
MERVA for ESA

Customization Guide
Version 4 Release 1

SH12-6380-01

���

MERVA for ESA

Customization Guide
Version 4 Release 1

SH12-6380-01

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix.
Notices” on page 395.

Second Edition, May 2001

This edition applies to Version 4 Release 1 of IBM MERVA for ESA, Program Number 5648-B29 and to all
subsequent releases and modifications until otherwise indicated in new editions.

Changes to this edition are marked with a vertical bar.

© Copyright International Business Machines Corporation 1987, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book vii
Prerequisites for Using This Book vii
Customizing Overview viii

Summary of Changes xi

Part 1. Basic Customizing 1

Chapter 1. The MERVA ESA
Applications 3
Defining the MERVA ESA Message-Processing
Functions 3

General MERVA ESA Functions 4
Examples of Function Table Entries for the SWIFT
Link 7
Examples of Function Table Entries for the Telex
Link 36
Function Table Example for the MERVA Link . . 50
Processing a New or Changed Function Table . . 53

Defining Message Paths within MERVA ESA . . . 54
Types of DSLROUTE Macro Calls 54
Coding Considerations 55
Using Indices in Field Definitions 56
Using SWIFT Fields in Routing Modules . . . 57
Examples of Routing Tables for the SWIFT Link 58
Examples of Routing Tables for the Telex Link. . 66
Examples of Routing Tables for the MERVA Link 72
Processing Routing Tables 76

Assigning the Program Function (PF) Keys 77
The DSLMPFK Macro 77
Coding Considerations 77
Overview of Available PF Keys for All
MERVA ESA Functions 78
Processing PF Key Tables 83

Customizing Error and Diagnostic Messages for
Operators and Users 83

Translation of Messages into Another Language 84
Multiple Language Support 85
Adding User-Defined Messages 86
Processing the Changed Message Table 86

Chapter 2. The MERVA ESA
Environment 87
Defining Basic MERVA ESA Parameters in Module
DSLPRM 87

DSLPRM Module Sample. 87
DSLPRM Settings for Large Messages 91

Defining the Parameters for Using a Security
Manager 91

Required Parameter Settings 92
Defining an Authorized User 92
Transparent Usage of the DSLEUD 93

Defining the Nucleus Server Table DSLNSVT . . . 93
Sample DSLNSVT Tables 93

Defining the Parameters for Using QDS on DB2 . . 97
Customizing MERVA ESA Intertask Communication
Using MQSeries 98

Parameters for Intertask Communication Using
MQSeries 98
Customizing the Nucleus Program Table
(DSLNPTT) 99
Customizing the Nucleus Server Table 100
Defining MQI Queues 100

Customizing MERVA ESA Interservice
Communication 100

Defining the Parameters for Interservice
Communication Using MQSeries 101
Customizing the Nucleus Server Table for a
Multisystem Environment 103
Defining MQI Queues 107
MQI Queue Examples 108

Defining the Transaction Table DSLTXTT 111
DSLTXT Sample Definitions 112

Defining Files in MERVA ESA. 113
Installing Files for MERVA ESA General File
Services 114
Coding the File Table Structure 115
Coding File Table Entries 115

Defining the Page Sizes and Layouts 119
Terminal Feature Definition Macro (DSLTFD) 121
Printer Terminal Page Sizes and SCS Printer
Support 122

Customizing the MERVA Message Processing
Client Server 125

CICS APPC Connections 125
IMS APPC Connections 126
TCP/IP Connections 126
MERVA ESA User File 126

Chapter 3. The SWIFT Link 127
Defining SWIFT Link Parameters in Module
DWSPRM 127
Defining Communication Lines to the SWIFT
Network 130

Line Definition for a Public Data Network Line
for SWIFT X.25 130
Line Definition for a Leased Line for SWIFT
X.25 131
Line Definition for an Auto Dial Line for SWIFT
X.25 132
VTAM Definition for SWIFT X.25 Lines. . . . 133

Defining Logical Terminals for the SWIFT Network 134
SWIFT Link Parallel Processing 137
Session Keys Received from the USE Workstation 139
The Currency Codes 140
The Central Institutions Table 141

PREMIUM Service. 141
FIN-Copy Service 141

© Copyright IBM Corp. 1987, 2001 iii

Chapter 4. Setting Up a Central
Institution to Calculate PACs. 145
MT096 PAC Calculation 145
MT097 PAC Calculation 145

Chapter 5. The Telex Link 149
Customizing Parameters ENLPRM 149
Customizing the Telex Message Text. 150
Specifying General Test-Key Requirements . . . 150
Modifying the SWIFT Link for Telex Processing 152

Defining the Extraction Fields for Test-Key
Calculation 154
Defining Extended Field Tags for the Telex Line
Format 154

Interface to the Test-Key Processing Program . . . 155
Automatic Test-Key Facility 157

Sample Description 159
Test-Key Facility Processing Exceptions 159

Disabling Telex Link Long Answerback (LAB) . . 159
Telex Link Additional Transmit Data 160
Telex Link Sample Code 160

Chapter 6. The MERVA Link for CICS
and IMS 161
Defining Partner Table ASP and MTP Entries
(Samples). 161

Sample 1: Interconnecting Two MERVA Link
CICS Systems 162
Sample 2: Interconnecting MERVA Link CICS
and IMS Systems 164
Sample 3: Interconnecting Two MERVA Link
IMS Systems 167

Defining Partner Table SCP Entries (Samples) . . 169
Sample SCPs for Node 1 169
Sample SCPs for Node 2 170
Sample SCPs for Node 3 170
Sample SCPs for Node 4 171

Customizing CICS for MERVA Link 171
Defining CICS Programs 172
Defining CICS Transactions. 174
Defining CICS APPC Profiles 176
Defining CICS Connections and Sessions . . . 176
Defining CICS Partners 180
Defining CICS Transient Data Destinations . . 180
Customizing the CICS Startup Job 182

Customizing IMS for MERVA Link 182
IMS PSB and ACB. 183
Defining IMS Applications 183
Customizing the IMS Message Processing
Region Startup Job 184

Customizing APPC/MVS for MERVA Link . . . 184
APPC/MVS TP Profile for the APPC/MVS
Scheduler. 184
APPC/MVS SI Profile 186
APPC/MVS Inbound TP Security
Considerations 187
Connecting Trusted and Untrusted Partner
Systems 189

Customizing APPC/IMS for MERVA Link 190

APPC/MVS TP Profile for the APPC/IMS
Scheduler. 191
APPC/IMS Inbound TP Security Considerations 192
APPC/IMS Inbound TP Scheduling
Considerations 192

Customizing a Synchronous Back-to-Back Test
Environment 193

Synchronous TP Mirror EKATM10 193
Back-to-Back Sample Customization 193

Customizing the MERVA System Control Facility 194
Customizing the Display Panels 194
Customizing the Command Names 195

Application Support Filter 195
ASF Called for a SUBMIT.Request 196
ASF Called for a DELIVER.Indication 196
ASF Programming Interface 197
ASF Samples 198

Support of the MFS User Exits 203
MFS User Exit Interface 204
Start MFS User Exit Macro EKAUXS 205
MFS User Exit Sample 205
CICS Commands in an MFS User Exit 207
Link-Editing an MFS User Exit 209
MERVA ESA Unique Message Reference . . . 209
Additional User Exit Considerations 211

Connecting Two MERVA ESA Systems 211
Connecting MERVA A to MERVA B with the
SWIFT Link 212
Connecting MERVA A to MERVA B with Telex
Link via a Fault-Tolerant System 228
Customizing MERVA A and MERVA B 235

Chapter 7. The MERVA Link for Unix
System Services (USS) 243
Defining Application Control Table Entries
(Samples). 243

Sample 1: Gateway between MERVA Link CICS
and IMS Systems 244
Sample 2: Gateway between MERVA Link ESA
and MERVA Workstations 246

Customizing the MERVA Link USS ACT 248
Configuration File Syntax 248
ACT Header Parameters. 249
ACT ASP Parameters 250
ACT ISC Parameters 250
Generating a Configuration File from an Active
ACT 251

Customizing MERVA Link USS Conversation
Security 251

Conversation Security Files 252
Conversation Security Control Application . . 252
The ACS Command Parameters 253
Sample ACS Commands. 254
The ACS Standard Input File 254
The ACS Batch Mode. 255

Customizing APPC/MVS for MERVA Link USS 256
APPC/MVS TP Profile for MERVA Link USS 256
APPC/MVS Side Information for MERVA Link
USS 260
SNA APPC Conversation Security 260

Customizing TCP/IP for MERVA Link USS . . . 261

iv Customization Guide

|
||
||
||

Hosts Table (/etc/hosts or HOSTS.LOCAL) . . 261
Client Network Services (/etc/services) . . . 261
Internet Daemon Configuration
(/etc/inetd.conf) 261
Refreshing the InetD Process 263

Chapter 8. MERVA-to-MERVA Financial
Message Transfer/ESA (FMT/ESA) . . 265
Using FMT/ESA with MERVA Link 266

FMT/ESA Message Flow with MERVA Link . . 266
Scenario Involving FMT/ESA with MERVA Link 273
Routing Table EKARTSIM 276
Forced Routing Error Indication 277
MERVA Link Message Classes for FMT/ESA 278
FMT/ESA Scenario at the Message Sending Side 279
FMT/ESA Scenario at the Message Receiving
Side 283
Customization 285
Global Customization versus Specific
Customization 288
Calling FMT/ESA from an MFS User Exit . . . 291

Using FMT/ESA with MERVA-MQI Attachment 296
Customizing MERVA-MQI Attachment for Use
with FMT/ESA. 297
Queues for FMT/ESA with MERVA-MQI
Attachment 297
Routing 298

Chapter 9. MERVA-MQI Attachment 301
Customizing the Send and Receive Processes . . . 301

Setting the MQI Message Types 301
Defining the Message Data Structure 302
Defining the Groups of MERVA ESA Messages 303
Setting the MQI Report Options 304
Authorizing the Use of Queues 305
Defining the Send Queues 306
Defining the Receive Queues 307
Defining the Reply-to Queue 308
Defining the Control Queues 308
Defining the Start Queue 310
Defining the Error Queue 311
Defining the Commit Frequency 311
Defining the Wait Interval for Message Retrieval 312
Defining the Next Processing Step 313
Requesting Message Conversion 314
Requesting Message Security 314
Writing the MQI Message Types to the
MERVA ESA Journal 315
Issuing the MERVA ESA Operator Messages 316
Setting MERVA ESA Traces 317
Sample Process Tables DSLKPSAM (MVS) and
DSLKPSMV (VSE) 317

Using the Keys for Message Identification and
Correlation 321

Using the Keys for the MQI Queues 321
Using the Keys for the MERVA ESA Queues 322
Correlating MQI Report and Reply Messages 323

Using the Control Fields. 323
List of Control Fields 323
Using Message Status Information 325

Displaying MQI Control Block Data 326
Sample Routing Table DSLKQRT 328

Writing a User Exit 332
Functions of the User Exit 332
Interface to MERVA ESA and to MERVA-MQI
Attachment 333
Sample User Exits 335

Converting the Message Data 336
Data-Conversion Exit (MVS) 336
Attachment-Conversion Exit (VSE) 338

Part 2. Defining Fields and
Messages 343

Chapter 10. Message Control Blocks
(MCBs) 345
General Message Control Block Structure 345
The Message Definition Macroinstructions. . . . 346
MCB Coding Examples 347

Example for TYPE=MESSAGE. 347
Example for Color Definitions 350
Example for TYPE=SCREEN 351
Example for TYPE=HARDCOPY 354
Example for TYPE=SYSP 354
Example for the SWIFT Line with TYPE=NET 355
Example for the Screen NOPROMPT Mode with
TYPE=NET 356
Examples for the SWIFT Message Trailer with
TYPE=NET 357

Description of Functions Not Contained in MT 100 358
Repeatable Sequence Header Macro for Screen
and Printer Devices 360

Processing New or Changed MCBs 361
The Frame MCBs for Screen and Printer Panels . . 362

The Top Frame 362
The Bottom Frame. 367

Chapter 11. Cover MCBs 369
Coding Cover MCBs 369

Example for DSL0COV 369
Example for EKAMCOV 371
Example for ENLTCOV 373

Help MCBs 374

Chapter 12. Message Type Table
(DSLMTTT) 377
Mapping the Areas of the Message Type Table . . 377
Generating the Message Type Table 377
Message Type Table Definitions 378
SWIFT Link Message Type Table Definitions . . . 379
Telex Link Message Type Table Definitions . . . 380
MERVA Link Message Type Table Definitions . . 381

Chapter 13. Field Definition Table
(DSLFDTT) 385
Field Definition Macroinstructions 385
Coding the Field Definition Table (FDT) 385

FDT Coding Examples 387
Processing New or Changed FDTs 388

Contents v

||
|
||
|
||
||

||

MERVA Link Modifications in the Field Definition
Table 389

Part 3. Appendixes 393

Appendix. Notices 395
Programming Interface Information 396
Trademarks 397

Glossary of Terms and Abbreviations 399

Bibliography 411
MERVA ESA Publications 411
MERVA ESA Components Publications 411
Other IBM Publications 411
S.W.I.F.T. Publications 411

Index 413

MERVA Requirement Request 419

vi Customization Guide

About This Book

This book helps the system programmer to customize the installed IBM licensed
program Message Entry and Routing with Interfaces to Various Applications for
ESA Version 4 Release 1 (abbreviated to MERVA ESA in this book). MERVA ESA
provides the following components that can be installed and customized as
required:
v Base Functions
v SWIFT Link
v Telex Link
v MERVA Link
v FMT/ESA with MERVA Link

In this book, system programmers find detailed technical information with several
examples showing coding methods.

MERVA ESA and its communication components are designed so that you can
customize them to meet the requirements of your installation.

MERVA ESA and its components use tables to contain the definitions of the
environment in which MERVA ESA runs. By specifying the tables or table
parameters you can adapt the environment for MERVA ESA to the requirements of
your installation.

MERVA ESA delivers examples for all tables used in the system. Before you start
customizing, make sure that the correct MERVA ESA installation is verified.

Adapting DSLPRM and DSLTFDT is mandatory, all other tables can be customized
optionally. You might want to customize message-processing functions and routing.

This book deals with the functions and items you are most likely to customize
first, and continues with the less likely items later.

Prerequisites for Using This Book
You should be familiar with the parameters of the MERVA ESA macros described
in the MERVA for ESA Macro Reference.

You should also be familiar with MERVA for ESA Concepts and Components which
describes the function, services, and utilities supplied. It is for readers who want a
general idea of the message concept, queues, routing, message handling, and the
network links.

For the SWIFT Link it is assumed that you are familiar with the contents of the
S.W.I.F.T. User Handbook, published by the Society for Worldwide Interbank
Financial Telecommunication s.c. (S.W.I.F.T.). For the Telex Link you should be
familiar with the telex terminology as defined by your local PTT1.

1. National Post and Telecommunication Authority (post, telegraph, telephone).

© Copyright IBM Corp. 1987, 2001 vii

|

Note: The term CICS is used to refer to CICS/ESA®, CICS Transaction Server
(CICS TS), and CICS/VSE®. The term IMS is used to refer to IMS/ESA®.

Customizing Overview
MERVA ESA uses tables to contain the definitions of the environment in which
MERVA ESA runs. By specifying the tables or table parameters you can adapt the
environment for MERVA ESA to the requirements of your installation. The names
of the tables are supplied as parameters in the MERVA ESA customizing
parameter modules: DSLPRM, DWSPRM, and ENLPRM. Sample tables for
MERVA ESA are provided with the machine-readable material.

The following list provides an overview of the ways in which you can customize
your MERVA ESA installation:
v Define the message-processing functions

You can define the functions used to process the messages. The functions are
defined in the Function Table (DSLFNTT). All the functions available to the
users of MERVA ESA are defined in this table. Details of how to customize the
Function Table are given in “Defining the MERVA ESA Message-Processing
Functions” on page 3.

v Define the path of a message
You define the path of a message in the Function Table (DSLFNTT) by
specifying one or both of the following:
– The next message-processing function directly
– The routing table that makes the message path dependent on the contents of

the message

Details of how to customize the Routing Tables are given in “Defining Message
Paths within MERVA ESA” on page 54

v Assign commands to the PF keys
The PF-Key Tables (DSLMPFxx) are used to assign the PF keys to commands for
each panel type. Details of how to define these tables can be found in
“Assigning the Program Function (PF) Keys” on page 77.

v Define files
The files you access when requesting the general file services must be defined in
the General File Table (DSLFLTT). Details of how to code the file table can be
found in “Defining Files in MERVA ESA” on page 113.

v Define the format of the panels and printer pages
You use the Terminal Features Definition Table (DSLTFDT) to define the format
used for printing and displaying panels. Details of how to use the Terminal
Features Definition Table are given in “Terminal Feature Definition Macro
(DSLTFD)” on page 121.

v Define the parameters for MERVA ESA
The basic customizing of MERVA ESA is carried out in the modules DSLPRM,
DWSPRM, and ENLPRM (which use the macros DSLPARM, DWSPARM, and
ENLPARM), and in the table DSLNSVT (which uses the macro DSLNSV). The
use of these macros is described in “Chapter 2. The MERVA ESA Environment”
on page 87, “Chapter 3. The SWIFT Link” on page 127, and “Chapter 5. The

Telex Link” on page 149.
v Define lines to the SWIFT network

viii Customization Guide

For the SWIFT network, data communication lines must be defined; the
communication to the SWIFT network is via X.25. Details are contained in
“Defining Communication Lines to the SWIFT Network” on page 130.

v Define SWIFT logical terminals
For the SWIFT network, logical terminals must be defined. Details are contained
in “Defining Logical Terminals for the SWIFT Network” on page 134.

v Define general test-key requirements
The Telex Link Test-Key Requirement Table ENLTKRQT defines for specific
message types and groups of message types whether messages of these types
must be protected by the addition of a test key. Details of how to define the
test-key requirements can be found in “Specifying General Test-Key
Requirements” on page 150.

v Define the extraction fields for the test-key calculation
The Extraction fields for the Test-Key Calculation are defined in the Message
Control Block (MCB) of the SWIFT Message. Details of how to define the
Extraction Fields is contained in “Defining the Extraction Fields for Test-Key
Calculation” on page 154.

v Define extended field tags for the telex line format
Details of how to add extended field tags to a SWIFT message in the telex
network format for better readability can be found in “Defining Extended Field
Tags for the Telex Line Format” on page 154.

v Define the MERVA Link partner systems
Details of how to define the MERVA Link parameters can be found in “Defining
Partner Table ASP and MTP Entries (Samples)” on page 161.

v Add your programs (filters and user exits) to the MERVA Link
Details of how to add your programs to the MERVA Link are contained in
“Application Support Filter” on page 195.

v Define the MERVA ESA USS partner systems
Details of how to define the MERVA ESA USS parameters can be found in
“Chapter 7. The MERVA Link for Unix System Services (USS)” on page 243.

v Define the parameters for FMT/ESA with MERVA Link
Details of the set of FMT/ESA parameters and how to activate them can be
found in “Customizing FMT/ESA with MERVA Link” on page 285.

v Define the parameters for MERVA-MQI Attachment
Details of the set of MERVA-MQI Attachment parameters and how to activate
them are contained in “Chapter 9. MERVA-MQI Attachment” on page 301.

v Define the formats of messages and fields
The main purpose of MERVA ESA is to process messages for external networks,
display terminals, and printers. MERVA ESA uses an internal format called a
“tokenized form” (TOF) to format the messages for each of these external
devices. The TOF services let you access and change the contents of any field of
a message directly in the TOF using a symbolic name, and transform a message
to an external format according to the corresponding MCB specifications. The
fields and messages are defined using MERVA ESA macros and MCBs. All the
MCBs are made available to MERVA ESA as entries in the message type table
(DSLMTTT). Details of how to define field and message structures can be found
in “Part 2. Defining Fields and Messages” on page 343.

About This Book ix

|

|
|

x Customization Guide

Summary of Changes

This edition reflects the following changes:

MERVA-MQI Attachment for VSE
MQSeries for VSE/ESA now fully exploits COA and COD report message
handling. Therefore, the restrictions concerning the COA and COD reports
and the usage of the PASCMID parameter of the process table DSLKPROC
have been removed from “Chapter 9. MERVA-MQI Attachment” on
page 301.

FMT/ESA can now use MERVA-MQI Attachment
Financial Message Transfer/ESA (FMT/ESA) can now use MERVA-MQI
Attachment as well as MERVA Link ESA to transfer SWIFT messages
between two MERVA ESA systems (see “Using FMT/ESA with
MERVA-MQI Attachment” on page 296).

MERVA-MQI Attachment message security
Using proprietary algorithms, MERVA-MQI Attachment can now encrypt,
decrypt, and authenticate message data (see “Requesting Message
Security” on page 314).

MERVA-MQI Attachment message conversion
The channel message exits DSLKCM1C and DSLKCM1M used for message
conversion under MQSeries for MVS/ESA have been removed (see
“Converting the Message Data” on page 336).

© Copyright IBM Corp. 1987, 2001 xi

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

xii Customization Guide

Part 1. Basic Customizing

© Copyright IBM Corp. 1987, 2001 1

2 Customization Guide

Chapter 1. The MERVA ESA Applications

This chapter shows you how to:
v Define the MERVA ESA Message-Processing Functions to be used in your

installation
v Define the routes a message will take in your installation
v Assign commands to the PF keys for each of the panels used in your

installation.

Defining the MERVA ESA Message-Processing Functions
MERVA ESA supplies a sample of message-processing functions that you can use
to create and process messages. The Function Table (DSLFNTT) defines all the
functions in a MERVA ESA installation used for message processing, file
maintenance, and operator command processing.

The table is coded as a sequence of DSLFNT macros. For a detailed description of
the DSLFNT macro refer to the MERVA for ESA Macro Reference. When customizing
MERVA ESA and associated network links like SWIFT Link, copy members are
used to combine the function table definitions of MERVA ESA and its components
in one function table. This is done using the DSLGEN macro. Figure 1 shows the
source code for the function table.

Note: The function table DSLFNTT can be coded as a sequence of the DSLFNT
macros:

v TYPE=INITIAL
v TYPE=ENTRY
v TYPE=FINAL

This coding can be done without using the DSLGEN process, and preferably using
a name other than DSLFNTT.

Notes:

[1] This must be the first macro. The label DSLFNTT is the name of the
function table. If no name is specified, the default name DSLFNTT is used.

FNTT TITLE 'MERVA ESA SAMPLE FUNCTION TABLE'
DSLFNTT DSLFNT TYPE=INITIAL [1]

COPY DSLFNTTC MERVA ESA FUNCTION TABLE [2]
COPY DWSFNTTC MERVA ESA SWIFT LINK [3]
COPY ENLFNTTC MERVA ESA TELEX LINK [4]
COPY EKAFNTTC MERVA ESA MERVA LINK [5]
COPY EKAFNTSC MERVA ESA FMT [6]

******** **** RESERVED 06 [7]
******** **** RESERVED 07
******** **** RESERVED 08
******** **** RESERVED 09
******** **** RESERVED 10
******** **** RESERVED FOR USER

DSLFNT TYPE=FINAL [8]
END

Figure 1. Coding Example of a MERVA ESA Function Table

© Copyright IBM Corp. 1987, 2001 3

However, the name of the table must be specified as the value of the
parameter FNT for the macro DSLPARM in the module DSLPRM.

It is possible to work with different function tables by changing the table
name specified in this module.

[2] This statement copies the function definitions required by MERVA ESA
into the function table, for example, USR for the user file maintenance, or
CMD for the operator command processing.

[3] This statement copies the function definitions required by the SWIFT Link
into the function table. These are functions for:
v The entry, verification, and authorization of SWIFT input messages
v The display and authorization of SWIFT output messages
v The other functions used to process SWIFT messages
v The online maintenance of the Authenticator-Key File

[4] This statement copies the functions required by the Telex Link into the
function table. These functions are for the:
v Entry, verification, and authorization of outgoing telex messages
v Display and distribution of incoming telex messages
v Test-key calculation and verification of telex messages
v Telex processing queues

[5] This statement copies the functions required by the MERVA Link into the
function table.

[6] This statement copies the functions required by FMT/ESA with MERVA
Link into the function table.

[7] Depending on the installation, the copy statements of other components
are shown here.

[8] This must be the last macro and is followed by the assembler END
statement.

The functions can be defined in any sequence, but the name used for each function
must be unique. To make any reply to a dq (display queue) command more
readable, you can build function groups by giving each function name within that
group a significant prefix or other sequence of characters anywhere in the name.

All function table entries presented in this book are supplied with the machine
readable material in the copy codes DSLFNTTC, DWSFNTTC, EKAFNTTC,
EKAFNTSC, and ENLFNTTC. The function table entries of DSLFNTTC for general
MERVA ESA functions are presented first. These are followed by the entries for the
examples of three SWIFT Link master logical terminals with different paths for
routing of messages. The prefix L1 is used for all functions in the DWSFNTTC
copy code related to the example of the first master logical terminal.

General MERVA ESA Functions
Figure 2 on page 5 shows the table entries for the general MERVA ESA functions
for:
v Printing
v Sequential file processing
v Special user functions

4 Customization Guide

|
|

DSLFNT NAME=DMPR0,QUEUE=YES,PRFORM=(E,0),THRESH=20, * [1]
TRAN=DSLH,LTERM=PRT1,STATUS=HOLD, *
DESCR='MERVA Print Queue' [2]

DSLFNT NAME=DMPR1,QUEUE=YES,PRFORM=(E,1),THRESH=20, *
TRAN=DSLH,LTERM=PRT1,STATUS=HOLD, *
DESCR='MERVA Print Queue'

DSLFNT NAME=DMPR2,QUEUE=YES,PRFORM=(E,2),THRESH=20, *
TRAN=DSLH,LTERM=PRT1,STATUS=HOLD, *
DESCR='MERVA Print Queue'

DSLFNT NAME=DMPR3,QUEUE=YES,PRFORM=(E,3),THRESH=20, *
TRAN=DSLH,LTERM=PRT1,STATUS=HOLD, *
DESCR='MERVA Print Queue'

DSLFNT NAME=DMPR4,QUEUE=YES,PRFORM=(E,4),THRESH=20, *
TRAN=DSLH,LTERM=PRT1,STATUS=HOLD, *
DESCR='MERVA Print Queue'

DSLFNT NAME=DMPR89,QUEUE=YES,PRFORM=(E,0),THRESH=20, *
TRAN=DSLH,LTERM=PRT1,STATUS=HOLD, *
DESCR='MERVA Print Queue'

DSLFNT NAME=DMSDI,QUEUE=YES,NEXT=DMSO0, * [3]
DESCR='MERVA Batch Input Queue'

DSLFNT NAME=DMSO0,NEXT=DMERR,QUEUE=YES, *
DESCR='MERVA Batch Output Queue'

DSLFNT NAME=DMSO1,NEXT=DMERR,QUEUE=YES, *
DESCR='MERVA Batch Output Queue'

DSLFNT NAME=DMERR,NEXT=DMERR,QUEUE=YES,SPCMND=(DEL,ROU), *
NOPR=YES, *
DESCR='MERVA Error Queue'

DSLFNT NAME=DMSY0,PRFORM=(E,0),QUEUE=YES, * [4]
DESCR='MERVA Batch Print Queue'

DSLFNT NAME=DMSY1,PRFORM=(E,1),QUEUE=YES, *
DESCR='MERVA Batch Print Queue'

DSLFNT NAME=DMSY2,PRFORM=(E,2),QUEUE=YES, *
DESCR='MERVA Batch Print Queue'

DSLFNT NAME=DMSY3,PRFORM=(E,3),QUEUE=YES, *
DESCR='MERVA Batch Print Queue'

DSLFNT NAME=DMSY4,PRFORM=(E,4),QUEUE=YES, *
DESCR='MERVA Batch Print Queue'

DSLFNT NAME=DUMMY,QUEUE=DUMMY, * [5]
DESCR='MERVA Dummy Queue'

DSLFNT NAME=DMTST,QUEUE=YES,THRESH=30,NEXT=DMERR,PROT=YES, * [6]
KEY1=(SW20,16),KEY2=(MSGTRUID,8),SPCMND=(ROU,DEL,OK), *
DESCR='MERVA Test Queue'

DSLFNT NAME=CMD,QUEUE=NO,PROGRAM=DSLECMD, * [7]
FRAME=(0CMD,0BOT),NOPR=NO,PRINT=DMPR0, *
DESCR='Operator Command Processing'

DSLFNT NAME=FLM,QUEUE=NO,PROGRAM=DSLEFLM, * [8]

Figure 2. Example of Function Table Entries for MERVA ESA Functions (Part 1 of 2)

Chapter 1. The MERVA ESA Applications 5

Notes:

[1] Six hard-copy print functions DMPRx (transaction TRAN=DSLH) are
defined for all the different compression formats (PRFORM=(E,n); n = 0 to
4).

The print functions are assigned to logical terminal names (LTERM).
LTERM specifies the name of a logical terminal as defined in DSLTFDT.
Queues are assigned (QUEUE=YES) with a threshold of 20 elements
(THRESH=20). The functions are set initially into the hold status
(STATUS=HOLD).

[2] The descriptive name is coded for all functions (DESCR parameter). This
descriptive name is used in the Function Selection panel when the menu of
the functions available to a user is shown.

[3] Four functions (queues) are defined. The first three are used for
MERVA ESA sequential file processing of messages, DMSDI for input,
DMSO0 and DMSO1 for output. The NEXT parameter specifies where the
messages are routed to after processing.

The fourth is the error queue DMERR. It shows that the two
panel-commands delete (delete the message) and route (route the message
to a specified function) are allowed. The parameter NOPR=YES specifies
that message processing in NOPROMPT mode is allowed.

The DMERR function specifies the NEXT=DMERR parameter, which causes
the eom command to result in a requeue command. This means that the
message is written to the end of the DMERR queue.

[4] Five functions DMSYx are defined for system printer functions.

[5] The function DUMMY is defined with the parameter QUEUE=DUMMY to
allow for the routing of messages without creating a queue element.
Routing to this queue has the same effect as a delete command.

[6] The function DMTST defines a test queue with a threshold of 30 queue
elements. All fields of the message are protected on the user panel
(PROT=YES). Two keys are defined for direct retrieval of the messages
from this queue: KEY1 specifies the TOF field SW20 (transaction reference
number field of SWIFT messages) with length 16. KEY2 specifies the TOF
field MSGTRUID with length 8. MSGTRUID is a subfield of the
MSGTRACE field. It contains either of the following:

FRAME=(0FLM,0FLM),NOPR=NO,PRINT=DMPR0, *
DESCR='General File Maintenance'

DSLFNT NAME=USR,QUEUE=NO,PROGRAM=DSLEUSR,PRFORM=(E,1), * [9]
FRAME=(0USR,0USR),NOPR=NO,PRINT=DMPR0,SPCMND=(OK), *
DESCR='User File Maintenance'

DSLFNT NAME=USR0,QUEUE=NO,PROGRAM=DSLEUSR,PRFORM=(E,1), *
FRAME=(0USR,0USR),NOPR=NO,PRINT=DMPR0, *
PROT=YES, *
DESCR='User File Maintenance / Display only'

DSLFNT NAME=USR1,QUEUE=NO,PROGRAM=DSLEUSR,PRFORM=(E,1), *
FRAME=(0USR,0USR),NOPR=NO,PRINT=DMPR0, *
DESCR='User File Maintenance / Update'

DSLFNT NAME=USR2,QUEUE=NO,PROGRAM=DSLEUSR,PRFORM=(E,1), *
FRAME=(0USR,0USR),NOPR=NO,PRINT=DMPR0, *
PROT=YES,SPCMND=(OK), *
DESCR='User File Maintenance / Authorization'

Figure 2. Example of Function Table Entries for MERVA ESA Functions (Part 2 of 2)

6 Customization Guide

v The user ID of the user who created the message the first time
v The name of the program that wrote the message to a MERVA ESA

queue the first time

The restricted user panel commands delete, ok, and route are allowed. The
function DMERR is defined as the NEXT= function.

Note: If the user detects an error in the message during execution of
DMTST, this error can be removed only in the NEXT function
DMERR because the PROT=YES parameter prevents the change (or
correction) of the message on the screen terminal.

[7] The function CMD is defined for entering operator commands on the
screen. It is assigned to the MERVA ESA processing program DSLECMD.
The top frame 0CMD and bottom frame 0BOT are used to display the
screen or print pages. NOPROMPT processing is not allowed as it does not
make sense for the MERVA ESA operator command panel.

[8] The function FLM is defined for MERVA ESA general file maintenance and
assigned to the MERVA ESA processing program DSLEFLM. The top
frame 0FLM and bottom frame 0FLM are used to display the screen or
print pages. NOPROMPT processing is not allowed.

[9] Four functions are defined for MERVA ESA user file maintenance and
assigned to the MERVA ESA processing program DSLEUSR. The top frame
0USR and bottom frame 0USR are used to display the screen. If the HCO
command is used to print the current page, the top and bottom frames that
are defined for the print function are used. NOPROMPT processing is not
allowed and UNIT compression (PRFORM=(E,1)) is assigned.

The four functions show the four different types of user file maintenance:

USR Has the parameters PROT=NO (default) and SPCMND=OK,
allowing the addition, replacement, and deletion of user file
records, and authorizing them in the same step.

USR0 Has the parameter PROT=YES but not the parameter
SPCMND=OK. This only allows for the display of user file records.

USR1 Has the parameter PROT=NO (default) but not the parameter
SPCMND=OK. This allows for the addition, replacement, and
deletion of user file records, but not for the authorization of the
changes. The user who authorizes these changes must process a
function like USR2 or USR as a second step.

USR2 Has the parameter PROT=YES and the parameter SPCMND=OK,
allowing the authorization of changes to the file that are made by
another user.

Examples of Function Table Entries for the SWIFT Link
The SWIFT Link supplies, in the copy code DWSFNTTC, examples of function
table entries for the message processing functions for the SWIFT network, SWIFT
USE, and the functions necessary for the online maintenance of the
Authenticator-Key File. The message functions and the functions for online
maintenance are described in the following section; the functions for SWIFT USE
are described in MERVA Workstation Based Functions.

Chapter 1. The MERVA ESA Applications 7

Examples of Function Table Entries for Maintaining the
Authenticator-Key File
The following example for Authenticator-Key File maintenance apply to any bank
regardless of how complicated its organizational structure for processing SWIFT
messages is.

These functions are defined for the Authenticator-Key File maintenance, and are
assigned to the SWIFT Link user-processing program DWSEAUT. The top frame
SAUT and bottom frame SAUT are used to display the screen or print pages.
NOPROMPT processing is not allowed and UNIT compression (PRFORM=(E,1)) is
assigned.

The descriptive name is coded with the DESCR parameter. This descriptive name
is used in the function selection panel when the menu of the functions available to
a user is shown. The PFGROUP parameter assigns the correct program function
keys according to the allowed functions. The EXPAND parameter expands the
correspondent’s SWIFT address to the full address, this requires the SWIFT
Correspondents File being available in MERVA ESA, and then gives an indication
if this SWIFT address is an existing one.

The four functions show the four different types of Authenticator-Key File
maintenance:
v AUT has the parameters PROT=NO (default) and SPCMND=OK allowing the

addition, replacement, and deletion of Authenticator-Key File records, and
authorization of the changes in the same step. It also allows for the exchange
command.

v AUT0 has the parameter PROT=YES and not the parameter SPCMND=OK. This
allows display of Authenticator-Key File records only.

v AUT1 has the parameter PROT=NO (default) and not the parameter
SPCMND=OK. This allows the addition, replacement, and deletion of
Authenticator-Key File records, but not for the authorization of these changes.
The exchange command is not allowed. The user who authorizes the changes
must process a function like AUT or AUT2.

DSLFNT NAME=AUT,QUEUE=NO,PROGRAM=DWSEAUT,PRFORM=(E,1), *
FRAME=(SAUT,SAUT),NOPR=NO,PRINT=L1PR0,SPCMND=(OK), *
PFGROUP=24,EXPAND=(UNCOND,UNCOND), *
DESCR='Authenticator-Key File Maintenance'

DSLFNT NAME=AUT0,QUEUE=NO,PROGRAM=DWSEAUT,PRFORM=(E,1), *
FRAME=(SAUT,SAUT),NOPR=NO,PRINT=L1PR0,PROT=YES, *
PFGROUP=28,EXPAND=(UNCOND,UNCOND), *
DESCR='Authenticator-Key File Maintenance / Display only*
'

DSLFNT NAME=AUT1,QUEUE=NO,PROGRAM=DWSEAUT,PRFORM=(E,1), *
FRAME=(SAUT,SAUT),NOPR=NO,PRINT=L1PR0, *
PFGROUP=32,EXPAND=(UNCOND,UNCOND), *
DESCR='Authenticator-Key File Maintenance / Update'

DSLFNT NAME=AUT2,QUEUE=NO,PROGRAM=DWSEAUT,PRFORM=(E,1), *
FRAME=(SAUT,SAUT),NOPR=NO,PRINT=L1PR0,PROT=YES, *
SPCMND=(OK),PFGROUP=36,EXPAND=(UNCOND,UNCOND), *
DESCR='Authenticator-Key File Maintenance / Authorizatio*
n'

Figure 3. Definition of the Functions for Authenticator-Key File Maintenance

8 Customization Guide

v AUT2 has the parameters PROT=YES and SPCMND=OK allowing for the
authorization of changes made to the file by another user. The exchange
command is also allowed by the SPCMND=OK parameter.

Examples of Function Table Entries for Processing Messages for
the SWIFT Network
The following examples show the functions necessary for the creation and
processing of SWIFT messages for the SWIFT network:
v Example 1 is the simplest example.
v Example 2 uses retype verification and more sophisticated routing than Example

1. It is similar to Example 1, but with the following modifications:
– The functions for the SWIFT-EDIFACT conversion are not available.
– A forms queue L2FORMS is added to ease the data entry of messages that

contain similar texts.
– A retyping function L2RE0 for the SWIFT field 32 is added.
– A second authorization L2AI2 for amounts greater than 10000 is added.

v Example 3 has the same functions for processing of SWIFT input messages as
Example 2, except that it uses the checking and expansion transaction DSLCXT
to receive messages from SWIFT, and it evaluates branch codes and synonym
logical terminals during the routing process. The message flow is identical to
that of Example 2.

Each example corresponds to a different bank with its own organizational
structure. Each structure has a different level of complexity. The examples are also
related to the SWIFT Link example of the logical terminal table DWSLTT.

When using the SWIFT User Security Enhancements (USE), these examples all use
a group of routing tables that is described in more detail in MERVA Workstation
Based Functions. The following routing tables give an example of the flow of
messages between MERVA ESA, the SWIFT network, and the USE functions of
MERVA ESA (sometimes referred to as USE workstation):

EKARTTXU Routing of:
v The control queue (TX2USECQ) of the MERVA Link connection

between MERVA ESA and the USE workstation
v The send process control queue (USECQS), and receive process

control queue (USECQR) of the MERVA-MQI Attachment
connection between MERVA ESA and the USE workstation

This includes routing of the messages sent to the USE workstation
and confirmed and routing of the messages received from the USE
workstation.

DWSRTSK Routing of session key requests for login and select to the USE
workstation when the SWIFT Secure Login/Select (SLS) is used,
but session key preload is not used

Example 1: This example uses function names that start with the characters L1,
and refers to the first master logical terminal (LT) in DWSLTT. It uses the following
routing tables:

DWSL1AI0 Routing after authorization input (L1AI0)

DWSL1AO0 Routing after authentication output (L1AO0)

DWSL1DO0 Routing after distribution output (L1DO0)

Chapter 1. The MERVA ESA Applications 9

|
|
|

DWSL1ES Routing after SWIFT-EDIFACT conversion input (L1SDIES and
L1CES)

DWSL1SE Routing after EDIFACT-SWIFT conversion output (L1SDOSE and
L1CSE)

DWSL1IN Routing of input messages in DWSDGPA (from ready queues)

DWSL1OUT Routing of output messages in DWSDGPA (from SWIFT)

Note: The routing tables DWSL1IN, DWSL1OUT, DWSL2IN, DWSL2OUT,
DWSL3GPI, DWSL3GPO, DWSL3FII, DWSL3FIO and DWSRTSK are
referred to in the logical terminal table DWSLTT. All other routing tables are
referred to in the function table entries enclosed in parentheses.

Function Table Entries for Example 1: Figure 4 shows the SWIFT Link function
table entries for the first example. This example contains functions for the
SWIFT-EDIFACT conversion for both directions using DSLSDI/DSLSDO or
user-written application programs.

10 Customization Guide

DSLFNT NAME=L1DE0,QUEUE=YES,DE=YES,NEXT=L1AI0,KEY1=(SW20,16), * [1]
THRESH=50,EXPAND=(COND,UNCOND),EXPNAM=(PRIVATE,COMMON), *
PRINT=L1PR0,
DESCR='Data Entry' [2]

DSLFNT NAME=L1AI0,QUEUE=YES,DE=NO,NEXT=L1ERROR,KEY1=(SW20,16),* [3]
ROUTE=DWSL1AI0,SPCMND=(OK),THRESH=50,PROT=YES, *
EXPAND=(COND,UNCOND),EXPNAM=(PRIVATE,COMMON), *
PRINT=L1PR0, *
DESCR='Authorization of Input Messages'

DSLFNT NAME=L1VE0,QUEUE=YES,NEXT=L1AI0,PROT=NO,THRESH=20, * [4]
KEY1=(SW20,16),KEY2=(SWBHSN,6),PRINT=L1PR0,NOPR=YES, *
EXPAND=(COND,UNCOND),EXPNAM=(PRIVATE,COMMON), *
DESCR='Visual Verification and Correction'

DSLFNT NAME=L1PR0,QUEUE=YES,LTERM=PRT1,TRAN=DSLH, * [5]
PRFORM=(E,3),STATUS=NOHOLD,THRESH=100, *
MSGID=SACOV, * [6]
DESCR='Print Function (Printer PRT1)'

DSLFNT NAME=L1RGPAU,QUEUE=YES,THRESH=30,NEXT=L1ERROR, * [7]
DESCR='Urgent Ready Queue of GPA for Sending to SWIFT'

DSLFNT NAME=L1RFINU,QUEUE=YES,THRESH=30,NEXT=L1ERROR, * [8]
DESCR='Urgent Ready Queue of FIN for Sending to SWIFT'

DSLFNT NAME=L1RFINN,QUEUE=YES,THRESH=30,NEXT=L1ERROR, *
DESCR='Normal Ready Queue of FIN for Sending to SWIFT'

DSLFNT NAME=L1ACK,QUEUE=YES,THRESH=100,MSGID=SACOV, * [9]
KEY1=(SW20,16),KEY2=(SWBHSN,6),PRINT=L1PR0, *
DESCR='Positive Acknowledgment Queue'

DSLFNT NAME=L1ERROR,QUEUE=YES,DE=NO,THRESH=100, * [10]
NEXT=L1PR0,NOPR=YES, *
DESCR='Routing Errors from Ready Queues'

DSLFNT NAME=L1FREE,QUEUE=YES,THRESH=100,PROT=YES,NEXT=L1PR1, * [11]
NOPR=YES,PRFORM=(,4),PRINT=L1PR1, *
DESCR='Free Format Queue'

DSLFNT NAME=L1PR1,QUEUE=YES,LTERM=PRT1,TRAN=DSLH, * [12]
PRFORM=(E,3),STATUS=NOHOLD,THRESH=100, *
DESCR='Print Function (System Msg, Free Format Msg)'

DSLFNT NAME=L1AO0,QUEUE=YES,THRESH=100,SPCMND=(AUT), * [13]
KEY1=(SW20,16),KEY2=(SWBHSN,6),ROUTE=DWSL1AO0, *
PROT=YES,PRINT=L1PR1, *
DESCR='Authentication Output Queue'

DSLFNT NAME=L1DO0,QUEUE=YES,THRESH=100,PROT=YES, * [14]
KEY1=(SWBHSN,6),NEXT=L1DO0,SPCMND=ROU,PRINT=L1PR1, *
ROUTE=DWSL1DO0, *
DESCR='Distribution of Output Messages'

DSLFNT NAME=L1SDI,QUEUE=YES,THRESH=100,NEXT=L1AI0, * [15]
DESCR='Sequential Data Input'

DSLFNT NAME=L1SDIES,QUEUE=YES,THRESH=100,NEXT=L1AI0, * [16]
ROUTE=DWSL1ES, *
DESCR='SDI EDIFACT-SWIFT Conversion'

DSLFNT NAME=L1SDO,QUEUE=YES,THRESH=100,NEXT=L1PR1, * [17]
DESCR='Sequential Data Output'

DSLFNT NAME=L1SDOSE,QUEUE=YES,THRESH=100,NEXT=L1DO0, * [18]
ROUTE=DWSL1SE, *
KEY1=(SW21,16),KEY2=(SW27,3), *
DESCR='SDO SWIFT-EDIFACT Conversion'

Figure 4. Function Table Entries for SWIFT Link First Example (Part 1 of 2)

Chapter 1. The MERVA ESA Applications 11

Notes:

[1] The function L1DE0 is defined for creating input messages by data entry
(DE=YES). It has a queue with a threshold of 50 elements (THRESH=50),
which means that an operator message is issued when the 50th message is
put into the queue. Messages can be retrieved from the queue of this
function using the transaction reference number as a key with a length of
up to 16 (KEY1=(SW20,16)). Conditional address expansion is specified and
both private and common nicknames are accepted. Completed messages
are routed to the authorization function L1AI0 (NEXT=L1AI0). The print
queue L1PR0 is assigned to allow for hardcopy printing in this function
(PRINT=L1PR0).

Note: Data entry in NOPROMPT mode is not allowed; only the display of
data is supported (default of the NOPR parameter).

[2] The descriptive name is coded for all functions (DESCR parameter). This
descriptive name is used in the functions selection panel when the menu of
the functions available to a user is shown.

[3] The function L1AI0 is defined for visual check and authorization. It has a
queue with a threshold of 50 elements (THRESH=50). All fields are
protected (PROT=YES) and the creating of new messages by data entry is
not allowed (DE=NO). Expansion conditions are as for L1DE0 and
messages can be retrieved using the same key. The user command ok
(SPCMND=OK) is available to show whether the message is correct. The
routing table DWSL1AI0 determines where the message is to be routed
(ROUTE=DWSL1AI0). The function L1ERROR is specified as next function
(NEXT=L1ERROR) if the evaluation of the routing table resulted in an
error.

[4] The function L1VE0 is defined to visually verify or correct messages that
have not been:
v Authorized (ok no)
v Sent to SWIFT because they contain an error
v Acknowledged by SWIFT

The fields are not protected (PROT=NO), and full NOPROMPT mode for
correction is specified (NOPR=YES). Messages can be retrieved using one
of two keys, the transaction reference number (SW20) and the input

DSLFNT NAME=L1SDY,QUEUE=YES,THRESH=100, * [19]
DESCR='Output to a System Printer'

DSLFNT NAME=L1CESI,QUEUE=YES,THRESH=100,NEXT=L1VE0, * [20]
TRAN=DCES,STATUS=NOHOLD,INTQUE=L1CES, *
DESCR='Transaction EDIFACT-SWIFT Conversion Input Queue'

DSLFNT NAME=L1CES,QUEUE=YES,THRESH=100,NEXT=L1VE0, * [21]
ROUTE=DWSL1ES, *
DESCR='Trans. EDIFACT-SWIFT Conversion Intermediate Queu*
e'

DSLFNT NAME=L1CSE,QUEUE=YES,THRESH=100,NEXT=L1DO0, * [22]
ROUTE=DWSL1SE, *
KEY1=(SW21,16),KEY2=(SW27,3), *
TRAN=DCSE,STATUS=NOHOLD, *
DESCR='Transaction SWIFT-EDIFACT Conversion Input Queue'

DSLFNT NAME=L1CSEO,QUEUE=YES,THRESH=100,NEXT=L1DO0, * [23]
DESCR='Transaction SWIFT-EDIFACT Conversion Output Queue*
'

Figure 4. Function Table Entries for SWIFT Link First Example (Part 2 of 2)

12 Customization Guide

sequence number from the message header (SWBHSN). The mode of the
address expansion is as in L1DE0. The function L1PR0 is specified for
hardcopy printing (PRINT=L1PR0). Completed messages are routed to
function L1AI0 (NEXT=L1AI0).

Note: Unconditional address expansion is specified for NOPROMPT mode
to ensure that address fields possibly altered in NOPROMPT mode
are automatically corrected by address file expansion.

[5] The hardcopy printer function L1PR0 (TRAN=DSLH) is assigned to the
printer terminal PRT1. The print queue is initially set into the NOHOLD
status (printed automatically when the message is written to the print
queue) and printed in the “blank line and empty field compression” format
(PRFORM=(E,3). The queue has a threshold of 100 elements
(THRESH=100). Acknowledgments for General Purpose Application
messages are routed into this queue by routing module DWSL1IN.

Note: The logical terminal printer PRT1 is defined in the MERVA ESA
terminal feature definition table DSLTFDT.

[6] The parameter MSGID=SACOV specifies to print the SWIFT
acknowledgment information in a readable form on a separate print page
if the MSGACK field in the MERVA ESA TOF contains the system
acknowledgment (ISN ACK, APDU 21).

[7] One ready queue, L1RGPAU, is specified for sending General Purpose
Application messages to the SWIFT network.

[8] Two functions (ready queues) are specified for sending financial messages
to the SWIFT network, L1RFINU for urgent priority messages and
L1RFINN for normal priority messages. Both have a threshold of 30
elements. The NEXT= parameter specifies that the messages are routed to
L1ERROR when the routing table DWSL1IN used by DWSDGPA results in
an error, or when a user processes the messages of L1RFINN or L1RFINU
and uses the eom command. This should not be done under normal
circumstances so that it does not interfere with the processing of
DWSDGPA.

Note: The names of the ready queues must also be defined in the SWIFT
Link logical terminal table DWSLTT for the appropriate master
logical terminal for processing by DWSDGPA. See also Figure 44 on
page 135.

[9] The function L1ACK is specified for financial messages positively
acknowledged by SWIFT.

Messages can be retrieved using the same keys as in L1VE0, and are
printed using the hardcopy print function L1PR0. The parameter
MSGID=SACOV specifies, as for the function L1PR0, to display the SWIFT
acknowledgment information in a readable form on a separate page.

[10] The function L1ERROR is specified for all kinds of errors arising from
message routing. The messages can be printed using function L1PR0.

[11] The function L1FREE is specified for output messages with severe format
errors, such as unknown message type. All fields are protected
(PROT=YES). The message is initially displayed in NOPROMPT mode
(PRFORM=(,4)). Completed messages are routed to the print function
L1PR1.

Chapter 1. The MERVA ESA Applications 13

Note: Full NOPROMPT mode is required, although editing of data is not
available in this function. PROT=NO and NOPR=YES can be used to
correct the message, but then the NEXT parameter must specify not
a hardcopy function but a function for further processing of the
corrected message.

[12] The function L1PR1 is specified for a hardcopy printer with terminal name
PRT1, and the print format is as for function L1PR0.

[13] The function L1AO0 is defined for manual authentication of output
messages with authentication errors. Messages can be retrieved using one
of two keys, the transaction reference number (SW20) or the output
sequence number from the message header (SWBHSN). The user command
authent (SPCMND=(AUT)) is allowed to authenticate the message. If the
eom command is used, the completed messages are routed by the routing
table DWSL1AO0.

[14] The function L1DO0 is defined for distributing output financial messages
with formal errors. Messages can be retrieved using the output sequence
number from the message header (KEY2=(SWBHSN,6). The user command
route is allowed to route the message. The routing table DWSL1DO0 is
used to restrict the functions that can be entered with the route command.
The queue names L1SDO and L1PR1 are allowed as routing target
functions. The NEXT parameter is used in case of routing errors. If the
eom command is used the completed messages are routed back to the
same function L1DO0.

[15] The function L1SDI is defined for sequential input of messages (batch). The
messages are routed to the authorization input function L1AI0 (NEXT
parameter).

[16] The function L1SDIES is defined for sequential input of EDIFACT
messages for conversion to the SWIFT message types 105 and 106. The
routing table DWSL1ES is used to route correct messages to the ready
queues L1RFINU or L1RFINN and incorrect messages to the correction
function L1VE0.

[17] The function L1SDO is defined for sequential output of messages (batch).
Messages that cannot be formatted for the sequential output file are routed
to the print function L1PR1 (NEXT parameter).

[18] The function L1SDOSE is defined for sequential output of SWIFT message
types 105 and 106 for conversion to the EDIFACT messages. The keys
definitions allow for checking the availability of all message types 105 or
106 that are needed to create the complete EDIFACT message using the
MERVA ESA queue list. The routing table DWSL1SE is used to route
incorrect messages to the function L1DO0.

[19] The function L1SDY is defined for printing messages on a system printer
(batch). No routing is possible during processing of DSLSDY.

[20] The function L1CESI is defined for transaction input of EDIFACT messages
for conversion to the SWIFT message types 105 and 106. The transaction
name DCES is defined. The intermediate queue L1CES (INTQUE
parameter) is used to ensure always for the complete set of message types
105 or 106 resulting from one EDIFACT message. The message types 105
and 106 are written to the intermediate queue, incorrect EDIFACT
messages are routed to the correction function L1VE0 (NEXT parameter).

[21] The function L1CES is used as intermediate queue for transaction input of
EDIFACT messages for conversion to the SWIFT message types 105 and

14 Customization Guide

106. The intermediate queue is specified with the parameter INTQUE in
the definition of the input queue L1CESI. The routing table DWSL1ES is
used as in the function L1SDIES.

[22] The function L1CSE is defined for conversion of the SWIFT message types
105 and 106 into the EDIFACT messages using a transaction program. The
transaction name DCSE is defined. The keys definitions allow for checking
the availability of all message types 105 or 106 that are needed to create
the complete EDIFACT message using the MERVA ESA queue list. The
routing table DWSL1SE is used to route the EDIFACT messages to the
function L1CSEO, and the incorrect messages to the function L1DO0.

[23] The function L1CSEO is defined for storing the EDIFACT messages that
result from the conversion of the SWIFT message types 105 and 106 in the
function L1CSE.

Routing Logic of Example 1: Figure 5 shows the data flow of SWIFT input
messages.

Figure 5. Data Flow of SWIFT Input Messages, Example 1

Chapter 1. The MERVA ESA Applications 15

Data Flow:

1. In the data entry function L1DE0 the data entry clerk types in the data (from a
form sheet). In this function all fields are unprotected. When the message is
complete, the eom command is used to route the message to the Authorization
queue L1AI0 following the specification of the NEXT parameter.

2. In the Authorization function L1AI0 the message is protected and can only be
checked visually. In this function the special command ok is used to show
whether the result of this check is positive or not.
If the Authorization is not given (ok no), the message is routed to the
verification queue L1VE0 (logic of the routing table DWSL1AI0).

3. In the verification function L1VE0 the message is not protected. Here the
message can be corrected and is routed to the authorization queue L1AI0
(NEXT parameter of L1VE0).

4. If the authorization is given (ok yes), the message is routed to L1RFINN or
L1RFINU depending on the message priority (logic of the routing table
DWSL1AI0):

N Normal priority for L1RFINN

U Urgent priority for L1RFINU

S System priority for L1RFINU
5. The message is selected for sending to the SWIFT network. Before sending,

DWSDGPA checks the following:
v The message is a SWIFT input message.
v The sending logical terminal in the message header is the same as the master

logical terminal that owns the ready queue from which the message was
read.

If an error is found, an appropriate error indication is added to the message,
and the routing table DWSL1IN routes the message to the verification queue
L1VE0. If everything is OK, the message is sent to the SWIFT network. SWIFT
returns an APDU Id 21. The text block contains the field 451 which is either ‘0’
(positive acknowledgment) or ‘1’ (negative acknowledgment).

6. The routing table DWSL1IN routes the message either to the acknowledgment
queue L1ACK or if in error (NAK) to the verification queue L1VE0. The ACK
or NAK information (APDU Id 21) will be added to the message in field
MSGACK. Positive acknowledgment messages for the General Purpose
Application are routed directly to the print function L1PR0.
If routing is not successful, the message is routed to the function L1ERROR.
This is caused by either the NEXT parameter of L1RFINN and L1RFINU or in
the routing table DWSL1IN by the TARGET parameter of the DSLROUTE
TYPE=FINAL statement.

Note: The NEXT parameter in the function table overrides the specification of
the DSLROUTE TYPE=FINAL statement.

7. The acknowledgment queue L1ACK can be processed by:
v A MERVA ESA user who can use the hco command to print the message

online via the printer function L1PR0 (printer terminal PRT1)
v DSLSDO, which creates a sequential data set of the messages
v DSLSDY, which prints the messages on a system printer
v A user-written application program

16 Customization Guide

Figure 6 shows the data flow of SWIFT output messages.

Data Flow:

1. The routing table DWSL1OUT is used to determine the target queues for
messages arriving from SWIFT.
The MERVA ESA TOF field DSLLFBUF holds a message when the message
cannot be transformed to the internal TOF format. In this example the message
is sent to the free format queue L1FREE. There it can be printed by L1PR1
(printer terminal PRT1).

2. System messages are routed to the hardcopy printer function L1PR1 with the
associated printer terminal address PRT1.

3. The result of the authentication must be checked.
In this example only those messages are accepted where either no
authentication is needed or the authentication was successful with the primary
key. These are indicated by the diagnostic messages DWS766 and DWS765.
Messages with authentication errors are routed to the authentication output
queue L1AO0.

Figure 6. Data Flow of SWIFT Output Messages, Example 1

Chapter 1. The MERVA ESA Applications 17

In this function the command authent is allowed for manual authentication.
The routing table DWSL1AO0 checks the new status of the message. If the
message still contains an authentication error it is routed to the printer function
L1PR1. Otherwise it is routed to the sequential data-set-output function L1SDO.
Authentication errors can appear only in financial messages.

4. If the message has no authentication error the message is checked for formal
correctness as defined by SWIFT.
The field MSGTRERR containing a value of 0000 means that the message is
formally correct. Incorrect messages are routed to the distribution/output
function L1DO0 from where it can be routed by the special command route.
Delivery notifications and delivery reports from SWIFT are also routed to
function L1DO0 for distribution.

5. Correct messages are routed to the sequential data output function L1SDO from
where they are processed by the MERVA ESA program DSLSDO. When during
the processing of DSLSDO a message cannot be formatted for the sequential
output file, it is routed to the hardcopy function L1PR1 (printer terminal PRT1).

6. The positive or negative acknowledgments for LOGIN, SELECT, ABORT, and
QUIT are routed directly to the hardcopy function L1PR0 where they are
printed in sequence with the originating messages.

Example 2: The second example uses retype verification and more sophisticated
routing than Example 1. It is similar to the first example, but with the following
modifications:
v The functions for the SWIFT-EDIFACT conversion are not available.
v A forms queue L2FORMS is added to ease the data entry of messages that

contain similar texts.
v A retyping function L2RE0 for the SWIFT field 32 is added.
v A second authorization L2AI2 for amounts greater than 10000 is added.

All function names in this example start with the characters L2, and refer to the
second master logical terminal in DWSLTT. It uses the following routing tables:

DWSL2DE0 Routing after data entry (L2DE0)

DWSL2RE0 Routing after retype verification (L2RE0)

DWSL2VE0 Routing after visual verification (L2VE0)

DWSL2AI0 Routing after authorization input (L2AI0)

DWSL2AO0 Routing after authentication output (L2AO0)

DWSL2DO0 Routing after distribution output (L2DO0)

DWSL2IN Routing of input messages in DWSDGPA (from ready queues)

DWSL2OUT Routing of output messages in DWSDGPA (from SWIFT)

This example uses the second master logical terminal defined in the SWIFT Link
logical terminal table (DWSLTT). A synonym logical terminal is defined for this
master logical terminal, and SWIFT output messages are routed accordingly.
Figure 7 shows the SWIFT Link function table entries for the second example.

18 Customization Guide

Function Table Entries for Example 2:

DSLFNT NAME=L2DE0,QUEUE=YES,DE=YES,NEXT=L2VE0,KEY1=(SW20,16), * [1]
THRESH=50,EXPAND=(COND,COND),NOPR=YES,COPY=L2FORMS, *
ROUTE=DWSL2DE0,EXPNAM=(PRIVATE,COMMON),PRINT=L2PR0, *
DESCR='Data Entry'

DSLFNT NAME=L2FORMS,QUEUE=YES,DE=YES,KEY1=(SW20,16), * [2]
NEXT=L2FORMS,NOPR=YES,PRINT=L2PR0,SPCMND=DEL,CHECK=NO, *
DESCR='Data Entry of Forms'

DSLFNT NAME=L2RE0,QUEUE=YES,DE=NO,NEXT=L2VE0,KEY1=(SW20,16), * [3]
THRESH=50,ROUTE=DWSL2RE0,RETYPE=YES, *
EXPAND=(COND,COND),SPCMND=(OK),NOPR=NO, *
EXPNAM=(PRIVATE,COMMON),PRINT=L2PR0, *
DESCR='Retype Verification'

DSLFNT NAME=L2VE0,QUEUE=YES,NEXT=L2VE0,PROT=NO,THRESH=20, * [4]
KEY1=(SW20,16),KEY2=(SWBHSN,6),PRINT=L2PR0, *
EXPAND=(COND,UNCOND),NOPR=YES, *
ROUTE=DWSL2VE0,EXPNAM=(PRIVATE,COMMON), *
DESCR='Visual Verification and Correction'

DSLFNT NAME=L2AI0,QUEUE=YES,DE=NO,NEXT=L2ERROR,KEY1=(SW20,16),* [5]
ROUTE=DWSL2AI0,SPCMND=(OK),THRESH=50,PROT=YES, *
PRINT=L2PR0, *
DESCR='First Authorization of Input Messages'

DSLFNT NAME=L2AI2,QUEUE=YES,DE=NO,NEXT=L2ERROR,KEY1=(SW20,16),* [6]
ROUTE=DWSL2AI0,SPCMND=(OK),THRESH=50,PROT=YES, *
PRINT=L2PR0, *
DESCR='Second Authorization of Input Messages'

DSLFNT NAME=L2PR0,QUEUE=YES,LTERM=PRT1,TRAN=DSLH, *
PRFORM=(E,3),STATUS=NOHOLD,THRESH=100, *
DESCR='Print Function (Printer PRT1)'

DSLFNT NAME=L2RGPAU,QUEUE=YES,THRESH=30,NEXT=L2ERROR, * [7]
DESCR='Urgent Ready Queue of GPA for Sending to SWIFT'

DSLFNT NAME=L2RFINU,QUEUE=YES,THRESH=30,NEXT=L2ERROR, *
DESCR='Urgent Ready Queue of FIN for Sending to SWIFT'

DSLFNT NAME=L2RFINN,QUEUE=YES,THRESH=30,NEXT=L2ERROR, *
DESCR='Normal Ready Queue of FIN for Sending to SWIFT'

DSLFNT NAME=L2ACK,QUEUE=YES,THRESH=100,
KEY1=(SW20,16),KEY2=(SWBHSN,6),PRINT=L2PR0, *
MSGID=SACOV, *
DESCR='Positive Acknowledgment Queue'

DSLFNT NAME=L2ERROR,QUEUE=YES,DE=NO,THRESH=100, *
NEXT=L2PR0,NOPR=YES,PRINT=L2PR0, *
DESCR='Routing Errors from Ready Queues'

DSLFNT NAME=L2FREE,QUEUE=YES,THRESH=100,PROT=YES,NEXT=L2PR1, * [8]
NOPR=YES,PRFORM=(,4),PRINT=L2PR1, *
DESCR='Free Format Queue'

DSLFNT NAME=L2PR1,QUEUE=YES,LTERM=PRT1,TRAN=DSLH, * [9]
PRFORM=(E,3),STATUS=NOHOLD,THRESH=100, *
MSGID=SACOV, *
DESCR='Print Function (System Msg, Free Format Msg)'

Figure 7. Function Table Entries for SWIFT Link Second Example (Part 1 of 2)

Chapter 1. The MERVA ESA Applications 19

Notes:

[1] The function L2DE0 is similar to the function L1DE0 of the first example
except that the ROUTE parameter is specified. The routing module
DWSL2DE0 checks if a message has the retype field 32. The COPY
parameter allows you to use the copy command to copy forms from the
forms queue L2FORMS.

Note: All functions specify the DESCR parameter for the function selection
panel.

[2] The function L2FORMS is used to create partly filled messages that are
used like forms (see function L2DE0). The KEY1 parameter allows to get
the forms with a key. The SPCMND parameter allows to delete forms that
are no longer needed. CHECK=NO prevents checking during the eom
command, as the form is most likely not a complete message.

[3] The function L2RE0 is specified to allow for retype verification
(RETYPE=YES). NOPROMPT mode is not available. The PROT parameter
is not specified as RETYPE=YES implies that all non-retype fields are
protected, and the fields that must be retyped (the SWIFT field 32 in the
example) is shown empty and must be filled in. The special command ok
is specified (SPCMND=(OK)). The routing table specified with
ROUTE=DWSL2RE0 checks for retype errors and the ok command.

[4] The function L2VE0 is similar to the function L1VE0 of the first example
except that the ROUTE parameter is specified. The routing module
DWSL2VE0 checks if a message has the retype field 32. As well as the

DSLFNT NAME=L2AO0,QUEUE=YES,THRESH=100,SPCMND=AUT, *
KEY1=(SW20,16),KEY2=(SWBHSN,6),ROUTE=DWSL2AO0, *
PROT=YES,PRINT=L2PR1, *
DESCR='Authentication Output Queue'

DSLFNT NAME=L2DO0,QUEUE=YES,THRESH=100,PROT=YES, * [10]
KEY1=(SW20,16),KEY2=(SWBHSN,6),NEXT=L2DO0,SPCMND=ROU, *
PRINT=L2PR1,ROUTE=DWSL2DO0, *
DESCR='Distribution of Output Messages'

DSLFNT NAME=L2PR1S,QUEUE=YES,LTERM=PRT1,TRAN=DSLH, * [11]
PRFORM=(E,3),STATUS=NOHOLD,THRESH=100, *
DESCR='Print Function (System Msg, Free Format Msg)'

DSLFNT NAME=L2AO0S,QUEUE=YES,THRESH=100,SPCMND=AUT, *
KEY1=(SW20,16),KEY2=(SWBHSN,6),ROUTE=DWSL2AO0, *
PROT=YES,PRINT=L2PR1S, *
DESCR='Authentication Output Queue'

DSLFNT NAME=L2DO0S,QUEUE=YES,THRESH=100,PROT=YES, *
KEY1=(SW20,16),KEY2=(SWBHSN,6),NEXT=L2DO0S,SPCMND=ROU, *
PRINT=L2PR1S,ROUTE=DWSL2DO0, *
DESCR='Distribution Output'

DSLFNT NAME=L2SDI,QUEUE=YES, * [12]
NEXT=L2AI2, *
DESCR='Sequential Data Input'

DSLFNT NAME=L2SDO,QUEUE=YES,THRESH=100, *
NEXT=L2PR1, FOR MASTER *
DESCR='Sequential Data Output'

DSLFNT NAME=L2SDOS,QUEUE=YES,THRESH=100, * [13]
NEXT=L2PR1S, FOR SYNONYM *
DESCR='Sequential Data Output'

DSLFNT NAME=L2SDY,QUEUE=YES,THRESH=100, MASTER *
DESCR='Output to a System Printer'

DSLFNT NAME=L2SDYS,QUEUE=YES,THRESH=100, SYNONYM *
DESCR='Output to a System Printer'

Figure 7. Function Table Entries for SWIFT Link Second Example (Part 2 of 2)

20 Customization Guide

messages indicated in the first example for L1VE0, L2VE0 also receives the
messages that after processing in L2RE0 have retype errors or the ok no
indication.

[5] The function L2AI0 is similar to the function L1AI0 of the first example.
The routing table DWSL2AI0 not only checks for the message priority but
also for the currency and amount subfields in the SWIFT field 32. If the
currency is 'USD' and the amount is found and is greater than 10000, the
message is routed to a second authorization function L2AI2.

[6] The function L2AI2 authorizes the messages that contain a financial
transaction with currency 'USD' and an amount greater than 10000. The
same routing module DWSL2AI0 is used as in L2AI0 (ROUTE=DWSL2AI0)
which shows how to find out the last processing function to decide if the
message can now be routed to one of the ready queues L2RFINU and
L2RFINN.

[7] The functions L2RGPAU, L2RFINU, L2RFINN, L2ACK, and L2ERROR are
similar to the functions L1RGPAU, L1RFINU, L1RFINN, L1ACK, and
L1ERROR of the first example. All the queues used for processing SWIFT
input messages, especially the ready queues L2RFINU and L2RFINN, are
used by both the master logical terminal and the synonym logical terminal.

[8] The function L2FREE is similar to the function L1FREE of the first
example. It is not possible to separate messages in the free format for the
master or synonym logical terminal.

[9] The functions L2PR1, L2AO0, and L2DO0 are similar to the functions
L1PR1, L1AO0, and L1DO0 of the first example. These three functions are
used for SWIFT output messages of the master logical terminal.

[10] The function L2DO0 specifies the routing table ROUTE=DWSL2DO0 that
shows how to not check the function parameter of the special command
route (SPCMND=ROU). Any function specified as target in the command
route is accepted.

[11] The functions L2PR1S, L2AO0S, and L2DO0S are used for SWIFT output
messages of the synonym logical terminal, and they are similar to the
functions L2PR1, L2AO0, and L2DO0 of the master logical terminal.

[12] The function L2SDI is specified for sequential input data processing
(Batch). The messages are routed to the second authorization function
L2AI2 (NEXT parameter). The THRESH parameter is not specified and
defaulted to zero, that is the threshold notification is not done.

[13] The functions L2SDO and L2SDOS are defined for sequential output of
messages (batch), and the functions L2SDY and L2SDYS are defined for
output to the system printer. L2SDO and L2SDY are for the master logical
terminal, L2SDOS and L2SDYS are for the synonym logical terminal.

Routing Logic of Example 2: Figure 8 shows the data flow of SWIFT input
messages.

Chapter 1. The MERVA ESA Applications 21

Data Flow:

1. The data entry clerk types in the message (from a form sheet). The routing
table DWSL2DE0 controls the message flow. If the message contains the retype

Figure 8. Data Flow of SWIFT Input Messages, Example 2

22 Customization Guide

field SW32 the message is routed to the retype verification function L2RE0,
otherwise the message is routed to the verification function L2VE0.

2. In the retype verification all fields are protected except the following subfields
of the SWIFT field 32 that have to be verified:
v Value date
v Currency code
v Amount

These fields are the three parts (subfields) of field 32. The contents of these
fields entered in L2DE0 are not shown on the screen but must be entered again.
MERVA ESA compares the retype input with the input from L2DE0. If both
inputs match then the user must use the ok command to show if he detected
other errors in the message (ok no) or not (ok yes). If everything is OK, the
message is routed to the first authorization queue L2AI0. If retyping fails or
contains other errors (ok no), the message is routed to the verification function
L2VE0. The routing table DWSL2RE0 controls the message flow.

3. In the verification function L2VE0 the message is not protected. The message
can be corrected in this function, for example, when field 32 was incorrectly
entered in the L2DE0 function. The routing table DWSL2VE0 controls the
message flow. If the message contains the retype field SW32 the message is
again routed to the retype verification function L2RE0, otherwise the message is
routed to the first authorization function L2AI0.

4. In the first authorization function the message is protected and can only be
checked visually. In this function the special command ok is used to show
whether the result of this check is positive or not.
The routing table DWSL2AI0 controls the data flow to the ready queues. If the
authorization is not given (ok no), the message is routed back to the
verification queue L2VE0. If the authorization is given (ok yes), the message is
checked to see whether it came from L2AI0 or L2AI2, as the routing table
DWSL2AI0 is used in both L2AI0 and L2AI2.
From L2AI0: The SWIFT field 32 is checked in the first occurrence regardless of
the message type. If the currency is 'USD' and the amount is greater than 10
000, the message is routed to the second authorization queue. Otherwise the
message is routed to one of the ready queues L2RFINU or L2RFINN depending
on the message priority.

Note: This is just one example of how to make such tests and should be
adapted to meet the requirements of your organization.

From L2AI2: The message is routed to one of the ready queues L2RGPAU,
L2RFINU, or L2RFINN depending on the application and message priority.

The message priority is evaluated as follows:

N Normal priority for L2RFINN

U Urgent priority for L2RFINU

S System priority for L2RFINU
5. The message is selected for sending to the SWIFT network. Before sending,

DWSDGPA checks if the message is a SWIFT input message, and if the sending
logical terminal in the message header is the same as the master logical
terminal that owns the ready queue from which the message was read, or if it
is the same as the synonym of this master logical terminal as defined in the
logical terminal table (DWSLTT). If an error is found, an appropriate error
indication is added to the message, and the routing table DWSL2IN routes the

Chapter 1. The MERVA ESA Applications 23

message to the verification queue L2VE0. If everything is OK, the message is
sent to the SWIFT network. SWIFT sends back an APDU Id 21. The text block
contains the field 451 which is either '0' (positive acknowledgment) or '1'
(negative acknowledgment).

6. The routing table DWSL2IN routes the message either to the acknowledgment
queue L2ACK or if in error (NAK) to the verification queue L2VE0. The ACK
or NAK information (APDU Id 21) is added to the message in field MSGACK.
Positive acknowledgment messages for the General Purpose Application are
routed directly to the print function L2PR0.
If routing is not successful, the message is routed to the function L2ERROR.
This is caused by either the NEXT parameter of L2RFINN and L2RFINU or in
the routing table DWSL2IN by the TARGET parameter of the DSLROUTE
TYPE=FINAL statement.

Note: The NEXT parameter in the function table overrides the specification of
the DSLROUTE TYPE=FINAL statement.

7. The acknowledgment queue L2ACK can be processed by:
v A MERVA ESA user, who can use the hco command to print the message

online via the printer function L2PR0 (printer terminal PRT1)
v DSLSDO, which creates a sequential data set of the messages
v DSLSDY, which prints the messages on a system printer
v A user-written application program

24 Customization Guide

Figure 9 shows the data flow of SWIFT output messages.

Data Flow:

Note: The function names with the suffix 'S' refer to the synonym logical terminal
(see “Function Table Entries for Example 2” on page 19).

1. The routing table DWSL2OUT is used to determine the target queues for
messages arriving from SWIFT.
The MERVA ESA TOF field DSLLFBUF holds a message when the message
cannot be transformed to the internal TOF format. In this example the message
is routed to the free format queue L2FREE. There it can be printed by L2PR1
(printer terminal PRT1).

2. System messages of the master logical terminal are routed to the hardcopy
printer function L2PR1 with the associated printer terminal address PRT1.
System messages of the synonym logical terminal are routed to the hardcopy
printer function L2PR1S with the associated printer terminal address PRT1.

3. The result of the authentication must be checked at this point.

Figure 9. Data Flow of SWIFT Output Messages, Example 2

Chapter 1. The MERVA ESA Applications 25

In this example only those messages are accepted where either no
authentication is needed or this authentication was successful with the primary
key. This is indicated by the diagnostic messages DWS766 and DWS765.
Master logical terminal: Messages with authentication errors are routed to the
authorization output L2AO0.
Synonym logical terminal: Messages with authentication errors are routed to
the authorization output L2AO0S.
In these functions the command authent is allowed for manual authentication.
The routing table DWSL2AO0 checks the new status of the message. If the
message still contains an authentication error it is routed to the printer function
L2PR1 of the master or L2PR1S of the synonym logical terminal, respectively.
Otherwise it is routed to the sequential data set output function L2SDO or
L2SDOS, respectively.
Authentication errors can appear only in financial messages.

4. If the message has no authentication error the message is checked for formal
correctness as defined by SWIFT.
The field MSGTRERR containing a value of 0000 means that the message is
formally correct. Incorrect messages are routed to the distribution/output
functions L2DO0 or L2DO0S from which it can be routed by the special
command route. Delivery notifications and delivery reports from SWIFT are
also routed to functions L1DO0 or L1DO0S for distribution.

5. Correct messages are routed to the sequential data output functions L2SDO or
L2SDOS from where they are processed by the MERVA ESA program DSLSDO.
When during the processing of DSLSDO a message cannot be formatted for the
sequential output file, it is routed to the hardcopy function L2PR1 (printer
terminal PRT1) from the master logical terminal function L2SDO, or to the
hardcopy function L2PR1S (printer terminal PRT1) from the synonym logical
terminal function L2SDOS.

6. The positive or negative acknowledgments for LOGIN, SELECT, ABORT, and
QUIT are routed directly to the hardcopy function L2PR0 where they are
printed in sequence with the originating messages.

Example 3: This example has the same functions for processing of SWIFT input
messages as Example 2, except that it uses the checking and expansion transaction
DSLCXT to receive messages from SWIFT, and it evaluates branch codes and
synonym logical terminals during the routing process. The message flow is
identical to that of Example 2.

For processing of SWIFT output messages, the third example uses the
MERVA ESA checking and expansion transaction DSLCXT for checking of
messages and expansion of SWIFT addresses.

This example uses the third master logical terminal defined in the SWIFT Link
logical terminal table (DWSLTT). Two synonym logical terminals are defined for
this master logical terminal. Besides these definitions, three branch codes are used
with the master logical terminal. The SWIFT output messages are routed
depending on their error status and the receiving logical terminals and branch
codes.

Figure 10 shows the SWIFT Link function table entries for the third example.

All function names in this example start with the characters L3, and refer to the
third master logical terminal and its synonyms in DWSLTT. The following routing
tables are used in this example:

26 Customization Guide

DWSL3DE0 Routing after data entry (L3DE0)

DWSL3RE0 Routing after retype verification (L3RE0)

DWSL3VE0 Routing after visual verification (L3VE0)

DWSL3AI0 Routing after authorization input (L3AI0)

DWSL3CXT Routing after DSLCXT processing (L3CXT)

DWSL3DO0 Routing after distribution output (L3DO0)

DWSL3AO0 Routing after authentication output (L3AO0)

DWSL3GPI Routing of input messages for the general application in
DWSDGPA (from ready queues)

DWSL3GPO Routing of output messages for the general application in
DWSDGPA (from SWIFT network)

DWSL3FII Routing of input messages for the financial application in
DWSDGPA (from ready queues)

DWSL3FIO Routing of output messages for the financial application in
DWSDGPA (from SWIFT network)

Chapter 1. The MERVA ESA Applications 27

Function Table Entries for Example 3:

DSLFNT NAME=L3DE0,QUEUE=YES,DE=YES,NEXT=L3PR0,KEY1=(SW20,16), * [1]
THRESH=50,EXPAND=(COND,UNCOND),ROUTE=DWSL3DE0, *
EXPNAM=(PRIVATE,COMMON),PRINT=L3PR0, *
DESCR='Data Entry with Checking and Expansion'

DSLFNT NAME=L3RE0,QUEUE=YES,DE=NO,NEXT=L3ERROR,KEY1=(SW20,16),*
THRESH=50,ROUTE=DWSL3RE0,RETYPE=YES,SPCMND=(OK),NOPR=NO,*
EXPAND=(COND,UNCOND),EXPNAM=(PRIVATE,COMMON), *
PRINT=L3PR0, *
DESCR='Retype Verification'

DSLFNT NAME=L3AI0,QUEUE=YES,DE=NO,NEXT=L3ERROR,KEY1=(SW20,16),*
ROUTE=DWSL3AI0,SPCMND=(OK),THRESH=50,PROT=YES, *
EXPAND=(COND,UNCOND),EXPNAM=(PRIVATE,COMMON), *
PRINT=L3PR0, *
DESCR='First Authorization of Input Messages'

DSLFNT NAME=L3AI2,QUEUE=YES,DE=NO,NEXT=L3ERROR,KEY1=(SW20,16),*
ROUTE=DWSL3AI0,SPCMND=(OK),THRESH=50,PROT=YES, *
EXPAND=(COND,UNCOND),EXPNAM=(PRIVATE,COMMON), *
PRINT=L3PR0, *
DESCR='Second Authorization of Input Messages'

DSLFNT NAME=L3VE0,QUEUE=YES,NEXT=L3PR0,PROT=NO,THRESH=20, *
KEY1=(SW20,16),KEY2=(SWBHSN,6),PRINT=L3PR0, *
CHECK=YES,EXPAND=(COND,UNCOND),ROUTE=DWSL3VE0,NOPR=YES, *
EXPNAM=(PRIVATE,COMMON), *
DESCR='Visual Verification and Correction'

DSLFNT NAME=L3PR0,QUEUE=YES,LTERM=PRT1,TRAN=DSLH, *
PRFORM=(E,3),STATUS=NOHOLD,THRESH=100, *
DESCR='Print Function (Printer PRT1)'

DSLFNT NAME=L3RGPAU,QUEUE=YES,THRESH=30,NEXT=L3ERROR, *
DESCR='Urgent Ready Queue of GPA for Sending to SWIFT'

DSLFNT NAME=L3RFINU,QUEUE=YES,THRESH=30,NEXT=L3ERROR, *
DESCR='Urgent Ready Queue of FIN for Sending to SWIFT'

DSLFNT NAME=L3RFINN,QUEUE=YES,THRESH=30,NEXT=L3ERROR, *
DESCR='Normal Ready Queue of FIN for Sending to SWIFT'

DSLFNT NAME=L3ACKF,QUEUE=YES,THRESH=100, * [2]
KEY1=(SW20,16),KEY2=(SWBHSN,6),PRINT=L3PR0, *
DESCR='Positive Acknowledgment Queue of FIN'

DSLFNT NAME=L3ACKG,QUEUE=YES,THRESH=100, * [3]
KEY2=(SWBHSN,6),PRINT=L3PR0, *
DESCR='Positive Acknowledgment Queue of GPA'

DSLFNT NAME=L3ERROR,QUEUE=YES,DE=NO,THRESH=100, *
NEXT=L3PR0,NOPR=YES,PRINT=L3PR0, *
DESCR='Routing Errors from Ready Queues'

DSLFNT NAME=L3FREE,QUEUE=YES,THRESH=100,PROT=YES,NEXT=L3PR1, * [4]
NOPR=YES,PRFORM=(,4),PRINT=L3PR1, *
DESCR='Free Format Queue'

DSLFNT NAME=L3PR1,QUEUE=YES,LTERM=PRT1,TRAN=DSLH, *
PRFORM=(E,3),STATUS=NOHOLD,THRESH=100, *
DESCR='Print Function (Free Format Messages)'

Figure 10. Function Table Entries for SWIFT Link Functions of the Third Routing Example
(Part 1 of 2)

28 Customization Guide

Notes:

[1] The functions L3DE0, L3AI0, L3AI2, L3VE0, L3RE0, L3PR0, L1RGPAU
L3RFINU, L3RFINN, and L3ERROR are similar to the corresponding
functions of the second example for processing of SWIFT input messages
(in the second example, the function names all start with L2).

DSLFNT NAME=L3CXT,QUEUE=YES,THRESH=100,PROT=YES,NEXT=L3PR1, * [5]
ROUTE=DWSL3CXT,TRAN=DSLX,STATUS=NOHOLD,EXPAND=UNCOND, *
CHECK=YES, *
DESCR='Expand Banking Transaction Messages'

DSLFNT NAME=L3DO0,QUEUE=YES,THRESH=100,PROT=YES, * [6]
KEY2=(SWBHSN,6),NEXT=L3DO0,SPCMND=(ROU,OK), *
ROUTE=DWSL3DO0,PRINT=L3PR1, *
KEY1=(SW20,16), *
DESCR='Distribution of Output Messages'

DSLFNT NAME=L3PR1AA,QUEUE=YES,LTERM=PRT1,TRAN=DSLH, * [7]
PRFORM=(E,3),STATUS=NOHOLD,THRESH=100, *
DESCR='Print Function for System Messages'

DSLFNT NAME=L3AO0AA,QUEUE=YES,THRESH=100,SPCMND=AUT, *
KEY2=(SWBHSN,6),ROUTE=DWSL3AO0,PROT=YES,PRINT=L3PR1AA, *
DESCR='Authentication Output Queue'

DSLFNT NAME=L3PR1BB,QUEUE=YES,LTERM=PRT1,TRAN=DSLH, *
PRFORM=(E,3),STATUS=NOHOLD,THRESH=100, *
DESCR='Print Function for System Messages'

DSLFNT NAME=L3AO0BB,QUEUE=YES,THRESH=100,SPCMND=AUT, *
KEY2=(SWBHSN,6),ROUTE=DWSL3AO0,PROT=YES,PRINT=L3PR1BB, *
DESCR='Authentication Output Queue'

DSLFNT NAME=L3PR1CC,QUEUE=YES,LTERM=PRT1,TRAN=DSLH, *
PRFORM=(E,3),STATUS=NOHOLD,THRESH=100, *
DESCR='Print Function for System Messages'

DSLFNT NAME=L3AO0CC,QUEUE=YES,THRESH=100,SPCMND=AUT, *
KEY2=(SWBHSN,6),ROUTE=DWSL3AO0,PROT=YES,PRINT=L3PR1CC, *
DESCR='Authentication Output Queue'

DSLFNT NAME=L3PR1S1,QUEUE=YES,LTERM=PRT1,TRAN=DSLH, * [8]
PRFORM=(E,3),STATUS=NOHOLD,THRESH=100, *
DESCR='Print Function for System Messages'

DSLFNT NAME=L3AO0S1,QUEUE=YES,THRESH=100,SPCMND=AUT, *
KEY2=(SWBHSN,6),ROUTE=DWSL3AO0,PROT=YES,PRINT=L3PR1S1, *
DESCR='Authentication Output Queue'

DSLFNT NAME=L3PR1S2,QUEUE=YES,LTERM=PRT1,TRAN=DSLH, *
PRFORM=(E,3),STATUS=NOHOLD,THRESH=100, *
DESCR='Print Function for System Messages'

DSLFNT NAME=L3AO0S2,QUEUE=YES,THRESH=100,SPCMND=AUT, *
KEY2=(SWBHSN,6),ROUTE=DWSL3AO0,PROT=YES,PRINT=L3PR1S2, *
DESCR='Authentication Output Queue'

DSLFNT NAME=L3SDI,QUEUE=YES,NEXT=L3AI2, * [9]
DESCR='Sequential Data Input'

DSLFNT NAME=L3SDO,QUEUE=YES,THRESH=100,NEXT=L3PR1, * [10]
DESCR='Sequential Data Output'

DSLFNT NAME=L3SDOS1,QUEUE=YES,THRESH=100,NEXT=L3PR1S1, *
DESCR='Sequential Data Output'

DSLFNT NAME=L3SDOS2,QUEUE=YES,THRESH=100,NEXT=L3PR1S2, *
DESCR='Sequential Data Output'

DSLFNT NAME=L3SDY,QUEUE=YES,THRESH=100, *
DESCR='Output to a System Printer'

DSLFNT NAME=L3SDYS1,QUEUE=YES,THRESH=100, *
DESCR='Output to a System Printer'

DSLFNT NAME=L3SDYS2,QUEUE=YES,THRESH=100, *
DESCR='Output to a System Printer'

Figure 10. Function Table Entries for SWIFT Link Functions of the Third Routing Example
(Part 2 of 2)

Chapter 1. The MERVA ESA Applications 29

[2] The function L3ACKF is specified for financial messages positively
acknowledged by SWIFT.

[3] The function L3ACKG is specified for General Purpose Application
messages positively acknowledged by SWIFT.

[4] The functions L3FREE and L3PR1 are used for the same purposes with
SWIFT output messages as the functions L2FREE and L2PR1 of the second
example.

[5] The function L3CXT receives all SWIFT output messages that could be
transformed to the MERVA ESA internal format (TOF). L3CXT is processed
by the MERVA ESA checking and expansion transaction that carries out
message checking and SWIFT address expansion according to the
parameters CHECK=YES and EXPAND=UNCOND, and routes the
messages afterwards using the routing table DWSL3CXT (ROUTE
parameter). When specifying CHECK=NO and EXPAND=NO, DSLCXT
only performs routing.

[6] The function L3DO0 is defined for distributing output financial messages
with formal errors. This function exists only once, that is, there are no
similar functions for the synonym logical terminals and the branches of the
master logical terminal. A user processing this function causes distribution
of the messages to the various logical terminals with appropriate
parameters of the ok or route command that is evaluated by the routing
table DWSL3DO0 (ROUTE parameter).

[7] The functions L3PR1AA, L3PR1BB, L3PR1CC, L3AO0AA, L3AO0BB, and
L3AO0CC are specified for the branches AAA, BBB, and CCC of the
master logical terminal. They are used for the same purposes with SWIFT
output messages as the functions L2PR1 and L2AO0 of the second
example.

[8] The functions L3PR1S1, L3PR1S2, L3AO0S1, and L3AO0S2 are specified for
the synonym logical terminals and are used for the same purposes as the
functions L3PR1xx and L3AO0xx of the branches of the master logical
terminal.

[9] The function L3SDI is defined for sequential input of messages (batch). The
messages are routed to the authorization input function L3AI2 (NEXT
parameter).

[10] The batch functions L3SDO, L3SDOS1, and L3SDOS2 for sequential data
output, and L3SDY, L3SDYS1, and L3SDYS2 for the system printer queues
are specified for the master and the synonym logical terminals and are
similar to the corresponding functions of the second example.

30 Customization Guide

Routing Logic of Example 3: Figure 11 shows the data flow of SWIFT input
messages.

Figure 11. Data Flow of SWIFT Input Messages, Example 3

Chapter 1. The MERVA ESA Applications 31

Data Flow:

1. The data entry clerk types in the message (from a form sheet). The routing
table DWSL3DE0 controls the message flow. If the message contains the retype
field SW32 the message is routed to the retype verification function L3RE0,
otherwise the message is routed to the verification function L3VE0.

2. In the retype verification all fields are protected except the following subfields
of field 32:
v Value date
v Currency code
v Amount

These fields are the three parts (subfields) of the field 32. The contents of these
fields entered in L3DE0 are not shown on the screen but must be entered again.
MERVA ESA compares the retype input with the input from L3DE0. If both
inputs match then the user must use the ok command to show if he detected
other errors in the message (ok no) or not (ok yes). If everything is OK, the
message is routed to the first authorization queue L3AI0. If retyping fails or
contains other errors (ok no), the message is routed to the verification function
L3VE0. The routing table DWSL3RE0 controls the message flow.

3. In the verification function L3VE0 the message is not protected. Here the
message can be corrected. For example, in the case when in L3DE0 field 32 was
incorrectly entered. The routing table DWSL3VE0 controls the message flow. If
the message contains the retype field SW32 the message is again routed to the
retype verification function L3RE0, otherwise the message is routed to the first
authorization function L3AI0.

4. In the first authorization function the message is protected and can only be
checked visually. In this function the special command ok is used to show
whether the result of this check is positive or not.
The routing table DWSL3AI0 controls the data flow to the ready queues. If the
authorization is not given (ok no), the message is routed back to the
verification queue L3VE0. If the authorization is given (ok yes), the message is
checked whether it came from L3AI0 or L3AI2, as the routing table DWSL3AI0
is used in both L3AI0 and L3AI2.
From L3AI0: The SWIFT field 32 is checked in the first occurrence independent
of the message type. If the currency code is USD (United States Dollars) and
the amount is greater than 10 000, the message is routed to the second
authorization queue. Otherwise the message is routed to one of the ready
queues L3RFINU or L3RFINN depending on the message priority.

Note: This currency code and amount is just one example of how to make such
tests and should be adapted to the requirements of the customer's
organization for other currency codes (more than one) and other
amounts.

General Purpose Application messages are routed directly to the ready queue
L3RGPAU.

From L3AI2: The message is routed to one of the ready queues L3RFINU or
L3RFINN depending on the message priority.

The message priority is evaluated as follows:

N Normal priority for L3RFINN

U Urgent priority for L3RFINU

32 Customization Guide

S System priority for L3RFINU
5. The message is selected for sending to the SWIFT network. Before sending,

DWSDGPA checks if the message is a SWIFT input message, and if the sending
logical terminal in the message header is the same as the master logical
terminal that owns the ready queue from which the message was read, or if it
is one of the synonyms of this master logical terminal as defined in the logical
terminal table (DWSLTT).
General Purpose Application messages from the ready queue L3RGPAU are
routed with the routing table DWSL3GPI. Financial messages are routed with
the table DWSL3FII.
If an error is found, an appropriate error indication is added to the message,
and the message is routed to the verification queue L3VE0. If everything is OK,
the message is sent to the SWIFT network. SWIFT sends back an APDU Id 21.
The text block contains the field 451 which is either 0 (positive
acknowledgment) or 1 (negative acknowledgment).

6. For financial messages, the routing table DWSL3FII routes the message either to
the acknowledgment queue L3ACKF or if in error (NAK) to the verification
queue L3VE0. For General Purpose Application messages, the routing table
DWSL3GPI routes the message either to the acknowledgment queue L3ACKG
or if in error (NAK) to the verification queue L3VE0.
The ACK or NAK information is added to the message in field MSGACK.
Positive acknowledgment messages for the General Purpose Application with
an APDU identification (Id) other than 01, for example LOGIN
acknowledgments, are routed directly to the print function L1PR0.
If routing is not successful, the message is routed to the function L3ERROR.
This is caused by the NEXT parameter of L3RGPAU, L3RFINN, and L3RFINU
function. The TARGET parameter of the DSLROUTE TYPE=FINAL statement in
the routing tables DWSL3GPI and DWSL3FII is specified as well, but the NEXT
parameter in the function table overrides the specification of the DSLROUTE
TYPE=FINAL statement.

7. The acknowledgment queues L3ACKF and L3ACKG can be processed by:
v A MERVA ESA user, who can use the hco command to print the message

online via the printer function L3PR0 (printer terminal PRT1)
v DSLSDO, which creates a sequential data set of the messages
v DSLSDY, which prints the messages on a system printer
v A user-written application program

Note: L3ACKG has no KEY1 specification because the field SW20 exists in
financial messages only.

Chapter 1. The MERVA ESA Applications 33

Figure 12 shows the data flow of SWIFT output messages.

Figure 12. Data Flow of SWIFT Output Messages, Example 3

34 Customization Guide

Data Flow:

Note: The function names with the suffixes AA, BB and CC refer to the branches
AAA, BBB, and CCC of the master logical terminal. The function names
with the suffixes S1 and S2 refer to the first and second synonym logical
terminal (see “Function Table Entries for Example 3” on page 28).

1. The routing tables DWSL3FIO and DWSL3GPO are used to determine the
target queues for messages arriving from SWIFT. DWSL3FIO is used for
financial messages and DWSL3GPO is used for General Purpose Application
messages.
The MERVA ESA TOF field DSLLFBUF holds a message when the message
cannot be transformed to the internal TOF format. In this example the message
is routed to the free format queue L3FREE. There it can be printed by L3PR1
(printer terminal PRT1).
System acknowledgments, for example Login ACKs and Quit ACKs, are routed
directly to the hardcopy function L3PR0.
General Purpose Application system messages are routed to the hardcopy
function L3PR1S1 for the first synonym logical terminal, to L3PR1S2 for the
second synonym logical terminal, or to one of the hardcopy functions
L3PR1AA, L3PR1BB, or L3PR1CC according to the branch code.
If a financial message can be mapped into the TOF it is routed to the function
L3CXT. This function is processed by the MERVA ESA checking and expansion
transaction DSLCXT that is started with the transaction code DSLX. The
parameters CHECK and EXPAND specify what DSLCXT does.

2. The routing table DWSL3CXT controls the data flow after expansion.
DWSL3CXT first determines which branch of the master logical terminal or
which synonym logical terminal is to receive the message. If the branch code is
wrong, the message is routed to the function L3DO0 for manual distribution.
The result of the authentication must be checked at this stage.
In this example only those messages are accepted where either no
authentication is needed or this authentication was successful with the primary
key. This is indicated by the diagnostic messages DWS766 and DWS765.
Messages with authentication errors are routed to the functions L3AO0AA,
L3AO0BB, L3AO0CC, L3AO0S1, or L3AO0S1.

3. If the message has no authentication error the message is checked for formal
correctness as defined by SWIFT.
The field MSGTRERR containing a value of 0000 means that the message is
formally correct. Incorrect messages are routed to the distribution/output
function L2DO0 from which it can be routed by the special command route.
Correct system messages are printed by the functions L3PR1AA, L3PR1BB,
L3PR1CC, L3PR1S1, or L3PR1S1, except the message type 021 (retrieved
message) that is routed to L3DO0.
Correct financial messages are routed to the sequential data set output function
L3SDO for all branches of the master logical terminal, or to L3SDOS1 and
L3SDOS2 for the two synonym logical terminals.

4. In the functions L3AO0AA, L3AO0BB, L3AO0CC, L3AO0S1, and L3AO0S1 the
command authent is allowed for manual authentication.
The routing table DWSL3AO0 checks the new status of the message. If the
message still contains an authentication error it is routed to one of the functions
L3PR1AA, L3PR1BB, L3PR1CC, L3PR1S1, or L3PR1S1, according to the branch
code of the master or name of the synonym logical terminal. Otherwise it is

Chapter 1. The MERVA ESA Applications 35

routed to the sequential data set output function L3SDO for all branches of the
master logical terminal or to L3SDOS1 and L3SDOS2 for the two synonym
logical terminals.
Authentication errors can appear only in financial messages.

5. In the function L3DO0 the route and ok commands are allowed for manual
distribution. The routing table DWSL3DO0 checks the parameter of the ok or
route command that must be one of the branch codes of the master logical
terminal (AAA or BBB or CCC) or the suffix of the functions of the two
synonym logical terminals (S1 or S2), or one of the functions L3SDOxx or
L3PR1xx. If the parameter is incorrect, the message is routed to L3DO0, if the
parameter is correct, the messages are routed to the sequential data set output
function L3SDO for all branches of the master logical terminal or to L3SDOS1
and L3SDOS2 for the two synonym logical terminals, or to the print functions
L3PR1xx.

Examples of Function Table Entries for the Telex Link
The Telex Link supplies a sample of message processing functions in the copy code
ENLFNTTC that you can use to create and process telex messages. Some of the
sample functions you can modify; for example, you can define more than one
function for creating telex messages. Some of the functions, however, cannot be
modified (except for the name of the functions), because they are required for
communication on the line between the Telex Link and the Headoffice Telex on a
fault-tolerant system.

In some cases, having more than one function of a processing step is only possible
if there is a field in a telex message that allows you to distinguish between the
telex message, for example, of the sender of an outgoing telex message and the
receiver of an incoming telex message, which may identify different branches
within your organization.

When distributing telex messages using the MERVA ESA command route, it is the
responsibility of the terminal user to distribute telex messages to functions of the
same processing step.

The following functions can be defined more than once for the same processing
step:

TXDE0 Telex Data Entry

TXVE0 Telex Verification SWIFT Messages

TXAI0 Telex Authorization SWIFT Messages

TXTKC Telex Test-Key Calculation

TXTKCERR Telex Test-Key Calculation Error

TXERROR Telex Error Queue

TXACK Telex Positively Acknowledged

TXNAK Telex Negatively Acknowledged

TXNOTX No Telex

TXPR0 Telex Print Outgoing Telexes

TXRCV Telex Received

TXPDR Telex Possible Duplicate Received

36 Customization Guide

TXTKV Telex Test-Key Verification

TXTKVERR Telex Test-Key Verification Errors

TXDISTR Telex Distribute Received

TXINVR Telex Invalid Received

TXPR1 Telex Print Received Telexes

TXSDI Telex Sequential Data Input

TXSDO Telex Sequential Data Output

TXSDY Telex Output to a System Printer

The following Telex Link functions can be defined only once, as they are required
for communication with the Headoffice Telex on a fault-tolerant system. You must
not modify these functions, however, you can modify their names:

TXWAIT Telex Wait for Acknowledgments

TXURG Telex Urgent Ready Queue

TXNRM Telex Normal Ready Queue

TXSTPPDE Telex Possible Duplicate Emitted Queue

TXHCFSND Telex Send to Headoffice Telex on a fault-tolerant system Queue

TXHCFRCV Telex Receive from Headoffice Telex on a fault-tolerant system
Queue

TXSTPLR Telex Last Received Queue

Chapter 1. The MERVA ESA Applications 37

Figure 13 shows the function table definitions of the Telex Link. These functions
are described on the following pages.

DSLFNT NAME=TXDE0,DESCR='Telex Data Entry', * [1]
DE=YES,FRAME=(0TOP,0BOT), *
KEY1=(ENLTXREF,16,1), *
NEXT=TXDE0,PRINT=TXPR0, *
QUEUE=YES,ROUTE=ENLRTDE0,THRESH=100, *
NOPR=YES,MSGID=TCOV,PFKSET=ENLMPF00

DSLFNT NAME=TXVE0,DESCR='Telex Verification SWIFT Messages', * [2]
DE=NO,FRAME=(0TOP,0BOT), *
KEY1=(ENLTXREF,16,1), *
NEXT=TXERROR,ROUTE=ENLRTVE0,PRINT=TXPR0, *
QUEUE=YES,THRESH=20,MSGID=TCOV,NOPR=YES

DSLFNT NAME=TXAI0,DESCR='Telex Authorization SWIFT Messages', *
DE=NO,PROT=YES,FRAME=(0TOP,0BOT), *
KEY1=(ENLTXREF,16,1), *
NEXT=TXVE0,PRINT=TXPR0, *
QUEUE=YES,ROUTE=ENLRTAI0,THRESH=50, *
SPCMND=OK,MSGID=TCOV,NOPR=DISPLAY

DSLFNT NAME=TXTKCA, * [3]
DESCR='Telex Test-Key Calculation Automatic', *
DE=NO,FRAME=(0TOP,ENLTKBOT), *
KEY1=(ENLTXREF,16,1), *
NEXT=TXTKCA,EXPAND=UNCOND, *
TRAN=DSLX,PRFORM=(E,0),PRINT=TXPR0,PROT=YES, *
QUEUE=YES,ROUTE=ENLRTTKC,MSGID=TCOV,THRESH=20

DSLFNT NAME=TXTKC,DESCR='Telex Test-Key Calculation', *
DE=NO,FRAME=(0TOP,ENLTKBOT), *
KEY1=(ENLTXREF,16,1), *
NEXT=TXTKC,PRFORM=(E,0), *
PRINT=TXPR0,PROT=YES, *
QUEUE=YES,ROUTE=ENLRTTKC,MSGID=TCOV,THRESH=20

DSLFNT NAME=TXTKCERR,DESCR='Telex Test-Key Calculation Errors'* [4]
DE=NO,FRAME=(0TOP,ENLTKBOT), *
KEY1=(ENLTXREF,16,1), *
NEXT=TXTKCERR,PRFORM=(E,0),PRINT=TXPR0,PROT=YES, *
QUEUE=YES,ROUTE=ENLRTTKC,MSGID=TCOV,THRESH=10

DSLFNT NAME=TXERROR,DESCR='Telex Error Queue', * [5]
DE=NO,FRAME=(0TOP,0BOT), *
KEY1=(ENLTXREF,16,1), *
KEY2=(ENLXMHDR,8,23), ORIGINAL SESSION/SEQUENCE NUMBER *
NEXT=TXERROR,PRFORM=(E,0),PRINT=TXPR0,PROT=NO, *
QUEUE=YES,SPCMND=(ROU,DEL),ROUTE=ENLRTXXX, *
NOPR=YES,MSGID=TCOV,THRESH=10

DSLFNT NAME=TXWAIT,DESCR='Telex Wait for Acknowledgments', * [6]
DE=NO,FRAME=(0TOP,0BOT), *
KEY1=(ENLTXREF,16,1), *
KEY2=(ENLXMHDR,8,23), ORIGINAL SESSION/SEQUENCE NUMBER *
NEXT=TXWAIT,PRFORM=(E,0),PRINT=TXPR0,PROT=YES, *
QUEUE=YES,NOPR=NO,MSGID=TCOV,THRESH=50

DSLFNT NAME=TXACK,DESCR='Telex Positively Acknowledged', * [7]
DE=NO,FRAME=(0TOP,0BOT), *
KEY1=(ENLTXREF,16,1), *
KEY2=(ENLXMHDR,8,23), ORIGINAL SESSION/SEQUENCE NUMBER *
PRFORM=(E,0),PRINT=TXPR0,PROT=YES, *
QUEUE=YES,NOPR=DISPLAY,MSGID=TCOV,THRESH=100

Figure 13. Example of Function Table Entries for the Telex Link (Part 1 of 3)

38 Customization Guide

DSLFNT NAME=TXNAK,DESCR='Telex Negatively Acknowledged', * [8]
DE=NO,FRAME=(0TOP,0BOT), *
KEY1=(ENLTXREF,16,1), *
KEY2=(ENLXMHDR,8,23), ORIGINAL SESSION/SEQUENCE NUMBER *
PRFORM=(E,0),PRINT=TXPR0, *
SPCMND=(ROU,DEL),ROUTE=ENLRTXXX,PROT=NO, *
QUEUE=YES,NOPR=YES,MSGID=TCOV,THRESH=100

DSLFNT NAME=TXNOTX,DESCR='No Telex', * [9]
DE=NO,FRAME=(0TOP,0BOT), *
NEXT=TXNOTX,PRFORM=(E,0),PRINT=TXPR0, *
QUEUE=YES,SPCMND=(ROU,DEL),ROUTE=ENLRTXXX,MSGID=TCOV, *
THRESH=150

DSLFNT NAME=TXPR0,DESCR='Telex Print Outgoing Telexes', * [10]
DE=NO,FRAME=(0TOP,0BOT), *
TRAN=DSLH,LTERM=PRT1,PRFORM=(E,0), *
QUEUE=YES,STATUS=HOLD,MSGID=TCOV,THRESH=150

DSLFNT NAME=TXRCV,DESCR='Telex Received', * [11]
DE=NO,FRAME=(0TOP,0BOT), *
KEY1=(ENLTXREF,16,1), *
NEXT=TXRCV,PRFORM=(E,0),PRINT=TXPR1,PROT=YES,NOPR=DISPLA*
QUEUE=YES,SPCMND=ROU,ROUTE=ENLRTXXX,MSGID=TCOV, *
THRESH=100

DSLFNT NAME=TXPDR,DESCR='Telex Possible Duplicate Received', * [12]
DE=NO,FRAME=(0TOP,0BOT), *
NEXT=TXPDR,PRFORM=(E,0),PRINT=TXPR1,PROT=YES,NOPR=DISPLA*
QUEUE=YES,SPCMND=(ROU,DEL), *
ROUTE=ENLRTXXX,MSGID=TCOV,THRESH=20

DSLFNT NAME=TXTKV,DESCR='Telex Test-Key Verification', * [13]
DE=NO,FRAME=(0TOP,ENLTKBOT), *
KEY1=(ENLTXREF,16,1), *
NEXT=TXTKV,PRFORM=(E,0),PRINT=TXPR1,PROT=YES,QUEUE=YES, *
ROUTE=ENLRTTKV,MSGID=TCOV,THRESH=100

DSLFNT NAME=TXTKVERR, * [14]
DESCR='Telex Test-Key Verification Errors', *
DE=NO,FRAME=(0TOP,ENLTKBOT),NEXT=TXTKVERR, *
PRFORM=(E,0),PRINT=TXPR1,PROT=YES, *
QUEUE=YES,SPCMND=(ROU,DEL), *
ROUTE=ENLRTTKV,MSGID=TCOV,THRESH=10

DSLFNT NAME=TXDISTR,DESCR='Telex Distribute Received', * [15]
DE=NO,FRAME=(0TOP,0BOT), *
KEY1=(ENLTXREF,16,1), *
NEXT=TXDISTR,PRFORM=(E,0),PRINT=TXPR1,PROT=YES, *
QUEUE=YES,SPCMND=ROU, *
ROUTE=ENLRTXXX,MSGID=TCOV,THRESH=100

DSLFNT NAME=TXINVR,DESCR='Telex Invalid Received', * [16]
DE=NO,FRAME=(0TOP,0BOT),NEXT=TXINVR, *
PRFORM=(E,0),PRINT=TXPR1,PROT=YES,NOPR=NO, *
QUEUE=YES,SPCMND=(ROU,DEL), *
ROUTE=ENLRTXXX,MSGID=TCOV,THRESH=10

DSLFNT NAME=TXPR1,DESCR='Telex Print Received Telexes', * [17]
DE=NO,FRAME=(0TOP,0BOT),TRAN=DSLH,LTERM=PRT1, *
PRFORM=(E,0), *
QUEUE=YES,STATUS=HOLD,MSGID=TCOV,THRESH=150

DSLFNT NAME=TXSDI,DESCR='Telex Sequential Data Input', * [18]
NEXT=TXDE0,QUEUE=YES,ROUTE=ENLRTDE0, *
THRESH=100,MSGID=TCOV

DSLFNT NAME=TXSDO,DESCR='Telex Sequential Data Output', *
QUEUE=YES,NEXT=TXPR1,MSGID=TCOV,THRESH=100

DSLFNT NAME=TXSDY,DESCR='Telex Output to a System Printer', *
QUEUE=YES,MSGID=TCOV,THRESH=100

Figure 13. Example of Function Table Entries for the Telex Link (Part 2 of 3)

Chapter 1. The MERVA ESA Applications 39

Notes:

[1] The function TXDE0 is defined for creating free-format or formatted telex
messages (for example, SWIFT messages). The parameter DE=YES permits
messages to be created. The program-function key table ENLMPF00
(PFKSET parameter) defines PF keys for the Telex Link commands txinsert,
txsplit, and txjoin. If a telex message is saved in the TXDE0 queue, it can
be retrieved directly using the telex reference identification (KEY1
parameter).

After you complete a message with the TXDE0 function, the message is
routed according to the specifications of the ENLRTDE0 routing table:
v If the message is a telex message and requires test-key calculation, it is

routed to the TXTKC function.
v If the message is a telex message and does not require test-key

calculation, it is routed to the TXURG or TXNRM function, depending
on the telex type.

v If the message is not a telex message, but a SWIFT message, it is routed
to the TXAI0 function for authorization.

v If the message is not a telex message, and not a SWIFT message, it is
routed to the TXNOTX function.

The parameter MSGID=TCOV specifies that messages are to be displayed
and formatted using the MCB ENLTCOV, which is connected to the
message identification TCOV. This MCB contains a DSLEXIT statement
which includes the telex header fields (parameter IMBED=TX). See
“Chapter 11. Cover MCBs” on page 369 for more information on cover
MCBs.

The parameter MSGID=TCOV also specifies that the telex command telex
on can be used. This command extends a SWIFT message by a telex
header so that the message can be transmitted via the telex network.

[2] The functions TXVE0 and TXAI0 show how telex and SWIFT messages are
processed in an installation. The routing tables ENLRTDE0, ENLRTVE0,
and ENLRTAI0 determine whether a message is a formatted telex message
(that is, the telex header information is contained in the message, and the
text contains a SWIFT message), or a SWIFT message without telex
information.

DSLFNT NAME=TXURG,QUEUE=YES,THRESH=10,STORE=(SMALL,31900), * [19]
PROT=YES,NOPR=NO,NEXT=TXURG,PRINT=TXPR0,MSGID=TCOV

DSLFNT NAME=TXNRM,QUEUE=YES,THRESH=100,STORE=(SMALL,31900), * [20]
PROT=YES,NOPR=NO,NEXT=TXNRM,PRINT=TXPR0,MSGID=TCOV

DSLFNT NAME=TXSTPPDE,QUEUE=YES,THRESH=2, * [21]
KEY1=(ENLXMHD,8,23),PROT=YES,NOPR=NO, *
NEXT=TXSTPPDE,PRINT=TXPR0,MSGID=TCOV

DSLFNT NAME=TXHCFSND,TRAN=ENLS,LTERM=XXXX, * [22]
QUEUE=YES,THRESH=5,PRINT=TXPR0, *
PROT=YES,NOPR=NO,MSGID=TCOV

DSLFNT NAME=TXHCFRCV,QUEUE=YES,THRESH=2,PRINT=TXPR1, * [23]
PROT=YES,NOPR=NO,MSGID=TCOV

DSLFNT NAME=TXSTPLR,QUEUE=YES,THRESH=2,PRINT=TXPR1, * [24]
NEXT=TXSTPLR,PROT=YES,NOPR=NO,MSGID=TCOV

DSLFNT NAME=TXCLEAN,QUEUE=DUMMY,MSGID=TCOV * [25]
COPY ENLFNTT2 * [26]

Figure 13. Example of Function Table Entries for the Telex Link (Part 3 of 3)

40 Customization Guide

With the TXVE0 function, you verify and correct SWIFT messages that
failed authorization in the TXAI0 function, or you can decide to send the
SWIFT message via the telex network by adding the telex information with
the command telex on.

After you complete a message in the TXVE0 function, the message is
routed according to the specifications of the routing table ENLRTVE0 if the
message:
v Is a telex message and requires test-key calculation, it is routed to the

TXTKC function.
v Is a telex message and does not require test-key calculation, it is routed

to the TXURG or TXNRM function, depending on the telex type.
v Is not a telex message, but a SWIFT message, it is routed to the TXAI0

function for authorization.
v Is not a telex message, and not a SWIFT message, it is routed to the

TXNOTX function.

With the TXAI0 function, you authorize SWIFT messages for sending to
the SWIFT network. You use the MERVA ESA command ok to give the
authorization:
v With ok yes, you give the authorization for sending the message to the

SWIFT network.
v With ok no, the message is routed to the TXVE0 function, where it is

either corrected or the telex information for sending the message via the
telex network is added.

After you have entered the MERVA ESA command ok, the message is
routed according to the specifications of the routing table ENLRTAI0:
v If you have entered ok yes, the SWIFT message is routed to the

L1RFINU or L1RFINN function for sending to the SWIFT network.

Note: These functions are only available if the SWIFT Link is installed.
v If you have entered ok no, the SWIFT message is routed to the TXVE0

function.
v If you have entered the MERVA ESA command eom instead of the ok

command, the SWIFT message is routed back to the TXAI0 function. You
must use the ok command.

[3] The functions TXTKCA and TXTKC are used for test-key calculation. With
the bottom frame ENLTKBOT (FRAME parameter), the fields of the
test-key input area are displayed to provide data for the test-key
calculation. The ENLRTTKC routing table uses the test-key flag field to
decide about the further processing of the telex message.

When you have completed a message with the TXTKC function, the
message is routed according to the specifications of the routing table
ENLRTTKC:
v If the message is a telex message and contains the test-key flag OK-C or

OK-M for successful test-key calculation, it is routed to the TXURG or
TXNRM function, depending on the telex type.

v If the message is a telex message and does not contain a test-key flag
(that is, the test-key processing failed), it is routed to the TXTKCERR
function.

Chapter 1. The MERVA ESA Applications 41

v If the message is not a telex message (that is, you have used the
command telex off to remove the telex information), but the message is
a SWIFT message, it is routed to the TXAI0 function for authorization.

v If the message is not a telex message (that is, you have used the
command telex off to remove the telex information), and the message is
also not a SWIFT message, it is routed to the TXNOTX function.

The function TXTKCA is defined with TRAN=DSLX. This specifies that the
telex messages are processed using the MERVA ESA checking and
expansion transaction with routing. The expansion of a message can be
extended by an automatic test-key calculation done by calling the Telex
Link provided MFS user exit 397 within the standard user exit 23. The MFS
user exit 23 is called for each message processed by the MERVA ESA
checking and expansion transaction. The automatic test-key calculation
works only for message types that have installed a network description for
extracting test-key fields in their MCB description.

[4] The function TXTKCERR is used to process telex messages for which
test-key calculation failed. The same parameters are used as for the TXTKC
function, to allow for the repetition of the test-key calculation. You can
either repeat the test-key calculation, or you can use the command
telex off to remove the telex information when not sending the message
via the telex network. The attributes of the TXTKCERR function are the
same as the attributes of the TXTKC function, and the same routing table,
ENLRTTKC, is used.

[5] The function TXERROR is used to store all telex messages for which
routing failed. The SPCMND parameter allows an authorized user to route
or delete these messages depending on the error. The routing module
ENLRTXXX determines the target queue from the parameter given in the
ROUTE command (MSGOK field).

With the TXERROR function, you can either correct the message, using the
MERVA ESA command route to route the message to another function for
correction or further processing, or use the MERVA ESA command delete
to delete the message if it cannot be corrected or processed correctly by the
normal functions of the Telex Link and MERVA ESA.

[6] The function TXWAIT is used to store all telex messages that have been
sent to the Headoffice Telex on a fault-tolerant system and the logical
acknowledgment received, but for which the transmission acknowledgment
has not yet been received. The KEY2 parameter is necessary to allow the
Telex Link to find the telex message in this queue when the transmission
acknowledgment arrives.

With the TXWAIT function, you can display the telex status fields of a
telex message using the command txinfo on. You must use the
MERVA ESA command escape to stop displaying the message in order to
not interfere with the Telex Link’s processing.

TXWAIT requires a KEY2=(ENLXMHDR,8,23) specification to find a telex
message when the transmission acknowledgment arrives. This specification
must not be changed.

After the transmission acknowledgment has arrived from the Headoffice
Telex on a fault-tolerant system, the Telex Link uses the routing table
ENLRTHCF (specified with the RTSND parameter of the ENLPARM macro
during the Telex Link customization) to route the telex message. The Telex

42 Customization Guide

Link sets an indicator in the field ENLSTAMP, which is used by the
routing table ENLRTHCF to determine the target queue.

[7] The function TXACK is used to store all telex messages that have been sent
to the Headoffice Telex on a fault-tolerant system, and for which both a
positive logical acknowledgment and a positive transmission
acknowledgment have been received. This is the end of the processing
cycle for an outgoing telex message. It is up to your installation to decide
what to do with the telex messages in this queue.

With the TXACK function, you can use the command txinfo on to display
the telex status fields of a telex message. You must use the MERVA ESA
command escape to stop displaying the message, as there is no routing
provided for this function. You can use the MERVA ESA program DSLSDO
to write these telex messages onto a sequential file, or the MERVA ESA
program DSLSDY to print them on a system printer.

[8] The function TXNAK is used to store all telex messages that have been
sent to the Headoffice Telex on a fault-tolerant system, and for which
either a negative logical acknowledgment was received, or a positive
logical acknowledgment and a negative transmission acknowledgment
were received. The SPCMND parameter allows an authorized user to route
or delete these messages, depending on the error.

With the TXNAK function, you can display the telex status fields of a telex
message using the command txinfo on. You can correct the message if
necessary, and use the MERVA ESA command route to route the telex
message to the TXTKC, TXURG, or TXNRM function for retransmission, or
the MERVA ESA command delete to delete the message, should you no
longer wish to send it.

[9] The function TXNOTX is used to store messages that contained neither the
telex nor SWIFT message indicators during routing. The SPCMND
parameter allows an authorized user to route or delete these messages,
depending on the error. You can correct the message if necessary, and then
use the MERVA ESA command route to route the message to an
appropriate function for further processing, or you can use the
MERVA ESA command delete to delete the message if it is no longer
required.

[10] The function TXPR0 is used for hardcopy printing of outgoing free-format
or formatted telex messages. The transaction code DSLH (TRAN
parameter) and the logical terminal name PRT1 (LTERM parameter) are
used. In particular, the LTERM parameter may be changed in your
installation. The STATUS=HOLD parameter prevents printing until the
MERVA ESA command sf txpr0 sets the function into the NOHOLD
status. Telex messages that are routed from the TXWAIT function to the
TXACK function are at the same time also routed to the TXPR0 function.
The TXPR0 function is processed by the MERVA ESA program DSLHCP.

[11] The Telex Link routes a received telex message to the TXRCV function only
if it is sure that it is not a duplicate. The received telex message is also
routed to the TXSTPLR function to enable the Telex Link to detect
duplicate received telex messages automatically. Telex Link uses the
routing table ENLRTHCF, specified with the RTRCV parameter of the
ENLPARM macro during the Telex Link customization. The SPCMND
parameter allows the MERVA ESA command route to process further the
received telex messages, for example, to route it to the TXTKV function for
test-key verification.

Chapter 1. The MERVA ESA Applications 43

With the TXRCV function, you use the MERVA ESA command route to
route the received telex message, depending on its contents if the received
telex message:
v Contains a test key, you route it to the TXTKV function for test-key

verification.
v Does not contain a test key, you can route it to:

– The TXDISTR function for further distribution, which depends on
your installation.

– The TXSDO function for creating a sequential file of received telex
messages.

– The TXSDY function for printing the received telex messages on a
system printer.

[12] If the Telex Link cannot find a telex message in the TXSTPLR function, it
cannot decide whether a received telex message is a duplicate. The Telex
Link therefore stores it in the TXPDR queue. The Telex Link uses the
routing table ENLRTHCF specified with the RTRCV parameter of the
ENLPARM macro during the Telex Link customization. The received telex
message is also routed to the TXSTPLR function to enable the Telex Link to
detect duplicate received telex messages automatically. The SPCMND
parameter allows the MERVA ESA commands route and delete to be used.

With the TXPDR function you decide about the further processing of the
received telex message if you discover that the received telex message:
v Is a duplicate, you use the MERVA ESA command delete to delete the

message as it was processed already earlier.
v Is not a duplicate, you use the MERVA ESA command route to route the

received telex message, as described for the function TXRCV. For
example, to the TXTKV function for test-key verification.

[13] The function TXTKV is used for test-key verification of received telex
messages. With the bottom frame ENLTKBOT (FRAME parameter), the
fields of the test-key input area are displayed to provide the data for the
test-key verification. The routing table ENLRTTKV uses the test-key flag
field to determine how the telex message is further processed.

After you complete a message in the TXTKV function, the message is
routed according to the specifications of the routing table ENLRTTKV:
v If the message contains the test-key flag OK-V, OK-G or OK-M for

successful test-key verification, it is routed to the TXDISTR function for
further distribution.

v If the message does not contain a test-key flag, that is, the test-key
processing failed, it is routed to the TXTKVERR function.

[14] With the TXTKVERR function, you decide what to do with a telex message
whose test-key verification failed. You can either repeat the test-key
verification, or you can use the MERVA ESA commands route or delete to
further process the message or to delete it. The attributes of the
TXTKVERR function are the same as those of the TXTKV function, and the
same routing table, ENLRTTKV, is used.

[15] The TXDISTR function is the last function in the processing cycle of a
received telex message. A received telex message is routed to the TXDISTR
function from the TXRCV, TXPDR, TXTKV, or TXTKVERR function. Your
installation can decide what to do with these telex messages using the
MERVA ESA command route, which is authorized by the SPCMND
parameter.

44 Customization Guide

With the TXDISTR function, you use the MERVA ESA command route to
route the received telex message, depending on its contents, to:
v Any function of received telex messages that is defined in your

installation
v The TXSDO function for creating a sequential file of received telex

messages
v The TXSDY function for printing the received telex messages on a

system printer

[16] A received message is routed to the TXINVR function using the routing
table ENLRTHCF (specified with the RTSND or RTRCV parameter of the
ENLPARM macro during the Telex Link customization), if it is either:
v An unidentified acknowledgment message from the Headoffice Telex on

a fault-tolerant system, that is, no telex message was found in the
TXWAIT or TXNAK queue for this acknowledgment), or

v A completely unidentified message from the Headoffice Telex on a
fault-tolerant system

The SPCMND parameter authorizes the use of the MERVA ESA
commands route and delete to determine how these messages are further
processed.

[17] The function TXPR1 is used for hardcopy printing of received telex
messages. The transaction code DSLH (TRAN parameter) and the logical
terminal name PRT1 (LTERM parameter) are used. The LTERM parameter
in particular may be changed to suit your installation’s requirements. The
STATUS=HOLD parameter prevents printing until the MERVA ESA
command sf txpr1 sets the function to the NOHOLD status. The TXPR1
function is processed by the MERVA ESA program DSLHCP.

[18] The functions TXSDI, TXSDO and TXSDY are used for sequential data set
input, sequential data set output, or the printing of telex messages on a
system printer, as defined by the MERVA ESA programs DSLSDI, DSLSDO
and DSLSDY, respectively.
v Telex Sequential Data Input. The TXSDI function is used by the

MERVA ESA program DSLSDI to store the messages loaded from a
sequential file before routing them to the final queue. You must never
use the TXSDI function for another purpose. The TXSDI function uses
the same routing table as the TXDE0 function (ROUTE parameter).

v Telex Sequential Data Output. The TXSDO function is used by the
MERVA ESA program DSLSDO to create a sequential file of telex
messages. Messages that cannot be formatted for the sequential file are
routed to the hardcopy function TXPR1.

v Telex Output to a System Printer. The TXSDY function is used by the
MERVA ESA program DSLSDY to print telex messages on a system
printer.

The Telex Link Internal Functions
[19] The functions TXURG and TXNRM are used for the telex messages ready

for sending to the Headoffice Telex on a fault-tolerant system. TXURG is
for urgent telex messages with the telex type U, TXNRM is for all other
telex messages with a type of N for normal, T for timed, or P for telexes to
be printed on the TXIP S/1 printer. The telex messages in TXURG are sent
before the telex messages in TXNRM.

[20] The functions TXURG and TXNRM contain the parameter

Chapter 1. The MERVA ESA Applications 45

STORE=(SMALL,31900) which indicates that telex messages up to a size of
31900 bytes can be stored in the ready queue.

[21] The function TXSTPPDE is used to store the last telex message sent to the
Headoffice Telex on a fault-tolerant system until the logical
acknowledgment is received from the Headoffice Telex on a fault-tolerant
system. If the logical acknowledgment does not arrive within the time
specified in the RTIM parameter of the ENLPARM macro, an authorized
user can resend the message with the command txdisp recover. The KEY1
parameter is required by the Telex Link as shown. This specification must
not be changed.

[22] The function TXHCFSND is used for sending one telex message to the
Headoffice Telex on a fault-tolerant system. ENLSTP stores the telex
message in the TXHCFSND queue, and the program ENLHCF1 is started
with the transaction code ENLS (TRAN parameter). The LTERM parameter
must specify the logical terminal name for the line between the Telex Link
and Headoffice Telex on a fault-tolerant system. ENLHCF1 gets the telex
message from this queue and gives it to CICS or IMS for sending, and then
ENLHCF1 deletes the telex message from the TXHCFSND queue.

[23] The function TXHCFRCV is used for receiving one telex message from the
Headoffice Telex on a fault-tolerant system. ENLHCF1 stores the telex
message in the TXHCFRCV queue, and the program ENLSTP gets control
from the MERVA ESA program DSLNUC. ENLSTP gets the telex message
from this queue and processes it depending on its contents, and then
deletes the telex message from the TXHCFRCV queue.

[24] The function TXSTPLR is used by the program ENLSTP to detect duplicate
received telex messages. If a telex message is received via the TXHCFRCV
queue, it is compared with the message in the TXSTPLR queue:
v If the TXSTPLR queue is empty and Headoffice Telex on a fault-tolerant

system indicated a possible duplicate emission, ENLSTP cannot
determine whether the received telex message is a duplicate. The telex
message is therefore routed to the possible duplicate received queue
TXPDR.

v If a telex message is found in the TXSTPLR queue, and it is the same
message as the one just received, the one just received is discarded, as it
is a duplicate.

v If a telex message is found in the TXSTPLR queue, and it is not the same
message as the one just received, the one just received is routed to the
TXRCV queue.

[25] The function TXCLEAN is used as a dummy queue in the routing table
ENLRTHCF to dispose of messages found in the queues TXHCFSND and
TXHCFRCV during the start-up of the Telex Link (ENLSTP). These
messages are given an ENLSTAMP field with the contents 'CLEANUP'.
The deletion is caused by the queue type DUMMY. If you want to keep the
messages found in these queues, you can use a real queue instead, for
example, a hardcopy print queue.

[26] This COPY statement imbeds the necessary functions for Telex Link via
workstation. The Telex Link via workstation is described in MERVA
Workstation Based Functions.

Note: For all Telex Link functions MSGID=TCOV is defined. This means that the
display or printout of a message in this function is formatted according to
the definition in the ENLTCOV MCB.

46 Customization Guide

Data Flow of Outgoing Telex Messages: Figure 14 shows an example of the paths
taken by outgoing telex messages.

Data Flow:

1. The data for the telex message is entered. The routing table ENLRTDE0
controls the message path. If the message contains the value “Y” in the field
ENLTXIND, the message is a telex message:
v If the message also contains the value “YES” in the field ENLTKIND, test-key

calculation is required, and the message is routed to the test-key verification
function TXTKC.

v If the message does not contain the value “YES” in the field ENLTKIND,
test-key calculation is not required, and the message is routed according to
the contents of the telex type field ENLTXPRI:

Figure 14. Sample Data Flow of Outgoing Telex Messages

Chapter 1. The MERVA ESA Applications 47

– If the telex type is “U” (urgent), the telex message is routed to the urgent
ready queue function TXURG.

– If the telex type is “N” (normal), “T” (timed), or “P” (print only), the telex
message is routed to the normal ready queue function TXNRM.

If the message is not a telex message but a SWIFT message, it is routed to the
function TXAI0 for authorization. If the message is neither a telex message nor
a SWIFT message, it is routed to the function TXNOTX (no telex message).

2. In the test-key calculation function TXTKC, the test-key input area is displayed
for entering the data necessary for the test-key calculation. After this
calculation, the routing table ENLRTTKC first tests the field ENLTXIND for the
value “Y” to verify that the message is still a telex message. If not, the message
is routed as after the TXDE0 function (SWIFT message or neither SWIFT nor
telex message).
In a telex message, the test-key flag in the field ENLTKFLG is tested:
v If the test-key flag starts with “OK”, that is, the test-key calculation was

successful, the message is routed to the TXURG or TXNRM function
depending on the telex type, as after TXDE0.

v If the test-key flag is not found or does not start with “OK”, that is, the
test-key calculation was not successful or was not made, the message is
routed to the test-key calculation error function TXTKCERR.

3. The telex message is selected for sending to the Headoffice Telex on a
fault-tolerant system. For this purpose, the program ENLSTP stores the telex
message in the two queues TXSTPPDE and TXHCFSND without using a
routing table. The names of these queues are defined in ENLPRM.

4. When the logical acknowledgment is received from the Headoffice Telex on a
fault-tolerant system, the routing table ENLRTHCF routes the message. The
Telex Link provides a stamp in the field ENLSTAMP that indicates if the telex
message was acknowledged:
v Positively by the Headoffice Telex on a fault-tolerant system, then it is routed

to the TXWAIT function
v Negatively by the Headoffice Telex on a fault-tolerant system, then it is

routed to the TXNAK function
5. When the transmission acknowledgment is received from the Headoffice Telex

on a fault-tolerant system, the routing table ENLRTHCF routes the message.
The Telex Link provides a stamp in the field ENLSTAMP that indicates if the
telex message was acknowledged:
v Positively by the Headoffice Telex on a fault-tolerant system, then it is routed

to the TXACK function
v Negatively by the Headoffice Telex on a fault-tolerant system, then it is

routed to the TXNAK function

48 Customization Guide

Data Flow of Incoming Telex Messages: Figure 15 shows the paths taken by
incoming telex messages.

Data Flow:

1. The telex message is received by the Headoffice Telex on a fault-tolerant system
and sent to the Telex Link. The receive transaction ENLHCF1 stores the telex
message in the TXHCFRCV queue as defined in ENLPRM.

2. The Telex Link program ENLSTP is invoked to process the received telex
message. The routing table ENLRTHCF routes the message, and the Telex Link
provides a stamp in the field ENLSTAMP for the routing decision:
v If the received message cannot be identified, it is routed to the TXINVR

function.

Figure 15. Incoming Telex Message Paths

Chapter 1. The MERVA ESA Applications 49

v If the Telex Link cannot decide whether the received telex message is a
duplicate because the TXSTPLR queue is empty, the received telex message is
routed to the possible duplicate received function TXPDR and the last
received queue TXSTPLR.

v If the Telex Link can decide that the received telex message is not a duplicate
because it is different from the message in the TXSTPLR queue, the received
telex message is routed to the received telex message function TXRCV and
the last received queue TXSTPLR.

Note: If a received telex message is definitely a duplicate, then it is
discarded.

3. In the TXRCV and TXPDR queues, you must decide how to continue the
processing of a received telex message:
v If a message in the TXPDR function is a duplicate, use the MERVA ESA

command delete to delete the telex message.
v If a message in the TXPDR function (that is not a duplicate), or a message in

the TXRCV function requires test-key verification, use the MERVA ESA
command route to route the telex message to the test-key verification
function TXTKV.

v If the telex message does not require test-key verification, you can route it to
the TXDISTR function for further distribution or directly to the function
where it is finally processed.

4. In the test-key verification function TXTKV, the test-key input area is displayed
for entering the data necessary for the test-key verification. After this
verification, the routing table ENLRTTKV tests the test-key flag in the field
ENLTKFLG if the test-key flag:
v Starts with OK, that is, the test-key verification was successful, the message

is routed to the TXDISTR function for further distribution.
v Is not found or does not start with OK, that is, the test-key verification was

not made or was not successful, the message is routed to the test-key
verification error function TXTKVERR.

5. In the function TXDISTR you can distribute the received telex messages as
required by your organization using the MERVA ESA command route.

Data Flow of a SWIFT Message: The paths taken by SWIFT messages in the
TXVE0 and TXAI0 functions are similar to the flow of SWIFT messages as
described in “Function Table Entries for Example 1” on page 10. However, the
routing table samples ENLRTVE0 (after TXVE0) and ENLRTAI0 (after TXAI0) test
whether the message is a SWIFT message without telex information, or whether
the telex information was added:
v If the telex information was added, the message is routed to the functions for

sending to the telex network (TXTKC for test-key calculation or one of the ready
queues TXURG or TXNRM).

v If the telex information was not added, the message is routed to the SWIFT Link
ready queues L1RFINU or L1RFINN that are only available in the MERVA ESA
function table if the SWIFT Link is also installed.

Function Table Example for the MERVA Link
All MERVA ESA queues used by the MERVA Link must be specified in the
MERVA ESA Function Table DSLFNTT.

The Function Table entry for the MERVA System Control Facility and the
DSLFNTT entries used in the MERVA Link installation verification sample are

50 Customization Guide

shown in Figure 16. The copy book EKAFNTTC of the MERVA ESA macro library
contains the code to generate these DSLFNTT entries.

Notes:

[1] The function MSC for the MERVA System Control Facility must be defined
in the MERVA ESA Function Table. It is not represented by a queue in the
MERVA ESA queue data set. The MERVA System Control Facility program
EKAEMSC is linked to the MERVA ESA End User Driver DSLEUD. The
top frame of the MSC screens is defined in the MCB AC01. The PF key sets
41 and 42 of the PF key group 40 are used by MSC.

[2] The Edit Outgoing Message Queue (EKAEOM in this example) represents
the application that generates the message to be sent to its partner
application. The partner application is determined by the routing table
EKARTS that is associated with this queue. As an alternative, a message
can be directly routed to the MERVA Link send queue of a specific ASP
(DSLFNT NEXT parameter).

[3] The Edit Acknowledgment Message Queue (EKAEAM in this example)
represents the application that generates an acknowledgment message to
be sent to its partner application. The partner application is, in this
example, again determined by the routing table EKARTS that is associated
with this queue.

*--
* MERVA SYSTEM CONTROL FACILITY (EUD APPLICATION)
*--

DSLFNT NAME=MSC,QUEUE=NO,PROGRAM=EKAEMSC,NOPR=NO, * [1]
FRAME=(AC01,0BOT),PFGROUP=40, *
DESCR='MERVA System Control'

*--
* MERVA LINK SAMPLE UNIQUE REQUEST QUEUES
*--

DSLFNT NAME=EKAEOM,DE=YES,ROUTE=EKARTS, * [2]
QUEUE=YES,THRESH=100,SPCMND=(ROU,DEL), *
DESCR='MERVA Link Sample Edit Outgoing Message Queue'

DSLFNT NAME=EKAEAM,DE=NO,ROUTE=EKARTS, * [3]
QUEUE=YES,THRESH=50,SPCMND=(ROU,DEL),KEY1=(EKAAMSUB,4), *
DESCR='MERVA Link Sample Edit Acknowledgment Msg Queue'

DSLFNT NAME=EKAAWQ,KEY1=(EKAAMSID,16,1),ROUTE=EKARTS, * [4]
QUEUE=YES,THRESH=50,SPCMND=(ROU,DEL), *
DESCR='MERVA Link Sample Ack Wait Queue'

DSLFNT NAME=EKACMQ,ROUTE=EKARTS, * [5]
QUEUE=YES,THRESH=50,SPCMND=(ROU,DEL),KEY1=(EKAAMSUB,4), *
DESCR='MERVA Link Sample Completed Message Queue'

DSLFNT NAME=EKARMQ,ROUTE=EKARTS, * [6]
QUEUE=YES,THRESH=50,SPCMND=(ROU,DEL),KEY1=(EKAAMSUB,4), *
DESCR='MERVA Link Sample Received Message Queue'

DSLFNT NAME=EKAEMQ,ROUTE=EKARTS, * [7]
QUEUE=YES,THRESH=50,SPCMND=(ROU,DEL),KEY1=(EKAAMSUB,4), *
DESCR='MERVA Link Sample Received Erroneous Msg Queue'

DSLFNT NAME=EKADMY,QUEUE=DUMMY, * [8]
DESCR='MERVA Link Sample Dummy Queue'

*--
* MERVA LINK SAMPLE QUEUES FOR ASP A1I
*--

DSLFNT NAME=EKA1ICQ,KEY1=(EKACLASS,2,1),ROUTE=EKARTSCQ, * [9]
QUEUE=YES,THRESH=50,SPCMND=(ROU,DEL), *
DESCR='Application Control Queue of ASP A1I'

DSLFNT NAME=EKA1IS1,TRAN=EKAS,QUEUE=YES A1I SEND QUEUE [10]

Figure 16. Function Table Example for MERVA Link

Chapter 1. The MERVA ESA Applications 51

[4] The ACK Wait Queue (EKAAWQ in this example) is defined only if
confirmed outgoing messages must be correlated with an acknowledgment
message. An ACK Wait Queue must be defined with the 16-character IAM
Message Identifier as the message key. The IAM Message Identifier,
contained in the MERVA Link control field EKAAMSID, is used to
correlate an acknowledgment message with its reported application
message. An ACK Wait Queue can be shared between MERVA Link
applications.

[5] The Completed Message Queue (EKACMQ in this example) represents the
application that processes messages that have been completely handled by
the MERVA Link. A Completed Message Queue can be shared between
MERVA Link applications.

[6] The Received Message Queue (EKARMQ in this example) represents the
application that processes incoming messages. A Received Message Queue
can be shared between MERVA Link applications.

[7] The Received Erroneous Message Queue (EKAEMQ in this example)
represents the application that processes incoming messages that have been
delivered with a nonzero delivery return code in the MERVA Link control
field EKADELRC. A Received Erroneous Message Queue can be shared
between MERVA Link applications.

[8] The dummy queue EKADMY is used to discard confirmed
acknowledgment messages. You do not need to define a proprietary
dummy queue for each application. A dummy queue can be shared
between MERVA Link applications.

[9] The MERVA Link application control queue (EKA1ICQ in this example) is
a resource owned by a MERVA Link application. You must define an
application control queue for every ASP defined in the partner table.
application control queues cannot be shared between ASPs.

Any MERVA Link application control queue must be defined with a
2-character key. The MERVA Link message class, which may be LC (last
confirmed), IP (in process), or LR (last received) for a message in this
queue, is used as the message key. The MERVA Link message class is
contained in the MERVA Link control field EKACLASS.

A routing table must be associated with any application control queue.
This routing table is used for MERVA Link internal purposes and to
support specific application requirements.

[10] The Send Queue Cluster of a MERVA Link application can consist of one,
two, or three MERVA ESA queues. All members of this cluster are owned
by a specific MERVA Link ASP. They cannot be shared between ASPs.

The parameter RELATED=(...,...) should be used in the definitions of the
members of a MERVA Link send queue cluster if it consists of two or three
queues. This specification means that those two or three queues must be
treated by MERVA ESA in several aspects as a single resource. Those
aspects are, for example, that all three queues are set to HOLD status if
one of them is set to HOLD status, and that the transaction associated with
these queues (EKAS in this example) is not started if it is active for any of
the three queues.

If the RELATED=(....,....) parameter is not specified for all members of a
send queue cluster, the MERVA System Control Facility commands hold
and astart have an effect only on the first send queue specified in the
SENDQC parameter of the EKAPT TYPE=ASP macro.

52 Customization Guide

The parameter TRAN= specifies the transaction code for the MERVA Link
sending ASP. In the CICS environment it is a unique transaction code
(EKAS, in the MERVA Link sample).

In the IMS environment, all members of a send queue cluster share one
transaction name for the sending ASP. Two send queue clusters, however,
must not share one transaction name for the sending ASP. Different
transaction names for the sending ASP must be defined in IMS for every
send queue cluster, this means for every MERVA Link ASP. All these
transaction names, however, call for the same program, the sending
Application Support Program EKAAS10.

Starting a Send Task with a CICS APPC Session
All MERVA Link send queues are defined in the MERVA ESA Function Table
(DSLFNTT) with a transaction identifier of the MERVA Link send task in the
TRAN parameter of the DSLFNT macro (sample transaction identifier is EKAS).
The LTERM parameter of this macro provides an option to start the MERVA Link
send task with an APPC session to the partner system as its principal facility.

If a MERVA Link send queue is defined in the DSLFNTT with LTERM=sysid,
where sysid is the identifier of a remote system described in a CICS
CONNECTION definition, the task started by CICS on behalf of that queue is
already associated with an APPC session to that partner system. A task start
request issued by MERVA ESA is honored by CICS as soon as any session is
available for the task to be started.

A MERVA Link send task uses its principal facility APPC session (if available)
instead of allocating its own session to the partner system.

A MERVA Link send task, which could not be started because of unavailable
sessions to the partner system, is automatically started by CICS as soon as the
partner system is active and at least one session is bound between the partner
systems.

Starting a MERVA Link send task with an APPC session to its partner system may
avoid an ASP in the CICS environment to become inoperable because of a missing
link to the partner system.

In the IMS APPC environment, a MERVA Link send task cannot be started with an
already allocated APPC session. In this environment, task management and data
communication is performed by different subsystems (IMS and APPC/MVS) which
cannot cooperate in this way.

Processing a New or Changed Function Table
A function table is a sequence of the following types of DSLFNT macros:
v TYPE=INITIAL
v TYPE=ENTRY
v TYPE=FINAL

When you modify the sample function table (DSLFNTT), or when you create your
own, you can do this without using the DSLGEN process. If you create your own
function table, to avoid confusion, give it a name other than DSLFNTT.

Do not change the copy members DSLFNTTC, DWSFNTTC, ENLFNTTC,
EKAFNTTC, and EKAFNTSC, because these are maintained by IBM. When a

Chapter 1. The MERVA ESA Applications 53

|

|

|

|

|
|
|

program temporary fix (PTF) is applied to any of these copy members, any
changes made by you will be overwritten.

When installing a new or changed function table, do the following:
1. If the name of the function table is not DSLFNTT, specify its name (it is the

label of the first macro of the function table) as the value of the parameter FNT
in the macro DSLPARM of the module DSLPRM.

2. Assemble and link-edit the new or changed function table.

Defining Message Paths within MERVA ESA
MERVA ESA uses routing tables to define the paths used by messages within a
MERVA ESA installation. They define the path of a message from data entry
through transmission to a network, or from reception of a message from a network
to the execution of the transaction requested by the message.

The routing tables are tables of nonexecutable code. When the routing service is
called by the MERVA ESA Queue Management program (DSLQMGT) in a
DSLQMG TYPE=ROUTE request, the routing table is scanned, appropriate action
taken, and a target list of up to 12 functions is established.

Examples of routing tables are supplied with the SWIFT Link, the Telex Link and
the MERVA Link distributed material, a few of which are presented later in this
book. They are intended only as examples, and should be changed to reflect the
requirements of your installation.

Types of DSLROUTE Macro Calls
A routing table consists of a sequence of DSLROUTE macros. Details of the
DSLROUTE macro are given in the MERVA for ESA Macro Reference.

The purpose of a DSLROUTE macro is determined by its type. The following is a
list of the different purposes of the DSLROUTE macro:
v Defines variable fields for further use from a literal or a TOF field
v Compares the contents of a variable field with the contents of another variable

field or literal
v Sets a target name in the target list from variable fields or literals or both
v Drops one or more variable fields if they are no longer needed
v Sets a target name in the last DSLROUTE macro, if an error occurs during the

processing of the routing table

The first DSLROUTE macro generates the initial statements, and the last
instruction generates the indication for the end of the routing table.

The first DSLROUTE macro must have a symbolic name according to assembler
language conventions. The table is cataloged under this name and referred to by
the ROUTE parameter of the DSLFNT macro in the MERVA ESA function table,
and by the ROUTIN, ROUTOUT and ROUTSK parameters of the DWSLT macro in
the SWIFT Link logical terminal table.

If MERVA ESA operates under MVS™, the last macro must be followed by the
assembler statement END, which must be the last physical source statement.

If a macro refers to a field defined by another macro, you must ensure that the
current definition is correct.

54 Customization Guide

|
|
|

|

Routing criteria defined from TOF fields either relate to a message component or
to special TOF fields that are provided for routing purposes. Refer to MERVA for
ESA Concepts and Components for details.

Coding Considerations
The following points should be taken into account when coding routing tables:
v If a TOF field is accessed in a DSLROUTE TYPE=DEFINE macro, the EMPTY

label is used to process the routing table when the field is empty, or considering
the DISP parameter, no data is available at the specified displacement.

v If a TOF field is accessed in a DSLROUTE TYPE=DEFINE macro, and the data
of the field is not long enough for the specified or default LENGTH parameter,
the available data is taken and the FOUND label is used in the processing of the
routing table.

v If a TOF field is accessed in a DSLROUTE TYPE=DEFINE macro, and the data
of the field is longer than for the specified or default LENGTH parameter, only
the requested length is taken.

Note: The maximum length of a variable field is 32 bytes.
v If a TOF field is accessed in a DSLROUTE TYPE=DEFINE macro, and the access

to the TOF field is not successful, the NOTFND label is taken. The processing of
the routing table is not stopped.

v All variable field names used in a DSLROUTE TYPE=TEST or DSLROUTE
TYPE=SET macro must be defined successfully with a DSLROUTE
TYPE=DEFINE macro before its use. If this is not done, processing of the routing
table continues with the NOTFND label.

v In the DSLROUTE TYPE=TEST macro, the FALSE exit is used if a field to be
compared has a data length of zero, as no condition can be true.

v For AMOUNT test, the fields (field and literal) are adjusted with the decimal
comma position and padded with zeros. If an overflow occurs during this
adjustment, the FALSE label is taken for further processing of the routing table.

v For SHORT test, the fields (field and literal) are compared in the length of the
shorter operand, the rest of the longer operand is ignored.

v For LONG test, the fields (field and literal) are compared in the length of the
longer operand, the shorter operand is padded with binary zeros.

v If the DSLROUTE TYPE=SET macro only refers to fields with a data length of
zero, the target field remains empty and is used by a following DSLROUTE
TYPE=SET macro if any. When the target name is filled in, eight characters are
used. If less than eight characters are used, the target name is padded with
blanks. If more than eight characters are used, the target name is truncated. The
target is verified in the function table. If the target is not found in the function
table, the NOTFND label is used to continue processing. The target field is then
cleared and reused in a subsequent DSLROUTE TYPE=SET macro.

v If all twelve target function fields are filled and another DSLROUTE TYPE=SET
macro is found, it is ignored; that is, the already existing target functions are
finally used.

v If an error is detected that makes further processing of the routing table
impossible, the NEXT function of the function table entry is taken. If the NEXT
function is not available, the target function of the DSLROUTE TYPE=FINAL is
taken. If one of these is found, the return code of DSLRTNSC is 4 (successful
with a warning). If neither of them is found, the return code of DSLRTNSC is 8
(not successful).

Chapter 1. The MERVA ESA Applications 55

A complete list of the SWIFT message fields and header fields is contained in the
MERVA for ESA Messages and Codes.

Note: When coding a routing table:
v SWIFT output messages should not be routed to functions used to process

SWIFT input messages, nor to the SWIFT Link ready queues.
v Input messages should not be routed to output functions.
v Messages can be routed from one message-processing function to up to 12

queues for other message-processing functions.
v If you detect errors during the processing of routing tables or results that you do

not understand, use the MERVA ESA routing trace facility to help find the error.
The entries of the routing trace are described in MERVA for ESA Concepts and
Components.

The routing table that routes messages to a SWIFT Link ready queue can include
testing of the data supplied with the ok or route command. The user enters a
character string (up to eight alphameric characters where any characters are
permitted) with the ok or route command. The character string shows the routing
table that the message is correct and can be routed to the ready queue. The TOF
field MSGOK contains the data entered with this command. The contents of the
TOF field MSGOK are erased after the message is reread from a queue by
DSLEMSG.

As in any assembler language module, comments can be included in the table.
With the exception of SPACE, EJECT, TITLE, and comments, only DSLROUTE
macro calls can be included in the routing table.

Using Indices in Field Definitions
When defining fields in SWIFT messages you should be aware of the indices used
in the FIELD parameter of a DSLROUTE TYPE=DEFINE statement (see MERVA for
ESA Macro Reference).

If a field occurs only once in a message or the first occurrence in the message is
requested, the modifier VFIRST can be used to access the required field. In this
case the indices in the FIELD parameter can be left empty.

If you want to address a field explicitly, you must follow these rules:
v The nesting identifier of a field in a SWIFT message is usually 1. The index is 2,

or higher depending on the nesting depth, when fields in embedded messages
are referenced. For the SWIFT system message types 021 and 023 the header of
the embedded message (basic header and application header) is stored in the
field SWS21H on nesting identifier 1.

v The field group index of the basic header or of a subfield of the basic header
(SWBH) is always 1. The field group index of the application header or of a
subfield of an application header (SWAH) is always 2. The subfields of the basic
and application headers are listed in MERVA for ESA Messages and Codes.
SWIFT I header fields and message formats are still available in MERVA ESA
but the SWIFT I network link support has been dropped. Header fields used in
SWIFT I messages are handled as subfields of the basic or application header.
The field group index of a field for the user header is always 3.
The field group index of a trailer field (SWTRAIL or SWTRL) is always 255.
The field group index for other message fields depends on the message type and
is defined in the message device description of the MCB for the message type.

56 Customization Guide

The numbering starts with field group index 5 and is incremented by one for
each DSLLGRP statement in the message device description.

v The repeatable sequence index must be specified when a field within a
repeatable sequence in one of the repetitions should be accessed. Fields in nested
repeatable sequences with an index higher than one cannot be accessed.

v The data area index must be specified for fields that have more than one line
and a line other than the first one should be accessed.

The MERVA for ESA Macro Reference contains a detailed description of the FIELD
parameter.

Using SWIFT Fields in Routing Modules
The naming convention for SWIFT header and trailer fields in messages in
tokenized format is:

SWBHxxxx Fields in the basic header

SWAHxxxx Fields in the application header

SWnnn System fields identified by a number (nnn)

SWTRAIL The trailer containing multiple data areas

A complete list of the SWIFT message fields and header fields is contained in the
MERVA for ESA Messages and Codes. The copy book DWSFDTTC for the field
definition table contains the definitions for these fields; this copy book can be
found in the macro library.

If a message is stored in an external line format, the fields of the message are not
tokenized. Therefore, they cannot be accessed by their name.

MERVA ESA provides special subfields to allow the routing of SWIFT messages in
external line format depending on the contents of the header or trailer fields. The
data of a header subfield with the name SWxxxxxx can be extracted by using the
field name EFxxxxxx. The data areas of the trailer can be accessed using the field
name EFTRAIL. When the external line format is used, the fields of the user
header (block 3) and of the message text cannot be accessed by name.

The routing table in Figure 17 on page 58 shows how to identify whether a
message is in external line format and how to extract the relevant field data. The
message type for the external line format is ELF, with a prefix for the network. The
prefix is either ‘S’ for SWIFT Link or ‘0’ for the MERVA ESA base function.

Chapter 1. The MERVA ESA Applications 57

Examples of Routing Tables for the SWIFT Link
This section shows three examples of routing tables used for the SWIFT Link to the
SWIFT network. These examples are used in the second example of a bank’s
organizational structure, which is described in detail in “Function Table Entries for
Example 2” on page 19 and “Routing Logic of Example 2” on page 21. This
example uses the following routing tables:
v For input messages: DWSL2IN, DWSL2DE0, DWSL2RE0, DWSL2VE0,

DWSL2AI0
v For output messages: DWSL2OUT, DWSL2AO0, DWSL2DO0

Routing Table DWSL2AI0
The following shows routing table DWSL2AI0 after message authorization:

*--
* Determine whether external format or TOF format is used
*--
DWSL1IN DSLROUTE TYPE=DEFINE,FIELD=(MSGID,DSLEXIT,,,,,VFIRST)

DSLROUTE TYPE=TEST,COND=(MSGID,'SELF ',EQ),TRUE=EF
DSLROUTE TYPE=TEST,COND=(MSGID,'0ELF ',EQ),FALSE=SWI

*--
* External Line Format Message Processing
* Check Buffer for valid SWIFT Message Format
* Define the SWIFT fields used in the routing module
EF DSLROUTE TYPE=DEFINE,FIELD=(BASHEAD,EFBH,,,,,VFIRST)

DSLROUTE TYPE=DEFINE,FIELD=(BLOCK1,DSLELF,,,,,VFIRST), *
DISP=0,LENGTH=3,EMPTY=VE0,NOTFND=VE0

DSLROUTE TYPE=TEST,COND=(BLOCK1,'{1:',EQ),FALSE=VE0
* DEFINE THE APDU IDENTIFIER

DSLROUTE TYPE=DEFINE,FIELD=(APDUID,EFBHAPDU,,,,,VFIRST)
* Check for Block 2; if not there, it is system message

DSLROUTE TYPE=DEFINE,FIELD=(BLOCK2,DSLELF,,,,,VFIRST), *
DISP=29,LENGTH=3,EMPTY=PR0,NOTFND=PR0

DSLROUTE TYPE=TEST,COND=(BLOCK2,'{2:',EQ),FALSE=PR0
DSLROUTE TYPE=DEFINE,FIELD=(MSGTYPE,EFAHMT,,,,,VFIRST), *

EMPTY=PR0,NOTFND=PR0
DSLROUTE TYPE=DEFINE,FIELD=(APPL,EFBHAPI,,,,,VFIRST), *

FOUND=ALL,NOTFND=ALL,EMPTY=ALL
*--
* SWIFT Tokenized Message Processing
* DEFINE THE BASIC HEADER FOR THE ROUTING TRACE
SWI DSLROUTE TYPE=DEFINE,FIELD=(BASHEAD,SWBH,,,,,VFIRST)
*
* DEFINE THE APDU IDENTIFIER

DSLROUTE TYPE=DEFINE,FIELD=(APDUID,SWBHAPDU,,,,,VFIRST), *
EMPTY=VE0

DSLROUTE TYPE=DEFINE,FIELD=(MSGTYPE,SWAHMT,,,,,VFIRST), *
EMPTY=PR0,NOTFND=PR0

DSLROUTE TYPE=DEFINE,FIELD=(APPL,SWBHAPI,,,,,VFIRST)
*--
* APDU ID 01 contains an application header with a message type
* all other APDU IDs are generated by DWSDGPA and are routed
* to L1PR0 where they are printed in sequence with their ACKs.
ALL DSLROUTE TYPE=TEST,COND=(APDUID,'01',EQ),FALSE=PR0

.

.

.

Figure 17. Routing Sample for Messages in External Line Format

58 Customization Guide

DWSL2AI0 DSLROUTE TYPE=DEFINE,FIELD=(FUNC,MSGTRFUN,,,,,VFIRST,LASTDA), * [1]
EMPTY=ERROR,NOTFND=ERROR

DSLROUTE TYPE=DEFINE,FIELD=(OK,MSGOK,,,,,VFIRST), *
EMPTY=AI0,NOTFND=AI0

DSLROUTE TYPE=TEST,COND=(OK,'NO',EQ),TRUE=VE0
DSLROUTE TYPE=TEST,COND=(OK,'YES',EQ),FALSE=AI0
DSLROUTE TYPE=TEST,COND=(FUNC,'L2AI0',EQ,SHORT),TRUE=CUR [2]
DSLROUTE TYPE=TEST,COND=(FUNC,'L2AI2',EQ,SHORT),TRUE=APPLIC, *

FALSE=ERROR
CUR DSLROUTE TYPE=DEFINE,FIELD=(CURRY,SW32CUR,,,,,VFIRST), * [3]

EMPTY=APPLIC,NOTFND=APPLIC
DSLROUTE TYPE=TEST,COND=(CURRY,'USD',EQ),FALSE=APPLIC
DSLROUTE TYPE=DEFINE,FIELD=(AMNT,SW32AMNT,,,,,VFIRST), *

EMPTY=APPLIC,NOTFND=APPLIC
DSLROUTE TYPE=TEST,COND=(AMNT,'10000,',GT,AMOUNT), *

TRUE=AI2
APPLIC DSLROUTE TYPE=DEFINE,FIELD=(APPL,SWBHAPI,,,,,VFIRST), * [4]

EMPTY=VE0,NOTFND=VE0
DSLROUTE TYPE=TEST,COND=(APPL,'F',EQ),TRUE=FIN
DSLROUTE TYPE=TEST,COND=(APPL,'A',EQ),TRUE=GPA
DSLROUTE TYPE=TEST,COND=(APPL,'L',EQ),TRUE=GPA,FALSE=VE0

GPA DSLROUTE TYPE=SET,TARGET=('L2RGPAU'),GOTO=END
FIN DSLROUTE TYPE=DEFINE,FIELD=(PRTY,SWAHIPY,,,,,VFIRST), * [5]

EMPTY=VE0,NOTFND=VE0
DSLROUTE TYPE=TEST,COND=(PRTY,'N',EQ),TRUE=FINN [6]
DSLROUTE TYPE=TEST,COND=(PRTY,'U',EQ),TRUE=FINU [7]
DSLROUTE TYPE=TEST,COND=(PRTY,'S',EQ),TRUE=FINU,FALSE=VE0 [8]

FINN DSLROUTE TYPE=SET,TARGET=('L2RFINN'),GOTO=END
FINU DSLROUTE TYPE=SET,TARGET=('L2RFINU'),GOTO=END
AI0 DSLROUTE TYPE=SET,TARGET=(FUNC),GOTO=END
AI2 DSLROUTE TYPE=SET,TARGET=('L2AI2'),GOTO=END
VE0 DSLROUTE TYPE=SET,TARGET=('L2VE0'),GOTO=END
ERROR DSLROUTE TYPE=SET,TARGET=('L2ERROR')

DSLROUTE TYPE=SET,TARGET=('L2PR0'),GOTO=END
END DSLROUTE TYPE=FINAL,TARGET='L2VE0'

END

Notes:

[1] This statement names the routing table with the label DWSL2AI0. The
variable field FUNC is defined from the TOF field MSGTRFUN with the
DSLTSV modifiers VFIRST and LASTDA. The last data area of this field
contains the last function processed.

If the last function is not found empty processing is continued with the
label ERROR and the message is routed to the error function L2ERROR.

[2] The following statements define the variable field OK from the TOF field
MSGOK (this field contains the parameter of the ok command, or the
command word of the yes or no commands), and test it. If the MSGOK
field is not found or contains an incorrect value, the message is routed
back to the same function at label AI0. If the MSGOK field contains NO,
the message must be corrected in the function L2VE0, if it contains YES,
further processing depends on the input function (L2AI0 or L2AI2).

[3] The following two statements define the variable field CURRY from the
TOF field SW32CUR and test it whether it is the currency for US dollar
(USD) or not. Only when the currency is US dollar, then the amount field
is checked whether it is greater than 10000. If this is the case processing
continues at label AI2 and the message is routed to the second
authorization function L2AI2.

[4] The following statements define the variable field APPL from the
application identifier in the SWIFT basic header. This one-character

Chapter 1. The MERVA ESA Applications 59

identifier is 'F' for a financial application, 'A' for a General Purpose
Application APC message, and 'L' for a General Purpose Application LTC
message. For General Purpose Application messages processing is
continued with label GPA, where the message is routed to the ready queue
L2RGPAU.

[5] The following statements define the variable field PRTY from the priority
in the SWIFT application header. The priority for SWIFT messages can be
one of the following:

N Normal priority messages

U Urgent priority messages

S System messages

[6] When the priority of the message is N, processing is continued with label
FINN, where the message is routed to the ready queue L2RFINN.

[7] When the priority of the message is U, processing is continued with label
FINU, where the message is routed to the ready queue L2RFINU.

[8] When the priority of the message is S, processing is also continued with
label FINU. When the priority is neither N, U, or S, the priority field in the
SWIFT application header is incorrect and the processing continues with
label VE0, where the message is routed to the verification function L2VE0.

Routing Table DWSL2IN
The routing table DWSL2IN is used for routing of SWIFT input messages:
DWSL2IN DSLROUTE TYPE=DEFINE,FIELD=(BASHEAD,SWBH,,,,,VFIRST) [1]

DSLROUTE TYPE=DEFINE,FIELD=(APDUID,SWBHAPDU,,,,,VFIRST), * [2]
EMPTY=VE0

DSLROUTE TYPE=TEST,COND=(APDUID,'01',EQ),FALSE=PR0 * [3]
DSLROUTE TYPE=DEFINE,FIELD=(MSGTYPE,SWAHMT,,,,,VFIRST), * [4]

EMPTY=PR0,NOTFND=PR0
DSLROUTE TYPE=TEST,COND=(MSGTYPE,'96',EQ,SHORT),TRUE=SEND [5]
DSLROUTE TYPE=TEST,COND=(MSGTYPE,'074',EQ),TRUE=MT074 [6]
DSLROUTE TYPE=TEST,COND=(MSGTYPE,'075',EQ),TRUE=SEND [7]
DSLROUTE TYPE=TEST,COND=(MSGTYPE,'085',EQ),TRUE=SEND
DSLROUTE TYPE=TEST,COND=(MSGTYPE,'090',EQ),FALSE=MSGACK [8]
DSLROUTE TYPE=DEFINE,FIELD=(SW311,SW311,,,,1,VFIRST), * [9]

EMPTY=PR0,NOTFND=PR0
DSLROUTE TYPE=TEST,TRUE=SEND, *

COND=(SW311,'/REQUEST FOR CERTIFICATE BLACKLI',EQ)
DSLROUTE TYPE=TEST,TRUE=SEND, *

COND=(SW311,'/BLACKLIST SCR REQUEST/',EQ)
DSLROUTE TYPE=TEST,TRUE=SEND, *

COND=(SW311,'/BLACKLIST UKMO CARD REQUEST/',EQ)
DSLROUTE TYPE=TEST,TRUE=SEND, *

COND=(SW311,'/UPDATE WHITELIST FLAG REQUEST',EQ)
DSLROUTE TYPE=TEST,TRUE=SEND, *

COND=(SW311,'/ACTIVATE ICC SET REQUEST/',EQ)
DSLROUTE TYPE=TEST,TRUE=SEND, *

COND=(SW311,'/CHANGE ACCESS TECHNOLOGY REQUES',EQ)
DSLROUTE TYPE=TEST,TRUE=SEND, *

COND=(SW311,'/INCREMENT ICC KERNEL VERSION RE',EQ)
DSLROUTE TYPE=TEST,TRUE=SEND,FALSE=MSGACK, * [10]

COND=(SW311,'/DELETE ICC SET REQUEST/',EQ)
MT074 DSLROUTE TYPE=DEFINE,FIELD=(SW312,SW312,,,,1,VFIRST), * [11]

EMPTY=PR0,NOTFND=PR0
DSLROUTE TYPE=TEST,TRUE=SEND,FALSE=MSGACK, *

COND=(SW312,'/20/REVOKED CERTIFICATES',EQ)
SEND DSLROUTE TYPE=SET,TARGET=('TX2USESQ') [12]
MSGACK DSLROUTE TYPE=DEFINE,FIELD=(MSGACK,MSGACK,,,,,VFIRST), * [13]

NOTFND=VE0
DSLROUTE TYPE=TEST,COND=(MSGACK,'DSL',EQ,SHORT),TRUE=VE0

60 Customization Guide

DSLROUTE TYPE=TEST,COND=(MSGACK,'DWS',EQ,SHORT),TRUE=VE0
DSLROUTE TYPE=TEST,COND=(MSGACK,'{1:',EQ,SHORT),FALSE=VE0 [14]
DSLROUTE TYPE=DEFINE,FIELD=(F451,MSGACK,,,,,VFIRST), * [15]

DISP=53,LENGTH=1,EMPTY=VE0,NOTFND=VE0
DSLROUTE TYPE=TEST,COND=(F451,'0',EQ),FALSE=VE0 [16]
DSLROUTE TYPE=DEFINE,FIELD=(APPL,SWBHAPI,,,,,VFIRST) [17]
DSLROUTE TYPE=TEST,COND=(APPL,'F',EQ),TRUE=ACK,FALSE=PR0 [18]

PR0 DSLROUTE TYPE=SET,TARGET=('L2PR0'),GOTO=END
ACK DSLROUTE TYPE=SET,TARGET=('L2ACK'),GOTO=END
VE0 DSLROUTE TYPE=SET,TARGET=('L2VE0'),GOTO=END
END DSLROUTE TYPE=FINAL,TARGET='L2VE0'

END

Notes:

[1] This statement names the routing table with the label DWSL2IN. The
variable field BASHEAD is defined from the TOF field SWBH which is the
SWIFT basic header. This field is not used in the further processing; this
definition is only made to identify the message in the routing trace, when
this facility of MERVA ESA is used.

[2] With this statement the variable field APDUID is defined from the TOF
field SWBHAPDU which contains the SWIFT APDU identifier of the basic
header. If this information cannot be found, it is assumed that the message
is not a correct SWIFT message and processing is continued at label VE0
where the message is routed to the verification function.

[3] The APDU identifier defines the type of the message; when it is not '01' it
is not an application message, and the processing continues with label PR0
where the message is routed to the hardcopy function L2PR0.

[4] With this statement the variable field MSGTYPE is defined from the TOF
field SWAHMT which contains the message type of an APDU 01. If this
information cannot be found, processing is continued at label PR0 where
the message is routed to the hardcopy function L2PR0.

[5] If the message type is 96n, that is, one of the message types used for the
SWIFT bilateral key exchange (BKE), processing continues at label SEND.

[6] If the message type is 074, that is, one of the message types used for BKE,
processing continues at the label MT074.

[7] If the message type is 075 or 085, that is, one of the message types used for
BKE, processing continues at the label SEND.

[8] If the message type is not 090, it is a message type that is not used for
BKE, and processing continues at the label MSGACK.

[9] A message type 090 was found, and the variable field SW311 is defined
from the field 311. Tests on the text of field 311 follow to find out if it is a
message type 090 for the SWIFT USE functions, if one is found, processing
continues at the label SEND. As a routing variable field can only hold 32
characters, some of contents of the first line of field 311 are not shown
completely in these tests, but all contents are unique in these 32 characters.

[10] This is the last test on field 311 of a message type 090, the FALSE
parameter indicates that processing continues at the label MSGACK for all
message types 090 that are not used by the SWIFT USE functions.

[11] At the label MT074, the variable field SW312 is defined from the field 312
of the message type 074. A test on the text of field 312 follows to find out

Chapter 1. The MERVA ESA Applications 61

if it is a message type 074 for the SWIFT USE functions, if so, processing
continues at the label SEND, if not, processing continues at the label
MSGACK.

[12] At the label SEND, all messages that have come from the MERVA OS/2
that processes the SWIFT USE functions, and have been sent to the SWIFT
network, and have been positively or negatively acknowledged, or have
not been sent because of an error, are routed to the function TX2USESQ,
from which MERVA Link will send them back to MERVA OS/2. Then
processing continues at the next statement with the label MSGACK, that is,
all these messages are now treated the same way as all the other messages.

[13] At the label MSGACK, the variable field MSGACK is defined from the
TOF field MSGACK which contains the SWIFT acknowledgment message,
when the message has been sent to the SWIFT network, or a MERVA ESA
error message starting with the characters DSL or DWS. In the latter case
the message has not been sent to the SWIFT network. This is tested in the
two statements following the definition of the MSGACK field. If DSL or
DWS is found, processing continues at the label VE0.

[14] When the MSGACK field starts with '{1:', the MSGACK field contains a
SWIFT acknowledgment message (APDU 21). In all other cases processing
is continued at label VE0 and the message is routed to the verification
function.

[15] This statement defines the variable field F451 from the SWIFT field 451 of
the APDU 21. This field contains the Acceptance/Rejection indicator. The
data of this field is always at a fixed position in the APDU 21. By the
DISP=53 parameter data is used from the displacement 53 of the TOF field
MSGACK.

[16] If the variable field F451, that is, the SWIFT field 451, does not contain '0',
the message has not been acknowledged positively and is routed to the
verification function L2VE0. If the field F451 contains '0', processing
continues with the next statement.

[17] This statement defines the variable field APPL from the application
identifier in the SWIFT basic header. This identifier is 'F' for a message of
the FIN application, 'A' for an APC message of the General Purpose
Application, and 'L' for an LTC message of the General Purpose
Application.

[18] The field APPL is tested for containing 'F'. If the condition is true, it is a
financial message that is routed to the acknowledgment function L2ACK at
label ACK. If the condition is false, it is a General Purpose Application
message that is routed to the hardcopy function L2PR0 at label PR0.

Routing Table DWSL2OUT
The routing table DWSL2OUT is used for messages from SWIFT
DWSL2OUT DSLROUTE TYPE=DEFINE,FIELD=(BASHEAD,SWBH,,,,,VFIRST) [1]

DSLROUTE TYPE=DEFINE,FIELD=(MSGID,DSLEXIT,,,,,VFIRST) [2]
DSLROUTE TYPE=TEST,COND=(MSGID,'0DSL ',EQ),TRUE=FREE
DSLROUTE TYPE=DEFINE,FIELD=(ERROR,DSLLFBUF,,,,,VFIRST), * [3]

FOUND=FREE
DSLROUTE TYPE=TEST,COND=(MSGID,'SG22 ',EQ),TRUE=PR0 [4]
DSLROUTE TYPE=TEST,COND=(MSGID,'SG23 ',EQ),TRUE=PR0
DSLROUTE TYPE=TEST,COND=(MSGID,'SG42 ',EQ),TRUE=PR0
DSLROUTE TYPE=TEST,COND=(MSGID,'SG43 ',EQ),TRUE=PR0
DSLROUTE TYPE=TEST,COND=(MSGID,'SG26 ',EQ),TRUE=PR0
DSLROUTE TYPE=TEST,COND=(MSGID,'SF25 ',EQ),TRUE=PR0
DSLROUTE TYPE=TEST,COND=(MSGID,'SG13 ',EQ),TRUE=PR0
DSLROUTE TYPE=TEST,COND=(MSGID,'SG15 ',EQ),TRUE=PR0

62 Customization Guide

DSLROUTE TYPE=DEFINE,FIELD=(SUFFIX,' ') [5]
DSLROUTE TYPE=DEFINE,FIELD=(LT,SWBHLT,,,,,VFIRST), * [6]

LENGTH=9,NOTFND=PR1,EMPTY=PR1
DSLROUTE TYPE=TEST,COND=(LT,'VNDOBET2A',EQ),TRUE=REPORT
DSLROUTE TYPE=TEST,COND=(LT,'VNDOSYN2A',EQ),TRUE=SYNONYM, *

FALSE=PR1
SYNONYM DSLROUTE TYPE=DEFINE,FIELD=(SUFFIX,'S')
REPORT DSLROUTE TYPE=TEST,COND=(MSGID,'SF010 ',EQ),TRUE=DO0 [7]

DSLROUTE TYPE=TEST,COND=(MSGID,'SF011 ',EQ),TRUE=DO0
DSLROUTE TYPE=TEST,COND=(MSGID,'SF015 ',EQ),TRUE=DO0
DSLROUTE TYPE=TEST,COND=(MSGID,'SF066 ',EQ),TRUE=DO0
DSLROUTE TYPE=TEST,COND=(MSGID,'SF082 ',EQ),TRUE=DO0
DSLROUTE TYPE=TEST,COND=(MSGID,'SF083 ',EQ),TRUE=DO0
DSLROUTE TYPE=DEFINE,FIELD=(MSGTYPE,SWAHMT,,,,,VFIRST), * [8]

EMPTY=PR1,NOTFND=PR1
DSLROUTE TYPE=TEST,COND=(MSGTYPE,'021',EQ),TRUE=DO0
DSLROUTE TYPE=TEST,COND=(MSGTYPE,'0',EQ,SHORT),FALSE=AUT
DSLROUTE TYPE=TEST,COND=(MSGTYPE,'076',EQ),TRUE=SEND [9]
DSLROUTE TYPE=TEST,COND=(MSGTYPE,'077',EQ),TRUE=SEND
DSLROUTE TYPE=TEST,COND=(MSGTYPE,'087',EQ),TRUE=SEND
DSLROUTE TYPE=TEST,COND=(MSGTYPE,'092',EQ),FALSE=PR1 [10]

DSLROUTE TYPE=DEFINE,FIELD=(SW311,SW311,,,,1,VFIRST), * [11]
EMPTY=PR1,NOTFND=PR1

DSLROUTE TYPE=TEST,TRUE=SEND, *
COND=(SW311,'/CERTIFICATE BLACKLIST DISTRIBUT',EQ)

DSLROUTE TYPE=TEST,TRUE=SEND, *
COND=(SW311,'/BLACKLIST SCR ACKNOWLEDGMENT/',EQ)

DSLROUTE TYPE=TEST,TRUE=SEND, *
COND=(SW311,'/BLACKLIST UKMO CARD ACKNOWLEDGE',EQ)

DSLROUTE TYPE=TEST,TRUE=SEND, *
COND=(SW311,'/UPDATE WHITELIST FLAG ACKNOWLED',EQ)

DSLROUTE TYPE=TEST,TRUE=SEND, *
COND=(SW311,'/ACTIVATE ICC SET ACKNOWLEDGMENT',EQ)

DSLROUTE TYPE=TEST,TRUE=SEND, *
COND=(SW311,'/CHANGE ACCESS TECHNOLOGY ACKNOW',EQ)

DSLROUTE TYPE=TEST,TRUE=SEND, *
COND=(SW311,'/INCREMENT ICC KERNEL VERSION AC',EQ)

DSLROUTE TYPE=TEST,TRUE=SEND, *
COND=(SW311,'/DELETE ICC SET ACKNOWLEDGMENT/',EQ)

DSLROUTE TYPE=TEST,TRUE=SEND, *
COND=(SW311,'/LSN/SSN THRESHOLD WARNING/',EQ)

DSLROUTE TYPE=TEST,TRUE=SEND, *
COND=(SW311,'/ICC KERNEL VERSION EXPIRY WARNI',EQ)

DSLROUTE TYPE=TEST,TRUE=SEND, *
COND=(SW311,'/ICC SET EXPIRY WARNING/',EQ)

DSLROUTE TYPE=TEST,TRUE=SEND, *
COND=(SW311,'/LT ACTIVATION REPORT/',EQ)

DSLROUTE TYPE=TEST,TRUE=SEND, *
COND=(SW311,'/PENULTIMATE WHITELIST FLAG WARN',EQ)

DSLROUTE TYPE=TEST,TRUE=SEND, *
COND=(SW311,'/FINAL WHITELIST FLAG WARNING/',EQ)

DSLROUTE TYPE=TEST,TRUE=SEND,FALSE=PR1, * [12]
COND=(SW311,'/LAST ICC KERNEL VERSION WARNING',EQ)

AUT DSLROUTE TYPE=DEFINE,FIELD=(AUT,MSGACK,,,,,VFIRST), * [13]
DISP=0,LENGTH=6,EMPTY=AO0,NOTFND=AO0

DSLROUTE TYPE=TEST,COND=(AUT,'DWS765',EQ),TRUE=MSGERR
DSLROUTE TYPE=TEST,COND=(AUT,'DWS766',EQ),TRUE=MSGERR, *

FALSE=AO0
MSGERR DSLROUTE TYPE=DEFINE,FIELD=(MSGERR,MSGTRERR,,,,,VFIRST, * [14]

LASTDA),NOTFND=DO0,EMPTY=DO0
DSLROUTE TYPE=TEST,COND=(MSGERR,'0000',EQ),FALSE=DO0
DSLROUTE TYPE=TEST,COND=(MSGTYPE,'96',EQ,SHORT),TRUE=SEND [15]
DSLROUTE TYPE=SET,TARGET=('L2SDO',SUFFIX),GOTO=END [16]

PR0 DSLROUTE TYPE=SET,TARGET=('L2PR0'),GOTO=END
PR1 DSLROUTE TYPE=SET,TARGET=('L2PR1',SUFFIX),GOTO=END
AO0 DSLROUTE TYPE=SET,TARGET=('L2AO0',SUFFIX),GOTO=END
FREE DSLROUTE TYPE=SET,TARGET=('L2FREE'),GOTO=END

Chapter 1. The MERVA ESA Applications 63

DO0 DSLROUTE TYPE=SET,TARGET=('L2DO0',SUFFIX),GOTO=END
SEND DSLROUTE TYPE=SET,TARGET=('TX2USESQ'),GOTO=END [17]
END DSLROUTE TYPE=FINAL,TARGET='L2PR1'

END

Notes:

[1] This statement names the routing table with the label DWSL2OUT. The
variable field BASHEAD is defined from the TOF field SWBH containing
the SWIFT basic header of the message. This definition is only made to
identify the message in the routing trace, when this facility of MERVA ESA
is used.

[2] With this statement, the variable field MSGID is defined from the TOF
field DSLEXIT containing the MERVA ESA message identification. All
possible MERVA ESA message identifications are defined in the message
type table DSLMTTT. When the DSLEXIT field contains '0DSL' the message
could not be transformed to the TOF format with the appropriate message
control block (MCB), because the message contained format errors. In this
case the message is routed to the free format function L2FREE
(TRUE=FREE).

[3] With this statement, the variable field ERROR is defined from the TOF
field DSLLFBUF containing part of the message, if the message could not
be transformed completely to the TOF format with the appropriate
message control block (MCB). If this field is found in the TOF, the message
is routed to the free format function L2FREE (FOUND=FREE).

[4] The following statements select specific acknowledgment system message
types for routing to the hardcopy function L2PR0 (TRUE=PR0). There the
acknowledgments are printed in sequence with the originating system
messages. The message identifications selected are:
v SG22 Login Acknowledgment
v SG23 Select Acknowledgment
v SG42 Login Negative Acknowledgment
v SG43 Select Negative Acknowledgment
v SG26 Logout Acknowledgment
v SF25 Quit Acknowledgment for Financial Application
v SG13 System Abort Application Confirmation
v SG15 System Abort Logical Terminal Confirmation

[5] With this statement, the variable field SUFFIX is defined from a literal ' '
(blank). This suffix is used when setting target functions for the master
logical terminal.

[6] With the following statements, the variable field LT is defined from the
TOF field SWBHLT and tested for specific contents. The field SWBHLT
contains the name of the logical terminal that receives the SWIFT output
message, it is a subfield of the SWIFT basic header field SWBH. The
LENGTH=9 parameters specifies the length of the data used from the TOF
field SWBHLT.

The variable field LT is tested for the name of the master logical terminal
(literal 'VNDOBET2A') and the name of the synonym logical terminal
(literal 'VNDOSYN2A'). These two logical terminal names are also defined
in the logical terminal table DWSLTT.

If the master logical terminal is found, processing continues at the label
REPORT, for the synonym logical terminal, the field SUFFIX is redefined

64 Customization Guide

with the literal 'S'. This suffix is used when setting target functions for the
synonym logical terminal. If neither the name of the master nor synonym
logical terminal is found, the message is routed to the hardcopy print
function L2PR1.

[7] With the following statements the SWIFT reports for the FIN application
are routed to the distribution function L2DO0. The reports are:
v SF010 Non Delivery Warning
v SF011 Delivery Notification
v SF015 Delayed NAK
v SF066 Undelivered Message Solicited Report
v SF082 Undelivered Message Report at Fixed Hour
v SF083 Undelivered Message Report at Cut-Off Time

[8] With the following statements, the variable field MSGTYPE is defined from
the TOF field SWAHMT that contains the message type of the SWIFT
application header. If the message type is not found, the message is routed
to the hardcopy print function L2PR1.

A test is made for the message type 021 (retrieved message) that can
contain a banking message. If the message type 021 is found, the message
is routed to L2DO0.

Then a test for SWIFT system messages in general is done, that is a test for
the first character being 0. If the first character is not 0, it is a banking
message of the FIN application and processing continues at label AUT.

[9] A system message was found, and a test is made if it is one of the system
messages used for the SWIFT USE functions. For the message types 076,
077 and 087, processing continues at label SEND.

[10] If the message type is not 092, it is a message type that is not used for
BKE, and processing continues at the label PR1.

[11] A message type 092 was found, and the variable field SW311 is defined
from the field 311. Tests on the text of field 311 follow to find out if it is a
message type 092 for the SWIFT USE functions, if one is found, processing
continues at the label SEND. As a routing variable field can only hold 32
characters, some of contents of the first line of field 311 are not shown
completely in these tests, but all contents are unique in these 32 characters.

[12] This is the last test on field 311 of a message type 092, the FALSE
parameter indicates that processing continues at the label PR1 for all
message types 092 that are not used by the SWIFT USE functions.

[13] With the following statements, the variable field AUT is defined from the
TOF field MSGACK that contains the result of the authentication as a
diagnostic message. A test is made for the message identifications DWS765
(authentication successful with actual key) and DWS766 (message not to be
authenticated). If one of these message identifications is found, processing
continues at label MSGERR (TRUE parameter). If there is an authentication
error, the message is routed to the authentication output function L2AO0.

[14] With the following statements, the variable field MSGERR is defined from
the TOF field MSGTRERR (it contains the error code of the message trace
field MSGTRACE). A test is made for 0000 which shows no error. If the
MSGTRERR field is not found or empty or contains a different error code,
the message is routed to the distribution output function L2DO0.
Otherwise processing continues with the next statement.

Chapter 1. The MERVA ESA Applications 65

[15] If the message type is 96n, that is, one of the message types used for the
SWIFT bilateral key exchange (BKE), processing continues at label SEND.

[16] With the following statements, the targets are set to the functions L2SDO,
L2PR0, L2PR1, L2AO0, L2FREE, and L2DO0 as determined by the
conditions tested before. When setting the targets for L2SDO, L2AO0,
L2DO0, and L2PR1, the appropriate literal is concatenated with the content
of the field SUFFIX which was defined as ' ' (blank) for the master logical
terminal and S for the synonym logical terminal.

[17] At the label SEND, the target is set for the function TX2USESQ for all
messages used for the SWIFT USE functions and must therefore be sent to
the USE workstation using MERVA Link.

A DSLROUTE TYPE=FINAL statement with the error target function
L2PR1 is the last statement in this routing table.

Examples of Routing Tables for the Telex Link
The Telex Link supplies examples of routing tables that you can use to create and
process telex messages. Some of these routing tables you can modify. For example,
if you have defined more than one function for creating telex messages, you can
change the path telex messages taken between functions.

Note: You cannot modify the routing paths necessary for the correct processing of
the communication between the Telex Link and the Headoffice Telex on a
fault-tolerant system. The Telex Link via workstation is described in MERVA
Workstation Based Functions

The Telex Link supplies the following examples of routing tables:

ENLRTDE0 Routing after the data entry function TXDE0 and the sequential
data set input function TXSDI

ENLRTVE0 Routing after the verification function for SWIFT messages TXVE0

ENLRTAI0 Routing after the authorization function for SWIFT messages
TXAI0

ENLRTTKC Routing after the test-key calculation function TXTKC (also used
for the test-key calculation error function TXTKCERR)

ENLRTTKV Routing after the test-key verification function TXTKV (also used
for the test-key verification error function TXTKVERR)

ENLRTHCF Routing of telex messages sent to the Headoffice Telex on a
fault-tolerant system and received from the Headoffice Telex on a
fault-tolerant system

The routing tables ENLRTDE0, ENLRTTKC, and ENLRTHCF show the important
routing criteria of the Telex Link. The routing module ENLRTTKV uses a similar
decision as ENLRTTKC, and the routing modules ENLRTVE0 and ENLRTAI0
combine decisions important for the Telex Link (as shown in ENLRTDE0) and the
SWIFT Link (DWSL2DE0).

Routing Table ENLRTDEO
The following shows the ENLRTDE0 routing table supplied with the Telex Link,
after data entry:
ENLRTDE0 DSLROUTE TYPE=DEFINE,FIELD=(TXIND,ENLTXIND,,,,,VFIRST), * [1]

LENGTH=1,NOTFND=NOTELEX,EMPTY=NOTELEX
DSLROUTE TYPE=TEST,COND=(TXIND,'Y',EQ),FALSE=NOTELEX
DSLROUTE TYPE=DEFINE,FIELD=(TKIND,ENLTKIND,,,,,VFIRST), * [2]

66 Customization Guide

LENGTH=3,NOTFND=TXERROR,EMPTY=TXERROR
DSLROUTE TYPE=TEST,COND=(TKIND,'YES',EQ),TRUE=TKC
DSLROUTE TYPE=DEFINE,FIELD=(TXTYPE,ENLTXPRI,,,,,VFIRST), * [3]

LENGTH=1,NOTFND=TXERROR,EMPTY=TXERROR
DSLROUTE TYPE=TEST,COND=(TXTYPE,'P',EQ),TRUE=NRM
DSLROUTE TYPE=TEST,COND=(TXTYPE,'N',EQ),TRUE=NRM
DSLROUTE TYPE=TEST,COND=(TXTYPE,'T',EQ),TRUE=NRM
DSLROUTE TYPE=TEST,COND=(TXTYPE,'U',EQ),TRUE=URG,FALSE=TXERROR

TKC DSLROUTE TYPE=SET,TARGET='TXTKC',GOTO=END [4]
URG DSLROUTE TYPE=SET,TARGET='TXURG',GOTO=END
NRM DSLROUTE TYPE=SET,TARGET='TXNRM',GOTO=END
NOTELEX DSLROUTE TYPE=DEFINE,FIELD=(SWIFT,SWBH,,,,,VFIRST), * [5]

FOUND=SWIFT
DSLROUTE TYPE=SET,TARGET='TXNOTX',GOTO=END

SWIFT DSLROUTE TYPE=SET,TARGET='TXAI0',GOTO=END
TXERROR DSLROUTE TYPE=SET,TARGET='TXERROR',GOTO=END [6]
END DSLROUTE TYPE=FINAL,TARGET='TXERROR' [7]

END

Notes:

[1] This statement names the routing table with the label ENLRTDE0. A
variable field with the name TXIND is defined from the TOF field
ENLTXIND, which contains an indicator if the message is a telex message.
VFIRST requests the use of the first appearance of ENLTXIND in the TOF.
Only the first byte is requested, using the LENGTH=1 parameter.

If the field is not found or empty, processing is continued at the label
NOTELEX (NOTFND=NOTELEX,EMPTY=NOTELEX).

If the field is found, the variable field TXIND is tested for the content “Y”,
that is, the telex indicator is “YES”. If it is not “Y”, it is not a telex
message, and processing is continued at the label NOTELEX
(FALSE=NOTELEX).

[2] The message is a telex message. A variable field with the name TKIND is
defined from the TOF field ENLTKIND. This field contains an indicator if
the telex message requires a test key. Use of the VFIRST parameter
indicates that the first appearance of ENLTKIND in the TOF is to be used.
Three bytes are requested using the LENGTH=3 parameter.

If the field is not found or is empty, processing is continued at the label
TXERROR (NOTFND=TXERROR,EMPTY=TXERROR), as each telex
message must contain this field.

If the field is found, the variable field TKIND is tested for the contents
“YES”, indicating that a test key is required, and processing is continued at
the label TKC (TRUE=TKC).

[3] The telex message does not require a test key. A variable field with the
name TXTYPE is defined from the TOF field ENLTXPRI which contains the
telex type. VFIRST requests the use of the first appearance of ENLTXPRI in
the TOF.

If the field is not found or is empty, processing is continued at the label
TXERROR (NOTFND=TXERROR,EMPTY=TXERROR), as each telex
message must contain this field.

If the field is found, the variable field TXTYPE is tested for the following
contents:

P Indicating a print telex for the normal ready queue (TRUE=NRM)

Chapter 1. The MERVA ESA Applications 67

N Indicating a normal priority telex for the normal ready queue
(TRUE=NRM)

T Indicating a timed telex for the normal ready queue (TRUE=NRM)

U Indicating an urgent priority telex for the urgent ready queue
(TRUE=URG)

If none of these values is found, processing is continued at the label
TXERROR (FALSE=TXERROR), as one of the four values must be in the
telex type field.

[4] With the following three statements, the targets are set to the functions
TXTKC, TXURG, and TXNRM, as determined by the conditions tested
before, and processing is continued at the label END (GOTO=END).

[5] The message is not a telex message. A variable field with the name SWIFT
is defined from the TOF field SWBH, that if present, indicates that the
message is a SWIFT message. SWBH is part of the SWIFT message header.

If the field is found, processing is continued at the label SWIFT
(FOUND=SWIFT), where the target function TXAI0 is set.

If the field is not found, processing is continued with the next statement
where the target function TXNOTX (neither telex message nor SWIFT
message) is set.

[6] With this statement, the target is set to the function TXERROR when one of
the previous DEFINE or TEST statements found an error.

[7] A DSLROUTE TYPE=FINAL statement with the error target function
TXERROR is the last statement in this routing table.

Routing Table ENLRTTKC
The following shows the ENLRTTKC routing table supplied with the Telex Link,
after test-key calculation:
ENLRTTKC DSLROUTE TYPE=DEFINE,FIELD=(TXIND,ENLTXIND,,,,,VFIRST), * [1]

LENGTH=1,NOTFND=NOTELEX,EMPTY=NOTELEX
DSLROUTE TYPE=TEST,COND=(TXIND,'Y',EQ),FALSE=NOTELEX
DSLROUTE TYPE=DEFINE,FIELD=(TKFLAG,ENLTKFLG,,,,,VFIRST), * [2]

NOTFND=TKCERR,EMPTY=TKCERR
DSLROUTE TYPE=TEST,COND=(TKFLAG,'OK',EQ,SHORT),FALSE=TKCERR
DSLROUTE TYPE=DEFINE,FIELD=(TXTYPE,ENLTXPRI,,,,,VFIRST), * [3]

LENGTH=1,NOTFND=TXERROR,EMPTY=TXERROR
DSLROUTE TYPE=TEST,COND=(TXTYPE,'P',EQ),TRUE=NRM
DSLROUTE TYPE=TEST,COND=(TXTYPE,'N',EQ),TRUE=NRM
DSLROUTE TYPE=TEST,COND=(TXTYPE,'T',EQ),TRUE=NRM
DSLROUTE TYPE=TEST,COND=(TXTYPE,'U',EQ),TRUE=URG,FALSE=TXERROR

TKCERR DSLROUTE TYPE=SET,TARGET='TXTKCERR',GOTO=END [4]
URG DSLROUTE TYPE=SET,TARGET='TXURG',GOTO=END
NRM DSLROUTE TYPE=SET,TARGET='TXNRM',GOTO=END
NOTELEX DSLROUTE TYPE=DEFINE,FIELD=(SWIFT,SWBH,,,,,VFIRST), * [5]

FOUND=SWIFT
DSLROUTE TYPE=SET,TARGET='TXNOTX',GOTO=END

SWIFT DSLROUTE TYPE=SET,TARGET='TXAI0',GOTO=END
TXERROR DSLROUTE TYPE=SET,TARGET='TXERROR',GOTO=END [6]
END DSLROUTE TYPE=FINAL,TARGET='TXERROR' [7]

END

Notes:

[1] This statement names the routing table with the label ENLRTTKC. A
variable field with the name TXIND is defined from the TOF field
ENLTXIND, which contains an indicator if the message is still a telex

68 Customization Guide

message. The VFIRST parameter specifies that the first appearance of
ENLTXIND in the TOF field is to be used. Only the first byte is requested
using the LENGTH=1 parameter.

If the field is not found or is empty, processing is continued at the label
NOTELEX (NOTFND=NOTELEX,EMPTY=NOTELEX).

If the field is found, the variable field TXIND is tested for the content “Y”,
that is, the telex indicator is “YES”. If it is not “Y”, it is not a telex
message, and processing is continued at the label NOTELEX
(FALSE=NOTELEX).

[2] The message is a telex message. A variable field with the name TKFLAG is
defined from the TOF field ENLTKFLG which contains the test-key flag
that indicates whether the test key was successfully calculated. The VFIRST
parameter specifies that the first appearance of ENLTKFLG in the TOF is to
be used.

If the field is not found or is empty, processing is continued at the label
TKCERR (NOTFND=TKCERR,EMPTY=TKCERR), as the test-key
calculation was either not done or was not successful.

If the field is found, the variable field TKFLAG is tested for the content
“OK” in the first two bytes (SHORT modifier). If “OK” is not found,
processing is continued at the label TKCERR (FALSE=TKCERR).

[3] The test key was successfully calculated. A variable field with the name
TXTYPE is defined from the TOF field ENLTXPRI which contains the telex
type. VFIRST requests the use of the first appearance of ENLTXPRI in the
TOF.

If the field is not found or is empty, processing is continued at the label
TXERROR (NOTFND=TXERROR,EMPTY=TXERROR), as each telex
message must contain this field.

If the field is found, the variable field TXTYPE is tested for the following
contents:

P Indicating a print telex for the normal ready queue (TRUE=NRM)

N Indicating a normal priority telex for the normal ready queue
(TRUE=NRM)

T Indicating a timed telex for the normal ready queue (TRUE=NRM)

U Indicating an urgent priority telex for the urgent ready queue
(TRUE=URG)

If none of these values is found, processing is continued at the label
TXERROR (FALSE=TXERROR), as one of the four values must be in the
telex type field.

[4] With the following three statements the targets are set to the functions
TXTKCERR, TXURG and TXNRM as determined by the conditions tested
before, and processing is continued at the label END (GOTO=END).

[5] The message is not a telex message. A variable field with the name SWIFT
is defined from the TOF field SWBH, that if present, indicates that the
message is a SWIFT message. SWBH is part of the SWIFT message header.

If the field is found, processing is continued at the label SWIFT
(FOUND=SWIFT), where the target function TXAI0 is set.

Chapter 1. The MERVA ESA Applications 69

If the field is not found, processing is continued with the next statement
where the target function TXNOTX (neither telex message nor SWIFT
message) is set.

[6] With this statement, the target is set to the function TXERROR when one of
the previous DEFINE or TEST statements found an error.

[7] A DSLROUTE TYPE=FINAL statement with the error target function
TXERROR is the last statement in this routing table.

Routing Table ENLRTHCF
The routing table ENLRTHCF, shown below,, is defined in ENLPRM and is used
for all routing that is necessary for messages sent to or received from the
Headoffice Telex on a fault-tolerant system. The Telex Link provides information in
the field ENLSTAMP that indicates the processing stage of a telex message.
ENLRTHCF DSLROUTE TYPE=DEFINE,FIELD=(TXSTAMP,ENLSTAMP), * [1]

LENGTH=8,NOTFND=ERROR,EMPTY=ERROR
DSLROUTE TYPE=TEST,COND=(TXSTAMP,'ACKENLXM',EQ),TRUE=WAIT [2]
DSLROUTE TYPE=TEST,COND=(TXSTAMP,'NAKENLXM',EQ),TRUE=NAK [3]
DSLROUTE TYPE=TEST,COND=(TXSTAMP,'ACKXMIT ',EQ),TRUE=ACK [4]
DSLROUTE TYPE=TEST,COND=(TXSTAMP,'NAKXMIT ',EQ),TRUE=NAK [5]
DSLROUTE TYPE=TEST,COND=(TXSTAMP,'TELEXRCV',EQ),TRUE=RCV [6]
DSLROUTE TYPE=TEST,COND=(TXSTAMP,'DUPLRQNF',EQ),TRUE=PDR [7]
DSLROUTE TYPE=TEST,COND=(TXSTAMP,'ENLOUT ',EQ),TRUE=CLEAN [8]
DSLROUTE TYPE=TEST,COND=(TXSTAMP,'ENLIN ',EQ),TRUE=CLEAN [9]
DSLROUTE TYPE=TEST,COND=(TXSTAMP,'CLEANUP ',EQ),TRUE=CLEAN [10]
DSLROUTE TYPE=TEST,COND=(TXSTAMP,'INVALID ',EQ),TRUE=INVR [11]
DSLROUTE TYPE=TEST,COND=(TXSTAMP,'UNSXMACK',EQ),TRUE=INVR [12]

ERROR DSLROUTE TYPE=SET,TARGET=('TXERROR'),GOTO=END [13]
WAIT DSLROUTE TYPE=SET,TARGET=('TXWAIT'),GOTO=END
ACK DSLROUTE TYPE=SET,TARGET=('TXACK')

DSLROUTE TYPE=SET,TARGET=('TXPR0'),GOTO=END
NAK DSLROUTE TYPE=SET,TARGET=('TXNAK'),GOTO=END
RCV DSLROUTE TYPE=SET,TARGET=('TXRCV')

DSLROUTE TYPE=SET,TARGET=('TXSTPLR'),GOTO=END
PDR DSLROUTE TYPE=SET,TARGET=('TXPDR')

DSLROUTE TYPE=SET,TARGET=('TXSTPLR'),GOTO=END
CLEAN DSLROUTE TYPE=SET,TARGET=('TXCLEAN'),GOTO=END
INVR DSLROUTE TYPE=SET,TARGET=('TXINVR')
END DSLROUTE TYPE=FINAL,TARGET='TXERROR' [14]

END

Notes:

[1] This statement names the routing table with the label ENLRTHCF. A
variable field with the name TXSTAMP is defined from the TOF field
ENLSTAMP, which contains an indicator for the processing stage of the
telex message. Eight bytes are requested using the LENGTH=8 parameter.

If the field is not found or is empty, processing is continued at the label
ERROR (NOTFND=ERROR,EMPTY=ERROR).

[2] If the variable field TXSTAMP contains the value “ACKENLXM”, a
positive logical acknowledgment was received from the Headoffice Telex
on a fault-tolerant system for an outgoing telex message. Processing is
continued at the label WAIT for setting the target function TXWAIT.

[3] If the variable field TXSTAMP contains the value “NAKENLXM”, a
negative logical acknowledgment was received from the Headoffice Telex
on a fault-tolerant system for an outgoing telex message. Processing is
continued at the label NAK for setting the target function TXNAK.

[4] If the variable field TXSTAMP contains the value “ACKXMIT ”, a positive
transmission acknowledgment was received from the Headoffice Telex on a

70 Customization Guide

fault-tolerant system for an outgoing telex message. Processing is
continued at the label ACK for setting the target function TXACK.

[5] If the variable field TXSTAMP contains the value “NAKXMIT ”, a negative
transmission acknowledgment was received from the Headoffice Telex on a
fault-tolerant system for an outgoing telex message. Processing is
continued at the label NAK for setting the target function TXNAK.

[6] If the variable field TXSTAMP contains the value “TELEXRCV”, an
incoming telex message was received from the Headoffice Telex on a
fault-tolerant system. Processing is continued at the label RCV for setting
the two target functions TXRCV and TXSTPLR.

[7] If the variable field TXSTAMP contains the value “DUPLRQNF”, an
incoming telex message was received from the Headoffice Telex on a
fault-tolerant system, and the last received queue TXSTPLR was empty.
Therefore, the Telex Link cannot determine whether the message is a
duplicate. Processing is continued at the label PDR for setting the two
target functions TXPDR and TXSTPLR.

[8] The variable field TXSTAMP contains the value “ENLOUT ” when a
message is stored in the TXHCFSND queue. If this stamp is found during
routing, something is wrong and processing is continued at the label
CLEAN for setting the target function TXCLEAN, which can be a dummy
queue if you want to get rid of these messages.

[9] The variable field TXSTAMP contains the value “ENLIN ”, when a
message is stored in the TXHCFRCV queue. If this stamp is found during
routing, something is wrong and processing is continued at the label
CLEAN for setting the target function TXCLEAN, which can be a dummy
queue if you want to get rid of these messages.

[10] If the variable field TXSTAMP contains the value “CLEANUP ”, a message
was found in the TXHCFSND or TXHCFRCV queue during the startup of
the Telex Link. Processing is continued at the label CLEAN for setting the
target function TXCLEAN, which can be a dummy queue if you want to
get rid of these messages.

[11] If the variable field TXSTAMP contains the value “INVALID ”, a message
was received from the Headoffice Telex on a fault-tolerant system that
cannot be identified as a telex message. Processing is continued at the label
INVR for setting the target function TXINVR.

[12] If the variable field TXSTAMP contains the value “UNSXMACK”, a logical
or transmission acknowledgment was received from the Headoffice Telex
on a fault-tolerant system and the outgoing telex message was not found
in the TXSTPPDE, TXWAIT, or TXNAK queue. Processing is continued at
the label INVR for setting the target function TXINVR.

[13] With this and the following statements, the targets are set to the functions
TXERROR (also for incorrect contents of the stamp field), TXWAIT, TXACK
and TXPR0, TXNAK, TXRCV and TXSTPLR, TXPDR and TXSTPLR,
TXCLEAN, and TXINVR as determined by the conditions tested before,
and processing is continued at the label END (GOTO=END).

[14] A DSLROUTE TYPE=FINAL statement with the error target function
TXERROR is the last statement in this routing table.

Chapter 1. The MERVA ESA Applications 71

Examples of Routing Tables for the MERVA Link
The MERVA Link requires a MERVA ESA routing table to provide the Message
Integrity Protocol (MIP) service element. It also supports MERVA ESA routing
tables to connect user application queues to the MERVA Link processing queues.
With some restrictions, the MERVA Link internal routing of messages can be
controlled via MERVA ESA routing tables.

MERVA Link Message Routing
The message flow in the MERVA Link can be summarized as follows: an outgoing
application message is routed to a MERVA ESA queue, which is a member of a
MERVA Link Send Queue Cluster. This queue is called a MERVA Link send queue.

If the ASP that owns this send queue is not closed, the MERVA Link moves this
message to the MERVA Link application control queue, sends the message to the
partner and requests a transfer confirmation. When this confirmation has been
received the message is updated with transfer control information and routed to
the next applicable queue(s). This action is named “routing of a confirmed
message”.

Dependent on an agreement between cooperating applications, the partner
application, which has received the message, returns an acknowledgment message
when it has actually processed that message (not only obtained this message,
which was confirmed earlier). The MERVA Link tries to correlate an
acknowledgment message with the reported message, and adds receipt control
information to the reported message. Independent of the success of this correlation,
the acknowledged message or the acknowledgment message itself is routed to the
applicable next queue(s). This action is named “routing of an incoming
acknowledgment message”.

A message sent by the partner application is formatted to the MERVA ESA format
and routed to the applicable incoming application message queue(s). This action is
named “routing of an incoming application message”.

A closed ASP must not transfer any message to its partner ASP. It routes messages
from a MERVA Link send queue to a send queue of another transmission media
(for example, telex). With the help of the MERVA System Control Facility command
recover, in-process messages of a closed ASP can be copied with a PDM indicator
to a send queue of another transmission media. This copy process is also
controlled by a MERVA ESA routing table. This action is named “routing messages
of a closed ASP”.

An undeliverable message causes a sending ASP to become inoperable. An
inoperable ASP cannot transfer messages to its partner ASP. With the help of the
MERVA System Control Facility command iprecov, an inoperable ASP can be
recovered from an undeliverable message by removing that message from the set
of IP messages in the application control queue. This move process is also
controlled by a MERVA ESA routing table. This action is named “routing of a
recovered undeliverable message”.

Routing Confirmed Messages: A confirmed message has a message class of “CF”
or “CA” in the MERVA Link control field EKACLASS. A message of class “CF” can
be an application message or an acknowledgment message. The contents of the
MERVA Link control field EKARECRC shows the difference. EKARECRC (receipt
return code) containing 00, 04, or 08 in a message of the class “CF” identifies an
acknowledgment message. A message of class “CA” is an application message that

72 Customization Guide

has already been acknowledged. The MERVA Link control field EKARECRC
contains 00, 04, or 08 identifying an acknowledged message.

An application message must be routed to an ACK Wait Queue if an
acknowledgment is expected from the partner and the MERVA Link must correlate
this acknowledgment with this message. You must define the name of this ACK
Wait Queue in the partner table to ensure that a confirmed application message is
routed to this queue.

An acknowledgment message is not acknowledged by the receiving partner. Its
transfer, however, is confirmed. Therefore, an acknowledgment message should not
be routed to an ACK Wait Queue. It must be routed to any final log queue or it
must be discarded (routed to a dummy queue).

Routing Incoming Acknowledgment Messages: An acknowledgment message or
an acknowledged message have a message class of LR (last received) in the
MERVA Link control field EKACLASS. The contents of the MERVA Link control
field EKARECRC can be one of the following receipt return codes:

00 Final receipt

04 Not final receipt

08 Nonreceipt, which is a negative acknowledgment (NACK)

All messages of class LR must be routed to the MERVA Link application control
queue to provide the Message Integrity Protocol service element. This service
element cannot be provided without the support of the MERVA ESA routing table.

An acknowledgment message or an acknowledged message with receipt return
code 00 or 08 (final ACK or final NACK) must be routed to an application queue
that contains finished messages.

An acknowledgment message or an acknowledged message with receipt return
code 04 (not-final ACK) must be routed to the ACK Wait Queue as another
acknowledgment is expected for this message (either another not final or a final
acknowledgment).

Routing Incoming Application Messages: An incoming application message has
a message class of LR (last received) in the MERVA Link control field EKACLASS.
The contents of the MERVA Link control field EKARECRC is not 00, 04, or 08.

Here all messages must be routed to the MERVA Link application control queue to
provide the Message Integrity Protocol service element. This service element
cannot be provided without this support from the MERVA ESA routing table.

An incoming application message must be routed to an application queue that
contains messages received from the partner. This queue is the input queue for an
application that processes the incoming message and generates an
acknowledgment to be sent to the originator of that message.

Routing Messages of a Permanently Closed ASP: Issue the MERVA Link Control
Facility aclose command to set an ASP into CLOSED status. A closed ASP does not
transmit any messages to its partner ASP. It routes all messages in the MERVA
Link send queue cluster to a send queue of another transmission media.

In addition to routing messages in a send queue of another transmission media,
MERVA Link in-process messages in the application control queue can also be

Chapter 1. The MERVA ESA Applications 73

routed (copied) to another transmission media. This copy process is initiated by a
MERVA Link Control Facility recover command.

A message routed out of a send queue of a closed ASP has a message class of RS
in the MERVA Link control field EKACLASS. This message can be an application
message or an acknowledgment message. EKARECRC (receipt return code)
containing 00, 04, or 08 identifies an acknowledgment message. An
acknowledgment message can, however, be identified by application defined
information.

An in-process message recovered from the application control queue of a closed
ASP has a message class of RC in the MERVA Link control field EKACLASS. The
MERVA Link control field EKAPDUPM contains the characters PDM to indicate
that this message may be duplicate (an in-process message, for example, in the
application control queue might have already been transmitted to the partner ASP
when the recover command is issued). This message may be an application
message or an acknowledgment message. EKARECRC (receipt return code)
containing 00, 04, or 08 identifies an acknowledgment message. An
acknowledgment message can, however, be identified by application defined
information.

Routing Messages of a Temporarily Closed ASP: An ASP can be temporarily set
in CLOSED status upon request of the user exit associated with this ASP. A
temporarily closed ASP does not transmit the message currently in process to its
partner ASP. It routes it to a send queue of another transmission media.

The class of a message routed out of a send queue of a temporarily closed ASP is
specified by the user exit. This message may be an application message or an
acknowledgment message. EKARECRC (receipt return code) containing 00, 04, or
08 identifies an acknowledgment message. An acknowledgment message can,
however, be identified by application defined information.

Routing Recovered Undeliverable Messages: If you issue the MERVA System
Control command iprecov to recover an ASP from an undeliverable message, or if
you ask for an automatic IP message recovery when a message cannot be delivered
to its recipient application, the undeliverable message is removed from the
application control queue. A recovered undeliverable message has a message class
of RI in the MERVA Link control field EKACLASS.

MERVA Link Sample Routing Tables
The MERVA ESA Routing Tables used in the MERVA Link sample are EKARTS
and EKARTSCQ. These routing tables control both, the operation of the MERVA
Link and the activities of a MERVA ESA terminal user who is authorized to view
and modify the messages in all applicable queues, and to request message routing
via the eom or get next command.

The MERVA Link sample contains a sequence of activities performed by an
authorized terminal user. This terminal user represents an application using the
MERVA Link in the MERVA Link sample.

The MERVA Link sample routing tables provide the routing definition required by
the MERVA Link sample scenario described in the MERVA for ESA Installation
Guide.

74 Customization Guide

The MERVA ESA Routing Tables for the MERVA Link sample are coded as shown
in Figure 18 and in Figure 19 on page 76. They are available in source code with
explanations that are not shown in these figures.

EKARTS DSLROUTE TYPE=DEFINE,FIELD=(QN,MSGTRFUN,,,,,VFIRST,LASTDA)
DSLROUTE TYPE=DEFINE,FIELD=(RECRC,EKARECRC,,,,,VFIRST)
DSLROUTE TYPE=DEFINE,FIELD=(SUB,EKAAMSUB,,,,,VFIRST),LENGTH=8
DSLROUTE TYPE=DEFINE,FIELD=(OA,EKAOAPPL,,,,,VFIRST)
DSLROUTE TYPE=DEFINE,FIELD=(ON,EKAONODE,,,,,VFIRST)
DSLROUTE TYPE=DEFINE,FIELD=(RA,EKARAPPL,,,,,VFIRST)
DSLROUTE TYPE=DEFINE,FIELD=(RN,EKARNODE,,,,,VFIRST)

*
DSLROUTE TYPE=TEST,COND=(QN,'EKAEOM',EQ,SHORT),TRUE=TSTAP
DSLROUTE TYPE=TEST,COND=(QN,'EKAEAM',EQ,SHORT),TRUE=TSTRR
DSLROUTE TYPE=TEST,COND=(QN,'EKAAWQ',EQ,SHORT),TRUE=TSTAW
DSLROUTE TYPE=TEST,COND=(QN,'EKACMQ',EQ,SHORT),TRUE=CPYCM
DSLROUTE TYPE=TEST,COND=(QN,'EKARMQ',EQ,SHORT),TRUE=CPYRM
DSLROUTE TYPE=TEST,COND=(QN,'EKAEMQ',EQ,SHORT),TRUE=CPYRM
DSLROUTE TYPE=SET,TARGET='EKAEOM',GOTO=END

*
TSTAP DSLROUTE TYPE=TEST,COND=(RN,'N1',EQ,SHORT),TRUE=SETBTB

DSLROUTE TYPE=SET,TARGET='EKA1IS1',GOTO=END
*
TSTRR DSLROUTE TYPE=TEST,COND=(RECRC,'00',EQ),TRUE=TSTRRON

DSLROUTE TYPE=TEST,COND=(RECRC,'04',EQ),TRUE=SETEAMS
DSLROUTE TYPE=TEST,COND=(RECRC,'08',EQ),TRUE=TSTRRON
DSLROUTE TYPE=TEST,COND=(SUB,'ACK 00',EQ),TRUE=TSTRRON
DSLROUTE TYPE=TEST,COND=(SUB,'ACK 04',EQ),TRUE=SETEAMS
DSLROUTE TYPE=TEST,COND=(SUB,'ACK 08',EQ),TRUE=TSTRRON
DSLROUTE TYPE=SET,TARGET='EKAEAM',GOTO=END

*
SETEAMS DSLROUTE TYPE=SET,TARGET='EKAEAM'
TSTRRON DSLROUTE TYPE=TEST,COND=(ON,'N1',EQ,SHORT),TRUE=SETBTB
*
SETBTB DSLROUTE TYPE=SET,TARGET='EKA1IS1',GOTO=END
*
TSTAW DSLROUTE TYPE=TEST,COND=(RECRC,'00',EQ),TRUE=SETCM

DSLROUTE TYPE=TEST,COND=(RECRC,'08',EQ),TRUE=SETCM
DSLROUTE TYPE=SET,TARGET='EKAAWQ',GOTO=ENDCPYCM
DSLROUTE TYPE=SET,TARGET='EKACMQ'
DSLROUTE TYPE=SET,TARGET='EKAEOM',GOTO=END

*
CPYRM DSLROUTE TYPE=SET,TARGET='EKARMQ'

DSLROUTE TYPE=SET,TARGET='EKAEOM',GOTO=END
*
SETCM DSLROUTE TYPE=SET,TARGET='EKACMQ',GOTO=END
ERROR DSLROUTE TYPE=SET,TARGET='EKAEOM'
END DSLROUTE TYPE=FINAL

END

Figure 18. EKARTS Sample Unique Routing Table

Chapter 1. The MERVA ESA Applications 75

Processing Routing Tables
The installation of a routing table requires:
v The routing table name defined in the function table entry with the ROUTE=

parameter of the DSLFNT macro, or in the SWIFT Link logical terminal table
with the ROUTIN, ROUTOUT and ROUTSK parameters of the DWSLT macro.

v The assembly of the new or changed routing tables (and MERVA ESA function
table or the SWIFT Link logical terminal table or both if changed).

v Link-editing of the new or changed routing tables.

Note: MERVA ESA, the SWIFT Link, and MERVA Link load all routing tables.

EKARTSCQ DSLROUTE TYPE=DEFINE,FIELD=(CLASS,EKACLASS,,,,,VFIRST)
DSLROUTE TYPE=DEFINE,FIELD=(RECRC,EKARECRC,,,,,VFIRST)
DSLROUTE TYPE=DEFINE,FIELD=(DELRC,EKADELRC,,,,,VFIRST)
DSLROUTE TYPE=DEFINE,FIELD=(ACQNM,EKAACQNM,,,,,VFIRST)

*
DSLROUTE TYPE=TEST,COND=(CLASS,'IP',EQ),FALSE=TSTLC
DSLROUTE TYPE=SET,TARGET=ACQNM,GOTO=END

TSTLC DSLROUTE TYPE=TEST,COND=(CLASS,'LC',EQ),FALSE=TSTCF
DSLROUTE TYPE=SET,TARGET=ACQNM,GOTO=END

*
TSTCF DSLROUTE TYPE=TEST,COND=(CLASS,'CF',EQ),FALSE=TSTLR

DSLROUTE TYPE=TEST,COND=(RECRC,'0',EQ,SHORT),TRUE=SETDQ
DSLROUTE TYPE=SET,TARGET='EKAAWQ',GOTO=END

SETDQ DSLROUTE TYPE=SET,TARGET='EKADMY',GOTO=END
*
TSTLR DSLROUTE TYPE=TEST,COND=(CLASS,'LR',EQ),FALSE=TSTRC

DSLROUTE TYPE=TEST,COND=(RECRC,'04',EQ),TRUE=SETLRA
DSLROUTE TYPE=TEST,COND=(RECRC,'0',EQ,SHORT),TRUE=SETLRF
DSLROUTE TYPE=TEST,COND=(DELRC,'00',EQ),TRUE=SETLRI

SETLRE DSLROUTE TYPE=SET,TARGET='EKAEMQ'
DSLROUTE TYPE=SET,TARGET='EKAEAM'
DSLROUTE TYPE=SET,TARGET=ACQNM,GOTO=END

SETLRI DSLROUTE TYPE=SET,TARGET='EKARMQ'
DSLROUTE TYPE=SET,TARGET='EKAEAM'
DSLROUTE TYPE=SET,TARGET=ACQNM,GOTO=END

SETLRA DSLROUTE TYPE=SET,TARGET='EKAAWQ'
DSLROUTE TYPE=SET,TARGET=ACQNM,GOTO=END

SETLRF DSLROUTE TYPE=SET,TARGET='EKACMQ'
DSLROUTE TYPE=SET,TARGET=ACQNM,GOTO=END

*
TSTRC DSLROUTE TYPE=TEST,COND=(CLASS,'RC',EQ),FALSE=TSTRI

DSLROUTE TYPE=SET,TARGET='EKAEOM',GOTO=END
TSTRI DSLROUTE TYPE=TEST,COND=(CLASS,'RI',EQ),FALSE=TSTRR

DSLROUTE TYPE=SET,TARGET='EKAEOM',GOTO=END
TSTRR DSLROUTE TYPE=TEST,COND=(CLASS,'RR',EQ),FALSE=TSTRS

DSLROUTE TYPE=SET,TARGET='EKAEOM',GOTO=END
TSTRS DSLROUTE TYPE=TEST,COND=(CLASS,'RS',EQ),FALSE=OTHER

DSLROUTE TYPE=SET,TARGET='EKAEOM',GOTO=END
OTHER DSLROUTE TYPE=SET,TARGET='EKAEOM'
END DSLROUTE TYPE=FINAL

END

Figure 19. EKARTSCQ Sample ACQ Routing Table

76 Customization Guide

Assigning the Program Function (PF) Keys
A Program Function Key table (DSLMPFxx) is used to assign commands to the
program function (PF) keys for a screen. Several tables can be defined so that PF
keys can be used differently by users or for different functions. The following
explains how to define the PF Key tables.

The DSLMPFK Macro
The PF Key macro (DSLMPFK) is used to define a PF Key Table (refer to the
MERVA for ESA Macro Reference). A PF key table is used by MERVA ESA during a
user session. The table defines which command is to be executed when the user
presses a PF key. The table name to be used can be defined in the function table
entry and in the user profile for each user individually.

During a user session, another PF Key table can be selected for use by the pfkeys
screen command. This PF Key table is used during the current user session, until a
new one is selected with the pfkeys command. If a PF Key table is not defined in
the user profile and no pfkeys command is used, a default PF Key table name as
specified in the MERVA ESA Function table entry is used. If no MERVA ESA
Function table entry is available, the PF Key table DSLMPF00 is used. The current
PF key settings can be inspected by using the show pfkeys command.

The PF key definitions are related to an actual function by the PFKSET parameter
of the DSLFNT macro or by information in the MERVA ESA user file. The PF key
definitions are assigned in groups, and the PFGROUP parameter of the DSLFNT
macro defines which group is to be used in the function. The GROUP parameter
allows you to specify different PF key settings for different user functions in the
same PF key table.

In each PF Key table up to 9 PF key information lines can be specified. These PF
key information lines can be displayed on the reserved lines on the screen. They
show the current PF key settings. To display the n-th PF key information line the
field PFKLINE, DA=n must be specified in the screen device section of the
Message Control Block, which is used to define the display format. This MCB is
preferably a frame definition MCB, and should be specified in the FRAME=
parameter of a DSLFNT macro.

The following describes the three types of DSLMPFK macro:
v DSLMPFK TYPE=INITIAL

The INITIAL macro defines the PF key table header.
v DSLMPFK TYPE=ENTRY

The ENTRY macro defines a PF key entry, or a PF key information line.
v DSLMPFK TYPE=FINAL

The FINAL macro closes the definition of a PF key table.

Coding Considerations
The following is a list of items to be considered when coding the DSLMPFK
macro:
v The MERVA ESA screen editing uses the PF Key table to generate the command

connected to a PF key. The command is written into the TOF field 'DSLCMDL'.
v The system field separation routine extracts the PF key information lines from

the current PF Key table. Up to 9 PF key information lines can be specified in a
table. The field name for this information is DSLPFKL, and the data area index

Chapter 1. The MERVA ESA Applications 77

is used to select a specific information line. The DSLMMFS interface provides an
access to the current PF Key table. The code type for this request is
TYPE=GETPFK. The address of the requested PF Key table is stored in a field of
the Message Format Service permanent storage. PF Key tables can also be
specified in the Message Format Service program table DSLMPTT.

Overview of Available PF Keys for All MERVA ESA Functions
Table 1 gives an overview of the PF keys available with the PF Key table
DSLMPF00 as supplied with MERVA ESA. It is recommended that you not change
the PF key groups defined for MERVA ESA function programs.

Table 1. Program Function Key Settings (Part 1 of 4)

Default Function
Selection

Command User File Maintenance Message
SelectionRecord

(Update)
Record
(Display
Only)

List

PFK
Group

00
00

FUN
04

CMD+1
09

USR+1
13

USR+2
14

USR+3
15

MSG+0
16

PF KEY

PF01 Help Help Help Help Help Help Help

PF02 Retrieve Retrieve Repeat Retrieve Retrieve Retrieve Retrieve

PF03 Return Signoff Return Return Return Return Return

PF04 DF Display Display Display

PF05 DU List List List Get Next

PF06 DM Last ListFirst ListFirst ListFirst Get First

PF07 Page -1 Page -1 Page -1

PF08 Page +1 Page +1 Page +1

PF09 Hardcopy Hardcopy Hardcopy Hardcopy Hardcopy Hardcopy Hardcopy

PF10 DP Delete Delete

PF11 DQ Filled Replace List

PF12 DLA Add

PF13 Help Help Help Help Help Help Help

PF14 Retrieve Retrieve Repeat Retrieve Retrieve Retrieve Retrieve

PF15 Return Signoff Return Return Return Return Return

PF16 DF Display Display Display

PF17 DU List List List Get Next

PF18 DM Last ListFirst ListFirst ListFirst Get First

PF19 Page -1 Page -1 Page -1

PF20 Page +1 Page +1 Page +1

PF21 Hardcopy Hardcopy Hardcopy Hardcopy Hardcopy Hardcopy Hardcopy

PF22 DP Delete Delete

PF23 DQ Filled Replace List

PF24 DLA Add

Enter

78 Customization Guide

Table 2. Program Function Key Settings (Part 2 of 4)

Message Processing Message Processing
NOPROMPT

Message Selection
List PanelPrompt Telex

PFK Group MSG+1
17

MSG+1
17

MSG+2
18

MSG+3
19

PF Key

PF01 Help Help Help Help

PF02 Retrieve Retrieve Retrieve Retrieve

PF03 EOM EOM EOM Return

PF04 Repeat Txinsert 1 Repeat Get QSN

PF05 Get Next Get Next Get Next Get Next

PF06 Requeue Requeue Requeue Get First

PF07 Page -1 Page -1 Page -1 List Back

PF08 Page +1 Page +1 Page +1 List Last

PF09 Hardcopy Hardcopy Hardcopy Hardcopy

PF10 Prompt Line Txsplit Prompt Line

PF11 Prompt Txjoin Prompt List First

PF12 Escape Escape Escape List Off

PF13 Help Help Help Help

PF14 Retrieve Retrieve Retrieve Retrieve

PF15 EOM EOM EOM Return

PF16 Repeat Txinsert 1 Repeat Get QSN

PF17 Get Next Get Next Get Next Get Next

PF18 Requeue Requeue Requeue Get First

PF19 Page -1 Page -1 Page -1 List Back

PF20 Page +1 Page +1 Page +1 List Last

PF21 Hardcopy Hardcopy Hardcopy Hardcopy

PF22 Prompt Line Prompt Line Prompt Line

PF23 Prompt Prompt Prompt List First

PF24 Escape Escape Escape List Off

Enter

Chapter 1. The MERVA ESA Applications 79

Table 3. Program Function Key Settings (Part 3 of 4)

General File Maintenance Authenticator Key File Maintenance

File Selection Record
(Update)

Record
(Display
Only)

List Record
(Update)

List Record
(Display
Only)

PFK
Group

FLM
20

FLM+1
21

FLM+2
22

FLM+3
23

AUT+1
25

AUT+3
27

AUT+5
29

PK Key

PF01 Help Help Help Help Help Help Help

PF02 Retrieve Retrieve Retrieve Retrieve Retrieve Retrieve Retrieve

PF03 Return Escape Escape Escape Return Return Return

PF04 Display Display Display Display Display Display

PF05 List List List List List List

PF06 ListFirst ListFirst ListFirst ListFirst ListFirst ListFirst

PF07 Page -1 Page -1 Page -1

PF08 Page +1 Page +1 Page +1

PF09 Hardcopy Hardcopy Hardcopy Hardcopy Exchange

PF10 Delete Delete Delete Delete

PF11 Replace Replace

PF12 Add Add

PF13 Help Help Help Help Help Help Help

PF14 Retrieve Retrieve Retrieve Retrieve Retrieve Retrieve Retrieve

PF15 Return Escape Escape Escape Return Return Return

PF16 Display Display Display Display Display Display

PF17 List List List List List List

PF18 ListFirst ListFirst ListFirst ListFirst ListFirst ListFirst

PF19 Page -1 Page -1 Page -1

PF20 Page +1 Page +1 Page +1

PF21 Hardcopy Hardcopy Hardcopy Hardcopy Exchange

PF22 Delete Delete Delete Delete

PF23 Replace Replace

PF24 Add Add

Enter

80 Customization Guide

Table 4. Program Function Key Settings (Part 4 of 4)

Authenticator Key File Maintenance MERVA Link
Control
Facility

MERVA
System
Control

List (Display
Only)

Record
(Update)

List (Update) Record
(Authorize)

List
(Authorize)

PFK
Group

AUT+7
31

AUT+9
33

AUT+11
35

AUT+13
37

AUT+15
39 41 42

PF Key

PF01 Help Help Help Help Help Help Help

PF02 Retrieve Retrieve Retrieve Retrieve Retrieve Retrieve Repeat

PF03 Return Return Return Return Return Return Return

PF04 Display Display Display Display Display SELECT DF

PF05 List List List List List START DU

PF06 ListFirst ListFirst ListFirst ListFirst ListFirst Nextgrp DM Last

PF07 Page -1 Page -1 Page -1 Backward Page -1

PF08 Page +1 Page +1 Page +1 Forward Page +1

PF09 Exchange SWAP SWAP

PF10 Delete Delete Kickoff DP

PF11 Replace Reject Listinop DQ Filled

PF12 Add OK Lstall DL

PF13 Help Help Help Help Help Help Help

PF14 Retrieve Retrieve Retrieve Retrieve Retrieve Retrieve Repeat

PF15 Return Return Return Return Return Return Return

PF16 Display Display Display Display Display SELECT DF

PF17 List List List List List START DU

PF18 ListFirst ListFirst ListFirst ListFirst ListFirst Nextgrp DM Last

PF19 Page -1 Page -1 Page -1 Backward Page -1

PF20 Page +1 Page +1 Page +1 Forward Page +1

PF21 Exchange SWAP SWAP

PF22 Delete Delete Kickoff DP

PF23 Replace Reject Listinop DQ Filled

PF24 Add OK Lstall DL

Enter

Chapter 1. The MERVA ESA Applications 81

Figure 20 shows the beginning of the PF Key table DSLMPF00, which sets the PF
keys as shown in Table 1 on page 78.

Notes:

[1] Within a PF Key table, default values valid within the table are defined in
the group GROUP=00. In Table 1 on page 78, all group numbers for the PF
Key groups are indicated.

[2] Since the help command is assigned to PF01 in group 00, and all the other
groups have no definition of PF01, the help command is available with
PF01 in all the other groups. The same applies to the hardcopy command
assigned to PF9.

[3] The key descriptions for the PF fields defined here are displayed in the
bottom frame on the screen, according to the function displayed.

[4] The group number for function selection is indicated by the assembler
equate FUN.

PF00 TITLE 'PROGRAM FUNCTION KEY DEFINITIONS'

* D E F A U L T SETTINGS FOR
* PROGRAM FUNCTION KEYS

DSLMPF00 DSLMPFK TYPE=INITIAL

PRINT NOGEN
DSLMPFK AID=ENTER,CS=YES,GROUP=00 [1]
DSLMPFK AID=PF01,CMD='Help' [2]
DSLMPFK AID=PF02,CMD='Retrieve'
DSLMPFK AID=PF03,CMD='Return'
DSLMPFK AID=PF09,CMD='Hardcopy'
DSLMPFK AID=PF13,CMD='Help'
DSLMPFK AID=PF14,CMD='Retrieve'
DSLMPFK AID=PF15,CMD='Return'
DSLMPFK AID=PF21,CMD='Hardcopy'
DSLMPFK PFKLINE='1=Help 2=Retrieve 3=Return 4= * [3]

5= 6= '
DSLMPFK PFKLINE='7= 8= 9=Hardcopy 10= *

11= 12= '

* PROGRAM FUNCTION KEY DEFINITIONS
* FOR FUNCTION SELECTION

DSLMPFK AID=ENTER,CS=YES,GROUP=FUN [4]
DSLMPFK AID=PF03,CMD='Signoff'
DSLMPFK AID=PF07,CMD='Page -1'
DSLMPFK AID=PF08,CMD='Page +1'
DSLMPFK AID=PF09,CMD= [5]
DSLMPFK AID=PF15,CMD='Signoff'
DSLMPFK AID=PF19,CMD='Page -1'
DSLMPFK AID=PF20,CMD='Page +1'
DSLMPFK AID=PF21,CMD=
DSLMPFK PFKLINE='1=Help 2=Retrieve 3=Signoff 4= *

5= 6= '
DSLMPFK PFKLINE='7=Page -1 8=Page +1 9= 10= *

11= 12= '
...
...
...
DSLMPFK TYPE=FINAL
END

Figure 20. Example of a PF Key Table (DSLMPF00)

82 Customization Guide

The following assembler equates are generated by the DSLMPFK
TYPE=INITIAL macro:
FUN EQU 4 Function selection
CMD EQU 8 Operator command processing
USR EQU 12 User file maintenance
MSG EQU 16 Message processing
FLM EQU 20 General File maintenance
AUT EQU 24 The SWIFT Link Authenticator-Key File maintenance
SHW EQU 248 Display with the show command
HLP EQU 252 Display with the help command

Table 1 on page 78 shows where additional numbers are also used in the
pertinent group in the PF Key group line. The group numbers 101 to 247
are for use by the customer.

[5] With this macro the default setting for PF9 is removed.

Refer to the MERVA for ESA Macro Reference for further information about PF keys
and the DSLMPFK macro.

Processing PF Key Tables
User commands can be assigned to different PF keys in one of the following ways:
v By changing DSLMPF00
v By creating new PF Key tables, and specifying them in the MERVA ESA

Function table entries, or in the User File records. New PF Key tables may be
specified in the MFS program table DSLMPTT.

In both cases, follow these steps:
1. Change the existing PF Key Table or code a new one.
2. Assemble the changed or new PF Key Table.
3. Link-edit the appropriate module for the changed or new PF Key Table:

v If the PF Key Table is specified in the MERVA ESA Message Format Service
program table (DSLMPTT), with the parameter LINK=YES, DSLMMFS must
be link-edited.

v If the PF Key Table is specified in DSLMPTT with the parameter LINK=NO
or is not defined in DSLMPTT, the PF Key Table must be link-edited. It is
then dynamically loaded.

Customizing Error and Diagnostic Messages for Operators and Users
For MERVA ESA and all MERVA ESA controlled network links (for example, the
SWIFT Link), the Message Table DSLMSGT contains error and diagnostic messages
for operators and users. All messages in DSLMSGT are generated through the
macro DSLMSG, described in the MERVA for ESA Macro Reference.

DSLMSGT is generated through the DSLGEN macro during MERVA ESA
installation. It contains an assembler COPY statement for each network link
controlled by MERVA ESA; all messages are combined in one table. The copy code
of each network link contains the message definitions with the DSLMSG macro.

DSLMSGT is assembled and link-edited during the installation process and loaded
by the MERVA ESA programs that use it. The address of DSLMSGT is provided in
the field COMMSGTA of DSLCOM.

A message can be retrieved from the message table by the retrieval program
DSLOMSG, which gets the address of the message table as an input parameter,

Chapter 1. The MERVA ESA Applications 83

therefore allowing for different message tables. The DSLMSG macro allows for
defining the same message in more than one language in the same message table
with the LAN parameter.

Application programs like DSLEUD, DSLHCP, and DSLSDY, select the language
according to the definition in the user file record or form command (DSLEUD), or
the definition in the function table entry that they process (PRFORM parameter of
the DSLFNT macro, programs DSLHCP and DSLSDY). These messages usually
have a 4-digit number in the message identification (DSLxxxx or DWSxxxx).

Other programs than DSLEUD, DSLHCP, and DSLSDY can support only one
language per MERVA ESA installation. These messages usually have a 3-digit
number in the message identification (DSLxxxI or DSLxxxA or DWSxxxI or
DWSxxxA).

DSLMSGT is composed of copy codes for each network link. Some of these copy
codes contain additional copy codes:
v DSLMSGTC for the Base Functions messages:

– MERVA ESA operator messages DSLxxxI or DSLxxxA (copy code DSLOMSC)
– MERVA ESA user messages DSL1xxx (copy code DSLEMSC)
– MERVA ESA Message Format Service messages DSL3xxx (copy code

DSLMMSC)
v DWSMSGTC for the SWIFT Link messages:

– SWIFT Link operator messages DWSxxxI or DWSxxxA (copy code
DWSOMSC)

– SWIFT Link user messages DWS1xxx (copy code DWSEMSC)
– SWIFT Link checking and separation messages DWS3xxx and DWS4xxx (copy

code DWSMMSC)
v ENLMSGTC for the Telex Link messages:

– Telex Link operator messages ENL9xxI
– Telex Link user messages ENL35xx

v EKAMSGTC for the MERVA Link operator messages EKA7xxI, EKA7xxE, and
EKA7xxW

v EKAMSGSC for the FMT/ESA with MERVA Link operator messages EKA8xxE

These operator or user messages can be changed if:
1. Another language is used as the only language
2. Another language is used as an additional language (multiple language

support)
3. You add new messages

Translation of Messages into Another Language
If only one language is available for an operator or user message, and the default
language ID 'E' is used (even if the language is not English), then no special
provisions are required in user file records or function tables (PRFORM parameter),
as the changed language is accessed by default. You can also translate only a part
of the messages, that is, those parts presented to users who do need not to have
any knowledge of English for their work.

For the translation, the appropriate copy code (see above) must be changed, and
the appropriate message is translated considering the variable data (indicated by
the variable numbers @n in the message text). The variable data can take any place

84 Customization Guide

|

in the message text; therefore it need not have a fixed position, or, if there is more
than one variable, they need not be in a specific order.

Note: The headers of the command responses for the MERVA ESA display
commands (for example, df, dm, and dp) must never be changed, as the
executing programs do not use variables but a fix list format. Comment
statements in the copy codes indicate which messages are responses to
commands.

Multiple Language Support
In countries such as Belgium, Canada, and Switzerland, where several languages
are used by the users, the user message can be defined in several languages in the
same message table. This can be done for the messages contained in the copy
codes DSLEMSC, DSLMMSC, DWSEMSC, DWSMMSC, ENLMSGTC, EKAMSGTC,
and EKAMSGSC.

Note: MERVA Link supports only English messages.

The messages are translated into the other languages and can be added to the copy
code with the appropriate LAN parameter, for example, LAN=F for French or
LAN=G for German. It is also possible to add other languages and to remove the
English message texts.

It is possible to have only a part of the messages available in more than one
language, for example, messages presented to users with no knowledge of English.
In this case, the messages not available in a particular language are replaced by the
first message found in DSLMSGT with the message identifier DSLxxxx, DWSxxxx,
ENLxxxx, or EKAxxxx.

It is possible to mix the different languages and to have two or more versions of
the same error message one after the other, or to collect all French or German
messages in a group before or after other language messages.

Figure 21 shows an example of a message in two languages:

Notes:

[1] This message is in English, as the LAN parameter is omitted and defaulted
to LAN=E.

[2] This is the same message in German, and the parameter LAN=G is
specified. The message identification defined in the label field is the same
as for the English version of the message, therefore identifying both
messages as having the same purpose.

The same rules apply for message variables as for translating messages into one
other language.

DSL1011 DSLMSG 'Password missing or incorrect' [1]
DSL1011 DSLMSG 'Passwort fehlt oder ist falsch',LAN=G [2]

Figure 21. Example of Two Languages for the Same Message

Chapter 1. The MERVA ESA Applications 85

Adding User-Defined Messages
User-defined messages are coded following the same rules as the messages
provided by MERVA ESA using one or more languages. The following rules also
apply:
1. Define a unique message identification for the new messages, preferably with a

special acronym in the first three positions, for example, USRxxxx.
2. Supply your messages preferably in a separate copy book.
3. When the message is issued because of an MFS reason code of a user-written

checking, default setting, editing, expansion or separation exit routine, then the
17 variables available with MFS error messages must be used. These variables
are described in the copy code DSLMMSC.

4. When the message is issued by a user-written program that calls DSLOMSG for
retrieval of the error message, then the variables to be used must be defined by
your program as a list of substitution items. For details see the description of
the DSLOMS macro in the MERVA for ESA Macro Reference.

Processing the Changed Message Table
After changing one of the copy codes used by DSLMSGT, DSLMSGT must be
assembled and link-edited.

86 Customization Guide

Chapter 2. The MERVA ESA Environment

This chapter explains how you customize the following areas in MERVA ESA:
v The parameters used in the module DSLPRM. This section shows how to use the

DSLPARM macro.
v Use of a security manager.
v The parameters used in the nucleus server table, DSLNSVT, to allow parallel

nucleus server processing and the definitions for intertask and interservice
communication.

v The definition of the transaction table DSLTXTT.
v The files that use the MERVA ESA general file services. This section shows how

to code the general file table (DSLFLTT).
v The features of the terminal screens and printers by means of the terminal

feature definition table (DSLTFDT).

Defining Basic MERVA ESA Parameters in Module DSLPRM
For the basic customizing of the MERVA ESA environment the module DSLPRM is
used. This module uses the DSLPARM macro, described in the MERVA for ESA
Macro Reference.

The DSLPARM macro can be used by user-written programs to map the
customizing parameters.

DSLPRM Module Sample
An example of the MERVA ESA customizing parameter module is shown below.

© Copyright IBM Corp. 1987, 2001 87

Notes:

[1] For MVS only. Specifies 253 as SVC number for the installation of the
interregion communication program DSLNICP. This parameter is
mandatory in MERVA ESA IMS. In MERVA ESA CICS, this parameter is
only required if the MERVA ESA batch programs DSLSDI, DSLSDO, or
DSLSDY are used.

[2] A maximum number of 10,000 queue elements is specified for storing in
the queue data set.

[3] For MVS only. CVTEXTO=36 specifies that in the extension table used for
storing the address of the MERVA ESA interregion communication area
(DSLICA) the offset 36 is used. The address of the extension table is stored
in the CVTUSER field of the MVS common vector table (CVT).

This parameter has a default of zero and should be used to avoid two
MERVA ESA installations competing over the first fullword in the
extension table.

[4] USER=10 specifies that a maximum number of 10 users can be active.

Under IMS, this parameter is also used to format the MERVA ESA
end-user SPA file. If this parameter is changed later, the SPA file must be
reallocated and formatted using the DSLEBSPA program.

[5] USERSTO=(200,200) specifies with the first parameter that 200 bytes of
permanent storage (space in SPA) are reserved for user exits that can be
used for communication purposes with DSLEUD and external function
programs, or with the external function programs alone. The second
parameter specifies 200 bytes as working storage for the user exits.

[6] MCBNUM=4 specifies that (4+2) MCBs are loaded concurrently for each
session. The default (10) was reduced to save storage.

DSLPARM SVC=253, * [1]
NQE=10000, * [2]
CVTEXTO=36, * [3]
USER=10, * [4]
USERSTO=(200,200), * [5]
MCBNUM=4, * [6]
QDS=(2), * [7]
MFSSTOR=(8192,32000,1536), * [8]
TOFSIZE=(2048,4096), * [9]
NICBUF=12000, *
MAXBUF=1048576, *
LRGMSG=YES, *
JRNBUF=(,YYYY), * [10]
JSWITCH=MANUAL, * [11]
DSLID=IFT2, * [12]
CID=DSL, * [13]
EXQUE=YES, * [14]
EXUSR=YES, * [15]
EXJRN=YES, * [16]
CWAOFF=20, * [17]
ITC=(TSQ,APPC), * [18]
ITCAREQ=(,FDMAMF5), * [19]
ITCASRV=(,FDMAMF5,MERVAITC), * [20]
ITCQSRV=DSLNX, * [21]
WSASRV=(,FDMAMF5,MERVAFCS) [22]

END

Figure 22. DSLPRM Sample 1

88 Customization Guide

[7] QDS=(2) specifies that duplicate queue data sets are available. Processing
with the second data set is not continued after an I/O error.

Note: Both data sets must be made equal after abnormal end of processing
before MERVA ESA can be restarted. For more information refer to
the descriptions of messages DSL360I and DSL361I in MERVA for
ESA Messages and Codes.

[8] MFSSTOR=(8192,32000,1536) specifies storage sizes for MFS buffers. The
MFS permanent storage is increased to 8192 bytes (default=6144) to allow
more nesting levels to be processed. The MFS temporary storage and the
MFS storage used for retype verification are not changed.

[9] With the following specifications, the sizes of the buffers are increased to
allow the processing of large messages. The sizes of the buffers are
increased dynamically by MERVA ESA programs until the value specified
in the MAXBUF parameter is reached, in this example 1MB (1048576
bytes). The initial TOFSIZE is 2KB; the TOF grows dynamically by 4KB
when more space is needed, until the limit of 1MB is reached. When
LRGMSG=YES is specified a large message cluster must be allocated and
assigned to the MERVA ESA region; the large messages created in
MERVA ESA can be stored in the MERVA ESA large message cluster. The
parameter of JRNBUF indicates that journaling should segment buffers that
are too large to fit into one journal data set record.

[10] JRNBUF=YYYY specifies a 4-digit year for the journal record header. This
specification implies the use of segmented journal records for buffers too
large to fit into one journal data set record. Use of the 4-digit year
specification is mandatory.

[11] The JSWITCH parameter defines the initial switching mode of the journal
data sets. The specification MANUAL causes MERVA ESA to switch
between journal data sets only when the operator requests it. This
specification is useful when a journal is archived by a separate batch job.
Journal output can be switched to the alternate data set for the duration of
the batch job.

[12] DSLID=IFT2 specifies an identifier of 4 characters that is added to all
unsolicited operator messages issued at the operating system console. If
two or more MERVA ESA installations are running in the same MVS or
VSE system, this identifier determines which MERVA ESA installation
issues which messages. In VSE, the first three characters of DSLID are used
for the MERVA ESA interpartition communication to identify for the
MERVA ESA batch programs DSLSDI, DSLSDO, and DSLSDY with which
MERVA ESA installation they want to communicate. It is necessary to
specify different DSLID parameters in each MERVA ESA.

[13] CICS only. This parameter specifies a 3-character operator identifier.
MERVA ESA can be started from a CICS terminal only by an operator
whose identifier starts with these 3 characters. The operator identifier is
defined in the CICS signon table (DFHSNT). For CICS/ESA V4, the
operator identifier must be specified in RACF® or an alternative security
system used with CICS/ESA. In VSE, this operator must sign on at the
VSE system console before entering MERVA ESA operator commands.

[14] Specifies whether the MERVA ESA queue test commands move, copy,
delete, delx, and free can be used by the MERVA ESA operators. Because
these commands bypass the routing process between MERVA ESA
functions, they should only be used in a test installation. In a production

Chapter 2. The MERVA ESA Environment 89

environment, EXQUE=NO must be specified. If EXQUE=YES or
EXQUE=MASTER is specified, it is the responsibility of the installation to
prevent misuse of these commands, for example, by specifying the
commands individually in the “Unauthorized Commands” section of the
MERVA ESA user-file record.

[15] Use this parameter to prevent a user of a bank sharing one MERVA ESA
and SWIFT Link installation with several other banks, from creating a
user-file record for accesses to functions of another bank during online
maintenance of the MERVA ESA User File.

Note: The restriction of EXUSR=YES does not apply to master users.

[16] Specifies whether the MERVA ESA test command jrn (display journal) can
be used by MERVA ESA operators. In a production environment,
EXJRN=NO must be specified. If EXJRN=YES is specified, MERVA ESA
operators can inspect journal records online. These journal records can
contain sensitive information.

[17] CICS only. Use this parameter to specify which storage MERVA ESA uses
in the CICS Common System Work Area (DFHCWA).

[18] This parameter specifies which method for MERVA ESA intertask
communication should be used. The first subparameter applies to CICS
transactions. The value TSQ specifies that CICS temporary storage queues
should be used instead of the direct buffer move operation. The second
subparameter applies to MVS programs not running under CICS. The
value APPC specifies that APPC/MVS should be used instead of the direct
buffer move operation through the MERVA ESA SVC.

[19] ITCAREQ specifies the APPC/MVS values used by the requester’s side of
the intertask communication. The second parameter specifies the
NOSCHED LU name which is used by the server’s side of the intertask
communication. The TP name is taken from the server parameters
ITCASRV.

[20] ITCASRV specifies the APPC/MVS values used by the server’s side of the
intertask communication. The second subparameter specifies the
NOSCHED LU name, the third subparameter specifies the TP name under
which this server registers itself to APPC/MVS.

[21] ITCQSRV specifies the CICS TS queue values used by the server’s side of
the intertask communication. This parameter specifies a prefix for the
temporary storage queues used by MERVA ESA intertask communication.
The remaining 3 characters will be filled with numeric values created
dynamically.

[22] If you use the APPC/MVS version of the MERVA Message Processing
Client Server, you must specify the WSASRV parameter. The Server
registers with APPC to handle all requests from clients for conversation
allocation with the specified Logical Unit and Transaction Program.

You can redistribute the permanent storage available for MERVA ESA end-user
programs by changing permanent storage requests for several MERVA ESA
buffers. The following MERVA ESA parameters request permanent storage (adjust
their values to meet the requirements of your system):
v MCBNUM, storage required is (MCBNUM+2)*24, that is, 144 bytes in this

sample parameter module.

90 Customization Guide

v MFSSTOR, storage required is the sum of the first and third parameter, that is,
9728 bytes in this sample parameter module.

v USERSTO, storage required is given with the first parameter, that is, 200 bytes in
this sample parameter module.

DSLPRM Settings for Large Messages
When receiving large SWIFT messages, especially those with multiple repeatable
sequences, MERVA ESA needs space to format the messages internally—sometimes
more than twice the size of the message. To handle such messages, use the
following parameter settings in the parameter module DSLPRM:

APISMSG=12288 Allows large SWIFT messages of up to 10000 bytes.
All your applications using the MSGSWIFT buffer
must be recompiled when this value is increased! It
is recommended for all new application programs
to use the API calls MSGG and MSGP to format
messages. For these API calls, the APISMSG
parameter is not needed.

JRNBUF=(16000,YYYY) The record size in the journal data set must have a
minimum of 16000. Set the record length of the
corresponding VSAM clusters to the same value as
is specified for this parameter.

LRGMSG=YES Indicates that large messages are supported.

MAXBUF=250000 This would allow for the worst case of repeatable
sequences. Normally a value of 64000 should be
sufficient. Any larger value of up to 2097152 (2MB)
can be specified.

TOFSIZE=(18432,8192) Specifies that the TOF buffer can be increased
dynamically up to the size of MAXBUF.

Defining the Parameters for Using a Security Manager
You can use a security manager to control the signon to MERVA ESA and to the
user file maintenance function. This can be an external security manager (ESM),
such as RACF under MVS, or the basic security manager (BSM) of VSE. Note that,
for VSE, VSE/ESA Version 2.4 or later is required to use the BSM or any supported
ESM.

When using a security manager, specify the following parameters in the module
DSLPRM using macro DSLPARM:
v EUDTRAN=DSLE

This is the default transaction code of the MERVA ESA end user driver
DSLEUD. If DSLE is not defined in your installation, specify another valid
transaction code for DSLEUD.

v EXDSP=YES
This is only required if you want to start the end user driver by entering the
transaction code DSLP from the CICS or IMS terminal. DSLP starts the program
DSLPTMRV which itself starts the end user driver. Also refer to “Transparent
Usage of the DSLEUD” on page 93.

v EXSEC=YES
v EXUID=YES
v MERVUSR=DSLUSER

Chapter 2. The MERVA ESA Environment 91

This is the default pseudo user ID used by MERVA ESA when the user file is
empty. If DSLUSER is not defined in your installation as a user ID known to the
security manager for a CICS or IMS signon, specify another valid user ID.

v PGCALL=YES
v USERSTO=(8,208)

The first subparameter shows the required SPA size reserved for user programs.
If you have already defined a SPA size reserved for user programs in your
installation, increase it by 8. In this case, you have to adjust the layout of the
data in the SPA, as far as the DSLEUD user exits DSLEU001 and DSLEU003 are
concerned.
The second subparameter shows the default value for the temporary storage for
DSLEUD user exits. It is not used in the context discussed. If required, you can
specify your own value.

v USFPW=NO
v RACFSVC=nnn

For MVS, this parameter is optional if MERVA ESA is running under CICS/ESA
V4.1 or later. The parameter is required for the previous versions of CICS and
for MERVA ESA running under IMS.
nnn specifies a type-3 SVC number for the module DSLEUSVC. A decimal value
from 200 to 255 can be specified. The value must be different to the value
specified in parameter SVC (interregion communication).

Required Parameter Settings
You can decide whether you want to use the features of the security manager
interface. The following parameter combination ensures that both the MERVA ESA
signon and the usage of the MERVA ESA user file maintenance function are
protected by a security manager:
v EXSEC=YES
v EXUID=YES
v PGCALL=YES

For an MVS installation, if MERVA ESA is not running under CICS/ESA V4.1 or
later, you must also set the parameter RACFSVC=nnn. This lets the security
manager protect the usage of the MERVA ESA user file maintenance function.

If you specify NO for any of the parameters EXSEC, EXSEC, or PGCALL, you
switch off the security manager interface features. That is:
v Users sign on to MERVA ESA via the signon panel. This applies if you started

the end user driver by entering the transaction code DSLP from the terminal.
Note that the end user driver must accept the start from the terminal. This
requires that EXSEC=YES is not specified in combination with EXUID=NO or
PGCALL=NO.

v Users enter a MERVA ESA rather than a security manager recorded password
for the user file maintenance function (provided that USFPW=YES is specified).

Defining an Authorized User
Before you can use the security manager to control access to MERVA ESA, you
must create an authorized user via the MERVA ESA user file maintenance. The
name of the user file record must be equal to an identifier that is known to the
security manager and that is entered at CICS or IMS signon. The USR function at
least should be assigned to the user to create further user file records.

92 Customization Guide

Transparent Usage of the DSLEUD
When the security manager interface was not available, you entered one of the
transaction codes assigned to the MERVA ESA end-user driver DSLEUD, for
example, DSLE or SWEU, to start the end user driver. Now, with the security
manager interface, you have to enter the transaction code DSLP when you want to
start the end-user driver from the terminal.

If you want to continue to use the transaction code DSLE instead of DSLP, the
following modifications enable the transparent use of the end-user driver:
v Specify parameter EUDTRAN=xxxx in the module DSLPRM.

xxxx represents any valid transaction code assigned to DSLEUD except of DSLE,
for example, SWEU.

v Remove DSLE from the system definition.
In CICS, remove it from the TRANSACTION definitions in the CSD.
In IMS, remove it from the IMS application definitions.

v Rename DSLP to DSLE.
In CICS, rename it in the TRANSACTION definitions in the CSD.
In IMS, rename it in the IMS application definitions. The new definition must be
included in the stage-1 input code of the IMS generation.

Now, when you enter DSLE at the terminal, program DSLPTMRV is started as you
assigned DSLE to DSLPTMRV.

When DSLPTMRV is running, it starts program DSLEUD using the transaction
code specified for parameter EUDTRAN.

Notes:

1. DSLP can only be entered at the terminal. It cannot be used for a
program-to-MERVA switch. Program-to-MERVA switches are described in the
MERVA for ESA System Programming Guide.

2. Parameters following DSLP are ignored when entered.
3. When you assigned a new transaction code to DSLEUD, a program-to-MERVA

switch from your application to MERVA ESA might fail if the application still
uses the former DSLEUD transaction code. In this case you have to change the
application and let it take the correct transaction code from the field
NPEUDTRN. This field can be obtained from the DSLPRM DSECT (Assembler
only) or by using the MERVA ESA API function FLDG (Assembler, C/370™,
COBOL, and PL/I).

Defining the Nucleus Server Table DSLNSVT
To customize the parallel processing in the nucleus server environment of
MERVA ESA, the table DSLNSVT is used. All service programs running under
control of the nucleus are defined in the tables DSLNPTT, DSLNTRT, and
DSLNCMT. These programs are called nucleus servers. The table DSLNSVT defines
whether a nucleus server runs under control of DSLNUC or as a separate task. It
uses the DSLNSV macro as described in the MERVA for ESA Macro Reference.

Sample DSLNSVT Tables
The nucleus server table is loaded by DSLNUC during startup. If found, the
contents is interpreted. It consists of a main section and an entry for each service
specified to run as a nucleus server. The default table defines that parallel
processing is not used. The entries in the nucleus server table are subdivided into

Chapter 2. The MERVA ESA Environment 93

groups. When the customization specifies that nucleus servers should run as
separate tasks, you must remove the comments for an entire group. The programs
within one group must run together in one task and execute in a synchronous way.

If you specify SERVER=TASK, under IMS the nucleus server is attached as a
subtask to the DSLNUC maintask. Under CICS, the nucleus server is started as a
CICS task. Under CICS MVS, you can specify SERVER=BATCHTASK. This
indicates that the nucleus server runs as an MVS subtask. The advantage is that
MVS then relieves CICS of the subtask management. Omit the SERVER parameter
for subroutines under control of a nucleus server.

The example below shows the nucleus server table as delivered with the
MERVA ESA product. You can modify this table to create your own version.
NSVT TITLE 'MERVA ESA Nucleus Server Table'

COPY DSLSYSET [1]
DSLNSV TYPE=INITIAL [2]

**** Main entry for DSLNUC must be the first definition
DSLNSV NAME=DSLNUC,SERVER=MAIN [3]
DSLNSV NAME=DSLNCMD

*
**** DSLNMOP must not run as a subtask!

DSLNSV NAME=DSLNMOP,SERVER=MAIN [4]
DSLNSV NAME=CONSOLE,MODNAME=DSLNMOP
DSLNSV NAME=DSLNDM

*
**
* The following programs can be changed to run as tasks.
* Remove the asterisk and the number in the first three columns.
* In each case the whole group of entries must be activated.
**
**** Journal program group and message counter group
*01 DSLNSV NAME=DSLJRNP,SERVER=TASK [5]
*01B DSLNSV NAME=MSGCOUNT,MODNAME=DSLCNTP, SERVER=TASK
*01B DSLNSV NAME=DSLCNTDL
**** Queue management group
*02 DSLNSV NAME=DSLQMGT,SERVER=TASK [6]
*02 DSLNSV NAME=DSLQLRGC
*02 DSLNSV NAME=DSLQMGTR
*02 DSLNSV NAME=DSLRTRSW
*
**** The command server group
*03 DSLNSV NAME=DSLNCS,SERVER=TASK [7]
*
**** The user file program group
*04 DSLNSV NAME=DSLNUSR,SERVER=TASK [8]
*04 DSLNSV NAME=DSLNDU
*
**** The remote task communication group
*05 DSLNSV NAME=DSLNRTCP,SERVER=TASK [9]
*05 DSLNSV NAME=RTCOMM,MODNAME=DSLNRTCP
*
**** Intertask Communication: Intra/Interregion group
*06 DSLNSV NAME=DSLNTS,SERVER=TASK [10]
*06 DSLNSV NAME=BATCH,MODNAME=DSLNTS [11]
*06 DSLNSV NAME=TRANSACT,MODNAME=DSLNTS (CICS only) [12]
*06 DSLNSV NAME=DSLNSHU
*
**** Intertask Communication via CICS TS queues (CICS only)
*07 DSLNSV NAME=CICSSRV,MODNAME=DSLNTSQ,SERVER=TASK [13]
*
**** Intertask Communication via APPC/MVS server (MVS only)
*08 DSLNSV NAME=APPCSRV,MODNAME=DSLNTSA,SERVER=TASK [14]
*
**** Intertask Communication via MQSeries (MVS only)

94 Customization Guide

*09 DSLNSV NAME=MQISRV,MODNAME=DSLNTSM,SERVER=TASK [15]
*
**** The syncpoint program group
*10 DSLNSV NAME=SYNPOINT,MODNAME=DSLISYNP,SERVER=TASK [16]
*
**** The SWIFT link program group
*11 DSLNSV NAME=SWIFTII,MODNAME=DWSDGPA,SERVER=TASK [17]
*11 DSLNSV NAME=SWIFTAUT,MODNAME=DWSAUTIN
*11 DSLNSV NAME=DWSAUTP
*11 DSLNSV NAME=DWSAUTIN
*11 DSLNSV NAME=DWSDCMD
*11 DSLNSV NAME=DWSDCMR
*11 DSLNSV NAME=DWSDIVA
*11 DSLNSV NAME=DWSXTRCE
*11a DSLNSV NAME=SWIFTIIA,MODNAME=DWSDGPA,SERVER=TASK
*11a DSLNSV NAME=DWSDCMDA,MODNAME=DWSDCMD
*11b DSLNSV NAME=SWIFTIIB,MODNAME=DWSDGPA,SERVER=TASK
*11b DSLNSV NAME=DWSDCMDB,MODNAME=DWSDCMD
*11c DSLNSV NAME=SWIFTIIC,MODNAME=DWSDGPA,SERVER=TASK
*11c DSLNSV NAME=DWSDCMDC,MODNAME=DWSDCMD
*
**** The SWIFT link load session key program group
*12 DSLNSV NAME=SWLOADSK,MODNAME=DWSDLSK,SERVER=TASK [18]
*
**** The Telex link via fault tolerant system program group
*13 DSLNSV NAME=TELEX,MODNAME=ENLSTPL,SERVER=TASK [19]
*13 DSLNSV NAME=ENLCMDL
*
**** The nucleus server display and trace command group
*14A DSLNSV NAME=DSLNDR,SERVER=TASK [20]
*14B DSLNSV NAME=DSLNDRR,SERVER=TASK
*14C DSLNSV NAME=DSLNDRQA,SERVER=TASK
*14D DSLNSV NAME=DSLNTRC,SERVER=TASK [21]
*

DSLNSV TYPE=FINAL [22]
END

Notes:

[1] This must be the first macro definition. It specifies the globals for the
environment for which the table is to be compiled for.

[2] This must be the second macro definition.

[3] This must be the third macro definition. The nucleus must always be
specified to run as the maintask. It specifies the services the nucleus still
provides plus specific command execution routines.

[4] The operator console interface must also run in the maintask. Note that the
name CONSOLE, specified as DESC parameter in the DSLNPTT, must also
be specified. The operator message processing has its own command
execution routine to display the operator messages and must also be
specified.

[5] The journal processing is an independent central service and is a good
choice for a nucleus server to run as a subtask. The MSGCOUNT nucleus
server also processes message counters and the command execution
routine for the DCLOG command.

[6] The queue management is an independent central service and is a good
choice for a nucleus server to run as a subtask. The other members of this
group are command execution routines to switch the queue trace, the
routing trace, and for the LMC display functions.

Chapter 2. The MERVA ESA Environment 95

[7] The command service is a good choice for a nucleus server to run as a
subtask. It processes the MERVA ESA commands which are entered via the
operator console.

[8] This module does the user file processing. It is an independent service
which is a good candidate for a nucleus server to run as a subtask.

[9] This service provides the Remote Task Communication. It is defined in the
DSLNPTT with DESC=RTCOMM and in the DSLNTRT with the program
name DSLNRTCP. Therefore both names must be defined in this group.

[10] The intertask communication group consists of nucleus servers used for
communication between the nucleus and the various interfaces such as the
end-user driver, the hardcopy print routine, and the sequential data set
input and output processing. Note that it consists also of the command
execution routine for shutdown and reshutdown.

[11] To define a nucleus server to use interregion communication, the name
BATCH, as defined in the DSLNPTT, must be specified.

[12] When running under CICS, you should define the intraregion task server,
which is defined in the DSLNPTT with DESC=TRANSACT.

[13] This intertask communication nucleus server uses the CICS temporary
storage queue method. Do not specify it if running under IMS.

[14] This intertask communication nucleus server uses the APPC/MVS method.
Do not specify it if running under VSE.

[15] This intertask communication nucleus server uses MQSeries. Do not
specify it if MERVA ESA is running under VSE.

[16] This nucleus server creates a syncpoint for the nucleus when running
under CICS or as a BMP under IMS.

[17] This group defines the nucleus server for the SWIFT Link. It consists of the
general purpose application, the authenticator key file support and its
initialization, and command execution routines for SWIFT Link commands.
The SWIFT Link is defined in the DSLNPTT with DESC=SWIFTII. The
nucleus servers required to use multiple instances of SWIFT Link are also
defined here. For further information about using multiple instances for
SWIFT Link, see “Chapter 3. The SWIFT Link” on page 127.

[18] This nucleus server loads the SWIFT session keys.

[19] This nucleus server processes the Telex Link. It consists also of a command
execution routine for Telex commands.

[20] These command services process display commands used for problem
diagnosis in the parallel processing of the nucleus. They are good
candidates to run as subtasks in the case they are needed.

[21] The nucleus trace service is used for debugging only. If needed, it is a
good candidate to run as a subtask.

[22] This must be the last macro definition.

An example of the nucleus server table using parallel processing is shown below.

96 Customization Guide

Notes:

[23] The journal service runs as a separate task.

[24] The queue management service runs as a separate task.

[25] The intertask communication server using APPC/MVS runs as a separate
task. For MERVA ESA running under CICS MVS, this nucleus server runs
as an MVS task. The priority is one less than the priority of DSLNUC.

[26] This installation has defined another intertask communication server for
APPC/MVS which also runs as a separate task. This server must be
defined in the DSLNPTT with the DESC=APPCSRV1 parameter. Defining
more than one intertask communication server can improve the throughput
when using the intertask communication via APPC/MVS.

[27] The SWIFT Link network driver runs as a separate task.

Defining the Parameters for Using QDS on DB2
To customize MERVA ESA for queue management using DB2®, the following
parameters must be set in the parameter module DSLPRM:

QIO=DSLQMDIO DSLQMDIO is the queue management DB2 I/O
module

NSVT TITLE 'MERVA ESA Nucleus Server Table'
COPY DSLSYSET
DSLNSV TYPE=INITIAL

**** Main entry for DSLNUC must be the first definition
DSLNSV NAME=DSLNUC,SERVER=MAIN
DSLNSV NAME=DSLNCMD

*
**** DSLNMOP must not run as a subtask!

DSLNSV NAME=DSLNMOP,SERVER=MAIN
DSLNSV NAME=CONSOLE,MODNAME=DSLNMOP
DSLNSV NAME=DSLNDM

*
**
**** Journal program group

DSLNSV NAME=DSLJRNP,SERVER=TASK [23]
*
**** Queue management group

DSLNSV NAME=DSLQMGT,SERVER=TASK [24]
DSLNSV NAME=DSLQLRGC
DSLNSV NAME=DSLQMGTR
DSLNSV NAME=DSLRTRSW

*
**** Intertask Communication via APPC/MVS server MVS only

DSLNSV NAME=APPCSRV,SERVER=BATCHTASK,PRIO=-1 [25]
DSLNSV NAME=APPCSRV1,SERVER=BATCHTASK,PRIO=-2 [26]

*
**** The SWIFT link program group

DSLNSV NAME=SWIFTII,MODNAME=DWSDGPA,SERVER=TASK [27]
DSLNSV NAME=SWIFTAUT,MODNAME=DWSAUTIN
DSLNSV NAME=DWSAUTP
DSLNSV NAME=DWSAUTIN
DSLNSV NAME=DWSDCMD
DSLNSV NAME=DWSDIVA
DSLNSV NAME=DWSXTRCE

*
DSLNSV TYPE=FINAL
END

Figure 23. Example of a MERVA ESA Nucleus Server Table Using Parallel Processing

Chapter 2. The MERVA ESA Environment 97

DB2SS=subsystem DB2 subsystem name (applies to DB2 MVS only)

DB2PLB=planname DB2 plan name for the batch nucleus program
(applies to DB2 MVS only)

The parameters QDS and LRGMSG are not applicable when using QDS on DB2
and are ignored. To use direct queue management in batch or API programs,
specify the parameter SDDB2=YES.

Customizing MERVA ESA Intertask Communication Using MQSeries
If you run MERVA ESA in a multisystem environment with shared resources and a
MERVA ESA application runs on a different system from MERVA ESA, you must
use an intertask communication method other than the traditional intertask
communication (the default), which allows communication only between address
spaces.

The following methods are available under MVS only:
v Intertask communication using APPC
v Intertask communication using MQSeries

The following sections describe how to customize intertask communication using
MQSeries.

Parameters for Intertask Communication Using MQSeries
If you want to use intertask communication using MQSeries, the second value of
the ITC parameter in module DSLPRM must be set to MQI. The following queue
name definitions must be specified:
v ITCMSND
v ITCMRTQ
v ITCMRCV

Notes:

1. The queue names you specify for intertask communication must match the
MQI queue definitions.

2. To allow for multiple independent communication with MERVA ESA using a
common DSLPRM, define a model queue for the reply-to queue. The name of
this model queue has to be specified as the value of the first ITCMRTQ
subparameter. For the second subparameter, specify a name with a prefix
followed by an asterisk. This allows the local message queue manager to
generate a dynamic message queue with a unique name for replies returned by
MERVA ESA to the various applications.

98 Customization Guide

Notes:

[1] MQMNAME specifies the name of the local MQSeries queue manager. The
name is different for each system in a multisystem environment. This
parameter is required if you want to use an MQSeries queue manager
other than the default MQSeries queue manager in your installation. Note
that not all installations provide a default MQM.

[2] ITC specifies the MERVA ESA intertask communication method to be
used. The first subparameter applies to CICS transactions. The value TSQ
specifies that CICS temporary storage queues should be used instead of the
direct buffer move operation. The second subparameter applies to MVS
programs not running as CICS transactions. The value MQI specifies that
MQSeries should be used.

[3] ITCMSND specifies the name of an MQI send queue used by the intertask
communication using MQSeries. This is the queue to which service
requests are put. This specification is required when an application, for
example, DSLSDI runs in its own address space.

[4] ITCMRCV specifies the name of an MQI receive queue used by the
intertask communication using MQSeries. This specification is required by
the task server for MQSeries on the primary MERVA ESA instance. This is
the queue from which service requests are retrieved by MERVA ESA.

If there are multiple entries for DSLNTSM specified in the DSLNPTT and
the PARM parameter has different values (for example, 1 for the first entry,
2 for the second entry), then the constructed queue name is
DSL.SYS1.ITC.RECEIVE.ALL.1 for the first nucleus task server for
MQSeries, and DSL.SYS1.ITC.RECEIVE.ALL.2 for the second nucleus task
server for MQSeries.

[5] ITCMRTQ specifies the name of an MQI reply-to queue used by the
intertask communication via MQSeries. This is the queue from which
request responses are retrieved. This specification is required when an
application, for example, DSLSDI runs in its own address space.

[6] ITCMWTT specifies the maximum period an application should wait for a
response to a service request. In this example a response is expected within
30 seconds.

Customizing the Nucleus Program Table (DSLNPTT)
Intertask communication for MQSeries requires that the MERVA ESA MQSeries
nucleus task server program (DSLNTSM) be defined in the nucleus program table.
This program is defined in an entry in the copy book DSLNPTTC as shown in
Figure 25 on page 100. This copy book is included in module DSLNPTT.

DSLPARM
...
MQMNAME=CSQ1, * [1]
ITC=(TSQ,MQI), * [2]
ITCMSND=(DSL.SYS1.ITC.SEND.NUC1), * [3]
ITCMRCV=(DSL.SYS1.ITC.RECEIVE.ALL), * [4]
ITCMRTQ=(DSL.SYS1.ITC.REPLY.ALL), * [5]
ITCMWTT=30000, * [6]
...

Figure 24. DSLPARM Parameters for Intertask Communication Using MQSeries

Chapter 2. The MERVA ESA Environment 99

Customizing the Nucleus Server Table
Intertask communication for MQSeries requires the MERVA ESA MQSeries Nucleus
Task Server to run on the primary MERVA ESA instance. This is specifed in the
Nucleus Server Table (DSLNSVT). Refer to Figure 28 on page 104 for an example.

Defining MQI Queues
You have to define all MQI queues for intertask communication named in
DSLPARM and the MQI channels to MQSeries. Refer to “Defining MQI Queues”
on page 107 and to “MQI Queue Examples” on page 108.

Customizing MERVA ESA Interservice Communication
The new interservice communication gives you more flexibility to run
MERVA ESA. You can run more than one MERVA ESA instance, one primary and
one or more secondary MERVA ESA instances. The primary MERVA ESA instance
gets all the service requests according to the nucleus server table definition. A
service request can be processed by the primary instance or distributed to a
secondary MERVA ESA instance. Data and control information are passed using
MQSeries for MVS/ESA™. A message is put into the MQI receive queue of the
MERVA ESA instance that provides the requested service. After the request has
been processed the result is passed back as a reply message to the MQI reply-to
queue of the requester.

The XCF signalling services of MVS/ESA are used for the exchange of status
information and failure notification.

Figure 26 on page 101 shows a scenario with three MERVA ESA instances, each
running on a different MVS system. You can also run more than one MERVA ESA
instance on the same MVS system. In this scenario, NUC1 is defined as primary
and runs on System1, NUC2 is defined as secondary and runs on System2, and
NUC3 is defined as secondary and runs on System3.

To use interservice communication:
1. Define the new parameters for interservice communication in the MERVA ESA

parameter module DSLPRM.
2. Modify the nucleus server table (DSLNSVT) to define the services provided by

a nucleus.
3. Set up the MQSeries resources. See Table 5 on page 108 for a single system

environment and Figure 29 on page 109 for a multisystem environment.

...
* Intertask communication: MQSeries nucleus task server
* - To run this server, the server parameters in DSLPRM are needed.
* - The server is reentrant, multiple servers can be defined.
* The PARM parameter creates multiple server instances,
* the DESC descriptor must then be different for each server.
* - The ECB number is one.
* - AUTO=NO requires operator command 'S MQISRV1' to start the server

DSLNPT TYPE=PGM,NAME=DSLNTSM,STRTREQ=4,STOPREQ=8,LANG=HLL, *
DESC=MQISRV1,ECB=1,PRTY=5,AUTO=YES,PARM=

...

Figure 25. Specifying the MERVA ESA MQSeries Nucleus Task Server in the Nucleus
Program Table

100 Customization Guide

Defining the Parameters for Interservice Communication
Using MQSeries

Traditionally, MERVA ESA runs on a single system. Specifications in the nucleus
server table determine whether a single service runs within the nucleus or as a
subtask. Specifying subtasks allows execution of services in parallel.

If you run MERVA ESA in a multisystem environment with shared resources, you
can distribute MERVA ESA services among several systems. In this case, the
MERVA ESA nucleus is separated into MERVA ESA instances each running on a
different system. All MERVA ESA instances communicate via interservice
communication using MQSeries.

If you decide to do this, you have to consider:
v The system which communicates with applications via intertask communication

must always be defined as the primary MERVA ESA instance. All others must
be defined as a secondary MERVA ESA instance. There can only be one primary
MERVA ESA instance, while there can be multiple secondary MERVA ESA
instances. You define this in the ISCNUC parameter.

v Each MERVA ESA instance requires the following MQI queue definitions in
DSLPRM:
– ISCMSND
– ISCMRTQ
– ISCMRCV

Notes:

1. The queue names you specify for interservice communication must match the
MQI queue definitions.

2. The name you specify for the queue in the ISCMSND parameter is only the
base name. The complete queue name is constructed by preceding or
appending the value of the QNAME parameters in the nucleus server table.
You specify only one base name, but you use as many MQI send queues as
there are QNAMEs. You have to consider this when defining your MQSeries
environment.

Figure 26. MERVA ESA in a Parallel Sysplex Environment

Chapter 2. The MERVA ESA Environment 101

Notes:

[1] MQMNAME specifies the name of the local MQSeries queue manager. The
name is different for each system in a multisystem environment. This
parameter is required if you want to use an MQSeries queue manager
other than the default MQSeries queue manager in your installation. Note
that not all installations provide a default MQM.

[2] ISCNUC specifies that the local MERVA ESA instance is primary.

You specify PRIMARY if the local MERVA ESA instance uses intertask
communication with your applications. The primary MERVA ESA instance
also should run commonly used services. You specify SECONDARY if the
local MERVA ESA instance runs a specific service, such as the user file
maintenance.

[3] ISCMQID specifies MERVA ESA interservice communication. Prerequisite
is that MERVA ESA runs on a multisystem environment. The following
subparameters must be specified:
v The MERVA ID of the primary MERVA ESA instance. This ID is used for

internal communication during initialization.
v The MERVA ID of the local MERVA ESA instance. This ID is compared

with the QNAME value of the nucleus server table entry if a service is
requested. If the names match, the service is in the local instance.
Otherwise, the service request is directed to the MERVA ESA instance
indicated by the QNAME.

v PREFIX or SUFFIX. The QNAME value is always part of the static MQI
send queue. If you specify PREFIX, the QNAME value from the nucleus
server table precedes the base name specified for the MQI send queue. If
you specify SUFFIX, the QNAME value follows the base name.

In this example, the MERVA ID of the primary and the local MERVA ESA
instance are identical; the local MERVA ESA instance is the primary.

[4] ISCMSND specifies the base name of an MQI send queue used for
interservice communication. This specification is needed by the MQSeries
of any MERVA ESA instance sending service request messages to another
MERVA ESA instance. There are as many queue names assembled as there
are different QNAME definitions in the nucleus server table. Figure 28 on
page 104 contains three different QNAME definitions (NUC1, NUC2,
NUC3), so three MQI send queues are generated (DSL.SYS1.SEND.NUC1,
DSL.SYS1.ISC.SEND.NUC2, DSL.SYS1.ISC.SEND.NUC3).

[5] ISCMRCV specifies the name of an MQI receive queue used for

DSLPARM *
...
MQMNAME=CSQ1, * [1]
ISCNUC=PRIMARY, * [2]
ISCMQID=(NUC1,NUC1,SUFFIX), * [3]
ISCMSND=(DSL.SYS1.SEND), * [4]
ISCMRCV=(DSL.SYS1.RECEIVE.NUC1), * [5]
ISCMRTQ=(DSL.SYS1.REPLY_TO.NUC1), * [6]
ISCSTART=AUTO, * [7]
ISCXCF=(MERVAESA,COMMON_SERVICES), * [8]
ISCXJWT=1000 [9]

END

Figure 27. DSLPRM Parameters for Intertask Communication

102 Customization Guide

interservice communication. This specification is needed by the MQSeries
of any MERVA ESA instance receiving service request messages.

[6] ISCMRTQ specifies the name of an MQI reply-to queue used for
interservice communication. This specification is needed by the MQSeries
of any MERVA ESA instance sending or receiving a reply message that
consists of an MQI service response or exception report message.

[7] ISCSTART indicates to the primary MERVA ESA instance that it should
start the secondary MERVA ESA instances automatically. This requires a
cataloged procedure for each MERVA ESA instance and the appropriate
system and security definitions. The name of the procedure to start and the
system ID where the MERVA ESA instance is to be started is defined in
the nucleus server table entry for the appropriate service.

[8] ISCXCF allows participation in XCF signalling facilities. You define an XCF
group name and an XCF group member name. The first MERVA ESA
instance started creates the named XCF group, which all other
MERVA ESA instances then can join. In this example, the member name
COMMON_SERVICES has been chosen to emphasize the tasks assigned to
the primary MERVA ESA instance.

MERVA ESA uses XCF signalling in the case of a service failure, a
MERVA ESA instance failure, or a complete system failure to inform all
joined MERVA ESA instances to avoid sending request messages to
services no longer available.

[9] ISCXJWT specifies the period the primary MERVA ESA instance waits
during initialization until all MERVA ESA instances which are members of
the XCF group with the name MERVAESA have joined. MERVA ESA
instances which have not joined within the specified time do not
participate in the MERVA ESA failure recovery. In this example, secondary
MERVA ESA instances which do not join the XCF group with the name
MERVAESA within ten seconds do not participate in XCF signalling.

Customizing the Nucleus Server Table for a Multisystem
Environment

An example of the nucleus server table using parallel processing in a multisystem
environment is shown below.

Note: It is important that the same nucleus server table be used by all
MERVA ESA instances.

Chapter 2. The MERVA ESA Environment 103

NSVT TITLE 'MERVA ESA Nucleus Server Table'
COPY DSLSYSET
DSLNSV TYPE=INITIAL

* Main entry of the MERVA ESA nucleus.
* Must be the first definition.

*00 [1]

DSLNSV NAME=DSLNUC,SERVER=MAIN
DSLNSV NAME=DSLNCMD

* The Operator message processing is part of the base nucleus
* and must not run as a separate task.

*00 [2]

DSLNSV NAME=DSLNMOP,SERVER=MAIN
DSLNSV NAME=CONSOLE,MODNAME=DSLNMOP
DSLNSV NAME=DSLNDM

*

* The MQSeries server must always run as a separate task.

*01 [3]

DSLNSV NAME=MQSSRV,MODNAME=DSLNMQS,SERVER=TASK *
*

Figure 28. Nucleus Server Table for a Multisystem Environment (Part 1 of 3)

104 Customization Guide

* The following programs can be changed to run as tasks.
* You can also specify a MERVA ID as QNAME to define on which
* MERVA ESA instance the service has to run.
* Remove the asterisk and the number in the first three columns.
* In each case the whole group of entries must be activated.

*
**** Journal program group **
*01A [4]

DSLNSV NAME=DSLJRNP,SERVER=TASK
QNAME=NUC3, *
SYSNAME=SYS3,STCNAME=MERVAESA

DSLNSV NAME=DSLJRNC,SERVER=TASK, *
QNAME=NUC3, *
SYSNAME=SYS3,STCNAME=MERVAESA

*
**** Message counter group ***
*01B

DSLNSV NAME=MSGCOUNT,MODNAME=DSLCNTP,SERVER=TASK, *
QNAME=NUC1, *
SYSNAME=SYS1,STCNAME=MERVAESA

DSLNSV NAME=DSLCNTDL
*
**** Intertask Communication: Intra/Interregion group *****************
*02A [5]

DSLNSV NAME=DSLNTS,SERVER=TASK, *
QNAME=NUC1, *
SYSNAME=SYS1,STCNAME=MERVAESA

DSLNSV NAME=BATCH,MODNAME=DSLNTS
DSLNSV NAME=TRANSACT,MODNAME=DSLNTS (CICS only)
DSLNSV NAME=DSLNSHU

*
**** Intertask Communication via CICS TS queues (CICS only)
*02B [6]

DSLNSV NAME=CICSSRV,MODNAME=DSLNTSQ,SERVER=TASK, *
QNAME=NUC1, *
SYSNAME=SYS1,STCNAME=MERVAESA

***** Intertask Communication via APPC/MVS server (MVS only)
*02C [7]

DSLNSV NAME=APPCSRV,MODNAME=DSLNTSA,SERVER=TASK, *
QNAME=NUC1, *
SYSNAME=SYS1,STCNAME=MERVAESA

*
**** Intertask Communication via MQSeries server (MVS only)
*02D1 [8]

DSLNSV NAME=MQISRV1,MODNAME=DSLNTSM,SERVER=TASK, *
QNAME=NUC1, *
SYSNAME=SYS1,STCNAME=MERVAESA

*02D2 DSLNSV NAME=MQISRV2,MODNAME=DSLNTSM,SERVER=TASK, [9]
* QNAME=NUC1,
* SYSNAME=SYS1,STCNAME=MERVAESA
*
**** The syncpoint program group *********
*07 DSLNSV NAME=SYNPOINT,MODNAME=DSLISYNP,SERVER=TASK [10]
*

Figure 28. Nucleus Server Table for a Multisystem Environment (Part 2 of 3)

Chapter 2. The MERVA ESA Environment 105

Notes:

[1] This must be the first definition.

[2] This must be the second definition.

[3] This defines the module name of the MQSeries, and must be the third
definition. Due to internal architecture constraints, this nucleus server must
be defined to run as a subtask. The name you give this server is up to you.

[4] The primary MERVA ESA instance, which has the MERVA ID NUC1,

**** The command server group ***
*08 [11]

DSLNSV NAME=DSLNCS,SERVER=TASK, *
QNAME=NUC1, *
SYSNAME=SYS1,STCNAME=MERVAESA

*
**** The user file program group **************************************
*09 [12]

DSLNSV NAME=DSLNUSR,SERVER=TASK, *
QNAME=NUC2, *
SYSNAME=SYS2,STCNAME=MERVAESA

DSLNSV NAME=DSLNDU
QNAME=NUC2, *
SYSNAME=SYS2,STCNAME=MERVAESA

*
**** Queue management group ***
*11 [13]

DSLNSV NAME=DSLQMGT,SERVER=TASK, *
QNAME=NUC1, *
SYSNAME=SYS1,STCNAME=MERVAESA

DSLNSV NAME=DSLQLRGC
DSLNSV NAME=DSLQMGTR
DSLNSV NAME=DSLRTRSW

***** The SWIFT link program group *************************************
*12 [14]

DSLNSV NAME=SWIFTII,MODNAME=DWSDGPA,SERVER=TASK, *
QNAME=NUC1, *
SYSNAME=SYS1,STCNAME=MERVAESA

DSLNSV NAME=SWIFTAUT,MODNAME=DWSAUTIN
DSLNSV NAME=DWSAUTP
DSLNSV NAME=DWSAUTIN
DSLNSV NAME=DWSDCMD
DSLNSV NAME=DWSDIVA
DSLNSV NAME=DWSXTRCE

*
**** The SWIFT link load session key program group ********************
*13 [15]

DSLNSV NAME=SWLOADSK,MODNAME=DWSDLSK,SERVER=TASK, *
QNAME=NUC1, *
SYSNAME=SYS1,STCNAME=MERVAESA

*
**** The Telex link via fault tolerant system program group ***********
*14 [16]
* DSLNSV NAME=TELEX,MODNAME=ENLSTPL,SERVER=TASK,
* QNAME=NUC1,
* SYSNAME=SYS1,STCNAME=MERVAESA
* DSLNSV NAME=ENLCMDL
*

DSLNSV TYPE=FINAL [17]
END

Figure 28. Nucleus Server Table for a Multisystem Environment (Part 3 of 3)

106 Customization Guide

|

performs common tasks such as message counting, and is assigned to
SYS1. The journal nucleus server, which has the MERVA ID NUC3, is
assigned to SYS3.

[5] Nucleus task servers must be defined at the primary MERVA ESA
instance. The QNAME NUC1 corresponds to the first value of the
ISCMQID parameter in DSLPRM in Figure 27 on page 102. This is the
nucleus task server for applications or jobs which run on the same system
and can therefore communicate via the standard intertask communication.

[6] This is the nucleus task server for applications running in a CICS region
using the CICS temporary storage queue.

[7] This nucleus task server can be defined if applications running on another
system communicate with MERVA ESA via APPC/MVS.

[8] This nucleus task server can be defined if applications running on another
system communicate with MERVA ESA via MQSeries.

[9] This is the second nucleus task server. You can define more nucleus task
servers if your traffic is heavy. Because each nucleus task server has its
own message queues, the queue names must be different. You do this by
specifying a value in the PARM parameter of the entry in the DSLNPTT.
This value is appended to the MQI receive queue name of the nucleus task
server as specified in the ITCMRCV parameter of the DSLPRM.

[10] Syncpointing is also considered a common task.

[11] The command nucleus server is the interface to the MERVA ESA operator
and is considered a common task. Commands can be forwarded to other
instances as necessary. For example, SWIFT Link commands are forwarded
to the MERVA ESA instance running SWIFT Link.

[12] The user file services are located on MERVA ESA instance two.

[13] The queue management nucleus server is on MERVA ESA instance one.
All requests to this nucleus server are passed to this MERVA ESA instance.

[14] The SWIFT Link nucleus server is on MERVA ESA instance one.

[15] The Load Session Key nucleus server has great affinity to SWIFT Link and
therefore runs on the same MERVA ESA instance.

[16] The TELEX Link nucleus server is on MERVA ESA instance one.

[17] This must be the last definition.

Defining MQI Queues
The member DSLKISC1 COPY in the sample library contains the MQI queue
definitions for system SYS1. To update your environment:
1. In the job for SYS1, change the MQI channel and queue names to the names

that will be constructed by MERVA ESA as described above.
2. Repeat the previous step for SYS2.
3. Use the modified members as input for the MQSeries utilitiy program

CSQUTIL.

MQI Send Queues
An MQI send queue is defined to MQSeries either as a local queue or as the local
definition of a remote queue. For a local queue, the following attributes must be
specified in the DEFINE QLOCAL command:
v PUT(ENABLED)

Chapter 2. The MERVA ESA Environment 107

|
|
|

v NOTRIGGER

For a remote queue defined locally, the following attributes must be specified in
the DEFINE QREMOTE command:
v PUT(ENABLED)
v XMITQ(...)

For details, see the MQSeries Command Reference.

MQI Receive Queues
Receiving a message from MQSeries means that the program retrieves a message
from the MQI receive queue and processes the message according to the request
type. The parameter ISCMRCV in DSLPRM contains the names of the MQI receive
queues.

The MQI receive queue is always defined to MQSeries as a local queue. The
attribute GET(ENABLED) must be specified in the DEFINE QLOCAL command.

MQI Reply-To Queue
The MQI reply-to queue is a queue for sending and receiving responses to request
messages. On the response receiving side, the reply-to queue is defined to
MQSeries as a local queue. The same attributes of the DEFINE QLOCAL command
apply as for normal receive queues.

MQI Queue Examples

Interservice Communication on the Same System
If you run NUC1 and NUC2 on the same system, you need an MQI send-receive
queue and an MQI reply-to queue for each one. The following steps are performed
for a service request from NUC1:
1. NUC1 puts a request message into the DSL.SEND_RECEIVE.NUC2 queue.
2. NUC2 processes the request and puts the reply message into the queue with

the name DSL.REPLY_TO.NUC1.
3. NUC1 retrieves the reply message from the MQI reply-to queue.
4. NUC1 passes the result to the requesting application.

Table 5. MQSeries Message Flow in a Single System Environment

Primary NUC1 Secondary NUC2

DSL.SEND_RECEIVE.NUC1 DSL.SEND_RECEIVE.NUC2

DSL.REPLY_TO.NUC1 DSL.REPLY_TO.NUC2

Interservice Communication between Different Systems
If nuclei run in different systems, the MQI send queue must be the local definition
of a remote queue. You also need to define MQSeries channels between the queue
managers in the various systems. In the following figures, the name of the
MQSeries queue manager on SYS1 is Q912, on SYS2 is Q921, and on SYS3 is Q931.

For example, DSL.CHAN12 is defined as a sender channel in SYS1 and
DSL.CHAN12 is the corresponding receiver channel defined in SYS2. For a service
request from NUC1 and NUC2, the following steps are performed:
1. The request message is put into the DSL.SYS1.SEND.NUC2 queue.
2. The request message is passed over the MQI transmission queue Q921 and the

channel DSL.CHAN12 to the DSL.SYS2.RECEIVE.NUC2 queue.

108 Customization Guide

|
|
|
|

3. NUC2 receives the request message, processes it, and sends the result back to
NUC1 into the queue with the name DSL.SYS1.REPLY_TO.NUC1.

4. NUC1 receives the reply message and passes the result to the requesting
application.

Figure 29. MQSeries Message Flow in a Multisystem Environment When the Requester is
NUC1

Figure 30. MQSeries Message Flow in a Multisystem Environment When the Requester is
NUC2

Chapter 2. The MERVA ESA Environment 109

MQI Send Queue Names
MERVA ESA constructs a unique MQI send queue name for each system by
concatentating:
v The value of the parameter ISCMSND in the customization parameter module

DSLPRM
v The value of the parameter QNAME in the nucleus server table DSLNSVT

Depending on the value of the third subparameter of ISCMQID, the value of the
parameter QNAME is used as either a suffix or a prefix.

Table 6 on page 111 shows an example of how send queue names are constructed.

Figure 31. MQSeries Message Flow in a Multisystem Environment When the Requester is
NUC3

110 Customization Guide

Table 6. How the MQI Send Queue Names Are Constructed

System 1 System 2 System 3

Type: Primary Type: Secondary Type: Secondary

QNAME: NUC1 QNAME: NUC2 QNAME: NUC3

Queue Manager: Q912 Queue Manager: Q921 Queue Manager: Q931

In DSLPRM:
ISCMQID=(NUC1,NUC1,SUFFIX),
ISCMSND=DSL.SYS1.SEND,

In DSLPRM:
ISCMQID=(NUC1,NUC2,SUFFIX),
ISCMSND=DSL.SYS2.SEND,

In DSLPRM:
ISCMQID=(NUC1,NUC3,SUFFIX),
ISCMSND=DSL.SYS3.SEND,

In DSLNSVT:
QNAME=NUC1...

QNAME=NUC2...

QNAME=NUC3

In DSLNSVT:
QNAME=NUC1...

QNAME=NUC2...

QNAME=NUC3

In DSLNSVT:
QNAME=NUC1...

QNAME=NUC2...

QNAME=NUC3

Resulting send queue names:
DSL.SYS1.SEND.NUC2
DSL.SYS1.SEND.NUC3

Resulting send queue names:
DSL.SYS2.SEND.NUC1
DSL.SYS2.SEND.NUC3

Resulting send queue names:
DSL.SYS3.SEND.NUC1
DSL.SYS3.SEND.NUC2

Defining the Transaction Table DSLTXTT
The transaction table is, in a way, an extension of the function table. The function
table specifies which transaction is to be started when a message enters the queue.
The transaction table does the same, but in the transaction table the transactions
can be started in environments other than that in which the nucleus runs.

You can run the MERVA ESA nucleus in any of the following ways:
v As an MVS batch program
v As an IMS BMP
v As a CICS transaction

Regardless of how it was started, the nucleus can then start transactions in any of
the following ways:
v As transactions in an IMS message-processing program (MPP) region
v As CICS transactions

If you run the nucleus as an MVS batch program or as an IMS BMP and start a
transaction as a CICS transaction:
v The batch job where the MERVA ESA nucleus runs must define the data set

containing the external CICS interface modules in its steplib sequence; for
example:
//STEPLIB DD DISP=SHR,DSN=MERVA.SDSLLODB
// DD DISP=SHR,DSN=CICS410.SDFHEXCI

v The CICS region where the started transactions are to run must be defined with
the initialization parameters IRCSTRT=YES and ISC=YES.

v The CICS RDO group DFH$EXCI, which contains the external interface
definitions, must be added to the list used for the startup of the CICS region; for
example, by specifying the following as input to the batch utility DFHCSDUP:
ADD GROUP(DFH$EXCI) LIST(DSLLIST)

Chapter 2. The MERVA ESA Environment 111

v Make sure there is no local MERVA ESA nucleus running in the CICS region
itself, or else the transactions will communicate with this nucleus rather than the
batch nucleus that started the transaction. To ensure that the transaction uses the
interregion communication method to communicate with the MERVA ESA
nucleus, the customization parameter module DSLPRM in this CICS region must
specify the parameter CINTER=YES.

If you start a transaction locally (that is, as a CICS transaction in the same CICS
where the nucleus is running, or in an IMS MPP when the nucleus was started as
an IMS BMP), then the transaction table (DSLTXTT) is optional. However, if the
nucleus is running as an MVS batch program, or if you start a transaction remotely
(that is, on a system other than that where the nucleus is running), then there must
be an entry in the transaction table (DSLTXTT) whose NAME parameter has the
same value as the parameter TRAN in the function table entry. If the table is not
available or there is no corresponding entry in the table, the transaction is started
based on the information in the function table, and might fail.

As in previous releases, the MERVA ESA source library contains a sample
transaction table (DSLTXTT). The sample table has no active entries, therefore
MERVA ESA starts transactions according to the information in the function table.

To create an entry, use the macro DSLTXT which is described in the MERVA for
ESA Macro Reference, and the samples in “DSLTXT Sample Definitions”. As shown
in Figure 32, USR1 and USR3 have entries in the transaction table that is used to
start the requested transaction. USR2 does not have an entry in the transaction
table; so it is started according to the function table.

DSLTXT Sample Definitions
The following examples show how you can use the MERVA ESA macro, DSLTXT:

Figure 32. Relationship of Function Table to Transaction Table

112 Customization Guide

DSLTXT NAME=USR1,METHOD=LOCAL

The transaction USR1 is started locally. This is the default and therefore such an entry would be redundant. The
transaction runs in the same environment under which the nucleus was started, CICS or IMS BMP. If the nucleus
runs as a batch program under MVS, the start of the transaction fails.

Note for IMS: If the transaction code is not defined to IMS, but the extended terminal option in IMS is used, this
error cannot be determined by MERVA ESA, and MERVA ESA inserts a message for this non-existing transaction.
IMS creates a queue for this message dynamically where the message (TUCB) is inserted. You can use the IMS
command /DIS LTERM USR1 to display the status of this queue.

DSLTXT NAME=USR1,METHOD=LOCAL,TPNAME=USRx,LTERM=PRT7

This is a simple translation of a transaction code. The transaction USR1 in the function table (DSLFNTT) has a
reference to the entry in the transaction table (DSLTXTT) with the transaction USRx. The transaction USRx is started
according to the entry in the transaction table.

DSLTXT NAME=USR1,METHOD=LOCAL,TPNAME=USR3,LTERM=PRT7,SYSID=CICB,USERID=MASB

This sample shows how to run a transaction on a remote CICS. When running under CICS, the start of the
transaction USR1 is performed on the remote system CICB and the transaction is run under the user ID MASB.

DSLTXT NAME=DSLH,METHOD=CICSBATCH,TPNAME=USRH,LTERM=PRT7,SYSID=LUCICB

Start a transaction in the remote CICS with the LU name LUCICB. The transaction USRH is started under the
specified CICS system. The EXEC CICS batch facility is used to start the transaction. Thus the MERVA ESA nucleus
can run as a batch program under MVS. This is also possible when the MERVA ESA nucleus is running in an IMS
BMP.

DSLTXT NAME=DSLH,METHOD=APPCMVS,SYMDEST=SYS1DEST,TPNMAP=USRH,LTERM=PRT7

An APPC connection is used to perform a transaction. The symbolic destination SYS1DEST identifies an LU and a
TP name which is started via APPC/MVS. The transaction code USRH is passed in the transaction code field of the
TUCB.

DSLTXT NAME=DSLH,METHOD=APPCMVS,LUNAME=FD00IMS,TPNAME=DSLCIMAP,TPNMAP=USRH,LTERM=PRT7

APPC/MVS is used to start a transaction on the system identified by LUNAME FD00IMS, in this case, the base LU
of an IMS system. The IMS transaction code is identified by the TPNAME DSLCIMAP. The transaction code USRH
is passed in the transaction code field of the TUCB. The MERVA ESA program DSLCIMAP maps the received
TUCB prefixed with the transaction code DSLCIMAP to a standard MERVA ESA TUCB and inserts it into the IMS
message queue for USRH.

You can use this method to start MERVA ESA IMS transactions from a MERVA ESA nucleus that runs as a native
batch program, not as a BMP.

Defining Files in MERVA ESA
Every file that you access by requesting general file services must be defined in the
file table. The name of the file table can be changed in the module DSLPRM.
MERVA ESA provides an example file table with the name DSLFLTT.

MERVA ESA provides the file table macro DSLFLT to code the file table entries,
described in the MERVA for ESA Macro Reference.

Chapter 2. The MERVA ESA Environment 113

The files that you define in DSLFLTT must also be defined to VSAM, and to CICS
file control (CICS installations) or DL/I (IMS installations).

Installing Files for MERVA ESA General File Services
You use files for the MERVA ESA General File Services if you want to use one of
the following files:
v A MERVA ESA Nicknames File
v The SWIFT Correspondents File with the SWIFT Link
v The Currency Code File with the SWIFT Link
v The Telex Correspondents File with the Telex Link
v A similar file of your own

To install files for the MERVA ESA general file services:
1. Define the file in the MERVA ESA file table (DSLFLTT).
2. Code a Message Control Block (MCB) that describes the layout of screen panels

for the online maintenance and for printing records of the file, and that
describes the layout of the records of the file in a TYPE=NET section.

3. Define the fields used in the MCB in the MERVA ESA Field Definition Table
(DSLFDTT).

4. Define the MCB in the MERVA ESA Message Type Table (DSLMTTT).
5. Optionally define field expansion in the MERVA ESA Function Table

(DSLFNTT).

In CICS, do the following:
1. Define a VSAM KSDS cluster that matches the attributes of the file defined in

the MERVA ESA file table (DSLFLTT).
2. Define the file in CICS (FCT or RDO).

In IMS, do the following:
1. Generate an IMS DBD as a DL/I HISAM DB that matches the attributes of the

file defined in the MERVA ESA file table (DSLFLTT).
2. Define a VSAM KSDS cluster that matches the IMS DBD.
3. Include DB PCBs in the IMS PSBs of the following MERVA ESA programs, if

you want to process the file with these programs:
v MERVA ESA General File Utility DSLFLUT for initializing and listing the file
v MERVA ESA End-User Driver Program DSLEUD for online maintenance of

the file and field expansion
v MERVA ESA Checking and Expansion Program DSLCXT for field expansion
v MERVA ESA Hardcopy Printer Program DSLHCP for field expansion

4. Include a DBD entry in the IMS ACB.
5. Include the necessary DATABASE DBD=... macro in the IMS system generation

for each file to be used.
6. If you want to allocate the file dynamically, include appropriate entries in the

IMS dynamic allocation member.

The following give examples of how to code the file table structure and file table
entries.

114 Customization Guide

Coding the File Table Structure
Figure 33 shows an example of coding the structure of the file table. This structure
can also be the result of the MERVA ESA generation process using the DSLGEN
macro.

Note: The first macro of the file table must be DSLFLT TYPE=INITIAL, and the
last instruction must be DSLFLT TYPE=FINAL.

You can write your own file table copy members to define files that are specific to
your installation. You should include them behind the following copy members:
v DSLFLTTC that defines the MERVA ESA Nicknames File
v DWSFLTTC that defines the SWIFT correspondents file and the SWIFT Currency

Code File
v ENLFLTTC that defines the Telex correspondents file

Coding File Table Entries
The following figures contain examples of coding file table entries:
v Figure 34 shows the definition of the MERVA ESA nicknames file.
v Figure 35 shows the definition of the Telex Correspondents File.
v Figure 36 shows the definition of the SWIFT Link files, consisting of the SWIFT

Correspondents File and the SWIFT Currency Code File.

DSLFLTT DSLFLT TYPE=INITIAL
COPY DSLFLTTC MERVA PART
COPY DWSFLTTC SWIFT LINK PART
COPY ENLFLTTC TELEX LINK PART
COPY XXXFLTTC YOUR PART XXX
COPY YYYFLTTC YOUR PART YYY

...

DSLFLT TYPE=FINAL
END

Figure 33. The File Table DSLFLTT

Chapter 2. The MERVA ESA Environment 115

DSLFLT TYPE=DAT, * [1]
DAT=DSLCORN, * [2]
FLD=DSLCORN, * [3]
NAME=DSLCORN, * [4]
LENGTH=304, * [5]
MSGID=0CORN, * [6]
SHARED=YES, * [7]
MAINT=YES, * [8]

FIELDS=(DSLCORN,DSLFLUP,DSLFLCUP,DSLCORID), * [9]
COLS80=(DSLCORN,DSLFLUP,DSLCORID), * [10]
COLS132=(DSLCORN,DSLFLUP,DSLCORID), *
ROWS24=15, * [11]
ROWS27=18, *
ROWS32=23, *
ROWS43=34, *
SELECT=(PN,CN), * [12]
DESCR=('Private Nicknames', * [13]
'Common Nicknames')

DSLFLT TYPE=FLD, * [14]
FLD=DSLCORN, * [15]
DAT=DSLCORN, * [16]
OFFSET=210, * [17]
LENGTH=32, * [18]
INFLEN=19, * [19]
CHECK=ALPHANUM, * [20]
DESCR='Nickname' * [21]

Figure 34. File Table Copy Member DSLFLTTC (Nicknames File)

DSLFLT TYPE=DAT, * [1]
DAT=ENLCORDA, * [2]
FLD=DSLCORID, * [3]
NAME=ENLCOR, * [4]
LENGTH=504, * [5]
MSGID=TCOR, * [6]
SHARED=NO, * [7]
MAINT=YES, * [8]
FIELDS=(DSLCORID,DSLFLUP,DSLFLCUP, * [9]
ENLFLCO1,ENLFLCO2,ENLFLNR1,ENLFLNR2, *
ENLFLAB1,ENLFLAB2, *
ENLFLTKY), *
COLS80=(DSLCORID,DSLFLUP,ENLFLC01), * [10]
COLS132=(DSLCORID,DSLFLUP,ENLFLC01), *
ROWS24=15, * [11]
ROWS27=18, *
ROWS32=23, *
ROWS43=34, *
SELECT=TX, * [12]
DESCR='Telex Correspondents' [13]

DSLFLT TYPE=FLD, * [14]
FLD=DSLCORID, * [15]
DAT=ENLCORDA, * [16]
OFFSET=4, * [17]
LENGTH=24, * [18]
INFLEN=11, * [19]
CHECK=BASIC, * [20]
DESCR='Identifier' [21]

Figure 35. File Table Copy Member ENLFLTTC (Telex Correspondents File)

116 Customization Guide

Notes:

[1] Entry related to the total data of the file.

[2] The MERVA ESA file name. This name refers to the file in DSLFLVP
requests. In IMS, it is also the root segment name.

[3] The search field name. This name refers to the field in DSLTOFSV requests.
In IMS, it is also the sequence field name.

DSLFLT TYPE=DAT, * [1]
DAT=DWSCORDA, * [2]
FLD=DSLCORID, * [3]
NAME=DWSCOR, * [4]
LENGTH=1738, * [5]
MSGID=SCOR, * [6]
SHARED=NO, * [7]
MAINT=YES, * [8]
FIELDS=(DSLCORID,DSLFLUP,DSLFLCUP,DWSCORBK, * [9]
DWSCORAD,DWSCORZP,DWSCORIM,DWSSCORST,DWSCORBE), *
COLS80=(DSLCORID,DSLFLUP,DWSCORBK), * [10]
COLS132=(DSLCORID,DSLFLUP,DWSCORBK), *
ROWS24=15, * [11]
ROWS27=18, *
ROWS32=23, *
ROWS43=34, *
SELECT=SW, * [12]
DESCR='SWIFT Correspondents' [13]

DSLFLT TYPE=FLD, * [14]
FLD=DSLCORID, * [15]
DAT=DWSCORDA, * [16]
OFFSET=4, * [17]
LENGTH=24, * [18]
INFLEN=11, * [19]
CHECK=SWIFT, * [20]
DESCR='Bank Identifier Code' [21]

DSLFLT TYPE=DAT, * [1]
DAT=DWSCURDA, * [2]
FLD=DWSCURID, * [3]
NAME=DWSCUR, * [4]
LENGTH=1622, * [5]
MSGID=SCUR, * [6]
SHARED=NO, * [7]
MAINT=YES, * [8]
FIELDS=(DWSCURID,DSLFLUP,DSLFLCUP,DWSCURNM,DWSCURF, * [9]
DWSCURIN,DWSCURIM,DWSCURST), *
COLS80=(DWSCURID,DWSCURNM), * [10]
COLS132=(DWSCURID,DWSCURNM), *
ROWS24=15, * [11]
ROWS27=18, *
ROWS32=23, *
ROWS43=34, *
SELECT=CUR, * [12]
DESCR='Currency Code File' [13]

DSLFLT TYPE=FLD, * [14]
FLD=DWSCURID, * [15]
DAT=DWSCURDA, * [16]
OFFSET=4, * [17]
LENGTH=3, * [18]
CHECK=ALPHA, * [20]
DESCR='Currency Identifier Code' * [21]

Figure 36. File Table Copy Member DWSFLTTC (SWIFT Link files)

Chapter 2. The MERVA ESA Environment 117

[4] In IMS it is the DBD name of the related DL/I HISAM DB. In CICS it is
the DD/DLBL name of the related VSAM KSDS cluster.

[5] The record length. In IMS, it is the root segment length. In CICS, it is the
record length defined to VSAM.

[6] The message ID of the file MCB. This MCB is used for mapping record
data to screen/printer devices.

[7] The MERVA ESA Nicknames File is shared: it contains common and
private data. The SWIFT Correspondents File is not shared.

[8] The file is available in the online file maintenance. For the MERVA ESA
Nicknames File, both common and private data is available.

[9] The TOF field names of the record fields:

DSLCORID Identifier (in the SWIFT Link, it is the bank identifier code)

DSLCORN Nickname

DSLFLCUP Time of creation

DSLFLUP Time of last update

DWSCORAD Correspondent’s address

DWSCORBK Correspondent’s name

DWSCORIM Time of first import from BIC update tape

DWSCORST Time of last import from BIC update tape

DWSCORBE Unedited data from BIC update tape

DWSCORZP Zip code

DWSCURID Currency code identifier

DWSCURNM Currency name

DWSCURF Fractional digits

DWSCURIN Currency (country) information

DWSCURIM Time of creation

DWSCURST Time of last update

ENLFLCO1 Correspondent’s address line 1

ENLFLCO2 Correspondent’s address line 2

ENLFLNR1 First telex number

ENLFLNR2 Second telex number

ENLFLTKY Test-key requirements

ENLFLAB1 Long answerback 1

ENLFLAB2 Long answerback 2

[10] Online file maintenance, the fields of the file to be displayed in a list panel,
depending on the number of columns on the screen (see the COLS80 and
COLS132 parameters).

[11] Online file maintenance, the number of records to be displayed in a list
panel depending on the number of lines of the screen (ROWS24, ROWS27,
ROWS32, and ROWS43).

118 Customization Guide

[12] Online file maintenance, the file-selection identifier. Nonshared files have
only one file-selection identifier. Shared files with MAINT=YES have two
file-selection identifiers for:
v Private data
v Common data

[13] Online file maintenance, the file description on the file-selection menu.
Nonshared files have only one description. Shared files with MAINT=YES
have two descriptions for:
v Private data
v Common data

[14] Entry related to the search field of the file.

[15] The search field name.

[16] The MERVA ESA file name.

[17] The offset of the search field. In CICS, it is the key offset defined to VSAM.
In IMS, it is the sequence field offset from the beginning of the root
segment.

[18] The length of the search field. It is the key length defined to VSAM. In
IMS, it is also the sequence field length.

[19] The length of the information contained in the search field. For the SWIFT
Correspondents File, only characters 1-11 contain information. For the
MERVA ESA Nicknames File, only characters 1-19 contain information. The
rest of the search field must be padded with blanks.

Note: The search field characters 1-8 (the owner prefix) for shared files
contain a user ID (showing private ownership) or '* ' (showing
common ownership). This part of the search field is not displayed
on the panels of the online file maintenance.

[20] The type of data the search field must contain besides the trailing blanks,
and if applicable, besides the owner prefix.

The MERVA ESA Nicknames File must have alphanumeric data in the
search field.

The SWIFT Correspondents File must have a BIC (SWIFT address) in the
search field.

[21] Online file maintenance. The descriptive name of the search field that is
displayed on the screen terminal. The search field is also used in error
messages displayed on the terminal.

Defining the Page Sizes and Layouts
A MERVA ESA user screen, system, or hardcopy print page is divided into the
following areas:
v The top frame
v The message area
v The bottom frame

The layout for these areas is defined in the appropriate device descriptions for the
frame MCBs and the message type MCB.

Chapter 2. The MERVA ESA Environment 119

The frame MCBs are specified in the MERVA ESA Function table definition
(FRAME= parameter). The top and bottom frames contain the information for
display on all the pages of a message. For example, it can contain:
v The logo of the financial institution
v The date and time
v The user identification

The message area contains data pages of the message currently being processed, or
a function panel.

The default frame MCBs DSL0TOP and DSL0BOT provided by MERVA ESA,
define the top and bottom frame. The frame definition can be given for screen,
hardcopy, and system printer devices. The ID parameter selects the language
specific frame for the screen functions. For print functions, the print format
specification in the MERVA ESA Function table entry is used to select the
appropriate printer frame device definition. The DSLLCOND macros can be
specified, to select a top or bottom frame according to the TOF contents. The
default nesting identifier for the frame is always 0. This nesting identifier should
be specified explicitly if fields belonging to the message are to be displayed. Blank
line compression does not take place for frame panels. Frame fields must be
specified in sequence, the last frame DSLLDFLD specification determines the size
of the frame.

The page size definition for screen terminals is given in the CICS terminal
definitions, or in the MERVA ESA terminal feature definition table (DSLTFDT) for
IMS. For screen terminals one physical screen page is formatted at a time.

The page size definition for hardcopy printer terminals is given in the
MERVA ESA terminal feature definition table (DSLTFDT) both for CICS and IMS.
The DSLTFDT definitions are connected to a logical terminal name as defined in
CICS or a terminal macro of the IMS nucleus generation. The values are used to
determine the printer’s buffer size, and the page size that is to be used for
formatting. For hardcopy printer terminals, one logical page is formatted at a time,
but the page is printed in one or more segments according to the printer’s buffer
size. The page size in the DSLTFDT is defined in rows and columns as follows:
v Rows is a “lines” definition for one logical page. It is interpreted by

MERVA ESA so that a physical page (your paper forms from one perforation to
the next) can be divided into several logical pages, with each logical page
consisting of as many lines as there are “rows” defined. To obtain a separate
logical page per physical page, rows must be exactly the number of lines your
paper form can hold. For correct formatting, make sure that your printer is
positioned on the first line of your paper form when starting to print.

v Columns is a physical line width definition and must match the physical
characteristics of the printer terminal. If your printer terminal can print 132
characters per line, the number of columns specified must also be 132 characters
per line. Specifying a column of 80 characters would result in printing two lines
in one. In turn, specifying 132 as the column parameter when your printer can
only print 80 columns, results in the characters beyond column 80 being printed
on the next line.

The page size definition for the system printer is given in the MERVA ESA
terminal feature definition table (DSLTFDT) for both CICS and IMS. When no
terminal feature definition table is available, or the table does not contain the
definition for the logical terminal name DSLSDSY (same as the symbolic name of
the DD statement for batch print output) the following default values are used:

120 Customization Guide

v The default page length is 55.
v The default line length is 132. The table is used by the MERVA ESA batch

printing program DSLSDY. For the system printer, one physical line is formatted
at a time.

Terminal Feature Definition Macro (DSLTFD)
The MERVA ESA terminal feature definition table (DSLTFDT) is used to define the
physical characteristics (for example, page sizes) of display and print devices such
as hardcopy printer terminals and, for MERVA ESA operating under IMS, screen
terminals. (For CICS, the page size definition for screen terminals is given in the
terminal definitions, not the DSLTFDT.) The macro DSLTFD is used to generate a
terminal feature definition table.

The page size definitions for hardcopy printer terminals and the system printer are
given in DSLTFDT in both CICS and IMS. In CICS, the hardcopy printer
definitions in the terminal definition and in the DSLTFDT must match.

MERVA ESA supplies a sample DSLTFDT that contains definitions for all
supported terminal types. You can use the samples to define your terminals. Each
terminal used for MERVA ESA in your installation must be defined in DSLTFDT
(except the screen terminals in CICS), and is identified in DSLTFDT by the logical
terminal name used by CICS or IMS.

You can either specify a name for you terminal feature definition table (this name
must then be specified in the TFD parameter of the DSLPARM macro in DSLPRM),
or use the default name DSLTFDT. For more information about DSLPRM, see the
MERVA for ESA Macro Reference.

The terminal feature definition table consists of a sequence of DSLTFD macros. The
first instruction should contain a label. If no label is specified in the first
instruction, the default label DSLTFDT is used. The last statement of the table
should be an END statement.

No assembler language statements except TITLE, SPACE, EJECT, END, and PRINT
can be used in the table definition.

If errors are detected in a specific DSLTFD macro, appropriate MNOTEs are
provided.

The BUFSIZE parameter specifies the physical terminal buffer size. It is used to
calculate the addresses of the fields within the terminal buffer. Although it does
not have any connection with the PAGESIZ parameter of DSLTFDT, it still must
comply with the definition of VTAM®, IMS, and CICS (see Table 7).

Table 7. Terminal Feature Definition Table

Terminal
Buffer Size

NCP/VTAM
Rusizes=

CICS
Definition
Buffer=

IMS Terminal
Outbuf=

DSLTFDT
Bufsize=

Video Terminal 1920 default default 2420* 1920

Non-SCS Printer 2400 2400 2400

SCS Printer 1920 X'87C6' (768) 768 768 768

* For video terminals in IMS, the size of the OUTBUF for the terminal macro in the IMS nucleus generation
must be 500 greater than the BUFSIZE.

Chapter 2. The MERVA ESA Environment 121

Printer Terminal Page Sizes and SCS Printer Support
Both the 3277-2 and 3270 screen terminal models with larger sizes, extended
highlighting, and extended color are supported by MERVA ESA. 3287/3289
printers attached to a 3274 as LUTYPE-1, using the SCS data stream can be used
with MERVA ESA operating under both CICS and IMS. The following subsections
show examples for using the different printers under CICS and IMS.

Note: When using SCS printers, MERVA ESA uses the number of lines of a page
and the line length for setting up the vertical and horizontal forms (SVF,
SHF), that is, those features must be available for the device.

MERVA ESA generates one set vertical format (SVF) control for each print
segment. Some printers have difficulties to process such data streams correctly;
either they allow only one SVF control per page or the number of vertical formats
within one SVF is limited. It is possible to suppress the use of SVF controls in the
generated SCS data streams by specifying the parameter TERMTYP=SCSPSIM in
the DSLTFD macro. Instead of SVF controls the appropriate number of new line
(NL) controls is generated in the data stream.

MERVA ESA never uses a forms-feed control character (FF) to skip to the next
page. This is because the last line on a page is part of the bottom frame and the
field corresponding to this bottom frame must be printed there.

Printer Definitions in CICS
The terminal characteristics are determined by the CICS terminal definitions, but
the values for buffer size and page/line size as defined in the DSLTFDT are used
by MERVA ESA.

Note: When defining buffer and page/line sizes, consider the corresponding
features of the devices used. You must not define values greater than those
of the devices otherwise unpredictable results can be obtained as the device
data stream created by MERVA ESA is determined by the size definitions.

Definition of Printer Features in CICS: The printer page/line size are always
derived from the definitions in the terminal feature definition table DSLTFDT.
v Example 1 defines any 3270 printer (3284/3286/3287/3288/3289). DEFSCRN is

omitted, and the default value of 24x80 is used.
DFHTCT TYPE=TERMINAL,TRMIDNT=V89A,ACCMETH=VTAM,

TRMTYPE=3270P,TRMMODL=2,
TRMSTAT=TRANSCEIVE,
FEATURE=PRINT,TCTUAL=16,
NETNAME=U72FD.

The following definition statements for the CICS/ESA utility DFHCSDUP give
an example of how to define a 3270 printer:
DEFINE TYPETERM(3270P000) GROUP(DSLGROUP)

DEVICE(3270P) TERMMODEL(2) SHIPPABLE(NO) PAGESIZE(24,80)
ALTPAGE(0,0) FMHPARM(NO) OBOPERID(NO) AUTOPAGE(YES)
DEFSCREEN(24,80) ALTSCREEN(24,80) APLKYBD(NO) APLTEXT(NO)
AUDIBLEALARM(NO) COLOR(NO) COPY(NO) DUALCASEKYBD(NO)
EXTENDEDDS(NO) HILIGHT(NO) KATAKANA(NO) LIGHTPEN(NO)
MSRCONTROL(NO) OBFORMAT(NO) PARTITIONS(NO) PRINTADAPTER(NO)
PROGSYMBOLS(NO) VALIDATION(NO) FORMFEED(NO) HORIZFORM(NO)
VERTICALFORM(NO) TEXTKYBD(NO) TEXTPRINT(NO) QUERY(NO)
OUTLINE(NO) SOSI(NO) BACKTRANS(NO) CGCSGID(0,0) ASCII(NO)
SENDSIZE(O) RECEIVESIZE(256) BRACKET(YES) LOGMODE(O)
ERRLASTLINE(NO) ERRINTENSIFY(NO) ERRCOLOR(NO) ERRHILIGHT(NO)
AUTOCONNECT(NO) ATI(YES) TTI(YES) CREASESESS(YES) RELREQ(NO)

122 Customization Guide

DISCREQ(NO) NEPCLASS(O) SIGNOFF(YES) XRFSIGNOFF(NOFORCE)
ROUTEDMSGS(ALL) LOGONMSG(NO) BUILDCHAIN(NO) USERAREALEN(16)
IOAREALEN(0,0) UCTRAN(NO) RECOVOPTION(SYSDEFAULT)
RECOVNOTIFY(NONE)

DEFINE TERMINAL(V89A) GROUP(DSLGROUP)
AUTINSTMODEL(NO) TYPETERM(3270P000) NETNAME(U72FD)
CONSOLE(NO) PRINTERCOPY(NO) ALTPRINTCOPY(NO) TASKLIMIT(NO)
TERMPRIORITY(0) INSERVICE(YES) ATTACHSEC(LOCAL) BINDSECURITY(NO)

v Example 2 defines a VTAM LUTYPE-1 printer using the SCS data stream. A
printer page of 66 lines is defined with a line length of 120.

Note: If this page/line size is required the appropriate definition must be
supplied in the DSLTFDT.

DFHTCT TYPE=TERMINAL,TRMIDNT=SCSX,ACCMETH=VTAM,
LOGMODE=0,
TRMTYPE=SCSPRT,TRMMODL=2,TIOAL=(2048,4096),
TRMSTAT=TRANSCEIVE,RELREQ=(YES,YES),
TCTUAL=16,HF=YES,VF=YES,CHNASSY=YES,
RUSIZE=256,BUFFER=768,DEFSCRN=(66,120),
NETNAME=ALUB106

LOGMODE=0 shows that an MODETABLE entry has been defined for the LU
during NCP/VTAM system generation, for example:
T3287SCS MODEENT LOGMODE=T3287SCS,FMPROF=X'03',TSPROF=X'03',

PRIPROT=X'B1',SECPROT=X'90',COMPROT=X'3080',
RUSIZES=X'87C6',PSERVIC=X'01000000E100000000E10000',
PSNDPAC=X'01',SRCVPAC=X'01'

The following definition statements for the CICS/ESA utility DFHCSDUP give
an example of how to define an SCS printer:
DEFINE TYPETERM(3790000) GROUP(DSLGROUP)

DEVICE(SCSPRINT) TERMMODEL(2) SHIPPABLE(NO) PAGESIZE(24,80)
ALTPAGE(0,0) FMHPARM(NO) OBOPERID(NO) AUTOPAGE(YES)
DEFSCREEN(0,0) ALTSCREEN(0,0) APLKYBD(NO) APLTEXT(NO)
AUDIBLEALARM(NO) COLOR(NO) COPY(NO) DUALCASEKYBD(NO)
EXTENDEDDS(NO) HILIGHT(NO) KATAKANA(NO) LIGHTPEN(NO)
MSRCONTROL(NO) OBFORMAT(NO) PARTITIONS(NO) PRINTADAPTER(NO)
PROGSYMBOLS(NO) VALIDATION(NO) FORMFEED(NO) HORIZFORM(NO)
VERTICALFORM(YES) TEXTKYBD(NO) TEXTPRINT(NO) QUERY(NO)
OUTLINE(NO) SOSI(NO) BACKTRANS(NO) CGCSGID(0,0) ASCII(NO)
SENDSIZE(768) RECEIVESIZE(256) BRACKET(YES) LOGMODE(O)
ERRLASTLINE(NO) ERRINTENSIFY(NO) ERRCOLOR(NO) ERRHILIGHT(NO)
AUTOCONNECT(NO) ATI(YES) TTI(YES) CREASESESS(YES) RELREQ(NO)
DISCREQ(NO) NEPCLASS(O) SIGNOFF(YES) XRFSIGNOFF(NOFORCE)
ROUTEDMSGS(ALL) LOGONMSG(NO) BUILDCHAIN(YES) USERAREALEN(0)
IOAREALEN(2048,4096) UCTRAN(NO) RECOVOPTION(SYSDEFAULT)
RECOVNOTIFY(NONE)

DEFINE TERMINAL(SCSX) GROUP(DSLGROUP)
AUTINSTMODEL(NO) TYPETERM(3790000) NETNAME(ALUB106) CONSOLE(NO)
PRINTERCOPY(NO) ALTPRINTCOPY(NO) TASKLIMIT(NO) TERMPRIORITY(0)
INSERVICE(YES) ATTACHSEC(LOCAL) BINDSECURITY(NO)

v Example 3 defines a 3270 printer controlled as VTAM LUTYPE-3 using the data
stream compatibility mode (DSC). A page size of 55x80 is defined.
DFHTCT TYPE=TERMINAL,TRMIDNT=SLU3,ACCMETH=VTAM,

TRMTYPE=LUTYPE3,TRMMODL=2,CHNASSY=YES,
RELREQ=(YES,YES),BRACKET=YES,
TCTUAL=16,RUSIZE=256,BUFFER=1536,
FEATURE=(COLOR,HILIGHT),
DEFSCRN=(55,80)
NETNAME=ALUB104

Chapter 2. The MERVA ESA Environment 123

Screen and Printer Definitions in MERVA ESA

DSLTFDT, Table Structure: For IMS installations the features of the printers and
screen terminals are supplied in the Terminal Feature Definition Table DSLTFDT.

Sample Table Entries for DSLTFDT:

Notes:

[1] TYPE=INITIAL

This must be the first DSLTFD macro. It assigns the label DSLTFDT as the
name of the terminal feature definition table.

[2] DSLTFD LTERM=DEFSCRN

This is an entry for the default screen terminal and must not be removed.
The logical terminal name is DEFSCRN for the standard 3270 screen model
used in an installation with 24 rows and 80 columns (PAGESIZ=(24,80)).
The ERASE WRITE command (default) is used.

Note: If a screen logical terminal name is not found in this table the
specification of the default screen is applied.

[3] DSLTFD LTERM=L782

This and the following DSLTFD macros assign logical terminal names L782
to L793 to the following screen models:
v 3278-2
v 3278-3
v 3278-4
v 3278-5
v 3279-2B
v 3279-3B

TFDT TITLE 'MERVA ESA TERMINAL FEATURE DEFINITION TABLE'
DSLTFDT DSLTFD TYPE=INITIAL [1]
DEFSCRN DSLTFD LTERM=DEFSCRN,PAGESIZ=(24,80),BUFSIZE=1920,TERMTYP=3270 [2]

DSLTFD LTERM=L782,PAGESIZ=(24,80),TERMTYP=3270 [3]
DSLTFD LTERM=L783,PAGESIZ=(32,80),TERMTYP=3270,WRC=WRCEWA
DSLTFD LTERM=L784,PAGESIZ=(43,80),TERMTYP=3270,WRC=WRCEWA
DSLTFD LTERM=L785,PAGESIZ=(27,132),TERMTYP=3270,WRC=WRCEWA
DSLTFD LTERM=L792,PAGESIZ=(24,80),TERMTYP=3270, *

FEATURE=(COLOR,EXTHIL)
DSLTFD LTERM=L793,PAGESIZ=(32,80),TERMTYP=3270,WRC=WRCEWA, *

FEATURE=(COLOR,EXTHIL)
DEFPRINT DSLTFD LTERM=DEFPRINT,PAGESIZ=(24,80),BUFSIZE=1920, * [4]

TERMTYP=3270P
PRTSCS DSLTFD LTERM=I4S33F06,PAGESIZ=(72,132),BUFSIZE=768, * [5]

TERMTYP=SCSP,FEATURE=(EXTHIL,COLOR)
PRTTRM DSLTFD LTERM=I4ZMEDB,PAGESIZ=(72,132),BUFSIZE=2400, * [6]

TERMTYP=3270P
L86A DSLTFD LTERM=L86A,PAGESIZ=(24,80),BUFSIZE=1920, *

TERMTYP=3270P
L89A DSLTFD LTERM=L89A,PAGESIZ=(55,132),BUFSIZE=1920, *

TERMTYP=3270P,FEATURE=(COLOR)
DSLTFD LTERM=DSLSDSY,PAGESIZ=(72,132),TERMTYP=SYSP [7]
DSLTFD TYPE=FINAL [8]
END

Figure 37. MERVA ESA Terminal Feature Definition Table

124 Customization Guide

These definitions are used only for MERVA ESA running under IMS.

[4] DSLTFD LTERM=DEFPRINT

This is an entry for the default printer and must not be removed but
should be changed according to the characteristics of the printer mostly
used in your installation. The terminal type is 3270P for a printer, page and
buffer sizes are as the default values (24 lines and 80 columns). The
number of columns specified should correspond to the maximum size of
the printer page for correct line feed.

[5] DSLTFD LTERM=I4S33F06

This is an entry for an LU-1 SCS printer with all the features available
(color and extended highlighting attributes). The terminal type is SCSP, a
BUFSIZE of 768 bytes, according to the NCP/VTAM RUSIZE, and 72 lines
are used.

[6] DSLTFD LTERM=I4ZMEDB

This is an entry for a 3286 printer (3270 data stream). The terminal type is
3270P, a BUFSIZE of 2400 bytes and a physical page of 72 lines and 132
columns are used. Two other definitions for the same type of printer, but
with different page sizes, follow in the example.

[7] DSLTFD LTERM=DSLSDSY

This is an entry for the definition of the system printer (TERMTYP=SYSP).

[8] TYPE=FINAL

This must be the last DSLTFD macro and is followed by the assembler
END statement.

Customizing the MERVA Message Processing Client Server
The server for MERVA Message Processing Client workstations supports
connections using:
v APPC mapped conversations without synchronization
v TCP/IP

When MERVA ESA is not running under CICS, the server is implemented in two
parts:
v A listener task (the controlling task)
v A conversation subtask

Under CICS, there is only the conversation subtask, and CICS supplies the listener
services.

CICS APPC Connections
Because the subtask DSLAFM01 is already defined as transaction DSLF in the CICS
definition provided by MERVA ESA, no special customization is necessary for
CICS installations.

CICS initiates the transaction upon receiving an allocate request from a client for a
conversation with the CICS LU and the TP DSLF.

Each workstation that is to be served by DSLAFM01 requires a SESSION and
CONNECTION definition in CICS:

Chapter 2. The MERVA ESA Environment 125

DEFINE CONNECTION(conn)
ACCESSMETHOD(VTAM) PROTOCOL(APPC)
NETNAME(client lu)

...

DEFINE SESSIONS(session)
CONNECTION(conn) PROTOCOL(APPC)

...

Refer to CICS/ESA Version 4.1 Intercommunication Guide for information on how to
define connections and sessions.

IMS APPC Connections
For IMS installations an APPC/MVS Server program, DSLAFA01, is provided to
initiate the DSLAFM01 subtask. DSLAFA01 is controlled by the WSASRV
parameter in the MERVA ESA parameters module DSLPRM.

DSLAFA01 is a batch program which registers itself with APPC/MVS as the server
for any allocation requests for conversations with the LU and TP defined in the
WSASRV parameter of DSLPRM. See “DSLPRM Module Sample” on page 87. Refer
to the APPC/MVS documentation for more information on APPC/MVS Servers,
and how to control use of APPC/MVS transaction programs.

TCP/IP Connections
For all environments, the TCP/IP version of the server program is implemented as
a batch program. The listener program DSLAFATM registers with TCP/IP and
waits for connection requests from workstations, and the subtask DSLAFMTM is
initiated to manage each conversation. The only customization possible is
specifying the port number used by DSLAFATM, which is specified in the
WSTSRV parameter of DSLPRM.

MERVA ESA User File
All MERVA Message Processing Client workstation users must be defined in the
MERVA ESA User File before they can sign on to MERVA ESA. How to update
the User File is discussed in MERVA for ESA User’s Guide.

126 Customization Guide

Chapter 3. The SWIFT Link

This chapter explains how to customize the following areas in the SWIFT Link for
the SWIFT network:
v Define the SWIFT Link customizing parameters in the module DWSPRM. This

explains how to use the DWSPARM macro.
v Define the data communication lines to SWIFT in the line definition modules.

This explains how to use the DWSVLINE macro. The DWSVLINE macro is used
to define the connection to the MERVA Extended Connectivity product that runs
on a 37xx controller and connects to the SWIFT network via X.25.

v Define the logical terminals for connecting to the SWIFT network in the Logical
Terminal Table (DWSLTT).

v Customize the SWIFT Link to exploit parallel processing of nucleus servers.
Multiple instances of the SWIFT Link server can run under a single
MERVA ESA nucleus.

v Update the currency code table DWSCURT, which is used for checking and the
currency code help panel. Alternatively, the SWIFT currency code file can be
used to store the currency codes in MERVA ESA. The currency code file can be
maintained online using the file maintenance function.

v Define the central institutions table (DWSCIT) if you want to use the PREMIUM
or FIN-Copy service offered by SWIFT.

The SWIFT Link customizing parameters in the DWSPRM module, the line
definition modules, the SWIFT Link logical terminal table, and the central
institutions table are separate load modules that are loaded by the SWIFT Link
programs when needed.

Defining SWIFT Link Parameters in Module DWSPRM
For basic customizing of the SWIFT Link environment the module DWSPRM is
used. This module uses the DWSPARM macro, described in the MERVA for ESA
Macro Reference. Figure 38 shows an example of the SWIFT Link customizing
parameters.

Notes:

DWSPRM DWSPARM LINENAM=DWSLIN, * [1]
CHECK=(NO,NO), * [2]
AUTHUP=MYUAUTPW, * [3]
AUTHAGE=200, * [4]
CIT=DWSCIT, * [5]
LSKQUE=SLSLOAD, * [6]
LTTQUE=SLSLTT, * [7]
INTACK=600, * [8]
INTRES=120, * [9]
LOG2=DWSLOG2, * [10]
RSKQUE=SLSRECV, * [11]
SWIN=10000, * [12]
SWOUT=11000, * [13]
FORMAT=TOF [14]

END

Figure 38. Example of SWIFT Link Customizing Parameters for the SWIFT Network

© Copyright IBM Corp. 1987, 2001 127

[1] LINENAM=DWSLIN

LINENAM specifies the first six characters of the line definition module
names, the seventh character, and optionally the eighth character, are the
number of the line. Line numbers from 1 through 30 are supported.
DWSLIN is the default. If you use different names, you must supply the
first six characters here.

[2] CHECK=(NO,NO)

This parameter shows that both messages received from the SWIFT
network are not checked (first subparameter ″NO″), and messages sent to
the SWIFT network are not checked for formal syntax (second
subparameter ″NO″). This improves the performance when communicating
with the SWIFT network. If SWIFT output messages are not checked, they
should be routed to a function calling the MERVA ESA expansion and
checking transaction DSLCXT (see function L3CXT). If SWIFT input
messages are not checked, they should be checked before routing them to
the ready queues for sending, to avoid negative acknowledgments from
SWIFT.

[3] AUTHUP=MYUAUTPW

MYUAUTPW is specified as the password for scrambling the authenticator
keys before they are unloaded to a sequential file. You supply the
password used with this parameter. You should use this parameter to
protect the unload file from unauthorized access.

[4] AUTHAGE=200

A number of 200 authenticator key entries is specified for the aging table
used by the authenticator key file support program DWSAUTP. Because of
this specification 200 keys instead of 100 (default) are stored in main
storage after an authenticator key was requested. This reduces the number
of accesses to the file during authentication.

You should tune your SWIFT Link specifications to reduce file accesses and
to improve the performance of your system. The diagnostic message
DWS771I issued during the termination of the DWSAUTP program gives
statistics about the number of keys retrieved from the aging table and from
the key file.

[5] CIT=DWSCIT

Specify the name of the central institutions table if you are using the
PREMIUM or FIN-Copy service of SWIFT.

[6] LSKQUE=SLSLOAD

When SWIFT secure login/select (SLS) is used with session key
pre-generation and preload, this parameter specifies the queue where the
SWIFT Link Load Session Keys program DWSDLSK expects the session
keys received from the workstation that processes the SWIFT USE
functions (USE workstation). From this queue, the session keys are moved
to the session key queues defined with the SKEYQ parameters in DWSLTT.

[7] LTTQUE=SLSLOAD

This parameter specifies the queue where the SWIFT Link saves
information from DWSLTT between a termination and the next startup.
This information includes login and select sequence numbers (LSN and
SSN), input and output sequence numbers (ISN and OSN) and information
related to SLS.

128 Customization Guide

[8] INTACK=600

This specifies a timeout period for ISN ACKs. If an ACK does not arrive
within 600 seconds (10 minutes), the session is aborted.

[9] INTRES=120

This specifies a time interval in seconds during which the SWIFT Link
does not try a resumption after a suspension was complete on a switched
line to the SWIFT network, even if there is something ready for sending.
This interval is ignored if a MERVA ESA operator enters a command that
generates a message for sending to the SWIFT network, for example, a
login, logout, select or quit command.

[10] LOG2=DWSLOG2

LOG2 defines the name of the user exit that retrieves the session keys for
login and select when paper tables are used. In one MERVA ESA
installation, some logical terminals can use paper tables for login and
select, others can use SLS. This parameter defines the sample DWSLOG2
that contains the session keys used for test and training. You can modify
DWSLOG2 for a live logical terminal, or use a different module name, and
you can either include the session keys in the table or retrieve them from a
data base.

[11] RSKQUE=SLSRECV

When SWIFT secure login/select (SLS) is used with single session key
retrieval from the USE workstation, this parameter specifies the queue
where the SWIFT Link expects the session key response messages. From
this queue, the session keys are moved to the pertinent entry in DWSLTT,
and login or select can proceed.

[12] SWIN=10000

This parameter defines the buffer length used to format outgoing SWIFT
messages. It is the maximum length of a message that can be sent by
SWIFT Link. For some message types S.W.I.F.T. allows a message length of
up to 10000 bytes. The maximum length of individual message types is
determined by the specification in the message type table. A message that
is larger than the specification in the message type table is not sent to
SWIFT.

[13] SWOUT=11000

This parameter defines the buffer length used to receive incoming SWIFT
messages. It is the maximum length of a message that can be received by
SWIFT Link. For some message types S.W.I.F.T. allows a message length of
up to 10000 bytes for input messages. When transmitted as an output
message by SWIFT some additional header and trailer information may
have been added. A value of 11000 is large enough to accommodate all
possible cases.

[14] FORMAT=TOF

This parameter defines that messages are stored in the standard
MERVA ESA tokenized format in the queue data set. Message checking
can only be performed on messages in the tokenized format. If you specify
FORMAT=ELF, messages are stored in external line format. Messages in
external line format are not tokenized, but the message buffer is stored in a
single field in the TOF. Message checking is not performed on the external
line format. As formatting and checking operations are responsible for

Chapter 3. The SWIFT Link 129

most of the consumed CPU cycles, the use of the external line format can
reduce the CPU load and increase the throughput of the SWIFT Link.

The use of the FORMAT=ELF parameter might require changes to routing
modules. Because the SWIFT fields (SWxxxxxx) are no longer available for
direct access, they cannot be used in routing modules. MERVA ESA
provides field names to access the SWIFT header and trailer fields in
external line format. These field names (EFxxxxxx) are handled by an MFS
separation routine which extracts the required field data from the external
line format.

If you use FORMAT=ELF, applications which create or process SWIFT
messages must be changed to provide the messages in external line format.

Defining Communication Lines to the SWIFT Network
Here are examples of how to define the following types of line to the SWIFT
network:
v Leased lines for SWIFT X.25
v Switched lines for automatic dialing for SWIFT X.25

The connection to the SWIFT network via X.25 requires the product MERVA
Extended Connectivity running under NCP on a 37xx controller. The connection
between MERVA ESA SWIFT Link and MERVA Extended Connectivity is a VTAM
LU Type 1 session. Refer to the MERVA Extended Connectivity Installation and User’s
Guide for more details about customizing MERVA Extended Connectivity.

Select the line definitions that are most appropriate to your bank’s needs. You must
supply the specifications according to the examples described in the following. A
maximum of 30 lines for X.25 connections can be selected, with leased lines,
switched lines, or a combination of them. You can define more line modules than
actual lines exist in your installation. This is useful when one physical line is used
in different operation modes.

If you use line definition module names other than DWSLINx, you must define
these module names to CICS.

The line definition modules for X.25 use the DWSVLINE macro. The macro is
described in the MERVA for ESA Macro Reference.

Line Definition for a Public Data Network Line for SWIFT X.25
Figure 39 shows how to define a leased line to the SWIFT network via X.25 using a
public data network in the line definition module DWSLIN7.

Notes:

[1] LINETYP=LEASED

DWSLIN7 DWSVLINE LINETYP=LEASED, * [1]
LNSAPNM=VNDOBET299000, * [2]
RDTEADR=031347037729800, * [3]
CUD=0101, * [4]
PLUNAME=FD0AC388, * [5]
SLUNAME=X78VU42 [6]

END

Figure 39. Example of a SWIFT Link Line Definition Module (X.25 Leased Line)

130 Customization Guide

This parameter defines a leased line to the SWIFT network.

[2] LNSAPNM=VNDOBET299000

This parameter specifies the symbolic address (local NSAP name) of the
financial institution assigned by S.W.I.F.T.

[3] RDTEADR=031347037729800

This parameter specifies the remote DTE address. This represents the
address an X.25 connection is established to, the called DTE address. You
can specify a list of remote DTE addresses here. If a list is specified, the
remote DTE addresses are tried sequentially until the network connection
is established. The value is provided by S.W.I.F.T. In this case, it refers to
an ACCUNET address in the USA. Refer to the S.W.I.F.T. User Handbook for
more details about the DTE address field.

[4] CUD=0101

This parameter specifies the variable part of the call user data. Two octets
are defined in this case. This value to be specified is provided by S.W.I.F.T.

[5] PLUNAME=FD0AC388

This parameter defines the primary logical unit name; it is the name
MERVA ESA uses to open an ACB to VTAM.

[6] SLUNAME=X78VU42

This parameter defines the secondary logical unit name; it is the name
used by MERVA Extended Connectivity running on the communication
controller under NCP. This name is logically connected to an SVC on a
specific physical line to the X.25 network. This line must be defined as a
leased line to SWIFT.

Line Definition for a Leased Line for SWIFT X.25
Figure 40 shows how to define a leased line to the SWIFT network via X.25 in the
line definition module DWSLIN8.

Notes:

[1] LINETYP=LEASED

This parameter defines a leased line to the SWIFT network.

[2] LNSAPNM=VNDOBET299000

This parameter specifies the symbolic address (local NSAP name) of the
financial institution assigned by S.W.I.F.T.

[3] LDTEADR=99

DWSLIN8 DWSVLINE LINETYP=LEASED, * [1]
LNSAPNM=VNDOBET299000, * [2]
LDTEADR=99, * [3]
LOGMODE=SCS3790, * [4]
PLUNAME=ID0AC385, * [5]
SLUNAME=F39VU12, * [6]
TRACE=(N,N,N,N,N,Y,N,N,N,N) [7]

END

Figure 40. Example of a SWIFT Link Line Definition Module (X.25 Leased Line)

Chapter 3. The SWIFT Link 131

This parameter specifies the local DTE address. For leased lines, S.W.I.F.T.
allows the user to use subaddressing of up to two digits. Refer to the
S.W.I.F.T. User Handbook for more details about the DTE address field.

[4] LOGMODE=SCS3790

This parameter specifies the LOGMODE table entry used by MERVA ESA.
The bind of the session between MERVA ESA and MERVA Extended
Connectivity is done with the characteristics defined in the LOGMODE
table entry SCS3790. If this parameter is specified, the RRUSIZE and
SRUSIZE parameters are ignored.

[5] PLUNAME=ID0AC385

This parameter defines the primary logical unit name; it is the name
MERVA ESA uses to open an ACB to VTAM.

[6] SLUNAME=F39VU12

This parameter defines the secondary logical unit name; it is the name
used by MERVA Extended Connectivity running on the communication
controller under NCP. This name is logically connected to an SVC on a
specific physical line to the X.25 network. This line must be defined as a
leased line to SWIFT.

[7] TRACE=(N,N,N,N,N,Y,N,N,N,N)

This parameter defines the initial setting of the trace switches for this line.
In this case the sixth trace switch is set on, resulting in a trace of all data
buffers transferred between MERVA ESA and MERVA Extended
Connectivity. The trace output is written to the SYSPRINT data set (MVS)
or to SYSLST (VSE).

Use the trace facility only on request of the IBM service and support
organization. Do not use this facility in a production environment for
performance reasons.

Line Definition for an Auto Dial Line for SWIFT X.25
Figure 41 shows how to define a switched line to the SWIFT network via X.25 for
automatic dialing in the line definition module DWSLIN9.

Notes:

[1] LINETYP=SWITCHED

This parameter defines that line 9 is a PSTN line to the SWIFT network.

[2] LPHONE=9497031166282

This parameter defines the local telephone number used for return calls
from SWIFT. This number is used when a resumption is initiated by

DWSLIN9 DWSVLINE LINETYP=SWITCHED, * [1]
LPHONE=9497031166282, * [2]
LNSAPNM=VNDOBET299000, * [3]
PHONE=((0015559876,D),(0015559877,S)), * [4]
PLUNAME=ID0AC381, * [5]
RRUSIZE=2048, * [6]
SLUNAME=F39VU11, * [7]
SRUSIZE=8192 [8]

END

Figure 41. Example of a SWIFT Link Line Definition Module (X.25 Auto Dial Line)

132 Customization Guide

SWIFT. When this number is not specified resumption initiated by SWIFT
is not possible. The number must start with a 9 followed by the country
code, area code, and local phone number.

[3] LNSAPNM=VNDOBET299000

This parameter specifies the symbolic address (local NSAP name) of the
financial institution assigned by S.W.I.F.T.

[4] PHONE=((0015559876,D),(0015559877,S))

This parameter defines a list of telephone numbers as agreed with
S.W.I.F.T. to dial the SWIFT network. If S.W.I.F.T. gives you more than one
telephone number, you can define up to 9 telephone numbers here. If a
line is busy, MERVA ESA automatically tries the next telephone number in
the list. In the example, the subparameter D indicates that the telephone
number is a dedicated port at SWIFT side; the subparameter S indicates
that the telephone number is a shared port. S.W.I.F.T. informs you whether
the assigned telephone number is for a dedicated or a shared port.

[5] PLUNAME=ID0AC381

This parameter defines the primary logical unit name; it is the name
MERVA ESA uses to open an ACB to VTAM.

[6] RRUSIZE=2048

This parameter defines the request unit size for receiving. Because chaining
is used to transfer data between MERVA ESA and MERVA Extended
Connectivity this value does not define an actual limit on data sizes. You
can tune this value in case of performance problems.

[7] SLUNAME=F39VU11

This parameter defines the secondary logical unit name; it is the name
used by MERVA Extended Connectivity running on the communication
controller under NCP. This name is logically connected to an SVC on a
specific physical line to the X.25 network. This line must be defined as a
switched line.

[8] SRUSIZE=8192

This parameter defines the request unit size for sending.

VTAM Definition for SWIFT X.25 Lines
Figure 42 shows how to define an application ID for a connection to the SWIFT
network via X.25. The application ID is used to open a connection to the MERVA
Extended Connectivity product running on a 37xx controller.

Notes:

[1] VBUILD TYPE=APPL

This statement instructs VTAM to build an application.

[2] ID0AC381 APPL AUTH=ACQ

This statement specifies that the application name ID0AC381 is defined.

VBUILD TYPE=APPL [1]
ID0AC381 APPL AUTH=ACQ [2]

Figure 42. Example of a VTAM Definition for MERVA Extended Connectivity

Chapter 3. The SWIFT Link 133

Figure 43 shows how to define a LOGMODE entry to be used for the VTAM
session to the MERVA Extended Connectivity product running on a 37xx controller.
The LOGMODE entry is used to define the session characteristics of the connection
when the parameter LOGMODE is specified in the DWSVLINE macro. Specify a
LOGMODE entry only when you want to select a class-of-service (COS) for the
session.

Notes:

[1] MODEENT LOGMODE=SCS3790

This is the name of the LOGMODE entry, and must be specified in the
LOGMODE parameter of the DWSVLINE macro. The parameter RUSIZES
specifies the maximum RU sizes used by the secondary and primary
logical unit:
v The leftmost 2 digits specify the value for the secondary logical unit and

correspond to the RRUSIZE parameter of the DWSVLINE macro.
v The rightmost 2 digits specify the value for the primary logical unit and

correspond to the SRUSIZE parameter of the DWSVLINE macro.

The following table shows the allowed values for the leftmost and
rightmost 2 digits of the RUSIZES parameter, and the corresponding RU
sizes:

RU Size 64 128 256 512 1024 2048 4096 8192

RUSIZES left 2 digits (RRUSIZE) 85 86 87 88

RUSIZES right 2 digits (SRUSIZE) 83 84 85 86 87 88 89 8A

Note: Do not change any of the other parameters of the LOGMODE entry!
For more information about the DWSVLINE macro, refer to the MERVA for
ESA Macro Reference. For more information about RU sizes, refer to the
VTAM Resource Definition Reference.

Defining Logical Terminals for the SWIFT Network
The SWIFT Link Logical Terminal Table defines the logical terminals used in a
computer based terminal (CBT) as agreed with S.W.I.F.T. These definitions are used
by the SWIFT Link Program DWSDGPA which is the main program of the SWIFT
Link for the SWIFT network.

DWSDGPA loads the logical terminal table with the name defined in DWSPRM.
The name of the Logical Terminal Table can also be specified as the start parameter
in the NPT entry definition, or in the operator start command. If multiple instances
of the SWIFT Link are used, each instance needs its own Logical Terminal Table. If
you use a name other than DWSLTT, you must define this to CICS. The routing
tables defined in the logical terminal table are also loaded and must be defined to
CICS.

The DWSLT macro can be used by user-written programs to map the entries of
DWSLTT. User-written programs link-edited to DSLNUC can access DWSLTT via

SCS3790 MODEENT LOGMODE=SCS3790,FMPROF=X'03',TSPROF=X'03', * [1]
PRIPROT=X'B1',SECPROT=X'B0',COMPROT=X'3080', *
RUSIZES=X'8585',PSERVIC=X'010000000000000000000000'

Figure 43. Example of a LOGMODE Entry for MERVA Extended Connectivity

134 Customization Guide

DSLCOM. The field COMDSNL points to an address list that contains the address
of DWSPRM in the third fullword when the SWIFT Link (that is, the program
DWSDGPA) is started. User-written programs not link-edited to DSLNUC must
load DWSLTT if they need it.

Figure 44 shows how to define the master and synonym logical terminals, ready
queues, routing tables, and other information. These definitions are used in the
examples for the routing logic starting with “Examples of Function Table Entries
for the SWIFT Link” on page 7.

Details of the parameters of the DWSLT macro are given in the MERVA for ESA
Macro Reference.

Note: Names used in the function tables, routing tables, and logical terminal table
must be consistent.

Notes:

[1] This is the first DWSLT macro, the label DWSLTT defines the name of the
logical terminal table. This name must be specified in the LTT parameter of
the DWSPARM macro used in the SWIFT Link customization parameter
module DWSPRM.

The logical terminal VNDEBET2A is a master logical terminal
(TYPE=MAS) with the routing tables DWSL1IN for input messages from a
ready queue, and DWSL1OUT for output messages received from SWIFT.

LTT TITLE 'EXAMPLE FOR SWIFT LOGICAL TERMINAL TABLE'
DWSLTT DWSLT TYPE=MAS,NAME=VNDEBET2A,LINE=6, * [1]

ROUTIN=DWSL1IN,ROUTOUT=DWSL1OUT, *
READYQ=(L1RGPAU), *
TFLAG=SLS, * [2]
USENAME=USEMERVA2, *
ROUTSK=DWSRTSK, *
SKEYQ=SLSGPA

DWSLT TYPE=AP,NAME=FIN, * [3]
ROUTIN=DWSL1IN,ROUTOUT=DWSL1OUT, *
READYQ=(L1RFINU,L1RFINN), *
SKEYQ=SLSFIN, *
DELSUB=(SYSTEM,URGENT,NORMAL)

DWSLT TYPE=MAS,NAME=VNDOBET2A,LINE=7, * [4]
ROUTIN=DWSL2IN,ROUTOUT=DWSL2OUT, *
READYQ=(L2RGPAU)

DWSLT TYPE=SYN,NAME=VNDOSYN2A [5]
DWSLT TYPE=AP,NAME=FIN, *

ROUTIN=DWSL2IN,ROUTOUT=DWSL2OUT, *
READYQ=(L2RFINU,L2RFINN), *
DELSUB=(SYSTEM,URGENT,NORMAL)

DWSLT TYPE=MAS,NAME=VNDPBET2A,LINE=8, * [6]
ROUTIN=DWSL3GPI,ROUTOUT=DWSL3GPO, *
READYQ=(L3RGPAU)

DWSLT TYPE=SYN,NAME=VNDPSY12A
DWSLT TYPE=SYN,NAME=VNDPSY22A
DWSLT TYPE=AP,NAME=FIN, *

ROUTIN=DWSL3FII,ROUTOUT=DWSL3FIO, *
READYQ=(L3RFINU,L3RFINN), *
DELSUB=(SYSTEM,URGENT,NORMAL)

END

Figure 44. Coding Example of a SWIFT Link Logical Terminal Table

Chapter 3. The SWIFT Link 135

The READYQ=(L1RGPAU) parameter defines the ready queue name for
the General Purpose Application messages. The queue L1RGPAU must be
defined in the function table DSLFNTT.

Line 6 (LINE=6) is used for this master logical terminal. The line used can
be changed by the SWIFT Link operator using the setlt command.

[2] The master logical terminal VNDEBET2A uses the SWIFT secure
login/select (SLS) technology as defined with the TFLAG=SLS parameter.
As a consequence, either one or both of the following must be defined
also:
v For single session key retrieval from the workstation where the SWIFT

USE functions run (USE workstation), the name of the USE workstation
used for routing of the session key request to the MERVA Link send
queue for sending to this USE workstation (USENAME parameter). Also,
the name of a routing table used for this routing must be specified then
(ROUTSK parameter).
Using single session key retrieval requires the USE workstation being
connected to MERVA ESA during login and select.

v For session key pre-generation and preloading, the name of the queue
that is to contain the session keys (SKEYQ parameter). The session keys
are generated at the USE workstation, sent to MERVA ESA via MERVA
Link, and stored in the session key queue by the program DWSDLSK.
You can define a different session key queue for each entry of DWSLTT,
this eases the supervision and maintenance of the session keys (see the
MERVA for ESA Operations Guide for details).
Using preloaded session keys requires the USE workstation being
connected to MERVA ESA only during the transmission of the session
keys from the USE workstation to MERVA ESA. It is not necessary to
have the USE workstation connected during login and select then.

If both ways are provided, the SWIFT Link tries to get a session key from
the queue first, and if it is not found there, a session key request is sent to
the USE workstation.

The TFLAG and USENAME values can be changed using the setlt
command (see MERVA for ESA Operations Guide for details).

[3] This entry defines the financial application for the first master logical
terminal (TYPE=AP,NAME=FIN).

The routing tables DWSL1IN for financial input messages from a ready
queue and DWSL1OUT for financial output messages received from SWIFT
are used.

The READYQ=(L1RFINU,L1RFINN) parameter defines the ready queue
names for the Financial Application messages:
v L1RFINU for urgent priority and system messages
v L1RFINN for normal priority messages

The ready queues are processed by DWSDGPA in the order in which they
appear in the READYQ parameter. Both queues must be defined in the
function table DSLFNTT.

SKEYQ=SLSFIN defines the session key queue for the FIN application (see
the explanation of this parameter for the master logical terminal). The

136 Customization Guide

parameters TFLAG, USENAME and ROUTSK cannot be specified for the
FIN application as they cannot be different from the values specified for
the master logical terminal.

DELSUB=(SYSTEM,URGENT,NORMAL) defines the default FIN delivery
subsets used in the select message sent to the SWIFT network. These
delivery subsets can be changed with the dds or select command (see the
MERVA for ESA Operations Guide for details). The FIN delivery subsets
must be created with a General Purpose Application message type 047, as
otherwise the select message is rejected by the SWIFT network.

[4] The logical terminal VNDOBET2A is a master logical terminal (TYPE=MAS
parameter) with the routing tables DWSL2IN for input messages from a
ready queue and DWSL2OUT for output messages received from the
SWIFT network. The ready queue name L2RGPAU is defined. The LINE=7
parameter specifies that this master logical terminal uses line 7.

This master logical terminal and its FIN application use paper table
technology for login and select as the TFLAG parameter is not specified
and therefore defaulted to TFLAG=PT.

[5] The logical terminal VNDOSYN2A is a synonym logical terminal
(TYPE=SYN) for the master logical terminal VNDOBET2A.

The synonym logical terminal uses the same facilities as the master logical
terminal and its FIN application, for example, the same ready queues and
routing tables.

[6] A third master logical terminal VNDPBET2A and its two synonym logical
terminals VNDPSY12A and VNDPSY22A are defined with the macros that
follow.

The LINE=8 parameter defines that this master logical terminal and its
synonyms use line 8.

SWIFT Link Parallel Processing
You can split MERVA ESA installations and the corresponding message volume to
achieve more throughput. The disadvantage of this method is that the messages
and the infrastructure must be split also and it is complicated to integrate these
messages afterwards in an offline process.

The SWIFT Link parallel processing allows the activation of multiple SWIFT Link
servers in the same MERVA ESA nucleus. This way, the journal and queue data set
are not split over multiple systems, but are integrated within one file, data set, or
database.

However, the logical terminals and the logical X.25 lines must be distributed
between the SWIFT Link servers. One physical X.25 line can transport more than
one logical line (SVC) at the same time, therefore this is not a real limitation. On
the other hand, when only a single logical terminal with a high throughput
requirement is logged in, multiple SWIFT Link servers are not useful.

The parallel processing performance option should be considered only for large
MVS installations with a high SWIFT message volume. If this option is chosen,
MERVA ESA nucleus should not run as a CICS transaction but as an MVS batch
program or as an IMS BMP. In CICS installations, the MERVA ESA nucleus can
run in a separate batch region. Transactions in the CICS region are started by the
CICS batch interface via the MERVA ESA transaction table.

Chapter 3. The SWIFT Link 137

Before multiple servers of the SWIFT Link are activated, a detailed trade-off
analysis should be performed. The overall throughput of a system fulfilling the
prerequisites can be expected to be higher than with a single SWIFT Link server.
On the other hand, the logical terminals must be distributed over different logical
terminal tables (DWSLTT). The operating and controlling of multiple SWIFT Links
within one MERVA ESA system is more complicated. The SWIFT Link command
router has to be used for operator commands to address the correct SWIFT Link
server.

The operation can be done from a single point of control, a CMD, or an MSC
function. This is probably simpler than with multiple and split MERVA ESA
systems where the command operations have to be done from different sessions.

The following sample tables show a scenario using the base SWIFT Link server
and three additional servers running in parallel. The servers must be defined in the
nucleus program table.

The first additional server has the name SWIFTIIA. It must be started manually by
an operator. This is done by entering the command:
S SWIFTIIA

This server requires its own logical terminal table DWSLTTA. The logical terminal
names defined in this table must not be specified in any of the other logical
terminal tables. Each server must also be defined as a subtask in the nucleus server
table DSLNSVT (SERVER=TASK).

...

* For DWSDGPA up to 152 ECBs can be specified, supporting 30 lines.
* DWSDGPA needs 5 ECBs for each line plus 2 ECBs for the program.
* A minimum of 12 ECBs must be specified to support two active lines.

DSLNPT TYPE=PGM,NAME=DWSDGPA,ECB=152,STRTREQ=4,STOPREQ=8, *
ECBREQ=0,AUTO=YES,PRTY=8,DESC=SWIFTII

DSLNPT TYPE=PGM,NAME=DWSDGPA,ECB=12,STRTREQ=4,STOPREQ=8, *
DESC=SWIFTIIA,PARM=DWSLTTA

DSLNPT TYPE=PGM,NAME=DWSDGPA,ECB=12,STRTREQ=4,STOPREQ=8, *
DESC=SWIFTIIB,PARM=DWSLTTB

DSLNPT TYPE=PGM,NAME=DWSDGPA,ECB=12,STRTREQ=4,STOPREQ=8, *
DESC=SWIFTIIC,PARM=DWSLTTC

...

Figure 45. Example of DWSNPTTC Definitions for Multiple SWIFT Link Servers

138 Customization Guide

All commands directed to this SWIFT Link server must be prefixed with the
command SWIFTTII. For this command, the synonym SW is defined; refer to
MERVA for ESA Operations Guide for more details. For example, to open a line,
issue a login to SWIFT, and select the FIN application for an LT, the following
command sequence must be entered:
SW A,SETLT VNDEBET2A,9
SW A,LI VNDEBET2A
SW A,SE VNDEBET2A

Session Keys Received from the USE Workstation
If several SWIFT Link servers are used and session keys are received from the USE
workstation individually and on demand (that is, during login or select), each
SWIFT Link server needs it own single session key receive queue. The name of the
queue is defined with the DWSPRM parameter RSKQUE. The default name of the
queue is SLSRECV.

A SWIFT Link server identified with a descriptive name of the form SWIFTIIx
(where x is its letter identifier) creates the name of the receive queue for the single
session keys by appending its letter identifier to the name specified for the
RSKQUE parameter. These queues must be defined in the DSLFNTT, for example:
* RECEIVED SINGLE SWIFT SESSION KEYS (SWIFTIIA)

DSLFNT NAME=SLSRECVA, +
DESCR='Received SWIFT Session Keys (SWIFTIIA)', +
DQFILL=NO, +
KEY1=(SWBHLT,12), +
NEXT=USEERROR, +
QUEUE=YES

*

Furthermore, the routing modules that refer to the queue must be updated to route
the messages containing the single session keys to the appropriate queues. In the
session-key routing module DWSRTCT or EKARTTXU, the statement for the target
queue for received single session queues must be modified to support multiple
receive queues. The original statement looks like this:
* ROUTE SINGLE SESSION KEYS RECEIVED FROM THE USE PS/2
RECV DSLROUTE TYPE=SET,TARGET=('SLSRECV'),GOTO=END

...

* The SWIFT link program group
DSLNSV NAME=SWIFTII,MODNAME=DWSDGPA,SERVER=TASK

DSLNSV NAME=SWIFTAUT,MODNAME=DWSAUTIN
DSLNSV NAME=DWSDCMD
DSLNSV NAME=DWSDCMR
DSLNSV NAME=DWSDIVA
DSLNSV NAME=DWSXTRCE
DSLNSV NAME=DWSAUTP
DSLNSV NAME=DWSAUTIN

DSLNSV NAME=SWIFTIIA,MODNAME=DWSDGPA,SERVER=TASK
DSLNSV NAME=DWSDCMDA,MODNAME=DWSDCMD

DSLNSV NAME=SWIFTIIB,MODNAME=DWSDGPA,SERVER=TASK
DSLNSV NAME=DWSDCMDB,MODNAME=DWSDCMD

DSLNSV NAME=SWIFTIIC,MODNAME=DWSDGPA,SERVER=TASK
DSLNSV NAME=DWSDCMDC,MODNAME=DWSDCMD

...

Figure 46. Example of DSLNSVT Definitions for Multiple SWIFT Link Servers

Chapter 3. The SWIFT Link 139

It must be changed as described here:
v First alternative: Route the session key to all possible receive queues or SWIFT

Link servers. Unsuitable session keys are ignored by any other SWIFT Link
servers not handling the LT. For example:
RECV DSLROUTE TYPE=SET,TARGET=('SLSRECV')

DSLROUTE TYPE=SET,TARGET=('SLSRECVA')
DSLROUTE TYPE=SET,TARGET=('SLSRECVB')
DSLROUTE TYPE=SET,TARGET=('SLSRECVC'),GOTO=END

v Second alternative: Route the session keys beginning with certain characters to
the proper queue, depending on the name in the LT field. All others go into a
standard SLSRECV queue. For example:
RECV DSLROUTE TYPE=TEST,COND=(LT,'IBMA',EQ,SHORT),TRUE=RECVA

DSLROUTE TYPE=TEST,COND=(LT,'IBMB',EQ,SHORT),TRUE=RECVB
DSLROUTE TYPE=TEST,COND=(LT,'IBMC',EQ,SHORT),TRUE=RECVC
DSLROUTE TYPE=SET,TARGET=('SLSRECV'),GOTO=END

RECVA DSLROUTE TYPE=SET,TARGET=('SLSRECVA'),GOTO=END
RECVB DSLROUTE TYPE=SET,TARGET=('SLSRECVB'),GOTO=END
RECVC DSLROUTE TYPE=SET,TARGET=('SLSRECVC'),GOTO=END

The Currency Codes
There are two methods in MERVA ESA to store the currency codes:
v The optional SWIFT link currency code file
v The SWIFT link currency code table

When a currency code file is installed, the currency codes can be updated using
the MERVA ESA file maintenance function.

The SWIFT Link currency code table defines all currency codes used in SWIFT
messages. The table is supplied as an assembler copy code DWSCURT that is used
by the program DWSMCCRT and the help panel MCB DWSHCUR. The copy code
can be changed when currency codes change. DWSMCCRT and DWSHCUR must
be assembled, and DWSMU141 and DWSHCUR must be link-edited.

The currency codes are defined using the DWSCUR macro. For more information
about the parameters of the DWSCUR macro, refer to the MERVA for ESA Macro
Reference.

Figure 47 shows examples of how to code a currency code.

Notes:

[1] The first example shows the currency code ADP in the CUR parameter.
This currency allows the specification of no digits after the decimal comma
(NUM=0), and the descriptor for the help panel shows that this is the
“Andorran Peseta” (COM parameter).

[2] The second example shows the currency code CHF in the CUR parameter.
This currency allows the specification of two digits after the decimal

DWSCUR CUR=ADP,NUM=0,COM='Andorran Peseta' [1]

DWSCUR CUR=CHF,NUM=2,COM=('Swiss Franc', * [2]
'Liechtenstein', *
'Switzerland')

Figure 47. Example of two Entries in the Currency Code Table

140 Customization Guide

comma (NUM=2), and the descriptor for the help panel shows that this is
the “Swiss Franc” (COM parameter). Two additional subparameters of the
COM parameter (there can be more additional subparameters) show that
this currency is used in Liechtenstein and Switzerland.

The Central Institutions Table
Use the DWSCI macro to define the central institutions participating in the
PREMIUM or FIN-Copy services offered by SWIFT The macro parameters are
described in detail in the MERVA for ESA Macro Reference. The name of the
DWSCIT table has to be specified in DWSPRM using the CIT parameter of the
DWSPARM macro.

PREMIUM Service
Figure 48 shows how to define a central institution for a SWIFT PREMIUM service
with a single macro statement.

Notes:

[1] CI=COPYCCLL

The name of the central institution.

[2] FIELD=SW53

The name of the message field containing the central institution.

[3] HOME=VNDOBET2

The name of the home LT.

[4] MSG=(S100,S202)

A list of message identifications that are part of the PREMIUM set for this
central institution.

If the home LT, the name of the central institution in the specified field, and the
message type of a SWIFT input message match the DWSCI PREMIUM service
definitions, a PAC trailer is generated.

To calculate the PAC you have to exchange authentication keys with the central
institution. The Authenticator-Key File has to contain a record for the specified
home LT and CI.

FIN-Copy Service
Figure 49 on page 142 shows the definitions for a SWIFT FIN-Copy service. The
DWSCIT table entry for each service consists of two parts:
1. The service characteristics are defined with the DWSCI TYPE=DEF macro

statement.
2. Each SWIFT message type that is included in the service has to be defined with

a DWSCI TYPE=MSG macro statement.

DWSCIT DWSCI CI=COPYCCLL, * [1]
FIELD=SW53, * [2]
HOME=VNDOBET2, * [3]
MSG=(S100,S202) [4]

Figure 48. Example of a Central Institution of a SWIFT PREMIUM Service

Chapter 3. The SWIFT Link 141

The TYPE=MSG definitions must follow the TYPE=DEF statement immediately.

The DWSCIT table can contain more than one FIN-Copy service.

Notes:

[1] TYPE=DEF,FINCOPY=YCP

The name of the FIN-Copy service is defined by SWIFT. The message field
103 must contain this 3-character service code.

[2] CI=COPYLLCC

The name of the central institution.

[3] HOME=VNDOBET2

The name of the home LT.

[4] CURR=IEP

Only messages with this currency code are included in the service.

[5] AUTH=2

The service uses double authentication (MAC and PAC calculation).

[6] FULLCOPY=N

Not the whole message but only a partial copy will be sent to the central
institution for this service.

[7] TYPE=MSG

The definition of the FIN-Copy Service must be immediately followed by
at least one SWIFT message type specification.

[8] MT=S100

The SWIFT message type that is to be included in the FIN-Copy service. It
must be defined in the message type table (DSLMTTT).

[9] FIELDS=(20,32A)

This parameter gives a list of up to 30 SWIFT field tags, including the
option character. These are the fields that will be copied to the central
institution, as FULLCOPY=N is specified for this service.

[10] CURRFLD=SW32CUR

The message field SW32CUR contains the currency code. The name of this
field is required as the parameter CURR=IEP has been specified for the
FIN-Copy service.

DWSCIT DWSCI TYPE=DEF,FINCOPY=YCP, * [1]
CI=COPYLLCC, * [2]
HOME=VNDOBET2, * [3]
CURR=IEP, * [4]
AUTH=2, * [5]
FULLCOPY=N [6]

DWSCI TYPE=MSG, * [7]
MT=S100, * [8]
FIELDS=(20,32A), * [9]
CURRFLD=SW32CUR [10]

Figure 49. Example of a SWIFT FIN-Copy Service Definition

142 Customization Guide

CURRFLD must be defined in the field definition table (DSLFDTT). If the
currency code is only a part of the field contents, the subfield name must
be used. If the field occurs more than once in the message, the first
occurrence will be used to select the message for FIN-Copy.

A SWIFT input message is included in the FIN-Copy service, if the home LT, the
service code in field 103, the message type and (optionally) the currency code
match the DWSCI FIN-Copy service definitions.

To calculate the PAC you have to exchange authentication keys with the central
institution. The authenticator-key has to contain a record for the specified home LT
and CI.

If you want to add field 103 to the messages or to perform extra validations
required by the central institution, you can route the outgoing FIN-Copy messages
to a special queue where you have installed your own transaction to perform these
functions. You can use a MERVA ESA routing module to select only messages that
are potentially for FIN-Copy.

Chapter 3. The SWIFT Link 143

|

144 Customization Guide

Chapter 4. Setting Up a Central Institution to Calculate PACs

If your bank is a central institution that uses double authentication when
processing FIN-Copy service messages of type MT096 (incoming) or MT097
(outgoing), it authenticates the imbedded text block and the message authorization
code (MAC) of the original message with a proprietary authorization code (PAC).

When the central institution receives an MT096 message, regardless of whether it
uses partial copy or full-copy service, the FIN-Copy program groups all the
imbedded fields of that message into a single field named SF97COPY, and stores
them in the MERVA ESA tokenized format (TOF) buffer. An application program
can use TOF services to retrieve the contents of this field, or can scan the
imbedded text block. When scanning, the application program starts with the tag
of the first copied field, not with the begin-of-block tag ({4:), and ends with the
final hyphen. In either case, the application program must store the contents of
SF97COPY while the MT096 message is being processed, and must insert them into
the MT097 message.

MT096 PAC Calculation
The PAC is generated by the sender of the original financial message on the fields
copied to the central institution and the original MAC. The buffer to authenticate
with the PAC is located in the MT096 message by the FIN-Copy program
DWSFCPY. It consists of the imbedded text block (this is not the first occurrence of
a text block as in other SWIFT messages) and of the MAC in the imbedded trailer.

Authenticator keys have been exchanged between the sender of the original
message and the central institution. They are stored in the authenticator-key file
and can be retrieved using a home LT and a correspondent LT. The sender of the
original message can be located in the imbedded basic header. That is, the
correspondent LT in the authenticator-key file. For MT096 messages, the receiving
LT in the basic header is not the home LT, as it is in other SWIFT message types.
Therefore two LTs have to be defined in the DWSCIT table:

HOME=servccll
FIN-Copy server destination. This is the receiving LT in the basic header of
the MT096 and of the sender of the MT097.

CI=copyccll
Central institution destination. This LT has exchanged authenticator keys
with the sender and the receiver of the original financial message.

Both LTs may be identical, but usually they are different.

MT097 PAC Calculation
Authenticator keys have been exchanged between the central institution and the
receiver of the original financial message. They are stored in the authenticator key
file. The PAC has to be calculated on the fields, and the MAC has to be copied into
the MT096 message and, if present, into field 115. The copied fields and the MAC
are not sent back by the central institution in the MT097, but they must be added
to the message, otherwise the PAC cannot be calculated by the authentication
program (DWSAUTP). The LT of the receiver, which has to be used as
correspondent LT in the authenticator-key file, is also not contained in the MT097.

© Copyright IBM Corp. 1987, 2001 145

|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

|

|
|

|
|
|
|
|
|
|
|

Therefore the application of the central institution must insert the following fields
into the MT097 message when using the external line format U:

SF97COLT Receiver of the original message in the MRF trailer of the MT096.

SF97MAC MAC of the original message.

SF97COPY When the central institution receives the MT096 message, it puts all
the imbedded fields of the original message together into this field
and stores it in tokenized format (TOF). An application program
can then use TOF services to retrieve the contents of this field.

The application program can scan the imbedded text block using
other means as well. It can start with the tag of the first copied
field (not with the beginning of block tag 4), and end with the final
hyphen, and store this into SF97COPY. This has to be done during
processing the MT096 message, and this data has to be inserted
into the MT097 message as well.

These fields must be defined in the MCB DWSF097, as shown here:
DWSF097 DSLLMCB COPR=2000

* This MCB is used for APPL APDU-ID MT *
* F 01 097 *

MESSAGE DSLLDEV TYPE=MESSAGE

DSLLCOND O1=(TEST=DSLCOND),EQ=NO,O2='NO',GOTO=MSG10
DSLLEXIT IMBED=SBHEAD
DSLLEXIT IMBED=SAHEAD

MSG10 DSLLCOND ,
GRN005 DSLLGRP GRPNUM=5
SW103 DSLLMFLD MAND=YES
SW109 DSLLMFLD MAND=YES
SW451 DSLLMFLD MAND=YES
SW432 DSLLMFLD
SW114 DSLLMFLD
SW115 DSLLMFLD
SF97COLT DSLLMFLD DAMAX=1,LENGTH=(8,,F)
SF97MAC DSLLMFLD DAMAX=1,LENGTH=(8,,F)
SF97COPY DSLLMFLD DAMAX=1,LENGTH=U
COPY DWSMTRL
.
.
.
LINEX DSLLDEV TYPE=NET,ID=X,SEP=X'0D25',LIKE=LINEY
LINES DSLLDEV TYPE=NET,ID=S,SEP='}',LIKE=LINEW
*
* LINE U to insert the fields of MT096 into MT097:
* SF97COLT, SF97MAC , SF97COPY
*
LINEU DSLLDEV TYPE=NET,ID=U,SEP='}'

DSLLCOND O1=(TEST=DSLCOND),EQ=NO,O2='NO',GOTO=NETU10
DSLLEXIT IMBED=SBHEAD
DSLLEXIT IMBED=SAHEAD
DSLLNFLD TAG='{4:',SEP=''

NETU10 DSLLCOND ,
DSLLGRP GROUP=GRN005
DSLLNFLD FLD=SW103,TAG='{103:'
DSLLNFLD FLD=SW109,TAG='{109:'
DSLLNFLD FLD=SW451,TAG='{451:'
DSLLNFLD FLD=SW432,TAG='{432:'
DSLLNFLD FLD=SW114,TAG='{114:'
DSLLNFLD FLD=SW115,TAG='{115:'
DSLLNFLD TAG='}',SEP=''
DSLLEXIT IMBED=STRAIL,TAG='{5:',SEP='}'

146 Customization Guide

|
|

||

||

||
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

DSLLNFLD FLD=SF97COLT,TAG='{COLT:'
DSLLNFLD FLD=SF97MAC,TAG='{MAC:'
DSLLNFLD FLD=SF97COPY,TAG='{COPY:'

GEN DSLLGEN
END

Figure 50 shows the definitions for the central institution in the DWSCIT table. The
other parameters of the DWSCI MACRO, for example CURR and CURRFLD, can
be omitted, as they are not used for MT096 or MT097 messages.

Notes:

[1] TYPE=DEF,FINCOPY=service

The name of the FIN-Copy service. This is the receiving LT in the
application header of the MT096 and the sending LT in the basic header of
the MT097.

[2] HOME=servccll

FIN-Copy server destination. This LT receives the MT096 and sends the
MT097.

[3] CI=copyccll

The LT of the central institution which has exchanged authentication keys
with the sender and receiver of the financial messages. This may be the
same LT as the FIN-Copy server destination.

[4] AUTH=2

Double authentication is used. The MT096/MT097 messages contain PAC
trailers.

[5] FULLCOPY=Y

The MT096 contains a full copy of the financial message.

[6] SERVER=Y

This parameter indicates a FIN-Copy server entry. The LT of the central
institution is used as home LT in the authenticator-key file to calculate the
PAC in the MT096/MT097.

[7] TYPE=MSG

Each S.W.I.F.T. message type that is included in the FIN-Copy service must
be defined with a DWSCI TYPE=MSG macro statement.

[8] MT=S096

DWSCIT DWSCI TYPE=DEF,FINCOPY=service, * [1]
HOME=servccll, * [2]
CI=copyccll, * [3]
AUTH=2, * [4]
FULLCOPY=Y, * [5]
SERVER=Y [6]

DWSCI TYPE=MSG, * [7]
MT=S096, * [8]

DWSCI TYPE=MSG, * [7]
MT=S097, * [9]

Figure 50. Example of a Central Institution That Uses SWIFT FIN-Copy Service

Chapter 4. Setting Up a Central Institution to Calculate PACs 147

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|

||

|
|
|

||

|
|

||

|
|
|

||

|
|

||

|

||

|
|
|

||

|
|

||

This parameter tells the authentication program that a PAC has to be
calculated for MT096 messages.

[9] MT=S097

This parameter tells the authentication program that a PAC has to be
calculated for MT097 messages.

148 Customization Guide

|
|

||

|
|

Chapter 5. The Telex Link

In MERVA ESA there are two ways to communicate with the public telex network:
v The Telex Link via workstation
v The Telex Link via a fault-tolerant system using the Telex Interface Program

The Telex Link via workstation is described in the book MERVA Workstation Based
Functions.

This chapter describes the customizing that must be carried out to adapt the Telex
Link via a fault-tolerant system to meet the requirements of your installation and
organization.

Customizing Parameters ENLPRM
The ENLPARM macro is used to generate the Telex Link customizing parameter
module ENLPRM. You must modify ENLPRM according to your environment and
requirements, then assemble and link-edit it before starting the Telex Link.

Details of the parameters of the ENLPARM macro are given in the MERVA for ESA
Macro Reference.

Note: Names used in the function tables, routing tables and Telex Link
customizing parameter module must be consistent.

Notes:

[1] AUTO=NO specifies that the session with the S/1 TXIP is not to be signed
on automatically when the Telex Link (the program ENLSTP) is started.
The Telex Link operator must start the connection manually with the txon
command.

[2] BUFSIZE=6000 specifies the size of the buffer used for the communication
with TXIP, that is, the maximum number of characters that a telex message
can have.

The carriage-return and line-feed characters after each line are included in
this number, but not the shift characters (alpha to numeric and numeric to
alpha).

The maximum number is 32767. You must not specify a size greater than
TXIP can handle.

ENLPARM *
AUTO=NO, * [1]
BUFSIZE=6000, * [2]
LINES=120, * [3]
NRMQ=TXNRM, * [4]
URGQ=TXURG, *
RTRCV=ENLRTHCF, * [5]
RTSND=ENLRTHCF, *
TESTKEY=ETS6000 [6]

END

Figure 51. Coding Example of a Telex Link Customizing Parameter Module

© Copyright IBM Corp. 1987, 2001 149

|
|
|
|
|
|
|
|
|
|

|
|
|

|

If you use a buffer size (BUFSIZE) that is greater than 6000, you must also
increase the values for the NICBUF, JRNBUF, and TOFSIZE parameters in
the MERVA ESA customizing parameter module DSLPRM:
v Set NICBUF to a value at least 2000 bytes larger than the value of

BUFSIZE.
v Increase the values of JRNBUF and TOFSIZE by the same amount you

increased NICBUF.
v When working with a dynamic TOF, set MAXBUF to a value 2000 times

the size of BUFSIZE.

If the record size of the journal data set is not large enough to allow the
whole buffer to be stored in one record, you must segment the journal
records. This is described in “DSLPRM Module Sample” on page 87.

[3] LINES=120 specifies the maximum number of text lines that an outgoing
telex message can have. If you change this number you must change the
DACNT parameter in the MCB for the message type TELEX, the message
type for outgoing telex messages. The name of the MCB is ENLMTSND.

[4] NRMQ=TXNRM specifies the 1- to 8-character name of the queue that
contains the telex messages that are ready for transmission to TXIP and
have the telex type N (normal), T (timed), or P (print only). Telex messages
contained in this queue are sent to TXIP only when the queue for urgent
telex messages (defined with the URGQ parameter) is empty. The ready
queues of the Telex Link must be specified in the function table DSLFNTT.

[5] RTRCV specifies the 1 to 8 character name of the MERVA ESA routing
table used for routing telex messages and invalid data received from TXIP.
RTSND specifies the 1 to 8 character name of the MERVA ESA routing
table used for routing outgoing telex messages.

[6] TESTKEY=ETS6000 specifies the 8 character module name of the test-key
processing program to be invoked for the test-key command. ETS6000 is
the test-key program for the STELEX** product.

Customizing the Telex Message Text
The text area provides text lines with up to 69 characters per line on several pages.
The maximum number of lines and the total size of the telex message, including a
carriage-return and a line feed character for each transmitted line, are defined
during the customization of the Telex Link with the LINES and BUFSIZE
parameters of the ENLPARM macro defined in the MERVA for ESA Macro Reference.

The Telex Link is supplied with a sample of 120 lines and a buffer size of 6000.

Specifying General Test-Key Requirements
The Telex Link Test-Key Requirements Table (ENLTKRQT) specifies, for specific
message types and groups of message types, whether messages of these types
must be protected by the addition of a test key. When you create a telex message,
the Telex Link determines the test-key requirement and:
v Writes the value (YES or NO) to the field ENLTKIND
v Displays the value in the telex header area after the label Test when displaying

the telex message on a screen terminal or printing it on a terminal printer

When the telex header is displayed for the first time:

150 Customization Guide

1. The Telex Link sets the value of ENLTKIND to NO.
2. The Telex Link checks whether the Test-Key Requirements Table ENLTKRQT

specifies a test-key for this message type. If so, the Telex Link changes the
value of ENLTKIND to this value.

3. The Telex Link checks whether there was a record for the sender in the Telex
Correspondents File, and whether it specified a test-key for this message type.
If so, the Telex Link changes the value of ENLTKIND to this value.

If you enter the correspondent’s identification for the first time:
1. The Telex Link again checks whether the Test-Key Requirements Table

ENLTKRQT specifies a test-key for this message type. If so, the Telex Link
changes the value of ENLTKIND to this value.

2. The Telex Link checks whether there was a record for the correspondent in the
Telex Correspondents File, and whether it specified a test-key for this message
type. If so, the Telex Link changes the value of ENLTKIND to this value.

You can type over the value determined by the Telex Link.

The Telex Link Test-Key Requirements Table is generated by a sequence of
ENLTKREQ macros described in the MERVA for ESA Macro Reference:
v TYPE=INITIAL
v TYPE=ENTRY
v TYPE=FINAL

The first macro must be a TYPE=INITIAL macro. The TYPE=ENTRY macros
specify the test-key requirements for a particular message type or for a group of
message types. The last macro in the sequence must be TYPE=FINAL, and must be
followed by the END assembler statement.

When creating a telex message, the Test-Key Requirements Table is searched
sequentially for existing messages with the same specification.

An asterisk in any position in the table is always “equal”; and matches any
character found in the same position of the message type.

The first entry found in the table determines, by the value of the TK= parameter,
the test-key requirement for all message types that satisfy that specification.
Therefore, if specific message types and groups of message types overlap, the more
specific one must be coded first in the sequence.

For example, in the sample table shown in Figure 52 on page 152, the message type
S730, for which a test key is not required, is coded before the more general
specification S7** that requires test keys.

The Telex Link provides the sample Test-Key Requirements Table shown in
Figure 52 on page 152.

Chapter 5. The Telex Link 151

Modifying the SWIFT Link for Telex Processing
When the SWIFT Link is installed together with the Telex Link, you can create
SWIFT messages and send them to the receiver either via the SWIFT network or
via the telex network. You can also forward messages received from the SWIFT
network (SWIFT output messages) to another receiver via the telex network. To do
this, the MCBs supplied by the SWIFT Link for each SWIFT message type must be
modified as described in the following:
v The MCB of each message type for which the command test-key extract is used

must be modified.
v Optionally the MCB of each message type can be modified to make the SWIFT

message more readable in the telex line format shown in Figure 53 on page 153.

The Telex Link provides example routing tables to combine the functions TX... for
telex processing with the functions L2... of the SWIFT Link for processing SWIFT
messages. In the routing table ENLRTAI0 (see “Examples of Routing Tables for the
Telex Link” on page 66), a test is made to determine whether the telex header
information is available:
v If the telex header information is available, the message is routed to the TXTKC,

TXURG, or TXNRM queue (depending on the test-key requirements and telex
type) for transmission via the telex network.

v If the telex header information is not available, the message is routed to the
L2RFINU or L2RFINN queue (depending on message priority) for transmission
via the SWIFT network (see “Function Table Entries for Example 2” on page 19).

To prepare SWIFT messages for telex transmission and test-key processing, you
modify their MCBs as follows:

ENLTKRQT ENLTKREQ TYPE=INITIAL
ENLTKREQ MT=S0**,TK=NO
ENLTKREQ MT=S100,TK=YES
ENLTKREQ MT=S2**,TK=YES
ENLTKREQ MT=S3**,TK=NO
ENLTKREQ MT=S400,TK=YES
ENLTKREQ MT=S410,TK=NO
ENLTKREQ MT=S412,TK=YES
ENLTKREQ MT=S42*,TK=NO
ENLTKREQ MT=S430,TK=YES
ENLTKREQ MT=S50*,TK=YES
ENLTKREQ MT=S51*,TK=NO
ENLTKREQ MT=S520,TK=YES
ENLTKREQ MT=S53*,TK=NO
ENLTKREQ MT=S57*,TK=NO
ENLTKREQ MT=S580,TK=NO
ENLTKREQ MT=S730,TK=NO
ENLTKREQ MT=S7**,TK=YES
ENLTKREQ MT=S880,TK=NO
ENLTKREQ MT=S***,TK=NO
ENLTKREQ MT=TRCV,TK=NO
ENLTKREQ MT=TSND,TK=NO
ENLTKREQ MT=****,TK=NO
ENLTKREQ TYPE=FINAL
END

Figure 52. Sample Table for General Test-Key Requirements

152 Customization Guide

v A DSLLDEV TYPE=NET,ID=K section must be available in the MCB of each
SWIFT message type for which the Telex Link command test-key extract is used
to extract currency code, amount and other fields from a SWIFT message for
test-key calculation.

v A DSLLDEV TYPE=NET,ID=T section can be used to add extended field tags to
a SWIFT message in the telex network format processed with Telex Link via S/1
for better readability.

v A DSLLDEV TYPE=NET,ID=N section can be used to add extended field tags to
a SWIFT message in the telex network format processed with Telex Link via
workstation for better readability.

A SWIFT message for transmission to the telex network is formatted according to
the definitions in the MCBs supplied by the Telex Link and the SWIFT Link:
v The telex information is formatted from the data of the telex header area and the

test-key input area.
v The SWIFT message is formatted according to the value specified for the LFMID

parameter of the ENLPARM macro in ENLPRM:
– If LFMID=S is used, the SWIFT messages are formatted using the MCBs

supplied by the Telex Link without modification. The SWIFT message is sent
in the SWIFT format, especially if the field tags are the same.

– If LFMID=T is used (which is the default of the LFMID parameter), the
SWIFT messages are formatted using the MCBs supplied by the Telex Link.
You can use extended field tags for better readability.

Figure 53 shows an example of a SWIFT message type 100 (MT S100) formatted for
the telex network with extended field tags.
The first line (starting with “TX”) contains transmission instructions for Headoffice

Telex on a fault-tolerant system.

The telex message that is transmitted via the telex network begins on the second
line. You can use the Headoffice Telex on a fault-tolerant system’s printer to check
the format of this telex message.

TX,185275ABCD
FROM:CASEBANK, 12 RIVER ST.
LONDON, W1
TO :HALLBANK, MR. BROWN
MANCHESTER, M20
DATE:901115
REF :1234-87
TEST:02992828

::100 CUSTOMER TRANSFER

PLEASE PAY

:20 SENDERS REF:1234-87
:32A VALUE DATE, AMOUNT:901115USD5000,
:50 ORDERING CUSTOMER:FRANZ HOLZAPFEL
:59 BENEFICIARY:H J JANSSEN

Figure 53. SWIFT Message Type 100 Customer Transfer Formatted for Telex Transmission

Chapter 5. The Telex Link 153

Defining the Extraction Fields for Test-Key Calculation
If you want to use the Telex Link command test-key extract to extract currency
code and amount fields from the text of a SWIFT message for test-key calculation,
you must include a DSLLDEV TYPE=NET,ID=K section in the MCB of this SWIFT
message type.

The Telex Link supplies copy code samples for the SWIFT MTs 100 (ENLS100), 201
(ENLS201), and the common group messages x92 (Request for Cancellation,
ENLSX92). During processing of the command test-key extract, the fields are
copied from the text of the SWIFT message into the fields of the test-key input
area.

Figure 54 shows the extraction fields for the SWIFT MT 100 as coded in the copy
code ENLS100.

Notes:

[1] Defines the net section with the ID=K for the extraction of data for test-key
calculation.

[2] Is required by the MERVA ESA MCB logic to define a group.

[3] Defines the currency code subfield SW32CUR of the SWIFT field 32 for
extraction. The TAG parameter ':TKC:' identifies the field type to the Telex
Link.

The following field types are available:

':TKA:' Extracts an amount field for test-key calculation.

':TKC:' Extracts a currency code field for test-key calculation.

':TKD:' Extracts a date field for test-key calculation.

':TKL:' Extracts data for the letter field for test-key calculation.

':TKT:' Extracts data for the correspondents field for test-key
calculation.

[4] Defines the amount subfield SW32AMNT of the SWIFT field 32 for
extraction with the TAG parameter ':TKA:'.

Defining Extended Field Tags for the Telex Line Format
A DSLLDEV TYPE=NET,ID=T section can be used to add extended field tags to a
SWIFT message in the telex network format for better readability. The Telex Link
supplies a sample in the copy code ENLS100 for the SWIFT message type 100
shown in Figure 55 on page 155.

LINEK DSLLDEV TYPE=NET,ID=K,SEP=X'0D25' [1]
DSLLGRP GROUP=GRP001 [2]
DSLLNFLD FLD=SW32CUR,TAG=(':TKC:') [3]
DSLLNFLD FLD=SW32AMNT,TAG=(':TKA:') [4]

Figure 54. SWIFT MT 100 Extraction Fields

154 Customization Guide

Notes:

[1] Defines the net section with the ID=T for the extended field tags.

[2] Is required by the MERVA ESA MCB logic to define a group.

[3] Defines the tag to identify the telex message as a SWIFT MT 100. This tag
is always present.

[4] Defines an empty line with one blank.

[5] Defines the title line for the message type 100. Another empty line follows
this title line.

[6] Defines another title line. Another empty line follows this title line.

[7] Defines an extended tag for SWIFT field 20 (sender’s reference). This tag is
only defined if the field SW20 is not empty. The definitions for the other
SWIFT fields of MT 100 follow.

Note: The SWIFT message trailer is omitted, as it is only meaningful when
sending the message via the SWIFT network.

Interface to the Test-Key Processing Program
When you enter the test-key command with one of the parameters calculate,
verify, or test, the Telex Link invokes the test-key processing program specified in
the Telex Link customizing parameters ENLPRM, passing the buffer shown as a
COBOL declaration in Figure 56 on page 156. Assembler attributes are shown in the
right-hand column.

LINET DSLLDEV TYPE=NET,ID=T,SEP=X'0D25' [1]
DSLLGRP GROUP=GRP001 [2]
DSLLNFLD TAG=('::S100'),SEP=(X'0D25',ALWAYS) [3]
DSLLNFLD TAG=(' '),SEP=(X'0D25',ALWAYS) [4]
DSLLNFLD TAG=(' CUSTOMER TRANSFER'),SEP=(X'0D25',ALWAYS) [5]
DSLLNFLD TAG=(' '),SEP=(X'0D25',ALWAYS)
DSLLNFLD TAG=(' PLEASE PAY'),SEP=(X'0D25',ALWAYS) [6]
DSLLNFLD TAG=(' '),SEP=(X'0D25',ALWAYS)
DSLLNFLD FLD=SW20,TAG=(':20 SENDERS REF:') [7]
DSLLNFLD FLD=SW32,TAG=(':32 VALUE DATE AMOUNT:')
DSLLNFLD FLD=SW50,TAG=(':50 ORDERING CUSTOMER:')
DSLLNFLD FLD=SW52,TAG=(':52 ORDERING BANK:')
DSLLNFLD FLD=SW53,TAG=(':53 SENDER CORR BANK:')
DSLLNFLD FLD=SW54,TAG=(':54 RECEIVER CORR BANK:')
DSLLNFLD FLD=SW57,TAG=(':57 ACCOUNT WITH BANK:')
DSLLNFLD FLD=SW59,TAG=(':59 BENEFICIARY:')
DSLLNFLD FLD=SW70,TAG=(':70 DETAILS OF PAYMENT:')
DSLLNFLD FLD=SW71A,TAG=(':71 DETAILS OF CHARGES:')
DSLLNFLD FLD=SW72,TAG=(':72 BANK TO BANK INFORMATION:')

Figure 55. ENLS100 Copy Code Sample for SWIFT MT 100

Chapter 5. The Telex Link 155

Notes:

[1] The total length of the interface buffer.

[2] The control block identifier set by the Telex Link.

[3] The code for the requested function:
1. To request test-key calculation
2. To request test-key verification
3. To request a test of the test-key calculation
4. To request a test of the test-key verification

[4] The return code of the test-key processing program. It has one of the
following values:

0 The invocation was successful.

4 The verification was successful, but gaps in the sequence number
were detected.

8 The verification of the specified test key failed.

12 The test-key calculation failed, for example, because of an overflow
when adding values.

16 Incorrect input values are passed in the interface buffer.

[5] Contains an error message of the test-key processing program if the return
code is not zero.

[6] A reference identification that can be used for journaling test-key
processing requests and results. The Telex Link moves the telex-reference
identification into this field.

[7] The area where the calculated test key is returned after test-key calculation
requests. For test-key verification requests (including the test request), this
field contains the test key verified by the test-key processing program.

01 ENLTKBUF.
02 TKBUFLEN PIC 9(4) COMP. H [1]
02 TKBUFID PIC X(16). CL16 [2]
02 TKFUNCT PIC 9(4) COMP. H [3]
02 TKRETCOD PIC 9(4) COMP. H [4]
02 TKERRMSG PIC X(66). CL66 [5]
02 TKREF PIC X(16). CL16 [6]
02 TKTSTKEY PIC X(16). CL16 [7]
02 TKMISSES PIC 9(4) COMP. H [8]
02 FILLER PIC X(20). CL20
02 TKINPUT.

03 TKUSER PIC X(8). CL8 [9]
03 FILLER PIC X(4). CL4
03 TKCORR PIC X(12). CL12 [10]
03 FILLER PIC X(2). CL2
03 TKCURAMT OCCURS 6.

04 TKCURRCY PIC X(3). CL3 [11]
04 TKAMOUNT OCCURS 3 PIC S9(15)V999 COMP-3. PL10,PL10, PL10 [12]

(other 5 occurrences in assembler:) 165X
03 TKLETTRS PIC X(4). CL4 [13]
03 FILLER PIC X(6). CL6
03 TKDDMMYY PIC 9(6). CL6 [14]

Figure 56. Declaration of the Test-Key Processing Interface Buffer

156 Customization Guide

[8] The number of gaps detected in the sequence of telex messages received
from the correspondent for which a test key is verified. A return code of 4
indicates the gaps.

[9] The user ID used for checking the authorization and logging the request.

[10] The correspondent’s ID for which the test key is calculated or verified.

[11] The currency code (ISO standard) or XXX for the up to three following
amounts. The set of one currency code and three amounts is available six
times.

[12] Is used for up to three amounts for each of the six currency codes.

[13] A field where letters are passed that are used, if applicable, in the test-key
algorithm.

[14] The field for the date of the test key. For test-key calculation, the test-key
processing program returns the current system date in this field. For
test-key verification, the Telex Link passes the specified date (default being
the system date) to the test-key processing program.

Automatic Test-Key Facility
Telex Link provides a copy code sample for automatically calling the test-key
facility. The automatic test-key facility (ATK) can be used to:
v Automatically extract the test-key fields as described in the test-key MCB for

SWIFT telex messages
v Automatically access the test-key facility and test-key calculation using the

extracted data
v Automatically route messages using the default routing module, or a user

written test-key routing module
v Modifiable exception processing

Use the following entry, shown in Figure 57, into DSLMU023 to activate the sample
facility with a call to module ENLMU397.

Note: When the DSLCXT program (DSLX transaction) is used in other functions of
your installation, ensure that the user exit 397 is called only in the function
TXTKCA. The current function name can be found in the field TUCNAME
in the Terminal and User Control Block (TUCB).

Table 8 on page 158 describes how ATK is activated in the Telex Link.

DSLMU023 DSLMFS MF=START,TYPE=USER,MODNUM=023,OPT=EXTTS

...

DSLMFS TYPE=USER,MODNUM=397,MF=(E,MFSTLIST)
MVC MFSLREAS-MFSL(2,R7),MF$LREAS-MFSTLIST(R1)
LTR R15,R15 RETURN OK?
BNZ MFSERWNG NO, SET WARNING RETURN
B MFSGOOD

...

Figure 57. Activate ATK in User Exit DSLMU023

Chapter 5. The Telex Link 157

Table 8. Activating ATK in the Telex Link

Involved Modules Status Compile Link

ENLFNTTC COPY Function TXTKCA is
prepared to call
transaction DSLCXT.

DSLFNTT DSLFNTT

ENLMPTTC COPY Entries for ENLMU397
ENLMU398 are
prepared.

DSLMPTT DSLMMFS

ENLMU397 OBJ ENLMU397 performs the
field extraction and
invokes the call to the
test-key calculation
program as specified in
ENLPRM.

-------- ENLMU397

ENLMU398 ASSEMBLE Source code supplied. ENLMU398 DSLMMFS

DSLMU023 ASSEMBLE To be modified as
indicated above.

DSLMU023 DSLMU023

ENLRTDE0 ASSEMBLE To be modified on
customers requirements.

ENLRTDE0 ENLRTDE0

Installation Notes:

[1] Test-key Functions.

The following two Test-key Calculation functions are recommended:
v DSLCXT transaction for automatic call
v Manual test-key calculation

It is also recommended that the routing module that routes messages to
the test-key facility, tests messages initially for their message type. This is
to determine whether the text of the message is in a SWIFT format, or a
free formatted Telex. If the message is in SWIFT format, routing to the
automatic test-key function can take place. If the message is a free
formatted Telex, it should be routed to the manual test-key function.

The SWIFT Link MCBs must be prepared to support test-key extraction. A
network device description for ID=K must be added for all message types
that require automatic test-key calculation. Ensure that the program
ENLMU397 is link-edited correctly, and resides in the MERVA load library.
This program is loaded on demand by the message format service.

[2] Operator Authorization for the Test-key Calculation Facility.

Since there is no actual operator associated with the ATK function, you
need to add the Auto Test-key Function name as a test-key operator to the
test-key facility. You can restrict the use of the ATK function, with the
special test-key function, so that only users with access to a certain DATA
ENTRY function have Telex messages routed to them.

[3] In the IMS environment, the INQUIRY=(YES,NORECOV) parameter must
be removed from the transaction definition used for ATK.

[4] In the IMS environment, the PSBGEN of the PSB used for ATK must be
extended by the PSBs required by the ATK software. For details, refer to
the documentation of the ATK software used.

158 Customization Guide

Sample Description
The transaction DSLCXT is automatically started after a SWIFT type message with
a telex header is created and routed to the ATK function TXTKCA. As part of
DSLCXT the User Exit DSLMU023 is used and ENLMU397, as the actual automatic
test-key program is started if the required modifications have been made. Test-key
data can be extracted and presented to the Test-key Program.

Test-Key Facility Processing Exceptions
When a processing exception in the test-key facility occurs the following processing
is performed:
v If there is a DSLxxx or ENLxxx message, the message is routed to your error

function and processing continues.
v If there is an exception message from the test-key calculation program, the User

Exit ENLMU398, containing a table of all exception message numbers that cause
Automatic Test-key processing to stop, obtains control. The only message
number provided in the default user exit ENLMU308 is ETSS281. The error
message is then displayed on the console log list and you can use the dm last
command to display the MERVA ESA command panel. When the problem is
resolved, use the SF (start function) command to continue processing. If the
exceptional message is not specified in this table, processing is performed in
outline for DSLxxx and ENLxxx messages.

Use either the hold or the sf command to manually control the test-key function.

Disabling Telex Link Long Answerback (LAB)
The Telex Link provides customizable copy codes and source codes that you can
use to disable the long answerback (LAB) checking method, for example, if your
Telex Link does not support LAB.

LAB provides separate data entry fields in the Telex header and the Telex
Correspondents File that enable answerback codes which are independent of the
dial-up number to be entered. This means that the answerback code can be any
valid Telex character string. To disable LAB, follow these customization steps:
1. Edit the following copy and source codes (following the instructions in their

comment sections):
v Source code ENLTCOR
v Source code ENLLTXIP
v Copy code ENLTX
v Copy code ENLXL
v Copy code ENLXLN
v Copy code ENLXLX
v Copy code ENLXMSG

2. Assemble and link-edit the following sources:
v ENLLTXIP
v ENLMTINV
v ENLMTRCV
v ENLMTSND
v ENLTCOR
v ENLTXHD

Chapter 5. The Telex Link 159

Note: These copy and source codes must be edited in accordance with the
assembler language rules.

Telex Link Additional Transmit Data
Telex Link via a fault-tolerant system provides an open interface in order to receive
additional transmit data from the Headoffice Telex on a fault-tolerant system,
which is written into TOF field ENLXMEXT.

The Headoffice Telex on a fault-tolerant system used must support additional
transmit data.

The open interface is implemented as follows:
v A received Telex is checked for the tag '#' directly after the Telex Header (refer to

Appendix C in MERVA for ESA Installation Guide).
If this tag is not found, normal processing takes place.
If this tag is found, all data (including the tag) up to the separator X'0D25' is
written into TOF field ENLXMEXT. If more than 69 bytes are found, the data
between the tag '#' and the separator X'0D25' is split into data areas of
ENLXMEXT.

v After the separator, normal processing of the received Telex takes place.
v Any required parts of ENLXMEXT can be defined as subfields of field

ENLXMEXT.
v MERVA ESA performs no further processing on the additional transmit data

stored in ENLXMEXT.

To send additional transmit data to Headoffice Telex on a fault-tolerant system the
net section of the ENLLTXIP MCB may be modified to include any additional tags,
data fields and separators in the transmitted Telex. In order to do this, Telex Link
via a fault-tolerant system must support this additional transmitted data.

Telex Link Sample Code
The MERVA ESA sample library contains the part DSLBT01A, which is a collection
of code parts to enhance the functions of Telex Link.

160 Customization Guide

Chapter 6. The MERVA Link for CICS and IMS

This chapter describes how to adapt the MERVA Link functions executing in the
MERVA CICS and MERVA IMS environments to meet the requirements of your
installation and organization. The customization of the MERVA Link functions
executing in the OS/390 UNIX System Services (USS) environment are described in
“Chapter 7. The MERVA Link for Unix System Services (USS)” on page 243.

Defining Partner Table ASP and MTP Entries (Samples)
Use the MERVA Link partner table (PT) to customize MERVA Link in the CICS and
IMS environments. The PT contains the definitions of all the MERVA Link
processes that support the exchange of messages between partner systems. It
consists of a header and a number of different entries, such as entries to define the
parameters of an application support process (ASP) or entries to define the
parameters of a message transfer process (MTP).

The parameters of an ASP are, for example:
v The ASP names and the address of the partner ASP
v The name of the send queues and the ASP control queue
v Message transmission format information
v The name of the MTP associated with this ASP

The parameters of an MTP are, for example:
v The MTP names (internal, external) and the name of the partner MTP
v Identifier of the partner system or a gateway system
v The name of the ASP associated with this MTP

The following samples support the symmetric exchange of messages between the
participating partner systems. Sending and receiving systems can exchange their
roles. Any local system can be seen as the remote system and any remote system
can be seen as the local system.

The sample MERVA Link network consists of a number of MERVA Link nodes.
These nodes are numbered and characterized as follows:

Node 1 (C1) The first MERVA CICS system with the CICS TS VTAM APPLID
(LU Name) CTS1LUNM.

Node 2 (C2) The second MERVA CICS system with the CICS TS VTAM APPLID
(LU Name) CTS2LUNM.

Node 3 (I1) The first MERVA IMS system with the APPC/MVS System Base
LU name MVS1LUNM and the APPC/IMS Base LU name
IA01LUNM.

Node 4 (I2) The second MERVA IMS system with the APPC/MVS System Base
LU name MVS2LUNM and the APPC/IMS Base LU name
IA02LUNM.

Node 9 (U1) A MERVA Link USS Gateway with the APPC/MVS System Base
LU name MVS9LUNM.

© Copyright IBM Corp. 1987, 2001 161

Sample 1: Interconnecting Two MERVA Link CICS Systems
The sample PT generation statements below are for two interconnected
MERVA ESA CICS systems called C1 and C2:

The node C1 is the local node; C2 is the partner node. Because of the symmetry of
MERVA Link connections, the role of the local system or the partner system can
always be exchanged.

Notes:

[1] The local node name is C1. It must be specified by the partner ASP as the

EKAPT TYPE=INITIAL,NODE=C1, MERVA LINK NODE 1 (CICS) * [1]
TRACE=EKAT CONVERSATION TRACE DS IDENTIFIER [2]

EKAPT TYPE=ASP, APPLICATION SUPPORT PROCESS *
NAME=A2A, ASP NAME * [3]
SENDQC=(EKA2AS1,EKA2AS2,EKA2AS3), SEND QUEUE CLUSTER * [4]
DEST=(C2,A1A), PARTNER ASP ADDRESS * [5]
MTP=T2A, NAME OF APPLICABLE MTP * [6]
CONTROL=(EKA2ACQ,5), CTRL QUEUE NAME AND WINDOW SIZE * [7]
MFSEXIT=7010, USER EXIT NUMBER * [8]
FORMAT=QUEUE, TRANSMIT IN MERVA QUEUE FORMAT * [9]
IRROUTE=(ACK,EKAAWQ,CTLQ) CORRELATE RECEIPT REPORTS [10]

EKAPT TYPE=MTP, MESSAGE TRANSFER PROCESS * [11]
NAME=(T2A,X12A), INTERNAL AND EXTERNAL MTP NAME * [12]
LINK=(APPC,CA02), REMOTE SYSTEM INFORMATION * [13]
PARTNER=(X21A,EKAR), REMOTE PROCESS INFORMATION * [14]
ASP=A2A NAME OF APPLICABLE ASP [15]

* EKAPT TYPE=MTP, MTP USING A GATEWAY NODE * [16]
NAME=T2A, INTERNAL MTP NAME * [17]
DEST=(MVS9,EKAR1), GATEWAY SYSTEM ISC INFORMATION * [18]
ASP=A2A NAME OF APPLICABLE ASP

EKAPT TYPE=FINAL
END

Figure 58. PT Sample 1: Node 1 (CICS System C1)

EKAPT TYPE=INITIAL,NODE=C2, MERVA LINK NODE 2 (CICS) * [1]
TRACE=EKAT CONVERSATION TRACE DS IDENTIFIER [2]

EKAPT TYPE=ASP, APPLICATION SUPPORT PROCESS *
NAME=A1A, ASP NAME * [3]
SENDQC=(EKA1AS1,EKA1AS2,EKA1AS3), SEND QUEUE CLUSTER * [4]
DEST=(C1,A2A), PARTNER ASP ADDRESS * [5]
MTP=T1A, NAME OF APPLICABLE MTP * [6]
CONTROL=(EKA1ACQ,5), CTRL QUEUE NAME AND WINDOW SIZE * [7]
MFSEXIT=7010, USER EXIT NUMBER * [8]
FORMAT=QUEUE, TRANSMIT IN MERVA QUEUE FORMAT * [9]
IRROUTE=(ACK,EKAAWQ,CTLQ) CORRELATE RECEIPT REPORTS [10]

EKAPT TYPE=MTP, MESSAGE TRANSFER PROCESS * [11]
NAME=(T1A,X21A), INTERNAL AND EXTERNAL MTP NAME * [12]
LINK=(APPC,CA01), REMOTE SYSTEM INFORMATION * [13]
PARTNER=(X12A,EKAR), REMOTE PROCESS INFORMATION * [14]
ASP=A1A NAME OF APPLICABLE ASP [15]

* EKAPT TYPE=MTP, MTP USING A GATEWAY NODE * [16]
NAME=T1A, INTERNAL MTP NAME * [17]
DEST=GATEWAY9, GATEWAY PARTNER NAME * [18]
ASP=A1A NAME OF APPLICABLE ASP

EKAPT TYPE=FINAL
END

Figure 59. PT Sample 1: Node 2 (CICS System C2)

162 Customization Guide

partner node name (see [5]). The partner node name is C2. It must be
specified by the local ASP as the partner node name (see [5]).

[2] The MERVA Link conversation trace is written to the CICS Transient Data
queue EKAT.

[3] The local ASP name is A2A, an ASP with a partner located in node 2. The
partner ASP name is A1A, an ASP with a partner located in node 1. ASP
Free Form Names are not used in this sample.

[4] Messages can be passed to MERVA Link by a MERVA ESA application in
one of the 3 send queues for being transferred to the partner application.

[5] The address of the partner ASP consists of the partner node name and the
name of the partner ASP in that node.

[6] The MTP associated with ASP A2A is named T2A within the local node
(internal MTP name). MTP T2A is defined in the following EKAPT macro.
The MTP associated with ASP A1A is named T1A within the partner node
(internal MTP name). MTP T1A is defined in the following EKAPT macro.

[7] A MERVA Link ASP uses a MERVA ESA queue for internal control
purposes. This queue must be reserved exclusively for this ASP. EKA2ACQ
is the control queue of ASP A2A. EKA1ACQ is the control queue of ASP
A1A. The window size of the ASPs is 5.

[8] A MERVA ESA MFS user exit is associated with these ASPs. It controls the
messages during a sending and during a receiving process.

[9] The ASPs transfer messages in the MERVA ESA internal queue format.

[10] Incoming acknowledgment messages (status reports) must be correlated
and merged with the reported message in the queue EKAAWQ (Ack Wait
Queue). The acknowledged message must be routed as specified by the
routing table associated with the control queue of this ASP.

[11] The active MTP definition interconnects the two partner systems directly.
An alternative is shown starting at [16].

[12] The internal and external names of the local MTP are T2A and X12A,
respectively. The partner MTP refers only to the external MTP name X12A.
The internal and external names of the partner MTP are T1A and X21A,
respectively. The local MTP refers only to the external MTP name X21A.

[13] The APPC connection to the partner system is defined in CICS 1 under the
connection name CA02. The APPC connection to the local system is
defined in CICS 2 under the connection name CA01.

[14] The external name of the partner MTP is X21A. The transaction code of the
APPC back-end process (receiving MTP) in the partner system is EKAR.
The external name of the local MTP is X12A. The transaction code of the
APPC back-end process (receiving MTP) in the local system is EKAR.

[15] The ASP associated with the local MTP is named A2A. The ASP associated
with the partner MTP is named A1A.

[16] An alternate MTP definition for the interconnection of two MERVA Link
CICS systems is shown to provide an example for the connection to a
MERVA Link USS Gateway.

[17] External MTP names are not used by the cooperating MTPs in this sample.
External MTP names must, however, be used for connections to MERVA
Link ESA Version 3 (and earlier).

Chapter 6. The MERVA Link for CICS and IMS 163

[18] The intersystem connection parameters (partner system ID and partner TP
name) can be provided in the DEST parameter instead of the LINK and
PARTNER parameters. These parameters can be specified directly (see
NODE=C1), or indirectly by referring to a CICS Partner definition (see
NODE=C2).

The destination of outbound conversations from C1 and C2 is a MERVA
Link USS Gateway (sample MERVA Link node 9). This gateway routes the
conversation to the intended destination CICS node (C2 or C1).
Interconnecting two MERVA Link CICS systems via a MERVA Link
Gateway makes not much sense because they can communicate directly.
This sample may, however, be used as a reference for a connection to a
MERVA Link gateway to interconnect a MERVA Link CICS node and a
partner MERVA Link node using TCP/IP.

Sample 2: Interconnecting MERVA Link CICS and IMS Systems
The sample PT generation statements below are for two interconnected
MERVA ESA systems: one MERVA ESA CICS system (C1) and one MERVA ESA
IMS system (I1).

EKAPT TYPE=INITIAL,NODE=C1, MERVA LINK NODE 1 (CICS) * [1]
TRACE=EKAT CONVERSATION TRACE DS IDENTIFIER [2]

EKAPT TYPE=ASP, APPLICATION SUPPORT PROCESS *
NAME=A3A, ASP NAME * [3]
SENDQC=(EKA3AS1,EKA3AS2,EKA3AS3), SEND QUEUE CLUSTER * [4]
DEST=(I1,A1A), PARTNER ASP ADDRESS * [5]
MTP=T3A, NAME OF APPLICABLE MTP * [6]
CONTROL=(EKA3ACQ,10), CTRL QUEUE NAME AND WINDOW SIZE * [7]
MFSEXIT=7010, USER EXIT NUMBER * [9]
FORMAT=QUEUE, TRANSMIT IN MERVA QUEUE FORMAT * [10]
IRROUTE=(ACK,EKAAWQ,CTLQ) CORRELATE RECEIPT REPORTS [11]

EKAPT TYPE=MTP, MESSAGE TRANSFER PROCESS * [12]
NAME=(T3A,X13A), INTERNAL AND EXTERNAL MTP NAME * [13]
LINK=(APPC,MVS1,EKAPROF), REMOTE SYSTEM INFORMATION * [14]
PARTNER=(X31A,EKAR), REMOTE PROCESS INFORMATION * [15]
ASP=A3A NAME OF APPLICABLE ASP [16]

* EKAPT TYPE=MTP, MTP USING A GATEWAY NODE * [17]
NAME=T3A, INTERNAL MTP NAME * [18]
DEST=(MVS9,EKAR1), GATEWAY SYSTEM ISC INFORMATION * [19]
ASP=A3A NAME OF APPLICABLE ASP

*
EKAPT TYPE=FINAL
END

Figure 60. PT Sample 2: Node 1 (CICS System C1)

164 Customization Guide

MERVA ESA node C1 is the local node. MERVA ESA node I1 is the partner node.
The role of the local system or the partner system can always be exchanged
because of the symmetry of MERVA Link connections.

Notes:

[1] The local node name is C1. It must be specified by the partner ASP as the
partner node name. The partner node name is I1. It must be specified by
this ASP as the partner node name.

[2] The MERVA Link conversation trace is written to the CICS Transient Data
queue EKAT. The external conversation trace is not supported in the
MERVA Link IMS environment.

[3] The local ASP name is A3A, an ASP with a partner located in node 3. The
partner ASP name is A1A, an ASP with a partner located in node 1. ASP
Free Form Names are not used in this sample.

[4] Messages can be passed to MERVA Link by a MERVA ESA application in
one of the 3 send queues for being transferred to the partner application.

[5] The address of the partner ASP consists of the partner node name and the
name of the partner ASP in that node.

[6] The MTP associated with ASP A3A is named T3A within the local node
(internal MTP name). MTP T3A is defined in the following EKAPT macro.
The MTP associated with ASP A1A is named T1A within the partner node
(internal MTP name). MTP T1A is defined in the following EKAPT macro.

[7] A MERVA Link ASP uses a MERVA ESA queue for internal control
purposes. This queue must be reserved exclusively for this ASP. EKA3ACQ
is the control queue of ASP A3A. The window size of this ASP is 10.
EKA1ACQ is the control queue of ASP A1A. The window size of this ASP
is 20.

[8] The transaction code of the sending ASP defaults to EKAS in the local
(CICS) system. In the partner (IMS) system, the transaction code of the

EKAPT TYPE=INITIAL,NODE=I1 MERVA LINK NODE 3 (IMS 1) * [1]
EKAPT TYPE=ASP, APPLICATION SUPPORT PROCESS *

NAME=A1A, ASP NAME * [3]
SENDQC=(EKA1AS1,EKA1AS2,EKA1AS3), SEND QUEUE CLUSTER * [4]
DEST=(C1,A3A), PARTNER ASP ADDRESS * [5]

MTP=T1A, NAME OF APPLICABLE MTP * [6]
CONTROL=(EKA1ACQ,20), CTRL QUEUE NAME AND WINDOW SIZE * [7]
TRAN=EKASA1, SENDING ASP TRANSACTION ID * [8]
MFSEXIT=7010, USER EXIT NUMBER * [9]
FORMAT=QUEUE, TRANSMIT IN MERVA QUEUE FORMAT * [10]
IRROUTE=(ACK,EKAAWQ,CTLQ) CORRELATE RECEIPT REPORTS [11]

EKAPT TYPE=MTP, MESSAGE TRANSFER PROCESS * [12]
NAME=(T1A,X31A), INTERNAL AND EXTERNAL MTP NAME * [13]
LINK=(APPC,CTS1LUNM,APPCLU62), REMOTE SYSTEM INFO * [14]
PARTNER=(X13A,EKAR), PARTNER MTP INFORMATION * [15]
ASP=A1A NAME OF APPLICABLE ASP [16]

* EKAPT TYPE=MTP, MTP USING A GATEWAY NODE * [17]
NAME=T1A, INTERNAL MTP NAME * [18]
DEST=(MVS9,EKAR1), GATEWAY SYSTEM ISC INFORMATION * [19]
ASP=A1A NAME OF APPLICABLE ASP

EKAPT TYPE=FINAL
END

Figure 61. PT Sample 2: Node 3 (IMS System I1)

Chapter 6. The MERVA Link for CICS and IMS 165

sending ASP is EKASA1. In MERVA Link CICS, all ASPs can have the
same transaction code. In MERVA Link IMS, each ASP must have a unique
transaction code.

[9] A MERVA ESA MFS user exit is associated with each ASP. It controls the
messages during a sending and during a receiving process.

[10] The ASPs exchange messages in the MERVA ESA internal queue format.

[11] Incoming acknowledgment messages (status reports) must be correlated
and merged with the reported message in the queue EKAAWQ (Ack Wait
Queue). The acknowledged message must be routed as specified by the
routing table associated with the control queue of this ASP.

[12] The active MTP definition interconnects the two partner systems directly.
An alternative is shown starting at [16].

[13] The internal and external names of the local MTP are T3A and X13A,
respectively. The partner MTP refers only to the external MTP name X13A.
The internal and external names of the partner MTP are T1A and X31A,
respectively. The local MTP refers only to the external MTP name X31A.

[14] The connection to the partner system is defined in CICS under the
connection name MVS1. The type of this connection is APPC. The name of
the APPC profile is EKAPROF. In the IMS APPC/MVS environment the
connection to a partner system is directly specified. The connection
identifiers are the VTAM LU name and the name of the VTAM Logon
Mode table entry.

[15] The external name of the partner MTP is X31A. The transaction code of the
APPC back-end process (receiving IMS MTP) in the partner system is
EKAR. EKAR is the name of an APPC/MVS TP profile in the partner
system. The external name of the local MTP is X13A. The transaction code
of the APPC back-end process (receiving CICS MTP) in the local system is
EKAR.

[16] The ASP associated with the local MTP is named A3A. ASP A3A is defined
in the previous EKAPT macro.

The ASP associated with the partner MTP is named A1A. ASP A1A is
defined in the previous EKAPT macro.

[17] An alternate MTP definition for the interconnection of MERVA Link CICS
and IMS systems is shown to provide an example for the connection to a
MERVA Link USS Gateway.

[18] External MTP names are not used by the cooperating MTPs in this sample.
External MTP names must, however, be used for connections to MERVA
Link ESA Version 3 (and earlier).

[19] The intersystem connection parameters are provided in the DEST
parameter instead of the LINK and PARTNER parameters. In a MERVA
Link CICS system, these parameters are Partner System ID and Partner TP
Name. In a MERVA Link IMS system, the DEST parameter specifies a
Symbolic Destination defined in APPC/MVS Side Information. The sample
symbolic destination name is MVS9.

The destination of outbound conversations from C1 and I1 is a MERVA
Link USS Gateway (sample MERVA Link node 9). This gateway routes the
conversation to the intended destination nodes I1 and C1. Interconnecting
two MERVA Link ESA systems via a MERVA Link Gateway makes not
much sense because they can communicate directly. This sample can,

166 Customization Guide

however, be used as a reference for a connection to a MERVA Link
gateway to interconnect a MERVA Link CICS or IMS node and a partner
MERVA Link node using TCP/IP.

Sample 3: Interconnecting Two MERVA Link IMS Systems
This PT sample shows a connection of two MERVA ESA IMS systems I1 and I2.
v In I1, the receiving MTP runs in an APPC/MVS initiator.
v In I2, the receiving MTP runs in an IMS MPR.

The sample PT generation statements for both systems are shown in Figure 62 and
in Figure 63.

MERVA ESA node I1 is the local node. MERVA ESA node I2 is the partner node.
The role of the local system or the partner system can always be exchanged
because of the symmetry of MERVA Link connections.

Notes:

[1] The local node name is I1. It must be specified by the partner ASP A3A as
the partner node name. The partner node name is I2. It must be specified
by the local ASP A4A as the partner node name.

[2] The local ASP name is A4A, an ASP with a partner located in node 4. The

EKAPT TYPE=INITIAL,NODE=I1 MERVA LINK NODE 3 (IMS 1) [1]
EKAPT TYPE=ASP, APPLICATION SUPPORT PROCESS *

NAME=A4A, ASP NAME * [2]
SENDQC=EKA4AS1, SEND QUEUE CLUSTER * [3]
DEST=(I2,A3A), PARTNER ASP ADDRESS * [4]
MTP=T4A, NAME OF APPLICABLE MTP * [5]
CONTROL=(EKA4ACQ,2), CTRL QUEUE NAME AND WINDOW SIZE * [6]
TRAN=EKASA4, SENDING ASP TRANSACTION ID * [7]
IRROUTE=(ACK,EKAAWQ,CTLQ) CORRELATE RECEIPT REPORTS [8]

EKAPT TYPE=MTP, MESSAGE TRANSFER PROCESS *
NAME=(T4A,X34A), INTERNAL AND EXTERNAL MTP NAME * [9]
LINK=(APPC,IA02LUNM,APPCLU62), REMOTE SYSTEM INFO * [10]
PARTNER=(X43A,EKARI510), PARTNER EXTERNAL MTP NAME * [11]
ASP=A4A NAME OF APPLICABLE ASP [12]

EKAPT TYPE=FINAL
END

Figure 62. PT Sample 3: Node 3 (IMS System I1)

EKAPT TYPE=INITIAL,NODE=I2 MERVA LINK NODE 4 (IMS 2) [1]
EKAPT TYPE=ASP, APPLICATION SUPPORT PROCESS *

NAME=A3A, ASP NAME * [2]
SENDQC=EKA3AS1, SEND QUEUE CLUSTER * [3]
DEST=(I1,A4A), PARTNER ASP ADDRESS * [4]
MTP=T3A, NAME OF APPLICABLE MTP * [5]
CONTROL=(EKA3ACQ,50), CTRL QUEUE NAME AND WINDOW SIZE * [6]
TRAN=EKASA3, SENDING ASP TRANSACTION ID * [7]
IRROUTE=(ACK,EKAAWQ,CTLQ) CORRELATE RECEIPT REPORTS [8]

EKAPT TYPE=MTP, MESSAGE TRANSFER PROCESS *
NAME=(T3A,X43A), INTERNAL AND EXTERNAL MTP NAME * [9]
LINK=(APPC,MVS1LUNM,APPCLU62), REMOTE SYSTEM INFO * [10]
PARTNER=(X34A,EKAR), PARTNER EXTERNAL MTP NAME * [11]
ASP=A3A NAME OF APPLICABLE ASP [12]

EKAPT TYPE=FINAL
END

Figure 63. PT Sample 3: Node 4 (IMS System I2)

Chapter 6. The MERVA Link for CICS and IMS 167

partner ASP name is A3A, an ASP with a partner located in node 3. ASP
Free Form Names are not used in this sample.

[3] Messages can be passed to MERVA Link by a MERVA ESA application in
one send queue for being transferred to the partner application.

[4] The address of the partner ASP consists of the partner node name and the
name of the partner ASP in that node.

[5] The MTP associated with ASP A4A is named T4A within the local node
(internal MTP name). MTP T4A is defined in the following EKAPT macro.
The MTP associated with ASP A3A is named T3A within the partner node
(internal MTP name). MTP T3A is defined in the following EKAPT macro.

[6] A MERVA Link ASP uses a MERVA ESA queue for internal control
purposes. This queue must be reserved exclusively for this ASP. EKA4ACQ
is the control queue of ASP A4A. The window size of this ASP is 2.
EKA3ACQ is the control queue of ASP A3A. The window size of this ASP
is 50.

[7] The transaction code of the sending ASP is EKASA4 in the local system. In
the partner system, the transaction code of the sending ASP is EKASA3.

In MERVA Link IMS, each sending ASP must have a unique transaction
code.

[8] Incoming acknowledgment messages (status reports) must be correlated
and merged with the reported message in the queue EKAAWQ (Ack Wait
Queue). The acknowledged message must be routed as specified by the
routing table associated with the control queue of this ASP.

[9] The internal and external names of the local MTP are T4A and X34A,
respectively. The partner MTP refers only to the external MTP name X34A.
The internal and external names of the partner MTP are T3A and X43A,
respectively. The local MTP refers only to the external MTP name X43A.

[10] The identifier of the partner system and the Logon Mode Table entry name
are directly specified in the LINK parameter in the APPC/MVS
environment. The local system I1 uses LU MVS1LUNM, an APPC/MVS
LU associated with the APPC/MVS transaction scheduler ASCH, to handle
inbound conversations. The partner system I2 uses LU IA02LUNM for that
purpose. IA02LUNM is an an APPC/MVS LU associated with the
APPC/IMS transaction scheduler I510. The Logon Mode Table entry name
is APPCLU62 in both systems.

[11] The external name of the partner MTP is X43A. The transaction code of the
APPC back-end process (receiving MTP) in the partner system is
EKARI510. EKARI510 is the name of an APPC/IMS TP profile in the
partner system. The receiving MTP in node 4 runs in an IMS MPR.

The external name of the local MTP is X34A. The transaction code of the
APPC back-end process (receiving MTP) in the local system is EKAR.
EKAR is the name of an APPC/MVS TP profile in the local system. The
receiving MTP in node 3 runs in an APPC/MVS initiator.

[12] The ASP associated with the local MTP is named A4A. ASP A4A is defined
in the previous EKAPT macro. The ASP associated with the partner MTP is
named A3A. ASP A3A is defined in the previous EKAPT macro.

168 Customization Guide

Defining Partner Table SCP Entries (Samples)
MERVA Link supports the partner MERVA system control function (PMSC), which
allows the MERVA MSC function to be run in a partner MERVA ESA system. A
partner system control process (SCP) must be defined in the partner tables of both
the client and the server MERVA Link systems to enable the PMSC function.

The PMSC function can be enabled between all sample MERVA Link nodes 1 to 4.
It is, however, not supported by MERVA Link USS (sample node 9). SCP
definitions for the sample MERVA Link nodes 1 to 4 are shown in the following.
These samples use the DEST parameter to identify the PMSC server in the partner
system. The legacy LINK and PARTNER parameters of the EKAPT TYPE=SCP
statement can still be used for that purpose as an alternative to the DEST
parameter.

Sample SCPs for Node 1
This PT sample shows SCP definitions that provide for controlling sample MERVA
Link nodes 2 to 4 at node 1.

Notes:

[1] An SCP entry in the PT provides for controlling a partner MERVA Link
system.

[2] The NAME parameter specifies a nickname and the MERVA Link node
name for the applicable partner MERVA ESA system.

[3] The DEST parameter provides the intersystem connection parameters for
the PMSC function (or refers to a CICS PARTNER definition). The
connections and partners defined in CICS for the Message Transfer
function can also be used for the PMSC function. A proprietary partner
transaction identifier must, however, be specified for the PMSC function.

[4] The LOPER parameter controls the authorization of local MERVA ESA
operators to access the applicable partner system.

[5] The POPER parameter controls the authorization of MERVA ESA operators
in the partner system to access the local MERVA ESA system.

EKAPT TYPE=SCP, SYSTEM CONTROL PROCESS * [1]
NAME=(NODE2,C2), PARTNER NODE NAMES * [2]
DEST=(CA02,EKAC), PARTNER SYSTEM ISC INFORMATION * [3]
LOPER=ALL, AUTHORIZED LOCAL OPERATORS * [4]
POPER=ALL AUTHORIZED PARTNER OPERATORS [5]

*
EKAPT TYPE=SCP, SYSTEM CONTROL PROCESS * [1]

NAME=(NODE3,I1), PARTNER NODE NAMES * [2]
DEST=(MVS1,EKAC), PARTNER SYSTEM ISC INFORMATION * [3]
LOPER=ALL, AUTHORIZED LOCAL OPERATORS * [4]
POPER=ALL AUTHORIZED PARTNER OPERATORS [5]

*
EKAPT TYPE=SCP, SYSTEM CONTROL PROCESS * [1]

NAME=(NODE4,I2), PARTNER NODE NAMES * [2]
DEST=(IA02,EKACI510), PARTNER SYSTEM ISC INFORMATION * [3]
LOPER=ALL, AUTHORIZED LOCAL OPERATORS * [4]
POPER=ALL AUTHORIZED PARTNER OPERATORS [5]

Figure 64. Sample SCP Definitions for Node 1

Chapter 6. The MERVA Link for CICS and IMS 169

Sample SCPs for Node 2
This PT sample shows SCP definitions that provide for controlling sample MERVA
Link nodes 1, 3, and 4 at node 2.

The comments for SCP sample 1 also apply to SCP sample 2.

Sample SCPs for Node 3
This PT sample shows SCP definitions that provide for controlling sample MERVA
Link nodes 1, 2, and 4 at node 3.

Notes:

[1] An SCP entry in the PT provides for controlling a partner MERVA Link
system.

[2] The NAME parameter specifies a nickname and the MERVA Link node
name for the applicable partner MERVA ESA system.

[3] The DEST parameter provides the intersystem connection parameters for
the PMSC function. This sample uses APPC/MVS side information (SI)
defined for the MERVA Link message transfer function. The sample

EKAPT TYPE=SCP, SYSTEM CONTROL PROCESS * [1]
NAME=(NODE1,C1), PARTNER NODE NAMES * [2]
DEST=(CA01,EKAC), PARTNER SYSTEM ISC INFORMATION * [3]
LOPER=ALL, AUTHORIZED LOCAL OPERATORS * [4]
POPER=ALL AUTHORIZED PARTNER OPERATORS [5]

*
EKAPT TYPE=SCP, SYSTEM CONTROL PROCESS * [1]

NAME=(NODE3,I1), PARTNER NODE NAMES * [2]
DEST=(MVS1,EKAC), PARTNER SYSTEM ISC INFORMATION * [3]
LOPER=ALL, AUTHORIZED LOCAL OPERATORS * [4]
POPER=ALL AUTHORIZED PARTNER OPERATORS [5]

*
EKAPT TYPE=SCP, SYSTEM CONTROL PROCESS * [1]

NAME=(NODE4,I2), PARTNER NODE NAMES * [2]
DEST=(IA02,EKACI510), PARTNER SYSTEM ISC INFORMATION * [3]
LOPER=ALL, AUTHORIZED LOCAL OPERATORS * [4]
POPER=ALL AUTHORIZED PARTNER OPERATORS [5]

Figure 65. Sample SCP Definitions for Node 2

EKAPT TYPE=SCP, SYSTEM CONTROL PROCESS * [1]
NAME=(NODE1,C1), PARTNER NODE NAMES * [2]
DEST=(CA01,EKAC), PARTNER SYSTEM ISC INFORMATION * [3]
LOPER=ALL, AUTHORIZED LOCAL OPERATORS * [4]
POPER=ALL AUTHORIZED PARTNER OPERATORS [5]

*
EKAPT TYPE=SCP, SYSTEM CONTROL PROCESS * [1]

NAME=(NODE2,C2), PARTNER NODE NAMES * [2]
DEST=(CA02,EKAC), PARTNER SYSTEM ISC INFORMATION * [3]
LOPER=ALL, AUTHORIZED LOCAL OPERATORS * [4]
POPER=ALL AUTHORIZED PARTNER OPERATORS [5]

*
EKAPT TYPE=SCP, SYSTEM CONTROL PROCESS * [1]

NAME=(NODE4,I2), PARTNER NODE NAMES * [2]
DEST=(IA02,EKACI510), PARTNER SYSTEM ISC INFORMATION * [3]
LOPER=ALL, AUTHORIZED LOCAL OPERATORS * [4]
POPER=ALL AUTHORIZED PARTNER OPERATORS [5]

Figure 66. Sample SCP Definitions for Node 3

170 Customization Guide

symbolic destination names are CA01, CA02, and IA02 (the same as the
CICS connection definitions in SCP samples 1 and 2). The partner TP name
in the sample SI profiles (EKAR) must, however, be dynamically replaced
by the TP name of the PMSC function (EKAC or EKACI510).

[4] The LOPER parameter controls the authorization of local MERVA ESA
operators to access the applicable partner system.

[5] The POPER parameter controls the authorization of MERVA ESA operators
in the partner system to access the local MERVA ESA system.

Sample SCPs for Node 4
This PT sample shows SCP definitions that provide for controlling sample MERVA
Link nodes 1 to 3 at node 4.

The comments for SCP sample 3 also apply to SCP sample 4.

Customizing CICS for MERVA Link
A number of resources must be defined to CICS when MERVA Link is installed in
the CICS environment. You must define the following types of CICS resources:

Program The MERVA Link partner table EKAPT, the MERVA Link
programs, and all MERVA ESA MFS programs (MCBs and User
Exits) supported by MERVA Link that are not linked to DSLMMFS
must be defined to CICS.

Transaction The MERVA Link local transactions must be defined to CICS.

Profile APPC profiles may optionally be used and must then be defined to
CICS.

Connection The connections to partner systems must be defined to CICS.

Session Each connection requires the definition of a set of sessions in a
CICS session definition.

Partner Intersystem communication parameters provided by a CICS
Partner definition can be used by MERVA Link.

EKAPT TYPE=SCP, SYSTEM CONTROL PROCESS * [1]
NAME=(NODE1,C1), PARTNER NODE NAMES * [2]
DEST=(CA01,EKAC), PARTNER SYSTEM ISC INFORMATION * [3]
LOPER=ALL, AUTHORIZED LOCAL OPERATORS * [4]
POPER=ALL AUTHORIZED PARTNER OPERATORS [5]

*
EKAPT TYPE=SCP, SYSTEM CONTROL PROCESS * [1]

NAME=(NODE2,C2), PARTNER NODE NAMES * [2]
DEST=(CA02,EKAC), PARTNER SYSTEM ISC INFORMATION * [3]
LOPER=ALL, AUTHORIZED LOCAL OPERATORS * [4]
POPER=ALL AUTHORIZED PARTNER OPERATORS [5]

*
EKAPT TYPE=SCP, SYSTEM CONTROL PROCESS * [1]

NAME=(NODE3,I1), PARTNER NODE NAMES * [2]
DEST=(MVS1,EKAC), PARTNER SYSTEM ISC INFORMATION * [3]
LOPER=ALL, AUTHORIZED LOCAL OPERATORS * [4]
POPER=ALL AUTHORIZED PARTNER OPERATORS [5]

Figure 67. Sample SCP Definitions for Node 4

Chapter 6. The MERVA Link for CICS and IMS 171

Transient Data
The CICS Transient Data Facility is used to write the MERVA Link
external conversation trace. The corresponding resources must be
defined in CICS.

The definition of the programs, transactions, profiles, connections, and sessions are
described in the following in CICS resource definition online (RDO) terms. The
definition of the transient data destinations is described in CICS resource definition
(macro) terms (DFHDCT macros).

Defining CICS Programs

Mandatory Resident Programs
The MERVA Link partner table EKAPT and the MERVA Link program EKAAI10
must be defined as resident Assembler programs to CICS. A sample CICS RDO
screen for the definition of the MERVA Link partner table EKAPT is shown below.
The MERVA Link program EKAAI10 must be defined with the same parameters.

Mandatory Non-Resident Programs
The following MERVA Link programs and message control blocks (MCBs) must be
defined as Assembler programs to CICS. These programs need not to be defined as
resident.

EKAAM10 MERVA Link ASP monitor

EKAAR10 MERVA Link receiving ASP

EKAAS10 MERVA Link sending ASP

EKAAS11 MERVA Link SUBMIT.Request processor

EKAPMSC MERVA Link partner MERVA System Control Program

EKASP10 MERVA Link Message Transfer Service Processor (MTSP)

EKATM10 MERVA Link TP mirror program

EKATR10 MERVA Link receiving message transfer program

EKATS10 MERVA Link sending message transfer program

EKAACHP MERVA Link Control Facility HELP MCB

OVERTYPE TO MODIFY CICS RELEASE = 0520
CEDA Alter
PROGram : EKAPT
Group : EKAGROUP
DEscription ==>
Language ==> Assembler CObol | Assembler | Le370 | C | Pli
REload ==> No No | Yes
RESident ==> Yes No | Yes
USAge ==> Normal Normal | Transient
USElpacopy ==> No No | Yes
Status ==> Enabled Enabled | Disabled
RSl : Public 0-24 | Public
Cedf ==> Yes Yes | No
DAtalocation ==> Any Below | Any
EXECkey ==> Cics User | Cics

...

Figure 68. CICS RDO Sample: Define the Program EKAPT

172 Customization Guide

EKAHELP MERVA Link HELP MCB of the MERVA ESA help facility

EKAMCOV MERVA Link cover MCB displaying the MERVA Link control fields

A sample CICS RDO screen for the definition of the MERVA Link ASP monitor
EKAAM10 is shown below. The other non-resident MERVA Link programs and
MCBs must be defined with the same parameters.

Optional Non-Resident Programs
The following MERVA Link programs, routing tables, and message control blocks
(MCBs) must be considered as MERVA Link samples. They must be defined as
Assembler programs to CICS if they are used. For example, the MERVA Link
installation verification scenario uses the following resources.

EKAAF10 MERVA Link sample application support filter for message
authentication

EKAAF20 MERVA Link sample application support filter for message
encryption

EKADEMO MERVA Link sample MCB for demonstration purposes

EKAMU010 MERVA Link sample MFS user exit

EKARTS MERVA Link sample unique routing table

EKARTSCQ MERVA Link sample control-queue routing table

The optional non-resident programs and MCBs are defined to CICS with the
parameters shown in Figure 69.

Operator Message HELP MCBs
The operator message HELP MCBs must be defined as Assembler programs to
CICS if the explanation of MERVA Link operator messages must be displayed
online using the show command. The names of these MCBs are listed in Table 9 on
page 174.

OVERTYPE TO MODIFY CICS RELEASE = 0520
CEDA Alter
PROGram : EKAAM10
Group : EKAGROUP
DEscription ==>
Language ==> Assembler CObol | Assembler | Le370 | C | Pli
REload ==> No No | Yes
RESident ==> No No | Yes
USAge ==> Normal Normal | Transient
USElpacopy ==> No No | Yes
Status ==> Enabled Enabled | Disabled
RSl : Public 0-24 | Public
Cedf ==> Yes Yes | No
DAtalocation ==> Any Below | Any
EXECkey ==> Cics User | Cics

...

Figure 69. CICS RDO Sample: Define the Program EKAAM10

Chapter 6. The MERVA Link for CICS and IMS 173

Table 9. MERVA Link Operator Message HELP MCBs

EKA701E
EKA702E
EKA703I
EKA704I
EKA710E
EKA711E
EKA712W
EKA713I
EKA714I
EKA715I
EKA716E
EKA717E

EKA718E
EKA719I
EKA720E
EKA721E
EKA722I
EKA730E
EKA731I
EKA732E
EKA760E
EKA761E
EKA762E
EKA763W

EKA764E
EKA765E
EKA766E
EKA767E
EKA768E
EKA770E
EKA771E
EKA772E
EKA773E
EKA774E
EKA775E
EKA776E

EKA777E
EKA778I
EKA779E
EKA780E
EKA781E
EKA782E
EKA783E
EKA784I
EKA790I
EKA791I
EKA792I

The operator message HELP MCBs are defined to CICS with the parameters shown
in Figure 69 on page 173.

Defining CICS Transactions

Mandatory Local Transactions
The following local MERVA Link transactions must be defined to CICS:

EKAC MERVA Link partner system control transaction (EKAPMSC)

EKAM MERVA Link ASP monitor transaction (EKAAM10)

EKAR MERVA Link receiving MTP transaction (EKATR10)

EKAS MERVA Link sending ASP transaction (EKAAS10)

A sample CICS RDO screen for the definition of the MERVA Link sending ASP
transaction EKAS is shown below. The other mandatory transactions must be
defined with the same parameters (except the PROGRAM parameter which
specifies the applicable program name).

174 Customization Guide

OVERTYPE TO MODIFY CICS RELEASE = 0520
CEDA Alter
TRansaction : EKAS
Group : EKAGROUP
DEscription ==>
PROGram ==> EKAAS10
TWasize ==> 00000 0-32767
PROFile ==> DFHCICST
PArtitionset ==>
Status ==> Enabled Enabled | Disabled
PRIMedsize : 00000 0-65520
TASKDataloc ==> Any Below | Any
TASKDATAKey ==> Cics User | Cics
STOrageclear ==> No No | Yes
RUnaway ==> System System | 0-2700000
SHutdown ==> Disabled Disabled | Enabled
ISolate ==> No Yes | No
Brexit ==>

REMOTE ATTRIBUTES
DYnamic ==> No No | Yes
REMOTESystem ==>
REMOTEName ==>
TRProfName ==>
Localq ==> No | Yes
SCHEDULING
PRIOrity ==> 001 0-255
TClass ==> No No | 1-10
TRANClass ==> DFHTCL00

ALIASES
Alias ==>
TASKReq ==>
XTRanid ==>
TPName ==>

==>
XTPName ==>

==>
==>

RECOVERY
DTimout ==> No No | 1-6800
RESTart ==> No No | Yes
SPurge ==> No No | Yes
TPurge ==> No No | Yes
DUmp ==> Yes Yes | No
TRACe ==> Yes Yes | No
COnfdata ==> No No | Yes
INDOUBT ATTRIBUTES
ACtion ==> Backout Backout | Commit
WAIT ==> Yes Yes | No
WAITTime ==> 00, 00, 00 0-99 (Days,Hours,Mins)
INdoubt : Backout Backout | Commit | Wait
SECURITY
RESSec ==> No No | Yes
Cmdsec ==> No No | Yes
Extsec : No No | Yes
TRANsec : 01 1-64
Rsl : 00 0-24 | Public

APPLID=CTS1LUNM

PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Figure 70. CICS RDO Sample: Define the Local Transaction EKAS

Chapter 6. The MERVA Link for CICS and IMS 175

Defining CICS APPC Profiles
A MERVA Link MTP may be asked to specify an APPC profile when it allocates a
session to a partner system. Any of these APPC profiles must be defined in CICS.

A sample CICS RDO screen for the definition of the APPC profile EKAAPPC that
can be used for sessions to APPC/MVS partner systems is shown below. The
MODENAME parameter must specify a valid VTAM Logon Mode Table entry.

Defining CICS Connections and Sessions
Each connection to a partner system must be defined in CICS in an intersystem
connection definition. Each connection definition is associated with a set of
sessions. The parameters of the connection and session definitions depend on the
type of the partner system (CICS, APPC/MVS, IMS, or workstation).

If you use CICS APPC services for intersystem communication, you must specify
ISC=YES either in the DFHSIT or as a CICS startup parameter. The CICS
intersystem communication support is described in the CICS/ESA
Intercommunication Guide.

APPC Connections to Another CICS
A sample CICS RDO screen for the definition of an APPC connection to another
CICS system (CTS2LUNM) is shown below. The definition of the APPC sessions
for this connection is shown below.

OVERTYPE TO MODIFY CICS RELEASE = 0520
CEDA Alter
PROFile : EKAPROF
Group : EKAGROUP
DEscription ==>
Scrnsize ==> Default Default | Alternate
Uctran ==> No No | Yes
MOdename ==> APPCLU62
Facilitylike ==>
PRIntercomp ==> No No | Yes
JOURNALLING
Journal ==> No No | Yes
MSGJrnl ==> No No | INPut | Output | INOut
PROTECTION
MSGInteg ==> No No | Yes
Onewte ==> No No | Yes
PROtect ==> No No | Yes
Chaincontrol ==> No No | Yes
PROTOCOLS
DVsuprt ==> All All | Nonvtam | Vtam
Inbfmh ==> No No | All | Dip | Eods
RAq ==> No No | Yes
Logrec ==> No No | Yes
RECOVERY
Nepclass ==> 000 0-255
RTimout ==> No No | 1-7000

APPLID=CTS1LUNM

PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Figure 71. CICS RDO Sample: Define the APPC Profile EKAPROF

176 Customization Guide

OVERTYPE TO MODIFY CICS RELEASE = 0520
CEDA Alter
Connection : CA02
Group : EKAISC
DEscription ==>
CONNECTION IDENTIFIERS
Netname ==> CTS2LUNM
INDsys ==>
REMOTE ATTRIBUTES
REMOTESystem ==>
REMOTEName ==>
REMOTESYSNet ==>
CONNECTION PROPERTIES
ACcessmethod ==> Vtam Vtam | IRc | INdirect | Xm
Protocol ==> Appc Appc | Lu61
Conntype ==> Generic | Specific
SInglesess ==> No No | Yes
DAtastream ==> User User | 3270 | SCs | STrfield | Lms
RECordformat ==> U U | Vb
Queuelimit ==> No No | 0-9999
Maxqtime ==> No No | 0-9999
OPERATIONAL PROPERTIES
AUtoconnect ==> Yes No | Yes | All
INService ==> Yes Yes | No
SECURITY
SEcurityname ==>
ATtachsec ==> Local Local | Identify | Verify | Persistent

| Mixidpe
BINDPassword ==> PASSWORD NOT SPECIFIED
BINDSecurity ==> No No | Yes
Usedfltuser ==> No No | Yes
RECOVERY
PSrecovery ==> Sysdefault Sysdefault | None
Xlnaction ==> Keep Keep | Force

APPLID=CTS1LUNM

PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Figure 72. CICS RDO Sample: Define an APPC Connection to CTS2LUNM

Chapter 6. The MERVA Link for CICS and IMS 177

If the APPC sessions are to be automatically acquired by CICS when CICS is
started, AUtoconnect ==> Yes must be specified in both the connection and session
definitions. Otherwise, the APPC sessions must be automatically acquired by other
means.

The CICS master operator can acquire the APPC sessions by issuing one of the
following commands when both CICS systems are active:
CEMT SET CONN(CA02) INS ACQ
CEMT SET CONN ALL INS ACQ

A sending MERVA Link CICS MTP can be asked to acquire a session dynamically
before it reports a session allocation failure. AUtoconnect ==> No can be specified in
this case.

The session definition parameters SENDSIZE 30720 and RECEIVESIZE 30720
provide an optimum performance if MERVA ESA large messages are to be

OVERTYPE TO MODIFY CICS RELEASE = 0520
CEDA Alter
Sessions : CA02S
Group : EKAISC
DEscription ==>
SESSION IDENTIFIERS
Connection ==> CA02
SESSName ==>
NETnameq ==>
MOdename ==> APPCLU62
SESSION PROPERTIES
Protocol ==> Appc Appc | Lu61 | Exci
MAximum ==> 004 , 002 0-999
RECEIVEPfx ==>
RECEIVECount ==> 1-999
SENDPfx ==>
SENDCount ==> 1-999
SENDSize ==> 30720 1-30720
RECEIVESize ==> 30720 1-30720
SESSPriority ==> 000 0-255
Transaction :
OPERATOR DEFAULTS
OPERId :
OPERPriority : 000 0-255
OPERRsl : 0 0-24,...
OPERSecurity : 1 1-64,...
PRESET SECURITY
USERId ==>
OPERATIONAL PROPERTIES
AUtoconnect ==> Yes No | Yes | All
INService ==> Yes | No
Buildchain ==> Yes Yes | No
USERArealen ==> 000 0-255
IOarealen ==> 0000 , 0000 0-32767
RELreq ==> No No | Yes
DIscreq ==> No No | Yes
NEPclass ==> 000 0-255
RECOVERY
RECOVOption ==> Sysdefault Sysdefault | Clearconv | Releasesess

| Uncondrel | None
RECOVNotify ==> None None | Message | Transaction

APPLID=CTS1LUNM

PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Figure 73. CICS RDO Sample: Define APPC Sessions for CA02

178 Customization Guide

transferred using this connection. You can, however, use smaller values if your
SNA network is not capable of handling request units of this size.

APPC Connections to APPC/MVS or APPC/IMS
A connection to a remote APPC/MVS system or to a remote APPC/IMS system is
defined in the same way as a connection to another CICS system (shown in
Figure 72 on page 177 and in Figure 73 on page 178).

For a connection to an APPC/MVS system, you must specify the name of any
APPC/MVS LU that is associated with the APPC/MVS transaction scheduler
ASCH in the Netname parameter of the connection definition. The sample
APPC/MVS LU name is MVS1LUNM.

For a connection to an APPC/IMS system, you must specify the name of the
APPC/IMS Base LU that is associated with the APPC/IMS transaction scheduler in
the NETNAME parameter. The sample APPC/IMS LU name is IA02LUNM.

Parameter modifications for the connection to an APPC/MVS system are shown in
Figure 74 and in Figure 75.

OVERTYPE TO MODIFY CICS RELEASE = 0520
CEDA Alter
Connection : MVS1
Group : EKAISC
DEscription ==>
CONNECTION IDENTIFIERS
Netname ==> MVS1LUNM
INDsys ==>

Figure 74. CICS RDO Sample: Define an APPC Connection to MVS1LUNM

OVERTYPE TO MODIFY CICS RELEASE = 0520
CEDA Alter
Sessions : MVS1S
Group : EKAISC
DEscription ==>
SESSION IDENTIFIERS
Connection ==> MVS1
SESSName ==>
NETnameq ==>
MOdename ==> APPCLU62
SESSION PROPERTIES
Protocol ==> Appc Appc | Lu61 | Exci
MAximum ==> 004 , 002 0-999
RECEIVEPfx ==>
RECEIVECount ==> 1-999
SENDPfx ==>
SENDCount ==> 1-999
SENDSize ==> 30720 1-30720
RECEIVESize ==> 30720 1-30720
SESSPriority ==> 000 0-255
Transaction :

Figure 75. CICS RDO Sample: Define APPC Sessions for MVS1

Chapter 6. The MERVA Link for CICS and IMS 179

Defining CICS Partners
A MERVA Link MTP can refer to a CICS PARTNER definition that provides
information about a specific partner MTP. If more than 4 characters are specified
by the MTP as the partner system identifier, this identifier is interpreted as a CICS
PARTNER name.

A CICS PARTNER definition (that can be compared to an APPC/MVS side
information profile) contains the parameters:
v Netname of the partner LU
v Session profile name
v Partner TP name

The corresponding MTP parameters need not be specified if the MTP refers to a
CICS partner definition.

A sample CICS RDO screen for the definition of the Partner GATEWAY9 is shown
below.

Defining CICS Transient Data Destinations
The CICS Transient Data facility is used by MERVA Link CICS to support the
MERVA Link External Conversation Trace. An external conversation trace is written
by a MERVA Link MTP to a CICS transient data queue if it is asked to do so by
parameters in the partner table. The sample TD queue identifier for the
conversation trace is EKAT.

A CICS transient data definition for the MERVA Link conversation trace can be
provided either in DFHDCT statements or via RDO.

Defining Extrapartition Transient Data Queue (DFHDCT)
The sample destination of the conversation trace (EKAT) is defined as an
extrapartition transient data queue in CICS. The corresponding entries are shown
in Figure 77 on page 181.

OVERTYPE TO MODIFY CICS RELEASE = 0520
CEDA Alter PARTNer (GATEWAY9)
PARTNer : GATEWAY9
Group : EKAISC
DEscription ==>
REMOTE LU NAME
NETName ==> MVS9LUNM
NETWork ==>
SESSION PROPERTIES
Profile ==> EKAPROF
REMOTE TP NAME
Tpname ==> EKAR1

==>
Xtpname ==>

==>
==>

APPLID=CTS2LUNM

PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Figure 76. CICS RDO Sample: Define Partner GATEWAY9

180 Customization Guide

Note: There are specific CICS rules for the location of a DFHDCT TYPE=SDSCI
entry in your DCT generation source code. For more information refer to
CICS Resource Definition (Macro).

Defining Extrapartition Transient Data Queue (RDO)
The sample destination of the conversation trace (EKAT) is defined as an
extrapartition transient data queue in CICS. A sample CICS RDO screen for the
definition of this TD queue is shown below.

Allocating MERVA Link Conversation Trace Data Set
The MERVA Link external conversation trace is written to a sequential data set
when this service is requested.

* MERVA LINK CONVERSATION TRACE

DFHDCT TYPE=SDSCI, *
DSCNAME=EKACTRC, *
BLKSIZE=6144, *
TYPEFLE=OUTPUT, *
RECFORM=VARBLK, *
RECSIZE=4096

DFHDCT TYPE=EXTRA, *
DESTID=EKAT, *
DSCNAME=EKACTRC

Figure 77. Define DFHDCT Entries for the Conversation Trace

OVERTYPE TO MODIFY CICS RELEASE = 0520
CEDA ALter TDqueue(EKAT)
TDqueue : EKAT
Group : EKAISC
DEscription ==>
TYPE ==> Extra Extra | INTra | INDirect
EXTRA PARTITION PARAMETERS
DAtabuffers ==> 001 1-255
DDname ==> EKACTRC
DSname ==>
Sysoutclass ==>
Erroroption ==> Ignore Ignore | Skip
Opentime ==> Initial Initial| Deferred
REWind ==> Leave | Reread
TYPEFile ==> Output Input | Output | Rdback
RECORDSize ==> 04096 1-32767
BLOCKSize ==> 06144 1-32767
RECORDFormat ==> Variable Fixed | Variable
BLOCKFormat ==> Blocked Blocked | Unblocked
Printcontrol ==> A | M
DIsposition ==> Shr Shr | Old | Mod
INTRA PARTITION PARAMETERS
.
.
.

APPLID=CTS1LUNM

PF 1 HELP 2 COM 3 END 6 CRSR 7 SBH 8 SFH 9 MSG 10 SB 11 SF 12 CNCL

Figure 78. CICS RDO Sample: Define a TD Queue for the Conversation Trace

Chapter 6. The MERVA Link for CICS and IMS 181

This sequential data set must be allocated before the conversation trace service can
be used. The sample MERVA Link conversation trace data set used in the CICS
environment can be allocated with the following parameters:

DATA SET NAME: EKA.CTS120.CTRC1
Organization: PS
Record Format: VB
Record Length: 4096
Block Size: 6144
First Extent Tracks 5
Secondary Tracks 5

Customizing the CICS Startup Job
Depending on your installation and customization decisions, you must add the
definition of the MERVA Link conversation trace data set to the CICS startup job
control statements. In addition, you can add a job step to your CICS startup job
that prints the conversation trace data set after CICS shutdown.

The MERVA Link sample CICS startup job statements for the MVS environment
are shown in Figure 79. The MERVA Link sample CICS startup job statements to
print the conversation trace data set in the VSE environment are shown in
Figure 80.

Customizing IMS for MERVA Link
MERVA Link IMS requires a set of resources to be built and defined to the IMS
system.

//*---*
//* MERVA LINK CONVERSATION TRACE DATA SET
//*---*
//EKACTRC DD DSN=EKA.CTS120.CTRC1,DISP=SHR

//*---*
//* ADDITIONAL JOB STEP: PRINT CONVERSATION TRACE
//*---*
//LSTCTRC EXEC PGM=IDCAMS,PARM=GRAPHICS(CHAIN(TN))
//EKACTRC DD DSN=EKA.CTS120.CTRC1,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

PRINT INFILE(EKACTRC)
/*

Figure 79. Sample Additional CICS TS Startup MVS JCL Statements

// *--*
// * ADDITIONAL JOB STEP: PRINT CONVERSATION TRACE
// *--*
// ASSGN SYS025,DISK,VOL=volser,SHR
// DLBL SDSKIN,'EKA.CTS120.CTRC1',0,SD
// EXTENT SYS025,volser,1,0,xxxx,yy
// UPSI 1
// EXEC DITTO,SIZE=512K
$$DITTO SET DUMP=ACROSS
$$DITTO SDP INPUT=SYS025,MODE=V
$$DITTO EOJ
/&

Figure 80. Sample Additional CICS/VSE Startup JCL Statements

182 Customization Guide

IMS PSB and ACB
The MERVA Link program EKAAS10 needs an IMS PSB to be defined and
assembled, and the corresponding ACB to be built. The PSB definition is shown
below.

Do not change the default parameters of the PCB macros:
v ALTRESP=NO
v SAMETRM=NO
v EXPRESS=NO

The input for the required ACB generation is:
BUILD PSB=EKAAS10

These definitions are part of the MERVA ESA installation jobs DSLEIPSB and
DSLEIACB.

The receiving message transfer program EKATPI1, which supports both
APPC/MVS and APPC/IMS, need not be defined as an IMS PSB.

Defining IMS Applications
The PSB for EKAAS10 must be defined to IMS as an application together with the
transaction codes used to run this program. You must define a unique transaction
code for program EKAAS10 for every sending ASP.

The definitions must be included in the stage 1 input code of the IMS generation.
The definitions are part of the MERVA ESA IMS application definition copy book
DSLIMSAP.

Sample application and transaction definitions are shown in Figure 82. The five
transaction codes for the program (PSB) EKAAS10 allow five ASPs to be defined in
the partner table.

* MERVA LINK SENDING ASP *

PCB TYPE=TP,MODIFY=YES MODIFY=YES IS MANDATORY
PSBGEN PSBNAME=EKAAS10,LANG=ASSEM
END

Figure 81. IMS PSB Definition

*--
* MERVA LINK IMS APPLICATION DEFINITIONS
*--
*

APPLCTN PSB=EKAAS10, SENDING ASP *
SCHDTYP=PARALLEL

TRANSACT CODE=(EKAS,EKAS1,EKAS2,EKAS3,EKAS4), *
MODE=SNGL, *
MSGTYPE=(SNGLSEG,,24), *
PARLIM=1,MAXRGN=1

Figure 82. IMS Application Definitions

Chapter 6. The MERVA Link for CICS and IMS 183

The parameters PARLIM=1 and MAXRGN=1 in the TRANSACT macro for the
sending ASP are required. These parameters ensure that a sending ASP does not
run in two message processing regions at the same time.

The transaction code for the receiving MTP EKATPI1 supporting APPC/MVS is
defined in an APPC/MVS TP profile. It does need not to be defined in an IMS
application definition.

Customizing the IMS Message Processing Region Startup Job
The startup job for the message processing regions that run the MERVA Link
programs must be extended by a data definition statement for the MERVA Link
SNAP dumps. An example of such a statement is:
//EKASNAP DD SYSOUT=*

Customizing APPC/MVS for MERVA Link
An APPC/MVS TP profile for the APPC/MVS transaction scheduler ASCH must
be defined for MERVA Link IMS APPC connections if the receiving transaction
must run in an APPC/MVS initiator. A TP profile describes a MERVA Link IMS
receiving process.

You can specify the intersystem parameters needed for a MERVA Link sending
process in the PT. Therefore, you do not need to specify APPC/MVS Side
Information in the MERVA Link APPC/MVS environment. Alternatively, the
intersystem connection parameters in the PT can refer to APPC/MVS Side
Information. In this case, the TP name in an SI profile can be dynamically
overwritten by a PT parameter.

Details of the APPC/MVS Intersystem Communication Support are described in
MVS/ESA Planning: APPC Management. Refer to this manual for the definition of
APPC/MVS intersystem communication resources.

APPC/MVS TP Profile for the APPC/MVS Scheduler
An APPC/MVS TP profile is used by the APPC/MVS task scheduler to start an
inbound transaction program (TP). A TP profile is defined for access by
APPC/MVS in the APPC/MVS TPADD command. A TP profile is identified by the
TP name (parameter TPNAME in the APPC/MVS TPADD command). The most
important information in a TP profile are job control statements used to run the
inbound TP in an APPC/MVS initiator (a specific MVS region).

A sample TP profile definition for the MERVA Link inbound TP EKATPI1 is shown
below. The MERVA Link program EKATPI1 runs in an APPC/MVS initiator. It is
the MERVA Link receiving MTP that supports APPC/MVS in the MERVA Link
IMS environment. The APPC/MVS TP profile of the MERVA Link receiving MTP
can be shared by receiving processes communicating with sending processes in all
partner systems (CICS, APPC/MVS, and workstations).

184 Customization Guide

A sample TP profile definition for the inbound TP EKAPMSC is shown below. The
MERVA Link program EKAPMSC runs in an APPC/MVS initiator. It is the MERVA
System Control Facility server program that supports APPC/MVS in the MERVA
Link IMS environment.

//jobname JOB (....,.),'programmer',
// MSGLEVEL=(1,1)
//**
//* DEFINE A SYSTEM-LEVEL STANDARD TP-PROFILE
//**
//DEFTP EXEC PGM=ATBSDFMU
//SYSPRINT DD SYSOUT=*
//SYSSDOUT DD SYSOUT=*
//SYSSDLIB DD DSN=SYS1.APPCTP,DISP=SHR
//SYSIN DD DATA,DLM=XX

TPDELETE
TPNAME(EKAR)
SYSTEM

TPADD
TPNAME(EKAR)
SYSTEM
ACTIVE(YES)
TPSCHED_DELIMITER(##)
TPSCHED_TYPE(STANDARD)
JCL_DELIMITER(END_OF_JCL)

//jobname JOB (....,.),'programmer',MSGCLASS=X,
// MSGLEVEL=(1,1)
//EKAR EXEC PGM=EKATPI1
//STEPLIB DD DSN=merva.SDSLLODI,DISP=SHR
// DD DSN=merva.SDSLLODB,DISP=SHR
//SYSUDUMP DD SYSOUT=X
//DSLSNAP DD SYSOUT=X
//EKASNAP DD SYSOUT=X
END_OF_JCL
##
XX

Figure 83. APPC/MVS EKATPI1 TP Profile Definition Sample

Chapter 6. The MERVA Link for CICS and IMS 185

APPC/MVS SI Profile
An APPC/MVS SI profile defines a Symbolic Destination for a receiving process in
a partner system. The parameters of an SI profile are the TP name, the APPC
session mode name, and the partner LU name.

A sample SI profile that can be used in sample node 3 to connect to sample node 1
(CICS 1) is shown below.

The sample SI profile definition used in sample node 3 to connect to the MERVA
Link USS Gateway (sample node 9) is shown below.

...

//SYSIN DD DATA,DLM=XX
TPDELETE

TPNAME(EKAC)
SYSTEM

TPADD
TPNAME(EKAC)
SYSTEM
ACTIVE(YES)
TPSCHED_DELIMITER(##)
TPSCHED_TYPE(STANDARD)
JCL_DELIMITER(END_OF_JCL)

//jobname JOB (....,.),'programmer',MSGCLASS=X,
// MSGLEVEL=(1,1)
//EKAR EXEC PGM=EKAPMSC
//STEPLIB DD DSN=merva.SDSLLODI,DISP=SHR
// DD DSN=merva.SDSLLODB,DISP=SHR
//SYSUDUMP DD SYSOUT=X
//DSLSNAP DD SYSOUT=X
END_OF_JCL
##
XX

Figure 84. APPC/MVS EKAPMSC TP Profile Definition Sample

...

//DEFTP EXEC PGM=ATBSDFMU
//SYSPRINT DD SYSOUT=*
//SYSSDOUT DD SYSOUT=*
//SYSSDLIB DD DSN=SYS1.APPCSI,DISP=SHR
//SYSIN DD *

SIDELETE
DESTNAME(CA01)

SIADD
DESTNAME(CA01)
TPNAME(EKAR)
MODENAME(APPCLU62)
PARTNER_LU(CTS1LUNM)

/*

Figure 85. APPC/MVS CA01 SI Profile Definition Sample

186 Customization Guide

APPC/MVS Inbound TP Security Considerations
An APPC/MVS inbound TP runs in an APPC/MVS initiator in a similar way as an
MVS batch job. A TP security environment on MVS is established by APPC/MVS.
This security environment depends on the security type of the inbound allocate
request and the security data contained in this request.

The security type is specified and the security information can be provided by the
partner system. Security types defined in LU 6.2 are NONE, SAME, and
PROGRAM. The APPC partner systems are CICS, APPC/MVS, APPC/IMS, and
Communications Server on a workstation.

CICS Outbound Security in an Allocate Request
CICS supports security type SAME as a fix parameter in the mapping of CICS
APPC commands to LU 6.2 verbs (see CICS Intercommunication Guide). A CICS
application program has no option to modify this parameter.

The user ID of the CICS security environment is passed to APPC/MVS in the
allocate request (FMH5) with an indicator that the user ID has already been
verified. The APPC/MVS inbound TP can access any data or resources that this
user is allowed to access.

The APPC/MVS LU must be told to accept an already verified user ID by the
parameter SECACPT=ALREADYV in the VTAM definition of the APPC/MVS LU.

The user ID in CICS: A CICS task, which is started by a CICS START command
rather than by an operator at a terminal, inherits the user ID from the task that
issued the START command. This applies also for a sequence of tasks.

The first task in this chain must, however, be started either by an operator from a
terminal after a successful SIGNON, or through definitions in the CICS PLT during
CICS system startup. In case of an operator start, the operator identifier, the
operator password, and the user identifier are defined in an entry of the CICS
Signon Table (DFHSNT). In case of the automatic start during CICS startup, CICS
itself is the 'operator' and the CICS system identifier specified in the SYSIDNT
parameter of the CICS SIT is the user identifier associated with the started task.

...

//DEFTP EXEC PGM=ATBSDFMU
//SYSPRINT DD SYSOUT=*
//SYSSDOUT DD SYSOUT=*
//SYSSDLIB DD DSN=SYS1.APPCSI,DISP=SHR
//SYSIN DD *

SIDELETE
DESTNAME(MVS9)

SIADD
DESTNAME(MVS9)
TPNAME(EKAR1)
MODENAME(APPCLU62)
PARTNER_LU(MVS9LUNM)

/*

Figure 86. APPC/MVS MVS9 SI Profile Definition Sample

Chapter 6. The MERVA Link for CICS and IMS 187

If the first task is started by an operator at a terminal without sign on, no user
identifier is associated with the sequence of started tasks.

What this means in the MERVA Link environment: In the MERVA ESA CICS
environment, the sequence of tasks is DSL (MERVA ESA startup), DSLN
(MERVA ESA Nucleus task providing the central MERVA ESA services), and
EKAS (MERVA Link sending task). Task EKAS is associated with the user ID of
task DSLN, and task DSLN is associated with the user ID of task DSL. The user ID
of the operator who enters DSL at a terminal after a successful signon is the user
ID which is passed to APPC/MVS to setup the inbound TP security environment.

If the MERVA ESA nucleus is started by program DSLCAS specified in the CICS
PLT, the CICS system identifier specified in the SYSIDNT parameter of the CICS
SIT (default system identifier is 'CICS') is associated as user ID with the tasks
DSLN and EKAS, and it is passed to APPC/MVS.

This user ID must be authorized in the MVS system housing APPC/MVS to access
the resources used by the inbound TP. These resources, defined in the TP profile,
are, for example, the MERVA ESA program libraries.

How a security violation is reported in MERVA Link CICS: If task DSL is
started by an operator who has not signed on, no user ID is passed to APPC/MVS.
Unless universal access has been defined for the inbound TP resources, a security
violation will be detected and reported to the sending system. It appears as a
remote process abend (RP ABE) in MERVA Link CICS.

If task DSL is started by a signed on operator or using the PLT, a user ID is passed
to APPC/MVS. If this user ID is not defined in the MVS system housing
APPC/MVS or has insufficient access authority, again, a security violation will be
detected and reported to the CICS system.

CICS/MVS and CICS/ESA handle that report of a security violation differently.

CICS/MVS abends the MERVA Link sending task EKAS in this case with abend
code AISS. This CICS task abend is intercepted by MERVA Link and appears as a
local process abend (LP ABE) in MERVA Link.

CICS/ESA reports the security violation as a terminal error with an error code of
X'080F6051' in EIBERRCD. This CICS error code is translated by MERVA Link and
appears as 'security not valid' (SEC NV) in MERVA Link.

IMS Outbound Security in an Allocate Request
The outbound allocate request is issued by the MERVA Link sending MTP named
EKATPO1 in the IMS APPC environment. EKATPO1, which runs in an IMS MPP,
specifies security type SAME as a fix parameter of the outbound allocate request.
An option to modify this parameter is not provided.

The user ID of the IMS MPP security environment is passed to APPC/MVS in the
allocate request. The APPC/MVS inbound TP can access any data or resources that
this user is allowed to access.

How a security violation is reported in MERVA Link IMS: APPC/MVS reports
the security violation with ATB_Return_Code 6 (Security_not_valid). This return
code is translated by MERVA Link and appears as 'security not valid' (SEC NV) in
MERVA Link.

188 Customization Guide

EKAPMSC Security Considerations
EKAPMSC is the inbound TP of the MERVA System Control Facility. If EKAPMSC
runs in the APPC/MVS environment, the outbound TP (EKAEMSC within the
MERVA EUD program) must provide security information. In the IMS
environment, this security information is provided by the security environment of
the IMS MPP that houses the EUD transaction.

In the CICS environment, this security information is provided by the security
environment of the terminal used for communication with the MERVA EUD. In
CICS/MVS you must sign on at the terminal before you can operate a partner
MERVA system using your local MERVA EUD. And you must be authorized in the
partner MVS system to access the required resources.

In CICS/ESA the CICS system administrator can define a default user which
becomes applicable if you do not sign on at your terminal. This user must be
authorized in the partner MVS system to access the required resources. If no
default user is defined, a signon is required as for CICS/MVS, and you must be
authorized in the partner MVS system to access the required resources.

How a security violation is reported: In the CICS environment, the MSC front
end transaction program checks whether a user ID is associated with the EUD task.
Operator message EKA767E asks you to sign on if no user ID is available.

In the IMS environment, a user ID is always available. The IMS MPP security
environment applies in this case.

If the user is, however, not authorized by the partner system, the command
transfer request is rejected at the APPC level, and an 'invalid security information'
error is reported. The 'security not valid' error code is translated by MERVA Link
and appears as SEC NVAL in the MERVA System Control Facility screen AC03.

Connecting Trusted and Untrusted Partner Systems
A data communication system which employs an access control facility (for
example, RACF) that is operated by a security administrator is considered to be a
trusted system. A user identifier received from a trusted system has already been
verified by that system, and need not be verified again by the local APPC/MVS
system. CICS and APPC/MVS, for example, are considered to be trusted systems.

Workstations are considered to be untrusted systems because they can be under
the full control of one person.

Some options to connect an APPC/MVS system to trusted partner systems, to
untrusted partner systems, and to both, trusted and untrusted partner systems, for
inbound conversations are discussed in the following sections. APPC/MVS
outbound conversations are always handled by the APPC/MVS Base LU. The
SECACPT parameter is irrelevant for outbound conversations.

For more details about these options, refer to MERVA for ESA Advanced MERVA
Link and RACF documentation.

Connecting Trusted Partner Systems
A trusted partner system sends an already verified user ID at the beginning of an
outbound conversation. An APPC/MVS LU accepts inbound conversations with
the AV indicator if it is defined with SECACPT=ALREADYV. Therefore, if you
define the APPC/MVS Base LU with SECACPT=ALREADYV, you can connect
trusted partner systems to this LU for outbound and inbound conversations.

Chapter 6. The MERVA Link for CICS and IMS 189

A single CICS CONNECTION definition is required if both, the outbound and the
inbound conversations to and from CICS use the APPC/MVS Base LU. If the
APPC/MVS Base LU cannot be used by CICS for CICS outbound conversations, a
second CONNECTION to APPC/MVS must be defined in CICS. It must specify
the name of another APPC/MVS LU. The system identifier of that connection must
be specified in the applicable MTP entry of the MERVA Link partner table in the
MERVA ESA CICS system.

Connecting Untrusted Partner Systems
An untrusted partner system sends a user ID and password at the beginning of an
outbound conversation. An APPC/MVS LU accepts inbound conversations with
user ID and password if it is defined with SECACPT=CONV. It rejects inbound
conversations with the AV indicator in this case. You can connect untrusted partner
systems to this LU for outbound and inbound conversations.

Connecting Both Trusted and Untrusted Partner Systems
There are two major options with VTAM to support both trusted and untrusted
partner systems. The first option uses multiple APPC/MVS LUs, the second option
uses a single APPC/MVS LU, the APPC/MVS Base LU, with temporary
modification of the value specified in the SECACPT keyword of the VTAM APPL
statement.

Using multiple APPC/MVS LUs: If you choose the first option, you must define
the APPC/MVS Base LU with SECACPT=CONV and another APPC/MVS LU with
SECACPT=ALREADYV. Untrusted partner systems are connected for outbound
and inbound conversations to the Base LU. Trusted partner systems are connected
for APPC/MVS outbound conversations to the APPC/MVS Base LU, the only
option supported by MERVA Link.

For APPC/MVS inbound conversations, the trusted partner systems are connected
to the APPC/MVS LU defined with SECACPT=ALREADYV. This is achieved by
appropriate definitions in the (sending) partner system (CICS or APPC/MVS).
v In a partner MERVA ESA CICS system another CICS CONNECTION must be

defined for that APPC/MVS LU, and that connection must be specified in the
MTP entry of the MERVA Link PT for the local APPC/MVS system.

v In a partner MERVA ESA IMS (APPC/MVS) system you must specify that
APPC/MVS LU in the MTP entry of the MERVA Link PT for the local
APPC/MVS system.

This option may require the definition of RACF profiles of the classes APPL or
APPCPORT to prevent an untrusted partner system from connecting to the
APPC/MVS LU defined with SECACPT=ALREADYV.

Using a single APPC/MVS LU, the Base LU: If you choose the second option,
you must define the APPC/MVS Base LU with SECACPT=CONV and
VERIFY=OPTIONAL, and ask for dynamic modification of this parameter for all
connections to trusted partner systems. RACF profiles of the class APPCLU are
used for that purpose. The definition of RACF profiles of the classes APPL or
APPCPORT may not be necessary if you choose this option.

Customizing APPC/IMS for MERVA Link
An APPC/MVS TP profile for the APPC/IMS transaction scheduler must be
defined for MERVA Link IMS APPC connections if the receiving transaction must
run in an IMS Message Processing Region (MPR). A TP profile describes a MERVA
Link IMS receiving process.

190 Customization Guide

All identifiers of the partner process that are required in a MERVA Link sending
process are specified in the PT. This is why APPC/MVS Side Information is not
applicable in the MERVA Link APPC/IMS environment.

Details of the APPC/IMS Intersystem Communication Support are described in:
v OS/390 MVS Planning: APPC/MVS Management

v IMS/ESA Administration Guide: Transaction Manager

Refer to these manuals for the definition of APPC/IMS intersystem communication
resources.

APPC/MVS TP Profile for the APPC/IMS Scheduler
An APPC/MVS TP profile is used by the APPC/IMS scheduler to start an inbound
transaction program (TP) in an IMS MPR. A TP profile is defined for access by
APPC/IMS in the APPC/MVS TPADD command. A TP profile is identified by the
TP name (parameter TPNAME in the APPC/MVS TPADD command). The most
important information in an APPC/IMS TP profile is the name of the transaction
program and the message class that specifies the IMS MPRs that can run the TP.

A sample TP profile definition for the MERVA Link inbound TP EKATPI1 is shown
below.

The MERVA Link program EKATPI1 runs in an IMS MPR that supports message
class 24. EKATPI1 is the MERVA Link receiving Message Transfer Program that
supports APPC/MVS and APPC/IMS in the MERVA Link IMS environment. The
APPC/MVS TP profile of the MERVA Link receiving TP can be shared by receiving
processes communicating with sending processes in all partner systems (CICS,
APPC/MVS, and workstations).

A sample TP profile definition for the inbound TP EKAPMSC is shown below.

//jobname JOB (....,.),'programmer',
// MSGLEVEL=(1,1)
//**
//* DEFINE A SYSTEM-LEVEL STANDARD TP-PROFILE
//**
//DEFTP EXEC PGM=ATBSDFMU
//SYSPRINT DD SYSOUT=*
//SYSSDOUT DD SYSOUT=*
//SYSSDLIB DD DSN=SYS1.APPCTP,DISP=SHR
//SYSIN DD DATA,DLM=XX

TPDELETE
TPNAME(EKARI510)
SYSTEM

TPADD TPSCHED_EXIT(DFSTPPE0)
TPNAME(EKARI510)
SYSTEM
ACTIVE(YES)
TPSCHED_DELIMITER(##)

TRANCODE=EKATPI1
CLASS=24
MAXRGN=1
RACF=FULL
##

XX

Figure 87. APPC/MVS EKATPI1 TP Profile Definition Sample

Chapter 6. The MERVA Link for CICS and IMS 191

The MERVA Link program EKAPMSC runs in an IMS MPR that supports message
class 23. EKAPMSC is the MERVA System Control Facility server program that
supports APPC/MVS and APPC/IMS in the MERVA Link IMS environment.

APPC/IMS Inbound TP Security Considerations
An APPC/IMS inbound TP runs in an IMS Message Processing Region (MPR). The
TP security environment has been established by the MPR startup job. The security
information in the inbound FMH5 is not used by APPC/IMS to build the inbound
TP security environment.

The access of an inbound TP by a remote user can be controlled by RACF
definitions (resource class APPCTP).

APPC/IMS Inbound TP Scheduling Considerations
APPC/MVS schedules inbound TPs in one of its initiators (MVS address spaces
controlled by APPC/MVS). APPC/IMS schedules inbound TPs in one of its
Message Processing Regions (MPRs). The following considerations apply to
APPC/IMS because of its TP scheduling technique.

IMS MPR Availability
An IMS message class is specified in the TP scheduling data parameter CLASS of
an APPC/IMS TP profile. An IMS MPR supporting this message class must be
active to serve an inbound request for that TP.

If there is no IMS MPR active for that message class, APPC/MVS keeps the
inbound conversation request in a message queue. The client application
(outbound conversation) in the partner system enters a wait state until an
appropriate IMS MPR is started and the queued request is processed. A timeout is
not applicable in this situation. This means that the sending application may wait a
long time for the response from the partner system.

Partner MSC Response Time
EKAPMSC can return its command response much faster if it is scheduled in an
IMS MPR rather than in an APPC/MVS initiator. An IMS MPR has the majority of
the resources required by EKAPMSC already allocated when the command server
transaction is scheduled.

...

//SYSIN DD DATA,DLM=XX
TPDELETE

TPNAME(EKACI510)
SYSTEM

TPADD TPSCHED_EXIT(DFSTPPE0)
TPNAME(EKACI510)
SYSTEM
ACTIVE(YES)
TPSCHED_DELIMITER(##)

TRANCODE=EKAPMSC
CLASS=23
MAXRGN=1
RACF=FULL
##

XX

Figure 88. APPC/MVS EKAPMSC TP Profile Definition Sample

192 Customization Guide

All resources must be allocated by APPC/MVS for each command server
transaction if EKAPMSC runs in an APPC/MVS initiator. This is why you must
wait for the command response significantly longer in this environment.

Customizing a Synchronous Back-to-Back Test Environment
The MERVA Link Back-to-Back (BTB) Test Environment provides a means to run a
sending ASP and its partner receiving ASP in the same CICS or IMS system.
User-written MERVA ESA MFS User Exits and application support filters can be
used in this environment. BTB provides a convenient environment to test user exits
and ASFs. The MERVA Link Installation Verification, for example, is run in the
MERVA Link Back-to-Back Test Environment.

Synchronous TP Mirror EKATM10
The MERVA Link Back-to-Back Test Environment is based on the MERVA Link TP
mirror program EKATM10. All sending and receiving MERVA Link functions are
run in the same MERVA Link transaction (the sending MERVA Link task) when the
TP Mirror is called at the MERVA Link TP layer.

A MERVA Link sending transaction that is started to handle the outbound
messages of an ASP in the Back-to-Back Test Environment handles all messages in
the send queue cluster in one transaction. The sending and receiving functions are
run sequentially for each message. Therefore, the transfer rate in a TP Mirror
environment can be smaller than the transfer rate in a real APPC environment
where sending and receiving functions run in parallel in separate processing
regions.

Back-to-Back Sample Customization
The MERVA Link sample customization for the Back-to-Back Test Environment is
independent of the DC environment (CICS or IMS). It defines one ASP and one
MTP entry in the PT. The ASP entry specifies its own address (local node and ASP
name) as the address of the partner application in the DEST parameter. The MTP
must identify itself and provide a pointer to its associated ASP.

Sample PT generation statements for the MERVA Link Back-to-Back Test
Environment that is used for the MERVA Link installation verification are shown in
Figure 89.

EKAPT TYPE=INITIAL,NODE=N1 MERVA LINK NODE N1
*

EKAPT TYPE=ASP, APPL SUPPORT PROCESS *
NAME=(A1I,'BACK-TO-BACK WITHIN NODE N1'), *
MFSEXIT=7010, MFS USER EXIT NUMBER *
SENDQC=EKA1IS1, SEND QUEUE *
DEST=(N1,A1I), PARTNER ASP ADDRESS *
CONTROL=EKA1ICQ, CONTROL QUEUE NAME *
IRROUTE=(ACK,EKAAWQ,CTLQ), REC REPORT CORRELATION *
MTP=BTB NAME OF APPLICABLE MTP

*
EKAPT TYPE=MTP,NAME=BTB, MSG TRANSFER PROCESS *

DEST=BTB, MTP TYPE IS BTB *
ASP=A1I NAME OF APPLICABLE ASP

EKAPT TYPE=FINAL
END

Figure 89. PT Sample for the Back-to-Back Test Environment

Chapter 6. The MERVA Link for CICS and IMS 193

The keyword BTB specified in the DEST parameter identifies the MTP as a
Back-to-Back MTP. The default message transfer program used by an MTP of the
type BTB is EKATM10. You do not need to specify the name of this program in an
MTP parameter.

Customizing the MERVA System Control Facility
You can customize the following within the MERVA System Control Facility:
v The color of the MERVA command response display
v The color of the ASP and SCP list lines
v The color of the ASP and SCP list frame data
v The color of information and error messages
v The PF key allocation
v The command names and their alias names

Customizing the Display Panels

Customizing the Main Menu
The Main Menu of the MERVA System Control Facility and the MSC Local Help
information is defined in the MCB EKAACMM that is part of the DSLMMFS
interface program.

You can modify the contents of the main menu and the local help text according to
your requirements.

The PF keys are defined in the MERVA ESA MFS PF-key table DSLMPF00 (PF key
group 42).

Customizing the Display of a MERVA Command Response
The display of a MERVA Command response is defined in the MCB EKAAC00 that
is part of the DSLMMFS interface program. The colors of the command response
lines are set in an MFS editing user exit named EKAME012.

The PF keys are defined in the MERVA ESA MFS PF-key table DSLMPF00 (PF key
group 42).

Customizing the Display of an ASP List
The display of the ASP list is defined in the MCB EKAAC01 that is part of the
DSLMMFS interface program. The colors of the ASP list lines are set in an MFS
editing user exit named EKAME010. You cannot modify the structure of an ASP
list line.

The PF keys are defined in the MERVA ESA MFS PF-key table DSLMPF00 (PF key
group 41).

Customizing the Display of Specific ASP/MTP Parameters
The display of specific ASP and MTP parameters is defined in the MCB EKAAC02
that is part of the DSLMMFS interface program. The color of the ASP list line is
specified in the MFS editing user exit EKAME010. You cannot modify the structure
of the ASP list line in this screen.

The PF keys are the same as in the ASP-list display.

194 Customization Guide

Customizing the Display of an SCP List
The display of the SCP list is defined in the MCB EKAAC03 that is part of the
DSLMMFS interface program. The colors of the SCP list lines are set in an MFS
editing user exit named EKAME011. You cannot modify the structure of an SCP list
line.

The PF keys are the same as in the ASP-list display.

Customizing the PT Header Display
The display of PT Header data is defined in the MCB EKAAC04 that is part of the
DSLMMFS interface program.

The PF keys are the same as in the ASP-list display.

Customizing the Explanation Panels
The screens of the MERVA System Control Facility explanations displayed in
response to the command EXPLAIN or XPL, are defined in the MCB EKAACHP.
The identifier of the screen (ACMM, AC00, AC01, AC02, AC03, or AC04), from
which the explanation is called, is provided in field EKAMTYPE. The contents of
field EKAMTYPE determines the text displayed.

You can modify the explanation text according to your requirements.

Customizing the Command Names
The MERVA Link commands, the SWIFT Link DDS command, and the
MERVA ESA queue test commands supported by the MERVA System Control
Facility are defined in the MERVA Link command table EKAMSCMT. You can
change the commands (labels of the DSLNCM macros) according to your
requirements. You must, however, not modify the command codes or other
parameters of the DSLNCM macros.

The characteristic of a MERVA Link command, whether it is a privileged command
or whether it can be used by any MSC operator, cannot be customized.

The MERVA ESA Base commands and the other commands of the SWIFT Link and
TELEX Link components are not defined in EKAMSCMT. These commands are
defined in the MERVA ESA command table DSLNCMT.

Application Support Filter
A MERVA Link application support filter (ASF) is a customer-written program. It is
associated with a specific MERVA Link application in the corresponding
application support process (ASP) entry in the PT and is called by the MERVA
Link when messages for this application are processed.

The purpose of an ASF is to control data that is passed across the MT layer
boundary (boundary between the ASL and the MTL). It does not control
MERVA ESA messages or the routing of messages within MERVA ESA.

Note: An ASF does not have access to the MERVA ESA services. For all activities
dealing with MERVA ESA refer to the MERVA ESA MFS User Exit
supported by the MERVA Link.

The MERVA Link supports up to three ASFs associated with a specific ASP. In the
layered representation of the MERVA Link message handling system, an ASF is

Chapter 6. The MERVA Link for CICS and IMS 195

located between the AS Layer and the MT Layer. Depending on the specific ASF, it
can be a lower boundary extension of the ASL or an upper boundary extension of
the MTL.

An ASF references and modifies internal data areas of the MERVA Link. You must
carefully design and test your ASF definition because MERVA Link programs are
not protected against the malfunction of an ASF.

The following describes the purpose of a MERVA Link ASF and the support
provided by MERVA Link to develop an ASF. You also find an explanation of the
ASF samples provided by the MERVA Link.

Note: All explanations also apply to service primitive filters. A service primitive
filter differs from an ASF only in the set of events it must handle:
v An ASF is called only for a SUBMIT.Request and a DELIVER.Indication.
v A service primitive filter is called for all events at the MTL boundary.

A set of service primitive filters is specified in the partner table parameter FILTER
with the keyword ALL.

ASF Called for a SUBMIT.Request
An ASF that is called for a SUBMIT.Request checks or modifies the request. If it
does not reject the request, it passes the request to the next program, which is
either another ASF or the Message Transfer Service Processor (MTSP). If the ASF
rejects the request, it immediately returns to the calling program and provides
appropriate error information, including the identifier of the new service primitive
SUBMIT.Confirmation.

Either an application message (IM-ASPDU) or a receipt report (SR-ASPDU) is
passed by an ASP in a SUBMIT.Request to the MTSP. An ASF must check what
kind of protocol data unit (PDU) is applicable and acts appropriately.

An ASF can authenticate and encrypt a message. If both authentication and
encryption are applied in this sequence, the encryption and decryption process are
verified by the authentication.

An ASF can also add customer defined data elements to the message heading.

ASF Called for a DELIVER.Indication
An ASF that is called for a DELIVER.Indication must check or modify this request,
and either pass this DELIVER.Indication to the next program in the applicable
sublayer structure to the ASP or reject it.

If the ASF rejects this request, it immediately returns to the calling program and
provides appropriate error information (including the identifier of the new service
primitive DELIVER.Response).

Either an application message (IM-ASPDU) or a receipt report (SR-ASPDU) is
passed by the MTSP in a DELIVER.Indication to an ASP. An ASF must check what
kind of PDU is applicable and acts appropriately.

If the authentication of a received message fails, the ASF can reject the delivery or
pass this message to the next program to the ASP. In this case the ASF provides
appropriate error control information (including the identifier of the new service

196 Customization Guide

primitive DELIVER.Response when the delivery is rejected). If the received
message is encrypted, the ASF must decrypt the message.

An ASF can also process customer defined data elements contained in the message
heading.

ASF Programming Interface
The ASF programming interface comprises four parts. It is the program entry and
the return to the caller (as in a user exit). The ASF programming interface,
however, comprises two more parts, the call of the next program and the return
from that program.

ASF Program Entry
An ASF, called by MERVA Link or another ASF, gets the message transfer
parameter list EKAMTPL as a CICS Commarea in a CICS environment and a
pointer to the address of the EKAMTPL as input parameter list in the IMS
environment. Among other information, the EKAMTPL contains:
v The service primitive identifier
v A pointer to the P2 PDU (IM-ASPDU or SR-ASPDU)
v Pointers to the PT header and the applicable ASP entry
v Pointers to P1 originator and recipient information

Call the Next Program
When the ASF has completed its activity for a specific event, it calls the “next
program”. This “next program” is determined by the service primitive and its own
identity.

Any ASF is a member of a program list that consists of three, four, or five
programs. A MERVA Link ASP is located at the top of the list and the MERVA Link
MTSP is located at the bottom of the list. One, two, or three ASFs can be between
the ASP and MTSP programs. In the MERVA Link sample, this list reads:
v EKAAS10 or EKAAR10
v EKAAF10
v EKAAF20
v EKASP10

The next program of EKAAF10 for a SUBMIT.Request is EKAAF20, the lower
boundary ASF. The next program of EKAAF10 for a DELIVER.Indication is
EKAAR10, the MERVA Link receiving ASP. The next program of EKAAF20 for a
SUBMIT.Request is EKASP10, the MERVA Link MTSP. The next program of
EKAAF20 for a DELIVER.Indication is EKAAF10, the upper boundary ASF.

The names of the applicable ASFs are contained in the ASP entry of the PT.

Return from the Next Program
The “next program” returns to the calling ASF with an updated parameter list
(EKAMTPL). The service primitive identifier field contains the identifier of the
secondary service primitive (SUBMIT.Confirmation or DELIVER.Response) that
corresponds to the applicable primary service primitive (SUBMIT.Request or
DELIVER.Indication) and return information. The latter information tells whether
the SUBMIT.Request was successfully processed by the lower layer programs, or
whether the DELIVER.Indication was successfully processed by the upper layer
programs.

Chapter 6. The MERVA Link for CICS and IMS 197

Return to the Caller
The ASF returns to the calling program. If it does not call the “next program” it
must provide the identifier of the secondary service primitive
(SUBMIT.Confirmation or DELIVER.Response) that corresponds to the applicable
primary service primitive (SUBMIT.Request or DELIVER.Indication), and it must
provide information describing the reason for this short cut.

In any case, the ASF can check and modify the information contained in the
message transfer parameter list.

ASF Samples
The MERVA Link sample contains two ASFs named EKAAF10 and EKAAF20:

EKAAF10 Authenticates an outgoing message and verifies that an incoming
message has not been altered.

EKAAF20 Encrypts an outgoing message and decrypts an incoming message.

These samples are provided in ASSEMBLE source code for your reference.

ASF Skeleton
An ASF skeleton used as the base for the sample MERVA Link ASFs, EKAAF10,
and EKAAF20, is shown below. It is an executable ASF without specific activity.

This skeleton indicates the places where the developer of an ASF must add code
for the specific activity of that ASF. You should use this skeleton to develop your
own ASFs.

198 Customization Guide

ASF User-Code Elements
One of the following elements is usually contained in the ASF user code:
v Check for message or receipt report
v Locate a data element in the message heading
v Locate the message text
v Add a data element to the message heading
v Report authentication failure
v Reject message delivery due to authentication failure

Commented examples for each of these elements are shown in the following
figures (Figure 91 on page 200 to Figure 96 on page 203). These examples are from
the MERVA Link sample ASF EKAAF10.

Check for Application Message: Each of the user-code elements starts with an
instruction to point to the message transfer parameter list EKAMTPL. This
instruction is not necessary if the contents of RMTP (general register 5) is not
altered in the ASF. Initially, RMTP points to the EKAMTPL.

*** 00001
* EKAAF100 MERVA LINK APPLICATION SUPPORT FILTER SKELETON 00002
*** 00003
EKAAF100 EKAASFB PRINT=OFF GENERATE ASF BEGIN CODE 00004
*-- 00005
* MODULE WORK AREA USER EXTENSION 00006
*-- 00007
* ADD YOUR WORK AREA FIELD DEFINITIONS HERE 00008
*== 00009
* PROGRAM START 00010
*== 00011
EKAAF100 CSECT 00012
/ SELECT SERVICE PRIMITIVE: 00013
AF10010S DS 0H 00014
*** 00015
/ WHEN SUBMIT REQUEST: 00016
*** 00017
AF10011W DS 0H 00018

CLC TPLSPID,AF10SURQ SUBMIT REQUEST ? 00019
BNE AF10012W NO, CHECK FOR OTHER SERV PRIM 00020

* ADD YOUR SUBMIT.REQUEST PROCESSING CODE HERE 00021
B AF10010X 00022

*** 00023
/ WHEN DELIVER INDICATION: 00024
*** 00025
AF10012W DS 0H 00026

CLC TPLSPID,AF10DLIN DELIVER INDICATION ? 00027
BNE AF10013W NO, CHECK FOR OTHER SERV PRIM 00028

* ADD YOUR DELIVER.INDICATION PROCESSING CODE HERE 00029
AF10013W DS 0H 00030
AF10010X DS 0H 00031
/ ENDSELECT 00032

EKAASFC MYNAME=EKAAF10 CALL APPLICABLE NEXT PROGRAM 00033
EKAASFE RETURN TO THE CALLER 00034

/ ENDMODULE EKAAF100 00035
AF10SURQ DC CL4'SURQ' SUBM.REQ SERVICE PRIMITIVE ID 00036
AF10DLIN DC CL4'DLIN' DELV.IND SERVICE PRIMITIVE ID 00037

END 00038

Figure 90. ASF Sample Skeleton

Chapter 6. The MERVA Link for CICS and IMS 199

Some of the user-code elements continue with an instruction to point to the
Body-Part Data Segment (L RPDU,TPAMCA). This instruction is not necessary if
the contents of RPDU (general register 4) is not altered in the ASF. Initially, RPDU
points to the Body-Part Data Segment.

Locate Data Element: The following code scans the level 1 data element 0120
(IM-ASPDU Heading) for a specific level 2 data element. Corresponding code
applies if an implicit level 2 data element is to be scanned for a level 3 data
element. Level 3 data elements are always explicit in the MERVA Link architecture.

/ IF APPLICATION MESSAGE SUBMISSION IS REQUESTED:
L RMTP,WAMTPL POINT TO THE EKAMTPL
L RPDU,TPAMCA POINT TO THE P2 PDU
CLC PDUID,HSR1ASPH IS IT AN ASPDU HEADING ?
BNE HSR1010A NO, ...

/ HANDLE APPLICATION MESSAGE.

...

HSR1010A DS 0H
/ ENDIF

...

HSR1ASPH DC AL2(@PIASPH) IM-ASPDU HEADING ID

Figure 91. ASF User-Code Element Check for Application Message

/ LOCATE AUTHENTICATION DATA IN THE P2 PDU.
L RMTP,WAMTPL POINT TO THE EKAMTPL
L RPDU,TPAMCA POINT TO THE P2 PDU
LR R1,RPDU POINT TO THE END OF THE HEADING
AH R1,PDULL *
LA RPDU,PDUDB POINT TO FIRST LOWER LEVEL DE

/ DO WHILE AUTH DE NOT FOUND AND MESSAGE HEADING NOT EXHAUSTED:
HDI1020D DS 0H

CR RPDU,R1 STILL WITHIN THIS HEADING DE ?
BNL HDI1020T NO, AUTHENTICATION DE NOT FOUND
CLC PDUID,HDI1AUTH IS IT THE AUTH DE ?
BE HDI1020T YES, EXIT LOOP

/ POINT TO NEXT DE IN THE MESSAGE HEADING.
AH RPDU,PDULL POINT TO THE NEXT DE
B HDI1020D

HDI1020T DS 0H
/ ENDDO
/ IF AUTHENTICATION DATA ELEMENT FOUND:

CLC PDUID,HDI1AUTH IS IT THE AUTHENTICATION DE ?
BNE HDI1030A NO, ...

...

HDI1030A DS 0H
/ ENDIF

...

HDI1AUTH DC AL2(@PIAUTH) AUTHENTICATION INFO DE ID

Figure 92. ASF User-Code Element Locate Data Element

200 Customization Guide

Locate the Message Text: The representation of the message text at the MTL
boundary has been modified in MERVA Link of MERVA ESA. You must modify an
application support filter written for MERVA/370 V2 accordingly.

The message text is contained in a storage area. It has a standard MERVA ESA
buffer format with two fullword length fields as the buffer prefix. The standard
MERVA ESA buffer format with halfword length fields is not supported for a
MERVA Link message text buffer at the MTL boundary.

The chain pointer in the body part header points to a body descriptor. The body
descriptor consists of a single body part descriptor as the message body consists of
a single body part only.

The data buffer address in the body part descriptor points to the MERVA ESA
buffer containing the message text. The length of the message text may exceed
32KB.

Modified sample code to locate the message text at the MTL boundary is shown
below. The modified statements are flagged by '@@@'.

Add a Data Element to an Outgoing Message Heading: To add a user-defined
data element to an outgoing message heading you must consider the following:
v The body-part header is appended to the message heading. It has a length of 12

bytes. Its most important information is the pointer to the body-part data
segment that contains the message text. Before adding a data element to the
message heading, the body-part header must be saved and appended to the
extended message heading later.

v MERVA Link reserves space in the message heading buffer for up to 1012 bytes,
which is the maximum heading length supported. 12 extra bytes are reserved for
the body-part header.

User-defined data elements must have the format of a valid MERVA Link data
element. The data element identifier must be a data element identifier reserved for
customer use.

/ POINT TO THE MESSAGE TEXT.
L RMTP,WAMTPL POINT TO THE EKAMTPL
L RPDU,TPAMCA POINT TO THE P2 PDU
AH RPDU,PDULL POINT TO THE BODY PART HEADER
L RPDU,PDUDDSP POINT TO THE BODY DESCR. @@@
L RPDU,BPDDBA POINT TO THE BP DATA BUFFER @@@
L R1,4(RPDU) GET DATA BUFFER DATA LENGTH @@@
LA R1,0(R1) RESET HIGH ORDER BIT @@@

/ IF TEXT AVAILABLE:
SH R1,GAD1FLFL DATA SEGMENT TEXT LENGTH @@@
BNP GAD1050A NO MESSAGE TEXT AVAILABLE

...

GAD1050A DS 0H
/ ENDIF

...

GAD1FLFL DC H'4' LENGTH OF A FW LENGTH FIELD @@@

Figure 93. ASF User-Code Element Locate the Message Text

Chapter 6. The MERVA Link for CICS and IMS 201

When a data element has been added to the message heading, the message
heading data element length must be updated as specified by the length of the
additional data element.

Report Authentication Failure: The event return code and the event diagnostic
code in this example are saved in the MERVA Link control fields EKADELRC and
EKADELDC in the delivered message. These fields can be checked in a
MERVA ESA routing table. Messages with authentication failure can be routed to
an incoming message error queue using this information.

The message routed to the message error queue can be authenticated by a
MERVA ESA operator (user) using standard MERVA ESA functions.

Reject Message Delivery: Store an ASF return code (16 ... 255) in TPARC to
indicate a receiving process error. The event return code and the event diagnostic
code stored in TPAERC and TPAEDC, respectively, are returned to the sending
partner application. The message is not delivered. The effect of this code is that the

WABPHD DS XL12 BODY PART HEADER SAVE AREA
WAAUTH DS XL16 AUTHENTICATION DATA

...

/ ADD AUTHENTICATION DATA TO THE MESSAGE HEADING.
L RMTP,WAMTPL POINT TO THE EKAMTPL
L RPDU,TPAMCA POINT TO THE P2 PDU
AH RPDU,PDULL POINT TO THE BODY PART HEADER
MVC WABPHD,PDUDP SAVE BODY PART HEADER
MVC PDULL,HDI1ADEL AUTHENTICATION DATA ELEMENT LNGT
MVC PDUID,HDI1AUTH AUTHENTICATION DATA ELEMENT ID
MVC PDUDB(16),WAAUTH AUTHENTICATION DATA
AH RPDU,PDULL SKIP THIS NEW DATA ELEMENT
MVC 0(L'WABPHD,RPDU),WABPHD APPEND BODY PART HEADER
L RPDU,TPAMCA POINT TO THE P2 PDU
LH R1,HDI1ADEL LENGTH OF AUTHENTICATION DE
AH R1,PDULL ADD OLD MSG HEADING LENGTH
STH R1,PDULL SET NEW MESSAGE HEADING LENGTH

...

HDI1ADEL DC AL2(20) AUTHENTICATION INFO DE LENGTH
HDI1AUTH DC AL2(@PIAUTH) AUTHENTICATION INFO DE ID

Figure 94. ASF User-Code Element Add Data Element

/ REPORT AUTHENTICATION FAILURE.
L RMTP,WAMTPL POINT TO THE EKAMTPL
MVC TPAERC,AF10ECWR SET EVENT RETURN CODE TO WARNING
MVC TPAEDC,AF10DCAF INDICATE AUTHENTICATION FAILED

...

EKAASFC , PASS EVENT TO THE NEXT PROGRAM

...

AF10ECWR DC AL2(@ERCWR) WARNING EVENT CODE FOR AUTH ERR
AF10DCAF DC CL6'AUTH F' DIAG CODE FOR AUTH FAILURE

Figure 95. ASF User-Code Element Report Authentication Failure

202 Customization Guide

sending partner application is set inoperable (application status code 09, indicating
that an application error has been reported by the partner system), and that the
message transfer is stopped.

Message transfer can be resumed upon request by the MERVA ESA control
operator at the sending side when the authentication problem has been fixed. This
requires a cooperation of the MERVA Link system administrators at the sending
and the receiving side.

Support of the MFS User Exits
The MERVA Link supports MERVA ESA MFS user exits for different purposes. The
general rules to develop MERVA ESA MFS user exits are described in the MERVA
for ESA System Programming Guide. The following gives additional rules to develop
MERVA ESA MFS user exits that are to be used in the MERVA Link environment.

If requested, MERVA Link calls an MFS user exit at the following (logical) places in
an ASP:
v When an outgoing message is about to be processed the user exit can tell

MERVA Link to reroute it immediately. This means, the user exit can close the
ASP temporarily for that specific ready-to-send message.

v When an outgoing message is processed, and MERVA Link must know whether
it is an application message or an acknowledgment message. The user exit uses
a receipt return code to indicate this in the MERVA Link control field
EKARECRC. A valid receipt return code (00, 04, or 08) indicates an
acknowledgment message.

v When the transfer of an outgoing message has been confirmed, the user exit can
identify this message as delivered to the recipient application in application
specific terms. Both, application messages and acknowledgment messages can be
controlled and modified by a user exit at this place.
The class of a message at this place is CF or CA. A message with class CA is a
confirmed application message that already contains acknowledgment control
information, that is, a valid receipt return code. A valid receipt return code (00,
04, or 08) in a message of the class CF indicates an acknowledgment message.
Otherwise, the confirmed message is an application message.

v When an incoming application message has been received the user exit can
check and modify its contents. The user exit is called when the message is saved

/ REJECT MESSAGE DELIVERY DUE TO AUTHENTICATION FAILURE.
L RMTP,WAMTPL POINT TO THE EKAMTPL
MVC TPARC,AF10RCAU AUTHENTICATE MSG TEXT FAILED
MVC TPAERC,AF10ECER SET EVENT RETURN CODE TO ERROR
MVC TPAEDC,AF10DCAF INDICATE AUTHENTICATION FAILED
MVC TPLSPID,AF10DLRS SET DELIVER.RESP SERV PRIMITIVE

...

EKAASFE RETURN TO CALLER

...

AF10RCAU DC H'178' ASF RC: AUTHENTICATION ERROR
AF10ECER DC AL2(@ERCER) ERROR EVENT CODE FOR AUTH ERROR
AF10DCAF DC CL6'AUTH F' DIAG CODE FOR AUTH FAILURE
AF10DLRS DC CL4'DLRS' DELV.RSP SERVICE PRIMITIVE ID

Figure 96. ASF User-Code Element Reject Message Delivery

Chapter 6. The MERVA Link for CICS and IMS 203

in the TOF and shortly before the message is routed to the applicable
MERVA ESA destination queue or queues.

v When an incoming acknowledgment message is received and, if applicable,
merged with the original (reported) message, the user exit can check and modify
its contents. The user exit is called when the message is saved in the TOF and
shortly before the message is routed to the applicable MERVA ESA destination
queue or queues.

v When a message is recovered because it cannot be transmitted using MERVA
Link or cannot be successfully delivered, the user exit can check and modify its
contents. The user exit is called when the message is saved in the TOF and
shortly before the message is routed to the applicable MERVA ESA “recovered
message” queue or queues.
Message recovery can be requested by an operator using the RECOVER and
IPRECOV commands of the MERVA Link Control Facility. A message can also be
recovered automatically from a delivery error (IPRECOV=AUTO specified in the
partner table ASP entry). The user exit is called in all these situations.

MFS User Exit Interface
The MFS user exit called by the MERVA Link obtains the following input
parameters and data from the MERVA Link:
v Message in the TOF and a pointer to the TOF in MFSLTOF and in general

register 11.
v A pointer to an 8-byte field containing the message type in MFSLMSG. The

contents of this 8-byte field depends on the value of the FORMAT parameter of
the ASP definition in the sending MERVA Link system.
For FORMAT=QUEUE it is the content of the TOF field DSLEXIT.
For FORMAT=NET it is the content of the TOF field specified as second
subparameter of the FORMAT parameter (default is DSLEXIT).
For FORMAT=MCB it is the MCB specified as second subparameter of the
FORMAT parameter.
When the user exit is called to handle a recovered message the message type is
not provided as a user exit input parameter.

v Address of the external module communication-area EKAXCPL as input buffer
(MFSLIBUF). This area contains the pointer to the partner table in CPLPTBA, the
pointer to the applicable partner table ASP entry in CPLPTEA, and the user exit
function in CPLMUXF. CPLMUXF contains:

S For a ready-to-send message

O For an outgoing message

C For a confirmed message

I For an incoming application message

R For an incoming acknowledgment message (status report)

V For a recovered or re-routed message

The user exit must reference only those three fields in the XCPL. It must not
reference any other field in this MERVA Link control area. It must not modify
any data at all in this MERVA Link control area.

v Address of a work area in the format of a TOF field buffer as output buffer
(MFSLOBUF). This buffer has a length of 256 bytes and a standard MERVA ESA
buffer prefix of 8 bytes.

204 Customization Guide

The user exit can use this buffer to “read” or “write” data from or to the TOF. If
MERVA Link control fields are to be processed, the field names are to be
obtained from the partner table header.

The general registers are initialized as follows:

R4 TOF field-buffer pointer

R5 MERVA ESA MFS permanent-storage pointer

R6 MERVA ESA MFS temporary-storage pointer

R7 MERVA ESA MFS parameter-list pointer

R8 Partner table base register

R9 Pointer to the MERVA Link communication area EKAXCPL

R10 User Exit base register

R11 Pointer to the TOF

R12 Pointer to the MERVA ESA communication area DSLCOM

Registers 0 to 3 must be used as work registers. The use of registers 13 to 15 is
defined by operating system standards. Within these standards, the latter registers
can be used as work registers.

Start MFS User Exit Macro EKAUXS
The MERVA Link MFS user exit start macro EKAUXS establishes the MERVA ESA
environment for a MERVA ESA MFS User exit to be used with the MERVA Link. It
should be the first noncomment statement in the source code used to generate a
user exit in assembler language. For details refer to MERVA for ESA Macro
Reference.

The user exit start macro copies the message type, which is pointed to by the field
MFSLMSG, to the local user exit field UXMSGID. In addition, it initializes the local
user exit TOF field name prefix UXFLDPF to 'EKA', the prefix of all MERVA Link
control field names. The two local user exit fields UXMSGID and UXFLDPF must
therefore be defined in any MERVA Link user exit that starts with the EKAUXS
macro instruction.

The user exit start macro supports a user exit that contains CICS commands (EXEC
CICS statements). Specific rules must be observed when CICS commands are
issued in an MFS user exit. These rules are described later in this chapter.

MFS User Exit Sample
The MERVA Link provides a sample MFS user exit named EKAMU010. The
activity performed by this user exit is described in detail in the sample code.

Figure 97 on page 206 shows an MFS user exit skeleton named EKAMU001 that
was the base for the sample MFS user exit EKAMU010.

Note: EKAMU001 is a fully operational MFS user exit with zero activity as far as
the messages are concerned. Use this skeleton when developing your own
user exits.

Chapter 6. The MERVA Link for CICS and IMS 205

*** 00001
* EKAMU001 MERVA LINK MFS USER EXIT SAMPLE SKELETON 00002
*** 00003
EKAMU001 EKAUXS NUM=7001 00004
/ SELECT USER EXIT FUNCTION: 00005
*** 00006
/ WHEN READY TO SEND MESSAGE IS TO BE PROCESSED: 00007
*** 00008
MU00011W DS 0H 00009

CLI CPLMUXF,@UXFRTS READY TO SEND MESSAGE ? 00010
BNE MU00012W NO, CHECK FOR OTHER FUNCTION 00011

/ INSERT YOUR CODE FOR READY TO SEND MESSAGES HERE. 00012
B MU00010X 00013

*** 00014
/ WHEN OUTGOING MESSAGE IS TO BE PROCESSED: 00015
*** 00016
MU00012W DS 0H 00017

CLI CPLMUXF,@UXFOBM OUTBOUND MESSAGE ? 00018
BNE MU00013W NO, CHECK FOR OTHER FUNCTION 00019

/ INSERT YOUR CODE FOR OUTGOING MESSAGES HERE. 00020
B MU00010X 00021

*** 00022
/ WHEN CONFIRMED MESSAGE IS TO BE PROCESSED: 00023
*** 00024
MU00013W DS 0H 00025

CLI CPLMUXF,@UXFCFM CONFIRMED MESSAGE ? 00026
BNE MU00014W NO, CHECK FOR OTHER FUNCTION 00027

/ INSERT YOUR CODE FOR CONFIRMED MESSAGES HERE. 00028
B MU00010X 00029

*** 00030
/ WHEN INCOMING REPORT IS TO BE PROCESSED: 00031
*** 00032
MU00014W DS 0H 00033

CLI CPLMUXF,@UXFIBR INBOUND REPORT ? 00034
BNE MU00015W NO, CHECK FOR OTHER FUNCTION 00035

/ INSER YOUR CODE FOR ACKNOWLEDGED OR ACKNOWLEDGMENT MESSAGES HERE. 00036
B MU00010X 00037

*** 00038
/ WHEN INCOMING APPLICATION MESSAGE IS TO BE PROCESSED: 00039
*** 00040
MU00015W DS 0H 00041

CLI CPLMUXF,@UXFIBM INBOUND MESSAGE ? 00042
BNE MU00016W NO, CHECK FOR OTHER FUNCTION 00043

/ INSERT YOUR CODE FOR INCOMING APPLICATION MESSAGES HERE. 00044

Figure 97. EKAMU001 MFS User Exit Sample Skeleton (Part 1 of 2)

206 Customization Guide

CICS Commands in an MFS User Exit
An MFS user exit called by MERVA Link in the CICS environment may request
CICS services (issue EXEC CICS commands) if it follows a number of rules. These
rules are explained in the following and shown in Figure 98 on page 208.

*** 00045
/ WHEN RECOVERED OR RE-ROUTED MESSAGE MUST BE PROCESSED: 00046
*** 00047
MU00016W DS 0H 00048

CLI CPLMUXF,@UXFRCV RECOVERED MESSAGE ? 00049
BNE MU01017W NO, CHECK FOR OTHER FUNCTION 00050

/ INSERT YOUR CODE FOR RECOVERED OR RE-ROUTED MESSAGES HERE. 00051
MU00017W DS 0H 00052
MU00010X DS 0H 00053
/ ENDSELECT 00054

B MFSGOOD RETURN TO MERVA LINK 00055
/ ENDMODULE EKAMU001 00056

LTORG 00057
*-- 00058
* USER EXIT WORK FIELDS 00059
*-- 00060
MFSTS DSECT MFS TEMP STORAGE (CONTINUED) 00061

DS 0D 00062
UXMSGID DS CL8 MESSAGE ID 00063
UXFLDNM DS 0CL8 TOF FIELD NAME 00064
UXFLDPF DS CL3 TOF FIELD NAME PREFIX 00065
UXFLDID DS CL5 TOF FIELD NAME IDENTIFIER 00066
MFSTTSLL EQU *-MFSTS 00067

END 00068

Figure 97. EKAMU001 MFS User Exit Sample Skeleton (Part 2 of 2)

Chapter 6. The MERVA Link for CICS and IMS 207

Notes:

1. An MFS user exit that contains CICS commands must be processed by the
CICS Command Preprocessor before it is assembled. The CICS Command
Preprocessor must, however, not add its prologue and epilogue code to the
user exit source. It is asked to do so by a preprocessor statement at the begin of
the user exit source code (see statement 0001 in Figure 98).

2. The setup of the CICS environment for the user exit code must be requested
using the parameter CICS=YES in the EKAUXS macro (see statement 0007 in
Figure 98).
The CICS environment is represented by the addresses of the CICS Interface
storage area (DFHEISTG) and the CICS EXEC Interface Control Block
(DFHEIB). The code generated by EKAUXS with CICS=YES saves these
addresses in the fields UXDFHEIS and UXDFHEIB, respectively. This is why
these fields must be defined in the user exit (see statements 0026 and 0027 in
Figure 98).

3. The code generated by EKAUXS with CICS=YES saves the addresses of the
MERVA Link communication area EKAXCPL and the TOF in the fields
UXEKACPL and UXDSLTOF, respectively, to prepare restoring the
corresponding pointers in registers 9 and 11 after a CICS command. This is
why these fields must be defined in the user exit (see statements 0028 and 0029
in Figure 98).

*ASM CICS (NOPROLOG NOEPILOG) 0001
*** 0002

0003
*** 0004

TITLE 'EKAMU002 - MERVA LINK USER EXIT WITH CICS COMMANDS 0005
*** 0006
EKAMU002 EKAUXS NUM=7002,CICS=YES 0007
/ SELECT USER EXIT FUNCTION: 0008
*** 0009
/ WHEN READY TO SEND MESSAGE IS TO BE PROCESSED: 0010
*** 0011

SPACE 0012
MU00011W DS 0H 0013

CLI CPLMUXF,@UXFRTS READY TO SEND MESSAGE ? 0014
BNE MU01012W NO, CHECK FOR OTHER FUNCTION 0015

/ SET REGISTERS FOR THE CICS INTERFACE. 0016
L DFHEIBR,UXDFHEIB POINT TO THE CICS EIB 0017
L DFHEIPLR,UXDFHEIS POINT TO THE CICS EISTG 0018

/ ISSUE CICS COMMANDS. 0019
EXEC CICS 0020
EXEC CICS 0021

/ RESTORE EKAUXS REGISTERS. 0022
L R9,UXEKACPL RESTORE PTR TO THE XCPL 0023
L R11,UXDSLTOF RESTORE PTR TO THE TOF 0024...

0025
UXDFHEIB DS A PTR TO THE CICS EIB 0026
UXDFHEIS DS A PTR TO THE CICS EISTG 0027
UXEKACPL DS A PTR TO THE EKAXCPL 0028
UXDSLTOF DS A PTR TO THE TOF 0029
MFSTTSLL EQU *-MFSTS 0030

END 0031

Figure 98. EKAMU002 MFS User Exit Elements Supporting CICS Commands

208 Customization Guide

4. Before a CICS command can be issued in a user exit, the CICS environment
must be enabled by loading the addresses of the CICS EIB and EISTG into the
registers 9 and 11 (DFHEIBR and DFHEIPLR), respectively (see statements 0017
and 0018 in Figure 98 on page 208).
The initial contents of registers 9 and 11 (pointers to the EKAXCPL and the
TOF) can be easily restored after the CICS commands (see statements 0023 and
0024 in Figure 98 on page 208).

Link-Editing an MFS User Exit
An MFS user exit must be defined in the MERVA ESA MFS program table
(DSLMPTT). The definition statement specifies whether the user exit must be part
of (linked to) the MERVA ESA Message Format Services (MFS) interface
(DSLMMFS), or whether it is a separate load module.

When a user exit is defined with LINK=YES in the DSLMPTT, the DSLMMFS
interface program must be link-edited to activate a new or modified user exit. No
specific measures apply in this case if the user exit issues CICS commands.

When a user exit is defined with LINK=NO in the DSLMPTT, the user exit is
called as a separate load module by MERVA ESA. It is not linked to the
MERVA ESA DSLMMFS interface program. No specific considerations apply in
this case in the IMS environment.

In the CICS environment, however, any user exit that is not linked to the
DSLMMFS interface program must be defined to CICS as a processing program
(DFHPPT entry, or corresponding online definition).

If the user exit issues CICS commands, it must be linked with the CICS EXEC
Interface Stub (DFHEAI) as specified by CICS for any processing program that
issues CICS commands.

MERVA ESA Unique Message Reference
A user exit can ask the MERVA Link to use the MERVA ESA unique message
reference (UMR) for acknowledgment correlation purposes. The MERVA Link uses
the data contained in the field EKAAMSID (IAM Message Identifier) for these
correlation purposes. MERVA Link generates correlation data if it is not provided
in an outgoing application message. This default correlation data can be
overwritten by a user exit with the MERVA ESA unique message reference (or any
other unique data).

Sample code to override the available message identifier with the MERVA ESA
unique message reference is shown below.

Chapter 6. The MERVA Link for CICS and IMS 209

If unique data is provided for ACK correlation other than the MERVA ESA unique
message reference, an additional rule applies for this other data:
v It must be unique within the time frame of pending acknowledgments.
v It must also be unique for a specific message.

Uniqueness for a specific message means that the user exit provides the same
correlation data if the message is presented twice. A second presentation to the
user exit may happen when the MERVA Link recovers in-process messages from
the control queue after a processing failure.

*-- 00001
* PROVIDE MERVA UNIQUE MESSAGE REFERENCE AS MERVA LINK IAM MESSAGE 00002
* IDENTIFIER FOR AN OUTGOING APPLICATION MESSAGE. 00003
*-- 00004

SPACE 00005
/ READ RECEIPT RETURN CODE FIELD FROM THE TOF. 00006

MVC UXFLDID,PTHRECRC RECEIPT RC FIELD NAME IDENTIFIER 00007
XC 4(8,R4),4(R4) RESET TOF FLD BUFFER DATA LENGTH 00008
DSLTSV TYPE=READ,FDNAM=UXFLDNM,BUFFER=(R4),NESTID=MU01CFNI, *00009

TOF=(R11),PREFIX=TS$,MF=(E,MFSTSVL) 00010
SPACE 00011

/ IF APPLICATION MSG IN PROCESS (NO VALID RECEIPT RC FOUND): 00012
LTR R15,R15 READ TOF FIELD SUCCESSFUL ? 00013
BNZ MU01040P NO, TOF FIELD NOT FOUND 00014
CLC MU01RC00,8(R4) VALID RECEIPT RETURN CODE ? 00015
BE MU01040A YES, NO APPLICATION MSG IN PROC 00016
CLC MU01RC04,8(R4) VALID RECEIPT RETURN CODE ? 00017
BE MU01040A YES, NO APPLICATION MSG IN PROC 00018
CLC MU01RC08,8(R4) VALID RECEIPT RETURN CODE ? 00019
BE MU01040A YES, NO APPLICATION MSG IN PROC 00020

/ GET UNIQUE MESSAGE REFERENCE FROM TOF FIELD DSLUMRIN. 00021
MU01040P DS 0H 00022

DSLTSV TYPE=READ,FDNAM=MU01UMR,BUFFER=(R4), *00023
TOF=(R11),PREFIX=TS$,MF=(E,MFSTSVL),NESTID=MU01XFNI 00024

SPACE 00025
/ IF READ TOF FIELD SUCCESSFUL: 00026

LTR R15,R15 REQUEST SUCCESSFUL ? 00027
BNZ MU01050A NO, INDICATE ERROR 00028

/ PROVIDE UMR AS IAM MESSAGE ID. 00029
MVC UXFLDID,PTHAMSID SET CONTROL FIELD NAME 00030
DSLTSV TYPE=WRITE,FDNAM=UXFLDNM,NESTID=MU01CFNI,DAINDEX=1, *00031

BUFFER=(R4),TOF=(R11),PREFIX=TS$,MF=(E,MFSTSVL) 00032
MU01050A DS 0H 00033
/ ENDIF 00034
MU01040A DS 0H 00035
/ ENDIF 00036
/ IGNORE ANY ERROR AT THIS PLACE. 00037

SLR R15,R15 INDICATE ALL OK 00038...
00039

MU01UMR DC CL8'DSLUMRIN' MERVA UMR FIELD NAME 00041
MU01XFNI DC AL1(0) DSLUMRIN FIELD NESTING ID 00042
MU01CFNI DC AL1(1) MERVA LINK CTRL FLD NESTING ID 00043
MU01RC00 DC CL2'00' VALID RECEIPT RETURN CODE 00044
MU01RC04 DC CL2'04' VALID RECEIPT RETURN CODE 00045
MU01RC08 DC CL2'08' VALID RECEIPT RETURN CODE 00046...

00047
UXFLDNM DS 0CL8 TOF FIELD NAME 00049
UXFLDPF DS CL3 TOF FIELD NAME PREFIX 00050
UXFLDID DS CL5 TOF FIELD NAME IDENTIFIER 00051

Figure 99. Sample Code: Use MERVA ESA UMR for ACK Correlation

210 Customization Guide

The correlation of an incoming acknowledgment message with the original
outgoing application message may fail if this rule is not observed. The
MERVA ESA unique message reference is both unique within the time frame of
pending acknowledgments and unique for each message that is presented twice to
a user exit.

Additional User Exit Considerations
A user exit must take following situations into consideration.
v A ready to send message (user exit function 'S') may contain an IAM Message

Identifier in the field EKAAMSID. A user exit can delete this field (or set its
contents to blanks) at this place to ask MERVA Link to generate a new message
identifier.
When the user exit is called for an outbound message (user exit function 'O') it
must not delete or blank out the field EKAAMSID.
A user exit can put a valid message identifier into the field EKAAMSID at both
places (user exit functions 'S' and 'O').

v An outbound message (user exit function 'O') may contain a receipt return code
of 01, 05, or 09 in the field EKARECRC indicating an application message that
has been acknowledged before the transfer confirmation was received. The user
exit must process this message as an application message rather than as an
acknowledgment message.
The user exit must not modify or delete fields in the TOF that are related to the
ACK if EKARECRC contains a receipt return code of 01, 05, or 09. These fields
are EKARECDT, -RECRC, -RECDC, and -RDATA.

v An inbound report (user exit function 'R') may contain an acknowledged
message (acknowledgment message correlated and merged with the reported
message) with a (masked) receipt return code of 01, 05, or 09 in the field
EKARECRC, and the message class IP in the field EKACLASS. This indicates an
application message that has been acknowledged before the transfer
confirmation was received (it is still 'in process').
The user exit has to take into consideration that this IP message is rerouted to
the application control queue. In particular, it must not change the masked
receipt return code in the field EKARECRC.
The masked receipt return code is unmasked to 00, 04, or 08 when the transfer
of the message is confirmed and the message is routed with class CA to the
appropriate next queue (ack wait queue or completed message queue dependent
on the type of the ACK).

Connecting Two MERVA ESA Systems
How MERVA Link can be used to exchange data between two MERVA ESA
systems is described here. The following assumptions are made:
v Each MERVA ESA system runs under CICS.
v MERVA Link uses an APPC connection (LU 6.2).
v MERVA A is the descriptive name of a MERVA ESA system without a link to an

external network.
v MERVA B is the descriptive name of a MERVA ESA system with a link to one

or two external networks.

The external networks supported are:
v SWIFT Link
v Telex Link via a fault-tolerant system

Chapter 6. The MERVA Link for CICS and IMS 211

The following restrictions apply:
v SWIFT messages may be transferred by MERVA Link using either the

MERVA ESA queue format or the SWIFT format. Either format is specified in
the MERVA Link partner table.
The MERVA ESA queue format is applicable only for the message transfer
between two MERVA ESA systems.
The SWIFT format can be used for the message transfer between two
MERVA ESA systems and must be used for the message transfer between a
MERVA ESA and MERVA running on a workstation.

v Telex messages can be sent to and received from the Telex network using the
Telex Link via a fault-tolerant system. Telex message processing via workstation
is not described here. With the appropriate customization, however, this type of
telex message processing can be supported as well. Refer to MERVA Workstation
Based Functions for more information.

The following deals with the message processing for SWIFT You need it only if
messages are sent and received over the SWIFT network in your installation. If you
are interested in the message processing for the Telex network only, see
“Connecting MERVA A to MERVA B with Telex Link via a Fault-Tolerant System”
on page 228.

Connecting MERVA A to MERVA B with the SWIFT Link
The following is a description of the message flow of SWIFT messages shown in
Figure 100 on page 212:
v SWIFT input messages:

1. In MERVA A input messages are created, transferred using MERVA Link to
MERVA B, and sent over the SWIFT network using the attached SWIFT Link.

2. The acknowledgments received from the network, are transferred with
MERVA Link to MERVA A.

3. In MERVA A queues, the acknowledged messages are available for further
processing.

In MERVAB, input messages can also be created and sent over the SWIFT
network to the same master logical terminal, and acknowledgments can be
received. The message creating/receiving process in MERVA B is independent of
the process in MERVA A. The distribution of acknowledgments depends on
where the input messages were created.

v SWIFT output messages:
Output messages are received from the SWIFT network by the SWIFT Link in
MERVA B, and transferred using the MERVA Link to MERVA A.

v SWIFT network controlling messages:
The following network controlling messages and their acknowledgments are
kept in MERVA B and are not transferred to MERVA A:

MERVA
Link

MERVA
Link

APPC

MERVA A MERVA B

SWIFT
Link

SWIFT

Telex
Link

Telex

Figure 100. Connecting Two MERVA ESA Systems with MERVA Link

212 Customization Guide

– LOGIN
– LOGOUT
– SELECT
– QUIT
– ABORT

Message Processing for SWIFT
Figure 101 shows in detail how messages move from one queue to another in
MERVA A.

Figure 101. Routing of SWIFT Input and Output Messages in MERVA A

Chapter 6. The MERVA Link for CICS and IMS 213

The following comments apply to Figure 101 and Figure 102 on page 216. The
numbers shown in brackets in Figure 102 correspond to the numbered notes shown
here.

Data Flow and Notes:

[1] SWIFT input messages are created in the data entry queue EKAL1DE0, and
authorized in EKAL1AI0. Further processing is now determined by the
routing table EKAR2AI0.

[2] If a message cannot be authorized, it is routed by the command ok no to
the verification queue EKAL1VE0 for correction. Otherwise, it is routed to
one of the MERVA Link send queues.

Financial application (FIN) messages are distributed according to their
priority. Messages with the priority:
v U or S are moved to the send queue EKAL1RFU
v N are moved to the send queue EKAL1RFN

Application control messages and logical terminal control messages,
indicated by A and L respectively, are called general purpose application
(GPA) messages and are routed to the send queue EKAL1GPA.

[3] Once in a MERVA Link send queue, the message is transferred by MERVA
Link via an APPC connection to MERVA B. In addition, it is copied with
the message class IP to the MERVA Link control queue EKA4A2CQ.

[4] MERVA Link in MERVA B informs MERVA Link in MERVA A that the
message has been delivered successfully. MERVA Link in MERVA A
changes the message class from IP to CF. As an acknowledgment is
expected for the delivered message, the confirmed message is routed via
the routing table EKARS2MC from the control queue to the
acknowledgment wait queue EKAAWQ.

Note: In this sample, each message in queue EKAAWQ has class CF and
no MERVA Link receipt return code field EKARECRC. This is
because SWIFT input messages only (and no acknowledgments) are
sent to and confirmed by MERVA Link in MERVA B.

[5] In MERVA B, the delivered message is sent over the SWIFT network and
an acknowledgment received. MERVA Link in MERVA B creates a MERVA
Link status report containing acknowledgment information, and transfers it
to MERVA Link in MERVA A.

In MERVA A, MERVA Link correlates the confirmed message in queue
EKAAWQ with the received status report. MFS user exit EKAMU133
copies the acknowledgment information from the status report to
appropriate fields in the correlated message.

MERVA Link assigns class LR to the correlated message and requests
routing. Routing table EKARS2MC distributes the message to its final
destination queues. Control queue EKA4A2CQ must always be one of the
destination queues.

Note: MERVA Link may have assigned class CA to the confirmed and
acknowledged message. In this case, control queue EKA4A2CQ
must not be a destination queue.

[6] If the message either has class CA or class LR combined with the receipt
return code field EKARECRC, and the receipt return code starts with 0, the

214 Customization Guide

message contains acknowledgment information. Messages containing an
acknowledgment for a FIN message (FIN ACK) are moved to the
acknowledgment queue EKAL1ACK. Messages containing
acknowledgment for a GPA message (GPA ACK), are routed to the printer
queue EKAL1PR0.

If a FIN or GPA message was negatively acknowledged or indicates
another error, for example, it could not be sent over the SWIFT network, it
is routed to the verification queue EKAL1VE0.

After routing, the confirmed message is deleted from wait queue
EKAAWQ.

[7] The queues EKAL1SDO to EKAEMQ contain SWIFT output messages also
assigned class LR (but not CA) by the MERVA Link.

[8] MERVA Link in MERVA A informs MERVA Link in MERVA B that the
status report or the SWIFT output message has been delivered successfully.

The relevant parts in routing table EKARS2MC for SWIFT input message
processing are shown in Figure 102.

Chapter 6. The MERVA Link for CICS and IMS 215

EKARS2MC DSLROUTE TYPE=DEFINE,FIELD=(CLASS,EKACLASS,,,,,VFIRST)
DSLROUTE TYPE=DEFINE,FIELD=(RECRC,EKARECRC,,,,,VFIRST)
DSLROUTE TYPE=DEFINE,FIELD=(ACQNM,EKAACQNM,,,,,VFIRST)
SPACE

* ROUTE ALL IP (IN PROCESS) MESSAGES AND THE LC CONTROL MESSAGE TO *
* THE APPLICATION CONTROL QUEUE. *
* THIS PART MAY CORRECT A HANDLING ERROR OF THE SYSTEM ADMINISTRATOR. *

DSLROUTE TYPE=TEST,COND=(CLASS,'IP',EQ),FALSE=TSTLC
DSLROUTE TYPE=SET,TARGET=ACQNM,GOTO=END

TSTLC DSLROUTE TYPE=TEST,COND=(CLASS,'LC',EQ),FALSE=TSTCF
DSLROUTE TYPE=SET,TARGET=ACQNM,GOTO=END
SPACE

* TEST FOR AND ROUTE CONFIRMED MSG'S (CLASS=CF) TO THE ACK WAIT QUEUE.*

TSTCF DSLROUTE TYPE=TEST,COND=(CLASS,'CF',EQ),FALSE=TSTCA [4]

DSLROUTE TYPE=SET,TARGET='EKAAWQ',GOTO=END
SPACE

* TEST FOR AND ROUTE CONFIRMED AND ACKNOWLEDGED MSG'S (CLASS=CA). *
* ROUTE A FINALLY ACKED MSG (RECRC=00 OR RECRC=08) ACCORDING TO THE *
* ROUTING LOGIC OF MERVA STANDALONE SAMPLE L1 ORGANIZATION, *
* LABEL TMSGACK. *

TSTCA DSLROUTE TYPE=TEST,COND=(CLASS,'CA',EQ),TRUE=TMSGACK, * [6]

FALSE=TSTLR
SPACE

* TEST FOR AND ROUTE LR (INBOUND) MESSAGES. ROUTE A FINALLY ACKED *
* MSG (RECRC=00 OR RECRC=08) ACCORDING TO THE ROUTING LOGIC OF MERVA *
* STANDALONE SAMPLE L1 ORGANIZATION, LABEL TMSGACK. *
* ... *
* ... *

* NOTE THAT ALL INBOUND MESSAGES MUST BE ROUTED TO THE CONTROL QUEUE *
* FOR MESSAGE INTEGRITY CONTROL PURPOSES. *

TSTLR DSLROUTE TYPE=TEST,COND=(CLASS,'LR',EQ),FALSE=TSTRC [5]
*
* RECRC=04 REFERS TO NOT FINALLY ACKED MSGS
* THIS RECRC IS NOT SET IN THE SAMPLE USER EXIT
*

DSLROUTE TYPE=TEST,COND=(RECRC,'04',EQ),TRUE=SETLRA
*

DSLROUTE TYPE=TEST,COND=(RECRC,'0',EQ,SHORT),TRUE=TMSGACK [6]

...

SETLRA ...

...

Figure 102. Example of Routing Table EKARS2MC for SWIFT Input Message Processing
(Part 1 of 2)

216 Customization Guide

The routing of a SWIFT input message through MERVA B is shown below.

*

* ROUTE SWIFT INPUT MESSAGES WITH ACK INFORMATION EITHER
* FROM SWIFT OR FROM SWIFT LINK ERROR PROCESSING

* DEFINE THE DIAGNOSTIC FROM THE MSGACK FIELD
* ROUTING LOGIC FROM DWSL1IN
TMSGACK DSLROUTE TYPE=DEFINE,FIELD=(MSGACK,MSGACK,,,,,VFIRST), *

NOTFND=VE0
*
* CHECK FOR AN ERROR MESSAGE STARTING WITH 'DWS'

DSLROUTE TYPE=TEST,COND=(MSGACK,'DWS',EQ,SHORT),TRUE=VE0
*
* CHECK FOR THE BASIC HEADER OF APDU ID 21 (ACK OR NAK)
* THE LAYOUT OF APDU ID 21 IS THE SAME FOR GPA AND FIN:
* {1:A21TIBMDEPABXXX0001000001} X== BASIC HEADER
* {4:{177:8906271013}{451:0}} X== TEXT BLOCK
*

DSLROUTE TYPE=TEST,COND=(MSGACK,'{1:',EQ,SHORT),FALSE=VE0
*
* DEFINE FIELD 451 FROM MSGACK CONTAINING '0' FOR AN ACK
* OR '1' FOR A NAK

DSLROUTE TYPE=DEFINE,FIELD=(F451,MSGACK,,,,,VFIRST), *
DISP=53,LENGTH=1,EMPTY=VE0,NOTFND=VE0

*
DSLROUTE TYPE=TEST,COND=(F451,'0',EQ),FALSE=VE0

*
* SEPARATE GPA FROM FIN ACKNOWLEDGMENTS

DSLROUTE TYPE=DEFINE,FIELD=(APPL,SWBHAPI,,,,,VFIRST)
DSLROUTE TYPE=TEST,COND=(APPL,'F',EQ),TRUE=ACK,FALSE=PR00

*
* ROUTE POSITIVE GPA ACKNOWLEDGMENTS TO THE PRINTER [6]
PR00 DSLROUTE TYPE=SET,TARGET=('EKAL1PR0'),GOTO=CHKCA
*
* ROUTE POSITIVE FIN ACKNOWLEDGMENT TO EKAL1ACK [6]
ACK DSLROUTE TYPE=SET,TARGET=('EKAL1ACK'),GOTO=CHKCA
*
* ROUTE ERRORS AND NEGATIVE ACKNOWLEDGMENTS TO EKAL1VE0 [6]
VE0 DSLROUTE TYPE=SET,TARGET=('EKAL1VE0'),GOTO=CHKCA
*
* ROUTE TO CONTROL QUEUE FOR MESSAGE CLASS 'LR' ONLY.
CHKCA DSLROUTE TYPE=TEST,COND=(CLASS,'CA',EQ),TRUE=END

DSLROUTE TYPE=SET,TARGET=ACQNM,GOTO=END [5]

...

TSTRC ...

...

END DSLROUTE TYPE=FINAL
END

Figure 102. Example of Routing Table EKARS2MC for SWIFT Input Message Processing
(Part 2 of 2)

Chapter 6. The MERVA Link for CICS and IMS 217

The following comments apply to both Figure 103 and Figure 104.

Data Flow and Notes:

[1] MERVA Link receives the SWIFT input message and assigns the message
class LR to it. The same distribution scheme applies in the routing table
EKARS2MS as in the routing table EKAR2AI0 in MERVA A.

Financial application (FIN) messages are distributed according to their
priority. Messages with the priority:
v U or S are moved to the urgent FIN ready queue L1RFINU
v N are moved to the normal Fin ready queue L1RFINN

Figure 103. Routing of SWIFT Input Messages in MERVA B

218 Customization Guide

Application control messages and logical terminal control messages,
indicated by A and L respectively, are called general purpose application
(GPA) messages and are routed to the GPA ready queue L1RGPAU. Each
message is also routed to the MERVA Link control queue EKA3A2CQ.

[2] The message is sent to the SWIFT network and an acknowledgment is
received. Queues L1RFINU, L1RFINN, and L1RGPAU may also contain
SWIFT input messages created locally in MERVA B.

[3] The routing table EKAR1IN determines whether a message containing any
kind of acknowledgment (ACK, NAK, or error) is routed to queues in
MERVA B, or transferred to MERVA Link in MERVA A. If the MERVA Link
control field EKAONODE (Origin Node) exists and contains SDFC3, the
message is routed to the MERVA Link send queue EKA3A2S2.

[4] However, the complete message is not transferred. Instead, the MFS user
exit EKAMU133 provides the information for a MERVA Link status report
consisting of:
v Acknowledgment (field MSGACK)
v Basic header (field SWBH)
v Application header (field SWAH)
v Trailer(s) (field SWTRAIL)
v Receipt Return Code (field EKARECRC)

The receipt return code is 00 if the field MSGACK contains a positive
acknowledgment, otherwise it is 08. The status report is copied with
message class IP to the MERVA Link control queue EKA3A2CQ and
transferred to MERVA Link in MERVA A.

[5] MERVA Link in MERVA A informs MERVA Link in MERVA B that the
status report has been delivered successfully.

MERVA Link in MERVA B changes the message class from IP to CF and
routes the status report via the routing table EKARS2MS to the dummy
queue EKADMY. Routing to this queue has the same effect as a delete
command.

These steps correspond to the labels in Figure 104.

Chapter 6. The MERVA Link for CICS and IMS 219

EKARS2MS DSLROUTE TYPE=DEFINE,FIELD=(CLASS,EKACLASS,,,,,VFIRST)
DSLROUTE TYPE=DEFINE,FIELD=(ACQNM,EKAACQNM,,,,,VFIRST)
SPACE

* ROUTE ALL IP (IN PROCESS) MESSAGES AND THE LC CONTROL MESSAGE TO *
* THE APPLICATION CONTROL QUEUE. *
* THIS PART MAY CORRECT A HANDLING ERROR OF THE SYSTEM ADMINISTRATOR. *

DSLROUTE TYPE=TEST,COND=(CLASS,'IP',EQ),FALSE=TSTLC
DSLROUTE TYPE=SET,TARGET=ACQNM,GOTO=END

TSTLC DSLROUTE TYPE=TEST,COND=(CLASS,'LC',EQ),FALSE=TSTCF
DSLROUTE TYPE=SET,TARGET=ACQNM,GOTO=END
SPACE

* TEST FOR AND ROUTE CONFIRMED MSG'S (CLASS=CF). DELETE THE MERVA LINK*
* STATUS REPORT AND SWIFT OUTPUT MESSAGE *

TSTCF DSLROUTE TYPE=TEST,COND=(CLASS,'CF',EQ),FALSE=TSTLR [5]

DSLROUTE TYPE=SET,TARGET='EKADMY',GOTO=END
SPACE

* TEST FOR AND ROUTE LR (INBOUND) MESSAGES. ROUTE SWIFT INPUT *
* MESSAGES TO THE APPROPRIATE SWIFT READY QUEUES. THE ROUTING *
* LOGIC OF THE SAMPLE ROUTING MODULE DWSL1AI0 IS APPLIED. *

* NOTE THAT ALL INBOUND MESSAGES MUST BE ROUTED TO THE CONTROL QUEUE *
* FOR MESSAGE INTEGRITY CONTROL PURPOSES. *

TSTLR DSLROUTE TYPE=TEST,COND=(CLASS,'LR',EQ),FALSE=TSTRC [1]

DSLROUTE TYPE=DEFINE,FIELD=(APPL,SWBHAPI,,,,,VFIRST), *
EMPTY=ERR,NOTFND=ERR

*
* TEST FOR F OR A OR L IN APPLICATION HEADER

DSLROUTE TYPE=TEST,COND=(APPL,'F',EQ),TRUE=FIN
DSLROUTE TYPE=TEST,COND=(APPL,'A',EQ),TRUE=GPA
DSLROUTE TYPE=TEST,COND=(APPL,'L',EQ),TRUE=GPA,FALSE=ERR

*
* SET THE READY QUEUE FOR GPA
GPA DSLROUTE TYPE=SET,TARGET=('L1RGPAU') [2]

DSLROUTE TYPE=SET,TARGET=ACQNM,GOTO=END [1]
*
* DEFINE PRTY FROM THE FIELD SWAHIPY (PRIORITY OF APPL HEADER)
FIN DSLROUTE TYPE=DEFINE,FIELD=(PRTY,SWAHIPY,,,,,VFIRST), *

EMPTY=ERR,NOTFND=ERR
*
* TEST FOR N OR U OR S PRIORITY

DSLROUTE TYPE=TEST,COND=(PRTY,'N',EQ),TRUE=FINN
DSLROUTE TYPE=TEST,COND=(PRTY,'U',EQ),TRUE=FINU
DSLROUTE TYPE=TEST,COND=(PRTY,'S',EQ),TRUE=FINU,FALSE=ERR

*
* NORMAL READY QUEUE FOR FINANCIAL APPLICATION
FINN DSLROUTE TYPE=SET,TARGET=('L1RFINN') [2]

DSLROUTE TYPE=SET,TARGET=ACQNM,GOTO=END [1]

Figure 104. Example of Routing Table EKARS2MS for SWIFT Input Message Processing
(Part 1 of 2)

220 Customization Guide

The routing table EKAR1IN, shown in Figure 105, handles the distribution of
messages following the receipt of an acknowledgment from the SWIFT network.

*
* URGENT READY QUEUE FOR FINANCIAL APPLICATION
FINU DSLROUTE TYPE=SET,TARGET=('L1RFINU') [2]

DSLROUTE TYPE=SET,TARGET=ACQNM,GOTO=END [1]
* MERVA LINK ERROR QUEUE
ERR DSLROUTE TYPE=SET,TARGET=('EKAEMQ')

DSLROUTE TYPE=SET,TARGET=ACQNM,GOTO=END [1]

...

TSTRC ...

...

END DSLROUTE TYPE=FINAL
END

Figure 104. Example of Routing Table EKARS2MS for SWIFT Input Message Processing
(Part 2 of 2)

* ROUTE INPUT MESSAGES OF GPA AND FIN
* OF A LOGICAL TERMINAL

* DEFINE THE BASIC HEADER FOR THE ROUTING TRACE
EKAR1IN DSLROUTE TYPE=DEFINE,FIELD=(BASHEAD,SWBH,,,,,VFIRST)
*
* DEFINE THE APDU IDENTIFIER

DSLROUTE TYPE=DEFINE,FIELD=(APDUID,SWBHAPDU,,,,,VFIRST), *
EMPTY=PR0

* APDU ID 01 CONTAINS AN APPLICATION HEADER WITH A MESSAGE TYPE
* ALL OTHER APDU IDS ARE GENERATED BY DWSDGPA AND ARE ROUTED
* TO L1PR0 WHERE THEY ARE PRINTED IN SEQUENCE WITH THEIR ACKS

DSLROUTE TYPE=TEST,COND=(APDUID,'01',EQ),TRUE=MSGACK, * [1]
FALSE=PR0

*

* PROCESSING OF APDU 01

*
* DEFINE THE DIAGNOSTIC FROM THE MSGACK FIELD
* USE 32 BYTES TO SEE THE KIND OF ERROR IN THE ROUTING TRACE
MSGACK DSLROUTE TYPE=DEFINE,FIELD=(MSGACK,MSGACK,,,,,VFIRST), *

NOTFND=PR0
* TEST FOR MERVA LINK ORIGIN NODES
* USE THE 'SHORT' MODIFIER
* IF FOUND SEND MESSAGE TO MERVA -CREATE- VIA ML SEND QUEUE

DSLROUTE TYPE=DEFINE,FIELD=(ON,EKAONODE,,,,,VFIRST), * [2]
NOTFND=DWS

DSLROUTE TYPE=TEST,COND=(ON,'SDFC3',EQ,SHORT),TRUE=SETC3, *
FALSE=DWS

SETC3 DSLROUTE TYPE=SET,TARGET='EKA3A2S2',GOTO=END

Figure 105. Example of GPA and FIN Routing of SWIFT Input Messages Using the Routing
Table EKAR1IN (Part 1 of 2)

Chapter 6. The MERVA Link for CICS and IMS 221

Notes:

[1] Network controlling messages (LOGIN, LOGOUT, SELECT, QUIT, and
ABORT) are kept in MERVA B. Their APDUID is different from 01.

[2] Messages containing the field MSGACK may have been created remotely
in MERVA A, or locally in MERVA B. MERVA Link indicates the origin of
the message by the field EKANONODE. If this field exists and contains
SDFC3, the message is routed to the MERVA Link send queue.

The message origin is defined in the MERVA Link partner table in MERVA
A.

[3] Specifies the routing of locally created messages.

*
* CHECK FOR AN ERROR MESSAGE STARTING WITH 'DWS'
* ROUTE MSG ORIGINATING FROM MERVA -SEND-
DWS DSLROUTE TYPE=TEST,COND=(MSGACK,'DWS',EQ,SHORT),TRUE=VE0 [3]
*
* CHECK FOR THE BASIC HEADER OF APDU ID 21 (ACK OR NAK)
* THE LAYOUT OF APDU ID 21 IS THE SAME FOR GPA AND FIN:
* {1:A21TIBMDEPABXXX0001000001} X== BASIC HEADER
* {4:{177:8906271013}{451:0}} X== TEXT BLOCK
*

DSLROUTE TYPE=TEST,COND=(MSGACK,'{1:',EQ,SHORT),FALSE=VE0
*
* DEFINE FIELD 451 FROM MSGACK CONTAINING '0' FOR AN ACK
* OR '1' FOR A NAK

DSLROUTE TYPE=DEFINE,FIELD=(F451,MSGACK,,,,,VFIRST), *
DISP=53,LENGTH=1,EMPTY=VE0,NOTFND=VE0

*
DSLROUTE TYPE=TEST,COND=(F451,'0',EQ),FALSE=VE0

*
* SEPARATE GPA FROM FIN ACKNOWLEDGMENTS

DSLROUTE TYPE=DEFINE,FIELD=(APPL,SWBHAPI,,,,,VFIRST)
DSLROUTE TYPE=TEST,COND=(APPL,'F',EQ),TRUE=ACK,FALSE=PR0

*
* ROUTE POSITIVE GPA ACKNOWLEDGMENTS TO THE PRINTER
PR0 DSLROUTE TYPE=SET,TARGET=('L1PR0'),GOTO=END
*
* ROUTE POSITIVE FIN ACKNOWLEDGMENT TO L1ACK
ACK DSLROUTE TYPE=SET,TARGET=('L1ACK'),GOTO=END
*
* ROUTE ERRORS AND NEGATIVE ACKNOWLEDGMENTS TO L1VE0
VE0 DSLROUTE TYPE=SET,TARGET=('L1VE0'),GOTO=END
*
* IN CASE OF ROUTING ERRORS THE MESSAGE IS ROUTED TO L1VE0
END DSLROUTE TYPE=FINAL,TARGET='L1VE0'

END

Figure 105. Example of GPA and FIN Routing of SWIFT Input Messages Using the Routing
Table EKAR1IN (Part 2 of 2)

222 Customization Guide

Routing of SWIFT Output Messages
Figure 106 shows the routing of SWIFT output messages.
Positive and negative acknowledgments (ACKs and NAKs) for the network

controlling messages LOGIN, LOGOUT, SELECT, QUIT, and ABORT are routed via
routing table EKAR1OUT (see Figure 107 on page 224) to the printer queue L1PR0.
Other output messages received from the SWIFT network are routed to the
MERVA Link send queue EKA3A2S2 for transfer to MERVA Link in MERVA A.

MERVA Link
Control
Queue

EKA3A2CQ

MERVA Link
Send Queue
EKA3A2S2

L1PR0

Routing
Table

EKAR1OUT

S.W.I.F.T.
Other Messages APPC

Network Controlling
Message ACK/NAK

Figure 106. Routing of SWIFT Output Messages in MERVA B

Chapter 6. The MERVA Link for CICS and IMS 223

Messages in the send queue are copied with class IP to control queue EKA3A2CQ.
MERVA Link in MERVA A informs MERVA Link in MERVA B that the message has
been delivered successfully. Figure 103 on page 218 shows the further processing.
MERVA Link changes the message class from IP to CF, and routes the message via
the routing table EKARS2MS to the dummy queue EKADMY. Routing to this
queue has the same effect as a delete command.

Figure 101 on page 213 shows how SWIFT output messages are handled in MERVA
A. MERVA Link in MERVA A receives a message and assigns the message class LR
to it. The message is then distributed to its destination queue according to the
routing table EKARS2MC. Figure 108 shows the relevant parts in the routing table
EKARS2MC for SWIFT output message processing.

* DEFINE THE BASIC HEADER AND MESSAGE ID FOR THE ROUTING TRACE
EKAR1OUT DSLROUTE TYPE=DEFINE,FIELD=(BASHEAD,SWBH,,,,,VFIRST)

DSLROUTE TYPE=DEFINE,FIELD=(MSGID,DSLEXIT,,,,,VFIRST)

* MSGS WITH AN UNIDENTIFIED MESSAGE TYPE ARE SENT TO REMOTE CICS

* CHECK FOR FREE FORMAT MESSAGE

DSLROUTE TYPE=TEST,COND=(MSGID,'0DSL ',EQ),TRUE=REM
* CHECK FOR FORMATTING ERRORS IN MESSAGE

DSLROUTE TYPE=DEFINE,FIELD=(ERROR,DSLLFBUF,,,,,VFIRST), *
FOUND=PR0,DISP=0,LENGTH=1

* LAK, LNK, SAK, and SNK (LOGIN/SELECT ACKs and NAKs), LOGOUT,
* QUIT, and ABORT ACKs are routed to
* the local L1PR0, where they can be printed in sequence with
* the related LOGIN, LOGOUT, SELECT, and QUIT messages.
* SG22, SG23, SG42, SG43, SG26, SF25, SG13, SG15

DSLROUTE TYPE=TEST,COND=(MSGID,'SG22 ',EQ),TRUE=PR0
DSLROUTE TYPE=TEST,COND=(MSGID,'SG23 ',EQ),TRUE=PR0
DSLROUTE TYPE=TEST,COND=(MSGID,'SG42 ',EQ),TRUE=PR0
DSLROUTE TYPE=TEST,COND=(MSGID,'SG43 ',EQ),TRUE=PR0
DSLROUTE TYPE=TEST,COND=(MSGID,'SG26 ',EQ),TRUE=PR0
DSLROUTE TYPE=TEST,COND=(MSGID,'SF25 ',EQ),TRUE=PR0
DSLROUTE TYPE=TEST,COND=(MSGID,'SG13 ',EQ),TRUE=PR0
DSLROUTE TYPE=TEST,COND=(MSGID,'SG15 ',EQ),TRUE=PR0

* ALL OTHER OUTPUT MESSAGES ARE SENT TO MERVA -CREATE-

*
REM DSLROUTE TYPE=SET,TARGET=('EKA3A2S2'),GOTO=END
*
* SYSTEM LAKs, ACKs ARE PRINTED ON LOCAL L1PR0
PR0 DSLROUTE TYPE=SET,TARGET=('L1PR0'),GOTO=END
*
* IN CASE OF ROUTING ERRORS THE MESSAGE IS ROUTED TO L1PR1
END DSLROUTE TYPE=FINAL,TARGET='L1PR1'

END

Figure 107. Example of the Routing Table EKAR1OUT

224 Customization Guide

EKARS2MC DSLROUTE TYPE=DEFINE,FIELD=(CLASS,EKACLASS,,,,,VFIRST)
DSLROUTE TYPE=DEFINE,FIELD=(RECRC,EKARECRC,,,,,VFIRST)
DSLROUTE TYPE=DEFINE,FIELD=(DELRC,EKADELRC,,,,,VFIRST)
DSLROUTE TYPE=DEFINE,FIELD=(ACQNM,EKAACQNM,,,,,VFIRST)
.
.
.

* TEST FOR AND ROUTE LR (INBOUND) MESSAGES. ... *
* ... *
* ... *
* ROUTE AN INBOUND MESSAGE (SWIFT OUTPUT MSG) WHICH INDICATES A *
* DELIVER ERROR (DELRC!=00) TO THE RECEIVED ERRONEOUS MESSAGE *
* QUEUE (EKAEMQ) AND TO THE CONTROL QUEUE. ROUTE AN INBOUND MESSAGE *
* (SWIFT OUTPUT MSG) WHICH INDICATES NO DELIVER ERROR ACCORDING TO *
* THE ROUTING LOGIC OF MERVA STANDALONE SAMPLE L1 ORGANIZATION, *
* LABEL SETLRI. *

* NOTE THAT ALL INBOUND MESSAGES MUST BE ROUTED TO THE CONTROL QUEUE *
* FOR MESSAGE INTEGRITY CONTROL PURPOSES. *

TSTLR DSLROUTE TYPE=TEST,COND=(CLASS,'LR',EQ),FALSE=TSTRC

...

DSLROUTE TYPE=TEST,COND=(RECRC,'0',EQ,SHORT),TRUE=TMSGACK [1]
DSLROUTE TYPE=TEST,COND=(DELRC,'00',EQ),TRUE=SETLRI [2]
DSLROUTE TYPE=SET,TARGET='EKAEMQ'
DSLROUTE TYPE=SET,TARGET=ACQNM,GOTO=END

* ROUTE SWIFT OUTPUT MESSAGES (GPA AND FIN)

* DEFINE THE BASIC HEADER AND MESSAGE ID FOR THE ROUTING TRACE
SETLRI DSLROUTE TYPE=DEFINE,FIELD=(BASHEAD,SWBH,,,,,VFIRST)

DSLROUTE TYPE=DEFINE,FIELD=(MSGID,DSLEXIT,,,,,VFIRST)

* MSGS WITH AN UNIDENTIFIED MESSAGE TYPE ARE ROUTED TO EKAL1FRE

* CHECK FOR FREE FORMAT MESSAGE

DSLROUTE TYPE=TEST,COND=(MSGID,'0DSL ',EQ),TRUE=FREE [3]
* CHECK FOR FORMATTING ERRORS IN MESSAGE

DSLROUTE TYPE=DEFINE,FIELD=(ERROR,DSLLFBUF,,,,,VFIRST), *
FOUND=FREE,DISP=0,LENGTH=1

* MESSAGES AND REPORTS CONTAINING DELIVERY AND NON-DELIVERY
* INFORMATION ARE SEPARATED FROM THE REST AND ROUTED TO
* EKAL1DO0 (DISTRIBUTION OUTPUT) FOR FURTHER PROCESSING.
* SF010 (non-delivery warning)
* SF011 (delivery notification)
* SF015 (delayed NAK)
* SF066 (undelivered message solicited report)
* SF082 (undelivered message report at fixed hour)
* SF083 (undelivered message report at cut-off time)

Figure 108. Example of Routing Table EKARS2MC for SWIFT Output Message Processing
(Part 1 of 3)

Chapter 6. The MERVA Link for CICS and IMS 225

DSLROUTE TYPE=TEST,COND=(MSGID,'SF010 ',EQ),TRUE=DO0 [4]
DSLROUTE TYPE=TEST,COND=(MSGID,'SF011 ',EQ),TRUE=DO0
DSLROUTE TYPE=TEST,COND=(MSGID,'SF015 ',EQ),TRUE=DO0
DSLROUTE TYPE=TEST,COND=(MSGID,'SF066 ',EQ),TRUE=DO0
DSLROUTE TYPE=TEST,COND=(MSGID,'SF082 ',EQ),TRUE=DO0
DSLROUTE TYPE=TEST,COND=(MSGID,'SF083 ',EQ),TRUE=DO0

*
* DEFINE MSGTYPE FROM THE MESSAGE TYPE FIELD (FIRST NESTING ID)
* IF NOT FOUND, IT IS AN APDU DIFFERENT FROM 01 WHICH IS PRINTED

DSLROUTE TYPE=DEFINE,FIELD=(MSGTYPE,SWAHMT,,,,,VFIRST), *
EMPTY=PR1,NOTFND=PR1 [5]

*
* IF THE MESSAGE TYPE IS 021, IT IS A RETRIEVED MESSAGE
* EKAL1DO0 MUST LOOK IF IT INCLUDES A BANKING MESSAGE
* IF THE MESSAGE CATEGORY IS ZERO, IT IS A SYSTEM MESSAGE
* WHICH IS PRINTED VIA L1PR1
* USE THE 'SHORT' MODIFIER TO TEST THE FIRST BYTE OF MSGTYPE

DSLROUTE TYPE=TEST,COND=(MSGTYPE,'021',EQ),TRUE=DO0 [4]
DSLROUTE TYPE=TEST,COND=(MSGTYPE,'0',EQ,SHORT),TRUE=PR1 [5]

*
* DEFINE AUT FROM THE MSGACK FIELD WHICH CONTAINS THE RESULT
* OF THE AUTHENTICATION AS A MESSAGE DWS7XXI

DSLROUTE TYPE=DEFINE,FIELD=(AUT,MSGACK,,,,,VFIRST), * [6]
DISP=0,LENGTH=6,EMPTY=AO0,NOTFND=AO0

*
* 'DWS765' MEANS: AUTHENTICATION SUCCESSFUL WITH PRIMARY KEY
* 'DWS766' MEANS: MESSAGE NOT TO BE AUTHENTICATED
* ANY OTHER AUTHENTICATION RESULT WILL BE ROUTED TO EKAL1AO0

DSLROUTE TYPE=TEST,COND=(AUT,'DWS765',EQ),TRUE=MSGERR
DSLROUTE TYPE=TEST,COND=(AUT,'DWS766',EQ),TRUE=MSGERR, *

FALSE=AO0
*
* DEFINE MSGERR FROM MSGTRERR (ERROR CODE OF THE MESSAGE TRACE
* FIELD)
* MSGTRERR MUST ALWAYS BE FOUND AND NOT EMPTY
MSGERR DSLROUTE TYPE=DEFINE,FIELD=(MSGERR,MSGTRERR,,,,,VFIRST, * [4]

LASTDA),NOTFND=DO0,EMPTY=DO0
*
* MSGTRERR IS NOT '0000' IF THERE ARE ERRORS IN THE MESSAGE

DSLROUTE TYPE=TEST,COND=(MSGERR,'0000',EQ),FALSE=DO0
*
* BANKING MESSAGES WITHOUT ERRORS [7]

DSLROUTE TYPE=SET,TARGET=('EKAL1SDO'),GOTO=CTL
*
* SYSTEM MESSAGES ARE PRINTED ON EKAL1PR1
PR1 DSLROUTE TYPE=SET,TARGET=('EKAL1PR1'),GOTO=CTL [5]
*
* MESSAGES WITH AUTHENTICATION ERRORS
AO0 DSLROUTE TYPE=SET,TARGET=('EKAL1AO0'),GOTO=CTL [6]

Figure 108. Example of Routing Table EKARS2MC for SWIFT Output Message Processing
(Part 2 of 3)

226 Customization Guide

Notes:

[1] A SWIFT output message does not contain the receipt return code field
EKARECRC as this field is set by MFS user exit EKAMU133 for a status
report only. You can differentiate between an acknowledged SWIFT input
message with a receipt return code field and a SWIFT output message
without a receipt return code field.

[2] If MERVA Link detected an error concerning the delivery of the message
indicated by a nonzero MERVA Link control field EKADELRC, the queue
EKAEMQ contains the erroneous message.

[3] Messages with a mapping error are routed to the queue EKAL1FRE.

[4] Messages containing delivery and nondelivery information, retrieved
messages and erroneous banking messages are routed to the queue
EKAL1DO0.

[5] System messages are routed to printer queue EKAL1PR1.

[6] Messages with an authentication error are routed to the queue EKAL1AO0.

[7] Correct banking messages are routed to the queue EKAL1SDO.

[8] Each message is also routed to the MERVA Link control queue
EKA4A2CQ.

*
* MESSAGES WITH UNIDENTIFIED MESSAGE TYPE AND MAPPING ERRORS
FREE DSLROUTE TYPE=SET,TARGET=('EKAL1FRE'),GOTO=CTL [3]
*
* DISTRIBUTION OUTPUT FOR DELIVERY AND NON-DELIVERY INFORMATION,
* FOR RETRIEVED MESSAGES AND ERRONEOUS BANKING MESSAGES
DO0 DSLROUTE TYPE=SET,TARGET=('EKAL1DO0'),GOTO=CTL [4]
*
CTL DSLROUTE TYPE=SET,TARGET=ACQNM,GOTO=END [8]

...

TMSGACK ...

...

TSTRC ...

...

END DSLROUTE TYPE=FINAL
END

Figure 108. Example of Routing Table EKARS2MC for SWIFT Output Message Processing
(Part 3 of 3)

Chapter 6. The MERVA Link for CICS and IMS 227

Connecting MERVA A to MERVA B with Telex Link via a
Fault-Tolerant System

The connecting of MERVA A to MERVA B with Telex Link via a fault-tolerant
system is explained here. The message flow and the routing table involved are
described in detail.

Message Flow
v Outgoing telex messages:

1. Telex messages are created in MERVA A, transferred using MERVA Link to
MERVA B, and then sent to the telex network.

2. Acknowledgments received from the network are transferred by MERVA
Link back to MERVA A.

3. The acknowledged messages are available in MERVA A for further
processing.

Telex messages can also be created in MERVA B, sent over the telex network,
and acknowledged independently of MERVA Link and the MERVA A system.

v Incoming telex messages:
Messages received from the telex network are routed to the MERVA B TXRCV
queue. You can route telex messages for MERVA A to the MERVA Link send
queue for transfer to the MERVA A system.

v Telex network control:
The telex network is controlled exclusively from MERVA B. Telex messages
transferred from MERVA A are held in the telex ready queues in MERVA B if the
connection to the telex network has not been initiated.

228 Customization Guide

Routing of Telex Messages in MERVA A
Figure 109 shows in detail the movement of messages between queues in MERVA
A.

The following comments refer to Figure 109 and Figure 110 on page 231.

Data Flow and Notes:

[1] Messages are created in data entry queue EKATXDE0. These messages can
be either unformatted telex messages or SWIFT messages and are handled
differently.

[2] SWIFT messages are routed to queues TXAI0 or TXVE0 or both. This is not
part of this example and is not described here.

MERVA LINK
Control Queue

EKA4ATCQ

MERVA LINK

Routing
Table

EKARTTXD

Data Entry

EKATXDE0

Test Key
Calculation
EKATSTKC

Telex

S.W.I.F.T.

EKATXNRMEKATXURG

APPC

IP Class

(in process)

CF Class

(confirmed)

Ctl.Q
Routing
Table

EKART1MC

MERVA LINK
Wait Queue
EKAAWQ

Positively
ACK’d msgs

TXACK

Negatively
NAK’d msgs

TXNAK

Received
Telexes

EKATXRCV

Figure 109. Routing of Telex Input and Output Messages in MERVA A

Chapter 6. The MERVA Link for CICS and IMS 229

[3] If YES is specified in the Test field of the telex header, the Telex messages
are moved to the Test-Key calculation queue EKATSTKC, and routed to
one of the MERVA Link send queues. If no Test-Key is required, a message
is routed directly to a send queue.

[4] If the Type field in the header is 'U' (urgent) the message is routed to the
send queue EKATXURG. It is otherwise routed to the queue EKATXNRM.

[5] Once in a MERVA Link send queue, the telex is transferred by MERVA
Link using an APPC connection to MERVA B. MERVA Link also holds the
message in its control queue EKA4ATCQ as an IP (in process) class
message until a delivery report, indicating successful transfer to the remote
MERVA Link system, is received from MERVA Link in MERVA B.

[6] The message class is changed to CF (confirmed) and the message is routed
to the MERVA Link wait queue, EKAAWQ, to await the Telex Link
acknowledgment from MERVA B.

[7] A message with class CA is treated like a received message (class LR) with
acknowledgment information available (receipt return code field starts with
'0'). The message is routed to the TXACK queue or, if the telex received a
negative acknowledgment in MERVA B, to the TXNAK queue.

[8] In MERVA B Telex Link controls the sending of the message over the telex
network. When the transmission acknowledgment is received, it is passed
to MERVA Link in MERVA B and a MERVA Link status report is built. The
status report is the MERVA Link mechanism for transferring
acknowledgment data.

The Telex Link acknowledgment information is put into the status report
by the user exit EKAMU133, and the status report is sent to MERVA Link
in MERVA A.

[9] MERVA Link in MERVA A correlates the status report with the appropriate
message in queue EKAAWQ.

User exit EKAMU133 is invoked to extract the acknowledgment data from
the status report and add it to the message selected from EKAAWQ.

[10] After correlation, MERVA Link changes the class of the acknowledged
message from CF to LR (last received), and the message is routed to the
TXACK queue or, if the telex received a negative acknowledgment in
MERVA B, to the TXNAK queue.

[11] Each message with class LR is also routed to the MERVA Link control
queue EKA4ATCQ.

[12] MERVA Link in MERVA A informs MERVA Link in MERVA B that the
status report has been delivered successfully.

This routing is carried out by the control queue routing table EKART1MC and
depends on the MERVA Link receipt return code, field EKARECRC, set by the user
exit EKAMU133. The code in EKART1MC that processes IP, CF, CA, and LR
message classes is shown below.

230 Customization Guide

Figure 110 also shows the routing of telex messages received by Telex Link in
MERVA B and passed by MERVA Link to MERVA A. These telex messages have a

EKART1MC DSLROUTE TYPE=DEFINE,FIELD=(CLASS,EKACLASS,,,,,VFIRST)
DSLROUTE TYPE=DEFINE,FIELD=(RECRC,EKARECRC,,,,,VFIRST)
DSLROUTE TYPE=DEFINE,FIELD=(DELRC,EKADELRC,,,,,VFIRST)
DSLROUTE TYPE=DEFINE,FIELD=(ACQNM,EKAACQNM,,,,,VFIRST)

* ROUTE ALL IP (IN PROCESS) MESSAGES AND THE LC CONTROL MESSAGE TO *
* THE APPLICATION CONTROL QUEUE. *
* THIS PART MAY CORRECT A HANDLING ERROR OF THE SYSTEM ADMINISTRATOR. *

DSLROUTE TYPE=TEST,COND=(CLASS,'IP',EQ),FALSE=TSTLC
DSLROUTE TYPE=SET,TARGET=ACQNM,GOTO=END

TSTLC DSLROUTE TYPE=TEST,COND=(CLASS,'LC',EQ),FALSE=TSTCF
DSLROUTE TYPE=SET,TARGET=ACQNM,GOTO=END

...

TSTCF DSLROUTE TYPE=TEST,COND=(CLASS,'CF',EQ),FALSE=TSTCA [6]
DSLROUTE TYPE=SET,TARGET='EKAAWQ',GOTO=END

...

* TEST FOR AND ROUTE CONFIRMED AND ACKNOWLEDGED MESSAGES *

TSTCA DSLROUTE TYPE=TEST,COND=(CLASS,'CA',EQ),TRUE=SETLRF, * [7]

FALSE=TSTLR

...

TSTLR DSLROUTE TYPE=TEST,COND=(CLASS,'LR',EQ),FALSE=TSTRC [10]

...

DSLROUTE TYPE=TEST,COND=(RECRC,'0',EQ,SHORT),TRUE=SETLRF [10]
DSLROUTE TYPE=TEST,COND=(DELRC,'00',EQ),TRUE=SETLRI

...

SETLRI DSLROUTE TYPE=SET,TARGET='EKATXRCV'
DSLROUTE TYPE=SET,TARGET=ACQNM,GOTO=END

SETLRA DSLROUTE TYPE=SET,TARGET='EKAAWQ'
DSLROUTE TYPE=SET,TARGET=ACQNM,GOTO=END

...

SETLRF DSLROUTE TYPE=DEFINE,FIELD=(TXSTAMP,ENLSTAMP)
* STAMPS FOR OUTGOING TELEX MESSAGES
* 'NAKENLXM' INDICATES NEG LOGICAL ACK RECEIVED
* FROM THE TXIP OR FORMATTING ERROR
* 'ACKXMIT' INDICATES POSITIVE TRANSMISSIONS ACKS RECEIVED
* 'NAKXMIT' INDICATES NEGATIVE TRANSMISSIONS ACKS RECEIVED

DSLROUTE TYPE=TEST,COND=(TXSTAMP,'ACK',EQ,SHORT),TRUE=ACK
NAK DSLROUTE TYPE=SET,TARGET='TXNAK',GOTO=CHKCA [10]
ACK DSLROUTE TYPE=SET,TARGET='TXACK',GOTO=CHKCA [10]
*
CHKCA DSLROUTE TYPE=TEST,COND=(CLASS,'CA',EQ),TRUE=END

DSLROUTE TYPE=SET,TARGET=ACQNM,GOTO=END [11]

...

Figure 110. Example of the Routing Table EKART1MC

Chapter 6. The MERVA Link for CICS and IMS 231

class of LR but no EKARECRC field, as no status reports are created. It does
however have a delivery return code field EKADELRC, as it has been successfully
delivered from MERVA B. The message is then routed to the MERVA A receive
queue, EKATXRCV and to the MERVA Link control queue EKA4ATCQ.

Routing of Telex Messages in MERVA B
Figure 111 provides an overview of the flow of telex messages in MERVA B.

Messages received by MERVA Link in MERVA B are assigned the message class LR
and routed by the EKART1MS routing table to one of the local Telex Link ready
queues, TXNRM or TXURG. The code used for the routing table EKART1MS is
shown below.

TELEX LINK

Routing
Table

EKART1MS

TXNRM

MERVA LinkData Entry
TXDE0

Locally Created Telexes Telexes from MERVA A

TXURG

TXIP

Substation

Routing
Table

ENLRTIO

MERVA LINK
Send Queue
EKA3ATS3

MERVA Link

TXACK

TXWAIT

TXNAK

TXRCV
APPC

APPC

EKADMY

Routing Table
EKART1MS

Figure 111. Routing of Telex Input and Output Messages in MERVA B

232 Customization Guide

Message processing is taken over by Telex Link and the message is submitted to
the Telex substation for transmission over the telex network and routed from the
ready queue to the TXWAIT queue to await acknowledgment. The routing table
ENLRTIO controls the further routing specified in the Telex Link parameter
module ENLPRMS. After a positive logical acknowledgment, the message is routed
again to the TXWAIT queue to await transmission acknowledgment.

Any other acknowledgment is treated as a final acknowledgment and the message
must be routed to an ACK or NAK queue in MERVA B or MERVA A. The message
origin is indicated by MERVA Link control field EKAONODE (Origin Node). If this
field is not found, the message was created locally in MERVA B and the message is
routed to the Telex Link queue TXACK or TXNAK. If the field is present the
message has been handled by MERVA Link, and must come from MERVA A, so
the acknowledgment data must be returned to MERVA A. Figure 113 on page 234
shows the ENLRTIO routing table.

EKART1MS DSLROUTE TYPE=DEFINE,FIELD=(CLASS,EKACLASS,,,,,VFIRST)
DSLROUTE TYPE=DEFINE,FIELD=(ACQNM,EKAACQNM,,,,,VFIRST)

...

* TEST FOR AND ROUTE LR (INBOUND) MESSAGES. *
* ROUTE TELEX INPUT MESSAGES TO CORRESPONDING TELEX READY QUEUES. *

TSTLR DSLROUTE TYPE=TEST,COND=(CLASS,'LR',EQ),FALSE=TSTRC

DSLROUTE TYPE=DEFINE,FIELD=(TXPRI,ENLTXPRI,,,,,VFIRST)
DSLROUTE TYPE=TEST,COND=(TXPRI,'U',EQ),TRUE=SETURG
DSLROUTE TYPE=SET,TARGET='TXNRM'
DSLROUTE TYPE=SET,TARGET=ACQNM,GOTO=END

SETURG DSLROUTE TYPE=SET,TARGET='TXURG'
DSLROUTE TYPE=SET,TARGET=ACQNM,GOTO=END

...

Figure 112. Example of Routing Table EKART1MS

Chapter 6. The MERVA Link for CICS and IMS 233

MERVA Link provides a status report message for the transfer of application status
information to the partner system. The acknowledgment data is passed back to
MERVA A as follows:
1. The user exit EKAMU133 adds the following data to the status report:

v Type of acknowledgment (field MSGACK)
v Telex Link transmission acknowledgment (field ENLXMACK)
v Telex Link transmission header (field ENLXMHD)
v Telex Link transmission status (field ENLSTAMP)
v Telex Link transmission data (field ENLXMNDX)

The MERVA Link receipt return code (field EKARECRC) and receipt diagnostic
code are set.

2. The status report is copied with message class IP to MERVA Link control queue
EKA3ATCQ and transferred to MERVA Link in MERVA A.

3. Following receipt of the delivery report from MERVA Link in MERVA A,
MERVA Link in MERVA B changes the message class from IP to CF and routes

* DEFINE TELEX LINK STAMP FIELD FROM THE TOF FOR THE ROUTING DECISION
ENLRTIO DSLROUTE TYPE=DEFINE,FIELD=(TXSTAMP,ENLSTAMP), +

LENGTH=8,NOTFND=ERROR,EMPTY=ERROR
*
* STAMPS FOR OUTGOING TELEX MESSAGES
*
* 'ACKENLXM' INDICATES POSITIVE LOGICAL ACKNOWLEDGMENT RECEIVED
* FROM THE TXIP

DSLROUTE TYPE=TEST,COND=(TXSTAMP,'ACKENLXM',EQ),TRUE=WAIT
*
* 'NAKENLXM' INDICATES NEGATIVE LOGICAL ACKNOWLEDGMENT RECEIVED
* FROM THE TXIP OR FORMMATTING ERROR

DSLROUTE TYPE=TEST,COND=(TXSTAMP,'NAKENLXM',EQ),TRUE=NAK
*
* 'ACKXMIT ' INDICATES POSITIVE TRANSMISSION ACKNOWLEDGMENT
* RECEIVED

DSLROUTE TYPE=TEST,COND=(TXSTAMP,'ACKXMIT ',EQ),TRUE=ACK
*
* 'NAKXMIT ' INDICATES NEGATIVE TRANSMISSION ACKNOWLEDGMENT
* RECEIVED

DSLROUTE TYPE=TEST,COND=(TXSTAMP,'NAKXMIT ',EQ),TRUE=NAK

...

WAIT DSLROUTE TYPE=SET,TARGET=('TXWAIT'),GOTO=END
*
* MESSAGES WITH POSITIVE TRANSMISSION ACKNOWLEDGMENT ARE ROUTED
* TO TXACK AND PRINTED
ACK DSLROUTE TYPE=DEFINE,FIELD=(EKAOR,EKAONODE), *

NOTFND=ACK1,EMPTY=ACK1,LENGTH=8
* ROUTE MSG ORIGINATING FROM MERVA -CREATE-

DSLROUTE TYPE=SET,TARGET=('EKA3ATS3'),GOTO=END
* ROUTE MSG ORIGINATING FROM MERVA -SEND-
ACK1 DSLROUTE TYPE=SET,TARGET=('TXACK'),GOTO=END
*
* MESSAGES WITH NEGATIVE LOGICAL OR TRANSMISSION ACKNOWLEDGMENT
* ARE ROUTED TO TXNAK
NAK DSLROUTE TYPE=DEFINE,FIELD=(EKAOR,EKAONODE), *

NOTFND=NAK1,EMPTY=NAK1
DSLROUTE TYPE=SET,TARGET=('EKA3ATS3'),GOTO=END

NAK1 DSLROUTE TYPE=SET,TARGET=('TXNAK'),GOTO=END

...

Figure 113. Example of the Routing Table ENLRTIO

234 Customization Guide

the status report using the control queue’s routing table EKART1MS to the
dummy queue EKADMY. Routing to this queue has the same effect as a delete
command.

4. Processing of this message in MERVA B is complete.

Figure 114 shows the routing instructions.

The routing table ENLRTIO handles the routing of all messages from the Telex
substation. All incoming telex messages are routed to the local Telex Link receive
queue TXRCV for visual inspection. Any messages for MERVA A are transferred by
routing the message to the MERVA Link send queue, EKA3ATS3. MERVA Link
transfers the telex message to MERVA A. On receipt of the delivery indication from
MERVA Link in MERVA A, which indicates that the message has been successfully
transferred to MERVA A, the message class changes from IP to CF and is routed to
the EKADMY dummy queue. Routing to this queue has the same effect as a delete
command (see Figure 114). Figure 115 shows the ENLRTIO routing table.

Customizing MERVA A and MERVA B
In the sample library, in the source library, and in the macro library you can find
the tables and programs required to set up the connection of two MERVA ESA
systems using MERVA Link.

EKART1MS DSLROUTE TYPE=DEFINE,FIELD=(CLASS,EKACLASS,,,,,VFIRST)
DSLROUTE TYPE=DEFINE,FIELD=(ACQNM,EKAACQNM,,,,,VFIRST)

...

* TEST FOR AND ROUTE CONFIRMED MESSAGES. DELETE MERVA LINK STATUS *
* REPORT AND TELEX OUTPUT MESSAGES. *

TSTCF DSLROUTE TYPE=TEST,COND=(CLASS,'CF',EQ),FALSE=TSTLR

DSLROUTE TYPE=SET,TARGET='EKADMY',GOTO=END

...

Figure 114. Handling of Confirmed Messages in the Routing Table EKART1MS

* DEFINE TELEX LINK STAMP FIELD FROM THE TOF FOR THE ROUTING DECISION
ENLRTIO DSLROUTE TYPE=DEFINE,FIELD=(TXSTAMP,ENLSTAMP), +

LENGTH=8,NOTFND=ERROR,EMPTY=ERROR

...

* 'TELEXRCV' INDICATES A RECEIVED TELEX MESSAGE
DSLROUTE TYPE=TEST,COND=(TXSTAMP,'TELEXRCV',EQ),TRUE=RCV

...

* RECEIVED TELEX MESSAGES ARE ROUTED TO TXRCV AND TXSTPLR
RCV DSLROUTE TYPE=SET,TARGET=('TXRCV')

DSLROUTE TYPE=SET,TARGET=('TXSTPLR'),GOTO=END

...

Figure 115. Example of Routing Table ENLRTIO

Chapter 6. The MERVA Link for CICS and IMS 235

In MVS, the MERVA ESA sample library is a partitioned data set with the low
level qualifier SDSLSAM0.

The MERVA ESA source library is a partitioned data set with the low level
qualifier SDSLSRC0.

The MERVA ESA macro library is a partitioned data set with the low level
qualifier SDSLMAC0.

In VSE, the MERVA ESA sample programs are part of the source library.

The following two tables show the source files and copy books that must be
installed in both MERVA A and MERVA B.

If not stated otherwise for the MVS environment, the source files and copy books
can be found in the sample library.

MERVA A (Message Creating)

File Copy Book Description Network

DSLFNTT EKAFNTMC Function table entries for SWIFT and Telex. For MVS: copy book
EKAFNTMC is contained in the macro library, file DSLFNTT is
contained in the source library.

n.a.

EKAPTC MERVA Link partner table n.a.

EKAR2AI0 Routing Table: after authorization, routing messages to MERVA
Link send queues

SWIFT

DWSR1AO0 Routing Table: routing after authentication output SWIFT

DWSR1DO0 Routing Table: routing banking messages without errors after
distribution output

SWIFT

EKARS2MC Routing Table: routing of acknowledged messages and SWIFT
output messages

SWIFT

EKAMU133 MFS User Exit required by MERVA Link. For MVS: this file is
contained in the source library.

SWIFT Telex

EKART1MC Routing Table: routing of acknowledged messages and received
messages

Telex

EKARTTXD Routing Table: routing after data entry Telex

EKARTTXK Routing Table: routing after test key calculation Telex

EKATCTC CICS TCT entry for VTAM node required by MERVA Link n.a.

236 Customization Guide

MERVA B (Message Sending to External Network)

File Copy Book Description Network

DSLFNTT EKAFNTMS Function table entries for MERVA Link send queues and control
queues. For MVS: copy book EKAFNTMS is contained in the macro
library, file DSLFNTT is contained in the source library.

n.a.

EKAPTS MERVA Link partner table n.a.

EKAR1IN Routing Table: SWIFT Link routing of input messages SWIFT

EKAR1OUT Routing Table: SWIFT Link routing of output messages SWIFT

EKARS2MS Routing Table: routing of SWIFT input messages to SWIFT Link
Ready queues

SWIFT

DWSLTTS SWIFT Link logical terminal table SWIFT

EKAMU133 MFS User Exit required by MERVA Link. For MVS: this file is
contained in the source library.

SWIFT Telex

EKART1MS Routing Table: routing to send queues Telex

ENLRTIO Routing Table: routing of sent and received messages Telex

ENLPRMS Telex Link generation parameter module Telex

EKATCTS CICS TCT entries for VTAM node required by MERVA Link and for
the Telex Link

n.a.

Installing MERVA A and MERVA B
The tables and programs in MERVA A and MERVA B are installed as follows:
1. Network independent tables:

v Function Table

MERVA A: Assemble DSLFNTT containing copy book EKAFNTMC, and
link-edit as DSLFNTT.

MERVA B: Assemble DSLFNTT containing copy book EKAFNTMS, and
link-edit as DSLFNTT.

v MERVA ESA Customization Parameter Module

MERVA A and MERVA B:
Modify the parameter module DSLPRM as required. The
values for the following parameters must be different in each
MERVA ESA system:
– CVTEXTO
– DSLID
– NAME

Assemble and link-edit as DSLPRM.
v MERVA Link partner table

MERVA A: Assemble EKAPTC, and link-edit as EKAPT.

MERVA B: Assemble EKAPTS, and link-edit as EKAPT.
2. Tables for SWIFT network:

v Routing Tables

Chapter 6. The MERVA Link for CICS and IMS 237

MERVA A: Assemble EKAR2AI0, and link-edit as EKAR2AI0.

Assemble DWSR1AO0, and link-edit as DWSR1AO0.

Assemble DWSR1DO0, and link-edit as DWSR1DO0.

Assemble EKARS2MC, and link-edit as EKARS2MC.

MERVA B: Assemble EKAR1IN, and link-edit as EKAR1IN.

Assemble EKAR1OUT, and link-edit as EKAR1OUT.

Assemble EKARS2MS, and link-edit as EKARS2MS.
v Logical Terminal Table

MERVA B: Modify DWSLTTS as required. Assemble and link-edit as
DWSLTT.

3. MFS user exit for SWIFT and telex network:
v User Exit

MERVA A and MERVA B:
EKAMU133 must already be available as an executable
program after MERVA ESA has been installed.

4. Tables for the telex network:
v Routing Tables

MERVA A: Assemble EKART1MC, and link-edit as EKART1MC.

Assemble EKARTTXD, and link-edit as EKARTTXD.

Assemble EKARTTXK, and link-edit as EKARTTXK.

MERVA B: Assemble EKART1MS, and link-edit as EKART1MS.

Assemble ENLRTIO, and link-edit as ENLRTIO.
v Telex Link Generation Parameter Module

MERVA B: Assemble ENLPRMS, and link-edit as ENLPRM.
5. CICS definitions:

v Terminal Definition

Note: The following description relates to parameters of the TCT (Terminal
Control Table). If you define terminals online in your CICS
installation, use the appropriate parameters of the terminal definition
statements.

MERVA A: In copy book EKATCTC, modify the following parameters:
– NETNAME in macro DFHTCT TYPE=SYSTEM, specify

the VTAM network name of the remote CICS.
– MODENAM in macro DFHTCT TYPE=MODESET, specify

the name used in the LOGMODE parameter of the
appropriate VTAM LOGON Mode table entry.

Include copy book EKATCTC in your TCT definitions and
create a new TCT.

MERVA B: In copy book EKATCTS, modify the following parameters:
– NETNAME in macro DFHTCT TYPE=SYSTEM, specify

the VTAM network name of the remote CICS.

238 Customization Guide

– MODENAM in macro DFHTCT TYPE=MODESET, specify
the name used in the LOGMODE parameter of the
appropriate VTAM LOGON Mode table entry.

– TRMIDNT and NETNAME in macro
DFHTCT TYPE=TERMINAL

Include copy book EKATCTS in your TCT definitions and
create a new TCT.

v SIT - System Initialization Table

MERVA A and MERVA B:
Specify parameter ISC=YES.

Create a new SIT or specify ISC=YES in your CICS startup
job.

MERVA Link Partner Table Relationships
Many of the parameters in a MERVA Link partner table relate to definitions that
must be made in MERVA ESA tables, in CICS definitions, or both. These
relationships and possible references to specific partner table parameters are
described based on a partner table entry in the file EKAPTC as shown in
Figure 116.

Notes:

[1] NODE=SDFC3

TITLE 'MERVA LINK SAMPLE PARTNER TABLE FOR NODE C3'
*---
* THIS PARTNER TABLE IS USED IN THE REMOTE SWIFT/TELEX LINK SCENARIO
* FOR A SAMPLE MERVA LINK CICS APPC CONNECTION.
*---

SPACE
EKAPT TYPE=INITIAL, MESSAGE TRANSFER NODE C3-

NODE=SDFC3 [1]
EJECT

*---
* A4AS2 APPC CONNECTION FROM MERVA -CREATE- FOR SWIFT
*---

EKAPT TYPE=ASP, APPL SUPPORT PROCESS-
SENDQC=(EKAL1GPA,EKAL1RFU,EKAL1RFN), SEND QUEUE CLUSTER- [2]
DEST=(SDFC4,A3AS2), DESTINATION ADDRESS-
CONTROL=EKA4A2CQ, CONTROL QUEUE NAME- [3]
IRROUTE=(ACK,EKAAWQ,CTLQ), REC REPORT CORRELATION- [4]
NAME=(A4AS2,'APPC TO SWIFT FRONT END'), -
MFSEXIT=7133, - [5]
MTP=T4AS2, -
FORMAT=(QUEUE)

SPACE
*---

EKAPT TYPE=MTP, MSG TRANSFER PROCESS-
LINK=(APPC,CA04), PARTNER SYSTEM INFO- [6]
PARTNER=(X43AS2,EKAR), PARTNER MTP INFORMATION- [7]
NAME=(T4AS2,X34AS2), -
ASP=A4AS2

...

Figure 116. MERVA Link Partner Table Entry in the File EKAPTC

Chapter 6. The MERVA Link for CICS and IMS 239

This is the local node name for MERVA Link in MERVA A. In MERVA B
this information can be used in routing tables to determine the origin of a
message by testing the MERVA Link control field EKAONODE. An
example is contained in the routing table EKAR1IN.

To change the value for this parameter in the partner table, you must also
change it in the routing table concerned (and in the partner table of
MERVA Link in MERVA B, file EKAPTS).

[2] SENDQC=(EKAL1GPA,EKAL1RFU,EKAL1RFN)

MERVA Link send queues must be defined in the MERVA ESA function
table. The following sample entries are provided in the copy book
EKAFNTMC:
* SOURCE QUEUE FOR GENERAL PURPOSE APPLICATION

DSLFNT NAME=EKAL1GPA,QUEUE=YES,THRESH=30,NEXT=EKAL1ERR, *
TRAN=EKAS,RELATED=(EKAL1RFU,EKAL1RFN), *
DESCR='Ready Queue of GPA for Sending to SWIFT'

*
* SOURCE QUEUE FOR URGENT FINANCIAL APPLICATION

DSLFNT NAME=EKAL1RFU,QUEUE=YES,THRESH=30,NEXT=EKAL1ERR, *
TRAN=EKAS,RELATED=(EKAL1GPA,EKAL1RFN), *
DESCR='Urgent Ready Queue of FIN for Sending to SWIFT'

*
* SOURCE QUEUE FOR NORMAL FINANCIAL APPLICATION

DSLFNT NAME=EKAL1RFN,QUEUE=YES,THRESH=30,NEXT=EKAL1ERR, *
TRAN=EKAS,RELATED=(EKAL1GPA,EKAL1RFU), *
DESCR='Normal Ready Queue of FIN for Sending to SWIFT'

Each of these function table entries contain the parameter TRAN=EKAS. This
is the default transaction identifier of the sending application support
process. It is generated for the partner table entry, if parameter TRAN was
not specified there, as in the example.

A CICS transaction definition for this transaction identifier is also required.

Note: This transaction definition must be already active after the
installation of MERVA ESA.

To change the names of MERVA Link send queues, modify them in the:
v Partner table
v Function table

To change the transaction identifier associated with a send queue, modify
the:
v Partner table
v Function table
v CICS transaction definition

[3] CONTROL=EKA4A2CQ

A MERVA Link control queue must also be defined in the MERVA ESA
function table. The copy book EKAFNTMC, shown in Figure 117 contains
the following entry:

240 Customization Guide

Routing table EKARS2MC is associated with the control queue and
requires a CICS program definition.

Note: This program definition must be already active after the installation
of MERVA ESA.

To change the name of a MERVA Link control queue, modify it in the:
v Partner table
v Function table

To change the name of a routing table associated with a control queue,
modify the:
v Function table
v CICS program definition

[4] IRROUTE=(...,EKAAWQ,...)

A MERVA Link acknowledgment wait queue must also be defined in the
MERVA ESA function table. The copy book EKAFNTTC, which is not part
of this sample but should be available after MERVA ESA installation,
contains the entry shown in Figure 118.

To change the name of a MERVA Link acknowledgment wait queue,
modify it in the:
v Partner table
v Function table

[5] MFSEXIT=7133

7133 is the number of MFS user exit EKAMU133. The user exit must be
defined in the MERVA ESA MFS program table.

A CICS program definition for the user exit is also required.

Note: The entry in the MFS program table and the program definition
must be already active after the installation of MERVA ESA.

To change the number of the user exit, modify it in the:
v Partner table
v MFS program table

To change the name of the user exit, modify it in the:
v MFS program table

* CONTROL QUEUE
DSLFNT NAME=EKA4A2CQ,KEY1=(EKACLASS,2,1),ROUTE=EKARS2MC, *

QUEUE=YES,THRESH=50,SPCMND=(ROU,DEL), *
DESCR='Application Control Queue of ASP A4AS2'

Figure 117. MERVA Link Control Queue in the MERVA ESA Function Table

* DO NOT SPECIFY NEXT= FOR AN ACK WAIT QUEUE.
DSLFNT NAME=EKAAWQ,KEY1=(EKAAMSID,16,1),ROUTE=EKARTS, *

QUEUE=YES,THRESH=50,SPCMND=(ROU,DEL), *
DESCR='MERVA Link Sample Ack Wait Queue'

Figure 118. MERVA Link Acknowledgment Wait Queue in the MERVA ESA Function Table

Chapter 6. The MERVA Link for CICS and IMS 241

v CICS program definition

In both cases, link-edit MERVA ESA module DSLMMFS with the modified
MFS program table.

[6] LINK=(APPC,CA04)

This parameter defines an APPC connection to the partner system MERVA
Link in MERVA B.

A modification in the CICS terminal definition is also necessary. In this
sample, CICS TCT entries are used. The copy book EKATCTC contains the
following entries:
BISCS DFHTCT TYPE=SYSTEM, *

ACCMETH=VTAM, *
NETNAME=I4WAC381, *
TRMTYPE=LUTYPE62, *
SYSIDNT=CA04, *
CONNECT=AUTO, *
RUSIZE=2048, *
BUFFER=2048

DFHTCT TYPE=MODESET, *
SYSIDNT=CA04, *
MAXSESS=(4,2), *
CONNECT=AUTO, *
MODENAM=APPCLU62 MUST MATCH VTAM LOGMODE TABLE

An entry is also required in the VTAM LOGON mode table, for example
(this example is not contained in a MERVA ESA source library):
APPCLU62 MODEENT LOGMODE=APPCLU62,FMPROF=X'12',TSPROF=X'04', *

PRIPROT=X'B1',SECPROT=X'B1',COMPROT=X'70A0', *
PSERVIC=X'060038000000380000000000',RUSIZES=X'8686', *
PSNDPAC=X'03',SRCVPAC=X'04',SSNDPAC=X'05',TYPE=0

To change the name of the intercommunication link CA04, modify it in the:
v Partner table
v CICS terminal definition (TCT)

Note: The name specified in the SYSIDNT parameter must be the name
used in both the DFHTCT TYPE=SYSTEM and the DFHTCT
TYPE=MODESET macros.

To change the VTAM LOGMODE name APPCLU62, modify it in the:
v CICS terminal definition (TCT)
v VTAM LOGON mode table

[7] PARTNER=(...,EKAR)

EKAR is the transaction identifier for the remote receiving message transfer
process. In the transaction definition in the remote CICS, an entry is
required for this transaction identifier.

Note: This transaction definition must be already active after the
installation of MERVA ESA.

To change the transaction identifier, modify the:
v Transaction definition in the remote CICS
v Partner table

242 Customization Guide

Chapter 7. The MERVA Link for Unix System Services (USS)

MERVA Link USS is a set of MERVA Link functions that execute in the OS/390
UNIX System Services (USS) environment, and that route MERVA Link
conversations from SNA APPC to TCP/IP, and vice versa. For example, using the
MERVA Link USS Gateway, which handles the protocol conversion, a MERVA USE
& Branch workstation can be connected to MERVA ESA V4.1 via a TCP/IP-based
MERVA Link protocol.

This chapter describes how to adapt the MERVA Link functions executing in the
OS/390 USS environment to meet the requirements of a MERVA Link USS
Gateway. The customization of the MERVA Link functions executing in the
MERVA ESA CICS and MERVA ESA IMS environments are described in
“Chapter 6. The MERVA Link for CICS and IMS” on page 161.

Defining Application Control Table Entries (Samples)
Use the MERVA Link application control table (ACT) to customize MERVA Link in
the OS/390 UNIX System Services (USS) environment. The ACT contains the
definitions of all MERVA Link processes that support the exchange of messages
between partner systems. It consists of the ACT header and two sets of ASP and
ISC entries:
v The ACT header contains definitions that apply to the MERVA Link node.
v An ASP entry contains definitions that apply to a particular MERVA Link

message transfer application. The ASPs for MERVA Link USS are for installation
verification and test purposes only, which is why their customization is not
described in this chapter.

v An ISC entry contains definitions that apply to the intersystem connection to a
partner MERVA Link system. ISC information is used to establish a conversation
between a local Message Transfer Process (MTP) or a local Routing Process (RP)
and its partner process in a (remote) partner system. Message routing is the
main function of MERVA Link USS in MERVA ESA V4.1.

The definitions that must go into a MERVA Link USS ACT are provided by a
MERVA Link administrator in a MERVA Link USS Configuration File (CFG). CFG
statements are the means to describe the MERVA Link USS customization.

Sample 1 describes a MERVA Link USS Gateway that provides message routing
services to all four MERVA Link CICS and IMS nodes described in “Chapter 6. The
MERVA Link for CICS and IMS” on page 161. Sample 2 extends sample 1 by
adding definitions for TCP/IP connections to MERVA Link AIX and MERVA Link
NT partner systems.

The sample MERVA Link network consists of a number of MERVA Link nodes.
These nodes are numbered and characterized as follows:

Node 1 (C1) The first MERVA CICS system (SNA APPC LU is CTS1LUNM)

Node 2 (C2) The second MERVA CICS system (SNA APPC LU is CTS2LUNM)

Node 3 (I1) The first MERVA IMS system (SNA APPC LU is IA01LUNM)

Node 4 (I2) The second MERVA IMS system (SNA APPC LU is IA02LUNM)

© Copyright IBM Corp. 1987, 2001 243

|
|
|
|
|
|

|
|
|
|

Node 5 (A1) MERVA AIX system (TCP/IP host name is AIX1HOST)

Node 7 (W1) MERVA NT system (TCP/IP host name is WNT1HOST)

Node 9 (U1) MERVA Link USS Gateway with the APPC/MVS System Base LU
name MVS9LUNM and the TCP/IP host name USS1HOST

Sample 1: Gateway between MERVA Link CICS and IMS
Systems

This CFG sample shows the definition of the MERVA Link USS node U1 and its
connections to nodes C1, C2, I1, and I2. The sample configuration file consists of a
main configuration file and a set of configuration include files. Alternatively, you
can provide all resource definitions in the main configuration file instead of using
configuration include files.

All sample configuration files are contained in the cfg subdirectory of the sample
MERVA USS Instance Directory /u/merva1.

ACT Configuration Main File
The sample main configuration file is named ekaacd.cfg. It is shown below.

Notes:

[1] The keyword ACTH starts an ACT header parameter group. The CFG
statements up to the next parameter group keyword or an INClude
statement are interpreted as ACT header parameter definition statements.

[2] The local node name is U1. It must be different from all partner MERVA
Link node names.

[3] Processing trace files are written to the sample trace directory
/u/merva1/trc if a trace is requested. A processing trace is not requested in
this sample (tpi and tci trace levels default to 0). Trace levels can be
modified interactively.

[4] The keyword INCC specifies the inclusion of a CFG include file. The name
of the include file (cfgc.C1) consists of the include file group identifier cfgc
(that corresponds to the keyword INCC) and the specified partner node
name C1.

[5] Includes the CFG file for partner node C2 (cfgc.C2).

[6] Includes the CFG file for partner node I1 (cfgc.I1).

[7] Includes the CFG file for partner node I2 (cfgc.I2).

#***
MERVA Link USS EKAACT Configuration
#***
ACTH: # ACT Header Parameter Group [1]

local_node = U1 [2]
trace_file_directory = /u/merva1/trc [3]

#===
MERVA Link USS EKAACT ISC Entries
#===
INCC: C1 # include parameters for partner node C1 [4]
INCC: C2 # include parameters for partner node C2 [5]
INCC: I1 # include parameters for partner node I1 [6]
INCC: I2 # include parameters for partner node I2 [7]

Figure 119. ACT Sample 1: Main CFG File for Local Node U1 (ekaacd.cfg)

244 Customization Guide

ACT Configuration Include File for Partner Node C1
The configuration include file for partner node C1 is named cfgc.C1. It is shown
below.

Notes:

[1] The keyword ACTC starts an ACT ISC parameter group. The following
CFG statements (up to the next parameter group keyword or an INClude
statement) are interpreted as ACT ISC entry parameter definition
statements.

[2] The name of the partner MERVA Link node defined in this ACT ISC entry
is C1.

[3] The identifiers for the SNA APPC connection to partner node C1 are
contained in APPC/MVS Side Information. The symbolic destination name
defined in APPC/MVS for this set of connection parameters is EKARC1.

ACT Configuration Include File for Partner Node C2
The configuration include file for partner node C2 is named cfgc.C2. It is shown
below.

Partner MERVA Link node C2 is defined in this ACT ISC entry. The symbolic
destination defined in APPC/MVS for C2 is EKARC2.

ACT Configuration Include File for Partner Node I1
The configuration include file for partner node I1 is named cfgc.I1, and is shown
below.

Partner MERVA Link node I1 is defined in this ACT ISC entry. The symbolic
destination defined in APPC/MVS for I1 is EKARI1.

#***
MERVA Link USS EKAACT Configuration Include File for Partner Node C1
#***
ACTC: # ACT ISC Entry Parameter Group [1]

partner_node = C1 [2]
symbolic_destination = EKARC1 [3]

Figure 120. ACT Sample 1: CFG Include File for Partner Node C1 (cfgc.C1)

#***
MERVA Link USS EKAACT Configuration Include File for Partner Node C2
#***
ACTC: # ACT ISC Entry Parameter Group [1]

partner_node = C2 [2]
symbolic_destination = EKARC2 [3]

Figure 121. ACT Sample 1: CFG Include File for Partner Node C2 (cfgc.C2)

#***
MERVA Link USS EKAACT Configuration Include File for Partner Node I1
#***
ACTC: # ACT ISC Entry Parameter Group [1]

partner_node = I1 [2]
symbolic_destination = EKARI1 [3]

Figure 122. ACT Sample 1: CFG Include File for Partner Node I1 (cfgc.I1)

Chapter 7. The MERVA Link for Unix System Services (USS) 245

ACT Configuration Include File for Partner Node I2
The configuration include file for partner node I2 is named cfgc.I2, and is shown
below.

Partner MERVA Link node I2 is defined in this ACT ISC entry. The symbolic
destination defined in APPC/MVS for I2 is EKARI2.

Sample 2: Gateway between MERVA Link ESA and MERVA
Workstations

CFG sample 2 extends CFG sample 1 by adding two MERVA workstations to the
set of partner MERVA systems. The additional partner MERVA systems are:
v A MERVA AIX system (node name A1)
v A MERVA NT system (node name W1)

The two workstations are connected to the MERVA Link USS Gateway via TCP/IP
only. An SNA APPC connection to the workstations is not supported in this
sample.

The additional configuration files are also contained in the cfg subdirectory of the
sample MERVA USS Instance Directory /u/merva1.

ACT Configuration Main File
The extended sample main configuration file ekaacd.cfg is shown below.

Notes:

[1] Includes the CFG file for partner node A1 (cfgc.A1).

[2] Includes the CFG file for partner node W1 (cfgc.W1).

#***
MERVA Link USS EKAACT Configuration Include File for Partner Node I2
#***
ACTC: # ACT ISC Entry Parameter Group [1]

partner_node = I2 [2]
symbolic_destination = EKARI2 [3]

Figure 123. ACT Sample 1: CFG Include File for Partner Node I2 (cfgc.I2)

#***
MERVA Link USS EKAACT Configuration
#***
ACTH: # ACT Header Parameter Group

local_node = U1
trace_file_directory = /u/merva1/trc

#===
MERVA Link USS EKAACT ISC Entries
#===
INCC: C1 # include parameters for partner node C1
INCC: C2 # include parameters for partner node C2
INCC: I1 # include parameters for partner node I1
INCC: I2 # include parameters for partner node I2
INCC: A1 # include parameters for partner node A1 [1]
INCC: W1 # include parameters for partner node W1 [2]

Figure 124. ACT Sample 2: Main CFG File for Local Node U1 (ekaacd.cfg)

246 Customization Guide

ACT Configuration Include File for Partner Node A1
The configuration include file for partner node A1 is named cfgc.A1, and is shown
below.

Notes:

[1] The keyword ACTC starts an ACT ISC parameter group. The following
CFG statements (up to the next parameter group keyword or an INClude
statement) are interpreted as ACT ISC entry parameter definition
statements.

[2] The name of the partner MERVA Link node defined in this ACT ISC entry
is A1.

[3] The TCP/IP partner host name of partner node A1 can be specified as a
fully-qualified domain name, or as a short partner host name that is
defined in the local system or in a domain name server.

[4] The sample TCP/IP port number for the MERVA Link messaging
application is 7110 in all MERVA Link systems supporting TCP/IP. The
TCP/IP port number that is actually assigned to the MERVA Link
messaging service in partner host AIX1HOST must be specified here.

[5] The basic password encryption algorithm must be used for a conversation
between OS/390 USS and AIX systems. Basic password encryption is used
by default in MERVA Link USS. You can omit this statement.

ACT Configuration Include File for Partner Node W1
The configuration include file for partner node W1 is named cfgc.W1, and is
shown below.

The partner MERVA Link node W1 is defined in this ACT ISC entry. The TCP/IP
host name of the partner node W1 is specified by its fully-qualified domain name.
The TCP/IP port number for the MERVA Link messaging application is 7110.

#***
MERVA Link USS EKAACT Configuration Include File for Partner Node A1
#***
ACTC: # ACT ISC Entry Parameter Group [1]

partner_node = A1 [2]
partner_host_name = aix1host.financial.institution.com [3]
msg_port_number = 7110 [4]
password_encryption = basic [5]

Figure 125. ACT Sample 2: CFG Include File for Partner Node A1 (cfgc.A1)

#***
MERVA Link USS EKAACT Configuration Include File for Partner Node W1
#***
ACTC: # ACT ISC Entry Parameter Group [1]

partner_node = W1 [2]
partner_host_name = wnt1host.securities.institution.com [3]
msg_port_number = 7110 [4]

Figure 126. ACT Sample 2: CFG Include File for Partner Node W1 (cfgc.W1)

Chapter 7. The MERVA Link for Unix System Services (USS) 247

Customizing the MERVA Link USS ACT
The MERVA Link USS Configuration Facility is used to customize a MERVA Link
USS instance. The non-confidential data of this facility is stored in a unique
configuration file, or in a main configuration file and a set of configuration include
files.

A MERVA Link configuration file is a flat-text file in an HFS directory that can be
generated by any text editor, for example, the ISPF-like editor provided in the
TSO/E USS environment. Configuration include files are retrieved by default from
the directory that contains the main configuration file. Configuration include files
can be included from other directories if the fully-qualified path name is specified
in the INClude statement.

The structure of a configuration file corresponds to the structure of the MERVA
Link ACT. This means, there is one group of ACT header parameters, one or more
groups of ASP parameters, and one or more groups of ISC parameters. The ASP
and ISC parameter groups can be dynamically included in a configuration file from
configuration include files by coding include statements in the main configuration
file.

Configuration File Syntax
A MERVA Link USS Configuration File consists of a sequence of the following
lines:
v Empty lines and comment lines
v ACT parameter group identification lines
v ACT parameter lines
v Include lines

Empty Lines and Comment Lines
An empty line contains only blanks and the new-line character. An explicit
comment line starts with a hash character (#) in the first column of a line. An
implicit comment line is any line that is not recognized as one of the other line
types.

ACT Parameter Group Identification Lines
An ACT parameter group identification line defines the beginning and the type of
an ACT parameter group. It starts with an ACT Parameter Group Identifier:

ACTH: An ACT Header parameter group

ACTA: An ACT ASP parameter group

ACTC: An ACT ISC parameter group

All information following an ACT Parameter Group Identifier is ignored.

ACT parameter lines
An ACT parameter line consists of three tokens, which can be followed by
comment information. The three tokens are a parameter identifier, an equals sign
(=), and a parameter value.

A parameter identifier is a character string of up to 22 characters that defines the
meaning of the parameter value. The set of valid parameter identifiers is defined
by the applicable ACT Parameter Group. Parameter lines with a parameter
identifier that is invalid for the applicable parameter group are considered to be
comment lines.

248 Customization Guide

A parameter identifier must be followed by at least one blank and an equals sign
(=). One or more blanks precede the parameter value. A parameter value can be
one of the following:
v Resource name of up to 8 characters, for example, an ASP name
v Trace file directory name of up to 32 characters
v TCP/IP partner host name of up to 64 characters
v A number of up to 5 digits, for example, TCP/IP port numbers and trace levels
v A yes/no indicator (represented by y, Y, or 1 for yes, and n, N, or 0 for no)
v Keyword, for example, password encryption method ’crypt’ or ’basic’

Data after a parameter value is considered to be a comment except in the ASP Free
Form Name parameter. In this case, the data in the parameter line after the equals
sign is interpreted as the parameter value. The length of the ASP Free Form Name
is limited to 60 characters.

Include Lines
An include line contains an include statement that reads configuration data from a
configuration include file. An include statement consists of an include instruction
followed by an include file identifier. Data following the include file identifier is
ignored.

Include instructions are INCF:, INCA:, and INCC:. The different include
instructions define the meaning of the include file identifier as follows:

INCF: file_name
Either the fully-qualified path of the configuration include file, starting with a
slash (/), or the relative path based on the directory of the main configuration
file, without a slash.

INCA: asp_name
The file cfga.asp_name must be included from the directory of the main
include file. A configuration include file starting with cfga. is supposed to
contain one ACT ASP parameter group.

INCC: partner_node_name
The file cfgc.partner_node_name must be included from the directory of the
main include file. A configuration include file starting with cfgc. is supposed to
contain one ACT ISC parameter group.

Include files with the prefixes cfga. and cfgc. can contain any number and types of
parameter groups. However, you can follow the convention associated with these
prefixes to avoid confusion.

ACT Header Parameters
The ACT Header parameters and their valid parameter values are:

local_node
The name of the local MERVA Link node. This parameter is mandatory. The
local node name identifies this node in a network of interconnected MERVA
Link systems.

trace_file_directory
The fully-qualified path of the HFS directory for all MERVA Link USS
processing trace files. This parameter is mandatory if MERVA Link USS
processes must trace their activity. The trace file directory name can be up to
32 characters long.

Chapter 7. The MERVA Link for Unix System Services (USS) 249

tpi_trace_level
The trace level for inbound SNA APPC processes. Valid trace levels are 0, 1, 2,
3, and 9. A trace is not written for trace level 0.

tpi_trace_wrap_limit
The trace file naming scheme for inbound SNA APPC processes. If the wrap
limit is 0, the trace file names contain a date/time stamp and are not reused. If
the wrap limit is 1 to 255, the trace file names contain a wrap index with the
maximum index as specified by the wrap limit. These file names are reused,
and old trace files are overwritten.

tci_trace_level
The trace level for inbound TCP/IP processes. Valid trace levels are 0, 1, 2, 3,
and 9. A trace is not written for trace level 0.

tci_trace_wrap_limit
The trace file naming scheme for inbound TCP/IP processes. If the wrap limit
is 0, the trace file names contain a date/time stamp and are not reused. If the
wrap limit is 1 to 255, the trace file names contain a wrap index with the
maximum index as specified by the wrap limit. These file names are reused,
and old trace files are overwritten.

ACT ASP Parameters
MERVA Link application support processes (ASPs) are not required to provide the
MERVA Link USS Gateway function. ASPs are supported by MERVA Link USS of
MERVA ESA V4.1 with very limited functionality for installation verification and
test purposes only. For example, a MERVA Link USS receiving ASP cannot deliver
an inbound message to a MERVA messaging application. For this reason, the
customization of a MERVA Link USS ASP is not described.

ACT ISC Parameters
The ACT ISC parameters and their valid parameter values are:

partner_node
The name of the MERVA Link node in the applicable partner system. This
parameter is mandatory. The partner node name is the key into this ACT ISC
entry.

symbolic_destination
The name of a Side Information profile defined in APPC/MVS. This parameter
is optional. The symbolic destination name provides the SNA APPC
intersystem connection parameters to establish a conversation with the
applicable partner system. If this parameter is not specified, an SNA APPC
connection cannot be established to the partner system.

msg_tp_name
The name of the MERVA Link receiving TP in the partner system. This
parameter is optional. The TP name specified in this parameter overwrites the
partner TP name specified in the APPC/MVS Side Information profile. If this
parameter is not specified, the TP name specified in the SI profile applies.

partner_host_name
The name of the partner host system for a TCP/IP connection. The partner
host name can consist of up to 64 characters. Any format of an IP host name
can be specified that can be translated by the local host or by a domain name
server into a host IP address. Partner host name formats are, for example, the
dotted decimal representation of the host IP address, and the fully-qualified
host domain name.

250 Customization Guide

Numbers supplied as address parts in standard dotted-decimal notation can be
decimal, hexadecimal, or octal. Numbers are interpreted in C language syntax
as specified by the OS/390 C function inet_addr().

msg_port_number
The TCP port number in the partner system that represents the receiving
MERVA Link process in the partner system. This parameter is mandatory if the
partner host name is specified.

The TCP port number has a value between 1024 (1KB) and 65535 (64KB-1). It
must be agreed upon between the cooperating hosts. The sample TCP port
number for MERVA Link instance 1 is 7110.

password_encryption
The algorithm used to encrypt a conversation security password before it is
sent to a partner system. This parameter is optional. The parameter values are
crypt or basic. This parameter applies only to a TCP/IP connection.

The basic password encryption algorithm can be understood by all MERVA
Link TCP/IP implementations. It is used if this parameter is not specified. The
password encryption algorithm that uses the crypt() function, an unrestricted
DES function, can be used only for a connection to another MERVA Link USS
system. Other MERVA Link implementations cannot decrypt a password
encrypted with this algorithm.

Generating a Configuration File from an Active ACT
Use the ACC command cxf (export ACT configuration to a unique file) to generate
a configuration file based on the parameters of the active ACT. The ACT parameter
groups are all contained in one file.

Use the ACC command cxs (export ACT configuration to separate files) to generate
a main configuration file that contains the ACTH parameter group and INCA: and
INCC: statements for the configuration include files that are also generated. The
command cxs generates one include file for each ACT ASP and ISC entry in the
directory of the main include file. These include files have the prefixes cfga or cfgc.

An exported configuration file contains the names of all supported configuration
parameters regardless of whether parameter values are available. It can be used as
a data entry map for a new configuration file.

Customizing MERVA Link USS Conversation Security
A conversation security function is provided by MERVA Link USS when messages
are exchanged using TCP/IP services. SNA APPC conversation security is
provided by APPC/MVS.

Conversation security information is the information that authorizes a client
process to access the resources of a server process. A server process specifies
whether a client process must provide conversation security information, or
whether it provides its service without client authentication at the conversation
level.

Conversation security information is a client user ID (called user name in the USS
environment), and a client user password. Passwords are considered to be
confidential, and must not be stored in plain text format on any storage media.
This is why conversation security information must be handled separately from
MERVA Link USS configuration files in MERVA Link USS security files.

Chapter 7. The MERVA Link for Unix System Services (USS) 251

The MERVA Link USS Security File Facility consists of a set of MERVA Link USS
security files in the security subdirectory of the MERVA USS instance directory, and
the MERVA Link USS Conversation Security Control Application (ACS) that
provides for specifying, storing, and modifying conversation security information.

Conversation Security Files
MERVA Link USS Security Files provide for storing confidential security
information (client user passwords). Confidential information must be stored in
encrypted form.

The MERVA Link USS Application Control Daemon (ACD) combines information
from a configuration file and security files to create an ACT.

The data in a security file is encrypted. The local host identifier (TCP/IP address)
is used as part of the encryption algorithm. This has two consequences for the
portability of security files:
v Security files cannot be moved or copied to another host and decrypted in this

host. The recovered plain text is unreadable.
v Security files become unreadable when the TCP/IP address of the local host is

changed. You must regenerate all security files using the MERVA Link USS ACS
application in this case.

Conversation Security Control Application
The MERVA Link USS Conversation Security Control Application (ACS) maintains
conversation security information in MERVA Link USS security files. The MERVA
Link USS Daemon (ACD) refers to the information in the security files when it
creates the MERVA Link USS ACT. MERVA Link USS message processing
programs refer only to conversation security information in the ACT.

The ACS Program
The ACS program name is ekaacs. The command ekaacs is used to call the ACS in
an OS/390 USS shell environment. The ACS can be executed in an OS/390 TSO
USS shell or in a remote login shell at a remote host.

The program EKAACS is used to execute the ACS in an OS/390 batch
environment.

The ACS Execution Environment
The ACS must have access to an active MERVA Link USS ACT. This is why the
MERVA Link USS Daemon must be active when the ACS is called.

The fully-qualified path name of the MERVA USS Instance Directory must be
provided as the first ACS command parameter when the USS shell environment
variable MERVA_DIR is not defined.

The ACS Execution Modes
The ACS supports the following execution modes that differ in the way the
security information is provided:
v In interactive mode, ACS prompts the operator for conversation security

information. This is the default mode. A dialog can be terminated at any point
by entering end or exit.

v In command parameter mode, the conversation security information is provided
as a set of keyword parameters. Interactive and command parameter modes can

252 Customization Guide

be mixed. This means that ACS prompts the operator in interactive mode for
those conversation security information items that are not provided as command
parameters.

v In batch mode, the conversation security information is retrieved by the ACS
from standard input (stdin). ACS batch mode is supported in an OS/390 USS
shell environment and in an OS/390 batch job environment. The standard input
file can contain conversation security information for more than one partner
node.

The ACS Command Parameters
The ACS command parameters can be grouped into the following parameter
classes:
v MERVA USS instance directory parameter
v ACS execution control parameters
v Conversation security information parameters

MERVA USS Instance Directory Parameter
The fully-qualified path name of the MERVA USS instance directory must be
specified as the first ACS command parameter if this information is not available
from the applicable USS shell environment variable. The character / at the
beginning of the first ACS command parameter indicates that the MERVA USS
instance directory is specified.

ACS Execution Control Parameters
These parameters control the ACS execution mode. ACS execution control
parameters have the format of single-character keywords:

h Causes ACS to print help information and then terminate. The character ?
has the same meaning.

c Sets confirm mode. Confirm mode means that a password must be entered
twice, and a confirmation of a complete set of conversation security
information is requested before it is processed. If confirm mode is not
requested, a password must not be re-entered, and the parameter set is
processed as soon as all of its elements are available.

v Sets verbose mode. Additional explanations and operator messages are
displayed by ACS in verbose mode.

s Causes ACS to retrieve conversation security parameters from standard
input (stdin). If this parameter is specified, ACS runs in nonconfirm mode
automatically.

Conversation Security Information Parameters
These parameters provide for specifying conversation security information as ACS
command parameters. ACS security information parameters have the format of
keyword parameters (parameter keyword followed by parameter data). A
parameter keyword and its data must be specified as two tokens separated by one
or more blanks. The security information parameter keywords are:

node The partner MERVA Link node. The partner MERVA Link node identifies
the partner system that can be accessed using the client user name and
password, and identifies the ACT ISC entry that must be modified.

user The client user ID (user name).

pswd The client user password.

Chapter 7. The MERVA Link for Unix System Services (USS) 253

Any subset of the security information parameters can be specified when the ACS
is called. The ACS prompts for the missing security information items.

Note: If the client user password is specified as an ACS command parameter, the
password can be displayed as part of the output of an OS/390 USS lp
command (list active processes) while the ACS process is active. The
execution time of an ACS process can be minimized by specifying all
required security information items as ACS command parameters, and
execute ACS in nonconfirm mode.

If the client user password is not specified as ACS command parameter, the
operator is prompted for this information.

Sample ACS Commands
The ACS command ekaacs /u/merva1 h sets the USS shell environment variable for
the MERVA USS instance directory and displays ACS help information.

The ACS command ekaacs v c starts the ACS in verbose interactive mode, prompts
the operator for all security information, and requests confirmation. The USS shell
environment variable for the MERVA USS instance directory must have been set.

The ACS command ekaacs node pnode1 user pn1user c starts the ACS in normal
interactive mode, prompts the operator for the client user password, prompts the
operator to enter the password again, and requests confirmation.

The ACS command ekaacs node pnode1 user pn1user pswd pn1pswd handles the
complete security information without asking for a confirmation.

The ACS Standard Input File
The ACS retrieves the conversation security information for a set of partner
systems from standard input (stdin) if it is started with the control parameter s.
The conversation security information in a standard input file has the following
format:
v The file is structured as a set of lines of up to 80 characters. The security

information of one partner node is specified in one line.
v The security information consists of three tokens, optionally followed by a

free-form comment.
v The three tokens are:

– MERVA Link partner node name
– Client user ID (user name)
– Client user password

The tokens have a maximum of 8 significant characters and are separated by one
or more blanks. Tokens with more than 8 characters are truncated.

v Security information lines with less than three tokens, empty lines, and lines
starting with a hash character (#) are ignored.

A sample ACS standard input file is shown below.

254 Customization Guide

The ACS Batch Mode
ACS in batch mode can run in both an OS/390 batch environment and a USS shell
environment. The USS shell environment supports input from the terminal and
input from an HFS file in an OS/390 USS shell and in an rlogin shell.

ACS Batch Sample for USS Shell
Standard USS shell rules apply for passing standard input data to ACS. Some
commands to start the ACS in USS shell batch mode are:
v ekaacs s

Starts the ACS in batch mode and expects security information from the
terminal. Enter the three tokens of conversation security information (partner
node name, client user name, and password) separated by blanks in one line,
and press ENTER. The set of security information is processed, and you can
enter another set.
To end the terminal input (indicate End Of File), press Ctrl+D in an rlogin shell,
or enter the keyword end or exit. The keywords end or exit must be used in the
OS/390 USS shell environment because Ctrl+D is not supported.

v ekaacs s < secfl

Starts the ACS in batch mode and reads security information from the file secfl
in the current directory. The output of the ACS execution goes to the terminal.
You can use the redirect operator (>) to write the ACS output to an HFS file.

v cat secfl | ekaacs s

Has the same effect as ekaacs s < secfl. The cat command writes the content of
file secfl to stdout. The pipe command (|) passes stdout as stdin to ekaacs.

ACS Batch Sample for OS/390 Batch
A sample OS/390 batch job to generate MERVA Link USS security files is shown
below.

#--
ACS Standard Input Conversation Security Information
#--

#--
p_node user_name password comment
#--

A1 a1user a1pswd partner node A1
W1 W1USER W1PSWD partner node W1

#--

Figure 127. Sample ACS Standard Input File

Chapter 7. The MERVA Link for Unix System Services (USS) 255

The ACS program EKAACS is contained in the MERVA Link USS library. It is
called in verbose batch mode in this example. Verbose mode causes information
about successfully generated security files to be written to stdout (SYSPRINT). The
name of the MERVA USS instance directory (for example /u/merva1) must be
specified as the first program parameter in OS/390 MVS batch mode.

The SYSPRINT and SYSIN DD statements identify the stdout and stdin files.

Customizing APPC/MVS for MERVA Link USS
MERVA Link USS uses APPC/MVS to support the interconnection of MERVA
systems within an SNA network. The following MERVA Link USS programs use
APPC/MVS services for communication with MERVA Link programs in partner
systems:

EKATPI The MERVA Link USS Inbound SNA APPC transaction program
(TP). It is scheduled by the APPC/MVS transaction scheduler
ASCH in an APPC/MVS initiator to handle an inbound SNA
APPC conversation.

The characteristics of EKATPI are specified in an APPC/MVS TP
profile. The sample TP profile name is EKAR1. The APPC/MVS
transaction scheduler ASCH refers to this profile in order to start
program EKATPI.

EKATPO The MERVA Link USS Outbound SNA APPC transaction program
(TP). It runs as part of a MERVA Link USS process in an
APPC/MVS initiator (routing SNA APPC to SNA APPC) or in an
OS/390 USS process region (routing TCP/IP to SNA APPC).

APPC/MVS provides the following for customizing APPC/MVS resources:
v An inbound APPC/MVS transaction program (TP) is defined in an APPC/MVS

TP profile. The TP profile contains all parameters that are necessary to start the
transaction program in an OS/390 region.

v An APPC/MVS side information profile defines an SNA APPC partner TP. It is
the means by which an outbound TP identifies its partner TP.

APPC/MVS TP Profile for MERVA Link USS
The MERVA Link USS receiving transaction program (TP) that handles inbound
messages in the OS/390 system must be defined in an APPC/MVS TP profile. The
most important information in an APPC/MVS TP profile is the OS/390 JCL to
schedule the MERVA Link USS inbound TP ekatpi in an APPC/MVS initiator.

//........ JOB
//*---
//* EKAACS EXECUTION IN OS/390 MVS ENVIRONMENT
//*---
//EKAACS EXEC PGM=EKAACS,REGION=4M,
// PARM='//u/merva1 s v'
//STEPLIB DD DSN=hlq.SDSLLIB,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD *

A1 a1user a1pswd
W1 W1USER W1PSWD

/*
//

Figure 128. Sample OS/390 ACS Batch Job

256 Customization Guide

APPC/MVS and MERVA Link USS provide the following methods for running the
MERVA Link USS inbound TP:
v Execute EKATPI from a PDSE
v Invoke BPXBATCH to execute ekatpi from the HFS
v Invoke BPXBATCH to execute an ekatpi shell script

The methods are explained and samples are shown in the following sections. The
sample profile names are EKARP1, EKARH1, and EKARS1. EKAR1 is used
elsewhere in this book as the sample MERVA Link USS TP profile name.

Running EKATPI as a PDSE Member (EKARP1)
The MERVA Link USS inbound TP ekatpi can reside in an OS/390 PDSE
(Partitioned Data Set Extended), also called a program library. The TP name in a
PDSE is EKATPI.

When APPC/MVS schedules a TP from a PDSE, the started transaction does not
run in a USS environment initially. So, the TP profile and the TP itself must define
the mandatory USS environment variables.

Sample JCL in a TP profile for MERVA Link USS (EKARP1) that executes EKATPI
as a PDSE Member is shown below.

The sample TP profile in Figure 129 defines the MERVA Link USS receiving TP that
is associated with MERVA USS instance 1. It can receive messages from all kinds of
MERVA Link partner systems.

The format and content of the JOB statements depends on requirements of the
OS/390 installation:
v The statement //EKAR1 EXEC starts the job step and identifies the program to be

run (EKATPI). Parameters must be passed to EKATPI as follows:
– The first slash (/) identifies the end of the runtime options (they are empty in

this example).
– The string /u/merva1 is the first program parameter (arg1), which specifies the

name of the directory containing the MERVA USS instance.
– The string TZ=CET-1 is the second program parameter (arg2), which specifies

the local time-zone in the format of the corresponding OS/390 USS
environment variable. If this parameter is missing or incorrect, the timestamps
shown in MERVA Link USS processing traces might be incorrect.

v The statement STEPLIB DD identifies the location of the executable MERVA Link
inbound TP. Program EKATPI resides in an OS/390 program library (PDSE).

v The statement SYSPRINT DD defines the standard output file (stdout) to be used
by EKATPI. It is an optional statement. Normally, data is not written to stdout.

TP name: EKARP1
Level : SYSTEM ID . . . :

******************************* Top of Data ***************************
//xxxxxxx JOB xxxxxxxxxxxxxxxxxxxxxxxxxx
//EKAR1 EXEC PGM=EKATPI,
// PARM='//u/merva1 TZ=CET-1 '
//STEPLIB DD DSN=hlq.SDSLLIB,DISP=SHR
//SYSPRINT DD DSN=hlq.STDOUT,DISP=SHR
****************************** Bottom of Data *************************

Figure 129. Sample APPC/MVS TP Profile EKARP1

Chapter 7. The MERVA Link for Unix System Services (USS) 257

Running EKATPI as an HFS Program (EKARH1)
The MERVA Link USS inbound TP ekatpi can reside in an HFS directory, for
example, /usr/lpp/merva/bin/, and be executed in that format. However, an HFS
executable cannot be called directly in OS/390 JCL. Instead, the OS/390 utility
BPXBATCH must be invoked to call the HFS program.

BPXBATCH establishes a USS environment before it calls an HFS program. The
USS environment variables required by the MERVA Link USS TP must be provided
in the BPXBATCH parameter (PARM=).

Sample JCL in a TP profile for MERVA Link USS (EKARH1) that executes EKATPI
as an HFS program is shown below.

The sample TP profile in Figure 130 defines the MERVA Link USS receiving TP that
is associated with MERVA USS instance 1.

The format and content of the JOB statements depends on the requirements of the
OS/390 installation:
v The statement //EKAR1 EXEC starts the job step and identifies the program to be

executed (BPXBATCH). Parameters must be passed to BPXBATCH as follows:
– PGM must be specified to identify the executable as an HFS program.
– The string /usr/lpp/merva/bin/ekatpi is the fully-qualified name of the HFS

program to be called by BPXBATCH.
– In this example, the MERVA Link USS DLLs are assumed to be contained in

the directory /usr/lpp/merva/lib. The program ekatpi sets this LIBPATH
automatically based on the path specified in the fully-qualified name of the
HFS program.

– Parameters for ekatpi can follow the program path name. If the MERVA USS
instance directory is not specified, as in this example, it must be specified in
an environment file (STDENV).

v The statement STDENV DD identifies the HFS file containing the OS/390 USS
environment variables that must be set by BPXBATCH before the HFS program
is called. Specifying the mandatory MERVA USS instance directory and other
environment variables in STDENV is a more flexible way to customize the
ekatpi environment.
A sample environment file for the MERVA Link USS inbound TP ekatpi is:
MERVA_DIR=/u/merva1
TZ=CET-1

TP name: EKARH1
Level : SYSTEM ID . . . :
******************************* Top of Data ***************************
//xxxxxxx JOB xxxxxxxxxxxxxxxxxxxxxxxxxx
//EKAR1 EXEC PGM=BPXBATCH,
// PARM='PGM /usr/lpp/merva/bin/ekatpi'
//STDENV DD PATH='/u/merva1/cmd/ekatpi.env',PATHOPTS=ORDONLY
//STDOUT DD PATH='/u/merva1/cmd/ekatpi.out',
// PATHOPTS=(OWRONLY,OCREAT),PATHMODE=SIRWXU
****************************** Bottom of Data *************************

Figure 130. Sample APPC/MVS TP Profile EKARH1

258 Customization Guide

The environment variables are set by BPXBATCH as specified in the
environment file. A blank line results in an empty environment variable. Variable
symbols, such as $LIBPATH, are used as specified rather than expanded as in a
shell script.

v The statement STDOUT DD defines the standard output file (stdout) to be used by
EKATPI. It is an optional statement. Error information can be written to stdout if
the MERVA Link inbound TP cannot be successfully started. Normally, data is
not written to stdout.

Running EKATPI as a Shell Script (EKARS1)
The MERVA Link USS inbound TP ekatpi can reside in an HFS directory, for
example, /usr/lpp/merva/bin/, and be executed as part of an OS/390 USS shell
script. The shell script sets up the required USS environment before the HFS
program is called.

An OS/390 USS shell script residing in the HFS cannot be called directly in
OS/390 JCL. The OS/390 utility BPXBATCH must be used to set up an
environment to run an HFS executable, and invoke the shell script.

BPXBATCH can establish a USS environment that corresponds to a USS user’s
interactive shell environment before it runs a shell script. The USS environment
variables required by the MERVA Link USS TP can already be part of this
environment.

Sample JCL in a TP profile for MERVA Link USS (EKARS1) that runs EKATPI as
part of a shell script is shown below.

The sample TP profile in Figure 131 defines the MERVA Link USS receiving TP that
is associated with MERVA USS instance 1. It can receive messages from all kinds of
MERVA Link partner systems.

The format and content of the JOB statements depends on requirements of the
OS/390 installation:
v The statement //EKAR1 EXEC starts the job step and identifies the program to be

run by BPXBATCH. No parameters are passed to BPXBATCH, so the
BPXBATCH default parameters apply.

v The statement STDIN DD identifies the shell script to be executed by BPXBATCH.
A sample shell script for the MERVA Link USS inbound TP ekatpi is:
export MERVA_DIR=/u/merva1
export TZ=CET-1
/usr/lpp/merva/bin/ekatpi

Use any text editor to create and update the shell script, and ensure that it can
be executed after it is created.

TP name: EKARS1
Level : SYSTEM ID . . . :

******************************* Top of Data ***************************
//xxxxxxx JOB xxxxxxxxxxxxxxxxxxxxxxxxxx
//EKAR1 EXEC PGM=BPXBATCH
//STDIN DD PATH='/u/merva1/cmd/ekatpi.cmd',PATHOPTS=ORDONLY
****************************** Bottom of Data *************************

Figure 131. Sample APPC/MVS TP Profile EKARS1

Chapter 7. The MERVA Link for Unix System Services (USS) 259

v Because the MERVA Link USS inbound TP must run in the foreground of the
USS shell that executes this script, the line calling ekatpi must not end with an
ampersand (&). The inbound APPC/MVS conversation cannot be connected to
the inbound TP if it runs in the background.

v In this example, the MERVA Link USS DLLs are assumed to be contained in the
directory /usr/lpp/merva/lib. The program ekatpi sets this LIBPATH
automatically based on the path specified for ekatpi in the shell script.

APPC/MVS Side Information for MERVA Link USS
The MERVA Link receiving processes in the partner LUs must be defined in
APPC/MVS Side Information. The name of a Side Information profile is also called
a Symbolic Destination Name. An APPC/MVS Side Information profile contains
the parameters TP Name, Mode Name, and Partner LU.

The TP Name identifies the MERVA Link receiving process in the partner system.
The sample MERVA Link TP names are:

EKAR MERVA Link CICS and IMS (APPC/MVS)

EKARI510 MERVA Link APPC/IMS

EKAR1 MERVA Link AIX and USS

EKAOSVR MERVA Link OS/2

This parameter can be dynamically overwritten by the partner TP name parameter
in the MERVA Link USS partner node definition.

The Mode Name specifies the VTAM logon mode to be used for LU-LU sessions to
the partner system. This mode must be defined in the local VTAM system and in
the partner SNA node.

The Partner LU must specify the LU 6.2 that represents the partner system.

SNA APPC Conversation Security
Cooperative processing allows application programs to establish communications
with partner programs on other systems, and to share work, data, and services
between systems and across networks. This ability to access other programs and all
the resources at their disposal poses special security considerations for installations
that use cooperative processing.

In a client-server environment it is the server that sets the conversation security
requirements for a conversation with a specific client (or for all clients). A client
must be aware of the server’s security requirements, and must provide the
appropriate access security information.

MERVA Link USS can be considered as a client when it allocates a conversation to
a partner system to send messages to a partner application, the server. MERVA
Link USS can be considered as a server when it accepts an inbound conversation
from a partner system to receive messages.

For more information about SNA APPC conversation security, refer to the
appropriate documentation in the OS/390 library.

260 Customization Guide

Customizing TCP/IP for MERVA Link USS
TCP/IP is the communication method most often used in a network of
interconnected UNIX® hosts. A set of hosts that is interconnected by TCP/IP is
called an internet. MERVA Link USS can execute in an OS/390 USS host that is
part of an internet, and use TCP/IP services to send and receive messages. These
services must be customized to support MERVA Link USS.

TCP/IP customization for MERVA Link USS must be provided in:
v TCP/IP Hosts Table (/etc/hosts or HOSTS.LOCAL)
v TCP/IP Client Network Services (/etc/services)
v TCP/IP InetD Configuration (/etc/inetd.conf)

OS/390 TCP/IP can be customized only by authorized system administrators, for
example, OS/390 USS root users with user ID 0 (zero).

Hosts Table (/etc/hosts or HOSTS.LOCAL)
Every partner host used by MERVA Link as a partner system must be defined in
the TCP/IP network by its host name. Usually, a name server is available that can
map a partner host name to the applicable TCP/IP address.

If a name server is not available, or if you do not want to use the services of a
name server for MERVA Link partner hosts, you must define the partner hosts in
the applicable Hosts Table of your local OS/390 USS system, for example,
/etc/hosts. For more information, refer to OS/390 USS TCP/IP documentation or
contact your OS/390 USS system administrator.

Client Network Services (/etc/services)
The link between a TCP/IP port number and a service is established in an entry in
the TCP/IP services file. This entry is represented by a text line in the file
/etc/services. An authorized user can edit this file to create and update a TCP/IP
service entry. The sample TCP/IP service entry for the MERVA Link USS message
transfer service reads:
ekamsg1 7110/tcp # MERVA Link Messaging Service

Internet Daemon Configuration (/etc/inetd.conf)
A TCP/IP service supported (scheduled) by the OS/390 Internet Superserver
(InetD) is defined in the InetD configration in the HFS file /etc/inetd.conf. A
TCP/IP service supported by InetD is also called an InetD subserver. The
parameters of an InetD subserver must be specified in its InetD configuration
entry. This entry is represented by a text line in the file /etc/inetd.conf. An
authorized user can edit this file to create and update an InetD subserver entry.

The MERVA Link USS InetD subserver program ekatci requires a set of USS
environment variables for correct operation. The environment variable for the
MERVA instance directory (MERVA_DIR) identifies the MERVA USS instance. The
LIBPATH environment variable identifies the location of the MERVA USS Dynamic
Link Libraries (DLLs).

A LIBPATH is not set by default when ekatci is called in the OS/390 USS
environment. If ekatci is called from a directory with the name bin (for example
/usr/lpp/merva/bin), ekatci sets the LIBPATH to the corresponding lib directory

Chapter 7. The MERVA Link for Unix System Services (USS) 261

(for example /usr/lpp/merva/lib). If not, the LIBPATH must be set to the directory
containing the MERVA USS DLLs before ekatci is called.

There are two techniques for setting up the environment for the MERVA Link USS
InetD subserver, and the environment for a direct and an indirect call of program
EKATCI. The content of the InetD subserver entry for the MERVA Link USS
message transfer service depends on the technique used.

Direct Call of EKATCI
When program ekatci must be directly called by InetD:
v Program ekatci must be called out of a /bin/ directory that has a corresponding

/lib/ directory. The /lib/ directory must contain the MERVA USS DLLs.
v The name of the MERVA USS instance directory must be specified as the first

program parameter.

The sample InetD Subserver entry for a directly called MERVA Link USS message
transfer service reads:
ekamsg1 stream tcp nowait merva1 /usr/lpp/merva/bin/ekatci ekatci /u/merva1

The InetD subserver is called out of the bin subdirectory of the MERVA USS
installation directory /usr/lpp/merva. The PATH environment variable is therefore
set by InetD to PATH=/usr/lpp/merva/bin. The InetD subserver program ekatci
expects to find its DLLs in the corresponding lib directory. The LIBPATH
environment variable is therefore set by ekatci to LIBPATH=/usr/lpp/merva/lib.

InetD passes the subserver name (ekatci in this example) as program name
(arg[0]) to the called program. The called program does not get the fully-qualified
program path name as an argument.

The first program argument (/u/merva1 in this example) is used by program ekatci
to set the MERVA USS instance directory environment variable to
MERVA_DIR=/u/merva1.

A timezone parameter, for example TZ=CET-1, can be specified as second program
argument. It tells ekatci to set the time zone environment variable as specified in
that parameter. This parameter can be used to adjust the date/time displayed in a
receiving process trace.

Indirect Call of EKATCI
Program ekatci can be called indirectly by InetD via a USS shell script if the
environment setup provided by ekatci does not meet the requirements of the
MERVA USS installation. In this case, InetD starts a USS shell (/bin/sh). The shell
process executes a shell script, and the shell script sets up an environment and
calls program ekatci.

The shell script can provide the complete set of environment variables required by
program ekatci. As an alternative, it may specify a subset that enables ekatci to do
the rest.

The contents of the sample InetD subserver entry for an indirectly called MERVA
Link USS message transfer service are:
ekamsg1 stream tcp nowait merva1 /bin/sh ekatci /u/merva1/cmd/ekatci.cmd

262 Customization Guide

The InetD subserver, a USS shell, is called from the /bin directory. The PATH
environment variable is therefore set by InetD to PATH=/bin. This directory has no
meaning for ekatci, and cannot be used to find the location of the MERVA USS
DLLs.

InetD passes the full path name of the shell script (in this example,
/u/merva1/cmd/ekatci.cmd) to the USS shell and the shell executes the script. The
contents of the sample shell script ekatci.cmd are:
export MERVA_DIR=/u/merva1
/usr/lpp/merva/bin/ekatci

The shell process calls ekatci from the bin subdirectory of the MERVA USS
installation directory /usr/lpp/merva. The shell sets the program path environment
variable _ to _=/usr/lpp/merva/bin/ekatci. The program ekatci expects to find its
DLLs in the corresponding lib subdirectory, so it sets the LIBPATH environment
variable to LIBPATH=/usr/lpp/merva/lib.

Refreshing the InetD Process
A modified InetD configuration becomes automatically active when the InetD
process is started again. To activate a modification immediately, InetD must be
asked to refresh its configuration by sending a signal (SIGHUP) to the InetD
process:
1. To find the InetD process_id, enter:

ps -e | grep inetd

2. To send a SIGHUP to the InetD process, enter:
kill -1 process_id

where process_id is the ID returned from the previous ps command. The
parameter -1 of the kill commands indicates that the signal is a SIGHUP.

Chapter 7. The MERVA Link for Unix System Services (USS) 263

264 Customization Guide

Chapter 8. MERVA-to-MERVA Financial Message Transfer/ESA
(FMT/ESA)

MERVA-to-MERVA Financial Message Transfer/ESA (FMT/ESA) uses the
capabilities of MERVA Link or MERVA-MQI Attachment to transfer SWIFT
messages between two MERVA ESA systems in a way similar to the way
MERVA ESA transfers messages via the SWIFT network.

FMT/ESA:
v Prepares SWIFT input messages for a follow-on transfer
v Requests that MERVA Link or MERVA-MQI Attachment transfer the messages

from the sending to the receiving MERVA ESA system (messages can be
transmitted either in SWIFT format or MERVA ESA queue format)

v Transforms the received SWIFT input messages to SWIFT output messages
v Routes (or lets MERVA Link or MERVA-MQI Attachment route) the output

messages to target queues
v Provides a SWIFT acknowledgment for the messages transmitted from the

sending MERVA ESA system (the acknowledgment may be generated either in
the sending or in the receiving MERVA ESA system)

v Provides a SWIFT delivery notification (message type 011) (if requested by a
received SWIFT input message and the customer)

v Journals SWIFT input and output messages and their acknowledgments
v Authenticates SWIFT input and output messages, if this is requested by the

customer
v Checks SWIFT input messages (if using MERVA Link or MERVA-MQI

Attachment) and output messages (only if using MERVA-MQI Attachment), if
this is requested by the customer

When using MERVA Link, and when there is a message recovery for an inoperable
MERVA Link ASP using the MERVA Link RECOVER command, FMT/ESA:
v Appends a PDE trailer generated by FMT/ESA to a SWIFT input message that

can be routed to a SWIFT ready queue
v Appends a PDE trailer generated by the SWIFT Link to a SWIFT input message

before MERVA Link transfers the message to the receiving MERVA ESA

When using MERVA-MQI Attachment, a PDE trailer does not need to be
appended, because, in contrast with the MERVA Link RECOVER command,
messages are not copied from the MERVA control queue during recovery.

You can also set up FMT/ESA to run on a single MERVA ESA system. This might
be of interest for an installation that has one instance of MERVA ESA serving more
than one bank, and where these banks currently exchange messages among each
other via the SWIFT network. By using FMT/ESA, messages and
acknowledgments are routed from the sender to the recipient and back to the
sender without ever leaving the MERVA ESA system, even though they look and
behave exactly like messages sent and received via the SWIFT network. This is a
less expensive way to exchange messages.

© Copyright IBM Corp. 1987, 2001 265

|
|
|
|

|
|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|
|
|
|
|
|

To do this using MERVA Link, customize the back-to-back (BTB) environment as
described in “Customizing a Synchronous Back-to-Back Test Environment” on
page 193, and in the MERVA for ESA Installation Guide. To do this using
MERVA-MQI Attachment, customize the process table as described in the MERVA
for ESA Installation Guide.

FMT/ESA can be run in all environments supported by MERVA ESA.

Using FMT/ESA with MERVA Link
This section explains the functions provided by FMT/ESA and describes a sample
scenario to give you an idea of how the functions can be used in two connected
MERVA ESA systems using MERVA Link.

FMT/ESA Message Flow with MERVA Link
You have two options for acknowledging a SWIFT input message in the sending
MERVA ESA system. Each option influences the way messages are passed within
and between the two MERVA ESA systems.
v Option 1: generate the acknowledgment in the sending MERVA ESA.

This option is highly recommended, because it avoids the need to send back
acknowledgments from the receiving MERVA ESA, thereby increasing
throughput.
An acknowledgment is provided only for a SWIFT input message that was
transformed and properly stored in a queue in the receiving MERVA ESA as:
– A SWIFT delivery notification (if requested by the SWIFT input message)
– Another SWIFT output message (if a delivery notification was not requested)

MERVA Link indicates this by a proprietary confirmation and FMT/ESA reacts
upon it.

v Option 2: generate the acknowledgment in the receiving MERVA ESA.
With this option you have full control over when to send back the
acknowledgment to the sending MERVA ESA:
– MERVA Link routes the acknowledged SWIFT input message to a queue for

received messages and to the MERVA Link control queue.
– You process the data in the receiving MERVA ESA according to your needs.
– You send back the acknowledgment.

Some examples of times you want to send a delayed or immediate
acknowledgment are:
– When you want to store the generated SWIFT output message in a database

that is not controlled by MERVA ESA.
In such a case, only after a message has been stored in the database is it
considered to have been successfully received. Your application must route
the acknowledged SWIFT input message from the queue for received
messages to a MERVA Link send queue. When FMT/ESA retrieves the
acknowledged SWIFT input message so that it can send an acknowledgment
to the sending MERVA ESA, it discards the generated SWIFT output message
from the receiving MERVA ESA by routing it to a MERVA ESA dummy
queue, provided that the appropriate routing table is set up accordingly.

– When you want to modify or replace the prepared acknowledgment in the
transmitted SWIFT input message.
The acknowledgment is contained in the MERVA ESA TOF field MSGACK.
The modified acknowledgment is sent back to the sending MERVA ESA.

266 Customization Guide

|
|
|
|
|

– When you want to add one or more trailers to the transmitted SWIFT input
message.
Trailers can be stored in the MERVA ESA TOF field SWTRAIL in different
data areas. The added trailers are sent back to the originally sending
MERVA ESA.

– When you want to inform the operator of the MERVA Link in the sending
MERVA ESA of errors detected by FMT/ESA (for example, during testing).
FMT/ESA reports an error in the TOF field MSGACK. However, by means of
an appropriate routing table, you can override the chosen option and prevent
MERVA Link from sending back to the sending MERVA ESA a transmitted
SWIFT input message containing an error message in field MSGACK.

In “Customizing MERVA Link for Use with FMT/ESA” on page 286 you find the
description of how you can request the appropriate acknowledgment generation.

Acknowledgment and Delivery Notification
A SWIFT input message is first acknowledged to the sender before a delivery
notification informs the sender that the corresponding SWIFT output message was
successfully stored in the receiving MERVA ESA. This is independent of where the
acknowledgment is generated (in the sending or receiving MERVA ESA).

You have full control over when to send back the delivery notification to the
sending MERVA ESA. You can process the SWIFT output message in the receiving
MERVA ESA before you send back the delivery notification, but the nature of this
processing depends on where the acknowledgment is generated:
v If it is generated in the sending MERVA ESA:

1. MERVA Link routes the delivery notification message to a queue for received
messages and to the MERVA Link control queue. After successful routing, the
acknowledgment is generated in the sending MERVA ESA.

2. You process the SWIFT output message in the receiving MERVA ESA
according to your needs.
FMT/ESA stores the SWIFT output messages in a dedicated queue, the ISN
control queue. You retrieve the SWIFT output message from this queue using
the TOF field EKAAMSID as KEY2. EKAAMSID is the MERVA Link IAM
message identifier. You determine the contents of EKAAMSID by scanning
the queue for received messages that contains the delivery notifications. Each
delivery notification is associated with a SWIFT output message by field
EKAAMSID.

3. You send back the delivery notification to the sending MERVA ESA.
v If it is generated in the receiving MERVA ESA, FMT/ESA stores both the SWIFT

output messages and the delivery notifications in the ISN control queue of the
receiving MERVA ESA:
1. You have to decide how to handle the generated acknowledgment. You can

send it back immediately to the sending MERVA ESA, or you can do some
other processing before you send it back as described above. However, the
acknowledgment has to be sent back prior to the delivery notification.
When you send it back immediately, also route the acknowledged SWIFT
input message to a queue for received messages and to the MERVA Link
control queue. This is necessary for the association with the SWIFT output
message described in the next step.

Note: When the acknowledgment is sent back, FMT/ESA routes the SWIFT
output message and the delivery notification to appropriate target
queues. If the SWIFT output message or the delivery notification need

Chapter 8. MERVA-to-MERVA Financial Message Transfer/ESA (FMT/ESA) 267

further processing, their target queues have to be defined in the
MERVA ESA Function Table with field EKAAMSID as KEY1 or KEY2.

2. You process the SWIFT output message in the receiving MERVA ESA
according to your needs. During processing, you have to save the contents of
the field EKAAMSID.
You retrieve the SWIFT output message from a queue using field
EKAAMSID as KEY2 (or KEY1) depending on the definition in the
MERVA ESA Function Table. You determine the contents of EKAAMSID by
scanning the queue for received messages that contains the acknowledged
SWIFT input messages. Each acknowledged SWIFT input message is
associated with a SWIFT output message by field EKAAMSID.

3. You send back the delivery notification to the sending MERVA ESA.
Before you can retrieve the associated delivery notification from a queue you
have to modify field EKAAMSID saved in the previous step.
The saved EKAAMSID has the following structure:

Byte01 Byte02 Byte03 Byte04 Byte15 Byte16
|--------|--------|--------|--------|--------|--------|--------|

The modified EKAAMSID must have the following structure:
Byte16 Byte01 Byte02 Byte03 Byte14 Byte15

|--------|--------|--------|--------|--------|--------|--------|

Generating an Acknowledgment and Delivery Notification
Figure 132 shows the message flow when an acknowledgment is generated in the
sending MERVA ESA.

Note: The following comments contain information that is useful when you want
to write your own user exit that calls FMT/ESA. For a detailed description

Figure 132. SWIFT Acknowledgment Generated at Message Sending Side (MERVA A)

268 Customization Guide

of the FMT/ESA activities refer to Table 10 on page 294 in “Calling
FMT/ESA from an MFS User Exit” on page 291.

Notes:

[1] A SWIFT input message is stored in one of the three MERVA Link send
queues. It is the responsibility of either the data creation process within
MERVA ESA or of an application outside MERVA ESA to put the message
in a MERVA Link send queue.

[2] FMT/ESA completes and processes the input message passed from
MERVA Link. FMT/ESA does the following:
1. Inserts an Input Sequence Number (ISN) into the message
2. Checks the SWIFT input message, if requested by the customer
3. Authenticates the financial application (FIN) message, if requested by

the customer
4. Journals the message

Deviation from SWIFT message protocol
The Session Number is always 0 when a SWIFT input message is
prepared by FMT/ESA and transmitted via MERVA Link rather than
over the SWIFT network. This may be used in routing tables to
distinguish the messages according to the transmission media.

[3] MERVA Link takes the completed SWIFT input message and sends it to the
partner MERVA Link in MERVA B. In a dedicated queue, the ACK Wait
Queue, the input message is stored by MERVA Link, until the
acknowledgment can be provided by FMT/ESA in MERVA A.

[4] MERVA Link in MERVA B passes the received input message to
FMT/ESA. FMT/ESA does the following:
1. Transforms the input message to a SWIFT output message
2. Inserts an output sequence number (OSN) into the output message
3. Authenticates the financial application (FIN) output message if

requested by the customer
4. Journals the output message
5. Creates an acknowledgment for the output message and journals it
6. Writes the output message temporarily to a dedicated queue, the ISN

control queue, if a delivery notification is to be created
7. Creates a delivery notification if requested by the input message and by

the customer
8. Passes either the delivery notification or the output message to MERVA

Link

The next items (5 to 9) are specific to the case in which a delivery notification is to
be created:

[5] MERVA Link routes the delivery notification to one of the three MERVA
Link send queues and to the MERVA Link control queue. The logic is
defined in a routing table associated with the MERVA Link control queue.

This initiates the sending back of the delivery notification.

Chapter 8. MERVA-to-MERVA Financial Message Transfer/ESA (FMT/ESA) 269

Note: If you want to process the SWIFT output message before you send
back the delivery notification, refer to “Acknowledgment and
Delivery Notification” on page 267.

After successful routing, MERVA Link confirms the proper receipt of the
delivery notification to MERVA Link in MERVA A.

Processing of the acknowledged SWIFT input message:

[8] After receipt of the confirmation from MERVA Link in MERVA B, MERVA
Link in MERVA A passes the 'waiting' input message (refer to item 3) to
FMT/ESA. FMT/ESA does the following:
1. Generates the acknowledgment and writes it to the MERVA ESA TOF

field MSGACK thereby creating an acknowledged SWIFT input
message

2. Journals the acknowledgment
3. Passes the acknowledged input message to MERVA Link

[9] MERVA Link routes the acknowledged SWIFT input message to the target
queue or queues according to the logic of a routing table associated with
the MERVA Link control queue.

Processing the delivery notification:

[6] FMT/ESA determines that the message passed from MERVA Link is a
delivery notification. Bypassing MERVA Link, it routes the SWIFT output
message from the ISN control queue (refer to item 4) to the target queue or
queues according to the logic of a routing table associated with the
MERVA Link control queue.

[7] MERVA Link sends the delivery notification to the partner MERVA Link in
MERVA A.

[8] MERVA Link in MERVA A passes the received delivery notification to
FMT/ESA. FMT/ESA does the following:
1. Inserts an output sequence number (OSN) into the delivery notification
2. Journals the delivery notification
3. Creates an acknowledgment for the delivery notification and journals it
4. Passes the delivery notification to MERVA Link

[9] MERVA Link routes the delivery notification to the target queue or queues
according to the logic of a routing table associated with the MERVA Link
control queue.

Figure 133 shows the message flow when an acknowledgment is generated in the
receiving MERVA ESA.

270 Customization Guide

Note: The following comments contain information that is useful when you want
to write your own user exit that calls FMT/ESA. For a detailed description
of the FMT/ESA activities refer to Table 10 on page 294 in “Calling
FMT/ESA from an MFS User Exit” on page 291.

Notes:

[1] A SWIFT input message is stored in one of the three MERVA Link send
queues. It is the responsibility either of the data creation process within
MERVA ESA or of an application outside MERVA ESA to put the message
in a MERVA Link send queue.

[2] FMT/ESA completes and processes the input message passed from
MERVA Link. FMT/ESA does the following:
1. Inserts an Input Sequence Number (ISN) into the message
2. Checks the SWIFT input message if requested by the customer
3. Authenticates the financial application (FIN) message if requested by

the customer
4. Journals the message

Deviation from SWIFT message protocol
The Session Number is always 0 when a SWIFT input message is
prepared by FMT/ESA and transmitted via MERVA Link rather than
over the SWIFT network. This may be used in routing tables to
distinguish the messages according to the transmission media.

[3] MERVA Link takes the completed SWIFT input message and sends it to the
partner MERVA Link in MERVA B. In a dedicated queue, the ACK Wait

Figure 133. SWIFT Acknowledgment Generated at Message Receiving Side (MERVA B)

Chapter 8. MERVA-to-MERVA Financial Message Transfer/ESA (FMT/ESA) 271

Queue, the input message is stored by MERVA Link and waits for an
acknowledgment to come from MERVA B.

[4] MERVA Link in MERVA B passes the received input message to
FMT/ESA. FMT/ESA does the following:
1. Transforms the input message to a SWIFT output message
2. Inserts an output sequence number (OSN) into the output message
3. Authenticates the financial application (FIN) output message if

requested by the customer
4. Journals the output message
5. Creates an acknowledgment for the output message and journals it
6. Writes the output message temporarily to a dedicated queue, the ISN

control queue
7. Creates the delivery notification if requested by the input message and

writes it temporarily to a dedicated queue, the ISN control queue
8. Creates an acknowledgment for the input message
9. Passes the acknowledged input message to MERVA Link

[5] MERVA Link routes the acknowledged and (optionally) authenticated
SWIFT input message (received from FMT/ESA, see item 4) to one of the
three MERVA Link send queues and to the MERVA Link control queue.
The logic is defined in a routing table associated with the MERVA Link
control queue.

This initiates the sending back of the acknowledgment.

Note: If you want to modify the acknowledgment or add trailers, or do
both, to the message (following the MAC trailer, if available):
1. Replace the MERVA Link send queue by another queue and

route the input message both to this queue and to the MERVA
Link control queue.

2. Make the modifications by means of your own application.
3. Route the modified message to a MERVA Link send queue only.

The next items (6 to 9) are specific to the case in which a delivery notification is to
be created:

[6] FMT/ESA determines that the message passed from MERVA Link contains
an acknowledgment. Bypassing MERVA Link, it routes:
v The SWIFT output message
v The delivery notification

from the ISN control queue (refer to item 4) to the target queue or queues
according to the logic of a routing table associated with the MERVA Link
control queue. For the delivery notification, one of the target queues must
be a MERVA Link send queue.

This initiates the sending back of the delivery notification.

Note: If you want to process the SWIFT output message before you send
back the delivery notification, refer to “Acknowledgment and
Delivery Notification” on page 267.

Then FMT/ESA indicates to MERVA Link that the acknowledgment and
the trailers are to be sent rather than the complete message.

272 Customization Guide

Processing of the acknowledgment and the trailers:

[7] MERVA Link takes the acknowledgment and the trailers and sends them to
the partner MERVA Link in MERVA A.

[8] MERVA Link in MERVA A passes the received acknowledgment, the
received trailers, and the 'waiting' input message (refer to item 3) to
FMT/ESA. FMT/ESA processes the passed data:
1. It writes the acknowledgment to the MERVA ESA TOF field MSGACK

thereby creating an acknowledged SWIFT input message.
2. If available, it writes the trailers to different data areas of the

MERVA ESA TOF field SWTRAIL.
3. It journals the acknowledgment.
4. It passes the acknowledged input message to MERVA Link.

[9] MERVA Link routes the acknowledged SWIFT input message to the target
queue or queues according to the logic of a routing table associated with
the MERVA Link control queue.

Processing the delivery notification:

[6] FMT/ESA determines that the message passed from MERVA Link is a
delivery notification. FMT/ESA passes the delivery notification to MERVA
Link.

[7] MERVA Link sends the delivery notification to the partner MERVA Link in
MERVA A.

[8] MERVA Link in MERVA A passes the received delivery notification to
FMT/ESA. FMT/ESA does the following:
1. Inserts an output sequence number (OSN) into the delivery notification
2. Journals the delivery notification
3. Creates an acknowledgment for the delivery notification and journals it
4. Passes the delivery notification to MERVA Link

[9] MERVA Link routes the delivery notification to the target queue or queues
according to the logic of a routing table associated with the MERVA Link
control queue.

Scenario Involving FMT/ESA with MERVA Link
In order to illustrate FMT/ESA, a sample scenario is provided. Its main
components are:
v A set of queues defined in the MERVA ESA Function Table.

A top frame MCB EKAETOP with the message type ETOP is provided for each
of these queues. It helps you to distinguish whether messages were transmitted
by FMT/ESA using MERVA Link or via the SWIFT network. This applies both
when you display and when you print messages.
If you prefer to display and print messages in the usual way, you only have to
replace message type ETOP in the Function Table parameter
'FRAME=(ETOP,0BOT)' by 'FRAME=(0TOP,0BOT)'.

v The routing table EKARTSND that determines the appropriate send queue of the
MERVA Link send queue cluster for prepared and authorized SWIFT input
messages.

v The routing table EKARTSIM that controls the distribution of successfully
received messages and handles errors occurred with sent or received messages.

Chapter 8. MERVA-to-MERVA Financial Message Transfer/ESA (FMT/ESA) 273

Queues for the FMT/ESA with MERVA Link Scenario
The usage of each queue is as follows:

EKASWDE0 Data entry

A SWIFT input message can be entered at the screen.

EKASWAI0 Message authorization

In the FMT/ESA scenario, each SWIFT input message will be
authorized.

Routing table EKARTSND is associated with EKASWAI0.

EKASWSND MERVA Link send queue

In this queue, all messages are stored that are ready to be sent to
the partner MERVA Link. This might be:
v SWIFT input messages with or without a SWIFT

acknowledgment, or with an error message. If available, the
acknowledgment or the error message is contained in the
MERVA ESA TOF field MSGACK.

v Generated delivery notifications.

EKASWVE0 Message verification

In this queue, those SWIFT input messages are collected which
cannot be sent to the partner MERVA Link due to an error detected
by FMT/ESA.

EKASWAWQ SWIFT acknowledgment wait queue

In this queue, the following SWIFT input messages are stored:
v Those for which the partner MERVA Link confirmed the

successful receipt
v Those for which the SWIFT acknowledgment is outstanding

EKASWACK SWIFT acknowledged messages queue

These messages could be successfully correlated with the SWIFT
acknowledgment.

Note: FMT/ESA always provides a positive acknowledgment. That
is, tag 451: is always followed by '0'.

EKASWDMY Dummy Queue

As usual in MERVA ESA, it is used to get rid of obsolete
messages. In the FMT/ESA scenario, this applies to:
v Confirmed MERVA Link status reports
v Received ('inbound') MERVA Link status reports, for which

FMT/ESA detects an error during processing. These status
reports were already routed by FMT/ESA to the local error
queue EKASWLEQ

EKASWSDO Accepted SWIFT output messages

This queue contains those SWIFT output messages for which a
SWIFT authentication was performed. The authentication result
was either successful or that the output message need not be
authenticated.

274 Customization Guide

EKASWAO0 SWIFT output messages with or without authentication, delivery
notifications

In this queue, those SWIFT output messages are stored that:
v Were authenticated with an unsuccessful result
v Were not authenticated, as the customer did not request the

authentication
v Are delivery notifications received from the partner MERVA Link

EKASWEMQ SWIFT Erroneous Messages Queue

A SWIFT input message was received by the partner MERVA Link
with a delivery return code > 0. Provided that FMT/ESA was able
to process the message despite the delivery error, you may find
both acknowledged SWIFT input messages (prepared for being
sent back to the originally sending MERVA ESA system) and
generated SWIFT output messages in this queue.

EKASWLEQ Local Error Queue

This queue holds the messages for which FMT/ESA detected an
error while doing one of the following:
v At the message sending side, while processing an inbound status

report
v At the message sending side, while processing a confirmed

message (the successful receipt in the partner MERVA Link has
been signalled)

v At the message receiving side, while processing a received
SWIFT input message (as an inbound application message)

EKASWREQ Remote Error Queue

This queue contains those messages for which FMT/ESA in the
partner MERVA Link detected an error during processing. The
error message contained in TOF field MSGACK, was sent back
from the receiving to the originally sending MERVA ESA system.

Remote errors can only be made visible:
v If the SWIFT acknowledgment generation by FMT/ESA in the

receiving MERVA ESA system was requested
v If this option was not overridden by the logic in routing table

EKARTSIM for FMT/ESA in the receiving MERVA ESA system

In addition to these application related queues, another three queues serving as
control queues are provided.

EKASIMCQ MERVA Link application control queue

Routing table EKARTSIM is associated with EKASIMCQ.

EKAISNCQ Input sequence number (ISN) control queue

This queue was introduced for FMT/ESA, and is used to
temporarily store a generated SWIFT output message or a
generated delivery notification. It contains one ISN for each
MERVA Link ASP (connection to a partner) that is part of
FMT/ESA. FMT/ESA increments and inserts the appropriate ISN
into each SWIFT input message that it processes for a specific ASP.

Chapter 8. MERVA-to-MERVA Financial Message Transfer/ESA (FMT/ESA) 275

If you request either of the following, this queue must also be
defined in the receiving MERVA ESA:
v The SWIFT acknowledgment generation in the receiving

MERVA ESA
v The processing of delivery notifications

This queue must be defined with two keys in the MERVA ESA
function table DSLFNTT:
v KEY1 represents the name of the ASP contained in the TOF field

EKAASP.
v KEY2 represents the MERVA Link IAM message identifier

contained in the TOF field EKAAMSID.

EKAOSNCQ Output sequence number (OSN) control queue

The second control queue introduced for FMT/ESA. It contains one
OSN incremented and inserted into each SWIFT output message or
delivery notification received by FMT/ESA.

For SWIFT output messages, the queue is required in the receiving
MERVA ESA system only. For delivery notifications, the queue is
also required in the sending MERVA ESA system.

Routing Table EKARTSIM
EKARTSIM is commonly used in FMT/ESA at the message sending and at the
message receiving side. The following items should be kept in mind when using
the routing table:
v EKARTSIM must be associated with the MERVA Link Application Control

Queue (here: EKASIMCQ) of the appropriate MERVA Link ASP at both sides.
v At the message receiving side, SWIFT output messages and delivery

notifications have message class 'LR', because they are generated from received
SWIFT input messages known by MERVA Link as inbound application
messages.
SWIFT output messages and delivery notifications can be routed either by
MERVA Link or by FMT/ESA depending on MERVA Link customization:
– If routed by MERVA Link, the MERVA Link Application Control Queue must

be an additional target queue. This is required by the MERVA Link Message
Integrity Protocol for all inbound messages.

– If routed by FMT/ESA, the MERVA Link Application Control Queue must not
be a target queue.

v At the message receiving side, a routing error is forced when the following
conditions are met:
– A SWIFT input message is successfully received with MERVA Link delivery

return code equal to '00'. The message class is 'LR'.
– FMT/ESA detects an error when it processes the message. It routes the

message to the local error queue EKASWLEQ.
– When FMT/ESA finishes processing, MERVA Link routes this message with

class 'LR'. According to its customization, the MERVA Link at the message
sending side requests the SWIFT acknowledgment to be generated at the
message sending side.

The routing error is forced by the following statements in EKARTSIM:

276 Customization Guide

IMSG DSLROUTE TYPE=TEST,COND=(ACKRQ,'0',EQ),TRUE=END
DSLROUTE TYPE=TEST,COND=(ACKRQ,'1',EQ),TRUE=END
.
.
.

END DSLROUTE TYPE=FINAL

ACKRQ = '0' or ACKRQ = '1' means that the SWIFT acknowledgment is to be
generated at the message sending side.

The forced routing error interrupts the message transmission between the two
MERVA Link partners. However, you can obtain specific information on the
error from the message in queue EKASWLEQ.

v Alternatively, the MERVA Link at the message sending side may have requested
that the message receiving side generate the SWIFT acknowledgment. If you do
not want the receiving side to send to the sending side the local error message it
generates when FMT/ESA processes a received SWIFT input message and an
error occurs, you can override this by activating (that is, by removing the
*---->>> from) the following statement in EKARTSIM:
*---->>> DSLROUTE TYPE=TEST,COND=(MSGACK,'{1:',EQ,SHORT),FALSE=END

.

.

.
END DSLROUTE TYPE=FINAL

After activation, the statement determines whether the TOF field MSGACK
contains a SWIFT acknowledgment, whose first three characters are '{1:'. If it is
not an acknowledgment, it is an error message. In this case a routing error is
forced. As with the previous example, the message transmission is interrupted.
All information, however, is available to you, as the erroneous message was
already routed to the local error queue EKASWLEQ.

v You must not specify parameter 'TARGET' in the routing table statement
'DSLROUTE TYPE=FINAL'. Errors in processing of a routing table are handled
by MERVA Link.

Forced Routing Error Indication
A routing error can be forced at the message receiving side only. It is dependent on
the logic in the routing table EKARTSIM associated with the MERVA Link control
queue (refer to “Routing Table EKARTSIM” on page 276). So it is your choice
whether you want to force a routing error.

A SWIFT input message was received with a delivery return code equal to '00'
contained in MERVA Link TOF field EKADELRC. During generation of the SWIFT
output message, FMT/ESA detected an error. The message was then routed:
1. By FMT/ESA, to the local error queue with message class 'IE'.
2. By MERVA Link, to a nonexistent target queue with message class 'LR'.

This forces a routing error, and the ASP becomes inoperable.

MERVA Link informs you of a routing error for a message which cannot be
received (class 'LR') with the following hexadecimal diagnostic codes which belong
to the category 'Receiving Process Error Diagnostic Information Type AS':

001A 0010 0044 0010

001A IM-ASPDU (application message) processing error.

0010 ROUTE message failed.

Chapter 8. MERVA-to-MERVA Financial Message Transfer/ESA (FMT/ESA) 277

0044 DSLQMGT return code 68 (decimal).

The MERVA ESA routing scanner (DSLRTNSC) indicated that no routing
target could be determined.

0010 DSLRTNSC reason code 16 (decimal).

Empty target list when final statement found.

Whenever you see these diagnostic codes, inspect the local error queue. If you find
messages in this queue, look at them and read the error message they contain. If
the error message starts with 'EKA8' it was issued by FMT/ESA. Other types of
error messages ('DWS...' or 'DSL...') were issued by other MERVA ESA components
under control of FMT/ESA. For more information, refer to MERVA for ESA
Messages and Codes.

MERVA Link Message Classes for FMT/ESA
There are four message classes that are reserved for FMT/ESA. Each message class
indicates an error situation found in four different processing stages of FMT/ESA.

The MERVA Link TOF field EKACLASS contains the 2-character message class
indicators:

Class Meaning

SE Error detected before a SWIFT input message was sent to the partner
MERVA Link. As a result, a complete SWIFT input message cannot be
generated.

In the FMT/ESA scenario, such a message is routed to the verification
queue EKASWVE0.

IE Error detected after a SWIFT input message was received in the partner
MERVA Link. As a result, a SWIFT output message cannot be generated.

In the FMT/ESA scenario, such a message is routed to the local error
queue EKASWLEQ at the message receiving side.

LE Error detected after the MERVA Link confirmation was received indicating
that a SWIFT input message was successfully received in the partner
MERVA Link. As a result, the SWIFT acknowledgment for the same SWIFT
input message contained in the acknowledgment wait queue EKASWAWQ
cannot be generated.

In the FMT/ESA scenario, such a message is routed to the local error
queue EKASWLEQ at the message sending side.

PE Error detected after a MERVA Link inbound status report was received.
The status report contains acknowledgment related data in the MERVA
Link TOF field EKARDATA:
v Either the SWIFT acknowledgment or an error message generated by

FMT/ESA or provided by a customer application in the receiving
MERVA ESA system.

v One or more trailers added to the SWIFT input message by a customer
application in the receiving MERVA ESA system.

As a result, the acknowledgment related data cannot be inserted into the
appropriate SWIFT input message contained in the acknowledgment wait
queue EKASWAWQ.

278 Customization Guide

In the FMT/ESA scenario, such a message is routed to the local error
queue EKASWLEQ at the message sending side.

FMT/ESA Scenario at the Message Sending Side
Figure 134 shows how messages are routed to different queues:
v Before the messages are transmitted by MERVA Link
v After messages or MERVA Link confirmations have been received from the

partner MERVA Link

When a message is moved to another queue without using a routing table, this is
shown by 'NEXT' at the arrows. It indicates that these queues have an entry in the
MERVA ESA Function Table, where the parameter 'NEXT' was specified.

Before MERVA Link can send a message, routing table EKARTSND is involved.
This is indicated by 'ROUTE'.

EKARTSND is responsible for the selection of a MERVA Link send queue. It is
activated after a message left the authorization queue EKASWAI0. In the
FMT/ESA scenario, the only send queue is EKASWSND. You may modify table
EKARTSND and add one or two send queues according to your needs.

Figure 134. MERVA-to-MERVA Financial Message Transfer/ESA Scenario at Message Sending Side (MERVA A)

Chapter 8. MERVA-to-MERVA Financial Message Transfer/ESA (FMT/ESA) 279

Routing table EKARTSIM contains the logic for message distribution to the other
queues. The main routing criterion is the message class represented in the TOF
field EKACLASS. In Figure 134 on page 279 this is shown by 'Class =' followed by
one to three message classes. Messages with one of these classes will be routed to
the same target queue. When a message class occurs for more than one target
queue, additional conditions are checked in order to determine the desired queue.

For example, consider a message of the class 'CF' (Confirmed). Such a message
may be routed to either of the three queues EKASWACK, EKASWAWQ, or
EKASWDMY. Look at routing table EKARTSIM, where messages with
CLASS = CF are treated:

Notes:

[1] The SWIFT message type represented in TOF field SWAHMT is checked. In
EKARTSIM, the field is called MTYPE. If MTYPE is equal to '011', this
indicates that a delivery notification application message was confirmed. A
confirmation for this application message is obsolete and will therefore be
discarded in the dummy queue EKASWDMY. MTYPE was not equal to
'011'. The MERVA Link receipt return code represented in TOF field
EKARECRC is checked. In EKARTSIM, the field is called RECRC.

[2] If RECRC is equal to '00', this indicates a confirmed MERVA Link status
report. A confirmed status report is obsolete and will therefore be
discarded in the dummy queue EKASWDMY. RECRC was not equal to
'00'. As FMT/ESA always sets a receipt return code of '00', this indicates
that the receipt return code is not available.

[3] If the first three characters contained in MSGACK are equal to '{1:', this
indicates an acknowledged SWIFT input message, as the SWIFT
acknowledgment starts with these unique characters. Therefore the
message will be routed to the acknowledged messages queue EKASWACK.
The first three characters in MSGACK were unequal to '{1:'. As a message
of class 'CF' never has an MSGACK field containing an error message, this
indicates that the confirmed SWIFT input message was not yet
acknowledged. Therefore the message will be routed to the
acknowledgment wait queue EKASWAWQ.

According to this example, you can inspect routing table EKARTSIM for details on
messages with other classes.

...

TSTCF DSLROUTE TYPE=TEST,COND=(CLASS,'CF',EQ),FALSE=TSTCA
*

DSLROUTE TYPE=TEST,COND=(MTYPE,'011',EQ),TRUE=SETDQ [1]
DSLROUTE TYPE=TEST,COND=(RECRC,'00',EQ),TRUE=SETDQ [2]
DSLROUTE TYPE=TEST,COND=(MSGACK,'{1:',EQ,SHORT),TRUE=SETACKCF [3]

*
DSLROUTE TYPE=SET,TARGET='EKASWAWQ',GOTO=END

SETACKCF DSLROUTE TYPE=SET,TARGET='EKASWACK',GOTO=END
SETDQ DSLROUTE TYPE=SET,TARGET='EKASWDMY',GOTO=END

...

280 Customization Guide

Appending a PDE Trailer
When a MERVA Link ASP becomes inoperable, you can use the MERVA Link
RECOVER command. This command provides a means to copy in-process (IP)
messages of an inoperable ASP in CLOSED-HOLD status to another queue that
may serve as a send queue of another transmission medium (for example, a SWIFT
Ready Queue).

Thus you can bypass the MERVA Link connection breakdown and send messages
over the SWIFT network to the receiving MERVA ESA. Before you can recover a
message via the RECOVER command, you set an inoperable ASP to status
CLOSED-HOLD. Enter the following commands on the MERVA Link control
panels:
v hold aspname

v aclose aspname

The ASP aspname is now in status 'CLOSED - HOLD'.
v recover aspname

A message that was recovered via the RECOVER command, has message class RC.
Figure 134 on page 279 shows that messages with class RC are routed to data entry
queue EKASWDE0. You can easily replace this target queue by a SWIFT Ready
Queue used in your installation.

Note: At the message receiving side, a special situation can occur: In addition to
the class RC, you also have to check for the SWIFT message type 011 in
your routing table. Messages of this type are delivery notifications. They
must not be routed to a SWIFT Ready Queue. You can route them to a
MERVA ESA dummy queue to discard them.

Different to other MERVA Link methods of message recovery, the RECOVER
command may cause messages to be received twice: first via the SWIFT network,
and then via MERVA Link after the ASP has become operational again. This is due
to the fact that a message remains as an in-process message in the MERVA Link
control queue after recovery.

MERVA Link indicates this to the receiver by adding the field EKAPDUPM
containing the characters 'PDM' to the message.

FMT/ESA provides this information according to the needs of the SWIFT protocol:
v It generates a PDE trailer and appends it to the SWIFT input message with class

'RC'.
v It uses the PDE trailer generated by the SWIFT Link and appends it to the

SWIFT input message that is about to be transferred via MERVA Link after the
ASP has become operational again.

Directing SWIFT Input Messages to the SWIFT Link
If you decide to send and receive SWIFT messages using FMT/ESA, you still have
the option to use the SWIFT Link for sending and receiving SWIFT messages via
the SWIFT network.

MERVA Link offers you a facility to use another transmission medium:
1. Set a MERVA Link sending ASP to status CLOSED-NOHOLD.
2. Route SWIFT input messages with message class RS.

Chapter 8. MERVA-to-MERVA Financial Message Transfer/ESA (FMT/ESA) 281

The AS status OPEN-NOHOLD is the initial and the normal AS status of an ASP.
To change this status to CLOSED-NOHOLD, enter the following commands on
the MERVA Link control panels:
v hold aspname

v aclose aspname

v astart aspname

The ASP aspname is now in status CLOSED-NOHOLD. The ASP routes messages
in its send queue cluster with message class RS immediately to a queue or to
queues specified by the routing table EKARTSIM associated with the application
control queue. It does not transmit these messages to the partner ASP.

Figure 134 on page 279 shows that messages with class RS are routed to data entry
queue EKASWDE0. With some additional logic in the routing table EKARTSIM,
you can direct the SWIFT GPA and FIN messages to the SWIFT link ready queues
as new target queues instead of to EKASWDE0.

The following excerpt from the MERVA ESA provided routing table DWSL1AI0
serves as an example for such a distribution logic. The appropriate routing table
statements may be included in the routing table EKARTSIM:

To reset the AS status to OPEN-NOHOLD, enter the following commands on the
MERVA Link control panels:

...

TSTRS DSLROUTE TYPE=TEST,COND=(CLASS,'RS',EQ),FALSE=TSTRI
**************** EXCERPT FROM ROUTING TABLE DWSL1AI0 ******************
* ROUTE CORRECT MESSAGES TO THE RESPECTIVE READY QUEUE
* DEFINE APPL FROM THE FIELD SWBHAPI
* (APPLICATION IDENTIFIER IN THE BASIC HEADER)
APPLIC DSLROUTE TYPE=DEFINE,FIELD=(APPL,SWBHAPI,,,,,VFIRST), *

EMPTY=VE0,NOTFND=VE0
*
* TEST FOR F OR A OR L

DSLROUTE TYPE=TEST,COND=(APPL,'F',EQ),TRUE=FIN
DSLROUTE TYPE=TEST,COND=(APPL,'A',EQ),TRUE=GPA
DSLROUTE TYPE=TEST,COND=(APPL,'L',EQ),TRUE=GPA,FALSE=VE0

*
* SET THE READY QUEUE FOR GPA
GPA DSLROUTE TYPE=SET,TARGET=('L1RGPAU'),GOTO=END
*
* DEFINE PRTY FROM THE FIELD SWAHIPY (PRIORITY OF APPL HEADER)
FIN DSLROUTE TYPE=DEFINE,FIELD=(PRTY,SWAHIPY,,,,,VFIRST), *

EMPTY=VE0,NOTFND=VE0
*
* TEST FOR N OR U OR S

DSLROUTE TYPE=TEST,COND=(PRTY,'N',EQ),TRUE=FINN
DSLROUTE TYPE=TEST,COND=(PRTY,'U',EQ),TRUE=FINU
DSLROUTE TYPE=TEST,COND=(PRTY,'S',EQ),TRUE=FINU,FALSE=VE0

*
* NORMAL READY QUEUE FOR FINANCIAL APPLICATION
FINN DSLROUTE TYPE=SET,TARGET=('L1RFINN'),GOTO=END
*
* URGENT READY QUEUE FOR FINANCIAL APPLICATION
FINU DSLROUTE TYPE=SET,TARGET=('L1RFINU'),GOTO=END
************* END OF EXCERPT FROM ROUTING TABLE DWSL1AI0 **************
TSTRI DSLROUTE TYPE=TEST,COND=(CLASS,'RI',EQ),FALSE=TSTIP

...

282 Customization Guide

v hold aspname

v aopen aspname

v astart aspname

The ASP aspname is now started and resumes message transmission to the partner
ASP.

FMT/ESA Scenario at the Message Receiving Side
Figure 135 shows how received SWIFT input messages are handled.

A received SWIFT input message is an inbound application message as seen by
MERVA Link, and has message class 'LR'. FMT/ESA transforms the input message
into a SWIFT output message. After successful transformation, a SWIFT
acknowledgment or a delivery notification is provided and sent back if requested
by the MERVA Link at the message sending side (SWIFT acknowledgment) or by
the received SWIFT input message (delivery notification).

In routing table EKARTSIM, the following distribution logic is provided (the
names enclosed in parentheses are the field names used in EKARTSIM):

A Either FMT/ESA or MERVA Link routes a SWIFT output message with
class 'LR' to queue EKASWSDO if the following conditions are met:
v The MERVA Link delivery return code (DELRC) is equal to '00'.
v The SWIFT input/output message identifier (IOID) is equal to 'O'.
v The SWIFT output message was authenticated, and the result was either

successful or indicated that an authentication was not required.

The MERVA Link Application Control Queue EKASIMCQ must be a target
queue if MERVA Link routes the output message.

The control queue must not be a target queue if FMT/ESA routes the
message.

Figure 135. FMT/ESA Scenario at Message Receiving Side (MERVA B)

Chapter 8. MERVA-to-MERVA Financial Message Transfer/ESA (FMT/ESA) 283

B Either FMT/ESA or MERVA Link routes a SWIFT output message with
class LR to queue EKASWAO0 if the following conditions are met:
v The MERVA Link delivery return code (DELRC) is equal to '00'.
v The SWIFT input/output message identifier (IOID) is equal to 'O'.
v The SWIFT output message was authenticated, and the result was

unsuccessful.
v The SWIFT output message was not authenticated, as the customer did

not request the authentication.

The MERVA Link Application Control Queue EKASIMCQ must be a target
queue if MERVA Link routes the output message.

The control queue must not be a target queue if FMT/ESA routes the
message.

C Either FMT/ESA or MERVA Link routes a SWIFT input message or a
SWIFT output message including a delivery notification with class 'LR' to
queue EKASWEMQ if the following condition is met:
v The MERVA Link delivery return code (DELRC) is greater than '00'.

The MERVA Link Application Control Queue EKASIMCQ must be a target
queue if MERVA Link routes either the SWIFT input or the SWIFT output
message.

The control queue must not be a target queue if FMT/ESA routes either
the SWIFT input or the SWIFT output message.

Class = IE
FMT/ESA detected an error during processing of a received SWIFT input
message and routes the message to queue EKASWLEQ assigning the new
message class 'IE'.

D MERVA Link routes a SWIFT input message with class LR and forces a
routing error if the following conditions are met:
v FMT/ESA detected an error during processing of a received SWIFT

input message and routed the message to queue EKASWLEQ.
v The MERVA Link delivery return code (DELRC) is equal to '00'.
v The SWIFT input/output message identifier (IOID) is equal to 'I'.
v The MERVA Link request for ACK (ACKRQ) is either equal to '0' or

equal to '1' indicating that you requested the SWIFT acknowledgment to
be generated at the message sending side.

MERVA Link routes a delivery notification with class LR and forces a
routing error if the following conditions are met:
v FMT/ESA detected an error during processing of a received SWIFT

input message and routed the message to queue EKASWLEQ.
v The MERVA Link delivery return code (DELRC) is equal to '00'.
v The SWIFT input/output message identifier (IOID) is equal to 'O'.
v The message acknowledgment field (MSGACK) is available.

The routing error interrupts the message transmission. You find a specific
error message in TOF field MSGACK, when you inspect the appropriate
message in queue EKASWLEQ.

284 Customization Guide

The next items show how a generated SWIFT acknowledgment or an error
message, which is contained in TOF field MSGACK, or a delivery notification can
be sent back to FMT/ESA at the message sending side. This applies only when you
requested the acknowledgment to be generated at the message receiving side or
when the received SWIFT input message requested a delivery notification.

1 MERVA Link routes a SWIFT input message containing field MSGACK to
the MERVA Link send queue EKASWSND if the following conditions are
met:
v The MERVA Link delivery return code (DELRC) is equal to '00'.
v The SWIFT input/output message identifier (IOID) is equal to 'I'.
v The MERVA Link request for ACK (ACKRQ) is equal to '2' indicating

that the acknowledgment be generated at the message receiving side.

Either FMT/ESA or MERVA Link routes a delivery notification to the
MERVA Link send queue EKASWSND if the following conditions are met:
v The MERVA Link delivery return code (DELRC) is equal to '00'.
v The SWIFT input/output message identifier (IOID) is equal to 'O'.
v The message acknowledgment field (MSGACK) is not available.
v The MERVA Link IAM message identifier field (IAMID) is available.

2 The message sending process is initiated. MERVA Link processes the
message and passes it to FMT/ESA.

3 After processing of the message in FMT/ESA, MERVA Link sends:
v A status report to the MERVA Link at the message sending side. The

status report contains the data from the MSGACK field.
v A delivery notification to the MERVA Link at the message sending side.

Customization
This section describes the tailoring facilities that support the integration of
FMT/ESA in your MERVA ESA environment. Moreover, they enable you to
request different ways of message processing by FMT/ESA. You can make your
adjustments at three levels:
v FMT/ESA
v MERVA Link
v MERVA ESA

Customizing FMT/ESA with MERVA Link
Use the customization parameter table called EKASPRM to provide the following
information to FMT/ESA:
v The name of the ISN control queue
v The name of the OSN control queue
v The identifier of a MERVA ESA journal record that is written for a sent message
v The identifier of a MERVA ESA journal record that is written for a received

message
v The request to check SWIFT input messages before they are sent
v The request to authenticate SWIFT input and output messages

You use the macro EKASPARM to make your specifications. For details refer to the
MERVA for ESA Macro Reference.

Chapter 8. MERVA-to-MERVA Financial Message Transfer/ESA (FMT/ESA) 285

How to Activate the Customization Parameter Table: When you have modified
one or more parameters in the customization parameter table, there are two ways
to activate the parameter table. They depend on whether the FMT/ESA user exit
EKAMU044 was link-edited to the MERVA ESA Message Format Services module
DSLMMFS.
v EKAMU044 was not link-edited to DSLMMFS.

This is how EKAMU044 was installed the first time in your system.
You get the modified customization parameter table activated without terminating
MERVA ESA. It is especially useful when you test FMT/ESA and you often
make changes in the parameter table.
You can perform the next steps when MERVA ESA is active:
1. Assemble the customization parameter table and link-edit it to EKAMU044.
2. For CICS only:

Get the updated version of EKAMU044 using master terminal transaction
CEMT:
CEMT SET PROGRAM(EKAMU044) NEWCOPY

As a result, DSLMMFS loads EKAMU044 with the modified EKASPRM
link-edited to it when FMT/ESA is started the next time.

v EKAMU044 is to be link-edited to DSLMMFS.
You make the following preparation once:

In the appropriate entry of the MERVA ESA MFS program table DSLMPTT,
you change parameter 'LINK' and specify:
DSLMPT NAME=EKAMU044,NUMBER=7044,TYPE=U,LINK=YES

You assemble DSLMPTT and link-edit it to DSLMMFS.

Then you assemble the customization parameter table EKASPRM and link-edit it
to DSLMMFS.

Customizing MERVA Link for Use with FMT/ESA
FMT/ESA requires at least one entry in the MERVA Link partner table EKAPT. You
make all relevant specifications in an EKAPT TYPE=ASP statement. You can set up
as many TYPE=ASP statements as you need for FMT/ESA. The following text
shows the partner table parameters that are affected. Unless stated otherwise,
specify the parameters for the MERVA Link at both the message sending side and
the message receiving side.

286 Customization Guide

Basic Customization for FMT/ESA

CONFIRM=NO
You request the SWIFT acknowledgment to be generated in the message
sending MERVA ESA.

A SWIFT delivery notification is not generated.

The MERVA Link TOF field EKAACKRQ contains '0' when this parameter
was specified. This field is checked in the FMT/ESA routing table
EKARTSIM.

Specify this parameter for the MERVA Link of the sending MERVA ESA.

If this parameter is omitted, NO is used by default.

CONFIRM=NON
You request the SWIFT acknowledgment to be generated in the message
sending MERVA ESA.

A SWIFT delivery notification is generated in the receiving MERVA ESA
if it is requested by the received SWIFT input message.

The MERVA Link TOF field EKAACKRQ contains '1' when this parameter
was specified. This field is checked in the FMT/ESA routing table
EKARTSIM.

Specify this parameter for the MERVA Link of the sending MERVA ESA.

CONFIRM=ALL
You request the SWIFT acknowledgment to be generated in the message
receiving MERVA ESA.

A SWIFT delivery notification is generated in the receiving MERVA ESA
if it is requested by the received SWIFT input message.

The MERVA Link TOF field EKAACKRQ contains '2' when this parameter
was specified. This field is checked in the FMT/ESA routing table
EKARTSIM.

Specify this parameter for the MERVA Link of the sending MERVA ESA.

NAME=asp name
Specify the name of the ASP.

Each asp name that is involved in FMT/ESA for the sending of SWIFT input
messages must be contained in the ISN Control Queue EKAISNCQ. If you
want to initialize the ISN used for this ASP, you have to enter the name of the
ASP and the ISN as a new control message in EKAISNCQ. Otherwise,
FMT/ESA creates the new control message, if it is not yet stored in the queue.

SENDQC=EKASWSND
Specify the name of the MERVA Link send queue.

CONTROL=EKASIMCQ
Specify the name of the MERVA Link application control queue.

The routing table EKARTSIM must be associated with the control queue in the
MERVA ESA Function Table.

MFSEXIT=7044
Specify the number of the MERVA ESA MFS User Exit program.

Chapter 8. MERVA-to-MERVA Financial Message Transfer/ESA (FMT/ESA) 287

This identifies the FMT/ESA program.

The number and the name of the FMT/ESA program, EKAMU044, must also
be specified in the MERVA ESA MFS program table.

IRROUTE=(ACK,EKASWAWQ,CTLQ)
Specify the name of the SWIFT acknowledgment wait queue. The parameter
values ACK and CTLQ are also required.

Specify this parameter for the MERVA Link of the sending MERVA ESA.

FORMAT=...
Specify the format you prefer for the message transmission. You may use any
of the supported format specifications. Messages can be transmitted either in
SWIFT format or in MERVA ESA queue format.

Note: When you specify FORMAT=QUEUE, there is no external line format
identifier supplied with this format specification. In this case FMT/ESA
uses the external line format identifier W when it maps a SWIFT input
or output message from the TOF to the network buffer. The mapping
occurs when a message is to be authenticated and written to the
MERVA ESA journal.

Customizing MERVA ESA for Use with FMT/ESA
The following parameters of the MERVA ESA customizing parameter table macro
DSLPARM have an impact on the FMT/ESA processing:

NAME=installation name
Specify the name used to identify the MERVA ESA installation.

This name is used to compose the resource identifier of the OSN control queue.
The resource identifier must be unique; it denotes the OSN control queue
when FMT/ESA enqueues upon it during SWIFT output message processing.
You have full control of the resource identifier. FMT/ESA concatenates the
resource identifier RI based on your specifications, in this order:

RI = installation name || node name || queue name

Specify the resource identifier components using these macros:
v DSLPARM NAME=installation name

In MERVA ESA macro DSLPARM.
v EKAPT TYPE=INITIAL,NODE=node name

In MERVA Link partner table macro EKAPT.
v EKASPARM OSNCQ=queue name

In FMT/ESA customization parameter table macro EKASPARM.

NICBUF=buffer size
Specify the length of the data area used as a service data buffer in
DSLNIC TYPE=REQ parameter BUF.

FMT/ESA allocates a buffer with the specified buffer size and uses it for data
mapping purposes.

Global Customization versus Specific Customization
When you customize FMT/ESA as described in “Customizing FMT/ESA with
MERVA Link” on page 285, the customization applies to all MERVA Link ASPs
(connections to partners) where you want FMT/ESA to run. This is called global
customization. However, you may want to use a different FMT/ESA profile
depending on which partner is involved in the message exchange. For example:

288 Customization Guide

v Some messages need to be authenticated only for certain partners, and not for
others.

v You might want to use unique journal identifiers for sent and received messages
on each MERVA Link ASP. This makes it easy for your journal analysis program
to record information about the message traffic for each connection.

This is called specific customization. To apply a specific customization, do the
following for each ASP:
1. Prepare a MERVA Link MFS user exit that calls the FMT/ESA user exit.

The calling user exit contains the new customization parameters defined by the
macro call:
EKASPARM TYPE=INLINE,...

2. Provide an entry for the user exit in the MERVA ESA MFS program table
DSLMPTT:
DSLMPT NAME=nam,NUMBER=num,TYPE=U,LINK=NO

Link-edit the MFS program table to DSLMMFS.
3. Provide an entry for the ASP (and the associated MTP) in the MERVA Link

partner table EKAPT:
EKAPT TYPE=ASP,...,MFSEXIT=num,...

num represents the same user exit number as in the previous step in the
DSLMPTT.

4. For CICS only:
Provide an entry for the user exit in the CICS Program Definition.

Figure 136 on page 290 shows the sample user exit EKAMU045 which calls the
FMT/ESA user exit EKAMU044, represented by the number '7044'.

Note: To test user exit EKAMU045:
1. Modify the parameter MFSEXIT in the partner table used for the

installation verification. For more information about this partner table,
refer to MERVA for ESA Installation Guide. Specify
EKAPT TYPE=ASP,...,MFSEXIT=7045,...

2. Install the partner table.
3. Run FMT/ESA.

The results should be the same as for the FMT/ESA user exit EKAMU044,
except that queue EKASWAO0 now contains the generated SWIFT output
message that was not authenticated.

The other modifications mentioned here are provided as part of the installation
material.

Chapter 8. MERVA-to-MERVA Financial Message Transfer/ESA (FMT/ESA) 289

When you create new user exits, you modify:
v The name of the exit ('EKAMU045')
v The number of the exit ('7045')
v The appropriate parameters in macro EKASPARM TYPE=INLINE,...

Macro EKASPARM must be specified before calling the FMT/ESA user exit
(DSLMFS TYPE=USER,...).

The other code remains unchanged.

Interface to MERVA ESA MFS:

MFSLFLD This MFS parameter list field contains the address of the
customization parameter table that will be passed to the FMT/ESA
user exit EKAMU044.

TITLE 'EKAMU045 - MERVA LINK USER EXIT 7045'

* EKAMU045 MERVA LINK USER EXIT 7045

EKAMU045 EKAUXS NUM=7045,PRINT=OFF

SPACE
*--
* FMT/ESA CUSTOMIZATION PARAMETER TABLE
*--

SPACE
EKASPARM TYPE=INLINE, *

ISNCQ=EKAISNCQ, NAME OF ISN CONTROL QUEUE *
OSNCQ=EKAOSNCQ, NAME OF OSN CONTROL QUEUE *
JIDSENT=62, MODIFIED: JOURNAL ID SENT MSGS. *
JIDRCVD=63, MODIFIED: JOURNAL ID RCVD. MSGS. *
AUTHENT=(NO,NO), MODIFIED: AUTHENTICATION NOT REQ. *
CHECK=YES MESSAGE CHECKING REQUESTED

SPACE
*--
* CALL FMT/ESA USER EXIT
*--

SPACE
DSLMFS TYPE=USER, *

MODNUM=7044, FMT/ESA USER EXIT NUMBER *
MSGID=UXMSGID, MESSAGE IDENTIFIER *
MF=(E,MFSL) MFS PARAMETER LIST

SPACE
MVC MFSLREAS,MF$LREAS PASS MFS REASON CODE TO CALLER
B MFSEXIT RETURN TO MERVA ESA MFS
EJECT

*--
* USER EXIT WORK FIELDS
*--

SPACE
MFSTS DSECT MFS TEMP STORAGE (CONTINUED)

DS 0D
UXMSGID DS CL8 MESSAGE ID
UXFLDPF DS CL3 TOF FIELD NAME PREFIX
MFSTTSLL EQU *-MFSTS

END

Figure 136. Sample MFS User Exit for ASP Specific Customization

290 Customization Guide

Calling FMT/ESA from an MFS User Exit
It might be necessary to modify a message before or after FMT/ESA processes it.
In the CICS environment, it is even possible to request CICS services by writing
EXEC CICS commands. You can do all this in your own MERVA Link MFS
user-exit routine, and then call FMT/ESA from that routine.

Figure 136 on page 290 shows a special case how a MERVA Link MFS user exit
calls FMT/ESA.

Another example of an MFS user exit that calls FMT/ESA is shown below:
TITLE 'EKAMU000 - MERVA LINK USER EXIT 7000'

* EKAMU000 MERVA LINK MFS USER EXIT CALLING FMT/ESA

EKAMU000 EKAUXS NUM=7000
/ SELECT USER EXIT FUNCTION:

/ BEFORE READY-TO-SEND MESSAGE IS PROCESSED BY FMT/ESA:

MU00011W DS 0H

CLI CPLMUXF,@UXFRTS READY-TO-SEND MESSAGE ?
BNE MU00012W NO, CHECK FOR OTHER FUNCTION

/ IF REQUESTED, INSERT YOUR CODE FOR READY-TO-SEND MESSAGE HERE.
B MU00010X CALL FMT/ESA

/ BEFORE OUTGOING MESSAGE IS PROCESSED BY FMT/ESA:

MU00012W DS 0H

CLI CPLMUXF,@UXFOBM OUTBOUND MESSAGE ?
BNE MU00013W NO, CHECK FOR OTHER FUNCTION

/ IF REQUESTED, INSERT YOUR CODE FOR OUTGOING MESSAGE HERE.
B MU00010X CALL FMT/ESA

/ BEFORE CONFIRMED MESSAGE IS PROCESSED BY FMT/ESA:

MU00013W DS 0H

CLI CPLMUXF,@UXFCFM CONFIRMED MESSAGE ?
BNE MU00014W NO, CHECK FOR OTHER FUNCTION

/ IF REQUESTED, INSERT YOUR CODE FOR CONFIRMED MESSAGE HERE.
B MU00010X CALL FMT/ESA

/ BEFORE INCOMING STATUS REPORT IS PROCESSED BY FMT/ESA:

MU00014W DS 0H

CLI CPLMUXF,@UXFIBR INBOUND STATUS REPORT ?
BNE MU00015W NO, CHECK FOR OTHER FUNCTION

/ IF REQUESTED, INSERT YOUR CODE FOR ACKNOWLEDGED MESSAGE HERE.
B MU00010X CALL FMT/ESA

/ BEFORE INCOMING APPLICATION MESSAGE IS PROCESSED BY FMT/ESA:

MU00015W DS 0H

CLI CPLMUXF,@UXFIBM INBOUND MESSAGE ?
BNE MU00016W NO, CHECK FOR OTHER FUNCTION

/ IF REQUESTED, INSERT YOUR CODE FOR INCOMING APPLICATION MESSAGE HERE.
B MU00010X CALL FMT/ESA

/ BEFORE RECOVERED OR RE-ROUTED MESSAGE IS PROCESSED BY FMT/ESA:

MU00016W DS 0H

CLI CPLMUXF,@UXFRCV RECOVERED MESSAGE ?
BNE MU00017W NO, CHECK FOR OTHER FUNCTION

/ IF REQUESTED, INSERT YOUR CODE FOR RECOVERED OR RE-ROUTED MESSAGE HERE.
B MU00010X CALL FMT/ESA

Chapter 8. MERVA-to-MERVA Financial Message Transfer/ESA (FMT/ESA) 291

MU00017W DS 0H
/ ENDSELECT
*--
* CALL FMT/ESA USER EXIT
*--
MU00010X DS 0H

DSLMFS TYPE=USER, *
MODNUM=7044, FMT/ESA USER EXIT NUMBER *
MSGID=UXMSGID, MESSAGE IDENTIFIER *
MF=(E,MFSL) MFS PARAMETER LIST

SPACE
MVC MFSLREAS,MF$LREAS PASS MFS REASON CODE TO CALLER
LTR R15,R15 ANY ERROR OCCURRED ?
BNZ MFSEXIT YES, RETURN TO MERVA ESA MFS
SPACE

/ AFTER READY-TO-SEND MESSAGE WAS PROCESSED BY FMT/ESA:

MU00021W DS 0H

CLI CPLMUXF,@UXFRTS READY-TO-SEND MESSAGE ?
BNE MU00022W NO, CHECK FOR OTHER FUNCTION
OC 8(2,R4),8(R4) MESSAGE CLASS SET BY FMT/ESA ?
BNZ MFSGOOD YES, RETURN TO MERVA ESA MFS

/ IF REQUESTED, INSERT YOUR CODE FOR READY-TO-SEND MESSAGE HERE.
XC 8(2,R4),8(R4) NO MESSAGE CLASS SET FOR ROUTING
B MFSGOOD RETURN TO MERVA ESA MFS

/ AFTER OUTGOING MESSAGE WAS PROCESSED BY FMT/ESA:

MU00022W DS 0H

CLI CPLMUXF,@UXFOBM OUTBOUND MESSAGE ?
BNE MU00023W NO, CHECK FOR OTHER FUNCTION

/ IF REQUESTED, INSERT YOUR CODE FOR OUTGOING MESSAGE HERE.
B MFSGOOD RETURN TO MERVA ESA MFS

/ AFTER CONFIRMED MESSAGE WAS PROCESSED BY FMT/ESA:

MU00023W DS 0H

CLI CPLMUXF,@UXFCFM CONFIRMED MESSAGE ?
BNE MU00024W NO, CHECK FOR OTHER FUNCTION

/ IF REQUESTED, INSERT YOUR CODE FOR CONFIRMED MESSAGE HERE.
B MFSGOOD RETURN TO MERVA ESA MFS

/ AFTER INCOMING STATUS REPORT WAS PROCESSED BY FMT/ESA:

MU00024W DS 0H

CLI CPLMUXF,@UXFIBR INBOUND STATUS REPORT ?
BNE MU00025W NO, CHECK FOR OTHER FUNCTION

/ IF REQUESTED, INSERT YOUR CODE FOR ACKNOWLEDGED MESSAGE HERE.
B MFSGOOD RETURN TO MERVA ESA MFS

/ AFTER INCOMING APPLICATION MESSAGE WAS PROCESSED BY FMT/ESA:

MU00025W DS 0H

CLI CPLMUXF,@UXFIBM INBOUND MESSAGE ?
BNE MU00026W NO, CHECK FOR OTHER FUNCTION

/ IF REQUESTED, INSERT YOUR CODE FOR INCOMING APPLICATION MESSAGE HERE.
B MFSGOOD RETURN TO MERVA ESA MFS

/ AFTER RECOVERED OR RE-ROUTED MESSAGE WAS PROCESSED BY FMT/ESA:

MU00026W DS 0H

CLI CPLMUXF,@UXFRCV RECOVERED MESSAGE ?
BNE MU00027W NO, CHECK FOR OTHER FUNCTION

/ IF REQUESTED, INSERT YOUR CODE FOR RECOVERED OR RE-ROUTED MESSAGE HERE.
B MFSGOOD RETURN TO MERVA ESA MFS
SPACE

292 Customization Guide

MU00027W DS 0H
B MFSGOOD RETURN TO MERVA ESA MFS
SPACE
LTORG

*--
* USER EXIT WORK FIELDS
*--
MFSTS DSECT MFS TEMP STORAGE (CONTINUED)

DS 0D
UXMSGID DS CL8 MESSAGE ID
UXFLDNM DS 0CL8 TOF FIELD NAME
UXFLDPF DS CL3 TOF FIELD NAME PREFIX
UXFLDID DS CL5 TOF FIELD NAME IDENTIFIER
MFSTTSLL EQU *-MFSTS

END

The code shown for a ready-to-send message after it was processed by FMT/ESA
is only an example. Alternatively, you could save the message class set by
FMT/ESA, insert your code, then restore the saved message class, as shown below.
Note that the code is also valid if FMT/ESA did not set a message class.

...

/ AFTER READY-TO-SEND MESSAGE WAS PROCESSED BY FMT/ESA:

MU00021W DS 0H

CLI CPLMUXF,@UXFRTS READY-TO-SEND MESSAGE ?
BNE MU00022W NO, CHECK FOR OTHER FUNCTION
MVC UXMSGCLS,8(R4) SAVE MESSAGE CLASS SET BY FMT/ESA

/ IF REQUESTED, INSERT YOUR CODE FOR READY-TO-SEND MESSAGE HERE.
MVC 8(2,R4),UXMSGCLS RESTORE SAVED MESSAGE CLASS
B MFSGOOD RETURN TO MERVA ESA MFS

...

*--
* USER EXIT WORK FIELDS
*--
MFSTS DSECT MFS TEMP STORAGE (CONTINUED)

...

UXMSGCLS DS CL2 MESSAGE CLASS SET BY FMT/ESA
MFSTTSLL EQU *-MFSTS

...

The routine shown above (EKAMU000) is a valid MERVA Link MFS user exit, and
is contained in the MERVA ESA installation material. If you use it, provide code
only for the section where you want to influence the processing of FMT/ESA.
Coding examples are contained in the source code of the user-exit routines
EKAMU010 or EKAMU133.

The logical places where MERVA Link calls an MFS user exit are:
v For a ready-to-send message
v For an outgoing message
v For a confirmed message
v For an incoming status report
v For an incoming application message

Chapter 8. MERVA-to-MERVA Financial Message Transfer/ESA (FMT/ESA) 293

v For a recovered or rerouted message

These places are described in “Support of the MFS User Exits” on page 203 and, in
more detail, in MERVA for ESA Advanced MERVA Link. “CICS Commands in an
MFS User Exit” on page 207 describes how to issue CICS commands in the user
exit.

To test EKAMU000:
1. Modify parameter MFSEXIT in the partner table used for the installation

verification. For more information about this table, refer to the MERVA for ESA
Installation Guide. Specify EKAPT TYPE=ASP,...,MFSEXIT=7000,...

2. Install the partner table.
3. Run FMT/ESA.

The following table shows the results when FMT/ESA finishes processing at the
end of each logical place and returns to its caller. It provides you with information
for coding your own user exit. The table gives you another view of the message
flow explained in Figure 132 on page 268 and Figure 133 on page 271.

Table 10. FMT/ESA Processing Results for Each Logical Place

Logical Place Processing Result

Ready-to-Send Message For a SWIFT input message without the MSGACK field:

v Session number '0000' inserted

v ISN incremented and inserted

v Message checked

v Message authenticated

v Message written to the MERVA ESA journal

v ISN written to the ISN control queue

For a SWIFT input message containing the MSGACK field:

v SWIFT output message and delivery notification message routed from the ISN control
queue to the target queue(s)

For a delivery notification message:

v SWIFT output message routed from the ISN control queue to the target queue(s)

Error indication:

v Register 15 contains return code greater than 0.

v Register 15 contains 0 and the first two bytes of the TOF field working buffer
addressed by register 4 with offset 8 containes the characters 'SE' or 'LR'.

MERVA Link interprets 'SE' or 'LR' as message class. It routes the message to a target
queue depending on the message class.

The target queue for the message with class 'LR' does not exist. However, this
message was routed before to an error queue with class 'IE'.

Outgoing Message For a SWIFT input message containing the MSGACK field:

v MERVA Link receipt return code field EKARECRC set to '00'. This indicates a MERVA
Link status report.

v MERVA Link receipt diagnostic code field EKARECDC set to the first six characters of
the MSGACK field.

v MSGACK field and SWIFT trailers contained in field SWTRAIL written to data areas
of field EKARDATA.

For a SWIFT input message without the MSGACK field and containing the
EKAPDUPM field with 'PDM' (indicates that message was recovered):

v PDE trailer generated by the SWIFT Link inserted, if available.

294 Customization Guide

Table 10. FMT/ESA Processing Results for Each Logical Place (continued)

Logical Place Processing Result

Confirmed Message For a SWIFT input message containing the EKAPDUPM field with 'PDM' (indicates that
message was recovered):

v Message used for PDE trailer processing with the SWIFT Link deleted from the ISN
control queue.

v Message containing a PDE trailer written to the MERVA ESA journal.

For CONFIRM=NO or CONFIRM=NON specified in the MERVA Link partner table
EKAPT:

v SWIFT acknowledgment written to the MSGACK field

v SWIFT acknowledgment written to the MERVA ESA journal

Error indication:

v Register 15 contains return code greater than 0

v Register 15 contains 0 and both the following are true:

– An error message starting with EKA8 is written to the MSGACK field

– Field EKARECRC is set to '00'

Incoming Status Report v Data areas of field EKARDATA written to fields MSGACK and SWTRAIL

v SWIFT acknowledgment written to the MERVA ESA journal

v Data areas of field EKARDATA deleted (except for the MERVA Link control message
type MCTL)

Error indication:

v Register 15 contains return code greater than 0

v Register 15 contains 0 and both the following are true:

– An error message starting with 'EKA8' is written to the MSGACK field

– Field EKARECDC is deleted

Chapter 8. MERVA-to-MERVA Financial Message Transfer/ESA (FMT/ESA) 295

Table 10. FMT/ESA Processing Results for Each Logical Place (continued)

Logical Place Processing Result

Incoming Application
Message

For a SWIFT input message:

v Input message transformed to a SWIFT output message

v OSN incremented and inserted

v Output message authenticated

v Output message written to the MERVA ESA journal

v SWIFT acknowledgment written to the MERVA ESA journal

v OSN written to the OSN control queue

v If field EKAACKRQ contains '1' and if a delivery notification message is not to be
created, field EKAACKRQ set to '0'

v If field EKAACKRQ contains '2' or if a delivery notification message is to be created,
output message written to the ISN control queue

v If field SWAHIDM of the input message contains '2' or '3' and if field EKAACKRQ
contains '1' or '2', delivery notification message created

v If field EKAACKRQ contains '2', delivery notification message written to the ISN
control queue

v If field EKAACKRQ contains '2', SWIFT acknowledgment written to the MSGACK
field

For a delivery notification message:

v OSN incremented and inserted

v Message written to the MERVA ESA journal

v SWIFT acknowledgment written to the MERVA ESA journal

v OSN written to the OSN control queue

v Field EKAAMSID deleted

Error indication:

v Register 15 contains return code greater than 0

v Register 15 contains 0 and Error message starting with EKA8 written to the MSGACK
field

Recovered Message For a SWIFT input message containing field EKAPDUPM with 'PDM':

v If field EKACLASS contains 'RC', message without SWIFT PDE trailer written to the
ISN control queue

v If field EKACLASS contains 'RC', name of the ISN control queue written to the field
EKAAMBSL

v PDE trailer written to the field SWTRAIL

For a SWIFT input message not containing field EKAPDUPM with 'PDM' or not
containing field EKACLASS with 'RC':

v Message without SWIFT PDE trailer deleted from the ISN control queue

Using FMT/ESA with MERVA-MQI Attachment
The FMT/ESA message flow when using MERVA-MQI Attachment is similar to
that described in “FMT/ESA Message Flow with MERVA Link” on page 266, except
that MERVA-MQI Attachment takes the place of MERVA Link. FMT/ESA with
MERVA-MQI Attachment counts each sent and received message in a message
counter data set. This is the same data set that is used by FMT/ESA with MERVA
Link, and uses the same counter indices (hexadecimal 60 and 61).

296 Customization Guide

|

|
|
|
|
|
|

Customizing MERVA-MQI Attachment for Use with FMT/ESA
Use the MERVA-MQI Attachment process table DSLKPROC to specify the
following for FMT/ESA:
v The names of the queues in which input sequence numbers (ISNs) and output

sequence numbers (OSNs) are to be stored (ISNCTLQ=isn_control_queue and
OSNCTLQ=osn_control_queue). These queues are described in “Queues for
FMT/ESA with MERVA-MQI Attachment”.

v The name of the exit used to call FMT/ESA. The EXIT parameter is mandatory
and must be set to EXIT=8044.

v Where to generate a SWIFT acknowledgment and a delivery notification (MT
011):

COAWQ=coa_wait_queue
A SWIFT ACK is generated locally (by the sending MERVA ESA). No
delivery notification is generated. No COD report is requested from
MQSeries.

COAWQ=coa_wait_queue and CODWQ=#
A SWIFT ACK is generated locally (by the sending MERVA ESA). If a
delivery notification is requested by the received SWIFT input message,
it is generated by the receiving MERVA ESA. No COD report is
requested from MQSeries.

COAWQ=coa_wait_queue and CODWQ=cod_wait_queue
A SWIFT ACK is generated locally (by the sending MERVA ESA). If a
delivery notification is requested by the received SWIFT input message,
it is generated by the receiving MERVA ESA. In addition to the delivery
notification, a COD report is requested from MQSeries.

ACKWQ=ack_wait_queue
A SWIFT ACK is generated remotely (by the receiving MERVA ESA). If a
delivery notification is requested by the received SWIFT input message,
it is generated by the receiving MERVA ESA. If the COAWQ and
CODWQ parameters are specified additionally, then a COA report, a
COD report, or both are requested from MQSeries.

There is a direct relationship between these parameters and the CONFIRM
parameter of the MERVA Link partner table EKAPT (described in “Customizing
MERVA Link for Use with FMT/ESA” on page 286):
– COAWQ corresponds to CONFIRM=NO
– COAWQ and CODWQ correspond to CONFIRM=NON
– ACKWQ corresponds to CONFIRM=ALL

v Whether to authenticating SWIFT input and output messages (AUTHENT=YES
or NO).

v Whether to use the Message Format Service (MFS) to check SWIFT input and
output messages (CHECK=YES or NO).

v The IDs of the MERVA ESA journal records in which the sent and received
SWIFT messages are to be stored (set by the JIDSENT and JIDRCVD
parameters).

Queues for FMT/ESA with MERVA-MQI Attachment
The same queues that were used to verify the installation of MERVA-MQI
Attachment can be used for FMT/ESA. These queues are described in the MERVA

Chapter 8. MERVA-to-MERVA Financial Message Transfer/ESA (FMT/ESA) 297

|

|
|

|
|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|

|

|
|

|
|

|
|
|

|

|
|

for ESA Installation Guide. In addition to these, you will need one or two additional
queues for each MERVA-MQI Attachment send and receive process that is part of
FMT/ESA:
v An input sequence number (ISN) control queue, the name of which is specified

by the ISNCTLQ parameter. This parameter is mandatory for a send process
(DSLKPROC TYPE=SEND) and receive process (DSLKPROC TYPE=RECEIVE).

v An output sequence number (OSN) control queue, the name of which is
specified by the OSNCTLQ parameter. This parameter is mandatory for a
receive process (DSLKPROC TYPE=RECEIVE).

The ISN control queue must be defined with two keys in the MERVA ESA function
table DSLFNTT:
v KEY1 represents the name of the send process contained in the TOF field

DSLKPNM. Specify KEY1=(DSLKPNM,8).
v KEY2 represents the contents of the field MsgId from the MQI control block

MQMD contained in the TOF field DSLKMSID. Specify
KEY2=(DSLKMSID,24,,NOMOD).

When MERVA-MQI Attachment processes a SWIFT input message for a specific
send process, it passes the message to FMT/ESA, which increments the current
ISN and inserts the new ISN into the input message. Similarly, when MERVA-MQI
Attachment processes a SWIFT output message or delivery notification, FMT/ESA
increments the current OSN and inserts the new OSN into the message.

Routing
The sample routing table DSLKQRT affects the message routing in the following
ways:
v The value specified in the TOF field DSLKAKRQ at the sending side affects how

FMT/ESA handles delivery notifications and SWIFT acknowledgments:

0 No delivery notification or SWIFT acknowledgment is generated by the
FMT/ESA at the receiving side.

1 If requested by the SWIFT input message at the sending side, a delivery
notification is generated by the FMT/ESA at the receiving side. The
DSLKAKRQ field of the notification is assigned the value 1, and the
delivery notification is routed to a MERVA send queue of the
MERVA-MQI Attachment at the receiving side, sent to the sending side,
assigned the value 0, and routed to a MERVA receive queue there.

2 Both a SWIFT acknowledgment and (if requested by the SWIFT input
message at the sending side) a delivery notification are generated by the
FMT/ESA at the receiving side. The DSLKAKRQ field of the notification
is assigned the value 1; the DSLKAKRQ field of the acknowledged
SWIFT input message is assigned the value 2. Both the notification and
the acknowledged SWIFT input message are routed to a MERVA send
queue of the MERVA-MQI Attachment at the receiving side. The
notification is sent to the sending side, assigned the value 0, and routed
to a MERVA receive queue there. The acknowledgment is sent as an
MQI reply message to the sending side, and correlated with the waiting
SWIFT input message in the acknowledgment wait queue specified in
parameter ACKWQ. The correlated SWIFT input message is routed to a
MERVA receive queue at the sending side.

Note: These values are also placed in the MQI control block MQMD, in the next
to the last byte of the field ApplIdentityData. When a message is

298 Customization Guide

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|
|
|
|

|

|
|

|
|

||
|

||
|
|
|
|
|

||
|
|
|
|
|
|
|
|
|
|
|
|

|
|

displayed, the MERVA ESA command SHOW KCOV displays each field
of the MQMD and shows the contents of ApplIdentityData.

v The message statuses contained in TOF field DSLKSTAT, each of which
corresponds to an error situation:

ACKER An error occurred in a MERVA-MQI Attachment receive process
after successful correlation with the received reply message.

COAER An error occurred in a MERVA-MQI Attachment receive process
after successful correlation with the received COA report.

ERSND An error occurred in a MERVA-MQI Attachment send process.
The message cannot be transmitted to the receiving MERVA
ESA.

ERSWO An error occurred in a MERVA-MQI Attachment send process.
The generated SWIFT output message cannot be routed to its
target queue.

SWIER An error occurred in a MERVA-MQI Attachment receive process
concerning a SWIFT input message.

A message with any of these statuses is routed to an error queue.

The following excerpt from the routing table DSLKQRT shows how messages sent
via FMT/ESA can be handled at the receiving side (the message status in field
DSLKSTAT is RCVD):
RCVD DSLROUTE TYPE=DEFINE,FIELD=(ACKREQ,DSLKAKRQ,,,,,VFIRST), *

FOUND=FMTRCVD @LEI0004 [1]
DSLROUTE TYPE=TEST,COND=(MSGTYP,'8',EQ,SHORT),TRUE=RCVDQ
DSLROUTE TYPE=SET,TARGET='DSLMRSQ2'

RCVDQ DSLROUTE TYPE=SET,TARGET='DSLMRRQ1',GOTO=END
FMTRCVD DSLROUTE TYPE=TEST,COND=(ACKREQ,'0',EQ),TRUE=FMTRCVDQ @LEI0004 [2]

DSLROUTE TYPE=SET,TARGET='DSLMRSQ2',GOTO=END @LEI0004 [3]
FMTRCVDQ DSLROUTE TYPE=SET,TARGET='DSLMRRQ1',GOTO=END @LEI0004 [4]

Notes:

[1] The field DSLKAKRQ is defined as ACKREQ. If the field is found in the
TOF, processing continues at the FMTRCVD label.

[2] If ACKREQ contains the value 0, the message is a delivery notification that
is to be routed to a receive queue. Processing continues at the FMTRCVDQ
label.

[3] If ACKREQ does not contain the value 0 (in which case it contains the
value 1 or 2, where 1 represents a delivery notification, and 2 an
acknowledged SWIFT input message), the message is routed to the send
queue DSLMRSQ2, and processing stops at the END label.

[4] The delivery notification from step 2 is routed to the target queue
DSLMRRQ1, and processing stops at the END label.

Chapter 8. MERVA-to-MERVA Financial Message Transfer/ESA (FMT/ESA) 299

|
|

|
|

||
|

||
|

||
|
|

||
|
|

||
|

|

|
|
|

|
|
|
|
|
|
|
|

|

||
|

||
|
|

||
|
|
|

||
|

300 Customization Guide

Chapter 9. MERVA-MQI Attachment

MERVA-MQI Attachment provides a means of communication between
MERVA ESA and MQSeries for MVS/ESA and VSE/ESA. This chapter describes
the facilities available to adapt the functions of MERVA-MQI Attachment to the
requirements of the message transfer in a specific installation.

The MERVA for ESA Concepts and Components book describes the basic principles of
MERVA-MQI Attachment. It is recommended that you read the appropriate section
in this book.

Customizing the Send and Receive Processes
You use the macro DSLKPROC to define one or more send and receive processes
(see the MERVA for ESA Macro Reference for details). These definitions are collected
in the process table DSLKPROC. The name DSLKPROC of the process table cannot
be changed.

A send process definition contains the characteristics of the message transfer from
MERVA ESA to the MQSeries. It is therefore called MERVA-to-MQI send process.
Each send process is identified by a unique name. A receive process definition
contains the characteristics of the message transfer from the MQSeries to
MERVA ESA. It is therefore called MQI-to-MERVA receive process. Each receive
process is identified by a unique name. More than one send or receive processes
can be active at a time.

In the following the effect of specified DSLKPROC parameters on the message
exchange between MERVA ESA and MQSeries is explained.

Setting the MQI Message Types
MERVA-MQI Attachment sends three message types defined by the MQSeries:
v Datagram
v Request message
v Reply message

A datagram is sent if the ACKWQ parameter of DSLKPROC TYPE=SEND is
omitted.

A request message is sent if the name of a MERVA ESA acknowledgment wait
queue is specified in the ACKWQ parameter. The acknowledgment is a reply
message.

A reply message is constructed using the control information contained in the
appropriate request message. Therefore a reply message can only be sent if
MERVA-MQI Attachment finds a received request message in a send queue. This
requires that the customer application routes a received request message to a
suitable send queue of MERVA-MQI Attachment.

MERVA-MQI Attachment sets the message type in the field MsgType of the MQI
control block MQMD. The type of a received message can always be identified
using the MsgType field. In addition to the three MQI message types, MERVA-MQI
Attachment also receives report messages as the fourth MQI message type.

© Copyright IBM Corp. 1987, 2001 301

|

Defining the Message Data Structure
The structure of a datagram, request, or reply message that is to be sent can be
influenced by a user exit. The user exit is specified in the EXIT parameter of
DSLKPROC TYPE=SEND (see “Writing a User Exit” on page 332 for details on user
exits called by MERVA-MQI Attachment).
v The contents of a datagram or request message built without a user exit is

shown below.

The application message can be a SWIFT, telex, or user-defined message.

The data provided by a user exit changes the contents of a datagram or request
message as follows:

The data parts within a datagram or request message are now each preceded by
a 4-byte field LLLL. This field contains the length, in bytes, of the following data
part including its own length (4 bytes).

The data parts following the application message represent the additional fields
provided by the user exit. A field consists of the field ID and the field data. The
fixed length field ID of 8 bytes contains the name of the additional field. The
variable length field data of up to 28672 bytes contains the data of the additional
field.

v A reply message built without a user exit contains no data and so has a length
of zero. This is a valid form of a reply message.

v The layout of a reply message consisting of one field provided by a user exit is
shown below.

The meaning of the field ID and field data is the same as for the additional
fields in a datagram or request message. There is no length field required for
data in one field.

v The contents of a reply message consisting of more than one field provided by a
user exit is shown below.

The data parts within such a reply message are each preceded by a 4-byte field
LLLL. The meanings of the terms LLLL, field ID, and field data are the same as
for the additional fields in a datagram or request message.

Figure 137. Datagram or Request Message without Additional Fields

Figure 138. Datagram or Request Message Containing Additional Fields

Figure 139. Reply Message Containing Data in One Field

Figure 140. Reply Message Containing Data in More Than One Field

302 Customization Guide

Recognizing the Message Data Structure
The application receiving a datagram, request, or reply message must be able to
recognize the nature of the data in the message. This information is provided by
the MQFMT parameter of DSLKPROC TYPE=SEND. MQFMT specifies the name
of an MQI data format. MERVA-MQI Attachment uses the format name as an
indicator for the structure of the message data:
v Names beginning with ‘‘MQ’’ indicate that the message does not contain a

length field LLLL to separate its data parts.
These names represent MQI built-in formats.

v Names beginning with other than ‘‘MQ’’ indicate that the message contains a
length field LLLL.
These names represent application-defined formats.

When the MQFMT parameter is omitted, MERVA-MQI Attachment uses the
following default format names:
v MQSTR if the message does not contain length fields or there is no message data

at all (reply message only).
This is the value of the built-in format MQFMT_STRING.

v Blanks if the message contains length fields.

When the specified format name and the message data structure do not match,
MERVA-MQI Attachment ignores the format name and sets a new name. This can
occur due to one of the following reasons:
v The datagram or request message to be sent has no additional fields as the user

exit was not specified in the EXIT parameter, or the user exit did not provide
any data. The message structure is according to Figure 137 on page 302.
The name of an application-defined format was specified.
Result: MERVA-MQI Attachment sets the format name MQSTR.

v The reply message to be sent has no data as the user exit was not specified in
the EXIT parameter, or the user exit did not provide any data.
Any format name other than MQSTR was specified.
Result: MERVA-MQI Attachment sets the format name MQSTR.

v The reply message to be sent has data without a length field. The message
structure is as shown in Figure 139 on page 302.
The name of an application-defined format was specified.
Result: MERVA-MQI Attachment sets the format name MQSTR.

v The datagram, request, or reply message to be sent consists of data parts
preceded by a length field. The message structure is as shown in Figure 138 on
page 302 or Figure 140 on page 302.
The name of an MQI built-in format was specified, for example, MQSTR.
Result: MERVA-MQI Attachment sets the format name to blanks or uses the
alternate format name if an alternate format name for MQSTR is specified in the
MQFMT parameter.

MERVA-MQI Attachment sets the data format name in the field Format of the MQI
control block MQMD. The format of a received message can always be identified
using the Format field. Thus the receiving application gets the information whether
it has to consider the length field LLLL for the processing of the received message.

Defining the Groups of MERVA ESA Messages
MERVA-MQI Attachment sends three groups of MERVA ESA messages as a
datagram or request message:

Chapter 9. MERVA-MQI Attachment 303

v SWIFT
v Telex
v User-defined messages

The format code in the FORMAT parameter of DSLKPROC TYPE=SEND identifies
each group. The format code applies when the message has to be sent in the
external line format defined in an MCB. The format code is used in the MCB to
format the message.

The following format codes must be defined in the appropriate MCBs to indicate
the groups:

W SWIFT message

P Telex message

U User-defined message

When MERVA-MQI Attachment sends messages, it uses the field ApplIdentityData
of the MQI control block MQMD to transmit control information. It sets the first
character of ApplIdentityData to one of the following:
v If using external line format, the format code
v If using MERVA ESA queue format, the letter Q

The receiving application can check ApplIdentityData and determine the group of
the MERVA ESA message contained in the datagram or request message.

When MERVA-MQI Attachment receives messages, it checks the first character of
ApplIdentityData. If the value is:

W, P, or U It uses the corresponding format code.

Q It uses the MERVA ESA queue format.

anything else It uses the specification made in the FORMAT parameter of
DSLKPROC TYPE=RECEIVE.

When MERVA-MQI Attachment receives messages in external line format, if the
FORMAT parameter of DSLKPROC TYPE=RECEIVE specifies a blank message
type, MERVA-MQI Attachment uses the MERVA ESA MFS user exit DSLMU054 to
determine the message type. For user-defined messages (format code U), the
appropriate program selection must be coded in DSLMU054.

For sending and receiving telex messages, the user exit DSLKQ100 is required.
DSLKQ100 is defined to MERVA-MQI Attachment when EXIT=8100 is specified for
the appropriate send and receive process in the DSLKPROC macro.

Setting the MQI Report Options
When MERVA-MQI Attachment sends a datagram, request message, or reply
message, it can specify that it expects one or more of the following report
messages:
v COA report
v COD report
v Exception report

A COA report is requested if the name of a MERVA ESA COA wait queue is
specified in the COAWQ parameter of DSLKPROC TYPE=SEND.

304 Customization Guide

|
|
|

|

|

|
|

|
|

||

||

||
|

|

A COD report is requested if the name of a MERVA ESA COD wait queue is
specified in the CODWQ parameter of DSLKPROC TYPE=SEND.

An exception report is requested if EXCEPT=YES is specified in the EXCEPT
parameter of DSLKPROC TYPE=SEND.

MERVA-MQI Attachment sets the report options in the field Report of the MQI
control block MQMD. Each option specifies that up to 100 characters from the
beginning of the original request message are included in the report message.

When reports are requested for a reply message to be sent, MERVA-MQI
Attachment uses the characters 1 to 16 of the MQMD control block field
ApplIdentityData. The characters 17 to 32 of ApplIdentityData are available for the
application that sends the appropriate request message.

Note: If MERVA-MQI Attachment is running under MVS and sends messages to
MQSeries for VSE/ESA, or if it is running under VSE, an exception report
cannot be requested.

Authorizing the Use of Queues
MERVA-MQI Attachment sends and receives messages using both MERVA ESA
and MQI queues. A group of users must be authorized to work with these queues.

Defining an Alternate User Identifier

Note: An alternate user identifier can only be defined if MERVA-MQI Attachment
is running under MVS. MQSeries for VSE/ESA does not support an
alternate user identifier.

The authorization for the MQI send and receive queues is not restricted to the user
identifier that MERVA-MQI Attachment is currently running under. If nothing else
is specified, the queue manager uses the following identifiers:
v For CICS, the user ID associated with the task
v For IMS MPP regions, one of:

– The signed-on user ID associated with the message
– The logical terminal (LTERM) name
– The user ID from the region JES JOB card
– The TSO user ID
– The PSB name

These identifiers are called current identifiers.

The ALTUID parameter of DSLKPROC specifies an alternate user identifier. The
first 8 characters of the alternate user ID are used to check the authorization for the
open of the MQI send or receive queues. The current user ID must be authorized
in MQSeries to specify the particular alternate user ID. All 12 characters of the
alternate user ID are used for this check.

For a datagram or request message to be sent, MERVA-MQI Attachment sets the
alternate user ID in the field UserIdentifier of the MQI control block MQMD.

Defining an Authorized MERVA-MQI Attachment User
A MERVA ESA operator can start one or more send and receive processes using
the command SF. This is an example for a command that an operator can issue
against a MERVA ESA function associated with a transaction. Other commands of

Chapter 9. MERVA-MQI Attachment 305

|
|
|

this kind are CF and HF. MERVA-MQI Attachment uses MERVA ESA send and
start queues which are associated with a transaction. Therefore the unauthorized
commands CF, HF, and SF should become authorized before they can be issued
against MERVA ESA queues used by MERVA-MQI Attachment.

The authorization requires definitions in two MERVA ESA resources, in:
v The user file
v The function table DSLFNTT

In the MERVA ESA user file, a user must be defined either as a master user (user
type ‘M’) or as a MERVA-MQI Attachment user (user type ‘K’). In the
MERVA ESA function table, the parameter MQI=YES must be set for those queues
with an associated transaction which are to be used as send and start queues for
MERVA-MQI Attachment.

When a MERVA ESA operator is neither a master user nor a MERVA-MQI
Attachment user and issues one of the commands CF, HF, or SF against a queue
defined with MQI=YES, the command is rejected.

Defining the Send Queues
Sending a message from MERVA ESA to the MQSeries means that MERVA-MQI
Attachment retrieves the MERVA ESA message from a MERVA ESA send queue
and puts it as an MQI message to an MQI send queue. The association between a
MERVA ESA and an MQI send queue can be specified in the ALLSNDQ parameter
of DSLKPROC TYPE=SEND.

Up to 10 send queue pairs per send process can be defined. This allows to order
the send queue pairs according to the priority scheme of MQSeries where 0 is the
lowest priority and 9 is the highest priority. Several MERVA ESA send queues can
be associated to the same MQI send queue.

A MERVA ESA send queue is defined in the MERVA ESA function table
DSLFNTT. An MQI send queue is defined in MQSeries either as a local queue or
as the local definition of a remote queue:
v When it is defined as a local queue, the following attributes must be specified:

– For MQSeries for MVS/ESA, use the DEFINE QLOCAL command:
DEFINE QLOCAL PUT(ENABLED) NOTRIGGER ...

– For MQSeries for VSE/ESA:
- On the LOCAL QUEUE DEFINITION screen: Put Enabled: Y
- On the Queue Extended Definition screen: Trigger Enable: N

v When it is defined as the local definition of a remote queue, the following
attributes must be specified:
– For MQSeries for MVS/ESA, use the DEFINE QREMOTE command:

DEFINE QREMOTE PUT(ENABLED) XMITQ(...) ...

– For MQSeries for VSE/ESA, on the REMOTE QUEUE DEFINITION screen:
- Put Enabled: Y
- TRANSMISSION Q NAME: ...

For details see the MQSeries Command Reference or the MQSeries for VSE/ESA
System Management Guide.

A MERVA-to-MQI send process is started automatically by MERVA ESA or by an
operator using the command SF. The send process is started automatically:

306 Customization Guide

v When a message is written to a MERVA ESA send queue which is in status
NOHOLD

v During MERVA ESA startup when a send queue is in status AUTO

If you want to start the send process via the SF command, there are two ways to
collect MERVA ESA messages in several MERVA ESA send queues before starting
the send process:
v Define the MERVA ESA send queues in the MERVA ESA function table

DSLFNTT using the parameters TRAN=DSLS and STATUS=HOLD. This
prevents the transaction DSLS of the MERVA-to-MQI send process program
DSLKQS from being started automatically. The held function can be released
using the SF command.

v Define the MERVA ESA send queues in the DSLFNTT and omit the parameter
TRAN=DSLS. This inhibits an automatic start of the DSLKQS program.

Refer to “Defining the Start Queue” on page 310 for more information on the
operator-controlled start of a send process.

Defining the Receive Queues
Receiving a message from the MQSeries means that MERVA-MQI Attachment
retrieves the MQI message from an MQI receive queue and puts it as a
MERVA ESA message to a MERVA ESA control queue. The MQIRCVQ parameter
of DSLKPROC TYPE=RECEIVE contains the names of the MQI receive queues.

You can define up to 10 receive queues per receive process. As with the send
queue pairs, this lets you order the receive queues according to the priority scheme
of MQSeries. In MQSeries, an MQI receive queue is always defined as a local
queue. In MQSeries for MVS/ESA, the attribute GET(ENABLED) must be specified
in the DEFINE QLOCAL command. In MQSeries for VSE/ESA, specify Get
Enabled: Y on the LOCAL QUEUE DEFINITION screen.

An MQI-to-MERVA receive process is started in one of the following ways:

Automatically by the MQSeries queue manager
The automatic start by the queue manager is called triggering. The receive
process is triggered for an MQI receive queue when both the following are
true:
v Triggering is enabled for that queue.
v Certain predetermined conditions are satisfied; for example, a message

with a priority greater than or equal to the message priority trigger
number specified for that queue arrives in the queue.

To enable triggering, the following attributes must be specified:
v For MQSeries for MVS/ESA, use the DEFINE QLOCAL command:

DEFINE QLOCAL INITQ(...) PROCESS(...) TRIGGER TRIGTYPE(FIRST) ...

v For MQSeries for VSE/ESA, on the Queue Extended Definition screen:
– Trigger Enable: Y
– Trigger Type: F
– Allow Restart of Trigger: Y
– Trans ID: ...

By MERVA ESA
MERVA ESA can start a receive process during startup. This occurs when a
MERVA ESA start queue is assigned to the receive process and the start

Chapter 9. MERVA-MQI Attachment 307

|

queue is in status AUTO. The start queue can be set to status AUTO by the
MERVA ESA function table definition DSLFNT STATUS=AUTO.

By an operator using the command SF
If you want to start the receive process via the SF command, you can
collect MQI messages in several MQI receive queues before starting the
receive process. Switch off triggering for these receive queues as follows:
v For MQSeries for MVS/ESA, use the DEFINE QLOCAL command:

DEFINE QLOCAL NOTRIGGER ...

v For MQSeries for VSE/ESA, on the Queue Extended Definition screen:
– Trigger Enable: N

If required, set the start queue to status NOHOLD by specifying DSLFNT
STATUS=NOHOLD. Refer to “Defining the Start Queue” on page 310 for
more information on the operator-controlled start of a receive process.

Defining the Reply-to Queue
The reply-to queue is an MQI receive queue that must be defined in a send
process. In the REPLYTQ parameter of DSLKPROC TYPE=SEND the name of the
reply-to queue is specified. As a receive queue it must also be named in the
MQIRCVQ parameter of DSLKPROC TYPE=RECEIVE.

The reply-to queue receives reply or report messages. Therefore it must be
specified in combination with the ACKWQ, COAWQ, CODWQ, and EXCEPT=YES
parameters of DSLKPROC TYPE=SEND. The queue can be shared between several
send processes.

The reply-to queue is defined in the MQSeries as a local queue. The same
attributes apply to reply-to queues as for other receive queues.

MERVA-MQI Attachment sets the name of the reply-to queue in the field ReplyToQ
of the MQI control block MQMD.

Defining the Control Queues
Control queues are required both in a send process and receive process. They
assure the message integrity for the message transfer from MERVA ESA to the
MQSeries and vice versa.

Control Queues in a Send Process
A send process uses two types of control queues:
v MERVA ESA control queue
v MQI control queue

Before a MERVA ESA message is put to the MQI send queue, it is written to the
MERVA ESA control queue. The message contains a sequence number starting
with 1 and ending with the number of messages on the MQI send queue to be
committed. If an error occurs and the send process fails to put each message from
the MERVA ESA send queue to the MQI send queue, the messages in the
MERVA ESA control queue can be processed again when the send process is
started the next time.

Before the messages in the MQI send queue are committed, MERVA-MQI
Attachment puts a control message to the MQI control queue. The control message
contains the number of MQI messages put to the MQI send queue since the last

308 Customization Guide

commit. During message recovery MERVA-MQI Attachment uses this information
to decide which of the messages in the MERVA ESA control queue have to be put
again to the MQI send queue.

The MERVA ESA control queue name is specified in the MRVCTLQ parameter of
DSLKPROC TYPE=SEND. The control queue can be shared between several send
processes. The control queue is defined in the MERVA ESA function table
DSLFNTT with KEY1 and KEY2 (refer to “Using the Keys for the MERVA ESA
Queues” on page 322 for details).

The MQI control queue name is specified in the MQICTLQ parameter of
DSLKPROC TYPE=SEND. The control queue can be shared between several send
processes if MERVA-MQI Attachment is running under MVS. The control queue is
defined in the MQSeries as a local queue. The following attributes must be
specified:
v For MQSeries for MVS/ESA, use the DEFINE QLOCAL command:

DEFINE QLOCAL GET(ENABLED) PUT(ENABLED) NOTRIGGER ...

v For MQSeries for VSE/ESA:
– On the LOCAL QUEUE DEFINITION screen:

- Get Enabled: Y
- Put Enabled: Y

– On the Queue Extended Definition screen: Trigger Enable: N

Control Queue in a Receive Process
A receive process requires only a MERVA ESA control queue. MERVA-MQI
Attachment writes each message retrieved from an MQI receive queue to the
control queue. The message on the control queue gets a unique key, the contents of
the field MsgId from the MQI control block MQMD. After commit, the retrieved
messages are deleted from the MQI receive queue.

If an error should occur during processing, the queue manager backs out the
changes on the MQI receive queue since the last commit. That is, it restores the
uncommitted messages to the MQI receive queue. When the receive process is
started the next time, the unique key assures that MERVA-MQI Attachment
processes the messages from the MQI receive queue only once. MERVA-MQI
Attachment ignores the messages from the MQI receive queue which are already in
the MERVA ESA control queue (see also “Keys for a Receive Queue” on page 322).

The MERVA ESA control queue name is specified in the MRVCTLQ parameter of
DSLKPROC TYPE=RECEIVE. The control queue can be shared between several
receive processes. It is defined in the MERVA ESA function table DSLFNTT with
KEY1 and KEY2 (refer to “Using the Keys for the MERVA ESA Queues” on
page 322 for details).

Note: The control queue cannot be shared by the receive processes when an MQI
reply message requests one or more of the following MQI reports:
v COA
v COD
v Exception (MVS only)

In this case, two receive processes are required:
v One to receive the MQI report and reply messages associated with the

previously sent MQI request message

Chapter 9. MERVA-MQI Attachment 309

|
|

|

|

|

|

|
|

v One to receive the MQI report messages associated with the MQI reply
message that was sent on behalf of the MQI request message

Defining the Start Queue
An operator can use the start queue to initiate one or more of the MERVA-to-MQI
send processes and one or more of the MQI-to-MERVA receive processes. This is an
alternative to the automatic start of a send or receive process.

The parameter MRVSTAQ specifies the name of the MERVA ESA start queue. The
queue must be defined in the MERVA ESA function table DSLFNTT with the
following parameters:
v MQI=YES
v QUEUE=DUMMY
v TRAN=DSLS for a send process, or TRAN=DSLR for a receive process

An operator can initiate send or receive processes by entering the command SF
followed by the name of the start queue. The operator must be authorized to apply
the SF command to a function defined with MQI=YES.

Note: To enable an operator-controlled start, do not specify the parameter
STATUS=AUTO for the start queue.

When the start queue is specified for one send process or receive process only, it
processes all send or receive queues of the send process or receive process. The
queues are processed in the order of their appearance in the list of send queue
pairs (parameter ALLSNDQ of DSLKPROC TYPE=SEND) or receive queues
(parameter MQIRCVQ of DSLKPROC TYPE=RECEIVE).

When the start queue is specified for more than one send process or receive
process, it processes all send or receive queues of all the involved send processes
or receive processes. The messages in the queues are processed in the order of the
send or receive processes in the process table DSLKPROC. That is, the messages of
the first send or receive process are processed in the order of the queues in the list
of send queue pairs or receive queues. Then the messages of the second send or
receive process are processed and so on until the messages of the last send or
receive process have been processed.

Enabling a Disabled Receive Process
If triggering is enabled for an MQI receive queue, MERVA-MQI Attachment
processes the messages on this queue automatically. However, when an error
occurs during processing, MERVA-MQI Attachment running under MVS issues an
error message and disables triggering for the queue before it stops processing.

Under MQSeries for MVS/ESA, disabling the trigger mechanism is required.
Otherwise, the queue manager could call MERVA-MQI Attachment again when
other messages arrive on the queue satisfying the conditions for triggering. As
MERVA-MQI Attachment cannot remove the erroneous message from the queue,
the receive process would never come to an end.

When a start queue is defined for a receive process, triggering can be enabled
again. This occurs when the operator enters the SF command followed by the start
queue name. It is not required when MERVA-MQI Attachment runs under VSE.

Notes:

1. The problem that caused MERVA-MQI Attachment to disable triggering must
have been solved before the SF command can enable triggering.

310 Customization Guide

|
|

2. MERVA-MQI Attachment writes the indicator DSLKQR�� as data to the trigger
message (� represents a blank). The TRIGDATA attribute of the queue shows
this data when you issue the DISPLAY QUEUE command. If the data starts
with the indicator DSLKQR�� as the first 8 characters, you must not change
the indicator when you issue the ALTER QLOCAL command specifying the
TRIGDATA attribute with new data. The SF command can enable triggering
only when this indicator is available.

Defining the Error Queue
After MERVA-MQI Attachment has successfully received a message from an MQI
receive queue, errors can occur during further processing; for example:
v Accessing the MERVA ESA control queue for getting or putting a message might

fail.
v Length fields in the received message may be invalid.
v Mapping the message to the internal TOF format might fail.

Without an error queue, MERVA-MQI Attachment stops processing when such an
error occurs. Under MQSeries for MVS/ESA, triggering is inhibited. When an error
queue is available, MERVA-MQI Attachment writes the received message to this
queue, and continues processing.

The error queue can be either the MQSeries dead-letter queue or a user-defined
MQI queue. This can be specified in the MQIERRQ parameter of
DSLKPROC TYPE=RECEIVE. In MQSeries for MVS/ESA, specifying MQIERRQ=*
requests that the dead-letter queue be used.

MERVA-MQI Attachment always puts the dead-letter header MQDLH before the
message, even if it writes the message to a user-defined error queue. The Reason
field of the MQDLH contains a code describing the error. For an explanation of the
codes, refer to MERVA for ESA Messages and Codes.

Defining the Commit Frequency
MERVA-MQI Attachment commits the changes on the MQI send or receive queues
after a given number of messages from the MERVA ESA send queue or MQI
receive queue has been successfully processed. MERVA-MQI Attachment uses the
number specified in the COMMIT parameter as a limit to perform the commit.

The considerable overhead connected with a commit affects the overall
performance. Committing a large number of messages requires less commits, but
the commit takes more time. Committing a small number of messages requires
more commits, but the commit is faster. Varying the value of the COMMIT
parameter can help to find an acceptable compromise.

Defining the Scheduling Frequency
When MERVA-MQI Attachment is running under IMS, the number of messages to
be processed in a single scheduling can be defined.

For a send process, MERVA-MQI Attachment uses either the value defined in the
MERVA ESA customization parameter module DSLPRM, or the value defined for a
MERVA ESA send or start queue in the function table DSLFNTT. The value is
specified in the MSGLIM parameter of the macros DSLPARM or DSLFNT. If
specified in the function table, MERVA-MQI Attachment uses this value.

For a receive process, it depends on how the receive process was started.

Chapter 9. MERVA-MQI Attachment 311

v If it was triggered, MERVA-MQI Attachment uses either the value defined in the
module DSLPRM, or the value defined in the USERDATA parameter of an MQI
PROCESS definition. If specified in the PROCESS definition, MERVA-MQI
Attachment uses this value.
The characters 1 to 12 of the USERDATA parameter can contain the following
specification:
MSGLIM=nnnnn.
nnnnn represents the value for MSGLIM in the range 1 to 65535. Leading zeros
need not be specified.
The characters 13 to 16 of the USERDATA parameter are reserved.

v If an operator started the receive process or if it was started automatically
during MERVA ESA startup, MERVA-MQI Attachment uses either the value
defined in the module DSLPRM, or the value defined for the start queue in the
function table DSLFNTT. If specified in the function table, MERVA-MQI
Attachment uses this value.

The minimum value of MSGLIM and COMMIT determines the commit frequency.

After MERVA-MQI Attachment has processed the specified number of messages, it
inserts a message containing control information into the IMS message queue. The
message is:
v The TUCB if a MERVA ESA send or start queue is involved
v The MQI trigger message if the receive process was started by the queue

manager

Then MERVA-MQI Attachment terminates and is available for rescheduling by
IMS. When IMS schedules MERVA-MQI Attachment again, it uses the control
information from the retrieved TUCB or trigger message to determine the
appropriate queue of the send or receive process.

Defining the Wait Interval for Message Retrieval
When MERVA-MQI Attachment is triggered by the queue manager, it sets up an
MQI-to-MERVA receive process and retrieves all the messages from the MQI
receive queue until the queue is empty.

The condition for an empty queue can be made time dependent. Assume that the
last retrieval did not supply a message from the queue. The GETWAIT parameter
of DSLKPROC TYPE=RECEIVE specifies the maximum time MERVA-MQI
Attachment waits for a message to arrive. If no message has arrived after this time
has elapsed, MERVA-MQI Attachment considers the queue empty and terminates
the current receive process.

The overhead for triggering and terminating MERVA-MQI Attachment in short
periods can have an impact on the performance. This can occur if numerous small
groups of messages arrive on the queue discontinuously. If the GETWAIT interval
is shorter than the time between the arrivals of most of the messages, MERVA-MQI
Attachment is often triggered and terminated. On the other hand, a long GETWAIT
interval allocates the resources of MERVA ESA and MQSeries longer than
necessary in many cases. There is no general answer for what is the right
GETWAIT interval. Each installation has to find an appropriate value based on the
frequency and amount of its message transfer.

312 Customization Guide

Defining the Next Processing Step
In the NEXT parameter of DSLKPROC TYPE=SEND, the handling of an MQI
datagram or request message in the next processing step can be specified, after the
datagram or request message has been processed. The message has either been
received from an application or correlated with a reply or report message.

The following options are available:
v STANDARD

A datagram is sent again as a datagram. How a request message is handled
depends on its current status: correlated or received. A correlated request
message can be sent as a request message. Sending a correlated request message
as a datagram is not recommended as some control fields are kept which are not
appropriate to a datagram. A received request message is transformed to, and
sent as, a reply message.

v NEW
Using this option, the MQI message type can be changed independently of the
current status of the message. That is, a datagram and a request message can be
sent using the current message type or the changed one. Thus a datagram can be
sent as a request message and a request message can be sent as a datagram. The
new message type is determined by the ACKWQ parameter of
DSLKPROC TYPE=SEND. A datagram is sent if the ACKWQ parameter is
omitted. A request message is sent if the name of a MERVA ESA
acknowledgment wait queue is specified in the ACKWQ parameter. A received
request message is not transformed to a reply message.

v FORWARD
This option preserves the MQI message type and, with some exceptions, the
control information associated with a datagram and request message. The
current status, received or correlated, is not relevant. A datagram can be
forwarded as a datagram. A request message can be forwarded as a request
message. The message attributes contained in the MQI message descriptor
MQMD are kept with the following exceptions:
– For a received message, the encoding is set to the native machine encoding

after the message was converted.
– For a received message, the coded character set identifier (CCSID) is set to the

requested CCSID after the message was converted.
– If a user exit is specified in the EXIT parameter of DSLKPROC TYPE=SEND,

the format name is set depending on the MQFMT parameter of
DSLKPROC TYPE=SEND and additional data provided by the user exit.

The received message can already contain additional data, as shown in
Figure 138 on page 302. In this case, at least the binary length fields must have
been converted or be in the native machine encoding. In order to avoid checking
errors when the message is mapped, the character data should have been
converted to EBCDIC.

If a user exit is not specified in the EXIT parameter, any existing additional data
remain unchanged when the message is forwarded. A user exit can supply
another additional data. It is up to the user exit whether it appends the new
additional data to the old one, or overwrites the old additional data with the
new one.

Chapter 9. MERVA-MQI Attachment 313

|
|

Requesting Message Conversion
In the DSLKPROC table, the following parameters control the conversion of
message data consisting of characters and binary length fields:

CNVDEST This parameter can be specified for a send process when
MERVA-MQI Attachment is running under VSE. It specifies the
name of the destination platform when messages are to be fully or
partially converted before they are sent.

CONVERT This parameter can be specified for a receive process. It enables or
disables the conversion of received messages.

The different approaches are described in “Converting the Message Data” on
page 336.

Requesting Message Security
MERVA-MQI Attachment offers the following security services:
v Encrypting and creating an authentication checksum for messages to be sent
v Decrypting and authenticating received messages

It uses proprietary algorithms to encrypt, decrypt, and authenticate the message
data. How you request these security services depends on your environment:
v For MVS, you activate MQSeries channel exits
v For VSE, you set a parameter in the DSLKPROC table

Activating MQSeries Channel Exits (MVS only)
When MERVA-MQI Attachment is running under MVS, use one of the following
two MQSeries for MVS/ESA channel exits:

The message exit (DSLKMEA)
You can use this exit for all types of MQSeries channels except
client-connection and server-connection channels. If, after decryption,
DSLKMEA detects an authentication error in a received message,
MERVA-MQI Attachment assigns status AUTER to the message and routes it
to an error queue. The sample routing table DSLKQRT shows how to handle
messages with the status AUTER.

Specify the name of this exit in the MSGEXIT parameter of the DEFINE
CHANNEL command: MSGEXIT('DSLKMEA')

For messages to be sent to MQSeries for VSE/ESA, also specify
MSGDATA('VSE') for the DEFINE CHANNEL command. If an outgoing
message requests a COA or COD report with data from MQSeries, this
causes DSLKMEA to modify the appropriate report option, thereby
requesting a report without data.

The send and receive exit (DSLKSREA)
You can use this exit for all types of MQSeries channels; however, it is
recommended that you use it only for channel types that DSLKMEA cannot
handle (that is, client-connection and server-connection channels). If, after
decryption, DSLKSREA detects an authentication error in a received
message, it requests that MQSeries close the channel. This is usually less
desirable than taking advantage of the error handling provided by
DSLKMEA.

For a channel connection to MQSeries for VSE/ESA, DSLKSREA cannot be
used.

Specify the name of this exit in the DEFINE CHANNEL command:

314 Customization Guide

|

|

|

|

|
|

|

|

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|

SENDEXIT('DSLKSREA') For a send exit

RCVEXIT('DSLKSREA') For a receive exit

Except for a client-connection and server-connection channel, also specify
one of the following parameters for the DEFINE CHANNEL command:

SENDDATA('ALL') For a send exit

RCVDATA('ALL') For a receive exit

The channel exits DSLKMEA and DSLKSREA must be contained in the
non-authorized libraries defined by a CSQXLIB DD statement in the JCL of the
started task for the MQSeries channel initiator.

For more information about the DEFINE CHANNEL command, refer to the
MQSeries Command Reference.

Parameter in DSLKPROC (VSE only)
When MERVA-MQI Attachment is running under VSE, you request encryption,
decryption, and authentication of message data by specifying the DSLKPROC
parameter SECURE=AUTHENCR:
v When specified for a send process, MERVA-MQI Attachment encrypts and

creates an authentication checksum for the outgoing messages. If an outgoing
message requests a COA or COD report with data from MQSeries, MERVA-MQI
Attachment modifies the appropriate report option, thereby requesting a report
without data.

v When specified for a receive process, MERVA-MQI Attachment decrypts the
incoming messages, recalculates the checksum, and compares it with the
checksum sent with the message. If it detects an authentication error,
MERVA-MQI Attachment assigns status AUTER to the message and routes it to
an error queue.

Writing the MQI Message Types to the MERVA ESA Journal
Each MQI message type processed in a MERVA-to-MQI send process or
MQI-to-MERVA receive process can be selected to be written to the MERVA ESA
journal. The following message types are common for a send and receive process:
v Datagram
v Request message
v Reply message

They are written to the MERVA ESA journal if the parameters of DSLKPROC are
specified as follows:

JRNDGRM=YES Datagram

JRNRQST=YES Request message

JRNRPLY=YES Reply message

The following MQI report message types are handled in a receive process only:
v COA
v COD
v Exception

They are written to the MERVA ESA journal if the parameters of DSLKPROC
TYPE=RECEIVE are specified as follows:

Chapter 9. MERVA-MQI Attachment 315

||

||

|
|

||

||

|
|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

JRNRCOA=YES COA

JRNRCOD=YES COD

JRNREXC=YES Exception (supported only when MERVA-MQI
Attachment is running under MVS)

The journal record identifiers for the MQI message types are described in MERVA
for ESA Concepts and Components.

Notes:

1. The processing of the MQI message types including the reports must have been
requested in a send process. For example, if the ACKWQ parameter of
DSLKPROC TYPE=SEND was not specified, the send process can only send
datagrams. Specifying JRNDGRM=NO and JRNRQST=YES prevents a journal
entry as no request message can be sent.

2. Other reports than COA, COD, or exception are always written to the journal.
MERVA-MQI Attachment does not support these report message types and
writes them to the journal whenever they occur.

Issuing the MERVA ESA Operator Messages
MERVA-MQI Attachment issues messages to inform the MERVA ESA operator on
the current state of the send and receive processes. MERVA-MQI Attachment can
write the operator messages to two output media of MERVA ESA:
v The display message table
v The journal

The OPMSDM parameter of DSLKPROC directs the messages to the display
message table, the OPMSJRN parameter of DSLKPROC directs them to the journal.

Three levels can be chosen for the operator messages:

NONE No messages

SUBSET Part of the messages

FULL All messages

The NONE level suppresses the output of information messages to the display
message table or the journal. Error messages, however, are always issued to the
display message table or the journal.

The SUBSET level informs when a MERVA ESA send queue or MQI receive queue
was started for being processed or ended processing. This level is suited to inform
on the activities of automatically started queues in a send or receive process.

The FULL level causes MERVA-MQI Attachment to issue all available operator
messages. It includes the SUBSET level. Additionally it informs when a send or
receive process was started or ended. This level is suited to inform on the
processing of one or more send and receive processes started by an operator.

Using the Display Message Table
The display message table contains messages issued from MERVA-MQI
Attachment and from other components of MERVA ESA. The operator command
DM shows the messages contained in the display message table. In order to select
the messages issued by MERVA-MQI Attachment, the operator is recommended to
enter the prefix DSL6 as a parameter of DM. For example:
v DM DSL6

316 Customization Guide

v DM FIRST DSL6
v DM LAST DSL6

Messages issued for a send process start with 'MQSND:', messages issued for a
receive process start with 'MQRCV:'.

The size of the display message table can be adjusted using the DM parameter of
the DSLPARM macro.

Setting MERVA ESA Traces
MERVA-MQI Attachment writes two types of traces:
v The debugging trace
v The processing trace

MERVA ESA provides a debugging trace for MFS and TOF services. This trace can
be used to debug problems when MERVA-MQI Attachment uses MFS and TOF
services.

The parameter TRACMFS=YES of DSLKPROC activates the MFS trace. The
parameter TRACTOF=YES of DSLKPROC activates the TOF trace. Both types of
trace can be requested for a send and receive process.

The major modules of MERVA-MQI Attachment also provide processing trace
information. They write status entries into the trace table. The TRACE parameter
of the DSLPARM macro controls the MERVA ESA processing trace status. When
TRACE=EXT is set, the trace table is in main storage and is written to the
MERVA ESA journal.

Refer to the MERVA for ESA Diagnosis Guide for details.

Sample Process Tables DSLKPSAM (MVS) and DSLKPSMV
(VSE)

Figure 141 on page 318 shows a part of the sample process tables DSLKPSAM (for
MVS) and DSLKPSMV (for VSE). Each of these tables contains the definitions for
one send and one receive process.

Chapter 9. MERVA-MQI Attachment 317

|
|
|

Notes:

[1] TYPE=INITIAL

This must be the first macro. The generated name of the process table is
always DSLKPROC. The process table must be link-edited using this name.
Under CICS, a program definition for DSLKPROC in the CICS system
definition file CSD is also required.

[2] TYPE=SEND

This macro defines a MERVA-to-MQI send process.

[3] NAME=SPROC1

Specifies the send process name SPROC1. When more than one send
process is defined, this name must be unique for all send processes.

[4] ALLSNDQ=((DSLMRSQ1,DSL.MQI.SNDRCV))

Specifies one MERVA ESA and MQI send queue pair. The MERVA ESA
send queue DSLMRSQ1 is associated to the MQI send queue
DSL.MQI.SNDRCV. MERVA-MQI Attachment retrieves the messages to be
sent from the MERVA ESA queue DSLMRSQ1 and puts them to the MQI
queue DSL.MQI.SNDRCV.

[5] COAWQ=DSLMRCOA

Specifies the COA wait queue name DSLMRCOA. This indicates to
MERVA-MQI Attachment that it has to request a COA report message for
each message to be sent. MERVA-MQI Attachment stores messages waiting
for a COA report in the MERVA ESA queue DSLMRCOA.

[6] CODWQ=DSLMRCOD

Specifies the COD wait queue name DSLMRCOD. This indicates to
MERVA-MQI Attachment that it has to request a COD report message for
each message to be sent. MERVA-MQI Attachment stores messages waiting
for a COD report in the MERVA ESA queue DSLMRCOD.

DSLKPROC TYPE=INITIAL [1]
DSLKPROC TYPE=SEND, * [2]

NAME=SPROC1, * [3]
ALLSNDQ=((DSLMRSQ1,DSL.MQI.SNDRCV)), * [4]
COAWQ=DSLMRCOA, * [5]
CODWQ=DSLMRCOD, * [6]
ACKWQ=DSLMRAWQ, * [7]
MQICTLQ=DSL.MQI.CONTROL, * [8]
MRVCTLQ=(DSLMRCQS,CONTINUE), * [9]
MRVSTAQ=DSLMRSTS, * [10]
REPLYTQ=DSL.MQI.REPLY_TO_Q, * [11]
EXIT=8001, * [12]
MQFMT=BLANK, * [13]
OPMSDM=SUBSET [14]

DSLKPROC TYPE=RECEIVE, * [15]
NAME=RPROC1, * [16]
MQIRCVQ=(DSL.MQI.REPLY_TO_Q), * [17]
MRVCTLQ=DSLMRCQR, * [18]
MRVSTAQ=DSLMRSTR, * [19]
EXIT=8002, * [20]
OPMSDM=SUBSET [21]

DSLKPROC TYPE=FINAL [22]
END

Figure 141. Coding Example of a MERVA-MQI Attachment Process Table

318 Customization Guide

[7] ACKWQ=DSLMRAWQ

Specifies the acknowledgment wait queue name DSLMRAWQ. This
indicates to MERVA-MQI Attachment that it has to send MQI request
messages in this send process. MERVA-MQI Attachment stores request
messages waiting for an acknowledgment in the MERVA ESA queue
DSLMRAWQ. The acknowledgment is an MQI reply message from the
receiving application.

[8] MQICTLQ=DSL.MQI.CONTROL

Specifies the MQI control queue name DSL.MQI.CONTROL. The MQI
control queue is required to assure message integrity. Before the messages
in the MQI send queue DSL.MQI.SNDRCV are committed to the MQSeries,
MERVA-MQI Attachment stores control information in the MQI control
queue DSL.MQI.CONTROL. Thus the control information is also
committed to the MQSeries.

[9] MRVCTLQ=(DSLMRCQS,CONTINUE)

Specifies the MERVA ESA control queue name DSLMRCQS and the option
CONTINUE. The MERVA ESA control queue is required to assure message
integrity. Before a MERVA ESA message is put to the MQI send queue
DSL.MQI.SNDRCV, MERVA-MQI Attachment retrieves it from the
MERVA ESA send queue DSLMRSQ1 and writes it to the MERVA ESA
control queue DSLMRCQS.

The option CONTINUE applies only when MERVA-MQI Attachment has
to recover the messages in the queue DSLMRCQS. CONTINUE indicates to
MERVA-MQI Attachment to remove the messages from the queue
DSLMRCQS if an error occurs during message recovery. MERVA-MQI
Attachment routes the messages to an error queue and continues to process
the messages in the MERVA ESA send queue DSLMRSQ1.

[10] MRVSTAQ=DSLMRSTS

Specifies the MERVA ESA start queue name DSLMRSTS. An authorized
MERVA ESA operator can enter the command SF DSLMRSTS in order to
start the send process SPROC1.

[11] REPLYTQ=DSL.MQI.REPLY_TO_Q

Specifies the MQI reply-to queue name DSL.MQI.REPLY_TO_Q.
MERVA-MQI Attachment provides this name to the local MQSeries which
passes it on to the remote MQSeries and the receiving application. Thus
the remote MQSeries and the receiving application get the information on
the destination for their MQI report and reply messages. The reply-to
queue DSL.MQI.REPLY_TO_Q stores the COA and COD report messages
sent from the remote MQSeries, and the reply messages sent from the
receiving application.

Note: A remote MQSeries is not required. The local MQSeries can also
generate COA and COD report messages to confirm the arrival and
delivery of the received request messages.

[12] EXIT=8001

Specifies the MFS user exit number 8001. This number represents the
sample MFS user exit DSLKQ001. The exit provides additional data for the
MQI request messages to be sent. Although written in Assembler, the exit
complies to the high-level language interface for MFS user exits.

Chapter 9. MERVA-MQI Attachment 319

|
|
|

[13] MQFMT=BLANK

Specifies that the MQI data format name consists entirely of blanks. As the
user exit DSLKQ001 provides additional message data, MERVA-MQI
Attachment structures the data in the MQI request messages using 4-byte
fields, as shown in Figure 138 on page 302. The blank character format
name beginning other than ‘‘MQ‘‘ indicates to the receiving application
that the request messages contain length fields.

[14] OPMSDM=SUBSET

Specifies that MERVA-MQI Attachment issues a subset of operator
messages adding them to the MERVA ESA display message table. These
messages show when the MERVA ESA send queue DSLMRSQ1 was
started for processing or ended processing. The operator can enter the
command DM to see the messages in the display message table.

[15] TYPE=RECEIVE

This macro defines an MQI-to-MERVA receive process.

[16] NAME=RPROC1

Specifies the receive process name RPROC1. When more than one receive
process is defined, this name must be unique for all receive processes.

[17] MQIRCVQ=(DSL.MQI.REPLY_TO_Q)

Specifies the MQI receive queue name DSL.MQI.REPLY_TO_Q. This is the
name of the reply-to queue specified in the REPLYTQ parameter of
DSLKPROC TYPE=SEND. The MQI queue DSL.MQI.REPLY_TO_Q stores
the received COA and COD report messages, and the received reply
messages until MERVA-MQI Attachment has processed them.

[18] MRVCTLQ=DSLMRCQR

Specifies the MERVA ESA control queue name DSLMRCQR. The
MERVA ESA control queue is required to assure message integrity. Before
each received message can be routed to its MERVA ESA target queue,
MERVA-MQI Attachment retrieves it from the MQI receive queue
DSL.MQI.REPLY_TO_Q and writes it to the MERVA ESA control queue
DSLMRCQR.

[19] MRVSTAQ=DSLMRSTR

Specifies the MERVA ESA start queue name DSLMRSTR. An authorized
MERVA ESA operator can enter the command SF DSLMRSTR in order to
start the receive process RPROC1.

[20] EXIT=8002

Specifies the MFS user exit number 8002. This number represents the
sample MFS user exit DSLKQ002. After correlation of the waiting request
message with the received reply message, the exit reads the reply message
data and writes it to one or more target fields. Although written in
Assembler, the exit complies to the high-level language interface for MFS
user exits.

[21] OPMSDM=SUBSET

Specifies that MERVA-MQI Attachment issues a subset of operator
messages adding them to the MERVA ESA display message table. These
messages show when the MQI receive queue DSL.MQI.REPLY_TO_Q was

320 Customization Guide

started for processing or ended processing. The operator can enter the
command DM to see the messages in the display message table.

[22] TYPE=FINAL

This must be the last macro and is followed by the Assembler END
statement.

Using the Keys for Message Identification and Correlation
MERVA-MQI Attachment uses one or two keys to uniquely identify messages on
the MQI and MERVA ESA queues.

Using the Keys for the MQI Queues
MERVA-MQI Attachment uses two fields of the MQI control block MQMD as key
fields for the messages on the MQI queues:
v MsgId

v CorrelId

The field contents is different depending on the MQI queue and the type of the
message in the queue.

Keys for a Send Queue
This queue can contain datagrams, request, and reply messages. MERVA-MQI
Attachment sets the key fields for these MQI messages as follows:
v Datagram and request message:

MsgId The queue manager generates a unique key.

CorrelId Name of the current send process (bytes 1 to 8), followed by the
name of the MERVA ESA send queue (bytes 9 to 16), followed
by blanks (bytes 17 to 24).

The send process name is specified in the NAME parameter of
DSLKPROC. The MERVA ESA send queue name is specified in
the ALLSNDQ parameter of DSLKPROC.

v Reply message:
MERVA-MQI Attachment sets MsgId and CorrelId depending on the report
options specified for the received MQI request message. The report options are
contained in the Report field of the MQI control block MQMD.
The following options are supported:

Copy MsgId to CorrelId
MERVA-MQI Attachment copies the MsgId of the request message to the
CorrelId of the reply message.

Pass CorrelId
MERVA-MQI Attachment copies the CorrelId of the request message to
the CorrelId of the reply message.

New MsgId
The queue manager generates a new MsgId for the reply message.

Pass MsgId
MERVA-MQI Attachment copies the MsgId of the request message to the
MsgId of the reply message.

Chapter 9. MERVA-MQI Attachment 321

Keys for a Control Queue
This queue can contain control messages. MERVA-MQI Attachment uses only the
CorrelId field to identify the control messages. The MsgId field can have any
identifier to match.

CorrelId contains the name of the current send process (bytes 1 to 8), followed by
the name of the MERVA ESA send queue (bytes 9 to 16), followed by blanks (bytes
17 to 24). The send process name is specified in the NAME parameter of
DSLKPROC. The MERVA ESA send queue name is specified in the ALLSNDQ
parameter of DSLKPROC.

Keys for a Receive Queue
This queue can contain datagrams, request, reply, and report messages.
MERVA-MQI Attachment always retrieves all messages contained in a receive
queue. Therefore there are no selection criteria required. The fields MsgId and
CorrelId can have any identifier to match.

Note: The application sending a datagram or request message to a receive queue
owned by MERVA-MQI Attachment must provide a unique identifier in
the MsgId field. MERVA-MQI Attachment uses the unique MsgId to assure
the message integrity for the MQI-to-MERVA receive processes.

The contents of the MsgId and CorrelId for a received reply and report message are
determined by the report options for the datagram and request message sent by
MERVA-MQI Attachment. The application sending a reply message (or even a
report message) to a receive queue owned by MERVA-MQI Attachment must
follow the report option instructions; that is, the application must support the
following report options:
v Copy MsgId to CorrelId

v Pass CorrelId

v New MsgId

v Pass MsgId

Using the Keys for the MERVA ESA Queues
The following MERVA ESA queues require one or two key fields when they are
defined in the MERVA ESA function table DSLFNTT:
v The control queue
v The acknowledgment wait queue
v The COA wait queue
v The COD wait queue

Keys for the Control Queue
The control queue is defined in DSLFNTT with KEY1=(DSLKKEY1,16,,NOMOD)
and KEY2=(DSLKMSID,24,,NOMOD). DSLKMSID is a subfield of the TOF field
DSLKMQMD. The TOF fields DSLKKEY1 and DSLKMQMD are described in
“Using the Control Fields” on page 323.
v When used for a send process, KEY1 contains the name of the send process

followed by the name of the MERVA ESA send queue. The name of the send
process is specified in the NAME parameter of DSLKPROC TYPE=SEND. The
name of the MERVA ESA send queue is specified in the ALLSNDQ parameter of
DSLKPROC TYPE=SEND.
When used for a receive process, KEY1 contains the name of the receive process
followed by an index for the MQI receive queue. The name of the receive

322 Customization Guide

process is specified in the NAME parameter of DSLKPROC TYPE=RECEIVE.
The index is an 8-digit number in the range 00000001 to 00000010. It represents
an MQI receive queue on position 1 to 10 in the receive queue list of the
MQIRCVQ parameter of DSLKPROC TYPE=RECEIVE.
KEY1 must have a length of 16 bytes. The subparameter NOMOD is required.

v KEY2 contains the contents of the field MsgId from the MQI control block
MQMD. KEY2 must have a length of 24 bytes. The subparameter NOMOD is
required.

Key for the Wait Queues
The wait queues are defined in DSLFNTT with KEY1=(DSLKMSID,24,,NOMOD).
DSLKMSID is a subfield of the TOF field DSLKMQMD. The TOF field
DSLKMQMD is described in “Using the Control Fields”.

KEY1 contains the contents of the field MsgId from the MQI control block MQMD.
KEY1 must have a length of 24 bytes. The subparameter NOMOD is required.

Correlating MQI Report and Reply Messages
Message correlation means searching in one of the wait queues for the message that
is waiting for a particular report or reply message. The message that is waiting can
be a datagram, a request message, or a reply message. A reply message can wait
only for a report message. When the waiting message is found, the relevant data of
the report or reply message is written to that message. It is possible that a reply
message contains no data. The only data in a report message is the feedback or
reason code.

The correlation requires the following:

Send process determination
MERVA-MQI Attachment obtains the name of the send process from the
field CorrelId of the MQI control block MQMD. When the report was
requested by a reply message, the MQMD field ApplIdentityData contains
the send process name (see “Setting the MQI Report Options” on
page 304).

Message identification in one of the wait queues
After the send process has been determined, MERVA-MQI Attachment
retrieves the message from the appropriate wait queue using the MQMD
field MsgId as KEY1.

Using the Control Fields
MERVA-MQI Attachment writes control information to the TOF describing the
message transfer in a MERVA-to-MQI send process and an MQI-to-MERVA receive
process.

List of Control Fields
The following list shows the fields which contain the control information.
MERVA-MQI Attachment writes the fields to the TOF using the nesting identifier
0. The fields are defined in the MERVA ESA field definition table DSLFDTT. An
asterisk (*) indicates that a field contains subfields.

DSLKDATA Additional message fields (*)

DSLKKEY1 KEY1 for MERVA ESA control queue

DSLKMAWQ MERVA ESA ACK wait queue name

Chapter 9. MERVA-MQI Attachment 323

|

|
|
|
|
|
|

|
|
|
|

|

DSLKMCNT Counter of uncommitted messages

DSLKMDRQ MQI control block MQMD used in a reply message

DSLKMGMO MQI control block MQGMO (*)

DSLKMPMO MQI control block MQPMO (*)

DSLKMQMD MQI control block MQMD (*)

DSLKMQOD MQI control block MQOD

DSLKMSQN MERVA ESA send queue name

DSLKPNAM Send or receive process name

DSLKPRTY MQI message priority

DSLKRPLY MQI reply message data (*)

DSLKRPRT MQI report message data

DSLKSTAT Message status

DSLKTYPE MQI message type

FMT/ESA with MERVA-MQI Attachment writes the following fields:

DSLKAKRQ Request for an acknowledgment

DSLKPNM Name of the send process

DSLKISN Input sequence number (ISN)

DSLKOSN Output sequence number (OSN)

Some of the fields are used in a routing table to control the message flow in a send
and receive process. The sample routing table DSLKQRT shows how the MQI
message types can be handled as MERVA ESA messages (refer to “Sample Routing
Table DSLKQRT” on page 328 for details).

MERVA-MQI Attachment writes the following fields both for a send and receive
process:

DSLKAKRQ Request for an acknowledgment (FMT/ESA only)

DSLKKEY1 KEY1 for MERVA ESA control queue

DSLKMQMD MQI control block MQMD

DSLKPNAM Send or receive process name

DSLKPRTY MQI message priority

DSLKRPLY MQI reply message data

DSLKSTAT Message status

DSLKTYPE MQI message type

MERVA-MQI Attachment writes the following fields for a send process only:

DSLKMAWQ MERVA ESA ACK wait queue name

DSLKMCNT Counter of uncommitted messages

DSLKMDRQ MQI control block MQMD used in a reply message

DSLKMPMO MQI control block MQPMO

324 Customization Guide

|

||

||

||

||

|

||

DSLKMQOD MQI control block MQOD

DSLKMSQN MERVA ESA send queue name

MERVA-MQI Attachment writes the following fields for a receive process only:

DSLKDATA Additional message fields

DSLKMGMO MQI control block MQGMO

DSLKRPRT MQI report message data

Using Message Status Information
The field DSLKSTAT contains the status of the currently processed message. This
information is used in a routing table to distinguish between a send and receive
process, and to structure the processing of the MQI message types.

Recognizing the Message Status
The status information in DSLKSTAT can have a length of up to five characters.
The following values can occur:

ACK Request message correlated with reply message

ACKC Reply message successfully correlated

ACKER Error after correlation with the reply message (written by
FMT/ESA)

ACKNC Reply message could not be correlated

AUTER Authentication error in a received datagram or request, reply, or
report message

COA Datagram/request/reply message correlated with COA report

COAC COA report successfully correlated

COAER Error after correlation with the COA report (written by FMT/ESA)

COANC COA report could not be correlated

COD Datagram/request/reply message correlated with COD report

CODC COD report successfully correlated

CODNC COD report could not be correlated

ERANY Any error during message recovery

ERCHK MERVA ESA MFS message checking error

ERCNT Counter error during message recovery

ERSND Error while the message is being sent (written by FMT/ESA)

ERSWO Error while routing a SWIFT message (written by FMT/ESA)

EXC Datagram/request/reply message correlated with exception report
(MVS only)

EXCC Exception report successfully correlated (MVS only)

EXCNC Exception report could not be correlated (MVS only)

FORWD Datagram or request message was forwarded

RCVD Datagram or request message was received

SENT Datagram/request/reply message was sent

Chapter 9. MERVA-MQI Attachment 325

||
|

||
|

||

||

||

SWIER Error regarding a SWIFT input message (written by FMT/ESA)

UNSUP Unsupported report message was received

Recognizing a Send or Receive Process
The message belongs to a send process when DSLKSTAT contains one of the
following values:
v ERANY
v ERCHK
v ERCNT
v ERSND
v ERSWO
v FORWD
v SENT

The other DSLKSTAT values indicate a receive process. Thus it is possible to use a
common routing table for send and receive processes.

Recognizing the Message Type
Some values of DSLKSTAT apply to several MQI message types. For example, the
values RCVD and SENT. The field DSLKTYPE contains the necessary information
to identify the message type.

MERVA-MQI Attachment uses the scheme defined by MQSeries for message type
identifiers and provides the following values in DSLKTYPE:

1 Request message

2 Reply message

4 Report message

8 Datagram

Recognizing MFS Errors
Regular SWIFT messages are transported via request messages (DSLKTYPE=1) or
datagrams (DSLKTYPE=8). If, for such a message, a MERVA ESA Message Format
Service (MFS) error occurs, MERVA-MQI Attachment writes to subfield
MSGTRERR of field MSGTRACE the character 0 (zero) followed by the
three-character reason code. This value can be used to route erroneous messages to
an error queue.

For example, the routing table might contain the following macros to test the
contents of MSGTRERR:
DSLROUTE TYPE=DEFINE,FIELD=(MSGERR,MSGTRERR,,,,,VFIRST, *

LASTDA),NOTFND=ERROR,EMPTY=ERROR
DSLROUTE TYPE=TEST,COND=(MSGERR,'0000',NE),TRUE=ERROR

MSGTRERR can have a non-zero value only when the status field DSLKSTAT
contains one of the following values:
v For a send process, ERANY or ERCHK
v For a receive process, RCVD

Displaying MQI Control Block Data
When MERVA-MQI Attachment puts a MERVA ESA message to an MQI send
queue or retrieves a message from an MQI receive queue, two of the following
three MQI control blocks are always affected:

326 Customization Guide

||

|

|

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|

|

MQMD Message descriptor

MQGMO Get-message options

MQPMO Put-message options

MQSeries provides in these control blocks the complete information on the
message and the options used for getting it from, or putting it to, the MQI queue
(see the MQSeries Application Programming Reference for details). MERVA-MQI
Attachment writes this control data to the following fields:

DSLKMGMO MQGMO

DSLKMPMO MQPMO

DSLKMQMD MQMD

In a send process, MERVA-MQI Attachment writes the fields:
v DSLKMPMO
v DSLKMQMD

In a receive process, MERVA-MQI Attachment writes the fields:
v DSLKMGMO
v DSLKMQMD

When using the MERVA ESA cover MCB DSLKCOV provided for MERVA-MQI
Attachment, the data in the fields DSLKMGMO, DSLKMPMO, and DSLKMQMD
can be displayed together with the other data of the sent or received message.
There are two ways to display the MQI control block data:
v Using the operator command SHOW
v Specifying the cover MCB in the MERVA ESA function table

When a SWIFT, telex, or user message is displayed without the MQI control block
data, the operator can enter the SHOW command. SHOW KCOV or
SHOW MQCOVER (the MERVA ESA message type synonym) displays the data as
far as it is available for the current message.

The cover MCB can be associated to those queues in the function table DSLFNTT
which contain messages processed by MERVA-MQI Attachment. When the
parameter MSGID=KCOV is specified in the DSLFNT macro, the cover MCB
DSLKCOV is associated to this queue and the MQI control block data can be
shown.

Recognizing the Feedback from a Report Message
The feedback or reason code indicates the nature of the report. After correlation,
the feedback or reason code from the report message is available in the message
having waited for the report. The subfield DSLKFBCK of the field DSLKMQMD
contains this code. For a list of feedback and reason codes, refer to the MQSeries
Application Programming Reference.

Note: When more than one report message was correlated with the waiting
message, DSLKFBCK contains the feedback or reason code of the last
received report message. For example, when both a COA and COD report
message were correlated, DSLKFBCK usually contains the feedback code of
the COD report.

The MFS Editing Exits DSLME910 and DSLME911
Each subfield of the fields DSLKMGMO, DSLKMPMO, and DSLKMQMD contains
the data of the corresponding field in the appropriate MQI control block. The MFS

Chapter 9. MERVA-MQI Attachment 327

editing exits DSLME910 and DSLME911 prepare the external representation of
selected control block fields. For example, when a subfield contains binary data,
the exits convert it to displayable decimal and hexadecimal characters.

The source code of the exits is provided. If required, an installation can change the
external representation of the MQI control block data. The MCB DSLKCTL contains
references to the exits DSLME910 and DSLME911. In this MCB, the subfields are
defined with the EDIT=910 and EDIT=911 parameter of the DSLLDFLD statement.
DSLKCTL is embedded in the cover MCB DSLKCOV by the IMBED=KCTL
parameter of the DSLLEXIT statement.

Sample Routing Table DSLKQRT
The following is an excerpt from the sample routing table DSLKQRT. This routing
table can be used both for send and receive processes, and is associated with the
MERVA ESA control queue specified in the MRVCTLQ parameter of the
DSLKPROC macro.
DSLKQRT DSLROUTE TYPE=DEFINE,FIELD=(STATUS,DSLKSTAT,,,,,VFIRST), * [1]

NOTFND=END
DSLROUTE TYPE=DEFINE,FIELD=(MSGTYP,DSLKTYPE,,,,,VFIRST) [2]

--
* DISTINGUISH BETWEEN SEND AND RECEIVE PROCESSES *
--
*

DSLROUTE TYPE=TEST,COND=(STATUS,'SENT',EQ,SHORT),TRUE=SENT [3]
DSLROUTE TYPE=TEST,COND=(STATUS,'FORWD',EQ),TRUE=FWD [4]
DSLROUTE TYPE=TEST,COND=(STATUS,'ER',EQ,SHORT),TRUE=ER [5]

*
DSLROUTE TYPE=TEST,COND=(STATUS,'RCVD',EQ,SHORT),TRUE=RCVD [6]
DSLROUTE TYPE=TEST,COND=(STATUS,'ACK',EQ,SHORT),TRUE=ACK [7]
DSLROUTE TYPE=TEST,COND=(STATUS,'COA',EQ,SHORT),TRUE=COA [8]
DSLROUTE TYPE=TEST,COND=(STATUS,'COD',EQ,SHORT),TRUE=COD [9]
DSLROUTE TYPE=TEST,COND=(STATUS,'EXC',EQ,SHORT),TRUE=EXC [9]
DSLROUTE TYPE=TEST,COND=(STATUS,'UNSUP',EQ),TRUE=UNSUP, * [9]

FALSE=END
--
* MERVA-TO-MQI SEND PROCESS *
--
*
SENT DSLROUTE TYPE=TEST,COND=(MSGTYP,'1',EQ,SHORT),TRUE=ACKWAIT [10]

DSLROUTE TYPE=TEST,COND=(MSGTYP,'2',EQ,SHORT),TRUE=DELREPCM [11]
DSLROUTE TYPE=SET,TARGET='DSLMRSNT',GOTO=END [12]

ACKWAIT DSLROUTE TYPE=DEFINE,FIELD=(ACKWQ,DSLKMAWQ,,,,,VFIRST) [13]
DSLROUTE TYPE=SET,TARGET=ACKWQ,GOTO=END [14]

DELREPCM DSLROUTE TYPE=SET,TARGET='DSLMRDMY',GOTO=END [15]
FWD DSLROUTE TYPE=SET,TARGET='DSLMRSNT',GOTO=END [16]
*
ER ...
--
* MQI-TO-MERVA RECEIVE PROCESS *
--
*
RCVD DSLROUTE TYPE=TEST,COND=(MSGTYP,'8',EQ,SHORT),TRUE=RCVDQ [17]

DSLROUTE TYPE=SET,TARGET='DSLMRSQ2' [18]
RCVDQ DSLROUTE TYPE=SET,TARGET='DSLMRRQ1',GOTO=END [19]
*
ACK DSLROUTE TYPE=TEST,COND=(STATUS,'ACK ',EQ),TRUE=ACKCORR [20]

DSLROUTE TYPE=TEST,COND=(STATUS,'ACKNC',EQ),TRUE=ACKNCORR [21]
DSLROUTE TYPE=SET,TARGET='DSLMRDMY',GOTO=END [22]

ACKCORR DSLROUTE TYPE=SET,TARGET='DSLMRRQ1',GOTO=END [23]
ACKNCORR DSLROUTE TYPE=SET,TARGET='DSLMRNCO',GOTO=END [24]
*
COA DSLROUTE TYPE=TEST,COND=(STATUS,'COA ',EQ),TRUE=COACORR [25]

DSLROUTE TYPE=TEST,COND=(STATUS,'COANC',EQ),TRUE=COANCORR [26]

328 Customization Guide

DSLROUTE TYPE=SET,TARGET='DSLMRDMY',GOTO=END [27]
COACORR DSLROUTE TYPE=DEFINE,FIELD=(ACKWQ,DSLKMAWQ,,,,,VFIRST), * [28]

FOUND=COAAWQ
DSLROUTE TYPE=SET,TARGET='DSLMRRQ1',GOTO=END [29]

COAAWQ DSLROUTE TYPE=SET,TARGET=ACKWQ,GOTO=END [30]
COANCORR DSLROUTE TYPE=SET,TARGET='DSLMRNCO',GOTO=END [31]
*
COD ...
EXC ...
UNSUP ...
*
END DSLROUTE TYPE=FINAL

END

Notes:

[1] The field DSLKSTAT is defined as STATUS for testing its contents in later
DSLROUTE macros. STATUS contains the status of the message. If the field
DSLKSTAT is not found in the TOF, processing stops at the END label.
Checking the existence of DSLKSTAT can be used to separate MERVA-MQI
Attachment-related parts from other processing logic in a routing table.

[2] The field DSLKTYPE is defined as MSGTYP for testing its contents in later
DSLROUTE macros. MSGTYP contains the MQI message type identifiers.

[3] If the first four characters of the status value are SENT, the message
belongs to a send process. This status value indicates that an MQI
datagram, request, or reply message was sent. Processing continues at the
SENT label.

[4] If the status value contains FORWD, the message also belongs to a send
process. This status value indicates that an MQI datagram or request
message was forwarded. Processing continues at the FWD label.

[5] If the first two characters of the status value are ER, the message also
belongs to a send process. The values ERANY, ERCHK, and ERCNT
indicate an error during message checking or recovery; the values ERSND
and ERSWO indicate an error during FMT/ESA processing. Processing
continues at the ER label. The processing logic at the ER label is not shown
in this example.

[6] If the first four characters of the status value are RCVD, the message
belongs to a receive process. This status value indicates that an MQI
datagram or request message was received. Processing continues at the
RCVD label.

[7] If the first three characters of the status value are ACK, the message also
belongs to a receive process. The values ACK, ACKC, and ACKNC indicate
whether a waiting request message could be correlated with the received
reply message; the value ACKER indicates whether an error occurred
during FMT/ESA processing after the correlation with the reply message.
Processing continues at the ACK label.

[8] If the first three characters of the status value are COA, the message also
belongs to a receive process. The values COA, COAC, and COANC
indicate whether a waiting datagram, request, or reply message can be
correlated with the received COA report message; the value COAER
indicates whether an error occurred during FMT/ESA processing after the
correlation with the COA report. Processing continues at the COA label.

[9] The processing logic concerning the status values beginning with COD and
EXC and the status value UNSUP is not shown in this example. A message
with any of these status values also belongs to a receive process.

Chapter 9. MERVA-MQI Attachment 329

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

Note: Only a MERVA-MQI Attachment running under MVS can produce
status values beginning with EXC.

[10] A datagram, request, or reply message was sent. If MSGTYP contains 1 as
the first character, the message sent is a request message. Processing
continues at the ACKWAIT label.

[11] If MSGTYP contains 2 as the first character, the message sent is a reply
message. Processing continues at the DELREPCM label.

[12] The message sent is neither a request nor a reply message. Therefore it is a
datagram, as MERVA-MQI Attachment never sends a report message. The
datagram is routed to the target queue DSLMRSNT, and processing stops
at the END label.

[13] The message sent is a request message. The field DSLKMAWQ is defined
as ACKWQ for using its contents in later DSLROUTE macros. ACKWQ
contains the name of the acknowledgment wait queue as defined in the
ACKWQ parameter of the DSLKPROC macro.

[14] The request message is routed to the acknowledgment wait queue whose
name is contained in ACKWQ, and processing stops at the END label. The
request message waits in the acknowledgment wait queue for the
correlation with the reply message sent from the receiving application.

[15] The message sent is a reply message. As the reply message needs not to
wait for any report message, it is routed to the dummy queue
DSLMRDMY. Routing to a dummy queue deletes the reply message, and
processing stops at the END label.

[16] The message forwarded is a datagram or request message. The message is
routed to the target queue DSLMRSNT, and processing stops at the END
label.

[17] A datagram or request message was received. If MSGTYP contains 8 as the
first character, the message received is a datagram. Processing continues at
the RCVDQ label.

[18] As it is not a datagram, the message received is a request message. It is
routed to the target queues DSLMRSQ2 and DSLMRRQ1, and processing
stops at the END label.

MERVA-MQI Attachment uses the queue DSLMRSQ2 as a send queue in
another send process. The send queue name must be specified in the
ALLSNDQ parameter of the DSLKPROC macro. When a received request
message is routed to a send queue and the next processing step is specified
or defaults to NEXT=STANDARD in the other send process, MERVA-MQI
Attachment creates a reply message and sends it to the originator of the
request message.

[19] The message received is a datagram. It is routed to the target queue
DSLMRRQ1, and processing stops at the END label.

[20] A reply message was received. If STATUS contains the string 'ACK ', the
waiting request message was correlated with the reply message. Processing
continues at the ACKCORR label.

[21] If STATUS contains ACKNC, the received reply message could not be
correlated with the waiting request message. Processing continues at the
ACKNCORR label.

[22] As STATUS does not contain either of the strings 'ACK ' or 'ACKNC', it
must contain either ACKC or ACKER:

330 Customization Guide

|
|

v ACKC indicates that the received reply message could be correlated with
the waiting request message. The reply message is routed to the dummy
queue DSLMRDMY. Routing to a dummy queue deletes the reply
message, and processing stops at the END label.

v The processing logic for the status ACKER is not shown in this example.

[23] The correlated request message containing the reply message data is routed
to the target queue DSLMRRQ1, and processing stops at the END label.

[24] The reply message which could not be correlated with the waiting request
message is routed to the target queue DSLMRNCO, and processing stops
at the END label.

[25] A COA report message was received. If STATUS contains the string
'COA ', the waiting datagram, request, or reply message was correlated
with the COA report message. Processing continues at the COACORR
label.

[26] If STATUS contains COANC, the received COA report message could not
be correlated with the waiting datagram, request, or reply message.
Processing continues at the COANCORR label.

[27] As STATUS does not contain either of the strings 'COA ' or 'COANC', it
must contain either COAC or COAER:
v COAC indicates that the received COA report message could be

correlated with the waiting datagram, request, or reply message. The
COA report message is routed to the dummy queue DSLMRDMY.
Routing to a dummy queue deletes the COA report message, and
processing stops at the END label.

v The processing logic for the status COAER is not shown in this example.

[28] The datagram, request, or reply message was correlated with the COA
report message and contains now the feedback or reason code from the
report message. The field DSLKMAWQ is defined as ACKWQ for using its
contents in later DSLROUTE macros. ACKWQ contains the name of the
acknowledgment wait queue as defined in the ACKWQ parameter of the
DSLKPROC macro. If the field DSLKMAWQ is found in the TOF,
processing continues at the COAAWQ label.

[29] As the field DSLKMAWQ is not available in the TOF, the correlated
message must be either a datagram or a reply message. The correlated
datagram or reply message containing the feedback or reason code from
the COA report message is routed to the target queue DSLMRRQ1, and
processing stops at the END label.

[30] As the field DSLKMAWQ is available in the TOF, the correlated message
must be a request message. The correlated request message containing the
feedback or reason code from the COA report message is routed to the
acknowledgment wait queue whose name is contained in ACKWQ, and
processing stops at the END label. The request message waits in the
acknowledgment wait queue for the correlation with the reply message
sent from the receiving application.

[31] The COA report message which could not be correlated with the waiting
datagram, request, or reply message is routed to the target queue
DSLMRNCO, and processing stops at the END label.

Chapter 9. MERVA-MQI Attachment 331

|
|
|
|

|

|
|

|
|
|
|
|

|

Writing a User Exit
MERVA-MQI Attachment calls a user exit to add data to a datagram, request, or
reply message. The data cannot be provided by MERVA-MQI Attachment itself.
The effect of the user exit data on the three MQI message types was described in
“Defining the Message Data Structure” on page 302.

Functions of the User Exit
A message in the TOF is presented to the user exit. The exit reads data from, and
writes new data to, the TOF thus modifying the message.

The Request Types
The exit is called for a send and receive process. When called for a send process,
the exit processes the following requests of MERVA-MQI Attachment:

PUTDATA The exit writes additional message data to the TOF field
DSLKDATA. This request applies to a datagram and request
message.

On return, MERVA-MQI Attachment reads the data from the field
DSLKDATA and creates a message structure as shown in
Figure 138 on page 302.

PUTREPLY The exit writes the complete message data to the TOF field
DSLKRPLY. This request applies to a reply message.

On return, MERVA-MQI Attachment reads the data from the field
DSLKRPLY and creates a message structure as shown in Figure 139
on page 302 or Figure 140 on page 302.

When called for a receive process, the exit processes the following requests of
MERVA-MQI Attachment:

GETDATA The exit reads additional message data from the TOF field
DSLKDATA and writes it to one or more target fields in the TOF.
This request applies to a datagram and request message.

GETREPLY The exit reads the complete message data from the TOF field
DSLKRPLY and writes it to one or more target fields in the TOF.
This request applies to a request message after correlation with the
received reply message.

A single user exit can process these four requests. It is not necessary to write an
exit for a send process and another one for a receive process.

The TOF Fields DSLKDATA and DSLKRPLY
Both fields can consist of up to 16 data areas. Each data area can contain data with
a length of up to 28680 bytes. Note that the number of data areas can be increased
in the MERVA ESA field definition table DSLFDTT. The maximum length of a data
area, however, must not be increased.

A data area consists of the area for the field identifier followed by the area for the
field data. The area for the field identifier has a fixed length of 8 bytes. The area
for the field data has a variable length of up to 28672 bytes. The field identifier is
the name of the TOF field that contained the field data. For the request types
PUTDATA and PUTREPLY, the exit provides the contents of the field identifier and
field data. The field identifier can be set entirely to blanks if the origin of the field
data is not relevant.

332 Customization Guide

Interface to MERVA ESA and to MERVA-MQI Attachment
An exit can be written as either:

An HLL MFS user exit
High-level language (HLL) MFS user exits exchange data with
MERVA ESA via the MERVA ESA application programming interface
(API). They can be written in Assembler, C/370, COBOL, or PL/I. An HLL
user exit can use all API functions except INIT and TERM. If written in
Assembler, an HLL user exit can use MERVA ESA macros directly,
although this is not recommended.

A macro-level MFS user exit
Macro-level MFS user exits use MERVA ESA macros directly. They can be
written in Assembler only.

When running under CICS, either type of user exit can issue EXEC CICS calls if
required.

Interface to MERVA ESA
The exit is defined to MERVA ESA using the MFS program table DSLMPTT. The
following parameters of the DSLMPT macro are used:

LANG The programming language (omit this parameter for a macro-level
user exit)

LINK Always LINK=NO

NAME The name of the exit

NUMBER The exit number of up to 5 digits

TYPE Always TYPE=U

The DSLMPTT must be link-edited to the module DSLMMFS. The exit must be
link-edited as a separate load module. Under CICS, a program definition for the
exit in the CICS system definition file CSD is also required.

Interface to MERVA-MQI Attachment
The exit is defined to MERVA-MQI Attachment using the process table
DSLKPROC. Parameter EXIT of the DSLKPROC macro must contain the exit
number of up to 5 digits. MERVA-MQI Attachment passes a parameter list to the
user exit:
v The parameter list passed to an HLL exit contains the following parameters (in

this order):
– The address of the API interface working storage INTWSTOR
– The address of the MFS parameter list

For more information about this parameter list, refer to the MERVA for ESA
Application Programming Interface Guide.

v The parameter list passed to a macro-level exit follows the conventions for the
macro
DSLMFS MF=START,TYPE=USER,...

For more information about this parameter list, refer to the MERVA for ESA
System Programming Guide.

The User Exit Control Block (KQCBLOCK): The field MFSLFLD in the MFS
parameter list contains the address of the user exit control block KQCBLOCK. This
control block contains the following fields, which are input fields for the exit:

Chapter 9. MERVA-MQI Attachment 333

|

|
|
|
|
|
|
|

|
|
|

|
|

|
|

|
|

|

|

|
|

|
|

|

|
|

KQREQID Request identifier. Length is 8 bytes.

This field contains one of the following values:
v GETDATA
v GETREPLY
v PUTDATA
v PUTREPLY

KQMRSNDQ Name of the MERVA ESA send queue. Length is 8 bytes.

For the request identifiers GETDATA and GETREPLY, this field
contains blanks.

KQMQUEUE Name of the MQI send or receive queue. Length is 48 bytes.

For the request identifier PUTREPLY, this field contains blanks.

KQTOFBUF Address of the TOF field buffer. Length is 4 bytes.

KQKPROC Address of the process table DSLKPROC. Length is 4 bytes.

KQKENTRY Address of the send or receive process entry in table DSLKPROC.
Length is 4 bytes.

The exit must address the following data areas in this order:
1. For an HLL exit, the API interface working storage INTWSTOR using the first

address on the passed parameter list.
2. For an HLL exit, the MFS parameter list using the second address on the

passed parameter list.
3. The user exit control block KQCBLOCK using the field MFSLFLD of the MFS

parameter list.
4. The TOF field buffer KQTOFBFF using the field KQTOFBUF of the user exit

control block.
5. The process table DSLKPROC using the field KQKPROC of the user exit

control block.
Addressing the process table is optional and depends on the requirements for
the exit.

6. The send or receive process entry in table DSLKPROC using the field
KQKENTRY of the user exit control block.
Addressing the process table entry is optional and depends on the requirements
for the exit.

After all required data areas have been addressed, the exit can check the request
identifier contained in the field KQREQID of the user exit control block. The
request identifier determines the processing of the user exit as described in “The
Request Types” on page 332.

The exit uses the TOF field buffer KQTOFBFF when it reads data from, or writes
data to, the TOF. The first 8 bytes of KQTOFBFF contain the MERVA ESA buffer
prefix. The next 8 bytes contain the TOF field identifier. The remaining 28672 bytes
provide the space for the variable length TOF field data. Before writing data to the
TOF, the exit must set the second length field of the buffer prefix to the correct
length. This length field must contain the length of the TOF field data plus 8
(length of the TOF field identifier) plus 4. The exit can decide whether it provides
the TOF field identifier, or sets this area to blanks.

334 Customization Guide

|
|

|
|

Before the exit returns control to MERVA-MQI Attachment, it must set the
following fields in the MFS parameter list:

MFSLRET MFS return code. The return code 0 indicates no error.

MFSLREAS MFS reason code. The reason code 0 indicates no error.

If the exit sets MFSLRET not equal to 0, MERVA-MQI Attachment checks the
contents of the MFS error message buffer in field MFSPEMSG. If the exit cleared
the buffer to X'00' or set it to blanks, MERVA-MQI Attachment issues an own error
message. Otherwise, it issues the error message contained in field MFSPEMSG.

Language-Specific Control Blocks: The following language-specific copy books
and macros are available to access the data provided by MERVA-MQI Attachment:

DSLKCBLK User exit control block and TOF field buffer. Available for
Assembler, COBOL, and PL/I.

DSLKPROC Process table entry. Available for Assembler (macro), COBOL, and
PL/I.

DSLKEXIC User exit control block, TOF field buffer, and process table entry.
Available for C/370.

The copy books and macros are included in the user exit as follows:

Assembler COPY DSLKCBLK

DSLKPROC DSLKPROC TYPE=DSECT

C/370 #INCLUDE "DSLKEXIC.H"

(specify immediately following the #INCLUDE for the DSLAPC
copy book)

COBOL COPY DSLKCBLK.

COPY DSLKPROC.

(specify in the linkage section)

PL/I %INCLUDE DSLKCBLK;

%INCLUDE DSLKPROC;

Sample User Exits
The following sample HLL user exits are provided:
v DSLKQ001
v DSLKQ002
v DSLKQ100

The user exits show how the described control blocks and data areas can be
addressed. They also show how the MERVA ESA API can be used to read data
from, and to write data to, the TOF.

The first two exits demonstrate the principal setup for such a user written
program. They are optional programs. The third exit, DSLKQ100, is required when
MERVA-MQI Attachment sends and receives telex messages using the format code
P. Refer to “Defining the Groups of MERVA ESA Messages” on page 303.

The sample user exits are written in Assembler language. Their source code is
available.

Chapter 9. MERVA-MQI Attachment 335

Converting the Message Data
When messages are exchanged between applications on different platforms, it is
often necessary to convert the message data. Otherwise, the receiving application
cannot interpret and process the message contents correctly. Conversion applies
both to character and binary data.

MERVA-MQI Attachment provides message conversion programs. Each is written
as an exit program to be invoked by MQSeries for MVS/ESA or MERVA-MQI
Attachment:
v MQI Data-Conversion Exit (MVS)
v Attachment-Conversion Exit (VSE)

When MERVA-MQI Attachment is running under MVS, you can use the
data-conversion exit. For this exit type, MQSeries for MVS/ESA supports the
conversion of character data for a lot of code pages. The conversion from or to
double-byte character sets (DBCS) is also supported.

When MERVA-MQI Attachment is running under VSE, you can use the
attachment-conversion exit. The attachment-conversion exit is always invoked by
MERVA-MQI Attachment, even for the conversion of messages before they are
sent. Under MQSeries for MVS/ESA, the conversion of messages before being sent
is controlled by a message channel agent (MCA) which invokes the
data-conversion exit.

Depending on your environment and preferences, refer to “Data-Conversion Exit
(MVS)”, or “Attachment-Conversion Exit (VSE)” on page 338.

Data-Conversion Exit (MVS)
When MQSeries for MVS/ESA recognizes during the processing of an MQGET call
that a data-conversion exit is to be invoked, it checks whether the message consists
of character data only. If so, MQSeries converts the message without using the
data-conversion exit. That is, a data-conversion exit always converts messages
consisting of characters and binary length fields.

The exit can be activated using control information associated with the message.
The name of the exit must be equal to the format name in the MQI message
descriptor MQMD. This applies both to converting at the sending and receiving
side.

See the MQSeries Application Programming Guide and the MQSeries Application
Programming Reference for details on data-conversion exits.

Accessing the Data-Conversion Exit
There are two functionally equivalent modules. The source code for each module is
available. The modules are used as follows:

DSLKCDCC Under CICS/ESA, it converts received messages

DSLKCDCM It does the following:
v Under IMS, it converts received messages
v Under both CICS/ESA and IMS, for DQM without CICS, it

converts messages to be sent

The modules reside in the following libraries:

336 Customization Guide

v Under CICS/ESA, DSLKCDCC must be contained in a library in the DFHRPL
concatenation of the startup job. A program definition specifying
EXECKEY(CICS) in the CICS system definition file CSD is required.

v Under IMS, DSLKCDCM must be contained in a library in the STEPLIB
concatenation of the MPP job.

v For DQM without CICS, DSLKCDCM must be contained in the non-authorized
libraries defined by a CSQXLIB DD statement in the JCL of the started task for
the MQSeries channel initiator.

Converting Messages at the Receiving Side
Messages should always be converted at the receiving side. The message-sending
application needs not to convert the message for the receiving application. This is
especially important when the messages pass one or more intermediate nodes
(MQSeries installations) before they arrive at the final node.

Messages are converted if the following conditions are met:
v CONVERT=YES must be specified or defaulted in the receive process entry in

table DSLKPROC.
v The format name in the MQI message descriptor MQMD of the received

message must be equal to DSLKCDCC (for CICS/ESA) or DSLKCDCM (for
IMS).

Messages with a format name MQSTR in the MQMD need not be converted by the
exit. The format name MQSTR identifies a message consisting of character data
only. These messages are converted by MQSeries if CONVERT=YES is specified,
either explicitly or by default.

Both the exit and MQSeries carry out the conversion of character data only if the
CCSID specified in the received message differs from the receive CCSID. The
receive CCSID can be specified using the parameter CCSIDP of the macro
DSLKPROC TYPE=RECEIVE. If it is not specified there, the value of the parameter
CCSID of the macro DSLKPROC TYPE=INITIAL is used. The exit converts binary
integers only if the encoding for the binary length fields in the received message
differs from the native encoding 785 for MVS.

The message-sending application is responsible for the correct format name. It
should try to set the format name to DSLKCDCC or DSLKCDCM. If this is not
possible, link-edit the modules DSLKCDCC or DSLKCDCM using an alias that
matches the required format name.

Note: You cannot use a data-conversion exit if the format name consists of blanks.

Converting Messages at the Sending Side
Convert messages at the sending side only when the receiving application is not
able to convert the messages.

Under CICS/ESA, if you want to convert messages containing binary length fields,
link-edit DSLKCDCM using the alias DSLKCDCC into the library with the
CSQXLIB DD statement in the JCL of the started task for the MQSeries channel
initiator.

Messages are converted if the following conditions are met:
v CONVERT(YES) is specified in the DEFINE CHANNEL command for the

sending channel.

Chapter 9. MERVA-MQI Attachment 337

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

v DSLKCDCM (for IMS) or DSLKCDCC (for CICS/ESA) is specified as the
format name or alternate format name in the MQFMT parameter of
DSLKPROC TYPE=SEND. If the receiving application expects another format
name (except of a blank name), DSLKCDCM can be link-edited using an alias,
and this alias must be specified in the MQFMT parameter.

If the message to be sent consists of character data only, MERVA-MQI Attachment
sets the format name MQSTR independent of the specification in the MQFMT
parameter. Messages with a format name MQSTR in the MQMD need not be
converted by the exit. These messages are converted by the MCA if
CONVERT(YES) is specified in the DEFINE CHANNEL command.

Both the exit and the MCA carry out the conversion of character data only if the
CCSID of the message in the local MQSeries (the send CCSID) differs from the
CCSID on the destination platform. The send CCSID can be specified in the
parameter CCSIDP of the macro DSLKPROC TYPE=SEND. If it is not specified
there, the value specified for CCSID of the macro DSLKPROC TYPE=INITIAL is
used. The exit converts binary integers only if the encoding on the destination
platform differs from the native encoding 785 for MVS.

Data-Conversion Exit Provided Error Information
When the data-conversion exit detects an error, it provides standard MQI reason
codes and exit specific reason codes. For details, refer to MERVA for ESA Messages
and Codes.

If MERVA-MQI Attachment invokes the exit and the conversion fails, MERVA-MQI
Attachment stops processing and inhibits triggering for the MQI receive queue.
The unconverted message remains in the MQI receive queue. If the MCA invokes
the exit and the conversion fails, the message is sent to the dead-letter queue
(undelivered-message queue). If the message cannot be sent to the dead-letter
queue, the channel is closed and the unconverted message remains in the
transmission queue.

Attachment-Conversion Exit (VSE)
MERVA-MQI Attachment invokes the exit DSLKCVSE when it is running under
VSE. DSLKCVSE converts messages that consist of characters only, or of characters
and 32-bit binary integers. The characters must be single-byte characters. The exit
distinguishes these message categories by checking the contents of the MQI Format
field (for details refer to “Defining the Message Data Structure” on page 302 and
“Recognizing the Message Data Structure” on page 303).

Note: The exit ignores all MQI built-in format names beginning with MQ, except
for MQSTR. When it detects such a built-in format name, the exit
immediately returns control to MERVA-MQI Attachment without converting
the message data.

The exit DSLKCVSE must be contained in a library of the LIBDEF search chain in
the CICS startup job. A program definition for DSLKCVSE in the CICS system
definition file CSD is required.

Converting Messages at the Receiving Side
MERVA-MQI Attachment calls the exit at the message-receiving side if
CONVERT=YES is specified or defaulted in the appropriate receive process of the
DSLKPROC table.

338 Customization Guide

|
|
|
|
|

|
|
|
|
|
|
|

Messages should always be converted at the receiving side. The message-sending
application needs not to convert the message for the receiving application. This is
especially important when the messages pass one or more intermediate nodes
(MQSeries installations) before they arrive at the final node.

The exit converts character data according to the contents of an internal table: the
coded character set ID (CCSID) table. The exit converts binary integers to the
encoding for VSE, that is, to 785. Table 11 shows the layout of an entry in the
internal CCSID table. The table can contain as many entries as required.

Table 11. Internal CCSID Table Entry

Offset Decimal (Hex) Length in Bytes Description

0 (0) 4 CCSID of the character data in the received
message

4 (4) 8 Name of the conversion table (or blanks)

The exit uses the CCSID specified in the received message as a key to locate, in the
CCSID table, the conversion table to be used. The CCSID specified in the received
message must have a corresponding entry in the CCSID table, otherwise an error is
returned.

The exit carries out the conversion of character data only if the CCSID specified in
the received message differs from the receive CCSID. The receive CCSID can be
specified using the parameter CCSIDP of the macro DSLKPROC TYPE=RECEIVE.
If it is not specified there, the value of the parameter CCSID of the macro
DSLKPROC TYPE=INITIAL is used.

The exit converts binary integers only if the encoding for the binary length fields
in the received message differs from the native encoding 785 for VSE. If both the
CCSID and the encoding are identical, the exit immediately returns control to
MERVA-MQI Attachment without converting the message data.

Input for the attachment-conversion exit: The exit requires the following input to
convert messages at the receiving side:
v The external conversion table, which describes the conversion of character data

from the CCSID specified in the received message to the receive CCSID. An
example is the conversion from ASCII to EBCDIC. The sample conversion table
DSLKATOE is provided to convert single-byte ASCII character data to the
CCSID 500 for EBCDIC.
The conversion table must be link-edited as a separate phase. Like the exit itself,
the conversion table must be contained in a library of the LIBDEF search chain
in the CICS startup job. A program definition for the conversion table in the
CICS system definition file CSD is required.

v The internal CCSID table, which is located at the label CM01TBAE in the
source code of the conversion exit. For a new CCSID, another entry must be
added to the table. The entry is added preceding the label CM01AEL. After this
modification, the conversion exit must be assembled and relink-edited.
The following example shows the internal CCSID table in the sample conversion
exit. The table contains the following entries:

Chapter 9. MERVA-MQI Attachment 339

|
|
|
|

|
|
|
|
|

In this example, the three CCSIDs 437, 819, and 850 are associated with the same
conversion table, the sample table DSLKATOE. Modify or extend the CCSID
table according to your needs.

Converting Messages at the Sending Side
MERVA-MQI Attachment calls the exit at the message-sending side if the
CNVDEST parameter of DSLKPROC TYPE=SEND specifies the name of the
destination platform.

Convert messages at the sending side only when the receiving application is not
able to convert them. The exit converts both character data and binary integers
according to the contents of an internal table, the destination table. Table 12 shows
the layout of an entry in the internal destination table. The table can contain as
many entries as required.

Table 12. Internal Destination Table Entry

Offset Decimal (Hex) Length in Bytes Description

0 (0) 8 Name of the destination platform.

8 (8) 8 Name of the conversion table.

16 (10) 4 CCSID of the character data on the destination
platform.

20 (14) 4 Encoding for the binary integers on the
destination platform.

The value of the CNVDEST parameter provides the key for the destination table.
CNVDEST must contain the name of the destination platform. When the exit finds
the name of the destination platform in a table entry, the associated table entry
items describe the conversion of characters and binary integers for the destination
platform.

The encoding for the binary integers on the destination platform indicates to the
exit whether the bytes of the integers are arranged in normal (unchanged) order or
have to be arranged in reverse order.

When the exit does not find the name of the destination platform in the destination
table, it assumes that the destination platform is an IBM RS/6000 running the
operating system AIX. Then the following defaults apply for the table entry items:

DSLKETOA Name of the conversion table.

850 CCSID of the character data on the destination platform.

273 Encoding for the binary integers on the destination platform.

A partial conversion can be requested when the CCSID of the character data on the
destination platform is set to 0. This means that the character data is not
converted. Only the binary length fields will be rearranged if the encoding for the
binary integers on the destination platform requires it. This simplifies the
conversion at the message-receiving side. Only character data has to be converted
there using the correct length information.

CM01TBAE DS 0F CCSID TABLE
DC A(437),CL8'DSLKATOE' CCSID 437, CONVERSION TABLE NAME
DC A(819),CL8'DSLKATOE' CCSID 819, CONVERSION TABLE NAME
DC A(850),CL8'DSLKATOE' CCSID 850, CONVERSION TABLE NAME

CM01AEL EQU 4+8 LENGTH OF TABLE ENTRY
CM01AETL EQU *-CM01TBAE TOTAL LENGTH OF CCSID TABLE

340 Customization Guide

Input for the attachment-conversion exit: The exit requires the following input to
convert messages at the sending side:
v The CNVDEST parameter value, which is provided when the DSLKPROC table

is defined. The CNVDEST parameter value must specify the name of the
destination platform. The exit uses this name to search in the internal destination
table for the appropriate table entry.

v The external conversion table, which describes the conversion of character data
from the CCSID of the message in the local MQSeries (the send CCSID) to the
CCSID on the destination platform. An example is the conversion from EBCDIC
to ASCII: the sample conversion table DSLKETOA is provided to convert
single-byte EBCDIC character data to the CCSID 850 for ASCII.
The send CCSID can be specified in the parameter CCSIDP of the macro
DSLKPROC TYPE=SEND. If it is not specified there, the value specified for
CCSID of the macro DSLKPROC TYPE=INITIAL is used.
The conversion table must be link-edited as a separate phase. Like the exit itself,
the conversion table must be contained in a library of the LIBDEF search chain
in the CICS startup job. A program definition for the conversion table in the
CICS system definition file CSD is required.

v The internal destination table, which is located at the label CM01TBEA in the
source code of the conversion exit. When a new destination requires new
conversion parameters, another entry must be added to the table. The entry is
added preceding the label CM01EAL. After this modification, the conversion exit
must be assembled and relink-edited.
The following example shows the internal destination table in the sample
conversion exit. The table contains the following entries:

The first entry shows the conversion parameters for the destination platform
name AIX. They correspond to the default values when the exit cannot find the
name of the destination platform in the table.

The third entry shows the conversion parameters for the destination platform
name OS2. This name represents an IBM workstation running the operating
system OS/2. The name of the conversion table (sample table DSLKETOA) and
the CCSID 850 are the same as for the destination platform name AIX. The
conversion parameter for binary integers is different, the encoding is 546.

The fifth entry shows the conversion parameters for the destination platform
name WINNT. This name represents an IBM workstation running the operating
system Windows NT. The conversion parameters are the same as for the
destination OS2.

The second, fourth, and sixth entries show the conversion parameters for a
partial conversion. This is indicated by the names AIXBIN, OS2BIN, and
WINNTBIN, respectively. The name of the conversion table is set to blanks and
the target CCSID is set to 0. Only the target encoding is required. Depending on
the destination platform, it is 273 or 546.

CM01TBEA DS 0F DESTINATION TABLE
DC CL8'AIX ',CL8'DSLKETOA',A(850),A(273) BINARY & CHAR.
DC CL8'AIXBIN ',CL8' ',A(0),A(273) BINARY ONLY
DC CL8'OS2 ',CL8'DSLKETOA',A(850),A(546) BINARY & CHAR.
DC CL8'OS2BIN ',CL8' ',A(0),A(546) BINARY ONLY
DC CL8'WINNT ',CL8'DSLKETOA',A(850),A(546) BINARY & CHAR.
DC CL8'WINNTBIN',CL8' ',A(0),A(546) BINARY ONLY

CM01EAL EQU 8+8+4+4 LENGTH OF TABLE ENTRY
CM01EATL EQU *-CM01TBEA TOTAL LENGTH OF DESTINATION TABLE

Chapter 9. MERVA-MQI Attachment 341

|
|
|
|
|

|
|
|

|
|
|
|

Modify or extend the destination table according to your needs.

Attachment-Conversion Exit Provided Error Information
When the exit detects an error, it provides a return code for the calling attachment.
MERVA-MQI Attachment issues an error message containing this return code.

If the conversion fails, MERVA-MQI Attachment stops processing unless an MQI
error queue is specified in the MQIERRQ parameter of
DSLKPROC TYPE=RECEIVE. If an error queue (including the dead-letter queue) is
available, MERVA-MQI Attachment sets a reason code in the appropriate field of
the dead-letter queue header MQDLH, puts the unconverted received message
including the MQDLH to the error queue, and continues processing.

For an explanation of the return and reason codes, refer to MERVA for ESA
Messages and Codes.

342 Customization Guide

Part 2. Defining Fields and Messages

The main purpose of MERVA ESA is to process messages for external networks
such as SWIFT or telex, for display and printer terminals, and for system printers.
To set the various formats for these external devices, all messages are processed in
a MERVA ESA internal format called Tokenized Format (TOF). TOF assumes that a
message consists of fields in a predefined order. TOF allows access to any field in a
message directly by using a symbolic name. It also allows the transformation of a
message to one of the external formats.

The fields of a message, their order in a message, and their presentation on
external devices are defined using MERVA ESA macros.

A field definition specifies the attributes of a field such as length and position. The
field definitions are contained in the Field Definition Table (FDT).

A message definition specifies the sequence of fields in a message and how these
fields must be presented on the external device. For example it specifies if there are
separators between fields on an external network, or if there must be additional
text on screens or printers. The message definitions are contained in a message
control block (MCB).

Both fields and messages are defined by using the assembler macros supplied with
MERVA ESA.

© Copyright IBM Corp. 1987, 2001 343

344 Customization Guide

Chapter 10. Message Control Blocks (MCBs)

The layout of each message type is described in a separate message control block
(MCB). The different message types are identified by a message type indicator
which can be up to seven digits long. SWIFT messages use a 3-digit identifier. For
example, SWIFT MT 100 is a customer transfer message. The SWIFT MT 100 is
used in the examples of this chapter to show how to code the MCBs.

A message control block can refer to other MCBs which describe a part of a
message. This means that parts of messages that are similar for different message
types can be defined in a separate MCB and referred to by the MCB for a message
type.

A message (for example, a SWIFT message) that is displayed on on a terminal
screen, or is printed on a terminal printer or system printer, consists of the
following parts:
1. The top frame (DSL0TOP), which shows information such as:

v Message type “MT S100”
v Message title “Customer Transfer”
v Page number “Page 00001”
v Processing Function “Func L1DE0”

2. The message part. For example, for a SWIFT message the message part consists
of:
v The message header
v Message text containing several message fields dependent on the message

type
v Trailer field

The message part shows as many fields as is possible on the lines that are left
by the top and bottom frames. Fields that do not fit on one page can be seen
on the next or following pages.

3. The bottom frame (DSL0BOT), which shows information such as:
v The error message line
v The command line
v The PF key information lines

These parts are illustrated in Figure 148 on page 354.

All three parts of a message panel must be defined by the Message Definition
Facility.

General Message Control Block Structure
Each message control block (MCB) can contain one or more device descriptions.
There are five different device types available in an MCB, and they can all be
described in the same MCB. The device types available are:
v TYPE=MESSAGE shows the sequence of fields in a message type and their

reference in the TOF. It must be present in the first MCB that is used to process

© Copyright IBM Corp. 1987, 2001 345

the message. When this device type description is used it should be at the
beginning of the MCB. The message description can be omitted in the following
cases:
– In MCBs that are referred to in another MCB
– In an MCB that uses only MERVA ESA system fields

v TYPE=SCREEN shows the presentation of a message on a terminal screen. There
can be several screen descriptions using different layouts or languages in the
same MCB.

v TYPE=HARDCOPY shows the presentation of a message on a terminal printer.
There can be several hardcopy descriptions using different layouts or languages
in the same MCB. The hardcopy description can also refer to a screen
description in the same MCB if the layout and language used is the same.

v TYPE=SYSP shows the presentation of a message on a system printer. There can
be several system printer descriptions using different layouts or languages in the
same MCB. The system printer description can also refer to a screen or hardcopy
description in the same MCB if the layout and language used is the same.

v TYPE=NET shows the presentation of a message on an external network line
(such as the SWIFT network, ID=W), or on a screen in NOPROMPT mode (ID=X
in MERVA ESA). The net format is also used for the sequential data sets
processed by the MERVA ESA batch programs DSLSDI and DSLSDO.

The Message Definition Macroinstructions
The message definition macros are all coded using the rules of Assembler
described in the High Level Assembler Language Reference. The output produced by
the Assembler is the control block as defined by the message definition macros. If
errors are detected in the input, the control block produced is incomplete and
should be discarded. An error message indicating the cause of any error is printed
in the output listing.

The macros used to define messages are described in the MERVA for ESA Macro
Reference.

DSLLMCB
Identifies the beginning of a message control block (MCB) and gives it a name.

DSLLDEV
Identifies the device type and operational options.

DSLLGRP
Defines the start of a logical group of fields.

DSLLUNIT
Defines the beginning of a unit of message fields.

DSLLMFLD, DSLLDFLD, DSLLNFLD
Define a message field, display device field, and net field, respectively. Here,
DSLLxFLD is used to show that all three types of field definition macros are
being referred to.

DSLLUEND
Defines the end of a unit.

DSLLGEN
Shows the end of a message control block and completes the MCB generation.

The following list shows the hierarchical structure of an MCB:
v Device level

346 Customization Guide

These are the definitions starting with a DSLLDEV macro and ending with
another DSLLDEV macro or a DSLLGEN macro.

v Group level
These are all the definitions starting with a DSLLGRP macro and ending with
another DSLLGRP, DSLLDEV, or a DSLLGEN macro. If no DSLLGRP macro is
defined for a device, the group level is the same as the device level.

v Unit level
These are all the definitions starting with a DSLLUNIT macro and ending with a
DSLLUEND, DSLLGRP, DSLLDEV, or DSLLGEN macro. If no DSLLUNIT is
defined within a group, the unit level is the same as the group level. If no
DSLLUNIT and no DSLLGRP macros are defined for a device, the unit level is
the same as the device level.

v Field level
These are all the DSLLxFLD definitions.

The following list shows the macros that control the flow of processing within the
same MCB or to other MCBs:

DSLLCOND
Specifies the conditions under which processing is to continue, and at
which point in the MCB it is to continue.

DSLLEXIT
Imbeds another MCB identified explicitly by a message identification or
implicitly by an exit field into the processing of a message for the same
device.

MCB Coding Examples
The following sections give examples on how to code the MCB for all device types.
The SWIFT MT 100 (Customer Transfer) is used in the examples of the coding
(Module DWS100).

Example for TYPE=MESSAGE
Figure 142 on page 348 shows how to code an MCB for TYPE=MESSAGE. The
statements marked by the numbers in parentheses are commented after the figure.

Chapter 10. Message Control Blocks (MCBs) 347

Notes:

[1] The assembler TITLE statement.

[2] The assembler COPY statement and includes the color definitions (see
Figure 145 on page 350) used for screen display.

[3] DSLLMCB

This is the first macro statement in the message control block. It starts the
MCB, and its label DWS100 is used as the MCB name. DSLLMCB can be
used only once in an MCB.

[4] DSLLDEV

Defines the device type. TYPE=MESSAGE can be used only once in an
MCB and must be specified as the first device if used.

[5] This is the assembler COPY statement and includes the message header
DWSMHEAD (see Figure 143 on page 349).

[6] DSLLGRP

The DSLLGRP macro assigns a unique name, GRN005, to the group. The
group number GRPNUM (1 to 255) must be unique and in ascending
order. The group GRN005 is the first group of the Message Text and has
the group number 5 (GRPNUM=5) randomly chosen (GRPNUM=1 is
reserved for the message header). The following groups are numbered
automatically.

This group number is defined for later reference in another device
description.

[7] DSLLMFLD

This defines the SWIFT field 20 (transaction reference number) that was
given the name SW20 in the Field Definition Table. MAND=YES shows
that this field is mandatory for MT 100.

TITLE 'M T 1 0 0 - CUSTOMER TRANSFER' [1]
COPY DSLCOLOR [2]

DWS100 DSLLMCB [3]
MESSAGE DSLLDEV TYPE=MESSAGE [4]

COPY DWSMHEAD [5]
GRN005 DSLLGRP GRPNUM=5 [6]
SW20 DSLLMFLD MAND=YES [7]
SW32 DSLLMFLD MAND=YES,OPTLIST=(A), Expand=1003 [8]
SW50 DSLLMFLD MAND=YES
SW52 DSLLMFLD OPTLIST=(A,D) [9]
SA52 DSLLMFLD [10]
SW53 DSLLMFLD OPTLIST=(A,B,D)
SA53 DSLLMFLD
SW54 DSLLMFLD OPTLIST=(A,B,D)
SA54 DSLLMFLD
SW56 DSLLMFLD OPTLIST=(A),EXPAND=1003 [11]
SA56 DSLLMFLD
SW57 DSLLMFLD OPTLIST=(A,B,D)
SA57 DSLLMFLD
SW59 DSLLMFLD MAND=YES
SW70 DSLLMFLD
SW71 DSLLMFLD OPTLIST=(A),DAMAX=1,LENGTH=(3,,F),EXPAND=1003 [12]
SW72 DSLLMFLD

COPY DWSMTRL [13]

Figure 142. MCB of SWIFT MT 100, TYPE=MESSAGE

348 Customization Guide

[8] OPTLIST=(A)

In MT 100 only the option 'A' is allowed for field SW32. In different
message types, other options can be valid with SWIFT field 32, such as
'B','M','S'.

[9] OPTLIST=(A,D)

The field SW52 can have the option A or D.

[10] SA52

This shows that a SWIFT address in field SW52 can be expanded to the
correspondent name in the field SA52 if a MERVA ESA function is
processed that specifies address expansion in the function table DSLFNTT.

[11] EXPAND=1003

Specifies the SWIFT Link expansion routine 1003. This routine sets or
removes the option for optional fields having only one option specified
depending on whether other data for this field were supplied.

[12] DAMAX=1,LENGTH=(3,,F)

This length specification differs from the general definition of field 71 in
the Field Definition Table; therefore the appropriate definition for field 71
in MT 100 must be specified in the MCB.

DAMAX and LENGTH override the general definition of field 71 in the
Field Definition Table. For example, in MT 100, only one data area with a
fixed length of 3 characters is allowed.

[13] This is the Assembler COPY statement and includes the message trailer
(see Figure 144 on page 350).

Note: The device TYPE=MESSAGE is ended by the next DSLLDEV macro
(see Figure 146 on page 351).

Copies Included in the Sample MCB MT 100 for TYPE=MESSAGE
In the following, the two copies included in the TYPE=MESSAGE part of the MCB
for MT 100 are presented. The examples refer to the message header (COPY
DWSMHEAD) and the message trailer (COPY DWSMTRL).

The use of such copies for general parts of a message simplifies the MCB
definitions and makes changing general message parts easier later on. Then only
the copies are changed and all the related MCBs are assembled. This is more
efficient than changing all the related MCBs and assembling them.

Notes:

[1] DSLLCOND

This checks a condition during execution time. The first operand O1 is
compared with the second operand O2 by the relational operator EQ
(equal). If the result of the comparison is true, then the code branches to
the label MSG10. Otherwise the next line is processed. This condition is

DSLLCOND O1=(TEST=DSLCOND),EQ=NO,O2='NO',GOTO=MSG10 [1]
DSLLEXIT IMBED=SHEAD [2]

MSG10 DSLLCOND [3]

Figure 143. Example of the Message Header Copy for TYPE=MESSAGE

Chapter 10. Message Control Blocks (MCBs) 349

used to omit the normal SWIFT message headers where the MT 100 is
nested in another message type (192, 195, or 196).

[2] DSLLEXIT

During execution time, the MCB DWSHEAD is embedded. This contains
the field definitions for the header of SWIFT messages. SHEAD is the
message identification of this MCB and is expanded into the full MCB
name in the MERVA ESA message type table.

[3] DSLLCOND

As no parameters are specified, this DSLLCOND macro is used only to
specify the label for statement [1]. No condition is evaluated.

Notes:

[1] DSLLCOND

As for the condition in the header, the embed of the SWIFT message trailer
is bypassed when the message type 100 is embedded in one of the MTs
192, 195 or 196.

[2] DSLLEXIT

The SWIFT message trailer is embedded, DWSTRL is the MCB that defines
the trailer field.

Example for Color Definitions

Notes:

[1] GBLC

These instructions define global variables.

[2] SETC

These instructions assign color attributes to the global variables. These
color attributes are used for screen display items, for example, literals are
displayed in blue, the title is displayed in a neutral color (that is, the
default color), normal data-entry fields are displayed with green color,

DSLLCOND O1=(TEST=DSLCOND),EQ=NO,O2='NO',GOTO=SCREEN [1]
DSLLEXIT IMBED=STRL [2]

Figure 144. Example of the Trailer Copy for TYPE=MESSAGE

GBLC &LITERAL [1]
GBLC &TITLE
GBLC &DATA
GBLC &WATCH
GBLC &BELL

&LITERAL SETC 'BLUE' [2]
&TITLE SETC 'NEUTRAL'
&DATA SETC 'GREEN'
&WATCH SETC 'YELLOW'
&BELL SETC 'RED'

Figure 145. Example of the Color Copy

350 Customization Guide

retyped fields are displayed with yellow color, and error messages (for
example, in the MCB DWSERROR) are displayed with red color.

Example for TYPE=SCREEN
In screen device definitions, each field defined by a DSLLDFLD statement is
preceded by a screen attribute byte. This should be considered when calculating
the position of a field. It is recommended that you start on the screen position line
1, column 2 (POS=(1,2)).

The next free position after a field with a length of x bytes and the position
POS=(ll,cc) is calculated as shown below:
POS=(ll+(cc+x+1)/80,(cc+x+1)//80)

where “/” denotes integer division and “//” the remainder from integer division.

Notes:

[1] DSLLDEV

This describes the device to be used, TYPE=SCREEN. The language
identifier E (English) specifies that all users that have the language
identifier in their user-file record, or select with the form command, use
this section of the screen device description.

[2] DSLLGRP

This instruction assigns the following field definitions to the group
GRN005 as defined in the TYPE=MESSAGE part.

[3] MANDCH=*

The parameter MANDCH=* specifies the mandatory option for the field
macro DWSSW20. This macro defines the literal and field definitions for
the SWIFT field 20 (SW20) for screen and printer devices.

[4] DWSSW71A

This calls the macro DWSSW71A that contains the literal and field
definitions for the SWIFT field 71 (SW71), for screen and printer devices.
The parameters MSGTYP=XXX passes the message type, and ONEOPT=A
passes the only allowed option A to the macro DWSSW71A. See
Figure 147.

SCREEN DSLLDEV TYPE=SCREEN,ID=E [1]
COPY DWSCHEAD
DSLLGRP GROUP=GRN005 [2]
DWSSW20 MSGTYP=XXX,MANDCH=* [3]
DWSSW32A MSGTYP=XXX,MANDCH=*,ONEOPT=A
DWSSW50 MSGTYP=XXX,MANDCH=*
DWSSW52 MSGTYP=111
DWSSW53 MSGTYP=111
DWSSW54 MSGTYP=111
DWSSW56 MSGTYP=111,ONEOPT=A
DWSSW57 MSGTYP=111
DWSSW59 MSGTYP=XXX,MANDCH=*
DWSSW70
DWSSW71A MSGTYP=XXX,ONEOPT=A [4]
DWSSW72 MSGTYP=XXX
COPY DWSCTRL

Figure 146. MCB of SWIFT Message Type 100, TYPE=SCREEN

Chapter 10. Message Control Blocks (MCBs) 351

Sample of a Field Macro for Screen and Printer Devices
Figure 147 shows how an assembler macro is coded for a field used in several
message types. The example uses the SWIFT field 71 (SW71). The use of such
macros simplifies the MCB definitions, especially when a field is changed. Only the
macro is changed and all the related MCBs are assembled. This is more efficient
than changing all the related MCBs and assembling them.

Notes:

[1] MACRO

The start of the field macro.

[2] DWSSW71A

The name of the macro. It defines the parameters MSGTYP, MANDCH,
and ONEOPT.

MSGTYP Shows the message type of the MCB that uses the macro to
process message-type dependent information for the field.

MANDCH Shows if the field is mandatory, dependent on the message
type. MANDCH=* causes an asterisk to be displayed in
front of the field to specify that it is mandatory (see also 4).

MACRO [1]
DWSSW71A &MSGTYP=,&MANDCH=,&ONEOPT= [2]
GBLC &LITERAL [3]
GBLC &TITLE
GBLC &DATA
GBLC &WATCH
GBLC &BELL
LCLC &MANDIND [4]
AIF (T'&MANDCH NE 'O').AMAND1

&MANDIND SETC ' '
AGO .AMAND2

. AMAND1 ANOP
&MANDIND SETC '*'
. AMAND2 ANOP

DSLLUNIT COMMENT=Y [5]
AIF ('&MSGTYP' EQ 'XXX').A071AA [6]
AIF ('&MSGTYP' EQ '740').A071AB

. A071AA ANOP
DSLLDFLD 'Details of Charges &MANDIND.71',POS=(NEXT,02), *[7]

COLOR=&LITERAL,COMMENT=Y
AGO .A071AZ

. A071AB ANOP
DSLLDFLD 'Reimbursing Charges &MANDIND.71',POS=(NEXT,02), *

COLOR=&LITERAL,COMMENT=Y
AGO .A071AZ

. A071AZ ANOP
AIF (T'&ONEOPT EQ 'O').ONEOPT1 [8]
DSLLDFLD '&ONEOPT',POS=(,NEXT),COLOR=&LITERAL,COMMENT=Y
AGO .ONEOPT2

. ONEOPT1 ANOP
DSLLDFLD FLD=SW71,OPTION=YES,POS=(,NEXT),LENGTH=1,COLOR=&DATA,*;

COMMENT=Y
AGO .ONEOPT2

. ONEOPT2 ANOP
DSLLDFLD ':',COLOR=&LITERAL,COMMENT=Y
DSLLDFLD FLD=SW71,LENGTH=3,COLOR=&DATA,COMMENT=Y [9]
DSLLUEND COMMENT=Y [5]
MEND [10]

Figure 147. Example of the Macro for the SWIFT Field SW71A

352 Customization Guide

ONEOPT Defines the only option for this field specified (see 8).

[3] GBLC &LITERAL

The following instructions define global variables.

[4] &MANDIND

In this and the following lines the variable &MANDIND is either set to '*'
or ' ' according to the parameter MANDCH. The variable is used in the
literal preceding the field SW71 on the output device. ' ' means the field is
optional, '*' means the field is mandatory.

[5] DSLLUNIT DSLLUEND

These enclose a unit of message fields. Each field is enclosed by unit
statements to allow for unit compression. The field and its accompanying
text (literals) are only displayed when one or more filled data areas exist.

COMMENT=Y

Specifies that the macro is to be shown as MNOTE after macro expansion.

[6] &MSGTYP

In this section the literal text preceding the field is chosen according to the
message type in which the macro is used. The variable contains either the
MT number for specific literals or 'XXX' when the same literal is used for
many message types.

[7] DSLLDFLD

This macro is used for screens, hard-copy, and system printers to define
the device input and output fields or literals. The literal 'Details ...' is
shown on the next line beginning on column 2, with the color as defined
for the global variable &LITERAL.

[8] &ONEOPT

In this section the field option is displayed as a literal, (if ONEOPT is
specified in the MCB TYPE=SCREEN), or as an input field to be entered on
the screen.

[9] DSLLDFLD

FLD=SW71

The contents of TOF field SW71 are shown on the same line, with a length
of 3 bytes (LENGTH=3), beginning in the next column as defined in the
macro DSLLDFLD referring to the field option, POS=(,NEXT).

[10] MEND

The macro end.

Sample of a Screen Panel
The following figure shows the result of the previous TYPE=SCREEN definition for
SWIFT MT 100.

Chapter 10. Message Control Blocks (MCBs) 353

Notes:

v The first two lines 'MT Func L1DE0' are created by the MCB DSL0TOP (see
“The Frame MCBs for Screen and Printer Panels” on page 362).

v The line 'Basic Header...' and the following are created by the macros: DSLLEXIT
IMBED=SBHEAD DSLLEXIT IMBED=SAHEAD DSLLEXIT IMBED=SUHEAD
This is included in the MCB by the copy book DWSCHEAD (see Figure 146 on
page 351).

v The line 'TRN ...' is created by the DWSSW20 macro. The lines following the
TRN are created by the macros that follow the DWSSW20 macro.

v The line 'Command ...', the previous and the two lines following are created by
the MCB DSL0BOT (see “The Frame MCBs for Screen and Printer Panels” on
page 362).

Example for TYPE=HARDCOPY
This example shows the coding for a hardcopy device. The example uses the same
definitions that were used for the screen terminal, except for the DSLLDEV
statement.
HARDCOPY DSLLDEV TYPE=HARDCOPY,ID=E,LIKE=SCREEN

The parameter TYPE=HARDCOPY specifies that the layout for a hardcopy printer
is to be defined. The LIKE parameter refers to the label SCREEN and specifies the
use of the same layout as defined in TYPE=SCREEN.

Example for TYPE=SYSP
This coding example shows the coding example for a system printer device. The
example uses the same definitions as the screen terminal.
PRINTER DSLLDEV TYPE=SYSP,ID=E,LIKE=SCREEN

MT S100 Customer Transfer Page 00001
Func L1DE0
UMR 00002002

Basic Header F 01 TIBMBEAAAXXX 0000 000000
Application Header I 100 N
User Header Service Code 103:

Bank. Priority 113:
Msg User Ref. 108:

TRN *20 :
Date/Cur/Amount *32 A : Date Currency Amount
Ordering Customer *50 : ___________________________________

Ordering Inst. 52 _ : / _ / _____________________________

Command =====> __
PF 1=Help 2=Retrieve 3=EOM 4=Repeat 5=Get Next 6=Requeue
PF 7=Page -1 8=Page +1 9=Hardcopy 10=Pro Line 11=Prompt 12=Escape

Figure 148. SWIFT MT 100 with SWIFT II Input Header, Page 1

354 Customization Guide

The parameter TYPE=SYSP specifies that the layout for the system printer is
defined. The LIKE parameter refers to the label SCREEN and specifies the use of
the same layout as defined in TYPE=SCREEN.

Example for the SWIFT Line with TYPE=NET

Notes:

[1] TYPE=NET,ID=S,SEP=X'0D25'

Defines the layout of the message for the communication line to the SWIFT
network.

The message formats for SWIFT I are still supported in MERVA ESA for
compatibility reasons. However, the SWIFT I network support has been
dropped as there is no SWIFT I network any longer. The differences
between SWIFT I and SWIFT II network are handled in the copy books
DWSSHEAD and DWSSTRL (see comment 3). It can also be used by the
MERVA ESA batch programs DSLSDI and DSLSDO.

As this layout is defined by SWIFT, a change of these definitions must only
be made when SWIFT requests it.

The operand SEP defines a default character string that most commonly
separates the fields for this device definition.

[2] DSLLNFLD

FLD=SW71

Specifies the SWIFT field 71 by its TOF field name SW71.

TAG=':71'-':'

Specifies that the tag for SW71 consists of the character string ':71', the
option ('-') and ':'.

[3] DSLLDEV

ID=W

Is the line definition for the SWIFT II format. The parameter LIKE=LINES
specifies that the device description for the SWIFT I format should be
taken for the mapping process.

LINES DSLLDEV TYPE=NET,ID=S,SEP=X'0D25' [1]
COPY DWSSHEAD
DSLLGRP GROUP=GRN005
DSLLNFLD FLD=SW20,TAG=':20:'
DSLLNFLD FLD=SW32,TAG=':32'-':'
DSLLNFLD FLD=SW50,TAG=':50:'
DSLLNFLD FLD=SW52,TAG=':52'-':'
DSLLNFLD FLD=SW53,TAG=':53'-':'
DSLLNFLD FLD=SW54,TAG=':54'-':'
DSLLNFLD FLD=SW56,TAG=':56'-':'
DSLLNFLD FLD=SW57,TAG=':57'-':'
DSLLNFLD FLD=SW59,TAG=':59:'
DSLLNFLD FLD=SW70,TAG=':70:'
DSLLNFLD FLD=SW71,TAG=':71'-':' [2]
DSLLNFLD FLD=SW72,TAG=':72:'
COPY DWSSTRL

LINEW DSLLDEV TYPE=NET,ID=W,SEP=X'0D25',LIKE=LINES [3]

Figure 149. MCB of SWIFT MT 100, TYPE=NET, for the SWIFT Line

Chapter 10. Message Control Blocks (MCBs) 355

Example for the Screen NOPROMPT Mode with TYPE=NET

Notes:

[1] DSLLDEV

TYPE=NET,ID=X

Defines the layout of the message for the screen terminal in NOPROMPT
mode. This format cannot be used for the communication line to the
SWIFT network as it contains fields that are not known to SWIFT (see 2.),
and it uses some separators that do not conform to the SWIFT
specifications.

ID=X is similar to the ID=S except for the address fields SA5x.

[2] SA52

This field is used for address expansion and contains the correspondent
name and control information for the SWIFT address of the SWIFT field 52,
SW52.

[3] DSLLDEV

ID=Y

Defines the layout for the screen terminal in NOPROMPT mode for the
SWIFT II format. The same device description as for the SWIFT I format is
used. The differences are handled in the copy books for the SWIFT header
and trailer (DWSXHEAD and DWSXTRL).

[4] DSLLGEN

This macro ends the message definitions and completes the message
control block generation.

LINEX DSLLDEV TYPE=NET,ID=X,SEP=X'0D25' [1]
COPY DWSXHEAD
DSLLGRP GROUP=GRN005
DSLLNFLD FLD=SW20,TAG=':20:'
DSLLNFLD FLD=SW32,TAG=':32'-':'
DSLLNFLD FLD=SW50,TAG=':50:'
DSLLNFLD FLD=SW52,TAG=':52'-':'
DSLLNFLD FLD=SA52,TAG=':SX52:' [2]
DSLLNFLD FLD=SW53,TAG=':53'-':'
DSLLNFLD FLD=SA53,TAG=':SX53:'
DSLLNFLD FLD=SW54,TAG=':54'-':'
DSLLNFLD FLD=SA54,TAG=':SX54:'
DSLLNFLD FLD=SW56,TAG=':56'-':'
DSLLNFLD FLD=SA56,TAG=':SX56:'
DSLLNFLD FLD=SW57,TAG=':57'-':'
DSLLNFLD FLD=SA57,TAG=':SX57:'
DSLLNFLD FLD=SW59,TAG=':59:'
DSLLNFLD FLD=SW70,TAG=':70:'
DSLLNFLD FLD=SW71,TAG=':71'-':'
DSLLNFLD FLD=SW72,TAG=':72:'
COPY DWSXTRL

LINEY DSLLDEV TYPE=NET,ID=Y,SEP=X'0D25',LIKE=LINEX [3]
GEN DSLLGEN [4]

END [5]

Figure 150. MCB of SWIFT MT 100, TYPE=NET, Screen NOPROMPT Mode

356 Customization Guide

Note: As it is the last device description for MT 100, the statements
indicating the end of the MCB are shown here.

[5] END

This Assembler statement must follow immediately and must be the last
statement.

Examples for the SWIFT Message Trailer with TYPE=NET

This definition is part of the MCB DWSTRAIL for SWIFT II network trailer
mapping.

Notes:

[1] DSLLCOND

The defined tag for a NOPROMPT trailer is ':5:'. When this sequence is not
in the input buffer, the trailer processing is skipped.

[2] DSLLNFLD FLD=SW00BL5,TAG=(':5:',ALWAYS),SEP=(X'0D25',ALWAYS)

This is the tag ':5:' and an internal field SW00BL5 that allows input for this
tag line in NOPROMPT mode.

[3] DSLLDEV TYPE=NET,ID=Y

The external line format Y used to indicate the SWIFT II format. In this
case both formats X and Y map for the SWIFT II network. The selection
that is to be mapped for both networks is defined in the copy book
DWSXTRL.

In this example, the SWIFT message trailer is extended by the two fields
MSGACK1 and MSGTRACE. These fields are added after the SWIFT trailer. When
these fields are found in the TOF, their data is displayed in NOPROMPT mode.
The same technique can be used to map user fields to a sequential output data set
using the batch program DSLSDO, or from a sequential input data set into a
MERVA ESA queue using the batch program DSLSDI.

Notes:

LINEX DSLLDEV TYPE=NET,ID=X,SEP=X'0D25'
DSLLGRP GROUP=GRPTRAIL
DSLLCOND INPUT,01=BUFFER,EQ=NO,02=':5:',GOTO=LINEX9 [1]
DSLLNFLD FLD=SW00BL5,TAG=(':5:',ALWAYS),SEP=(X'0D25',ALWAYS) [2]
DSLLNFLD FLD=SWTRAIL NO TAG, ACCEPT ANYTHING AFTER :5:

LINEX9 DSLLCOND
LINEY DSLLDEV TYPE=NET,ID=Y,SEP=X'0D25',LIKE=LINEX [3]

Figure 151. Example of the Extended SWIFT Message Trailer for TYPE=NET, Screen
NOPROMPT Mode for the SWIFT II Network

LINEX DSLLDEV TYPE=NET,ID=X,SEP=X'0D25'
DSLLGRP GROUP=GRPTRL
DSLLNFLD FLD=SWTRL,TAG=('-',ALWAYS),SEP=(X'0D25',ALWAYS) [1]
DSLLNFLD FLD=MSGACK1,NI=0,GROUP=1,TAG=':AK:' [2]
DSLLNFLD FLD=MSGTRACE,NI=0,GROUP=1,TAG=':TR:' [3]

Figure 152. Example of the Extended SWIFT Message Trailer for TYPE=NET, Screen
NOPROMPT Mode

Chapter 10. Message Control Blocks (MCBs) 357

[1] DSLLNFLD

FLD=SWTRL

The message trailer field is mapped into the buffer or displayed on a
terminal or printer in NOPROMPT mode.

TAG=('-',ALWAYS),SEP=(X'0D25',ALWAYS)

When the trailer field is empty, the tag and the separator are mapped or
displayed regardless. This is necessary so that the following fields are not
appended to the trailer.

[2] DSLLNFLD

FLD=MSGACK1

The MSGACK1 field (SWIFT acknowledgment in SWIFT I format or the
SWIFT Link diagnostic message) is mapped into the buffer or displayed on
a terminal or printer in NOPROMPT mode. For example, a SWIFT
acknowledgment in SWIFT I format is mapped like this:
:AK:ACK/1215/03TIBMBEBBAXXX00012

NI=0,GROUP=1

This is the index specification to address the field in the TOF. This
specification is necessary to avoid the use of the default values NI=1 and
the current group 255 of the SWIFT trailer.

[3] DSLLNFLD

FLD=MSGTRACE

The MSGTRACE field (message trace) is mapped into the buffer or
displayed on a terminal or printer in NOPROMPT mode. Each data area of
the MSGTRACE field is mapped in a separate line, for example:
:TR:USER1 L1DE0 0000930615074803LTERM1
USER2 L1VE0 0000930615081213LTERM2
USER3 L1AI0 0000930615112354LTERM3

Description of Functions Not Contained in MT 100
There are functions for MCB coding not used in MT 100. One function refers to the
MCB coding of repeatable sequences, such as MT 210. Figure 153 on page 359
shows MCB macros for a repeatable sequence.

358 Customization Guide

Notes:

[1] GRN006 DSLLGRP

The DSLLGRP macro assigns the name GRN006 to the next field group.

[2] REPSEQ=(1,10)

This describes a repeatable sequence within a field group. All the fields
between DSLLUNIT and DSLLUEND can be repeated from 1 to 10 times.

[3] DSLLGRP GROUP=GRN006

This refers to the DSLLGRP macro in TYPE=MESSAGE (label name
GRN006).

[4] PAGE=NEW

Displays the following fields beginning on the next page of the device if
less than 17 lines are free at the bottom of the page. This results in a
sequence of fields starting on a new page, when the whole sequence does
not fit on the current page.

[5] REPSEQ=(1,10)

TITLE 'M T 2 1 0 - NOTICE TO RECEIVE'

...

MESSAGE DSLLDEV TYPE=MESSAGE

...

GRN006 DSLLGRP [1]
DSLLUNIT REPSEQ=(1,10) [2]

...

DSLLUEND [2]

...

SCREEN DSLLDEV TYPE=SCREEN,ID=E

...

DSLLGRP GROUP=GRN006 [3]
DSLLCOND PAGE=NEW,LINES=17 [4]
DSLLUNIT REPSEQ=(1,10) [5]
DWSSWREP [6]
DWSSW21 MSGTYP=XXX,MANDCH=*
DWSSW32B MSGTYP=XXX,MANDCH=*,ONEOPT=B
DWSSW50 MSGTYP=XXX
DWSSW52 MSGTYP=III
DWSSW56 MSGTYP=III
DSLLCOND PAGE=NEW,LINES=17 [4]
DSLLUEND [5]

...

GEN DSLLGEN
END

Figure 153. MCB Macroinstructions for a Repeatable Sequence

Chapter 10. Message Control Blocks (MCBs) 359

This is the macro of the DSLLDEV TYPE=SCREEN part corresponding to
the macro (02) explained for the DSLLDEV TYPE=MESSAGE part.

[6] DWSSWREP

This calls the macro DWSSWREP that contains the literal definitions for the
headers used for repeatable sequences. See Figure 154.

Repeatable Sequence Header Macro for Screen and Printer
Devices

Notes:

[1] SETC

This instruction is used to create a unique label, consisting of 'SWRS' and a
3-digit character string generated for every new macro call.

[2] DSLLDFLD

These instructions create the literal parts of the header of each occurrence
in a repeatable sequence.

[3] FLD=DSLACTR

This field shows the number of the repeatable sequence to be displayed.

NI=0

Sets the nesting identifier to 0. This is necessary because DSLACTR is a
MERVA ESA system field (see DSLFDTTC).

PROT=YES

This instruction specifies that the field displayed is protected against
entering of data.

RSNUM=1

MACRO
DWSSWREP
GBLC &LITERAL
GBLC &TITLE
GBLC &DATA
GBLC &WATCH
GBLC &BELL
LCLC &LB

&LB SETC 'SWRS'.'&SYSNDX'(2,3) [1]
DSLLDFLD '* * Repeatable Sequence',POS=(NEXT,2), * [2]

COLOR=&LITERAL,COMMENT=Y
DSLLDFLD FLD=DSLACTR,NI=0,LENGTH=3,POS=(,NEXT),COLOR=&LITERAL,* [3]

PROT=YES,RSNUM=1,COMMENT=Y
DSLLDFLD '* * * * * * * * * * * * * * * Occurrence', * [2]

COLOR=&LITERAL,COMMENT=Y
DSLLCOND O1=(TEST=DSLACTA),EQ=YES,O2='A',GOTO=&LB;A,COMMENT=Y [4]
DSLLDFLD FLD=DSLACCO,NI=0,LENGTH=5,POS=(,NEXT),COLOR=&LITERAL,*;

PROT=YES,RSNUM=1,COMMENT=Y
DSLLCOND GOTO=&LB;B,COMMENT=Y

&LB.A DSLLDFLD FLD=DSLACCO,NI=0,LENGTH=5,POS=(,NEXT),COLOR=&TITLE, *
PROT=YES,RSNUM=1,DISP=HIGH,COMMENT=Y

&LB.B DSLLCOND COMMENT=Y
MEND

Figure 154. Coding Example for a Macro Used for Repeatable Sequences

360 Customization Guide

Sets the occurrence number of this field to 1. This is necessary because the
occurrence number is increased with each pass through a sequence.
DSLACTR is not within the repeatable sequence, but a MERVA ESA
system field with only one occurrence.

[4] DSLLCOND

This condition is required to find out whether the occurrence to be
displayed is the “active” one on the screen. Inactive occurrences are
displayed normally (COLOR=&LITERAL), whereas active occurrences are
displayed highlighted (DISP=HIGH for monochrome and extended color
feature screen devices, COLOR=&TITLE for normal color screen devices).

Processing New or Changed MCBs

Note: Changing message control blocks or Field Definition Tables can cause a
discrepancy between the description in the MERVA for ESA User’s Guide and
your customized installation.

The following steps should be carried out when designing or coding a new
message type, changing an existing message type, or when changing or coding
function panels:
v Determine the fields that are required for the new message type. See

“Chapter 13. Field Definition Table (DSLFDTT)” on page 385.
Keep in mind that, when new subfields are required in an MCB, they must be
specified in the Field Definition Table. If an MCB refers to a subfield not found
in the Field Definition Table, the field is not recognized as a subfield. On a
screen or printer panel such a field cannot be displayed.
The sequence of fields of a message must be defined in the message description
in the MCB (DSLLMCB TYPE=MESSAGE). Status information already specified
in the Field Definition Table need not be specified again in the message
description.

Note: When you change the status information of a field in an MCB, or assign a
different exit to the field, this information is used only for fields in
messages created after the alteration. To assign new features to fields in
old messages, you must map these messages again by reprocessing the
message in NOPROMPT mode.

v Define the screen, hardcopy, and system printer layouts.
Code one device description for each device and different language or format.
If the printer layout, or part of it, is the same as the screen layout, the LIKE
parameter of the DSLLDEV macro can be used. Using the LIKE parameter
reduces the size of the MCB.

v Define the external line format or formats.
Design tags and separators for all fields that appear in the external line format.
Code one device description for each communication line or screen NOPROMPT
format.

v Assemble the new or changed MCBs.
v Add the new message types in the message type table, or change the MCB for

an existing message type.
v All new separation, edit, checking, default setting routines must be installed. The

Message Format Service (MFS) program table (DSLMPTT) must be changed.
That is, existing entries might be changed or new entries added for the new
programs or MCBs. When an edit checking or default setting routine is to be

Chapter 10. Message Control Blocks (MCBs) 361

added it can be named DSLMEnnn, DSLMCnnn, or DSLMDnnn, where nnn is
the exit number. Then the DSLMPTT need not be modified, because the exit is
dynamically loaded by DSLMMFS.

v If one of the programs or MCBs linked to Message Format Service is modified,
or if new MCBs or programs are added and defined to be linked to Message
Format Service, then the program DSLMMFS must be link-edited.

The Frame MCBs for Screen and Printer Panels
A screen terminal, hardcopy printer, or system printer page is divided into three
areas:
v The top frame or title
v The message area, such as fields of the message header, message text, and

message trailer
v Bottom frame or command line and program function key lines for screen

terminals, and error message lines for all display devices

The MCBs for the message area are described earlier.

The frame MCBs are to be handled like all other MCBs. There is either one MCB
for the top frame and the bottom frame, or two MCBs one for each frame. On the
following pages there is a description of two MCBs, one for the top frame and one
for the bottom frame. The advantage of using one MCB for the top frame and one
MCB for the bottom frame is to avoid the coding of conditions in one MCB
covering the top frame and bottom frame.

The fields and subfields used in the frame MCB or MCBs must be defined in the
Field Definition Table (DSLFDTT).

The frame MCB names must be defined:
v In the MERVA ESA function table (DSLFNT Macro) with the FRAME parameter,

such as:
FRAME=(0TOP,0BOT)

v The MFS program table (DSLMPTT), for example:
DSLMPT NAME=DSL0TOP

This specification is necessary only when the MCB should be link-edited to
DSLMMFS for performance reasons.

v In the MERVA ESA message type table (DSLMTTT):
DSLMTT MTYPE=0TOP,MCB=DSL0TOP,PANEL=YES

The Top Frame

362 Customization Guide

TITLE ' TOP-FRAME MCB '
COPY DSLCOLOR

DSL0TOP DSLLMCB
SCREEN DSLLDEV TYPE=SCREEN,ID=E

DSLLCOND O1=(TEST=DSLMSTAT),EQ=NO,O2='MSG',GOTO=GEN [1]
SCRMT DSLLDFLD 'MT',POS=(1,2),COLOR=&LITERAL [2]

DSLLDFLD FLD=DSLMIDNS,LENGTH=9,POS=(,NEXT),COLOR=&LITERAL, * [3]
NI=1,PROT=YES

DSLLDFLD FLD=DSLMIDN,LENGTH=50,COLOR=&TITLE,PROT=YES,NI=1, * [4]
DISP=HIGH

DSLLCOND O1=(TEST=DSLACTS),EQ=YES,O2='L',GOTO=SCRLINE [5]
SCRPAGE DSLLDFLD 'Page',POS=(,NEXT+1),COLOR=&LITERAL [6]

DSLLDFLD FLD=DSLACTP,LENGTH=5,POS=(,NEXT),COLOR=&LITERAL, *
PROT=YES,NI=1

DSLLCOND GOTO=SCRACK
SCRLINE DSLLDFLD 'Line',POS=(,NEXT+1),COLOR=&LITERAL

DSLLDFLD FLD=DSLLINE,LENGTH=5,POS=(,NEXT),COLOR=&LITERAL, *
PROT=YES,NI=1

SCRACK DSLLCOND O1=(TEST=MSGACK,NI=0),EQ=YES,O2=',GOTO=SCRFUNC [7]
DSLLDFLD FLD=MSGACK,LENGTH=69,POS=(NEXT,2),COLOR=&TITLE,NI=0, *

DISP=HIGH,PROT=YES
DSLLCOND GOTO=SCRFUN

SCRFUNC DSLLDFLD 'Func',COLOR=&LITERAL,POS=(NEXT,67)
SCRFUN DSLLDFLD FLD=DSLFUN,LENGTH=8,POS=(,72),COLOR=&LITERAL, * [8]

PROT=YES
SCRPAC DSLLCOND O1=(TEST=MSGPAC,NI=0),EQ=YES,O2=',GOTO=SCRNOPAC

DSLLDFLD FLD=MSGPAC,LENGTH=69,POS=(NEXT,2),COLOR=&TITLE,NI=0, * [9]
DISP=HIGH,PROT=YES

DSLLCOND O1=(TEST=DSLNUMR),EQ=YES,O2='NO',GOTO=GEN
DSLLCOND O1=(TEST=DSLUMRNO),EQ=YES,O2=',GOTO=GEN
DSLLCOND GOTO=SCRUMRN

SCRNOPAC DSLLCOND
DSLLCOND O1=(TEST=DSLNUMR),EQ=YES,O2='NO',GOTO=GEN
DSLLCOND O1=(TEST=DSLUMRNO),EQ=YES,O2=',GOTO=GEN

SRCUMR DSLLDFLD 'UMR',COLOR=&LITERAL,POS=(NEXT,67) [10]
SCRUMRN DSLLDFLD FLD=DSLUMRNO,LENGTH=8,POS=(,72),COLOR=&LITERAL, * [11]

PROT=YES
HARDCOPY DSLLDEV TYPE=HARDCOPY,ID=E

...

HARDCOP0 DSLLDEV TYPE=HARDCOPY,ID=0

...

HARDCOP1 DSLLDEV TYPE=HARDCOPY,ID=1

...

PRINTER DSLDEV TYPE=SYSP,ID=E

...

PRINTER0 DSLLDEV TYPE=SYSP,ID=0

...

GEN DSLLGEN

Figure 155. Top Frame MCB, Screen Part

Chapter 10. Message Control Blocks (MCBs) 363

Notes:

[1] DSLLCOND

If the variable DSLMSTAT has the value 'MSG', this TOP Frame variable
DSLMSTAT is generated; otherwise the following MCB instructions are
ignored (GOTO=GEN).

[2] 'MT'

This instruction specifies the first literal of the TOP frame.

[3] FLD=DSLMIDNS

DSLMIDNS contains the net identifier, 'S', and the message type, '100' (for
nested messages, net identifier and message type of the last message
nested are appended).

[4] FLD=DSLMIDN

DSLMIDN contains the descriptive message header, for example, for a
SWIFT MT 100, it contains “Customer Transfer”. You can customize the
descriptive message headers in the message type table (MTT) with the
DESCR parameter of the DSLMTT macro.

[5] DSLLCOND

This instruction checks whether line or page mode is used.

[6] DSLLDFLD

This and the following four instructions specify 'Page' or 'Line' and its
current value at the end of the first header line.

[7] DSLLDFLD

This and the following three instructions specify either the contents of the
field MSGACK (message acknowledgment) or the literal 'Func' on the first
part of the second header line.

[8] FLD=DSLFUN

DSLFUN contains the name of the function currently in use and is
displayed at the end of the second header line.

[9] FLD=MSGPAC

The contents of the field MSGPAC is shown if there is data present for the
field. The MSGPAC field contains the result of the PAC calculation for
SWIFT input and output messages.

[10] DSLLDFLD 'UMR'

The literal 'UMR' is displayed only when MSGPAC is not filled. If
MSGPAC is filled, the literal is dropped because there is not enough space
on the screen line.

[11] DSLLDFLD

This definition shows the Unique Message Reference (UMR) of the
message, if available.

364 Customization Guide

Notes:

[1] DSLLCOND

If the variable DSLMSTAT has the value 'MSG' the instructions starting
from the label HCPTOP1 until the label HCPTOP2 are used, otherwise a
GOTO to the label HCPTOP2 is performed.

[2] DSLLDFLD

This and the following three instructions specify the first header line,
containing date, time, and logical terminal used.

[3] HCP1MT

This and the following instructions specify the same layout of the next
header lines as described for the first two lines of the screen part, except
that the content of the MSGACK is not shown.

[4] HCPTOP2

HARDCOPY DSLLDEV TYPE=HARDCOPY,ID=E
DSLLCOND O1=(TEST=DSLMSTAT),EQ=NO,O2='MSG',GOTO=HCPTOP2 [1]

HCPTOP1 DSLLDFLD FLD=DSLDATE,LENGTH=7,POS=(NEXT,2) [2]
DSLLDFLD FLD=DSLTIME,LENGTH=8,POS=(,11)
DSLLDFLD 'Logical Terminal',POS=(,55)
DSLLDFLD FLD=DSLLTERM,LENGTH=8,POS=(,72)

HCP1MT DSLLDFLD 'MT',POS=(NEXT,2),COLOR=&LITERAL [3]
DSLLDFLD FLD=DSLMIDNS,LENGTH=9,POS=(,NEXT),COLOR=&LITERAL, *

NI=1,PROT=YES
DSLLDFLD FLD=DSLMIDN,LENGTH=50,COLOR=&TITLE,PROT=YES,NI=1, *

DISP=HIGH
DSLLCOND O1=(TEST=DSLACTS),EQ=YES,O2='L',GOTO=HCP1LINE

HCP1PAGE DSLLDFLD 'Page',POS=(,NEXT+1),COLOR=&LITERAL
DSLLDFLD FLD=DSLACTP,LENGTH=5,POS=(,NEXT),COLOR=&LITERAL, *

PROT=YES,NI=1
DSLLCOND GOTO=HCP1FUNC

HCP1LINE DSLLDFLD 'Line',POS=(,NEXT+1),COLOR=&LITERAL
DSLLDFLD FLD=DSLLINE,LENGTH=5,POS=(,NEXT),COLOR=&LITERAL, *

PROT=YES,NI=1
HCP1FUNC DSLLDFLD 'Func',COLOR=&LITERAL,POS=(NEXT,67)

DSLLDFLD FLD=DSLFUN,LENGTH=8,POS=(,72),COLOR=&LITERAL, *
PROT=YES

DSLLCOND GOTO=HCPEND
HCPTOP2 DSLLDFLD FLD=DSLDATE,LENGTH=7,POS=(NEXT,2),COLOR=&LITERAL [4]

DSLLDFLD FLD=DSLTIME,LENGTH=8,POS=(,11),COLOR=&LITERAL
DSLLDFLD 'Logical Terminal',POS=(,22),COLOR=&LITERAL
DSLLDFLD FLD=DSLLTERM,LENGTH=8,POS=(,NEXT),COLOR=&LITERAL
DSLLCOND O1=(TEST=DSLACTS),EQ=YES,O2='L',GOTO=HCP2LINE

HCP2PAGE DSLLDFLD 'Page',POS=(,51),COLOR=&LITERAL
DSLLDFLD FLD=DSLACTP,LENGTH=5,POS=(,NEXT),COLOR=&LITERAL
DSLLCOND GOTO=HCP2FUNC

HCP2LINE DSLLDFLD 'Line',POS=(,51),COLOR=&LITERAL
DSLLDFLD FLD=DSLLINE,LENGTH=5,POS=(,NEXT),COLOR=&LITERAL

HCP2FUNC DSLLDFLD 'Function',POS=(,62),COLOR=&LITERAL
DSLLDFLD FLD=DSLFUN,LENGTH=8,POS=(,NEXT),COLOR=&LITERAL

HCPEND DSLLCOND
HARDCOP0 DSLLDEV TYPE=HARDCOPY,ID=0 [5]

DSLLCOND GOTO=HARDCOP1
DSLLEXIT IMBED=DUMMY

HARDCOP1 DSLLDEV TYPE=HARDCOPY,ID=1 [6]
DSLLDFLD ' ',POS=(3,2),COLOR=&LITERAL

Figure 156. Top Frame MCB, Hardcopy Part

Chapter 10. Message Control Blocks (MCBs) 365

This and the following instructions specify the layout of the top line for
printouts of MCBs other than those containing DSLMSTAT='MSG', such as
Help-MCBs.

[5] HARDCOP0

This and the following instruction specifies a hardcopy printout without
top frame. To avoid having an empty MCB definition, the DSLLEXIT
macro with the IMBED=DUMMY parameter is used.

[6] HARDCOP1

Specifies a hardcopy printout with a top frame of 3 blank lines (POS=(3,2)).

PRINTER DSLLDEV TYPE=SYSP,ID=E [1]
DSLLDFLD ' ',POS=(1,2),COLOR=&LITERAL
DSLLCOND O1=(TEST=DSLMSTAT),EQ=NO,O2='MSG',GOTO=PRNTOP2

PRNTOP1 DSLLDFLD FLD=DSLDATE,LENGTH=7,POS=(NEXT,2)
DSLLDFLD FLD=DSLTIME,LENGTH=8,POS=(,11)
DSLLDFLD 'No.',POS=(,67)
DSLLDFLD FLD=DSLSDYNO,LENGTH=5,POS=(,72)

PRN1MT DSLLDFLD 'MT',POS=(NEXT,2),COLOR=&LITERAL
DSLLDFLD FLD=DSLMIDNS,LENGTH=9,POS=(,NEXT+1),COLOR=&LITERAL, *

NI=1,PROT=YES
DSLLDFLD FLD=DSLMIDN,LENGTH=50,COLOR=&TITLE,PROT=YES,NI=1, *

DISP=HIGH
DSLLCOND O1=(TEST=DSLACTS),EQ=YES,O2='L',GOTO=PRN1LINE

PRN1PAGE DSLLDFLD 'Page',POS=(,NEXT+2),COLOR=&LITERAL
DSLLDFLD FLD=DSLACTP,LENGTH=5,POS=(,NEXT+1),COLOR=&LITERAL, *

PROT=YES,NI=1
DSLLCOND GOTO=PRN1FUNC

PRN1LINE DSLLDFLD 'Line',POS=(,NEXT+2),COLOR=&LITERAL
DSLLDFLD FLD=DSLLINE,LENGTH=5,POS=(,NEXT+1),COLOR=&LITERAL, *

PROT=YES,NI=1
PRN1FUNC DSLLDFLD 'Func',COLOR=&LITERAL,POS=(NEXT,67)

DSLLDFLD FLD=DSLFUN,LENGTH=8,POS=(,72),COLOR=&LITERAL, *
PROT=YES

DSLLCOND GOTO=PRNBLANK
PRNTOP2 DSLLDFLD FLD=DSLDATE,LENGTH=7,POS=(NEXT,2),COLOR=&LITERAL

DSLLDFLD FLD=DSLTIME,LENGTH=8,POS=(,11),COLOR=&LITERAL
DSLLDFLD 'Message No.',POS=(,24),COLOR=&LITERAL
DSLLDFLD FLD=DSLSDYNO,LENGTH=5,POS=(,NEXT+1),COLOR=&LITERAL
DSLLCOND O1=(TEST=DSLACTS),EQ=YES,O2='L',GOTO=PRN2LINE

PRN2PAGE DSLLDFLD 'Page',POS=(,45),COLOR=&LITERAL
DSLLDFLD FLD=DSLACTP,LENGTH=5,POS=(,NEXT+1),COLOR=&LITERAL
DSLLCOND GOTO=PRN2FUNC

PRN2LINE DSLLDFLD 'Line',POS=(,45),COLOR=&LITERAL
DSLLDFLD FLD=DSLLINE,LENGTH=5,POS=(,NEXT+1),COLOR=&LITERAL

PRN2FUNC DSLLDFLD 'Function',POS=(,59),COLOR=&LITERAL
DSLLDFLD FLD=DSLFUN,LENGTH=8,POS=(,NEXT+1),COLOR=&LITERAL

PRNBLANK DSLLDFLD ' ',POS=(NEXT,2),COLOR=&LITERAL
PRINTER0 DSLLDEV TYPE=SYSP,ID=0

DSLLCOND GOTO=PRINTER1
DSLLEXIT IMBED=DUMMY

PRINTER1 DSLLDEV TYPE=SYSP,ID=1
DSLLDFLD ' ',POS=(3,2),COLOR=&LITERAL

*
GEN DSLLGEN

END

Figure 157. Top Frame MCB, System Printer Part

366 Customization Guide

Notes:

[1] PRINTER

The following instructions supplied for a system printer device correspond
to those described for the hardcopy device. Some blank lines are added
and the current message number is printed instead of the logical terminal
identifier.

The Bottom Frame

Notes:

[1] EDIT=903

The first Bottom Line is reserved for system messages (contents of the field
DSLERR) and is prepared for display by the editing routine DSLME903
(EDIT=903). The edit routine sets the color of this field according to the
severity of the error, for example, 'YELLOW' for warning or error
messages.

[2] DSLLUNIT DACNT=(1,2) ... DSLLUEND

The following instructions specify the layout of the descriptive lines for the
Program Function Keys. Two data areas (DACNT=(1,2)) of the field
DSLPFKL are displayed after the literal 'PF' supplied on each line.

Note: The text can be customized in the Program Function Key Table.

[3] DSLLDFLD

TITLE ' BOTTOM-FRAME MCB '
COPY DSLCOLOR

DSL0BOT DSLLMCB
SCREEN DSLLDEV TYPE=SCREEN,ID=E

DSLLDFLD FLD=DSLERR,LENGTH=79,POS=(NEXT,2),COLOR=&BELL, * [1]
PROT=YES,DISP=HIGH,EDIT=903

DSLLDFLD 'Command',COLOR=&LITERAL
DSLLDFLD '=====>',POS=(,NEXT),COLOR=&TITLE,DISP=HIGH
DSLLDFLD FLD=DSLCMDL,LENGTH=64,COLOR=&DATA,EDIT=903
DSLLUNIT DACNT=(1,2) [2]
DSLLDFLD 'PF',POS=(NEXT,2),COLOR=&LITERAL
DSLLDFLD FLD=DSLPFKL,LENGTH=76,POS=(,NEXT),COLOR=&LITERAL, *

PROT=YES
DSLLUEND

HARDCOPY DSLLDEV TYPE=HARDCOPY,ID=E
DSLLDFLD ' ',POS=(2,2) [3]

HARDCOP0 DSLLDEV TYPE=HARDCOPY,ID=0
DSLLCOND GOTO=HARDCOP1
DSLLEXIT IMBED=DUMMY

HARDCOP1 DSLLDEV TYPE=HARDCOPY,ID=1
DSLLDFLD ' ',POS=(3,2)

PRINTER DSLLDEV TYPE=SYSP,ID=E
DSLLDFLD ' ',POS=(2,2)

PRINTER0 DSLLDEV TYPE=SYSP,ID=0
DSLLCOND GOTO=PRINTER1
DSLLEXIT IMBED=DUMMY

PRINTER1 DSLLDEV TYPE=SYSP,ID=1
DSLLDFLD ' ',POS=(3,2)

*
DSLLGEN
END

Figure 158. Bottom Frame MCB

Chapter 10. Message Control Blocks (MCBs) 367

For every hardcopy and printer device a blank line is supplied for the
bottom part.

368 Customization Guide

Chapter 11. Cover MCBs

Cover MCBs are designed to provide mapping facilities for composed messages.
Messages can be composed of MERVA Link, Telex Link, SWIFT and other
information. Cover MCBs are also needed if a message consists of only one kind of
information, for example, SWIFT information.

MERVA ESA provides the following sample cover MCBs:

DSL0COV is used to:
v Display or print all internal MERVA ESA messages and panels
v Display, print, and format SWIFT messages for the network (exit field DSLEXIT)
v Display or print free formatted telex messages (exit field ENLEXIT)
v Display formatted telex messages (exit field ENLEXIT and DSLEXIT)

DSLKCOV is used to display, print, and format SWIFT, telex, and user-defined
messages, including MERVA-MQI Attachment control fields. Refer to “Displaying
MQI Control Block Data” on page 326.

ENLTCOV is used to display, print, and format:
v Formatted telex messages (exit fields ENLEXIT and DSLEXIT)
v Free formatted telex messages (exit field ENLEXIT)
v SWIFT messages (exit field DSLEXIT)

EKAMCOV is used to display, print, and format SWIFT and telex messages,
including MERVA Link control fields.

Coding Cover MCBs
You can define your own cover MCB for a display or print function, or for
mapping purposes. You can include system or user control fields, or omit parts of
the message. A cover MCB should be assigned to an own exitfield in the TOF
(nesting level indicator), using the NLIND parameter in the Message Type Table
Entry, for example, NLIND=OWNEXIT.

Only fields on nesting level 0 must be assigned to this exit field. Use the parameter
NL0=YES in the MTT-entry to specify this.

The cover MCB must be defined in:
v The MFS program table DSLMPTT
v The message type table DSLMTTT

Display or print functions that refer to the cover MCB must be used with the
MSGID parameter in the function table DSLFNTT.

Example for DSL0COV
DSL0COV is the cover MCB provided for internal and SWIFT messages. It is for
displaying, printing, and formatting SWIFT messages in their original form.

© Copyright IBM Corp. 1987, 2001 369

Notes:

[1] SCREEN DSLLDEV TYPE=SCREEN,ID=E

The screen part of the MCB covers the display of internal, SWIFT, and
Telex Link messages.

[2] DSLLCOND O1=(TEST=ENLEXIT,NI=0),EQ=YES,O2='',GOTO=SCRNSW

Internal field ENLEXIT on NI=0 is checked. If it is empty processing
continues with label SCRNSW [6], that is, it is not a telex message.
Otherwise processing continues with the next statement.

[3] DSLLCOND O1=(TEST=DSLEXIT,NI=0),EQ=NO,O2='',GOTO=SCRNTXSW

Internal field DSLEXIT on NI=0 is checked. If it is empty, processing
continues with the next statement, that is, it is not a SWIFT message.
Otherwise processing continues with label SCRNTXSW [5].

[4] DSLLEXIT FLD=ENLEXIT,NI=0

MCB processing continues with the MCB referred to by field ENLEXIT on
NI=0. ENLEXIT contains the message ID for telex messages.

[5] SCRNTXSW DSLLEXIT IMBED=TX

MCB processing continues by embedding MT=TX. This is the MCB
containing the telex header fields.

[6] SCRNSW DSLLEXIT FLD=DSLEXIT,NI=0

MCB processing continues with the MCB referred to by field DSLEXIT on
NI=0. DSLEXIT contains the message ID of the SWIFT messages.

[7] HARDCOPY DSLLDEV TYPE=HARDCOPY,ID=E

TITLE 'Cover of a Message'
COPY DSLCOLOR

DSL0COV DSLLMCB
SCREEN01 DSLLDEV TYPE=SCREEN,ID=E [1]

DSLLCOND O1=(TEST=ENLEXIT,NI=0),EQ=YES,O2='',GOTO=SCRNSW [2]
DSLLCOND O1=(TEST=DSLEXIT,NI=0),EQ=NO,O2='',GOTO=SCRNTXSW [3]
DSLLEXIT FLD=ENLEXIT,NI=0 [4]
DSLLCOND GOTO=SCRNGEN

SCRNTXSW DSLLEXIT IMBED=TX [5]
DSLLDFLD 'Message :',POS=(NEXT,02), *

COMMENT=Y
DSLLDFLD FLD=DSLEXIT,NI=0,POS=(,NEXT),LENGTH=4, *

DISP=HIGH,PROT=YES,COMMENT=Y
DSLLDFLD 'Initialized',POS=(,NEXT),COMMENT=Y
DSLLDFLD '--*

---------------------------',POS=(NEXT,02),COMMENT=Y
SCRNSW DSLLEXIT FLD=DSLEXIT,NI=0 [6]
SCRNGEN DSLLCOND
HARDCOPY DSLLDEV TYPE=HARDCOPY,ID=E [7]

DSLLEXIT FLD=DSLEXIT,NI=0 [8]
PRINTER DSLLDEV TYPE=SYSP,ID=E,LIKE=HARDCOPY

LINES DSLLDEV TYPE=NET,ID=S,SEP=X'0D25' [9]
DSLLEXIT FLD=DSLEXIT,NI=0 [10]

LINEW DSLLDEV TYPE=NET,ID=W,SEP=X'0D25',LIKE=LINES
LINEX DSLLDEV TYPE=NET,ID=X,SEP=X'0D25',LIKE=LINES
LINEY DSLLDEV TYPE=NET,ID=Y,SEP=X'0D25',LIKE=LINES

DSLLGEN
END

Figure 159. Coding Example for Cover MCB, DSL0COV

370 Customization Guide

The hardcopy section of the MCB covers the printing of SWIFT and
internal messages.

[8] DSLLEXIT FLD=DSLEXIT,NI=0

MCB processing continues with the MCB referred to by field DSLEXIT on
NI=0.

[9] LINES DSLLDEV TYPE=NET,ID=S,SEP=X'0D25'

The net section of the MCB covers the mapping of SWIFT messages.

[10] DSLLEXIT FLD=DSLEXIT,NI=0

MCB processing continues with the MCB referred to by field DSLEXIT on
NI=0.

Example for EKAMCOV
EKAMCOV is the MERVA Link cover MCB provided for MERVA Link functions. It
is used to display or print a message including MERVA Link control information.

Chapter 11. Cover MCBs 371

Notes:

[1] DSLLEXIT IMBED=MCTL

Message display starts with the MCTL MCB that contains the MERVA Link
control fields.

[2] DSLLCOND O1=(TEST=ENLEXIT,NI=0),EQ=YES,O2='',GOTO=SCREENSW

Internal field ENLEXIT on NI=0 is checked. If it is empty, processing
continues with label SCREENSW.

[3] DSLLEXIT FLD=ENLEXIT,NI=0

MCB processing continues with the MCB referred to by field ENLEXIT on
NI=0. ENLEXIT contains the message ID for telex messages.

TITLE 'MERVA Link Cover MCB'
COPY DSLCOLOR

EKAMCOV DSLLMCB
SCREEN DSLLDEV TYPE=SCREEN

DSLLCOND SCREEN,GOTO=SCREEN01
DSLLCOND SYSP,GOTO=SCREEN01
DSLLCOND O1=(TEST=DSLUSRMN,NI=0,LENGTH=3),EQ=NO,O2='MSG', *

GOTO=SCREENO2
SCREEN01 DSLLCOND

DSLLDFLD 'Start of MERVA Link Control Fields Display', *
POS=(NEXT,02),COLOR=&WATCH

DSLLEXIT IMBED=MCTL [1]
DSLLCOND O1=(TEST=ENLEXIT,NI=0),EQ=YES,O2='',GOTO=SCREENSW [2]
DSLLCOND PAGE=NEW
DSLLDFLD ' ',POS=(NEXT,02)
DSLLDFLD 'Message :',POS=(NEXT,02), *

COMMENT=Y
DSLLDFLD FLD=ENLEXIT,NI=0,POS=(,NEXT),LENGTH=5

DISP=HIGH,PROT=YES,COMMENT=Y
DSLLDFLD 'Initialized',POS=(,NEXT),COMMENT=Y
DSLLDFLD ---*

----------------------------',POS=(NEXT,02),COMMENT=Y
DSLLEXIT FLD=ENLEXIT,NI=0 [3]
DSLLCOND GOTO=SCREEND

SCREENSW DSLLCOND
DSLLCOND PAGE=NEW
DSLLEXIT FLD=DSLEXIT,NI=0 [4]

SCREEND DSLLCOND
HARDCOPY DSLLDEV TYPE=HARDCOPY,ID=E,LIKE=SCREEN
PRINTER DSLLDEV TYPE=SYSP,ID=E,LIKE=SCREEN
LINEM DSLLDEV TYPE=NET,ID=M,SEP='' [5]

DSLLEXIT IMBED=MCTL
DSLLCOND O1=(TEST=ENLEXIT,NI=0),EQ=YES,O2='',GOTO=LINEMSW
DSLLEXIT FLD=ENLEXIT,NI=0
DSLLCOND GOTO=LINEX

LINEMSW DSLLEXIT FLD=DSLEXIT,NI=0
LINEX DSLLDEV TYPE=NET,ID=X,SEP=X'OD25'

DSLLCOND O1=(TEST=ENLEXIT,NI=0),EQ=YES,O2='',GOTO=LINESW
DSLLEXIT FLD=ENLEXIT,NI=0
DSLLCOND GOTO=LINET

LINESW DSLLEXIT FLD=DSLEXIT,NI=0
LINES DSLLDEV TYPE=NET,ID=S,LIKE=LINEM
LINET DSLLDEV TYPE=NET,ID=S,LIKE=LINEM
LINEW DSLLDEV TYPE=NET,ID=S,LIKE=LINEM
LINEY DSLLDEV TYPE=NET,ID=S,LIKE=LINEX

DSLLGEN
END

Figure 160. Coding Example for Cover MCB, EKAMCOV

372 Customization Guide

[4] DSLLEXIT FLD=DSLEXIT,NI=0

MCB processing continues with the MCB referred to by field DSLEXIT on
NI=0.

[5] LINEM DSLLDEV TYPE=NET,ID=M,SEP=''

LINEM is used to map a message including the MERVA Link control fields
to or from its net format.

Example for ENLTCOV
ENLTCOV is the cover MCB provided for the TELEX functions. It covers the
layout for free formatted and for formatted telex messages, for SWIFT messages,
and for MERVA ESA internal messages.

Notes:

ENLTCOV DSLLMCB
SCREEN DSLLDEV TYPE=SCREEN,ID=E

DSLLCOND SCREEN,GOTO=SCREEN01
DSLLCOND SYSP,GOTO=SCREEN01
DSLLCOND O1=(TEST=DSLUSRMN,NI=0),EQ=YES,O2='', *

GOTO=SCREEN01
SCREEN00 DSLLCOND

DSLLCOND O1=(TEST=DSLUSRMN,NI=0,LENGTH=3),EQ=NO,O2='MSG', *
GOTO=SCRNSW

SCREEN01 DSLLCOND
DSLLCOND O1=(TEST=ENLEXIT,NI=0),EQ=YES,O2='',GOTO=SCRNSW [1]
DSLLCOND O1=(TEST=DSLEXIT,NI=0),EQ=NO,O2='',GOTO=SCRNTXSW [2]
DSLLEXIT FLD=ENLEXIT,NI=0 [3]
DSLLCOND GOTO=SCRNGEN

SCRNTXSW DSLLEXIT IMBED=TX [4]
DSLLDFLD 'Message' :',POS=(NEXT,02), *

COMMENT=Y
DSLLDFLD FLD=DSLEXIT,NI=0,POS=(,NEXT),LENGTH=4, *

DISP=HIGH,PROT=YES,COMMENT=Y
DSLLDFLD 'Initialized',POS=(,NEXT),COMMENT=Y
DSLLDFLD --*

----------------------------',POS=(NEXT,02),COMMENT=Y
SCRNSW DSLLEXIT FLD=DSLEXIT,NI=0 [5]
SCRNGEN DSLLCOND
HARDCOPY DSLLDEV TYPE=HARDCOPY,ID=E,LIKE=SCREEN
PRINTER DSLLDEV TYPE=SYSP,ID=E,LIKE=SCREEN
LINEX DSLLDEV TYPE=NET,ID=X,SEP=X'0D25'

DSLLCOND O1=(TEST=ENLEXIT,NI=0),EQ=YES,O2='',GOTO=LINEMSW
DSLLCOND O1=(TEST=ENLEXIT,NI=0,LENGTH=4),EQ=YES,O2='TCOV', *

GOTO=LINETXSW
DSLLEXIT FLD=ENLEXIT,NI=0
DSLLCOND GOTO=LINEEND

LINETXSW DSLLEXIT IMBED=TX
LINESW DSLLEXIT FLD=DSLEXIT,NI=0
LINEEND DSLLCOND
LINEY DSLLDEV TYPE=NET,ID=Y,LIKE=LINEX
LINET DSLLDEV TYPE=NET,ID=T,LIKE=LINEX
LINES DSLLDEV TYPE=NET,ID=S,LIKE=LINEX
LINEW DSLLDEV TYPE=NET,ID=W,LIKE=LINEX
* FORM K IS NECESSARY FOR TK-EXTRACT FUNCTION
LINEK DSLLDEV TYPE=NET,ID=K,SEP=X'0D25'

DSLLEXIT FLD=DSLEXIT,NI=0
LINEGEN DSLLCOND

DSLLGEN
END

Figure 161. Coding Example for Cover MCB, ENLTCOV

Chapter 11. Cover MCBs 373

[1] DSLLCOND O1=(TEST=ENLEXIT,NI=0),EQ=YES,O2='',GOTO=SCRNSW

Internal field ENLEXIT on NI=0 is checked. If it is empty, processing
continues with label SCRNSW [5] indicating that it is not a TELEX
message. Otherwise, processing continues with the next statement.

[2] DSLLCOND O1=(TEST=DSLEXIT,NI=0),EQ=NO,O2='',GOTO=SCRNTXSW

Internal field DSLEXIT on NI=0 is checked. If it is empty, processing
continues with the next statement, it is not a SWIFT message. Otherwise,
processing continues with label SCRNTXSW.

[3] DSLLEXIT FLD=ENLEXIT,NI=0

MCB processing continues with the MCB referred to by field ENLEXIT on
NI=0. ENLEXIT contains the message ID for telex messages.

[4] SCRNTXSW DSLLEXIT IMBED=TX

MCB processing continues by embedding MT=TX. This is the MCB
containing the telex header fields.

[5] SCREENSW DSLLEXIT FLD=DSLEXIT,NI=0

MCB processing continues with the MCB referred to by field DSLEXIT on
NI=0. DSLEXIT contains the message ID of the SWIFT messages.

Help MCBs
Help MCBs contain mostly fixed information. See the MERVA for ESA User’s Guide
for how to display help panels on a screen terminal.

In a MERVA ESA installation, the help MCBs supplied by MERVA ESA can be
changed, or new help MCBs can be created. Help MCBs are processed like
message MCBs.

The Help MCB DSLHELP shows a list of the available help panels. It should be
updated if user-written help panels are added.

The MERVA ESA help panels can be accessed directly by the command
help 0xxxx (xxxx = MCB name - prefix DSL). That is, help 0hpfk shows the Help
panel for the Program Function Keys on the screen. The help panels can also be
accessed using the command help mcbname. It is possible to select a specific page
in a help panel directly by using the command help mcbname pagenum.

To get help information about a user or operator command enter the command
help commandname. For example help login shows the help panel for the login
command.

There are two ways to get help information for user error messages. If you receive
an error message during message processing on the screen you can receive help
information about this error by entering the help command either on the
command line or by pressing PF 1. Alternatively you can get the help panel for
any user error message by applying the show command with the error message ID
as operand. The command show dws3686 displays the help panel for the error
message:

DWS3686 Correspondent’s SWIFT address in header must have length 8 or 11.

374 Customization Guide

Note: DWS3686 refers to an MCB which is displayed by this command. If you
supply your own error messages, you should provide appropriate MCBs.

MERVA ESA provides you with a Help Menu (master panel, MCB DSLHELP),
which uses the following help panels:

DSLHIDX Help Index MERVA ESA

DSLHBASE Base Help Menu

DWSHELP SWIFT Link Help Menu

ENLHELP Telex Link Help Menu

EHAHELP MERVA Link Help Menu

DSLHENV Environment Data

DSLHMTR Message-Trace Display

DSLHPFK Program Function Keys

DSLOUMR Unique Message Reference

DSLHCMD Operator Commands

DSLHSCC Screen Commands

DSLHUSR User File Maintenance Commands

DSLHFLM General File Maintenance Commands

DSLHRETC Return and Reason Codes

The SWIFT Link Help Menu uses the following help panels for the SWIFT Link
specific functions:

DWSHCMD2 Operator Commands for SWIFT Network

DWSHMTB Financial Message Header

DWSHMTB Financial Message Types

DWSHMTS System Message Types

DWSHCUR Currency codes

DWSHCUR2 Currency codes in file and table

DWSHAUT Authenticator Key File Maintenance Commands

DWSHRETC Return and Reason Codes

DWSHNAK SWIFT Error (NAK) Codes

DWSHMAC Message Authentication

The SWIFT Link help panels can be accessed directly by the command help Sxxxx
(xxxx = MCB name - prefix DWS), that is, help shcur shows the Help panel for the
currency codes on the screen. The help panels can also be accessed using the
command help mcbname.

The Telex Link Help MCB contains panels for the following Telex Link specific
functions:
v Telex Link Operator Commands
v Telex Link status codes for Headoffice Telex on a fault-tolerant system

Chapter 11. Cover MCBs 375

The MERVA Link Application Control Facility help panel EKAACHP shows:
v The Application Control Facility commands
v The control information for a specific application support process
v Information about the local and partner systems

The MERVA Link general help panel EKAHELP also shows MERVA Link
Diagnostic Codes and Abbreviations.

376 Customization Guide

Chapter 12. Message Type Table (DSLMTTT)

The MERVA ESA message type table defines the message types and related
information (such as the MCB that describes the message type) for MERVA ESA.
MERVA ESA uses a message type table that contains, in the assembler source only,
the DSLMTT TYPE=INITIAL and DSLMTT TYPE=FINAL macros and an assembler
COPY statement for each network link. The copy members of each component
finally contain the message type definitions needed by the component.

These copy members contain all message type definitions required for the
operation of MERVA ESA including the SWIFT Link to process all SWIFT
messages on all display devices and the connection to the SWIFT network, the
Telex Link and the MERVA Link.

The message type table can be altered by changing the appropriate DSLMTT
macros or by adding new DSLMTT macros, described in the MERVA for ESA Macro
Reference. After modification, the message type table must be assembled and
link-edited.

The name of the message type table can be customized in DSLPRM.

The DSLMTT macro can be used in two forms:
v Map the MERVA ESA message type table header, the entry section, and index

section.
v Generate the MERVA ESA message type table (DSLMTTT).

Mapping the Areas of the Message Type Table
The following macro maps all areas of the message type table:
DSLMTT TYPE=MAP MAP ALL AREAS OF MTT

Generating the Message Type Table
The following instructions are used to generate the message type table:

Notes:

[1] DSLMTTT

The label of the DSLMTT TYPE=INITIAL macro must be coded and is
used as the name of the message type table. This must be the first macro.

MTTT TITLE 'MERVA MESSAGE TYPE TABLE'
DSLMTTT DSLMTT TYPE=INITIAL [1]

COPY DSLMTTTC MERVA ESA MESSAGE TYPE TABLE [2]
COPY DWSMTTTC SWIFT LINK MESSAGE TYPE TABLE [3]
COPY ENLMTTTC TELEX LINK MESSAGE TYPE TABLE [4]
COPY EKAMTTTC MERVA LINK MESSAGE TYPE TABLE [5]
COPY EKAMTTSC FMT MESSAGE TYPE TABLE [6]
DSLMTT TYPE=FINAL [7]
END

Figure 162. The MERVA ESA Message Type Table

© Copyright IBM Corp. 1987, 2001 377

[2] DSLMTTTC

This copy code describes the MERVA ESA message types and message
identifications. A coding example is given in Figure 163.

[3] DWSMTTTC

This copy code describes the SWIFT Link message types and message
identifications. A coding example is given in Figure 164.

[4] ENLMTTTC

This copy code describes the Telex Link message types and message
identifications. A coding example is given in Figure 165.

[5] EKAMTTTC

This copy code describes the MERVA Link message types and message
identifications. A coding example is given in Figure 166.

[6] EKAMTTSC

This copy code describes the FMT/ESA with MERVA Link message types
and message identifications.

[7] DSLMTT

TYPE=FINAL is the last macro and completes the message type table
definition.

Message Type Table Definitions
This copy member has the name DSLMTTTC.

Notes:

[1] DSLMTT MTYPE=0BOT,MCB=DSL0BOT,PANEL=YES

This DSLMTT macro generates an entry for the Bottom Frame MCB
DSL0BOT in the Message Type Table and assigns it the message ID 0BOT.
PANEL=YES specifies that this message type is used as an internal panel
identifier only.

[2] DSLMTT MTYPE=0CMD,MCB=DSL0CMD

This DSLMTT macro generates an entry for the Command Processing
Panel MCB DSL0CMD and assigns it the message ID 0CMD.
DESCR='Operator Command Processing' defines the title line used by the
top frame MCB when displaying this panel.

[3] DSLMTT MTYPE=0CORN,MCB=DSL0CORN,MTGEN=NO

* MERVA MESSAGE IDENTIFICATIONS *

DSLMTT MTYPE=0BOT,MCB=DSL0BOT,PANEL=YES [1]
DSLMTT MTYPE=0CMD,MCB=DSL0CMD, * [2]

DESCR='Operator Command Processing'
DSLMTT MTYPE=0CORN,MCB=DSL0CORN,MTGEN=NO [3]
DSLMTT MTYPE=0HENV,...,SYNONYM=INFO [4]

...

Figure 163. The MERVA ESA Message Type Table Copy Member

378 Customization Guide

|
|

This DSLMTT macro generates an entry for the MERVA ESA Nicknames
File MCB DSL0CORN and assigns it the message ID 0CORN. MTGEN=NO
specifies that a message with this message type can be generated only by a
MERVA ESA application program.

[4] DSLMTT MTYPE=0HENV,...,SYNONYM=INFO

This DSLMTT macro generates an entry for the environment information
display. The display shows the current time and date, the current function,
the logical terminal name, and other useful information about the user
session. The synonym specification means that instead of the command
show 0henv the alternative command show info can be specified. Both
commands result in the display of the information panel.

SWIFT Link Message Type Table Definitions
This copy member has the name DWSMTTTC, and it contains the definitions for
all the SWIFT message types.

This table must only be changed if SWIFT changes a message type or provides
new message types.

Figure 164 shows the beginning of the copy member DWSMTTTC. The complete
copy member is in the MERVA ESA macro (MVS) library.

Notes:

[1] AUT EQU X'80'

* CONSTANTS FOR SWIFT LINK
AUT EQU X'80' AUTHENTICATION REQUIRED [1]

...

--
* SWIFT Link Banking Message Types / FIN Application
--

DSLMTT MTYPE=S100,MCB=DWS100,NETSPEC=(AUT),CHECK=1002,LENGTH=2000, * [2]
DESCR='Customer Transfer'

DSLMTT MTYPE=S102,MCB=DWS102,NETSPEC=(AUT),CHECK=1002,LENGTH=10000,* [3]
DESCR='Mass Payments'

...

DSLMTT MTYPE=S292,MCB=DWSX92,NESTING=YES,CHECK=1002,LENGTH=2000, * [4]
NETSPEC=(AUT,'NXTLEV=(¬200,¬201,2**)'), *
DESCR='Request for Cancellation'

DSLMTT MTYPE=S295,MCB=DWSX95,NESTING=YES,CHECK=1002,LENGTH=2000, * [5]
NETSPEC=(AUT,'NXTLEV=2'), *
DESCR='Queries'

DSLMTT MTYPE=S296,MCB=DWSX96,NESTING=YES,CHECK=1002,LENGTH=2000, *
NETSPEC=(AUT,'NXTLEV=2'), *
DESCR='Answers'

DSLMTT MTYPE=S299,MCB=DWSX99,NETSPEC=(AUT),CHECK=1002,LENGTH=2000, *
DESCR='Free Format'

DSLMTT MTYPE=SF020,MCB=DWSF020,CHECK=1002,SYNONYM=S020, * [6]
DESCR='Retrieval Request(Text && History)'

...

Figure 164. The SWIFT Link Message Type Table Copy Member

Chapter 12. Message Type Table (DSLMTTT) 379

This instruction defines an assembler symbol to be referenced in the
NETSPEC operand. “AUT” specifies that this message type requires the
SWIFT authentication.

[2] DSLMTT MTYPE=S100

With this instruction the message identifier S100 for SWIFT message type
100 is assigned to the MCB DWS100. NETSPEC=(AUT) specifies that
authentication of this message type is required. CHECK=1002 specifies the
number of the message-type-specific checking exit called by the MFS
program DSLMCHE for message checking. LENGTH=2000 specifies that
the SWIFT defined message length limit is 2000 bytes. If a message is
larger than this value, the message is not sent to SWIFT. DESCR= specifies
the descriptive title of the message type used by the TOP frame MCB
when displaying this message.

[3] DSLMTT MTYPE=S102

With this instruction the message identifier S102 for SWIFT message type
102 is assigned to the MCB DWS102. NETSPEC=(AUT) specifies that
authentication of this message type is required. CHECK=1002 specifies the
number of the message-type-specific checking exit called by the MFS
program DSLMCHE for message checking. LENGTH=10000 specifies that
the SWIFT defined message length limit is 10000 bytes for this message
type. If a message is larger than this value, the message is not sent to
SWIFT. DESCR= specifies the descriptive title of the message type used by
the TOP frame MCB when displaying this message.

[4] DSLMTT MTYPE=S292

With this instruction the message identifier S292 for SWIFT MT 292 is
assigned to the MCB DWSX92. NESTING=YES specifies that nesting of
messages is allowed for this message type, and further information on the
message types to be nested is passed with the NETSPEC operand.
NXTLEV=(¬200,¬201,2**) specifies that MTs 202 to 299 can be nested.

Note: The parameter NXTLEV is defined in the message type table for the
SWIFT Link message processing programs DWSMX002 and
DWSMU154.

[5] DSLMTT MTYPE=S295

With this instruction the message identifier S295 for SWIFT MT 295 is
assigned to the MCB DWSX95. NESTING=YES specifies that nesting of
messages is allowed for this message type, and further information on the
message types to be nested is passed with the NETSPEC operand.
NXTLEV=2 specifies that MTs 200 to 299 can be nested.

[6] DSLMTT MTYPE=SF020

With this instruction the message identifier SF020 for the SWIFT financial
application message type 020 is assigned to MCB DWSF020. The parameter
SYNONYM=S020 specifies that S020 can be used as synonym for this
message type. The short form 020 can be entered on a message selection
panel to create a message of this type. In MERVA/370 V2 the message
identification S020 was used for the SWIFT I system message type 20.

Telex Link Message Type Table Definitions
All message types that are used by the Telex Link must be specified with an
DSLMTT macro and must be incorporated into the copy book ENLMTTTC.

380 Customization Guide

The sample entries used by the Telex Link are shown in Figure 165.

Notes:

[1] DSLMTT MTYPE=TINV

With this instruction, MT=TINV is assigned to MCB ENLMTINV. It is also
assigned to ENLEXIT and contains only fields on nesting level 0.

MERVA Link Message Type Table Definitions
All message types that are used by MERVA Link must be specified in the
MERVA ESA Message Type Table (DSLMTTT).

The sample DSLMTTT entries used by MERVA Link are shown in Figure 166 on
page 382. The copy book EKAMTTTC of the MERVA ESA macro library contains
the macro instructions to generate these DSLMTTT entries.

DSLMTT MTYPE=TINV,MCB=ENLMTINV,NLO=YES,NLIND=ENLEXIT, * [1]
DESCR='Invalid Telex'

DSLMTT MTYPE=TRCV,MCB=ENLMTRCV,NLO=YES,NLIND=ENLEXIT, *
DESCR='Received Telex'

DSLMTT MTYPE=TELEX,MCB=ENLMTSND,NLO=YES,NLIND=ENLEXIT, *
DESCR='Telex'

DSLMTT MTYPE=TCOR,MCB=ENLTCOR,MTGEN=NO
/--*

DSLMTT MTYPE=TX,MCB=ENLTXHD,NLIND=ENLEXIT,NLO=YES, *
DESCR='Telex Header'

DSLMTT MTYPE=TCOV,MCB=ENLTCOV,NLIND=ENLEXIT,NLO=YES, *
DESCR='Telex Cover'

/--*
DSLMTT MTYPE=LHELP,MCB=ENLHELP,PANEL=YES
DSLMTT MTYPE=ENLLTXIP,MCB=ENLLTXIP,MTGEN=NO

Figure 165. DSLMTT Entries for the Telex Link in the Copy Book ENLMTTTC

Chapter 12. Message Type Table (DSLMTTT) 381

Notes:

[1] DSLMTT MTYPE=MCTL defines the MERVA Link Control Message.

The MERVA Link Control Message is assigned the message type MCTL. It
is a mandatory resource owned by the MERVA Link. Message type MCTL
is used by the MERVA Link for internal purposes.

The definition of the message type MCTL in the MERVA ESA MCB named
EKAMCTL contains a screen and a net format section. The net format
section defines the MERVA Link internal layout of an LC Control Message
and the layout of the set of MERVA Link control fields.

Note: The net format section of EKAMCTL must not be altered.

The MERVA Link assumes that the message type MCTL is not yet used in
your MERVA ESA system. However, if you have a need to change this
message type, you must change it in the EKAPT macro, which is provided
in the MERVA Link macro library, and regenerate your partner table.

There is no parameter in the partner table generation to modify the
message type of the MERVA Link Control Message.

[2] DSLMTT MTYPE=MCOV defines the MERVA Link cover MCB.

The MERVA Link cover MCB EKAMCOV is used to display a message
with control information and data of all applicable MERVA ESA
components. If you define parameter MSGID=MCOV in the DSLFNTT
entry of a MERVA ESA function, you will see the MERVA Link control
fields first when you display a message in the queue corresponding to that
function.

*--
* MERVA MESSAGE TYPE TABLE ENTRIES FOR MERVA LINK
*--

DSLMTT MTYPE=MCTL,MCB=EKAMCTL, * [1]
DESCR='Edit and View MERVA Link Control Fields'

DSLMTT MTYPE=MCOV,MCB=EKAMCOV,NLIND=EKAEXIT,NL0=YES,MTGEN=NO, * [2]
DESCR='MERVA Link Cover MCB'

DSLMTT MTYPE=ACMM,MCB=EKAACMM, * [3]
DESCR='MSC Main Menu'

DSLMTT MTYPE=AC00,MCB=EKAAC00, *
DESCR='MSC MERVA Operator Command Processing '

DSLMTT MTYPE=AC01,MCB=EKAAC01, *
DESCR='MERVA Link List of Message Transfer Applications'

DSLMTT MTYPE=AC02,MCB=EKAAC02, *
DESCR='MERVA Link Display Specific ASP/MTP'

DSLMTT MTYPE=AC03,MCB=EKAAC03, *
DESCR='MERVA Link List of Partner MERVA Systems'

DSLMTT MTYPE=AC04,MCB=EKAAC04, *
DESCR='MERVA Link Display PT Header Information'

DSLMTT MTYPE=ACHP,MCB=EKAACHP, *
DESCR='MSC Environment Dependent Explanation'

DSLMTT MTYPE=MHELP,MCB=EKAHELP, *
DESCR='MERVA Link Help Information'

*--
* MERVA MESSAGE TYPE TABLE ENTRIES FOR THE MERVA LINK SAMPLE
*--

DSLMTT MTYPE=DEMO,MCB=EKADEMO, * [4]
DESCR='MERVA Link Demo Message for the Sample Scenario'

Figure 166. DSLMTTT Entries for MERVA Link

382 Customization Guide

[3] DSLMTT MTYPE=ACxx defines one of the MERVA System Control Facility
message types.

The user interface of the MERVA System Control Facility is implemented
via the message types, ACMM, ACHP, AC00, AC01, AC02, AC03, and
AC04. The corresponding MCBs are named EKAACMM, EKAACHP,
EKAAC00, EKAAC01, EKAAC02, EKAAC03, and EKAAC04, respectively.

Note: The net format sections of these MCBs must not be altered.

[4] DSLMTT MTYPE=DEMO defines the MERVA Link Sample Message
DEMO.

The MERVA Link message type DEMO is a part of the MERVA Link
sample scenario. A message of this type is not used by MERVA Link for
internal purposes.

Chapter 12. Message Type Table (DSLMTTT) 383

384 Customization Guide

Chapter 13. Field Definition Table (DSLFDTT)

The Field Definition Table describes all TOF fields used when processing MCBs of
MERVA ESA.

Field Definition Macroinstructions
The following macros are used to define fields and subfields to create the Field
Definition Table:

DSLLFDT Is used to generate the Field Definition Table header and must be
the first macro specified for the Field Definition Table.

DSLLFLD Defines a field with its field characteristics. The definition should
reflect those attributes that are most often used for the field in all
messages in which the field occurs. For example, length of the
field, or editing routine used for display devices. The attributes
defined in the Field Definition Table are used if they are not
overwritten in the MCB for a specific message type. A total of
32000 fields and subfields can be defined in the Field Definition
Table.

DSLLSUBF Defines a subfield with its field characteristics. The subfield
definitions of a field must immediately follow the DSLLFLD macro
to which they belong. A field can have different layouts defined by
the DSLLSUBF macros belonging to it. A subfield cannot be further
subdivided into subfields but the main field can have the
additional subfields. A total of 32000 fields and subfields can be
defined in the Field Definition Table.

DSLLGEN Is the last macro of the Field Definition Table and completes the
Field Definition Table generation. The Assembler END statement
must immediately follow the DSLLGEN macro.

For details see the MERVA for ESA Macro Reference.

Coding the Field Definition Table (FDT)
MERVA ESA uses a Field Definition Table, which contains in the assembler source
only the DSLLFDT and DSLLGEN macros and an assembler COPY statement for
each network link. The copy members of each component finally contain the field
definitions needed by the component.

Note: If you need to define your own fields, you should include these as a copy
into the Field Definition Table.

When MERVA ESA and the SWIFT Link are installed, the Field Definition Table
DSLFDTT looks as shown in Figure 167.

© Copyright IBM Corp. 1987, 2001 385

Notes:

[1] DSLFDTT

The label of the DSLLFDT macro must be coded. It is used as the name of
the Field Definition Table. If a name other than DSLFDTT is used, this
name must also be defined in the MERVA ESA customizing parameters
DSLPRM, such as that in the FDT parameter of the DSLPARM macro.
MERVA ESA programs load the field definition table with the name found
in DSLPRM.

[2] DSLFDTTC

This copy code describes all MERVA ESA fields used by:
v The MERVA ESA End-User Driver programs (DSLEUD)
v The MERVA ESA hardcopy printer program (DSLHCP)
v The MERVA ESA address expansion program (DSLCXT)
v The MERVA-MQI Attachment programs (DSLKQR, DSLKQS)

These fields are:
v MERVA ESA system fields. For example:

– User identification
– Processing function
– Origin identification

v Data field for free format message
v Condition check field
v Exit check field
v Message identification field

The complete list of all fields used by MERVA ESA can be seen in the copy
code DSLFDTTC.

[3] DWSFDTTC

This copy code describes all SWIFT Link fields. For example:
v The message header fields of SWIFT messages
v The trailer field of SWIFT messages
v All other fields of SWIFT messages
v The fields required for address expansion of the address fields of SWIFT

messages
v The fields required for the on-line maintenance of the SWIFT

Correspondents file
v The fields required for the on-line maintenance of the SWIFT Link

Authenticator-Key file

FDTT TITLE 'MERVA FIELD DEFINITION TABLE'
DSLFDTT DSLLFDT [1]

COPY DSLFDTTC MERVA FIELD DEFINITIONS [2]
COPY DWSFDTTC SWIFT LINK FIELD DEFINITIONS [3]
COPY ENLFDTTC TELEX LINK FIELD DEFINITIONS [4]
COPY EKAFDTTC MERVA LINK FIELD DEFINITIONS [5]
COPY EKAFDTSC FMT FIELD DEFINITIONS [6]
DSLLGEN
END

Figure 167. Field Definition Table for MERVA ESA and the SWIFT Link

386 Customization Guide

The complete list of all fields used by the SWIFT Link can be seen in the
copy code DWSFDTTC.

[4] ENLFDTTC

This copy code describes all Telex Link fields. For example:
v The telex header fields
v The Telex Link control fields
v The telex data fields
v The test-key calculation fields

[5] EKAFDTTC

This copy code describes all MERVA Link fields.

[6] EKAFDTSC

This copy code describes all fields for FMT/ESA with MERVA Link.

FDT Coding Examples

Coding Example of the SWIFT Field 39
The name of this field is SW39. This name is referenced in the MCB for the
TYPE=MESSAGE and TYPE=NET parts. The names of the subfields are referenced
in the TYPEs SCREEN, HARDCOPY, and SYSP.

Notes:

[1] These are the comments for field 39, its meaning and in which SWIFT
messages it is used, for example, in MT 700 with either Option A, B, or C.

[2] DSLLFLD

This statement defines the main field SW39. The length and the data areas
of field SW39 are checked by checking routine 1001, options are specified
(OPTION=YES) and the option list contains the options allowed: A, B, and
C (OPTLIST=(A,B,C)).

* SWIFT - FIELD 39 : AMOUNT SPECIFICATION * [1]
* CONTAINS FOUR DATA AREAS (TEXT_LINES) *
* USED IN APPL APDU-ID MT OPTIONS *
* F 01 700 A,B,C *
* F 01 705 A,B,C *
* F 01 707 A,B,C *
* F 01 710 A,B,C *
* F 01 720 A,B,C *
* F 01 740 A,B,C *
* F 01 747 A,B,C *
* F 01 769 C *

SW39 DSLLFLD OPTLIST=(A,B,C),OPTION=YES,CHECK=SEPR,SEPR=1001, * [2]

STRIP=YES,FSEP=YES
SW39S1B DSLLSUBF LENGTH=(13,13,F),OFFSET=0,SEPR=STANDARD,MAND=YES [3]
**
* POSITIVE TOLERANCE
SW39PT DSLLSUBF FIELD=SW39,CHECK=SEPR,SEPR=1001,STRIP=YES [4]
* NEGATIVE TOLERANCE
SW39NT DSLLSUBF FIELD=SW39,CHECK=SEPR,SEPR=1001,STRIP=YES

Figure 168. Coding of the SWIFT Field SW39 in the Field Definition Table

Chapter 13. Field Definition Table (DSLFDTT) 387

|

CHECK=SEPR shows that the separation routine specified (1001) is also
used for checking.

STRIP=YES specifies that trailing blanks in the input are stripped out.

FSEP=YES specifies that the separation routine (1001) for the field is
always called when field data is read or written.

[3] DSLLSUBF

The subfield SW39S1B extracts the first 13 characters from a data area of
field SW39. The extraction is done by the MERVA ESA standard separation
routine.

[4] DSLLSUBF

The subfields SW39PT and SW39NT are defined for main field SW39,
separated by the SWIFT Link routine 1001.

Processing New or Changed FDTs
When existing fields are changed in the Field Definition Table, or new fields are
added to the Field Definition Table, or a new Field Definition Table is created, the
following should be considered:
v Each field requires a unique name.
v Define subfields of the field if necessary. If yes, decide whether the MERVA ESA

standard separation is to be used or if a special separation module must be
provided.

v Define the attributes of the fields:
– Length
– List of Field options
– Number of data areas
– Attributes MAND=, PERM=, and QUEUE=

v Define features of the data to be checked. Decide if the standard checking
according to the characteristics as defined in the FDT or MCB are to be used or
if a special checking module must be provided.

v Decide if the editing of the data is required. For amount fields you can use the
editing routine DSLME901 or DSLME902. For other fields a special editing
module must be provided.

v Decide if a default setting for the field is required, and if a special default setting
module is required.

v Decide if expansion of the field is required, and if is a special expansion module
is required.

A new or changed Field Definition Table must be assembled, and link-edited. If the
name of the Field Definition Table is to be changed (default is DSLFDTT), the
MERVA ESA customizing module DSLPRM must be changed too (FDT parameter
of the DSLPARM macro), assembled and link-edited.

Note: The changed field characteristics are only available for fields in messages
mapped after installation of the changed Field Definition Table. For further
information, refer to “Processing New or Changed MCBs” on page 361.

MCBs referring to the new or changed fields must be installed.

388 Customization Guide

All new or changed separation, edit, checking, default setting and expansion
routines must be installed via the Message Format Service (MFS) program table
(DSLMPTT). Usually the program DSLMMFS must be link-edited then.

You need not change DSLMPTT for the editing, checking, or default setting
routine, which adheres to a special naming convention. The module is loaded
dynamically, if the name of the exit routine is DSLMEnnn, DSLMCnnn, or
DSLMDnnn, where nnn is the number of an exit. In this case you need not
link-edit DSLMMFS.

MERVA Link Modifications in the Field Definition Table
All MERVA Link control fields must be specified in the DSLFDTT. The DSLFDTT
entries used by MERVA Link are shown in Figure 169 on page 390. The copy book
EKAFDTTC of the MERVA ESA macro library contains the macro instructions to
generate these DSLFDTT entries.

The parameters of the MERVA Link control field definitions must not be altered.
The names of these control fields may be modified as described below.

Chapter 13. Field Definition Table (DSLFDTT) 389

*--
* MERVA LINK CONTROL FIELDS
*--
EKAAMCID DSLLFLD LENGTH=(16,16,F),PAD=' ' ASL MESSAGE ID (CONTENT ID)
EKAMSGID DSLLFLD LENGTH=(16,16,F),PAD=' ' MTL MESSAGE ID
EKAAMSID DSLLFLD LENGTH=(16,16,F),PAD=' ' IAM MESSAGE IDENTIFIER
EKAAMSEQ DSLLFLD LENGTH=(0,4,F) MIP OUTBOUND MSG SEQUENCE NUMBER
EKAIMSEQ DSLLFLD LENGTH=(0,4,F) MIP INBOUND MSG SEQUENCE NUMBER
EKAMIPID DSLLFLD LENGTH=(0,8,F) MIP MESSAGE IDENTIFIER
*
EKAOAFFN DSLLFLD LENGTH=(0,60,V) ORIGINATING APPL FREE FORM NAME
EKAONODE DSLLFLD LENGTH=(0,8,V) ORIGINATING MT NODE NAME
EKAOAPPL DSLLFLD LENGTH=(0,8,V) ORIGINATING APPLICATION NAME
EKAMTPNM DSLLFLD LENGTH=(0,8,V) INTERNAL MSG TRANSFER PROCESS NAME
*
EKARAFFN DSLLFLD LENGTH=(0,60,V) RECEIVING APPL FREE FORM NAME
EKARNODE DSLLFLD LENGTH=(0,8,V) RECEIVING MT NODE NAME
EKARAPPL DSLLFLD LENGTH=(0,8,V) RECEIVING APPLICATION NAME
*
EKAAMBSL DSLLFLD LENGTH=(0,256,V) BUCKSLIP
EKAAMBS1 DSLLSUBF LENGTH=(0,22,V),OFFSET=0,SEPR=STANDARD
EKAAMBS2 DSLLSUBF LENGTH=(0,78,V),OFFSET=22,SEPR=STANDARD
EKAAMBS3 DSLLSUBF LENGTH=(0,78,V),OFFSET=100,SEPR=STANDARD
EKAAMBS4 DSLLSUBF LENGTH=(0,78,V),OFFSET=178,SEPR=STANDARD
*
EKAAMSUB DSLLFLD LENGTH=(0,60,V) MESSAGE SUBJECT
*
EKATARQD DSLLFLD LENGTH=(0,1024,V) APPLICATION REQUEST DATA
EKATARSD DSLLFLD LENGTH=(0,256,V) APPLICATION RESPONSE DATA
EKATAACK DSLLFLD LENGTH=(0,256,V) APPLICATION ACK DATA
EKATAMAC DSLLFLD LENGTH=(0,256,V) APPLICATION MAC
EKATAPAC DSLLFLD LENGTH=(0,256,V) APPLICATION PAC
*
EKASUBDT DSLLFLD LENGTH=(0,12,F) SUBMIT DATE-TIME STAMP
EKASUBDA DSLLSUBF LENGTH=(0,6,F),OFFSET=0,SEPR=STANDARD
EKASUBTM DSLLSUBF LENGTH=(0,6,F),OFFSET=6,SEPR=STANDARD
EKASUBRC DSLLFLD LENGTH=(0,2,F) SUBMIT RETURN CODE
EKASUBDC DSLLFLD LENGTH=(6,6,F),PAD=' ' SUBMIT DIAGNOSTIC CODE
*
EKADELDT DSLLFLD LENGTH=(0,12,F) DELIVER DATE-TIME STAMP
EKADELDA DSLLSUBF LENGTH=(0,6,F),OFFSET=0,SEPR=STANDARD
EKADELTM DSLLSUBF LENGTH=(0,6,F),OFFSET=6,SEPR=STANDARD
EKADELRC DSLLFLD LENGTH=(0,2,F) DELIVER RETURN CODE
EKADELDC DSLLFLD LENGTH=(6,6,F),PAD=' ' DELIVER DIAGNOSTIC CODE
*

Figure 169. MERVA Link DSLFDTT Entries (Part 1 of 2)

390 Customization Guide

The MERVA Link assumes that the names of the MERVA Link control fields are not
yet used in your MERVA ESA system. However, if you must change one of these
field names, you must also modify the EKAPT macro provided in the MERVA Link
macro library, and regenerate your partner table. There is no parameter in the
partner table generation to modify the MERVA Link Control Field names.

The EKAPT macro contains the short names (field name without the EKA prefix)
of all MERVA Link control fields. You can change any of these short field names.

Note: The field name prefix EKA cannot be modified.

EKARECDT DSLLFLD LENGTH=(0,12,F) RECEIPT DATE-TIME STAMP
EKARECDA DSLLSUBF LENGTH=(0,6,F),OFFSET=0,SEPR=STANDARD
EKARECTM DSLLSUBF LENGTH=(0,6,F),OFFSET=6,SEPR=STANDARD
EKARECRC DSLLFLD LENGTH=(0,2,F) RECEIPT RETURN CODE
EKARECDC DSLLFLD LENGTH=(6,6,F),PAD=' ' RECEIPT DIAGNOSTIC CODE
*
EKAACKRQ DSLLFLD LENGTH=(0,1,F) REQUEST FOR ACK (0, 1, 2)
EKAPRIOR DSLLFLD LENGTH=(0,1,F) MESSAGE PRIORITY (H, N, L)
EKAPDUPM DSLLFLD LENGTH=(0,3,F) PDM INDICATOR (PDM)
EKACLASS DSLLFLD LENGTH=(0,2,F) MESSAGE CLASS (LC, LR, IP, CF, ..)
EKAWSIZE DSLLFLD LENGTH=(0,3,F),CHECK=NUMERIC MIP WINDOW SIZE
EKAAWQSN DSLLFLD LENGTH=(0,4,F) MERVA QSN OF MSG IN ACK WAIT QUEUE
EKANETID DSLLFLD LENGTH=(0,1,F) NET FORMAT IDENTIFIER
EKAACQNM DSLLFLD LENGTH=(0,8,F) APPL CONTROL QUEUE NAME
*
EKARDATA DSLLFLD LENGTH=(0,256,V),DAMAX=32 REPORT DATA
EKARDAT1 DSLLSUBF LENGTH=(0,22,V),OFFSET=0,SEPR=STANDARD
EKARDAT2 DSLLSUBF LENGTH=(0,78,V),OFFSET=22,SEPR=STANDARD
EKARDAT3 DSLLSUBF LENGTH=(0,78,V),OFFSET=100,SEPR=STANDARD
EKARDAT4 DSLLSUBF LENGTH=(0,78,V),OFFSET=178,SEPR=STANDARD
*
EKADA DSLLFLD LENGTH=(0,78,V) AC01/2 DATA FIELD (ASP LIST LINE)
EKAAN DSLLSUBF LENGTH=(0,8,F),OFFSET=0,SEPR=STANDARD ASP NAME

Figure 169. MERVA Link DSLFDTT Entries (Part 2 of 2)

Chapter 13. Field Definition Table (DSLFDTT) 391

392 Customization Guide

Part 3. Appendixes

© Copyright IBM Corp. 1987, 2001 393

394 Customization Guide

Appendix. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Deutschland
Informationssysteme GmbH
Department 3982
Pascalstrasse 100

© Copyright IBM Corp. 1987, 2001 395

70569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement
or any equivalent agreement between us.

The following paragraph does apply to the US only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Programming Interface Information
This book is intended to help the customer to understand MERVA. This book
primarily documents Product-Sensitive Programming Interface and Associated
Guidance Information provided by MERVA.

General-Use Programming Interface allow the customer to write programs that
obtain the services of MERVA.

However, this book also documents Product-Sensitive Programming Interface and
Associated Guidance Information.

Product-Sensitive programming interfaces allow the customer installation to
perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or
tuning of this IBM software product. Use of such interfaces creates dependencies
on the detailed design or implementation of the IBM software product.
Product-Sensitive programming interfaces should be used only for these
specialized purposes. Because of their dependencies on detailed design and
implementation, it is to be expected that programs written to such interfaces may
need to be changed in order to run with new product releases or versions, or as a
result of service.

396 Customization Guide

Product-Sensitive Programming Interface and Associated Guidance Information is
identified where it occurs, either by an introductory statement to a chapter or
section by the following marking:

Product-Sensitive Programming Interface and Associated Guidance Information...

Trademarks
The following terms are trademarks of the IBM Corporation in the United States,
other countries, or both:
v Advanced Peer-to-Peer Networking
v AIX
v APPN
v C/370
v CICS
v CICS/ESA
v CICS/MVS
v CICS/VSE
v DB2
v Distributed Relational Database Architecture
v DRDA
v eNetwork
v IBM
v IMS/ESA
v Language Environment
v MQSeries
v MVS
v MVS/ESA
v MVS/XA
v OS/2
v OS/390
v RACF
v VSE/ESA
v VTAM

Workstation (AWS) and Directory Services Application (DSA) are trademarks of
S.W.I.F.T., La Hulpe in Belgium.

Pentium is a trademark of Intel Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by IBM
Corporation under license.

C-bus is a trademark of Corollary, Inc.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Appendix. Notices 397

Microsoft, Windows, Windows NT, and the Windows logo are trademarks or
registered trademarks of Microsoft Corporation in the United States, other
countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

398 Customization Guide

Glossary of Terms and Abbreviations

This glossary defines terms as they are used in
this book. If you do not find the terms you are
looking for, refer to the IBM Dictionary of
Computing, New York: McGraw-Hill, and the
S.W.I.F.T. User Handbook.

A
ACB. Access method control block.

ACC. MERVA Link USS application control command
application. It provides a means of operating MERVA
Link USS in USS shell and MVS batch environments.

Access method control block (ACB). A control block
that links an application program to VSAM or VTAM.

ACD. MERVA Link USS application control daemon.

ACT. MERVA Link USS application control table.

address. See SWIFT address.

address expansion. The process by which the full
name of a financial institution is obtained using the
SWIFT address, telex correspondent’s address, or a
nickname.

AMPDU. Application message protocol data unit,
which is defined in the MERVA Link P1 protocol, and
consists of an envelope and its content.

answerback. In telex, the response from the dialed
correspondent to the WHO R U signal.

answerback code. A group of up to 6 letters following
or contained in the answerback. It is used to check the
answerback.

APC. Application control.

API. Application programming interface.

APPC. Advanced Program-to-Program
Communication based on SNA LU 6.2 protocols.

APPL. A VTAM definition statement used to define a
VTAM application program.

application programming interface (API). An
interface that programs can use to exchange data.

application support filter (ASF). In MERVA Link, a
user-written program that can control and modify any
data exchanged between the Application Support Layer
and the Message Transfer Layer.

application support process (ASP). An executing
instance of an application support program. Each
application support process is associated with an ASP
entry in the partner table. An ASP that handles
outgoing messages is a sending ASP; one that handles
incoming messages is a receiving ASP.

application support program (ASP). In MERVA Link,
a program that exchanges messages and reports with a
specific remote partener ASP. These two programs must
agree on which conversation protocol they are to use.

ASCII. American Standard Code for Information
Interchange. The standard code, using a coded set
consisting of 7-bit coded characters (8 bits including
parity check), used for information interchange among
data processing systems, data communication systems,
and associated equipment. The ASCII set consists of
control characters and graphic characters.

ASF. Application support filter.

ASF. (1) Application support process. (2) Application
support program.

ASPDU. Application support protocol data unit,
which is defined in the MERVA Link P2 protocol.

authentication. The SWIFT security check used to
ensure that a message has not changed during
transmission, and that it was sent by an authorized
sender.

authenticator key. A set of alphanumeric characters
used for the authentication of a message sent via the
SWIFT network.

authenticator-key file. The file that stores the keys
used during the authentication of a message. The file
contains a record for each of your financial institution’s
correspondents.

B
Back-to-Back (BTB). A MERVA Link function that
enables ASPs to exchange messages in the local MERVA
Link node without using data communication services.

bank identifier code. A 12-character code used to
identify a bank within the SWIFT network. Also called
a SWIFT address. The code consists of the following
subcodes:
v The bank code (4 characters)
v The ISO country code (2 characters)
v The location code (2 characters)
v The address extension (1 character)

© Copyright IBM Corp. 1987, 2001 399

v The branch code (3 characters) for a SWIFT user
institution, or the letters “BIC” for institutions that
are not SWIFT users.

Basic Security Manager (BSM). A component of
VSE/ESA Version 2.4 that is invoked by the System
Authorization Facility, and used to ensure signon and
transaction security.

BIC. Bank identifier code.

BIC Bankfile. A tape of bank identifier codes supplied
by S.W.I.F.T.

BIC Database Plus Tape. A tape of financial
institutions and currency codes, supplied by S.W.I.F.T.
The information is compiled from various sources and
includes national, international, and cross-border
identifiers.

BIC Directory Update Tape. A tape of bank identifier
codes and currency codes, supplied by S.W.I.F.T., with
extended information as published in the printed BIC
Directory.

body. The second part of an IM-ASPDU. It contains
the actual application data or the message text that the
IM-AMPDU transfers.

BSC. Binary synchronous control.

BSM. Basic Security Manager.

BTB. Back-to-back.

buffer. A storage area used by MERVA programs to
store a message in its internal format. A buffer has an
8-byte prefix that indicates its length.

C
CBT. SWIFT computer-based terminal.

CCSID. Coded character set identifier.

CDS. Control data set.

central service. In MERVA, a service that uses
resources that either require serialization of access, or
are only available in the MERVA nucleus.

CF message. Confirmed message. When a sending
MERVA Link system is informed of the successful
delivery of a message to the receiving application, it
routes the delivered application messages as CF
messages, that is, messages of class CF, to an ACK wait
queue or to a complete message queue.

COA. Confirm on arrival.

COD. Confirm on delivery.

coded character set identifier (CCSID). The name of a
coded set of characters and their code point
assignments.

commit. In MQSeries, to commit operations is to make
the changes on MQSeries queues permanent. After
putting one or more messages to a queue, a commit
makes them visible to other programs. After getting
one or more messages from a queue, a commit
permanently deletes them from the queue.

confirm-on-arrival (COA) report. An MQSeries report
message type created when a message is placed on that
queue. It is created by the queue manager that owns
the destination queue.

confirm-on-delivery (COD) report. An MQSeries
report message type created when an application
retrieves a message from the queue in a way that
causes the message to be deleted from the queue. It is
created by the queue manager.

control fields. In MERVA Link, fields that are part of
a MERVA message on the queue data set and of the
message in the TOF. Control fields are written to the
TOF at nesting identifier 0. Messages in SWIFT format
do not contain control fields.

correspondent. An institution to which your
institution sends and from which it receives messages.

correspondent identifier. The 11-character identifier of
the receiver of a telex message. Used as a key to
retrieve information from the Telex correspondents file.

cross-system coupling facility. See XCF.

coupling services. In a sysplex, the functions of XCF
that transfer data and status information among the
members of a group that reside in one or more of the
MVS systems in the sysplex.

couple data set. See XCF couple data set.

CTP. MERVA Link command transfer processor.

currency code file. A file containing the currency
codes, together with the name, fraction length, country
code, and country names.

D
daemon. A long-lived process that runs unattended to
perform continuous or periodic systemwide functions.

DASD. Direct access storage device.

data area. An area of a predefined length and format
on a panel in which data can be entered or displayed.
A field can consist of one or more data areas.

data element. A unit of data that, in a certain context,
is considered indivisible. In MERVA Link, a data

400 Customization Guide

element consists of a 2-byte data element length field, a
2-byte data-element identifier field, and a field of
variable length containing the data element data.

datagram. In TCP/IP, the basic unit of information
passed across the Internet environment. This type of
message does not require a reply, and is the simplest
type of message that MQSeries supports.

data terminal equipment. That part of a data station
that serves as a data source, data link, or both, and
provides for the data communication control function
according to protocols.

DB2. A family of IBM licensed programs for relational
database management.

dead-letter queue. A queue to which a queue
manager or application sends messages that it cannot
deliver. Also called undelivered-message queue.

dial-up number. A series of digits required to
establish a connection with a remote correspondent via
the public telex network.

direct service. In MERVA, a service that uses resources
that are always available and that can be used by
several requesters at the same time.

display mode. The mode (PROMPT or NOPROMPT)
in which SWIFT messages are displayed. See PROMPT
mode and NOPROMPT mode.

distributed queue management (DQM). In MQSeries
message queuing, the setup and control of message
channels to queue managers on other systems.

DQM. Distributed queue management.

DTE. Data terminal equipment.

E
EBCDIC. Extended Binary Coded Decimal
Interchange Code. A coded character set consisting of
8-bit coded characters.

ECB. Event control block.

EDIFACT. Electronic Data Interchange for
Administration, Commerce and Transport (a United
Nations standard).

ESM. External security manager.

EUD. End-user driver.

exception report. An MQSeries report message type
that is created by a message channel agent when a
message is sent to another queue manager, but that
message cannot be delivered to the specified
destination queue.

external line format (ELF) messages. Messages that
are not fully tokenized, but are stored in a single field
in the TOF. Storing messages in ELF improves
performance, because no mapping is needed, and
checking is not performed.

external security manager (ESM). A security product
that is invoked by the System Authorization Facility.
RACF is an example of an ESM.

F
FDT. Field definition table.

field. In MERVA, a portion of a message used to enter
or display a particular type of data in a predefined
format. A field is located by its position in a message
and by its tag. A field is made up of one or more data
areas. See also data area.

field definition table (FDT). The field definition table
describes the characteristics of a field; for example, its
length and number of its data areas, and whether it is
mandatory. If the characteristics of a field change
depending on its use in a particular message, the
definition of the field in the FDT can be overridden by
the MCB specifications.

field group. One or several fields that are defined as
being a group. Because a field can occur more than
once in a message, field groups are used to distinguish
them. A name can be assigned to the field group
during message definition.

field group number. In the TOF, a number is assigned
to each field group in a message in ascending order
from 1 to 255. A particular field group can be accessed
using its field group number.

field tag. A character string used by MERVA to
identify a field in a network buffer. For example, for
SWIFT field 30, the field tag is :30:.

FIN. Financial application.

FIN-Copy. The MERVA component used for SWIFT
FIN-Copy support.

finite state machine. The theoretical base describing
the rules of a service request’s state and the conditions
to state transitions.

FMT/ESA. MERVA-to-MERVA Financial Message
Transfer/ESA.

form. A partially-filled message containing data that
can be copied for a new message of the same message
type.

G
GPA. General purpose application.

Glossary of Terms and Abbreviations 401

H
HFS. Hierarchical file system.

hierarchical file system (HFS). A system for
organizing files in a hierarchy, as in a UNIX system.
OS/390 UNIX System Services files are organized in an
HFS. All files are members of a directory, and each
directory is in turn a member of a directory at a higher
level in the HFS. The highest level in the hierarchy is
the root directory.

I
IAM. Interapplication messaging (a MERVA Link
message exchange protocol).

IM-ASPDU. Interapplication messaging application
support protocol data unit. It contains an application
message and consists of a heading and a body.

incore request queue. Another name for the request
queue to emphasize that the request queue is held in
memory instead of on a DASD.

InetD. Internet Daemon. It provides TCP/IP
communication services in the OS/390 USS
environment.

initiation queue. In MQSeries, a local queue on which
the queue manager puts trigger messages.

input message. A message that is input into the
SWIFT network. An input message has an input
header.

INTERCOPE TelexBox. This telex box supports
various national conventions for telex procedures and
protocols.

interservice communication. In MERVA ESA, a
facility that enables communication among services if
MERVA ESA is running in a multisystem environment.

intertask communication. A facility that enables
application programs to communicate with the MERVA
nucleus and so request a central service.

IP. Internet Protocol.

IP message. In-process message. A message that is in
the process of being transferred to another application.

ISC. Intersystem communication.

ISN. Input sequence number.

ISN acknowledgment. A collective term for the
various kinds of acknowledgments sent by the SWIFT
network.

ISO. International Organization for Standardization.

ITC. Intertask communication.

J
JCL. Job control language.

journal. A chronological list of records detailing
MERVA actions.

journal key. A key used to identify a record in the
journal.

journal service. A MERVA central service that
maintains the journal.

K
KB. Kilobyte (1024 bytes).

key. A character or set of characters used to identify
an item or group of items. For example, the user ID is
the key to identify a user file record.

key-sequenced data set (KSDS). A VSAM data set
whose records are loaded in key sequence and
controlled by an index.

keyword parameter. A parameter that consists of a
keyword, followed by one or more values.

KSDS. Key-sequenced data set.

L
LAK. Login acknowledgment message. This message
informs you that you have successfully logged in to the
SWIFT network.

large message. A message that is stored in the large
message cluster (LMC). The maximum length of a
message to be stored in the VSAM QDS is 31900 bytes.
Messages up to 2MB can be stored in the LMC. For
queue management using DB2 no distinction is made
between messages and large messages.

large queue element. A queue element that is larger
than the smaller of:

v The limiting value specified during the customization
of MERVA

v 32KB

LC message. Last confirmed control message. It
contains the message-sequence number of the
application or acknowledgment message that was last
confirmed; that is, for which the sending MERVA Link
system most recently received confirmation of a
successful delivery.

LDS. Logical data stream.

LMC. Large message cluster.

402 Customization Guide

LNK. Login negative acknowledgment message. This
message indicates that the login to the SWIFT network
has failed.

local queue. In MQSeries, a queue that belongs to a
local queue manager. A local queue can contain a list of
messages waiting to be processed. Contrast with remote
queue.

local queue manager. In MQSeries, the queue
manager to which the program is connected, and that
provides message queuing services to that program.
Queue managers to which a program is not connected
are remote queue managers, even if they are running
on the same system as the program.

login. To start the connection to the SWIFT network.

LR message. Last received control message, which
contains the message-sequence number of the
application or acknowledgment message that was last
received from the partner application.

LSN. Login sequence number.

LT. See LTERM.

LTC. Logical terminal control.

LTERM. Logical terminal. Logical terminal names
have 4 characters in CICS and up to 8 characters in
IMS.

LU. A VTAM logical unit.

M
maintain system history program (MSHP). A
program used for automating and controlling various
installation, tailoring, and service activities for a VSE
system.

MCA. Message channel agent.

MCB. Message control block.

MERVA ESA. The IBM licensed program Message
Entry and Routing with Interfaces to Various
Applications for ESA.

MERVA Link. A MERVA component that can be used
to interconnect several MERVA systems.

message. A string of fields in a predefined form used
to provide or request information. See also SWIFT
financial message.

message body. The part of the message that contains
the message text.

message category. A group of messages that are
logically related within an application.

message channel. In MQSeries distributed message
queuing, a mechanism for moving messages from one
queue manager to another. A message channel
comprises two message channel agents (a sender and a
receiver) and a communication link.

message channel agent (MCA). In MQSeries, a
program that transmits prepared messages from a
transmission queue to a communication link, or from a
communication link to a destination queue.

message control block (MCB). The definition of a
message, screen panel, net format, or printer layout
made during customization of MERVA.

Message Format Service (MFS). A MERVA direct
service that formats a message according to the
medium to be used, and checks it for formal
correctness.

message header. The leading part of a message that
contains the sender and receiver of the message, the
message priority, and the type of message.

Message Integrity Protocol (MIP). In MERVA Link,
the protocol that controls the exchange of messages
between partner ASPs. This protocol ensures that any
loss of a message is detected and reported, and that no
message is duplicated despite system failures at any
point during the transfer process.

message-processing function. The various parts of
MERVA used to handle a step in the
message-processing route, together with any necessary
equipment.

message queue. See queue.

Message Queue Interface (MQI). The programming
interface provided by the MQSeries queue managers. It
provides a set of calls that let application programs
access message queuing services such as sending
messages, receiving messages, and manipulating
MQSeries objects.

Message Queue Manager (MQM). An IBM licensed
program that provides message queuing services. It is
part of the MQSeries set of products.

message reference number (MRN). A unique 16-digit
number assigned to each message for identification
purposes. The message reference number consists of an
8-digit domain identifier that is followed by an 8-digit
sequence number.

message sequence number (MSN). A sequence
number for messages transferred by MERVA Link.

message type (MT). A number, up to 7 digits long,
that identifies a message. SWIFT messages are
identified by a 3-digit number; for example SWIFT
message type MT S100.

Glossary of Terms and Abbreviations 403

MFS. Message Format Service.

MIP. Message Integrity Protocol.

MPDU. Message protocol data unit, which is defined
in P1.

MPP. In IMS, message-processing program.

MQA. MQ Attachment.

MQ Attachment (MQA). A MERVA feature that
provides message transfer between MERVA and a
user-written MQI application.

MQH. MQSeries queue handler.

MQI. Message queue interface.

MQM. Message queue manager.

MQS. MQSeries nucleus server.

MQSeries. A family of IBM licensed programs that
provides message queuing services.

MQSeries nucleus server (MQS). A MERVA
component that listens for messages on an MQI queue,
receives them, extracts a service request, and passes it
via the request queue handler to another MERVA ESA
instance for processing.

MQSeries queue handler (MQH). A MERVA
component that performs service calls to the Message
Queue Manager via the provided Message Queue
Interface.

MRN. Message reference number.

MSC. MERVA system control facility.

MSHP. Maintain system history program.

MSN. Message sequence number.

MT. Message type.

MTP. (1) Message transfer program. (2) Message
transfer process.

MTS. Message Transfer System.

MTSP. Message Transfer Service Processor.

MTT. Message type table.

multisystem application. (1) An application program
that has various functions distributed across MVS
systems in a multisystem environment. (2) In XCF, an
authorized application that uses XCF coupling services.
(3) In MERVA ESA, multiple instances of MERVA ESA
that are distributed among different MVS systems in a
multisystem environment.

multisystem environment. An environment in which
two or more MVS systems reside on one or more
processors, and programs on one system can
communicate with programs on the other systems.
With XCF, the environment in which XCF services are
available in a defined sysplex.

multisystem sysplex. A sysplex in which one or more
MVS systems can be initialized as part of the sysplex.
In a multisystem sysplex, XCF provides coupling
services on all systems in the sysplex and requires an
XCF couple data set that is shared by all systems. See
also single-system sysplex.

MVS/ESA. Multiple Virtual Storage/Enterprise
Systems Architecture.

N
namelist. An MQSeries for MVS/ESA object that
contains a list of queue names.

nested message. A message that is composed of one
or more message types.

nested message type. A message type that is
contained in another message type. In some cases, only
part of a message type (for example, only the
mandatory fields) is nested, but this “partial” nested
message type is also considered to be nested. For
example, SWIFT MT 195 could be used to request
information about a SWIFT MT 100 (customer transfer).
The SWIFT MT 100 (or at least its mandatory fields) is
then nested in SWIFT MT 195.

nesting identifier. An identifier (a number from 2 to
255) that is used to access a nested message type.

network identifier. A single character that is placed
before a message type to indicate which network is to
be used to send the message; for example, S for SWIFT

network service access point (NSAP). The endpoint
of a network connection used by the SWIFT transport
layer.

NOPROMPT mode. One of two ways to display a
message panel. NOPROMPT mode is only intended for
experienced SWIFT Link users who are familiar with
the structure of SWIFT messages. With NOPROMPT
mode, only the SWIFT header, trailer, and pre-filled
fields and their tags are displayed. Contrast with
PROMPT mode.

NSAP. Network service access point.

nucleus server. A MERVA component that processes a
service request as selected by the request queue
handler. The service a nucleus server provides and the
way it provides it is defined in the nucleus server table
(DSLNSVT).

404 Customization Guide

O
object. In MQSeries, objects define the properties of
queue managers, queues, process definitions, and
namelists.

occurrence. See repeatable sequence.

option. One or more characters added to a SWIFT
field number to distinguish among different layouts for
and meanings of the same field. For example, SWIFT
field 60 can have an option F to identify a first opening
balance, or M for an intermediate opening balance.

origin identifier (origin ID). A 34-byte field of the
MERVA user file record. It indicates, in a MERVA and
SWIFT Link installation that is shared by several banks,
to which of these banks the user belongs. This lets the
user work for that bank only.

OSN. Output sequence number.

OSN acknowledgment. A collective term for the
various kinds of acknowledgments sent to the SWIFT
network.

output message. A message that has been received
from the SWIFT network. An output message has an
output header.

P
P1. In MERVA Link, a peer-to-peer protocol used by
cooperating message transfer processes (MTPs).

P2. In MERVA Link, a peer-to-peer protocol used by
cooperating application support processes (ASPs).

P3. In MERVA Link, a peer-to-peer protocol used by
cooperating command transfer processors (CTPs).

packet switched public data network (PSPDN). A
public data network established and operated by
network common carriers or telecommunication
administrations for providing packet-switched data
transmission.

panel. A formatted display on a display terminal.
Each page of a message is displayed on a separate
panel.

parallel processing. The simultaneous processing of
units of work by several servers. The units of work can
be either transactions or subdivisions of larger units of
work.

parallel sysplex. A sysplex that uses one or more
coupling facilities.

partner table (PT). In MERVA Link, the table that
defines how messages are processed. It consists of a

header and different entries, such as entries to specify
the message-processing parameters of an ASP or MTP.

PCT. Program Control Table (of CICS).

PDE. Possible duplicate emission.

PDU. Protocol data unit.

PF key. Program-function key.

positional parameter. A parameter that must appear
in a specified location relative to other parameters.

PREMIUM. The MERVA component used for SWIFT
PREMIUM support.

process definition object. An MQSeries object that
contains the definition of an MQSeries application. A
queue manager uses the definitions contained in a
process definition object when it works with trigger
messages.

program-function key. A key on a display terminal
keyboard to which a function (for example, a
command) can be assigned. This lets you execute the
function (enter the command) with a single keystroke.

PROMPT mode. One of two ways to display a
message panel. PROMPT mode is intended for SWIFT
Link users who are unfamiliar with the structure of
SWIFT messages. With PROMPT mode, all the fields
and tags are displayed for the SWIFT message.
Contrast with NOPROMPT mode.

protocol data unit (PDU). In MERVA Link a PDU
consists of a structured sequence of implicit and
explicit data elements:
v Implicit data elements contain other data elements.
v Explicit data elements cannot contain any other data

elements.

PSN. Public switched network.

PSPDN. Packet switched public data network.

PSTN. Public switched telephone network.

PT. Partner table.

PTT. A national post and telecommunication authority
(post, telegraph, telephone).

Q
QDS. Queue data set.

QSN. Queue sequence number.

queue. (1) In MERVA, a logical subdivision of the
MERVA queue data set used to store the messages
associated with a MERVA message-processing function.
A queue has the same name as the message-processing
function with which it is associated. (2) In MQSeries, an

Glossary of Terms and Abbreviations 405

object onto which message queuing applications can
put messages, and from which they can get messages.
A queue is owned and maintained by a queue
manager. See also request queue.

queue element. A message and its related control
information stored in a data record in the MERVA ESA
Queue Data Set.

queue management. A MERVA service function that
handles the storing of messages in, and the retrieval of
messages from, the queues of message-processing
functions.

queue manager. (1) An MQSeries system program that
provides queueing services to applications. It provides
an application programming interface so that programs
can access messages on the queues that the queue
manager owns. See also local queue manager and remote
queue manager. (2) The MQSeries object that defines the
attributes of a particular queue manager.

queue sequence number (QSN). A sequence number
that is assigned to the messages stored in a logical
queue by MERVA ESA queue management in
ascending order. The QSN is always unique in a queue.
It is reset to zero when the queue data set is formatted,
or when a queue management restart is carried out and
the queue is empty.

R
RACF. Resource Access Control Facility.

RBA. Relative byte address.

RC message. Recovered message; that is, an IP
message that was copied from the control queue of an
inoperable or closed ASP via the recover command.

ready queue. A MERVA queue used by SWIFT Link to
collect SWIFT messages that are ready for sending to
the SWIFT network.

remote queue. In MQSeries, a queue that belongs to a
remote queue manager. Programs can put messages on
remote queues, but they cannot get messages from
remote queues. Contrast with local queue.

remote queue manager. In MQSeries, a queue
manager is remote to a program if it is not the queue
manager to which the program is connected.

repeatable sequence. A field or a group of fields that
is contained more than once in a message. For example,
if the SWIFT fields 20, 32, and 72 form a sequence, and
if this sequence can be repeated up to 10 times in a
message, each sequence of the fields 20, 32, and 72
would be an occurrence of the repeatable sequence.

In the TOF, the occurrences of a repeatable sequence
are numbered in ascending order from 1 to 32767 and
can be referred to using the occurrence number.

A repeatable sequence in a message may itself contain
another repeatable sequence. To identify an occurrence
within such a nested repeatable sequence, more than
one occurrence number is necessary.

reply message. In MQSeries, a type of message used
for replies to request messages.

reply-to queue. In MQSeries, the name of a queue to
which the program that issued an MQPUT call wants a
reply message or report message sent.

report message. In MQSeries, a type of message that
gives information about another message. A report
message usually indicates that the original message
cannot be processed for some reason.

request message. In MQSeries, a type of message used
for requesting a reply from another program.

request queue. The queue in which a service request
is stored. It resides in main storage and consists of a set
of request queue elements that are chained in different
queues:

v Requests waiting to be processed

v Requests currently being processed

v Requests for which processing has finished

request queue handler (RQH). A MERVA ESA
component that handles the queueing and scheduling
of service requests. It controls the request processing of
a nucleus server according to rules defined in the finite
state machine.

Resource Access Control Facility (RACF). An IBM
licensed program that provides for access control by
identifying and verifying users to the system,
authorizing access to protected resources, logging
detected unauthorized attempts to enter the system,
and logging detected accesses to protected resources.

retype verification. See verification.

routing. In MERVA, the passing of messages from one
stage in a predefined processing path to the next stage.

RP. Regional processor.

RQH. Request queue handler.

RRDS. Relative record data set.

S
SAF. System Authorization Facility.

SCS. SNA character string

SCP. System control process.

406 Customization Guide

SDI. Sequential data set input. A batch utility used to
import messages from a sequential data set or a tape
into MERVA ESA queues.

SDO. Sequential data set output. A batch utility used
to export messages from a MERVA ESA queue to a
sequential data set or a tape.

SDY. Sequential data set system printer. A batch
utility used to print messages from a MERVA ESA
queue.

service request. A type of request that is created and
passed to the request queue handler whenever a
nucleus server requires a service that is not currently
available.

sequence number. A number assigned to each
message exchanged between two nodes. The number is
increased by one for each successive message. It starts
from zero each time a new session is established.

sign off. To end a session with MERVA.

sign on. To start a session with MERVA.

single-system sysplex. A sysplex in which only one
MVS system can be initialized as part of the sysplex. In
a single-system sysplex, XCF provides XCF services on
the system, but does not provide signalling services
between MVS systems. A single-system sysplex requires
an XCF couple data set. See also multisystem sysplex.

small queue element. A queue element that is smaller
than the smaller of:

v The limiting value specified during the customization
of MERVA

v 32KB

SMP/E. System Modification Program Extended.

SN. Session number.

SNA. Systems network architecture.

SNA character string. In SNA, a character string
composed of EBCDIC controls, optionally mixed with
user data, that is carried within a request or response
unit.

SPA. Scratch pad area.

SQL. Structured Query Language.

SR-ASPDU. The status report application support
PDU, which is used by MERVA Link for
acknowledgment messages.

SSN. Select sequence number.

subfield. A subdivision of a field with a specific
meaning. For example, the SWIFT field 32 has the
subfields date, currency code, and amount. A field can

have several subfield layouts depending on the way the
field is used in a particular message.

SVC. (1) Switched Virtual Circuit. (2) Supervisor call
instruction.

S.W.I.F.T. (1) Society for Worldwide Interbank
Financial Telecommunication s.c. (2) The network
provided and managed by the Society for Worldwide
Interbank Financial Telecommunication s.c.

SWIFT address. Synonym for bank identifier code.

SWIFT Correspondents File. The file containing the
bank identifier code (BIC), together with the name,
postal address, and zip code of each financial
institution in the BIC Directory.

SWIFT financial message. A message in one of the
SWIFT categories 1 to 9 that you can send or receive
via the SWIFT network. See SWIFT input message and
SWIFT output message.

SWIFT header. The leading part of a message that
contains the sender and receiver of the message, the
message priority, and the type of message.

SWIFT input message. A SWIFT message with an
input header to be sent to the SWIFT network.

SWIFT link. The MERVA ESA component used to
link to the SWIFT network.

SWIFT network. Refers to the SWIFT network of the
Society for Worldwide Interbank Financial
Telecommunication (S.W.I.F.T.).

SWIFT output message. A SWIFT message with an
output header coming from the SWIFT network.

SWIFT system message. A SWIFT general purpose
application (GPA) message or a financial application
(FIN) message in SWIFT category 0.

switched virtual circuit (SVC). An X.25 circuit that is
dynamically established when needed. It is the X.25
equivalent of a switched line.

sysplex. One or more MVS systems that communicate
and cooperate via special multisystem hardware
components and software services.

System Authorization Facility (SAF). An MVS or VSE
facility through which MERVA ESA communicates
with an external security manager such as RACF (for
MVS) or the basic security manager (for VSE).

System Control Process (SCP). A MERVA Link
component that handles the transfer of MERVA ESA
commands to a partner MERVA ESA system, and the
receipt of the command response. It is associated with a
system control process entry in the partner table.

Glossary of Terms and Abbreviations 407

System Modification Program Extended (SMP/E). A
licensed program used to install software and software
changes on MVS systems.

Systems Network Architecture (SNA). The
description of the logical structure, formats, protocols,
and operating sequences for transmitting information
units through, and for controlling the configuration and
operation of, networks.

T
tag. A field identifier.

TCP/IP. Transmission Control Protocol/Internet
Protocol.

Telex Correspondents File. A file that stores data
about correspondents. When the user enters the
corresponding nickname in a Telex message, the
corresponding information in this file is automatically
retrieved and entered into the Telex header area.

telex header area. The first part of the telex message.
It contains control information for the telex network.

telex interface program (TXIP). A program that runs
on a Telex front-end computer and provides a
communication facility to connect MERVA ESA with
the Telex network.

Telex Link. The MERVA ESA component used to link
to the public telex network via a Telex substation.

Telex substation. A unit comprised of the following:

v Telex Interface Program

v A Telex front-end computer

v A Telex box

Terminal User Control Block (TUCB). A control block
containing terminal-specific and user-specific
information used for processing messages for display
devices such as screen and printers.

test key. A key added to a telex message to ensure
message integrity and authorized delivery. The test key
is an integer value of up to 16 digits, calculated
manually or by a test-key processing program using the
significant information in the message, such as
amounts, currency codes, and the message date.

test-key processing program. A program that
automatically calculates and verifies a test key. The
Telex Link supports panels for input of test-key-related
data and an interface for a test-key processing program.

TFD. Terminal feature definitions table.

TID. Terminal identification. The first 9 characters of a
bank identifier code (BIC).

TOF. Originally the abbreviation of tokenized form, the
TOF is a storage area where messages are stored so that
their fields can be accessed directly by their field names
and other index information.

TP. Transaction program.

transaction. A specific set of input data that triggers
the running of a specific process or job; for example, a
message destined for an application program.

transaction code. In IMS and CICS, an alphanumeric
code that calls an IMS message processing program or
a CICS transaction. Transaction codes have 4 characters
in CICS and up to 8 characters in IMS.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of communication protocols that
support peer-to-peer connectivity functions for both
local and wide area networks.

transmission queue. In MQSeries, a local queue on
which prepared messages destined for a remote queue
manager are temporarily stored.

trigger event. In MQSeries, an event (such as a
message arriving on a queue) that causes a queue
manager to create a trigger message on an initiation
queue.

trigger message. In MQSeries, a message that contains
information about the program that a trigger monitor is
to start.

trigger monitor. In MQSeries, a continuously-running
application that serves one or more initiation queues.
When a trigger message arrives on an initiation queue,
the trigger monitor retrieves the message. It uses the
information in the trigger message to start a process
that serves the queue on which a trigger event
occurred.

triggering. In MQSeries, a facility that allows a queue
manager to start an application automatically when
predetermined conditions are satisfied.

TUCB. Terminal User Control Block.

TXIP. Telex interface program.

U
UMR. Unique message reference.

unique message reference (UMR). An optional
feature of MERVA ESA that provides each message
with a unique identifier the first time it is placed in a
queue. It is composed of a MERVA ESA installation
name, a sequence number, and a date and time stamp.

UNIT. A group of related literals or fields of an MCB
definition, or both, enclosed by a DSLLUNIT and
DSLLUEND macroinstruction.

408 Customization Guide

UNIX System Services (USS). A component of
OS/390, formerly called OpenEdition (OE), that creates
a UNIX environment that conforms to the XPG4 UNIX
1995 specifications, and provides two open systems
interfaces on the OS/390 operating system:

v An application program interface (API)

v An interactive shell interface

UN/EDIFACT. United Nations Standard for Electronic
Data Interchange for Administration, Commerce and
Transport.

USE. S.W.I.F.T. User Security Enhancements.

user file. A file containing information about all
MERVA ESA users; for example, which functions each
user is allowed to access. The user file is encrypted and
can only be accessed by authorized persons.

user identification and verification. The acts of
identifying and verifying a RACF-defined user to the
system during logon or batch job processing. RACF
identifies the user by the user ID and verifies the user
by the password or operator identification card
supplied during logon processing or the password
supplied on a batch JOB statement.

USS. UNIX System Services.

V
verification. Checking to ensure that the contents of a
message are correct. Two kinds of verification are:

v Visual verification: you read the message and
confirm that you have done so

v Retype verification: you reenter the data to be
verified

Virtual LU. An LU defined in MERVA Extended
Connectivity for communication between MERVA and
MERVA Extended Connectivity.

Virtual Storage Access Method (VSAM). An access
method for direct or sequential processing of fixed and
variable-length records on direct access devices. The
records in a VSAM data set or file can be organized in
logical sequence by a key field (key sequence), in the
physical sequence in which they are written on the data
set or file (entry sequence), or by relative-record
number.

Virtual Telecommunications Access Method (VTAM).
An IBM licensed program that controls communication
and the flow of data in an SNA network. It provides
single-domain, multiple-domain, and interconnected
network capability.

VSAM. Virtual Storage Access Method.

VTAM. Virtual Telecommunications Access Method
(IBM licensed program).

W
Windows NT service. A type of Windows NT
application that can run in the background of the
Windows NT operating system even when no user is
logged on. Typically, such a service has no user
interaction and writes its output messages to the
Windows NT event log.

X
X.25. An ISO standard for interface to packet switched
communications services.

XCF. Abbreviation for cross-system coupling facility,
which is a special logical partition that provides
high-speed caching, list processing, and locking
functions in a sysplex. XCF provides the MVS coupling
services that allow authorized programs on MVS
systems in a multisystem environment to communicate
with (send data to and receive data from) authorized
programs on other MVS systems.

XCF couple data sets. A data set that is created
through the XCF couple data set format utility and,
depending on its designated type, is shared by some or
all of the MVS systems in a sysplex. It is accessed only
by XCF and contains XCF-related data about the
sysplex, systems, applications, groups, and members.

XCF group. The set of related members defined to
SCF by a multisystem application in which members of
the group can communicate with (send data to and
receive data from) other members of the same group.
All MERVA systems working together in a sysplex
must pertain to the same XCF group.

XCF member. A specific function of a multisystem
application that is defined to XCF and assigned to a
group by the multisystem application. A member
resides on one system in a sysplex and can use XCF
services to communicate with other members of the
same group.

Glossary of Terms and Abbreviations 409

410 Customization Guide

Bibliography

MERVA ESA Publications
v MERVA for ESA Version 4: Application

Programming Interface Guide, SH12-6374
v MERVA for ESA Version 4: Advanced MERVA

Link, SH12-6390
v MERVA for ESA Version 4: Concepts and

Components, SH12-6381
v MERVA for ESA Version 4: Customization Guide,

SH12-6380
v MERVA for ESA Version 4: Diagnosis Guide,

SH12-6382
v MERVA for ESA Version 4: Installation Guide,

SH12-6378
v MERVA for ESA Version 4: Licensed Program

Specifications, GH12-6373
v MERVA for ESA Version 4: Macro Reference,

SH12-6377
v MERVA for ESA Version 4: Messages and Codes,

SH12-6379
v MERVA for ESA Version 4: Operations Guide,

SH12-6375
v MERVA for ESA Version 4: System Programming

Guide, SH12-6366
v MERVA for ESA Version 4: User’s Guide,

SH12-6376

MERVA ESA Components
Publications
v MERVA Automatic Message Import/Export Facility:

User’s Guide, SH12-6389
v MERVA Connection/NT, SH12-6339
v MERVA Connection/400, SH12-6340
v MERVA Directory Services, SH12-6367
v MERVA Extended Connectivity: Installation and

User’s Guide, SH12-6157
v MERVA Message Processing Client for Windows

NT: User’s Guide, SH12-6341
v MERVA-MQI Attachment User’s Guide,

SH12-6714
v MERVA Traffic Reconciliation, SH12-6392
v MERVA USE: Administration Guide, SH12-6338
v MERVA USE & Branch for Windows NT: User’s

Guide, SH12-6334

v MERVA USE & Branch for Windows NT:
Installation and Customization Guide, SH12-6335

v MERVA USE & Branch for Windows NT:
Application Programming Guide, SH12-6336

v MERVA USE & Branch for Windows NT:
Diagnosis Guide, SH12-6337

v MERVA USE & Branch for Windows NT:
Migration Guide, SH12-6393

v MERVA USE & Branch for Windows NT:
Installation and Customization Guide, SH12-6335

v MERVA Workstation Based Functions, SH12-6383

Other IBM Publications
v CICS/ESA Version 4.1 Intercommunication Guide,

SC33-1181
v CICS/ESA Version 4.1 Resource Definition Guide,

SC33-1166
v High Level Assembler Language Reference,

SC26-4940
v IMS/ESA Version 5 Administration Guide:

Transaction Manager, SC26-8014
v MQSeries Application Programming Guide,

SC33-0807
v MQSeries Application Programming Reference,

SC33-1673
v MQSeries Command Reference, SC33-1369
v MQSeries Intercommunication, SC33-1872
v MQSeries System Management Guide, GC34-5364
v OS/390 MVS Planning: APPC/MVS Management,

GC28-1807

S.W.I.F.T. Publications
The following are published by the Society for
Worldwide Interbank Financial
Telecommunication, s.c., in La Hulpe, Belgium:
v S.W.I.F.T. User Handbook

v S.W.I.F.T. Dictionary

v S.W.I.F.T. FIN Security Guide

v S.W.I.F.T. Card Readers User Guide

© Copyright IBM Corp. 1987, 2001 411

412 Customization Guide

Index

Numerics
8044, exit number 297

A
ACK 325
ACKC 325
ACKER 299, 325
ACKNC 325
acknowledgments

data 234
message (MERVA Link) 73
SWIFT output message 223

ACKWQ 297
ACS batch mode 255
ACS program 252
ACT, MERVA Link USS 248
ACT ASP parameters 250
ACT header parameters 249
ACT ISC parameters 250
ACxx (message types) 383
APPC (connections) 176
APPC/IMS for MERVA Link 190
APPC/MVS for MERVA Link,

customizing 184
APPC/MVS for MERVA Link USS 256
appending a PDE trailer 281
application control queue 52
application message 73
application support filter

data control 195
delivery indicator 196
program entry 197
programming interface 197
submit request 196
user-code 199

application support process (ASP) 52,
161, 194

ApplIdentityData 323
ASF 195
ASP (application support process) 161,

194
ASP (application support program) 52
ASP list panel

customization 194
ASP parameters, ACT 250
ATK (automatic test-key facility) 157
attachment conversion exit (VSE) 338
AUTER 325
AUTHENT 297
authenticator-key file 8
authorization codes, calculating 145
automatic

test-key 158

B
back-to-back test, synchronous 193
bottom frame (DSL0BOT) 345
BPXBATCH 259

BTB test, synchronous 193
buffer

size 150
BUFSIZE parameter (DSLTFD

macro) 121
BUFSIZE parameter (ENLPARM

macro) 149

C
calculate proprietary authorization codes

(PACs) 145
calculation, test-key 154
CCSID table, internal 339
central institution, setting up to calculate

PACs 145
changed copy codes 86
changed function tables 53
CHECK 297
CI= 145
CICS

destination control table 180
printer definitions 122
printer features 122
screen definitions 122
terminal definitions 122

CICS outbound security in an allocate
request 187

client network services 261
Client Server 125
closed ASP 73
CNVDEST parameter value 341
COA 325
COAC 325
COAER 299, 325
COANC 325
COAWQ 297
COD 325
CODC 325
coding

DSLROUTE 55
example (DSLFLTT) 115
example (MCB) 347
file table 115
message trailer 357
routing tables 56

CODNC 325
color copy example 350
color instructions 350
column definition 120
commit frequency, defining 311
configuration file, generating 251
confirmed messages 72, 235
connecting MERVAs with SWIFT

Link 212
connections

APPC 176, 214
IMS to IMS 167
MERVA A/MERVA B with Telex Link

via a fault-tolerant system 228
remote systems 176

connections (continued)
two systems 211

control facility 194
control facility (MERVA Link)

main menu 194
control fields 323
control message (MERVA Link) 382
control table (DSLTFDT) 120
Conversation Security, USS 251
conversation trace 181
conversion table, external 339, 341
converting message data 336
copy codes, changing 86
copy members

DSLFLTTC 117
DWSFLTTC 116
MTT 377

copyccll 145
correlation, using keys for 321
correlation data 209
CorrelId 321
correspondents file 115, 117, 375
cover MCB 369
currency code file 117
currency code table 140
customer-written program (ASF) 195
customization

MERVA ESA environment 87
SWIFT Link environment 127

D
daemon configuration, internet 261
data control (ASF) 195
data convesion 336
data set allocation 181
data tracing 181
definition

frame (MCB) 119
macros 346
message type 378

delete
command 44

DELIVER.Indicator (ASF) 196
DELIVER.Response 197
DEMO (sample message) 383
destination table, internal 341
DFHDCT (destination control table) 180
diagnostic

information 83
messages (DWS771I) 128

directing input messages to the SWIFT
link 281

disabled receive process, enabling 310
double authentication 145
DSL0BOT

bottom frame 345
MCB 354

DSL0COV (COVER MCB) 369
DSL0TOP

MCB 354

© Copyright IBM Corp. 1987, 2001 413

DSL0TOP (continued)
top frame 362

DSLCXT
checking/expansion 26, 35, 128, 157

DSLEBSPA (utility program) 88
DSLFDTT

field definition 385
DSLFDTT (copy code) 386
DSLFDTTC (copy code) 386
DSLFLTT

coding example 115
file definition 113

DSLFLTTC (nicknames file) 115, 116
DSLFNTT

message processing 3
DSLIMSAP (copy book) 183
DSLKAKRQ 298, 324
DSLKCBLK 335
DSLKCDCC 336
DSLKCDCM 336
DSLKCOV (cover MCB) 369
DSLKCVSE 338
DSLKDATA 323, 325, 332
DSLKETOA 340
DSLKEXIC 335
DSLKISN 324
DSLKKEY1 323, 324
DSLKMAWQ 323, 324
DSLKMCNT 324
DSLKMDRQ 324
DSLKMGMO 324, 325, 327
DSLKMPMO 324, 327
DSLKMQMD 324, 327
DSLKMQOD 324, 325
DSLKMSQN 324, 325
DSLKOSN 324
DSLKPNAM 324
DSLKPNM 324
DSLKPROC 335
DSLKPRTY 324
DSLKPSAM 317
DSLKPSMV 317
DSLKQ001 335
DSLKQ002 335
DSLKQ100 335
DSLKQRT 298, 328
DSLKRPLY 324, 332
DSLKRPRT 324, 325
DSLKSTAT 299, 324
DSLKTYPE 324
DSLLCOND (MCB) 347
DSLLDEV 346
DSLLDFLD 346
DSLLEXIT (MCB) 347
DSLLFDT (header) 385
DSLLFLD (field definition) 385
DSLLGEN 346
DSLLGEN (final macro) 385
DSLLGRP 346
DSLLMCB 346
DSLLMFLD 346
DSLLNFLD 346
DSLLSUBF (subfields) 385
DSLLUEND 346
DSLLUNIT 346
DSLME910 327
DSLME911 327

DSLMPF00 (PF key table) 78
DSLMPFK

coding 77
macro 77

DSLMPFxx
PF key table 77

DSLMPTT
program table 362

DSLMSGT
message table 83

DSLMSTAT (variable) 365
DSLMTT macro 377
DSLMTTT (message type table) 377
DSLMTTTC (copy member) 378
DSLNSV macro 93
DSLNSVT module 93
DSLOMSG

retrieval program 83
DSLPRM module 87

large messages 91
DSLQMGT

queue management 54
DSLROUTE macro

calls 54
coding 55
installation 76
variable field names 55

DSLTFD macro 121, 125
DSLTFDT

general file table 87
table structure 124
terminal feature definition 13
terminal table 120

DSLTXT macro 111
DSLTXTT module 111
DWL2DW0 (routing table) 22
DWSCIT (central institutions table) 141
DWSCUR macro 140
DWSCURT (currency code table) 140
DWSDGPA

routing table 33
DWSEAUT (Authenticator-Key File) 8
DWSFDTTC (copy code) 386
DWSFLTTC (copy member) 115, 116, 117
DWSL1AO0 (routing table) 14
DWSL1DO0 (routing table) 14
DWSL1OUT (routing table) 17
DWSL2AI0

after authorization 58
routing table 23

DWSL2AO0 (routing table) 26
DWSL2DE0 (routing module) 20
DWSL2IN (input messages) 60
DWSL2OUT

routing table 25
SWIFT messages 62

DWSL2RE0 (routing table) 23
DWSL2VE0 (verification function) 23
DWSL3AI0 (routing table) 32
DWSL3CXT (routing table) 30
DWSL3DE0 (routing table) 32
DWSL3DO0 (routing table) 30
DWSL3FII (routing table) 33
DWSL3FIO (routing table) 35
DWSL3GPI (routing table) 33
DWSL3GPO (routing table) 35
DWSL3RE0 (routing table) 32

DWSL3VE0 (routing table) 32
DWSLIN7 (X.25 leased line) 130
DWSLIN8 (X.25 leased line) 131
DWSLIN9 (X.25 auto dial line) 132
DWSLTT

defining terminals 134
master logical terminal 9

DWSMCCRT (currency program) 140
DWSMSGTC (copy code) 84
DWSMTTTC (SWIFT messages) 379
DWSPARM macro 127
DWSPRM module 127
DWSSW20 (field macro) 351
DWSVLINE macro 130

E
EDIFACT-SWIFT conversion 10, 14
editing exits, MFS 327
EKA3A2S2 (send queue) 219
EKAACHP (help panel) 376
ekaacs 252
EKAAF10 (authentication) 198
EKAAF20 (encryption) 198
EKAAMSID (message identifier) 52, 209
EKAEOM (message queue) 51
EKAFDTSC (copy code) 387
EKAFDTTC (copy code) 387
EKAFNTMC (copy book) 240
EKAISNCQ 275
EKAL1FRE (queue) 227
EKAL1PR0 (printer queue) 215
EKAL1RFN (send queue) 214
EKAL1RFU (send queue) 214
EKAMCOV (cover MCB) 369, 371
EKAMSGTC (copy code) 84
EKAMTPL (parameter list) 197
EKAMTTTC (copy member) 381
EKAMU001 (user exit) 205
EKAMU002 (user exit) 208
EKAMU010 (user exit) 205
EKAMU133 (user exit) 214, 219, 227, 234
EKAOSNCQ 276
EKAOSVR 260
EKAPMSC security considerations 189
EKAPT macro 391
EKAR 260
EKAR1 260
EKARECRC

control field 203
return code 74

EKARH1 258
EKARI510 260
EKARP1 257
EKARS1 259
EKARS2MC (routing table) 214
EKARS2MS (routing table) 224
EKARTSIM 276
EKASIMCQ 275
EKASWACK 274
EKASWAI0 274
EKASWAO0 275
EKASWAWQ 274
EKASWDE0 274
EKASWDMY 274
EKASWEMQ 275
EKASWLEQ 275

414 Customization Guide

EKASWREQ 275
EKASWSDO 274
EKASWSND 274
EKASWVE0 274
ekatci 261
EKATM10 193
EKATPI 256
EKATPI , running as a PDSE

member 257
EKATPI , running as a shell script 259
EKATPI , running as an HFS

program 258
EKATPO 256
EKATXDE0 (data entry queue) 229
EKAUXS macro 205
enabling a disabled receive process 310
ENLFDTTC (copy code) 387
ENLFLTTC (copy member) 115, 116
ENLFNTTC (copy code) 36
ENLMPF00 (PF key table) 40
ENLMSGTC (copy code) 84
ENLMTTTC (copy book) 381
ENLPARM macro 149, 153
ENLPRM module 149
ENLRTAI0 (routing table sample) 50
ENLRTDE0 (routing table) 40, 47
ENLRTHCF (routing table) 42, 46, 49, 70
ENLRTIO (routing table) 235
ENLRTTKC (routing table) 41, 48, 68
ENLRTTKV (routing table) 44, 50
ENLRTVE0 (routing table sample) 50
ENLTCOV (cover MCB) 369, 373
ENLTKBOT (FRAME parameter) 41
ENLTKRQT (test-key req. table) 150
ENLTRDE0 (routing table) 66
ERANY 325, 326
ERCHK 325, 326
ERCNT 325, 326
error information 83
error messages

DSLERR 367
error queue, defining 311
ERSND 299, 325, 326
ERSWO 299, 325, 326
etc/hosts 261
etc/inetd.conf 261
etc/services 261
EXC 325
EXCC 325
exchange command 8
exchanging data 211
EXCNC 325
EXIT=8044 297
exits (MFS) 203
exits, MFS editing 327
explanation panel

customization 195
extended message trailer 357
external conversion table 339, 341
external networks 211
extraction fields, test-key 154

F
family client server 125
FDT 361
field, search 119

field, trailer (MCB) 345
field definition 56, 343
Field Definition Table

changed 361, 388
coding 385
coding example 387
macros 385
new 361, 388
processing 361

field sequence (MCB) 361
files

access 113
coding (table) 115
definition 113
installation 114
table entries 115

FIN-Copy service 141
FIN-Copy service messages 145
Financial Message Transfer/ESA 265

MERVA Link 266
MQI Attachment 296

FMT/ESA 265
MERVA Link 266
MQI Attachment 296
queues for scenario with MERVA-MQI

Attachment 297
routing with MERVA-MQI

Attachment 298
forced routing error indication 277
format, message (SWIFT) 153
formatted telex messages 153
FORWD 325, 326
frame, bottom 345, 367, 370, 372, 373
frame definition (MCB) 119
frame device definition 120
frame MCBs 362
function

function tables 53
function keys 78
function table

examples 7

G
GETDATA 332
GETREPLY 332

H
HARDCOPY (type) 346
header, message (MCB) 345
header macro 360
header parameters, ACT 249
help

accessing panels (MCB) 375
command 375
MCB 374
menu (MCB) 375
program function keys (MCB) 375

help panel
MCB DWSHCUR 140

HFS program, running EKATPI as
an 258

hierarchical structure (MCB) 346
hold command 159
HOME= 145

HOSTS.LOCAL 261
hosts table 261

I
IM-ASPDU (application message) 196
IMS

MERVA Link customization 182
printer definitions 124
screen definitions 124

IMS MPR availability 192
IMS outbound security in an allocate

request 188
inbound TP scheduling, APPC/IMS 192
inbound TP security, APPC/IMS 192
inbound TP security considerations 187
indices 56
InetD process, refreshing 263
information lines (PF Key) 77
input messages, directing to the SWIFT

link 281
installing files 114
interface (MFS user exit) 204
interface buffer (test-key) 156
internal CCSID table 339
internal destination table 341
internet 261
internet daemon configuration 261
IP (message class) 52
ISC parameters, ACT 250
ISNCTLQ 297, 298

J
JIDRCVD 297
JIDSENT 297
journal, writing MQI message types to

the 315
JRNDGRM 315
JRNRCOA 316
JRNRCOD 316
JRNREXC 316
JRNRPLY 315
JRNRQST 315

K
key settings 78
keys, using for message identification and

correlation 321
KQCBLOCK 333
KQKENTRY 334
KQKPROC 334
KQMQUEUE 334
KQMRSNDQ 334
KQTOFBUF 334

L
LAB, disabling 159
language

message parameters 84
support 85

last command 159
layout (MCB) 345

Index 415

LC (message class) 52
LFMID parameter (ENLPARM

macro) 153
line definition 130
literals, color 350
LOGMODE entry, X.25 134
long answerback, disabling 159
LR (message class) 52

M
MAC 145
maintenance, user file 7
MANDCH 352
mapping

areas (MTT) 377
facilities 369

master panel (DSLHELP) 375
MCB

frame definition 119
message type definition 119
page size 119

MERVA Link
APPC connections 176
application support filter 195
CICS connections 176
connecting MERVA ESA systems 211
control facility 194
FMT/ESA 266
IMS customization 182
message routing 72
message text location 201
MSC 194
partner table (PT) 161, 211
PT (partner table) 161, 211
reject message delivery 202
remote system connections 176
report authentication failure 202
test environment 193
unique message reference 209
UNIX System Services (USS) 243
USS (UNIX System Services) 243

MERVA Link message classes for
FMT/ESA 278

MERVA Message Processing Client
Workstation Server 125

MERVA-MQI Attachment 301
MERVA System Control Facility

(MSC) 51, 383
MERVA-to-MERVA Financial Message

Transfer/ESA 265
MERVA Link 266
MQI Attachment 296

message
class 52
creation (SWIFT) 7
definition 343, 346
header (MCB) 345, 349
language parameter 84
paths 54
preparation 152
processing 7
receipt return codes 203
reference 211
retrieval 6
table (DSLMSGT) 83
trailer 349, 357

message (continued)
translation 84
type table (DSLMTTT) 377
types 84, 378

message authorization code (MAC) 145
message classes for FMT/ESA, MERVA

Link 278
message control block

bottom frame 345
changed 361
coding example 347, 349, 354, 355
DSL0TOP 362
DSL0TOP (top frame) 345
hardcopy printer 364
hierarchical structure 346
layout 345
message header 345
new 361
printer frame 362
repeatable sequence 360
sample field macro 352
sample screen panel 353
screen frame 362
top frame 345, 362
trailer field 345
TYPE=SCREEN 351

Message Control Block
frame definition 119
help 374
message type definition 119
page size 119

message conversion, requesting 314
message data, converting 336
message data structure, defining 302
Message Format Service

user exit 203
message identification, using keys

for 321
message status, recognizing 325
message status information 325
message transfer

IMS to IMS 167
message transfer process (MTP) 161
message type, recognizing 326
message type field 301
message types, writing to the

journal 315
MFS editing exits 327
MFS errors, recognizing 326
MFS user exit, calling FMT/ESA from

an 291
MFS user exit, link-editing 209
MFSLFLD 290, 333
MFSLREAS 335
MFSLRET 335
mirror, TP 193
MPR availability, IMS 192
MQGMO 327
MQI Attachment 301

FMT/ESA 296
MQI control block 326
MQI message types, setting the 301
MQI message types, writing to the

journal 315
MQI queues, using keys for 321
MQI reply messages 323
MQI report messages 323

MQI report options, setting 304
MQMD 327
MQPMO 327
MSC (MERVA System Control

Facility) 51
MSC (system control facility) 194
MSC response time, partner 192
MsgId 321
MSGTYP 352
MsgType field 301
MT096 service messages 145
MT097 service messages 145
MTP (message transfer process) 161
MTT

generating 377
MERVA Link 381
SWIFT Link 379

multiple language support 85

N
NET (type) 346
network

independent tables 237
new function tables 53
next processing step, defining 313
nicknames file 115
Notices 395

O
ONEOPT 353
operator

commands 375
operator messages, issuing 316
OSNCTLQ 297, 298
outbound security in an allocate request

CICS 187
IMS 188

outgoing telex messages 47
output messages, routing of 223

P
PACs, calculating 145
page layout definition (MCB) 119
page lengths (DSLTFDT) 120
page size

DSLTFDT 120
MCB 119
printer definition 120
printer terminal 122

PAGESIZ parameter (DSLTFD
macro) 121

panel
sample 353

parameters (DSLNSVT) 93
parameters (DSLPRM) 87
partner MSC response time 192
PDE trailer, appending a 281
PDSE member, running EKATPI as

a 257
PF keys 78

assigning 77
groups 78
macro 77

416 Customization Guide

PF keys (continued)
table 82

pfkeys command 77
PREMIUM service 141
print format specification 120
printer

devices (MCB macro) 352
feature definition 122
frame MCBs 362
header macro 360
IMS 124
page size 122
panel (MCB) 362
terminals 121

printing 4
process, recognizing 326
process tables, sample 317
processing step, defining next 313
program entry (ASF) 197
program function keys 78
program table

MFS 362
programming interface (ASF) 197
proprietary authorization codes,

calculating 145
protocol data unit

delivery indicator 196
SUBMIT request 196

PT header display panel
customization 195

PUTDATA 332
PUTREPLY 332

Q
queue management

DSLQMGT 54
queues for FMT/ESA scenario 297, 298

R
RCVD 325
ready queues 228
reason codes 375
receipt return codes 203
receive process, enabling a disabled 310
receive process, recognizing 326
RECOVER command 281
reject message delivery 202
remote system connections 176
repeatable sequence 359
reply messages 323
report authentication failure 202
report messages 323
request, submit 196
retrieving messages 6
return codes 375
route command 36, 44
routing error indication, forced 277
routing messages 72
routing of SWIFT output messages 223
routing of Telex messages in MERVA

A 229
routing table DSLKQRT 328
routing table EKARTSIM 276

routing tables
coding 56
overview 72

row definition 120

S
SAUT (screen display) 8
scheduling frequency, defining 311
SCP (system control process) 194
SCP list panel

customization 195
scrambling authenticator keys 128
screen

color 350
devices (MCB macro) 352
frame (MCBs) 362
header macro 360
IMS 124
panel (MCB) 353, 362
sizes (MCB) 119
terminals 121

SCREEN (type) 346
SCS printer support 122
SDSLMAC0 (low level qualifier) 236
SDSLSAM0 (low level qualifier) 236
SDSLSRC0 (low level qualifier) 236
search field 119
Secure login/select (SLS) 9
security, SNA APPC conversation 260
security considerations, Inbound TP 187
security in an allocate request,

outbound 187, 188
security manager

parameters 91
send process, recognizing 326
send queue cluster 52
SENT 325, 326
sequence, repeatable 359
sequential file processing 4
servccll 145
service messages, FIN-Copy 145
services, client network 261
sf command 43, 45, 159
SF97COLT 146
SF97COPY 145
SF97MAC 146
shell script, running EKATPI as a 259
show command 77, 374
SI profile, APPC/MVS 186
side information for MERVA Link

USS 260
skeleton (ASF) 198
SLS (secure login/select) 9
SNA APPC conversation security 260
SNAP dumps 184
SPA file 88
special user functions 4
specific ASP/MTP display panel

customization 194
SR-ASPDU (receipt report) 196
start queue, defining 310
status information, message 325
storage

DSLPARM 87
structures

file table 115

structures (continued)
hierarchical (MCB) 346
SWIFT 7

SUBMIT.Confirmation 197
SUBMIT.Request (ASF) 196
support, multiple language 85
SWIER 299, 326
SWIFT-EDIFACT conversion 10, 14, 15
SWIFT Link 7, 115, 133, 134

central institutions table 141
currency code table 140
customization 127
message copy code 84
message type table 379
telex processing 152
X.25 auto dial line 132
X.25 leased line 131
X.25 PDN 130

SWIFT link, directing input messages
to 281

SWIFT message flow 212
SWIFT output messages, routing of 223
synchronous back-to-back test 193
SYSP (type) 346
system control facility 194
system control process (SCP) 194
system printer page 362

T
tables

definition (PF keys) 77
field definition 385, 387
printing entries 4
structure (DSLTFDT) 124

target name 55
TCP/IP for MERVA Link USS 261
Telex Link

Additional Transmit Data 160
buffer 150
customizing message text 150
function table examples 36
LAB, disabling 159
long answerback, disabling 159
MTT (definitions) 381
Sample Code 160
telex transmission 152

telex message transmission 153
Telex messages in MERVA A, routing

of 229
telex processing 152
telex transmission (MCB) 152
temporarily closed (ASP) 74
terminal names (DSLTFD) 125
terminal table (DSLTFDT) 120
test key

automatic 157
buffer fields (TKMISSES) 157
buffer fields (TKREF) 156
buffer fields (TKTSTKEY) 156
calculation 154
command 150, 155
interface 155
requirements 150

TOF
field definition 385

Index 417

tokenized form
field definition 385

top frame (DSL0TOP) 345, 362
TP mirror 193
TP profile, APPC/IMS 191
TP profile, APPC/MVS 184
TP profile for MERVA Link USS 256
TP scheduling, APPC/IMS inbound 192
TP security, APPC/IMS inbound 192
traces, setting 317
tracing data 181
trailer, appending a PDE 281
trailer field (MCB) 345
TRANSACT macro 184
Transaction Table (DSLTXTT) 111
translation, message 84
TRIGDATA attribute 311
trusted partner systems 189
txdisp recover command 46
TXHCFRCV (message queue) 46
TXHCFSND (message queue) 46
TXSDI 45
TXSDO 45
TXSDY 45
TXSTPPDE 46
TYPE=HARDCOPY 346
TYPE=NET 346
TYPE=SCREEN 346
TYPE=SYSP 346
types of messages 84

U
UMR (unique message reference) 209,

364
undeliverable message 74
unique message reference (UMR) 209,

211, 364
UNSUP 326
untrusted partner systems 189
USE (User Security Enhancements) 9
user code (ASF) 199
user-defined messages 86
user exit

EKAMU001 205
EKAMU002 208
EKAMU010 205
EKAMU133 214, 219, 227, 234

user exit, writing a 332
user exit samples 335
user exits

interface (MFS) 204
MFS 203

user exits (MFS)
MERVA Link 203

user file maintenance 7, 375
User Security Enhancements (USE) 9
USS Conversation Security 251

V
verification requests (test-key) 156
VTAM ACB (X.25 line) 133
VTAM LOGMODE (X.25 line) 134

W
wait interval, defining 312

X
X.25 auto dial line 132
X.25 leased line 131
X.25 LOGMODE entry 134
X.25 public data network 130
X.25 VTAM definition 133

418 Customization Guide

MERVA Requirement Request

Use the form overleaf to send us requirement requests for the MERVA product. Fill
in the blank lines with the information that we need to evaluate and implement
your request. Provide also information about your hardware and software
environments and about the MERVA release levels used in your environment.

Provide a detailed description of your requirement. If you are requesting a new
function, describe in full what you want that function to do. If you are requesting
that a function be changed, briefly describe how the function works currently,
followed by how you are requesting that it should work.

If you are a customer, provide us with the appropriate contacts in your
organization to discuss the proposal and possible implementation alternatives.

If you are an IBM employee, include at least the name of one customer who has
this requirement. Add the name and telephone number of the appropriate contacts
in the customer’s organization to discuss the proposal and possible implementation
alternatives. If possible, send this requirement online to MERVAREQ at SDFVM1.

For comments on this book, use the form provided at the back of this publication.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

Send the fax to:

To: MERVA Development, Dept. 5640 Fax Number: +49-7031-16-4881
Attention: Gerhard Stubbe Internet address:

mervareq@de.ibm.com
IBM Deutschland Entwicklung GmbH
Schoenaicher Str. 220
D-71032 Boeblingen
Germany

© Copyright IBM Corp. 1987, 2001 419

MERVA Requirement Request

To: MERVA Development, Dept. 5640 Fax Number: +49-7031-16-4881
Attention: Gerhard Strubbe Internet address:

mervareq@de.ibm.com
IBM Deutschland Entwicklung GmbH
Schoenaicher Str. 220
D-71032 Boeblingen Germany

Page 1 of ______

Customer’s Name __

Customer’s Address __

__

__
Customer’s
Telephone/Fax __

Contact Person at __
Customer’s Location
Telephone/Fax __

MERVA
Version/Release __

Operating System __
Sub-System
Version/Release __

Hardware __

Requirement
Description __

__

__

__

__

__

__

Expected Benefits __

__

__

420 Customization Guide

Readers’ Comments — We’d Like to Hear from You

MERVA for ESA
Customization Guide
Version 4 Release 1

Publication No. SH12-6380-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SH12-6380-01

SH12-6380-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH
Information Development, Dept. 0446
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5648-B29

SH12-6380-01

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
M

ER
VA

fo
r

E
SA

Cu
st

om
iz

at
io

n
G

ui
de

Ve
rs

io
n

4
R

el
ea

se
1

	Contents
	About This Book
	Prerequisites for Using This Book
	Customizing Overview

	Summary of Changes
	Part 1. Basic Customizing
	Chapter 1. The MERVA ESA Applications
	Defining the MERVA ESA Message-Processing Functions
	General MERVA ESA Functions
	Examples of Function Table Entries for the SWIFT Link
	Examples of Function Table Entries for Maintaining the Authenticator-Key File
	Examples of Function Table Entries for Processing Messages for the SWIFT Network

	Examples of Function Table Entries for the Telex Link
	The Telex Link Internal Functions

	Function Table Example for the MERVA Link
	Starting a Send Task with a CICS APPC Session

	Processing a New or Changed Function Table

	Defining Message Paths within MERVA ESA
	Types of DSLROUTE Macro Calls
	Coding Considerations
	Using Indices in Field Definitions
	Using SWIFT Fields in Routing Modules
	Examples of Routing Tables for the SWIFT Link
	Routing Table DWSL2AI0
	Routing Table DWSL2IN
	Routing Table DWSL2OUT

	Examples of Routing Tables for the Telex Link
	Routing Table ENLRTDEO
	Routing Table ENLRTTKC
	Routing Table ENLRTHCF

	Examples of Routing Tables for the MERVA Link
	MERVA Link Message Routing
	MERVA Link Sample Routing Tables

	Processing Routing Tables

	Assigning the Program Function (PF) Keys
	The DSLMPFK Macro
	Coding Considerations
	Overview of Available PF Keys for All MERVA ESA Functions
	Processing PF Key Tables

	Customizing Error and Diagnostic Messages for Operators and Users
	Translation of Messages into Another Language
	Multiple Language Support
	Adding User-Defined Messages
	Processing the Changed Message Table

	Chapter 2. The MERVA ESA Environment
	Defining Basic MERVA ESA Parameters in Module DSLPRM
	DSLPRM Module Sample
	DSLPRM Settings for Large Messages

	Defining the Parameters for Using a Security Manager
	Required Parameter Settings
	Defining an Authorized User
	Transparent Usage of the DSLEUD

	Defining the Nucleus Server Table DSLNSVT
	Sample DSLNSVT Tables

	Defining the Parameters for Using QDS on DB2
	Customizing MERVA ESA Intertask Communication Using MQSeries
	Parameters for Intertask Communication Using MQSeries
	Customizing the Nucleus Program Table (DSLNPTT)
	Customizing the Nucleus Server Table
	Defining MQI Queues

	Customizing MERVA ESA Interservice Communication
	Defining the Parameters for Interservice Communication Using MQSeries
	Customizing the Nucleus Server Table for a Multisystem Environment
	Defining MQI Queues
	MQI Send Queues
	MQI Receive Queues
	MQI Reply-To Queue

	MQI Queue Examples
	Interservice Communication on the Same System
	Interservice Communication between Different Systems
	MQI Send Queue Names

	Defining the Transaction Table DSLTXTT
	DSLTXT Sample Definitions

	Defining Files in MERVA ESA
	Installing Files for MERVA ESA General File Services
	Coding the File Table Structure
	Coding File Table Entries

	Defining the Page Sizes and Layouts
	Terminal Feature Definition Macro (DSLTFD)
	Printer Terminal Page Sizes and SCS Printer Support
	Printer Definitions in CICS
	Screen and Printer Definitions in MERVA ESA

	Customizing the MERVA Message Processing Client Server
	CICS APPC Connections
	IMS APPC Connections
	TCP/IP Connections
	MERVA ESA User File

	Chapter 3. The SWIFT Link
	Defining SWIFT Link Parameters in Module DWSPRM
	Defining Communication Lines to the SWIFT Network
	Line Definition for a Public Data Network Line for SWIFT X.25
	Line Definition for a Leased Line for SWIFT X.25
	Line Definition for an Auto Dial Line for SWIFT X.25
	VTAM Definition for SWIFT X.25 Lines

	Defining Logical Terminals for the SWIFT Network
	SWIFT Link Parallel Processing
	Session Keys Received from the USE Workstation
	The Currency Codes
	The Central Institutions Table
	PREMIUM Service
	FIN-Copy Service

	Chapter 4. Setting Up a Central Institution to Calculate PACs
	MT096 PAC Calculation
	MT097 PAC Calculation

	Chapter 5. The Telex Link
	Customizing Parameters ENLPRM
	Customizing the Telex Message Text
	Specifying General Test-Key Requirements
	Modifying the SWIFT Link for Telex Processing
	Defining the Extraction Fields for Test-Key Calculation
	Defining Extended Field Tags for the Telex Line Format

	Interface to the Test-Key Processing Program
	Automatic Test-Key Facility
	Sample Description
	Test-Key Facility Processing Exceptions

	Disabling Telex Link Long Answerback (LAB)
	Telex Link Additional Transmit Data
	Telex Link Sample Code

	Chapter 6. The MERVA Link for CICS and IMS
	Defining Partner Table ASP and MTP Entries (Samples)
	Sample 1: Interconnecting Two MERVA Link CICS Systems
	Sample 2: Interconnecting MERVA Link CICS and IMS Systems
	Sample 3: Interconnecting Two MERVA Link IMS Systems

	Defining Partner Table SCP Entries (Samples)
	Sample SCPs for Node 1
	Sample SCPs for Node 2
	Sample SCPs for Node 3
	Sample SCPs for Node 4

	Customizing CICS for MERVA Link
	Defining CICS Programs
	Mandatory Resident Programs
	Mandatory Non-Resident Programs
	Optional Non-Resident Programs
	Operator Message HELP MCBs

	Defining CICS Transactions
	Mandatory Local Transactions

	Defining CICS APPC Profiles
	Defining CICS Connections and Sessions
	APPC Connections to Another CICS
	APPC Connections to APPC/MVS or APPC/IMS

	Defining CICS Partners
	Defining CICS Transient Data Destinations
	Defining Extrapartition Transient Data Queue (DFHDCT)
	Defining Extrapartition Transient Data Queue (RDO)
	Allocating MERVA Link Conversation Trace Data Set

	Customizing the CICS Startup Job

	Customizing IMS for MERVA Link
	IMS PSB and ACB
	Defining IMS Applications
	Customizing the IMS Message Processing Region Startup Job

	Customizing APPC/MVS for MERVA Link
	APPC/MVS TP Profile for the APPC/MVS Scheduler
	APPC/MVS SI Profile
	APPC/MVS Inbound TP Security Considerations
	CICS Outbound Security in an Allocate Request
	IMS Outbound Security in an Allocate Request
	EKAPMSC Security Considerations

	Connecting Trusted and Untrusted Partner Systems
	Connecting Trusted Partner Systems
	Connecting Untrusted Partner Systems
	Connecting Both Trusted and Untrusted Partner Systems

	Customizing APPC/IMS for MERVA Link
	APPC/MVS TP Profile for the APPC/IMS Scheduler
	APPC/IMS Inbound TP Security Considerations
	APPC/IMS Inbound TP Scheduling Considerations
	IMS MPR Availability
	Partner MSC Response Time

	Customizing a Synchronous Back-to-Back Test Environment
	Synchronous TP Mirror EKATM10
	Back-to-Back Sample Customization

	Customizing the MERVA System Control Facility
	Customizing the Display Panels
	Customizing the Main Menu
	Customizing the Display of a MERVA Command Response
	Customizing the Display of an ASP List
	Customizing the Display of Specific ASP/MTP Parameters
	Customizing the Display of an SCP List
	Customizing the PT Header Display
	Customizing the Explanation Panels

	Customizing the Command Names

	Application Support Filter
	ASF Called for a SUBMIT.Request
	ASF Called for a DELIVER.Indication
	ASF Programming Interface
	ASF Program Entry
	Call the Next Program
	Return from the Next Program
	Return to the Caller

	ASF Samples
	ASF Skeleton
	ASF User-Code Elements

	Support of the MFS User Exits
	MFS User Exit Interface
	Start MFS User Exit Macro EKAUXS
	MFS User Exit Sample
	CICS Commands in an MFS User Exit
	Link-Editing an MFS User Exit
	MERVA ESA Unique Message Reference
	Additional User Exit Considerations

	Connecting Two MERVA ESA Systems
	Connecting MERVA A to MERVA B with the SWIFT Link
	Message Processing for SWIFT
	Routing of SWIFT Output Messages

	Connecting MERVA A to MERVA B with Telex Link via a Fault-Tolerant System
	Message Flow
	Routing of Telex Messages in MERVA A
	Routing of Telex Messages in MERVA B

	Customizing MERVA A and MERVA B
	Installing MERVA A and MERVA B
	MERVA Link Partner Table Relationships

	Chapter 7. The MERVA Link for Unix System Services (USS)
	Defining Application Control Table Entries (Samples)
	Sample 1: Gateway between MERVA Link CICS and IMS Systems
	ACT Configuration Main File
	ACT Configuration Include File for Partner Node C1
	ACT Configuration Include File for Partner Node C2
	ACT Configuration Include File for Partner Node I1
	ACT Configuration Include File for Partner Node I2

	Sample 2: Gateway between MERVA Link ESA and MERVA Workstations
	ACT Configuration Main File
	ACT Configuration Include File for Partner Node A1
	ACT Configuration Include File for Partner Node W1

	Customizing the MERVA Link USS ACT
	Configuration File Syntax
	Empty Lines and Comment Lines
	ACT Parameter Group Identification Lines
	ACT parameter lines
	Include Lines

	ACT Header Parameters
	ACT ASP Parameters
	ACT ISC Parameters
	Generating a Configuration File from an Active ACT

	Customizing MERVA Link USS Conversation Security
	Conversation Security Files
	Conversation Security Control Application
	The ACS Program
	The ACS Execution Environment
	The ACS Execution Modes

	The ACS Command Parameters
	MERVA USS Instance Directory Parameter
	ACS Execution Control Parameters
	Conversation Security Information Parameters

	Sample ACS Commands
	The ACS Standard Input File
	The ACS Batch Mode
	ACS Batch Sample for USS Shell
	ACS Batch Sample for OS/390 Batch

	Customizing APPC/MVS for MERVA Link USS
	APPC/MVS TP Profile for MERVA Link USS
	Running EKATPI as a PDSE Member (EKARP1)
	Running EKATPI as an HFS Program (EKARH1)
	Running EKATPI as a Shell Script (EKARS1)

	APPC/MVS Side Information for MERVA Link USS
	SNA APPC Conversation Security

	Customizing TCP/IP for MERVA Link USS
	Hosts Table (/etc/hosts or HOSTS.LOCAL)
	Client Network Services (/etc/services)
	Internet Daemon Configuration (/etc/inetd.conf)
	Direct Call of EKATCI
	Indirect Call of EKATCI

	Refreshing the InetD Process

	Chapter 8. MERVA-to-MERVA Financial Message Transfer/ESA (FMT/ESA)
	Using FMT/ESA with MERVA Link
	FMT/ESA Message Flow with MERVA Link
	Acknowledgment and Delivery Notification
	Generating an Acknowledgment and Delivery Notification

	Scenario Involving FMT/ESA with MERVA Link
	Queues for the FMT/ESA with MERVA Link Scenario

	Routing Table EKARTSIM
	Forced Routing Error Indication
	MERVA Link Message Classes for FMT/ESA
	FMT/ESA Scenario at the Message Sending Side
	Appending a PDE Trailer
	Directing SWIFT Input Messages to the SWIFT Link

	FMT/ESA Scenario at the Message Receiving Side
	Customization
	Customizing FMT/ESA with MERVA Link
	Customizing MERVA Link for Use with FMT/ESA
	Customizing MERVA ESA for Use with FMT/ESA

	Global Customization versus Specific Customization
	Calling FMT/ESA from an MFS User Exit

	Using FMT/ESA with MERVA-MQI Attachment
	Customizing MERVA-MQI Attachment for Use with FMT/ESA
	Queues for FMT/ESA with MERVA-MQI Attachment
	Routing

	Chapter 9. MERVA-MQI Attachment
	Customizing the Send and Receive Processes
	Setting the MQI Message Types
	Defining the Message Data Structure
	Recognizing the Message Data Structure

	Defining the Groups of MERVA ESA Messages
	Setting the MQI Report Options
	Authorizing the Use of Queues
	Defining an Alternate User Identifier
	Defining an Authorized MERVA-MQI Attachment User

	Defining the Send Queues
	Defining the Receive Queues
	Defining the Reply-to Queue
	Defining the Control Queues
	Control Queues in a Send Process
	Control Queue in a Receive Process

	Defining the Start Queue
	Enabling a Disabled Receive Process

	Defining the Error Queue
	Defining the Commit Frequency
	Defining the Scheduling Frequency

	Defining the Wait Interval for Message Retrieval
	Defining the Next Processing Step
	Requesting Message Conversion
	Requesting Message Security
	Activating MQSeries Channel Exits (MVS only)
	Parameter in DSLKPROC (VSE only)

	Writing the MQI Message Types to the MERVA ESA Journal
	Issuing the MERVA ESA Operator Messages
	Using the Display Message Table

	Setting MERVA ESA Traces
	Sample Process Tables DSLKPSAM (MVS) and DSLKPSMV (VSE)

	Using the Keys for Message Identification and Correlation
	Using the Keys for the MQI Queues
	Keys for a Send Queue
	Keys for a Control Queue
	Keys for a Receive Queue

	Using the Keys for the MERVA ESA Queues
	Keys for the Control Queue
	Key for the Wait Queues

	Correlating MQI Report and Reply Messages

	Using the Control Fields
	List of Control Fields
	Using Message Status Information
	Recognizing the Message Status
	Recognizing a Send or Receive Process
	Recognizing the Message Type
	Recognizing MFS Errors

	Displaying MQI Control Block Data
	Recognizing the Feedback from a Report Message
	The MFS Editing Exits DSLME910 and DSLME911

	Sample Routing Table DSLKQRT

	Writing a User Exit
	Functions of the User Exit
	The Request Types
	The TOF Fields DSLKDATA and DSLKRPLY

	Interface to MERVA ESA and to MERVA-MQI Attachment
	Interface to MERVA ESA
	Interface to MERVA-MQI Attachment

	Sample User Exits

	Converting the Message Data
	Data-Conversion Exit (MVS)
	Accessing the Data-Conversion Exit
	Converting Messages at the Receiving Side
	Converting Messages at the Sending Side
	Data-Conversion Exit Provided Error Information

	Attachment-Conversion Exit (VSE)
	Converting Messages at the Receiving Side
	Converting Messages at the Sending Side
	Attachment-Conversion Exit Provided Error Information

	Part 2. Defining Fields and Messages
	Chapter 10. Message Control Blocks (MCBs)
	General Message Control Block Structure
	The Message Definition Macroinstructions
	MCB Coding Examples
	Example for TYPE=MESSAGE
	Copies Included in the Sample MCB MT 100 for TYPE=MESSAGE

	Example for Color Definitions
	Example for TYPE=SCREEN
	Sample of a Field Macro for Screen and Printer Devices
	Sample of a Screen Panel

	Example for TYPE=HARDCOPY
	Example for TYPE=SYSP
	Example for the SWIFT Line with TYPE=NET
	Example for the Screen NOPROMPT Mode with TYPE=NET
	Examples for the SWIFT Message Trailer with TYPE=NET

	Description of Functions Not Contained in MT 100
	Repeatable Sequence Header Macro for Screen and Printer Devices

	Processing New or Changed MCBs
	The Frame MCBs for Screen and Printer Panels
	The Top Frame
	The Bottom Frame

	Chapter 11. Cover MCBs
	Coding Cover MCBs
	Example for DSL0COV
	Example for EKAMCOV
	Example for ENLTCOV

	Help MCBs

	Chapter 12. Message Type Table (DSLMTTT)
	Mapping the Areas of the Message Type Table
	Generating the Message Type Table
	Message Type Table Definitions
	SWIFT Link Message Type Table Definitions
	Telex Link Message Type Table Definitions
	MERVA Link Message Type Table Definitions

	Chapter 13. Field Definition Table (DSLFDTT)
	Field Definition Macroinstructions
	Coding the Field Definition Table (FDT)
	FDT Coding Examples
	Coding Example of the SWIFT Field 39

	Processing New or Changed FDTs
	MERVA Link Modifications in the Field Definition Table

	Part 3. Appendixes
	Appendix. Notices
	Programming Interface Information
	Trademarks

	Glossary of Terms and Abbreviations
	Bibliography
	MERVA ESA Publications
	MERVA ESA Components Publications
	Other IBM Publications
	S.W.I.F.T. Publications

	Index
	MERVA Requirement Request
	Readers’ Comments — We'd Like to Hear from You

