
MERVA for ESA

Diagnosis Guide
Version 4 Release 1

SH12-6382-01

���

MERVA for ESA

Diagnosis Guide
Version 4 Release 1

SH12-6382-01

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix.
Notices” on page 99.

Second Edition, May 2001

This edition applies to Version 4 Release 1 of IBM MERVA for ESA (5648-B29) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Changes to this edition are marked with a vertical bar.

© Copyright International Business Machines Corporation 1987, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book v
Prerequisites for Using This Book v

Chapter 1. The Structure of MERVA ESA 1
The MERVA ESA Nucleus (DSLNUC) 2

Initialization of DSLNUC 2
Processing of DSLNUC 3
Termination of DSLNUC 4
The Queued Call Interface Stub 5

Nucleus Server Shell. 6
Initialization of the Nucleus Server Shell Main
Module 6
Processing of the Nucleus Server Shell Main
Module 6
Request Ready Event Processing (DSLNRRP) . . 7
Posted Program Processing (DSLNPPP) 8
Request Post Processing (DSLNRPP) 8
Service Processed Event Processing (DSLNSPP). . 9
Termination of the Nucleus Server Shell Main
Module 9

Request Queue Handler (DSLNRQH) 9
Queuing Functions 9

MQSeries Queue Handler Program (DSLNMQH) . . 17
MQI Function Processors 17

MQSeries Nucleus Server Program (DSLNMQS) . . 23

Chapter 2. The Structure of the
MERVA ESA Network Links. 25
The Structure of the SWIFT Link 26
The Structure of the Telex Link 28
The Structure of the MERVA Link 29

Chapter 3. MERVA ESA Service Aids 31
MERVA ESA Journaling 31
MERVA ESA Internal Traces. 31
MERVA ESA Processing Trace 31

Layout of a Trace Entry 32
Debugging Traces 50

Debugging Trace for MFS and TOF Services . . 50
Debugging Traces for Nucleus Server
Components 56

MERVA ESA Dump 62
Dump Analysis 62

Operator Messages 64
Status Displays 64

Displaying the ICBs (DICB) 64
Displaying a Specific Request (DR) 68
Displaying Relations to a Specific Request (DRR) 71
Displaying Administration Data for request
queue (RQ) and Nucleus Servers (DRQA) . . . 73

Activate or Deactivate a Debugging Trace
(NTRACE). 75
Query or Change X.25 Trace Flags (XTRACE) . . 79

Service Aids for Intertask Communication 80
Example of the Display from a SHOW DSL0NIC
Command 81
JCL to Run the DSLICBUT Utility 82
Example of a Report from the DSLICBUT Utility 82

Service Aids for Other Components 83

Chapter 4. Abnormal Events 85
Startup Problems 85
End-User Errors 85
Performance Problems 85
Severe Errors 86
What Action to Take 86

If a Transaction Is in a Wait State 86
If a Batch Program Is in a Wait State 86
If the Queue Data Set Is Full 87
If the Journal Data Sets Are Full 87
Problems with the Network Links 87
Problems with the SWIFT Connection 88

Chapter 5. Diagnosing and Reporting
Program Failures 89
Carrying Out the Initial Evaluation 89
Building a Symptom String 92

Step 1: Component-Identifier Keyword 93
Step 2: Type-of-Failure Keyword 93
Step 3: Release-Level Keyword 95
Step 4: Maintenance-Level Procedure 96

Area-of-Failure Keywords 96
Submitting an Authorized Program Analysis Report
(APAR) 98

Appendix. Notices 99
Trademarks 100

Glossary of Terms and Abbreviations 103

Bibliography 115
MERVA ESA Publications 115
MERVA ESA Components Publications 115
Other IBM Publications 115
S.W.I.F.T. Publications 115

Index 117

MERVA Requirement Request 121

© Copyright IBM Corp. 1987, 2001 iii

iv Diagnosis Guide

About This Book

This book is one in a series of books relating to the IBM licensed program Message
Entry and Routing with Interfaces to Various Applications for ESA Version 4
Release 1 (abbreviated to MERVA ESA in this book). It assists IBM customer
engineers and your company’s system programmers in the identification and
correction of problems experienced while using the MERVA ESA program product.

It is a step-by-step guideline on how to diagnose and report MERVA ESA program
failures; if any of the other products used are at fault, refer to the corresponding
manuals.

The bibliography lists other books relevant for MERVA ESA that provide
preparatory or additional information.

Prerequisites for Using This Book
When using this book you should be familiar with MERVA for ESA Concepts and
Components, which describes the functions, services, and utilities supplied. It is
aimed at readers who want to get a general idea of the message concept, queues,
routing, message handling, and the network links.

System programmers using this book should be familiar with:
v MERVA ESA
v The operating system MVS/ESA™, OS/390®, or VSE/ESA™ under which

MERVA ESA is used
v The data communication system IMS™ or CICS® under which MERVA ESA is

used.

Note: The term CICS is used to refer to the CICS/ESA®, CICS TS, and CICS/VSE®

systems. The term IMS is used to refer to IMS/ESA® systems.

© Copyright IBM Corp. 1987, 2001 v

vi Diagnosis Guide

Chapter 1. The Structure of MERVA ESA

MERVA ESA is a message-processing system mainly used in a financial
environment. It enables you to exchange business messages and to carry out
international financial transactions using different network links.

MERVA ESA provides the following network links:
v The SWIFT Link
v The Telex Link
v The MERVA Link
v The MERVA-to-MERVA Financial Message Transfer/ESA

These network communication programs run under the control of MERVA ESA. In
this book, they are referred to individually by name, or collectively as the
MERVA ESA network links. “Chapter 2. The Structure of the MERVA ESA
Network Links” on page 25 describes the structure of each network-link
component.

Figure 1 shows the structure of MERVA ESA. In the following sections information
about the processing of the main components of MERVA ESA is provided. MERVA
for ESA Concepts and Components gives additional information about other
programs and the data sets used in MERVA ESA.

MERVA ESA

Nucleus

DSLNUC

Communication

Nework Links

(such as the

SWIFT Link or

the Telex Link)

Intertask

Communication

End-User Driver

DSLEUD

Hard-Copy

Printer

DSLHCP

Checking and

Expansion

DSLCXT

SDS Batch

Programs

User-Written

Applications

Message Generation and

Handling

Figure 1. MERVA ESA Components

© Copyright IBM Corp. 1987, 2001 1

The MERVA ESA Nucleus (DSLNUC)
Information about the components of the MERVA ESA nucleus can be found in
MERVA for ESA Concepts and Components.

The nucleus is the central processing program of MERVA ESA:
v Under CICS, DSLNUC is a long running CICS transaction, which is started

using the startup transaction program DSLCMO or DSLCAS.
v Under IMS, DSLNUC is an IMS batch message program (BMP), which is started

using MVS™ job control statements.
v Under MVS, DSLNUC can be started as a native batch program using MVS job

control statements.

The services provided by DSLNUC can run in separate tasks.

DSLNUC starts and stops MERVA ESA according to the commands you enter, and
it controls:
v The MERVA ESA command server (DSLNCS), which processes the MERVA ESA

operator commands.
v The MERVA ESA task server (DSLNTS), which provides for communication

between the nucleus and the MERVA ESA applications.
v The communication link programs to external networks like the SWIFT network

or the public telex network.

DSLNUC is the main program of MERVA ESA with the following major functions:
v Initializing MERVA ESA
v Processing of MERVA ESA
v Terminating MERVA ESA, normally and abnormally.

The parallel processing uses the Nucleus Server Shell programs (DSLNSHEL and
DSLNSHEC) as the interface between the nucleus and the services performed by
the nucleus servers running as separate tasks.

The Request Queue Handler (DSLNRQH) is the common component to queue and
schedule service requests created by the nucleus or a nucleus server. Each time a
service is requested, which is not provided by the nucleus or a nucleus server, a
service request must be created for a nucleus server which provides the requested
service.

The following chapters contain diagnostic information that describes the program
flow of the main components of the MERVA ESA nucleus.

Initialization of DSLNUC
The initialization of DSLNUC consists of the following steps:
v Load modules needed by DSLNUC and by the programs link-edited to

DSLNUC
v Allocate storage
v Load the Nucleus Server Table (DSLNSVT) and build a dynamic nucleus server

table in storage
v If request queue services are available:

2 Diagnosis Guide

– Invoke the request queue handler with the INIT function to allocate a Server
Control Block (DSLNSCB) for the nucleus and to establish the request queue
handler environment.

– Initialize the SCB with data for the nucleus.
– Update the Nucleus Server Table (DSLNSVT)

v For all nucleus servers defined in the Nucleus Server Table (DSLNSVT) as
separate tasks:
– Invoke the request queue handler with the INIT function to allocate a Server

Control Block (DSLNSCB) for the nucleus server shell to be attached.
– Initialize the SCB with data for the nucleus server.
– Update the Nucleus Server Table (DSLNSVT).
– Create a separate task for a service by calling:

- DSLNATTA to attach an MVS subtask
- DSLNATTC to start a CICS task.

v Establish the exit for an abnormal end.
v If remote nucleus servers are defined in the nucleus server table, start the

MQSeries® nucleus server (DSLNMQS).
v Initialize the Traffic Reconciliation interface if requested.
v Initialize the MERVA ESA journal and write the MERVA ESA START message to

the journal.
v Initialize the MERVA ESA queue management.
v Initialize the MERVA ESA user file program DSLNUSR.
v Scan the MERVA ESA program table DSLNPTT for programs that should start

automatically when MERVA ESA starts. Programs defined as running as a
separate task will be controlled by the nucleus server shell program and run
independently of DSLNUC.

v The last step depends on the success of the previous steps:
– If all initialization steps are successful, DSLNUC issues the following message

to the MERVA ESA operators:
DSL000A MERVA is ready

MERVA ESA is marked active and DSLNUC enters the processing cycle.
– If one of the initialization steps fails, a dump is taken, and DSLNUC issues

the following message to the MERVA ESA operators:
DSL006A MERVA startup failed in program pgm, RC is rc

Refer to MERVA for ESA Messages and Codes for an explanation of this
message.

Then all successful initializing steps are reset, and DSLNUC terminates.
v Under CICS, DSLCMO or DSLCAS is informed of the result of the DSLNUC

initialization.
v All functions defined with START=AUTO in the function table are automatically

started.

Processing of DSLNUC
In the processing cycle, DSLNUC makes its resources available to all active
programs of the MERVA ESA Nucleus Program Table (DSLNPTT). See
“Initialization of DSLNUC” on page 2 for which programs are contained in
DSLNPTT.

Chapter 1. The Structure of MERVA ESA 3

Each of these programs is defined in DSLNPTT with one or more event control
blocks (ECB). After successful initialization of such a program the ECB addresses
are given to DSLNUC. Posting of such an ECB indicates to DSLNUC that the
relevant program wants to get control to perform its task. Control is given to the
programs according to their priorities defined in DSLNPTT.

A timer service is provided for the programs in DSLNPTT using the MERVA ESA
timer program DSLTIMP.

Termination of DSLNUC
The termination of DSLNUC is caused by one of the following:
v The MERVA ESA operator command terminat or cancel (normal termination)
v The decision of one of the programs link-edited to DSLNUC after an error that

makes it impossible for MERVA ESA to continue running (for example, a queue
management error)

v An abnormal end of one of the programs link-edited to DSLNUC (abnormal
termination)

v An abnormal end of one of the nucleus servers running as a separate task for
DSLNUC (abnormal termination).

Normal Termination
The termination of DSLNUC consists of the following steps:
v Mark MERVA ESA inactive.
v Stop all active programs of DSLNPTT.
v Terminate the MERVA ESA queue management.
v Terminate the MERVA ESA user file program.
v Issue the following message to the MERVA ESA operators:

DSL012I MERVA has been terminated

v Write the MERVA ESA STOP message to the MERVA ESA journal and terminate
the journal.

v Terminate the MQSeries nucleus server if it is active.
v Terminate Traffic Reconciliation if it was started earlier.
v Remove the exit for an abnormal end.
v Terminate subtasks. Scan through all nucleus server table entries and invoke the

request queue handler with the TERM function to free the Server Control Block
(DSLNSCB) for the nucleus server shell to be terminated.

v Wait for all nucleus servers to terminate. If a nucleus server terminates, detach
the subtask (IMS/CICS batch only).

v Invoke the request queue handler with the TERM function to remove the request
queue handler environment.

v Release allocated storage.
v Delete all modules loaded during the initialization of DSLNUC.
v Return control to CICS, IMS, or MVS.

Errors during termination steps are ignored.

Abnormal Termination
Abnormal termination takes place in two cases:
v After an abnormal end of one of the programs link-edited to DSLNUC. Then

CICS or MVS gives control to DSLNUC in the abnormal-end exit. The following
steps are performed in this exit:

4 Diagnosis Guide

– Under MVS batch and IMS, the error information of the System Diagnostic
Work Area (SDWA) of MVS is saved in the storage of DSLNUC at the label
NUCSTAE in order to have it available in the dump. Under CICS, the error
information can be found in the task ABEND control block (DFHTACB) in the
dump.

– Provide a storage dump of the error with the identification 013.
– Issue one of the messages DSL094I or DSL095I to the MERVA ESA operators.

Refer to MERVA for ESA Messages and Codes for an explanation of these
messages.

v After an abnormal end of one of the subtasks of DSLNUC.
– The abnormal-end exit of the nucleus server shell produces a storage dump of

the error.
– Issue one of the messages DSL385I or DSL386I to the MERVA ESA operators.

Refer to MERVA for ESA Messages and Codes for an explanation of these
messages.

After the abnormal termination event is handled, a normal termination is tried.

The Queued Call Interface Stub
All calls for nucleus services are diverted to a stub code area in the nucleus server
table entry. When the caller and the nucleus server run in the same task, a direct
call is executed. When parallel processing is used and the caller of a service runs in
a different task from the nucleus server, the request queue handler interface
DSLNRQH is used. A request is added to the queue of the nucleus server and its
Request Ready (RR) ECB is posted.

If the invoker specified synchronous request processing, the queued call interface
stub waits on the Request Processed (RP) ECB to be posted and passes back the
results to the caller which resumes processing.

If the invoker specified asynchronous request processing, the queued call interface
stub does not wait until the created request has finished. Instead, a control element
is created. This control element contains the address of the added RCE returned by
the request queue handler. The caller resumes processing immediately.

When parallel processing is used and the caller of a service runs in a different
system from the nucleus server, the created service request is routed to the request
queue of the MQSeries DSLNMQS.

Chapter 1. The Structure of MERVA ESA 5

Nucleus Server Shell
The following applies to both modules DSLNSHEL and DSLNSHEC.

Initialization of the Nucleus Server Shell Main Module
The initialization of the nucleus server shell consists of the following steps:
v Establish the nucleus server shell error recovery environment.
v Allocate the ECB pointer list for this nucleus server.
v Call DSLTIMP to establish the timer environment and initialize it.
v Initialize the ECB pointer list by filling it with addresses known and needed at

the beginning:
– The termination ECB
– The DSLTIMP timer ECB
– The Request Ready ECB.

v Signal the Nucleus server Ready event to the maintask (DSLNUC).

Processing of the Nucleus Server Shell Main Module
Processing of the nucleus server shell is event driven. The following steps are
executed in a loop until termination is requested or an error occurred:
v Request DSLTIMP timer service. If the nucleus server shell runs under CICS,

update ECB pointer list with the new address of the DSLTIMP ECB.
v Wait until any of the following events occurs:

– Nucleus server termination
– DSLTIMP timer expiration
– Request processed
– Service processed
– Posted program
– Request ready.

v Examine the event list for posted ECBs in the following order and invoke the
appropriate processing:
– If the termination ECB is posted by the maintask DSLNUC, leave the loop

and return.
– If the DSLTIMP timer expiration ECB is posted, post all started programs as

listed in the nucleus program table.
– If the Service Processed (SP) ECB is posted, the service previously invoked

when processing the Request Ready event has finished. This event is signaled
by the Request Post Processing module DSLNRPP. Invoke the Service
Processed event processor DSLNSPP.

– If the Request Processed (RP) ECB is posted, the service invoked during
Request Ready processing has subsequently created another service request
asynchronously, which has completed. The Request Post Processor DSLNRPP
is invoked.

– If a program defined in the nucleus program table is posted, invoke the
Posted Program event processor DSLNPPP.

– If the Request Ready (RR) ECB is posted, another nucleus server has added a
request to the request queue of this nucleus server for being processed. The
Request Ready event processor DSLNRRP is invoked.

6 Diagnosis Guide

Request Ready Event Processing (DSLNRRP)
The following steps are executed in a loop until no more service requests are on
the request queue for this nucleus server:
v Obtain a service request from the request queue.
v Find the address of the entry in the nucleus server table pertaining to the

services of this nucleus server.
v Reserve an address in the ECB pointer list for the Service Processed event.
v Reserve an address in the ECB pointer list for the Request Processed event.
v Check for the request type and invoke the appropriate subroutine:

– If the entry in the nucleus server table for this nucleus server specifies to
process a program specified in the nucleus program table and:
- If it is a start request, invoke module DSLNSNPT. On return, update the

ECB pointer list with the ECB addresses returned. Copy the addresses into
the appropriate NPT entry.

- If it is a stop request, invoke module DSLNPNPT. On return, remove
addresses no longer used from the ECB pointer list.

– If the entry in the nucleus server table for this nucleus server specifies to
process a nucleus task service, invoke module DSLNNTS.

– If the entry in the nucleus server table for this nucleus server specifies to
process a command, invoke module DSLNNCS.

v Update the parameters with the condition code.

Start an Application Program Link-Edited to DSLNUC
(DSLNSNPT)
The following steps are executed in sequence:
v Look up the nucleus server table if the requested program is defined there. If

this is the case, invoke the program with a start request either via the low-level
or high-level call interface, depending on the parameter specified in the NPT
entry.

v On return, the Request Post Processor (DSLNRPP) is invoked.

Stop an Application Program Link-Edited to DSLNUC
(DSLNPNPT)
The following steps are executed in sequence:
v Look up the nucleus server table if the requested program is defined there. If

this is the case, invoke the program with a stop request either via the low-level
or high-level call interface, depending on the parameter specified in the NPT
entry.

v On return, the Request Post Processor (DSLNRPP) is invoked.

Invoke a Central Service
The following steps are executed in sequence:
v Look up the nucleus server table if the requested service is defined there. If this

is the case, invoke the central service via the low-level call interface.
v If the requested service specifies the MQSeries program (DSLNMQS), the

nucleus server table specifies routing to another system within the sysplex.
DSLNMQS is invoked via the low-level call interface. The service request with
the parameters and data is passed for being transferred using the interservice
communication.

v On return, the Request Post Processor (DSLNRPP) is invoked.

Chapter 1. The Structure of MERVA ESA 7

Invoke a Command Execution Routine (DSLNNCS)
The following steps are executed in sequence:
v Look up the nucleus server table if the requested command execution module is

defined there. If this is the case, invoke it via the low-level call interface.
v If the requested command specifies the MQSeries program (DSLNMQS), the

nucleus server table specifies routing to another system within the sysplex.
DSLNMQS is invoked via the low-level call interface. The service request with
the parameters and data is passed for being transferred using the interservice
communication. Set the processing mode for special processing.

v On return, the Request Post Processor (DSLNRPP) is invoked.

Posted Program Processing (DSLNPPP)
Each time an ECB of a nucleus server is posted, this processor is invoked to
perform the following actions:
v Identify the appropriate entry in the nucleus server table with the posted

program ECB.
v Find the program associated with the identified entry in the nucleus server table.
v Invoke the program with an ECB request either via the low-level or high-level

call interface, depending on the parameter specified in the NPT entry.
v If the invoked service returned with an error, issue an operator message.
v Update the parameters with the condition code.
v Update the nucleus server shell ECB list with the updated list from DSLNPTT.
v If DSLNPPP runs in the nucleus server shell of the MQSeries nucleus server

program (DSLNMQS), and if it acts as a responder, invoke the request
post-processor (DSLNRPP) with a processing mode for special processing.

Request Post Processing (DSLNRPP)
This program is invoked by the nucleus server shell each time a service request
returns control after being processed synchronously. In the case of the MQSeries
nucleus server, this program is also invoked when completed as a posted NPT
program. It is also invoked by the nucleus server shell following a Request
Processed (RP) event. This is the case after a subsequently invoked service was
invoked asynchronously and has completed.

The following steps are executed in sequence:
v If nucleus server shell of the MQSeries nucleus server and special processing is

indicated in the RP ECB post code:
– Address the service request via the control element (CE) and update the RCE

with service return code, parm and buffer address, and invoke DSLNMQS to
create an asynchronous request response message.

– Clear the Request Processed (RP) ECB and its address in the nucleus server’s
ECB pointer list.

– Compress the ECB pointer list.
– Signal the Service Processed (SP) event to the nucleus server shell main

module. Forward the post code which determined RP processing to the SP
ECB.

– Delete the service request asynchronously created by DSLNMQS.
– Free the dynamic RCE created by DSLNMQS.

v Otherwise

8 Diagnosis Guide

– Notify the request queue handler that the obtained service request has
finished processing.

– Signal the Service Processed (SP) event to the nucleus server shell main
module. Forward the post code which determined RP processing to the SP
ECB.

Service Processed Event Processing (DSLNSPP)
The following steps are executed in sequence:
v If no special processing is indicated in the SP ECB post code, find out if there is

a parent request to signal for a Request Processed (RP) event. If there is one,
post the associated Request Processed (RP) ECB pointed to by the parent
request.

v Clear the Service Processed (SP) ECB and its address in the nucleus server’s ECB
pointer list.

v Compress the ECB pointer list.
v If this nucleus server has subsequently added a request that is still in the

finished state, delete the request.

Termination of the Nucleus Server Shell Main Module
The termination of the nucleus server shell consists of the following steps:
v Call DSLTIMP to terminate the timers and to remove the timer environment.
v Remove the nucleus server shell error recovery environment.

Request Queue Handler (DSLNRQH)
The request queue handler consists of the following modules:

DSLNRQH Is the request queue handler main module. It analyzes the
parameters passed and invokes the appropriate queuing function
processors. It consists also of the INIT and TERM request queue
handler services.

DSLNRQHA ADD queuing function processor

DSLNRQHO OBTAIN queuing function processor

DSLNRQHN NOTIFY queuing function processor

DSLNRQHD DELETE queuing function processor

DSLNRQHQ QUERY queuing function processor. It processes the:
v Administration query of the request queue and the nucleus

servers
v Single query of a specific service request
v Multiple query of relations to a specific request.

DSLNRQHP PURGE queuing function processor

DSLNRQHR REQUEUE queuing function processor

DSLNRQHG GETNEXT queuing function processor

Queuing Functions
Queuing functions can be invoked by calling the address stored in the field
COMRQHPA in the DSLCOM, passing the parameters as described below. There
are two types of queuing functions:

Chapter 1. The Structure of MERVA ESA 9

v Queuing functions that rely on the rules of the finite state machine:
– ADD
– OBTAIN
– NOTIFY
– DELETE

Any service that requests a subsequent service automatically invokes the ADD
queuing function if the nucleus server does not provide it. The nucleus server
which invoked the ADD queuing function must also invoke the DELETE
queuing function to remove the created service request from the request queue.
A nucleus server which was signaled that a service request is ready on its
request queue for being processed invokes the OBTAIN queuing function and
then processes the services as described in this request.

After processing of the requested service is finished, the nucleus server must
invoke the NOTIFY queuing function to update the request queue and signal the
Service Processed event.

For each single service request this sequence must be followed. Any sequence
violation will be notified and the requested queuing function will not be
performed.

v Queuing functions that bypass the finite state machine rules:
– PURGE - to delete a service request regardless of its state
– GETNEXT - to obtain the next service request in the request queue
– REQUEUE - to put an eligible service request back to the end of the chain for

waiting requests.

Additionally, there are three different QUERY functions to process data for new
display commands:
– QRYS to query a specific request
– QRYM to query relations of a specific request
– QRYA to query administrative information about the request queue and the

nucleus servers.

Queuing Functions Governed by the Finite State Machine Rules

ADD queuing function: This function can only be invoked by the queued call
subroutine when the service call interface detects that the requested service is not
provided by the nucleus server which currently processes a service request. Instead
this queuing function is submitted to create a service request for another nucleus
server which then should provide the requested service.

The following parameters must be specified:

parm1 ADD - the verb to request the ADD queuing function. Specification of this
parameter is mandatory.

parm2 Pointer to the Server Control Block (DSLNSCB) of the nucleus server
which should process the service request to be added. Specification of this
parameter is mandatory.

parm3 Address of the user data area. The user data area contains the name of the
nucleus server which has to obtain the service request, and the service call
register values. This area is used by the nucleus server shell of the
obtaining nucleus server as calling parameters when invoking the
requested service. This is a mandatory parameter.

10 Diagnosis Guide

parm4 Pointer to the Request Processed (RP) ECB. Specification of this parameter
is optional. However, it must be specified if an ECB other than the one in
the RCE should be used.

parm5 Pointer to the Request Control Element (DSLNRCE) in the request queue
which is currently processed by the nucleus server that adds the new
service request. Specification of this parameter is optional. If specified, it
allows to determine the request creation sequence. Otherwise, the display
related request command (DRR) will contain no data.

parm6 Address returned by the request queue handler for the Request Control
Element (DSLNRCE added in the request queue. It is needed to delete and
query the added service request.

The processing is as follows:
v Access the SCB whose address is passed.
v Access the nucleus servers request queue and Request Queue Vector Table

(DSLNRQVT), which are anchored in the SCB.
v Select first element from element chain in the common free element pool.
v Remove selected element from the free element chain and rechain.
v Insert selected element into the chain of waiting service requests.
v Build the request relationships and set the request processing type.
v Create Request Control Element (DSLNRCE by filling it with the request data,

control information, and the time when the request was added.
v Signal the Request Ready event to the nucleus server which should obtain and

process this request.
v Return address of RCE.

OBTAIN queuing function: This function is invoked by the nucleus or nucleus
server after it receives a signal from the request queue handler that a service
request is on its request queue.

The following parameters must be specified:

parm1 OBTAIN - verb to request the OBTAIN queuing function. Specification of
this parameter is mandatory.

parm2 Pointer to the SCB of the nucleus server which received the Request Ready
signal. Specification of this parameter is mandatory.

parm3 Pointer to a specific RCE. A nucleus server may have the need to obtain a
specific request. Specification of this parameter is optional.

parm4 Address returned by the request queue handler for the Request Control
Element (DSLNRCE obtained from the request queue. It is needed to notify
the request queue when the service request has finished processing.

The processing is as follows:
v Access the SCB whose address is passed.
v Access the nucleus servers request queue and RQVT which are anchored in the

SCB.
v Select the most eligible request in the request queue by scanning all chains of

waiting requests according to their priority, starting from the highest (9) to the
lowest (0) priority.

v Remove selected element from the chain of waiting requests and rechain it.
v Insert selected element into the chain of active requests.

Chapter 1. The Structure of MERVA ESA 11

v Update selected RCE with control information and the time it was obtained.
Return address of the selected request.

NOTIFY queuing function: This function must be invoked by the issuer of the
OBTAIN queuing function after the service request has completely finished
processing. This includes the wait for subsequently added requests.

The following parameters must be specified:

parm1 NOTIFY - verb to request the NOTIFY queuing function. Specification of
this parameter is mandatory.

parm2 Pointer to the RCB which was obtained and processed by the nucleus
server. Specification of this parameter is mandatory.

The processing is as follows:
v Examine the RCE whose address is passed and extract the SCB address of the

nucleus server owning the request queue.
v Access the nucleus servers request queue and RQVT which are anchored in the

SCB.
v Select the element with the RCE address passed.
v Remove selected element from the chain of active requests and rechain it.
v Insert selected element into the chain of finished requests.
v Update selected RCE with control information and the time it was finished.

DELETE queuing function: This function must be invoked by the issuer of the
ADD queuing function after the Service Processed event is signaled. This includes
the wait for subsequently added requests.

The following parameters must be specified:

parm1 DELETE - verb to request the DELETE queuing function. Specification of
this parameter is mandatory.

parm2 Pointer to the RCB to be deleted. Specification of this parameter is
mandatory.

The processing is as follows:
v Examine the RCE whose address is passed and extract the SCB address of the

nucleus server owning the request queue.
v Access the nucleus servers request queue and RQVT which are anchored in the

SCB.
v Select the element with the RCE address to be deleted.
v Remove the selected element from the chain of finished requests and rechain it.
v Insert selected element into the chain of free elements in the free element pool.
v Update the request relationships.
v Update the selected RCE with control information and the time it was deleted.

Queuing Functions Bypassing the Finite State Machine Rules

QUERY administrative information about the request queue and nucleus
servers: This function can be invoked to query administrative request queue and
nucleus server data. It is invoked by module DSLNDRQA which processes the
appropriate display command.

12 Diagnosis Guide

The following parameters must be specified:

parm1 QRYA - verb to request the administrative QUERY function. Specification
of this parameter is mandatory.

parm2 Reserved.

parm3 Address of the SCB of the nucleus server which issues the administrative
query function. Specification of this parameter is mandatory.

parm4 Address of the request area. This storage area is provided by the caller to
hold the data returned by the administrative query function. Specification
of this parameter is mandatory.

The processing is as follows:
v Access the Server Maintask Block (DSLNSMB) for common static request queue

and nucleus server data.
v Loop through all SCBs and access anchored RQVTs to collect actual request

queue and nucleus server data.
v Store the data into the area provided by the caller.

QUERY information about a specific service request: This function can be
invoked to query a specific service request. It is invoked by module DSLNDR
which processes the appropriate display command.

The following parameters must be specified:

parm1 QRYS - verb to request the single request QUERY function. Specification of
this parameter is mandatory.

parm2 Address of the RCE representing the service request to query. Specification
of this parameter is mandatory.

parm3 Address of the SCB of the nucleus server which issues the query function
for a specific request. Specification of this parameter is mandatory.

parm4 Address of the storage area provided by the caller to hold the data (the
RCE) returned by the specific request query function. Specification of this
parameter is mandatory.

The processing is as follows:
v Access the SCB of the calling nucleus server.
v Access the request queue.
v Access the service request directly by the address passed in parm2.
v Store the RCE into the area provided by the caller.

QUERY information about relations of a specific service request: This function
can be invoked to query relations of a specific service request. It is invoked by
module DSLNDRR, which processes the appropriate display command.

The following parameters must be specified:

parm1 QRYM - verb to request the multiple request QUERY function.
Specification of this parameter is mandatory.

parm2 Address of the RCE representing the service request whose relationship is
to be queried Specification of this parameter is mandatory.

parm3 Address of the SCB of the nucleus server which issues the query function
for a specific request. Specification of this parameter is mandatory.

Chapter 1. The Structure of MERVA ESA 13

parm4 Address of the storage area provided by the caller to hold the data
returned by the specific request query function. Specification of this
parameter is mandatory.

The processing is as follows:
v Access the SCB of the calling nucleus server.
v Access the request queue.
v Access the service request directly by the address passed in parm2.
v Scan the requests parent chain until the highest request is found.
v Scan the child chain until the lowest request is found. If a request has a brother,

scan this chain until the lowest request is found. For each request found, extract
data from the RCE and store it in the request area provided by the caller.

PURGE queuing function: This function is a service that allows to purge a
service request. In contrast to the DELETE function, the rules of the finite state
machine are bypassed; the RCE is moved from the current request queue into the
chain of free elements.

The following parameters must be specified:

parm1 PURGE - verb to request the PURGE queuing function. Specification of this
parameter is mandatory.

parm2 Pointer to the RCE to be purged. Specification of this parameter is
mandatory.

The processing is as follows:
v Examine the RCE whose address is passed and extract the SCB address of the

nucleus server owning the request queue.
v Access the nucleus servers request queue and RQVT which are anchored in the

SCB.
v Select the element with the RCE address to be purged.
v Depending on the request state:

– If waiting, remove selected element from the chain of waiting requests and
rechain it.

– If active, remove selected element from the chain of active requests and
rechain it.

– If finished, remove selected element from the chain of finished requests and
rechain it.

v Insert selected element into the chain of free elements in the free element pool.
v Update the request relationships.
v Update selected RCE with control information and the time it was purged.

REQUEUE queuing function: This function is a service that can be invoked in
the case DSLNUC or a nucleus server receives the Request Ready signal but is not
yet able to obtain this service request. Instead it requests to suspend the processing
until it is ready.

The following parameters must be specified:

parm1 REQUEUE - verb to request the REQUEUE queuing function. Specification
of this parameter is mandatory.

14 Diagnosis Guide

parm2 SCB pointer of the nucleus server which requests the REQUEUE function.
Specification of this parameter is mandatory.

parm3 Pointer to the RCE of the service request to be requeued. Specification of
this parameter is mandatory.

The processing is as follows:
v Examine the RCE whose address is passed and extract the SCB address of the

nucleus server owning the request queue.
v Access the nucleus servers request queue and RQVT which are anchored in the

SCB.
v Access the specified request and check if it is still waiting.
v Remove selected element from the chain of waiting requests and rechain it.
v Insert selected element into the back of the chain of waiting requests.
v Update selected RCE with control information and the time it was requeued.
v Signal the Request Ready event to the nucleus server which should obtain and

process this request.

GETNEXT queuing function: This function is a service that can be invoked to
obtain the service request which is the next in the request queue.

The following parameters must be specified:

parm1 GETNEXT - verb to request the GETNEXT queuing function. Specification
of this parameter is mandatory.

parm2 Pointer to the SCB of the nucleus server which requests the GETNEXT
function. Specification of this parameter is mandatory.

parm3 Pointer to the previous RCE of the service request. Specification of this
parameter is mandatory.

parm4 Address returned by the request queue handler for the Request Control
Element (DSLNRCE next in the waiting request queue. This address can be
used to obtain a specific service request.

The processing is as follows:
v Examine the RCE whose address is passed and extract the SCB address of the

nucleus server owning the request queue.
v Access the nucleus servers request queue and RQVT which are anchored in the

SCB.
v Access the specified request and check if it is still waiting.
v Access the next request in the waiting request queue.
v Return the address of the RCE.

Additional Services

INITIALIZE the request queue handler environment for a nucleus server:
During startup, the nucleus also initializes the nucleus server and request queue
handler environments. The Server Maintask Block (DSLNSMB) is allocated if the
nucleus server table could be loaded. The entry definitions of the NSVT are
scanned and analyzed. For the main task (the nucleus) and for each main entry in
the nucleus server table where a nucleus server is defined as a separate task this
function invoked.

The following parameters must be specified:

Chapter 1. The Structure of MERVA ESA 15

parm1 INIT - verb to request the INIT service. Specification of this parameter is
mandatory.

parm2 Pointer to the allocated SMB. Specification of this parameter is mandatory.

parm3 Address where the nucleus has stored the total amount of request queue
elements. Specification of this parameter is mandatory.

parm4 Address where the nucleus has stored the number to be assigned to the
nucleus server. Specification of this parameter is mandatory.

parm5 Address returned by the request queue handler where the nucleus servers
SCB has been allocated. Specification of this parameter is mandatory to
address a nucleus server via the SCB.

The processing is as follows:
v Allocate the Server Control Block (DSLNSCB) and initialize it. All SCBs are

chained in the sequence of their allocation. Thus, the first SCB in chain is always
the one for the nucleus, which has the number zero.

v Allocate the Request Queue Vector Table (DSLNRQVT) for this nucleus server,
anchor it in the SCB, and initialize it.

v Calculate the size of the common free element pool using the number addressed
in parm3, allocate the storage, and initialize it by chaining the elements and
assigning contiguous request numbers in ascending order. Update the SCB.

v Return the nucleus server number.

TERMINATE the request queue handler environment for a nucleus server:
During termination, the nucleus removes the nucleus server and request queue
handler environments. Each time the termination service is invoked, the SCB,
whose address is passed, is analyzed, all request queues of all nucleus servers are
scanned to free possible allocated areas anchored in an RCE, and to free the RQVT,
the request queue, and the SCB. After all environments are terminated, the nucleus
can free the SMB.

The following parameters must be specified:

parm1 TERM - verb to request the TERM service. Specification of this parameter
is mandatory.

parm2 Pointer to the allocated SMB. Specification of this parameter is mandatory.

parm3 Address where the nucleus has stored the total amount of request queue
elements. Specification of this parameter is mandatory.

parm4 Address where the nucleus has stored the number assigned to the nucleus
server. Specification of this parameter is mandatory.

The processing is as follows:
v Access the SCB whose address and number is passed.
v Access the RQVT for this nucleus server.
v Scan all chains and check RCEs if there is an address of a request area that is not

yet freed. Free the area.
v Free storage of the RQVT anchored to the SCB.
v If the SCB is for the nucleus, then free the storage of the request queue.
v Remove the SCB from the chain and free its storage.

16 Diagnosis Guide

MQSeries Queue Handler Program (DSLNMQH)
The MQSeries queue handler has the purpose to allow requesting MQSeries
functions without having a need to know about the various control blocks of the
message queuing interface (MQI), the application program interface of MQSeries.
The MQSeries queue handler provides only the interface for a function subset of
MQI which is needed by MERVA ESA.

The MQSeries queue handler consists of the following modules:

DSLNMQH The MQSeries queue handler main module. It analyzes the
parameters passed and invokes the function processors for MQI
requests.

DSLNMQHC MQCONN function processor

DSLNMQHO MQOPEN function processor

DSLNMQHQ MQINQ function processor

DSLNMQHS MQSIGNAL function processor

DSLNMQHG MQGET function processor

DSLNMQHP MQPUT function processor

DSLNMQHL MQCLOSE function processor

DSLNMQHD MQDISC function processor

The following functions are specific:

DSLNMQHI INIT function processor

DSLNMQHT TERM function processor

MQI Function Processors

MQCONN Function Processor
This function processor allows to connect to the local message queue manager
(MQM).

The following parameters must be specified:

Input parameters:

parm1 NMQTCONN - the verb to request the MQCONN MQI function.
Specification of this parameter is mandatory.

parm2 MQMNM - the name of the local message queue manager (MQM).
Specification of this parameter is mandatory.

Output parameter:

parm3 The returned connection handle.

Processing is as follows:
v Take the MQMNM value and call MQCONN.
v Store the returned connection handle in CHNDL.
v Return completion and reason code.

Chapter 1. The Structure of MERVA ESA 17

INIT Function Processor
This function processor initializes a message queue. It opens the message queue
and inquires its attributes if local, creates the necessary storage areas and chains
them. The address of this storage area is returned as a storage handle.

The following parameters must be specified:

Input parameters:

parm1 NMQTINIT - the verb to request the INIT function. Specification of this
parameter is mandatory.

parm2 CHNDL - the connection handle as returned from MQCONN. Specification
of this parameter is mandatory.

parm3 RMTQMGRNAMP - address of the locally defined name of the remote
MQM.

parm4 QNAMEP - address of the locally defined name of a normal message
queue or of a model queue.

parm5 DYNQNAMP - address of the dynamic message queue name if the name
specified in QNAMEP is a model queue.

parm6 QTYP - message queue type:

NMQTRCV specifies the local receive queue

NMQTRTQ specifies the local reply-to queue

NMQTSND specifies the local send queue

NMQTRMT specifies a remote queue

Specification of this parameter is mandatory.

parm7 WAITINTVL - response wait time interval

parm8 RTQ_STORP - address of local reply-to queue data area

parm9 RTQ_ECBP - address of ECB to be posted by MQSeries to signal message
arrival.

Output parameters:

parm10
STORP - the storage handle for the initialized message queue.

parm11
MAXQL - the maximum message length of the local reply-to queue.

Processing is as follows:
v Set up MQSeries environment for a message queue:

– Allocate storage for the object descriptor, message descriptor, message
options, and inquiry values.

– Initialize the object descriptor with the local MQM name and the name of the
message queue.

– Initialize the message descriptor with the name of the local MQM and
reply-to queue names if for a send queue.

– Initialize the message options with the specified wait interval. If an event is to
be signaled by MQSeries if a message arrives on the queue, the appropriate
ECB address is set.

18 Diagnosis Guide

v Save the connection handle in the object descriptor.
v If no remote queue:

– Open the message queue for inquiry by calling DSLNMQHO.
– Inquire the message queue attributes by calling DSLNMQHQ:

- The maximum message length the queue can handle
- The queue type
- The queue shareability.

Store the values into the inquiry parm block.
– Close the message queue for inquiry by calling DSLNMQHL.

v Open the message queue for the next operation. The local receive queue and the
local reply-to queue are opened for get, the local send/receive queue or the
remote send queue are opened for put.

v Set up the output parameters.
v Return completion and reason code.

MQOPEN Function Processor
This function processor allows to open MQSeries objects such as message queues.

The following parameters must be specified:

Input parameter:

parm1 NMQTOPEN - the verb to request the MQOPEN MQI function.
Specification of this parameter is mandatory. STORP - the storage handle as
returned by INIT. Specification of this parameter is mandatory.

Output parameter:

parm3 The returned object handle.

Processing is as follows:
v Take the STORP value and address the object descriptor and the option

descriptor.
v Retrieve the stored connection handle, object descriptor and open options, and

call MQOPEN.
v Store the returned connection handle in CHNDL.
v Return completion and reason code.

MQINQ Function Processor
This function processor allows to inquire the attributes of a local message queue.

The following parameters must be specified:

Input parameters:

parm1 NMQTINQ - the verb to request the MQINQ MQI function. Specification
of this parameter is mandatory.

parm2 STORP - the storage handle as returned by INIT. Specification of this
parameter is mandatory.

This function returns no output parameters.

Processing is as follows:

Chapter 1. The Structure of MERVA ESA 19

v Take the STORP value and address the object descriptor and the option
descriptor.

v Retrieve the stored connection handle, object descriptor, open options and
inquiry selectors, and call MQINQ.

v Store the returned selector attributes in the MQINQ control block.
v Return completion and reason code.

MQPUT Function Processor
This function processor allows to store a complete message regardless of its size
onto a queue opened for put.

The following parameters must be specified:

Input parameters:

parm1 NMQTPUT - the verb to request the MQPUT MQI function. Specification
of this parameter is mandatory.

parm2 STORP - the storage handle as returned by INIT. Specification of this
parameter is mandatory.

parm3 BUFLN - length of available message buffer.

parm4 BUFFP - address of available message buffer.

parm5 FORMP - address of the format indicator as received.

parm6 RMTQS - maximum message length of remote queue.

Processing is as follows:
v Initialize the message ID and correlation ID.
v Set message type and message format, and request an exception report in the

message descriptor.
v Determine the total message length and store it into the message header.
v If the data buffer to send is greater than the maximum queue size, the data is

sent in segments. Loop until all segments are sent:
– Determine segment size and segment address in data buffer.
– Determine segment sequence number and put it into the message descriptor

as application identity. Put it also into the message header.
– Put the data onto the send queue by calling MQPUT.

Otherwise put the available data buffer onto the send queue by calling MQPUT.
v Return completion and reason code.

MQGET Function Processor
This function processor allows to retrieve a complete message regardless of its size
from a queue opened for get.

The following parameters must be specified:

Input parameters:

parm1 NMQTGET - the verb to request the MQGET MQI function. Specification
of this parameter is mandatory.

parm2 STORP - the storage handle as returned by INIT. Specification of this
parameter is mandatory.

20 Diagnosis Guide

Input/Output parameters:

parm3 BUFLN - length of available message buffer. If too small, the new length is
returned.

parm4 BUFFP - address of available message buffer. If too small, the new address
is returned.

Output parameters:

parm5 DLEN - length of received data in message buffer.

parm6 RTQP - address of remote reply-to queue name as provided by the local
MQM.

parm7 RTMP - address of remote MQM name which manages the remote reply-to
queue.

parm7 FORMP - address of the format indicator as received.

Processing is as follows:
v Set message ID and correlation ID to accept all messages.
v Set get message options to wait for a message, no syncpoint processing, and fail

if queue manager is quiescing.
v Loop until end of data:

– Retrieve data from the queue by calling MQGET.
– If the total message length as indicated in the message header is greater than

the available get message buffer:
- Allocate a new get message buffer in the required length.
- Copy the already received data into the new message buffer.

– If the total message length is greater than the maximum queue size, the data
is received in segments.

v Return sender’s reply-to queue name and MQM name.
v Return received data length and message format.
v Return completion and reason code.

MQSIGNAL Function Processor
This function processor allows MQSeries to set a signal if a message arrives on a
queue opened for get. However, if a message is already on the queue, it is
retrieved regardless of its size.

The following parameters must be specified:

Input parameters:

parm1 NMQTSIG - the verb to request the MQSIGNAL MQI function.
Specification of this parameter is mandatory.

parm2 STORP - the storage handle as returned by INIT. Specification of this
parameter is mandatory.

Input/Output parameters:

parm3 BUFLN - length of available message buffer. If too small, the new length is
returned.

parm4 BUFFP - address of available message buffer. If too small, the new address
is returned.

Chapter 1. The Structure of MERVA ESA 21

Output parameters:

parm5 DLEN - length of received data in message buffer

parm6 RTQP - address of remote reply-to queue name as provided by the local
MQM.

parm7 RTMP - address of remote MQM name which manages the remote reply-to
queue.

parm7 FORMP - address of the format indicator as received.

Processing is as follows:
v Set message ID and correlation ID to accept all messages.
v Set get message options to set a signal, no syncpoint processing, and fail if

queue manager is quiescing.
v Loop until end of data:

– Retrieve data from the queue by calling MQGET.
– If the total message length as indicated in the message header is greater than

the available get message buffer:
- Allocate a new get message buffer in the required length.
- Copy the already received data into the new message buffer.

– If the total message length is greater than the maximum queue size, the data
is received in segments.

v Return sender’s reply-to queue name and MQM name.
v Return received data length and message format.
v Return completion and reason code.

TERM Function Processor
This function processor terminates a message queue. It closes the message queue
and frees the storage areas created during INIT.

The following parameters must be specified:

Input parameters:

parm1 NMQTTERM - the verb to request the TERM function. Specification of this
parameter is mandatory.

parm2 STORP - the storage handle as returned by INIT. Specification of this
parameter is mandatory.

Processing is as follows:
v Take the MQMNM value and call MQCMIT.
v Return completion and reason code.

MQCLOSE Function Processor
This function processor allows to close MQSeries objects such as message queues.

The following parameters must be specified:

Input parameters:

parm1 NMQTCLOSE - the verb to request the MQCLOSE MQI function.
Specification of this parameter is mandatory.

22 Diagnosis Guide

parm2 STORP - the storage handle as returned by INIT. Specification of this
parameter is mandatory.

Processing is as follows:
v Take the STORP value and address the object descriptor and the option

descriptor.
v Retrieve the stored connection handle, object descriptor and close options, and

call MQCLOSE.
v Return completion and reason code.

MQDISC Function Processor
This function processor allows to disconnect from the local message queue
manager (MQM).

The following parameter must be specified:

Input parameter:

parm1 NMQTDISC - the verb to request the MQDISC MQI function. Specification
of this parameter is mandatory. CHNDL - the connection handle as
returned from MQCONN. Specification of this parameter is mandatory.

Processing is as follows:
v Take the CHNDL value and call MQDISC.
v Return completion and reason code.

MQSeries Nucleus Server Program (DSLNMQS)
The MQSeries nucleus server is invoked by the queued call stub in the case a
requested service is available on another system within a sysplex.

The MQSeries nucleus server is special in several ways:
v It is invoked only if interservice communication is specified in the MERVA ESA

customization parameter module DSLPRM.
v It must run as a subtask and must therefore be specified in the nucleus server

table.
v It is activated by the nucleus (DSLNUC) before any other service.
v On the requesting side it performs request processing, on the responding side it

performs event processing. The requesting and the responding side act as one
entity. They communicate via the MQSeries queue handler using an internal
protocol.

v Its nucleus server shell forces asynchronous request processing to avoid
deadlock situations.

For a requesting or responding service it is completely transparent if the request
transfer is conducted by the MQSeries nucleus server. However, elapsed time
increases if MQSeries does not fully exploit the capabilities of a parallel sysplex.

Chapter 1. The Structure of MERVA ESA 23

24 Diagnosis Guide

Chapter 2. The Structure of the MERVA ESA Network Links

MERVA ESA can connect to external and internal networks using the following
network links:
v The SWIFT Link can link to the SWIFT network. The connection to the SWIFT

network via X.25 uses the separate product MERVA Extended Connectivity
running on a 37xx controller under ACF/NCP.

v The Telex Link allows for linking to the public telex network. There are two
ways to do that:
– Telex Link via the workstation
– Telex Link via a fault-tolerant front-end system

v The MERVA Link can connect different MERVA installations.

This chapter summarizes the structure of each network component. For more
information refer to MERVA for ESA Concepts and Components.

© Copyright IBM Corp. 1987, 2001 25

The Structure of the SWIFT Link
The SWIFT Link is the component of MERVA ESA that provides the link between
MERVA ESA and the SWIFT network. The SWIFT Link supports X.25 connections
to the SWIFT network.

Figure 2 shows the basic structure of the SWIFT Link for the SWIFT network.

The main program of the SWIFT Link is the General Purpose Application program
DWSDGPA. It is controlled by the MERVA ESA nucleus program DSLNUC via the
nucleus program table DSLNPTT. It is possible to define the server program
DWSDGPA more than once in the nucleus program table. This allows the use of
several SWIFT Link servers in parallel. Each server has its own logical terminal
table (DWSLTTx). Obviously, multiple servers must run as subtasks using the
parallel processing feature of MERVA ESA to improve the throughput of the

Figure 2. The SWIFT Link Structure

26 Diagnosis Guide

SWIFT Link. The access to the authentication support is serialized through
enqueue and dequeue functions provided by system services.

For each line to the SWIFT network, a subtask is attached with the main program
DWSNAEVV for X.25. This program controls the layers defined by SWIFT:
v Logical terminal control (LTC, programs DWSNLTCx)
v Application control (APC, programs DWSNAPCx)
v Financial application (FIN, program DWSNFIN)
v Application interface (DWSNAIST)
v Transport layer (DWST....)
v Link layer (DWSNLNK).

DWSNLNK calls the X.25 specific program DWSNLNKV that accesses the X.25 line
to the SWIFT network via the VTAM® control program DWSVTMLC, which
communicates with the program MERVA Extended Connectivity running on a 37xx
controller.

The Authenticator-Key File, which is used in the authentication of SWIFT
messages, is maintained online by users of the function program DWSEAUT.

In addition, the Authenticator-Key File can be updated offline by the SWIFT Link
utility program DWSAUTLD. If the SWIFT bilateral key exchange (BKE) is used,
the Authenticator-Key File is updated by the MERVA ESA USE feature running on
a workstation. MERVA Link is used to connect the workstation with MERVA ESA.
The transaction program DWSAUTT receives the update from the USE workstation
and updates the Authenticator-Key File. The authentication support is called by
DWSDGPA to authenticate incoming and outgoing messages.

The utility program DWSCORUT is used to load the SWIFT addresses from tape to
the SWIFT Correspondents File. Online maintenance of the SWIFT Correspondents
File uses the facilities of the MERVA ESA General File Services.

The utility program DWSCURUT is used to load the SWIFT currency codes from
tape to the SWIFT Currency Code File. Online maintenance of the SWIFT Currency
Code File uses the facilities of the MERVA ESA General File Services.

Chapter 2. The Structure of the MERVA ESA Network Links 27

The Structure of the Telex Link
The Telex Link is the component of MERVA ESA that provides the facilities to
create and process Telex messages, to calculate test keys using a standard interface
to a test-key calculation product.

Telex Link also provides the link between MERVA ESA and a front-end computer
to access the public Telex network. There are two ways to link to the public Telex
network:
v Telex Link via the workstation In this case workstation based telex functions of

MERVA ESA are running on the workstation and providing the link to a telex
box. MERVA Link is used to connect MERVA ESA with the workstation. MERVA
Link uses an APPC connection between the host computer and the workstation.

v Telex Link via a fault-tolerant frontend The front-end computer is connected to
the public telex network.

Figure 3 shows the basic structure of the Telex Link via a fault-tolerant system.

The main program of the Telex Link is the station program ENLSTP. It is controlled
by the MERVA ESA nucleus program DSLNUC via the nucleus program table
DSLNPTT. ENLSTP communicates via MERVA ESA queues with the interface
transaction ENLHCF1 when sending and receiving telex messages. ENLHCF1
communicates via a telecommunication line controlled by either CICS or IMS with
the interface program in the fault tolerant front-end computer.

MERVA ESA

Nucleus

Program

Table

DSLNPTT

Telex Link

Telex Link

Parameters

ENLPRM

ENLHCF1

Interface

Transaction

Fault-

tolerant

front end

Public Telex Network

Telex Link Communication

Control ENLSTP

Figure 3. The Telex Link via a Fault-Tolerant System Structure

28 Diagnosis Guide

The Structure of the MERVA Link
MERVA Link of MERVA ESA has two subcomponents:
v MERVA Link ESA is associated with a particular MERVA ESA installation and

executes in a CICS or IMS environment.
v MERVA Link USS is not associated with a particular MERVA ESA installation

and executes in an OS/390 UNIX System Services (USS) environment. Detailed
information about MERVA Link USS can be found in MERVA for ESA Concepts
and Components.

The following information refers to the MERVA Link ESA subcomponent.

The MERVA Link is designed to enable MERVA ESA users to transmit and receive
messages via a private network to other branches of their financial institution, or to
other financial institutions that are MERVA Link users. Figure 4 shows the basic
structure of the MERVA Link.
The main programs of the MERVA Link are the Application Support Programs

(ASPs) for sending (EKAAS10) and receiving (EKAAR10). They run as CICS or
IMS transaction. The Partner Table (EKAPT) defines:
v From which MERVA ESA queue to get messages for sending
v Where to send them
v Where to route acknowledged messages and received messages.

The connections to other MERVA systems use VTAM services provided by CICS
(LU 6.2), APPC/MVS (LU 6.2), or IMS.

MERVA ESA

Message

Generation

and

Handling

Control

Function

EKAEMSC

Partner

Table

EKAPT

Sending

Application

Support Progrm

EKAAS10

Receiving

Application

Support Program

EKAAR10

MERVA Link

MERVA Link Message Transfer

using Intersystem Communication Services

provided by CICS, IMS, or APPC/MVS

Figure 4. The MERVA Link Structure

Chapter 2. The Structure of the MERVA ESA Network Links 29

The MERVA System Control Facility (program EKAEMSC) is a MERVA ESA
end-user function program that allows for supervising the MERVA Link
connections using the Partner Table EKAPT. In addition, an operator may execute
all other MERVA ESA operator commands and MERVA ESA test commands in
this function.

The MERVA ESA system control facility allows to control the operation on remote
systems which are connected to the local system via MERVA Link. Detailed
information about MERVA Link can be found in MERVA for ESA Advanced MERVA
Link.

30 Diagnosis Guide

Chapter 3. MERVA ESA Service Aids

This chapter describes service aids available for all components of MERVA ESA. It
also contains information about additional service aids for individual components.

MERVA ESA Journaling
All major events are recorded in the journal, as described in MERVA for ESA
Concepts and Components. Journaling is particularly useful when analyzing
performance problems, because a time stamp is included in the header of each
journal record.

MERVA ESA Internal Traces
There are the following types of internal traces:

ROUTING trace
This trace controls the flow of messages. It can be switched on separately
for each individual routing table. The trace output is written to the journal
data set. Further information on this trace can be found in MERVA for ESA
Concepts and Components, in the chapter on the routing trace entries.

QUEUE trace
This trace controls access to the queues. It can be switched on separately
for each individual queue. The trace output is written to the journal data
set. Further information on this trace can be found in MERVA for ESA
Concepts and Components, in the chapter on the queue trace.

Processing trace
All the major MERVA ESA modules write status entries into the trace
table. These can be used to debug problems within MERVA ESA, the
SWIFT Link, and the Telex Link. Further information on this trace can be
found in “MERVA ESA Processing Trace”.

MERVA Link: Internal Module Traces and Protocol-Data-Unit (PDU) Traces
Internal module traces can be found in dumps of MERVA Link after an
error. The MERVA Link conversation or PDU traces control the data
exchanged between two VTAM LU 6.2 processes on a sequential data set.
The MERVA Link traces are described in MERVA for ESA Advanced MERVA
Link in the chapter about problem determination aids.

Debugging traces
MERVA ESA provides debugging traces for MFS and TOF services, and
the processing of the nucleus server shell and the request queue handler.
Further information on this trace can be found in “Debugging Traces” on
page 50.

MERVA ESA Processing Trace

Product-Sensitive programming interface

Main programs store the entry point address of the MERVA ESA trace program
DSLTRAP in the field COMTRAPA in the MERVA ESA communication area
DSLCOM.

© Copyright IBM Corp. 1987, 2001 31

If you specify tracing in DSLPRM, the address of the trace table is in the field
COMTRATA.

If you specify external tracing, the trace table is also written to the MERVA ESA
journal. Each record in the journal starts with the MERVA ESA trace table header
followed by a trace table entry with a unique identification of the program that
owns the trace table.

Layout of a Trace Entry

offset 0 1 2 4 8 32
| 1st ID | 2nd ID | session | time | Trace Data |
| | | number | stamp | up to 24 bytes |

The DSLTRA macro instruction contains definitions for the 1st ID used by the
MERVA ESA programs. All other information in the trace table entry is used as
needed by the programs.

The trace IDs are always shown in hexadecimal representation as this is the form
they appear in a dump.

The first trace table entry is never overlayed in a wrap-around of the trace table.
The first trace table entry shows the name of the main program in the data part.
Trace ID X'31' indicates to DSLTRAP that the actual contents of the Trace Table
must be written to the MERVA ESA journal (when the external trace is on) when
the main program terminates.

The timestamp field is a 32-bit binary number representing a time interval in
microseconds. The time interval is started for each new trace block. The start value,
an 8-byte TOD clock value, is stored in the trace table header.

Note: The session number must not be changed or overwritten by any
MERVA ESA service program.

Trace IDs
The following Trace IDs are defined for MERVA ESA:
01 – TRAIDNUC Program DSLNUC
02 – TRAIDNCS Program DSLNCS
03 – TRAIDNTS Program DSLNTS
04 – TRAIDJRN Program DSLJRNP
05 – TRAIDQMG Program DSLQMGT
06 – TRAIDNMO Program DSLNMOP
07 – TRAIDTIM Program DSLTIMP
08 – TRAIDNIC Program DSLNICT
0A – TRAIDMFS Programs DSLMMFS, DSLMxxx
0B – TRAIDMPX Programs DSLMPxxx
0F – TRAIDTSV Program DSLTOFSV
14 – TRAIDEUD Program DSLEUD
19 – TRAIDHCP Program DSLHCP
1A – TRAIDCXT Program DSLCXT
1B – TRAIDSDI Program DSLSDI
1C – TRAIDSDO Program DSLSDO
1D – TRAIDSDY Program DSLSDY
1E – TRAIDAPI Program DSLAPI
1F – TRAIDES1 Program DSLCES1

32 Diagnosis Guide

20 – TRAIDES2 Program DSLCES2
21 – TRAIDSE1 Program DSLCSE1
31 – TRAIDTRM Reserved for Termination
33 – TRAIDGPA Program DWSDGPA
34 – TRAIDLSK Program DWSDLSK
38 – TRAIDAUT Program DWSAUTP
39 – TRAIDEAU Program DWSEAUT
4C – TRAIDNIN Program DWSNINT
4D – TRAIDEVC Programs DWSNAEVC/DWSNAEVV
4E – TRAIDLTC Program DWSNLTCX
4F – TRAIDAPC Program DWSNAPCX
40 – TRAIDNFI Program DWSNFIN
41 – TRAIDAI Program DWSNAIST
42 – TRAIDTXX Programs DWSTxxx
43 – TRAIDNLN Programs DWSNLNKx
44 – TRAIDVTM Program DWSVTMLC
46 – TRAIDMLI Program EKAAI100 - MERVA LINK INIT / TERM
47 – TRAIDMLS Program EKAAS100 - MERVA LINK SEND MSG

START
48 – TRAIDMLR Program EKAAR100 - MERVA LINK RECV MSG

START
4A – TRAIDMLX Program EKAUXS - MERVA LINK MFS USER

EXIT
50 – TRAIDKQS Program DSLKQS
51 – TRAIDKQR Program DSLKQR

Trace Entry Layout for MERVA ESA Programs

DSLNUC Nucleus Program (ID1=01):
ID2 Program DATA

00 DSLNUC Trace Header 'DSLNUC TRACE HEADER'
00 DSLNUC Start Record 'DSLNUC START'
00 DSLNUC Stop Record 'DSLNUC STOP'
00 DSLNUC Program Call (NPTT) 'DSLNUC CALLS pgm-name'
00 DSLNUC Program Ret (NPTT) 'DSLNUC RETURN pgm-name x'

where x is the return code.

DSLNCS Command Server (ID1=02):
ID2 Program DATA

00 DSLNCS Entry Command Length & 20 chars
01 DSLNCS Return Response Length & 20 chars

DSLNTS Task Server (ID1=03):
ID2 Program DATA

00 DSLNTS Initialization 'DSLNTS INITIALIZATION'
01 DSLNTS Termination 'DSLNTS TERMINATION'
02 DSLNTS Program found 'DSLNTS', Pgm, INTRA/INTER, A(ICB)
03 DSLNTS Program not found 'DSLNTS', Pgm, INTRA/INTER, A(ICB)

DSLJRNP Journal Program (ID1=04): The MERVA ESA Journal Program
DSLJRNP does not provide trace entries in order to avoid recursive calls to the
journal program.

DSLQMGT Queue Management (ID1=05):

Chapter 3. MERVA ESA Service Aids 33

ID2 Program DATA

00 DSLQMG Entry 'DSLQMGT ENTRY', type, name
01 DSLQMG Return 'DSLQMGT RETURN', ret code
02 DSLRTNSC Entry 'DSLRTNSC ENTRY'
03 DSLRTNSC Return 'DSLRTNSC RETURN', ret code

DSLNMOP Console Interface (ID1=06):
ID2 Program DATA

00 DSLNMOP ECB posted 'ECB POSTED'
04 DSLNMOP Start console 'START CONSOLE'
08 DSLNMOP Stop console 'STOP CONSOLE'
0C DSLNMOP INIT 'INITIALIZATION CALL'
0C DSLNMOP TERM 'TERMINATION CALL'
0C DSLNMOP PUT 'PUT, NO JRN, NO CONS'
0C DSLNMOP PUTJ 'PUT, WITH JRN, NO CONS'
0C DSLNMOP PUTC 'PUT, NO JRN, WITH CONS'
0C DSLNMOP PUTJC 'PUT, WITH JRN, WITH CONS'
0C DSLNMOP Unknown type type, 'IS AN UNKNOWN TYPE'

DSLTIMP Timer Services (ID1=07):
ID2 Program DATA

00 DSLTIMP INIT 'INITIALIZATION'
00 DSLTIMP TERM 'TERMINATION'
00 DSLTIMP SET 'SET UP', name
00 DSLTIMP SET 'SET UP, NAME PTR IS ZERO'
00 DSLTIMP CANCEL 'CANCEL', name
00 DSLTIMP CANCEL 'CANCEL, NAME PTR IS ZERO'
00 DSLTIMP TIMER 'TIMER'
00 DSLTIMP POST 'ECB POSTED'
00 DSLTIMP CALC 'CALCULATE'
00 DSLTIMP Unknown type type, 'IS AN UNKNOWN TYPE'

DSLNICT Intertask Communication (ID1=08):
ID2 Program DATA

xx DSLNICT INIT 'DSLNICT INITIALIZATION'
xx DSLNICT TERM 'DSLNICT TERMINATION'
xx DSLNICT RESP 'DSLNICT RESPONSE', A(ICB)
xx DSLNICT STATUS 'DSLNICT STATUS'
xx DSLNICT ALLOC 'DSLNICT ALLOCATE'
xx DSLNICT FREE 'DSLNICT FREE', A(ICB)
xx DSLNICT REQ 'DSLNICT REQUEST', A(ICB)
xx DSLNICT CHECK 'DSLNICT CHECK'
xx DSLNICT RTV 'DSLNICT RETRIEVE', a(ICB)
xx DSLNICT Unknown type 'DSLNICT UNKNOWN TYPE'
xx DSLNICT Return 'DSLNICT RETURN',ret code

where xx is 00 for INTRA-REGION and 01 for INTER-REGION.

Note: When DSLNICT is called by DSLTRAP to write the trace table to the
MERVA ESA journal as a central service, the trace entries of DSLNICT are
suppressed by DSLTRAP to avoid problems of recursion.

DSLMMFS Message Format Service (ID1=0A):
ID2 Program DATA

00 DSLMMFS Init MFS DSLMMFS REL410 sysparm
01 DSLMMFS Term MFS MFS statistics from PS
02 DSLMMFS Call MFS service ->PS, ->TS, ->PL, Plist
03 DSLMMFS MFS error message 24 bytes of error message

34 Diagnosis Guide

04 DSLMMFS Exit MFS service ->PS, ->TS, ->PL, Plist

09 DSLMUxxx MFS user exit Module Header
0A DSLMLFP Mapping Error Tag Only Data Mapped

14 DSLMU054 Message Type Det. 8 Byte message id

For ID2=00, sysparm can be CICSMVS, CICSVSE, or IMSMVS.

For ID2=01, the MFS statistics for termination are:
offset 22 24 28

|number of | maximum size of| current size of|
|getmains | getmain storage| getmain storage|

For ID2=02 and ID2=04 the DATA field contains:
->PS pointer to the MFS permanent storage
->TS pointer to the MFS temporary storage
->PL pointer to the MFS parameter list
Plist first 12 bytes of the MFS parameter list

For ID2=04 the timestamp field contains the execution time of this MFS service call
in microseconds.

DSLMPxxx MFS Screen and Print Formatting (ID1=0B):
ID2 Program DATA

14 DSLMPSSR Exit from Call '**DSLMPSSR**'
19 DSLMPSTP Exit from Call '**DSLMPSTP**'
1E DSLMPSSY Exit from Call '**DSLMPSSY**'
23 DSLMPSSC Exit from Call '**DSLMPSSC**'
28 DSLMPULD Exit from Call '**DSLMPULD**'
32 DSLMPUTF Entry to Call '**DSLMPUTF**'
33 DSLMPUTF Exit from Call '**DSLMPUTF**'

For ID2=14 the following working storage is traced in 3 trace entries:
DCL 1 WRK,

2 WRKID CHAR(12), /*IDENTIFICATION **DSLMPSSR** */
2 *,

3 SAVLDSA PTR, /* ADDRESS LDS */
3 SAVEDITA PTR, /* ADDRESS EDIT BUFFER */
3 SAVRKEYA PTR, /* ADDRESS REKEY BUFFER */
3 SAVIOA PTR, /* ADDRESS I/O-BUFFER */
3 P3270 PTR, /* CURRENT POSITION IN */

/* IO BUFFER */
3 SAVSNDA PTR, /* ADDRESS SEND STATUS */
3 SAVSESSA PTR, /* ADDRESS SESSION CONTROL */
3 SAVTUCBA PTR, /* ADDRESS TUCB */
3 SAVCOMA PTR, /* ADDRESS COMMON AREA */
3 SAVMFSPA PTR, /* ADDRESS PERMANENT STORAGE */
3 SAVTOFA PTR, /* ADDRESS TOF */

2 *, /* WORKING VARIABLES */
3 WRKRETC BIN(8), /* RETURN CODE */
3 * BIN (8), /* FUTURE USE */
3 WRKREAS BIN(15), /* REASON CODE */
3 WRKDAOFF BIN (15), /* DATA OFFSET: IS USED IF */

/* ONLY PART OF THE SLOT DATA*/
/* WAS MOVED INTO IO BUFFER */

3 WRKCURLO BIN (15), /* OFFSET TO CURRENT LDS ITEM*/
/* IS USED WHEN REENTER IS */
/* NECESSARY */

3 * BIT (8),
4 WRKFUNC BIT (1), /* FUNCTION TO BE PERFORMED */

/* 0=PUT 1=REENTER */

Chapter 3. MERVA ESA Service Aids 35

4 WRKALLM BIT (1), /* ALL DATA OF THIS SLOT HAS */
/* BEEN MOVED INTO IO BUFFER */

4 BLOCKFD BIT (1), /* INDICATES THAT A VALID */
/* LDS BLOCK WAS FOUND AND */
/* THE LOOP CAN BE TERMINATED*/

4 * BIT (5), /* FUTURE USE */
3 WRKSTAT BIT(8), /* PROCESSING OPTIONS */

4 WRKLDSC BIT(1), /* LDS COMPLETE INDICATOR */
4 WRKLDSI BIT (1), /* INVALID LDS */
4 WRKIOF BIT(1), /* IO BUFFER FULL INDICATOR */
4 WRKERR BIT(1), /* ERROR DETECTED = '1'B */
4 * BIT(4); /* FUTURE USE */

For ID2=19 the following working storage is traced in 4 trace entries:
DCL 1 WRK,

2 WRKID CHAR(12), /*IDENTIFICATION **DSLMPSTP** */
2 *,

3 SAVLDSA PTR, /* ADDRESS LDS */
3 SAVEDITA PTR, /* ADDRESS EDIT BUFFER */
3 SAVRKEYA PTR, /* ADDRESS REKEY BUFFER */
3 SAVIOA PTR, /* ADDRESS I/O-BUFFER */
3 P3270 PTR, /* CURRENT POSITION IN */

/* IO BUFFER */
3 SAVIOPTR PTR, /* SAVE ADDRESS OF IO-BUFFER */

/* WHENEVER A NEW ROW OF DATA*/
/* STARTS */

3 SAVSNDA PTR, /* ADDRESS SEND STATUS */
3 SAVSESSA PTR, /* ADDRESS SESSION CONTROL */
3 SAVTUCBA PTR, /* ADDRESS TUCB */
3 SAVCOMA PTR, /* ADDRESS COMMON AREA */
3 SAVMFSPA PTR, /* ADDRESS PERMANENT STORAGE */
3 SAVTOFA PTR, /* ADDRESS TOF */

2 *, /* WORKING VARIABLES */
3 WRKROWST, /* SEND STATUS AT BEGINNING */

/* OF EACH ROW */
4 WRKNXITO BIN (15), /* NEXT ITEM OFFSET */
4 WRKITDO BIN (15), /* DATA OFFSET INTO EDIT OR */

/* REKEY BUFFER */
4 WRKNXRW BIN (15), /* ROW NUMBER TO BE PROCESSED*/

/* NEXT */
4 WRKDEVO BIN (15), /* NEXT FREE OFFSET IN */

/* PRINTER BUFFER */
3 WRKRETC BIN(8), /* RETURN CODE */
3 * BIN (8), /* FUTURE USE */
3 WRKREAS BIN(15), /* REASON CODE */
3 WRKDAOFF BIN (15), /* DATA OFFSET: IS USED IF */

/* ONLY PART OF THE SLOT DATA*/
/* WAS MOVED INTO IO BUFFER */

3 WRKCURLO BIN (15), /* OFFSET TO CURRENT LDS ITEM*/
/* IS USED WHEN REENTER IS */
/* NECESSARY */

3 WRKPROW BIN (15), /* PREVIOUSLY PROCESSED ROW */
3 WRKCCOL BIN (15), /* CURRENTLY PROCESSED COLUMN*/
3 WRKCROW BIN (15), /* CURRENTLY PROCESSED ROW */
3 * BIT (16),

4 WRKFUNC BIT (1), /* FUNCTION TO BE PERFORMED */
/* 0=PUT 1=REENTER */

4 WRKALLM BIT (1), /* ALL DATA OF THIS SLOT HAS */
/* BEEN MOVED INTO IO BUFFER */

4 BLOCKFD BIT (1), /* INDICATES THAT A VALID */
/* LDS BLOCK WAS FOUND AND */
/* THE LOOP CAN BE TERMINATED*/

4 ROWOVFL BIT (1), /* ITEM DATA FLOWS BEYOND A */
/* PRINTER LINE */

36 Diagnosis Guide

4 ONLYNL BIT (1), /* THE LDS IS COMPLETELY DONE*/
/* ONLY 'NL' ORDERS MUST BE */
/* INSERTED TO FILL THE PAGE */

4 FLDUSC BIT (1), /* FIELD HAS THE UNDERSCORE */
/* ATTRIBUTE */

4 ATTINNL BIT (1), /* THE END ATTRIBUTE FOR AN */
/* UNDERSCORE FIELD IS IN A */
/* NEW LINE */

4 * BIT (9), /* FUTURE USE */
3 WRKSTAT BIT(8), /* PROCESSING OPTIONS */

4 WRKLDSC BIT(1), /* LDS COMPLETE INDICATOR */
4 WRKLDSI BIT (1), /* INVALID LDS */
4 WRKIOF BIT(1), /* IO BUFFER FULL INDICATOR */
4 WRKTBF BIT(1), /* TERMINAL BUFFER FULL IND. */
4 WRKERR BIT(1), /* ERROR DETECTED = '1'B */
4 * BIT(3); /* FUTURE USE */

For ID2=1E the following working storage is traced in 4 trace entries:
DCL 1 WRK,

2 WRKID CHAR(12), /*IDENTIFICATION **DSLMPSSY** */
2 *,

3 SAVLDSA PTR, /* ADDRESS LDS */
3 SAVEDITA PTR, /* ADDRESS EDIT BUFFER */
3 SAVRKEYA PTR, /* ADDRESS REKEY BUFFER */
3 SAVIOA PTR, /* ADDRESS I/O-BUFFER */
3 PIO PTR, /* CURRENT POSITION IN */

/* IO BUFFER */
3 SAVIOPTR PTR, /* SAVE ADDRESS OF IO-BUFFER */

/* WHENEVER A NEW ROW OF DATA*/
/* STARTS */

3 SAVSNDA PTR, /* ADDRESS SEND STATUS */
3 SAVSESSA PTR, /* ADDRESS SESSION CONTROL */
3 SAVTUCBA PTR, /* ADDRESS TUCB */
3 SAVCOMA PTR, /* ADDRESS COMMON AREA */
3 SAVMFSPA PTR, /* ADDRESS PERMANENT STORAGE */
3 SAVTOFA PTR, /* ADDRESS TOF */

2 *, /* WORKING VARIABLES */
3 WRKROWST, /* SEND STATUS AT BEGINNING */

/* OF EACH ROW */
4 WRKNXITO BIN (15), /* NEXT ITEM OFFSET */
4 WRKITDO BIN (15), /* DATA OFFSET INTO EDIT OR */

/* REKEY BUFFER */
4 WRKNXRW BIN (15), /* ROW NUMBER TO BE PROCESSED*/

/* NEXT */
4 WRKDEVO BIN (15), /* NEXT FREE OFFSET IN */

/* PRINTER BUFFER */
3 WRKRETC BIN(8), /* RETURN CODE */
3 * BIN (8), /* FUTURE USE */
3 WRKREAS BIN(15), /* REASON CODE */
3 WRKDAOFF BIN (15), /* DATA OFFSET: IS USED IF */

/* ONLY PART OF THE SLOT DATA*/
/* WAS MOVED INTO IO BUFFER */

3 WRKCURLO BIN (15), /* OFFSET TO CURRENT LDS ITEM*/
/* IS USED WHEN REENTER IS */
/* NECESSARY */

3 WRKPROW BIN (15), /* PREVIOUSLY PROCESSED ROW */
3 WRKCCOL BIN (15), /* CURRENTLY PROCESSED COLUMN*/
3 WRKCROW BIN (15), /* CURRENTLY PROCESSED ROW */
3 * BIT (16),

4 WRKFUNC BIT (1), /* FUNCTION TO BE PERFORMED */
/* 0=PUT 1=REENTER */

4 WRKALLM BIT (1), /* ALL DATA OF THIS SLOT HAS */
/* BEEN MOVED INTO IO BUFFER */

4 BLOCKFD BIT (1), /* INDICATES THAT A VALID */
/* LDS BLOCK WAS FOUND AND */

Chapter 3. MERVA ESA Service Aids 37

/* THE LOOP CAN BE TERMINATED*/
4 ROWOVFL BIT (1), /* ITEM DATA FLOWS BEYOND A */

/* PRINTER LINE */
4 ONLYSK BIT (1), /* THE LDS IS COMPLETELY DONE*/

/* ONLY SKIP LINES MUST BE */
/* INSERTED TO FILL THE PAGE */

4 NEWLINE BIT (1), /* PROGRAM PROCESSES A NEW */
/* LINE */

4 * BIT (10), /* FUTURE USE */
3 WRKSTAT BIT(8), /* PROCESSING OPTIONS */

4 WRKLDSC BIT(1), /* LDS COMPLETE INDICATOR */
4 WRKLDSI BIT (1), /* INVALID LDS */
4 WRKIOF BIT(1), /* IO BUFFER FULL INDICATOR */
4 WRKTBF BIT(1), /* TERMINAL BUFFER FULL IND. */
4 WRKERR BIT(1), /* ERROR DETECTED = '1'B */
4 WRKLINC BIT(1), /* LINE COMPLETED */
4 * BIT(2); /* FUTURE USE */

For ID2=23 the following working storage is traced in 4 trace entries:
DCL 1 WRK,

2 WRKID CHAR(12), /*IDENTIFICATION **DSLMPSSC** */
2 *,

3 SAVLDSA PTR, /* ADDRESS LDS */
3 SAVEDITA PTR, /* ADDRESS EDIT BUFFER */
3 SAVRKEYA PTR, /* ADDRESS REKEY BUFFER */
3 SAVIOA PTR, /* ADDRESS I/O-BUFFER */
3 PSCS PTR, /* CURRENT POSITION IN */

/* IO BUFFER */
3 SAVIOPTR PTR, /* SAVE ADDRESS OF IO-BUFFER */

/* WHENEVER A NEW ROW OF DATA*/
/* STARTS */

3 SAVSNDA PTR, /* ADDRESS SEND STATUS */
3 SAVSESSA PTR, /* ADDRESS SESSION CONTROL */
3 SAVTUCBA PTR, /* ADDRESS TUCB */
3 SAVCOMA PTR, /* ADDRESS COMMON AREA */
3 SAVMFSPA PTR, /* ADDRESS PERMANENT STORAGE */
3 SAVTOFA PTR, /* ADDRESS TOF */

2 *, /* WORKING VARIABLES */
3 WRKROWST, /* SEND STATUS AT BEGINNING */

/* OF EACH ROW */
4 WRKNXITO BIN (15), /* NEXT ITEM OFFSET */
4 WRKITDO BIN (15), /* DATA OFFSET INTO EDIT OR */

/* REKEY BUFFER */
4 WRKNXRW BIN (15), /* ROW NUMBER TO BE PROCESSED*/

/* NEXT */
4 WRKDEVO BIN (15), /* NEXT FREE OFFSET IN */

/* PRINTER BUFFER */
3 WRKRETC BIN(8), /* RETURN CODE */
3 * BIN (8), /* FUTURE USE */
3 WRKREAS BIN(15), /* REASON CODE */
3 WRKDAOFF BIN (15), /* DATA OFFSET: IS USED IF */

/* ONLY PART OF THE SLOT DATA*/
/* WAS MOVED INTO IO BUFFER */

3 WRKCURLO BIN (15), /* OFFSET TO CURRENT LDS ITEM*/
/* IS USED WHEN REENTER IS */
/* NECESSARY */

3 WRKPROW BIN (15), /* PREVIOUSLY PROCESSED ROW */
3 WRKCCOL BIN (15), /* CURRENTLY PROCESSED COLUMN*/
3 WRKCROW BIN (15), /* CURRENTLY PROCESSED ROW */
3 * BIT (16),

4 WRKFUNC BIT (1), /* FUNCTION TO BE PERFORMED */
/* 0=PUT 1=REENTER */

4 WRKALLM BIT (1), /* ALL DATA OF THIS SLOT HAS */
/* BEEN MOVED INTO IO BUFFER */

4 BLOCKFD BIT (1), /* INDICATES THAT A VALID */
/* LDS BLOCK WAS FOUND AND */

38 Diagnosis Guide

/* THE LOOP CAN BE TERMINATED*/
4 ROWOVFL BIT (1), /* ITEM DATA FLOWS BEYOND A */

/* PRINTER LINE */
4 ROWCHNG BIT (1), /* THE PREVIOUS ITEM WAS NOT */

/* IN THE SAME ROW AS THE */
/* CURRENT ITEM. */

4 VTABSET BIT (1), /* VERTICAL TAB FORMATS ARE */
/* SET. */

4 HTABSET BIT (1), /* HORIZONTAL TAB FORMATS */
/* ARE SET. */

4 SKIPEND BIT (1), /* ONLY LAST VTAB MUST BE SET*/
/* TO SKIP TO PAGE END */

4 * BIT (8), /* FUTURE USE */
3 WRKSTAT BIT(8), /* PROCESSING OPTIONS */

4 WRKLDSC BIT(1), /* LDS COMPLETE INDICATOR */
4 WRKLDSI BIT (1), /* INVALID LDS */
4 WRKIOF BIT(1), /* IO BUFFER FULL INDICATOR */
4 WRKTBF BIT(1), /* TERMINAL BUFFER FULL IND. */
4 WRKERR BIT(1), /* ERROR DETECTED = '1'B */
4 * BIT(3); /* FUTURE USE */

For ID2=28 the following working storage is traced in 2 trace entries:
DCL 1 WRK,

2 WRKID CHAR(12), /*IDENTIFICATION **DSLMPULD** */
2 *,

3 SAVLDSA PTR, /* ADDRESS LDS */
3 SAVIOA PTR, /* ADDRESS I/O-BUFFER */
3 P3270 PTR, /* CURRENT POSITION IN */

/* IO BUFFER */
3 SAVTUCBA PTR, /* ADDRESS TUCB */
3 SAVCOMA PTR, /* ADDRESS COMMON AREA */
3 SAVMFSPA PTR, /* ADDRESS PERMANENT STORAGE */

2 *, /* WORKING VARIABLES */
3 WRKRETC BIN(8), /* RETURN CODE */
3 * BIN (8), /* FUTURE USE */
3 WRKREAS BIN(15), /* REASON CODE */
3 WRKCLIN BIN (15), /* LINE NUMBER THAT CONTAINS */

/* THE DATA CURRENTLY */
/* PROCESSED */

3 WRKCCOL BIN (15), /* COLUMN NUMBER THAT */
/* CONTAINS THE DATA THAT IS */
/* CURRENTLY PROCESSED */

3 * BIT (8),
4 ITEMFD BIT (1), /* ITEM FOUND IN LDS AND THE*/

/* APPROPRIATE DATA IN */
/* IO-BUFFER */

4 BLOCKFD BIT (1), /* INDICATES THAT A VALID */
/* LDS BLOCK WAS FOUND AND */
/* THE LOOP CAN BE TERMINATED*/

4 * BIT (5), /* FUTURE USE */
3 WRKSTAT BIT(8), /* PROCESSING OPTIONS */

4 WRKLDSC BIT(1), /* LDS COMPLETE INDICATOR */
4 WRKLDSI BIT (1), /* INVALID LDS */
4 WRKIOF BIT(1), /* IO BUFFER FULL INDICATOR */
4 WRKERR BIT(1), /* ERROR DETECTED = '1'B */
4 * BIT(4); /* FUTURE USE */

For ID2=32 and ID2=33 the following working storage is traced in 3 trace entries:
DCL 1 WRK,

2 WRKID CHAR(12), /*IDENTIFICATION **DSLMPUTF** */
2 *,

3 SAVLDSA PTR, /* ADDRESS LDS */
3 SAVIOA PTR, /* ADDRESS I/O-BUFFER */
3 SAVWDWA PTR, /* ADDRESS OF WINDOW CONTROL */

/* BUFFER */

Chapter 3. MERVA ESA Service Aids 39

3 SAVTUCBA PTR, /* ADDRESS TUCB */
3 SAVMFSTA PTR, /* ADDRESS TEMPORARY STORAGE */
3 SAVMFSPA PTR, /* ADDRESS PERMANENT STORAGE */
3 SAVRKYA PTR, /* ADDRESS OF REKEY BUFFER */
3 SAVTOFA PTR, /* ADDRESS OF TOF */

3 SAVLFPA PTR, /* ADDRESS OF LINE FORMATTER */
/* CONTROL TABLE */

2 *, /* WORKING VARIABLES */
3 WRKRETC BIN(8), /* RETURN CODE */
3 WRKWDWID BIN (8), /* CURRENT WINDOW ID */
3 WRKREAS BIN(15), /* REASON CODE */
3 WRKMSGNO BIN (15), /* MESSAGE NUMBER */
3 WRKWCBOF BIN (15), /* OFFSET OF WINDOW CONTROL */

/* BLOCK THAT IS CURRENTLY */
/* PROCESSED */

3 WRKCROF BIN (15), /* OFFSET IN LDS TO THE FIELD*/
/* WHERE THE CURSOR SITS */

3 * BIT (8),
4 WRKCRFD BIT (1), /* FIELD FOUND WHERE THE */

/* CURSOR SITS AND WHETHER IT*/
/* IS A CURSOR SELECT FIELD */

4 WRKCMD BIT (1), /* INDICATES IF COMMAND LINE */
/* CONTAINS A COMMAND ALREADY*/

4 BLOCKFD BIT (1), /* INDICATES THAT A VALID */
/* LDS BLOCK WAS FOUND AND */
/* THE LOOP CAN BE TERMINATED*/

4 * BIT (5), /* FUTURE USE */
3 WRKSTAT BIT(8), /* PROCESSING OPTIONS */

4 WRKLDSI BIT (1), /* INVALID LDS */
4 WRKWDWI BIT(1), /* INVALID WINDOW CONTROL */
4 WRKERR BIT(1), /* ERROR DETECTED = '1'B */
4 * BIT(5); /* FUTURE USE */

DSLTOFSV TOF Supervisor (ID1=0F):
ID2 Program DATA

46 DSLTOFSV Entry to Call '**DSLTOFSV**',->PL,->CB,FTYP
47 DSLTOFSV Exit from Call FDNAM,RC,RSC,->PL,->CB,FCMO

->PL pointer to the TOFSV parameter list
->CB pointer to the TOFSV Control Block (DSLTCTLB)
FTYP function type in TOFSV parameter list
FDNAM field name found in TOFSV request
RC return code in TOFSV parameter list
RSC reason code in TOFSV parameter list
FCMO function modifier in TOFSV parameter list

DSLEUD End User Driver Program (ID1=14):
ID2 Program DATA

xx DSLEUD Session start 8X'00', lterm, 'SESSTART'
xx DSLEUD Transaction start uid, lterm, 'TACSTART'
xx DSLEFUN Entry 'EFUN ENTRY',EUD control

info
xx - Function program PGM mark,EFUN control info

entry
xx DSLEFUN Return from function 'EFUN ',function name,

program Function PGM return info
xx DSLEUD Return from DSLEFUN 'EUD ', EUD control info
xx DSLEUD Transaction end uid, lterm, 'TACEND'
xx DSLEUD Session end uid, lterm, 'SESEND'

ID2 is set to 0 at the beginning of a session and then incremented for every screen
cycle in a wrap-around manner. The session field is set at the beginning of a
session and must not be changed by any service programs.

40 Diagnosis Guide

v For CICS: The task ID from the CICS Exec Interface Buffer (EIB) is used.
v For IMS: The sequence number of the logical terminal name in the MERVA ESA

terminal feature definition table (DSLTFDT) is used.
uid is the 8-byte userid.
lterm is the 8-byte logical terminal name.
tucname is the 8-byte function name
PGM mark of function program entry :

DSLEUSR 'EUSR PL='
DSLEMSG 'EMSG PL='
DSLECMD 'ECMD PL='

Layout of DSLEUD control information:
DS X CONTROL indicators
* Process dialog EQU X'02'
* Force sign-off EQU X'04'
* End of IMS work EQU X'08' ('QC' after GU)
* Sign-on accepted EQU X'10'
* IMS : read next SPA EQU X'20'
* Sign-off accepted EQU X'40'

DS X STATUS program start
*

DS X STATUS SIGN-ON SERVICE
* Sign-on panel to send EQU X'01'
* Sign-on in process EQU X'02'
* Function within sign-on EQU X'04'
* data
* Sign-on panel to repeat EQU X'08'
* Sign-on without PW EQU X'10'
* Sign-on with PW change EQU X'20'

DS X STATUS ABNORMAL END
* Error during EUD initial. EQU X'02'
* Error during EUD termin. EQU X'04'
* Dump to print EQU X'80'

DS X STATUS SIGN-OFF
* Sign-off in process EQU X'01'
* Sign-off panel sent EQU X'02'
* SOF without MFS/TOF EQU X'10'
* IMS message after SOF EQU X'20'
* EUD start/end error EQU X'40'

DS X 'EUD-TO-DSLEFUN' IN SPECIAL CASES
* repeat function selection EQU X'01'
DS X DSLHCP reserved
DS X ERROR INDICATOR 1
* no NUCPARMS EQU X'40'
* no terminal EQU X'10'
* GETMAIN for SPA failed EQU X'08'
* error accessing IMS SPA EQU X'04'
* internal SPA file error EQU X'02'

DS X ERROR INDICATOR 2
* no ICB EQU X'80'
* no MFS service EQU X'40'
* no Operator MSG module EQU X'20'
* no TOF service EQU X'10'
* no QMG service EQU X'08'

DS X DC-SYSTEM INDICATOR
* CICS EQU X'08'
* IMS EQU X'80'

Layout of DSLEFUN control information (from the first byte of the interface
buffer):

Chapter 3. MERVA ESA Service Aids 41

DS A ADDRESS WORKING STORAGE
DS A ADDRESS SPA STORAGE
DS A ADDRESS DSLCOM
DS X TYPE OF CALL
* Processing call EQU X'00'
* Initialization call EQU X'01'
* Termination call EQU X'02'

DS X REASON FOR TERMINATION CALL
* Forced by function PGM
* because processing went
* wrong EQU X'01'
* Forced by EUD
* send panel failed EQU X'04'

DS X COMMAND CODE OF SESSION COMMANDS
* Sign-off command EQU X'04'
* Return command EQU X'08'
DS X FREE

Layout of function program return information (from the return code and
subsequent bytes of the interface buffer):
DS X RETURN CODE
* Normal return EQU X'00'
* Sign-off forced EQU X'01'
* forced return to
* function selection EQU X'02'
* calltype invalid EQU X'04'
DS X free

DS X REASON FOR FORCED SIGN-OFF / RETURN
* DSLMFS error EQU X'01'
* DSLNUC error EQU X'02'
* DSLQMG error EQU X'04'
* DSLTOF error EQU X'08'
* Function PGM error EQU X'10'
* SHUTDOWN entered EQU X'20'

DS X free

DS X DSLEUD ACTIVITY AFTER RETURN
* SNAP dump to take EQU X'01'
* Confirmation request EQU X'04'
* reject session command EQU X'08'
* keep command in cmd line EQU X'10'
* protect the message EQU X'40'
* set cursor on commandline EQU X'80'

DS X PANEL TYPE TO SELECT PF KEYTABLE
* set 'Sel Menu' typ EQU X'01'
* set 'MSG panel' typ EQU X'02'
* set 'LIST panel' typ EQU X'04'
* set 'Read only panel' typ EQU X'08'

DSLHCP Hardcopy Printing Transaction (ID1=19):
ID2 Program DATA

01 DSLHCP Trace Header DSLHCP queue lterm
00 DSLHCP Trace Stop Record uid lterm xxxxx

where xxxxx is ’ERREND’, ’QUE@END’ or ’QUE@CONT’

DSLCXT Checking and Expansion Transaction (ID1=1A):
ID2 Program DATA

00 DSLCXT Trace Header 'DSLCXT TRACE HEADER'

42 Diagnosis Guide

00 DSLCXT Start Record 'DSLCXT' function timestamp
00 DSLCXT Stop Record 'DSLCXT STOP',ret code
00 DSLCXT Trace Stop Record 'DSLCXT TRACE STOP'

DSLSDI Sequential Data Set Input (ID1=1B):
ID2 Program DATA

00 DSLSDI Trace Header 'DSLSDI TRACE HEADER'
00 DSLSDI Start Record 'DSLSDI START'
00 DSLSDI Stop Record 'DSLSDI STOP',ret code
00 DSLSDI Trace Stop Record 'DSLSDI TRACE STOP'

DSLSDO Sequential Data Set Output (ID1=1C):
ID2 Program DATA

00 DSLSDO Trace Header 'DSLSDO TRACE HEADER'
00 DSLSDO Start Record 'DSLSDO START'
00 DSLSDO Stop Record 'DSLSDO STOP',ret code
00 DSLSDO Trace Stop Record 'DSLSDO TRACE STOP'

DSLSDY Batch Printing (ID1=1D):
ID2 Program DATA

00 DSLSDY Trace Header 'DSLSDY TRACE HEADER'
00 DSLSDY Start Record 'DSLSDY START'
00 DSLSDY Stop Record 'DSLSDY STOP',ret code
00 DSLSDY Trace Stop Record 'DSLSDY TRACE STOP'

DSLAPI Application Program Interface (ID1=1E):
ID2 Program DATA

00 DSLAPI Trace Header 'DSLAPI TRACE HEADER'
00 DSLAPI Start Record 'DSLAPI START'
00 DSLAPI Stop Record 'DSLAPI STOP'

DWSAUTP Authenticator-Key File Service (ID1=38):
ID2 Program DATA

00 DWSAUTP Entry Bytes 8-1F of Parm. List
FF DWSAUTP Exit Bytes 8-1F of Parm. List

Bytes 8-1F of Parm. List are:
AUTPMSG DC A(0) SWIFT - MESSAGE ADDR (AUT)
* OR PROTOCOL BUFFER (UPDATE)
AUTPTYP DC XL1'00' TYPE OF REQUEST
AUTPINIT EQU X'00' INIT
AUTPAUT EQU X'04' PREPARE AUTHENTICATION
AUTPTERM EQU X'08' TERMINATION
AUTPSTAT EQU X'0C' KEY FILE STATUS
AUTPUPD EQU X'10' UPDATE
AUTPCONT EQU X'14' CONTINUE DEL, EXC, OR LIS

AUTPUPDF DC XL1'00' UPDATE FUNCTION
AUTPADD EQU X'04' ADD ONE ENTRY
AUTPKEY EQU X'04' OLD ADD FUNCTION CODE
AUTPDEL EQU X'08' DELETE ENTRIES
AUTPCHA EQU X'0C' CHANGE (REPLACE) ONE ENTRY
AUTPLIS EQU X'10' LIST/INQUIRY FOR ENTRIES
AUTPINQ EQU X'10' LIST/INQUIRY FOR ENTRIES
AUTPUNL EQU X'14' UNLOAD PART OF THE KEY FILE
AUTPEXC EQU X'18' EXCHANGE KEYS
AUTPBKID EQU X'1C' SHOW BKID
AUTPUMX EQU X'1C' MAXIMUM UPDATE FUNCTION

Chapter 3. MERVA ESA Service Aids 43

AUTPRESC DC XL1'00' REASON CODE
* REASON CODES WITHOUT DIAGNOSTIC MESSAGE IN AUTPEMSG
AUTROK EQU 00 O.K. ALL WELL DONE
AUTRCONT EQU 04 O.K., CONT FOR DEL,EXC,LIS
* REASON CODES WITH DIAGNOSTIC MESSAGE IN AUTPEMSG
AUTRPTOF EQU 01 DWSPREM TOF ERROR
AUTRPMFS EQU 02 DWSPREM MFS ERROR
*
AUTRFLOW EQU 05 LOWEST FINCOPY VALUE
AUTRFTOF EQU 05 DWSFCPY TOF ERROR
AUTRFBYP EQU 06 PAC EMPTY (BYPASS MODE)
AUTRFNOF EQU 07 NO FINCOPY DEFINITION
AUTRFTXT EQU 08 NO PAC FIELDS IN TEXT (BLOCK 4)
AUTRFHI EQU 08 HIGHEST FINCOPY VALUE
*
AUTRLOW EQU 24 LOWEST ALLOWED VALUE.
AUTRIOK EQU 24 AUTH INPUT OK
AUTRICDT EQU 25 INVALID CORRESPONDENT DATE
AUTRISDT EQU 26 INVALID START DATE
AUTRIEDT EQU 27 INVALID END DATE
AUTRCERR EQU 28 UNKNOWN CORRESPONDENT STATUS
AUTRCINV EQU 29 AUTHENTICATION RECORD NOT VALID
AUTRCEXC EQU 30 AUTHENTICATION RECORD EXCLUSION
AUTRCSUS EQU 31 AUTHENTICATION RECORD SUSPENSION
AUTRMANU EQU 32 UNAUTH. DATA IN RECORD (MERGE)
AUTRMAN2 EQU 33 MANUAL KEYS FROM MERVA/2 (MERGE)
AUTRMSEQ EQU 34 MANUAL KEYS AFTER BKE KEYS (MERGE)
AUTRMANY EQU 35 TOO MANY KEYS (MERGE)
AUTRIAT EQU 36 INVALID ACTIVE TIME
AUTRIET EQU 37 INVALID EXPIRY TIME
AUTEADAT EQU 38 ACTIBE ¬= PREVIOUS EXPIRE
AUTRDSF EQU 39 DATASET FULL
AUTRVSE EQU 40 VSAM ERROR DURING ADD
AUTRNRF EQU 41 NO RECORDS FOUND
AUTRNK EQU 42 RECORD CONTAINS NO KEY FOR AUT
AUTRNRTA EQU 43 NO RECORD TO AUTHENTICATE WITH
AUTRSKNS EQU 44 SMALL KEYS NO LONGER SUPPORTED
AUTAEDAT EQU 45 ACTIVE > EXPIRY
AUTAOPDR EQU 46 ACTIVE OUTSIDE RANGE OF PREV. DISC.
* EQU 47 (not used)
AUTRIAD EQU 48 INVALID ACTIVE DATE
AUTRIED EQU 49 INVALID EXPIRY DATE
AUTRADI EQU 50 AUTH DATA FOR RELOAD OF ADD PENDING
AUTRNOM EQU 51 MESSAGE DOES NOT HAVE A MAC TRAILER
AUTRRNX EQU 52 RECORD DOES NOT EX.(REP,LST,DEL,AUT)
AUTRRAX EQU 53 RECORD ALREADY EXIST (ADD)
AUTREDA EQU 54 NO RECORDS FOR EXCHANGE DATE (EXC)
AUTRNKA EQU 55 NO NEW KEYS AVAILABLE OR DATE (EXC)
AUTREDI EQU 56 EXCHNAGE/LIST DATE INVALID
AUTRIHLT EQU 57 INVALID HOME LT
AUTRSMI EQU 58 SWIFT MESSAGE INVALID (AUT)
AUTR13N2 EQU 59 KEYS 1ST AND 3RD BUT NO 2ND
AUTRSMTL EQU 60 MESSAGE TOO LONG TO ADD AUT TRAILER

AUTRANO EQU 62 AUTHENT OUTPUT ERROR RECORD
AUTRADOK EQU 63 AUTHENT OUTPUT OK DISCONTINUED
AUTRAOK2 EQU 64 AUTHENT OUTPUT OK RECORD, NOT CUR.
AUTRAOK EQU 65 AUTHENT OUTPUT OK RECORD
AUTRMNA EQU 66 MESSAGE NOT TO BE AUTH. (AUT)
AUTRSMTT EQU 67 MSG TYPE NOT FOUND IN MTT (A
AUTRICL EQU 68 INVALID CORR LT
AUTRIUF EQU 69 INVALID UPDATE FUNCTION
AUTRCSE EQU 70 CALLING SEQUENCE ERROR
* 71 RESERVED KEYS FOUND IN AGING TABLE
AUTREOF EQU 72 END OF FILE
AUTRMNT EQU 74 RETRIEVED MSG HAS NO TEXT
AUTRKIN EQU 75 OLD SENDING KEY INVALID

44 Diagnosis Guide

AUTRISTK EQU 76 STK DOES NOT MATCH STK KCV
AUTRAOPF EQU 79 AUTHENT OUTPUT ERROR PARAMETER KEY
AUTRAOPS EQU 80 AUTHENT OUTPUT OK PARAMETER KEY

* REASON CODES WHICH REQUIRE DWSAUTP TERMINATION
AUTRTERM EQU 83 CODES ABOVE THIS CAUSE AUTP TO DUMP
AUTRSRV EQU 83 FAILURE IN DSLSRV
AUTRJRN EQU 84 FAILURE IN DSLJRNP DURING UPDATE
AUTROPER EQU 85 OPEN ERROR
AUTRFIV EQU 86 FILE INVALID VERSION NUMBER
AUTRFDS EQU 87 FORMAT AUT DATASET
AUTRFCPY EQU 89 FAILED TO LOAD DWSFCPY
AUTRCIT EQU 89 FAILED TO LOAD DWSCIT
AUTRPREM EQU 90 FAILED TO LOAD DWSPREM
*

AUTPHOLT DC XL8'0' HOME LOGICAL TERMINAL
AUTPCOLT DC XL8'0' CORRESPONDING LT

DWSEAUT Authenticator-Key File Online Maintenance (ID1=39):
ID2 Program DATA

00 DWSEAUT Entry 24 bytes of work stor.
FF DWSEAUT Exit 24 bytes of work stor.

The 24 bytes of working storage are as follows:
EAUWTRAC DS 0CL24 DATA PART OF TRACE ENTRY
EAUWTPGM DS CL8 PROGRAM NAME 'DWSEAUT '
EAUWTTYP DS X EUD REQUEST TYPE
EAUWTACT DS X EUD ACTION CODE
EAUWTRET DS H RETURN CODE
EAUWTREA DS H REASON CODE
EAUWTMSI DS H MESSAGE ID
EAUWTMGC DS CL8 MESSAGE CODE

DSLKQS MERVA-MQI Attachment Send Program (ID1=50):
ID2 Program DATA

00 DSLKQS Start Record 'DSLKQS START' time
00 DSLKQS Stop Record 'DSLKQS STOP' time
00 DSLKQS Function 'DSLKQS FUNCTION' tucname
00 DSLKQS Send Queue 'Q' sqname 'OF S' sprocname
00 DSLKQS Send Queue 'QUEUE' squeue
00 DSLKQS Send Process 'SPROC' sproc
00 DSLKQS MQI Commit 'S'p'C'cmtdata
00 DSLKQS User Exit 'S'p'X'extdata
01 DSLKQS MQI Request 'S'p'Q'reqdat1
02 DSLKQS MQI Request 'SBQ'reqdat2
03 DSLKQS MQI Request 'SBQ'reqdat3

The variable part of the trace data is represented by the following lowercase
symbols:

cmtdata
Consists of the following data:
DS 0CL21
DS CL5 Number of committed messages
DS CL8 Name of the send process
DS CL8 Name of the send or control queue

extdata
Consists of the following data:

Chapter 3. MERVA ESA Service Aids 45

DS 0CL21
DS CL5 MFS user exit number
DS CL8 Name of the send process
DS CL8 Name of the send queue

p The following values can occur:
A After the event.
B Before the event.

The values are associated to the following events:
v MQI Commit
v MQI Request
v User Exit.

reqdat1
Consists of the following data:
DS 0CL21
DS CL5 MQI request identifier
DS CL16 MQI resource name

The MQI request identifiers are provided without the leading characters
‘‘MQ’’. The following MQI request identifiers can occur:
v CLOSE
v CONN
v DISC
v GET
v INQ
v OPEN
v PUT
v PUT1.

The relationship between an MQI request identifier and an MQI resource
name is as follows:
CLOSE

Send or control queue name.
CONN

Queue manager name or blanks.
DISC Queue manager name or blanks.
GET Control queue name.
INQ Send queue name.
OPEN Send or control queue name.
PUT Send or control queue name.
PUT1 Remote reply-to queue name.

When the trace entry is written before the MQI request (indicated by
SBQ...), the following rules apply:
v If the MQI resource name is longer than 16 characters, a second trace

record is written containing the next 16 characters (see symbol reqdat2).
v If the MQI resource name is longer than 32 characters, a third trace

record is written containing the last 16 characters (see symbol reqdat3).

When the trace entry is written after the MQI request (indicated by SAQ...),
only one trace record is written containing the first 16 characters of the
MQI resource name.

46 Diagnosis Guide

reqdat2
Consists of the same data as reqdat1 with the following modification:
Characters 17 to 32 of the MQI resource name are provided. If the name
consists of less than 32 characters, the remaining area is padded with
blanks.

reqdat3
Consists of the same data as reqdat1 with the following modification:
Characters 33 to 48 of the MQI resource name are provided. If the name
consists of less than 48 characters, the remaining area is padded with
blanks.

sproc Consists of the following data:
DS 0CL18
DS CL8 Name of the send process
DS CL5 Number of the send process
DS CL5 Total number of send processes

sprocname
Name of the send process.

sqname
Name of the send queue.

squeue
Consists of the following data:
DS 0CL18
DS CL8 Name of the send queue
DS CL5 Number of the send queue
DS CL5 Total number of send queues

time The current time in the format 'HH:MM:SS'.

tucname
MERVA ESA function name obtained from the DSLTUCB.

DSLKQR MERVA-MQI Attachment Receive Program (ID1=51):
ID2 Program DATA

00 DSLKQR Start Record 'DSLKQR START' time
00 DSLKQR Stop Record 'DSLKQR STOP' time
00 DSLKQR Function 'DSLKQR FUNCTION' tucname
00 DSLKQR Receive Queue 'Q' rqind 'OF R' rprocname
00 DSLKQR Receive Queue 'QUEUE' rqueue
00 DSLKQR Receive Process 'RPROC' rproc
00 DSLKQR MQI Commit 'R'p'C'cmtdata
00 DSLKQR User Exit 'R'p'X'extdata
01 DSLKQR MQI Request 'R'p'Q'reqdat1
02 DSLKQR MQI Request 'RBQ'reqdat2
03 DSLKQR MQI Request 'RBQ'reqdat3
11 DSLKQR Triggered Queue 'DSLKQR TRIGGERQ' tqnam1
12 DSLKQR Triggered Queue tqnam2
13 DSLKQR Triggered Queue tqnam3

The variable part of the trace data is represented by the following lowercase
symbols:

cmtdata
Consists of the following data:
DS 0CL21
DS CL5 Number of committed messages
DS CL8 Name of the receive process
DS CL8 Index of the receive queue

Chapter 3. MERVA ESA Service Aids 47

The index of the receive queue indicates the position of the receive queue
in the receive queue list.

extdata
Consists of the following data:
DS 0CL21
DS CL5 MFS user exit number
DS CL8 Name of the receive process
DS CL8 Index of the receive queue

The index of the receive queue indicates the position of the receive queue
in the receive queue list.

p The following values can occur:
A After the event.
B Before the event.

The values are associated to the following events:
v MQI Commit
v MQI Request
v User Exit.

reqdat1
Consists of the following data:
DS 0CL21
DS CL5 MQI request identifier
DS CL16 MQI resource name

The MQI request identifiers are provided without the leading characters
‘‘MQ’’. The following MQI request identifiers can occur:
v CLOSE
v CONN
v DISC
v GET
v INQ
v OPEN
v SET.

The relationship between an MQI request identifier and an MQI resource
name is as follows:
CLOSE

Receive queue name.
CONN

Queue manager name or blanks.
DISC Queue manager name or blanks.
GET Receive queue name.
INQ Receive queue name.
OPEN Receive queue name.
SET Receive queue name.

When the trace entry is written before the MQI request (indicated by
RBQ...), the following rules apply:
v If the MQI resource name is longer than 16 characters, a second trace

record is written containing the next 16 characters (see symbol reqdat2).

48 Diagnosis Guide

v If the MQI resource name is longer than 32 characters, a third trace
record is written containing the last 16 characters (see symbol reqdat3).

When the trace entry is written after the MQI request (indicated by
RAQ...), only one trace record is written containing the first 16 characters
of the MQI resource name.

reqdat2
Consists of the same data as reqdat1 with the following modification:
Characters 17 to 32 of the MQI resource name are provided. If the name
consists of less than 32 characters, the remaining area is padded with
blanks.

reqdat3
Consists of the same data as reqdat1 with the following modification:
Characters 33 to 48 of the MQI resource name are provided. If the name
consists of less than 48 characters, the remaining area is padded with
blanks.

rproc Consists of the following data:
DS 0CL18
DS CL8 Name of the receive process
DS CL5 Number of the receive process
DS CL5 Total number of receive processes

rprocname
Name of the receive process.

rqind Index of the receive queue.

The index of the receive queue indicates the position of the receive queue
in the receive queue list.

rqueue
Consists of the following data:
DS 0CL18
DS CL8 Index of the receive queue
DS CL5 Number of the receive queue
DS CL5 Total number of receive queues

The index of the receive queue indicates the position of the receive queue
in the receive queue list.

time The current time in the format 'HH:MM:SS'.

tqnam1
Name of the triggered MQI receive queue.

The following rules apply:
v If the MQI receive queue name is longer than 8 characters, a second

trace record is written containing the next 24 characters (see symbol
tqnam2).

v If the MQI receive queue name is longer than 32 characters, a third trace
record is written containing the last 16 characters (see symbol tqnam3).

tqnam2
Characters 9 to 32 of the name of the triggered MQI receive queue. If the
name consists of less than 32 characters, the remaining area is padded with
blanks.

Chapter 3. MERVA ESA Service Aids 49

tqnam3
Characters 33 to 48 of the name of the triggered MQI receive queue. If the
name consists of less than 48 characters, the remaining area is padded with
blanks.

tucname
MERVA ESA function name obtained from the DSLTUCB.

End of Product-Sensitive programming interface

Debugging Traces

Product-Sensitive programming interface

Debugging Trace for MFS and TOF Services
The debugging trace is controlled by DSLMMFS and DSLTOFSV, respectively. You
can activate the trace by setting the bits COMTRAMF or COMTRATF, or both of
DSLCOM on. In addition there is a formatted snapdump of the actual TOF buffer
available via the DSLTSV TYPE=SHOT request. Any output produced is printed to
SYSPRINT using DSLPZRT. A trace record is 120 byte in length; on the right hand
side the module name and a time stamp is printed. The time stamp shows the
current system time (GMT) in the format <HHMMSS.TTTT.

When using the MERVA ESA end-user driver you can use the screen commands
TSHOT or $TOFSHOT to create a formatted snapdump of the actual TOF as
described in “TOF Shot” on page 55. The screen command $TRACE allows the
activation of selected MERVA ESA debugging trace options within a message
processing function. The screen command $DEBUG displays a help panel showing
the use of the $TRACE command.

When using the MERVA ESA application programming interface DSLAPI you can
activate the debugging trace by setting the field INTRC to C‘TT’ before calling the
interface module.

When using the MERVA ESA batch utility programs DSLSDI, DSLSDO, or
DSLSDY you can activate the debugging trace to trace all TOF supervisor and MFS
activities concerning a specific message of a batch of messages. For DSLSDI jobs
you specify the number of the message to be traced as the sixth parameter on the
EXEC statement in the job. For DSLSDO jobs you specify the number of the
message to be traced as the seventh parameter on the EXEC statement in the job.
For DSLSDY use the sixth parameter.

For example, to trace the formatting for the system printer of the 25th message in
queue DMSY0, code the following JCL statement:
//PRINT EXEC PGM=DSLSDY,REGION=2048K,PARM='DMSY0,E,X,,,025'

When using intertask communication via MQSeries, you can specify the characters
MQ instead of the number of a message. This causes the program DSLNMHQ to
trace all events related to MQSeries queues, so that you can debug problems
related to intertask communication via MQSeries.

Note: When using the debugging trace, the modules DSLMMFS and DSLTOFSV
must be link-edited with special parameters. For VSE, the RMODE must be
24; when running under MVS, RMODE ANY is supported. The modules are

50 Diagnosis Guide

not reentrant when running the debugging trace. The modules must not
reside in write-protected storage, like LPA, CICS RDSA, or CICS ERDSA.
Usually it is necessary to relink the modules DSLMMFS and DSLTOFSV into
separate load libraries using the link-edit parameters:
v For MVS: PARM='REUS'
v For VSE: PARM='REUS,RMODE=24'

MFS Debugging Trace
The following MERVA ESA MFS components issue debugging trace information:

DSLMMFS Interface program

DSLMCHE Message checking

DSLMXPND Message expansion

DSLMNOP Noprompt formatting

DSLMLFP Line formatter

DSLMMFS Debugging Trace:

v At entry to DSLMMFS the line
****** MFS INTERFACE / ENTRY-PARMLIST: ******

is printed followed by the MFS parameter list (52 bytes) in dump format. When
the DSLCOM or permanent storage addresses are missing in the MFS parameter
list, the trace is suppressed.

v At exit, when the MFS return code is not zero, the lines
****** MFS INTERFACE / EXIT-ERROR: ******
PARMLIST PREFIX

are printed, followed by the MFS parameter list prefix (12 bytes) in dump
format. When the field reference address is available in the parameter list, the
field reference (15 bytes) is printed in dump format. The MFS error message in
buffer MFSPEMSG is printed.

v When MFS dynamic load for a module or MCB is performed the line
LOAD MODULE

followed by the name of the module or MCB is printed.
v When MFS deletes a module or MCB the line

DELETE MODULE

followed by the name of the module or MCB is printed.

DSLMCHE Debugging Trace:

v Each message checking cycle starts with the line
****** DSLMCHE / MESSAGE CHECKING ******

v When a field in the TOF is to be checked, the line
DSLMCHE CHECK NEXT FIELD:

is printed, followed by the field reference (14 bytes) in dump format.
v When the field DSLLFBUF is found in the message, the line

DSLMCHE FIELD DSLLFBUF FOUND IN TOF

is printed to indicate that a formatting error occurred.

Chapter 3. MERVA ESA Service Aids 51

v When one of the field checking routines detected an error, the line
DSLMCHE CHECKING ERROR:

is printed, followed by the TOF parameter list (76 bytes) in dump format. TOF
supervisor and MFS reason codes contained in the parameter list give further
information about the error.

v When all TOF fields are processed, the lines
DSLMCHE END OF CHAIN REACHED
TSV-PARMLIST

are printed, followed by the TOF parameter list (76 bytes) from the last ACCESS
request.

DSLMXPND Debugging Trace:

v Each message expansion cycle starts with the line
****** DSLMXPND / MESSAGE EXPANSION ******

v When the field DSLEXIT is not found in the message the lines
DSLMXPND READ DSLEXIT FAILED
DSLTSV PARMLIST

are printed, followed by the TOF parameter list (76 bytes) from the READ
request. The missing DSLEXIT field indicates that the TOF does not contain a
message.

v When a field in the TOF is to be expanded, the line
DSLMXPND EXPAND NEXT FIELD:

is printed, followed by the field reference (14 bytes) in dump format.
v When a field expansion error occurred, the line

DSLMXPND EXPANSION ERROR:

is printed, followed by the TOF parameter list (76 bytes) to allow inspection of
TOF supervisor and MFS reason codes. When an error message is available in
the buffer MFSPEMSG it is printed also.

v When all TOF fields are processed, the line
DSLMXPND END OF CHAIN / TSV-PARMLIST:

is printed, followed by the TOF parameter list (76 bytes) from the last ACCESS
request.

DSLMLFP Debugging Trace:

v When data is detected for a TAG that has no field defined in the MCB (TAG
only field), the line

DSLMLFP: TAG ONLY FIELD DATA

is printed, followed by the data. In this case the data that is not mapped into the
TOF is lost.

v When a TOF error occurred during data mapping, the line
DSLMLFP: TOF PLIST IN ERROR

followed by the TOF parameter list (76 bytes) and the line
DSLMLFP: TOF IN ERROR

followed by the TOF are printed in dump format.

52 Diagnosis Guide

DSLMNOP Debugging Trace:

v For each GET cycle (noprompt data input from screen), the lines
****** MFS NOPROMPT PROCESSING (GET) ******
NOPROMPT CONTROL TABLE (INPUT)

are printed, followed by the noprompt control table and the line
EDIT BUFFER (INPUT)

followed by the edit buffer containing the input data from screen in dump
format.

v For each PUT cycle (noprompt data output to screen), the lines
****** MFS NOPROMPT PROCESSING (PUT) ******
NOPROMPT CONTROL TABLE (OUTPUT)

are printed, followed by the noprompt control table and the line
EDIT BUFFER (OUTPUT)

followed by the edit buffer containing the output data to be presented on the
screen.

v When a noprompt formatting error occurs during PUT cycle, the lines
ERROR IN LINE FORMATTING
****** MFS NOPROMPT PROCESSING (PUT) ******

are printed. The MFS parameter list prefix of the concerned line formatter call
may be inspected to analyze the reason of the error.

TOF Debugging Trace
For each TOF request information is supplied at the end of the request, that is,
before DSLTOFSV returns to the caller. Each trace entry is identified by a line
showing:

***** TOF REQUEST REPORT *****

Information supplied in fields with the prefix TSVP is derived from the TOF
parameter list TSVPARMS and with the prefix TSVS is derived from the internal
TOF Control Block TSVSCB.

The following information is supplied:
v FUNC/MOD:

– Function type TSVPFTYP
– Five fields showing the modifiers TSVPMODS for NI, FG, RS, FN, and DA
– Function modifier, TSVPFCMO (FCMO)
– Number of key, TSVSNKEY (NKEY) in TOF KEY AREA, if found
– TOF return code, TSVPRC
– Address of RS descriptor, TSVSRSDC (RSDC), last accessed
– Address of data area record, TSVSDARC (DARC), last accessed
– Offset of data area record in the TOF, TSVSDFND (DFND), if found.

v TSVPCURR:
– Current position, TSVPCURR (NI,FG,RS,FN,DA,OM) from TSVPARMS
– TOF reason code, TSVPRSC
– Address of option field record, TSVSOFRC (OFRC), last accessed

Chapter 3. MERVA ESA Service Aids 53

– Name of last TOF module processed, TSVSNAME (only the last four
characters of the name)

– Internal return code from last TOF module processed, TSVSRCOD (RCOD)
– Internal return code from last call to DSLTDFND, TSVSDFRC (DRC),

indicating whether RS descriptor, data area record or option field was not
found.

v TSVPNEXT:
– Next position parameters, TSVPNEXT (NI,FG,RS,FN,DA,OM) from

TSVPARMS
– Reason code from last MFS request performed by DSLTOFSV, TSVPMFSR

(MFSRSC)
– Last correct RS level in field reference: occurrence required was found on this

RS level (TSVSRSLA), significant for nested RS
– Last occurrence which was found on the first incomplete RS level (OCLA),

significant if occurrence not found
– Number of RS levels of key found in field descriptor extension list in TOF.

v TSVIPOS:
– The field reference evaluated, TSVIPOS (NI,FG,RS,FN,DA,OM)
– The corresponding main field name, TSVISFN (MFN) for subfields
– RSX: Part of field reference in RS extension, displayed only for fields in

nested repeatable sequences.
- Number of RS nesting levels (NO)
- Internal RS group number (GP)
- Occurrence number of each RS nesting level, starting with the outermost

repeatable sequence.
v STATUS:

Information saved in the status fields TSVPFSxx (xx= MF,EM,RX,DX,LS,
LG,LF,MN,DR), only shown if at least 1 bit is set.
– Nonzero return code from MFS, TSVPFSMF (MFS ERROR)
– Data component is empty, TSVPFSEM (EMPTY)
– More than maximum number of occurrences found TSVPFSRX (RSMAX)
– More than maximum number of data areas found TSVPFSDX (DAMAX)
– Field length error found, TSVPFSLS, TSVPFSLG, TSVPFSLF (too small:

LENMIN, too long: LENMAX, not fixed: LENFIX)
– Field is mandatory, TSVPFSMN (MAND)
– Field may be deleted, TSVPFSDR (DEL) (not currently used).

v SUBFIELD:
Specifications for this subfield derived from entry in FDT, only shown for
subfields.
– Routine numbers for: Checking (CHK), Editing (EDT), Default Setting (DEF),

and Separation (SEP)
– Length Specifications: LTH1, LTH2, fixed (FIX) or variable (VAR)
– Offset (OFFS) of subfield in main field
– Subfield is mandatory (MAND).

v BLEN =
I/O buffer (TSVPBUFF), length of data in buffer and data as character string
(maximum shown 60 characters).

v INTL =

54 Diagnosis Guide

Corresponding information from output buffer supplied for MFS calls
(referenced by TSVSBUFO), shown only if contents is different from TOF I/O
buffer. This output buffer is not available, if the TOF internal buffer is used
(storage already released).

v DSL3nnn
Explanation of TOF reason code TSVPRSC supplied as a diagnostic message,
displayed only for TSVPRSC > 0.

v MFSPEMSR
Information derived from MFS permanent storage, displayed only for MFSRSC >
99.
– Error message reason code (MFSPEMSR) and the actual length of the error

message (MFSPEMSA)
– Error message text.

TOF Shot
A formatted snapshot of the current TOF can be obtained by issuing a DSLTSV
TYPE=SHOT request. The contents of the TOF is listed in order of the keys as
arranged in the TOF key area. The beginning of the TOF shot is identified by:
v ******* HERE STARTS A NEW TOF ***************
v The total number of key entries in the TOF key area

In the following lines information for each key and its associated data is supplied
as follows:
v +++ KEY ENTRY #

– Number of the key. The keys are listed in ascending order.
– Nesting level (NI =), field group (FG =), field name (FN =), and nesting

identifier of next logical nesting level (NID =).
v +++ FD ENTRY and +++ PERM

In the following two lines information about the related field descriptor entry in
the TOF is given.
– Offset of field descriptor entry in TOF.
– Number of exit routines defined for checking (CHK), editing (EDT), default

setting (DEF), expansion (EXP) and separation (SEP).
– Length of field descriptor entry.
– Field features: PERM, QUEUE, Option (OPT), mandatory (MAND), length

specifications fixed (LTHX), variable (LTHY), unlimited (LTHU), minimum
(LTH1) and maximum (LTH2) length, maximum number of data areas
(DAMX), minimum (RSMI) and maximum (RSMX) number of occurrences
and number of options in option list (OPTN).

v ++ RS DESCRIPTOR
In the following lines the associated chain of RS descriptors and its option field
and chain of data areas is shown.
– RS occurrence number (for each level in case of nested RS) and its offset in

the TOF.
– Information about the option field: offset and option data, if available.
– Information about the chain of data areas, if available.

For each data area the occurrence number (RS), data area index (DA), the
length of the data, the offset of the data area record and the data are shown
in two lines.

Chapter 3. MERVA ESA Service Aids 55

Note: Two special types of keys with field name DSLRSBEG and DSLRSEND are
introduced to identify the start and end of repeatable sequences. These keys
are introduced only for repeatable sequences initialized with a RS extension
list. These keys have no field descriptor and no chain of RS descriptors
assigned. They show the internal RS group number and number of RS levels
(NO OF RS INDEXES = 1, for not nested repeatable sequence).

Debugging Traces for Nucleus Server Components
These traces are available for MVS only. You can trace the following nucleus server
components:
v Nucleus server shell
v Request queue handler
v MQSeries queue handler.

As an exception, you can also trace the MQSeries nucleus server program
(DSLNMQS).

The debugging traces can be activated:
1. By setting the appropriate bits in the Nucleus Server Table (DSLNSVT). This is

the static nucleus server shell and request queue handler debugging trace. The
static trace is useful if a nucleus server's behavior during its startup is to be
traced. You specify the trace area (the nucleus server) by setting the appropriate
trace mask. The specified trace is then active at the time MERVA ESA is
started. If the trace is no longer needed, you can deactivate the traces with the
dynamic trace.

2. By entering the NTRACE command accompanied by the appropriate command
parameters. This is the dynamic nucleus server shell and request queue handler
debugging trace. You can activate or deactivate traces or alter a static trace.

Generally, the debugging trace is written to the SYSPRINT data set. The nucleus
server shell and request queue handler debugging traces can be specified for:
v Trace areas
v Trace level
v Trace depth

Each trace can be either switched on or off.

Trace Areas
Trace areas can be specified by nucleus server names. The nucleus server names are
defined in the Nucleus Server Table (DSLNSVT) and can also be obtained by
entering the drqa command. It is also possible to trace ALL nucleus servers.

Note: Only those request areas are traced that are controlled by a nucleus server
shell, that is, the DSLNUC maintask module is excluded from the dynamic
debugging trace mechanism. However, common services such as the display
functions for a specific request (DR command), relations to a specific request
(DRR command), request queue and nucleus server administrative statistics
(DRQA command), and the nucleus server shell and request queue handler
debugging trace (NTRACE command) as well as the request queue handler
can be traced.

Trace Levels
Trace levels are grouped by modules that are:
v SHEL or SHEC (CICS) - nucleus server shell (control module DSLNSHEL or

DSLNSHEC)

56 Diagnosis Guide

v RRP - request ready event processing (module DSLNRRP) Depending on the
request content, any of the following modules are also traced:
– DSLNSNPT - nucleus program start
– DSLNPNPT - nucleus program stop
– DSLNNTR - nucleus task request
– DSLNNCS - nucleus command service

v SPP - service processed event processing (module DSLNSPP)
v RPP - request postprocessing (module DSLNRPP)
v PPP - program postevent processing (module DSLNPPP)
v RQH - request queue handler processing (module DSLNRQHx)
v MQH – MQSeries queue handler processing (module DSLNMQHx)
v MQS – MQSeries nucleus server processing (module DSLNMQSx)

It is also possible to trace ALL levels. Use NULL or 0 to ignore level trace setting.

Trace Depths
This defines which depth of the level is to be traced:
v BASE - gives a processing overview of the level specified for the trace area.
v REQUEST - traces the state and contents of a request accompanied with the

queue handler functions performed by the specified trace area.
v EVENT - traces the wait and postprocessing, the actual state of ECBs, and the

contents of ECB address lists accessed by the specified trace areas and levels.
v DISP - traces the display processing. You should activate this trace only if you

suspect an error in the display processing of the DRQA, DR, or DRR command.
v TRACE - traces the trace processing. You should activate this trace only if you

suspect an error in the trace processing.

It is also possible to trace ALL depths. Use NULL or 0 to ignore depth trace
setting.

Note: The display functions for a specific request (DR command), relations to a
specific request (DRR command), request queue and nucleus server
administrative statistics (DRQA command), and the nucleus server shell and
request queue handler debugging trace (NTRACE command) can run as
separate nucleus servers or can be integrated into the DSLNUC maintask.

How to Choose the Correct Trace
Generally, setting on a trace generates an overhead that influences MERVA ESA
performance, the more areas, levels, and depths you select. First, localize the
nucleus server where you suspect a problem. Before you switch on a trace, verify if
there is no other trace active which might influence performance and falsify the
traces you want. First reset all possibly misleading traces. Note that some nucleus
servers have a close relationship, such as the queue management and the
journaling. In this case, for example, you should select the trace areas for
DSLQMGT and DSLJRNP.

To get the first processing overview, set on the trace level for the nucleus server
shell control module (SHEL or SHEC) and a basic trace depth. If analysis of this
trace gives no hint to the problem, categorize the suspected problem as follows:
v Is it during startup or during normal work?
v Is it in a program defined in the Nucleus Program Table (DSLNPTT)? If yes, is it

during its start or stop processing?
v Is it during execution of a central service?

Chapter 3. MERVA ESA Service Aids 57

v Is it during execution of a command?
v Could the problem be a wait for an outstanding event?
v Is there a queuing problem?

If the problem occurs during normal work, you can use the display commands.
1. Display the administrative request queue and nucleus server statistics. If you

see the number of waiting requests for a nucleus server exceeds 2, then display
the request currently being processed.
If you see the number of waiting requests for the DSLNUC exceeding 2, then
you should consider to transfer a service currently running under DSLNUC to
a subtask nucleus server. You do this by specifying SERVER=TASK for the
service in question.

2. The Request Control Element (DSLNRCE) of a specific request. Beside others,
this display informs you about the current request state, the request processing
type, the number of the nucleus server which added the request, the number of
the nucleus server which obtained the request, and the times spent on the
different queue types.
If the server number which obtained the request does not match the one
processing the request in the previous display, you should increase the request
queue size: the request number you want to observe is already occupied with
another request. If there is no finished time, the request is finished with
processing, but is still busy signaling the Request Processed event to the server
which has added the request you look at. Display the relations to the request
you look at.
If there is no active time, the request is still active. Either the service described
in the request is still being processed or the service has added a subsequent
synchronous request. Display the relations to the request you look at.

3. The relations of a specific request. If the request for which you display the
relation is current, this request has no child and has no longer a parent, since
the parent request is no longer active. You should set on the RRP level
accompanied with the BASE and REQUEST depth. If the request for which you
display the relations is a parent request and has one or more child requests,
you should set on the SPP level accompanied with the BASE and EVENT
depth. There are two cases where you see more than one child request:
v The parent request has created a child request while a previous one is still

active.
v A child request has created another child request and all are still active.

If the request for which you display the relations is a child request, you see
also which request number is the parent request. You should set on the RRP
level accompanied with the BASE and EVENT depth. If you see brother
relations, you should set on the RPP level accompanied with the BASE and
EVENT depth. A brother relation occurs if a parent request creates more than
one child request. If the brother relation expires, the brother becomes a child.

If you need to know the exact contents of the Request Control Element (DSLNRCE,
you can switch on the REQUEST trace depth together with the SHEL/SHEC and
RRP trace level.

Do not set the REQUEST trace depth together with the RQH trace level unless you
really suspect an error in the request queuing or if you have an ABEND in module
DSLNRQH.

58 Diagnosis Guide

Once programs specified in the Nucleus Program Table (DSLNPTT) are started,
they run independently in the appropriate nucleus server until they are stopped by
a program stop request. If you suspect a problem in a nucleus server processing
such a program, you should switch on the SHEL/SHEC and PPP trace levels
together with the BASIC trace depth.

If you suspect a problem during startup, you should activate the static debugging
trace. If the trace is set for DSLNUC, the request queue handler and all nucleus
server shells will be traced from the beginning. If you know which nucleus server
shell has the problem, you should set the trace for the appropriate nucleus server.
The following is an example of how to set a debugging trace in the Nucleus Server
Table (DSLNSVT) for all nucleus server shells and the request queue handler:

This trace provides a debugging trace for all trace areas and all trace levels with
the trace depth of BASE, EVENT, and REQUEST

The following is an example of Nucleus Server Table (DSLNSVT) entries to trace
only the nucleus server shell of the queue management and the journal:

This trace provides a debugging trace for these trace areas with trace levels of
SHEL and RRP and depth of BASE and EVENT. The trace shows the processing of
these two nucleus servers at the time when any event is recognized, especially the
processing flow of a Request Ready event.

In the NSVT, you can also switch off the ESTAE error recovery routine of a specific
nucleus server. To do this you specify TRACE=(xxx,xxx,0,1).

Don’t forget to switch off all traces if no longer needed. To switch off all traces can
enter the command:

...

*
* BIT VALUE Meaning
*
* 0 128 SHEL BASE
* 1 64 RRP REQ
* 2 32 SPP EVT
* 3 16 RPP DISP
* 4 8 PPP TRC
* 5 4 RQH
* 6 2 MQH
* 7 1 MQS
*

DSLNSV NAME=DSLNUC,SERVER=MAIN,TRACE=(252,224,0,0)
DSLNSV NAME=DSLNCMD

*
.
.
.

*
* Journal program group

DSLNSV NAME=DSLJRNP,
SERVER=TASK,TRACE=(192,160,0,0)

*
* Queue management group

DSLNSV NAME=DSLQMGT,
SERVER=TASK,TRACE=(192,160,0,0)

*

Chapter 3. MERVA ESA Service Aids 59

|

NTRACE ALL,ALL,ALL,OFF

Depending on the trace level and depth specified, the following internal structures
may be found in the SYSPRINT output.

The Server Control Block (DSLNSCB)
DSLNSCB DS 0F Server Control Block
SCBHDR DS 0CL12 Control block header
SCBID DC CL8'*DSLNSCB*' Control block ID
SCBGMCW DS 0F Getmain Control Word
SCBSP DS XL1 Subpool ID
SCBLEN DS XL3 Control block length
SCBHLEN EQU *-DSLNSCB Length of SCB header
SCBIDS DS 0F IDs
SCBSRVNO DS F server number
SCBSRVNM DS CL8 service name
SCBPTRS DS 0F Pointers
SCBPREVP DS A to previous SCB in chain
SCBNEXTP DS A to next SCB in chain
SCBSMBP DS A to SMB
SCBRQVTP DS A to RQVT
SCBIRQP DS A to IRQ
SCBIRQAP DS A to IRQ slot added
SCBIRQOP DS A to IRQ slot obtained
SCBCOMP DS A to DSLCOM of server
SCBNSVEP DS A to servers NSV main entry
SCBEVTAP DS A to event list area
SCBEVTFP DS A to start of server event list
SCBEVTLP DS A to end of server event list
SCBRSPFP DS A to first SP ECB pointer within
* event list for requests
SCBRSPLP DS A to last SP ECB pointer within
* event list for requests
SCBPGMFP DS A to first program ECB pointer
* within event list
SCBPGMLP DS A to last program ECB pointer
* within event list
SCBRRPFP DS A to first RP ECB pointer within
* event list for requests
SCBRRPLP DS A to last RP ECB pointer within
* event list for requests
SCBOFF DS 0F Offsets
SCBSPOFF DS F to a request's service processed
* ECB pointer
SCBRPOFF DS F to a request's service processed
* ECB
SCBFLAGS DS F Flag bits
SCBTERM EQU X'80' subtask termination in progress
SCBSDWA EQU X'40' indicates whether SDWA is available
SCBRTRY EQU X'20' recovery: retry
SCBRECUR EQU X'10' recovery: recursion
SCBWAIT EQU X'08' server currently idle
SCBTSTMP DS 0F Timestamps
SCBITIME DS XL8 initialization time of server
SCBTTIME DS XL8 termination time of server
SCBECBS DS 0F ECBs
SCBSAECB DS F subtask attach ECB
SCBSTECB DS F subtask server termination ECB
SCBTMECB DS F subtask server timer ECB
SCBRRECB DS F servers request ready ECB
SCBSRECB DS F subtask return ECB
SCBSTTCB DS A subtask TCB address
SCBCNTRS DS 0F Counters
SCBNWTR DS F current number of requests in
* waiting queue for this server
SCBMISC DS 0F Miscellaneous

60 Diagnosis Guide

DS XL1 reserved
DS XL1 server mask bits

SCBSERPR DS XL1 SCB number of previous enqueue
SCBCS DS XL1 serialization bits: Compare and Swap
SCBCSTB EQU X'80' Block trace enqueued
SCBCSTS EQU X'40' Step trace enqueued
SCBCSIRQ EQU X'04' enqueue on servers IRQ
SCBSRVRC DS F return code from last processed
* service
SCBCSECT DS CL8 Last called CSECT
SCBRTRYC DS F enqueue retry count
SCBTRCEP DS A temporary RCE pointer
SCB_END DS 0F End of SCB

The Request Control Element (DSLNRCE)
DSLNRCE DS 0D Request Control Element
RCEDATA DS 0F RCE data section
RCEURI DS F Unique request identifier
RCESTATE DS XL1 Flags: FSM state
RCEFREE EQU X'80' element is free
RCEWAIT EQU X'40' element is waiting
RCEACTIV EQU X'20' element is active
RCEFIN EQU X'10' element is finished
RCEPROC DS XL1 Flags: Processing indicators
RCEBFALC EQU X'80' dynamic buffer is allocated
RCESYNC EQU X'40' asynchronous processing
RCEBROTH EQU X'20' request has a brother
RCENODAT EQU X'10' no data buffer although address
* in parm
RCEPRTY DS H Request priority
RCEMISC DS 0F
RCESRVAN DS F Number of server which added
* the request
RCESRVON DS F Number of server which should
* obtain the request
RCEUSDAT DS CL32 User data area
RCEORIG DS CL8 Request originator (UID)
RCEPARNP DS A Address of parent request
RCECHILP DS A Address of oldest child
RCEBROTP DS A Address of next younger brother
RCEWTIM DS XL8 Time request was added to the
* waiting queue
RCEATIM DS XL8 Time request was added to the
* active queue
RCEFTIM DS XL8 Time request was added to the
* finished queue
RCEDTIM DS XL8 Time request was removed from the
* finished queue and added to the
* chain of free elements
RCECEP DS A pointer to asynchronous processing
* control element
RCESCBAP DS A Pointer to SCB of server which
* created (added) the request
RCESCBOP DS A Pointer to SCB of server which
* processed (obtained) the request
RCESPECB DS A Service processed ECB.
* Posted by the server which
* obtained and processed the
* request
RCERPECP DS A Pointer to request processed ECB.
* If no RP ECB address was given
* when added, it points to RCERPECB
RCERPECB DS A Request processed ECB.
* Posted by the server which
* obtained and processed a child
* request. Awaited by the server

Chapter 3. MERVA ESA Service Aids 61

* which processed the parent
* request.
RCENUMAD DS H Number of adds performed by this
* parent request
RCERRIND DS CL3 Request ready indicator
RCESPIND DS CL3 Service processed indicator
RCERPIND DS CL3 Request processed indicator
RCEASYNP DS 0CL97 extension for MQI asynchronous
* processing
RCEMQFMT DS CL1 MQ message format
RCERTQNM DS CL48 reply-to queue name of requesting
* nucleus instance
RCEMQMNM DS CL48 MQM name of requesting
* nucleus instance
RCERTQSZ DS F RTQ size of request originating
* nucleus instance

DS F reserved
RCE_END DS 0F End of RCE

End of Product-Sensitive programming interface

MERVA ESA Dump

Product-Sensitive programming interface

Under certain error conditions, a snapshot dump can be produced by the
MERVA ESA nucleus or by the End-User Driver. Under CICS, a formatted region
dump can also be produced. Under IMS, a dump of BMP or MPP regions can be
produced.

A dump of MERVA ESA can also be produced by a user using the cancel or
terminat commands, with either the ABDUMP or DUMP options; see MERVA for
ESA Operations Guide for more information. Only authorized users can access this
facility.

In MERVA ESA most of the programs contain an eye-catcher generated by the
DSLCETO macro instruction showing the following information:
v Program name.
v Release level, for example, REL410 for MERVA ESA V4.1.
v Environment, for example, C410MVS for MERVA ESA under CICS Version 4,

Release 1, under MVS.
v PTF number. In the initially supplied MERVA ESA, the PTF number is blank.
v APAR number. In the initially supplied MERVA ESA, the APAR number is

blank.
v The assembly date and time.

This information allows for easy identification of the installed level.

Dump Analysis
If an error occurs, first check whether there are any error messages. Error messages
can be found:
v On the operating system console, especially from the MERVA ESA batch

programs and utilities.
v In the MERVA ESA journal.

62 Diagnosis Guide

v On the user screen terminal. These error messages cannot be found elsewhere,
therefore the user should write them on paper in order to keep the complete
information of the error message.

The error messages together with reason code and return code can give some
helpful information for debugging (see MERVA for ESA Messages and Codes).

In some cases, a CICS transaction dump or MVS SNAP dump is taken. The dump
code explains which program detected the error or which program failed. Print the
dumps for easier reference.

The analysis of a dump is primary the analysis of a CICS, MVS, or VSE dump.

In CICS, the transaction code indicates which program issues the dump.

In IMS, the jobname indicates which region issues the dump.

Additional Hints for Analyzing MERVA ESA Dumps

Dump produced by the DSLNUC maintask: If a dump is produced when the
ABEND exit in DSLNUC is entered, the PSW and registers at the moment of the
program check can be located in DSLNUC behind the eye-catcher NUCSTAE in the
dump. In CICS, PSW and registers at entry to ABEND can be found in the
DFHTACB located after trace table.

Usually, general register 1 is pointing to a parameter list, general register 10 is used
by most programs as the first base register, general register 13 points to a save
area, and general registers 14 and 15 are used in BALR instructions.

Additional information can be found in the parameter list of the program called.
Refer to the layout of the parameter lists in the program listings.

Refer to DSLCOM, which can be located via the eye-catcher *DSLCOM* and
contains pointers to the MERVA ESA tables and modules. The parameter list of
most programs contains the DSLCOM address. Usually the general program
register 12 points to the DSLCOM.

If called to produce a dump, DSLSRVP saves the prefix area of its parameter list in
the field SRVPREFX, which is located in DSLCOM + X'180' (the prefix area
contains the previous request type and the return and reason code). DSLSRVP
saves the old save area of the caller in the field SRVDEBUG, which is located in
DSLCOM + X'188' (just behind the 8-byte SRVPREFX field).

Further analysis of a dump depends on the particularity of the problem.

Dump produced by a DSLNSHEL / DSLNSHEC subtask: Most of the tips
mentioned above also apply for dumps produced in a subtask.

Any ABEND which occurs in a subtask is first handled by the ABEND exit
responsible for the subtask. This exit does not perform any recovery actions. It
simply produces the dump, gathers data important to help you in diagnosing the
error and prints it before returning to the system. The maintask then enters its own
ABEND exit and starts terminating MERVA ESA.

Dump produced by intertask communication via APPC/MVS: A return code 56
(X'38') returned from DSLNIC service indicates a problem with the intertask
communication via APPC/MVS. This problem usually results from incorrect or

Chapter 3. MERVA ESA Service Aids 63

insufficient specification of parameters in DSLPRM. The ITCAREQ parameter is
used by the requestor part of the intertask communication via APPC/MVS. If an
error occurs during intertask communication, the MERVA ESA program issues a
dump. If the error is APPC/MVS related and returned by program DSLNICTA, the
following steps should be performed to find out the cause of the problem.

The dump analysis must start with the DSLCOM. The DSLCOM can be located via
the eye-catcher *DSLCOM*; usually the general program register 12 points to the
DSLCOM.

The address of the parameter list for the intertask communication (NICPL) is
stored in the MERVA ESA DSLCOM at offset X'70'.

The first field in the NICPL is the ICB pointer. For intertask communication via
APPC/MVS, the control block starts with a length field followed by the
eye-catcher ‘ICB NICA’. In case of APPC/MVS errors the error extract message
returned from APPC/MVS is stored in the ICB. The prefix of these messages is
ATB8. The messages itself are described in OS/390 MVS Programming: Writing
Transaction Programs for APPC/MVS.

End of Product-Sensitive programming interface

Operator Messages
For various error conditions and events, operator messages are prepared by
MERVA ESA and the network links. They are displayed on the system console and
journaled by the MERVA ESA master operator program.

With the MERVA ESA command dm (display messages) you can display the
operator messages issued by MERVA ESA and the network links.

Status Displays
MERVA ESA and its components offer various commands for status displays. See
MERVA for ESA Operations Guide for details.

There are also specific operator commands available for diagnostic purposes:

DICB Display the ICB status.

DRQA Display the actual request queue and server statistics.

DR Display information about a specific request.

DRR Display the relations to a specific request.

NTRACE Activate and deactivate traces to debug the nucleus server shell
and the request queue handler.

XTRACE Activate and deactivate traces to debug the X.25 connections.

These commands are described in the following sections.

Displaying the ICBs (DICB)
Use the dicb command to monitor the status of the MERVA ESA intertask
communication servers and control blocks (ICBs) used for the intertask
communication via CICS temporary storage queues, via APPC/MVS or via
MQSeries. This command is mainly for diagnostic purposes. The ICBs of the other

64 Diagnosis Guide

methods of intertask communication can be displayed using MERVA ESA help
panels or batch utility programs. These methods are described in “Service Aids for
Intertask Communication” on page 80.

Command Format
The format of the dicb command is:

dicb [{ SERVERS }]
[{ TSQ [, number [, ALL]]}]
[{ APPC [, number [, ALL]]}]
[{ MQI [, number [, ALL]]}]
[{ srvname [, number [, ALL]]}]
[{ srvname [, , STOP]}]

The first time you enter the dicb command, the status of the first 13 ICBs is
displayed. If you enter the same command with the same parameter again, the
status of the next 13 ICBs is displayed. Only ICBs allocated by a requestor are
displayed.

Parameter Descriptions
The parameters for this command have the following meanings:

SERVER
Displays the status of the intertask communication servers. The servers for
CICS temporary storage queues, for APPC/MVS, and for MQSeries which are
started via the DSLNPTT and the batch APPC/MVS servers executed via
program DSLNTSAB are shown. The parameter can be abbreviated to ‘S’.

TSQ
Displays the status of the allocated ICBs used by the intertask communication
via CICS temporary storage queues. The parameter can be abbreviated to ‘T’.

APPC
Displays the status of the allocated ICBs used by the intertask communication
via APPC/MVS. The parameter can be abbreviated to ‘A’.

MQI
Displays the status of the allocated ICBs used by the intertask communication
via MQSeries. The parameter can be abbreviated to ‘M’.

srvname
Information for the specific server is displayed.

number
Is the number of a single ICB which status should be displayed.

ALL
The free and the allocated ICBs are displayed.

STOP
For a batch APPC/MVS server, a STOP request can be issued. The program
DSLNTSAB retrieves the pending STOP request within an interval of one
minute. The batch program DSLNTSAB is terminated.

Command Examples
The following section shows an example of how to enter the dicb command.

Example 1: To display the status of the allocated ICBs for the intertask
communication enter the dicb command without parameters:
dicb

Chapter 3. MERVA ESA Service Aids 65

Example 2: To display the status of the intertask communication servers enter the
dicb command with the server parameter:
dicb s

Examples of the Display from a DICB Command
“Displaying the ICBs (DICB)” on page 64 shows an example of the information that
is returned when you enter the dicb command without parameters.

Message DSL300I is displayed in response to the command, for details refer to
MERVA for ESA Messages and Codes. The message contains the following
information:

Server The name of the server serving the ICBs.

Type Dependent on the method of the intertask communication used, it
can be:
v NTSQ - the server uses the temporary storage queue (TSQ).
v NTSA - the server uses APPC/MVS.
v NTSM – the server uses MQSeries.

Num Is the number of the ICB. The total number of ICBs for each
nucleus server is determined by the ECB specification in the
DSLNPTT definition.

Status The status shows the information available for each ICB. For TSQ,
this is usually the CICS transaction code, the terminal ID, and the
CICS task number.

For APPC, this is usually the user ID, or the job name. In addition,
the elapsed time in seconds is shown since the ICB was allocated
and since the last request was processed. This information can be
used to identify applications monopolizing MERVA ESA resources.
The second timestamp value should be a small value, otherwise,
the requestor might have terminated without freeing the ICB
resource.

Operator Command Processing

> DICB
DSL300I Display ICBs
Server Type Num Status
CICSSRV NTSQ 001 alloc DSLE ASC4 00084 0.023 0.011
CICSSRV NTSQ 003 alloc DSLX 00080 5.742 0.105
CICSSRV NTSQ 004 alloc DSLH TPR1 00073 17.893 0.041
APPCSRV1 NTSA 001 alloc MRV$$SDI 164.064 0.097
APPCSRV2 NTSA 001 alloc MRV$$SDO 67.338 0.345
MQISRV1 NTSM 001 alloc DSLSDI MRC$$SDI 16:57:58 3.230 0.070

080454 is the time of this display

Command =====>
PF 1=Help 2=Repeat 3=Return 4=DF 5=DU 6=DM Last
PF 7=Page -1 8=Page +1 9=Hardcopy 10=DP 11=DQ filled 12=DL

Figure 5. Displaying the Status of ICBs

66 Diagnosis Guide

For MQSeries, this is usually the user ID, or the job name.

If other information such as user ID or program name is available
in the ICB, this information is also shown.

Figure 6 shows an example of the information that is returned when you enter the
dicb SERVERS command.

Message DSL305I is displayed in response to the command, for details refer to
MERVA for ESA Messages and Codes. The message contains the following
information:

Server The name of the server serving the ICBs.

Type Dependent on the method of the intertask communication used, it
can be:
v NTSQ - the server uses the temporary storage queue.
v NTSA - the server uses APPC/MVS.
v BATA - the server runs as a batch program (DSLNTSAB) and

uses APPC/MVS.
v NTSM - the server uses MQSeries.

ICBs The total number of ICBs for each server; it is determined by the
ECB specification in the DSLNPTT definition or, for the batch
program DSLNTSAB, controlled by an EXEC parameter.

Parameters The parameters used by a server. For NTSQ, it is the temporary
storage queue prefix.

For NTSA, it is the NOSCHED LU name and the TP name.

For BATA, the status is shown and the number of seconds since
the server was started.

For NTSM, the name of the MQSeries queue where requests are
received.

Operator Command Processing

> DICB SERVERS
DSL305I Display ICB Servers
Server Type ICBs/Alloc Parameters
APPCSRV1 NTSA 005 FDMAMF5 MERVAESA
CICSSRV NTSQ 010 DSLNX001
APPCSRVB BATA 005 STARTED 110.232 50.226
MQISRV1 NTSM 005 MERVA.RECEIVE_QUEUE

080458 is the time of this display

Command =====>
PF 1=Help 2=Repeat 3=Return 4=DF 5=DU 6=DM Last
PF 7=Page -1 8=Page +1 9=Hardcopy 10=DP 11=DQ filled 12=DL

Figure 6. Displaying the Status of Intertask Communication Servers

Chapter 3. MERVA ESA Service Aids 67

Displaying a Specific Request (DR)
Use the dr command to display the status of a specific request if you know the
request number from a previous drr or drqa command or from the output written
to the SYSPRINT data set after an ntrace command. The data is derived from the
Request Control Element (DSLNRCE associated with the request number you have
specified with the command.

Command Format
The format of the dr command is:

dr reqnum

Parameter Descriptions
The parameter for this command has the following meaning:

reqnum
The request number represents the static number of a Request Control Element
(DSLNRCE within the request queue. You must enter a number of up to 6
digits. The value can be 1 to the maximum request queue size which can be
obtained by issuing the drqa command. You can omit leading zeros.

Command Examples
The following section shows an example of how to enter the dr command.

Example 1: To display request number 8:
dr 8

68 Diagnosis Guide

Example of the Display from a DR Command
“Displaying a Specific Request (DR)” on page 68 shows an example of the
information that is returned when you enter the dr 8 command.

Messages DSL320I and DSL321I are displayed in response to the command. They
contain information in the Request Control Element (DSLNRCE, the representation
of a queuing request. For details refer to MERVA for ESA Messages and Codes. If no
request queuing environment is established, message DSL333I is responded.

Message DSL320I heads the first part of the specific request display. The first
display part shows the following information:

State The state the request is currently in:
v Waiting - The request is in the waiting state. A service requested a

service provided by another nucleus server. A new request was created
and added to the request queue. This request is now waiting for being
processed.

v Active - The request is in the active state. A nucleus server responsible
to process a specific service has obtained this request from the request
queue and is now processing it.

v Finished - The request is in the finished state. A nucleus server
responsible to process a specific service has finished processing this
request. The nucleus server which has added the request is notified.

v Free - The request is in the finished state. The nucleus server which has
added the request is deleted from the request queue and inserted to the
free element chain.

Type The service has added a subsequent service request and has defined one of
the following processing types:
1. Sync - The nucleus server shell waits until all subsequent requests are

finished.

Operator Command Processing

> DR 8
DSL320I Request Control Element of request 000008
State Type Added by Obtained by Progress Add Count

Free Async 06 DSLNTS 03 DSLNCS 0001

DSL321I Waiting time Active time Finished time

00:00.000.320 00:00.000.486 00:00.000.073

184317 is the time of this display

Command =====>
PF 1=Help 2=Repeat 3=Return 4=DF 5=DU 6=DM Last
PF 7= 8= 9=Hardcopy 10=DP 11=DQ filled 12=DL

Figure 7. Displaying the Status of a Specific Request

Chapter 3. MERVA ESA Service Aids 69

2. Async - The nucleus server shell does not wait until any subsequent
request is finished. In this case, it is up to the invoking service to wait
until any subsequently added request has finished.

If the service request does not involve any nucleus server, this field is left
blank.

Added by
This indicates the number and name of the nucleus server which has
added this request. The number can range from 0 to 99 and is established
for each nucleus server at the time it is initialized during startup. The
name reflects the name given in the appropriate nucleus server table entry.

Obtained by
This indicates the number and name of the nucleus server which has
obtained this request. The number can range from 0 to 99 and is
established for each nucleus server at the time it is initialized during
startup. The name reflects the name given in the appropriate nucleus
server table entry.

Progress
Several steps are necessary from the time a request is obtained until its
processing has finished:
v RR - Request Ready event processing. The nucleus server which is

responsible to process a request is posted by the nucleus server which
added the request to the request queue to signal that a request is ready
for being processed. At the time the request was the most eligible, the
posted nucleus server obtained it from the request queue and started
processing it.

v SP - Service Processed event processing. The nucleus server which
obtained the request has finished to process the service(s) described in it
and indicated this event to its control program. The nucleus server
which added the request is posted to signal that this request has been
processed.

v RP - Request Processed event processing. The nucleus server which
added a request may wait until this request is processed. If this event is
recognized, the nucleus server deleted the added request and continued
processing.

If an error occurred during any of these steps, this situation is indicated by
showing ERR instead. You should examine the SYSPRINT file for an
explaining trace message.

Add Count
A service which is currently executing in the nucleus server which
obtained a request may subsequently add one or more requests. This count
represents the number of service requests the nucleus server has
subsequently created. If the service request does not involve any nucleus
server, this field is left blank.

Message DSL322I heads the second part of the specific request display. It shows
the time the service request spent in a state. The time is displayed in the format
MM:SS.ttt.mmm: minutes:seconds.milliseconds.microseconds. The following times
are displayed:

Waiting time
The time the request spent on the waiting queue before a nucleus server
obtained it for processing.

70 Diagnosis Guide

Active time
The amount of time it took by the nucleus server to process the service
described in the request. This includes the time another nucleus server
needed to process a subsequently added synchronous request.

Note: There is no time reported for requests still waiting for being
processed.

Finished time
The amount of time it took by the nucleus server to process the results of a
subsequently added request, and to delete them from the request queue.

Note: There is no time reported for requests still processed by a nucleus
server.

If the service request does not involve any nucleus server, these fields are left
blank.

Displaying Relations to a Specific Request (DRR)
Use the drr command to display the relations to a specific request if you know the
request number from a drqa command or from the output written to the
SYSPRINT data set after an ntrace command. The data is derived from the Request
Control Element (DSLNRCE associated with the request number you have
specified with the command and the Server Control Block (DSLNSCB) of the
involved nucleus server.

Command Format
The format of the drr command is:

drr {[FIRST] reqnum }
{ reqnum [FIRST]}

The first time you enter the drr command without the FIRST parameter, the first
of a maximum of eight request relations are displayed. If you enter the same
command again, the next eight request relations are displayed.

Parameter Descriptions
The parameters for this command have the following meaning:

FIRST
Displays the first eight request relations of the specified request number.

reqnum
The request number represents the static number of a Request Control Element
(DSLNRCE within the request queue. You must enter a number of up to six
digits. The value can be 1 to the maximum request queue size which can be
obtained by issuing the drqa command. You can omit leading zeros.

Command Examples
The following section shows an example of how to enter the drr command.

Example 1: To display relations of request number 8:
drr 8

Example 2: To display first 8 relations of request number 8:
drr first,8

Chapter 3. MERVA ESA Service Aids 71

Example of the Display from a DRR Command
“Displaying Relations to a Specific Request (DRR)” on page 71 shows an example
of the information that is returned when you enter the drr 8 command.

If no request queuing environment is established, message DSL333I is responded.
Message DSL322I is displayed in response to the command. For details refer to
MERVA for ESA Messages and Codes. It heads the related requests display which is
organized in table form sorted by the request number in ascending sequence, and
shows information in the Request Control Element (DSLNRCE, the representation
of a queuing request, as follows:

Request Number
The numbers of the related requests. This number can range from 1
to 999999 and is controlled by the request queue handler. The
numbers in this column are sorted in ascending sequence.

Relation The relations can be:
v Current - This indicates that the specified request has no child

(is no parent) or has no parent (is no child). This can happen if
the relation chain is broken due to a request control element
reuse.

v Parent - This indicates that the indicated request is parent to one
or more children, the service has added one or more subsequent
service requests. If a service request is a parent and is of a
synchronous type, it waits until all subsequent child requests are
finished before it is allowed to continue processing.

v Child - This indicates that the indicated request is a child,
another service has added this subsequent request.

v Brother - This indicates that the indicated request is a child, but
since the parent request is of a synchronous type and has more
than one child, all younger children have a brother relation to
the oldest child.

Operator Command Processing

> DRR 8
DSL322I Requests related to RCE 000008
Request Number Relation Add Count Type

000008 Parent 0001 Async
000002 Child 0000 Async

144252 is the time of this display

Command =====>
PF 1=Help 2=Repeat 3=Return 4=DF 5=DU 6=DM Last
PF 7= 8= 9=Hardcopy 10=DP 11=DQ filled 12=DL

Figure 8. Displaying the Relations of a Specific Request

72 Diagnosis Guide

Add Count A service represented by the indicated request number may have
created one or more subsequent requests and added them onto the
request queue. If the service request does not involve any nucleus
server, this field is left blank.

Type If a service adds a subsequent request, two processing types can be
specified:
1. Sync - The nucleus server waits until all subsequently added

requests are finished.
2. Async - The nucleus server does not wait until any

subsequently added request is finished.

If the service request does not involve any nucleus server, this field
is left blank.

Displaying Administration Data for request queue (RQ) and
Nucleus Servers (DRQA)

Use the drqa command to display the current request queue and nucleus server
states.

Command Format
The format of the drqa command can be any of the following:

drqa [{ srvnum }]
[{ srvname }]
[{ FIRST [,srvnum]}]
[{ FIRST [,srvname]}]
[{ srvnum [,FIRST]}]
[{ srvname [,FIRST]}]

The first time you enter the drqa command without the FIRST parameter, message
DSL323I is issued followed by the request queue counts, and message DSL324I
followed by a maximum of four lines with general nucleus server statistics. If you
enter the same command again, message DSL324I is issued followed by a
maximum of eight lines with the next general nucleus server statistics, if available.

Parameter Descriptions
The parameters for this command have the following meaning:

FIRST
Displays statistics of the first of a maximum of four nucleus servers. The
nucleus servers are sorted in ascending sequence by the nucleus server number
assigned to it at MERVA startup time. If accompanied with the srvnum or
srvname, the statistics of the next of a maximum of four nucleus servers are
displayed.

srvnum
This number is assigned to a nucleus server at MERVA ESA startup time.

srvname
This name is assigned to a nucleus server in the nucleus server table.

Command Examples
The following section shows an example of how to enter the drqa command.

Example 1: To display the request queue and nucleus server statistics starting
with the lowest nucleus server number:
drqa

Chapter 3. MERVA ESA Service Aids 73

Note that the lowest nucleus server number is 0, which is reserved for the
DSLNUC maintask.

Example 2: To display the statistics of the next nucleus servers in ascending
sequence:
drqa

Example 3: To display the statistics of the next nucleus servers in ascending
sequence starting with nucleus server number 7:
drqa first,7

Example 4: To display the statistics of the next nucleus servers in ascending
sequence starting with nucleus server name DSLQMGT:
drqa first,dslqmgt

Example 5: To display the statistics of nucleus server 5:
drqa 5

Example 6: To display the statistics of nucleus server DSLJRNP:
drqa dsljrnp

Example of the Display from a DRQA Command
“Displaying Administration Data for request queue (RQ) and Nucleus Servers
(DRQA)” on page 73 shows an example of the information that is returned when
you enter the drqa 3 command.

Messages DSL323I and DSL324I are displayed in response to the command. They
contain information derived from internal control blocks of the respective nucleus
server. For details refer to MERVA for ESA Messages and Codes. If no request
queuing environment is established, message DSL333I is responded. Message
DSL323I heads the general request queue counts and shows the following
information:

Operator Command Processing

> DRQA
DSL323I Current Request Queue Counts
Tot. Free Tot. Wait. Tot. Act. Tot. Fin. Queue Size Servers
000008 000000 000002 000000 000010 0017

DSL324I General Nucleus Server Statistics
Number Name Request # Wait State
0000 DSLNUC 0000 Busy
0001 DSLJRNP 0000 Idle
0002 DSLQMGT 0000 Idle
0003 DSLNCS 000008 0000 Busy

182202 is the time of this display

Command =====>
PF 1=Help 2=Repeat 3=Return 4=DF 5=DU 6=DM Last
PF 7= 8= 9=Hardcopy 10=DP 11=DQ filled 12=DL

Figure 9. Displaying Statistics of the Request Queue and the First 4 Nucleus Servers

74 Diagnosis Guide

Tot. Free Represents the total number of request queue elements which are
currently unused. This is also called to be the free element pool
from which the request queue handler fetches an element and
assigns it to the request queue of a nucleus server to perform the
ADD queuing function.

Tot. Wait. Represents the total number of request queue elements occupied
by requests currently waiting for being processed.

Tot Act. Represents the total number of request queue elements occupied
by requests currently being processed.

Tot. Fin. Represents the total number of request queue elements occupied
by requests which have been finished processing. They are,
however, not yet freed by the nucleus servers.

Queue Size This number represents the total request queue size from which the
request queues of all nucleus servers are served.

Servers This number includes the DSLNUC maintask and the nucleus
servers running as separate tasks in parallel. They all share the
same free element pool from which the requests are built.

Message DSL324I heads the general nucleus server statistics. The general nucleus
server statistics are organized in table form sorted by nucleus server numbers in
ascending sequence, and shows the following information:

Number This column shows the nucleus server number in ascending
sequence, starting with the default of 0000, the one specified, or the
one assigned to the nucleus server name specified. The nucleus
server number is assigned to a nucleus server at the time
MERVA ESA is started.

Name This column shows the nucleus server name associated with the
nucleus server number. The nucleus server name is specified in the
Nucleus Server Table (DSLNSVT).

Request The number in this column shows the number of the request
which is currently being processed by this nucleus server.

Wait The number in this column shows the number of requests
currently waiting on the request queue for being processed by this
nucleus server.

State A nucleus server can have one of the following states:
1. Busy - The nucleus server currently processes a service. This

may be a service described in the obtained request with the
number indicated, or a previously started program.

2. Idle - The nucleus server does not currently process any
request.

Activate or Deactivate a Debugging Trace (NTRACE)
Use the ntrace command to activate or deactivate a debugging trace.

Command Format
The format of the ntrace command is:

ntrace | ntrc {parm1,parm2,parm3,parm4}

Chapter 3. MERVA ESA Service Aids 75

Parameter Descriptions
The parameters for this command have the following meaning:

parm1
This parameter specifies the nucleus server to be traced. A specific area can be
specified by entering the nucleus server number or the nucleus server name.

srvnum
This maximum 4-digit number is assigned to a nucleus server at
MERVA ESA startup time. By issuing the drqa command, you can
determine the nucleus server number you want to be traced. You can omit
leading zeros.

srvname
The nucleus server name consists of up to 8 alphanumeric characters. By
issuing the drqa command, you can determine the nucleus server name
you want to be traced.

all This specification means that all nucleus servers are affected in the levels
specified in parm2, the depth specified in parm3, and the action specified in
parm4.

parm2
This parameter specifies the level to be traced. The levels to be specified can
be:

shel
Specifies to trace the nucleus server shell control module for the non-CICS
environment in the nucleus server specified in parm1.

shec
Specifies to trace the nucleus server shell control module for the CICS
environment in the nucleus server specified in parm1.

rrp
Specifies to trace a nucleus servers request ready processing in the nucleus
server specified in parm1.

spp
Specifies to trace a nucleus servers service processed processing in the
nucleus server specified in parm1.

rpp
Specifies to trace a nucleus servers request postprocessing in the nucleus
server specified in parm1.

ppp
Specifies to trace a nucleus servers posted program processing in the
nucleus server specified in parm1.

rqh
Specifies to trace the common request queue handler processing.

nul | 0
Specifies to skip setting of a trace level and leave it unchanged.

all This specification means that all levels are affected in the nucleus servers
specified in parm1, the depth specified in parm3, and the action specified in
parm4.

parm3
This parameter specifies the depth to be traced. The depths to be specified can
be:

76 Diagnosis Guide

base | basic
Specifies to trace the general flow and common data of the nucleus server
specified in parm1 in the levels specified in parm2.

event | evt
Specifies to trace especially the ECB posting and event list processing of
the nucleus server specified in parm1 in the levels specified in parm2.

request | req
Specifies to trace especially the Request Control Element (DSLNRCE
contents and the request chaining of the nucleus server specified in parm1
in the levels specified in parm2.

disp
Specifies to trace the common request display processing.

ntrace
Specifies to trace the nucleus server shell debugging trace processing.

nul | 0
Specifies to skip setting of a trace depth and leave it unchanged.

all This specification means that all depths are affected in the nucleus servers
specified in parm1, the levels specified in parm2, and the action specified in
parm4.

parm4
This parameter specifies the trace action. The action to be specified can be:

on Specifies to switch on the trace in the nucleus servers specified in parm1,
the levels specified in parm2, and the depths specified in parm3.

off
Specifies to switch off the trace in the nucleus servers specified in parm1,
the levels specified in parm2, and the depths specified in parm3.

Command Examples
The following are examples of how to enter the ntrace command. You can use the
abbreviation ntrc instead.

Example 1: To trace the request ready processing general flow in the nucleus
server with name DSLJRNP in a non-CICS environment:
ntrace all,all,all,off
ntrace dsljrnp,shel,base,on
ntrace dsljrnp,rrp,base,on

Example 2: To trace the posted program processing general flow in the nucleus
server with name DSLQMGT in a CICS environment:
ntrace all,all,all,off
ntrace dslqmgt,shec,base,on
ntrace dslqmgt,ppp,base,on

Example 3: To trace the event processing in the nucleus server with name
DSLNCS in any environment:
ntrace all,all,all,off
ntrace dslncs,all,base,on
ntrace dslncs,all,evt,on

Example 4: To trace the request processing in the nucleus server with name
DSLNUSR in any environment:

Chapter 3. MERVA ESA Service Aids 77

ntrace all,all,all,off
ntrace dslnusr,all,base,on
ntrace dslnusr,all,req,on

Example 5: To add the event trace and remove the request trace processing in the
nucleus server with name DSLNUSR in any environment:
ntrace dslnusr,all,evt,on
ntrace dslnusr,all,req,off

Example 6: To trace the request queue handler processing:
ntrace all,all,all,off
ntrace all,rqh,all,on

Example 7: To trace all nucleus servers and levels with all depths:
ntrace all,all,all,on

Note that this trace produces a huge amount of data and slows down the
performance significantly.

Example of the Display from an NTRACE Command
Figure 10 shows an example of the information that is returned when you enter the
ntrace 3 command.

Message DSL331I is displayed in response to the command if the traces can be
successfully established. For details regarding the debugging trace facility refer to
“Debugging Traces for Nucleus Server Components” on page 56. If no nucleus
server shell and request queuing environment is established, message DSL334I is
responded.

Operator Command Processing

> NTRACE DSLNTS,ALL,BASE,ON
DSL331I Specified traces established.

151829 is the time of this display

Command =====>
PF 1=Help 2=Repeat 3=Return 4=DF 5=DU 6=DM Last
PF 7= 8= 9=Hardcopy 10=DP 11=DQ filled 12=DL

Figure 10. Establish a Specific Trace

78 Diagnosis Guide

Query or Change X.25 Trace Flags (XTRACE)
You use the xtrace command to query or change MERVA ESA X.25 trace flags.
Currently there are 10 trace flags defined for debugging purposes. Only X.25
protocol lines are supported by this command. You should only use this command
when IBM has instructed you to do so.

Command Format
The format of the xtrace command is:

xtrace line [,trace flag no. [,ON | OFF]]

Parameter Description
The parameters for this command have the following meanings:

line
Denotes the number of the line whose trace flags you want to query or change.
The line must be an X.25 protocol line. The value entered must be a number
from 1 to the maximum number of lines used in the system. This actual
number of lines used in the system depends on the customization of the
SWIFT Link, which allows a maximum of 30 lines. The number refers to the
name of a line definition module, for example, DWSLIN1 for line 1, DWSLIN5
for line 5. If the line is not initialized or is not an X.25 line, the command is
rejected.

If you enter the xtrace command only with the line parameter, the current
setting of this line is displayed.

trace flag no.
Denotes the number of the trace flag whose setting you want to change. The
value entered must be a number from 1 to 10.

ON | OFF
Indicates whether you want to set the specified trace flag on or off.

Command Examples
This section shows some examples of how to enter the xtrace command.

Example 1: Enter the following command to display the status of all trace flags of
line no. 3:
xtrace 3

Example 2: Enter the following command to change the status of the trace flag
no. 5 for line no. 7 to ON:
xtrace 7,5,ON

Chapter 3. MERVA ESA Service Aids 79

Example of the Display from an XTRACE Command
Figure 11 shows an example of a panel displayed in response to an xtraceline
command.

Service Aids for Intertask Communication
The DICB command can be used to display status information for the intertask
communication methods via CICS temporary storage queues, via APPC/MVS, and
via MQSeries. Refer to “Displaying the ICBs (DICB)” on page 64 for details.

A MERVA ESA requestor program using the intertask communication method via
APPC/MVS issues a dump in case there are problems with APPC/MVS requests.
Refer to “Dump produced by intertask communication via APPC/MVS” on
page 63 for details on how to analyze the dump.

A common problem which can occur when using the traditional MERVA ESA
intraregion and interregion communication methods is that an allocated ICB is not
released by the requestor application. Such problems can be analyzed using the
methods described below.

To display the status of the control blocks of the inter- and intraregion
communication (ICBs) the command show DSL0NIC can be used in the CMD or
MSC function. The panel DSL0NIC extracts the ICB information from the system
and displays the current status. Only the local ICBs can be displayed. The
intraregion ICBs are used on a MERVA ESA running under CICS only, for a
MERVA ESA under IMS there are no intraregion ICBs. Only the interregion ICBs
of MERVA ESA running on an MVS system can be displayed.

Operator Command Processing

> XTRACE 3
DWS588I Trace status for line 3 is NNNNN NNNNN

115031 is the time of this display

Command =====>
PF 1=Help 2=Repeat 3=Return 4=DF 5=DU 6=DM Last
PF 7= 8= 9=Hardcopy 10=DP 11=DQ filled 12=DL

Figure 11. Displaying the Status of MERVA ESA Trace Flags

80 Diagnosis Guide

Example of the Display from a SHOW DSL0NIC Command
Figure 12 shows an example of a panel displayed in response to a show DSL0NIC
command.

The display consists of two parts, the interregion ICBs and, under CICS, the
intraregion ICBs. The information on the panel shows:

Job The jobname of the MERVA ESA batch program or CICS MVS job.

Startup Time The time MERVA ESA nucleus was started.

MERVA ID The MERVA ESA identification as defined in DSLPRM.

SVC The SVC number.

CVT Offset The offset used in the CVT user extension.

Subsystem Entry
If a subsystem entry is used as interregion communication anchor,
YES is shown.

ICBs Shows the total number of ICBs defined, which is the number of
ECBs customized in the DSLNPTT for the intertask communication
method. The number of allocated and free ICBs is also shown.

The status of each individual ICB is indicated in an information line.

For interregion communication, the number of the ICB is followed by the
indication whether the ICB is allocated or free. The job name of the requestor is
shown. When the job is still running it is indicated as active, otherwise the ASCB is
not found.

If an ICB is allocated, but the ASCB is not found, the ICB was not freed by the
requestor program.

MERVA ESA Intertask Communication

Interregion Communication
Job MRC$CS41 Startup Time 090326 MERVA ID @MRC
SVC 214 CVT Offset 088 Subsystem Entry NO

ICBs: 00005 available 00001 allocated 00004 free
00001 allocated ICB MRC$$SDI Requestor is active
00002 --- free --- MRC$$SDY Requestor's ASCB not found
00003
00004
00005

--
Intraregion Communication

Job Startup Time 090326 MERVA ID @MRC

ICBs: 00025 available 00003 allocated 00022 free
00001 Requestor's Trace Table: DSLEUD 6206 TACSTART
00002 Requestor's Trace Table: DSLCXT L3CXT 09:04:29

Command =====> SHOW DSL0NIC
PF 1=Help 2=Retrieve 3=End 4= 5= 6=
PF 7=Page -1 8=Page +1 9=Hardcopy 10= 11= 12=

Figure 12. Displaying the Status of the Inter- and Intraregion ICBs

Chapter 3. MERVA ESA Service Aids 81

For intraregion communication, the display function may be able to extract
additional information about the transaction running. This is done by analyzing
the MERVA ESA program trace table of the requestor. The program name, the
terminal ID, the function, or the start time of the transaction is shown. When the
information is not available, for example, the trace table is not accessible, an error
indication is given.

The status of the interregion ICBs of MVS can be displayed using the ICB utility
program DSLICBUT.

JCL to Run the DSLICBUT Utility

The output created by the program DSLICBUT is printed on the SYSPRINT data
set.

If you use a subsystem entry for the interregion communication, the subsystem
name xxxx must be specified as ‘S(xxxx)’ on the EXEC statement. The subsystem
name for MERVA ESA is specified with the MERVA identifier (parameter DSLID in
the customization parameter DSLPRM).

Specifying the parameter ‘DUMP’ on the EXEC statement prints the control blocks
also in dump format.

Example of a Report from the DSLICBUT Utility
Figure 14 shows an example of a report created by the DSLICBUT program.

The information in the report consists of several blocks.

//........ JOB
//ICBUT EXEC PGM=DSLICBUT ,PARM=‘S(xxxx)’
//* ,PARM=‘DUMP’
//STEPLIB DD DSN=MERVA.SDSLLODB,DISP=SHR
//SYSPRINT DD SYSOUT=*

Figure 13. Running the ICB Report Utility DSLICBUT

MERVA ESA FOR MVS - INTERREGION COMMUNICATION
SUBSYSTEM ENTRY
--> Address 00BA9338 - Length 0024 <--
BA9338 E2E2C3E3 00BA935C D4C5D9E5 00000000 *SSCT..l*MERV....* 0000
BA9348 00000000 00000000 00BA6200 00000000 *................* 0010
BA9358 00000000 *.... * 0020

OFFSET 088 : JOB(MRV$CS41) TIME(090326) ID(@MRV) REGS(005) VERSION(V3)
START GMT(TODAY 064616) JOB(RUNNING,CPU=00112.757)

ICB ALLOCATED JOB(MRV$$SDI) BUFSIZE(0000017408)
START GMT(TODAY 083924) JOB(RUNNING,CPU=00002.374)

ICB FREE JOB(MRV$$SDY) BUFSIZE(0000017408)
START GMT(TODAY 083924) JOB(TERMINATED)
ALLOCATED ICBS(002) TOTAL BUFFER STORAGE(0000034816)

OFFSET 120 : JOB(XRP$C410) TIME(085324) ID(XRPH) REGS(005) VERSION(V3)
START GMT(TODAY 065217) JOB(RUNNING,CPU=00050.998)
ALLOCATED ICBS(000) TOTAL BUFFER STORAGE(0000000000)

Figure 14. Report from DSLICBUT Utility

82 Diagnosis Guide

If a subsystem entry is used for MERVA ESA, the subsystem control block is
printed in dump format. The control block contains the anchor address of an ICA
(intertask communication area).

The CVTUSER extension is examined. If the user extension is used by
MERVA ESA, the ICA and all ICBs for each offset in the CVT user extension are
printed. When multiple MERVA ESA are running on the same MVS, each
MERVA ESA uses its own ICA.

For each ICA, the offset, the job name, the local start time of MERVA ESA, the
MERVA ESA identification as defined in the DSLPRM, the number of ECBs
customized in the DSLNPTT entry for TYPE=INTER, and the MERVA ESA version
area are printed. MERVA ESA V4 uses the same layout as MERVA ESA V3,
therefore the version indication is always V3.

The next line indicates the start time of the job in GMT, and if the job is running,
the CPU time used in seconds.

For each ICB using this ICA, the requestor’s job name and the buffer size used by
this requestor is shown. The status of an ICB is either ALLOCATED or FREE. The
next line indicates the start time of the job in GMT, and if the job is running, the
CPU time used so far.

If an ICB is allocated, the job should be running. If an ICB is allocated, but the job
is already terminated, this is an indication of an error situation.

The last line for each ICA shows the total number of ICBs allocated and the total
buffer storage used in the ECSA for this ICA.

Service Aids for Other Components
Depending on the operating system and the data communication system used,
several additional service aids are available. Some examples are:
v With the Generalized Trace Facility (GTF) you can trace the I/O operations and

buffer contents for the line to the SWIFT or telex network under MVS. For the
MERVA ESA network links, the I/O trace is likely to be the most useful service
aid to determine performance and communication-line problems.

v The System Debugging Aid (SDAID) provides the same trace services under
VSE.

v CICS provides various service aids that are useful in the process of determining
the cause of possible problems with MERVA ESA and the network links. You
can find further information on these in the CICS/VSE Problem Determination
Guide.

v IMS also provides trace capabilities for tracing internal IMS events. The IMS
operator command /TRACE is used to invoke this service. You can find further
information on these in the IMS/ESA V4 Operator’s Reference.

Chapter 3. MERVA ESA Service Aids 83

84 Diagnosis Guide

Chapter 4. Abnormal Events

In this context, an abnormal event is something that interrupts or affects the
operation of your MERVA ESA installation.

Startup Problems
If an error occurs when starting MERVA ESA or the network links, the program
issues an error message to the operator. The message contains the function and,
where applicable, the return and reason codes of the function request in error.

Errors during startup are likely to be caused by improper installation or
customizing. For installation errors check that:
v Tables (for example DSLPRM, DWSPRM, ENLPRM, MERVA Link Partner Table,

Message Type Table, Function Table, and Field Definition Table) are installed
correctly (no assembly errors, no MNOTEs, and the correct names in the
customizing parameters).

v The transaction codes and logical terminal names specified in the Function Table
and the MERVA Link Partner Table (if applicable) are also generated with IMS,
or specified in the CICS definitions, respectively. This is especially important for
the name of the send transaction and the name of the receive transaction in the
Telex Link and the MERVA Link.

For DSLNUC errors check that:
v The routing modules are correctly installed.
v All queues specified in the MERVA ESA generation parameters and in the

routing modules are also defined in the Function Table.

End-User Errors
The following end-user errors can occur:
v If the message DSL1004 MERVA is not ready is issued, a user has tried to sign

on before MERVA ESA is started.
v If the message DSL1010 Not enough main storage available is displayed,

increase the region size.

Performance Problems
To avoid performance problems you should define the highest priority for the
MERVA ESA nucleus DSLNUC:
v For CICS define the highest priority in a CICS region or partition.
v For IMS define the highest priority after the IMS control region. It must be

higher than the IMS MPP regions.

In the DSLNPTT definition of MERVA ESA, the program DWSDGPA (SWIFT Link)
should have a higher scheduling priority than other programs.

Notes for CICS:

1. You must ensure that the ICV parameter of the CICS system initialization table
(DFHSIT) has a low value: for example, ICV=100 or ICV=250.

© Copyright IBM Corp. 1987, 2001 85

2. You must ensure that the MXT parameter of DFHSIT is high enough (see the
MNOTE in the assembly listing of DSLNPTT).

Severe Errors
In the case of the following severe errors, MERVA ESA and the network links
terminate with a dump:
v Queue management errors
v Journal errors
v Message Format Service errors (return code > 4), which always cause a signoff

or return to function selection, but which do not always produce a dump
v TOF Supervisor errors (return code > 4)
v Timer errors (DWSDGPA, DSLISYNP, and DSLCNTP)
v General Service errors (DSLSRVP)
v Interregion communication errors (DSLEUD only signs off and terminates)
v IMS errors
v Authentication errors (DWSAUTP for the SWIFT Link only)
v End-User Driver errors
v MERVA ESA SPA File error (IMS only).

Some of these errors are described in “What Action to Take”.

When a dump is available, the parameter lists appear in the storage of the module
in error. When the queue data set or the journal data set is full, a MERVA ESA
error message is displayed on the operating-system console. For other
queue-management errors, the definition of the function table and routing modules
should be checked. If the message counter log data set is unavailable, MERVA ESA
terminates with an error message. For the Message Format Service (MFS) and TOF
errors, user changes for Message Control Blocks (MCBs, especially line definitions),
the Field Definition Table (DSLFDTT), and MFS exit specifications should be
examined. When a TOF too small or TOF full error is indicated, the TOF size
specification in the DSLPRM should be checked and corrected.

What Action to Take
The following gives a brief description of the action you can take if certain
abnormal events occur.

If a Transaction Is in a Wait State
If MERVA ESA terminates while a transaction is running, the transaction may
remain in a wait state because intertask communication no longer functions. The
transaction must be canceled using CICS or IMS commands. The processing of the
transaction can be resumed using the MERVA ESA operator command sf (start
function).

If a Batch Program Is in a Wait State
If MERVA ESA terminates while a MERVA ESA program is running, the program
may remain in a wait state because intertask communication no longer functions.
The batch program must be canceled using operating system commands.

After restarting MERVA ESA, the batch program can be started again. No data is
lost because the batch programs determine whether the transfer of data was

86 Diagnosis Guide

completed or not. If the transfer was not completed, the batch program
automatically carries out restart processing.

If the Queue Data Set Is Full
When a MERVA ESA component detects the queue data set full condition, it
immediately cancels its network connection (SWIFT Link, Telex Link, MERVA
Link). You can do one of the following:
v Ask users to process the messages in the queues.
v Start the hardcopy printer program.
v Start DSLSDY to print and empty a queue.
v Start DSLSDO to move messages to a sequential data set and empty the queues.

It should be taken into consideration that DSLSDO needs to put one (small)
restart message into the queue before the processing can start. It might be
necessary to delete one message before DSLSDO can be started.

If this condition appears frequently and queue management using VSAM is used,
the size of the queue data set can be increased using the MERVA ESA utility
DSLQDSUT.

During each MERVA ESA startup, queue management automatically determines if
a queue-management restart must be performed. When the queue data set can be
read physically, queue management maintains the integrity of the data in the
queue data set. When queue-data-set duplication is implemented and one of the
data sets is corrupted, it can be re-created by copying the uncorrupted data set.

If the Journal Data Sets Are Full
Whenever the journal data set A is full, the MERVA ESA journal program switches
automatically to journal data set B. The switch is indicated by the message:
DSL040I Switched from journal A to journal B

Depending on the size of the journal data set B, MERVA ESA should be
terminated when possible, so that you can print and clear the journal data sets
before the next MERVA ESA startup. If journal data set B becomes full,
MERVA ESA terminates.

MERVA ESA V4.1 provides a command for manually switching the journal data
sets and the possibility to reset a journal data set before it is used. This allows for a
more flexible operation of the journal data sets and enables the continued
operation of MERVA ESA. Provided that the archive operation is set up properly,
the journal-full condition can be completely avoided. Refer to the MERVA for ESA
Operations Guide for details about the journal operation in an 7x24 environment.

Problems with the Network Links
Whenever an abnormal situation arises, the SWIFT Link or Telex Link issues an
error message to the MERVA ESA operators. MERVA Link error codes are shown
in the MERVA Link application control panel of the MSC function. The
MERVA ESA operator should refer to MERVA for ESA Messages and Codes, and take
the action indicated there.

Chapter 4. Abnormal Events 87

Problems with the SWIFT Connection
If a problem arises with the connection to the SWIFT network, refer to the
S.W.I.F.T. User Handbook or contact the SWIFT support center to solve the problem.
Before doing this, ensure that there is no problem with the modem or the
connection to the telephone network.

88 Diagnosis Guide

Chapter 5. Diagnosing and Reporting Program Failures

This chapter explains the steps to be taken if you have a problem. These steps are
summarized in Figure 15, which shows the actions you and IBM should take to
solve the problem.

Carrying Out the Initial Evaluation
When MERVA ESA does not function correctly, a numbered diagnostic message is
normally issued. The three letters in the message number indicate the component
of MERVA ESA that issued the message:

Your Activities IBM’s Responsibilities

1. Make an initial evaluation to

make reasonably sure that the

problem has been caused by

IBM code.

2. If you are reasonably sure

that IBM code is at fault,

build a symptom string.

Then search the Early Warning

Sytem or call your IBM

Support Center.

3. If the problem is known,

install the fix offered by IBM.

This fix can be a Program

Temorary Fix (PTF) or an

APAR fix.

4. If the problem is new, submit

information for an APAR.

5. Install the IBM-supplied fix

and provide feedback om the

results.

Search IBM’s database of known

problems, using the user-supplied

symptom string as a search argument.

Call the user and tell him that

the problem ios known and that a fix

is available, or that the problem

is new.

Add the problem to IBM’s

database of known problems and

provide a fix.

Figure 15. An Overview of IBM’s Service Concept

© Copyright IBM Corp. 1987, 2001 89

DSL The Base Functions

DWS The SWIFT Link

ENL The Telex Link

EKA The MERVA Link or the MERVA-to-MERVA Financial Message
Transfer/ESA

IMR The MERVA ESA Traffic Reconciliation.

When carrying out the initial evaluation, the first step is to read the explanation in
MERVA for ESA Messages and Codes for the messages issued, and to take the
recommended action. In addition, if the system runs under an MVS/ESA operating
system, the MVS/ESA Problem Determination Guide can be useful: in particular, the
CICS or IMS trace and diagnostic aids. If the system runs under a VSE/ESA
operating system, the IBM VSE/ESA Guide for Solving Problems can be useful.

If the same or a related error occurs after you have taken the recommended action,
it is possible that the error was caused by an error in IBM-supplied code. Use the
following procedure to establish whether this is the case:
1. Go through the checklist shown in Table 1. This will help you to determine

whether the problem might have been caused by IBM code. For example, if you
have applied an IBM Program Temporary Fix (PTF) to MERVA ESA since the
last time you ran the program successfully, and you have applied the fix
correctly, IBM code is probably at fault, and you should call IBM.

2. Table 2 on page 92 lists some possible problems in the MERVA ESA
environment, and the recommended actions for solving them. It is impossible
to provide detailed procedures that will diagnose all possible failures. However,
this figure gives you a guideline that helps you to decide if the failure was
caused by IBM code, operator error, or generation-parameter errors of
MERVA ESA or its network links.

3. If your initial evaluation points to an error in IBM-supplied code, see “Building
a Symptom String” on page 92, which describes the information IBM needs to
help you to solve the problem.

Problems that occur during a run of MERVA ESA can arise from MERVA ESA
code, or from errors in the operating system or the control program environment.
When you begin to diagnose a problem, you must consider all these possibilities.
Once you are reasonably sure that the problem is in MERVA ESA, you can start to
build your symptom string.

Table 1 on page 91 is the checklist to be used during the initial evaluation of the
problem.

90 Diagnosis Guide

Table 1. Initial Evaluation Checklist

Item to Be Checked Possible Cause if YES Your Action if YES

Release of Operating System

Did the program run previously
under the same release of the
operating system?

Continue with checklist.

Did the program run previously
under the same release of the data
communication system (CICS or
IMS)?

Continue with checklist.

Have there been any changes to the
operating system since the previous
successful runs?

Bad fix Continue with checklist.

Have there been any changes to the
data communication system since the
previous successful runs?

Bad fix Continue with checklist.

System Hardware Configuration

Was the program run on a system
with a configuration different from
the one that existed at the time of the
previous successful run, for example,
different network addresses?

User error Ensure that the system software
correctly reflects the configuration
change. Check the job control
statements.

Job Control or MERVA ESA Generation Parameters

Have any of the job control or
MERVA ESA (or network links)
generation parameters for the
program been changed since the
previous successful run?

User error Check the job control statements,
MERVA ESA customizing
parameters, and the network-links
generation parameters.

Program (Module, Subroutine) Code

Has there been a reassembly of the
failing module since the previous
successful run?

User error Ensure that the change was done
correctly.

Has the program or any of its
modules been recataloged since the
previous successful run?

User error Ensure that the change was done
correctly.

Input/Output Media and Devices

Has there been a change in the
location of data on any of the media,
for example, has a data set been
moved to another disk?

User error Ensure that the job control is correct
for the new storage device.

Has there been a change in any of
the input media, for example, types
of control units?

User or hardware error Ensure that the job control and
system changes are correct; if I/O
error, inform hardware engineer.

Was a different I/O device type
assigned, for example, different
models of IBM 3390?

User or hardware error Ensure that the job control and
system changes are correct; if I/O
error, inform hardware engineer.

Table 2 on page 92 lists the possible error conditions in MERVA ESA and
recommends the action you should take.

Chapter 5. Diagnosing and Reporting Program Failures 91

Table 2. Conditions within MERVA ESA and its Components

Condition Recommended Action

An error message from the system or MERVA ESA Look at the message explanation in the appropriate
books. There you can find advice on what to do next.

MERVA ESA or a network link terminates unexpectedly Look at the associated message that gives the reason for
the termination.

Check the job control.

Refer to “Building a Symptom String”.

Loop or wait in MERVA ESA or a network link Refer to “Building a Symptom String”.

Program check Refer to “Building a Symptom String”.

Incorrect output Check whether all the needed input was supplied
properly. Make sure the output is incorrect, not just in an
unexpected format.

Refer to “Building a Symptom String”.

Building a Symptom String
If your initial problem evaluation points to an error in code supplied by IBM,
inform IBM of the program failures, describing them in a “symptom string.” A
symptom string consists of a series of “keywords.” A keyword can be a word, an
abbreviation, or a number, and is used to describe a single aspect of a program
failure.

The following types of information can be identified in the symptom string by the
use of keywords:
v The component of MERVA ESA in which the problem has arisen (that is, Base

Functions, the SWIFT Link, the Telex Link, or the MERVA Link).
v The type of failure that has occurred.
v The version, release level, and modification level of MERVA ESA.
v The maintenance level of MERVA ESA.

Note: This is not used directly in the symptom string, but during the search
process.

v The area of failure: for example, to identify the module that has failed.

The symptom string can be used to search the Early Warning System (EWS) for a
similar problem that has already been reported. The EWS is a set of microfiche
copies of the known problems within IBM licensed programs, and is available to
the users of these licensed programs. If a matching problem is found, it will
contain an error description for the problem, and usually a fix or a circumvention.

Under MVS, the symptom keywords can be used more conveniently to search the
online Information/Systems database. This database, which can be installed in
MVS systems, also contains descriptions of the known problems in IBM licensed
programs.

The problem should be reported to the IBM Support Center if:
v You do not have access to the EWS or to the Information/Systems database.
v No matching problem is found.

92 Diagnosis Guide

v No fix was provided for the problem.
v The fix did not resolve the problem.

The representative of the IBM Support Center uses the symptom keywords to
search an online database for similar known problems. This database contains
more recent information, and it is possible that a matching problem can be found
there.

The first keyword of the symptom string identifies MERVA ESA by means of a
component identifier. A search of the software-support database with this keyword
alone finds all reported problems for the licensed program. Each additional
keyword added to the symptom string reduces the number of matches and thereby
narrows the search.

In some cases, a search with less than a full string of keywords can find a solution
to a problem. Therefore, if circumstances make it particularly difficult to follow the
instructions given for selecting a keyword, you can omit it. But, in general, IBM
maintenance expects you to identify your problem with a full string of keywords.

Building a full string of keywords for MERVA ESA is a four-step process. The
steps identify:
1. The component, identified by the component ID
2. The type of failure and, if known, the module that failed
3. The release level
4. The maintenance level.

Step 1: Component-Identifier Keyword
The component-identification number is the first keyword in the search argument.
It identifies the library within the software-support database that contains
Authorized Program Analysis Reports (APARs) for MERVA ESA. This keyword
should be used whenever you suspect that MERVA ESA is the component in error.

The component identifier for MERVA ESA V4.1 is:

5648–B29

Step 2: Type-of-Failure Keyword
To identify the type of failure that has occurred, select the keyword that seems best
to describe the problem from the following list, and then go to the specific
instructions for that keyword:
1. Define the types of failure to determine the appropriate failure diagnosis.
2. Follow the procedures provided for step-by-step investigation of each type of

failure.

If you are not certain which of several applicable keywords to use, select the one
that appears first in the list.

Keyword Type of Failure

PROGCK A program check occurs.

ABENDxxx An abnormal end occurs.

MSGx A message was issued because of a MERVA ESA problem, or there is a
problem with a MERVA ESA message.

Chapter 5. Diagnosing and Reporting Program Failures 93

Keyword Type of Failure

LOOP MERVA ESA or a network link seems to be doing something repetitively.

WAIT MERVA ESA or a network link does not seem to be doing anything.

INCORROUT Output from MERVA ESA or a network link is incorrect or missing.

DOCn There is a problem in the program documentation.

PERFM Performance of the program is decreased.

PROGCK Use this keyword when a program-check condition occurs.

When a program-check condition occurs, the system shows the
type of program exception and the condition code.

Make a note of the condition code and the type of program
exception (such as address exception or operation exception).

ABENDxxx Use this keyword when a system-control programming (SCP) or
user abnormal program end occurs.

Replace the xxx part of the ABENDxxx keyword with the ABEND
code from either the message or the ABEND dump.

Make a note of the name of the module that has failed.

When an abnormal end occurs, MERVA ESA produces a system
dump.

Note: User abnormal ends (Uxxx) can also be initiated by CICS or
IMS.

MSGx Use this keyword when:
v A message is issued by MERVA ESA and the recommended

operator action is to contact IBM.
v A message is not issued under a set of conditions that should

have caused it to be issued.
v A message is issued under a set of conditions that should not

have caused it to be issued.
v A message contains invalid data or data is missing.

Messages can be issued by programs other than MERVA ESA or its
components. If you receive a message from another system (SCP,
VSAM) or licensed program used, determine the reason for which
the message is produced.

If it appears to be a problem with MERVA ESA, pursue it with the
appropriate symptom string; if it does not seem to be an error
within MERVA ESA, examine the involved components.

Replace the x of the MSGx keyword with the complete message
identifier. For example, if the message identifier is DSL042I, the
MSGx keyword is MSGDSL042I.

LOOP Use this keyword when MERVA ESA or a network link seems to
be doing something repetitively.

94 Diagnosis Guide

Use the diagnostic practices of the system-control program or the
data-communication system to produce a dump, examine the
dump, and determine the looping address. Determine which
module(s) are involved.

WAIT Use this keyword when MERVA ESA or a network link does not
seem to be doing anything.

Use the diagnostic practices of the system control program or the
data communication system to produce a dump, examine the
dump, and determine the waiting address. Determine which
modules are involved.

INCORROUT Use this keyword when output is missing or incorrect.
INCORROUT situations are:
v Output was expected, but not received (missing).
v Output was different from what was expected (incorrect).
v Data returned by the program is missing or incorrect.

DOCn Use this keyword when incorrect or missing information in the
MERVA ESA documentation appears to be the cause of a problem.

Replace the n of the DOCn keyword with the order number of the
document (omit the hyphens). For example, if the order number is
SH12-6382-00, the DOC keyword is DOCSH12638200.

Find the page in the document on which the error was detected
and prepare a description of the problem. You should include this
information in the error description for submitting an APAR.

PERFM Use this keyword when the performance of the program is
decreased.

Most performance problems can be related to system tuning,
because of an inappropriate selection of program options or
parameters.

When you have identified a type-of-failure keyword, read the description of the
release-level keyword to continue building the keyword string. This is supplied in
Step 3: Release-Level Keyword.

Step 3: Release-Level Keyword
ARxxx Use this keyword to identify the version, release level, and

modification level of MERVA ESA (the release level is optional for
the search of the EWS). You must include the release-level keyword
in an APAR.

If you do not know, or are not sure of, the release level of
MERVA ESA, you can find it in the module identification of any
MERVA ESA module, whichever is appropriate. Refer to “Step 4:
Maintenance-Level Procedure” on page 96 for the procedure that
can be used to get a copy of the module to examine its module
identification.

The release-level keyword has the format ARxxx. For xxx use three
digits identifying Version, Release, and Modification Level of
MERVA ESA, in that order, for example, MERVA ESA: Version 4
Release 1 Modification Level 0 would be represented as: AR410.

Chapter 5. Diagnosing and Reporting Program Failures 95

To continue building the keyword string, read the following.

Step 4: Maintenance-Level Procedure
Use this procedure to determine the maintenance level of MERVA ESA by
identifying APARs that have been applied. This information is not used directly in
the symptom string, but rather during the search process.

When you have identified the module or modules in which the failure has
occurred, do the following:

In an MVS environment:
v Use the System Modification Program’s (SMP) LIST CDS control statement to list

the MERVA ESA control data set (CDS) to determine the latest maintenance,
update, or replacement applied to that module.
Or:

v Get a superzap dump of the module, by using the program AMASPZAP, and
check the maintenance level given in the module identification when there is
any doubt about the integrity of the CDS.

In a VSE environment:
v Use the Maintain System History Program (MSHP) LOOKUP function to

determine what maintenance has been applied to the module or modules.
Or:

v Get a copy of the module using the RSERV or CSERV functions, and check the
maintenance level supplied as part of the module identification.

Area-of-Failure Keywords
The procedures here use the problem symptoms to narrow the area of the code
that could contain the error: for example, they might be used to identify the
module that failed. The area-of-failure keyword associates a problem with a subset
of the code. The area of the subset is used as an area-of-failure keyword in the
symptom string. One or more of the following types of keywords in Table 3 on
page 97 should be used to describe the area of failure.

96 Diagnosis Guide

Table 3. Definitions of Area-of-Failure Keywords

Type of Keyword Definition

Function Keyword v Identifies a major part of the MERVA ESA program processing.

DSLNUC Nucleus

DSLEUD End-User Driver

DSLMFS Message Format Service

DSLTSV TOF Supervisor

MCB Message Control Block

FDT Field Definition Table

DSLSDI, DSLSDO, DSLSDY
Sequential data-set processing

DSLHCP Hardcopy printing

DSLCXT Expansion transaction

DSLFLUT, DSLQDSUT, DSLQMNT, DSLCNTUT
Utilities

DSLKQR, DSLKQS
MERVA-MQI Attachment transactions.

v Identifies a major part of the SWIFT Link program processing.

DWSAUTLD Authenticator-Key File Load Program

DWSAUTT Authenticator-Key File Update Transaction

DWSCORUT Address file program

DWSMCxxx Checking and separation

SWIFT Communication with the SWIFT network.

v Identifies a major part of the Telex Link program processing.

ADDRESS Automatic address expansion

TELEX Preparation of messages for telex transmission

TESTKEY Interface to the test-key processing program

COMM Communication between the Telex Link and the Telex Substation.

v Identifies a major part of the MERVA Link program processing.

EKAEMSC System Control Facility

EKASEND Sending messages

EKARECV Receiving messages.

v Produces, together with the symptom string, a more effective search argument.

Subfunction Keyword v Describes an operation carried out within a function.

v Is useful to identify subsets of the processing done by a large function (combine the
subfunction keyword with the function keyword).

Module Keyword v Names the failing module in control.

v Can be identified by using a dump.

Modifier Keyword v Names a programming statement, command failure, or option that seems to cause
the failure.

v Can identify the area of failure as effectively as a function, subfunction, or module
keyword.

Chapter 5. Diagnosing and Reporting Program Failures 97

Submitting an Authorized Program Analysis Report (APAR)

You should contact IBM for assistance in problem determination when you are
sure that:
v You have checked your own specifications for accuracy.
v You have followed the diagnostic procedures.
v The keyword search has failed to find a solution.

The basic document to be submitted with an APAR is the “APAR Error
Description.” This document should contain all the descriptive details that will not
necessarily appear in any of the materials listed in the following. Depending on the
type of problem, the error description should contain, for example:
v The frequency of the problem, for example once a day, once an hour, or every

few minutes
v The circumstances in which the problem occurs, for example, under certain

stress situations
v Which traps (if any) were applied to produce the submitted listings.

All the above suggestions should be judged individually to ensure their validity
for a particular problem being reported.

For all types of problem with MERVA ESA, the following items are required:
v MERVA ESA journal printout. The journal records should be printed in

hexadecimal and in character representation, preferably with IDCAMS or an
equivalent program. A print of a journal file that is evaluated by a user program,
or that is printed in character representation only, is not as useful.

v Generalized Trace Facility (GTF) trace for performance problems in MVS.
v The System Debugging Trace Facility (SDAID) for performance problems in VSE.
v Dump listings.
v Listing of the parameters used in generating MERVA ESA.
v Listings of routing modules.
v Console logs.
v Listings of the IMS nucleus generation, for IMS.
v A list of PTFs and APARs applied to MERVA ESA.

If the problem can be reproduced, start the error trace to reproduce the error
situation, and attach the printed information to the APAR material.

If it is necessary to submit an APAR, you should follow the instructions of your
IBM support representative, who will process the APAR through IBM’s database of
known problems and arrange for the installation of the fix.

98 Diagnosis Guide

Appendix. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Deutschland
Informationssysteme GmbH
Department 3982
Pascalstrasse 100

© Copyright IBM Corp. 1987, 2001 99

70569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement
or any equivalent agreement between us.

The following paragraph does apply to the US only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States,
other countries, or both:
v Advanced Peer-to-Peer Networking
v AIX
v APPN
v C/370
v CICS
v CICS/ESA
v CICS/MVS
v CICS/VSE
v DB2
v DB2 Universal Database
v Distributed Relational Database Architecture
v DRDA
v IBM
v IMS/ESA
v Language Environment
v MQSeries

100 Diagnosis Guide

v MVS
v MVS/ESA
v MVS/XA
v OS/2
v OS/390
v RACF
v VisualAge
v VSE/ESA
v VTAM

Workstation (AWS) and Directory Services Application (DSA) are trademarks of
S.W.I.F.T., La Hulpe in Belgium.

Pentium is a trademark of Intel Corporation.

PC Direct is a trademark of Ziff Communications Company in the United States,
other countries, or both, and is used by IBM Corporation under license.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or
both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix. Notices 101

102 Diagnosis Guide

Glossary of Terms and Abbreviations

This glossary defines terms as they are used in
this book. If you do not find the terms you are
looking for, refer to the IBM Dictionary of
Computing, New York: McGraw-Hill, and the
S.W.I.F.T. User Handbook.

A
ACB. Access method control block.

ACC. MERVA Link USS application control command
application. It provides a means of operating MERVA
Link USS in USS shell and MVS batch environments.

Access method control block (ACB). A control block
that links an application program to VSAM or VTAM.

ACD. MERVA Link USS application control daemon.

ACT. MERVA Link USS application control table.

address. See SWIFT address.

address expansion. The process by which the full
name of a financial institution is obtained using the
SWIFT address, telex correspondent’s address, or a
nickname.

AMPDU. Application message protocol data unit,
which is defined in the MERVA Link P1 protocol, and
consists of an envelope and its content.

answerback. In telex, the response from the dialed
correspondent to the WHO R U signal.

answerback code. A group of up to 6 letters following
or contained in the answerback. It is used to check the
answerback.

APC. Application control.

API. Application programming interface.

APPC. Advanced Program-to-Program
Communication based on SNA LU 6.2 protocols.

APPL. A VTAM definition statement used to define a
VTAM application program.

application programming interface (API). An
interface that programs can use to exchange data.

application support filter (ASF). In MERVA Link, a
user-written program that can control and modify any
data exchanged between the Application Support Layer
and the Message Transfer Layer.

application support process (ASP). An executing
instance of an application support program. Each
application support process is associated with an ASP
entry in the partner table. An ASP that handles
outgoing messages is a sending ASP; one that handles
incoming messages is a receiving ASP.

application support program (ASP). In MERVA Link,
a program that exchanges messages and reports with a
specific remote partener ASP. These two programs must
agree on which conversation protocol they are to use.

ASCII. American Standard Code for Information
Interchange. The standard code, using a coded set
consisting of 7-bit coded characters (8 bits including
parity check), used for information interchange among
data processing systems, data communication systems,
and associated equipment. The ASCII set consists of
control characters and graphic characters.

ASF. Application support filter.

ASF. (1) Application support process. (2) Application
support program.

ASPDU. Application support protocol data unit,
which is defined in the MERVA Link P2 protocol.

authentication. The SWIFT security check used to
ensure that a message has not changed during
transmission, and that it was sent by an authorized
sender.

authenticator key. A set of alphanumeric characters
used for the authentication of a message sent via the
SWIFT network.

authenticator-key file. The file that stores the keys
used during the authentication of a message. The file
contains a record for each of your financial institution’s
correspondents.

B
Back-to-Back (BTB). A MERVA Link function that
enables ASPs to exchange messages in the local MERVA
Link node without using data communication services.

bank identifier code. A 12-character code used to
identify a bank within the SWIFT network. Also called
a SWIFT address. The code consists of the following
subcodes:
v The bank code (4 characters)
v The ISO country code (2 characters)
v The location code (2 characters)
v The address extension (1 character)

© Copyright IBM Corp. 1987, 2001 103

v The branch code (3 characters) for a SWIFT user
institution, or the letters “BIC” for institutions that
are not SWIFT users.

Basic Security Manager (BSM). A component of
VSE/ESA Version 2.4 that is invoked by the System
Authorization Facility, and used to ensure signon and
transaction security.

BIC. Bank identifier code.

BIC Bankfile. A tape of bank identifier codes supplied
by S.W.I.F.T.

BIC Database Plus Tape. A tape of financial
institutions and currency codes, supplied by S.W.I.F.T.
The information is compiled from various sources and
includes national, international, and cross-border
identifiers.

BIC Directory Update Tape. A tape of bank identifier
codes and currency codes, supplied by S.W.I.F.T., with
extended information as published in the printed BIC
Directory.

body. The second part of an IM-ASPDU. It contains
the actual application data or the message text that the
IM-AMPDU transfers.

BSC. Binary synchronous control.

BSM. Basic Security Manager.

BTB. Back-to-back.

buffer. A storage area used by MERVA programs to
store a message in its internal format. A buffer has an
8-byte prefix that indicates its length.

C
CBT. SWIFT computer-based terminal.

CCSID. Coded character set identifier.

CDS. Control data set.

central service. In MERVA, a service that uses
resources that either require serialization of access, or
are only available in the MERVA nucleus.

CF message. Confirmed message. When a sending
MERVA Link system is informed of the successful
delivery of a message to the receiving application, it
routes the delivered application messages as CF
messages, that is, messages of class CF, to an ACK wait
queue or to a complete message queue.

COA. Confirm on arrival.

COD. Confirm on delivery.

coded character set identifier (CCSID). The name of a
coded set of characters and their code point
assignments.

commit. In MQSeries, to commit operations is to make
the changes on MQSeries queues permanent. After
putting one or more messages to a queue, a commit
makes them visible to other programs. After getting
one or more messages from a queue, a commit
permanently deletes them from the queue.

confirm-on-arrival (COA) report. An MQSeries report
message type created when a message is placed on that
queue. It is created by the queue manager that owns
the destination queue.

confirm-on-delivery (COD) report. An MQSeries
report message type created when an application
retrieves a message from the queue in a way that
causes the message to be deleted from the queue. It is
created by the queue manager.

control fields. In MERVA Link, fields that are part of
a MERVA message on the queue data set and of the
message in the TOF. Control fields are written to the
TOF at nesting identifier 0. Messages in SWIFT format
do not contain control fields.

correspondent. An institution to which your
institution sends and from which it receives messages.

correspondent identifier. The 11-character identifier of
the receiver of a telex message. Used as a key to
retrieve information from the Telex correspondents file.

cross-system coupling facility. See XCF.

coupling services. In a sysplex, the functions of XCF
that transfer data and status information among the
members of a group that reside in one or more of the
MVS systems in the sysplex.

couple data set. See XCF couple data set.

CTP. MERVA Link command transfer processor.

currency code file. A file containing the currency
codes, together with the name, fraction length, country
code, and country names.

D
daemon. A long-lived process that runs unattended to
perform continuous or periodic systemwide functions.

DASD. Direct access storage device.

data area. An area of a predefined length and format
on a panel in which data can be entered or displayed.
A field can consist of one or more data areas.

data element. A unit of data that, in a certain context,
is considered indivisible. In MERVA Link, a data

104 Diagnosis Guide

element consists of a 2-byte data element length field, a
2-byte data-element identifier field, and a field of
variable length containing the data element data.

datagram. In TCP/IP, the basic unit of information
passed across the Internet environment. This type of
message does not require a reply, and is the simplest
type of message that MQSeries supports.

data terminal equipment. That part of a data station
that serves as a data source, data link, or both, and
provides for the data communication control function
according to protocols.

DB2. A family of IBM licensed programs for relational
database management.

dead-letter queue. A queue to which a queue
manager or application sends messages that it cannot
deliver. Also called undelivered-message queue.

dial-up number. A series of digits required to
establish a connection with a remote correspondent via
the public telex network.

direct service. In MERVA, a service that uses resources
that are always available and that can be used by
several requesters at the same time.

display mode. The mode (PROMPT or NOPROMPT)
in which SWIFT messages are displayed. See PROMPT
mode and NOPROMPT mode.

distributed queue management (DQM). In MQSeries
message queuing, the setup and control of message
channels to queue managers on other systems.

DQM. Distributed queue management.

DTE. Data terminal equipment.

E
EBCDIC. Extended Binary Coded Decimal
Interchange Code. A coded character set consisting of
8-bit coded characters.

ECB. Event control block.

EDIFACT. Electronic Data Interchange for
Administration, Commerce and Transport (a United
Nations standard).

ESM. External security manager.

EUD. End-user driver.

exception report. An MQSeries report message type
that is created by a message channel agent when a
message is sent to another queue manager, but that
message cannot be delivered to the specified
destination queue.

external line format (ELF) messages. Messages that
are not fully tokenized, but are stored in a single field
in the TOF. Storing messages in ELF improves
performance, because no mapping is needed, and
checking is not performed.

external security manager (ESM). A security product
that is invoked by the System Authorization Facility.
RACF is an example of an ESM.

F
FDT. Field definition table.

field. In MERVA, a portion of a message used to enter
or display a particular type of data in a predefined
format. A field is located by its position in a message
and by its tag. A field is made up of one or more data
areas. See also data area.

field definition table (FDT). The field definition table
describes the characteristics of a field; for example, its
length and number of its data areas, and whether it is
mandatory. If the characteristics of a field change
depending on its use in a particular message, the
definition of the field in the FDT can be overridden by
the MCB specifications.

field group. One or several fields that are defined as
being a group. Because a field can occur more than
once in a message, field groups are used to distinguish
them. A name can be assigned to the field group
during message definition.

field group number. In the TOF, a number is assigned
to each field group in a message in ascending order
from 1 to 255. A particular field group can be accessed
using its field group number.

field tag. A character string used by MERVA to
identify a field in a network buffer. For example, for
SWIFT field 30, the field tag is :30:.

FIN. Financial application.

FIN-Copy. The MERVA component used for SWIFT
FIN-Copy support.

finite state machine. The theoretical base describing
the rules of a service request’s state and the conditions
to state transitions.

FMT/ESA. MERVA-to-MERVA Financial Message
Transfer/ESA.

form. A partially-filled message containing data that
can be copied for a new message of the same message
type.

G
GPA. General purpose application.

Glossary of Terms and Abbreviations 105

H
HFS. Hierarchical file system.

hierarchical file system (HFS). A system for
organizing files in a hierarchy, as in a UNIX system.
OS/390 UNIX System Services files are organized in an
HFS. All files are members of a directory, and each
directory is in turn a member of a directory at a higher
level in the HFS. The highest level in the hierarchy is
the root directory.

I
IAM. Interapplication messaging (a MERVA Link
message exchange protocol).

IM-ASPDU. Interapplication messaging application
support protocol data unit. It contains an application
message and consists of a heading and a body.

incore request queue. Another name for the request
queue to emphasize that the request queue is held in
memory instead of on a DASD.

InetD. Internet Daemon. It provides TCP/IP
communication services in the OS/390 USS
environment.

initiation queue. In MQSeries, a local queue on which
the queue manager puts trigger messages.

input message. A message that is input into the
SWIFT network. An input message has an input
header.

INTERCOPE TelexBox. This telex box supports
various national conventions for telex procedures and
protocols.

interservice communication. In MERVA ESA, a
facility that enables communication among services if
MERVA ESA is running in a multisystem environment.

intertask communication. A facility that enables
application programs to communicate with the MERVA
nucleus and so request a central service.

IP. Internet Protocol.

IP message. In-process message. A message that is in
the process of being transferred to another application.

ISC. Intersystem communication.

ISN. Input sequence number.

ISN acknowledgment. A collective term for the
various kinds of acknowledgments sent by the SWIFT
network.

ISO. International Organization for Standardization.

ITC. Intertask communication.

J
JCL. Job control language.

journal. A chronological list of records detailing
MERVA actions.

journal key. A key used to identify a record in the
journal.

journal service. A MERVA central service that
maintains the journal.

K
KB. Kilobyte (1024 bytes).

key. A character or set of characters used to identify
an item or group of items. For example, the user ID is
the key to identify a user file record.

key-sequenced data set (KSDS). A VSAM data set
whose records are loaded in key sequence and
controlled by an index.

keyword parameter. A parameter that consists of a
keyword, followed by one or more values.

KSDS. Key-sequenced data set.

L
LAK. Login acknowledgment message. This message
informs you that you have successfully logged in to the
SWIFT network.

large message. A message that is stored in the large
message cluster (LMC). The maximum length of a
message to be stored in the VSAM QDS is 31900 bytes.
Messages up to 2MB can be stored in the LMC. For
queue management using DB2 no distinction is made
between messages and large messages.

large queue element. A queue element that is larger
than the smaller of:

v The limiting value specified during the customization
of MERVA

v 32KB

LC message. Last confirmed control message. It
contains the message-sequence number of the
application or acknowledgment message that was last
confirmed; that is, for which the sending MERVA Link
system most recently received confirmation of a
successful delivery.

LDS. Logical data stream.

LMC. Large message cluster.

106 Diagnosis Guide

LNK. Login negative acknowledgment message. This
message indicates that the login to the SWIFT network
has failed.

local queue. In MQSeries, a queue that belongs to a
local queue manager. A local queue can contain a list of
messages waiting to be processed. Contrast with remote
queue.

local queue manager. In MQSeries, the queue
manager to which the program is connected, and that
provides message queuing services to that program.
Queue managers to which a program is not connected
are remote queue managers, even if they are running
on the same system as the program.

login. To start the connection to the SWIFT network.

LR message. Last received control message, which
contains the message-sequence number of the
application or acknowledgment message that was last
received from the partner application.

LSN. Login sequence number.

LT. See LTERM.

LTC. Logical terminal control.

LTERM. Logical terminal. Logical terminal names
have 4 characters in CICS and up to 8 characters in
IMS.

LU. A VTAM logical unit.

M
maintain system history program (MSHP). A
program used for automating and controlling various
installation, tailoring, and service activities for a VSE
system.

MCA. Message channel agent.

MCB. Message control block.

MERVA ESA. The IBM licensed program Message
Entry and Routing with Interfaces to Various
Applications for ESA.

MERVA Link. A MERVA component that can be used
to interconnect several MERVA systems.

message. A string of fields in a predefined form used
to provide or request information. See also SWIFT
financial message.

message body. The part of the message that contains
the message text.

message category. A group of messages that are
logically related within an application.

message channel. In MQSeries distributed message
queuing, a mechanism for moving messages from one
queue manager to another. A message channel
comprises two message channel agents (a sender and a
receiver) and a communication link.

message channel agent (MCA). In MQSeries, a
program that transmits prepared messages from a
transmission queue to a communication link, or from a
communication link to a destination queue.

message control block (MCB). The definition of a
message, screen panel, net format, or printer layout
made during customization of MERVA.

Message Format Service (MFS). A MERVA direct
service that formats a message according to the
medium to be used, and checks it for formal
correctness.

message header. The leading part of a message that
contains the sender and receiver of the message, the
message priority, and the type of message.

Message Integrity Protocol (MIP). In MERVA Link,
the protocol that controls the exchange of messages
between partner ASPs. This protocol ensures that any
loss of a message is detected and reported, and that no
message is duplicated despite system failures at any
point during the transfer process.

message-processing function. The various parts of
MERVA used to handle a step in the
message-processing route, together with any necessary
equipment.

message queue. See queue.

Message Queue Interface (MQI). The programming
interface provided by the MQSeries queue managers. It
provides a set of calls that let application programs
access message queuing services such as sending
messages, receiving messages, and manipulating
MQSeries objects.

Message Queue Manager (MQM). An IBM licensed
program that provides message queuing services. It is
part of the MQSeries set of products.

message reference number (MRN). A unique 16-digit
number assigned to each message for identification
purposes. The message reference number consists of an
8-digit domain identifier that is followed by an 8-digit
sequence number.

message sequence number (MSN). A sequence
number for messages transferred by MERVA Link.

message type (MT). A number, up to 7 digits long,
that identifies a message. SWIFT messages are
identified by a 3-digit number; for example SWIFT
message type MT S100.

Glossary of Terms and Abbreviations 107

MFS. Message Format Service.

MIP. Message Integrity Protocol.

MPDU. Message protocol data unit, which is defined
in P1.

MPP. In IMS, message-processing program.

MQA. MQ Attachment.

MQ Attachment (MQA). A MERVA feature that
provides message transfer between MERVA and a
user-written MQI application.

MQH. MQSeries queue handler.

MQI. Message queue interface.

MQM. Message queue manager.

MQS. MQSeries nucleus server.

MQSeries. A family of IBM licensed programs that
provides message queuing services.

MQSeries nucleus server (MQS). A MERVA
component that listens for messages on an MQI queue,
receives them, extracts a service request, and passes it
via the request queue handler to another MERVA ESA
instance for processing.

MQSeries queue handler (MQH). A MERVA
component that performs service calls to the Message
Queue Manager via the provided Message Queue
Interface.

MRN. Message reference number.

MSC. MERVA system control facility.

MSHP. Maintain system history program.

MSN. Message sequence number.

MT. Message type.

MTP. (1) Message transfer program. (2) Message
transfer process.

MTS. Message Transfer System.

MTSP. Message Transfer Service Processor.

MTT. Message type table.

multisystem application. (1) An application program
that has various functions distributed across MVS
systems in a multisystem environment. (2) In XCF, an
authorized application that uses XCF coupling services.
(3) In MERVA ESA, multiple instances of MERVA ESA
that are distributed among different MVS systems in a
multisystem environment.

multisystem environment. An environment in which
two or more MVS systems reside on one or more
processors, and programs on one system can
communicate with programs on the other systems.
With XCF, the environment in which XCF services are
available in a defined sysplex.

multisystem sysplex. A sysplex in which one or more
MVS systems can be initialized as part of the sysplex.
In a multisystem sysplex, XCF provides coupling
services on all systems in the sysplex and requires an
XCF couple data set that is shared by all systems. See
also single-system sysplex.

MVS/ESA. Multiple Virtual Storage/Enterprise
Systems Architecture.

N
namelist. An MQSeries for MVS/ESA object that
contains a list of queue names.

nested message. A message that is composed of one
or more message types.

nested message type. A message type that is
contained in another message type. In some cases, only
part of a message type (for example, only the
mandatory fields) is nested, but this “partial” nested
message type is also considered to be nested. For
example, SWIFT MT 195 could be used to request
information about a SWIFT MT 100 (customer transfer).
The SWIFT MT 100 (or at least its mandatory fields) is
then nested in SWIFT MT 195.

nesting identifier. An identifier (a number from 2 to
255) that is used to access a nested message type.

network identifier. A single character that is placed
before a message type to indicate which network is to
be used to send the message; for example, S for SWIFT

network service access point (NSAP). The endpoint
of a network connection used by the SWIFT transport
layer.

NOPROMPT mode. One of two ways to display a
message panel. NOPROMPT mode is only intended for
experienced SWIFT Link users who are familiar with
the structure of SWIFT messages. With NOPROMPT
mode, only the SWIFT header, trailer, and pre-filled
fields and their tags are displayed. Contrast with
PROMPT mode.

NSAP. Network service access point.

nucleus server. A MERVA component that processes a
service request as selected by the request queue
handler. The service a nucleus server provides and the
way it provides it is defined in the nucleus server table
(DSLNSVT).

108 Diagnosis Guide

O
object. In MQSeries, objects define the properties of
queue managers, queues, process definitions, and
namelists.

occurrence. See repeatable sequence.

option. One or more characters added to a SWIFT
field number to distinguish among different layouts for
and meanings of the same field. For example, SWIFT
field 60 can have an option F to identify a first opening
balance, or M for an intermediate opening balance.

origin identifier (origin ID). A 34-byte field of the
MERVA user file record. It indicates, in a MERVA and
SWIFT Link installation that is shared by several banks,
to which of these banks the user belongs. This lets the
user work for that bank only.

OSN. Output sequence number.

OSN acknowledgment. A collective term for the
various kinds of acknowledgments sent to the SWIFT
network.

output message. A message that has been received
from the SWIFT network. An output message has an
output header.

P
P1. In MERVA Link, a peer-to-peer protocol used by
cooperating message transfer processes (MTPs).

P2. In MERVA Link, a peer-to-peer protocol used by
cooperating application support processes (ASPs).

P3. In MERVA Link, a peer-to-peer protocol used by
cooperating command transfer processors (CTPs).

packet switched public data network (PSPDN). A
public data network established and operated by
network common carriers or telecommunication
administrations for providing packet-switched data
transmission.

panel. A formatted display on a display terminal.
Each page of a message is displayed on a separate
panel.

parallel processing. The simultaneous processing of
units of work by several servers. The units of work can
be either transactions or subdivisions of larger units of
work.

parallel sysplex. A sysplex that uses one or more
coupling facilities.

partner table (PT). In MERVA Link, the table that
defines how messages are processed. It consists of a

header and different entries, such as entries to specify
the message-processing parameters of an ASP or MTP.

PCT. Program Control Table (of CICS).

PDE. Possible duplicate emission.

PDU. Protocol data unit.

PF key. Program-function key.

positional parameter. A parameter that must appear
in a specified location relative to other parameters.

PREMIUM. The MERVA component used for SWIFT
PREMIUM support.

process definition object. An MQSeries object that
contains the definition of an MQSeries application. A
queue manager uses the definitions contained in a
process definition object when it works with trigger
messages.

program-function key. A key on a display terminal
keyboard to which a function (for example, a
command) can be assigned. This lets you execute the
function (enter the command) with a single keystroke.

PROMPT mode. One of two ways to display a
message panel. PROMPT mode is intended for SWIFT
Link users who are unfamiliar with the structure of
SWIFT messages. With PROMPT mode, all the fields
and tags are displayed for the SWIFT message.
Contrast with NOPROMPT mode.

protocol data unit (PDU). In MERVA Link a PDU
consists of a structured sequence of implicit and
explicit data elements:
v Implicit data elements contain other data elements.
v Explicit data elements cannot contain any other data

elements.

PSN. Public switched network.

PSPDN. Packet switched public data network.

PSTN. Public switched telephone network.

PT. Partner table.

PTT. A national post and telecommunication authority
(post, telegraph, telephone).

Q
QDS. Queue data set.

QSN. Queue sequence number.

queue. (1) In MERVA, a logical subdivision of the
MERVA queue data set used to store the messages
associated with a MERVA message-processing function.
A queue has the same name as the message-processing
function with which it is associated. (2) In MQSeries, an

Glossary of Terms and Abbreviations 109

object onto which message queuing applications can
put messages, and from which they can get messages.
A queue is owned and maintained by a queue
manager. See also request queue.

queue element. A message and its related control
information stored in a data record in the MERVA ESA
Queue Data Set.

queue management. A MERVA service function that
handles the storing of messages in, and the retrieval of
messages from, the queues of message-processing
functions.

queue manager. (1) An MQSeries system program that
provides queueing services to applications. It provides
an application programming interface so that programs
can access messages on the queues that the queue
manager owns. See also local queue manager and remote
queue manager. (2) The MQSeries object that defines the
attributes of a particular queue manager.

queue sequence number (QSN). A sequence number
that is assigned to the messages stored in a logical
queue by MERVA ESA queue management in
ascending order. The QSN is always unique in a queue.
It is reset to zero when the queue data set is formatted,
or when a queue management restart is carried out and
the queue is empty.

R
RACF. Resource Access Control Facility.

RBA. Relative byte address.

RC message. Recovered message; that is, an IP
message that was copied from the control queue of an
inoperable or closed ASP via the recover command.

ready queue. A MERVA queue used by SWIFT Link to
collect SWIFT messages that are ready for sending to
the SWIFT network.

remote queue. In MQSeries, a queue that belongs to a
remote queue manager. Programs can put messages on
remote queues, but they cannot get messages from
remote queues. Contrast with local queue.

remote queue manager. In MQSeries, a queue
manager is remote to a program if it is not the queue
manager to which the program is connected.

repeatable sequence. A field or a group of fields that
is contained more than once in a message. For example,
if the SWIFT fields 20, 32, and 72 form a sequence, and
if this sequence can be repeated up to 10 times in a
message, each sequence of the fields 20, 32, and 72
would be an occurrence of the repeatable sequence.

In the TOF, the occurrences of a repeatable sequence
are numbered in ascending order from 1 to 32767 and
can be referred to using the occurrence number.

A repeatable sequence in a message may itself contain
another repeatable sequence. To identify an occurrence
within such a nested repeatable sequence, more than
one occurrence number is necessary.

reply message. In MQSeries, a type of message used
for replies to request messages.

reply-to queue. In MQSeries, the name of a queue to
which the program that issued an MQPUT call wants a
reply message or report message sent.

report message. In MQSeries, a type of message that
gives information about another message. A report
message usually indicates that the original message
cannot be processed for some reason.

request message. In MQSeries, a type of message used
for requesting a reply from another program.

request queue. The queue in which a service request
is stored. It resides in main storage and consists of a set
of request queue elements that are chained in different
queues:

v Requests waiting to be processed

v Requests currently being processed

v Requests for which processing has finished

request queue handler (RQH). A MERVA ESA
component that handles the queueing and scheduling
of service requests. It controls the request processing of
a nucleus server according to rules defined in the finite
state machine.

Resource Access Control Facility (RACF). An IBM
licensed program that provides for access control by
identifying and verifying users to the system,
authorizing access to protected resources, logging
detected unauthorized attempts to enter the system,
and logging detected accesses to protected resources.

retype verification. See verification.

routing. In MERVA, the passing of messages from one
stage in a predefined processing path to the next stage.

RP. Regional processor.

RQH. Request queue handler.

RRDS. Relative record data set.

S
SAF. System Authorization Facility.

SCS. SNA character string

SCP. System control process.

110 Diagnosis Guide

SDI. Sequential data set input. A batch utility used to
import messages from a sequential data set or a tape
into MERVA ESA queues.

SDO. Sequential data set output. A batch utility used
to export messages from a MERVA ESA queue to a
sequential data set or a tape.

SDY. Sequential data set system printer. A batch
utility used to print messages from a MERVA ESA
queue.

service request. A type of request that is created and
passed to the request queue handler whenever a
nucleus server requires a service that is not currently
available.

sequence number. A number assigned to each
message exchanged between two nodes. The number is
increased by one for each successive message. It starts
from zero each time a new session is established.

sign off. To end a session with MERVA.

sign on. To start a session with MERVA.

single-system sysplex. A sysplex in which only one
MVS system can be initialized as part of the sysplex. In
a single-system sysplex, XCF provides XCF services on
the system, but does not provide signalling services
between MVS systems. A single-system sysplex requires
an XCF couple data set. See also multisystem sysplex.

small queue element. A queue element that is smaller
than the smaller of:

v The limiting value specified during the customization
of MERVA

v 32KB

SMP/E. System Modification Program Extended.

SN. Session number.

SNA. Systems network architecture.

SNA character string. In SNA, a character string
composed of EBCDIC controls, optionally mixed with
user data, that is carried within a request or response
unit.

SPA. Scratch pad area.

SQL. Structured Query Language.

SR-ASPDU. The status report application support
PDU, which is used by MERVA Link for
acknowledgment messages.

SSN. Select sequence number.

subfield. A subdivision of a field with a specific
meaning. For example, the SWIFT field 32 has the
subfields date, currency code, and amount. A field can

have several subfield layouts depending on the way the
field is used in a particular message.

SVC. (1) Switched Virtual Circuit. (2) Supervisor call
instruction.

S.W.I.F.T. (1) Society for Worldwide Interbank
Financial Telecommunication s.c. (2) The network
provided and managed by the Society for Worldwide
Interbank Financial Telecommunication s.c.

SWIFT address. Synonym for bank identifier code.

SWIFT Correspondents File. The file containing the
bank identifier code (BIC), together with the name,
postal address, and zip code of each financial
institution in the BIC Directory.

SWIFT financial message. A message in one of the
SWIFT categories 1 to 9 that you can send or receive
via the SWIFT network. See SWIFT input message and
SWIFT output message.

SWIFT header. The leading part of a message that
contains the sender and receiver of the message, the
message priority, and the type of message.

SWIFT input message. A SWIFT message with an
input header to be sent to the SWIFT network.

SWIFT link. The MERVA ESA component used to
link to the SWIFT network.

SWIFT network. Refers to the SWIFT network of the
Society for Worldwide Interbank Financial
Telecommunication (S.W.I.F.T.).

SWIFT output message. A SWIFT message with an
output header coming from the SWIFT network.

SWIFT system message. A SWIFT general purpose
application (GPA) message or a financial application
(FIN) message in SWIFT category 0.

switched virtual circuit (SVC). An X.25 circuit that is
dynamically established when needed. It is the X.25
equivalent of a switched line.

sysplex. One or more MVS systems that communicate
and cooperate via special multisystem hardware
components and software services.

System Authorization Facility (SAF). An MVS or VSE
facility through which MERVA ESA communicates
with an external security manager such as RACF (for
MVS) or the basic security manager (for VSE).

System Control Process (SCP). A MERVA Link
component that handles the transfer of MERVA ESA
commands to a partner MERVA ESA system, and the
receipt of the command response. It is associated with a
system control process entry in the partner table.

Glossary of Terms and Abbreviations 111

System Modification Program Extended (SMP/E). A
licensed program used to install software and software
changes on MVS systems.

Systems Network Architecture (SNA). The
description of the logical structure, formats, protocols,
and operating sequences for transmitting information
units through, and for controlling the configuration and
operation of, networks.

T
tag. A field identifier.

TCP/IP. Transmission Control Protocol/Internet
Protocol.

Telex Correspondents File. A file that stores data
about correspondents. When the user enters the
corresponding nickname in a Telex message, the
corresponding information in this file is automatically
retrieved and entered into the Telex header area.

telex header area. The first part of the telex message.
It contains control information for the telex network.

telex interface program (TXIP). A program that runs
on a Telex front-end computer and provides a
communication facility to connect MERVA ESA with
the Telex network.

Telex Link. The MERVA ESA component used to link
to the public telex network via a Telex substation.

Telex substation. A unit comprised of the following:

v Telex Interface Program

v A Telex front-end computer

v A Telex box

Terminal User Control Block (TUCB). A control block
containing terminal-specific and user-specific
information used for processing messages for display
devices such as screen and printers.

test key. A key added to a telex message to ensure
message integrity and authorized delivery. The test key
is an integer value of up to 16 digits, calculated
manually or by a test-key processing program using the
significant information in the message, such as
amounts, currency codes, and the message date.

test-key processing program. A program that
automatically calculates and verifies a test key. The
Telex Link supports panels for input of test-key-related
data and an interface for a test-key processing program.

TFD. Terminal feature definitions table.

TID. Terminal identification. The first 9 characters of a
bank identifier code (BIC).

TOF. Originally the abbreviation of tokenized form, the
TOF is a storage area where messages are stored so that
their fields can be accessed directly by their field names
and other index information.

TP. Transaction program.

transaction. A specific set of input data that triggers
the running of a specific process or job; for example, a
message destined for an application program.

transaction code. In IMS and CICS, an alphanumeric
code that calls an IMS message processing program or
a CICS transaction. Transaction codes have 4 characters
in CICS and up to 8 characters in IMS.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of communication protocols that
support peer-to-peer connectivity functions for both
local and wide area networks.

transmission queue. In MQSeries, a local queue on
which prepared messages destined for a remote queue
manager are temporarily stored.

trigger event. In MQSeries, an event (such as a
message arriving on a queue) that causes a queue
manager to create a trigger message on an initiation
queue.

trigger message. In MQSeries, a message that contains
information about the program that a trigger monitor is
to start.

trigger monitor. In MQSeries, a continuously-running
application that serves one or more initiation queues.
When a trigger message arrives on an initiation queue,
the trigger monitor retrieves the message. It uses the
information in the trigger message to start a process
that serves the queue on which a trigger event
occurred.

triggering. In MQSeries, a facility that allows a queue
manager to start an application automatically when
predetermined conditions are satisfied.

TUCB. Terminal User Control Block.

TXIP. Telex interface program.

U
UMR. Unique message reference.

unique message reference (UMR). An optional
feature of MERVA ESA that provides each message
with a unique identifier the first time it is placed in a
queue. It is composed of a MERVA ESA installation
name, a sequence number, and a date and time stamp.

UNIT. A group of related literals or fields of an MCB
definition, or both, enclosed by a DSLLUNIT and
DSLLUEND macroinstruction.

112 Diagnosis Guide

UNIX System Services (USS). A component of
OS/390, formerly called OpenEdition (OE), that creates
a UNIX environment that conforms to the XPG4 UNIX
1995 specifications, and provides two open systems
interfaces on the OS/390 operating system:

v An application program interface (API)

v An interactive shell interface

UN/EDIFACT. United Nations Standard for Electronic
Data Interchange for Administration, Commerce and
Transport.

USE. S.W.I.F.T. User Security Enhancements.

user file. A file containing information about all
MERVA ESA users; for example, which functions each
user is allowed to access. The user file is encrypted and
can only be accessed by authorized persons.

user identification and verification. The acts of
identifying and verifying a RACF-defined user to the
system during logon or batch job processing. RACF
identifies the user by the user ID and verifies the user
by the password or operator identification card
supplied during logon processing or the password
supplied on a batch JOB statement.

USS. UNIX System Services.

V
verification. Checking to ensure that the contents of a
message are correct. Two kinds of verification are:

v Visual verification: you read the message and
confirm that you have done so

v Retype verification: you reenter the data to be
verified

Virtual LU. An LU defined in MERVA Extended
Connectivity for communication between MERVA and
MERVA Extended Connectivity.

Virtual Storage Access Method (VSAM). An access
method for direct or sequential processing of fixed and
variable-length records on direct access devices. The
records in a VSAM data set or file can be organized in
logical sequence by a key field (key sequence), in the
physical sequence in which they are written on the data
set or file (entry sequence), or by relative-record
number.

Virtual Telecommunications Access Method (VTAM).
An IBM licensed program that controls communication
and the flow of data in an SNA network. It provides
single-domain, multiple-domain, and interconnected
network capability.

VSAM. Virtual Storage Access Method.

VTAM. Virtual Telecommunications Access Method
(IBM licensed program).

W
Windows NT service. A type of Windows NT
application that can run in the background of the
Windows NT operating system even when no user is
logged on. Typically, such a service has no user
interaction and writes its output messages to the
Windows NT event log.

X
X.25. An ISO standard for interface to packet switched
communications services.

XCF. Abbreviation for cross-system coupling facility,
which is a special logical partition that provides
high-speed caching, list processing, and locking
functions in a sysplex. XCF provides the MVS coupling
services that allow authorized programs on MVS
systems in a multisystem environment to communicate
with (send data to and receive data from) authorized
programs on other MVS systems.

XCF couple data sets. A data set that is created
through the XCF couple data set format utility and,
depending on its designated type, is shared by some or
all of the MVS systems in a sysplex. It is accessed only
by XCF and contains XCF-related data about the
sysplex, systems, applications, groups, and members.

XCF group. The set of related members defined to
SCF by a multisystem application in which members of
the group can communicate with (send data to and
receive data from) other members of the same group.
All MERVA systems working together in a sysplex
must pertain to the same XCF group.

XCF member. A specific function of a multisystem
application that is defined to XCF and assigned to a
group by the multisystem application. A member
resides on one system in a sysplex and can use XCF
services to communicate with other members of the
same group.

Glossary of Terms and Abbreviations 113

114 Diagnosis Guide

Bibliography

MERVA ESA Publications
v MERVA for ESA Version 4: Application

Programming Interface Guide, SH12-6374
v MERVA for ESA Version 4: Advanced MERVA

Link, SH12-6390
v MERVA for ESA Version 4: Concepts and

Components, SH12-6381
v MERVA for ESA Version 4: Customization Guide,

SH12-6380
v MERVA for ESA Version 4: Diagnosis Guide,

SH12-6382
v MERVA for ESA Version 4: Installation Guide,

SH12-6378
v MERVA for ESA Version 4: Licensed Program

Specifications, GH12-6373
v MERVA for ESA Version 4: Macro Reference,

SH12-6377
v MERVA for ESA Version 4: Messages and Codes,

SH12-6379
v MERVA for ESA Version 4: Operations Guide,

SH12-6375
v MERVA for ESA Version 4: System Programming

Guide, SH12-6366
v MERVA for ESA Version 4: User’s Guide,

SH12-6376

MERVA ESA Components
Publications
v MERVA Automatic Message Import/Export Facility:

User’s Guide, SH12-6389
v MERVA Connection/NT, SH12-6339
v MERVA Connection/400, SH12-6340
v MERVA Directory Services, SH12-6367
v MERVA Extended Connectivity: Installation and

User’s Guide, SH12-6157
v MERVA Message Processing Client for Windows

NT: User’s Guide, SH12-6341
v MERVA-MQI Attachment User’s Guide,

SH12-6714
v MERVA Traffic Reconciliation, SH12-6392
v MERVA USE: Administration Guide, SH12-6338
v MERVA USE & Branch for Windows NT: User’s

Guide, SH12-6334

v MERVA USE & Branch for Windows NT:
Installation and Customization Guide, SH12-6335

v MERVA USE & Branch for Windows NT:
Application Programming Guide, SH12-6336

v MERVA USE & Branch for Windows NT:
Diagnosis Guide, SH12-6337

v MERVA USE & Branch for Windows NT:
Migration Guide, SH12-6393

v MERVA USE & Branch for Windows NT:
Installation and Customization Guide, SH12-6335

v MERVA Workstation Based Functions, SH12-6383

Other IBM Publications
v CICS/ESA V4.1 Problem Determination Guide,

SC33-1176
v CICS/VSE Problem Determination Guide,

SC33-0716
v IMS/ESA V5 Operator’s Reference, SC26-8030
v OS/390 MVS Programming: Writing Servers for

APPC/MVS, GC28-1774
v OS/390 MVS Programming: Writing Transaction

Programs for APPC/MVS, GC28-1775
v VSE/ESA Guide for Solving Problems, SC33-6510

S.W.I.F.T. Publications
The following are published by the Society for
Worldwide Interbank Financial
Telecommunication, s.c., in La Hulpe, Belgium:
v S.W.I.F.T. User Handbook

v S.W.I.F.T. Dictionary

v S.W.I.F.T. FIN Security Guide

v S.W.I.F.T. Card Readers User Guide

© Copyright IBM Corp. 1987, 2001 115

116 Diagnosis Guide

Index

Special Characters
/TRACE (operator command) 83

A
ABENDxxx keyword 93, 94
abnormal events

batch program in wait state 86
definition 85
journal data sets full 87
queue data set full 87
SWIFT connection problems 88
transaction in wait state 86

abnormal termination 4
active requests

number of 75
Active time 71
ADD queuing function 10
adding nucleus server 70
advanced program-to-program

communication (APPC) 66, 67
AMASPZAP program 96
APAR (authorized program analysis

report) 93, 98
APC (application control) 26
APPC (advanced program-to-program

communication) 66, 67
application control (DWSNAPC) 26
application interface (DWSNAIST) 26
application support process (ASP)

receiving ASP (EKAAR10) 29
sending ASP (EKAAS10) 29

area-of-failure keywords 96
ARxxx (release-level keyword) 95
ASP (application support process)

receiving ASP (EKAAR10) 29
sending ASP (EKAAS10) 29

authentication support (DWSAUTP) 26,
86

authenticator-key file maintenance 27
authenticator-key file online maintenance

(DWSEAUT) 26
authenticator-key file utility

(DWSAUTLD) 26
authorized program analysis report

(APAR) 93
Authorized Program Analysis Report

(APAR) 98

B
batch message program (BMP) 62
BMP (batch message program) 2, 62

C
CDS (control data set) 96
checklist, evaluation 90

CICS system initialization table
(DFHSIT) 86

command server (DSLNCS) 2
communication control (ENLSTP) 28
component-identifier keyword 93
control data set (CDS) 96
CSERV function 96

D
data sets

control data set 96
journal 86
journal data set full 87
queue 86
queue data set full 87

debugging traces 31
DELETE queuing function 12
depth of traces 57

BASE 57
DISPLAY 57
EVENT 57
REQUEST 57
TRACE 57

depths of traces 76
Basic 77
Display processing 77
Event 77
Request 77
trace processing 77

DFHSIT (CICS system initialization
table) 86

DICB (display ICBs) command 64
display message (DM) 64
DM (display message) 64
DOCn keyword 94, 95
DR (display specific request)

command 68
DRQA (display administration data for

request queue and nucleus server)
command 73

DRR (display related requests)
command 71

DSLCAS (startup transaction) 2
DSLCMO (startup transaction) 2
DSLEUD (end-user driver) 86
DSLFDTT (file definition table) 86
DSLISYNP (IMS syncpoint) 86
DSLNATTA (to attach an MVS

subtask) 3
DSLNATTC (to start a CICS task) 3

functions 3
DSLNCS (command server) 2
DSLNNCS (invoke a command

service) 7
DSLNNTS (invoke a nucleus task

request) 7
DSLNPNPT (invoke a program stop

request) 7
DSLNPPP (posted program

processing) 8

DSLNPTT (nucleus program table) 3, 26,
28, 85

DSLNRPP (outstanding service request
event processing) 8

DSLNRRP (request ready event
processing) 7

DSLNSHEC initialization 6
DSLNSHEC processing 6
DSLNSHEC termination 9
DSLNSHEL initialization 6
DSLNSHEL processing 6
DSLNSHEL termination 9
DSLNSNPT (invoke a program start

request) 7
DSLNSPP (service processed event

processing) 9
DSLNTS (task server) 2
DSLNUC (nucleus) 2, 85
DSLQDSUT (queue-data-set utility) 87
DSLSDI 50
DSLSDY 50
DSLSOI 50
DSLSRVP (general service) 86
dump

CICS 62
parameter list 86
snapshot 62
superzap 96

DWSAUTLD (authenticator-key file
utility) 26

DWSAUTP (authentication support) 26,
86

DWSCORUT (SWIFT correspondents file
utility) 26

DWSDGPA (general purpose
application) 26, 85, 86

DWSEAUT (authenticator-key file online
maintenance) 26

DWSLINx (line definition) 79
DWSNAEVV (event controller) 26
DWSNAIST (application interface) 26
DWSNAPC (application control) 26
DWSNFIN (financial application) 26
DWSNLNK (link layer) 26
DWSNLTC (logical terminal control) 26
DWSPRM (SWIFT Link parameters) 26
DWST... (transport layer) 26

E
early warning system (EWS) 92
EKAAR10 (receiving ASP) 29
EKAAS10 (sending ASP) 29
EKAEMSC (MERVA ESA system control

facility) 30
EKAPT (partner table) 29
end-user driver (DSLEUD) 86
end-user errors 85
ENLHCF1 (interface transaction) 28
ENLPRM (Telex Link parameters) 28
ENLSTP (communication control) 28

© Copyright IBM Corp. 1987, 2001 117

errors
checklist 90, 91
conditions 91
DSLNUC (nucleus) 85
end user 85
installation 85
keyword 92
maintenance-level procedure 96
messages 90
network links 87
severe 86
startup 85
symptom string 92, 93

evaluation checklist 90
event controller (DWSNAEVV) 26
EWS (early warning system) 92

F
FDT (file definition table) 86
file definition table (DSLFDTT) 86
FIN (financial application) 26
financial application (DWSNFIN) 26
finished requests

number of 75
finished time 71
free elements

number of 75
function keyword 97
functions

CSERV 96
RSERV 96

G
general purpose application

(DWSDGPA) 26, 85, 86
general service (DSLSRVP) 86
generalized trace facility (GTF) 83
GETNEXT queuing function 15
GTF (generalized trace facility) 83

H
handling events for started programs 8
handling outstanding events of

subsequent service requests 8

I
I/O

operations 83
trace 83

IBM assistance 93, 98
ICB (intertask communication block) 64
identifying maintenance level of

component 96
IMS syncpoint (DSLISYNP) 86
INCORROUT keyword 94, 95
information/systems database 92
initialization of the nucleus server shell

main module 6
installation errors 85
interface transaction (ENLHCF1) 28
internal routing trace 31

intertask communication block (ICB) 64

J
journal

data set 86
data set full 87

K
keyword

ABENDxxx 93, 94
area-of-failure 96
ARxxx 95
component-identifier 93
definition 92
DOCn 94, 95
function 97
INCORROUT 94, 95
LOOP 94
modifier 97
module 97
MSG 93
MSGx 94
PERFM 94, 95
PROGCK 93, 94
release-level 95
subfunction 97
type-of-failure 93
WAIT 94, 95

L
levels of traces 76

CICS nucleus server shell 76
non-CICS nucleus server shell 76
nucleus server shell 76
Posted Program processing 76
PPP 56
Request Post processing 76
Request Queue Handler (DSLNRQH)

processing 76
Request Ready processing 76
RPP 56
RQH 56
RRP 56
Service Processed processing 76
SHEL or SHEC 56
SPP 56

line definition (DWSLINx) 79
line definitions 86
link layer (DWSNLNK) 26
logical terminal control (DWSNLTC) 26
logical terminal names 85
LOOP keyword 94
LTC (logical terminal control) 26

M
maintain system history program

(MSHP) 96
maintenance-level procedure 96
MCB (message-control block) 86
MERVA Link

abnormal events 85

MERVA Link (continued)
EKAAR10 (receiving ASP) 29
EKAAS10 (sending ASP) 29
EKAEMSC (MERVA ESA system

control facility) 30
EKAPT (partner table) 29
structure 29

MERVA ESA system control facility
(EKAEMSC) 30

message-control block (MCB) 86
message-format service (MFS) 86
message-processing program (MPP) 62
MFS (message-format service) 86
MFS and TOF services debugging 50
modifier keyword 97
module keyword 97
modules to be traced

DSLNDR, DSLNDRR,
DSLNDRQA 57

DSLNPPP 56
DSLNRPP 56
DSLNRQHx 56
DSLNRRP, DSLNSNPT, DSLNPNPT,

DSLNNTR, DSLNNCS 56
DSLNSHEL or DSLNSHEC 56
DSLNSPP 56
DSLNTRC 57

MPP (message-processing program) 62
MQI Function Processors

INIT 18
MQCLOSE 22
MQCONN 17
MQDISC 23
MQGET 20
MQINQ 19
MQOPEN 19
MQPUT 20
MQSIGNAL 21
TERM 22

MQSeries nucleus server processing 57
MQSeries nucleus server program

(DSLNMQS) 23
MQSeries queue handler processing 57
MQSeries Queue Handler Program

(DSLNMQH) 17
MSC (MERVA ESA system control

facility) 30
MSG keyword 93
MSGx keyword 94
MSHP (maintain system history

program) 96

N
name of a nucleus server 75
Notices 99
NOTIFY queuing function 12
NTRACE command 75
NTSQ (temporary storage queue) 67
nucleus (DSLNUC) 2, 85

processing 3
termination 4

nucleus-generation listing 98
nucleus program table (DSLNPTT) 3, 26,

28, 85
nucleus server data 73
nucleus server name 73, 75

118 Diagnosis Guide

nucleus server number 73, 75
nucleus server shell and request queue

handler debugging 56
nucleus server shell control

processing 56
nucleus server state 75
Nucleus Server Table (DSLNSVT) 56
nucleus server to be traced 76

nucleus server name 76
nucleus server number 76

nucleus servers
to be traced 56

number of a nucleus server 75
number of free elements 75
number of nucleus servers 75
number of requests waiting 75
number of subsequent requests

added 70, 73

O
OBTAIN queuing function 11
obtaining nucleus server 70
online information/systems database 92
operator messages 64

P
partner table (EKAPT) 29
PCT (program control table) 85
PDU (protocol data unit) 31
PERFM keyword 94, 95
performance problems 85
Posted Program Processing 8
problem

checklist 90, 91
evaluation 89
keyword 92
maintenance-level procedure 96
solving 89
symptom string 92, 93

processed request 75
processing of the nucleus server shell

main modules 6
processing trace 31
PROGCK keyword 93, 94
program control table (PCT) 85
program postevent processing 57
program temporary fix (PTF) 90
progress of request processing 70
protocol data unit (PDU) 31
PTF (program temporary fix) 90
PURGE queuing function 14

Q
QDS (queue data set) 87
QUERY queuing functions 12

QUERY a specific request 13
QUERY administrative

information 12
QUERY relations of a specific

request 13
QUERY request queue and nucleus

server information 12

queue
data set (QDS) 86, 87
data set full 87
management errors 86
trace 31

queue-data-set utility (DSLQDSUT) 87
queued call interface stub 5
queuing functions 9

R
relation of requests 72
release-level keyword (ARxxx) 95
request number 72, 75
Request Post Processing 8
request postprocessing 57
request processed 75
request processing progress 70

Request Processed event 70
Request Ready event 70
Service Processed event 70

request processing type 69, 73
request queue data 73
request queue handler processing 57
Request queue handler services 15

INIT queuing function 15
TERM queuing function 16

request queue size 75
request ready event processing 57
Request Ready event processing 7
request relations 72
Request State 69
REQUEUE queuing function 14
routing trace 31
RSERV function 96

S
SCP (system control programming) 94
SDAID (system debugging aid) 83
service aids 31
service processed event processing 57
Service Processed event processing 9
size of the request queue 75
SMP (system modification program) 96
snapshot dump 62
startup (error) 85
startup transaction

(DSLCMO/DSLCAS) 2
state of a request 69

active 69
finished 69
free 69
waiting 69

state of the nucleus server 75
busy state 75
idle state 75

storage area 86
structure 1
subfunction keyword 97
submitting an APAR 98
superzap dump 96
SWIFT connection problems 88
SWIFT correspondents file utility

(DWSCORUT) 26

SWIFT Link
abnormal events 85
DSLNPTT (nucleus program

table) 26
DWSAUTLD (authenticator-key file

utility) 26
DWSAUTP (authentication

support) 26
DWSCORUT (SWIFT correspondents

file utility) 26
DWSDGPA (general purpose

application) 26
DWSEAUT (authenticator-key file

online maintenance) 26
DWSNAEVV (event controller) 26
DWSNAIST (application

interface) 26
DWSNAPC (application control) 26
DWSNFIN (financial application) 26
DWSNLNK (link layer) 26
DWSNLTC (logical terminal

control) 26
DWSPRM (SWIFT Link

parameters) 26
DWST... (transport layer) 26
errors 87
structure 26

symptom string 92, 93
system control programming (SCP) 94
system debugging aid (SDAID) 83
system modification program (SMP) 96

T
task server (DSLNTS) 2
TCT (terminal-control table) 98
Telex Link

abnormal events 85
DSLNPTT (nucleus program

table) 28
ENLHCF1 (interface transaction) 28
ENLPRM (Telex Link parameters) 28
ENLSTP (communication control) 28
fault tolerant front-end 28
fault-tolerant frontend 28
structure 28

temporary storage queue (NTSQ) 67
temporary storage queue (TSQ) 66
terminal-control table (TCT) 98
termination of MERVA ESA 4
Termination of the nucleus server shell

main module 9
time request is active 71
time request is finished 71
time request is waiting 70
TOF 86
total active requests 75
total finished requests 75
total request queue size 75
total waiting requests 75
traces

dynamic trace 56
for MFS services debugging 51
for nucleus server shell and request

queue handler debugging 56
for TOF services debugging 53
GTF 83

Index 119

traces (continued)
I/O 83
module 31
PDU (protocol data unit) 31
processing 31
queue 31
routing 31
SDAID (system debugging aid) 83
static trace 56
trace action 77
trace areas 56, 76
trace depth 57, 76
trace level 56, 76

tracing events 83
transaction codes 85
transport layer (DWST...) 26
TSQ (temporary storage queue) 66
type-of-failure keyword 93
type of request processing 69, 73

asynchronous 70, 73
synchronous 69, 73

U
unique request identifier 72

W
WAIT keyword 94, 95
wait state

batch program in 86
transaction in 86

waiting requests 75
number of 75

waiting time 70

X
XTRACE (query or change trace flags)

command 79

120 Diagnosis Guide

MERVA Requirement Request

Use the form overleaf to send us requirement requests for the MERVA product. Fill
in the blank lines with the information that we need to evaluate and implement
your request. Provide also information about your hardware and software
environments and about the MERVA release levels used in your environment.

Provide a detailed description of your requirement. If you are requesting a new
function, describe in full what you want that function to do. If you are requesting
that a function be changed, briefly describe how the function works currently,
followed by how you are requesting that it should work.

If you are a customer, provide us with the appropriate contacts in your
organization to discuss the proposal and possible implementation alternatives.

If you are an IBM employee, include at least the name of one customer who has
this requirement. Add the name and telephone number of the appropriate contacts
in the customer’s organization to discuss the proposal and possible implementation
alternatives. If possible, send this requirement online to MERVAREQ at SDFVM1.

For comments on this book, use the form provided at the back of this publication.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

Send the fax to:

To: MERVA Development, Dept. 5640 Fax Number: +49-7031-16-4881
Attention: Gerhard Stubbe Internet address:

mervareq@de.ibm.com
IBM Deutschland Entwicklung GmbH
Schoenaicher Str. 220
D-71032 Boeblingen
Germany

© Copyright IBM Corp. 1987, 2001 121

MERVA Requirement Request

To: MERVA Development, Dept. 5640 Fax Number: +49-7031-16-4881
Attention: Gerhard Strubbe Internet address:

mervareq@de.ibm.com
IBM Deutschland Entwicklung GmbH
Schoenaicher Str. 220
D-71032 Boeblingen Germany

Page 1 of ______

Customer’s Name __

Customer’s Address __

__

__
Customer’s
Telephone/Fax __

Contact Person at __
Customer’s Location
Telephone/Fax __

MERVA
Version/Release __

Operating System __
Sub-System
Version/Release __

Hardware __

Requirement
Description __

__

__

__

__

__

__

Expected Benefits __

__

__

122 Diagnosis Guide

Readers’ Comments — We’d Like to Hear from You

MERVA for ESA
Diagnosis Guide
Version 4 Release 1

Publication No. SH12-6382-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SH12-6382-01

SH12-6382-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH
Information Development, Dept. 0446
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5648-B29

SH12-6382-01

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
M

ER
VA

fo
r

E
SA

D
ia

gn
os

is
G

ui
de

Ve
rs

io
n

4
R

el
ea

se
1

	Contents
	About This Book
	Prerequisites for Using This Book

	Chapter 1. The Structure of MERVA ESA
	The MERVA ESA Nucleus (DSLNUC)
	Initialization of DSLNUC
	Processing of DSLNUC
	Termination of DSLNUC
	Normal Termination
	Abnormal Termination

	The Queued Call Interface Stub

	Nucleus Server Shell
	Initialization of the Nucleus Server Shell Main Module
	Processing of the Nucleus Server Shell Main Module
	Request Ready Event Processing (DSLNRRP)
	Start an Application Program Link-Edited to DSLNUC (DSLNSNPT)
	Stop an Application Program Link-Edited to DSLNUC (DSLNPNPT)
	Invoke a Central Service
	Invoke a Command Execution Routine (DSLNNCS)

	Posted Program Processing (DSLNPPP)
	Request Post Processing (DSLNRPP)
	Service Processed Event Processing (DSLNSPP)
	Termination of the Nucleus Server Shell Main Module

	Request Queue Handler (DSLNRQH)
	Queuing Functions
	Queuing Functions Governed by the Finite State Machine Rules
	Queuing Functions Bypassing the Finite State Machine Rules
	Additional Services

	MQSeries Queue Handler Program (DSLNMQH)
	MQI Function Processors
	MQCONN Function Processor
	INIT Function Processor
	MQOPEN Function Processor
	MQINQ Function Processor
	MQPUT Function Processor
	MQGET Function Processor
	MQSIGNAL Function Processor
	TERM Function Processor
	MQCLOSE Function Processor
	MQDISC Function Processor

	MQSeries Nucleus Server Program (DSLNMQS)

	Chapter 2. The Structure of the MERVA ESA Network Links
	The Structure of the SWIFT Link
	The Structure of the Telex Link
	The Structure of the MERVA Link

	Chapter 3. MERVA ESA Service Aids
	MERVA ESA Journaling
	MERVA ESA Internal Traces
	MERVA ESA Processing Trace
	Layout of a Trace Entry
	Trace IDs
	Trace Entry Layout for MERVA ESA Programs

	Debugging Traces
	Debugging Trace for MFS and TOF Services
	MFS Debugging Trace
	TOF Debugging Trace
	TOF Shot

	Debugging Traces for Nucleus Server Components
	Trace Areas
	Trace Levels
	Trace Depths
	How to Choose the Correct Trace

	MERVA ESA Dump
	Dump Analysis
	Additional Hints for Analyzing MERVA ESA Dumps

	Operator Messages
	Status Displays
	Displaying the ICBs (DICB)
	Command Format
	Parameter Descriptions
	Command Examples
	Examples of the Display from a DICB Command

	Displaying a Specific Request (DR)
	Command Format
	Parameter Descriptions
	Command Examples
	Example of the Display from a DR Command

	Displaying Relations to a Specific Request (DRR)
	Command Format
	Parameter Descriptions
	Command Examples
	Example of the Display from a DRR Command

	Displaying Administration Data for request queue (RQ) and Nucleus Servers (DRQA)
	Command Format
	Parameter Descriptions
	Command Examples
	Example of the Display from a DRQA Command

	Activate or Deactivate a Debugging Trace (NTRACE)
	Command Format
	Parameter Descriptions
	Command Examples
	Example of the Display from an NTRACE Command

	Query or Change X.25 Trace Flags (XTRACE)
	Command Format
	Parameter Description
	Command Examples
	Example of the Display from an XTRACE Command

	Service Aids for Intertask Communication
	Example of the Display from a SHOW DSL0NIC Command
	JCL to Run the DSLICBUT Utility
	Example of a Report from the DSLICBUT Utility

	Service Aids for Other Components

	Chapter 4. Abnormal Events
	Startup Problems
	End-User Errors
	Performance Problems
	Severe Errors
	What Action to Take
	If a Transaction Is in a Wait State
	If a Batch Program Is in a Wait State
	If the Queue Data Set Is Full
	If the Journal Data Sets Are Full
	Problems with the Network Links
	Problems with the SWIFT Connection

	Chapter 5. Diagnosing and Reporting Program Failures
	Carrying Out the Initial Evaluation
	Building a Symptom String
	Step 1: Component-Identifier Keyword
	Step 2: Type-of-Failure Keyword
	Step 3: Release-Level Keyword
	Step 4: Maintenance-Level Procedure

	Area-of-Failure Keywords
	Submitting an Authorized Program Analysis Report (APAR)

	Appendix. Notices
	Trademarks

	Glossary of Terms and Abbreviations
	Bibliography
	MERVA ESA Publications
	MERVA ESA Components Publications
	Other IBM Publications
	S.W.I.F.T. Publications

	Index
	MERVA Requirement Request
	Readers’ Comments — We'd Like to Hear from You

