stdlib.h>
#include <string.h>
#include <aghcadef.h>
#pragma export (SwCallback)

SwStatus SwCallback(AGHSTRING RequestToServer,
AGHSTRING * pResponseFromServer)

{
int intMsgLength;
SwStatus status;
AGHCHAR * pszResponse;

intMsgLength = strlen(RequestToServer);
pszResponse = malloc(intMsgLength + 100);
/* The previously obtained storage must be freed using */
/* the function AppXmlBufferFree */
if (pszResponse == NULL)
{

status=SwOperationFailed;
} else
{

strcpy(pszResponse, "Server aghcaab1 received ");
strcat(pszResponse, RequestToServer);
*pResponseFromServer = pszResponse;
status=SwOperationSucceed;

}
return status;

© Copyright IBM Corp. 2001 83

} /* end of SwCallback() */...

Coding example for COBOL
...

identification division.
program-id. 'SwCallback'.
environment division.

data division.
working-storage section.
77 heapid pic s9(9) binary.
77 stgSize pic s9(9) binary.
77 msgLength pic s9(9) binary.
77 stgAddress pointer.
01 feedbackCode.

03 conditionToken pic x(8).
copy ceeigzct.
03 isInfo pic s9(9) binary.

linkage section.
01 requestMsg pic x(100).
01 responseMsgAddr pointer.
01 status pic s9(9) binary.

01 responseMsg pic x(100).

procedure division using by reference requestMsg
by reference responseMsgAddr
returning status.

* get the request *

move 0 to msgLength
inspect requestMsg tallying msgLength

for characters before x'00'
** display '..requestMsg has length ' msgLength ':'
** display requestMsg(1:msgLength)

* get storage for the response *

add msgLength 100 giving stgSize
move 0 to heapid
call 'CEEGTST' using heapid,

stgSize,
stgAddress,
feedbackCode

if cee000 of feedbackCode then
set responseMsgAddr to stgAddress
set address of responseMsg to stgAddress

* build the reponse *

string
'Server received '
requestMsg(1:msgLength)
x'00'
delimited by size
into responseMsg

end-string
move SwOperationSucceed to status

else
** display 'CEEGTST failed'

84 Installation and Programming Guide

move SwOperationFailed to status
end-if

goback...

end program 'SwCallback'....

AppXmlBufferFree—Free server buffer
This user-written function is called by the server to release the response buffer
allocated by an SwCallback function. This function must be exported in the same
DLL as the SwCallback function.

Format
#include <aghcadef.h>
VOID AppXmlBufferFree(VOID * pBuffer);

Variables
pBuffer (input)

The pointer to the buffer that is to be freed.

Coding examples
The following sections show examples of functions that free a buffer.

Coding example for C
...

#include <stdlib.h>
#include <aghcctyp.h>
#pragma export (AppXmlBufferFree)
VOID AppXmlBufferFree(VOID * pBuffer);...

VOID AppXmlBufferFree(VOID * pBuffer)
{

if (pBuffer <> NULL)
{

free(pBuffer);
}
return;

}...

Coding example for COBOL
...

identification division.
program-id. 'AppXmlBufferFree'.
environment division.

data division.
working-storage section.
77 stgAddress pointer.
01 feedbackCode.

03 conditionToken pic x(8).
copy ceeigzct.
03 isInfo pic s9(9) binary.

Chapter 7. User-written functions 85

linkage section.
01 responseMsg pic x.

procedure division using by reference responseMsg.

* free storage of the response *

set stgAddress to address of responseMsg
call 'CEEFRST' using stgAddress,

feedbackCode
if cee000 of feedbackCode then

goback
else

** display 'CEEFRST failed'
goback

end-if...

end program 'AppXmlBufferFree'....

86 Installation and Programming Guide

Chapter 8. Message logging and tracing

You can record information while MQSeries Adapter runs by:
v Logging messages
v Setting traces to record error messages and debugging information

Message logging
When message logging is active, MQSeries Adapter copies the contents of each
request, plus a log header, to the log data set, system logger stream, or both,
depending on which parameters were specified in the MQSeries Adapter profile.
The layout of a log record is shown in Table 7. For C and C++ programs, a
structure for log records is provided in the include file AGHCG001.HPP.

To activate message logging, set the profile parameter Log=Y (see “Chapter 3.
Creating client and server profiles” on page 21), and specify either or both of the
following parameters, to indicate to where the log records are to be written:
v LogDDName
v LogStreamName

On the client side, MQSeries Adapter logs a request immediately before passing it
to SAG, and logs a response immediately after retrieving it from the reply-to
queue. On the server side, MQSeries Adapter logs a request immediately after
retrieving it from the request queue, and logs a response immediately before
putting it into the reply-to queue.

For an LFT command, the request and the response are logged, but not the
contents of the file.

Table 7. Layout of a message log entry

Name Length
(Bytes)

Description

LogHeadLength 4 Length of the log header (96 or X'60')

LogDataLength 4 Length of the log data without the header. The
maximum length of each entry is 32000 bytes including
the header.

LogRecVersion 4 AGH0

LogRecType 4 Type of log record:
256 Client log record for a request
257 Client log record for a response
320 Server log record for a request
321 Server log record for a response

LogDate 10 Date in the form YYYY/MM/DD where:
YYYY Year
MM Month (01 to 12)
DD Date (01 to 31)

(none) 1 Blank between time and date to improve legibility

© Copyright IBM Corp. 2001 87

Table 7. Layout of a message log entry (continued)

Name Length
(Bytes)

Description

LogTime 12 Time in the form hh:mm:ss.iii where:
hh Hour (00 to 23)
mm Minute (00 to 59)
ss Second (00 to 59)
iii Milliseconds (000 to 999)

(alignment byte) 1

LogSequence 4 Sequence of log record (used only if the record is too
long to fit in one entry)

LogNbOfSeq 4 Number of sequences for the log record (used only if the
record is too long to fit in one entry)

LogRecId 4 Log record identifier

LogFinInst 12 Financial institution as set in the profile

LogFinBrch 12 Branch of financial institution as set in the profile

LogFinDept 12 Department of financial institution as set in the profile

LogUserId 8 Client user ID

LogData LogData
Length

Log data

Administering data in the system logger stream
The program AGHCGUTL runs as a batch job and provides functions to process
the data from the system logger stream. Its parameter syntax is:
PARM=('x logstream "yyyy/mm/dd hh:mm:ss.iii"')

where:

x A number that indicates the action to be carried out:
1 List
6 Delete
10 Archive
11 Archive and delete

logstream
The name of the system logger stream that was specified for the
LogStreamName parameter in the MQSeries Adapter profile (see
“Chapter 3. Creating client and server profiles” on page 21).

yyyy/mm/dd hh:mm:ss.iii
An optional specification of a year, month (01 to 12), day (01 to 31), hour
(00 to 23), minute (00 to 59), second (00 to 59), and milliseconds (000 to
999), used to limit to which records the action applies. Note that you must
specify a blank between the date and time. Be sure you specify the date
and time correctly, because they are not checked for syntactic correctness,
but are instead treated as a simple string.

The following shows examples of how to set the parameters for AGHCGUTL:

PARM=('1 AGH.SWNA1')
List all records from the system logger stream AGH.SWNA1. The records are
printed to SYSOUT.

88 Installation and Programming Guide

PARM=('1 AGH.SWNA1 "2001/04/30 12:10:54.000"')
List all records from the system logger stream AGH.SWNA1 that have date
and times after the date and time specified. The records are printed to
SYSOUT.

PARM=('6 AGH.SWNA1')
Delete all records from the system logger stream AGH.SWNA1.

PARM=('6 AGH.SWNA1 "2001/04/19 13:56:40.000"')
Delete all records from the system logger stream AGH.SWNA1 that have date
and times before the date and time specified.

PARM=('10 AGH.SWNA1 "2001/04/30 15:04:35.000"')
Archive records from the system logger stream AGH.SWNA1 that have date
and times before the date and time specified. The records are written to a
sequential data set allocated to the DD name AGHEGLOG.

PARM=('11 AGH.SWNA1 "2001/04/30 15:04:44.000"')
Archive records from the system logger stream AGH.SWNA1 that have date
and times before the date and time specified, then delete the records from the
system logger stream. The records are written to a sequential data set allocated
to the DD name AGHEGLOG.

Figure 22 shows an example of a job that uses AGHCGUTL to list or delete log
records.

Figure 23 shows a sample job that uses AGHCGUTL to archive records in a
generation data group (GDG).

//*---
//* Utility to list or delete system logger stream data
//*---
/*JOBPARM SYSAFF=SYS1
//XCF01 EXEC PGM=AGHCGUTL,REGION=0M,
// PARM=('1 logstream') list all
//* PARM=('1 logstream "2001/04/30 12:10:54.000"') list newer
//* PARM=('6 logstream') del. all
//* PARM=('6 logstream "2001/04/19 13:56:40.000"') del. older
//*
//STEPLIB DD DISP=SHR,DSN=hlq.SAGHLOAD
//SYSPRINT DD SYSOUT=*,DCB=(DSORG=PS,RECFM=V,BLKSIZE=121)
//

Figure 22. Example of a job using AGHCGUTL to list or delete log records

Chapter 8. Message logging and tracing 89

Figure 24 shows a sample of a job you can use to create a GDG in which to store
archive data. Each time you run AGHCGUTL to archive records, a new member of
the GDG will be created; the data in the first member will not be overwritten until
the number of members reaches the number specified for the LIMIT parameter.

Tracing
MQSeries Adapter writes trace information to the sequential data set allocated by
the DD statement AGHEATRC. If there is no data set allocated to AGHEATRC, the
trace data is written to the default output device (SYSPRINT).

The trace level set in the TraceLevel parameter of a client or server profile
determines what trace information MQSeries Adapter records:

//*---
//* Utility to archive system logger stream data
//*---
/*JOBPARM SYSAFF=SYS1
//XCF01 EXEC PGM=AGHCGUTL,REGION=0M,
//* PARM=('10 logstream "2001/04/30 15:04:35.000"') arch older
// PARM=('11 logstream "2001/04/30 15:04:44.000"') arch / del
//*
//STEPLIB DD DISP=SHR,DSN=hlq.SAGHLOAD
//*
//*AGHEGLOG DD DISP=SHR,DSN=hlq.AGHCL001.LOG2
//AGHEGLOG DD DSN=hlq.TESTGDG(+1),DISP=(NEW,CATLG),
// SPACE=(CYL,(1,1)),UNIT=SYSDA,
// DCB=hlq.TESTGDG.MODEL
//*
//SYSPRINT DD SYSOUT=*,DCB=(DSORG=PS,RECFM=V,BLKSIZE=121)
//

Figure 23. Example of a job using AGHCGUTL to archive records in a GDG

//*
//* This example demonstrates GDG I/O
//*---
//* Create GDG model
//*---
//MODEL EXEC PGM=IDCAMS
//DD1 DD DSN=hlq.TESTGDG.MODEL,DISP=(NEW,CATLG),
// UNIT=SYSDA,SPACE=(TRK,(0)),
// DCB=(LRECL=32004,BLKSIZE=32008,RECFM=VB)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
/* DELETE (hlq.TESTGDG) GDG */
DEFINE GDG -

(NAME(hlq.TESTGDG) -
EMPTY -
SCRATCH -
LIMIT(255))

/*

Figure 24. Sample job to create a GDG

90 Installation and Programming Guide

Trace Level Description

0 Only informational and error messages are written to the trace data
set.

1 In addition to the trace entries written for trace level 0, a trace
entry is written each time a client or server uses the SetUserID
function to change a user ID.

10 In addition to the trace entries written for trace level 1, a trace
entry is written each time a client or server function begins or
ends.

30 In addition to the trace entries written for trace level 10, the profile
parameters and the contents of data areas are written to the trace
data set. Note that for an LFT Put command the contents of the file
are also traced, and as a result CPU consumption and the size of
the resulting trace file can be significant.

The layout of a trace record is shown in Table 8.

Table 8. Layout of a Trace Record

Name Length
(Bytes)

Description

TraceCompId 2 Component ID:
01 MQSeries Adapter client
02 MQSeries Adapter server
03 MQSeries Adapter services

2 Separator (,)

TraceDate 10 Date in the form YYYY/MM/DD where:
YYYY Year
MM Month (01 to 12)
DD Date (01 to 31)

1 Separator (,)

TraceTime 13 Time in the form hh:mm:ss.iii where:
hh Hour (00 to 23)
mm Minute (00 to 59)
ss Second (00 to 59)
iii Milliseconds (000 to 999)

2 Separator (,)

TraceModName 8 Name of the module that issued the trace information.

2 Separator (,)

TraceData n Trace data

An example of a trace is shown on page 92.

Chapter 8. Message logging and tracing 91

Ta
bl

e
9.

E
xa

m
pl

e
of

a
tr

ac
e

[1
]

01
,

20
01

/0
4/

11
08

:1
0:

49
.7

71
,

AG
HC

AC
LP

,
--

>
AG

HS
wL

Cl
ie

nt
::

in
it

01
,

20
01

/0
4/

11
08

:1
0:

49
.7

72
,

AG
HC

A0
51

,
--

>
AG

HM
QC

li
en

t:
:c

on
ne

ct
[2

]
01

,
20

01
/0

4/
11

08
:1

0:
50

.0
02

,
AG

HC
A0

51
,

<-
-

AG
HM

QC
li

en
t:

:c
on

ne
ct

rc
=0

01
,

20
01

/0
4/

11
08

:1
0:

50
.0

02
,

AG
HC

A0
51

,
--

>
AG

HM
QC

li
en

t:
:o

pe
nS

en
dQ

ue
ue

01
,

20
01

/0
4/

11
08

:1
0:

50
.0

03
,

AG
HC

A0
51

,
<-

-
AG

HM
QC

li
en

t:
:o

pe
nS

en
dQ

ue
ue

rc
=0

01
,

20
01

/0
4/

11
08

:1
0:

50
.0

03
,

AG
HC

A0
51

,
--

>
AG

HM
QC

li
en

t:
:o

pe
nR

ep
ly

Qu
eu

e
01

,
20

01
/0

4/
11

08
:1

0:
50

.0
03

,
AG

HC
A0

51
,

<-
-

AG
HM

QC
li

en
t:

:o
pe

nR
ep

ly
Qu

eu
e

rc
=0

01
,

20
01

/0
4/

11
08

:1
0:

50
.0

03
,

AG
HC

AC
LP

,
<-

-
AG

HS
wL

Cl
ie

nt
::

in
it

rc
=0

01
,

20
01

/0
4/

11
08

:1
0:

50
.0

03
,

AG
HC

AC
LP

,
--

>
AG

HS
wL

Cl
ie

nt
::

Sw
Ca

ll
01

,
20

01
/0

4/
11

08
:1

0:
50

.0
04

,
AG

HC
AS

C2
,

--
>

AG
HS

ec
ur

it
y:

:c
he

ck
01

,
20

01
/0

4/
11

08
:1

0:
50

.0
45

,
AG

HC
AS

C2
,

<-
-

AG
HS

ec
ur

it
y:

:c
he

ck
rc

=0
[3

]
03

,
20

01
/0

4/
11

08
:1

0:
50

.0
53

,
AG

HC
CU

02
,

Wr
it

eL
og

ad
dr

:
0x

15
79

60
28

[4
]

03
,

20
01

/0
4/

11
08

:1
0:

50
.0

53
,

AG
HC

CU
02

,
00

00
00

00
00

00
60

00
00

00
32

C1
C7

C8
F0

00
00

01
00

*
..

.-
..

..
AG

H0
..

..
*

03
,

20
01

/0
4/

11
08

:1
0:

50
.0

53
,

AG
HC

CU
02

,
00

00
10

F2
F0

F0
F1

61
F0

F4
61

F1
F1

40
F0

F8
7A

F1
F0

*
20

01
/0

4/
11

08
:1

0
*

03
,

20
01

/0
4/

11
08

:1
0:

50
.0

53
,

AG
HC

CU
02

,
00

00
20

7A
F5

F0
4B

F0
F4

F6
40

00
00

00
02

00
00

00
01

*
:5

0.
04

6
..

..
..

..
*

03
,

20
01

/0
4/

11
08

:1
0:

50
.0

53
,

AG
HC

CU
02

,
00

00
30

00
00

00
00

F1
F1

F1
F1

F1
F1

F1
F1

F1
F1

F1
F1

*
..

..
11

11
11

11
11

11
*

03
,

20
01

/0
4/

11
08

:1
0:

50
.0

53
,

AG
HC

CU
02

,
00

00
40

D4
A8

C2
99

81
95

83
88

40
40

40
40

D4
A8

C4
85

*
My

Br
an

ch
My

De
*

03
,

20
01

/0
4/

11
08

:1
0:

50
.0

53
,

AG
HC

CU
02

,
00

00
50

97
A3

94
85

95
A3

40
40

D2
D5

D5
40

40
40

40
40

*
pt

me
nt

KN
N

*
03

,
20

01
/0

4/
11

08
:1

0:
50

.0
53

,
AG

HC
CU

02
,

00
00

60
C8

85
93

93
96

40
E6

96
99

93
84

40
86

99
96

94
*

He
ll

o
Wo

rl
d

fr
om

*
03

,
20

01
/0

4/
11

08
:1

0:
50

.0
54

,
AG

HC
CU

02
,

00
00

70
40

D2
D5

D5
40

D4
C3

D3
40

83
93

89
85

95
A3

40
*

KN
N

MC
L

cl
ie

nt
*

03
,

20
01

/0
4/

11
08

:1
0:

50
.0

54
,

AG
HC

CU
02

,
00

00
80

A5
96

93
A4

94
85

40
A3

85
A2

A3
40

F5
F0

F0
F0

*
vo

lu
me

te
st

50
00

*
03

,
20

01
/0

4/
11

08
:1

0:
50

.0
54

,
AG

HC
CU

02
,

00
00

90
F0

40
*

0
*

01
,

20
01

/0
4/

11
08

:1
0:

50
.0

54
,

AG
HC

A0
51

,
--

>
AG

HM
QC

li
en

t:
:p

ut
Ms

g
01

,
20

01
/0

4/
11

08
:1

0:
50

.0
66

,
AG

HC
A0

51
,

<-
-

AG
HM

QC
li

en
t:

:p
ut

Ms
g

rc
=0

01
,

20
01

/0
4/

11
08

:1
0:

50
.0

66
,

AG
HC

AC
LP

,
--

>
AG

HS
wL

Cl
ie

nt
::

Ge
tR

es
po

ns
e

. . . 01
,

20
01

/0
4/

11
08

:1
0:

50
.7

43
,

AG
HC

AC
LP

,
<-

-
AG

HS
wL

Cl
ie

nt
::

Ge
tR

es
po

ns
e

rc
=0

03
,

20
01

/0
4/

11
08

:1
0:

50
.7

43
,

AG
HC

CU
02

,
Wr

it
eL

og
ad

dr
:

0x
15

79
60

28
03

,
20

01
/0

4/
11

08
:1

0:
50

.7
43

,
AG

HC
CU

02
,

00
00

00
00

00
00

60
00

00
00

17
C1

C7
C8

F0
00

00
01

01
*

..
.-

..
..

AG
H0

..
..

*
03

,
20

01
/0

4/
11

08
:1

0:
50

.7
44

,
AG

HC
CU

02
,

00
00

10
F2

F0
F0

F1
61

F0
F4

61
F1

F1
40

F0
F8

7A
F1

F0
*

20
01

/0
4/

11
08

:1
0

*
03

,
20

01
/0

4/
11

08
:1

0:
50

.7
44

,
AG

HC
CU

02
,

00
00

20
7A

F5
F0

4B
F7

F4
F3

40
00

00
00

02
00

00
00

01
*

:5
0.

74
3

..
..

..
..

*
03

,
20

01
/0

4/
11

08
:1

0:
50

.7
44

,
AG

HC
CU

02
,

00
00

30
00

00
00

00
F1

F1
F1

F1
F1

F1
F1

F1
F1

F1
F1

F1
*

..
..

11
11

11
11

11
11

*
03

,
20

01
/0

4/
11

08
:1

0:
50

.7
44

,
AG

HC
CU

02
,

00
00

40
D4

A8
C2

99
81

95
83

88
40

40
40

40
D4

A8
C4

85
*

My
Br

an
ch

My
De

*
03

,
20

01
/0

4/
11

08
:1

0:
50

.7
44

,
AG

HC
CU

02
,

00
00

50
97

A3
94

85
95

A3
40

40
D2

D5
D5

40
40

40
40

40
*

pt
me

nt
KN

N
*

03
,

20
01

/0
4/

11
08

:1
0:

50
.7

44
,

AG
HC

CU
02

,
00

00
60

C8
85

93
93

96
40

C3
93

89
85

95
A3

40
86

85
85

*
He

ll
o

Cl
ie

nt
fe

e
*

03
,

20
01

/0
4/

11
08

:1
0:

50
.7

44
,

AG
HC

CU
02

,
00

00
70

84
82

81
83

92
7E

F1
*

db
ac

k=
1

*
01

,
20

01
/0

4/
11

08
:1

0:
50

.7
44

,
AG

HC
AC

LP
,

<-
-

AG
HS

wL
Cl

ie
nt

::
Sw

Ca
ll

rc
=0

92 Installation and Programming Guide

Notes:

[1] Whenever a function obtains control, it writes a trace entry that begins
with a right-pointing arrow (–->) and the name of the function.

[2] Before the function gives control back to the caller, it writes a trace entry
that begins with a left-pointing arrow (<–-), the name of the function, and
the return code of the function.

[3] When a data area is traced, the first line contains the text that indicates the
type of the data, and the start address of the traced area.

[4] When a data area is traced, on each subsequent line:
v The first column to the right of the module name contains the offset (in

hex) of the data.
v The four columns to the right of the offset contain 16 bytes of data (in

hex).
v The column to the right of the data in hex, in between the asterisks (*),

contains the trace data in EBCDIC. Non-printable characters are replaced
with a period (.).

Chapter 8. Message logging and tracing 93

94 Installation and Programming Guide

Appendix A. Messages and codes

The message IDs of messages issued by MQSeries Adapter have the format

AGHnnnnc

where:

nnnn Sequential message number

c Message classification:

E Error

I Information only (no error occurred)

Messages
This section lists alphanumerically by message ID the messages that MQSeries
Adapter issues.

AGH1001E Null pointer passed for request or
response.

Explanation: The SwCall, SwACall, or SwAWait
function was called, but the value of the pointer to the
request or response was null.

System Action: The message is not processed.

User Response: This indicates an error in the calling
application program. Correct that program so that it
supplies a valid pointer with the SwCall, SwACall, or
SwAWait function.

AGH1004E Attempt to open profile data set
specified in DD statement AGHEAPRO
failed.

Explanation: The profile data set, which is specified in
the DD statement with the name AGHEAPRO, could
not be opened.

System Action: The client or server functions cannot
continue, and messages are not sent to the SAG.

User Response: Check the name specified in the DD
name AGHEAPRO in your JCL:

v For a CICS environment, the DD name AGHEAPRO
must be specified in the CICS startup job.

v For an IMS environment, it must be specified in the
IMS MPP or BMP job.

AGH1005E Invalid internal state ’state’.

Explanation: An internal error occurred.

System Action: The client or server functions cannot
continue, and messages are not sent to the SAG.

User Response: Contact your IBM service
representative.

AGH1006E Attempt to read profile failed.

Explanation: An error occurred while attempting to
read the profile.

System Action: The client or server functions cannot
continue, and messages are not sent to the SAG.

User Response: Determine the cause of the file read
error. In case of I/O errors, check the job log for
additional, system-generated error messages.

AGH1007E Label ’label’ not found in profile.

Explanation: The specified label, which was meant to
identify a particular client or server, could not be found
in the profile.

System Action: The client or server functions cannot
continue, and messages are not sent to the SAG.

User Response: Either change the label used by the
calling program to one that is in the profile, or add a
new entry to the profile and assign it the appropriate
label. The label consists of the client or server name
followed by a colon, and marks the beginning of the
profile parameters for that client or server.

AGH1008E Mandatory profile parameter ’parm’ not
found.

Explanation: The indicated profile parameter is
mandatory and was not specified in the profile.

System Action: The client or server functions cannot
continue, and messages are not sent to the SAG.

© Copyright IBM Corp. 2001 95

User Response: Add the missing parameter to the
profile.

AGH1009E Value for parameter ’parm’ too long,
maximum length=length.

Explanation: The value specified for the indicated
profile parameter exceeds the maximum length.

System Action: The client or server functions cannot
continue, and messages are not sent to the SAG.

User Response: Correct the value.

AGH1010E Client name ’parm’ too long, maximum
length=length.

Explanation: The client name specified in the class
constructor or in the setClientName function exceeds
the maximum length.

System Action: The request is rejected.

User Response: Correct the specification of the client
name in the function call.

AGH1011E Attempt to open trace data set specified
in DD statement AGHEATRC failed.

Explanation: The trace data set, which is specified in
the DD statement with the name AGHEATRC, could
not be opened.

System Action: Trace output is directed to standard
output instead of to a trace data set.

User Response: Correct the error. A likely cause is that
the DD Name or name of the trace data set in your JCL
is incorrect.

AGH1013E Attempt to write trace data set specified
in DD statement AGHEATRC failed.

Explanation: An I/O error occurred during writing to
the trace data set, which is specified in the DD
statement with the name AGHEATRC.

System Action: Trace output is directed to standard
output instead of to a trace data set.

User Response: Correct the error. A likely cause is that
the trace output data set was too small to contain all
the output.

AGH1014E Attempt to write log data set specified
in DD statement ’ddname’ failed.

Explanation: An I/O error occurred during writing to
the log data set, which is specified in the indicated DD
statement. This can happen when processing client or
server functions or in the logger utility.

System Action: The processing is stopped.

User Response: Correct the problem with the log file.

A likely cause is that the log output data set is too
small. Check for an additional message AGH1080E,
which indicates a possible system error.

AGH1018E Profile parameter ’parm’ cannot be
saved.

Explanation: The indicated profile parameter is not
supported in the current release.

System Action: The parameter is ignored, and
processing continues.

User Response: Remove this parameter from the
profile.

AGH1025E Logger utility function ’function’ not
supported.

Explanation: The indicated logger utility function is
not supported.

System Action: The logger utility stops processing.

User Response: Correct the EXEC parameter for the
logger utility batch run.

AGH1026E Attempt to allocate memory failed,
retcode=retcode.

Explanation: There was not enough memory to
continue processing.

System Action: Processing stops. If client and server
functions are affected, no more messages are sent to the
SAG. The program AGHCGUTL stops processing.

User Response: Run the job in an environment in
which more memory is available. For example, increase
the region size in your JOB statement, EXEC statement,
or both.

AGH1027E Attempt to open logger archive file
AGHEGLOG failed.

Explanation: The logger archive file, which has the
name AGHEGLOG, could not be opened.

System Action: Archiving is not performed.

User Response: Correct the error and rerun the
logging utility. Most likely, the DD Name or file name
of the logger archive file in your JCL is incorrect.

AGH1028E Variable ’var’ of message ’msgid’ has a
null pointer.

Explanation: During creation of the indicated error
message, one of the variables was not defined and
could not be substituted.

System Action: The message is issued without the
indicated variable being set.

96 Installation and Programming Guide

User Response: This is an internal error. Contact your
IBM service representative.

AGH1029E Message parameter number ’number’ too
large, maximum value=maxval.

Explanation: The substitution number in an error
message exceeds the maximum value. An incorrect
error message has been defined in the error message
table. The error message table is invalid.

System Action: The parameter in the error message is
not substituted.

User Response: This is an internal error. Contact your
IBM service representative.

AGH1030E Attempt to open message queue ’qname’
failed, MQCC=cplcode, MQRC=rsncode.

Explanation: The indicated MQSeries message queue
could not be opened. The completion code (MQCC)
and reason code (MQRC) shown are MQSeries codes.

System Action: If this error occurred while a server
request handler was processing a response, the server
request handler issues an error message and continues
processing the next request. If this error occurred for a
called client or server function, the processing of the
function is stopped, and no more messages are sent to
the SAG.

User Response: Analyze the completion and reason
codes and try to correct the error. The codes are
described in MQSeries for OS/390 Messages and Codes.

AGH1031E Attempt to connect to queue manager
’mqmname’ failed, MQCC=cplcode,
MQRC=rsncode.

Explanation: The attempt to connect to the indicated
MQSeries queue manager failed. The completion code
(MQCC) and reason code (MQRC) shown are MQSeries
codes.

System Action: The processing of the client or server
functions is stopped, and no more messages are sent to
the SAG.

User Response: Analyze the completion and reason
codes and try to correct the error. The codes are
described in MQSeries for OS/390 Messages and Codes.

AGH1032E Attempt to put message to message
queue ’qname’ failed, MQCC=cplcode,
MQRC=rsncode.

Explanation: The attempt to put a message into the
indicated MQSeries message queue failed. The
completion code (MQCC) and reason code (MQRC)
shown are MQSeries codes.

System Action: If this error occurred while a server
request handler was processing a response, the server

request handler issues an error message and continues
processing the next request. If this error occurred for a
called client or server function, the processing of the
function is stopped, and no more messages are sent to
the SAG.

User Response: Analyze the completion and reason
codes and try to correct the error. The codes are
described in MQSeries for OS/390 Messages and Codes.

AGH1033E Attempt to get message from message
queue ’qname’ failed, MQCC=cplcode,
MQRC=rsncode.

Explanation: The attempt to get a message from the
indicated MQSeries message queue failed. The
completion code (MQCC) and reason code (MQRC)
shown are MQSeries codes.

System Action: The processing of the function is
stopped, and no more messages are sent to the SAG.

User Response: Analyze the completion and reason
codes and try to correct the error. The codes are
described in MQSeries for OS/390 Messages and Codes.

AGH1034E Attempt to commit message by queue
manager ’mqmname’ failed,
MQCC=cplcode, MQRC=rsncode.

Explanation: The attempt by the indicated queue
manager to commit a message failed. The completion
code (MQCC) and reason code (MQRC) shown are
MQSeries codes.

System Action: If this error occurred while a server
request handler was processing a response, the server
request handler issues an error message and continues
processing the next request. If this error occurred for a
called client or server function, the processing of the
function is stopped, and no more messages are sent to
the SAG.

User Response: Analyze the completion and reason
codes and try to correct the error. The codes are
described in MQSeries for OS/390 Messages and Codes.

AGH1035E Attempt to close message queue ’qname’
failed, MQCC=cplcode, MQRC=rsncode.

Explanation: The attempt to close the indicated
MQSeries message queue failed. The completion code
(MQCC) and reason code (MQRC) shown are MQSeries
codes.

System Action: If this error occurred while a server
request handler was processing a response, the server
request handler issues an error message and continues
processing the next request. If this error occurred for a
called client or server function, the processing of the
function is stopped, and no more messages are sent to
the SAG.

User Response: Analyze the completion and reason

Appendix A. Messages and codes 97

codes and try to correct the error. The codes are
described in MQSeries for OS/390 Messages and Codes.

AGH1045E Exception in getProfile function.

Explanation: An exception occurred in the getProfile
function.

System Action: The profile could not be processed
completely. The client or server functions are
terminated, and no messages are sent to the SAG.

User Response: Analyze the additional error
messages, which indicate the cause of the error.

AGH1048E Profile item ’item’ too long, maximum
length=maxlength.

Explanation: The specified item in the profile is too
long.

System Action: The item is truncated to the indicated
maximum length.

User Response: Correct the length of the specified
item.

AGH1050E Logging requested, but no DD name or
logger stream name specified in profile.

Explanation: Logging was requested (that is, the
parameter Log=Y was specified in the profile), but
neither a LogDDName nor a LogStreamName was
specified in the profile, so logging cannot be done.

System Action: The client or server functions are
terminated, and no messages are sent to the SAG.

User Response: Specify a LogDDName or a
LogStreamName in the profile and rerun the job.

AGH1051E Attempt to open log data set specified
in DD statement ’ddname’ failed.

Explanation: The log data set, which is specified in
the indicated DD statement, could not be opened.
Logging is not possible.

System Action: This message is preceded by message
AGH1080E, which shows the system error message
indicating the reason the log file could not be opened.
The client and the server functions stop processing, and
no more messages are sent to the SAG.

User Response: Analyze the cause of the error as
indicated in error message AGH1080E. A likely cause is
that a DD statement with the name specified in the
LogDDName parameter of the profile is missing from
your JCL or is incorrectly specified. Correct the error
and rerun the program.

AGH1053E Logger stream name ’lsname’ too long,
maximum length=maxlength.

Explanation: The length of the indicated logger stream
name specified in the profile is too long. Logging is not
possible.

System Action: The client and the server functions
stop processing, and no more messages are sent to the
SAG.

User Response: Correct the specification of the
LogStreamName in the profile.

AGH1054E Attempt to connect to logger stream
’lsname’ failed, retcode=retcode,
rsncode=rsncode.

Explanation: A system request to connect to the
indicated logger stream failed. Logging is not possible.
A likely cause is that the logger stream was not defined
in the system. The return and reason codes are
described in the OS/390 MVS Programming: Assembler
Services Reference in the section for the IXGCONN
Macro.

System Action: The client and the server functions
stop processing, and no more messages are sent to the
SAG.

User Response: Analyze the reason code and correct
the problem with the logger stream.

AGH1055E Attempt to write to logger stream
’lsname’ failed, retcode=retcode,
rsncode=rsncode.

Explanation: A system request to write to the
indicated logger stream failed. Logging is not possible.
The return and reason codes are described in the
OS/390 MVS Programming: Assembler Services Reference
in the section for the IXGWRITE Macro.

System Action: The client and the server functions
stop processing, and no more messages are sent to the
SAG.

User Response: Analyze the reason code and correct
the problem with the logger stream, then rerun the
logger utility job.

AGH1056E Attempt to browse next entry for logger
stream ’lsname’ failed, retcode=retcode,
rsncode=rsncode.

Explanation: A system request to browse next entry in
the indicated logger stream failed. This system request
occurs only in the logger utility. Logging is not
possible. The return and reason codes are described in
the OS/390 MVS Programming: Assembler Services
Reference in the section for the IXGBRWSE Macro.

System Action: The logger utility stops processing.

98 Installation and Programming Guide

User Response: Analyze the reason code and correct
the problem with the logger stream, then rerun the
logger utility job.

AGH1057E Attempt to disconnect logger stream
’lsname’ failed, retcode=retcode,
rsncode=rsncode.

Explanation: A system request to disconnect from the
indicated logger stream failed. This request occurs
during termination only. The return and reason codes
are described in the OS/390 MVS Programming:
Assembler Services Reference in the section for the
IXGCONN Macro.

System Action: The logger utility stops processing.

User Response: Analyze the reason code and correct
the problem with the logger stream, then rerun the
logger utility job.

AGH1058E Attempt to begin browsing entries for
logger stream ’lsname’ failed,
retcode=retcode, rsncode=rsncode.

Explanation: A system request to browse entries in the
indicated logger stream failed. This system request
occurs only in the logger utility. Logging is not
possible. The return and reason codes are described in
the OS/390 MVS Programming: Assembler Services
Reference in the section for the IXGBRWSE Macro.

System Action: The logger utility stops processing.

User Response: Analyze the reason code and correct
the problem with the logger stream, then rerun the
logger utility job.

AGH1059E Attempt to delete all entries for logger
stream ’lsname’ failed, retcode=retcode,
rsncode=rsncode.

Explanation: A system request to delete all entries in
the indicated logger stream failed. This system request
occurs only in the logger utility. The return and reason
codes are described in the OS/390 MVS Programming:
Assembler Services Reference in the section for the
IXGDELET Macro.

System Action: The logger utility stops processing.

User Response: Analyze the reason code and correct
the problem with the logger stream, then rerun the
logger utility job.

AGH1060E Attempt to delete range of entries for
logger stream ’lsname’ failed,
retcode=retcode, rsncode=rsncode.

Explanation: A system request to delete entries in the
indicated logger stream failed. This system request
occurs only in the logger utility. The return code and
reason codes are described in the OS/390 MVS

Programming: Assembler Services Reference in the section
for the IXGDELET Macro.

System Action: The logger utility stops processing.

User Response: Analyze the reason code and correct
the problem with the logger stream, then rerun the
logger utility job.

AGH1061I Logger stream or log data set specified
in DD statement ’logname’ is empty.

Explanation: The logger utility was called to archive
or delete the logger stream or log data set specified in
the indicated DD statement, but this logger stream or
data set was empty.

System Action: The logger utility stops processing.

User Response: None.

AGH1062E Attempt to end browsing for logger
stream ’lsname’ failed, retcode=retcode,
rsncode=rsncode.

Explanation: A system request to end the browsing of
entries in the indicated logger stream failed. This
system request occurs only in the logger utility.
Logging is not possible. The return and reason codes
are described in the OS/390 MVS Programming:
Assembler Services Reference in the section for the
IXGBRWSE Macro.

System Action: The logger utility stops processing.

User Response: Analyze the reason code and correct
the problem with the logger stream, then rerun the
logger utility job.

AGH1070E SwCallback function issued return code
’retcode’.

Explanation: The SwCallback function issued the
indicated return code.

System Action: The server request handler creates an
error response and passes it back to the SAG. The
format of the error message depends on the format of
the retrieved message:

v A basic message is answered with a simple string
error message.

v An SNL message is answered with an XML error
message.

User Response: The SwCallback function is provided
by the application program. Correct the error in the
program and rerun it.

AGH1071E No COA received from SAG.

Explanation: The client profile specified that MQSeries
is to create confirm-on-arrival (COA) reports. A COA
report for a message did not arrive within the time-out

Appendix A. Messages and codes 99

interval. This indicates a problem with the MQSeries
connection.

System Action: The client returns the error to the
application program.

User Response: Correct the error with the MQSeries
connection.

AGH1072E No COD received from SAG.

Explanation: The client profile specified that MQSeries
is to create confirm-on-delivery (COD) reports. The
COD report is created when the request message is
retrieved by the SAG. A COD report for a message did
not arrive within the time-out interval. This indicates a
problem with the SAG or the MQSeries connection to
the SAG.

System Action: The client returns the error to the
application program.

User Response: Verify that the MQSeries connection is
working, and that the SAG is running.

AGH1073E No response message received from
SAG.

Explanation: The response message from the SAG did
not arrive within the time-out interval. This indicates a
problem with the SAG or with the MQSeries
connection to the SAG.

System Action: The client returns the error to the
application program.

User Response: Verify that the MQSeries connection is
working, and that the SAG is running. You can specify
MQMReports=COA,COD in the client profile, then rerun
the job. MQSeries will then create COA and COD
reports that contain information that can help you
further isolate the cause of this error.

AGH1074E Message with unexpected MQSeries
feedback code received, feedback
code=fbcode.

Explanation: The client received, in the MQSeries
reply-to queue, a report message with the indicated
feedback code.

System Action: The message is ignored.

User Response: Verify that no outside applications use
the MQSeries reply-to queue.

AGH1075E Unexpected message type received,
type=msgtype.

Explanation: The client received, in the MQSeries
reply-to queue, a message with the indicated message
type. This message type is not supported.

System Action: The message is ignored.

User Response: Verify that no outside applications use
the MQSeries reply-to queue.

AGH1076E SwCall or LFT failed, retcode=retcode.

Explanation: The SwCall or local file transfer (LFT)
function failed. The meaning of the return code
depends on which component issued this message:

v For a client, the return code indicates whether the
SAG returned a message (retcode=224) or did not
return a message (retcode=223).

v For a client hub, the return code is the code returned
by the SAG.

System Action: The message is not processed, and an
answer is not created by the client.

User Response: Analyze the cause of the error and
correct it. The trace should contain more detailed error
information.

AGH1077E SwAWait cannot be performed before
SwACall.

Explanation: The sequence of function calls to the
client is incorrect. It does not make sense to wait for a
response for a request that has not yet been sent.

System Action: The function call is returned with an
error.

User Response: Correct your application program so
that it calls the client functions in the proper sequence.

AGH1080E system-message

Explanation: A system error occurred. The error
message issued by the system (not MQSeries Adapter)
is shown here.

System Action: A more specific error message is also
issued together with this message.

User Response: See the description of the more
specific error message to determine the cause of the
error and how to remedy it.

AGH1081I Resource control is not active.
Authorization checking will not be
performed.

Explanation: One of the following:

v The process user (that is, the user to whom the
batch, CICS, or IMS environment belongs) has
ALTER access authority for FACILITY(AGH.RS). This
access authority disables authorization checking for
all messages processed by this user.

v The RACF profile FACILITY(AGH.RS) is not defined.
Authorization checking is disabled for all messages
and users.

System Action: Messages are processed without
authorization checking.

100 Installation and Programming Guide

User Response: If this is not what you intend, modify
the process user, the process user’s authority, or the
RACF definitions accordingly.

AGH1082E Authorization check for correspondent
name failed, resource class=class,
resource=resource, user ID=userid.

Explanation: One of the following:

v The process user (that is, the user to whom the
batch, CICS, or IMS environment belongs) does not
have READ, UPDATE, or CONTROL access
authority for FACILITY(AGH.RS).

v The client user is not authorized to use the indicated
resource, which is the correspondent name that was
extracted from the client or server profile.

If no user ID is displayed in this message, the user ID
is that of the process user.

System Action: The request is not sent to the SAG.
For the server request handler function, this error
message is passed to the caller and the next message is
processed.

User Response: If this message was issued in error,
change the RACF definitions so that the user ID is
authorized to use the correspondent name.

AGH1083E Authorization check for requestor DN
failed, resource class=class,
resource=resource, user ID=userid.

Explanation: The indicated user ID is not authorized
to use the indicated resource, which is a requestor
distinguished name (DN). If no user ID is displayed in
this message, the user ID is that of the process user.
The requestor DN was extracted from an XML
message.

System Action: The request is not sent to the SAG.
For the server request handler function, this error
message is passed to the caller and the next message is
processed.

User Response: If this message was issued in error,
change the RACF definitions so that the user ID is
authorized to use the DN.

AGH1084E Authorization check for responder DN
failed, resource class=class,
resource=resource, user ID=userid.

Explanation: The indicated user ID is not authorized
to use the indicated resource, which is a responder
distinguished name (DN). If no user ID is displayed in
this message, the user ID is that of the process user.
The responder DN was extracted from an XML
message.

System Action: The request is not sent to the SAG.
For the server request handler function, this error

message is passed to the caller and the next message is
processed.

User Response: If this message was issued in error,
change the RACF definitions so that the user ID is
authorized to use the DN.

AGH1085E Authorization check for signature DN
failed, resource class=class,
resource=resource, user ID=userid.

Explanation: The indicated user ID is not authorized
to use the indicated resource, which is a signature
distinguished name (DN). If no user ID is displayed in
this message, the user ID is that of the process user.
The signature DN was extracted from an XML message.

System Action: The request is not sent to the SAG.
For the server request handler function, this error
message is passed to the caller and the next message is
processed.

User Response: If this message was issued in error,
change the RACF definitions so that the user ID is
authorized to use the DN.

AGH1090E User ID ’userid’ too long.

Explanation: The indicated user ID, specified in the
setUserId function call, is too long. The maximum
length is 8 characters.

System Action: The function call returns with an
error.

User Response: Correct the application program.

AGH1091E Setting a user ID in a batch job not
allowed, process user ID will be used.

Explanation: The setUserId function call was used in
the batch environment. For security reasons, this is not
allowed.

System Action: The function call returns with an
error.

User Response: Correct the application program.

AGH1100E XML parser fatal error at file ’file’,
line=line, column=column.

Explanation: A client or server function tried to use
the XML parser to extract information from an XML
message in order to check access authorization. The
’file’ shown here is the specification given in the
DTDFile profile parameter. The XML parser failed at
the indicated location. The error message issued by the
XML parser is shown in error message AGH1080E.

System Action: Access authorization could not be
checked, so the message is not sent to the SAG.

User Response: Analyze the error message issued by
the XML parser to find the cause of the error. Most

Appendix A. Messages and codes 101

likely there was a format error in the XML message in
the indicated column and line.

AGH1101E The XML parser is not available.

Explanation: A client or server function tried to use
the XML parser, but it was not available.

System Action: The request message could not be
parsed, so the message is not sent to the SAG.

User Response: Make sure that the XML paser (DLL
IXM4C31) is available on your system, and that the
library in which it resides is in the STEPLIB DD
statement of your JOB. If the parser is not available,
download it from http://www-1.ibm.com/servers/
eserver/zseries/software/xml/download

AGH1102E Error during initialization of XML
parser.

Explanation: A client or server function tried to use
the XML parser to extract information from an XML
message in order to check access authorization. The
XML parser could not be initialized. The error message
issued by the XML parser is shown in error message
AGH1080E.

System Action: Access authorization could not be
checked, so the message is not sent to the SAG.

User Response: Analyze the error message issued by
the XML parser to find the cause of the error.

AGH1103E Error during parsing of XML document.

Explanation: A client or server function tried to use
the XML parser to extract information from an XML
message in order to check access authorization. The
XML parser failed. The error message issued by the
XML parser is shown in error message AGH1080E.

System Action: Access authorization could not be
checked, so the message is not sent to the SAG.

User Response: Analyze the error message issued by
the XML parser to find the cause of the error. Most
likely there is a format error in the XML message.

AGH1110E Client ’clientname’ already active.

Explanation: An application program called the
setClientName function for the name indicated, but a
client is already active.

System Action: The function call returns an error.

User Response: Correct the application program so
that it calls the setClientName function at the correct
point in the program flow.

AGH1120E Unrecognizable exception.

Explanation: An unrecognizable exception occurred.

System Action: Normal exception handling is
performed. Usually the client or server functions are
terminated and no messages are sent to the SAG.

User Response: Usually other error messages precede
this error situation; use them to analyze the cause of
the error. If necessary, contact your IBM service
representative.

AGH1130I Server terminating. Outstanding reports
of type reptype. MQSeries report
ID=repid.

Explanation: The server function is terminating, but
not all of the expected MQSeries reports of the type
indicated (COA, COD, or both) have been received.
This can occur when the SAG is not processing the
responses in its reply-to queue.

System Action: None.

User Response: Verify that the SAG is working
correctly.

AGH1131E Unsupported parameter for MODIFY
command: ’parm’.

Explanation: A MODIFY command was issued with
the indicated parameter, but this parameter is not
supported. The supported parameters are stop and shut.

System Action: The input is ignored.

User Response: None.

AGH1132I Request to terminate server request
handler or client hub accepted,
remaining wait time in seconds: sec.

Explanation: A modify command was issued with the
stop or shut parameter for a server request handler or
client hub. The server request handler or client hub will
terminate immediately after the next request in the
queue (for stop) or the last request in the queue (for
shut) is processed. If no requests are in the queue, the
server will wait the remaining wait time before
terminating.

System Action: The server request handler or client
hub stops within the indicated time interval.

User Response: None.

AGH1133E Start of console thread failed,
errno=errno, console is disabled.

Explanation: A server request handler or client hub
tried to start a console interface (Console=Y was
specified in its profile), but the console interface could
not be started. The console interface needs a separate

102 Installation and Programming Guide

thread that is started by a pthread_create function call.
This function call requires that the run-time option
POSIX(ON) be specified. The errno is set by the
pthread_create function call.

System Action: The server starts, but not the console
interface. To stop the server, terminate the server job
using the cancel operator command.

User Response: Use the errno to analyze and correct
the cause of the error. This code is explained in the
OS/390 C/C++ Run-Time Library Reference. Most likely,
the run-time option POSIX(ON) was not specified, or
no OMVS segment is defined in the RACF profile of
the process user.

AGH1134E Server function ’function’ called with
null pointer.

Explanation: The indicated server function was called
with a null pointer as a parameter.

System Action: The requested function is not
performed.

User Response: Correct the application program.

AGH1135E Server reply function called before
retrieve function.

Explanation: The sequence of function calls to the
server is incorrect. You cannot reply to a message
before it has been retrieved.

System Action: The message is not processed by the
server and not passed to the SAG.

User Response: Correct your application program.

AGH1140E Request ’code’ to convert a message into
another code page is not supported.

Explanation: The client and server functions provide
an EBCDIC interface to application programs and
provide XML messages in UTF-8 encoding to the SAG.
This encoding is required by S.W.I.F.T. The client or
server functions tried to convert an XML message
before it was passed to either an application program
or the SAG. The requested conversion could not be
performed either because of an internal error or
because the message is not in one of the allowed
formats.

System Action: The message cannot be processed and
is not sent to the SAG.

User Response: Contact your IBM service
representative.

AGH1141E Attempt to open code conversion
descriptor failed, source=src, target=tgt.

Explanation: The conversion function uses the ICONV
utility. The code conversion descriptor was not
available for the indicated source and target code sets.
This is most likely due to an installation error. This
message is accompanied by message AGH1080E, which
displays the system error message.

System Action: The message cannot be processed and
is not sent to the SAG.

User Response: Use the information of message
AGH1080E to help determine the cause of the error.
Ensure the following:

v The correct installation library is accessed for
processing of the client or server functions.

v The CEEPrefix parameter in the profile.

v The code pages for the conversion are available in
the libraries.

AGH1142E Attempt to convert message from code
page ’cp1’ to code page ’cp2’ failed.

Explanation: The conversion function uses the ICONV
utility. The code conversion failed. This is an
installation or system error. This message is
accompanied by message AGH1080E, which displays
the system error message.

System Action: The message cannot be processed and
is not sent to the SAG.

User Response: Use the information of message
AGH1080E to help determine the cause of the error.
Ensure that the correct installation library is accessed
for processing the client or server functions.

AGH1143E Attempt to convert message to another
code page failed.

Explanation: The code conversion utility failed for a
client function. This error message is preceded by other
error messages that further describe the problem.

System Action: The message cannot be processed and
is not sent to the SAG.

User Response: Analyze the accompanying error
messages to determine the cause of the error.

AGH1144E Attempt to write XML message to data
set specified in DD statement ’ddname’
failed.

Explanation: The current XML message could not be
written to the data set specified in the indicated DD
statement.

System Action: The operation is terminated, and the
XML message is not written.

User Response: None.

Appendix A. Messages and codes 103

AGH9999E Message ’msgID’ not found in message
table.

Explanation: An error message with the indicated
message identifier should be issued, but is not in the
message table (AGHCCMSG.HPP):

v If this chapter contains a description of this message,
the message table is not accessible. This is most
likely due to an installation error.

v If this chapter does not contain a description of this
message, an internal error occurred.

System Action: None.

User Response: Contact your system administrator,
who should:

v In case of an installation error, correct the installation

v In case of an internal error, open an APAR

Condition codes
Condition codes issued by clients and servers are shown in the following tables.

Table 10. Condition codes issued by a client

Code Name Explanation

0 AGHOK Operation successful

10 AGHERRORCLIENT One of the following:
v An error occurred while reading the client

profile
v An error occurred during data conversion
v No response could be obtained from SAG
v A user error; for example, a null or incorrect

pointer was specified

12 AGHERRORMQSeries MQSeries failed

14 AGHERRORLOGGING Message logging failed

16 AGHERRORSECURITY Authorization checking failed; message rejected

18 AGHERRORXML Error during XML parsing; message rejected

20 AGHERROREXP Unhandled exception

30 AGHERRORPROFILE Error while reading profile or mandatory
parameter missing

Table 11. Condition codes issued by a server

Code Name Explanation

0 AGHOK Operation successful

14 AGHERRORLOGGING Message logging failure

16 AGHERRORSECURITY Security failure, message rejected

18 AGHERRORXML Error during XML parsing; message rejected

30 AGHERRORPROFILE Error while reading profile or mandatory
parameter missing

32 AGHERRORCONSOLE Console interface could not be started

34 AGHERRORSEQUENCE Sequence error; a reply function must be preceded
by a retrieve function

36 AGHERRORSWCALLBACK SwCallback operation failed

38 AGHERRORSWCALL SwCall operation failed

40 AGHERRORPARM Parameter is NULL

>2000 MQRC... MQSeries reason code

104 Installation and Programming Guide

SWIFT status codes
SWIFT status codes are issued in response to the following functions:
v SwCall
v SwACall
v SwAWait
v AGHFCall
v AGHLFTCmd
v SwCallback

Table 12. Status codes issued by S.W.I.F.T.

Code Name Explanation

0 SwOperationSucceed The operation was successful.

1 SwOperationFailed The operation failed. Use the function
AGHClientGetConditioncode() to get an additional
condition code (see
“AGHClientGetConditionCode—Get condition code
for client” on page 50).

Return codes
MQSeries Adapter messages can contain the following return codes:

Table 13. Return codes

Return
code

Explanation Module

212 Error during reading the profile, for example the ClientName was wrong or a
mandatory parameter was missing.

AGHCACLP

214 The pointer passed from the caller to store the address of the response for the SwCall
is a NULL pointer.

216 The conversion from code page EBCDIC to UTF-8 failed.

218 The conversion from code page UTF-8 to EBCDIC failed.

220 Attempt to get storage for the response buffer failed.

223 Response has zero length (response contains no data). This code is issued only for
basic messages (not SNL messages).

224 Error response received from SAG.

304 The name of the correspondent was longer than 24 bytes. The name was truncated to
24 bytes. The program will continue.

AGHCASC2

310 The SVC number for third-party authorization checking is not defined in the profile.

404 More than one element found, first is passed back. AGHCAXM2

408 Element was not found.

410 Buffer is not big enough.

Appendix A. Messages and codes 105

Table 13. Return codes (continued)

Return
code

Explanation Module

510 Open profile failed. AGHCCU02

512 Read profile failed.

514 Profile data larger than target field.

516 Invalid internal state.

518 The entry for passed key (client/server name) was not found.

520 Mandatory parameter not found in profile.

522 Error message not found in message table.

524 The parameter for the error message is not correct.

526 Open trace file failed.

528 Close trace file failed.

532 Conversion into specified code page is not supported.

534 Attempt to get storage failed.

536 Open conversion descriptor failed.

540 Convert data into another code page failed.

610 Function not supported. AGHCGUTL

612 Attempt to get storage failed.

614 An error occurred while processing the logstream.

616 Open DD name AGHEGLOG failed.

618 Write to DD name AGHEGLOG failed.

704 The source field is bigger than the target field. The value is truncated to the size of the
target field.

AGHCG002

734 Attempt to get storage for log record failed.

2033 No message available; timeout interval elapsed. AGHCA051

2080 The message buffer was too small to hold the message to be retrieved. MQSeries
Adapter continues processing, and tries to obtain a larger buffer.

106 Installation and Programming Guide

Appendix B. Process flows

Figure 25 shows how the SwCall function is implemented:

1 During the first call to MQSeries Adapter:
v If the DD name for the trace data set was specified, MQSeries Adapter

opens this data set.
v If message logging is active and the DD name of a log data set is

specified in the client profile, MQSeries Adapter opens this data set.

This step is done only the first time the client is started; if the client runs in
a loop, this step is not repeated.

2 If message logging is active and a logger stream name is specified in the
client profile, MQSeries Adapter connects to the system logger. This step is
done only the first time the client is started; if the client runs in a loop, this
step is not repeated.

3 If authorization checking is active, MQSeries Adapter checks whether the
user is authorized to access protected resources.

4 If message logging is active, MQSeries Adapter logs the request.

5 MQSeries Adapter puts the request into the request queue.

6 MQSeries Adapter gets the confirmations (COA, COD, or both), if these
were requested.

7 MQSeries Adapter gets the response.

Figure 25. Process flow for a client issuing a synchronous call

© Copyright IBM Corp. 2001 107

8 If message logging is active, MQSeries Adapter logs the response.

9 MQSeries Adapter returns control to the client.

10 The client can end, or can loop to perform another synchronous call.

11 The client destructor gets control. It closes the trace and message logging
data sets, and disconnects from the system logger stream.

Figure 26 shows how the SwACall and SwAWait functions are implemented:

1 During the first call to MQSeries Adapter:
v If the DD name for the trace data set was specified, MQSeries Adapter

opens this data set.
v If message logging is active and the DD name of a log data set is

specified in the client profile, MQSeries Adapter opens this data set.

This step is done only the first time the client is started; if the client runs in
a loop, this step is not repeated.

2 If message logging is active and a logger stream name is specified in the
client profile, MQSeries Adapter connects to the system logger. This step is
done only the first time the client is started; if the client runs in a loop, this
step is not repeated.

3 If authorization checking is active, MQSeries Adapter checks whether the
user is authorized to access protected resources.

4 If message logging is active, MQSeries Adapter logs the request.

5 MQSeries Adapter puts the request into the request queue.

Figure 26. Process flow for a client issuing an asynchronous call

108 Installation and Programming Guide

6 MQSeries Adapter gets the confirmations (COA, COD, or both), if these
were requested.

7 MQSeries Adapter returns control to the client. The client can continue with
other processing, or can loop to perform another asynchronous call.

8 The client calls the SwAWait function.

9 MQSeries Adapter gets the response.

10 If message logging is active, MQSeries Adapter logs the response.

11 MQSeries Adapter returns control to the client. The client can end, or can
loop to perform another asynchronous call.

12 The client destructor gets control. It closes the trace and message logging
data sets, and disconnects from the system logger stream.

Figure 27 shows how to implement a server and how the methods work:

1 Create a new server object.

2 Initialize the server. During this step:
v If the DD name for the trace data set was specified, MQSeries Adapter

opens this data set.

Figure 27. Process flow for a server

Appendix B. Process flows 109

v If message logging is active and the DD name of a log data set is
specified in the server profile, MQSeries Adapter opens this data set.

3 If message logging is active and a logger stream name is specified in the
server profile, MQSeries Adapter connects to the system logger.

4 MQSeries Adapter returns control to the calling application.

5 The application calls the retrieve method.

6 The next message is retrieved from the request queue.

7 If message logging is active, MQSeries Adapter logs the request.

8 The request is passed to the application, which inspects the retrieved data
and builds the response.

9 The application calls the reply method.

10 If authorization checking is active, MQSeries Adapter checks whether the
user is authorized to access protected resources.

11 If message logging is active, MQSeries Adapter logs the response.

12 MQSeries Adapter puts the response into the reply-to queue.

13 MQSeries Adapter gets the confirmations (COA, COD, or both), if these
were requested.

14 MQSeries Adapter returns control to the calling application, which frees the
response buffer created by the retrieve method.

15 The application releases the response buffer. The application can end, or can
loop to retrieve another request.

16 The application deletes the server object.

17 The server destructor gets control. It closes the trace and message logging
data sets, and disconnects from the system logger stream.

18 MQSeries Adapter returns control to the calling application.

110 Installation and Programming Guide

Figure 28 shows how to implement a server request handler:

1 The application creates and initializes a new server request handler.

2 During the initialization step:
v If the DD name for the trace data set was specified, MQSeries Adapter

opens this data set.
v If message logging is active and the DD name of a log data set is

specified in the server profile, MQSeries Adapter opens this data set.

3 If message logging is active and a logger stream name is specified in the
server profile, MQSeries Adapter connects to the system logger.

4 The server request handler calls the retrieve method.

5 The next message is retrieved from the request queue.

6 If message logging is active, MQSeries Adapter logs the request.

7 The server request handler calls the SwCallback function. This user-written
function typically inspects the request, creates the response buffer, and
generates a response.

Figure 28. Process flow for a server request handler

Appendix B. Process flows 111

8 SwCallback returns control to the server request handler, which calls the
reply method.

9 If authorization checking is active, MQSeries Adapter checks whether the
user is authorized to access protected resources.

10 If message logging is active, MQSeries Adapter logs the response.

11 MQSeries Adapter puts the response into the reply-to queue.

12 MQSeries Adapter gets the confirmations (COA, COD, or both), if these
were requested.

13 The server request handler calls the AppXmlBufferFree function, which frees
the response buffer and returns control to the server request handler.

14 If there is another request in the request queue, the server request handler
retrieves it.

15 If the request queue is empty, the server destructor gets control.

16 The server destructor closes the trace and message logging data sets, and
disconnects from the system logger stream.

17 The server request handler returns control to the calling application.

112 Installation and Programming Guide

Appendix C. Considerations when implementing authorization
checking

The MQSeries Adapter authorization checking services require a type-3 SVC, and
the definition of new RACF general resource classes and RACF profiles.

Authorization checking SVC routine
Some of the MQSeries Adapter authorization checking services call RACF services
that must run in an authorized environment, for example, in supervisor state.
However, programs that call MQSeries Adapter authorization checking services
might run in problem program state rather than in supervisor state.

MQSeries Adapter authorization checking services use a type-3 SVC routine. The
SVC routine is provided as a load module named AGHRSSVC. To enable calling
of authorized RACF services, copy this SVC routine into an OS/390 system library
under a member name that is associated with the selected SVC number.

The parameters of the SVC must be provided by means of an SVCPARM entry in
an SVC table provided by your installation, and located in the SYS1.PARMLIB.
SVC tables are members in the SYS1.PARMLIB, and have names of the form
IEASVCxx, for example IEASVC01. The sample SVCPARM entry for the MQSeries
Adapter authorization checking SVC is:
SVCPARM 215,REPLACE,TYPE(3),APF(NO) /* IBM MQSeries Adapter RS SVC */

The load module name of the SVC routine can be specified as another parameter
of the SVCPARM entry. This parameter can be omitted if the installation follows
the standard OS/390 SVC naming rules.

The standard type-3 SVC name has the form IGC00ddx, where dd represents the
first two digits of the three-digit SVC number, and x is the letter that corresponds
to the last digit: A=1, B=2, C=3, D=4, E=5, F=6, G=7, H=8, I=9. For example, a
type-3 SVC with the number 215 would be named IGC0021E.

Type-3 SVC routines are resident in system libraries, for example the Pagable Link
Pack Area (PLPA). Load modules that are resident in the PLPA are stored in the
load library SYS1.LPALIB. Use the OS/390 Linkage Editor, the batch utility
IEBCOPY, or the TSO COPY command to copy the MQSeries Adapter
authorization checking SVC routine AGHRSSVC into SYS1.LPALIB.

An SVC table in the SYS1.PARMLIB must be identified by a pointer in the OS/390
system configuration (member IEASYSxx in the SYS1.PARMLIB). The sample
pointer to SVC table IEASVC01 in IEASYS01 is:
SVC=01 Installation defined SVCs from IEASVC01

In order for OS/390 to recognize new or replaced SVCs, an IPL of the OS/390
system may be necessary.

For a detailed description of how to create SVCs, see OS/390 MVS Programming:
Authorized Assembler Services Guide and OS/390 MVS Initialization and Tuning
Reference.

© Copyright IBM Corp. 2001 113

Installation-defined RACF classes
Each of the resources for which MQSeries Adapter can control access is supported
by an installation-defined RACF general resource class. The following description
contains some hints to help you add installation-defined RACF resource classes to
the set of RACF classes provided by IBM. For a more complete description of how
to add installation-defined classes to the RACF Class Descriptor Table (CDT), refer
to OS/390 Security Server (RACF) System Programmer’s Guide and OS/390 Security
Server (RACF) Macros and Interfaces.

RACF class definition source
Installation-defined RACF classes are generated using the RACF macro
ICHERCDE. Figure 29 shows the sample ICHERCDE macro instruction used to
generate the MQSeries Adapter RACF resource classes.

Notes:

1. The class names (AGH$CORN, AGH$RQDN, AGH$RSDN, AGH$SGDN)
cannot be changed.

2. The default return code (DFTRETC) applies when RACF and the class are
active, but a profile does not exist for the resource that is being accessed.
DFTRETC=0 means, for example, that a resource is unprotected if no profile
exists for this resource.

3. The FIRST and OTHER parameters can be more restrictive than ANY. The
actual resource name rules and the used characters may be specified by
S.W.I.F.T. The sample FIRST=ANY and OTHER=ANY covers any character
combinations.

4. The ID and POSIT numbers of installation-defined classes must be coordinated
with the ID and POSIT numbers of existing classes. A CLASSACT command
for one class covers all classes with the same POSIT number. The POSIT
numbers for the MQSeries Adapter RACF resource classes should therefore be
the same.

*--
* RACF INSTALLATION DEFINED CDT ENTRIES FOR AGH.RS -
*--

ICHERCDE CLASS=AGH$CORN, CORRESPONDENT NAME *
DFTRETC=8, *
FIRST=ANY,OTHER=ANY, *
ID=197,POSIT=189, *
MAXLNTH=24

ICHERCDE CLASS=AGH$RQDN, REQUESTOR DN *
DFTRETC=8, *
FIRST=ANY,OTHER=ANY, *
ID=197,POSIT=189, *
MAXLNTH=128

ICHERCDE CLASS=AGH$RSDN, RESPONDER DN *
DFTRETC=8, *
FIRST=ANY,OTHER=ANY, *
ID=197,POSIT=189, *
MAXLNTH=128

ICHERCDE CLASS=AGH$SGDN, SIGN DN *
DFTRETC=8, *
FIRST=ANY,OTHER=ANY, *
ID=197,POSIT=189, *
MAXLNTH=128

Figure 29. Sample ICHERCDE macro instruction

114 Installation and Programming Guide

5. The MAXLNTH parameter specifies the maximum length that a RACF resource
name can have (for a description of how RACF resource names are generated,
see “Determining which RACF profile controls access to a protected resource”
on page 15). The maximum value allowed for this parameter is 246. Because

the node-type prefixes in a DN are deleted during transformation into a RACF
resource name, MQSeries Adapter might be able to process DNs that are
slightly longer than the value specified for MAXLNTH.

Generating the ICHRRCDE
RACF resource classes are defined in the RACF CDT. The CDT has two parts,
ICHRRCDX and ICHRRCDE. IBM supplies ICHRRCDX with all IBM-supplied
RACF classes. Installation-defined RACF classes are contained in ICHRRCDE.

ICHRRCDE must reside in SYS1.LINKLIB or another APF authorized library in the
linklist concatenation. Sample JCL to generate an ICHRRCDE containing the
MQSeries Adapter authorization checking classes is shown in Figure 30 on
page 116.

Appendix C. Considerations when implementing authorization checking 115

Activating installation-defined classes
Before you can define RACF profiles for installation-defined RACF resource
classes, you must activate the classes. A RACF SETR command activates all classes
with the same POSIT number. An example of RACF commands to activate the
MQSeries Adapter authorization checking classes to handle generic resource
profiles is:

//xxxxCDT JOB (xxxx),CLASS=A,REGION=4M,USER=user,
// MSGCLASS=X,MSGLEVEL=(1,1),TIME=60,NOTIFY=user
//ASSEM1 EXEC PGM=ASMA90,
// PARM='LIST,OBJECT,XREF(SHORT),NODECK',REGION=6M
//*
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DISP=SHR,DSN=SYS1.MODGEN,VOL=SER=xxxxxx,UNIT=DASD
// DD DISP=SHR,DSN=SYS1.MACLIB,VOL=SER=xxxxxx,UNIT=DASD
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(20,5))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(10,1))
//SYSLIN DD DSN=&&OBJ,SPACE=(3040,(40,40),,,ROUND),UNIT=VIO,
// DISP=(MOD,PASS),
// DCB=(BLKSIZE=3040,LRECL=80,RECFM=FBS,BUFNO=1)
//SYSIN DD *
*--
* RACF INSTALLATION DEFINED CDT ENTRIES FOR AGH.RS -
*--

ICHERCDE CLASS=AGH$CORN, CORRESPONDENT NAME *
DFTRETC=8, *
FIRST=ANY,OTHER=ANY, *
ID=197,POSIT=189, *
MAXLNTH=24

ICHERCDE CLASS=AGH$RQDN, REQUESTOR DN *
DFTRETC=8, *
FIRST=ANY,OTHER=ANY, *
ID=197,POSIT=189, *
MAXLNTH=128

ICHERCDE CLASS=AGH$RSDN, RESPONDER DN *
DFTRETC=8, *
FIRST=ANY,OTHER=ANY, *
ID=197,POSIT=189, *
MAXLNTH=128

ICHERCDE CLASS=AGH$SGDN, SIGN DN *
DFTRETC=8, *
FIRST=ANY,OTHER=ANY, *
ID=197,POSIT=189, *
MAXLNTH=128

ICHERCDE
//*
//LINK EXEC PGM=IEWL,REGION=2048K,
// PARM='NCAL,LIST,LET,XREF,SIZE=(768K,100K)'
//*
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DSN=SYS1.LINKLIB(ICHRRCDE),DISP=SHR
//SYSIN DD DSN=&&OBJ,DISP=(OLD,DELETE)
//SYSLIN DD *

INCLUDE SYSIN
ORDER AGH$CORN
ORDER AGH$RQDN
ORDER AGH$RSDN
ORDER AGH$SGDN
ORDER ICHRRCDE
NAME ICHRRCDE(R)

Figure 30. Sample JCL to generate an ICHRRCDE

116 Installation and Programming Guide

SETR CLASSACT(AGH$CORN)
SETR GENERIC(AGH$CORN)

Any of the RACF classes defined for MQSeries Adapter authorization checking can
be specified in these commands. Specifying one class has the desired effect on all
classes with the same POSIT number.

Defining AGH.RS
The MQSeries Adapter authorization checking facility is enabled as soon as the
profile AGH.RS is defined in the RACF FACILITY class. An example of RACF
commands to enable the MQSeries Adapter authorization checking facility is:
RDEF FACILITY AGH.RS UACC(NONE)
SETR RACLIST(FACILITY) REFRESH

A user associated with a process that uses MQSeries Adapter authorization
checking must be permitted to FACILITY(AGH.RS). An example of the RACF
commands to let user XXX use MQSeries Adapter authorization checking is:
PE AGH.RS CLASS(FACILITY) ID(XXX) ACCESS(READ)
SETR RACLIST(FACILITY) REFRESH

The RACF FACILITY class is raclisted. This is why you must refresh the FACILITY
raclist after you modify a FACILITY profile.

Permit a user to access an application resource
The permission of an application user to access a protected resource is defined in
RACF resource profiles and their access lists. An example of a RACF command to
define a correspondent name is:
RDEF AGH$CORN CORR.NAME UACC(NONE)

An example of a RACF command to give the user with the ID XXX access to this
correspondent name is:
PE CORR.NAME CLASS(AGH$CORN) ID(XXX) ACCESS(READ)

RACF supports only uppercase letters in class and resource profile names. Mixed
case resource names are folded to uppercase before they are passed to RACF. This
means, the MQSeries Adapter authorization checking service is case-insensitive
with regard to SWIFTNet resource names.

Appendix C. Considerations when implementing authorization checking 117

118 Installation and Programming Guide

Appendix D. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Deutschland
Informationssysteme GmbH
Department 3982
Pascalstrasse 100

© Copyright IBM Corp. 2001 119

70569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement
or any equivalent agreement between us.

The following paragraph does apply to the US only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v CICS
v IBM
v IMS
v MQSeries
v MVS
v OS/390
v RACF

Pentium is a trademark of Intel Corporation.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

120 Installation and Programming Guide

Glossary of terms and abbreviations

This glossary defines terms as they are used in
this book. If you do not find the terms you are
looking for, refer to the IBM Dictionary of
Computing, New York: McGraw-Hill, and the
S.W.I.F.T. User Handbook.

A
API. Application programming interface.

application programming interface (API). An
interface that a program can use to use data, functions,
or services provided by another program.

C
CCSID. Coded character set identifier.

CICS. Customer Information Control System.

client hub. An abbreviation for MQSeries hub for
client requests.

client profile. In MQSeries Adapter, an entry in the
profile data set that specifies the name of and
parameters for a single client.

client user. The user whose ID is assigned to a client,
for example so that that user’s access authority is used
instead of that of the process user.

COA. Confirm on arrival.

COD. Confirm on delivery.

coded character set identifier (CCSID). The identifier
of a set of graphic characters and their code point
assignments.

commit. In MQSeries, to commit operations is to make
the changes on MQSeries queues permanent. After
putting one or more messages to a queue, a commit
makes them visible to other programs. After getting
one or more messages from a queue, a commit
permanently deletes them from the queue.

confirm-on-arrival (COA) report. An MQSeries report
message type created when a message is placed on that
queue. It is created by the queue manager that owns
the destination queue.

confirm-on-delivery (COD) report. An MQSeries
report message type created when an application
retrieves a message from the queue in a way that

causes the message to be deleted from the queue. It is
created by the queue manager that owns the
destination queue.

D
DLL. Dynamic link library.

DN. Distinguished name.

document type definition (DTD). The rules that
specify the structure for a particular class of SGML or
XML documents. The DTD defines the structure with
elements, attributes, and notations, and it establishes
constraints for how each element, attribute, and
notation may be used within the particular class of
documents. A DTD is analogous to a database schema
in that the DTD completely describes the structure for a
particular markup language.

DTD. Document type definition.

E
ESM. External security manager.

F
FileAct. S.W.I.F.T.’s interactive communication service
supporting the exchange of files between parties.

file directory. A directory that determines the root
directory for LFT commands. Files referred to by an
LFT command must reside in this directory or in one of
its subdirectories.

G
GDG. Generation data group.

generation data group. A collection of data sets with
the same base name that are kept in chronological
order. Each data set is called a generation data set.

H
HFS. Hierarchical file system.

I
IMS. Information Management System.

© Copyright IBM Corp. 2001 121

InterAct. S.W.I.F.T.’s interactive communication service
supporting the exchange of request and response
messages between two parties.

J
JCL. Job control language.

L
LFT. Local file transfer.

local queue. In MQSeries, a queue that belongs to a
local queue manager. A local queue can contain a list of
messages waiting to be processed. Contrast with remote
queue.

local queue manager. In MQSeries, the queue
manager to which the program is connected, and that
provides message queuing services to that program.
Queue managers to which a program is not connected
are remote queue managers, even if they are running
on the same system as the program.

M
Message Queue Manager (MQM). An IBM licensed
program that provides message queuing services. It is
part of the MQSeries set of products.

MQM. Message queue manager.

MQSeries. A family of IBM licensed programs that
provides message queuing services.

MQSeries hub for client requests. A program
provided by MQSeries Adapter that acts as a single,
centralized message processor for clients. It handles the
sending of requests and the routing of the responses
back to the clients. Abbreviated to client hub.

O
OMVS. Open MVS.

P
process user. The user to whom a batch, CICS, or IMS
environment belongs.

profile. In MQSeries Adapter, an entry in the profile
data set that specifies the name of and parameters for a
client or server.

Q
queue. In MQSeries, an object onto which message
queuing applications can put messages, and from

which they can get messages. A queue is owned and
maintained by a queue manager.

queue manager. (1) An MQSeries system program that
provides queuing services to applications. It provides
an application programming interface so that programs
can access messages on the queues that the queue
manager owns. See also local queue manager and remote
queue manager. (2) The MQSeries object that defines the
attributes of a particular queue manager.

R
RACF. Resource Access Control Facility.

remote queue. In MQSeries, a queue that belongs to a
remote queue manager. Programs can put messages on
remote queues, but they cannot get messages from
remote queues. Contrast with local queue.

remote queue manager. In MQSeries, a queue
manager is remote to a program if it is not the queue
manager to which the program is connected.

reply message. In MQSeries, a type of message used
for replies to request messages. Corresponds to a
SWIFT response message.

reply-to queue. On the client side, the queue into
which a client wants a reply message or report message
sent. On the server side, the queue into which a server
places a reply message or report message that is to be
sent to a client.

report message. In MQSeries, a type of message that
gives information about another message. A report
message usually indicates that the original message
cannot be processed.

request message. In S.W.I.F.T. and MQSeries, a type of
message used for requesting a reply from another
program.

request queue. On the client side, the queue in which
a client places a request message to be sent. On the
server side, the queue from which a server retrieves a
request message to be processed.

Resource Access Control Facility (RACF). An IBM
licensed program that provides for access control by
identifying and verifying users to the system,
authorizing access to protected resources, logging
detected unauthorized attempts to enter the system,
and logging detected accesses to protected resources.

response message. In SWIFT, a type of message used
for replies to request messages. Corresponds to a reply
message in MQSeries.

S
SAG. SWIFTAlliance Gateway.

122 Installation and Programming Guide

Secure Internet Protocol Network (SIPN). A SWIFT
network based on the Internet protocol (IP) and related
technologies.

server profile. In MQSeries Adapter, an entry in the
profile data set that specifies the name of and
parameters for a single server.

server request handler. A program provided by
MQSeries Adapter that continually retrieves requests
from the request queue at its site and, for each request,
calls a user-written function.

SIPN. Secure Internet Protocol Network.

SNL. SWIFTNet Link.

SVC. Supervisor call instruction.

S.W.I.F.T. Society for Worldwide Interbank Financial
Telecommunication s.c.

SWIFTAlliance Gateway (SAG). An interface product
enabling application-to-application communication
using SWIFTNet services.

SWIFT network. The network provided and managed
by the Society for Worldwide Interbank Financial
Telecommunication s.c.

SWIFTNet Link (SNL). A software product available
from S.W.I.F.T. that is needed to access all SWIFTNet
services.

SWIFTNet services. S.W.I.F.T.’s IP-based
communication services that run on the SIPN.

T
transaction. A specific set of input data that triggers
the running of a specific process or job; for example, a
message destined for an application program.

U
UNIX System Services (USS). A component of
OS/390, formerly called OpenEdition (OE), that creates
a UNIX environment that conforms to the XPG4 UNIX
1995 specifications. It provides two open system
interfaces on the OS/390 operating system:

v An application program interface (API)

v An interactive shell interface

user identification and verification. The acts of
identifying and verifying a RACF-defined user to the
system during logon or batch job processing. RACF
identifies the user by the user ID and verifies the user
by the password or operator identification card
supplied during logon processing or the password
supplied on a batch JOB statement.

UCS. Universal multi-octet coded character set. There
are two complementary standards for UCS:

v Unicode from the Unicode Consortium

v ISO/IRC IS 10646-1 from ISO/IEC

USS. UNIX System Services.

UTF-8. UCS transformation format, 8 bit form. UTF-8
is an encoding of ISO-10646 that is backward
compatible with US-ASCII; that is, in which UCS
characters are transformed into “ASCII-safe” bytes.

X
XML. An abbreviation for Extensible Markup
Language, which is a set of rules for forming semantic
tags used to identify the various parts that comprise a
multi-part document.

Glossary of terms and abbreviations 123

124 Installation and Programming Guide

Bibliography

v SWIFTAlliance Gateway Developer Guide Release
1.2.0

v SWIFTAlliance Gateway Interface Specification
Release 1.2.0

v SWIFTAlliance Gateway MQHA Application
Programming Guide Release 1.2.0

v SWIFTAlliance Gateway MQHA Installation and
Configuration Release 1.2.0

v SWIFTNet Link User’s Guide

v COBOL for OS/390 and VM, SC26-9049
v OS/390 MVS: Authorized Assembler Services

Guide, GC28-1763
v OS/390 MVS Programming: Assembler Services

Reference, GC28-1910
v OS/390 MVS Initialization and Tuning Reference,

SC28-1752
v OS/390 Security Server (RACF) System

Programmer’s Guide, SC28-1913
v OS/390 Security Server (RACF) Macros and

Interfaces, SC28-1914
v OS/390 C/C++ Run-Time Library Reference,

SC28-1663
v Language Environment for OS/390 Customization,

SC28–1941
v MQSeries for OS/390 System Management Guide,

SC34-5374
v MQSeries for OS/390 Messages and Codes,

GC34-5375

© Copyright IBM Corp. 2001 125

126 Installation and Programming Guide

Index

A
access methods 40
administering log data 88
AGHCAAS1 9
AGHCAAS2 9
AGHCG001.HPP 87
AGHCGUTL 88
AGHClient (method) 31
AGHClientGetConditionCode 50
AGHClientGetErrorMessage 51
AGHClientSetClientName 52
AGHClientSetUserId 54
AGHFCall

C++ 32
C and COBOL 56

AGHFileHeader 27
AGHLFTCmd

C++ 33
C and COBOL 58

AGHLFTCmdParm 26
AGHLoggerService (method) 31, 39
AGHResponse 25
AGHServer (method) 39
AGHServerClientHub 61
AGHServerGetConditionCode 62
AGHServerGetErrorMessage 63
AGHServerInit 64
AGHServerRelease 65
AGHServerReply 67
AGHServerRequestHandler 69
AGHServerRetrieve 70
AGHServerSetUserId 72
AGHServerTerm 74
AppXmlBufferFree 85
archiving log records 88
ASCII 11
asynchronous call

initiate
C++ 36
C and COBOL 75

retrieve response from
C++ 37
C and COBOL 77

asynchronous calls 8
asynchronous InterAct transfer

C++ 36
C and COBOL 75

authorization checking 2, 13, 113

B
bank information, specifying 24
basic messages 2
branch information, specifying 24
buffer

free client
C++ 39
C and COBOL 81

free server 85
buffer, release message 65

C
C++ classes 31
calls 49
calls, synchronous and asynchronous 8
CCSID

data conversion 13
parameter 22

CEEPrefix (parameter) 22
central request queue, specifying 24
checking authorization 2, 13, 113
classes, C++ 31
client 1
client buffer, free

C++ 39
C and COBOL 81

client constructor 31
client hub 1
client hub, starting

C++ 40
C and COBOL 61
general 9

client hub, stopping 10
client hub message flow 6
client name, set

C++ 35
C and COBOL 52

client name, specifying 22
client object, creating 31
client profiles, creating 21
clientHub (method) 40
ClientName (parameter) 22
COA 24
COBOL copybooks 25
COD 24
code page 11
coded character set identifier 13, 22
CodedCharacterSetId field 13
codes

condition 104
return 105
SWIFT status 105

command parameters, LFT 26
condition code, get

client
C++ 34
C and COBOL 50

condition codes 104
Console (parameter) 22
console (using to stop a client hub or

server request handler) 10
constructor

client 31
server 39

conversion, data 11
Convert (parameter) 22
copybooks, COBOL 25
correspondent name 13

get method 41
set method 46

correspondent name, specifying 22
CorrespondentName (parameter) 22

create
client object 31
profiles 21
server object 39

customizing 21

D
data conversion 11, 22
data structures 25
deleting log records 88
department information, specifying 24
distinguished name 13
DN 13
document type definition 18, 23
DTD 18, 23
DTDFile (paramter) 23

E
EBCDIC 11
error message, get

client
C++ 34
C and COBOL 51

server
C++ 42
C and COBOL 63

error messages 95
Expiry (parameter) 23
expiry interval, specifying 23

F
file header 27
file queue, specifying 23
file transfer, local 2
FileAct message flow 6
FileAct transfer

function to initiate 56
method to initiate 32

financial institution information,
specifying 24

flow, process 107
free client buffer

C++ 39
C and COBOL 81

free server buffer 85
free server resources 74
function

AGHClientGetConditionCode 50
AGHClientGetErrorMessage 51
AGHClientSetClientName 52
AGHClientSetUserId 54
AGHFCall 56
AGHLFTCmd 58
AGHServerClientHub 61
AGHServerGetConditionCode 62
AGHServerGetErrorMessage 63
AGHServerInit 64

© Copyright IBM Corp. 2001 127

function (continued)
AGHServerRelease 65
AGHServerReply 67
AGHServerRequestHandler 69
AGHServerRetrieve 70
AGHServerSetUserId 72
AGHServerTerm 74
AppXmlBufferFree 85
SwACall 75
SwAWait 77
SwCall 79
SwCallback 83
SwXmlBufferFree 81

functions 49

G
get condition code

client
C++ 34
C and COBOL 50

server
C++ 41
C and COBOL 62

get error message
client

C++ 34
C and COBOL 51

server
C++ 42
C and COBOL 63

get logger object
client 35
server 42

get methods 40
getConditionCode (method)

client 34
server 41

getCorrespondentName (method) 41
getErrorMsg (method)

client 34
server 42

getLog 42
getLoggerObj (method)

client 35
server 42

getMqmName (method) 42
getReplyToQueueName (method) 42
getRequestQueueName (method) 43
getServerName (method) 43
getTraceLevel (method) 43
getUserId (method) 43

H
hardware requirements 17

I
init (method) 43
initializing a server 43, 64
installing 17
institution information, specifying 24
InterAct message flow 3
InterAct transfer, asynchronous

C++ 36

InterAct transfer, asynchronous
(continued)

C and COBOL 75
InterAct transfer, synchronous

C++ 38
C and COBOL 79

L
LFT command parameters 26
listing log records 88
local file transfer 2
local file transfer command

C++ 33
C and COBOL 58

local file transfer message flow 4
Log (parameter) 24
log data, administering 88
log data set, specifying 24
log record 87
LogDDName (parameter) 24
LogFinBrch (parameter) 24
LogFinDept (parameter) 24
LogFinInst (parameter) 24
logger object, get

client 35
server 42

logger stream, system
administering data in 88

logging, message 87
logging messages 2, 24
LogStreamName 24
loop server 10

M
message, get error

client
C++ 34

server
C++ 42
C and COBOL 63

message buffer, release 65
message descriptor 61
message flow 3

client hub 6
FileAct 6
InterAct 3
local file transfer 4
server request handler 7

message logging 2, 24, 87
messages 95
method

AGHClient 31
AGHFCall 32
AGHLFTCmd 33
AGHLoggerService 31, 39
AGHServer 39
clientHub 40
getConditionCode

client 34
server 41

getCorrespondentName 41
getErrorMsg

client 34
server 42

method (continued)
getLog 42
getLoggerObj

client 35
server 42

getMqmName 42
getReplyToQueueName 42
getRequestQueueName 43
getServerName 43
getTraceLevel 43
getUserId 43
init 43
release 44
reply 44
requestHandler 45
retrieve 46
setClientName 35
setCorrespondentName 46
setLog 47
setServerName 47
setTraceLevel 47
setUserId

client 36
server 48

SwACall 36
SwAWait 37
SwCall 38
SwCallback 83
SwXmlBufferFree 39

methods 31, 40
MQM, specifying 24
MQMD 13, 61
MQMFileQ (parameter) 23
MQMName (parameter) 24
MQMReplyToQ (parameter) 24
MQMReports (parameter) 24
MQMRequestFileQ (parameter) 24
MQMRequestQ (parameter) 24
MQMT_APPL_FIRST 7
MQSeries interface for clients 1
MQSeries queue manager, specifying 24

N
Notices 119

O
OMVS segment 10

P
parameters, LFT command 26
parameters, profile 22

CCSID 22
CEEPrefix 22
ClientName 22
Console 22
Convert 22
CorrespondentName 22
DTDFile 23
Expiry 23
Log 24
LogDDName 24
LogFinBrch 24
LogFinDept 24

128 Installation and Programming Guide

parameters, profile 22 (continued)
LogFinInst 24
LogStreamName 24
MQMFileQ 23
MQMName 24
MQMReplyToQ 24
MQMReports 24
MQMRequestFileQ 24
MQMRequestQ 24
SecSVCNum 23
TimeOut 23
TraceLevel 24

place a response in the reply-to queue
C++ 44
C and COBOL 67

portability 9
POSIX(ON) 10
process flow 107
profile parameters

CCSID 22
CEEPrefix 22
ClientName 22
Console 22
Convert 22
CorrespondentName 22
DTDFile 23
Expiry 23
Log 24
LogDDName 24
LogFinBrch 24
LogFinDept 24
LogFinInst 24
LogStreamName 24
MQMFileQ 23
MQMName 24
MQMReplyToQ 24
MQMReports 24
MQMRequestFileQ 24
MQMRequestQ 24
SecSVCNum 23
TimeOut 23
TraceLevel 24

profiles, creating 21

Q
queue manager, specifying 24

R
RACF classes, installation-defined 114
release (method) 44
release a server 44
release server message buffer 65
reply (method) 44
reply-to queue, response in the

C++ 44
C and COBOL 67

reply-to queue, specifying 24
reports, specifying which to create 24
request, retrieve a

C++ 46
C and COBOL 70

request, serve a 83
request file queue, specifying 24
requestHandler (method) 45

requestor DN 13
requirements

hardware 17
software 17

resources, free server 74
responder DN 13
response data structure 25
response from an asynchronous call

C++ 37
C and COBOL 77

response in the reply-to queue
C++ 44
C and COBOL 67

retrieve (method) 46
retrieve a request

C++ 46
C and COBOL 70

retrieve response from asynchronous call
C++ 37
C and COBOL 77

return codes 105

S
SAG file queue, specifying 23
sample programs 29
SecSVCNum (parameter) 23
security 13
sequential log data set, specifying 24
serve a request 83
server 1

constructor 39
initializing 43, 64
loop 10
release 44

server, terminate 74
server buffer, free 85
server message buffer, release 65
server object, creating 39
server profiles, creating 21
server request handler

function to start 69
method to start 45

server request handler, starting 9
server request handler, stopping 10
server request handler message flow 7
set client name

C++ 35
C and COBOL 52

set client user ID 54
set methods 40
set user ID

client (C++) 36
server (C++) 48
server (C and COBOL) 72

setClientName 52
setClientName (method) 35
setCorrespondentName (method) 46
setLog (method) 47
setServerName (method) 47
setTraceLevel (method) 47
setUserId (method)

client 36
server 48

sign DN 13
SNL messages 2
software requirements 17

starting a client hub
C++ 40
C and COBOL 61
general 9

starting a server request handler
C++ 45
C and COBOL 69
general 9

status codes, SWIFT 105
stopping a client hub or server request

handler 10
structures, data 25
SVC number, specifying 23
SVC routine 113
SwACall

C++ 36
C and COBOL 75

SwAWait
C++ 37
C and COBOL 77

SwCall
C++ 38
C and COBOL 79

SwCallback 83
SWIFT status codes 105
SwXmlBufferFree

C++ 39
C and COBOL 81

synchronous calls 8
synchronous InterAct transfer

C++ 38
C and COBOL 79

system console (using to stop a client hub
or server request handler) 10

system logger stream
administering data in 88
specifying a 24

T
terminate server 74
TimeOut (parameter) 23
timeout interval, specifying 23
trace level, specifying 24
TraceLevel (parameter) 24
tracing 90
type-3 SVC 113

U
user ID

set client 54
set method for client (C++) 36
set method for server (C++) 48

UTF-8 11

X
XML 2

Index 129

130 Installation and Programming Guide

Readers’ Comments — We’d Like to Hear from You

IBM MQSeries® Adapter for Secure Financial Messaging Gateway
Installation and Programming Guide
Version 1 Release 1

Publication No. SH12-6731-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SH12-6731-00

SH12-6731-00

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH
Information Development, Dept. 0446
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5799-GKZ

SH12-6731-00

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
IB

M
M

Q
Se

rie
s®

Ad
ap

te
r

fo
r

Se
cu

re
Fi

na
nc

ia
lM

es
sa

gi
ng

G
at

ew
ay

In
st

al
la

tio
n

an
d

Pr
og

ra
m

m
in

g
G

ui
de

Ve
rs

io
n

1
R

el
ea

se
1

	Contents
	About this book
	Chapter 1. Introducing MQSeries Adapter
	Process initiation and message flow
	Message flow when using InterAct
	Message flow when using local file transfer
	Message flow when using FileAct
	Message flow when using the client hub
	Message flow when using the server request handler

	Synchronous and asynchronous calls
	Portability
	Client hub and server request handler
	Starting a client hub or server request handler
	Stopping a client hub or server request handler

	Data conversion
	Authorization checking
	Levels of authorization checking
	Example of using authorization checking
	Determining which RACF profile controls access to aprotected resource

	Chapter 2. Planning for and installing MQSeries Adapter
	Planning for MQSeries Adapter
	Hardware requirements
	Software requirements

	Installing MQSeries Adapter
	Connect MQSeries Adapter to SAG
	Copy DTD files to MVS
	CICS and IMS dependencies and restrictions
	CICS dependencies and restrictions
	IMS dependencies and restrictions

	Implementing authorization checking

	Chapter 3. Creating client and server profiles
	Chapter 4. Writing MQSeries Adapter clients and servers, andSwCallback functions
	Data structures
	AGHResponse
	AGHLFTCmdParm
	AGHFileHeader

	XML messages
	Sample programs

	Chapter 5. MQSeries Adapter C++ classes and methods
	AGHClient
	Constructors
	Methods
	AGHClient::AGHFCall
	AGHClient::AGHLFTCmd
	AGHClient::getConditionCode
	AGHClient::getErrorMessage
	AGHClient::getLoggerObj
	AGHClient::setClientName
	AGHClient::setUserId
	AGHClient::SwACall
	AGHClient::SwAWait
	AGHClient::SwCall
	AGHClient::SwXmlBufferFree

	AGHServer
	Constructors
	Methods
	AGHServer::clientHub
	AGHServer::getConditionCode
	AGHServer::getCorrespondentName
	AGHServer::getErrorMessage
	AGHServer::getLog
	AGHServer::getLoggerObj
	AGHServer::getMqmName
	AGHServer::getReplyToQueueName
	AGHServer::getRequestQueueName
	AGHServer::getServerName
	AGHServer::getTraceLevel
	AGHServer::getUserId
	AGHServer::init
	AGHServer::release
	AGHServer::reply
	AGHServer::requestHandler
	AGHServer::retrieve
	AGHServer::setCorrespondentName
	AGHServer::setLog
	AGHServer::setServerName
	AGHServer::setTraceLevel
	AGHServer::setUserId

	Chapter 6. MQSeries Adapter functions for C and COBOL
	AGHClientGetConditionCode—Get condition code for client
	Format for C
	Coding examples
	Coding example for C
	Coding example for COBOL

	AGHClientGetErrorMessage—Get error message for client
	Format for C
	Coding examples
	Coding example for C
	Coding example for COBOL

	AGHClientSetClientName—Set a client name
	Format for C
	Coding examples
	Coding example for C
	Coding example for COBOL

	AGHClientSetUserId—Set a client user ID
	Format for C
	Coding examples
	Coding example for C
	Coding example for COBOL

	AGHFCall—Initiate a FileAct transfer
	Format for C
	Coding examples
	Coding example for C
	Coding example for COBOL

	AGHLFTCmd—Issue an LFT command
	Format for C
	Coding examples
	Coding example for C
	Coding example for COBOL

	AGHServerClientHub—Start a client hub
	Format for C
	Coding examples
	Coding example for C
	Coding example for COBOL

	AGHServerGetConditionCode—Get condition code for server
	Format for C
	Coding examples
	Coding example for C
	Coding example for COBOL

	AGHServerGetErrorMessage—Get error message for server
	Format for C
	Coding examples
	Coding example for C
	Coding example for COBOL

	AGHServerInit—Initialize a server
	Format for C
	Coding examples
	Coding example for C
	Coding example for COBOL

	AGHServerRelease—Release the server's message buffer
	Format for C
	Coding examples
	Coding example for C
	Coding example for COBOL

	AGHServerReply—Place a response in the reply-to queue
	Format for C
	Coding examples
	Coding example for C
	Coding example for COBOL

	AGHServerRequestHandler—Start a server request handler
	Format for C
	Coding examples
	Coding example for C
	Coding example for COBOL

	AGHServerRetrieve—Retrieve a request
	Format for C
	Coding examples
	Coding example for C
	Coding example for COBOL

	AGHServerSetUserId—Set a user ID for a server
	Format for C
	Coding examples
	Coding example for C
	Coding example for COBOL

	AGHServerTerm—Terminate server
	Format for C
	Coding examples
	Coding example for C
	Coding example for COBOL

	SwACall—Initiate an asynchronous InterAct transfer
	Format for C
	Coding examples
	Coding example for C
	Coding example for COBOL

	SwAWait—Retrieve a response from an asynchronous call
	Format for C
	Coding examples
	Coding example for C
	Coding example for COBOL

	SwCall—Initiate a synchronous InterAct transfer
	Format for C
	Coding examples
	Coding example for C
	Coding example for COBOL

	SwXmlBufferFree—Free client buffer
	Format for C
	Coding examples
	Coding example for C
	Coding example for COBOL

	Chapter 7. User-written functions
	SwCallback
	Coding examples
	Coding example for C
	Coding example for COBOL

	AppXmlBufferFree—Free server buffer
	Format
	Variables
	Coding examples
	Coding example for C
	Coding example for COBOL

	Chapter 8. Message logging and tracing
	Message logging
	Administering data in the system logger stream

	Tracing

	Appendix A. Messages and codes
	Messages
	Condition codes
	SWIFT status codes
	Return codes

	Appendix B. Process flows
	Appendix C. Considerations when implementing authorizationchecking
	Authorization checking SVC routine
	Installation-defined RACF classes
	RACF class definition source
	Generating the ICHRRCDE
	Activating installation-defined classes
	Defining AGH.RS
	Permit a user to access an application resource

	Appendix D. Notices
	Trademarks

	Glossary of terms and abbreviations
	Bibliography
	Index
	Readers’ Comments — We'd Like to Hear from You

