
MERVA for ESA

Application Program Interface Guide
Version 4 Release 1

SH12-6374-01

���

MERVA for ESA

Application Program Interface Guide
Version 4 Release 1

SH12-6374-01

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix E.
Notices” on page 291.

Second Edition, May 2001

This edition applies to Version 4 Release 1 of IBM MERVA for ESA (5648-B29) and to all subsequent releases and
modifications until otherwise indicated in new editions.

Changes to this edition are marked with a vertical bar.

© Copyright International Business Machines Corporation 1987, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book vii
Who Should Read This Book vii
How to Use This Book vii

Summary of Changes ix

Part 1. Using the MERVA ESA
Application Program Interface 1

Chapter 1. Introduction and Concepts . . 3
Interface Working Storage 4
Parameters 5

Other API Parameter Structures 5
Buffers 5

External Buffers 5
Internal Buffers 6

Calling DSLAPI 6
Static Call 7
Dynamic Call 7
CICS Considerations. 8
IMS Considerations 9

Processing Messages with DSLAPI 10
Reading 10
Updating and Routing 11
Exporting 11
Importing 12
Printing 12

Chapter 2. The MERVA ESA API
Services 13
Queue Management Services 13

Internal Queue Buffer 13
Overview of Queue Management Functions . . 13
Use of the BUSY (In-Service) Indicator 15
Use of the DOUBLE (Write-Back) Indicator . . . 16
Automatic Delete 16

Tokenized Form (TOF) Supervisor Services 17
Overview of TOF Supervisor Functions 17
API TOF Parameters 17
The Internal TOF Buffer 18
Defining a Field Buffer 18

Message Formatting Services (MFS) 18
Overview of MFS Functions 18
Importing Messages and Determining Message
Types 19
Exporting Messages 19
The MFS Message Buffer (MSGSWIFT) 20

Print Services 20
Overview of the Print Message Functions . . . 20

Journal Services 20
Overview of Journal Functions 21
Defining a Journal Record Buffer 21

User File Services 21
Overview of the User File Functions 21

Operator Command Service 22
Write-to-Operator Service. 22

Chapter 3. Writing an API Program. . . 23
Writing a Batch Program 23
Writing a Nonconversational Transaction 25
Writing a Conversational Transaction 26
Writing a Pseudoconversational Transaction . . . 26

Saving the Tokenized Form of a Message in a
Queue Data Set 27
Saving the Tokenized Form of a Message in Your
Own Database (IMS) or in Temporary Storage or
Transient Data (CICS) 28

Chapter 4. Writing an MFS Exit Routine
in C, COBOL, or PL/I 31
Restrictions for Exit Routines Written in an HLL . . 31
Writing an Exit Routine That Runs Under CICS and
in Batch 32
Field-Level Access for Exit Routines 33

Supported Fields 34
Field Values 34

MERVA Buffer Prefix Manipulation 35

Chapter 5. The REXX Interface 37
Overview 37

Variables 37
Return Codes. 39
The REXX Language Processor Environment . . 40

DSLAPI Functions Supported by the REXX Interface 40
Queue Management Services 40
TOF Services 41
Message Format Services 42
Print Services 42
Journal Services 43
User File Services 44
Command Service 44
WTO Service 44
Field-Level Access Services 45

The SNAP Command 45
Sample Programs Written in REXX 45
Running a REXX EXEC under MVS 46

REXX Input and Output Streams 46
Passing Parameters to the EXEC 46
JCL to Run EXECs from a PDS 47
JCL to Execute an Instream EXEC 47

Running a REXX EXEC under VSE 48
REXX Input and Output Streams 48
Passing Parameters to the EXEC 48
JCL to Run EXECs 49

Chapter 6. Advanced Topics 51
Applications Linked to DSLNUC 51
Locating the TOF 51

© Copyright IBM Corp. 1987, 2001 iii

||
|
||
|
|
||

Locating the Internal Queue Buffer 51
Customizing the API 52

DSLPRM Parameters 52
Runtime Environment Settings 52

MERVA Fields in Messages 53
MSGTRACE 54
Message Exit Fields. 54
DSLMSG 54
UMR - Unique Message Reference 55

External Line Format 55
Queue Management Using DB2 57

Chapter 7. Auxiliary API Services . . . 59
Field Services. 59

The Field Services Working Storage FLDWSTOR 60
DSLAPFFS Read Fields from a SWIFT-Type
Message 60
DSLAPFTS Write Fields to a SWIFT-Type
Message 61

SWIFT Message Conversion Services 64
Working Storage Areas for the Message Services 64
How to Call the DSLAP1T2 Program 64
How to Call the DSLAP2T1 Program 65

EDIFACT Message Conversion Services 66
The Conversion Program DSLCES1 66
The Conversion Program DSLCES2 70
The Conversion Program DSLCSE1 73

Part 2. DSLAPI Data Structures and
Functions 79

Chapter 8. Data Structures 81
Interface Working Storage INTWSTOR 81
TOF Access Parameters TOFPARM 85

Field Reference 86
Request Modifiers 87
TOF Reason Codes 88

Message Buffer MSGSWIFT 88
MSGSWIFT Prefix 88
Message Buffer MSGSMSG 90

Journal Key JRNKEY 92
Terminal User Control Block (TUCB) 93
User File Record Buffer 94
MFS Parameter List. 95

Chapter 9. DSLAPI Functions 97
CMD Execute a MERVA Command 98
DELE Delete a Queue Element 100
EMPT Empty a Field (TOF). 102
FLDG Get a MERVA Variable 105
FLDP Set a MERVA Variable 107
FREE Free a Queue Element 109
GEKU Get a Queue Element by Key
Unconditionally 111
GET Get a Queue Element Unconditionally . . . 113
GETC Get a Queue Element Conditionally . . . 115
GETK Get a Queue Element by Key 116
GETM Get Message (MFS) 118
GETN Get Next Queue Element 120

GETS Get SWIFT Message (MFS) 122
GETU Get Next Queue Element Unconditionally 124
INIT Initialize the API Environment 126
JRLG Get a Journal Record 128
JRLN Get Next Journal Record 130
JRLP Put a Journal Record 132
JRNG Get a Journal Record. 134
JRNN Get Next Journal Record 135
JRNP Put a Journal Record 137
MPFG Get Message Prefix (MFS) 139
MPFP Put Message Prefix (MFS) 141
MSGG Get Message (MFS) 143
MSGP Put Message (MFS) 145
PRTI Initialize Printing Environment 148
PRTL Create a Print Line of a Message 150
PRTT Terminate Printing Environment 152
PUT Put a Queue Element 153
PUTB Put a Queue Element with Automatic Delete 155
PUTM Put Message (MFS) 158
PUTR Restore a Queue Element 160
PUTS Put SWIFT Message (MFS) 163
QLF Queue List First 165
QLL Queue List Last 168
QLN Queue List Next 170
QLP Queue List Previous 171
READ Read a Field (TOF) 172
REEN Reenter API Environment 175
REPL Replace a Queue Element 177
ROU Route a Queue Element 179
ROUB Route a Queue Element with Automatic
Delete 181
ROUD Route Queue Element Directly 183
ROUN Route Next Queue Element Directly . . . 185
SAVE Save API Environment 187
SAVL Save API Environment 188
TERM Terminate API 189
USRG User File Record Get 190
USRN User File Get Next 192
WRIT Write a Field (TOF) 194
WTO Write to Operator 197

Part 3. Appendixes 199

Appendix A. Migration and
Compatibility 201
Differences between MERVA ESA Version 3
Release 3 and Version 4 Release 1 201
Differences between MERVA ESA Version 3
Release 2 and Release 3. 201
Differences between MERVA/ESA V3.1 and
MERVA ESA Version 3 Release 2. 201
Differences between MERVA/370 Version 2 and
MERVA ESA Version 3 202

Appendix B. Sample Programs 203
Batch Programs. 204

DSLBA01x 204
DSLBA02x 205
DSLBA03x 205
DSLBA04x 208

iv API Guide

DSLBA05x 209
DSLBA10R - Update a Queue Element 210

Sample Transaction for Automatic Start. 212
Conversational Transaction 216

Working Storage Structure of the Dialog
Programs 217
Sample Application Program DSLBA20x . . . 217
Sample Application Program DSLBA21x . . . 218
Sample Application Program DSLBA22x . . . 219
Sample Application Program DSLBA23x . . . 222

High-Level Language MFS Exit 223

Appendix C. Batch Utilities in REXX 227
DSLBA12R - Print Queue Element(s) 228

Job Control Statements 228
Runtime Parameters 228
Customization 228
Sample Printout 229

DSLBA13R - Print the MERVA Journal 231
Job Control Statements 231
Runtime Parameters 231
Customization 231
Sample Printout 232

DSLBA14R - Scanning a TOF 235
Job Control Statements 235
Runtime Parameters 235
Customization 235
Sample printout 236

DSLBA15R - Print the User File 238
Job Control Statements 238
Runtime Parameters 238
Customization 239
Sample Printout of User File 239

DSLBA16R - Print Cross Reference Function
Names - Allowed User IDs 241

Job Control Statements 241
Runtime Parameters 241
Customization 242
Sample Printout 242

DSLBA17R - Check Date Fields in the User File 244
Job Control Statements 244
Runtime Parameters 244
Customization 245
Sample Printout of User File Dates Report. . . 246

DSLBA50R - Print Queue Status List 248
Job Control Statements 248

Runtime Parameters 248
Customization 249
Sample Printout of Print Queue Status List . . 249

DSLBA51R - Print Queue Key List 251
Job Control Statements 251
Runtime Parameters 251
Data Set Names 252
Customization 252
Sample Printout of Print Queue Key List . . . 252
Listing Fields 254

DSLBA52R - Copy or Move Messages (and Sort by
Key) 255

Job Control Statements 255
Runtime Parameters 255
Data Set Names 257
Customization 257
Sample Queue Key List after Run of DSLBA52R 257
Sample Printout of DSLBA52R 259
Listing Fields 261

DSLBA53R - Scan a Queue for ‘Old’ Messages . . 262
Job Control Statements 262
Runtime Parameters 263
Data Set Names 264
Customization 265
Sample Printout of DSLBA53R 266
Listing Fields 268

Appendix D. Field-Level Access Fields 269
MERVA ESA Function Table 287

Appendix E. Notices 291
Trademarks 292

Glossary of Terms and Abbreviations 295

Bibliography. 307
MERVA ESA Publications 307
MERVA ESA Components Publications 307
Other IBM Publications 307
S.W.I.F.T. Publications 308

Index 309

MERVA Requirement Request 313

Contents v

vi API Guide

About This Book

This book describes the application programming interface (abbreviated to API in
this book) of the IBM licensed program Message Entry and Routing with Interfaces
to Various Applications for ESA Version 4 Release 1, abbreviated to MERVA for
ESA. The API is an assembler and high-level language application-programming
interface that enables you to access the following MERVA for ESA services:
v Queue Management
v TOF Supervisor
v Message Format Service
v Print Services
v Journal
v User File Services
v Operator Interface

Who Should Read This Book
This book is written for application programmers. You will find technical
information along with examples showing coding methods. The type of
information in this book requires that you have some familiarity with the concepts
of MERVA for ESA and its services:
v Queue Management (including queue elements, queues, and the queue data set)
v Message Format Service (including SWIFT message structures and Message

Control Blocks)
v TOF Supervisor (including field reference structure)
v Print Services
v Journal
v User File Services
v Operator Interface

The MERVA for ESA concepts are described in MERVA for ESA Concepts and
Components.

You must also be familiar with one of the following programming languages:
v Assembler
v C
v COBOL
v PL/I
v REXX

How to Use This Book
The book is made up of a using part, a reference part, and the appendixes.

Before you write your first MERVA for ESA API program, read the first part,
especially:
v “Chapter 1. Introduction and Concepts” on page 3

© Copyright IBM Corp. 1987, 2001 vii

v “Chapter 2. The MERVA ESA API Services” on page 13
v “Chapter 3. Writing an API Program” on page 23

Use the reference part and appendixes as needed. Of particular interest are:
v “Chapter 9. DSLAPI Functions” on page 97, which describes each function, as

well as the return codes it issues, and contains a sample code fragment that
demonstrates the use of the function.

v “Chapter 8. Data Structures” on page 81, which describes the data structures
used by the functions.

v “Appendix B. Sample Programs” on page 203, which lists and describes the
sample programs distributed with MERVA for ESA. Not only do they show how
various API functions can be used, but they also show how to use the data
structures.

viii API Guide

Summary of Changes

Note: The MERVA ESA V4.1 API services are fully compatible with API services of
MERVA ESA V3.3. Applications that use MERVA ESA V3.3 API services
will run unchanged under MERVA ESA V4.1.

This edition of this manual reflects the following differences between the current
version of MERVA ESA (Version 4.1) and the previous version (Version 3.3):

API Runtime Environment
You can use the following DSLAPI variables to customize the API runtime
environment:

APICQBIN Enable the use of binary keys

APICQDIR Enable direct DB2® queue management calls

APICQLAZ Defer write requests

APICQMIT Switch DB2 commit on or off

APICQWRB Suppress the use of the DOUBLE (write-back) indicator

APICMCLR Clear the internal queue buffer before the (next) message
read function

APICMCHK Switch message checking on or off.

See “Runtime Environment Settings” on page 52 for details.

Enhanced API Functions
The MSGG and MSGP functions now support formatting from and to the
internal queue buffer format (‘Q’).

New API Functions
Six new API functions have been added:

PRTI, PRTL, and PRTT
The PRTx functions can be used to print messages line by line to a
system printer or a file. See “PRTI Initialize Printing Environment”
on page 148, “PRTL Create a Print Line of a Message” on page 150,
and “PRTT Terminate Printing Environment” on page 152 for
details.

PUTR The PUTR function restores a message to a specified queue and
QSN. See “PUTR Restore a Queue Element” on page 160 for
details.

ROUD, ROUN
The ROUD and ROUN functions route a queue element directly
from one queue to one or more target queues. See “ROUD Route
Queue Element Directly” on page 183 and “ROUN Route Next
Queue Element Directly” on page 185 for details.

Batch Utilities Written in REXX
The batch utilities written in REXX are distributed:
v For MVS, in the library MERVA.SDSLSAM0

v For VSE, in the sublibrary MERVA.LIBS with the extension PROC

© Copyright IBM Corp. 1987, 2001 ix

All of these utilities now support a DSLPRM customization parameter
PRTNAME, which can be used to print an institution’s name in the header
of the printout of the utility.

MERVA ESA V4.1 enhances the following batch utilities written in REXX:

DSLBA13R Print the MERVA ESA journal

The records of the following journal entries are printed
now formatted:

X'14' Command response

X'19' Routing trace.

DSLBA15R Print the MERVA ESA user file

The new user file field USRUDATS (last sign-on date) is
supported.

MERVA ESA V4.1 provides the following new batch utilities written in
REXX, all of which run under both MVS and VSE.:

DSLBA17R Check date fields in the user file

DSLBA50R Print queue status list

DSLBA51R Print queue key list

DSLBA52R Copy or move messages from one queue to another

DSLBA53R Scan a queue for ‘old’ messages

DSLSDIR Sequential data set input

DSLSDLR Sequential data set load

DSLSDOR Sequential data set output

DSLSDUR Sequential data set unload

DSLSDYR Sequential data set print

See “Appendix C. Batch Utilities in REXX” on page 227 for details. The
utilities with names of the form DSLSDxR are described in the MERVA for
ESA Operations Guide.

Field-Level Access Fields
The list of the fields in the MERVA internal structures that can be accessed
using the FLDG and FLDP API services has been updated. You can now
read the fields of the function table DSLFNTT with the FLDG function. See
“Appendix D. Field-Level Access Fields” on page 269 for details.

x API Guide

Part 1. Using the MERVA ESA Application Program Interface

This part describes the concepts of the MERVA ESA application program interface
(API), the MERVA ESA services that you can use in your application programs,
and various types of programs you might write.

© Copyright IBM Corp. 1987, 2001 1

2 API Guide

Chapter 1. Introduction and Concepts

MERVA ESA provides an application program interface (API) that allows you to
write your own application programs that interact with MERVA ESA. You can
write your application programs in:
v Assembler
v COBOL
v C/370™

v PL/I
v REXX

Programs written in Assembler, COBOL, C/370, and PL/I can run in batch, or as
background or foreground CICS® or IMS™ transactions. You can also use these
languages to write exit routines for MERVA message formatting services (MFS) that
use API services to modify the way MERVA processes messages.

Additionally, you can write batch programs (for MVS™ and VSE) in REXX, which
lets you prototype applications quickly, and provides powerful string and
mathematical functions.

The MERVA ESA API lets you call the following MERVA services from your
application program:
v Queue management services, which you use to manage queue elements (queued

messages)
v TOF (tokenized form) services, which manipulate fields in messages
v Message formatting services, which map messages between the MERVA internal

form and external formats
v Print services to print messages line by line
v Journal services, which read and write records in the MERVA journal
v User file services, with which you can read records from the MERVA ESA user

file
v The operator command service, which lets you execute MERVA operator

commands and to inspect the response
v The WTO service, which sends messages to the operator and to the MERVA

display message table
v Additional services to facilitate programming S.W.I.F.T and EDI messages

MERVA ESA is distributed with a number of sample programs showing how these
API services can be used in each of the supported programming languages. There
are sample batch programs, sample foreground and background transactions, and
sample MFS exit routines.

Some of the most important MERVA ESA API concepts are:
v The interface working storage area (INTWSTOR)
v Parameters for the API services
v Buffers used to move data to and from an application
v How to call DSLAPI
v How to process messages using the API

© Copyright IBM Corp. 1987, 2001 3

The MERVA ESA API is implemented by the MERVA DSLAPI program. To use
MERVA API services, invoke DSLAPI from your application using standard OS
calling conventions:
1. Prepare the various parameters required by the API service you want to use.
2. Call DSLAPI passing it the parameters in a parameter list.
3. When control returns to your program, inspect return codes and any other

results of the call.

In COBOL a simple API service would be called like this:
...
INTFUNC = 'INIT'.
MOVE 0 TO INTCWA.
CALL 'DSLAPI' USING INTWSTOR.
IF INTRC NOT = SPACES THEN
...

The API function to be carried out (INIT) is one parameter to be passed to
DSLAPI. INTRC is the basic DSLAPI return code. Both these fields are defined in
the INTWSTOR structure.

In Assembler you would write:
...
MVC INTFUNC,=C'INIT' The API service
XC INTCWA,INTCWA
LA R1,INTWSTOR ..is specified in this structure
ST R1,PARMLIST ..which is the only parameter
LA R1,PARMLIST ..in this parameter list
L R15,=V(DSLAPI) The API program
BALR R14,R15 (R13 addresses a register savearea)
CLC INTRC,=C' ' The return code
...

These examples show a static call: The DSLAPI program is statically linked to your
application. Of course, you can also link to DSLAPI dynamically. The various ways
of invoking DSLAPI, and how you do it from a CICS environment, which enforces
other conventions, is described in the section “Calling DSLAPI” on page 6.

The parameter list passed to DSLAPI can contain one, two, three, or four
parameters, depending on the API function. Parameters are passed using the
standard OS convention: The address of a parameter list is passed to DSLAPI; this
list is a list of addresses.

Interface Working Storage
The first DSLAPI parameter is always the interface working storage structure. In
the example at the beginning of this chapter, the API initialization call (INIT), the
interface working storage structure (or INTWSTOR) is the only parameter.

The interface working storage is a data structure, defined by the copybook or
include-file DSLAPIWS, which you declare in your program’s automatic storage
(for example, in DFHEISTG under CICS). It is the basic medium of communication
between your program and DSLAPI, and is also used by DSLAPI to hold internal
data structures and storage anchors. INTWSTOR, in effect, defines the API
environment.

Because this environment must first be established before you can begin to use API
services, the first API call must be an INIT call. This causes DSLAPI to set up its

4 API Guide

environment and to initialize your INTWSTOR structure. Similarly, at the end of
your program, you must call DSLAPI one last time with a terminate (TERM) call, so
that DSLAPI can close down the environment in an orderly fashion.

Parameters
In addition to general interface information, INTWSTOR also contains the
parameters specific to the API queue management and message formatting
services. When you use one of these services you indicate precisely what you want
to do by setting these parameters. For example, if you want to add a message to a
MERVA queue, one parameter you must specify is the name of the queue. You set
this name into the INTQUEUE field in the interface working storage structure.

The interface working storage structure is described in detail in “Chapter 8. Data
Structures” on page 81.

Other API Parameter Structures
Parameters for the API queue and message formatting services are defined in the
INTWSTOR structure. Parameters for other services are defined in separate
structures. For example, if you are accessing individual fields in a message (using
TOF services), you must supply a field-reference structure as the second parameter
of the DSLAPI call to identify precisely the field you want. This structure is called
TOFPARM, and is defined in the copybook DSLAPITP. TOFPARM defines the
parameters specific to the API TOF services.

Similarly, when reading or writing the MERVA journal, you must supply the
journal record key as the second parameter of the API call, using the JRNKEY
structure (copybook DSLAPIJK). The fields in this key structure are the parameters
specific to the API journal services. Additionally, you must supply a buffer for the
journal record.

Buffers

External Buffers
If an API service moves data to or from your application, you must also supply a
buffer for the data. Some buffers have an unvarying length so that you do not
need to supply the length of the buffer. For example, the buffer for the response
from the operator command service must always be 700 bytes long; the response
always contains 10 lines of 70 characters, even if most of the lines are blank.

Other buffers are of variable length. With these buffers you must not only supply
the buffer, but also tell DSLAPI how long the buffer is. There are two ways of
doing this, depending on the type of buffer you are using:

Small buffers

Buffers that are always less than 32KB long have a standard MERVA buffer
format. Such buffers contain a buffer prefix with two half-word binary
length values:
v The buffer length, which does not change after storage for the buffer has

been allocated
v The data length, which defines the length of the data in the buffer at any

one time

Chapter 1. Introduction and Concepts 5

For example, if you are using the API JRNN service to read sequentially
through the MERVA ESA journal, you might allocate a 32,000 byte buffer
for the journal record:

01 JOURNAL-BUFFER.
02 BUFFER-PREFIX.

03 BUFFER-SIZE PIC S9(4) BINARY.
03 filler PIC X(2).
03 DATA-SIZE PIC S9(4) BINARY.
03 filler PIC X(2).

02 JOURNAL-RECORD PIC X(31992).

You would set BUFFER-SIZE to 32,000, the overall size of the buffer, when
you allocate storage for the buffer. After each JRNN call the API journal
service itself will have set DATA-SIZE to the actual length of the journal
record it read plus 4 for the DATA-SIZE part of the prefix. The buffer prefix
structure, BUFFER_PREFIX, is defined by the copybook DSLAPIBP.

Large buffers

For larger buffers (up to 2MB), API services are provided to set the length
fields of buffers with a buffer prefix. Instead of a single parameter
identifying a buffer with a standard prefix, these alternative services
require two parameters: The address of the message buffer, which contains
no prefix, and a fullword binary length value.

This length value is used to define both the buffer size and the actual data
size. For example, the alternative to JRNN for reading the MERVA journal
sequentially is JRLN. When you invoke this service you specify in the
length parameter the size of your buffer; on return, DSLAPI sets the actual
size of the record it read into this length parameter.

Using these new services you can process messages that are smaller than
32KB as well as larger messages.

Internal Buffers
When you use API Queue Management services to access a message in one of the
MERVA message queues you do not supply a buffer yourself. Instead, the API uses
its own internal queue buffer to hold the message. You do not directly manipulate
this buffer. You can only indirectly manipulate it by using API services.

For example, when you use a Message Formatting service to map a message from
the internal MERVA form to an external format, or you use TOF services to extract
fields from a message, you are accessing the message in this internal queue buffer.
This is discussed in more detail in the section “Processing Messages with DSLAPI”
on page 10.

Calling DSLAPI
Unless your application is running in the CICS environment, use standard OS
calling conventions to call DSLAPI. Do one of:
v Combine DSLAPI and your application into a single executable module using

the linkage editor (this means that your application is statically linked to
DSLAPI).

v Link your application separately from DSLAPI and establish the connection to
DSLAPI at run time (this involves dynamic linkage).

Whichever method you choose, refer to your programming language manuals for
any special considerations on static and dynamic calling. The DSLAPI program is

6 API Guide

an Assembler program, is reentrant, runs in 31-bit addressing mode (AMODE 31),
and can reside either below or above the 16MB boundary (RMODE ANY).

Static Call
The following example shows how to call DSLAPI using static calling from an
assembler language application program:

EXTRN DSLAPI
ADSLAPI DC A(DSLAPI) ADDRESS OF API PROGRAM
PARMLIST DC A(WS) PARAMETER LIST

DC A(0) ..MAY CONTAIN UP TO
DC A(0) ..FOUR PARAMETERS
DC A(0)

WS DS CL(INTWSTLL) INTWSTOR
...
LA R9,WS ESTABLISH BASE-REGISTER..
USING INTWSTOR,R9 ..FOR THE INTERFACE WORKING STORAGE
...
LA R1,PARMLIST LOAD ADDRESS OF PARMLIST
L R15,ADSLAPI LOAD ADDRESS OF API PROGRAM
BALR R14,R15 BRANCH TO API PROGRAM
...

Static calling is used in the MERVA ESA sample programs because it is simpler
than dynamic calling, but it has several disadvantages. For example, applications
need to be re-linked when service updates are applied to DSLAPI, or when you
install a new release of MERVA ESA.

Dynamic Call
Using dynamic calling keeps your applications completely separate from MERVA
programs. Only while an application is executing is a link to DSLAPI established.
This means that applications do not need to be re-linked when service updates are
applied to DSLAPI, or when you install a new release of MERVA ESA.

In COBOL you specify dynamic calling by using a variable as the program name
in a call statement or by specifying the DYNAM compiler option:

...
77 API-PROGRAM PIC X(8).
...
MOVE 'DSLAPI' TO API-PROGRAM.
CALL API-PROGRAM USING INTWSTOR.
...

In other languages, you must explicitly load DSLAPI yourself before you want to
call it for the first time. In C, for example, you use the library function fetch:
...
#include "dslapc.h" /* DSLAPI definitions */
#include <stdlib.h>
typedef void API();

int main(int argc, char *argv[]) {
API * api_ptr;
struct INTWSTOR ws;
...
api_ptr = (API *) fetch("DSLAPI"); /* dynamically link DSLAPI */
if (api_ptr == NULL)... /* .. failed */
memcpy(ws.INTFUNC,"INIT",4);
ws.INTCWA = NULL;
api_ptr(&ws); /* invoke DSLAPI */

Chapter 1. Introduction and Concepts 7

if (memcmp(ws.INTRC," ",2) != 0)
...
release(api_ptr); /* release DSLAPI */
}

Similarly in PL/I you use the fetch and release statements:
...
dcl dslapi entry options(assembler,inter);
%include dslapiws;
...
fetch dslapi;
allocate intwstor;
INTFUNC = 'INIT';
unspec(INTCWA) = 0;
call dslapi (intwstor);
if INTRC ¬= ' ' then do;
...
free intwstor;
release dslapi;
return;

In MVS Assembler you would use the LOAD and DELETE macros:
...
COPY DSLAPIWS DSLAPI INTERFACE WORKING STORAGE
...
LOAD EP=DSLAPI LOAD *DSLAPI*
ST R0,ADSLAPI SAVE ENTRY-POINT-ADDRESS
XC INTCWA,INTCWA
MVC INTFUNC,=C'INIT' FUNCTION = I N I T
LA R1,ASMPARM DSLAPI PARMLIST
L R15,ADSLAPI ADDRESS OF DSLAPI
BALR R14,R15 INITIALIZE DSLAPI
...
DELETE EP=DSLAPI FREE *DSLAPI*
...

CICS Considerations
CICS does not support the standard OS convention for parameter passing. It
defines its own application-independent parameter list, one parameter of which
(the CICS COMMAREA) is the application-specific parameter list. You have to
build the API parameter list in the COMMAREA before passing control to DSLAPI.

Setting Addresses with COBOL
The API parameter list is a sequence of addresses. If you are using COBOL, you
cannot set these addresses into the CICS COMMAREA unless all the parameters
are defined in the linkage section (in which case you can use the SET TO
ADDRESS statement). For the case where the parameters are not defined in the
Linkage Section, MERVA ESA provides an additional routine, DSLAPIPL, which
builds the parameter list for you. You call DSLAPIPL just as you would call
DSLAPI directly, and provide additionally, as the first two parameters, a 72-byte
work area and the address of your CICS COMMAREA:

PP DSLAPIPL (workarea , commarea , INTWSTOR , ...) PQ

DSLAPIPL merely moves the addresses of the parameters into the COMMAREA,
then returns control to your COBOL program, after which you can invoke the API
service.

8 API Guide

For an example of the use of DSLAPIFL, see “Alternative API Entry Name” .

Alternative API Entry Name
Under CICS:
v You cannot call DSLAPI statically; you must use dynamic linkage
v You cannot use the language-specific mechanisms for dynamic calls discussed in

the previous section; you must use CICS services, specifically EXEC CICS LINK

Because DSLAPI expects to receive a standard OS parameter list, MERVA ESA
provides an interface module, DSLAPCIC, which accepts the CICS parameter list
and transforms it into the form expected by DSLAPI before passing control to
DSLAPI. When invoking the API under CICS, your program must call DSLAPCIC
instead of DSLAPI.

The following COBOL example shows the use of DSLAPIPL to set the API
parameter list. Note that DSLAPIPL is statically linked to the application, while a
dynamic call is made to DSLAPCIC.

...
working storage section.
copy dslapiws.
01 api-parm-list.

02 parm pointer occurs 4.
01 workarea.

02 filler pointer occurs 18.
procedure division.

move 'INIT' to intfunc
move 0 to intcwa
call 'DSLAPIPL' using workarea, api-parm-list, intwstor
exec cics link program('DSLAPCIC')

commarea(api-parm-list) length(4) end-exec
if intrc not = spaces then
...

Here is the same program written in C/370. It is not necessary to use DSLAPIPL to
set up the API parameter list:
...
#include <cics.h>
#include "dslapc.h" /* API definitions */

int main() {
struct INTWSTOR ws;
struct {struct INTWSTOR *parm1; /* CICS commarea */

char *parm2;
char *parm3;
} ca;

...
memcpy(ws.INTFUNC,"INIT",4);
ws.INTCWA = NULL;
ca.parm1 = &ws;;
EXEC CICS LINK PROGRAM("DSLAPCIC") COMMAREA(&ca) LENGTH(4);
if (memcmp(ws.INTRC," ",2) != 0) }
...

IMS Considerations
When DSLAPI runs in an MPP under control of an IMS transaction, DSLAPI needs
the address of the PCB list, which IMS passed to your application program as the
calling parameter list address. The PCB list is needed to perform MERVA ESA file
service requests by accessing IMS databases such as the SWIFT Link currency file.

Chapter 1. Introduction and Concepts 9

After the API INIT function has been called, the PCB list address must be set into
the field COMPCBLA. To set the address, use the FLDP service with field name
COMPCBLA.

Processing Messages with DSLAPI
MERVA ESA is a message-processing system. Within MERVA, messages are held in
message queues. Messages in queues are in a MERVA internal format called
compressed tokenized form, or compressed TOF. When you are handling messages in
the internal format, you do not have direct access to the message; the message is
managed for you by DSLAPI, and you must use API services to access the
message.

When you write an application using API services, you will probably want to
process messages in one or more of the following ways:

Reading
For example, to gather statistics on messages in a particular queue or
queues.

Updating and routing
If you are going to route messages from one queue to another, or update
messages, you should indicate that you want exclusive use of the message.

Exporting
Removing messages from the MERVA system involves two API steps:
retrieving the message from its queue into the internal form, and
transforming the message from the MERVA-internal form to an external
format.

Importing
To import messages into the MERVA system two API steps are again
necessary, mapping the message from external to internal format, and then
adding the message to one or more queues.

Printing
Also to print messages two API steps are necessary: retrieving the message
from its queue into the internal form, and formatting the message into
print lines.

Reading
To read messages from queues, use a queue management service such as GET. GET
is intended for read-only sequential queue retrieval. Do not use GET if you are
going to modify the message; instead use a queue management service that gives
you exclusive control of the message.

To extract fields from the retrieved message you use the TOF READ service:
...
perform until intrc not = spaces

move 'GET ' to intfunc
call 'DSLAPI' using intwstor
if intrc = spaces then

* now the message is in API internal storage
move 'READ' to intfunc
move field-name to toffdnam
move 'VFIRST' to tofmodif
call 'DSLAPI' using intwstor tofparm tof-data

...
end-perform

10 API Guide

Note that you do not provide a buffer when you retrieve a queued message;
instead, the message is held by DSLAPI in an internal buffer. But you do specify a
buffer for the field you read (in this example, tof-data).

Updating and Routing
Before you update or route a message, indicate that you want exclusive access to
the message. Otherwise, someone else might simultaneously update or route the
message, and the results will be unpredictable. To indicate tha you want exclusive
use of a message, retrieve it using a queue function that sets the in-service indicator,
for example:

GETC For direct access to a message

GETK For direct keyed access to a message

GETN If you are processing a queue sequentially

Other programs can still read a message flagged in-service by using a nonexclusive
GET, but attempting to read it with an exclusive get will fail with an appropriate
return code.

After it is retrieved, the message is in the API internal buffer. To update the
message, that is, to update fields in the message, you use TOF services. You can
READ fields, update or add fields (WRIT), and delete fields (EMPT).

You can then write the message back into the same queue again using the queue
management replace (REPL) service, or invoke a routing table to route the message
to other queues (ROUB). If, after inspecting the message, you decide you do not
want to update or route it, you can relinquish exclusive access using the FREE
service.

To route a queue element from one queue to another without updating or
inspecting it, you can use the ROUD and ROUN function. This avoids retrieving
the message into the internal queue buffer.

Exporting
To export or remove a message from the MERVA system, first retrieve the message
from its queue using a function that indicates you want exclusive access (GETC,
GETK, or GETN). Then, use API message formatting services to transform the
message from internal form (***TOF?) to the external format you require. For
example, if the message is a S.W.I.F.T message and you want the message in
SWIFT II format, specify format identifier W.

After extracting the message, you must delete it from the queue explicitly using
the queue delete service (DELE), for example:

...
move our-key to intkey1
move queue-name to intqueue
move 'GETK' to intfunc
call 'DSLAPI' using intwstor

* the message is now in API internal storage
move 'W' to intfrmid
move 'MSGG' to intfunc
move length of msgswift-buffer to msg-length
call 'DSLAPI' using intwstor msgswift-buffer msg-length

* the message is in 'msgswift-buffer' in SWIFT-II format
...

Chapter 1. Introduction and Concepts 11

move 'DELE' to intfunc
call 'DSLAPI' using intwstor

* the message has been deleted from the MERVA queue
...

If, instead of exporting the message, you are merely copying messages from the
MERVA system, your program would be similar but you would not need exclusive
access to the message in the queue. Instead of the GETK service you would use
GEKU (for read-only, keyed retrieval).

Importing
To import messages into the MERVA system, two API steps are necessary:
v Use a message formatting service to transform (map) your external message to

an API internal buffer in the MERVA-internal format (***TOF?).
v Then, write the message from the API internal buffer to a queue or queues. You

can write to a specific queue using PUT, or invoke a routing table to determine
the target queue (or queues) from the message content (ROU service). To
identify a routing table, supply the MERVA function name (queue name) with
which the routing table is associated:

...
move 'S100' to intmsgid
move 'W' to intfrmid
move 'MSGP' to intfunc
move length of msgswift-buffer to msg-length
call 'DSLAPI' using intwstor msgswift-buffer msg-length

* the message is now in API internal storage
move function-name to intqueue
move 'ROU ' to intfunc
call 'DSLAPI' using intwstor

* the message has been routed to one or more queues
...

If you are not using a MERVA-supplied routing table, you must write one
yourself (how to do this is described in the MERVA for ESA Customization Guide).

Printing
To print a message, first retrieve it from its queue, then use the:
v PRTI service to customize the printing environment (if necessary)
v PRTL service to print it line by line to a system printer or a file
v PRTT service to terminate the printing environment and release the resources

12 API Guide

Chapter 2. The MERVA ESA API Services

This chapter discusses the various MERVA ESA services you can use via the API:
v Queue management services, which you use to manage queue elements (queued

messages)
v TOF services, which manipulate fields in messages
v Message Format Service (MFS) services, which map messages between the

MERVA internal form and external formats
v Print services to print messages line by line
v Journal services, which read and write records in the MERVA journal
v User file services, with which you can read records from the MERVA ESA User

file
v The Command (CMD) service to execute operator commands
v The WTO service, which sends messages to the operator.

Queue Management Services
The DSLAPI queue management services let you manipulate queue elements in
MERVA ESA queues. A queue element is a message in the internal MERVA ESA
format, that is, in tokenized form (or TOF). Queue elements are identified by:
v The name of the queue containing the queue element.
v The queue sequence number (QSN) of the element. A QSN is unique within a

queue.
v Optionally, one or two symbolic keys (if the queue has been defined with keys).

Keys are not necessarily unique.

Internal Queue Buffer
Central to queue management services is the internal queue buffer, in which
DSLAPI holds the messages it reads from a queue or is to write to a queue. You
cannot access this buffer directly. Instead, you use API TOF services to modify a
message in this internal buffer, and API message formatting services (MFS) to
transfer a message between the internal buffer and your own, external buffer.

Overview of Queue Management Functions
Using API queue management functions you can list, retrieve, insert, replace,
delete, and route queue elements.

When retrieving a message you can indicate that you want:
v Exclusive use of the message, for example if you intend to update or remove it.

The queue element is flagged as being in-service to prevent other users from
trying to simultaneously update the message, which might result in lost updates.

v Nonexclusive use of the message, for example if you just want to read the
message. This is referred to as browsing, and lets you read messages, even if they
are exclusively held by other users.

Note: MERVA ESA does not prevent a message flagged as being in-service from
being updated by another application. It is the responsibility of application

© Copyright IBM Corp. 1987, 2001 13

programmers to respect this flag. Refer to MERVA for ESA Concepts and
Components for more information on the in-service indicator.

You can retrieve messages:
v Sequentially, by ascending QSN.
v Directly by QSN.
v Directly by key, if the queue has been defined with keys. Note that keys need

not be unique.

And, since the API updates the queue management parameters after each
invocation, you can freely alternate between direct and sequential retrieval.

To list the elements in a queue, use the following functions:

QLF Retrieves the first QSN and the key values for a MERVA ESA queue.

QLL Retrieves the last QSN and the key values for a MERVA ESA queue.

QLN Retrieves the next QSN and the key values for a MERVA ESA queue.

QLP Retrieves the previous QSN and the key values for a MERVA ESA queue.

The following retrieval functions give you exclusive use of messages; use them to
read messages you intend to update or move:

GETC The get conditionally function retrieves the specified queue element from the
specified MERVA ESA queue and puts it in the internal queue buffer, but
only if the queue element is not in-service.

GETK The get by key function retrieves the queue element with the specified key
from the MERVA ESA queue and puts it in the internal queue buffer.

GETN The get next function retrieves the next queue element that is not in-service
from the specified MERVA ESA queue and puts it in the internal queue
buffer.

The following retrieval functions give you nonexclusive use of messages; use these
functions for read-only access to a queue. They are nonexclusive because they
allow you to retrieve all messages, even those that have been flagged in-service by
other users:

GET The get unconditionally function retrieves the queue element with the
specified QSN from the MERVA ESA queue and puts it in the internal
queue buffer.

GETU The get next unconditionally function browses the next queue element from
the MERVA ESA queue and puts it in the internal queue buffer.

GEKU The get by key unconditionally function browses the queue element with the
specified key from the MERVA ESA queue and puts it in the internal
queue buffer.

The following functions are used to write messages to queues. The PUTB and
ROUB functions require a back reference to an existing queue element, which will
be automatically deleted at the same time as the new message is enqueued. This
automatic delete facility ensures queue integrity when moving messages from one
queue to another:

REPL The replace function replaces the specified queue element with the queue
element in the internal queue buffer.

14 API Guide

PUT The put function appends the queue element from the internal queue
buffer to the specified MERVA ESA queue. Use this service when adding a
new message to a queue.

PUTB The put with back reference function appends the queue element from the
internal queue buffer to the specified MERVA ESA queue, automatically
deleting the message specified in the back reference. Use this service when
moving a message from one queue to another.

PUTR The restore function writes the queue element from the internal queue
buffer to the specified MERVA ESA queue with the specified QSN, keys,
and DOUBLE (write-back) indicator. Use this service when reloading
messages to a queue.

ROU The route function routes the queue element from the internal queue buffer
to one or more MERVA ESA queues selected by the routing table of the
specified MERVA function. Use this service when introducing a new
message to the MERVA queuing system.

ROUB The route with back reference function routes the queue element from the
internal queue buffer to one or more MERVA ESA queues selected by the
routing table of the specified MERVA function, automatically deleting the
message specified in the back reference. Use this service when routing a
message from one queue to another.

ROUD
The direct route function takes the queue element with the specified QSN
from the MERVA ESA queue and routes it to one or more MERVA ESA
queues selected by the routing table of the specified MERVA function. The
queue element is also put in the internal queue buffer. Use this service
when routing a queue element unchanged from one queue to another.

ROUN
The route next function takes the next queue element with a QSN higher
than the specified QSN from the MERVA ESA queue and routes it to one
or more MERVA ESA queues selected by the routing table of the specified
MERVA function. The queue element is also put in the internal queue
buffer. Use this service when routing a queue element unchanged from one
queue to another.

The remaining queue management functions are:

DELE The delete function deletes the specified queue element from its queue.

FREE The free function turns off the in-service indicator of the queue element in
the MERVA ESA queue. Use this service to relinquish exclusive use of a
message if you decide not to update a message you obtained with an
exclusive retrieval.

Refer to “Chapter 9. DSLAPI Functions” on page 97 for a description of each of
these functions.

Use of the BUSY (In-Service) Indicator
The BUSY, or in-service, indicator shows whether another user has acquired
exclusive access to a queue element. The BUSY indicator is contained in the field
INTBUSY of INTWSTOR.

The BUSY indicator is returned after:

Chapter 2. The MERVA ESA API Services 15

v Any nonexclusive retrieval of a message that has been exclusively retrieved by
another user. Despite the in-service status, the message is retrieved.

v A direct retrieval for exclusive use if the message has already been exclusively
obtained by another user. Your retrieval will not be successful.

v A sequential retrieval for exclusive use if all the remaining messages in the
queue have already been exclusively retrieved by other users. Your retrieval will
not be successful.

A message’s BUSY indicator is cleared by:
v The FREE function
v The PUTB function
v The ROUB function

Note: The BUSY indicator is not cleared by a REPL, and is not preserved after
MERVA ESA termination.

Use of the DOUBLE (Write-Back) Indicator
The DOUBLE, or write-back, indicator is returned in the field INTDOUBL of
INTWSTOR. The indicator is set on in a queue element when the element is read
by an exclusive retrieval. The flagged element is then written back to the queue
data set to preserve the indicator across MERVA ESA termination/startup. It is
intended as a recovery aid for programs removing messages sequentially from the
MERVA ESA message queuing system. It can otherwise be ignored.

If the DOUBLE indicator is not needed, you can suppress its use for performance
reasons. Refer to “Runtime Environment Settings” on page 52 for details about the
flag APICQWRB, which allows you to suppress the writing of the DOUBLE
indicator.

Messages being exported from MERVA should be held in their own queue to
which no users have access. A program exporting the messages, for example, to a
sequential data set, should first copy the messages sequentially from the queue.
Then, when all messages have been copied, the program can delete the messages
from the queue. Following abnormal termination, the program can use this
indicator to determine where to restart.

The indicator is used by the MERVA batch output programs DSLSDO and
DSLSDOR and the print transaction program DSLHCP. Be careful that your
application does not interfere with the message queues of these programs.

The DOUBLE indicator is discussed in more detail in MERVA for ESA Concepts and
Components where it is called the write-back indicator.

Automatic Delete
The functions PUTB and ROUB ensure message integrity when moving messages
from one queue to another by using a back reference to delete the queue element
only after it has been moved. Using this mechanism, MERVA ESA ensures that
messages can never be lost or duplicated, even if there is an abnormal system
termination during the PUTB or ROUB process.

The following PL/I example moves all messages from QUEUEA to QUEUEB
(afterward, QUEUEA is empty):

16 API Guide

...
saveqsn = 0; /* read from the beginning of the queue */
do until (intrc ¬= ' ');

intfunc = 'GETN'; /* get sequential exclusive */
intqsn = saveqsn; /* ..the msg after this qsn */
intqueue = 'QUEUEA'; /* ..from this queue */
call dslapi (intwstor);
if intrc = ' ' then do; /* a message is now in the int. buffer */

saveqsn = intqsn; /* save qsn of gotten message */
intfunc = 'PUTB'; /* put with automatic delete */
intbque = intqueue; /* ..from this queue */
intbqsn = intqsn; /* ..with this qsn */
intqueue = 'QUEUEB'; /* ..into this queue */
call dslapi (intwstor);
put skip edit ('moved from',intbque,intbqsn,'to',intqueue,intqsn)

(2(2(a,x(1)), f(9),x(1)));
end; /* if */

end; /* do */
...

Tokenized Form (TOF) Supervisor Services
MERVA ESA is a system for managing formatted messages. Formatted messages
have a defined data-field structure. This structure can be complex, with repeated
sequences of fields, nested sequences of fields, and nested (embedded) messages.
Fields, too, can be divided into subfields and multiple data areas.

If a message is in tokenized form (TOF), you can use API TOF services to
manipulate its fields. You can read, write, or delete TOF fields, sequences of fields,
embedded messages, subfields, and data areas of fields. The concepts of TOF, the
TOF supervisor, and the field-address structure are explained in MERVA for ESA
Concepts and Components and MERVA for ESA Customization Guide.

Note: MERVA ESA provides two alternative application interfaces for reading and
writing fields in a S.W.I.F.T message. Instead of using API queue and TOF
services you can use these alternative services to read and write fields in
S.W.I.F.T messages. These alternative interface programs, DSLAPFFS and
DSLAPFTS, are described in “Chapter 7. Auxiliary API Services” on page 59.

Overview of TOF Supervisor Functions
The following functions are used for TOF field management:

READ The read function reads a field from the internal queue buffer through the
internal TOF and puts it in the field buffer.

WRIT The write function writes a field from the field buffer through the internal
TOF to the internal queue buffer.

EMPT The empty function deletes a field in the internal queue buffer.

Refer to “Chapter 9. DSLAPI Functions” on page 97 for a description of each of
these functions. Their precise function can be varied by specifying modifiers (see
“Request Modifiers” on page 87).

API TOF Parameters
Like all other API calls, the first parameter of a TOF service call must be the
interface working storage structure (INTWSTOR). All TOF service calls require as
their second parameter the TOF parameter structure, TOFPARM (copybook
DSLAPITP). Before invoking a TOF service you must define the field you want to

Chapter 2. The MERVA ESA API Services 17

access by setting values, the field reference, into the TOFPARM. After the call your
current position in the TOF is returned in the TOFPARM structure.

The TOFPARM also contains the return codes and reason codes from the TOF
supervisor. Note that the INTRC return code in INTWSTOR merely indicates
whether DSLAPI successfully invoked the TOF supervisor; the result of the TOF
service is given by the TOFPARM codes.

Refer to “TOF Access Parameters TOFPARM” on page 85 for a description of the
TOFPARM structure.

When reading or writing data you must specify a third parameter, the MERVA
buffer, into which data is to be read, or from which data is to be written.

The Internal TOF Buffer
A message in TOF form is held in an API internal buffer. You cannot manipulate
this buffer directly; you can only manipulate the contents of a message by using
API TOF services. The internal TOF buffer is an expanded form of the internal
queue buffer. When using API services, these two internal buffers are logically
identical: If there is a message in the internal queue buffer, you can immediately
use TOF services to access its contents. You do not explicitly move a message
between the TOF and queue buffers.

Defining a Field Buffer
With the READ and WRIT functions you must define a buffer, with a standard
MERVA buffer prefix, for the field data. See the description of small buffers in
“External Buffers” on page 5.

Notes:

1. When reading, if the length of the data is not 0, DSLAPI sets the actual data
length to the length plus 4 (LL). If the length is 0, DSLAPI fills the buffer with
blanks.

2. When writing, DSLAPI uses the specified length or, if no length is specified, it
calculates the length from the data in the buffer by finding the last non-blank
character.

Message Formatting Services (MFS)
The Message Format Services (MFS) map (transform) messages from external to
TOF format, and vice versa. In MERVA ESA, a message is described by a message
control block (MCB). The MCB defines both the message (that is, the sequence of
fields that make up the message) and its various external formats (that is, its
layouts on panels, printers, and networks).

Overview of MFS Functions
The following functions are provided by the Message Format Service:

MSGG The message get function maps the message from the internal queue
buffer through the internal TOF to the message buffer.

MSGP The message put function maps the message in the specified format
from the message buffer through the internal TOF to the internal
queue buffer.

MPFG The message prefix get function extracts just the MSGSWIFT_PREFIX
structure (see copybook DSLAPIMP).

18 API Guide

MPFP The message prefix put function can be used to import the fields
from the MSGSWIFT_PREFIX structure.

The following functions can be used with messages smaller than 32KB:

GETS The get SWIFT message function maps the message in SWIFT
format from the internal queue buffer through the internal TOF to
the message buffer.

GETM The get message function maps the message using the specified
MCB and the specified format from the internal queue buffer
through the internal TOF to the message buffer.

PUTS The put SWIFT message function maps the message in SWIFT
format from the message buffer through the internal TOF to the
internal queue buffer.

PUTM The put message function maps the message in the specified format
from the message buffer through the internal TOF, to the internal
queue buffer.

Refer to “Chapter 9. DSLAPI Functions” on page 97 for a description of each of
these functions.

In addition to a buffer for the message in its external form, the MFS needs to know
the message type, that is, which MCB to use, and the external format identifier.
These two parameters are specified in the INTMSGID and INTFRMID fields of the
interface working storage INTWSTOR.

Importing Messages and Determining Message Types
When importing a message into the MERVA ESA system, MERVA needs to know
the messages type. If you do not know the message type, leave the message type
parameter (INTMSGID) blank, and MERVA uses message type determination exit
routines to determine the type of the message.

MERVA ESA provides message determination exit routines for the message types
it supports: SWIFT messages, Telex messages, and financial EDIFACT messages.
You can write your own message type determination exit routines (see exit
DSLMU054 in the MERVA for ESA Customization Guide).

Exporting Messages
When exporting a message from MERVA, you can specify the message type
parameter (INTMSGID), but it is better not to. This is because the message type is
known by MERVA; the message identification is stored with the message when it
is created. When INTMSGID is set to blank, the original message identification is
used. If you specify the wrong type, the message will be formatted using any
fields MFS finds that are also defined in the MCB you specify. The result will be an
incomplete message.

However, you should specify the format in which you want the message to be
mapped (parameter INTFRMID). If you leave the format identifier blank, MFS will
use as a default the first format defined in the MCB. This is not recommended
because new formats might be added to the MCB.

Refer to “Message Exit Fields” on page 54 for information on exit fields that you
can use to determine the message type in nested and combined messages.

Chapter 2. The MERVA ESA API Services 19

The MFS Message Buffer (MSGSWIFT)
When you use API MFS services, you must provide, as the second parameter of
the DSLAPI call, a buffer for the external form of the message. This buffer is called
MSGSWIFT, and for the GETS, GETM, PUTS, and PUTM functions, its layout is
defined by the copybook DSLAPIMS.

MSGSWIFT is comprised of a header (prefix), defined by the structure
MSGSWIFT_PREFIX in the copybook DSLAPIMP, followed by the actual message
in a standard MERVA buffer. The overall length of the MSGSWIFT buffer is
defined in the MERVA ESA parameter module, DSLPRM. Because DSLAPI takes
the length from DSLPRM and initializes the buffer accordingly, you must ensure
that the buffer in your program is as long as the length given in DSLPRM. DSLAPI
does not check to see if the storage area provided by your application program is
large enough. If your storage area is too small, DSLAPI will overwrite other data
in your program with unpredictable results.

When using the MSGG and MSGP functions, you must supply the following
parameters:
v The address of a buffer to hold the message. This buffer contains neither the

MSGSWIFT prefix nor a MERVA buffer prefix.
v The length of the buffer, when exporting a message (MSGG), or of the message

in the buffer when importing a message (MSGP).

Print Services
The print services let you print the message that is currently in the internal buffer
line by line to a system printer or a file.

Overview of the Print Message Functions
The following functions are provided by the API print services:

PRTI The print initialize function initializes the print environment.

PRTL The print next line function formats the next line to be printed. The calling
application may choose to actually print the result line in the buffer.

PRTT The print terminate function terminates the formatting of messages for the
printer. The resources used for creating the print lines are released.

Refer to “Chapter 9. DSLAPI Functions” on page 97 for a description of each of
these functions.

Journal Services
With the API journal services, you can read and write records from the
MERVA ESA journal. All journal records have a key. The journal key consists of
the following parts:
v A journal record type identifier (JRNRID). The record types used by MERVA are

listed in MERVA for ESA Concepts and Components. You can use your own types.
v A time stamp (JRNKDAT2, JRNKTIM2, and JRNKFRC2), which is generated by

MERVA.
v Segment information for segmented records (JRNKSEG and JRNKSEGS), which

is generated by MERVA.
v A user-key extension (JRNKUFLD or JRNKUSER). This field can be used by the

application.

20 API Guide

The journal-key structures, JRNKEY and JRN2KEY, are defined by the copybook
DSLAPIJK.

Overview of Journal Functions
The following functions are used for journal record management:

JRLG The journal get function reads the journal record with a key equal to the
journal key from the MERVA ESA journal and puts it in the buffer you
supply. If the key does not exist, the record with the next higher key is
returned, so you can provide an incomplete or generic key.

JRLN The journal get next function reads the journal record with the next higher
journal key from the MERVA ESA journal and puts it in the buffer. Use
this function to read the journal sequentially.

JRLP The journal put function adds a record from the buffer to the MERVA ESA
journal. You provide the record type ID and the user-key extension,
MERVA generates the time stamp.

JRNG This is similar to JRLG but supports only journal records of up to 32KB.

JRNN This is similar to JRLN but supports only journal records of up to 32KB.

JRNP This is similar to JRLP but supports only journal records of up to 32KB.

Refer to “Chapter 9. DSLAPI Functions” on page 97 for a description of each of
these functions.

Defining a Journal Record Buffer
When using the functions JRLG, JRLN, and JRLP, you must supply the following
parameters:
v A buffer, which does not contain a buffer prefix
v The length of the buffer

When using the functions JRNG, JRNN, and JRNP, you must supply a buffer with
a standard MERVA buffer prefix for the journal record. See the description of small
buffers in “External Buffers” on page 5.

Note: The sum of the maximum record length and an additional 50 bytes for the
journal key must not be larger than the maximum record length specified in
both the journal cluster definition and the JRNBUF parameter of the
MERVA ESA customizing table (DSLPRM).

User File Services
The user file services allow you to read records from the MERVA ESA user file.
The user file is described in MERVA for ESA Concepts and Components.

Use of this API service is automatically recorded in the MERVA ESA journal by
DSLAPI. The journaled user ID is taken from the APIUID parameter in the
MERVA ESA parameter module, DSLPRM.

If EXDSP=NO is specified in DSLPRM, then access to the user file by application
programs is suppressed.

Overview of the User File Functions
The following functions are provided by the API user file services:

Chapter 2. The MERVA ESA API Services 21

USRG The user file get function reads the user file record for the specified user
identification.

USRN The user file get next reads the user file record following the record for the
given user identification. Use this service to read sequentially through the
user file.

Refer to “Chapter 9. DSLAPI Functions” on page 97 for a description of each of
these functions.

The User file functions require two parameters:
v A user ID.
v A buffer for the retrieved user file record. The buffer does not have a MERVA

buffer prefix; its record structure, DSLUSRS, is defined by the copybook
DSLAPIUS.

Operator Command Service
The command execution function lets your application program execute the same
commands that can be entered from the online CMD panel; that is, all commands
supported by the MERVA ESA Operator Command Service. The Operator
Command Service is described further in MERVA for ESA Concepts and Components.

This capability is provided by the API function CMD, which requires two
fixed-length parameters:
v A pointer to the storage area containing the command to be executed. This area

is 120 bytes long.
v A pointer to the area where the response is to be stored. This area is 700 bytes

long and does not have a MERVA buffer prefix. The response is always returned
in this area as 10 lines of 70 characters, just as the response would appear on a
terminal.

The result of the command execution is journaled by MERVA ESA. The operator
user ID in the journal record is taken from the APIUID parameter of the
MERVA ESA customizing table, DSLPRM.

Write-to-Operator Service
A write-to-operator (WTO) service is provided by the API. It lets unsolicited
operator messages be written to the system console and added to the MERVA ESA
display message table. The WTO function code is WTO.

The WTO function requires a single parameter: a buffer containing the operator
message to be passed to the MERVA nucleus. This buffer does not contain a
MERVA buffer prefix. Refer to “Chapter 9. DSLAPI Functions” on page 97 for a
description of this function.

22 API Guide

|
|

|
|
|
|

|
|
|

Chapter 3. Writing an API Program

This chapter describes various types of application programs you might want to
write using the MERVA ESA API, and some things you should consider when
writing them. The following types of application program are considered:
v Batch programs
v Nonconversational transactions
v Conversational transactions
v Pseudoconversational transactions

For more information about writing transactions, refer to the CICS/ESA Application
Programming Guide or IMS/ESA Application Programming: Design Guide.

Writing a Batch Program
You write a batch API program just as you write any other batch program: as an
independent program that will run in its own region, or partition, separate from
MERVA ESA.

Some MERVA ESA API services (for exampleTOF and MFS) use MERVA direct
services that can be used independently of an active MERVA ESA system. Other
API services, in particular queue management services, invoke MERVA central
services, which means that a MERVA ESA system must be active in another
region. For these services, the DSLAPI program uses MERVA intertask
communication to pass your request to MERVA. Direct and central MERVA
services are discussed in MERVA for ESA Concepts and Components.

Before any API program can begin to use API services, it must first set up an API
environment. It does this by calling the API initialization function INIT. Before
terminating, it must close the API environment by issuing the API termination call
TERM. Between the INIT and TERM calls, your program can invoke any of the
API services. Some services require storage buffers that you must establish before
the service is called. The parameters and storage areas required by each API
function are described in “Chapter 9. DSLAPI Functions” on page 97.

Figure 1 on page 24 shows a very simple but complete COBOL batch API program
that sends a MERVA operator command to MERVA, then prints out the result.

© Copyright IBM Corp. 1987, 2001 23

Description:
v The copy statement in line 5 declares the API interface working storage structure

(INTWSTOR) by including the copybook that defines the structure (DSLAPIWS).
All API programs must include this structure.

v The INTWSTOR variable INTFUNC must be assigned the code of the API
function that is to be executed. In line 10, this variable is set to INIT, which is
the initialization function code.

v In line 11, the variable INTCWA is set to 0 to indicate that the program runs in a
batch environment.

v In line 12, the API program (DSLAPI) is invoked to do the initialization.
v Also defined in the INTWSTOR structure is API return information. In line 13,

the return code (INTRC) is tested. A successful API call is indicated by a return
code of blanks. Another field in INTWSTOR is INTERMSG which, in case of an
error, may contain an explanatory MERVA ESA error message. In line 14, it is
displayed together with the nonblank return code as an error diagnosis aid.

v In line 20, The API CMD function is used to send the DP (display programs)
command to MERVA ESA. The API CMD function requires two parameters in
addition to INTWSTOR: the command to be executed, and a buffer to hold the
response from MERVA.

v In line 30, DSLAPI is called again to terminate the API before the program itself
terminates.

01 identification division.
02 program-id. samp00y.
03 data division.
04 working storage section.
05 copy dslapiws.
06 77 cmdinp pic x(120).
07 01 cmdresp.
08 02 resp-line pic x(70) occurs 10 indexed by i.
09 procedure division.
10 move 'INIT' to intfunc
11 move 0 to intcwa
12 call 'dslapi' using intwstor
13 if intrc not = spaces then
14 display intrc ' ' intermsg
15 goback
16 end-if
17
18 move 'DP' to cmdinp
19 move 'CMD ' to intfunc
20 call 'dslapi' using intwstor, cmdinp, cmdresp
21 if intrc not = spaces then
22 display intrc ' ' intermsg
23 else
24 perform varying i from 1 by 1 until i > 10
25 display resp-line (i)
26 end-perform
27 end-if
28
29 move 'TERM' to intfunc
30 call 'dslapi' using intwstor
31 goback.
32 end program samp00y.

Figure 1. Sample COBOL Batch API Program

24 API Guide

The CMD function uses MERVA ESA central services, so a MERVA ESA system
must be active when this program is run. If the CMD function is successful, the
sample program generates output that looks like this:

If MERVA ESA is not active, the CMD function fails, and the display statement on
line 22 outputs:
02 DSL884I NIC04000 NIC=CMD RC=04

where 02 is the return code held in INTRC.

There are other examples of batch API programs among the sample programs
distributed with MERVA ESA. These are described in “Appendix B. Sample
Programs” on page 203.

Writing a Nonconversational Transaction
A nonconversational transaction is a batch program that is initiated asynchronously
as the result of some event, and that runs in the background. In a MERVA ESA
system, such a transaction is typically associated with a MERVA function, and is
automatically started by MERVA when a message is routed to that function’s
queue.

Input to the transaction is the MERVA terminal user control block (TUCB), the
structure of which defined by the copybook DSLAPITU. This structure provides
some data about the transaction. You read this data using the facilities of your
transaction monitor (CICS or IMS).

Your transaction can use all API services, but as with batch programs your first call
must be an INIT call to establish the API environment. If the transaction was
automatically started by messages being routed to a queue, use API queue
management services to retrieve the messages from the queue.

If the transaction is running in a CICS environment, you must use the API CICS
interface routine when invoking DSLAPI. This is discussed in “Alternative API
Entry Name” on page 9.

For more information on how to automatically start your transaction, refer to the
chapter on coding MERVA ESA applications for automatic start in the MERVA for
ESA Customization Guide.

An example CICS transaction for automatic start (DSLBA06) is distributed with
MERVA ESA and described in “Sample Transaction for Automatic Start” on
page 212.

DSL102I Display Programs
Progname PID Y S P A Status LRC Progname PID Y S P A Status LRC
RTCOMM 1 6 N N Y ACTIVE 00 CONSOLE 2 9 Y Y Y ACTIVE 00
BATCH 3 4 N N Y ACTIVE 00 TRANSACT 4 5 N N Y ACTIVE 00
SYNPOINT 5 6 Y Y Y INACTV 00 MSGCOUNT 6 6 N N Y ACTIVE 00
DSLNSFPP 7 2 N N Y ACTIVE 00 APPCSRV1 8 5 Y Y N INACTV 00
MQISRV1 9 5 Y Y N INACTV 00 CICSSRV 10 5 Y Y Y ACTIVE 00
SWIFTAUT 11 5 Y Y Y ACTIVE 00 SWIFTII 12 8 Y Y Y ACTIVE 00
SWLOADSK 13 2 Y Y Y ACTIVE 00 TELEX 14 7 Y Y N INACTV 00

Chapter 3. Writing an API Program 25

Writing a Conversational Transaction
A transaction dialog typically needs to respond to inputs from a terminal, usually
inputs entered by an end user. A conversational transaction implements a dialog as a
single transaction that processes all steps of a dialog without relinquishing its
resources between steps. While the program is waiting for input from the terminal
it will be idle, but will continue to occupy main storage.

You can only write conversational transactions under CICS; under IMS, a dialog
must be pseudoconversational.

Conversational transactions are no more difficult to write than nonconversational
transactions. However, because conversational transactions are long lived and
occupy resources for the whole period, even though for most of the time they are
idle, you may prefer to consider a pseudoconversational approach.

Writing a Pseudoconversational Transaction
A pseudoconversational transaction implements each step of a dialog as a separate
transaction. After each response to a terminal, the transaction terminates. The next
input from the terminal user invokes the program anew, or might invoke a
different program; the various steps of a dialog must not necessarily be processed
by one program.

The main considerations when using the MERVA ESA API in
pseudoconversational transactions are:
v Preserving data between the steps of the conversation
v Commiting and rolling back updated queue elements

The transaction must preserve data before it terminates so that the data can be
restored by the transaction that implements the next step in the conversation. This
data might be one or both of:
v The contents of the internal TOF buffer (if you are updating an existing queue

element or creating a new element)
v The queue name and QSN of any queue elements you have retrieved

If you have retrieved a queue element but have not updated it, you do not need to
save the contents of the internal TOF buffer; instead, you need only save the queue
name and QSN in the SPA (IMS) or transient data area (CICS), then reread the
element in the next dialog step. However, if you have updated a queue element or
created a new message in the internal TOF buffer, then before the transaction
terminates you must save the tokenized form of the message in one of the
following ways:
v In a queue data set, as described in “Saving the Tokenized Form of a Message in

a Queue Data Set” on page 27
v In your own database (IMS) or in temporary storage or transient data (CICS), as

described in “Saving the Tokenized Form of a Message in Your Own Database
(IMS) or in Temporary Storage or Transient Data (CICS)” on page 28

Note: IMS provides a scratchpad area (SPA) for passing data between steps.
However, because the IMS SPA is not intended to hold such large amounts
of data as the tokenized form of a message are likely to be, when using IMS
you should instead write updates to a queue data set or to your own
database between dialog steps.

26 API Guide

|

|
|
|
|
|

|
|

|

|

|
|
|

|
|

|

|
|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|

Saving the Tokenized Form of a Message in a Queue Data Set
Between dialog steps, you can save the tokenized form of a message in a MERVA
queue data set (QDS). Define a separate queue for holding only such uncommitted
updates. Before terminating each dialog step, use API queue management services
to write the updated tokenized form of a message to this temporary queue, and
save the record’s key (its QSN) in the SPA (IMS) or transient data (CICS). The next
transaction can then retrieve the temporary element for the next update step in the
dialog.

For example, consider a dialog with the following steps:
1. The terminal user selects a queue element to be updated.
2. The user updates field-A.
3. The user updates field-B.
4. The user indicates the updates should be committed.

Such a dialog could be implemented with three pseudoconversational transactions
handling initialization, updates, and termination. Pseudocode for these transactions
might look like this.

Initial transaction:
read terminal-user input (source queue name, qsn)
API INIT
API GETN read source queue name with lock (exclusive get)
API PUT write source queue element to temporary queue
API TERM
save source queue name & QSN in SPA
save QSN of temporary queue element in SPA
display element at the terminal
write SPA for next transaction
terminate

Update transaction:
read SPA
read terminal-user input (field to be updated)
API INIT
API GETU read temporary queue element (lock is unnecessary)
API WRIT update TOF with new field
API REPL replace temporary queue element with updated TOF
API TERM
display updated element at the terminal
write SPA for next transaction
terminate

Termination transaction:
read SPA
read terminal-user input (commit updates, or rollback updates)
API INIT
if commit updates

API GETU read temporary queue element (lock is unnecessary)
API ROUB, or PUTB, temporary element to target queue with automatic

delete of source queue element
else /* rollback the transaction */

API FREE relinquish lock on source queue element
endif
API DELE delete temporary queue element
API TERM
terminate

Note the following:

Chapter 3. Writing an API Program 27

|

|
|
|
|
|
|
|

|

|

|

|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

v This dialog can be implemented as three separate programs or as three routines
in one program.

v The dialog updates an existing MERVA ESA queue element. Therefore the initial
transaction retrieves it with an exclusive get. The element is flagged in-service for
the duration of the dialog.

v The actual update is carried out by the API ROUB or PUTB in the termination
transaction. Until that point updates are applied to the temporary queue
element, the original queue element, the “source” element, remains unchanged.

v There is no need to lock the temporary queue element because no users will
have access to the temporary queue. The queue is used only by
pseudoconversational transactions.

v After each update the temporary queue element is replaced, its QSN remains the
same throughout the conversation.

v If the user decides to abandon the updates, the conversation is rolled back by
relinquishing the lock on the source element, which has not been changed, and
deleting the updated element from the temporary queue.

v If a new queue element is to be created instead of an existing element to be
updated, similar logic could be used to save the new message in the temporary
queue before committing it to its target queue.

v Because MERVA ESA manages the queue data set independently of CICS or
IMS, when you finally commit a queue element update, this commit will not be
synchronized with your IMS or CICS commit point.

Saving the Tokenized Form of a Message in Your Own
Database (IMS) or in Temporary Storage or Transient Data
(CICS)

Alternatives to preserving messages in a QDS are:
v Under CICS, preserving them in temporary storage or transient data.
v Under IMS, preserving them in your own IMS database, and at the end of the

dialog either commit them (permanently apply them to the database) or roll
them back (delete them from the database).

Two API functions are available to help you to save and restore the API
environment:

SAVL Use this function to transfer the complete API environment, including the
internal TOF buffer and queue buffer, to a buffer you supply.

REEN Use this function instead of the INIT function when restarting a
pseudoconversational transaction, to initialize the API with the
environment saved by the SAVL call.

These functions are described in “Chapter 9. DSLAPI Functions” on page 97.

For example, if the SAVL and REEN services were being used, the pseudocode for
the update transaction in the previous section would look like this:

read SPA
read terminal-user input (field to be updated)
read saved API environment from CICS TS / IMS DB
API REEN initialize API with saved environment
API WRIT update TOF with new field
API SAVL the API environment
API TERM

28 API Guide

|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|

|

|

|

|

|

|
|
|

|
|

||
|

||
|
|

|

|
|

|
|
|
|
|
|
|

write saved API environment to CICS TS / IMS DB
display updated element at the terminal
write SPA for next transaction
terminate

Chapter 3. Writing an API Program 29

|
|
|
|

30 API Guide

Chapter 4. Writing an MFS Exit Routine in C, COBOL, or PL/I

MFS exit routines play an important part in the processing of messages by
MERVA ESA. Such routines are typically used to check or edit fields in messages,
but can also be used for many other purposes. You write such a routine as a
normal main program that is passed a parameter list using standard OS
conventions. MFS exit routines are described in more detail in the MERVA for ESA
Customization Guide.

In MERVA ESA, exit routines can be written in the low-level language Assembler,
and in any of the following high-level languages (HLLs):
v C (for OS/390® and VSE)
v COBOL (for OS/390 and VSE)
v PL/I Version 2 (for OS/390 only); PL/I Version 1 is not supported

You indicate to MFS that your exit routine is written in an HLL by specifying
LANG=COBOL, LANG=PLI, or LANG=C (as appropriate) in the MFS program
table. For details, refer to the description of macro DSLMPT in the MERVA for ESA
Macro Reference.

Your exit routine can use the MERVA API to invoke only MFS or TOF services
(***the title refers to ″MFS exit routines″, but are also TOF exit routines. Should I
drop reference to MFS in title?) , not queue management or other services. If your
HLL exit routine uses MFS or TOF services, there is one crucial difference between
it and the API program discussed in “Chapter 3. Writing an API Program” on
page 23: your routine should not initialize an API environment. By its nature, an
exit routine is embedded in the MERVA ESA environment, so when your exit
receives control the API environment has already been established by MERVA.
Consequently, do not begin your exit program with an API INIT call, and do not
end it with a TERM call.

The parameter list passed to your HLL exit routine is set up by MERVA MFS and
contains two parameters:
v The address of the API interface working storage, INTWSTOR (see “Interface

Working Storage INTWSTOR” on page 81).
v The MFS parameter list, MFSL (see “MFS Parameter List” on page 95). This is

the basic interface between MERVA ESA and an MFS exit routine, whether a
HLL exit or a macro level exit. This structure is available to HLL exit routines in
the copybook DSLMFSPL, and to Assembler exit routines via the macro
DSLMFS.

Restrictions for Exit Routines Written in an HLL
When writing an HLL exit routine, remeber that it will be embedded in MERVA,
hence the API interface working storage (INTWSTOR) that is passed to the exit
routine represents the internal MERVA environment. When modifying this working
storage, it is possible for you to modify the MERVA internal state in unpredictable
and undesirable ways. In particular, do not use queue management services,
because this will destroy MERVA’s queue position.

If you want to access a MERVA queue, you must define your own API
environment. You do this just as you would in any other API program: by defining

© Copyright IBM Corp. 1987, 2001 31

|

your own interface working storage area (the INTWSTOR structure), and invoking
the API INIT service to initialize it. You can then invoke any API services with this
INTWSTOR. Your exit routine will thus have two INTWSTOR structures: one
passed to it by MERVA ESA that allows only a restricted set of API calls, and
another one (your own), with which you can invoke all API services. However,
bear in mind that some exit routines might be invoked frequently, and that using
queue services, CICS, or IMS services might reduce performance.

Apart from not using queue management services (***only QM services, or also
other non-TOF and non-MFS services?), there are some other restrictions you need
to consider when writing HLL exit routines:
v Your exit routines should be reentrant. If they dynamically allocate storage, they

should free it before returning to MERVA. Similarly, if they open any files, or
load any modules dynamically, they should close or free them before they
return. Not adhering to this rule can reduce performance.

v Your exit routine cannot be linked to MFS; HLL exit routines are always loaded
dynamically by MERVA (see the LINK parameter of the DSLMPT macro).

v An HLL exit routine program can have only one entry point.
v A COBOL exit routine cannot be called recursively. This means that your exit

routine cannot invoke a MERVA ESA service that, as part of its processing,
might invoke your exit routine again.

Writing an Exit Routine That Runs Under CICS and in Batch
One characteristic of an MFS exit routine is that, because MERVA ESA MFS
services can be invoked in both an online as well as a batch environment, it must
be programmed to run in both environments. This is not a problem if the online
environment is IMS, because the interfaces in both cases are the same, but if you
use the CICS online environment, your routine must be callable using both CICS
and OS linkage conventions. One solution is to write two versions of the routine,
but it it usually better (from a maintenance standpoint) to instead code it so that it
determines at runtime with which linkage convention it has been called and sets
up the parameter addresses accordingly.

In a C/370 CICS program you always have to set up the parameter addresses
dynamically, but if your routine is written in COBOL or PL/I, then the way to do
this differs depending on whether you use EXEC CICS calls in your routine; that
is, on whether your routine is processed by the CICS pre-compiler. This is because
with these languages you cannot prevent the pre-compiler inserting CICS
parameters in the routine’s procedure definition.

The following in an example of a COBOL routine that will be preprocessed by the
CICS translator. The translator inserts DFHEIBLK and DFHCOMMAREA as the
first two parameters after the USING like this:

procedure division using DFHEIBLK, DFHCOMMAREA, intwstor, mfsl.

The logic makes use of the fact that when the exit routine is called, MERVA ESA
will have set INTFUNC in INTWSTOR to INIT:

...
linkage section.
01 dfhcommarea.

03 ptr-to-intwstor pointer.
03 ptr-to-mfspl pointer.
copy dslapiws.

...
procedure division using intwstor, mfsl.

32 API Guide

set address of intwstor to address of DFHEIBLK
if intfunc = 'INIT'

* this is the intwstor structure: batch environment..
set address of mfsl to address of DFHCOMMAREA

else
* the routine has been invoked in a CICS environment..

set address of intwstor to ptr-to-intwstor
set address of mfsl to ptr-to-mfspl

end-if
...

You compile and link your HLL exit routines just as you would normally generate
a CICS or batch application program. But it may be necessary to link your exit
routine in two different ways: one for batch and one for the CICS environment. For
example, if you have written a VS COBOL II exit routine, you link with a different
COBOL library depending on whether the exit routine will run in batch or online.
For batch you specify SYS1.COB2LIB in the SYSLIB concatenation, and for the
CICS environment SYS1.COB2CICS. So you will have two different load modules
for the one exit routine.

Similarly, with PL/I you need to generate two different load modules. In both
cases you use the standard CICS JCL procedure, which causes the PL/I CICS
interface module, DFHPL1OI, to be included in the load module. DFHPL1OI must
be included in both the CICS and the batch version of your routine. However,
DFHPL1OI contains CICS versions of the PL/I runtime modules; when generating
the batch version of the exit routine, these must be replaced by the non-CICS
versions from the PL/I library. One way you can do this is like this:
//CICS EXEC DFHEITPL
//LKED.SYSLIB DD DSN=SYS1.PLIBASE,DISP=SHR
// DD DSN=SYS1.SIBMBASE,DISP=SHR
// DD DSN=MERVA.SDSLLODC,DISP=SHR
// DD DSN=MERVA.SDSLLODB,DISP=SHR
// DD DSN=CICS410.SDFHLOAD,DISP=SHR
//LKED.SYSLMOD DD DSN=your load-library,DISP=SHR
//LKED.SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
// DD DUMMY
//LKED.SYSIN DD *

INCLUDE SYSLIB(IBMBPIRA)
REPLACE IBMBPIRA,IBMBPIRB,IBMBPIRC
INCLUDE SYSLIB(DFHPL1OI)
NAME DSLMS911(R)

For more information on compiling and linking your exit routine, refer to the
programming guide for the corresponding language.

Field-Level Access for Exit Routines

Product-Sensitive Programming Interface

Mappings of MERVA ESA internal data structures are provided only by the
Assembler macros described in the MERVA for ESA Macro Reference. An exit routine
written in an HLL retrieves and sets fields in MERVA ESA internal data structures
by using two field-level access functions provided by DSLAPI: FLDG and FLDP.
These functions provide a structure-independent way of accessing these fields.

End of Product-Sensitive Programming Interface

Chapter 4. Writing an MFS Exit Routine in C, COBOL, or PL/I 33

Supported Fields

Product-Sensitive Programming Interface

Most fields in the following structures can be retrieved; many of them can also be
set:

DSLCOM MERVA ESA service communication area

DSLPRM MERVA ESA customization parameter module

TUCB Terminal user control block

DSLNIC Nucleus intertask communication parameter list

DSLMFS PL MFS parameter list

DSLMFS PS MFS permanent storage

DSLMFS TS MFS temporary storage

DSLMFS FLDREF MFS field reference

DSLUSR User file record

DSLFNTT MERVA ESA function table

A high-level language mapping of the DSLMFS parameter list is provided by
structure MFSL, copybook DSLMFSPL; it is included in the field level service to
allow COBOL programmers access to bit indicators in the structure.

Refer to “Appendix D. Field-Level Access Fields” on page 269 for a list of all fields
that can be accessed using field-level services. The name of each field is given, its
data type, its length, a brief description of the field, and an indication whether the
field may be modified.

To access any particular field you merely specify the field name, you do not
provide the address of the structure containing the field. DSLAPI retrieves the
address of the structure from anchors in the INTWSTOR structure.

End of Product-Sensitive Programming Interface

Field Values

Product-Sensitive Programming Interface

In addition to the field name, you provide a buffer, without a prefix, for the field’s
value. When retrieving a field, the value is placed in this buffer, left-justified.
Similarly, when setting a field’s value, you place the value in this buffer before
invoking the FLDP function. The length of the buffer depends on the length of the
field’s value.

The value has one of the following forms depending on the data type of the
specified field:

Data type Value

character A character string. The length of each string is given in
“Appendix D. Field-Level Access Fields” on page 269.

binary A 4-byte, fullword, binary value regardless of whether the field
defines a 1-, 2-, or 4-byte signed or unsigned value.

34 API Guide

bit The character 0 or 1. The field name may define a 1-bit or
multiple-bit pattern. When retrieving a bit or bit-pattern, if all bits
defined by the pattern are on, a 1 is returned, otherwise a 0 is
returned.

byte Eight 0 or 1 characters.

packed A packed-decimal value. The length of the value is given in
“Appendix D. Field-Level Access Fields” on page 269.

When setting a field’s value, the value you supply must have the appropriate
form. When setting a bit-pattern, a 1 will turn on all bits defined by the pattern; a
0 will turn all bits off.

Refer to “FLDG Get a MERVA Variable” on page 105 and “FLDP Set a MERVA
Variable” on page 107 for the definition of the field-level access functions.

End of Product-Sensitive Programming Interface

MERVA Buffer Prefix Manipulation
In “Chapter 1. Introduction and Concepts” on page 3, the MERVA buffer prefix is
discussed for buffers of up to 32KB. MERVA ESA also uses this standard buffer
prefix internally for buffers larger than 32KB, however the format used by
MERVA ESA cannot easily be used by application programs written in high-level
languages. For a description of the format, refer to the chapter on the MERVA ESA
buffer standard in the MERVA for ESA Customization Guide.

Because your HLL exit routines might need to manipulate such a buffer prefix, the
following service programs have been defined that allow you to set and retrieve
the buffer length and data length values regardless of their size:

DSLAPBSB Set buffer length

DSLAPBGB Get buffer length

DSLAPBSD Set data length

DSLAPBGD Get data length.

All of these programs use the same parameter syntax:

PP DSLAPBxx (buffer , length) PQ

The parameters are:

buffer A buffer containing a MERVA buffer prefix.

length A fullword binary variable. It contains either the length to be set into the
buffer prefix (DSLAPBSB or DSLAPBSD), or the length value from the
buffer prefix will be returned in it (DSLAPBGB or DSLAPBGD).

Notes:

1. These services are implemented using the standard OS call interface. The
address of the buffer and the address of the length value are passed to the
service program in a parameter list addressed by general purpose register 1.

2. The format of a MERVA buffer prefix is defined by the structure
BUFFER_PREFIX in copybook DSLAPIBP.

Chapter 4. Writing an MFS Exit Routine in C, COBOL, or PL/I 35

3. If a buffer cannot be larger than 32KB, then you do not need to use these
services; you can set and retrieve the length values directly using the
BUFFER_PREFIX variables.

4. If the buffer can be larger than 32KB, then you must access the prefix using
these services.

5. Under CICS, these routines must be linked to your application, but because
these routines are very small, even if not running under CICS, you might want
to statically link these routines to your application.

36 API Guide

Chapter 5. The REXX Interface

In addition to COBOL, PL/I, C, and Assembler, MERVA ESA also lets you write
API applications in REXX, which is particularly useful for experimenting with the
API, prototyping, and writing quick, one-shot programs. Your REXX applications
can also take advantage of the particular strengths of the REXX language, for
example, its mathematical capabilities and its functions, and they can use any host
command environments and function packages available in your system.The REXX
API interface is supported under MVS and VSE, but cannot be used in MFS exit
routines.

In addition to the information shown in this chapter:
v Sample REXX EXECs are shown in “Appendix B. Sample Programs” on

page 203.
v Batch utilities written in REXX are shown in “Appendix C. Batch Utilities in

REXX” on page 227.

Overview
The REXX support in MERVA ESA interfaces REXX to the MERVA API program
DSLAPI. You use DSLAPI services in REXX very much as you use DSLAPI services
in other languages.

The interface is implemented as a REXX host command processor. The host
command processor has the same name as the MERVA ESA API interface:
DSLAPI. You access a host command environment from a REXX EXEC using the
REXX ADDRESS command:

Address DSLAPI "READ" /* DSLAPI TOF read function */

This causes REXX to pass the command 'READ' to the DSLAPI host command
processor.

All MERVA ESA services supported by the DSLAPI program for conventional
languages are also supported as REXX host commands.

To execute a MERVA REXX application you run the MERVA ESA program
DSLAREXX passing to it the name of your REXX EXEC. DSLAREXX prepares a
REXX language processor environment and then calls your REXX EXEC. You can
invoke DSLAREXX as an MVS or VSE batch program, or from TSO or ISPF.

If you have the REXX/370 Compiler (5695-013) and Library (5695-014) installed, it
is a good idea to compile your larger MERVA execs.

Variables
The variables in the DSLAPI parameter lists and structures that control the various
API functions and that contain the results of API calls are available to the REXX
EXEC; the variable names are the same in REXX and behave as described in
“Chapter 8. Data Structures” on page 81. For example, the queue management GET
function looks like this in REXX:

© Copyright IBM Corp. 1987, 2001 37

...
intqueue = 'L3ACKF'
intqsn = 123
Address DSLAPI "GET"
If intrc ¬= ' ' | intbusy = 'BUSY' Then ...
...

This retrieves a message from the MERVA ESA queue L3ACKF using the DSLAPI
GET function. After the GET the REXX variable INTRC contains the value from the
INTRC field in the INTWSTOR structure, so the DSLAPI return code can be
checked just as it would be using any of the other languages supported by the
MERVA ESA API.

Note, however, that structures are not used by the REXX interface. For example,
INTRC is part of the INTWSTOR structure but you cannot reference INTWSTOR in
your REXX program. You can only use the individual fields in the INTWSTOR
structure.

Here is a list of all the INTWSTOR variables that are available in REXX:
INTBQSN Input INTERMF3 Output INTMSGID Input
INTBQUE Input INTERMSG Output INTQSN Input/Output
INTBUSY Output INTFRMID Input INTQUEUE Input
INTDOUBL Input/Output INTFUNC Input INTRC Input/Output
INTERMF1 Output INTKEY1 Input/Output INTSHUTD Output
INTERMF2 Output INTKEY2 Input/Output

Some of them are only for input to DSLAPI (they are not used for passing results
back to the REXX EXEC), some are only for output information (their values are
not passed to DSLAPI), and the rest are used for both input and output.

Initializing Variables
The REXX convention for initializing variables applies: before a variable has been
initialized, its value is its own name in uppercase. For example, if you use the
queue management GET function and forget first to set the variable INTQUEUE,
DSLAPI will attempt to read a message from the MERVA ESA queue with the
name INTQUEUE, which probably does not exist.

However, if a variable that should have a numeric value has its own name as its
value, MERVA ESA treats it as if it had the value zero. For example, if INTQSN
were not initialized, it would have the value INTQSN, but MERVA ESA would
recognize that the value and name were identical, and a GET would result in
MERVA ESA reading from the beginning of the queue specified by INTQUEUE.

To trap uninitialized variables, it is considered good REXX programming practice
to always set Signal On Novalue.

Fixed-Length Variables
REXX variables that are passed to DSLAPI fixed-length character fields, for
example, the INTWSTOR variables above, are padded on the right with blanks if
they are too short, or truncated on the right without an error indication if they are
too long. So you can set a field to blanks by assigning a null-string to it, for
example:
intkey1 = ''

Variable-Length Variables
When variable-length values are passed to DSLAPI, they have the length of the
REXX variable. For example, to write a 4000-byte journal record you could set the
journal record string like this:

38 API Guide

jrnrcord = Left('a journal record consisting mostly of blanks',4000)

On the other hand
jrnrcord = '' /* a null string */

defines a journal record of length zero (which is valid, it would consist merely of
its key).

After a variable-length string has been returned to REXX from DSLAPI, you use
the REXX LENGTH function to get its length. The REXX interface does not use
buffer prefixes or separate length variables to indicate the length of strings.

The REXX interface itself does not restrict the size of variables; the only restrictions
are those determined by your MERVA ESA parameters module DSLPRM and
system storage constraints.

Case
The REXX interface does not modify the case of variables; the rules of REXX and
DSLAPI apply. In the following example INTQUEUE is assigned an uppercase
name (if variable l3de0 has not yet been defined) and INTBQUE lowercase.
intqueue = l3de0
intbque = 'l1de0'

The DSLAPI program folds the values of the following variables to uppercase if
they are specified in lowercase or mixed case:
v INTQUEUE
v INTBQUE
v INTFUNC
v INTMSGID
v INTFRMID

Other variable values are not folded to uppercase and must be specified as they
appear in the MERVA ESA queue data set.

DSLAPI host commands can be specified in uppercase or lowercase.

Return Codes
After invoking the DSLAPI Host Command Environment, return codes are
available from the Host Command Environment, and from DSLAPI.

Chapter 5. The REXX Interface 39

Return Codes from the DSLAPI Host Command Environment
The standard REXX return code RC is set by the host command environment:

RC=0 No error: INTRC contains ' ', '08', or '09'.

RC=-1 INTRC contains '00', '01', or '02'.

RC=-2 A REXX variable was not numeric but should have been (for
example, INTQSN, or TOFFDOC) or has an invalid value (for
example, INTDOUBL).

RC=-3 Unknown host command.

RC=-8 A GETMAIN failed.

RC=-12 Internal storage overflow. This indicates an error in MERVA ESA
code.

REXX Condition Traps
The host command processor sets the ERROR condition trap if the REXX RC
variable is negative and in the range –1 to –7. The FAILURE condition trap is set if
REXX RC contains any other negative value.

DSLAPI Return Codes
After control returns to the REXX EXEC, the following DSLAPI return values are
available: INTRC, INTERMSG, INTSHUTD, and, depending on the DSLAPI
function, INTBUSY, INTDOUBL, INTERMF1, INTERMF2, and INTERMF3.

It is not possible to receive a return code of INTRC='03', record truncated, in
REXX.

The REXX Language Processor Environment
A REXX EXEC runs in a language processor environment. Program DSLAREXX,
which initializes the MERVA ESA REXX API interface, establishes a language
processor environment using the default values defined in your system’s REXX
parameter modules. See TSO Extensions V2 REXX/MVS Reference for a description
of these parameter modules and how language processor environments are
initialized.

DSLAPI Functions Supported by the REXX Interface
All DSLAPI functions defined in this guide are supported as host commands,
except INIT, TERM, SAVE, SAVL, and REEN. INIT and TERM are carried out
automatically by the interface so need not be invoked from the EXEC. If they are
invoked they have no effect. SAVE, SAVL, and REEN are intended for use by
pseudoconversational transactions; you cannot write pseudoconversational
transactions in REXX.

When reading this section, it might be helpful to refer to:
v The DSLAPI function descriptions in “Chapter 9. DSLAPI Functions” on page 97
v The descriptions of the DSLAPI data structures in “Chapter 8. Data Structures”

on page 81

Queue Management Services
The following variables used by DSLAPI queue management services are available
in the REXX EXEC:

40 API Guide

INTQSN a numeric value converted internally to binary
INTQUEUE
INTBQSN a numeric value converted internally to binary
INTBQUE
INTKEY1
INTKEY2

For example, the following program updates a message in the Telex data entry
queue:
...
intqueue = 'TX2DE0'
intkey1 = 101 /* specific key */
Address DSLAPI "GETK" /* get queue element by key */
If intrc = ' ' /* the element is now 'in-service' */
Then Do

... /* .. update the element .. */
Address DSLAPI "REPL" /* replace the queue element */
Address DSLAPI "FREE" /* relinquish 'in-service' status */

End
...

TOF Services
The REXX variables for TOF services are the variables from the TOFPARM
structure:
TOFFDDA numeric TOFFDOCA numeric
TOFFDFG numeric TOFFDOC.n numeric
TOFFDNAM TOFMODIF
TOFFDNL numeric TOFTSVRC
TOFFDOC numeric TOFTSVRS

In addition, the REXX variable TOFDATA is used for the TOF field data. This
variable does not contain the 8-byte buffer prefix of the TOF field buffer. The
TOFPARM structure is described in “Chapter 8. Data Structures” on page 81. The
fields TOFREQ and TOFFDNA1 are not used.

The indexes for nested repeatable sequences are defined using the compound
variable TOFFDOC.n, where n is a number from 1 to 9. When writing a field in a
nested repeatable sequence, put the highest value of n you are using into the
variable TOFFDOCA. You must also specify the RSEXT repeatable sequence
extension modifier in TOFMODIF to indicate that you are using nested repeatable
sequences.

This example updates a field of a message in the TOF:
...
toffdnam = 'ENLTXREF' /* the TX2DE0 queue key */
tofmodif = 'VFIRST'
Address DSLAPI "READ" /* read field from the TOF */
Say 'fld ref of' toffdnam 'is' toffdnl toffdfg toffdoc toffdda
If Datatype(tofdata,'N') /* is key numeric */
Then Do

tofdata = tofdata + 1 /* increment the key */
Address DSLAPI "WRIT" /* and put it back into the TOF */

End
...

Chapter 5. The REXX Interface 41

Message Format Services
The REXX variables you use with MFS services are based on the MSGSWIFT
structure in copybook DSLAPIMS. The message string is moved to and from the
REXX variable MSGSMSG. The variable contains no length prefix; the length of the
message is the length of the variable.

The MFS parameter fields in the INTWSTOR structure are also used: INTMSGID
and INTFRMID.

If you retrieve the MSGSWIFT prefix (with the GETS, GETM, or MPFG services),
the following variables are set:
MSGACK MSGADDR3 MSGDST MSGUSER1
MSGADDR1 MSGADDR4 MSGMTYPE
MSGADDR2 MSGDBS MSGNET

If you use the PUTS, PUTM, or MPFP services to move MSGSWIFT prefix fields
into MERVA ESA, you must set the following variables:
MSGACK MSGADDR2 MSGADDR4 MSGUSER1
MSGADDR1 MSGADDR3 MSGDBS

To retrieve a SWIFT II message from MERVA ESA you could use the MSGG
command:
...
Address DSLAPI "GET" /* get message into DSLAPI queue buffer */
If intrc ¬= ' ' | intbusy = 'BUSY' Then Signal Get_failed
intmsgid = '' /* default msg type */
intfrmid = 'W' /* SWIFT II format */
Address DSLAPI "MSGG" /* map queue buffer to msgsmsg */
If intrc ¬= ' ' Then Signal Msgg_failed
Say 'length of SWIFT II message is' Length(msgsmsg)
...

To import a message into MERVA ESA use the MSGP command:
...
intmsgid = 'TELEX' /* msgsmsg contains a Telex */
intfrmid = 'P' /* ... in the workstation based Telex format */
Address DSLAPI "MSGP" /* map the Telex to the DSLAPI queue buffer */
...

Print Services
The API print services are:

PRTI Intializes the printing environment

PRTL Formats the message currently in the internal buffer and returns the
message line by line in the variable PRTLINE

PRTT Terminates the printing environment

For example:
/* 1. PRTI - Initialize printing environment */

intfrmid = 'E' /* language ID is English */
intmsgid = ' ' /* default message type */
Address DSLAPI "PRTI"
If intrc ¬= ' ' Then ...

/* 2. FLDP - Customize printing environment */
fldname = 'TUCFRAMT' /* use top frame 0TOP */
fldvalue = '0TOP '

42 API Guide

Address DSLAPI "FLDP"
If intrc ¬= ' ' Then ...

fldname = 'TUCNAME' /* show function name */
fldvalue = 'L1DE0 '
Address DSLAPI "FLDP"
If intrc ¬= ' ' Then ...

/* 3. GET - Read a queue element */
intqueue = 'L1DE0' /* queue name */
intqsn = 123 /* queue sequence number */
Address DSLAPI "GET"
If intrc ¬= ' ' Then ...

/* 4. WRIT - Write TOF field DSLSDYNO - running no. */
TOFDATA = '00001' /* data to be written */
TOFFDNAM = 'DSLSDYNO' /* name of the field */

TOFMODIF = 'VFIRST' /* request modifier */
Address DSLAPI "WRIT"
If intrc ¬= ' ' | toftsvrc ¬= 0 | toftsvrs ¬= 0 Then ...

/* 5. PRTL - Print message line by line */
intrc = ' ' /* init PRTL rc */
Do While intrc = ' ' /* loop while PRTL rc = ' ' */

Address DSLAPI "PRTL"
If intrc = ' ' Then Say prtline

End

/* 6. PRTT - Terminate printing environment */
Address DSLAPI "PRTT"
If intrc ¬= ' ' Then ...

Journal Services
The following journal key variables are available in the REXX EXEC:
v JRNKDATE
v JRNKTIME
v JRNKUSER
v JRNRID

If you have defined journal segmentation in your MERVA ESA parameter module
DSLPRM, then the segment number and count are also returned in variables
JRNKSEG and JRNKSEGS.

The journal record is read into or from the REXX variable JRNRCORD; it does not
contain the 8-byte buffer prefix.

Note: The JRNRID field in REXX is a 1-byte binary value. Use the REXX function
D2C, or hexadecimal notation, to set it:
...
decimal_id = 12
jrnrid = D2c(decimal_id,1) /* jrnrid has the value X'0C' */
Say 'jrnrid is' C2d(jrnrid) /* says "jrnrid is 12" */
Say "jrnrid is X'"C2x(jrnrid)"'" /* says "jrnrid is X'0C'" */
...

In the following example, the time field will be padded with blanks. Following the
JRLG call, the REXX journal key variables contain the key of the record read. These
values are then not changed, and are used as key by the JRLN function, which
retrieves the next sequential record into the REXX variable JRNRCORD:

Chapter 5. The REXX Interface 43

...
jrnkdate = 990130
jrnktime = 1200
Address DSLAPI "JRLG" /* get 1st journal record after 12 noon */
Address DSLAPI "JRLN" /* gets the subsequent record */
Say 'read journal record with key' C2x(jrnrid) jrnkdate jrnktime jrnkuser
...

Following a JRLP or JRNP, the key of the record created is returned in the REXX
journal key variables:
...
jrnkuser = '' /* null, ie. blank user field */
jrnrid = '99'x /* journal id is '99'x */
jrnrcord = 'a private journal record written on' Date() 'at' Time()
Address DSLAPI "JRLP" /* writes a record to the journal */
Say 'wrote journal record on' jrnkdate 'at' jrnktime
...

User File Services
The API USRG and USRN services require as input a userid in the variable
USRKEY, and return the user file record in the variables defined in the DSLUSRS
structure in copybook DSLAPIUS, as shown in “Chapter 8. Data Structures” on
page 81. The variables USRUFTAB and USRUAMSG are returned as compound
variables with a numeric suffix: USRUFTAB.n and USRUAMSG.n. The variables
USRUFTAB.0 and USRUAMSG.0 contain the number of variables returned, in
other words, the highest value of n you can specify. The fields in the user file
pending area cannot be accessed.
...
usrkey = 'MASADM'
Address DSLAPI "USRG"
Say 'User' usrkey 'can use' usruftab.0 'functions:'
Do i = 1 To usruftab.0

Say Format(i,2) usruftab.i
End
...

Command Service
The DSLAPI Command service uses the REXX variables:
CMDINP
CMDRESP

For example:
...
cmdinp = 'DQ filled'
Address DSLAPI "CMD"
If intrc = ' '
Then Do

Do i = 0 To 9
Say Substr(cmdresp,1 + i * 70,70) /* display the response */

End
End
...

WTO Service
To use the WTO service, place the operator message in the REXX variable
WTOMSG:

44 API Guide

...
wtomsg = 'this is my operator message'
Address DSLAPI "WTO"
...

Field-Level Access Services

Product-Sensitive Programming Interface

You can also use the field-level access services in REXX to retrieve MERVA-internal
data. The REXX variables used are FLDNAME and FLDVALUE:
...
fldname = comtrata
Address DSLAPI "FLDG"
Say 'trace table is at A(' || C2x(Substr(fldvalue,1,4)) || ')'
...

End of Product-Sensitive Programming Interface

The SNAP Command
In addition to DSLAPI functions, the REXX interface provides a SNAP command,
which writes the name and content of all accessible REXX variables to the output
data set used by the REXX SAY command (usually SYSTSPRT). This can be useful
when debugging an EXEC.

Only the first 20 characters of the name and the first 80 characters of the value are
output. Nonprintable characters, for example, binary values, are output as a period
(‘.’).

You invoke the SNAP command as you would any other host command. For
example, if the MERVA ESA system is not active (remember CMD uses MERVA
central services), the following program:
cmdinp = 'Du'
Address DSLAPI "CMD"
Address DSLAPI "SNAP"

results in the following being written to SYSTSPRT:
Snap of all REXX variables

RC >-1<
INTRC >02<
CMDINP >Du<
INTERMSG >DSL884I NIC04000 NIC=CMD RC=04 ...
INTSHUTD >INACTIVE<
INTFUNC >CMD <

End of snap of all REXX variables

Sample Programs Written in REXX
MERVA ESA provides the following sample programs and batch utilities in REXX:

DSLBAnnR These sample programs and batch utilities are described in
“Appendix B. Sample Programs” on page 203 and “Appendix C.
Batch Utilities in REXX” on page 227.

DSLSDxR These batch utilities are described in the MERVA for ESA Operations
Guide.

Chapter 5. The REXX Interface 45

Running a REXX EXEC under MVS
The interface is implemented as a batch program, DSLAREXX. To execute an EXEC
you execute this program and pass the name of the REXX EXEC to be run in the
EXEC PARM:
//MERVAREX EXEC PGM=DSLAREXX,PARM='MYEXEC'

The REXX EXEC is loaded from the partitioned data set with DDname SYSEXEC.
This EXEC can in its turn call other REXX EXECs, which will also be loaded from
SYSEXEC.

If the parameter is omitted, the REXX EXEC will be loaded from SYSIN, but note
that you cannot use the form SYSIN DD *. “JCL to Execute an Instream EXEC” on
page 47 shows how to use an instream EXEC. An EXEC loaded from SYSIN cannot
load other EXECs.

You can also run DSLAREXX from TSO using the TSO CALL command if the
MERVA ESA library is in the search sequence of the MVS LOAD macro. The
library could be in your logon STEPLIB or in the link library:
CALL 'MERVA.SDSLLODB(DSLAREXX)' 'MYEXEC'

REXX Input and Output Streams
Standard input and output streams can be used by REXX EXECs:

SYSTSIN The PARSE EXTERNAL, or PULL command, will read a string
from this DDname if the stack is empty. If SYSTSIN is empty,
PULL returns a null string.

SYSTSPRT SAY writes a string to the DDname SYSTSPRT. REXX Trace output
is also written to SYSTSPRT.

Passing Parameters to the EXEC

Passing Parameters in the PARM Statement
You can pass a parameter string to the EXEC as the second parameter in the EXEC
PARM:
//MERVAREX EXEC PGM=DSLAREXX,PARM='MYEXEC,A PARAMETER STRING'

or under TSO:
CALL 'MERVA.SDSLLODB(DSLAREXX)' 'MYEXEC,A PARAMETER STRING'

The parameter string may contain blanks, but must not contain a comma. A
comma is taken as the end of the string.

In the EXEC you access the parameters with PARSE ARG or just ARG:
...
Parse Arg arg1 arg2 arg3 . /* get three args */
Say 'Arg1:' arg1
Say 'Arg2:' arg2
Say 'Arg3:' arg3
...

Passing Parameters via SYSTSIN
Another way to pass parameters to the EXEC is via SYSTSIN.

46 API Guide

//SYSTSIN DD *
Parameter line 1 for MYEXEC
Parameter line 2 for MYEXEC
Parameter line 3 for MYEXEC

/*

The parameter lines may contain blanks and commas.

In the EXEC you access the parameters with PARSE PULL or just PULL:
...
Do i = 1 By 1 /* read parameter lines into */

Parse Pull systsin_data.i /* stem var systsin_data. */
If systsin_data.i = '' Then Leave

End
systsin_data.0 = i - 1
Say 'Total supplied parameter lines:' systsin_data.0
...

JCL to Run EXECs from a PDS
You could use JCL like the following to execute a REXX EXEC from the PDS
MERVA.REXX.EXEC. The EXEC uses PARSE PULL to read data from the REXX input
stream SYSTSIN:
//REXXB EXEC PGM=DSLAREXX,PARM='MYEXEC'
//STEPLIB DD DSN=MERVA.SDSLLODB,DISP=SHR
//SYSEXEC DD DSN=MERVA.REXX.EXEC,DISP=SHR
//SYSPRINT DD DUMMY
//SYSTSPRT DD SYSOUT=* REXX 'SAY' AND 'TRACE' OUTPUT
//SYSTSIN DD * REXX 'PULL' INPUT
this is input record 1
...
/*
//

“Appendix C. Batch Utilities in REXX” on page 227 contains more sample JCL
statements.

JCL to Execute an Instream EXEC
The following JCL could be used to run an EXEC from SYSIN:
//COPY EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSUT2 DD DSN=&&EXEC,DISP=(NEW,PASS),UNIT=SYSDA,
// SPACE=(3200,(400,50)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSUT1 DD *,DLM=$$
/* Rexx MERVA ESA API program */
intqueue = 'L3ERROR'
intqsn = 0
Address DSLAPI "GETN"
If intrc = ' '
Then Do

...
End
Exit
$$
//REXXB EXEC PGM=DSLAREXX
//STEPLIB DD DSN=MERVA.SDSLLODB,DISP=SHR
//SYSIN DD DSN=&&EXEC,DISP=(OLD,DELETE)
//SYSTSIN DD DUMMY
//SYSPRINT DD SYSOUT=* DSLAREXX AND DSLAPI TRACES
//SYSTSPRT DD SYSOUT=* REXX 'SAY' AND 'TRACE' OUTPUT
//

Chapter 5. The REXX Interface 47

Running a REXX EXEC under VSE
The interface is implemented as a batch program, DSLAREXX. To execute an EXEC
you execute this program and pass the name of the REXX EXEC to be run in the
EXEC PARM:
//EXEC DSLAREXX,SIZE=300K,PARM='MYEXEC'

The REXX EXEC is loaded from the active LIBDEF sublibrary chain and must have
been catalogued with extension .PROC. This EXEC can in its turn call other REXX
EXECs, which will also be loaded from the active LIBDEF sublibrary chain.

REXX Input and Output Streams
Standard input and output streams can be used by REXX EXECs:

SYSIPT The PARSE EXTERNAL, or PULL command, will read a string
from SYSIPT if the stack is empty. If SYSIPT is empty, PULL
returns a null string.

SYSLST SAY writes a string to SYSLST. REXX Trace output is also written
to SYSLST.

Passing Parameters to the EXEC

Passing Parameters in the PARM Statement
You can pass a parameter string to the EXEC as the second parameter in the EXEC
PARM:
//EXEC DSLAREXX,SIZE=300K,PARM='MYEXEC,A PARAMETER STRING'

The parameter string may contain blanks, but must not contain a comma. A
comma is taken as the end of the string.

In the EXEC you access the parameters with PARSE ARG or just ARG:
...
Parse Arg arg1 arg2 arg3 . /* get three args */
Say 'Arg1:' arg1
Say 'Arg2:' arg2
Say 'Arg3:' arg3
...

Passing Parameters via SYSIPT
Another way to pass parameters to the EXEC is via SYSIPT:
//EXEC DSLAREXX,SIZE=300K,PARM='MYEXEC'
Parameter line 1 for MYEXEC
Parameter line 2 for MYEXEC
Parameter line 3 for MYEXEC
/*

The parameter lines may contain blanks and commas.

In the EXEC you access the parameters with PARSE PULL or just PULL:
...
Do i = 1 By 1 /* read parameter lines into */

Parse Pull sysipt_data.i /* stem var sysipt_data. */
If sysipt_data.i = '' Then Leave

End
sysipt_data.0 = i - 1
Say 'Total supplied parameter lines:' sysipt_data.0
...

48 API Guide

JCL to Run EXECs
You could use JCL like the following to execute a REXX EXEC from the sublibrary
MERVA.PROCS. The EXEC uses PARSE PULL to read data from the REXX input
stream SYSIPT:
// JOB REXXBAT1 MERVA ESA V410 REXX EXEC CALLS
// DLBL MERVA,'MERVA.PRODUCT.LIBRARY',99/365,SD
// EXTENT ,MERV41
LIBDEF *,SEARCH=(MERVA.LIBS,MERVA.PROCS)
// OPTION NODUMP
// EXEC DSLAREXX,SIZE=300K,PARM='MYEXEC,L1DE0'
this is input record 1
...
/*
//

Chapter 5. The REXX Interface 49

50 API Guide

Chapter 6. Advanced Topics

This chapter discusses some aspects of MERVA ESA that you need to consider if
you write a MERVA application that is to be linked to the MERVA nucleus,
DSLNUC, or if you want to use MERVA ESA macro level services in an API
program.

Some MERVA ESA system fields are also described.

Applications Linked to DSLNUC
Assembler application programs linked to the MERVA ESA nucleus (DSLNUC) can
also use the MERVA ESA Application Programming Interface. But note that
application programs linked to DSLNUC cannot use the user file service functions
USRG and USRN.

An application program linked to DSLNUC receives the address of the
MERVA ESA service communication area (DSLCOM) in register 12. Before making
the DSLAPI initialization call this address must be stored into the INTCWA
parameter of INTWSTOR so that DSLAPI has access to the DSLNUC environment.
Then all MERVA ESA requests (except USRN and USRG) can be issued by DSLAPI
as direct calls as required for applications linked to DSLNUC. Interregion
communication is not used.

When DSLAPI is called it checks whether INTCWA contains an address that points
to a service communication area. If it does, the provided area is used, otherwise
DSLAPI builds its own DSLCOM.

Refer to MERVA for ESA Concepts and Components for more information on
applications linked to DSLNUC.

Locating the TOF
If you want to manipulate a message in the API internal TOF using MERVA ESA
macro services, you can find the address of the TOF in the API interface working
storage field INTTOFA. After each API TOF service call you should reload this
address because the internal TOF can be dynamically relocated.

Having located the TOF you can use the MERVA macro level TOF service, DSLTSV,
to manipulate it. Do not change it in any other way.

Locating the Internal Queue Buffer
If you want to address the API internal queue buffer, you can find its address in
the API interface working storage field INTQBUFA. After each API queue
management call you should reload this address because the internal buffer may
have been relocated.

Having located the Queue Buffer you can process it using the MERVA macro level
Queue Management service. Do not change the Queue buffer in any other way.

© Copyright IBM Corp. 1987, 2001 51

Customizing the API
Customization of MERVA ESA is described in the MERVA for ESA Customization
Guide.

DSLPRM Parameters
The following parameters in the MERVA ESA parameters module, DSLPRM,
concern DSLAPI and are briefly discussed here:
v APISMSG
v APIUID
v EXDSP.

Refer also to MERVA for ESA Macro Reference for more information on macro
DSLPARM.

APISMSG
This DSLPRM parameter defines the size of the largest message in net format you
want to process using the API MFS services GETM, GETS, PUTM, and PUTS. The
size you specify must include 8 bytes for the MERVA buffer prefix. The maximum
value you can specify is 32KB minus 4 bytes.

Note: The buffer size DSLAPI uses is 376 bytes longer than APISMSG. This is the
size of the MSGSWIFT_PREFIX structure (copybook DSLAPIMP).

APISMSG is not used by the MSGG and MSGP services. You are recommended to
use MSGG and MSGP instead of GETS, GETM, PUTS, and PUTM.

APIUID
This DSLPRM parameter defines the user ID used when the CMD, USRG, or
USRN API service is journaled.

EXDSP
This DSLPRM parameter can be used to suppress user file access by application
programs. If EXDSP=NO has been specified, you cannot use the API USRG and
USRN functions.

Runtime Environment Settings
With the following fields you can customize the API runtime environment. Set
them with the FLDP function. The fields have the type BIT; to switch the bit on,
use the character ‘1’ as input data, to switch the bit off, use the character ‘0’ as
input data.

APICQBIN
Normally the key fields INTKEY1 and INTKEY2 are treated as character fields, for
example, trailing blanks are removed. Switch on APICQBIN if you do not want
keys to be manipulated, for example, when your keys contain binary data.

Initially, the bit is switched off.

APICQDIR
This flag is applicable only to queue management using DB2 for MVS. Set this flag
to enable direct DB2 queue management calls.

Initially, the bit is switched off and the queue management calls are directed via
intertask communication to the MERVA ESA nucleus (recommended).

52 API Guide

See “Queue Management Using DB2” on page 57 for details.

APICQLAZ
Set this flag to switch on deferred queue management write requests (‘lazy’). Your
application must provide restart logic when it sets APICQLAZ.

Initially, the bit is switched off; all queue management requests are executed
immediately.

APICQMIT
This flag is applicable only to direct DB2 queue management. When this flag is on,
all queue management requests are committed immediately. When this flag is off,
queue management requests are not committed. It is the responsibility of the
application to commit or rollback database changes then.

Initially, the bit is switched on. If you want to switch off the flag, you must do this
before the very first queue management request.

APICQWRB
This flag can be used to switch off the use of the DOUBLE (write-back) indicator.
When the flag is switched off, the indicator need not be updated in the QDS after a
get function, therefore such a request can be executed faster.

Initially, the bit is on and the DOUBLE indicator is written when a message is
accessed exclusively (GETN, GETK, and GETC functions).

APICMCLR
Set this flag to clear the internal TOF totally before the (next) message is mapped
into the TOF (MSGP, PUTM, and PUTS functions).

Initially, the bit is switched off; the internal TOF is not cleared of system fields (the
fields with nesting level 0) when a message is mapped into the TOF.

APICMCHK
The MERVA ESA MFS message checking can be enabled or disabled before a
message is mapped from the internal buffer to an external format (functions
MSGG, GETM, and GETS), or from an external format to the internal buffer
(functions MSGP, PUTM, and PUTS). Switch off APICMCHK if you do not want
messages to be checked.

Initially, the bit is switched on.

MERVA Fields in Messages
A message in the MERVA internal format contains some MERVA control fields in
addition to the message itself. These fields are accessible just like any other fields
using API TOF services. MERVA fields are at nesting identifier 0 in the TOF. The
following MERVA control fields are described in the following sections:
v MSGTRACE
v Exit fields
v DSLMSG
v UMR (unique message reference)

Additionally, some MERVA system fields that are not in the TOF can be read as if
they were in the TOF at level 0. An example is the date and time in various
formats.

Chapter 6. Advanced Topics 53

All fields known to MERVA ESA are defined in the Field Definition Table; refer to
this table for a list of all MERVA system fields.

MSGTRACE
The MSGTRACE field is intended to record the stages through which a message
passes in MERVA ESA. For example, each time a message is routed from one
queue to another, MERVA records the event with an entry in the MSGTRACE field.
An ‘entry’ means simply that a new data area is added to the field.

If you write an application to manipulate MERVA messages, your program should
also write a MSGTRACE entry. For an example of how to create and write a
MSGTRACE entry refer to sample programs DSLBA04 in “DSLBA04x” on page 208
and DSLBA10R in “DSLBA10R - Update a Queue Element” on page 210.

Refer to the copybook DSLFDTTC in the MERVA ESA distributed material for the
definition of the MSGTRACE field structure, that is, its subfields.

Message Exit Fields
Exit fields exist at each nesting level in a message and define the message
identifier of the message at the next, embedded, level. Even a message at the
highest level, nesting level 1, is embedded in the MERVA system, level 0, so the
type of any message can be found by reading the exit field with nesting identifier
0. Exit fields are defined in an MCB using the DSLLEXIT macro; the default name
of a MERVA ESA exit field is DSLEXIT.

However, at nesting level 0 other exit fields are also used. If a SWIFT message is at
nesting level 1, its message type is contained in the standard exit field, DSLEXIT, at
level 0. If a Telex Link message is at level 1, its message identifier is in exit field
ENLEXIT at level 0. Which exit field at level 0 you use is identified by a second
exit field, NLEXIT: NLEXIT contains the name of an Exit field.

If a Telex Link message at level 1 contains a SWIFT message, then all three exit
fields exist at level 0: NLEXIT contains ENLEXIT, the field ENLEXIT identifies the
Telex cover MCB, TCOV, which is used to map Telex messages that contain a
SWIFT message, and DSLEXIT identifies the SWIFT message, for example, S100.

If you used MERVA to create a SWIFT message in a Telex, you can extract the
SWIFT message from the Telex using the API MFS MSGG or GETM function and
specifying the message type from the DSLEXIT field as the INTMSGID value.

Since the SWIFT message type is contained in the standard exit field, DSLEXIT, the
same effect can be obtained simply by specifying the standard MERVA cover MCB,
0COV, in the INTMSGID parameter. To understand this you will need to look at
the MCB code. The 0COV message type is defined in the MCB DSL0COV.

DSLMSG
The field DSLMSG contains error messages from message checking. Following
importation of a message into MERVA ESA by MFS, this field will contain any
error messages generated by MFS field checking exit routines. Each message
occupies one data area in the field. The first three data areas are returned in the
INTWSTOR fields INTERMF1-3.

54 API Guide

UMR - Unique Message Reference
You can configure MERVA ESA to assign a unique message reference (UMR) to a
message processed by MERVA queue management by specifying UMR=YES in the
MERVA ESA parameter module DSLPRM. Refer to MERVA for ESA Concepts and
Components for a discussion on the UMR.

The UMR can be accessed using API TOF services by retrieving the field DSLUMR.
The length of the UMR field is 28 bytes, the subfields that make up the UMR are
defined in the Field Definition table, copybook DSLFDTTC, in the MERVA ESA
distributed material.

You must not change a UMR assigned by queue management or remove a UMR
from a message. However, when you create a new message by duplicating an
existing message, for example, by using API GET and PUT, the UMR will also be
copied. So that a new UMR can be assigned to this new message the existing UMR
must be deleted from the internal TOF buffer.

After the GET and before the PUT you would use the DSLAPI TOF service EMPT
to delete the field:

INTFUNC = 'EMPT';
TOFFDNAM = 'DSLUMR';
TOFMODIF = 'DELFN';
TOFFDNL = 0;
TOFFDFG = 1;
TOFFDOC = 1;
TOFFDDA = 1;
CALL 'DSLAPI' USING INTWSTOR TOFPARM

Then, when the message is stored into the MERVA ESA queue data set and no
UMR exists in the message, a new UMR is assigned by MERVA ESA queue
management. As a new UMR is not created until the message is stored into the
MERVA ESA queue data set, this UMR is not available for the application during
processing of the message.

If the application requires that the UMR is assigned in advance to be used when
processing the message, the field DSLUMRGT can be read. Use the DSLAPI TOF
service READ to read the field DSLUMRGT to extract the current UMR or, if it
does not exist, create a new one. The UMR is presented in the TOF buffer.

INTFUNC = 'READ';
TOFFDNAM = 'DSLUMRGT';
TOFMODIF = ' ';
TOFFDNL = 0;
TOFFDFG = 1;
TOFFDOC = 1;
TOFFDDA = 1;
CALL 'DSLAPI' USING INTWSTOR TOFPARM BUFFER

Read the field DSLUMRNW to force a new UMR to be created even if a UMR
exists in the message.

External Line Format
MERVA ESA allows the processing of messages in external line format (ELF) in
addition to the traditional tokenized format (TOF). The use of the external line
format can save CPU time because the mapping is less costly and the resulting
message length in the MERVA ESA queue buffer is usually smaller due to a
reduced control block overhead in the internal buffer.

Chapter 6. Advanced Topics 55

On the other hand storing messages in external line format has some
disadvantages:
v Messages cannot be checked.
v Single fields, for example field 20 of a SWIFT message, cannot be directly

accessed via API calls.
v Display and printing of messages is in noprompt format only.
v Routing using message text fields is not possible in a standard way.

Conversion between the ELF and TOF formats can be done using standard API
calls. The following description assumes that the message is in the internal queue
buffer, for example after a GETN call. After conversion the message can be
processed further, for example routed to target queues using the ROU call.

Conversion from tokenized format to external line format
1. Use MSGG to map the message from the internal buffer to external line format

in an external buffer. The parameter INTMSGID should be set to blank; the
parameter INTFRMID should be set to the required line format, for example
‘W’ in the case of SWIFT messages.

2. Use MSGP to map from the external buffer back into the internal buffer with
INTMSGID = ‘0ELF’ and INTFRMID = ‘0’.

3. Use WRIT to write the message type, right-padded to 8 characters together
with the format ID, for example ‘S100����W’, to TOF field DSLTYPE at nesting
identifier 1.

4. The internal buffer now contains the message in external line format.

Conversion from external line format to tokenized format

1. Use MSGG to map from the internal buffer to the external line format in an
external buffer with INTMSGID = ‘0ELF’ and INTFRMID = ‘0’.

2. Use READ to read the TOF field DSLTYPE at nesting identifier 1 and save the
first 8 bytes of the result as dsltype1 and the ninth character as dsltype2.

3. Use MSGP to map from external buffer back into the internal buffer. The field
INTMSGID should be set to dsltype1, or left blank to force an automatic
message type determination by MERVA ESA. The field INTFRMID should be
set to dsltype2 or to an appropriate line format identification, for example, use
‘W’ for SWIFT messages.

4. The internal buffer now contains the message in TOF format.

It is also possible to have both formats in the internal queue buffer at the same
time. In this case it is the responsibility of the application to make sure that both
message formats are synchronized, that is, contain the identical message.

Add the external line format to a tokenized format

1. Use MSGG to map the message from the internal buffer to external line format
in an external buffer. The parameter INTMSGID should be set to blank; the
parameter INTFRMID should be set to the required line format, for example
‘W’ in the case of SWIFT messages.

2. Use WRIT to write the data in external line format to the TOF field DSLELF at
nesting identifier 1.

3. Use WRIT to write the message type, right-padded to 8 characters together
with the format ID, for example ‘S100����W’, to the TOF field DSLTYPE at
nesting identifier 1.

4. The internal buffer now contains the message in TOF format and in external
line format.

56 API Guide

Add the tokenized format to a message in external line format

1. Use MSGG to map from the internal buffer to the external line format with
INTMSGID = ‘0ELF’ and INTFRMID = ‘0’.

2. Use READ to read the TOF field DSLTYPE at nesting identifier 1 and save the
first 8 bytes of the result as dsltype1 and the ninth character as dsltype2.

3. Use MSGP to map back from the external line format into the internal buffer.
The field INTMSGID should be set to dsltype1 or left blank to force an
automatic message type determination by MERVA ESA. The field INTFRMID
should be set to dsltype2 or to an appropriate line format identification, for
example, use ‘W’ for SWIFT messages.

4. Use WRIT to write the data in external line format to the TOF field DSLELF at
nesting identifier 1.

5. Use WRIT to write the message type, right-padded to 8 characters together
with the format ID, for example ‘S100����W’, to the TOF field DSLTYPE at
nesting identifier 1.

6. The internal buffer now contains the message in TOF format and in external
line format.

Queue Management Using DB2
Whether MERVA ESA runs with queue management using VSAM or with queue
management using DB2 is completely transparent to MERVA ESA application
programs.

Normally all MERVA ESA queue management requests are handled by the central
MERVA ESA queue management. When you run MERVA ESA under MVS with
queue management using DB2, your API programs can specify that their queue
management requests should be executed directly. To do so, they must switch on
the API customization flag APICQDIR before the very first queue management
request (see “APICQDIR” on page 52). DSLAPI then initializes and terminates the
queue management itself without going through DSLNUC.

Additionally your applications can then also specify that they want to control the
commit and rollback themselves (see “APICQMIT” on page 53).

Chapter 6. Advanced Topics 57

58 API Guide

Chapter 7. Auxiliary API Services

This chapter describes additional MERVA ESA services that help you to process
SWIFT messages in your applications:
v SWIFT Field services

These services provide a simple interface for reading and writing fields in
SWIFT messages.

v SWIFT message conversion
This service provides a simple interface for converting SWIFT messages between
the SWIFT I and SWIFT II formats.

v EDIFACT message conversion
This service allows you to build EDIFACT messages from SWIFT messages and
to extract SWIFT messages from EDIFACT messages.
However, you are recommended to use the standard conversion
programsprovided by MERVA ESA, the batch programs DSLSDI and DSLSDO,
and the transactions DSLCESTR and DSLCSETR. These are discussed in the
chapter on Message Processing in MERVA for ESA Concepts and Components.

Field Services
As SWIFT-type messages have variable-length lines (fields), MERVA ESAprovides
two additional programs that convert variable-length fields to fixed-length fields.
You can then read and write fixed-length fields from your application program.

The programs DSLAPFFS and DSLAPFTS enable you to read and write a
SWIFT-type message line by line.
v DSLAPFFS read fields from SWIFT
v DSLAPFTS write fields to SWIFT.

The Field Services working storage structure, FLDWSTOR, is defined by the
copybook DSLAPFWS, and described in the following section.

© Copyright IBM Corp. 1987, 2001 59

The Field Services Working Storage FLDWSTOR
Table 1 shows the structure of the field services working storage (FLDWSTOR).

Table 1. Structure of the Field Working Storage

Label
Length
(Bytes) Description

FLDFUNC 4 Function: INIT
INIB

DATA
DAII

FLDRC 2 Return code: space=No error
01=Function
02=Buffer size

(DSLAPFTS MSGSMSG)
(DSLAPFFS FLDSFLD)

09=End
(DSLAPFFS)

FLDSFLD 1016
2

Field buffer

72 Save area

You can copy the field working storage definition to yourapplication program
using the copybook DSLAPFWS.

DSLAPFFS Read Fields from a SWIFT-Type Message
This program provides two functions:
v An initialization function (INIT), which positions an offset pointer to the first

field or message line
v A data function (DATA), which retrieves the next field or message line.

The Initialization Function INIT
The INIT function of DSLAPFFS positions an offset pointer to the first field or
message line in the message buffer MSGSWIFT.

The offset pointer is saved in the MSGSWIFT field MSGSMSG+2 and used by the
DATA function.

PP INIT (FLDWSTOR , MSGSWIFT) PQ

Parameters:

FLDWSTOR
The Field Services working storage. The FLDWSTOR structure is defined
by the copybook DSLAPFWS.

MSGSWIFT
The variable length buffer containing the SWIFT message. The buffer
format is defined by the MSGSWIFT structure, copybook DSLAPIMS.

Return Codes: The INIT function has no return codes.

60 API Guide

The Data Retrieval Function DATA
The DATA function of DSLAPFFS retrieves the next field or message line from
MSGSWIFT and puts it in the FLDWSTOR variable FLDSFLD. The function adds
blanks at the end of the field or message line to fill FLDSFLD and increments the
offset pointer to the next field or message line.

PP DATA (FLDWSTOR , MSGSWIFT) PQ

Parameters:

FLDWSTOR
The Field Services working storage. The FLDWSTOR structure is defined
by the copybook DSLAPFWS.

MSGSWIFT
The variable length buffer containing the SWIFT message. The buffer
format is defined by the MSGSWIFT structure, copybook DSLAPIMS.

Usage Notes:

1. The maximum field length is 1016 bytes.
2. The end of a field or message line is indicated by a carriage return/line feed

(CRLF) character sequence, except lines that end with ‘-’ in SWIFT I or ‘}’ in
SWIFT II.

3. The field separator CRLF is removed from the end of the field or message line.

Return Codes:

FLDRC = space
The function retrieved the next field or message line successfully.

FLDRC = 01
Invalid function. Function is not INIT or DATA.

FLDRC = 02
The function cannot transfer the next field or line to FLDSFLD because it is
longer than 1016 bytes.

FLDRC = 09
The function has found the end of the message.

DSLAPFTS Write Fields to a SWIFT-Type Message
This program provides two functions:
v An initialization function (INIT), which initializes the message buffer for a fixed

length
v An initialization function (INIB), which initializes the message buffer for a

customizable length
v A data function (DATA), which adds the field FLDSFLD and a CR/LF field

separator to the message buffer
v A data function (DAII), which adds the field FLDSFLD, without a field

separator, to the message buffer.

DSLAPFFS

Chapter 7. Auxiliary API Services 61

The Initialization Function INIT
The INIT function of DSLAPFTS fills MSGSWIFT with blanks and sets the length
fields to the default maximum message length (4088 bytes). The length fields can
be overwritten afterwards by using the auxiliary buffer prefix manipulation
routines.

PP INIT (FLDWSTOR , MSGSWIFT) PQ

Parameters:

FLDWSTOR
The Field Services working storage. The FLDWSTOR structure is defined
by the copybook DSLAPFWS.

MSGSWIFT
The variable length buffer containing the SWIFT message. The buffer
format is defined by the MSGSWIFT structure, copybook DSLAPIMS.

Usage Notes: You can change the maximum message length.

Return Codes: The INIT function has no return codes.

The Initialization Function INIB
The INIB function of DSLAPFTS fills MSGSWIFT with blanks and sets the length
fields to the values defined in DSLPARM (APISMSG parameter).

PP INIB (FLDWSTOR , MSGSWIFT , INTWSTOR) PQ

Parameters:

FLDWSTOR
The Field Services working storage. The FLDWSTOR structure is defined
by the copybook DSLAPFWS.

MSGSWIFT
The variable length buffer containing the SWIFT message. The buffer
format is defined by the MSGSWIFT structure, copybook DSLAPIMS.

INTWSTOR
The interface working storage. The interface working storage is defined by
the INTWSTOR structure, copybook DSLAPIWS. Prior to using the
INTWSTOR working storage, it must be initialized by calling the DSLAPI
with the INIT function.

Usage Notes: You can change the maximum message length.

Return Codes: The INIB function has no return codes.

The Data Insertion Function DATA
The DATA function of DSLAPFTS adds the field FLDSFLD to MSGSWIFT and
updates the length fields.

PP DATA (FLDWSTOR , MSGSWIFT) PQ

DSLAPFTS

62 API Guide

Parameters:

FLDWSTOR
The Field Services working storage. The FLDWSTOR structure is defined
by the copybook DSLAPFWS.

MSGSWIFT
The variable length buffer containing the SWIFT message. The buffer
format is defined by the MSGSWIFT structure, copybook DSLAPIMS.

Usage Notes: The function removes any fill characters (blanks) from the end of
the field. It then adds a field separator CRLF to the end of the field data except:
v When the first and only character is ‘-’ indicating a SWIFT I trailer.
v When the last character is ‘}’ indicating SWIFT II.

Return Codes:

FLDRC = space
The function has added the field or message line successfully.

FLDRC = 01
Invalid function. Function is not INIT, INIB, DATA, or DATI.

FLDRC = 02
There is insufficient free space available in MSGSWIFT for the function to
transfer the data stored in FLDSFLD.

The Data Insertion Function DAII
The DAII function of DSLAPFTS adds the field FLDSFLD to MSGSWIFT and
updates the length fields.

Note: The function removes any fill characters (blanks) from the end of the field.
Separators are not added.

PP DAII (FLDWSTOR , MSGSWIFT) PQ

Parameters:

FLDWSTOR
The Field Services working storage. The FLDWSTOR structure is defined
by the copybook DSLAPFWS.

MSGSWIFT
The variable length buffer containing the SWIFT message. The buffer
format is defined by the MSGSWIFT structure, copybook DSLAPIMS.

Return Codes:

FLDRC = space
The function has added the field or message line successfully.

FLDRC = 01
Invalid function. Function is not INIT, INIB, DATA, or DATI.

FLDRC = 02
There is insufficient free space available in MSGSWIFT for the function to
transfer the data stored in FLDSFLD.

DSLAPFTS

Chapter 7. Auxiliary API Services 63

SWIFT Message Conversion Services
MERVA ESA provides two programs that you can call from your application
program to map messages between SWIFT I and SWIFT II formats:
v DSLAP1T2 to map SWIFT I banking messages to SWIFT II format
v DSLAP2T1 to map SWIFT II banking messages to SWIFT I format.

Working Storage Areas for the Message Services
Each of the message mapping programs requires a working storage area. The
structures are identical but the variable names are different:
v M12WSTOR for the DSLAP1T2 program. The structure is defined by the

copybook DSLAP1WS. Table 2 shows the structure of M12WSTOR.

Table 2. Structure of the M12WSTOR Working Storage

Label
Length
(Bytes) Description

M12RC 2
Return code: space=No error

01=Formal error
(Message type not supported)

02=System error
(Undefined message, DSLAPFFS,

DSLAPFTS)

M12ERMSG 131 Error Message
891 DSLAP1T2 working storage

v M21WSTOR for the DSLAP2T1 program. The structure is defined by the
copybook DSLAP2WS. See Table 3.

Table 3. Structure of the M21WSTOR Working Storage

Label
Length
(Bytes) Description

M21RC 2
Return code: space=No error

01=Formal error
(Message type not supported)

02=System error
(Undefined message, DSLAPFFS,

DSLAPFTS)

M21ERMSG 131 Error message
891 DSLAP2T1 working storage

How to Call the DSLAP1T2 Program
The program DSLAP1T2 maps a SWIFT banking message from SWIFT II format to
SWIFT I format:

PP DSLAP1T2 (M12WSTOR , MS1SWIFT , MS2SWIFT) PQ

DSLAPFTS

64 API Guide

Parameters
M12WSTOR

The Message Conversion Services working storage. This data structure is
defined by the copybook DSLAP1WS.

MS1SWIFT
The variable length buffer containing the message in SWIFT I format. The
buffer format is defined by the MSGSWIFT structure, copybook
DSLAPIMS.

MS2SWIFT
The variable length buffer containing the message in SWIFT II format. The
buffer format is defined by the MSGSWIFT structure, copybook
DSLAPIMS.

Return Codes
M12RC = space

The function mapped the message successfully.

M12RC = 01
The function cannot map the message. Additional information is contained
in field M12ERMSG:
v SYSTEM MESSAGE -> MIGRATION NOT SUPPORTED
v MESSAGE WITH MULTIPLE DEST. -> NOT SUPPORTED BY SWIFT-II.

M12RC = 02
The function cannot map the message. Additional information is contained
in field M12ERMSG:
v NO SWIFT-I MESSAGE - NO MIGRATION POSSIBLE
v UNFORMATTED SWIFT-I MESSAGE - NO MIGRATION POSSIBLE.

How to Call the DSLAP2T1 Program
The program DSLAP2T1 maps the following types of SWIFT message from
SWIFT II format to SWIFT I format:
v SWIFT Banking Messages
v Non-Delivery Warning (010)
v Delivery Notification (011).

The following trailer components are supported in the conversion process:
v PDE, possible duplicate emission
v MAC, authentication.

All other trailers are ignored.

PP DSLAP2T1 (M21WSTOR , MS1SWIFT , MS2SWIFT) PQ

Parameters
M21WSTOR

The Message Conversion Services working storage. This data structure is
defined by the copybook DSLAP2WS.

DSLAP1T2

Chapter 7. Auxiliary API Services 65

MS1SWIFT
The variable length buffer containing the message in SWIFT I format. The
buffer format is defined by the MSGSWIFT structure, copybook
DSLAPIMS.

MS2SWIFT
The variable length buffer containing the message in SWIFT II format. The
buffer format is defined by the MSGSWIFT structure, copybook
DSLAPIMS.

Return Codes
M21RC = space

The function has mapped the message successfully.

M21RC = 01
The function cannot map the message. Additional information is contained
in field M21ERMSG:
v NO FINANCIAL MESSAGE - NO MIGRATION POSSIBLE
v NO FINANCIAL/BANKING MESSAGE - NO MIGRATION POSSIBLE.

M21RC = 02
The function cannot map the message. Additional information is contained
in field M21ERMSG:
v NO SWIFT-II MESSAGE - NO MIGRATION POSSIBLE
v UNFORMATTED SWIFT-II MESSAGE - NO MIGRATION POSSIBLE.

EDIFACT Message Conversion Services
MERVA ESA provides three programs that you can call from your application
program to enable you to map messages between EDIFACT and the SWIFT
message types 105 and 106.

Note: Instead of writing your own program to do this conversion, however, you
are recommended to use the conversion programs provided by
MERVA ESA. These are the programs DSLCES1, DSLCES2, and DSLCSE1,
and the transactions DSLCESTR and DSLCSETR.

These programs, and the concepts of EDIFACT message conversion, are discussed
in the chapter on Message Processing in MERVA for ESA Concepts and Components.

The three programs are:
v DSLCES1 converts an EDIFACT message into multiple SWIFT messages, and

puts all these messages into a MERVA ESA queue.
DSLCES1 has built in RESTART recovery, see Figure 3 on page 69.

v DSLCES2 maps an EDIFACT message from an input buffer and converts into
multiple SWIFT messages and puts one of these messages into the internal
queue buffer.

v DSLCSE1 gets a group of SWIFT messages from a MERVA ESA queue, converts
them into an EDIFACT message and puts it into an output buffer.

The Conversion Program DSLCES1
DSLCES1 converts an EDIFACT message into multiple SWIFT messages, and puts
all these messages into an intermediate queue, and routes them according to the
routing table of the intermediate queue. DSLCES1 has built in RESTART recovery;
this is described in Figure 3 on page 69.

DSLAP2T1

66 API Guide

There are two functions you can use:

PUT The PUT function:
1. Maps the EDIFACT message into SWIFT 105 or 106 messages
2. Writes all these messages and a RESTART message to the intermediate

queue
3. Routes all the SWIFT messages to the target queues.

Note: After each SWIFT message has been built, but before it is put into
the intermediate queue, the user exit DSLMU240 is called to let the
user inspect or modify the SWIFT message.

DELR Deletes the RESTART message from the intermediate queue.

Figure 2 shows how to call the DSLAPI EDIFACT conversion service program
DSLCES1.

Note: For EDIFACT messages in queue format (CES1IF='Q') the EDIFACT message
is passed to DSLCES1 in the internal queue of DSLAPI. In this case no input
buffer is required.

For EDIFACT messages in net format (CES1IF='N') the EDIFACT message is
passed to DSLCES1 in the input buffer.

Figure 2. Calling the DSLCES1 Program

DSLCES1

Chapter 7. Auxiliary API Services 67

The Conversion Working Storage CES1STOR
Table 4 shows the structure of the parameter list of the CES1STOR working
storage. The structure is defined in copybook DSLCES1S (Assembler), DSLAPCBL
(COBOL), DSLAPPLI (PL/I), and DSLAPC (C).

Table 4. Structure of the DSLCES1 Working Storage

Label
Length
(Bytes) Type Description

INPUT FIELDS
CES1FUNC 4 C Function: PUT = Convert EDIFACT message to SWIFT

messages, PUT SWIFT messages
to queue and ROUTE them.

DELR = Delete RESTART message from queue.
CES1IF
CES1AORD
CES1Q

1
8
8
3

C
C
C

Input Format Q (queue) or N (net)
ACCEPT or DROP messages with non-critical errors
Intermediate Queue

OUTPUT FIELDS
CES1RC 2 C Return Code: =Okay (Normal Completion (spaces))

01=Formal Error
02=Processing Error

CES1EMSG 131
3

C Error Message

CES1NMSG 2 B Number of SWIFT Messages created (1-9)
CES1CEMS 131 C Checking message. Checking is made if the

intermediate queue has CHECK=YES
CES1HOME
CES1MT
CES1CORR
CES1PRI
CES1SW20
CES1SW21
CES1SW12

11
3
11
1

16
16
3

C
C
C
C
C
C
C

Returned Home ID
Returned Message Type of SWIFT
Message (105/106)
Returned Correspondents ID
Returned Priority
Returned Transaction Reference
Returned Related Reference
Returned Message Number

CES1WORK 3742 C Working storage reserved for DSLCES1

B = Binary value
C = Character

Restart Recovery of DSLCES1
Figure 3 on page 69 shows how the API EDIFACT conversion service program
DSLCES1 handles RESTART recovery.

DSLCES1

68 API Guide

Figure 3. Restart Recovery of DSLCES1

DSLCES1

Chapter 7. Auxiliary API Services 69

Note: In the above recovery explanation E shows the program DSLCES1 failing
because there are messages in the intermediate queue but these are not the
same as the message being converted. One solution would be for the users
API program to delete all the messages from the intermediate queue.

Calling the Program DSLCES1
The following example shows how to call DSLCES1:
CES1FUNC := 'PUT '
CES1IF := 'N'
CES1AORD := 'ACCEPT '
CES1Q := 'L1CES1 '
...
Call DSLCES1 with CES1STOR INTWSTOR BUFFER
...
CES1RC = space|01|02

The return codes (CES1RC) show:

CES1RC = space
The call is successful.

CES1RC = 01 The call has failed, with a formal error. Additional information is
contained in fields CES1EMSG.

CES1RC = 02 The call has failed, an error was detected during conversion.
Additional information is contained in fields CES1EMSG.

The Conversion Program DSLCES2
There are two functions you can use when mapping EDIFACT messages to SWIFT
messages:

PUTF The PUTF function:
1. Maps the EDIFACT message into a SWIFT 105 or 106 messages
2. Extracts the first section of EDIFACT data
3. Puts it into field SW77.

Figure 4. Restart Recovery Explanation

DSLCES1

70 API Guide

The SWIFT message is placed into the internal queue.

Note: The user exit DSLMU242 is called to extract the SWIFT fields
required in MT 105/106 from the EDIFACT message.

PUTN The PUTN function:
1. Extracts the next section of EDIFACT data
2. Replaces the field SW77 in the internal queue with the new data
3. Increments the field SW27 in the internal queue.

Figure 5 shows how to call the DSLAPI EDIFACT conversion service program
DSLCES2.

Note: Unlike DSLCES1 and DSLCSE1 the EDIFACT message is passed to DSLCES2
in the input buffer, even when it is in queue format (CES2IF='Q'), this is
because the SWIFT messages are passed back in the internal queue buffer.

The Conversion Working Storage CES2STOR
Table 5 on page 72 shows the structure of the parameter list of the CES2STOR
working storage. The structure is defined in copybook DSLCES2S (Assembler),
DSLAPCBL (COBOL), DSLAPPLI (PL/I), and DSLAPC (C).

Figure 5. Calling the DSLCES2 Program

DSLCES2

Chapter 7. Auxiliary API Services 71

Table 5. Structure of the DSLCES2 Working Storage

Label
Length
(Bytes) Type Description

INPUT FIELDS
CES2FUNC 4 C Function: PUTF = Put the first message in EDIFACT

buffer to the internal queue.
PUTN = Put the next message in EDIFACT

buffer to the internal queue.
CES2IF
CES2CK

1
1
2

C
C

Input Format Q (queue) or N (net)
Checking: Y=Message checking, N=No Message checking

OUTPUT FIELDS
CES2RC 2 C Return Code: =Okay (Normal Completion (spaces))

00=Okay (Messages to follow)
01=Formal Error
02=Processing Error

CES2EMSG 131
3

C Error Message

CES2LMSG
CES2NMSG

2
2

B
B

Last Message Processed
Number of SWIFT Messages created (1-9)

CES2CEMR
CES2CEMS

2
131

1

B
C

EDIFACT MSG : MFS Reason Code (CES2CK=Y only)
EDIFACT MSG : Error Message (CES2CK=Y only)

CES2CSMR
CES2CSMS

2
131

B
C

SWIFT MSG : MFS Reason Code (CES2CK=Y only)
SWIFT MSG : Error Message (CES2CK=Y only)

CES2HOME
CES2MT
CES2CORR
CES2PRI
CES2SW20
CES2SW21
CES2SW12

11
3
11
1

16
16
3

C
C
C
C
C
C
C

Returned Home ID
Returned Message Type of SWIFT Message (105/106)
Returned Correspondents ID
Returned Priority
Returned Transaction Reference
Returned Related Reference
Returned Message Number

CES2WORK 1572 C Working storage reserved for DSLCES2

B = Binary value
C = Character

The Put EDIFACT Message Function PUTF
The PUTF function does the following:
1. Extracts the SWIFT fields from the EDIFACTmessage using the user exit of

DSLCES2.
2. Formats the required SWIFTmessage (105/106) in the internal TOF.
3. Adds the extracted SWIFT fields to the internal TOF.
4. Takes the first section of the EDIFACT data and places it in field SW77.
5. The internal TOF is passed through to the internal queue.
6. If checking is requested (CES2CK=Y), the whole EDIFACT message is checked

and the result of this checking is placed in CES2CEMR and CES2CEMS, the
SWIFTmessage produced is checked and the result of this checking is placed in
CES2CSMR and CES2CSMS.

The Put EDIFACT Message Function PUTN
The PUTN function does the following:
1. Takes the next section of EDIFACT data.
2. Replaces the field SW77, in the internal queue, with the new data.

DSLCES2

72 API Guide

3. Increments the field SW27 in the internal queue.
4. If checking is requested (CES2CK=Y), the SWIFT message produced is checked

and the result of this checking is placed in CES2CSMR and CES2CSMS. The
whole EDIFACT message is not checked and CES2CEMS and CES2CEMR are
left unchanged.

Note: The PUTN function relies on the fact that the internal queue still contains
the SWIFT message produced by the previous call to DSLCES2.

Calling the Program DSLCES2
The following example shows how to call DSLCES2:
CES2FUNC := 'PUTF'
CES2IF := 'N'
CES2CK := 'Y'
...
Call DSLCES2 with CES2STOR INTWSTOR Buffer
...
CES2RC = space|00|01|02

The return codes (CES2RC) show:

CES2RC = space
The call is successful, and there are no more SWIFT messages.

CES2RC = 00
The call is successful, but there are more SWIFT messages.

CES2RC = 01
The call has failed, with a formal error. Additional information is contained
in fields CES2EMSG.

CES2RC = 02
The call has failed, an error was detected during conversion. Additional
information is contained in fields CES2EMSG.

The Conversion Program DSLCSE1
DSLCSE1 gets a group of SWIFT messages from a MERVA ESA queue, converts
them into an EDIFACT message, and this message is put into an output
EDIFACTbuffer. The program DSLCSE1 is based around an audit list, which is
both built and used by DSLCSE1. The audit list describes the status of a group of
SWIFT messages making up an EDIFACT message. Table 6 shows the structure of
the audit list used by DSLCSE1. The structure is defined in copybook DSLCSE1A
(Assembler), DSLAPCBL (COBOL), DSLAPPLI (PL/I), and DSLAPC (C).

Table 6. Structure of the Audit List

Label
Length
(Bytes) Type Description

AUDITBH
AUDITBL

AUDITDL

2
2
2
2

B

B

Audit Buffer Header
Maximum Buffer Length

Data Length plus 4

Audit Record Header Data

DSLCES2

Chapter 7. Auxiliary API Services 73

Table 6. Structure of the Audit List (continued)

Label
Length
(Bytes) Type Description

AUDDATE
AUDTIME
AUDUSER
AUDSTAT
AUDFUNC

AUDQUEUE
AUDHOME
AUDCORR
AUDSW21

AUDNMSG

8
8

16
1
4

8
11
11
16
1
2
2

C
C
C
C
C

C
C
C
C
C
B
C

Date (YY:MM:DD) the audit list was produced/updated
Time (HH:MM:SS) the audit list was produced/updated
Reserved for the user. For example, a comment
Audit list status C (Complete) S (Skeleton)
The function (CSE1FUNC) causing the audit list
production/update
The queue the audit list was produced for
The LT of the receiver (Home ID)
The LT of the sender (Corr ID)
Related Reference of the EDIFACT message
Reserved
Number of SWIFT messages in the EDIFACT message
Reserved
Audit Record one per SWIFT message

AUDQSN
AUDMNUM

4
2

B
B

Queue sequence number
Message number in the sequence
The following fields are blank in a skeleton
audit list (GET only)

AUDOSS
AUDOSN
AUDODATE
AUDOTIME

4
6
6
4

C
C
C
C

Output Session Number
Output Sequence Number
Output Date from SWIFT (YYMMDD)
Output Time from SWIFT (HHMM)

AUDMSTAT 1 C SWIFT Message Usage Status.
U (used for EDIFACT)
D (duplicate)

(not decided yet (space))
AUDPSTAT 1 C PUTB, ROUB and DELE Status.

S (move, route, delete successful)
F (move, route, delete failed)

(move, route, delete not attempted (space))
4 C Reserved

B = Binary value
C = Character

The functions provided for SWIFT to EDIFACT conversion are:

GET Builds a skeleton audit list for an EDIFACT message. The EDIFACT
message that the audit list is built for is identified by putting one part of
the EDIFACT message (that is, one of the SWIFT messages) into the
DSLAPI internal queue before the DSLCSE1 TYPE=GET is made.

If all SWIFT parts of the EDIFACT message are present in the MERVA ESA
queue, the SWIFT messages are converted into the EDIFACT message, this
message is put into an output EDIFACT buffer, and the audit list is
completed.

Notes:

1. The user exit DSLMU241 is called after each SWIFT message is read
from the queue to allow for inspection and modification.

2. If all SWIFT parts of the EDIFACT message are not present in the
MERVA ESA queue, only a skeleton audit list will be built, and
DSLCSE1 will not read any messages from the queue.

DSLCSE1

74 API Guide

If all SWIFT parts of the EDIFACT message are present in the
MERVA ESA queue, but the conversion fails while building the
EDIFACT message, DSLCSE1 will fill in the non-skeleton data for only
the SWIFT message already read.

LIST Builds the audit list for an EDIFACT message. The EDIFACT message that
the audit list is built for is identified by putting one part of the EDIFACT
message (that is, one of the SWIFT messages) into the DSLAPI internal
queue before the DSLCSE1 TYPE=LIST is made.

Note: To build the audit list all the SWIFT messages making up the
EDIFACTmessage will be read from the queue by DSLCSE1.

PUTB The PUTB function moves all the SWIFT messages in the audit list using a
back reference, that is, the SWIFT messages are moved and deleted using
the API automatic delete mechanism.

ROUB The ROUB function routes all the SWIFT messages in the audit list using a
back reference, that is, the SWIFT messages are routed and deleted using
the API automatic delete mechanism.

DELE The DELE function deletes all the SWIFT messages in the audit list.

Notes:

1. The functions PUTB, ROUB, and DELE will not operate on a skeleton audit list.
If you want to use these functions after an unsuccessful GET, you must first
perform the LIST function.

2. The contents of the API internal queue buffer will be changed by a call to
DSLCSE1.

Figure 6 on page 76 shows how to call the DSLAPI EDIFACT conversion service
program DSLCSE1.

DSLCSE1

Chapter 7. Auxiliary API Services 75

Note: For EDIFACT messages returned in queue format (CSE1FORM='Q') the
EDIFACT message is returned from DSLCSE1 in the internal queue of
DSLAPI. In this case no output buffer is required.

For EDIFACT messages returned in net format (CSE1FORM='N') the
EDIFACT message is returned from DSLCSE1 in the output buffer.

The Conversion Working Storage CSE1STOR
Table 7 on page 77 shows the structure of the parameter list of the CSE1STOR
working storage. The structure is defined in copybook DSLCSE1S (Assembler),
DSLAPCBL (COBOL), DSLAPPLI (PL/I), and DSLAPC (C).

*
*
*

Before: Preparing parameter list (CES1STOR) and EDI message buffer

Call DSLCES1 with CES1STOR AUDLIST INTWSTOR Buffer

Process updated CES1STOR, AUDLIST and Buffer
*
*
*

Working-storage areas

DSLCES1

Parameter list

Queue buffer

TOF

Audit List

EDI Message

AUDLIST

Buffer

CES1STOR

Figure 6. Calling the DSLCSE1 Program

DSLCSE1

76 API Guide

Table 7. Structure of the DSLCSE1 Working Storage

Label
Length
(Bytes) Type Description

INPUT FIELDS
CSE1FUNC 4 C Function: GET = Convert SWIFT messages to an

EDIFACT message, build
an Audit List.

LIST = Build an Audit List.
PUTB = Put and delete SWIFT

messages in Audit list.
ROUB = Route and delete SWIFT

messages in Audit list.
DELE = Delete SWIFT messages in

Audit list.
CSE1IQ
CSE1FORM
CSE1MID
CSE1LF
CSE1PART

CSE1OQ
CSE1TCOD

8
1
8
1
1

8
4

1

C
C
C
C
C

C
C

C

Input Queue
Format of EDIFACT message produced. Q or N.
Message Identification
Line Format
Parts deleted/routed/moved (DELE/PUTB/ROUB only)
A (all), D (Duplicate) or U (used in EDIFACT)
Output Queue (PUTB only).
Trace code to be added to MSGTRACE (PUTB, ROUB only)
For PUTB no trace record is written if CSE1OQ=CSE1IQ
Reserved
OUTPUT FIELDS

CSE1RC 2 C Return Code: =Okay (Normal Completion (spaces))
01=Formal Error
02=Processing Error

CSE1EMSG 131 C Error Message
CSE1WORK 1879 C Working storage reserved for DSLCSE1

C = Character

Calling the Program DSLCSE1
The following example shows how to call DSLCSE1:
CSE1FUNC := 'GET '
CSE1MID := 'EDIFACT '
CSE1LF := 'Z'
CSE1Q := 'D1CSE1 '
CSE1FORM := 'N'
...
Call DSLCSE1 with CSE1STOR AUDLIST INTWSTOR Buffer
...
CSE1RC = space|01|02

The return codes (CSE1RC) show:

CSE1RC = space
The call is successful.

CSE1RC = 01 The call has failed, with a formal error. Additional information is
contained in field CSE1EMSG.

CSE1RC = 02 The call has failed, an error was detected during conversion.
Additional information is contained in fields CSE1EMSG.

DSLCSE1

Chapter 7. Auxiliary API Services 77

DSLCSE1

78 API Guide

Part 2. DSLAPI Data Structures and Functions

This part is a reference section that describes:
v The data structures used by DSLAPI
v Each DSLAPI function that can be called from an application program.

© Copyright IBM Corp. 1987, 2001 79

80 API Guide

Chapter 8. Data Structures

This chapter describes the data structures used by API services.

In each of the supported languages except for C and REXX the structure is defined
by the specified copybook or include-file. For C all API structures are defined in
the C header file DSLAPC. REXX does not require data declaration.

Structure Page Copybook

The interface working storage area, INTWSTOR 81 DSLAPIWS

The TOF access parameters, TOFPARM 85 DSLAPITP

The MFS message buffer, MSGSWIFT 88 DSLAPIMS

The MFS message prefix, MSGSWIFT_PREFIX 88 DSLAPIMP

SWIFT message headers 90 DSLAPIMH

The journal key, JRNKEY 92 DSLAPIJK

The terminal user control block (TUCB)
(Assembler: macro DSLMFS MF=TUCB)

93 DSLAPITU

The User File record, DSLUSRS
(Assembler: macro DSLUSR)

94 DSLAPIUS

The MFS parameter list, MFSL
(Assembler: macro DSLMFS MF=L)

95 DSLMFSPL

Refer to the description of the individual API services for details on which fields
you use and how.

The copybooks are distributed in a separate library for each language as follows:

Assembler MERVA.SDSLMAC0

COBOL MERVA.SDSLMAC1

PL/I MERVA.SDSLMAC2

C/370 MERVA.SDSLMAC3

Interface Working Storage INTWSTOR
The interface working storage, INTWSTOR, is 4096 bytes long and consists of two
parts:
v The parameters that DSLAPI uses to communicate with the calling program. The

parameter list is 512 bytes long.
v Working storage used by DSLAPI internally. This area is 3584 bytes long.

The interface working storage is provided by the application program. DSLAPI
allocates other buffers separately, for example, the internal TOF and queue buffers.
During processing their size may change.

© Copyright IBM Corp. 1987, 2001 81

Table 8 shows the structure of the interface working storage.

Table 8. Structure of the DSLAPI Interface Working Storage

Label
Offset
(Hex.) Length Type Description

INTFUNC 000 4 C (1) The name of the DSLAPI function to be
called. All functions are described in
“Chapter 9. DSLAPI Functions” on
page 97.

INTQUEUE 004 8 C (1) Queue Management. Queue name.
INTQSN 00C 4 B Queue Management. The unique queue

sequence number (QSN) of a queue
element.

INTKEY1 010 24 C Queue Management. The first symbolic
key of a queue element.

INTKEY2 028 24 C Queue Management. The second
symbolic key, if used.

INTBQUE 040 8 C (1) Queue Management. The name of the
MERVA queue containing the queue
element that is to be automatically
deleted.

INTBQSN 048 4 B Queue Management. The queue
sequence number (QSN) of the queue
element that is to be automatically
deleted.

INTDOUBL 04C 6 C Queue Management. Indicates whether
the queue element has been processed
previously. Can contain “DOUBLE” or
blanks.

INTBUSY 052 4 C Indicates whether the queue element is
in-service, that is, being processed by
another task. Can contain “BUSY” or
blanks.

INTSHUTD 056 8 C Indicates the state of the MERVA ESA
system. The value can be:
v SHUTDOWN, the operator has

entered the SHUtdown command.
v INACTIVE, the MERVA ESA system

is not ready.
v Blanks, MERVA ESA is active.

INTRC 05E 2 C The DSLAPI return code: see the
relevant section of each function
description in “Chapter 9. DSLAPI
Functions” on page 97.

INTCWA 060 4 A The address of the MERVA ESA service
communication area DSLCOM or 0.

INTEISTG 064 4 A The address of the CICS DFHEISTG (set
by DSLAPCIC).

INTEIB 068 4 A The address of the CICS DFHEIBLK (set
by DSLAPCIC).

INTMSGID 06C 8 C (1) MFS services. Message identification.

82 API Guide

Table 8. Structure of the DSLAPI Interface Working Storage (continued)

Label
Offset
(Hex.) Length Type Description

INTFRMID 074 1 C (1) MFS services. Message format identifier.
The following codes are used by
MERVA ESA:

K Telex test-key

N Workstation based Telex (V3.2
or less)

P Workstation based Telex (V3.3
or higher)

Q Internal queue format

S SWIFT I

T Telex Link

W SWIFT II

X SWIFT I noprompt

Y SWIFT II noprompt
INTERMSG 075 131 C May contain an explanatory message if

INTRC contains a nonblank return code.
INTERMF1 0F8 79 C MFS services. Following an MFS error,

INTERMF1-3 can contain the first three
data areas from the DSLMSG field in the
message.

INTERMF2 147 79 C DSLMSG data area 2.
INTERMF3 196 79 C DSLMSG data area 3.

1E5 3 C Reserved.
INTTOFA 1E8 4 A The storage address of the TOF. Refer to

“Locating the TOF” on page 51.
INTQBUFA 1EC 4 A The storage address of the internal

queue buffer. Refer to “Locating the
Internal Queue Buffer” on page 51.

1F0 12 Reserved.
INTSIZE 1FC 4 B The total size of API internal storage.

200 3584 The remainder of INTWSTOR is used by
DSLAPI internally.

A = Address
B = Binary value
C = Uppercase Character, (1) can be in lowercase

Notes:

1. When you specify a function, DSLAPI sets the unused fields for:
v Characters to blanks
v Numbers or addresses to X'00'.

2. MERVA ESA requires that the interface working storage INTWSTOR be aligned
on a doubleword boundary, that is, that its address be a multiple of eight.

Chapter 8. Data Structures 83

Figure 7 shows which INTWSTOR fields you must specify for each function, and
which fields may contain an answer after using a function.

┌──────┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ F │ Q │ Q │ K │ K │ B │ B │ S │ D │ B │ R │ C │ E │ E │ M │ F │ E │ E │
│ │ U │ U │ S │ E │ E │ Q │ Q │ H │ O │ U │ C │ W │ I │ I │ S │ R │ R │ R │
│ │ N │ E │ N │ Y │ Y │ U │ S │ U │ U │ S │ │ A │ S │ B │ G │ M │ M │ M │
│ │ C │ U │ │ 1 │ 2 │ E │ N │ T │ B │ Y │ │ │ T │ │ I │ I │ S │ F │
│ │ │ E │ │ │ │ │ │ D │ L │ │ │ │ G │ │ D │ D │ G │ n │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
├──────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│CMD │ M │ │ │ │ │ │ │ A │ │ │ A │ │ C │ C │ │ │ A │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│DELE │ M │ M │ M │ A │ A │ │ │ A │ │ │ A │ │ C │ C │ │ │ A │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│EMPT │ M │ │ │ │ │ │ │ │ │ │ A │ │ C │ C │ │ │ A │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│FLDG │ M │ │ │ │ │ │ │ │ │ │ A │ │ C │ C │ │ │ A │ │
│FLDP │ M │ │ │ │ │ │ │ │ │ │ A │ │ C │ C │ │ │ A │ │
│FREE │ M │ M │ M │ A │ A │ │ │ A │ │ │ A │ │ C │ C │ │ │ A │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│GEKU │ M │ M │ A │ M │ A │ │ │ A │ A │ A │ A │ │ C │ C │ │ │ A │ │
│GET │ M │ M │ M │ A │ A │ │ │ A │ A │ A │ A │ │ C │ C │ │ │ A │ │
│GETC │ M │ M │ M │ A │ A │ │ │ A │ A │ │ A │ │ C │ C │ │ │ A │ │
│GETK │ M │ M │ A │ M │ A │ │ │ A │ A │ A │ A │ │ C │ C │ │ │ A │ │
│GETM │ M │ M │ │ │ │ │ │ │ │ │ A │ │ C │ C │ M │ M │ A │ A │
│GETN │ M │ M │ M │ A │ A │ │ │ A │ A │ │ A │ │ C │ C │ │ │ A │ │
│GETS │ M │ │ │ │ │ │ │ │ │ │ A │ │ C │ C │ │ │ A │ A │
│GETU │ M │ M │ M │ A │ A │ │ │ A │ A │ A │ A │ │ C │ C │ │ │ A │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│INIT │ M │ │ │ │ │ │ │ A │ │ │ A │ M │ C │ │ │ C │ A │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│JRLG │ M │ │ │ │ │ │ │ A │ │ │ A │ │ C │ C │ │ │ A │ │
│JRLN │ M │ │ │ │ │ │ │ A │ │ │ A │ │ C │ C │ │ │ A │ │
│JRLP │ M │ │ │ │ │ │ │ A │ │ │ A │ │ C │ C │ │ │ A │ │
│JRNG │ M │ │ │ │ │ │ │ A │ │ │ A │ │ C │ C │ │ │ A │ │
│JRNN │ M │ │ │ │ │ │ │ A │ │ │ A │ │ C │ C │ │ │ A │ │
│JRNP │ M │ │ │ │ │ │ │ A │ │ │ A │ │ C │ C │ │ │ A │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│MPFG │ M │ │ │ │ │ │ │ │ │ │ A │ │ C │ C │ │ │ A │ A │
│MPFP │ M │ │ │ │ │ │ │ │ │ │ A │ │ C │ C │ │ │ A │ A │
│MSGG │ M │ M │ │ │ │ │ │ │ │ │ A │ │ C │ C │ M │ M │ A │ A │
│MSGP │ M │ M │ │ │ │ │ │ │ │ │ A │ │ C │ C │ M │ M │ A │ A │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│PRTI │ M │ │ │ │ │ │ │ │ │ │ A │ │ │ │ M │ M │ A │ A │
│PRTL │ M │ │ │ │ │ │ │ │ │ │ A │ │ │ │ │ │ A │ A │
│PRTT │ M │ │ │ │ │ │ │ │ │ │ A │ │ │ │ │ │ A │ A │
│PUT │ M │ M │ A │ A │ A │ │ │ A │ │ │ A │ │ C │ C │ │ │ A │ │
│PUTB │ M │ M │ A │ A │ A │ M │ M │ A │ │ │ A │ │ C │ C │ │ │ A │ │
│PUTM │ M │ M │ │ │ │ │ │ │ │ │ A │ │ C │ C │ M │ M │ A │ A │
│PUTR │ M │ M │ M │ M │ M │ │ │ A │ M │ M │ A │ │ C │ C │ │ │ A │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
├──────┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┤
│ │
│ M = Mandatory │
│ A = Answer │
│ C = CICS only, set by DSLAPCIC │
└──┘

Figure 7. Relationship between Interface Working Storage and Its Functions (Part 1 of 2)

84 API Guide

TOF Access Parameters TOFPARM
The TOFPARM structure is used by the API TOF services READ, WRIT, and EMPT.
It contains the field reference of the field being processed and the return code and
reason code from the MERVA TOF supervisor.

Table 9 shows the structure of TOFPARM. The TOF access parameters are
described in detail in “Field Reference” on page 86.

Table 9. Structure of the TOF Access Parameters

Label
Offset
(Hex.) Length Type Description

TOFREQ 000 4 C Contains the most recent API TOF
request.

┌──────┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ F │ Q │ Q │ K │ K │ B │ B │ S │ D │ B │ R │ C │ E │ E │ M │ F │ E │ E │
│ │ U │ U │ S │ E │ E │ Q │ Q │ H │ O │ U │ C │ W │ I │ I │ S │ R │ R │ R │
│ │ N │ E │ N │ Y │ Y │ U │ S │ U │ U │ S │ │ A │ S │ B │ G │ M │ M │ M │
│ │ C │ U │ │ 1 │ 2 │ E │ N │ T │ B │ Y │ │ │ T │ │ I │ I │ S │ F │
│ │ │ E │ │ │ │ │ │ D │ L │ │ │ │ G │ │ D │ D │ G │ n │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
├──────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│PUTS │ M │ │ │ │ │ │ │ │ │ │ A │ │ C │ C │ │ │ A │ A │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│QLF │ M │ M │ M │ M │ M │ │ │ A │ │ A │ A │ │ C │ C │ │ │ A │ │
│QLL │ M │ M │ M │ M │ M │ │ │ A │ │ A │ A │ │ C │ C │ │ │ A │ │
│QLN │ M │ M │ M │ M │ M │ │ │ A │ │ A │ A │ │ C │ C │ │ │ A │ │
│QLP │ M │ M │ M │ M │ M │ │ │ A │ │ A │ A │ │ C │ C │ │ │ A │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│READ │ M │ │ │ │ │ │ │ │ │ │ A │ │ C │ C │ │ │ A │ │
│REEN │ M │ │ │ │ │ │ │ A │ │ │ A │ M │ C │ │ │ C │ A │ │
│REPL │ M │ M │ M │ A │ A │ │ │ A │ │ │ A │ │ C │ C │ │ │ A │ │
│ROU │ M │ M │ A │ A │ A │ │ │ A │ │ │ A │ │ C │ C │ │ │ A │ │
│ROUB │ M │ M │ A │ A │ A │ M │ M │ A │ │ │ A │ │ C │ C │ │ │ A │ │
│ROUD │ M │ M │ M │ A │ A │ │ │ A │ │ │ A │ │ C │ C │ │ │ A │ │
│ROUN │ M │ M │ M │ A │ A │ │ │ A │ │ │ A │ │ C │ C │ │ │ A │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│SAVE │ M │ │ │ │ │ │ │ A │ │ │ A │ │ C │ │ │ C │ A │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│TERM │ M │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│USRG │ M │ │ │ │ │ │ │ A │ │ │ A │ │ C │ C │ │ │ A │ │
│USRN │ M │ │ │ │ │ │ │ A │ │ │ A │ │ C │ C │ │ │ A │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
│WRIT │ M │ │ │ │ │ │ │ │ │ │ A │ │ C │ C │ │ │ A │ │
│WTO │ M │ │ │ │ │ │ │ A │ │ │ A │ │ C │ C │ │ │ A │ │
│ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │
├──────┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┤
│ │
│ M = Mandatory │
│ A = Answer │
│ C = CICS only, set by DSLAPCIC │
└──┘

Figure 7. Relationship between Interface Working Storage and Its Functions (Part 2 of 2)

Chapter 8. Data Structures 85

Table 9. Structure of the TOF Access Parameters (continued)

Label
Offset
(Hex.) Length Type Description

TOFMODIF 004 40 C Blanks, or a string containing one or
more request modifiers, separated by
commas or blanks.

TOFFDNAM 02C 8 C The name of the field.
TOFFDNA1 034 8 C Reserved.
TOFFDNL 03C 2 B Nesting identifier (index): A binary

number between 0 and 255.
TOFFDFG 03E 2 B Field group index: A binary number

between 1 and 255.
TOFFDOC 040 2 B Repeatable sequence index: A binary

number between 1 and 32767.
TOFFDDA 042 2 B Data area index: A binary number

between 1 and 32767.
TOFTSVRC 044 2 B The return code from the TOF

supervisor.
TOFTSVRS 046 2 B The reason code from the TOF

supervisor.
TOFFDOCA 048 2 B The number of nested repeatable

sequence indexes used in the fields
TOFFDOC1 to TOFFDOC9.

TOFFDOC1 04A 2 B The repeatable sequence index for the
first level of nested repeatable
sequences: A binary number between 1
and 32767.

TOFFDOC2 04C 2 B The repeatable sequence index for the
second level.

TOFFDOC3 04E 2 B The repeatable sequence index for the
third level.

TOFFDOC4 050 2 B The repeatable sequence index for the
fourth level.

TOFFDOC5 052 2 B The repeatable sequence index for the
fifth level.

TOFFDOC6 054 2 B The repeatable sequence index for the
sixth level.

TOFFDOC7 056 2 B The repeatable sequence index for the
seventh level.

TOFFDOC8 058 2 B The repeatable sequence index for the
eighth level.

TOFFDOC9 05A 2 B The repeatable sequence index for the
ninth level.

B = Binary value
C = Character

Field Reference
Each field in a message can be precisely identified by a field name and four levels
of indexing:
v Message nesting identifier
v Field group index
v One or more repeatable sequence indexes
v Data area index.

In MERVA ESA this is called a field reference.

86 API Guide

When you access a field in a message you identify it by setting the field reference
variables in the TOFPARM structure. You can also specify request modifiers to
modify the way the TOF supervisor positions to a field. After the TOF access the
TOFPARM field reference reflects the current position in the TOF.

Message Nesting Identifier TOFFDNL
Nesting identifier 0 is generated when the TOF is initialized. Nesting identifier 1 is
generated when a message is initialized. Subsequent nesting identifiers are
generated when a new message is initialized nested, or embedded, in an existing
message. SWIFT message type 192 is an example of a message containing
embedded messages.

If a nesting identifier between 1 and 255 is used, it must exist in the TOF. Fields
with TOF nesting identifier 0 can always be written.

Field Group Index TOFFDFG
A field name can occur more than once in a message. These occurrences are
identified by a different field group index. For SWIFT I messages, group index 1 is
reserved for the first line of the header; group index 2 is reserved for the second
and the third lines of the header. For SWIFT II messages, the basic header is in
group index 1, the application header in group index 2, and the user header in
group index 3. Message text fields start with group index 5. The trailer is always in
group 255.

Starting with MERVA ESA V4.1 the group index is indicated in all MCBs for
SWIFT messages with the label GRNnnn and the DSLLGRP operand
GRPNUM=nnn, where nnn is the actual group index, for example:
GRN005 DSLLGRP GRPNUM=5

Repeatable Sequence Index TOFFDOC
The repeatable sequence index TOFFDOC identifies one sequence of fields in a
repeated sequence of fields. A SWIFT example is message type 412.

Repeatable sequences can be nested; a repeatable field sequence is nested when it
is defined within a sequence of fields that itself is repeated. An example of a
message containing nested repeatable sequences is SWIFT message type 801. To
uniquely identify a field in a nested repeatable sequence you need an index for
each nesting level. The TOFPARM can define up to nine levels of
repeatable-sequence indexes in the fields TOFFDOC1 to TOFFDOC9. The field
TOFFDOCA defines the number of these indexes that are actually being used.
TOFFDOC1-9 are only used if RSEXT is specified in the modifier field TOFMODIF.
In this case TOFFDOC is ignored.

Data Area Index TOFFDDA
A data area index identifies a specific data area of a field consisting of multiple
data areas. Some fields have an option area besides the data areas.

Request Modifiers
The modifier group consists of a string of 40 characters, containing modifiers
separated by commas or blanks. A complete list of all modifiers is given in the
description of the DSLTSV macro in MERVA for ESA Macro Reference . Both
one-time modifiers, which affect TOF positioning (DSLTSV parameter MODIF), and
function modifiers, which affect the way the TOF service works (DSLTSV
parameter FMODIF), can be specified. Some of the more important modifiers are:

OPTION The option is processed rather than the field data.

Chapter 8. Data Structures 87

VFIRST The first field with the given name is processed.

FIRSTDA The first data area of a field is processed.

NEXTDA The next data area of a field is processed.

LASTDA The last data area of a field is processed.

EDIT Function modifier to show that the data has to be edited. The MFS
edit routine number is specified in the Field Definition Table
DSLFDTT.

CHECK Function modifier to show that the data has to be checked. The
MFS checking routine number is specified in the Field Definition
Table DSLFDTT.

OPTLIST Function modifier to show that the option list has to be read; only
for FUNCTION=READ.

DELDA Function modifier to show that a specific data area of a field has to
be deleted; only for FUNCTION=EMPT.

DELFN Function modifier to show that a field has to be deleted; only for
FUNCTION=EMPT.

DELAD Function modifier to show that all data areas of a field have to be
deleted; the field itself still exists in the TOF. This modifier is only
for FUNCTION=EMPT.

RSEXT One-time modifier, which indicates that the RS extension in
TOFFDOCA, TOFFDOC1 to TOFFDOC9, is to be used for TOF
access. This modifier is necessary if messages with nested
repeatable sequence are being processed.

TOF Reason Codes
Refer to the MERVA for ESA Messages and Codes manual for a list of possible
DSLTSV reason codes and their meanings.

Message Buffer MSGSWIFT
The MSGSWIFT buffer is used by the MFS functions GETS, GETM, PUTS, and
PUTM for the mapping of messages (not just SWIFT messages) smaller than 32000
bytes. The buffer is defined by the copybook DSLAPIMS. MSGSWIFT consists of
two parts:
v A header, the MSGSWIFT_PREFIX (defined separately by copybook DSLAPIMP).
v A buffer, MSGSMSG, with the standard MERVA 8-byte buffer prefix, containing

a message in net format.

The structures MS1IH, MS1OH, MS2BH, MS2AI, and MS2AO, in copybook
DSLAPIMH, define SWIFT message headers in both SWIFT I and SWIFT II
format.

MSGSWIFT Prefix
The MSGSWIFT_PREFIX structure, copybook DSLAPIMP, is part of the
MSGSWIFT structure used by the MFS services GETS, GETM, PUTS, and PUTM.
The MFS services MPFG and MPFP can be used toread and write the prefix alone.

Not all fields in the structure are used. For PUTM, PUTS, and MPFP, only the
MSGACK field, and the user fields MSGDBS, MSGUSER1, and MSGADDR1-4 are

88 API Guide

added to the message being built in the internal queue buffer. Figure 10 shows the
layout of the MSGSWIFT prefix.

Table 10. Structure of the MSGSWIFT Prefix

Label
Offset
(Hex.) Length Type Description

MSGLGTH 000 2 B Length of prefix
MSGOS 002 2 A Reserved
MSGTRAN 004 8 C Not used

00C 1 Not used (IMS)
MSGRPGM 00D 8 C Not used
MSGSPGM 015 8 C Not used
MSGMTYPE 01D 1 C Type of message (SWIFT I or SWIFT II)

F = Unformatted message
O = Output message
I = Input message

MSGRC 01E 2 C Not used
User Information

MSGDBS 020 24 C User field (example: Key SSA in data
base)

MSGUSER1 038 24 C User field
MSGADDR1 050 35 C User field (example: Header address)
MSGADDR2 073 35 C User field
MSGADDR3 096 35 C User field
MSGADDR4 0B9 35 C User field
MSGQUEUE 0DC 8 C Not used
MSGLTERM 0E4 8 C Not used
MSGQSN 0EC 4 B Not used
MSGKEY1 0F0 24 C Not used
MSGKEY2 108 24 C Not used
MSGNET 120 8 C The message identifier
MSGDST 128 9 C SWIFT Master Destination
MSGACK 131 69 C ACK/NAK (SWIFT, TELEX) (see below)

176 2 Reserved

A = Address
B = Binary value
C = Character

SWIFT ACK/NAK Structure
If a message is being retrieved, the MSGACK field in the MSGSWIFT prefix
contains the message’s acknowledgement. But note that a SWIFT II
acknowledgement is truncated. To read a SWIFT II acknowledgement use the TOF
READ service.

The structure of the SWIFT I acknowledgement is defined as part of the
MSGSWIFT_PREFIX structure, copybook DSLAPIMP, and is shown in Table 11 on
page 90 The offset is the offset from the beginning of the MSGSWIFT structure.

Chapter 8. Data Structures 89

Table 11. Structure of the SWIFT I Acknowledgement

Label
Offset
(Hex.) Length Description

MSGAACK 131 3 Type: ACK or NAK
134 1

MSGAINTI 135 4 Input time
139 1

MSGASRN 13A 19 System reference number (SRN)
14D 1

MSGAERR 14E 12 ...

The structure of the SWIFT II acknowledgement is shown in Table 12. A copybook
mapping is not provided.

Table 12. Structure of the SWIFT II Acknowledgement

Label
Offset
(Hex.) Length Description

MSGA2BH 00 6 Block ID, Appl.ID, APDU ID
MSGA2LTA 06 12 Logical Terminal
MSGA2SN 12 4 Session number
MSGA2ISN 16 6 Sequence number

1C 9
MSGA2TIM 25 10 Date and time of ACK

2F 6
MSGA2ACC 35 1 Acceptance/Rejection

36 6
MSGA2ERR 3C 3 Error code
MSG2ALIN 3F 3

42 6
MSG2AMUR 48 14 MUR

56 2

Message Buffer MSGSMSG
The message buffer MSGSMSG holds the actual message. Mappings for the fixed
parts of SWIFT messages MS1IH, MS1OH, MS2BH, MS2AI, and MS2AO, as shown
in Table 13 on page 91, are provided in the copybook DSLAPIMH. In Table 13 on
page 91, offsets are given from the start of text following the MSGSMSG 8-byte
buffer prefix.

90 API Guide

Table 13. Structure of the SWIFT Message

Label
Offset
(Hex.) Length Description

S.W.I.F.T. User Handbook: SWIFT I Input Header

00 2
MSGISDST 02 12 Destination of sending bank

0E 1
MSGIISN 0F 5 Input sequence number (ISN)

14 2
MSGIMT 16 3 Message type

19 1
MSGIPR 1A 2 Message priority

1C 2
MSGIRDST 1E 11 Destination of receiving bank

29 2
MSGITEXT 2B Text ...

S.W.I.F.T. User Handbook: SWIFT I Output Header

00 2
MSGOOUTI 02 4 Output time

06 1
MSGOORN 07 19 Output reference number (ORN)

1A 2
MSGOINTI 1C 4 Input time

20 1
MSGOSRN 21 19 System reference number

34 2
MSGOMT 36 3 Message type

39 1
MSGOPR 3A 2 Message priority

2C 2
MSGOTEXT 2E Message text ...

S.W.I.F.T. User Handbook: SWIFT II Basic Header

MS2BHBID
MS2BHAID
MS2BHMID
MS2BHLTA
MS2BHSES
MS2BHSEQ
MS2BHEND

00
03
04
06
12
16
1C

3
1
2

12
4
6
1

Block identifier
Application identifier
Message/APDU identifier
LT address
Session number (0)
Sequence number
Block

Chapter 8. Data Structures 91

S.W.I.F.T. User Handbook: SWIFT II Application Header, FIN Input

MS2AIBID
MS2AIID
MS2AIMTY
MS2AIDST
MS2AIMPR
MS2AIIDM
MS2AIIOP
MS2AIEND

00
1D
20
21
24
30
31
32
35

29
3
1
3

12
1
1
3
1

Basic Header
Block identifier
Input/output identifier
Message type
Destination address
Message priority
Delivery monitoring (optional)
Obsolescence period (optional)
Block

S.W.I.F.T. User Handbook: SWIFT II Application Header, FIN Output

MS2AOBID
MS2AOID
MS2AOMTY
MS2AOITI
MS2AOTOR
MS2AOODA
MS2AOOTI
MS2AOMPR
MS2AOEND

00
1D
20
21
24
28
44
4A
4E
4F

29
3
1
3
4

28
6
4
1
1

Basic Header
Block identifier
Input/output identifier
Message type
Input time (HHMM)
Input MIR
Output date (YYMMDD)
Output time (HHMM)
Message priority
Block

Journal Key JRNKEY
Table 14 shows the structure of the new journal key used with four-digit year
format. Only the first part, the date and the time stamp, is changed, the total
length of the journal key header is unchanged.

Table 14. Structure of the Journal Key with Four-Digit Year

Label
Offset
(Hex.) Length Type Description

JRNRID 00 1 X Record identifier
JRNKDAT2 01 8 C Record key: Date (YYYYMMDD)
JRNKTIM2 09 6 C Time (HHMMSS)
JRNKFRC2 0F 3 X Fractional part (PPP)
JRNKSEG 12 3 C Segment number

15 1 C (/)
JRNKSEGS 16 3 C Number of segments
JRNKUSER 19 25 C User extension

X = Hexadecimal
C = Character

92 API Guide

Table 15 shows the structure of the old journal key.

Table 15. Structure of the Journal Key with Two-Digit Year

Label
Offset
(Hex.) Length Type Description

JRNRID 00 1 X Record identifier
JRNKDATE 01 6 C Record key: Date (YYMMDD)

07 1 C (/)
JRNKTIME 08 10 C Time (HHMMSSPPNN)
JRNKSEG 12 3 C Segment number

15 1 C (/)
JRNKSEGS 16 3 C Number of segments
JRNKUSER 19 25 C User extension

X = Hexadecimal
C = Character

Terminal User Control Block (TUCB)
If you program a transaction and the transaction is initiated by MERVA ESA, it
will be passed a Terminal User and Control Block. Table 16 shows some fields of
the structure of the TUCB.

Table 16. Structure of the Interface Terminal and User Control Block TUCB

Label
Offset
(Hex.) Length Type Description

00 6 Filler
TUCBTRAN 06 8 C Transaction Name

0E 10 Filler
TUCNAME 18 8 C Function Name

20 80 Filler
TUCLTE1 70 8 C Logical Terminal Name

78 392 Filler

C = Character

Chapter 8. Data Structures 93

User File Record Buffer
The user file record buffer is used to hold user file records retrieved by the
functions USRG and USRN. The fields of the authorized part of the user file record
are shown in Table 17.

Table 17. Structure of the User File Record

Label
Offset
(Hex.) Length Type Description

000 8 C MERVA buffer prefix
USRUKEY 008 8 C Key (User ID)
USRUSCPW 010 8 Password (scrambled)
USRUNAME 018 18 C User name
USRUORID 02A 34 C Origin ID
USRUDATE 04C 8 C Date of last update
USRUTIME 054 8 C Time of last update
USRUUUID 05C 8 C Update user ID
USRUDATP 064 8 C Date of last password change
USRUTIMP 06C 8 C Time of last password change
USRUPFKS 074 8 C PF-key setname
USRULID 07C 1 C Language ID
USRUNLIF 07D 1 C No-prompt line format
USRUDNW 07E 1 C Default network

07F 1 Reserved
USRUFTAB (18) 080 8 C Allowed functions
USRUAMSG
(24)

110 8 C Message types assigned to user

USRUNOCM 1D0 60 C Commands forbidden to user
USRUUFLM 20C 8 C FLM administrator

214 17 Reserved
USRUDATS 225 8 C Date of last sign-on
USRUIMRX 22D 1 B Traffic Reconciliation user class
USRUGRP 22E 8 C Group ID
USRUUSON 236 1 B Number of rejected sign-ons
USRUUTYP 237 1 C User type
USRUUDTA 238 48 C User data
USRUUDTB 268 48 C User data

298 636 Reserved

B = Binary
C = Uppercase character

94 API Guide

MFS Parameter List
Table 18 shows the structure of the MFS parameter list.

Table 18. Structure of the MFS Parameter List

Label
Offset
(Hex.) Length Type Description

MFSLTYP 00 1 X MFS Function
MFSLMED 01 1 X Medium
MFSLOPT1 02 1 X Option-code
MFSLOPT2 03 1 X Option-code

04 1
MFSLRET 05 1 X The return code you set when you

return control to MERVA ESA
MFSLREAS 06 2 B The reason code that you return to

MERVA ESA and that describes more
precisely any errors. Possible values are
described in the structure MFSLREAS,
copybook DSLMREAS.

MFSLMODN 08 2 B Exit no., or operator message no.
(TYPE=ERRMSG) The module number
of the exit (MFS exits are identified by
number). If you are writing several
similar exit routines, it might be easier
to write a single exit routine to process
them all. MFSLMODN indicates for
which particular exit your routine has
been invoked.

MFSLMILF 0A 1 C Line format
MFSLWORK 0B 1 X Indicators
MFSLCOMA 0C 4 A Address of MERVA ESA communication

area
10 4 Reserved

MFSLPERM 14 4 A Address of MFS permanent storage
MFSLTEMP 18 4 A Address MFS of temporary storage
MFSLENVA 1C 4 A Address of environment string
MFSLMSG 20 4 A Address of message ID, load module

name
MFSLTOF 24 4 A Address of TOF
MFSLFLD 28 4 A Address of field reference
MFSLIBUF 2C 4 A A pointer to the input buffer, which has

a standard MERVA buffer prefix, and in
which data to be processed by your exit
routine is passed from MERVA ESA. For
example, a checking exit routine would
receives the name of the field to be
checked in this buffer.

MFSLOBUF 2C 4 A A pointer to the output buffer, which
has a standard MERVA buffer prefix,
and in which your routine passes data
back to MERVA ESA.

A = Address
B = Binary
C = Character
X = Hexadecimal

Chapter 8. Data Structures 95

96 API Guide

Chapter 9. DSLAPI Functions

The API functions supported by the DSLAPI program are described in this chapter
in alphabetical order. The following information is provided for each function:
v Purpose of the function
v The DSLAPI parameter list for the function
v Return Codes
v Notes explaining how the function is used
v Examples of how to code the function.

The parameter lists are described in a language-independent way, for example:

PP EMPT (INTWSTOR , TOFPARM) PQ

In Assembler you must construct the parameter list yourself:
MVC INTFUNC,=C'EMPT' The API service
LA R1,INTWSTOR
ST R1,PARMLIST
LA R1,TOFPARM
ST R1,PARMLIST+4
OI PARMLIST+4,X'80' end-of-list indicator
LA R1,PARMLIST
L R15,=V(DSLAPI)
BALR R14,R15

In C/370 the call might look like this:
memcpy(ws.INTFUNC,"EMPT",4);
DSLAPI(&ws, &tofpl);

In COBOL, after setting the TOFPARM values, you could invoke this function like
this:

move 'empt' to intfunc of api-ws.
call dslapi using api-ws, tof-parameters.

or in PL/I like this:
api_ws.intfunc = 'empt';
call dslapi(api_ws, tof_parameters);

The API REXX interface does not use parameter lists:
toffdnam = ... /* set tofparm values */
Address DSLAPI "EMPT" /* invoke the function */

© Copyright IBM Corp. 1987, 2001 97

CMD Execute a MERVA Command
The CMD function passes a MERVA ESA operator command to MERVA and
returns the command response. Any commands that can be input at the
MERVA ESA Command function panel can be executed using this API service.

The Queue Test commands MOVE, DELETE, DELX, COPY, or FREE, and the
journal command JRN cannot be executed using the CMD function; these
commands should be implemented using the DSLAPI queue management and
journal functions.

PP CMD (INTWSTOR , command , response) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

command
The command buffer is a fixed-length buffer 120 bytes long and contains the
command string to be passed to MERVA.

response
A 700-byte fixed-length buffer. DSLAPI places the command response into
this buffer. The response contains 10 lines of data; each line is 70 bytes
long.

Usage Notes
v If the response is longer than 10 lines, you should resend the command to get

the next group of lines. Repeat this until the last lines have been returned. This
is what you do when you use a command from the MERVA ESA Command
function panel.
You can determine when all lines have been returned only by inspecting the
data in the response buffer.

v Resend only display commands with continuation information. These are: DF,
DICB, DM, DNS, DP, DQ, DQSORTED, DU, DL, and DLA.

v If the response is shorter than 10 lines, the remaining lines are blank.

Return Codes
INTRC = spaces

The call was successful.

INTRC = 02
The call has failed. Additional information is contained in fields
INTERMSG and INTSHUTD.

CMD

98 API Guide

Examples
Here is an example in COBOL:

Here is an example in C/370:

Here is an example in REXX:

...
working storage section.
copy dslapiws.
77 cmdinp pic x(120).
01 cmdresp.

02 resp-line pic x(70) occurs 10 indexed by i.
...

move 'DM LAST' to cmdinp
move 'CMD ' to intfunc
call dslapi using intwstor, cmdinp, cmdresp
if intrc = spaces then

perform varying i from 1 by 1 until i > 10
display ' ' resp-line (i)

end-perform
...

#include "dslapc.h"
...
struct INTWSTOR ws;
char cmdinp[120];
char cmdresp[10][70];
...

memcpy(cmdinp,"DM LAST",7);
memcpy(ws.INTFUNC,"CMD ",4);
DSLAPI(&ws,cmdinp,cmdresp);
if (memcmp(ws.INTRC," ",2) != 0) {

...

...
cmdinp = 'DM LAST'
cmdresp = '' /* be tidy */
Address DSLAPI "CMD"
If intrc = ' '
Then Do

Do i = 0 To 9
Say Substr(cmdresp,1 + i * 70,70) /* display the response */

End
End
Else

Say 'MERVA API command CMD failed with intrc' intrc'.'
...

CMD

Chapter 9. DSLAPI Functions 99

DELE Delete a Queue Element
The DELE function deletes a queue element from a MERVA ESA queue.

PP DELE (INTWSTOR) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

The following parameters in INTWSTOR must be set:

INTQUEUE
The name of the MERVA ESA queue containing the queue element
to be deleted.

INTQSN
The queue sequence number (QSN) of the queue element to be
deleted.

Usage Notes
DELE following ROUB or PUTB

After a ROUB or PUTB (route or put with automatic delete) a specific delete is
superfluous. However, when the DSLAPI call immediately preceding the delete
was a ROUB or PUTB in which the queue element to be automatically deleted,
identified by INTBQUE and INTBQSN, is also the element specified in the DELE,
DSLAPI returns with INTRC=spaces. This is to maintain compatibility with
previous versions.

Normally, when a nonexistent queue element is deleted, DSLAPI returns
INTRC=02.

Return Codes
INTRC = spaces

The call was successful.

INTRC = 02
The call has failed. Additional information is contained in fields
INTERMSG and INTSHUTD.

DELE

100 API Guide

Examples
Here is an example in COBOL:

Here is an example in C/370:

Here is an example in REXX:

...
working storage section.
copy dslapiws.
77 next-qsn pic s9(8) binary.
77 our-queue pic x(8).
...

move next-qsn to intqsn
move our-queue to intqueue
move 'dele' to intfunc
call dslapi using intwstor
if intrc not = spaces then

...

...
struct INTWSTOR ws;
...

ws.INTQSN = 2;
memset(ws.INTQUEUE,' ',sizeof ws.INTQUEUE);
memcpy(ws.INTQUEUE,"L1DO0",5);
memcpy(ws.INTFUNC,"DELE",4);
DSLAPI(&ws);
if (memcmp(ws.INTRC," ",2) == 0) {

...

...
intqueue = 'L1DO0'
intqsn = 5
Address DSLAPI "DELE"
If intrc = ' '
Then Do

Say 'MERVA API command DELE was successful.'
Say 'Queue name :' intqueue
Say 'QSN :' intqsn

End
Else

Say 'MERVA API command DELE failed with intrc' intrc'.'
...

DELE

Chapter 9. DSLAPI Functions 101

EMPT Empty a Field (TOF)
The EMPT function deletes a field, a data area, or all data areas of a field in the
internal queue buffer, through the internal TOF, using the field-reference structure.
The field TOFMODIF must be set with the appropriate modifier.

PP EMPT (INTWSTOR , TOFPARM) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

TOFPARM
The field reference of the field to be deleted, or of the field containing the
data area or areas to be deleted.

Usage Notes
v The modifiers you will normally use are:

DELFN Deletes the field.

DELDA Deletes the specified data area.

DELAD Deletes all data areas of the field.

DELDAGR Deletes all data areas with a data area index greater than the
specified data area.

See “TOF Access Parameters TOFPARM” on page 85 and the description of
macro DSLTSV in the MERVA for ESA Macro Reference for more details about
field references and request modifiers.

v After TOF access calls (like EMPT) the input field-reference data might have
been changed by the TOF supervisor to its output parameters. Note especially
that after an unsuccessful EMPT the returned TOFFDNAM value is
unpredictable, that is, does not contain the failing TOFFDNAM parameter.

Return Codes
INTRC = spaces

The call was successful.

Note: This return code only suggests that control was successfully passed
to the TOF supervisor. The TSV return code TOFTSVRC and TSV
reason code TOFTSVRS in the TOFPARM structure show the actual
result.

INTRC = 01
The function has failed for one of the following reasons:
v Failure to map from the internal queue buffer to the internal TOF
v Failure to map from the internal TOF to the internal queue buffer.

Additional information is contained in field INTERMSG.

EMPT

102 API Guide

Examples
Here is an example in COBOL:

Here is an example in REXX:

The code fragments show how to delete some data areas from the field with the
name SW73. This field occurs in a S.W.I.F.T message type 801. According to the
MERVA ESA convention, the field is on nesting identifier (toffdnl) 1 and has the
group index (toffdfg) 9.

The field is in a nested repeatable sequence on the second level; therefore two
occurrence numbers fully qualify the field. In the above example the two numbers
are 3 and 1, which are set into the array of occurrence numbers (toffdnoc). The
array can hold up to nine numbers, therefore you have to specify that only the first
and the second array element is used (toffdoca). Because this field is used in a

...
working storage section.
copy dslapiws.
copy dslapitp.
...

move 'SW73' to toffdnam
move 1 to toffdnl
move 9 to toffdfg
move 2 to toffdoca
move 3 to toffdnoc(1)
move 1 to toffdnoc(2)
move 4 to toffdda
move 'DELDAGR RSEXT' to tofmodif
move 'empt' to intfunc
call dslapi using intwstor tofparm
if intrc not = spaces then

...

...
/* GETC and FREE a queue element */
intqueue = 'L1DE0' /* queue name */
intqsn = 123 /* queue sequence number */
Address DSLAPI "GETC"
If intrc ¬= ' ' Then ...
Address DSLAPI "FREE"
If intrc ¬= ' ' Then ...

/* EMPTy field SW73 */
toffdnam = 'SW73' /* name of the field */
toffdnl = 1 /* nesting level index */
toffdfg = 9 /* field group index */
toffdoca = 2 /* no. of nested rep. seqs */
toffdoc.1 = 3 /* rep. sequence index 1 */
toffdoc.2 = 1 /* rep. sequence index 2 */
toffdda = 4 /* data area index */
tofmodif = 'DELDAGR RSEXT' /* request modifier */
Address DSLAPI "EMPT"
If intrc = ' ' & toftsvrc = 0 & toftsvrs = 0
Then

Nop /* ok, continue */
Else

... /* EMPT failed */

/* PUT queue element to another queue */
intqueue = 'L2DE0' /* target queue name */
Address DSLAPI "PUT"
...

EMPT

Chapter 9. DSLAPI Functions 103

nested repeatable sequence you must also specify the modifier RSEXT. The other
modifier DELDAGR indicates that all data areas after data area 4 (toffdda) are to
be deleted. The first four data areas are not deleted.

EMPT

104 API Guide

FLDG Get a MERVA Variable

Product-Sensitive Programming Interface
This function retrieves the value of a specified field of a MERVA internal structure.

PP FLDG (INTWSTOR , field-name , buffer) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

field-name
A 40-byte fixed-length buffer containing the name, left-justified, of the field
to be retrieved. Refer to “Field-Level Access for Exit Routines” on page 33
for more information on this service.

buffer A fixed-length buffer in which the value of the field to be retrieved is
returned left justified. The length of the buffer is the length of the value
you are retrieving.

The value can be in one of the following forms depending on the data type
of the specified field:
v Character string
v 4-byte, fullword binary value
v The characters ‘0’ or ‘1’
v Eight ‘0’ or ‘1’ characters
v A packed-decimal value.

Refer to “Field-Level Access for Exit Routines” on page 33 for more
information.

Usage Notes
The names of all fields, their type, and their lengths, are listed in “Appendix D.
Field-Level Access Fields” on page 269.

Return Codes
INTRC = spaces

The call was successful.

INTRC = 02
The call failed for one of the following reasons:
v The specified name is not known or not supported
v The structure containing the field is not addressable.

Additional information is contained in field INTERMSG.

FLDG

Chapter 9. DSLAPI Functions 105

Examples
Here is an example in COBOL:

...
77 field-name pic x(40).
77 field-value pic x(8).
...

move 'NPNAME' to field-name
move spaces to field-value
move 'fldg' to intfunc
call dslapi using intwstor field-name field-value
if intrc = spaces then

if field-value(1:8) = 'MERVAESA' then
...

Here is an example in REXX:
...
fldname = 'NPNAME' /* MERVA name */
fldvalue = '' /* be tidy */
Address DSLAPI "FLDG"
If intrc = ' '
Then Do

If fldvalue = 'MERVAESA' Then
...

End of Product-Sensitive Programming Interface

FLDG

106 API Guide

FLDP Set a MERVA Variable

Product-Sensitive Programming Interface
This function moves a value to the specified field of a MERVA internal structure.

PP FLDP (INTWSTOR , fieldname , buffer) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

field-name
A 40-byte fixed-length buffer containing the name, left-justified, of the field
to be modified. Refer to “Field-Level Access for Exit Routines” on page 33
for more information on which names are valid.

buffer A fixed-length buffer containing the value to be written to the field,
left-justified. The length of the buffer is the length of the field value.

The value must have one of the following forms depending on the data
type of the specified field:
v Character string
v 4-byte, fullword binary value
v The characters ‘0’ or ‘1’
v Eight ‘0’ or ‘1’ characters
v A packed-decimal value.

Refer to “Field-Level Access for Exit Routines” on page 33 for more
information.

Usage Notes
The names of all fields, their type, and their lengths, are listed in “Appendix D.
Field-Level Access Fields” on page 269.

Return Codes
INTRC = spaces

The call was successful.

INTRC = 02
The call failed for one of the following reasons:
v The specified name is not known or not supported
v The specified name may not be modified
v The structure containing the field is not addressable.

Additional information is contained in field INTERMSG.

FLDP

Chapter 9. DSLAPI Functions 107

Examples
Here is an example in COBOL:

...
copy dslapiws.
77 field-name pic x(8).
77 field-value pic x(1).
...

move 'COMTRAMF' to field-name
move '1' to field-value
move 'fldp' to intfunc
call dslapi using intwstor field-name field-value
if intrc not = spaces then

...

Here is an example in REXX:
...
fldname = 'COMTRAMF' /* field name */
fldvalue = 1 /* field value */
Address DSLAPI "FLDP"
If intrc = ' '
Then Do

Say 'MERVA API command FLDP was successful.'
Say 'The field' fldname 'has now the value' fldvalue'.'
If fldvalue = 0 Then Say 'The MERVA TRACE MFS flag is reset.'

Else Say 'The MERVA TRACE MFS flag is set.'
End
Else
...

End of Product-Sensitive Programming Interface

FLDP

108 API Guide

FREE Free a Queue Element
The FREE function resets the in-service indicator of a queue element in a
MERVA ESA queue.

FREE also posts an ECB and starts a transaction, when defined for the associated
queue.

PP FREE (INTWSTOR) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

The following parameters in INTWSTOR are used:

INTQUEUE
The name of the MERVA ESA queue or function containing the
queue element to be reset.

INTQSN
The queue sequence number (QSN) of the queue element to be
reset.

Return Codes
INTRC = spaces

The call was successful. Additional information is contained in fields
INTKEY1 and INTKEY2.

INTRC = 02
The call has failed. Additional information is contained in fields
INTERMSG and INTSHUTD.

FREE

Chapter 9. DSLAPI Functions 109

Examples
Here is an example in COBOL:

Here is an example in C/370:

Here is an example in REXX:

...
working storage section.
copy dslapiws.
77 saveqsn pic s9(8) binary.
77 queue-name pic x(8).
...

move 'FREE' to intfunc
move saveqsn to intqsn
move queue-name to intqueue
call dslapi using intwstor

...

...
#include "dslapc.h"
int main() {

struct INTWSTOR ws;
int saveqsn;
char queue[8];
...

memcpy(ws.INTFUNC,"FREE",4);
memcpy(ws.INTQUEUE,queue,8);
ws.INTQSN = saveqsn;
DSLAPI(&ws);

...

...
intqueue = queue_name /* queue name */
intqsn = saveqsn /* queue sequence number */
Address DSLAPI "FREE"
If intrc = ' '
Then Do
...

FREE

110 API Guide

GEKU Get a Queue Element by Key Unconditionally
The GEKU function retrieves the queue element with the specified symbolic key
from the MERVA ESA queue and puts it in the internal queue buffer.

The function is unconditional because it retrieves a queue element regardless of its
in-service status. Therefore the function should only be used for read-only retrieval.

The GEKU function retrieves queue elements only from a queue in nohold status.

PP GEKU (INTWSTOR) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

The following parameters in INTWSTOR must be set:

INTQUEUE
The name of the MERVA ESA queue or function containing the
queue element to be retrieved.

INTKEY1
The symbolic key to be used to retrieve an element based on the
queues first key.

INTKEY2
The symbolic key to be used to retrieve an element based on the
queues second key. This key is ignored if INTKEY1 is not blank.

Usage Notes
If more than one queue element matches a specified key value, GEKU will always
return the first one (the one with the lowest QSN). You can use the QLF and QLN
function to loop through all queue elements matching a specified key 1 and/or key
2 value.

Return Codes
INTRC = spaces

The call was successful. Additional information is contained in fields
INTQSN, INTKEY2, INTBUSY, and INTDOUBL.

INTRC = 01
INTQUEUE is not defined. Additional information is contained in fields
INTERMSG.

INTRC = 02
The call has failed. Additional information is contained in fields
INTERMSG and INTSHUTD.

INTRC = 09
No queue element exists that matches INTKEY1 or INTKEY2.

Examples
Here is an example in COBOL:

GEKU

Chapter 9. DSLAPI Functions 111

Here is an example in REXX:

...
working storage section.
copy dslapiws.
77 dslapi pic x(8) value 'DSLAPI'.
...

move spaces to intkey1
move ' Statistics Summary' to intkey2
move 'tx2tlc' to intqueue
move 'geku' to intfunc
call dslapi using intwstor
if intrc not = spaces then

...

...
intqueue = 'TX2TLC' /* queue name */
intkey1 = ' ' /* key 1 */
intkey2 = ' Statistics summary' /* key 2 */
Address DSLAPI "GEKU"

If intrc = ' '
Then Do

Say 'MERVA API command GEKU was successful.'
Say 'Queue name :' intqueue
Say 'QSN :' intqsn
Say 'Key 1 :' intkey1
Say 'Key 2 :' intkey2

End
Else

Say 'MERVA API command GEKU failed with intrc' intrc'.'
...

GEKU

112 API Guide

GET Get a Queue Element Unconditionally
The GET function retrieves the specified queue element and puts it in the internal
queue buffer.

The function is unconditional because it retrieves a queue element regardless of its
in-service status. Therefore the function should only be used for read-only retrieval.

PP GET (INTWSTOR) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

The following parameters in INTWSTOR must be set:

INTQUEUE
The name of the MERVA ESA queue containing the required
queue element.

INTQSN
The queue sequence number (QSN) of the required queue element.
If a QSN of 0 is specified, the first element in the queue is
returned.

Usage Notes

Return Codes
INTRC = spaces

The call was successful. Additional information is contained in fields
INTKEY1, INTKEY2, INTBUSY, and INTDOUBL.

INTRC = 01
INTQUEUE is not defined. Additional information is contained in field
INTERMSG.

INTRC = 02
The call has failed. Additional information is contained in fields
INTERMSG and INTSHUTD.

Examples
Here is an example in COBOL:

...
working storage section.
copy dslapiws.
77 dslapi pic x(8) value 'DSLAPI'.
...

move 0 to intqsn
move 'L2FORMS' to intqueue
move 'get' to intfunc
call dslapi using intwstor
if intrc not = spaces then

...

GET

Chapter 9. DSLAPI Functions 113

Here is an example in REXX:

...
intqueue = 'L2FORMS' /* queue name */
intqsn = 0 /* queue sequence number */
Address DSLAPI "GET"
If intrc = ' '
Then Do
...

GET

114 API Guide

GETC Get a Queue Element Conditionally
The GETC function retrieves the specified queue element and puts it in the internal
queue buffer.

The function is conditional because it retrieves a queue element only when it is not
in-service. It flags the queue element in-service and sets the DOUBLE (write-back)
indicator.

PP GETC (INTWSTOR) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

The following parameters in INTWSTOR must be set:

INTQUEUE
The name of the MERVA ESA queue containing the required
queue element.

INTQSN
The queue sequence number (QSN) of the required queue element.

Return Codes
INTRC = spaces

The call was successful. Additional information is contained in fields
INTKEY1, INTKEY2, and INTDOUBL.

INTRC = 01
INTQUEUE is not defined. Additional information is contained in field
INTERMSG.

INTRC = 02
The call has failed. Additional information is contained in fields
INTERMSG and INTSHUTD.

INTRC = 08
The queue element exists but is in-service.

Examples
Here is an example in COBOL:

...
working storage section.
copy dslapiws.
77 dslapi pic x(8) value 'DSLAPI'.
...

move current-qsn to intqsn
move 'L2FORMS' to intqueue
move 'getc' to intfunc
call dslapi using intwstor
if intrc not = spaces then

...

GETC

Chapter 9. DSLAPI Functions 115

GETK Get a Queue Element by Key
The GETK function retrieves a queue element by key, if it is not flagged in-service,
from the MERVA ESA queue and puts it in the internal queue buffer.

The function flags the queue element in-service and sets the DOUBLE (write-back)
indicator.

When the first symbolic key is blank, the second symbolic key is used.

PP GETK (INTWSTOR) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

The following parameters in INTWSTOR must be set:

INTQUEUE
The name of the MERVA ESA queue or function containing the
queue element.

INTKEY1
The symbolic key to be used to retrieve an element based on the
queues first key.

INTKEY2
The symbolic key to be used to retrieve an element based on the
queues second key. This key is ignored if INTKEY1 is not blank.

Usage Notes
If more than one queue element matches a specified key value, GETK will always
return the first one (the one with the lowest QSN). If that queue element is
in-service, INTRC=09 will be returned. You can use the QLF and QLN function to
loop through all queue elements matching a specified key 1 and/or key 2 value.

Return Codes
INTRC = spaces

The call was successful. Additional information is contained in fields
INTQSN, INTKEY1, INTKEY2, and INTDOUBL.

INTRC = 01
INTQUEUE is not defined. Additional information is contained in fields
INTERMSG.

INTRC = 02
The call has failed. Additional information is contained in fields
INTERMSG and INTSHUTD.

INTRC = 09
No queue element matches the specified key INTEK1 or INTKEY2 value,
or the first matching queue is in-service. Additional information is
contained in field INTBUSY.

GETK

116 API Guide

Examples
Here is an example in COBOL:

Here is an example in REXX:

...
working storage section.
copy dslapiws.
77 dslapi pic x(8) value 'DSLAPI'.
...

move trn to intkey1
move 'l2ack' to intqueue
move 'getk' to intfunc
call dslapi using intwstor
if intrc not = spaces then

...

...
intqueue = 'L2ACK' /* queue name */
intkey1 = trn /* key 1 */
Address DSLAPI "GETK"
If intrc = ' '
Then Do
...

GETK

Chapter 9. DSLAPI Functions 117

GETM Get Message (MFS)
The GETM function maps a message from MERVA internal format to an external
format. The message in the API internal queue buffer is mapped through the
internal TOF to the MSGSWIFT buffer using the message identifier specified in the
INTWSTOR field INTMSGID, and the format identifier specified in INTFRMID.

Notes:

1. The message identifier of the message is written to the field MSGNET in the
MSGSWIFT prefix.

2. You should prefer the MSGG function to the GETM function.

PP GETM (INTWSTOR , MSGSWIFT) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

The following parameters in INTWSTOR are used:

INTMSGID
INTMSGID identifies an MCB. If INTMSGID is blank, the message
identifier is taken from the exit field in the message.

INTFRMID
INTFRMID identifies the line format in the MCB. If INTFRMID is
blank, the first line format in the MCB is used.

MSGSWIFT
A variable-length buffer defined by the MSGSWIFT structure, copybook
DSLAPIMS. The buffer size is defined by the APISMSG parameter in the
MERVA ESA parameter module DSLPRM.

Return Codes
INTRC = spaces

The call was successful. Additional information is contained in the
MSGSWIFT prefix fields MSGMTYPE, MSGNET, MSGDEST (SWIFT Link),
MSGACK, and User Fields.

INTRC = 00
MFS has detected checking errors. Additional information is contained in
fields INTERMSG, INTERMF1, INTERMF2, and INTERMF3.

INTRC = 01
The call has failed. Additional information is contained in fields
INTERMSG, INTERMF1, INTERMF2, and INTERMF3.

GETM

118 API Guide

Examples
Here is an example in COBOL:

Here is an example in C/370:

...
working storage section.
copy dslapiws.
copy dslapims.

03 filler pic x(12280).
...

move 'GETM' to intfunc
move 'N' to intfrmid
move spaces to intmsgid
call dslapi using intwstor, msgswift

...

...
#include "dslapc.h"
...

struct INTWSTOR ws;
struct {

struct MSGSWIFT hdr;
char buffer[12280];
} ms;

...
memcpy(ws.INTFUNC,"GETM",4);
memcpy(ws.INTFRMID,"W",1); /* SWIFT II format id */
memcpy(ws.INTMSGID," ",8); /* use internal msg.id */
DSLAPI(&ws,&ms);
if (memcmp(ws.INTRC," ",2) == 0) {

...

GETM

Chapter 9. DSLAPI Functions 119

GETN Get Next Queue Element
The GETN function retrieves the next queue element with a QSN higher than the
specified QSN and without an in-service flag from the MERVA ESA queue and puts
it in the internal queue buffer.

The function flags the queue element in-service and sets the DOUBLE (write-back)
indicator.

PP GETN (INTWSTOR) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

The following parameters in INTWSTOR must be set:

INTQUEUE
The name of the MERVA ESA queue or function containing the
queue element to be retrieved.

INTQSN
The queue sequence number (QSN) of the queue element prior to
the element to be retrieved.

Return Codes
INTRC = spaces

The call was successful. Additional information is contained in fields
INTQSN, INTKEY1, INTKEY2, and INTDOUBL.

INTRC = 01
INTQUEUE is not defined. Additional information is contained in field
INTERMSG.

INTRC = 02
The call has failed. Additional information is contained in fields
INTERMSG and INTSHUTD.

INTRC = 09
Either the INTQUEUE is empty or no queue element with a QSN higher
than INTQSN and not flagged in-service exists.

GETN

120 API Guide

Examples
Here is an example in C/370:

Here is an example in REXX:

...
#include "dslapc.h"
struct INTWSTOR ws;
char queue[2][8];
int prevQSN;
...
ws.INTQSN = prevQSN;
memcpy(ws.INTFUNC,"GETN",4);
memcpy(ws.INTQUEUE,queue[0],8);
DSLAPI(&ws);
if (memcmp(ws.INTRC," ",2) != 0) {
...

...
intqueue = 'L1DE0' /* queue name */
intqsn = 0 /* QSN - start at top */
getn_rc = ' ' /* init GETN rc */
Say 'Queue name :' intqueue
Do While getn_rc = ' ' /* loop while GETN rc = ' ' */

Address DSLAPI "GETN"
getn_rc = intrc /* save GETN rc */
If getn_rc = ' '
Then Do

Say ' '
Say 'MERVA API command GETN was successful.'
Say 'QSN :' intqsn
Say 'Key 1 :' intkey1
Say 'Key 2 :' intkey2
Address DSLAPI "FREE" /* .. good practice */
If intrc ¬= ' ' Then Say 'But FREE failed with intrc' intrc'.'

End
Else Do

Say ' '
Say 'MERVA API command GETN failed with intrc' getn_rc'.'

End
End
...

GETN

Chapter 9. DSLAPI Functions 121

GETS Get SWIFT Message (MFS)
The GETS function maps a S.W.I.F.T message from MERVA internal format to an
external format. The message in the API internal queue buffer is mapped through
the internal TOF to the MSGSWIFT buffer.

The message is mapped into SWIFT I format. Specify INTFRMID='W' to have the
message mapped according to the SWIFT II format.

The function reads user header fields from the TOF on nesting identifier 0 to the
MSGSWIFT prefix. The MSGSWIFT prefix is described in Table 10 on page 89.

Note: You should prefer the MSGG function to the GETS function.

PP GETS (INTWSTOR , MSGSWIFT) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

The following parameter in INTWSTOR is used:

INTFRMID
If set to 'W', the message is mapped into SWIFT II format.
Otherwise SWIFT I format is used.

MSGSWIFT
A variable length buffer defined by the MSGSWIFT structure, copybook
DSLAPIMS.

The buffer must be at least as big as the APISMSG specification in the
MERVA ESA parameter module DSLPRM.

Return Codes
INTRC = spaces

The call was successful. Additional information is contained in the
MSGSWIFT prefix fields MSGMTYPE, MSGNET, MSGDEST, MSGACK,
and User Fields.

INTRC = 00
The MFS has detected checking errors. Additional information is contained
in fields INTERMSG, INTERMF1, INTERMF2, and INTERMF3.

INTRC = 01
The call has failed. Additional information is contained in fields
INTERMSG, INTERMF1, INTERMF2, and INTERMF3.

GETS

122 API Guide

Examples
Here is an example in COBOL:

Here is an example in C/370:

...
working-storage section.
copy dslapiws.
copy dslapims.

03 msg-data pic x(12280).
...

move 'GETS' to intfunc
move 'W' to intfrmid
call dslapi using intwstor, msgswift
if intrc not = spaces then

...

...
#include "dslapc.h"
struct INTWSTOR ws;
struct {

struct MSGSWIFT hdr;
char buffer[12280];
} ms;

...
...
memcpy(ws.INTFUNC,"GETS",4);
memcpy(ws.INTFRMID,"W",1); /* SWIFT II format id */
DSLAPI(&ws,&ms);
if (memcmp(ws.INTRC," ",2) != 0) {
...

GETS

Chapter 9. DSLAPI Functions 123

GETU Get Next Queue Element Unconditionally
The GETU function retrieves the next queue element with a QSN higher than the
specified QSN from the MERVA ESA queue and puts it in the internal queue
buffer.

The function is unconditional because it retrieves a queue element regardless of its
in-service status. Therefore the function should only be used for read-only retrieval.

The GETU function also ignores the hold status of a queue. That means the
function retrieves queue elements, even if the queue is in hold status.

PP GETU (INTWSTOR) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

The following parameters in INTWSTOR must be set:

INTQUEUE
The name of the MERVA ESA queue or function containing the
queue element.

INTQSN
The queue sequence number (QSN) of the queue element prior to
the element to be retrieved.

Return Codes
INTRC = spaces

The call was successful. Additional information is contained in fields
INTQSN, INTKEY1, INTKEY2, INTBUSY, and INTDOUBL.

INTRC = 01
INTQUEUE is not defined. Additional information is contained in field
INTERMSG.

INTRC = 02
The call has failed. Additional information is contained in fields
INTERMSG and INTSHUTD.

INTRC = 09
Either INTQUEUE is empty or no queue element with a QSN higher than
INTQSN exists.

GETU

124 API Guide

Examples
Here is an example in COBOL:

Here is an example in REXX:

...
working storage section.
copy dslapiws.
77 dslapi pic x(8) value 'DSLAPI'.
...

move current-qsn to intqsn
move 'L1PR1' to intqueue
move 'getu' to intfunc
call dslapi using intwstor
if intrc = spaces then

move intqsn to current-qsn
...

...
intqueue = 'L1PR1' /* queue name */
intqsn = current_qsn /* queue sequence number */
Address DSLAPI "GETU"
If intrc = ' '
Then

current_qsn = intqsn /* save QSN */
Else

...

GETU

Chapter 9. DSLAPI Functions 125

INIT Initialize the API Environment
The INIT function initializes the operation of the DSLAPI interface including:
v INTWSTOR
v The Message Format Service
v Nucleus Intertask/Interregion Communication (NIC)
v Internal TOF and queue buffers.

PP INIT (INTWSTOR) PQ

INTWSTOR API interface working storage. The INTWSTOR structure is defined
by the copybook DSLAPIWS.

The following parameter in INTWSTOR is used:

INTCWA Before calling the INIT function, this address must
be set to zero, except for the following special case:
Your application is linked to the MERVA ESA
nucleus, in which case INTCWA must be set to the
address of the service communication area
DSLCOM (contents of register 12).

When using the calling interface DSLAPCIC under
CICS you do not need to set INTCWA to zero, it is
set for you by DSLAPCIC.

Return Codes
INTRC = spaces

DSLAPI has initialized successfully. Additional information is contained in
field INTSHUTD (INACTIVE or SHUTDOWN).

Note: If INTSHUTD contains the value INACTIVE, then an API program
will not be able to use MERVA ESA central services: queue
management, journal, user file, and command execution services.
These functions will be rejected with return code 02.

INTRC = 02
DSLAPI is not initialized. Additional information is contained in field
INTERMSG.

Examples
Here is an example in COBOL:

Here is an example in C/370:

...
working storage section.
copy dslapiws.
77 dslapi pic x(8) value 'DSLAPI'.
...

move 'INIT' to intfunc
set intcwa to null
call dslapi using intwstor

...

INIT

126 API Guide

Here is a PL/I example:

...
#include "dslapc.h"
struct INTWSTOR ws;
...
memcpy(ws.INTFUNC,"INIT",4);
ws.INTCWA = NULL;
DSLAPI(&ws);
if (memcmp(ws.INTRC," ",2) != 0) {

print_error_codes(&ws);
...

...
%include dslapiws;
...
allocate intwstor;
INTFUNC = 'INIT';
unspec(INTCWA) = 0;
call dslapi (intwstor);
if INTRC ¬= ' ' then do;

call error_handling;
...

INIT

Chapter 9. DSLAPI Functions 127

JRLG Get a Journal Record
The JRLG function reads the journal record having a key equal to the specified key
from the MERVA ESA journal and puts it in the specified buffer.

If there is no record with the specified key, the record with the next higher key, if
any, is returned. An incomplete, or generic, key is thus supported.

This function can be used instead of JRNG and supports journal records of any
length.

PP JRLG (INTWSTOR , JRNKEY , buffer , length) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

JRNKEY
The key of the journal record to be read. The JRNKEY structure is defined
by the copybook DSLAPIJK. The JRNRID field of the key is ignored.

If a record is returned, its key including the JRNRID field is placed in
JRNKEY, otherwise JRNKEY is not changed.

buffer A storage area with no buffer prefix. The retrieved journal record is
returned in this buffer. A truncated record is returned if the buffer is too
small.

length A 31-bit binary value containing the length of the buffer. On return, this
field contains the length of the journal record found. If the journal record is
larger than the buffer, the required length is returned in length. You should
allocate a larger buffer and repeat the JRLG call.

If no record was found, the value is set to zero.

Usage Notes
v If you do not know the size of a journal record, specify a length of zero. The

required size is returned in the length parameter.
v If you only want the first part of a journal record, you do not need to supply a

buffer large enough for the complete record.

Return Codes
INTRC = spaces

The call was successful.

INTRC = 02
The call failed. Additional information is contained in INTERMSG and
INTSHUTD.

INTRC = 03
A record was found but it is larger than length. The necessary buffer size,
that is, the length of the found record, is returned in length. The buffer
contains the truncated journal record.

INTRC = 09
No record was returned. Either the journal is empty, or it contains no
record with a key equal to or greater than JRNKEY.

JRLG

128 API Guide

Examples
Here is an example in COBOL:

Here is an example in REXX:
...
jrnkdate = '19990301' /* journal date and time */
jrnktime = '0800'
jrnkuser = ' ' /* be tidy */
Address DSLAPI "JRLG"

If intrc = ' '
Then Do

Say 'MERVA API command JRLG was successful.'
Say 'journal id :' "'"C2x(jrnrid)"'x"
Say 'journal date :' jrnkdate
Say 'journal time :' jrnktime
Say 'user extension :' jrnkuser
Say 'journal data :' Strip(jrnrcord,'T')

End
Else

Say 'MERVA API command JRLG failed with intrc' intrc'.'
...

...
working storage section.
copy dslapiws.
copy dslapijk.
77 jrnrcord pic x(100).
77 jrn-size pic s9(8) binary.
procedure division.
...

move '19990301' to jrnkdat2
move '0800' to jrnktim2
move 'JRLG' to intfunc
move length of jrnrcord to jrn-size
call 'dslapi' using intwstor, jrn2key, jrnrcord, jrn-size
if intrc = '03' then

display 'journal record was truncated'
...

JRLG

Chapter 9. DSLAPI Functions 129

JRLN Get Next Journal Record
The JRLN function reads the journal record having the next higher key than
JRNKEY from the MERVA ESA journal and puts it in the specified buffer. Use this
function to read the journal sequentially.

This function can be used instead of JRNN and supports journal records of any
length.

PP JRLN (INTWSTOR , JRNKEY , buffer , length) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

JRNKEY
The key of a journal record. The journal record with the next higher key is
read. The JRNKEY structure is defined by the copybook DSLAPIJK. The
JRNRID field of the key is ignored.

If a record is returned, its key including the JRNRID field is placed in
JRNKEY, otherwise JRNKEY is not changed.

buffer A storage area of up to 2MB with no buffer prefix. The journal record is
returned in this buffer. A truncated record is returned if the buffer is too
small.

length A 31-bit binary value containing the length of the buffer. On return, this
field contains the length of the returned journal record. If no record was
found, the value is set to zero. If a record was found but it is longer than
the buffer, its length is returned in length. You should allocate a larger
buffer and repeat the JRLN call.

Usage Notes
If you only want the first part of a journal record, you do not need to supply a
buffer large enough for the complete record.

Return Codes
INTRC = spaces

The call was successful.

INTRC = 02
The call failed. Additional information is contained in INTERMSG and
INTSHUTD.

INTRC = 03
A record was found but it is larger than length. The necessary buffer size,
that is, the length of the found record, is returned in length. The buffer
contains the truncated journal record.

INTRC = 09
No record was returned. Either the journal is empty, or it contains no
record with a key greater than JRNKEY. The length parameter is set to 0.

Examples
Here is an example in COBOL:

JRLN

130 API Guide

...
working storage section.
copy dslapiws.
copy dslapijk.
77 jrn-length pic s9(8) binary.
77 jrn-data pic x(4000).
...

move 'jrlg' to intfunc
call dslapi using intwstor jrn2key jrn-data jrn-length
perform until intrc not = spaces or jrnkdat2 not = start-date

display 'read journal record ' ...
move 'jrln' to intfunc
call dslapi using intwstor jrn2key jrn-data jrn-length

end-perform
...

Here is an example in REXX:
...
jrnkdate = '19990404' /* journal date and time */
jrnktime = '1200'
jrnkseg = ' ' /* be tidy */
jrnksegs = ' ' /* " */
jrnkuser = ' ' /* " */

jrln_rc = ' ' /* init JRLN rc */
Do While jrln_rc = ' ' /* loop while JRLN rc = ' ' */

Address DSLAPI "JRLN"
jrln_rc = intrc /* save JRLN rc */
If jrln_rc = ' '
Then Do

Say ' '
Say 'MERVA API command JRLN was successful.'
Say 'journal id :' "'"C2x(jrnrid)"'x"
Say 'journal date :' jrnkdate
Say 'journal time :' jrnktime
Say 'segment number :' jrnkseg
Say 'segment count :' jrnksegs
Say 'user extension :' jrnkuser
Say 'length of data :' Length(jrnrcord)
Say 'journal data :' Strip(jrnrcord,'T')

End
End
...

JRLN

Chapter 9. DSLAPI Functions 131

JRLP Put a Journal Record
The JRLP function adds the journal record from the specified buffer, in the
specified length, to the MERVA ESA journal. The journal record identifier
(JRNRID) and user-key extension (JRNKUSER) from the JRNKEY structure are
combined with the system date and time to form the journal key.

On return, the generated key is returned in JRNKEY.

This function can be used instead of JRNP and supports journal records of any
length.

PP JRLP (INTWSTOR , JRNKEY , buffer , length) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

JRNKEY
The key of the journal record to be written. The JRNKEY structure is
defined by the copybook DSLAPIJK. Only the JRNRID and JRNKUSER
fields are used, the JRNKDATE and JRNKTIME fields are filled by the
system.

If the record is successfully written, its complete key including the
generated date and time is placed in JRNKEY, otherwise JRNKEY is not
changed.

buffer A storage area of up to the size specified in the MAXBUF parameter of the
MERVA ESA parameter module, DSLPRM, with no buffer prefix,
containing the journal record excluding the key.

length A 31-bit binary value containing the length of the journal record.

Usage Notes
If you have not defined segmented journal records in the JRNBUF parameter of
your MERVA ESA parameter module DSLPRM, then the largest record you can
write is the size of the journal cluster minus 54.

Return Codes
INTRC = spaces

The call was successful.

INTRC = 02
The call failed. Additional information is contained in INTERMSG and
INTSHUTD.

JRLP

132 API Guide

Examples
Here is an example in COBOL:

Here is an example in REXX:

...
working storage section.
copy dslapiws.
copy dslapijk.
77 jrn-length pic s9(8) binary.
77 jrn-data pic x(4000).
77 journal-record pic x(100).
...

move x'77' to jrnrid
move 'a special journal key' to jrnkuser
move journal-record to jrn-data
move length of journal-record to jrn-length
move 'jrlp' to intfunc
call dslapi using intwstor jrnkey jrn-data jrn-length

...

...
jrnrid = '77'x
jrnkuser = ' a special journal key' /* first byte should be ' ' */
jrnrcord = 'a privat journal record'
Address DSLAPI "JRLP"
If intrc = ' '
Then

...

JRLP

Chapter 9. DSLAPI Functions 133

JRNG Get a Journal Record
The JRNG function reads the journal record with a key equal to or greater than the
specified key from the MERVA ESA journal and puts it in the specified buffer. The
buffer must be smaller than 32KB (32,768 bytes).

Note: You should prefer the JRLG function to the JRNG function.

PP JRNG (INTWSTOR , JRNKEY , buffer) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

JRNKEY
The key of the journal record to be read. The JRNKEY structure is defined
by the copybook DSLAPIJK. The JRNRID field of the key is ignored.

If a record is returned, its key, including the JRNRID field, is placed in
JRNKEY, otherwise JRNKEY is not changed.

buffer A buffer of up to 32KB containing a MERVA buffer prefix. You must set the
buffer-size field in the buffer prefix.

Return Codes
INTRC = spaces

The call was successful. The key of the retrieved record is in parameter
JRNKEY.

INTRC = 02
The call has failed. Additional information is contained in fields
INTERMSG and INTSHUTD.

INTRC = 09
Either the journal is empty or no journal record with a key equal to or
greater than JRNKEY exists.

Examples
Here is an example in PL/I:

...
dcl dslapi entry options(assembler);
%include dslapiws;
%include dslapijk;
dcl 1 jrnrcord,

2 pfx, %include dslapibp;
2 data char(100);

...
jrnkdate = '970301';
jrnktime = '1433';
jrnrcord.pfx.bufsize = length(jrnrcord.data)+8;
intfunc = 'JRNG';
call dslapi (intwstor,jrnkey,jrnrcord);
if intrc ¬= ' ' then do;
...

JRNG

134 API Guide

JRNN Get Next Journal Record
The JRNN function reads the journal record with a key greater than the specified
key from the MERVA ESA journal and puts it in the specified buffer. The buffer
must be smaller than 32KB. This function can be used to read the journal data set
sequentially.

Note: You should prefer the JRLN function to the JRNN function.

PP JRNN (INTWSTOR , JRNKEY , buffer) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

JRNKEY
The key of the journal record to be read. The JRNKEY structure is defined
by the copybook DSLAPIJK. The JRNRID field of the key is ignored.

If a record is returned, its key, including the JRNRID field, is placed in
JRNKEY, otherwise JRNKEY is not changed.

buffer A buffer of up to 32KB containing a MERVA buffer prefix. You must set the
buffer-size field in the buffer prefix.

Return Codes
INTRC = spaces

The call was successful. The key of the retrieved record is in parameter
JRNKEY.

INTRC = 02
The call has failed. Additional information is contained in fields
INTERMSG and INTSHUTD.

INTRC = 09
Either the journal is empty or no journal record with a key greater than
JRNKEY exists.

JRNN

Chapter 9. DSLAPI Functions 135

Examples
Here is a PL/I example:

...
dcl dslapi entry options(assembler,inter);
%include dslapiws;
%include dslapijk;
dcl ws like intwstor automatic;
dcl jk like jrnkey automatic;
dcl 1 jrnbuffer,

%include dslapibp;
2 jrndata char(100);

...
jrnkdate = DATE();
jrnktime = '0800';
bufsize = storage(jrnbuffer);
ws.intfunc='jrnn';
call dslapi(ws,jk,jrnbuffer);
...

JRNN

136 API Guide

JRNP Put a Journal Record
The JRNP function adds a record with the specified journal key record identifier
(JRNRID) and user-key extension (JRNKUSER), from the record buffer and puts it
in the MERVA ESA journal.

Note: You should prefer the JRLP function to the JRNP function.

PP JRNP (INTWSTOR , JRNKEY , buffer) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

JRNKEY
The key of the journal record to be written. The JRNKEY structure is
defined by the copybook DSLAPIJK. You must set the JRNRID field and
the JRNKUSER field. The date and time fields are generated by
MERVA ESA.

If a record is returned, its key, including the JRNRID field, is placed in
JRNKEY, otherwise JRNKEY is not changed.

buffer A buffer of up to 32KB containing a MERVA buffer prefix. You must set the
buffer-size field in the buffer prefix.

Note: Do not set the data-size field, DSLAPI determines the length by
searching the buffer for the last non-blank character. So you should
pad the buffer with blanks.

Return Codes
INTRC = spaces

The call was successful. The key of the retrieved record is in parameter
JRNKEY.

INTRC = 01
The journal record buffer is empty. Additional information is contained in
field INTERMSG.

INTRC = 02
The call has failed. Additional information is contained in fields
INTERMSG and INTSHUTD.

JRNP

Chapter 9. DSLAPI Functions 137

Examples
Here is an example in COBOL:

...
working storage section.
copy dslapiws.
copy dslapijk.
01 jrnbuf.

copy dslapibp.
03 jrn-data pic x(5000).

...
move x'77' to jrnrid
move 'a special journal record' to jrnkuser
move special-buffer to jrn-data
move length of jrnbuf to bufsize of jrnbuf
move 'jrnp' to intfunc
call dslapi using intwstor jrnkey jrnbuf

...

JRNP

138 API Guide

MPFG Get Message Prefix (MFS)
The MPFG function extracts the MERVA MSGSWIFT prefix structure from the
message in the API internal queue buffer. This structure, MSGSWIFT_PREFIX, is
defined by the DSLAPIMP copybook.

Only the following fields in the structure are obtained:

MSGMTYPE Message form: I/O/F

MSGDBS User field

MSGUSER1 User field

MSGADDR1..4 User field

MSGNET Message identifier

MSGDST S.W.I.F.T master destination (S.W.I.F.T only)

MSGACK Message acknowledgment

All other fields in the structure are undefined.

PP MPFG (INTWSTOR , MSGSWIFT_PREFIX) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

MSGSWIFT_PREFIX
A storage area defined by the MSGSWIFT_PREFIX structure, copybook
DSLAPIMP. The message prefix fields are returned in this buffer.

Return Codes
INTRC = spaces

The call was successful.

INTRC = 01
The call has failed. Additional information is contained in fields
INTERMSG, INTERMF1, INTERMF2, and INTERMF3.

MPFG

Chapter 9. DSLAPI Functions 139

Examples
Here is an example in COBOL:

Here is an example in REXX:

...
working storage section.
copy dslapiws.
01 msg-prefix.

copy dslapimp.
...

move qsn to intqsn
move 'L3do0' to intqueue
move 'get' to intfunc
call dslapi using intwstor

...
move 'mpfg' to intfunc
call dslapi using intwstor msg-prefix
if intrc = spaces then

display 'message type is ' msgnet
...

...
/* GETN and FREE a queue element */
intqueue = 'L1DE0' /* queue name */
intqsn = 0 /* queue sequence number */
Address DSLAPI "GETN" /* .. sets actual QSN */
If intrc ¬= ' ' Then ...
Address DSLAPI "FREE"
If intrc ¬= ' ' Then ...

Address DSLAPI "MPFG"
If intrc = ' '
Then Do

Say 'MERVA API command MPFG was successful.'
Say 'Message acknowledgment . (MSGACK) :' msgack
Say 'User field (MSGADDR1) :' msgaddr1
Say 'User field (MSGADDR2) :' msgaddr2
Say 'User field (MSGADDR3) :' msgaddr3
Say 'User field (MSGADDR4) :' msgaddr4
Say 'User field (MSGDBS) :' msgdbs
Say 'SWIFT master destination (MSGDST) :' msgdst
Say 'Message form (I,O, or F) (MSGMTYPE) :' msgmtype
Say 'Message identifier (MSGNET) :' msgnet
Say 'User field (MSGUSER1) :' msguser1

End
...

MPFG

140 API Guide

MPFP Put Message Prefix (MFS)
The MPFP function moves the MERVA MSGSWIFT prefix structure into the
message in the API internal queue buffer. This structure, MSGSWIFT_PREFIX, is
defined by the DSLAPIMP copybook.

Only the following fields in the structure are moved:

MSGDBS User field

MSGUSER1 User field

MSGADDR1..4 User field

MSGACK Message acknowledgment

All other fields in the structure are ignored.

PP MPFP (INTWSTOR , MSGSWIFT_PREFIX) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

MSGSWIFT_PREFIX
A storage area defined by the MSGSWIFT_PREFIX structure, copybook
DSLAPIMP, containing the message prefix fields.

Return Codes
INTRC = spaces

The call was successful.

INTRC = 01
The call has failed. Additional information is contained in fields
INTERMSG, INTERMF1, INTERMF2, and INTERMF3.

Examples
Here is an example in COBOL:

...
working storage section.
copy dslapiws.
01 msg-prefix.

copy dslapimp.
...

move 'some user data' to msguser1
move 'mpfp' to intfunc
call dslapi using intwstor msg-prefix

...
move 'put' to intfunc
call dslapi using intwstor

...

MPFP

Chapter 9. DSLAPI Functions 141

Here is an example in REXX:

...
/* GETN and FREE a queue element */
intqueue = 'L1DE0' /* queue name */
intqsn = 0 /* queue sequence number */
Address DSLAPI "GETN" /* .. sets actual QSN */
If intrc ¬= ' ' Then ...
Address DSLAPI "FREE"
If intrc ¬= ' ' Then ...

msguser1 = 'Some user data'
msgack = '' /* init all other DSLAPIMP */
msgaddr1 = '' /* fields! Otherwise REXX */
msgaddr2 = '' /* would assume the field */
msgaddr3 = '' /* name in uppercase as */
msgaddr4 = '' /* value, e.g. msgaddr1 = */
msgdbs = '' /* 'MSGADDR1' .. */
Address DSLAPI "MPFP"

Select
When intrc = ' '

Then Nop
When intrc = '00'

Then Do
Say 'MERVA API command MPFP ended with intrc 00.'
Say 'MFS has detected checking errors.'

End
Otherwise

Say 'MERVA API command MPFP failed with intrc' intrc'.'
End /* -Select */

/* .. PUT it back */
intqueue = 'L2DE0' /* target queue name */
Address DSLAPI "PUT"
...

MPFP

142 API Guide

MSGG Get Message (MFS)
The MSGG function maps (transforms) the message currently in the API internal
queue buffer to the buffer you supply using the specified message identifier and
device format code.

This is like the GETM and GETS function but can be used for messages of any
size. The MSGSWIFT prefix is not returned. To obtain the fields in the prefix use
the MPFG service.

PP MSGG (INTWSTOR , buffer , length) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

The following parameters in INTWSTOR must be set:

INTMSGID
The message identifier of the message to be formatted. A message
identifier identifies a MERVA ESA MCB via the message type
table. If INTMSGID is blank, the actual message identification of
the message is used.

INTFRMID
The format code in the INTMSGID MCB that is to be used to
format the message. If INTFRMID is blank, or the format code
does not exist in the MCB, the first device format in the MCB is
used. If INTFRMID is set to Q, the output buffer will contain a
message in internal buffer format. In this case an MCB is not used.

buffer A storage area, without a buffer prefix, into which the message will be
stored.

length A 31-bit binary value containing the length of the buffer. On return, this
field contains the length of the returned message. If the buffer is too small
to contain the message, its length is returned in length and buffer contains
the truncated message.

Usage Notes
v You would normally leave INTMSGID blank to avoid the risk of specifying an

incorrect message type and consequently getting an incompletely mapped
message.

v You would normally specify the format code INTFRMID. The default, the first
device format in the MCB, may not be what you want. To obtain a SWIFT
message in SWIFT II format set INTFRMID to ‘W’.

Return Codes
INTRC = spaces

The call was successful.

INTRC = 00
The MFS has detected checking errors. The buffer contains the message.
Additional information is contained in fields INTERMSG, INTERMF1,
INTERMF2, and INTERMF3.

MSGG

Chapter 9. DSLAPI Functions 143

INTRC = 01
The call has failed. Additional information is contained in fields
INTERMSG, INTERMF1, INTERMF2, and INTERMF3.

INTRC = 02
The call has failed. Additional information is contained in fields
INTERMSG, INTERMF1, INTERMF2, and INTERMF3.

INTRC = 03
The specified buffer length length is too small. The length needed is
returned in length. The buffer contains the truncated message.

Examples
Here is an example in COBOL:

Here is an example in REXX:

working storage section.
copy dslapiws.
01 msg-buffer pic x(5000).
77 buffer-size pic s9(8) binary.
...

move 'L3do0' to intqueue
move 'getn' to intfunc
call dslapi using intwstor

...
move length of msg-buffer to buffer-size
move 'W' to intfrmid
move 'msgg' to intfunc
call dslapi using intwstor msg-buffer buffer-size
if intrc = spaces then

display msg-buffer(1:buffer-size)

/* GETN and FREE a queue element */
intqueue = 'L1DE0' /* queue name */
intqsn = 0 /* queue sequence number */
Address DSLAPI "GETN" /* .. sets actual QSN */
If intrc ¬= ' ' Then ...
Address DSLAPI "FREE"
If intrc ¬= ' ' Then ...

/* Map the message from internal buffer to external format */
intmsgid = ' ' /* default message type */
intfrmid = 'W' /* SWIFT II format */
Address DSLAPI "MSGG"
If intrc = ' '
Then Do

Say ' '
Say 'MERVA API command MSGG was successful.'
parse_me = msgsmsg
Say 'Message in external format:'
Say Copies('-',70)
Do While parse_me ¬== '' /* print in chunks of 70 */

Parse Var parse_me /* With */ 1 chunk 71 parse_me
Say chunk

End
Say Copies('-',70)

End
Else

Say 'MERVA API command MSGG failed with intrc' intrc'.'

MSGG

144 API Guide

MSGP Put Message (MFS)
The MSGP function maps (transforms) the message in your buffer to the API
internal queue buffer using the specified message identifier and device format
code.

This is like the PUTM and PUTS function but can handle messages of any size.
The MSGSWIFT prefix is not part of the buffer. To add MSGSWIFT prefix fields to
the API internal buffer use the MPFP service.

PP MSGP (INTWSTOR , buffer , length) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

The following parameters in INTWSTOR must be set:

INTMSGID
The message identifier of the message to be formatted. A message
identifier identifies a MERVA ESA MCB via the message type
table.

If INTMSGID is blank, the message type determination exit is used
to determine the message type. If the message type cannot be
determined, the default message type 0DSL is used.

INTFRMID
The format code in the INTMSGID MCB that is to be used to
format the message.

If INTFRMID is blank, the message type determination exit might
set the format code. If it does not, or the specified format code
does not exist in the MCB, the first device format in the MCB is
used. The MERVA ESA message type determination exit can
recognize SWIFT I and SWIFT II messages, Telex messages, and
supported financial EDIFACT message types.

If INTFRMID is set to Q, the input buffer must contain a message
in internal buffer format. In this case an MCB is not used.

buffer A storage area, without a buffer prefix, containing the message to be
moved into the MERVA system.

length A 31-bit binary value containing the length of the message.

Usage Notes
v If you are sure of the type of message, you should specify INTMSGID. If you are

not sure, then it is safer to set INTMSGID to blanks and let the message type
determination exit determine the message.

v You would normally specify the format code INTFRMID. The default, the first
device format in the MCB, may not be what you want.

v To map a SWIFT II message set INTFRMID to ‘W’, to map a SWIFT I message
set it to ‘S’.

MSGP

Chapter 9. DSLAPI Functions 145

Return Codes
INTRC = spaces

The call was successful.

INTRC = 00
The MFS has detected checking errors. Additional information is contained
in fields INTERMSG, INTERMF1, INTERMF2, and INTERMF3.

INTRC = 01
The call has failed. Additional information is contained in fields
INTERMSG, INTERMF1, INTERMF2, and INTERMF3.

INTRC = 02
The call has failed. Additional information is contained in fields
INTERMSG, INTERMF1, INTERMF2, and INTERMF3.

Examples
Here is an example in COBOL:

...
working storage section.
copy dslapiws.
77 msg-data pic x(5000).
77 msg-size pic s9(8) binary.
...

move 'MSGP' to intfunc
move spaces to intfrmid
move spaces to intmsgid
call dslapi using intwstor msg-data msg-size
if intrc not = spaces then

...

MSGP

146 API Guide

Here is an example in REXX:

Note: The same result could have been obtained explicitly giving the message type
and format instead of using Message Type Determination:

...
move 'W' to intfrmid
move 'S100' to intmsgid

...

or
...

intfrmid = 'W'
intmsgid = 'S100'

...

...
crlf = '0D25'x /* carriage return / line feed */
swbh = '{1:F01BANACCLLXBRA0000000000}' /* S.W.I.F.T basic header*/
swah = '{2:I100BANBCCLLXBRAN}' /* S.W.I.F.T applic hdr */
msgh = '{4:'crlf /* bank message header */
bmsg = ':20:TRN1234'crlf || , /* bank message */

':32A:970606USD12,34'crlf || ,
':50:Anna Ameise'crlf'Aachen'crlf || ,
':59:/12345678'crlf'Berta Baer'crlf'Berlin'crlf

msgt = '-}' /* bank message trailer */
msgx = swbh || swah || msgh || bmsg || msgt

intfrmid = ' ' /* let MERVA determine */
intmsgid = ' ' /* the message type */
msgsmsg = msgx /* the MERVA message */
Address DSLAPI "MSGP"

Select
When intrc = ' '

Then Do /* PUT it to MERVA */
intqueue = 'L1DE0' /* target queue name */
intqsn = ' ' /* clear output variable */
Address DSLAPI "PUT"
If intrc ¬= ' ' Then Say ...

End
When intrc = '00'

Then Do
Say 'MERVA API command MSGP ended with intrc 00.'
Say 'MFS has detected checking errors.'

End
Otherwise

Say 'MERVA API command MSGP failed with intrc' intrc'.'
End /* -Select */
...

MSGP

Chapter 9. DSLAPI Functions 147

PRTI Initialize Printing Environment
The PRTI function initializes the print environment. This function is designed to be
used together with PRTL and PRTT to format the message in the internal buffer,
line by line, for the system printer device.

Syntax

PP PRTI (INTWSTOR) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

The following parameter in INTWSTOR is used:

INTQUEUE
The field TUCNAME is initially filled with this value.

INTFRMID
The format identifier to be used to format the message. Each
device description in an MCB has a format identifier. When
printing in prompt mode this identifier represents a language;
when printing in noprompt mode this identifier represents a line
format. If INTFRMID is blank, the default values are used. For
printing in prompt mode, the default is E; for printing in noprompt
mode, the default line format is Y.

Usage Notes
The formatting for the system printer uses environment information stored in a
TUCB. This information can be inspected and modified using the FLDG and FLDP
functions.

The following fields are especially important for formatting for printer devices:

TUCBCOMP
The compression format used for printing:

0 No compression. Empty fields and blank lines are printed.

1 Field compression. Only fields with data are printed (PROMPT
UNIT mode).

2 Line compression. Empty data areas are not printed (PROMPT
LINE mode).

3 Field and line compression. Only fields with data are printed
(PROMPT UNIT LINE mode).

4 The message is printed in NOPROMPT format.

The default is 0. For more details see the MERVA for ESA Macro Reference,
DSLFNT macro, parameter PRFORM.

TUCBLID
The language identification used for the selection of the system printer
device description in the MCB. This identification is used when printing in
prompt format (the field TUCBCOMP contains a value between 0 and 3).
The default is E.

PRTI

148 API Guide

TUCBNID
The line format identification used for the selection of the network device
description in the MCB. This identification is used when printing in
noprompt format (the field TUCBCOMP contains the value 4). The default
is Y.

TUCBROWN
The number of lines for each page. The default is 55.

TUCFRAMB
Identifies the MCB for the bottom frame on each printed page. A blank
indicates that no bottom frame is to be used, 0BOT indicates that the
standard MERVA ESA bottom frame (2 blank lines) is to be used.

TUCFRAMT
Identifies the MCB for the top frame on each printed page. A blank
indicates that no top frame is to be used, 0TOP indicates that the standard
MERVA ESA top frame is to be used.

TUCMSGID
Identifies the MCB used for printing the message. Usually it contains the
message identification or the name of the cover MCB. The default value is
‘0COV ’.

TUCNAME
The function name printed on the top of each page when the DSL0TOP top
frame MCB is used.

Return Codes
INTRC = spaces

DSLAPI has initialized a message for printing successfully.

INTRC = 01
DSLAPI could not initialize the message for printing. Additional
information is contained in fields INTERMSG and INTERMF1.

Examples
Here is an example in COBOL:

...
working storage section.
copy dslapiws.
77 dslapi pic x(8) value 'DSLAPI'.
...

move 'PRTI' to intfunc
move 'E' to intfrmid
call dslapi using intwstor

...

PRTI

Chapter 9. DSLAPI Functions 149

PRTL Create a Print Line of a Message
The PRTL function formats the next line to be printed. The calling application may
choose to actually print the result line returned in the buffer.

A PRTI call should be issued before the first PRTL call.

Syntax

PP PRTL (INTWSTOR,prtline) PQ

INTWSTOR API interface working storage. The INTWSTOR structure is defined
by the copybook DSLAPIWS.

prtline A 133-byte fixed-length buffer. DSLAPI places the print line into
this buffer. The first character is an ASA control character: The
character ‘1’ in the first column indicates a request for a page eject;
otherwise a blank indicating normal single line spacing. Empty
(blank) lines are not suppressed but are returned as output by the
PRTL function.

Usage Notes
The processing of a message consists of a PRTI call, followed by a sequence of
PRTL calls until INTRC=09 is received. This indicates that all lines of the message
have been returned. The print lines returned by each PRTL call can be printed by
the application or stored in a file.

After one message has been completely formatted, the next message may be
retrieved using the API queue management get functions. An optional PRTI call
can be used to initialize the printing environment for the next message. Then a
sequence of PRTL calls will format the message from the internal TOF buffer.

A PRTT call should follow as the last call after a print sequence.

The API INIT, REEN, or TERM calls are not allowed within a sequence of print
calls.

No other API queue management calls should be used within a sequence of PRTL
statements for a single message.

Return Codes
INTRC = spaces

The call was successful.

INTRC = 01
The call has failed. Additional information is contained in fields
INTERMSG and INTERMF1.

INTRC = 09
End of the printout reached, no more print lines for the message are
available.

PRTL

150 API Guide

Examples
Here is an example in COBOL:

Here is an example in REXX:

...
working storage section.
copy dslapiws.
01 prtline.

02 ctrl-char pic x(1).
02 prt-data pic x(132).

...
move 'PRTL' to intfunc
call dslapi using intwstor, prtline
if intrc = spaces then

perform
display ' ' prt-data

end-perform
...

...
/* GET a message */
intqueue = 'L1DE0' /* queue name */
intqsn = 123 /* queue sequence number */
Address DSLAPI "GET"
If intrc ¬= ' ' Then ...

/* PRTL the message line by line */
intrc = ' ' /* init PRTL rc */
Do While intrc = ' ' /* loop while PRTL rc = ' '*/

Address DSLAPI "PRTL"
If intrc = ' ' Then Say prtline

End
...

PRTL

Chapter 9. DSLAPI Functions 151

PRTT Terminate Printing Environment
The PRTT function terminates the formatting of messages for the printer. The
resources used for creating the print lines are released. If this call is not used after
a PRTI call has been used, the resources are automatically released with the API
TERM call.

Syntax

PP PRTT (INTWSTOR) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

No parameters in INTWSTOR are used.

Return Codes
INTRC = spaces

DSLAPI has terminated the printing of a message.

INTRC = 01
DSLAPI could not terminate the printing of a message. Additional
information is contained in field INTERMSG.

Examples
Here is an example in COBOL:

...
working storage section.
copy dslapiws.
77 dslapi pic x(8) value 'DSLAPI'.
...

move 'PRTT' to intfunc
call dslapi using intwstor

...

PRTT

152 API Guide

PUT Put a Queue Element
The PUT function takes the queue element from the internal queue buffer and puts
it in the specified MERVA ESA queue.

PP PUT (INTWSTOR) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

The following parameter in INTWSTOR is used:

INTQUEUE
The name of the MERVA ESA queue to which the queue element
is to be written.

Return Codes
INTRC = spaces

The call was successful. Additional information is contained in fields
INTQSN, INTKEY1, and INTKEY2.

INTRC = 01
INTQUEUE is not defined. Additional information is contained in fields
INTERMSG and INTSHUTD.

INTRC = 02
The call has failed. Additional information is contained in fields
INTERMSG and INTSHUTD.

Examples
Here is an example in COBOL:

...
working storage section.
copy dslapiws.
...
77 queue-name pic x(8).
...

move 'MSGP' to intfunc
move 'W' to intfrmid
call dslapi using intwstor msg-data msg-size

...
move 'PUT ' to intfunc
move queue-name to intqueue
call dslapi using intwstor
if intrc = spaces then

display 'The message has been placed in ' intqueue
' with QSN ' intqsn

...

PUT

Chapter 9. DSLAPI Functions 153

Here is an example in C/370:

Here is an example in REXX:

...
#include "dslapc.h"
struct INTWSTOR ws;
char queue[8];
...
memcpy(ws.INTFUNC,"PUT ",4);
memcpy(ws.INTQUEUE,queue,8);
DSLAPI(&ws);
if (memcmp(ws.INTRC," ",2) != 0) {
...

...
/* MSGP a message */
intfrmid = 'W' /* SWIFT II line format */
intmsgid = 'S100' /* message identifier */
msgsmsg = '{1:F01BANACCLLXBRA00...' /* the MERVA message */
Address DSLAPI "MSGP"
If intrc ¬= ' ' Then ...

intqueue = queue_name /* target queue name */
intqsn = ' ' /* clear output variable */
Address DSLAPI "PUT"
If intrc = ' '
Then Do

Say 'MERVA API command PUT was successful.'
Say 'Queue name :' intqueue
Say 'QSN :' intqsn

End
Else

Say 'MERVA API command PUT failed with intrc' intrc'.'
...

PUT

154 API Guide

PUTB Put a Queue Element with Automatic Delete
The PUTB function takes the queue element from the internal queue buffer and
puts it in the specified MERVA ESA queue. The function automatically deletes the
queue element in the queue INTBQUE with QSN INTBQSN.

Use this function when moving a queue element from one queue to another.
MERVA ESA ensures that the element will not be lost or duplicated in the event of
a system restart.

PP PUTB (INTWSTOR) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

The following parameters in INTWSTOR must be set:

INTQUEUE
The name of the MERVA ESA queue to which the queue element
is to be written.

INTBQUE
The name of the MERVA ESA queue containing the queue element
to be automatically deleted.

INTBQSN
The queue sequence number of the queue element in queue
INTBQUE to be automatically deleted.

Return Codes
INTRC = spaces

The call was successful. Additional information is contained in fields
INTQSN, INTKEY1, and INTKEY2.

INTRC = 01
INTQUEUE is not defined. Additional information is contained in fields
INTERMSG and INTSHUTD.

INTRC = 02
The call has failed. Additional information is contained in fields
INTERMSG and INTSHUTD.

PUTB

Chapter 9. DSLAPI Functions 155

Examples
Here is an example in COBOL:

Here is an example in C/370:

...
working storage section.
copy dslapiws.
...

move 'getn' to intfunc
call dslapi using intwstor

...
move intqueue to intbque
move intqsn to intbqsn
move 'L2de0' to intqueue
move 'putb' to intfunc
call dslapi using intwstor
if intrc = spaces then

display ' moved msg from ' intbque intbqsn
' to ' intqueue intqsn

...

...
#include "dslapc.h"
struct INTWSTOR ws;
char queue[2][8];
int saveqsn;
...
memcpy(ws.INTFUNC,"PUTB",4);
memcpy(ws.INTQUEUE,queue[1],8); /* target queue */
memcpy(ws.INTBQUE,queue[0],8); /* source queue */
ws.INTBQSN = saveqsn; /* qsn of source msg */
DSLAPI(&ws);
if (memcmp(ws.INTRC," ",2) != 0) {
...

PUTB

156 API Guide

Here is an example in REXX:

...
/* GETN a queue element */
intqueue = 'L1DE0' /* queue name */
intqsn = 0 /* queue sequence number */
Address DSLAPI "GETN"
If intrc = ' '
Then Do

savequeue = intqueue /* save queue name */
saveqsn = intqsn /* save QSN */

End
Else Do

Say 'MERVA API command GETN failed with intrc' intrc'.'
...

End

/* and PUTB it */
intqueue = 'L2DE0' /* target queue name */
intbque = savequeue
intbqsn = saveqsn
Address DSLAPI "PUTB"
If intrc = ' '
Then Do

Say 'MERVA API command PUTB was successful.'
Say 'From queue name :' savequeue
Say 'From QSN :' saveqsn
Say 'To queue name :' intqueue
Say 'To QSN :' intqsn

End
Else Do

Say ' '
Say 'MERVA API command PUTB failed with intrc' intrc'.'
Say 'INTERMSG:' Strip(intermsg)
Say 'INTSHUTD:' Strip(intshutd)

End
...

PUTB

Chapter 9. DSLAPI Functions 157

PUTM Put Message (MFS)
The PUTM function maps a message from external format to the MERVA internal
format. The message in the buffer MSGSWIFT is mapped through the internal TOF
to the internal queue buffer using the message type identifier specified in the
INTWSTOR field INTMSGID, and the format identifier specified in INTFRMID.
The message in the message buffer follows the rules of the specified message type.
You must set the buffer size and data size values in the MSGSMSG structure.

The function writes the additional user header fields from the MSGSWIFT prefix to
the TOF on nesting identifier 0. The MSGSWIFT prefix is described in Table 10 on
page 89.

Note: You should prefer the MSGP function instead of the PUTM function.

PP PUTM (INTWSTOR , MSGSWIFT) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

The following parameters in INTWSTOR are used:

INTMSGID
The message identifier of the message to be formatted. A message
identifier identifies a MERVA ESA MCB via the message type
table.

If INTMSGID is blank, the message type determination exit is used
to determine the message type. If the message type cannot be
determined the default message type 0DSL is used.

INTFRMID
INTFRMID identifies the line format. If INTFRMID is blank, the
first line format in the MCB is used unless the message type
determination exit can determine the format. The MERVA ESA
message type determination exit can recognize SWIFT I and
SWIFT II messages, Telex messages, and supported financial
EDIFACT message types.

MSGSWIFT
A variable-length buffer defined by the MSGSWIFT structure, copybook
DSLAPIMS. You must set the buffer size and data size values in the
MSGSMSG structure.

Return Codes
INTRC = spaces

The call was successful.

INTRC = 00
MFS has detected checking errors. Additional information is contained in
fields INTERMSG, INTERMF1, INTERMF2, and INTERMF3.

The call was successful.

INTRC = 01
The call has failed. Additional information is contained in fields
INTERMSG, INTERMF1, INTERMF2, and INTERMF3.

PUTM

158 API Guide

Examples
Here is an example in COBOL:

Note: Because a SWIFT message is being imported the same result could have
been obtained using Message Type Determination:

...
move spaces to intmsgid
move spaces to intfrmid

...

Here is an example in C/370:

...
working storage section.
copy dslapiws.
copy dslapims.

03 msgdata pic x(12280).
...

add 4 to i giving datasize in msgsmsg
move 'PUTM' to intfunc
move 's999' to intmsgid
move 'W' to intfrmid
call dslapi using intwstor msgswift
if intrc not = spaces then

...

...
#include "dslapc.h"
struct INTWSTOR ws;
struct {

struct MSGSWIFT hdr;
char buffer[12280];
} ms;

int read_input_message(char *);
...

if ((ms.hdr.prefix.datasize =
read_input_message(ms.buffer)) == 0) {

...
}

...
ms.hdr.prefix.datasize = ms.hdr.prefix.datasize +4;
memcpy(ws.INTFRMID,"W",1); /* SWIFT II format id */
memcpy(ws.INTMSGID," ",8); /* MERVA determines msg.type */
memcpy(ws.INTFUNC,"PUTM",4);
DSLAPI(&ws,&ms);
if (memcmp(ws.INTRC," ",2) != 0) {

...

PUTM

Chapter 9. DSLAPI Functions 159

PUTR Restore a Queue Element
The PUTR function takes the queue element from the internal queue buffer and
puts it in the specified MERVA ESA queue with the specified QSN. Both key fields
and the DOUBLE indicator can be set. This function allows a queue element to be
restored to the same state that it had in an earlier get operation.

Syntax

PP PUTR (INTWSTOR) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

The following parameters in INTWSTOR must be set:

INTQUEUE
The name of the MERVA ESA queue to which the queue element
is to be written.

INTQSN
The queue sequence number of the queue element in queue
INTQUEUE.

INTKEY1
The first key value of the queue element in queue INTQUEUE. If
the queue is not defined with KEY1, the parameter is ignored.

INTKEY2
The second key value of the queue element in queue INTQUEUE.
If the queue is not defined with KEY2, the parameter is ignored.

INTDOUBL
Either blanks or the indicator DOUBLE to request that the double
indicator is to be written.

Usage Notes
No queue element with the same or a higher QSN may exist in the specified
queue.

Return Codes
INTRC = spaces

The call was successful.

INTRC = 01
INTQUEUE is not defined. Additional information is contained in field
INTERMSG.

INTRC = 02
The call has failed. Additional information is contained in fields
INTERMSG and INTSHUTD.

PUTR

160 API Guide

Examples
Here is an example in COBOL:

Here is an example in C/370:

...
working storage section.
copy dslapiws.
...

move queue_name to intqueue
move sequence_number to intqsn
move 'DOUBLE' to intdoubl
move 'putr' to intfunc
call dslapi using intwstor
if intrc = spaces then

display ' msg restored in ' intqueue
...

...
#include "dslapc.h"
struct INTWSTOR ws;
char queue[2][8];
int saveqsn;
...
memcpy(ws.INTFUNC,"PUTR",4);
memcpy(ws.INTQUEUE,queue[1],8); /* target queue */
ws.INTQSN = saveqsn; /* qsn of source msg */
memcpy(ws.INTDOUBL,"DOUBLE",6);
DSLAPI(&ws);
if (memcmp(ws.INTRC," ",2) != 0) {
...

PUTR

Chapter 9. DSLAPI Functions 161

Here is an example in REXX:

...
/* GETN a queue element */
intqueue = 'L1DE0' /* queue name */
intqsn = 0 /* queue sequence number */
Address DSLAPI "GETN"
If intrc = ' '
Then Do

savequeue = intqueue /* save queue name */
saveqsn = intqsn /* save QSN */
savekey1 = intkey1 /* save key 1 */
savekey2 = intkey2 /* save key 2 */
savedoubl = intdoubl /* save double indicator */
Address DSLAPI "DELE" /* delete the message */

End
Else Do

Say 'MERVA API command GETN failed with intrc' intrc'.'
...

End

/* and PUTR it */
intqueue = savequeue /* queue name */
intqsn = saveqsn
intkey1 = savekey1
intkey2 = savekey2
intdoubl = savedoubl
Address DSLAPI "PUTR"
If intrc = ' '
Then Do

Say 'MERVA API command PUTR successful, message restored.'
Say 'To queue name :' intqueue
Say 'To QSN :' intqsn

End
Else Do

Say 'MERVA API command PUTR failed with intrc' intrc'.'
Say 'INTERMSG:' Strip(intermsg)
Say 'INTSHUTD:' Strip(intshutd)

End
...

PUTR

162 API Guide

PUTS Put SWIFT Message (MFS)
The PUTS function maps a S.W.I.F.T message from external to MERVA internal
format. The S.W.I.F.T message in the buffer MSGSWIFT is mapped through the
internal TOF to the internal queue buffer. You must set the buffer size and data
size values in the MSGSMSG structure.

The type of the S.W.I.F.T message and its format, SWIFT I or SWIFT II, is
determined by inspecting the message.

The function writes the additional user header fields from the MSGSWIFT prefix to
the TOF on nesting identifier 0. The MSGSWIFT prefix is described in Table 10 on
page 89.

Note: You should prefer the MSGP function instead of the PUTS function.

PP PUTS (INTWSTOR , MSGSWIFT) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

MSGSWIFT
A variable-length buffer defined by the MSGSWIFT structure, copybook
DSLAPIMS. You must set the buffer size and data size values in the
MSGSMSG structure.

Return Codes
INTRC = spaces

The call is successful.

INTRC = 00
The MFS has detected checking errors. Additional information is contained
in fields INTERMSG, INTERMF1, INTERMF2, and INTERMF3.

INTRC = 01
The call has failed. Additional information is contained in fields
INTERMSG, INTERMF1, INTERMF2, and INTERMF3.

Examples
Here is an example in COBOL:

...
working storage section.
copy dslapiws.
copy dslapims.

03 msgdata pic x(12280).
...

move 'PUTS' to intfunc
call dslapi using intwstor msgswift
if intrc not = spaces then

...

PUTS

Chapter 9. DSLAPI Functions 163

Here is an example in C/370:

...
#include "dslapc.h"
...

struct INTWSTOR ws;
struct {

struct MSGSWIFT hdr;
char buffer[12280];
} ms;

int read_input_message(char *);
...

if ((ms.hdr.prefix.datasize =
read_input_message(ms.buffer)) == 0) {

...
}
ms.hdr.prefix.bufsize = sizeof ms;
ms.hdr.prefix.datasize = ms.hdr.prefix.datasize +4;
memcpy(ws.INTFUNC,"PUTS",4);
DSLAPI(&ws,&ms);
if (memcmp(ws.INTRC," ",2) != 0) {

...

PUTS

164 API Guide

QLF Queue List First
The QLF function sets up an internal list of references to queue elements selected
by QSN, generic key, or both from a specified queue. The list is in ascending QSN
sequence.

DSLAPI manages internally a cursor into the list. The cursor is set to the first list
entry, and the QSN and keys of the referenced queue element are returned in
INTWSTOR.

The QLF function is designed to be used together with the QLN (Queue List Next)
function to process selected queue elements in ascending QSN sequence.

PP QLF (INTWSTOR) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

The following parameters in INTWSTOR must be set:

INTQUEUE
The name of the MERVA ESA queue from which elements are to
be selected.

INTQSN
The queue sequence number (QSN) where the list is to start.

A QSN of zero indicates that all elements in the queue can be
included in the list.

INTKEY1
If INTKEY1 is not blank, only queue elements with a first key
matching this key are included in the list.

INTKEY2
If INTKEY2 is not blank, only queue elements with a second key
matching this key are included in the list.

Both INTKEY1 and INTKEY2 can contain non-blank values in which case
selected elements must satisfy both key specifications.

The keys can be generic, that is, they can contain wildcards:

‘%’ matches any single character

‘*’ matches any number of characters, including no characters.

Note: The list is not preserved by SAVE and SAVL. Following a REEN you must
reissue the QLF call.

QLF

Chapter 9. DSLAPI Functions 165

Return Codes
INTRC = spaces

The call was successful. An internal list has been established. INTQSN
contains the QSN of the queue element referenced by the first entry in the
list. INTKEY1 contains the element’s first key, or spaces if no first key is
defined for the queue. INTKEY2 contains the element’s second key, or
spaces if no second key is defined for the queue. INTBUSY contains
‘BUSY’ if the element is in service.

INTRC = 01
INTQUEUE is not defined. Additional information is contained in field
INTERMSG.

INTRC = 02
The call has failed. Additional information is contained in fields
INTERMSG and INTSHUTD.

INTRC = 09
Either the queue is empty or no queue elements with a QSN equal to or
higher than INTQSN and matching the specified keys INTKEY1 and
INTKEY2 exist.

Examples
Here is an example in COBOL:

...
data division.
working-storage section.
copy dslapiws.
...
procedure division.
...

move spaces to intrc
move 0 to intqsn
move 'l2de0' to intqueue
move '%ABC*1' to intkey1
move 'qlf' to intfunc
perform until intrc not = spaces

call 'DSLAPI' using intwstor
if intrc = spaces then

move 'getc' to intfunc
call 'DSLAPI' using intwstor
if intrc = spaces or intrc = '08' then

if intrc = '08' then
display intqueue ' ' intqsn ' is busy'
move spaces to intrc

else
perform process-element

end-if
move 'qln' to intfunc

end-if
end-if

end-perform
...

QLF

166 API Guide

Here is an example in REXX:

The EXEC lists, in ascending QSN sequence, all queue elements of a MERVA ESA
queue with their key values and the BUSY indicator:

...
intqueue = 'L1DE0' /* queue name */
intqsn = 0 /* QSN - start at top */
intkey1 = ' ' /* key 1 */
intkey2 = ' ' /* key 2 */
Say 'Queue name :' intqueue
Say 'Start QSN :' intqsn

Call Run_QLF
If intrc = ' ' Then Call Run_QLN
...

/* -- QLF -- */
Run_QLF:

Address DSLAPI "QLF"
If intrc = ' '
Then Do

Say 'QSN ' ,
'Key 1 ' ,
'Key 2 ' ,
'Busy'

Say '----------' ,
'------------------------' ,
'------------------------' ,
'----'

Say Right(intqsn,10) , /* first list item */
Left(intkey1,24) ,
Left(intkey2,24) ,
intbusy

End

Return

/* -- QLN -- */
Run_QLN:

intrc = ' ' /* init QLN rc */
Do While intrc = ' ' /* loop while QLN rc = ' ' */

Address DSLAPI "QLN"
If intrc = ' '
Then Do

Say Right(intqsn,10) , /* next list item */
Left(intkey1,24) ,
Left(intkey2,24) ,
intbusy

End
End

Return

QLF

Chapter 9. DSLAPI Functions 167

QLL Queue List Last
The QLL function sets up an internal list of references to queue elements selected
by QSN, generic key, or both from a specified queue. The list is in ascending QSN
sequence.

DSLAPI manages internally a cursor into the list. The cursor is set to the last list
entry, and the QSN and keys of the referenced queue element are returned in
INTWSTOR.

The QLL function is designed to be used together with the QLP (Queue List
Previous) function to process selected queue elements in descending QSN
sequence.

PP QLL (INTWSTOR) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

The following parameters in INTWSTOR must be set:

INTQUEUE
The name of the MERVA ESA queue from which elements are to
be selected.

INTQSN
The highest queue sequence number (QSN) to be included in the
list. Only elements with a QSN less than or equal to this number
will be selected.

A QSN of zero indicates that all elements in the queue can be
included in the list.

INTKEY1
If INTKEY1 is not blank, only queue elements with a first key
matching this key are included in the list.

INTKEY2
If INTKEY2 is not blank, only queue elements with a second key
matching this key are included in the list.

Both INTKEY1 and INTKEY2 can contain non-blank values in which case
selected elements must satisfy both key specifications.

The keys can be generic, that is, they can contain wildcards:

‘%’ matches any single character

‘*’ matches any number of characters, including no characters.

Note: The list is not preserved by SAVE and SAVL. Following a REEN you must
reissue the QLL call.

QLL

168 API Guide

Return Codes
INTRC = spaces

The call was successful. An internal list has been established. INTQSN
contains the QSN of the queue element referenced by the last entry in the
list. INTKEY1 contains the element’s first key, or spaces if no first key is
defined for the queue. INTKEY2 contains the element’s second key, or
spaces if no second key is defined for the queue. INTBUSY contains
‘BUSY’ if the element is in service.

INTRC = 01
INTQUEUE is not defined. Additional information is contained in field
INTERMSG.

INTRC = 02
The call has failed. Additional information is contained in fields
INTERMSG and INTSHUTD.

INTRC = 09
Either the queue is empty or no queue elements with a QSN equal to or
lower than INTQSN and matching the specified keys INTKEY1 and
INTKEY2 exist.

QLL

Chapter 9. DSLAPI Functions 169

QLN Queue List Next
The QLN function updates the cursor into the internal queue list to point to the
next, succeeding, entry. The QSN and keys of the queue element referenced by this
entry are returned in INTWSTOR.

It is an error to invoke QLN if an internal list has not previously been established
by a QLF (or QLL) call.

The QLN function is designed to be used together with the QLF (Queue List First)
function to process selected queue elements in ascending QSN sequence.

Note: You can cause an unintended program loop if, when processing elements
using a list, you write them back to the same queue (using ROUB or PUT,
for example). This effectively extends repeatedly the list which you are
processing.

PP QLN (INTWSTOR) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

No variables in INTWSTOR need to be set before invoking QLN.

Return Codes
INTRC = spaces

The call was successful. INTQSN contains the QSN of the queue element
referenced by the next entry in the list. INTKEY1 contains the element’s
first key, or spaces if no first key is defined for the queue. INTKEY2
contains the element’s second key, or spaces if no second key is defined for
the queue. INTBUSY contains ‘BUSY’ if the element is in service.

INTRC = 01
No internal list has been established by a previous QLF or QLL call.

INTRC = 09
There are no more elements in the queue matching the specification used
to establish the internal list.

QLN

170 API Guide

QLP Queue List Previous
The QLP function updates the cursor into the internal queue list to point to the
preceding entry. The QSN and keys of the queue element referenced by this entry
are returned in INTWSTOR.

It is an error to invoke QLP if an internal list has not previously been established
by a QLL (or QLF) call.

The QLP function is designed to be used together with the QLL (Queue List Last)
function to process selected queue elements in descending QSN sequence.

PP QLP (INTWSTOR) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

No variables in INTWSTOR need to be set before invoking QLP.

Return Codes
INTRC = spaces

The call was successful. INTQSN contains the QSN of the queue element
referenced by the previous entry in the list. INTKEY1 contains the
element’s first key, or spaces if no first key is defined for the queue.
INTKEY2 contains the element’s second key, or spaces if no second key is
defined for the queue. INTBUSY contains ‘BUSY’ if the element is in
service.

INTRC = 01
No internal list has been established by a previous QLF or QLL call.

INTRC = 09
There are no more elements in the queue matching the specification used
to establish the internal list.

QLP

Chapter 9. DSLAPI Functions 171

READ Read a Field (TOF)
The READ function reads the field identified by the field reference from the
internal queue buffer through the internal TOF into the specified buffer.

PP READ (INTWSTOR , TOFPARM , buffer) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

TOFPARM
The field reference of the field to be read.

buffer A buffer of up to 32KB containing a MERVA buffer prefix. You must set the
buffer-size field in the buffer prefix.

Usage Notes
v After TOF access calls (like READ) the input field-reference data might have

been changed by the TOF supervisor to its output parameters. Note especially
that after an unsuccessful READ the returned TOFFDNAM value is
unpredictable, that is, does not contain the failing TOFFDNAM parameter.

v See “TOF Access Parameters TOFPARM” on page 85 and the description of
macro DSLTSV in the MERVA for ESA Macro Reference for more details about
field references and request modifiers.

Return Codes
INTRC = spaces

The call was successful. The TOFPARM structure contains the current field
reference and the MERVA ESA TOF supervisor return and reason codes,
TOFTSVRC and TOFTSVRS.

Note: This return code only suggests that control was successfully passed
to the TOF supervisor. You must also check TOFTSVRC and
TOFTSVRS.

INTRC = 01
Mapping from the queue buffer to the TOF has failed. Additional
information is contained in field INTERMSG.

READ

172 API Guide

Examples
Here is an example in COBOL:

Here is an example in C/370:

...
working storage section.
copy dslapiws.
copy dslapitp.
...
77 todays-date pic x(6).
01 tofbuf.

copy dslapibp.
03 tofdata pic x(100).

...
move length of tofbuf to bufsize of tofbuf
move 'READ' to intfunc
move 'DSLDATE1' to toffdnam
move spaces to tofmodif
move 0 to toffdnl
move 1 to toffdfg, toffdoc, toffdda
call 'dslapi' using intwstor, tofparm, tofbuf
if intrc = spaces then

move tofdata(1:6) to todays-date
...

...
#include "dslapc.h"
struct INTWSTOR ws;
struct TOFPARM tofpl;
struct { char userid[8]; /* MSGTRACE field structure */

char function[8];
char error_code[4];
char date[6];
char time[6];

} msgtrace;
struct {

struct BufferPrefix pfx; /* standard MERVA buffer prefix */
char tofdata[80];

} tofbuffer;
...
memcpy(ws.INTFUNC,"READ",4); /* read.. */
memcpy(tofpl.TOFFDNAM,"DSLDATE1",8); /* ..date in YYMMDD form */
tofpl.TOFFDNL = 0;
tofpl.TOFFDFG = 1;
tofpl.TOFFDOC = 1;
tofpl.TOFFDDA = 1;
memset(tofpl.TOFMODIF,' ',sizeof tofpl.TOFMODIF);
DSLAPI(&ws,&tofpl,&tofbuffer);
if (memcmp(ws.INTRC," ",2) == 0) {

memcpy(msgtrace.date,&tofbuffer;tofdata,6);
...

READ

Chapter 9. DSLAPI Functions 173

Here is an example in REXX:

...
toffdnam = 'DSLDATE1' /* date in YYMMDD format */
toffdnl = 0 /* nesting level identifier */
toffdfg = 1 /* field group index */
toffdoc = 1 /* rep. sequence index */
toffdda = 1 /* data area index */
tofmodif = ' ' /* request modifier */
tofdata = '' /* clear output variable */
Address DSLAPI "READ"

If intrc = ' ' & toftsvrc = 0 & toftsvrs = 0
Then Do

Say 'MERVA API command READ was successful.'
Say 'TOF field :' toffdnam
Say 'TOF data :' tofdata

End
Else

Say 'MERVA API command READ failed with intrc' intrc',' ,
'toftsvrc' toftsvrc', toftsvrs' toftsvrs'.'

...

READ

174 API Guide

REEN Reenter API Environment
The REEN function initializes the API interface using the API environment saved
by a previous SAVE or SAVL call.

PP REEN (INTWSTOR , buffer) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

The following parameter in INTWSTOR must be set:

INTCWA
Set this address field to 0.

buffer A buffer without a MERVA buffer prefix containing the API environment
created by a SAVE or SAVL call.

Return Codes
INTRC = spaces

DSLAPI has initialized successfully. Additional information is contained in
field INTSHUTD (INACTIVE or SHUTDOWN).

Note: If INTSHUTD contains the value INACTIVE, then all queue
management, journal, user file, and command execution functions
will be rejected with return code 02.

INTRC = 02
DSLAPI is not reentered. Additional information is contained in field
INTERMSG.

Examples
Here is an example in COBOL:

...
working storage section.
copy dslapiws.
...

move low-values to intwstor
move 'REEN' to intfunc
call 'dslapi' using intwstor save-buffer
if intrc not = spaces then

...

REEN

Chapter 9. DSLAPI Functions 175

Here is an example in C/370:

...
#include "dslapc.h"
struct INTWSTOR ws;
char *p;
...
/* restart MERVA API with the saved API buffers */
memcpy(ws.INTFUNC,"REEN",4); /* re-initialize DSLAPI */
DSLAPI(&ws,p); /* ..using saved buffers */
if (memcmp(ws.INTRC," ",2) != 0) {

print_error_codes(&ws);
terminate_API(&ws);
return(4);

}
free(p); /* release the buffer storage */
...

REEN

176 API Guide

REPL Replace a Queue Element
The REPL function replaces the specified element in the MERVA ESA queue data
set with the queue element in the internal queue buffer.

PP REPL (INTWSTOR) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

The following parameters in INTWSTOR must be set:

INTQUEUE
The name of the MERVA ESA queue or function containing the
queue element to be replaced.

INTQSN
The queue sequence number (QSN) of the queue element to be
replaced.

Usage Notes
v The QSN of the replaced element does not change.
v The in-service indicator is not reset.

Return Codes
INTRC = spaces

The call was successful. Additional information is contained in fields
INTKEY1 and INTKEY2.

INTRC = 02
The call has failed. Additional information is contained in fields
INTERMSG and INTSHUTD.

Examples
Here is an example in COBOL:

...
working storage section.
copy dslapiws.
copy dslapitp.
77 xyz-qsn pic s9(8) binary.
77 xyz-queue pic x(8).
...

move xyz-qsn to intqsn
move xyz-queue to intqueue
move 'getn' to intfunc
call dslapi using intwstor

...
move xyz-qsn to intqsn
move xyz-queue to intqueue
move 'repl' to intfunc
call dslapi using intwstor
if intrc not = spaces then

...

REPL

Chapter 9. DSLAPI Functions 177

Here is an example in REXX:

...
/* GETN a queue element */
intqueue = xyz_queue /* queue name */
intqsn = xyz_qsn /* queue sequence number */
Address DSLAPI "GETN"
If intrc = ' '
Then

saveqsn = intqsn /* save actual QSN */
Else Do

Say 'MERVA API command GETN failed with intrc' intrc'.'
...

End

...

/* REPLace the queue element */
intqueue = xyz_queue /* queue name */
intqsn = saveqsn /* queue sequence number */
Address DSLAPI "REPL"
If intrc ¬= ' ' Then ...

/* and FREE it */
intqueue = xyz_queue /* queue name */
intqsn = saveqsn /* queue sequence number */
Address DSLAPI "FREE"
If intrc ¬= ' ' Then
...

REPL

178 API Guide

ROU Route a Queue Element
The ROU function routes the queue element from the internal queue buffer to the
queues selected by the routing table of the specified MERVA ESA function.

PP ROU (INTWSTOR) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

The following parameter in INTWSTOR must be set:

INTQUEUE
The name of the MERVA ESA function whose routing table is to be
used.

Return Codes
INTRC = spaces

The call was successful. Additional information is contained in fields
INTQSN, INTKEY1, and INTKEY2.

INTRC = 01
Either the routing of INTQUEUE has failed or the selected queues have not
been defined. Additional information is contained in fields INTERMSG and
INTSHUTD.

INTRC = 02
The call has failed. Additional information is contained in fields
INTERMSG and INTSHUTD.

Examples
Here is an example in COBOL:

...
working storage section.
copy dslapiws.
77 msg-data pic x(5000).
77 msg-size pic s9(8) binary.
...

move 'MSGP' to intfunc
move 'W' to intfrmid
call dslapi using msg-data msg-size

...
move 'ROU ' to intfunc
move queue-name to intqueue
call dslapi using intwstor
if intrc not = spaces then

...

ROU

Chapter 9. DSLAPI Functions 179

Here is an example in REXX:

...
/* GETN and FREE a queue element */
intqueue = 'L1DE0' /* queue name */
intqsn = 0 /* queue sequence number */
Address DSLAPI "GETN" /* .. sets actual QSN */
If intrc ¬= ' ' Then ...
Address DSLAPI "FREE"
If intrc ¬= ' ' Then ...
...

/* set MSGOK field in TOF to 'YES' */
toffdnam = 'MSGOK' /* name of the field */
toffdnl = 0 /* nesting level index */
toffdfg = 1 /* field group index */
toffdoc = 1 /* rep. sequence index */
toffdda = 1 /* data area index */
tofmodif = ' ' /* request modifier */
tofdata = 'YES'
Address DSLAPI "WRIT"
If intrc = ' ' & toftsvrc = 0 & toftsvrs = 0
Then

Nop /* ok, continue */
Else

... /* WRIT failed */

/* L1AI0 routes queue elements */
/* - with MSGOK field = 'YES' to queue L1RFINN */
/* - with MSGOK field = 'NO' to queue L1VE0. */
/* (see function table and routing module DWSL1AI0) */
intqueue = 'L1AI0'
Address DSLAPI "ROU"
If intrc ¬= ' ' Then
...

ROU

180 API Guide

ROUB Route a Queue Element with Automatic Delete
The ROUB function routes the queue element in the internal queue buffer to the
queues selected by the routing table of the specified MERVA ESA function.

The queue element specified in the back reference INTBQSN and INTBQUE is
simultaneously deleted.

Use this function when routing a queue element from one queue to another queue
or queues. MERVA ESA ensures that the element will not be lost or duplicated in
the event of a system restart.

PP ROUB (INTWSTOR) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

The following parameters in INTWSTOR must be set:

INTQUEUE
The name of the MERVA ESA function whose routing table is to be
used.

INTBQUE
The name of the MERVA ESA queue containing the queue element
to be automatically deleted.

INTBQSN
The queue sequence number of the queue element in queue
INTBQUE to be automatically deleted.

Return Codes
INTRC = spaces

The call was successful. Additional information is contained in fields
INTQSN, INTKEY1, and INTKEY2.

INTRC = 01
Either the routing of INTQUEUE has failed or the selected queues have not
been defined. Additional information is contained in fields INTERMSG and
INTSHUTD.

INTRC = 02
The call has failed. Additional information is contained in fields
INTERMSG and INTSHUTD.

ROUB

Chapter 9. DSLAPI Functions 181

Examples
Here is an example in COBOL:

Here is an example in REXX:

...
working storage section.
copy dslapiws.
...

move 'L3do0' to intqueue
move 'getn' to intfunc
call dslapi using intwstor

...
move intqueue to intbque
move intqsn to intbqsn
move 'L3do0' to intqueue
move 'roub' to intfunc
call dslapi using intwstor
if intrc not = spaces then

...

...
/* GETN a queue element */
intqueue = 'L1DE0' /* queue name */
intqsn = 0 /* queue sequence number */
Address DSLAPI "GETN"
If intrc = ' '
Then Do

savequeue = intqueue /* save queue name */
saveqsn = intqsn /* save QSN */

End
Else Do

Say 'MERVA API command GETN failed with intrc' intrc'.'
...

End

/* ROUB to queue L1AI0, which uses routing module DWSL1AI0 */
intqueue = 'L1AI0'
intbque = savequeue /* .. will be deleted */
intbqsn = saveqsn
Address DSLAPI "ROUB"
If intrc = ' '
Then Do

Say ' '
Say 'MERVA API command ROUB was successful.'
Say 'From queue name :' savequeue
Say 'From QSN :' saveqsn
Say 'To queue name :' intqueue
Say 'To QSN :' intqsn

End
Else Do

Say ' '
Say 'MERVA API command ROUB failed with intrc' intrc'.'

End
...

ROUB

182 API Guide

ROUD Route Queue Element Directly
The ROUD function takes the queue element with the specified QSN from the
MERVA ESA queue and routes it. The queue element is also put into the internal
queue buffer.

The function is unconditional because it retrieves a queue element regardless of its
in-service status.

The ROUD function also ignores the hold status of a queue. This means the
function retrieves queue elements, even if the queue is in hold status.

Use this function when routing a queue element unchanged from one queue to
another. MERVA ESA ensures that the element will not be lost or duplicated in the
event of a system restart.

If the queue element is to be modified in the process, the GET and ROUB API calls
should be used instead.

Syntax

PP ROUD (INTWSTOR) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

The following parameters in INTWSTOR must be set:

INTQUEUE
The name of the MERVA ESA queue containing the queue element.

INTQSN
The queue sequence number (QSN) of the queue element to be
routed.

Return Codes
INTRC = spaces

The call was successful. Additional information is contained in fields
INTQSN, INTKEY1, and INTKEY2. The routed queue element is also in the
internal queue buffer.

INTRC = 01
INTQUEUE is not defined. Additional information is contained in field
INTERMSG.

INTRC = 02
The call has failed. Additional information is contained in fields
INTERMSG and INTSHUTD.

ROUD

Chapter 9. DSLAPI Functions 183

Examples
Here is an example in COBOL:

Here is an example in REXX:

...
working storage section.
copy dslapiws.
...

move current-qsn to intqsn
move 'L2AI0' to intqueue
move 'roud' to intfunc
call dslapi using intwstor
if intrc = spaces then

move intqsn to current-qsn
...

...
intqueue = 'L2AI0' /* queue name */
intqsn = current_qsn /* queue sequence number */
Address DSLAPI "ROUD"
If intrc = ' '
Then

/* routing performed, queue element data can be read .. */
Else

/* access of queue element failed, or routing failed */
...

ROUD

184 API Guide

ROUN Route Next Queue Element Directly
The ROUN function takes the next queue element with a QSN higher than the
specified QSN from the MERVA ESA queue and routes it. The queue element is
also put into the internal queue buffer.

The function is unconditional because it retrieves a queue element regardless of its
in-service status.

The ROUN function also ignores the hold status of a queue. This means the
function retrieves queue elements, even if the queue is in hold status.

Use this function when routing a queue element unchanged from one queue to
another. MERVA ESA ensures that the element will not be lost or duplicated in the
event of a system restart.

When the queue element is to be modified in the process, the GETU and ROUB
API calls should be used instead.

Syntax

PP ROUN (INTWSTOR) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

The following parameters in INTWSTOR must be set:

INTQUEUE
The name of the MERVA ESA queue containing the queue element.

INTQSN
The queue sequence number (QSN) of the queue element prior to
the element to be routed. Specify a QSN of zero to indicate the first
element in the queue.

Return Codes
INTRC = spaces

The call was successful. Additional information is contained in fields
INTQSN, INTKEY1, and INTKEY2. The routed queue element is also in the
internal queue buffer.

INTRC = 01
INTQUEUE is not defined. Additional information is contained in field
INTERMSG.

INTRC = 02
The call has failed. Additional information is contained in fields
INTERMSG and INTSHUTD.

ROUN

Chapter 9. DSLAPI Functions 185

Examples
Here is an example in COBOL:

Here is an example in REXX:

...
working storage section.
copy dslapiws.
...

move current-qsn to intqsn
move 'L2AI0' to intqueue
move 'roun' to intfunc
call dslapi using intwstor
if intrc = spaces then

move intqsn to current-qsn
...

...
intqueue = 'L2AI0' /* queue name */
intqsn = current_qsn /* queue sequence number */
Address DSLAPI "ROUN"
If intrc = ' '
Then

current_qsn = intqsn /* save QSN */
Else

...

ROUN

186 API Guide

SAVE Save API Environment
The SAVE function copies the API internal buffers to a storage area you provide so
that you can save the current API environment from one step of an online
transaction dialog to the next.

When the next dialog step is started API should be initialized with this area using
the REEN function instead of the INIT function.

PP SAVE (INTWSTOR , buffer) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

buffer A buffer without a MERVA buffer prefix. The buffer must be large enough
to contain the interface working storage and the internal buffers (TOF and
queue).

The initial size of the internal buffers is determined by the specifications in
the customization module DSLPRM. The maximum size that can occur is
4KB + 32KB + 32KB = 68KB.

Usage Notes
You should use the SAVL function instead of this function to be able to support
dynamic internal TOF and queue buffer sizes. For an example refer to sample
program DSLBA04 in “DSLBA04x” on page 208.

Return Codes
INTRC = spaces

DSLAPI has saved the working storage and the internal buffers
successfully.

Examples
Here is an example in C/370:

...
#include "dslapc.h"
struct INTWSTOR ws;
char *p;
...
if ((p = (char *)malloc(1024*(4+32+32))) == NULL) {

printf("...not enough storage\n\n");
terminate_API(&ws);
return(4);

}
memcpy(ws.INTFUNC,"SAVE",4); /* copy internal buffers */
DSLAPI(&ws,p);
if (memcmp(ws.INTRC," ",2) != 0) {
...

SAVE

Chapter 9. DSLAPI Functions 187

SAVL Save API Environment
The SAVL function copies the API internal buffers to a storage area you provide so
that you can save the current API environment from one step of an online
transaction dialog to the next.

The size of the buffer you need is in the INTWSTOR structure, field INTSIZE. Note
that this value can change after each API call.

When the next dialog step is started API should be initialized with this area using
the REEN function instead of the INIT function.

This is the alternative for the large message environment to the SAVE function.

PP SAVL (INTWSTOR , buffer) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

buffer A storage area, without a buffer prefix, into which the API internal work
areas are stored. The size of the buffer must be at least as large as the
value in the INTWSTOR INTSIZE field.

Return Codes
INTRC = spaces

The call was successful.

Examples
Here is an example in COBOL:

...
working storage section.
copy dslapiws.
77 storage-id pic s9(8) binary.
77 storage-address pointer.
...
linkage section.
01 save-buffer pic x.
...

move 0 to storage-id
call 'CEEGTST' using storage-id, intsize,

storage-address, fc
...

set address of save-buffer to storage-address
move 'SAVE' to intfunc
call 'dslapi' using intwstor save-buffer
if intrc not = spaces then

...

SAVL

188 API Guide

TERM Terminate API
The TERM function allows DSLAPI to terminate the API environment.

PP TERM (INTWSTOR) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

Return Codes
The TERM function does not issue any return codes.

Examples
Here is an example in COBOL:

Here is a PL/I example:

...
working storage section.
copy dslapiws.
...

move 'TERM' to intfunc
call dslapi using intwstor

...

...
dcl dslapi entry options(assembler,inter);
%include dslapiws;
dcl ws like intwstor automatic;
...
ws.intfunc='TERM';
call dslapi (ws);
...

END TESTREAD;

TERM

Chapter 9. DSLAPI Functions 189

USRG User File Record Get
The USRG function reads the user file record with the specified key from the
MERVA ESA user file and puts it into the record buffer. The DSLAPI functions
USRG and USRN can only be used if EXDSP=YES is specified in your DSLPRM
parameter module.

PP USRG (INTWSTOR , key , DSLUSRS) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

key An 8-byte field containing the user identification. DSLAPI folds the value
to uppercase.

DSLUSRS
A buffer defined by the user file record structure, DSLUSRS. DSLUSRS is
defined in the copybook DSLAPIUS.

Return Codes
INTRC = spaces

The call was successful. The user file record has been placed into the
record buffer.

INTRC = 02
The call has failed. Additional information is contained in fields
INTERMSG and INTSHUTD.

INTRC = 09
There is no user file record with the requested key.

Examples
Here is an example in COBOL:

...
working storage section.
copy dslapiws.
copy dslapius.
77 user-id pic x(8).
...

move user-name to user-id
move 'USRG' to intfunc
call 'dslapi' using intwstor, user-id, dslusrs
if intrc not = spaces then

...

USRG

190 API Guide

Here is an example in C/370:

Here is an example in REXX:

...
#include "dslapc.h"
struct INTWSTOR ws;
struct DSLUSRS ur;
char userid[8];
...

/* get the user record for the specified userid */
memcpy(ws.INTFUNC,"USRG",4);
DSLAPI(&ws,&userid,&ur);
if (memcmp(ws.INTRC," ",2) == 0) {

print_user_record(&ur);
}
else {

...

...
USRKEY = 'MAS1'
Address DSLAPI "USRG"

If intrc = ' '
Then Do

Say 'MERVA API command USRG was successful.'
Say 'User Id :' usrukey
Say 'Name :' usruname
Say 'Origin Id :' usruorid

End
Else

Say 'MERVA API command USRG failed with intrc' intrc'.'
...

USRG

Chapter 9. DSLAPI Functions 191

USRN User File Get Next
The USRN function reads the next user file record with a key greater than the
specified key from the MERVA ESA user file and puts it into the record buffer. The
key of the record read is returned in the key parameter. To get the first record of
the user file specify a blank key. The DSLAPI functions USRG and USRN can only
be used if EXDSP=YES is specified in your DSLPRM parameter module.

This function can be used to read the MERVA ESA user file sequentially.

PP USRN (INTWSTOR , key , DSLUSRS) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

key An 8-byte field containing the user identification. DSLAPI folds the value
to uppercase. After each retrieval it contains the key of the record
retrieved.

DSLUSRS
A buffer defined by the user file record structure, DSLUSRS. DSLUSRS is
defined in the copybook DSLAPIUS.

Return Codes
INTRC = spaces

The call was successful. The user file record has been placed into the
record buffer. Its key has been written into USRKEY.

INTRC = 02
The call has failed. Additional information is contained in fields
INTERMSG and INTSHUTD.

INTRC = 09
Either the user file is empty or no user file record with a key greater than
USRKEY exists.

Examples
Here is an example in COBOL:

...
working storage section.
copy dslapiws.
copy dslapius.
77 user-id pic x(8).
...

move spaces to user-id
move 'USRN' to intfunc
call 'dslapi' using intwstor, user-id, dslusrs
perform until intrc not = spaces

perform print-user-record
call 'dslapi' using intwstor, user-id, dslusrs

end-perform
...

USRN

192 API Guide

Here is an example in C/370:

Here is an example in REXX:

...
#include "dslapc.h"
struct INTWSTOR ws;
struct DSLUSRS ur;
char userid[8];
...

/* get sequentially all user records */
memcpy(ws.INTFUNC,"USRN",4);
while (memcmp(ws.INTRC," ",2) == 0) {

DSLAPI(&ws,userid,&ur);
if (memcmp(ws.INTRC," ",2) == 0) {

print_user_record(&ur);
}
else {

...

...
usrkey = ' ' /* USRKEY - start at top */
usrn_rc = ' ' /* init USRN rc */

Do While usrn_rc = ' ' /* loop while USRN rc = ' ' */
Address DSLAPI "USRN"
usrn_rc = intrc /* save USRN rc */
If usrn_rc = ' '
Then Do

Say ' '
Say 'MERVA API command USRN was successful.'
Say 'User Id :' usrukey
Say 'Name :' usruname
Say 'Origin Id :' usruorid

ufd = 'User Functions :'
If usruftab.0 = 0 /* no 'allowed functions' */
Then /* print at least head line */

Say ufd
Else Do

Do i = 1 To usruftab.0 By 6
funcline = '
Do j = i To i + 5 While j <= usruftab.0

funcline = funcline || Left(usruftab.j,8) || ' '
End
Say ufd funcline
ufd = Copies(' ',Length(ufd)) /* clear description */

End
End
Drop usruftab. /* .. be tidy */

End

Else Do
Say ' '
Say 'MERVA API command USRN failed with intrc' intrc'.'

End
End
...

USRN

Chapter 9. DSLAPI Functions 193

WRIT Write a Field (TOF)
The WRIT function moves data from the field buffer through the internal TOF to
the specified field in the internal queue buffer.

PP WRIT (INTWSTOR , TOFPARM , buffer) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

TOFPARM
The field reference of the field to be written.

buffer A buffer of up to 32KB containing a MERVA buffer prefix. You must set the
buffer-size field and the data length field in the buffer prefix.

Usage Notes
v If the data length field in the buffer prefix is 0, DSLAPI determines the data size

by finding the last nonblank character.
v After TOF access calls (like WRIT) the input field-reference data might have

been changed by the TOF supervisor to its output parameters. Note especially
that after an unsuccessful WRIT the returned TOFFDNAM value is
unpredictable, that is, does not contain the failing TOFFDNAM parameter.

v See “TOF Access Parameters TOFPARM” on page 85 and the description of
macro DSLTSV in the MERVA for ESA Macro Reference for more details about
field references and request modifiers.

Return Codes
INTRC = spaces

The call was successful. The TOFPARM structure contains the current field
reference and the MERVA ESA TOF supervisor return and reason codes,
TOFTSVRC and TOFTSVRS.

Note: This return code only suggests that control was successfully passed
to the TOF supervisor. You must also check TOFTSVRC and
TOFTSVRS.

INTRC = 01
The call has failed for one of the following reasons:
v An empty field buffer
v Failure to map from the internal queue buffer to the internal TOF, or

from the internal TOF to the internal queue buffer.

Additional information is contained in field INTERMSG.

WRIT

194 API Guide

Examples
Here is an example in COBOL:

Here is an example in C/370:

...
working storage section.
copy dslapiws.
copy dslapitp.
01 tofbuf.

copy dslapibp.
03 tofdata pic x(100).

...
move 'WRIT' to intfunc
move 'MSGTRACE' to toffdnam
move 0 to toffdnl
move 1 to toffdfg, toffdoc
move 32767 to toffdda
move spaces to tofmodif
string 'dslba04b', 'myuserid', '0000', today, tod,

delimited by size into tofdata
end-string
move 36 to datasize of tofbuf
call 'dslapi' using intwstor, tofparm, tofbuf

...

...
#include "dslapc.h"
struct TOFPARM tofpl;
struct {

struct BufferPrefix pfx; /* standard MERVA buffer prefix */
char tofdata[80];

} tofbuffer;
struct { char userid[8]; /* MSGTRACE field structure */

char function[8];
char error_code[4];
char date[6];
char time[6];

} msgtrace;
...
memcpy(tofbuffer.tofdata,&msgtrace,sizeof msgtrace);
tofbuffer.pfx.datasize = sizeof msgtrace +4;
memcpy(ws.INTFUNC,"WRIT",4); /* TOF write.. */
memcpy(tofpl.TOFFDNAM,"MSGTRACE",8); /* ..MSGTRACE field */
tofpl.TOFFDDA = 32767; /* ..data area */
tofpl.TOFFDNL = 0;
tofpl.TOFFDFG = 1;
tofpl.TOFFDOC = 1;
memset(tofpl.TOFMODIF,' ',sizeof tofpl.TOFMODIF);
DSLAPI(&ws,&tofpl,&tofbuffer);
...

WRIT

Chapter 9. DSLAPI Functions 195

Here is an example in REXX:

...
pgm = 'MYAPIPGM' /* 8 char. program name */
queue = Left(myqueue,8) /* 8 char. queue name */
mfsrc = '0000' /* 4 char. MFS rc */
date = Substr(Date('s'),3) /* 6 char. date YYMMDD */
Parse Value Time('n') With hh ':' mm ':' ss
time = hh || mm || ss /* 6 char. time HHMMSS */
lterm = ' ' /* 8 char. terminal name */
tofdata = pgm || queue || mfsrc || , /* data to be written */

date || time || lterm

toffdnam = 'MSGTRACE' /* name of the field */
toffdnl = 0 /* nesting level index */
toffdfg = 1 /* field group index */
toffdoc = 1 /* rep. sequence index */
toffdda = 32767 /* data area index */
tofmodif = ' ' /* request modifier */
Address DSLAPI "WRIT"
If intrc = ' ' & toftsvrc = 0 & toftsvrs = 0
Then

Nop /* ok */
Else

... /* WRIT failed */

WRIT

196 API Guide

WTO Write to Operator
The WTO function adds an operator message to the system console and to the
MERVA ESA display message table. The message is also written to the MERVA
journal.

PP WTO (INTWSTOR , buffer) PQ

INTWSTOR
API interface working storage. The INTWSTOR structure is defined by the
copybook DSLAPIWS.

buffer A fixed-length buffer of 120 bytes, without a buffer prefix, containing the
operator message.

Return Codes
INTRC = spaces

The call was successful.

INTRC = 01
The specified operator message is blank.

INTRC = 02
The call has failed. Additional information is contained in fields
INTERMSG and INTSHUTD.

Examples
Here is an example in COBOL:

...
working storage section.
copy dslapiws.
77 opdata pic x(120).
...

call dslapi using intwstor
if intrc not = spaces then

move spaces to opdata
string 'PGM123: function ', intfunc, ', RC=', intrc,

' ' intbusy ' ' intshutd ' ' intermsg
delimited by size into opdata

move 'wto' to intfunc
call dslapi using intwstor opdata

...

WTO

Chapter 9. DSLAPI Functions 197

Here is a PL/I example:

Here is an example in REXX:

...
dcl dslapi entry options(assembler);
%include dslapiws;

...
dcl 1 opmsg,

2 data char(160); /* only 1st 120 bytes are output */
...
if intrc ¬= ' ' then do;

put string (opmsg.data) edit
('Prgname:', intfunc, 'rc =', intrc, intermsg) (5(a,x(1)));

intfunc = 'wto ';
call dslapi (intwstor, opmsg);
return(8);

end;
...

...
wtomsg = 'MERVA WTO test message. Please ignore.'
Address DSLAPI "WTO"
If intrc = ' '
Then

Say 'MERVA API command WTO was successful.'
Else Do

Say 'MERVA API command WTO failed with intrc' intrc'.'
Say 'INTERMSG:' Strip(intermsg)
Say 'INTSHUTD:' Strip(intshutd)

End
...

WTO

198 API Guide

Part 3. Appendixes

© Copyright IBM Corp. 1987, 2001 199

200 API Guide

Appendix A. Migration and Compatibility

This appendix describes migration and compatibility aspects of the DSLAPI
interface.

Differences between MERVA ESA Version 3 Release 3 and Version 4
Release 1

All applications using DSLAPI for MERVA ESA V3.3 should run unchanged with
MERVA ESA V4.1.

To be consistent with all other API functions the API functions GET and GETC
now return INTRC=01 instead of INTRC=02 when the specified INTQUEUE is not
defined.

Under MVS the library with the MERVA ESA programs has a new name. Under
CICS specify SDSLLODB and SDSLLODC, under IMS specify SDSLLODB and
SDSLLODI, instead of SDSLLOD0.

For programs running in IMS environment, the IMS PCB list address must be
written to field COMPCBLA using the API FLDP function. If this field is not set,
IMS databases cannot be accessed from within MERVA ESA API functions.

Differences between MERVA ESA Version 3 Release 2 and Release 3
All applications using DSLAPI for MERVA ESA V3.2 should run unchanged with
MERVA ESA V3.3.

The new journal key structure, JRN2KEY, in copybook DSLAPIJK, defines the
journal key for a four-digit year format. The total length of the journal key is
unchanged. If you are using a four-digit year in the journal, the REXX API
functions JRLN and JRNNreturn an eight-digit date in the variable jrnkdate
‘journal date’.

Differences between MERVA/ESA V3.1 and MERVA ESA Version 3
Release 2

For MERVA ESA running under VSE/ESA™ 1.3 or higher, DSLAPI can run in
AMODE 31 and exploit storage above the 16MB line. Large message processing is
supported. All applications using DSLAPI for MERVA/ESA V3.1 should run
unchanged with MERVA ESA V3.2.

© Copyright IBM Corp. 1987, 2001 201

Differences between MERVA/370 Version 2 and MERVA ESA Version 3
MERVA ESA Version 3 includes the following changes:
v To exploit the MERVA ESA support for messages larger than 32KB new API

functions must be used:

MERVA ESA V3
Function

Purpose MERVA/370 V2
Function

MSGG MFS get message GETM, GETS
MSGP MFS put message PUTM, PUTS
MPFG MFS get MSGSWIFT prefix GETM, GETS
MPFP MFS put MSGSWIFT prefix PUTM, PUTS
JRLG Get journal record JRNG
JRLN Get next journal record JRNN
JRLP Put journal record JRNP
SAVL Save DSLAPI environment SAVE

v The High-level language copybooks have been revised:
– Each structure is now in a separate copybook. This allows users to include

only the structures they need.
– Copybook names are the same in each language.
– C/370 versions of the API structures have been defined in a C header-file.

The MERVA/370 V2 copybooks DSLAPCBL and DSLAPPLI are unchanged.
v Segmented journal records. If JRNBUF=SEG has been specified in DSLPRM, and

the MAXBUF value is greater than 32KB, a journal retrieval might return a
segment of a journal record; the application must explicitly retrieve the separate
segments.
The new journal key structure, JRNKEY, in copybook DSLAPIJK, defines the
segmented journal key. The nonsegmented form of the key is only defined in the
MERVA/370 V2 copybooks, except for the Assembler copybook, which defines
both forms.

v The MSGTRACE field is now variable length and a subfield for the terminal ID
has been added.

v A Write-to-Operator function, WTO, has been added.

202 API Guide

Appendix B. Sample Programs

A number of sample API programs are distributed with MERVA ESA. This
appendix describes these programs.

All sample programs are named in a consistent fashion: DSLBAnnx, where ‘nn’ is
the sample program number, and ‘x’ indicates the programming language:

A Assembler

B COBOL

C C/370

P PL/I

R REXX.

Note: These programs are merely designed to demonstrate the use of MERVA ESA
API services. They are not otherwise intended as realistic examples of
MERVA applications.

For example, in “Chapter 1. Introduction and Concepts” on page 3 you are
advised to use dynamic linkage to invoke DSLAPI. Because it is a little
simpler, however, these programs use static linkage.

The sample programs are:
v Batch API programs. Each program exists in a COBOL, PL/I, C/370, and an

Assembler version. DSLBA01x, DSLBA02x, and DSLBA03x also exist in a REXX
version. DSLBA10R exists in REXX only.

DSLBA01x MERVA command service

DSLBA02x Export a SWIFT message from MERVA ESA

DSLBA03x Import a SWIFT message into MERVA ESA

DSLBA04x SAVE and REEN services

DSLBA05x User file services

DSLBA10R Update a queue element.
v A transaction for automatic start. This program, too, exists in each of the

supported languages, except Assembler and REXX.

DSLBA06x Queue Management services.
v A conversational transaction. Programs that together implement a CICS dialog.

Each program is in COBOL and PL/I.

DSLBA20x Dialog control (does not use the API)

DSLBA21x Data entry

DSLBA22x Data verification

DSLBA23x Queue inspection

DSLBA24x S.W.I.F.T message map

DSLBA25x Function selection map

DSLBA26x Data entry map

© Copyright IBM Corp. 1987, 2001 203

DSLBA27x Data verification map.
v An MFS HLL exit for the CICS and batch environment. There is a COBOL, PL/I,

and C version.

DSLBA30x HLL version of the DSLMS911 sample field separation exit.

The following sample programs are reproduced in this Appendix:

DSLBA03B COBOL batch program

DSLBA06P PL/I transaction for automatic start

DSLBA30C C/370 MFS exit.

Refer to the distribution libraries for the other programs. Sample programs are
distributed in the MERVA ESA samples library, MERVA.SDSLSAM0. In VSE they
are distributed in the source sublibrary.

Batch Programs
The MERVA ESA sample library contains six sample batch programs that illustrate
most API services.

The samples run in MVS or VSE batch. The API functions are independent of the
operating system and can be used in both environments in the same way.

For Assembler samples running under VSE, however, the MVS LOAD macro must
be replaced by a VSE CDLOAD macro or by loading a V-address constant.

DSLBA01x
The sample program DSLBA01x executes a MERVA ESA operator command and
prints the command response to the standard output file. The command to be
executed can be input via the job-step parameter. Alternatively, a default command
is executed.

The command response buffer contains 10 lines of output. If a commands response
is longer than 10 lines, the command must be submitted again to obtain the next
group of 10 lines. This must be repeated until all lines of the response have been
returned.

Submitting the command again after the last lines of the response have been
returned causes the first lines of a new response to be returned. The program saves
the first response buffer and then compares it with subsequent response buffers to
determine when the response is complete. But note that this is not a completely
reliable way of recognizing the end of a response; the status of the system may
have changed so that the first lines are different.

204 API Guide

DSLBA02x
The sample program DSLBA02x moves a message from one queue to another
using the automatic delete facility (PUTB). The queue names are given in the
PARM parameter on the EXEC statement of the JCL.

The message is also mapped (MSGG) into both SWIFT I and SWIFT II net format.
An application program, after mapping a message into an external format like this,
would normally write the record to a file or data base. This is not done by the
sample program, it merely demonstrates how to get a message into a buffer in an
external format.

DSLBA03x
The sample program DSLBA03x is a simple example of importing a message into
MERVA ESA.

A message in SWIFT II format is read from the standard input, the CRLF
(carriage-return, line-feed) code is appended as necessary, and then the message
string is mapped into MERVA ESA internal format using the MFS service MSGP.

Then the message is written to a queue using the queue management PUT service.
This appends a message to a queue. The QSN assigned to the message is returned
by the PUT and displayed in a message to the standard output before the program
terminates.

The name of the queue to which the SWIFT message is to be written is input via
the PARM parameter on the EXEC statement.

Appendix B. Sample Programs 205

The COBOL version of this sample is shown in Figure 8.

identification division.
program-id. dslba03b.
**
*
* Function : MERVA ESA sample API program
* This program shows how to use the DSLAPI
* MFS - Message Format service, and
* QMG - Queue Management service
* to create a S.W.I.F.T message and put it into a queue.
* The program is executed in MVS batch and requires a
* queue name to be specified in the EXEC PARM.
*
* A SWIFT II message is read from SYSIN (trailing ';'
* are replaced by CRLF (X'0D25')), input to MERVA, and
* written to the queue.
* Example:
* //API EXEC PGM=DSLBA03B,PARM='L2DE0'
* //SYSIN DD *
* {1:F01TIBMDEPPAXXX0000000000}
* {2:I999TIBMDEPPAXXXN}
* {3:{108:DSLBA03B S1}}
* {4:;
* :20:DSLBA03B S1;
* :21:MT S999;
* :79:EXAMPLE OF DSLAPI MSGP FUNCTION;
* THIS IS SWIFT II FORMAT;
* -}
* /*
*
* Dependencies: MERVA ESA must be active
*
* Environment : MVS batch, VSE batch
*
***/

date-compiled.
data division.
working storage section.
copy dslapiws.
77 msgdata pic x(10000).
77 msgdata-size pic s9(8) binary.
77 queue-name pic x(8).
77 dslapi pic x(8) value 'DSLAPI'.
77 i pic s9(4) binary.
77 j pic s9(4) binary.
77 input-line pic x(80).
77 opdata pic x(100).

linkage section.
01 parmdata.

02 parm-size pic s9(4) binary.
02 parm-string pic x(8).

procedure division using parmdata.
move 0 to return-code

Figure 8. DSLBA03B COBOL Sample Batch API Program (Part 1 of 3)

206 API Guide

* read the queue name from the EXEC PARM
if parm-size > 0 then

move parm-string(1:parm-size) to queue-name
else

display 'Supply queue name in EXEC PARM'
move 8 to return-code
goback

end-if
* read in the S.W.I.F.T message
* (i is an index into the message buffer)

move 1 to i
perform read-input-message
if i = 1 then

display 'Supply input message in SYSIN'
move 8 to return-code
goback

end-if
move i to msgdata-size

* initialize the MERVA API
move 'INIT' to intfunc
set intcwa to null
call dslapi using intwstor
if intrc not = spaces then

perform write-error-message
move 8 to return-code
goback

end-if

* move the message to the API internal queue buffer
move 'MSGP' to intfunc
move 'W' to intfrmid
call dslapi using intwstor msgdata msgdata-size
if intrc not = spaces then

perform write-error-message
perform terminate-api
move 8 to return-code
goback

end-if

* move the message to the target queue
move 'PUT ' to intfunc
move queue-name to intqueue
call dslapi using intwstor
if intrc not = spaces then

perform write-error-message
perform terminate-api
move 8 to return-code
goback

end-if

display 'The message has been placed in ' intqueue
' with QSN ' intqsn

display 'finished'
perform terminate-api
goback
.

Figure 8. DSLBA03B COBOL Sample Batch API Program (Part 2 of 3)

Appendix B. Sample Programs 207

DSLBA04x
The sample program DSLBA04x shows the use of the SAVE and REEN functions.
These functions can be used in conversational applications, where processing is
suspended for indefinite time intervals, to save the API environment. This is
discussed in “Saving the Tokenized Form of a Message in Your Own Database
(IMS) or in Temporary Storage or Transient Data (CICS)” on page 28.

The program reads a message from a MERVA ESA queue using GETN. This flags
the queue element in-service to indicate that it should not be updated by another
user. Then the API environment, including the internal queue and TOF buffers, is
saved with the SAVE function and DSLAPI terminated (TERM). (The COBOL
program uses a Language Environment/370 service to obtain dynamic storage for the
SAVE buffer.)

After DSLAPI is reinitialized with the reenter function (REEN), restoring the saved
environment and the internal buffers, the messages MSGTRACE field is updated
with a new entry (data area). Note that the message is not reread from the queue;
following the SAVE and REEN the message is still in the internal queue buffer.

The date and time for the MSGTRACE entry are read from MERVA, demonstrating
the reading of MERVA ESA system fields. Normally, you would use a high-level
language function to get the date or time.

terminate-api.
move 'TERM' to intfunc
call dslapi using intwstor
.

write-error-message.
move spaces to opdata
string 'dslba03b: function ', intfunc, ', RC=', intrc,

' ' intbusy ' ' intshutd ' ' intermsg
delimited by size into opdata

display opdata
.

read-input-message.
move spaces to input-line
accept input-line
perform until input-line = spaces

perform varying j from length of input-line
by -1
until input-line (j:1) not = space

end-perform
if input-line (j:1) = ';' then

move X'0D25' to input-line (j:2)
add 1 to j

end-if
move input-line (1:j) to msgdata (i:j)
add j to i
move spaces to input-line
accept input-line

end-perform
subtract 1 from i
.

end program dslba03b.

Figure 8. DSLBA03B COBOL Sample Batch API Program (Part 3 of 3)

208 API Guide

The MSGTRACE data area is written using the TOF WRIT function. Setting the
data area index to a high value ensures that the data area is appended as the last
data area in the field. Since MERVA does not allow gaps in the data area index
sequence, the data area is given the next highest unused index, not the index you
specify.

Then the message is moved to a second MERVA ESA queue data set, using the
PUTB function to simultaneously delete the message from the first queue.

A confirmation message is written to the standard output before the API is
normally terminated with the TERM function.

Note that, if an error occurs after the GETN, the queue FREE service is used to
clear the in-service indicator. If this were not done, the queue element would
remain flagged until MERVA ESA termination.

DSLBA05x
The sample program DSLBA05x shows the use of the USRG and USRN functions.
The program prints the contents of the user file record, the key of which is given
in the PARM parameter on the EXEC statement. The user identification, the user
name, the origin identification, and the allowed functions for this user are printed
to the standard output. If the parameter is omitted, all user file records are printed.

See also batch utility DSLBA15R in “Appendix C. Batch Utilities in REXX” on
page 227.

Appendix B. Sample Programs 209

DSLBA10R - Update a Queue Element
DSLBA10R reads a queue element, changes the value of the SW108 field in the
TOF, adds a new MSGTRACE, and replaces the message in the queue. It then
reads the message again and prints the new values to show that the fields were
changed. Dependencies: MERVA ESA must be active.

Job Control Statements
The following figure shows the MVS JCL to run DSLBA10R.

In the JCL, the lowercase parameters have the following meanings:

loadlib The name of the load library containing the MERVA ESA
programs.

samplib The name of the library containing the program DSLBA10R.

listds The name of the listing data set. Must be preallocated, record
format VB, logical record length 136 recommended.

Runtime Parameters
The following parameters can be specified in the PARM field of the EXEC
statement:

parm1 Queue name.

parm2 Queue sequence number (QSN). If not specified, the first queue
element found is updated.

parm3 Log level. From 1 (basic) to 4 (all). The default is 2.

Sample printout
The following figure shows the information printed after the execution of the
DSLBA10R program.

//....... JOB
//REXXB EXEC PGM=DSLAREXX,REGION=8M,
// PARM='DSLBA10R,parm1 parm2 parm3'
//*
//* .. MERVA ESA LOAD LIBRARY
//STEPLIB DD DSN=loadlib,DISP=SHR
//*
//* .. ON THIS PDS: DSLBA10R
//SYSEXEC DD DSN=samplib,DISP=SHR
//*
//* .. LISTING DATASET (VB136)
//SYSTSPRT DD DSN=listds,DISP=OLD
//

Figure 9. MVS JCL to Run Sample Program DSLBA10R - Update a Queue Element

210 API Guide

MERVA ESA V4.1 DSLBA10R 11. Oct. 1999 13:26:35

DDDDD SSSSSS LLL BBBBB AAAA 111 0000 RRRRR
DDDDDD SSSSSS LLL BBBBBB AAAAAA 1111 000000 RRRRRR
DD DD SS LLL BB BB AA AA 11111 00 00 RR RR
DD DD SS LLL BB BB AA AA 111 00 00 RR RR
DD DD SSSSSS LLL BBBBBB AAAAAA 111 00 00 RRRRRR
DD DD SSSSSS LLL BBBBBB AAAAAA 111 00 00 RRRRRR
DD DD SS LLL BB BB AA AA 111 00 00 RR RR
DD DD SS LLL BB BB AA AA 111 00 00 RR RR
DDDDDD SSSSSS LLLLLL BBBBBB AA AA 111 000000 RR RR
DDDDD SSSSSS LLLLLL BBBBB AA AA 111 0000 RR RR

Read a queue element, add a new MSGTRACE, change field SW108 (User Ref.),
and write it back to its queue.

DSLBA10R_001I : Runtime parameter 'Queue name' : L1DE0

DSLBA10R_002I : Runtime parameter 'Queue sequence number' : 0

DSLBA10R_003I : Runtime parameter 'Log level' : 1
Allowed log levels are: 1 .. 4, and '*'.

DSLBA10R_005I : GETN of the following queue element was successful:
- INTQUEUE : L1DE0
- INTQSN : 40
- INTKEY1 : T5
- INTKEY2 :

DSLBA10R_007I : MSGTRACE data areas 'BEFORE'
1: MAS1 L1DE0 0000960507172408A105
2: MASDBCS L1DE0 0000960509143922D804

DSLBA10R_008I : SW108 'BEFORE' : My old reference

DSLBA10R_013I : MERVA API command REPL was successful.
Queue name : L1DE0
QSN : 40

DSLBA10R_014I : MERVA API command GET was successful.
Queue name : L1DE0
QSN : 40
Key 1 : T5
Key 2 :

DSLBA10R_007I : MSGTRACE data areas 'AFTER'
1: MAS1 L1DE0 0000960507172408A105
2: MASDBCS L1DE0 0000960509143922D804
3: DSLBA10RL1DE0 0000971011132635

DSLBA10R_008I : SW108 'AFTER' : A new reference

DSLBA10R_015I : DSLBA10R ended with return code 0 - successful.
Total processing time was 0.42 seconds.

Figure 10. Printout of the DSLBA10R Sample Program

Appendix B. Sample Programs 211

Sample Transaction for Automatic Start
Sample program DSLBA06x is an example CICS background transaction that is
automatically started by MERVA ESA when a message is moved to the queue with
which the transaction is associated. A transaction is associated with a MERVA
queue, or function, by the TRAN= parameter of the function definition macro
DSLFNT. “Writing a Nonconversational Transaction” on page 25 describes how you
can code your application program for automatic starting.

Transactions for automatic start are typically used to automatically route messages
depending on the content of various fields. Processing involves inspecting the
message and then moving the message to the appropriate target queue or queues.
Since this logic can be completely defined in a MERVA Routing table, this program
merely reads messages sequentially from the queue (GETN), appends a data area
to the MSGTRACE field (TOF WRIT), and then invokes the routing logic (ROUB)
to move the message with automatic delete to the target queues. (An example
Routing table is not supplied, refer to any of the tables supplied with MERVA ESA
for an example.)

Figure 11 is an example of a transaction for automatic start written in PL/I.

DSLBA06: PROCEDURE OPTIONS(MAIN);
/* ..must be uppercase for cics */
/* eib addressing set by cics */

/***
* *
* Function : MERVA ESA sample message-processing transaction *
* *
* This program is an example CICS transaction that *
* could be associated with a MERVA function to process *
* automatically any messages routed to the function. *
* *
* A transaction is associated with a MERVA function by *
* the TRAN= parameter of the function definition macro *
* DSLFNT. *
* *
* In this example message-processing is limited to *
* inspecting the message and routing it further *
* depending on the contents of various fields. Since *
* this routing logic can be completely defined in a *
* Routing table, this program merely reads messages *
* sequentially from the queue, appends a data area to *
* the MSGTRACE field, and then invokes the routing *
* logic. (The Routing table is not supplied, refer *
* to any of the tables supplied with MERVA ESA for *
* an example). *
* *
* *
* Dependencies: *
* *
* Environment : MVS CICS, VSE CICS *
* *
***/

Figure 11. DSLBA06P PL/I Sample CICS API Transaction for Automatic Start (Part 1 of 4)

212 API Guide

%include dslapiws;
dcl ws like intwstor automatic;
%include dslapitp;
dcl tp like tofparm automatic;
%include dslapitu;
dcl tucb like inttucb automatic;
dcl 1 api_parm_list,

2 parm(3) ptr;
dcl saveqsn bin fixed(31);
/* get the MERVA TUCB */
EXEC CICS RETRIEVE INTO(TUCB) LENGTH(STORAGE(TUCB));

/* initialize the MERVA API */
ws.INTFUNC = 'INIT';
unspec(ws.INTCWA) = 0;
api_parm_list.parm(1) = addr(ws);
EXEC CICS LINK PROGRAM('DSLAPCIC')

COMMAREA(API_PARM_LIST) LENGTH(4);
if ws.INTRC ¬= ' ' then do;

call write_to_operator;
EXEC CICS RETURN;

end;

/* process sequentially all messages in the queue */
ws.INTQSN = 0; /* start at the beginning */
do while (ws.INTRC = ' ');

ws.INTFUNC = 'GETN'; /* exclusive get next */
ws.INTQUEUE = tucb.tucname; /* --from this queue */
api_parm_list.parm(1) = addr(ws);
EXEC CICS LINK PROGRAM('DSLAPCIC')

COMMAREA(API_PARM_LIST) LENGTH(4);
if ws.INTRC ¬= ' ' then

leave;
saveqsn = ws.INTQSN; /* save QSN for ROUB */

/* add a msgtrace data area to the msg */
call write_msgtrace;
if ws.INTRC ¬= ' ' then

call write_to_operator;

/* move the message to the next queue using a routing table */
ws.INTFUNC = 'ROUB';
ws.INTQUEUE = tucb.tucname; /* use this functions rtng table */
ws.INTBQUE = tucb.tucname; /* source queue */
ws.INTBQSN = saveqsn; /* qsn of source msg */
EXEC CICS LINK PROGRAM('DSLAPCIC')

COMMAREA(API_PARM_LIST) LENGTH(4);
end; /* end while */
if ws.INTRC ¬= '09' then do; /* no more messages ? */

call write_to_operator;
end;

/* terminate the MERVA API */
call terminate;
EXEC CICS RETURN;

Figure 11. DSLBA06P PL/I Sample CICS API Transaction for Automatic Start (Part 2 of 4)

Appendix B. Sample Programs 213

/***/
/* */
/* Write an error-message */
/* */
/***/
write_to_operator: procedure;

dcl 1 opmsg,
2 data char(120);

put string (opmsg.data) edit
('dslba06, function ', ws.INTFUNC, ', RC=', ws.INTRC) (4(a));

ws.INTFUNC = 'WTO ';
api_parm_list.parm(1) = addr(ws);
api_parm_list.parm(2) = addr(opmsg);
EXEC CICS LINK PROGRAM('DSLAPCIC')

COMMAREA(API_PARM_LIST) LENGTH(8);
end write_to_operator;

/***/
/* */
/* Terminate the API interface */
/* */
/***/
terminate: procedure;

ws.INTFUNC = 'TERM';
api_parm_list.parm(1) = addr(ws);
EXEC CICS LINK PROGRAM('DSLAPCIC')

COMMAREA(API_PARM_LIST) LENGTH(4);
end terminate;

/***/
/* */
/* Append a data area to the MSGTRACE field of the message in the */
/* API internal queue-buffer */
/* */
/***/
write_msgtrace: procedure;

dcl 1 tofbuffer,
%include dslapibp;
2 data char(100);

dcl 1 api_parm_list,
2 parm(3) ptr;

dcl today char(6);
dcl tod char(6);

tofbuffer.buffer_prefix.bufsize = length(tofbuffer.data) + 8;
today, tod = ' ';
/* get date and time from MERVA */
ws.INTFUNC = 'READ';
tp.toffdnam = 'DSLDATE1';
tp.tofmodif = ' ';
tp.toffdnl = 0;
tp.toffdfg, tp.toffdoc, tp.toffdda = 1;
api_parm_list.parm(1) = addr(ws);
api_parm_list.parm(2) = addr(tp);
api_parm_list.parm(3) = addr(tofbuffer);
EXEC CICS LINK PROGRAM('DSLAPCIC')

COMMAREA(API_PARM_LIST) LENGTH(12);
if ws.INTRC = ' ' then do;

today = substr(tofbuffer.data,1,6);
end;

Figure 11. DSLBA06P PL/I Sample CICS API Transaction for Automatic Start (Part 3 of 4)

214 API Guide

ws.INTFUNC = 'READ';
tp.toffdnam = 'DSLTIME1';
EXEC CICS LINK PROGRAM('DSLAPCIC')

COMMAREA(API_PARM_LIST) LENGTH(12);
if ws.INTRC = ' ' then do;

tod = substr(tofbuffer.data,1,6);
end;
/* now add a new MSGTRACE data area.. */
ws.INTFUNC = 'WRIT';
tp.toffdnam = 'MSGTRACE';
tp.toffdnl = 0;
tp.toffdfg, tp.toffdoc = 1;
tp.toffdda = 32767;
put string (tofbuffer.data) edit

('dslba06', tucb.tucname, '0000', today, tod)
(a(8), a(8), a(4), a(6), a(6));

tofbuffer.buffer_prefix.datasize = 36;
EXEC CICS LINK PROGRAM('DSLAPCIC')

COMMAREA(API_PARM_LIST) LENGTH(12);
end write_msgtrace;

end dslba06;

Figure 11. DSLBA06P PL/I Sample CICS API Transaction for Automatic Start (Part 4 of 4)

Appendix B. Sample Programs 215

Conversational Transaction
Figure 12 shows the general structure of the user sample dialog system. There are
four programs, each in COBOL and PL/I, which together make up the dialog
application. They use API functions for data entry and routing (DSLBA21x), data
verification and routing (DSLBA22x), and to get information from the MERVA ESA
message queues (DSLBA23x).

Figure 12. General Structure of the User Sample Dialog System

216 API Guide

Working Storage Structure of the Dialog Programs
Figure 13 shows the working storage structure that is used in all sample dialog
programs.

Note: All source code, BMS map sources, and the map copybooks for these
samples are provided with the machine-readable material.

Sample Application Program DSLBA20x
The application program DSLBA20x displays the selection panel from which the
user chooses one of the possible transactions in this sample dialog system. It is a
CICS program and does not use API services. If you need more information about
this program, refer to the source code provided with MERVA ESA.

Common area (more details in source text).

Working areas for DSLAPI:

PARWSTOR (working area with 72 characters).

PARMLIST (address list for DSLAPI).
ADDR1
ADDR2
ADDR3

LLPARM (length-field of parmlist).

TOFFIELD (data buffer for using TOF-services in sample
programs DSLBA21x and DSLBA22x).

W-INPUT-HEADER
(data buffer to prepare the MSGSWIFT buffer
in sample program DSLBA21x).

Copy Book for BMS Map.

Standard working area for all maps in this sample dialog-system.

Copy Book for DSLAPI:

DSLAPCBL for COBOL programs.
DSLAPPLI for PL/I programs.

Copy Book DFHAID for CICS.

Working area for sample programs (more details in source text)

Figure 13. Working Storage Structure Used in All Sample Programs with DSLAPI Functions

Appendix B. Sample Programs 217

Sample Application Program DSLBA21x
With the application program DSLBA21x you can enter a SWIFT message type
S100 and route it to the Data Entry queue or the Verification queue. The following
example uses the TOF service functions of DSLAPI. Figure 14 shows the processing
structure

Preparing address list for DSLAPI with external program DSLAPIPL
for the working storage area INTWSTOR:

Call DSLAPIPL with PARWSTOR PARMLIST INTWSTOR MSGSWIFT.

Initializing DSLAPI:

INTFUNC = 'INIT'
Call DSLAPI via EXEC CICS link program ('DSLAPCIC')
with address list (PARMLIST)

Before you put a new entered message in a queue you have to
prepare the MSGSWIFT buffer and put a dummy element in the internal
Queue Buffer with the 'Put SWIFT Message' function to initialize
the TOF:

INTFUNC = 'PUTS'
INTQUEUE = 'D3DE0' (for example)
INTQSN = Zero
INIZIALIZE MSGSWIFT FIELDS
INPUT─HEADER OF MSGSWIFT = W─INPUT─HEADER
Call DSLAPI via EXEC CICS link program ('DSLAPCIC')
with address list (PARMLIST)

Preparing address list for DSLAPI with external program DSLAPIPL
for the working storage areas INTWSTOR, TOFPARM, and TOFFIELD:

Call DSLAPIPL with PARWSTOR PARMLIST INTWSTOR TOFPARM
TOFFIELD

Write the fields SW20, SW32, SW50, and SW59 from the field buffer
(TOFFIELD) through the Internal TOF to the Internal Queue Buffer
(INTWSTOR):

┌─P INTFUNC = 'WRIT'
³ TOFMODIF = 'VFIRST'
³ TOFFDNAM = SWIFT field name
³ LENGTH2 = Zero (DSLAPI calculates the actual data length
³ from the data buffer in TOFFIELD)
³ Put data you entered in the map to the data buffer in
³ TOFFIELD (T─DATA)
³ Call DSLAPI via EXEC CICS link program ('DSLAPCIC')
└── with address list (PARMLIST)

Preparing address list for DSLAPI with external program DSLAPIPL
for the working storage area INTWSTOR:

Call DSLAPIPL with PARWSTOR PARMLIST INTWSTOR.

Figure 14. Processing Structure of Program DSLBA21x (Part 1 of 2)

218 API Guide

Sample Application Program DSLBA22x
With the application program DSLBA22x you can verify a SWIFT message type
S100 and route it to the Verification queue or to the SWIFT Normal queue. The
following example also uses the TOF service functions of DSLAPI. Figure 15 shows
the processing structure.

Take the queue element from the Internal Queue Buffer (INTWSTOR)
and put it in the MERVA queue with the 'PUT' Function:

INTFUNC = 'PUT '
INTQUEUE = 'D3VE0' (for example)
Call DSLAPI via EXEC CICS link program ('DSLAPCIC')
with address list (PARMLIST)

Termination DSLAPI:

INTFUNC = 'TERM'
Call DSLAPI via EXEC CICS link program ('DSLAPCIC')
with address list (PARMLIST)

Figure 14. Processing Structure of Program DSLBA21x (Part 2 of 2)

Preparing address list for DSLAPI with external program DSLAPIPL
for the working storage area INTWSTOR:

Call DSLAPIPL with PARWSTOR PARMLIST INTWSTOR.

Initializing DSLAPI:

INTFUNC = 'INIT'
Call DSLAPI via EXEC CICS link program ('DSLAPCIC')
with address list (PARMLIST)

Browse a queue element and put it in the Internal Queue Buffer
with the 'Get Next Unconditionally' Function:

INTFUNC = 'GETU'
INTQUEUE = 'D3VE0' (for example)
INTQSN = Zero (to get the first queue element) or
INTQSN = QSN of the last call you have saved in the Common

Area (to get the next Queue Element)
Call DSLAPI via EXEC CICS link program ('DSLAPCIC')
with address list (PARMLIST)

Preparing address list for DSLAPI with external program DSLAPIPL
for the working storage areas INTWSTOR, TOFPARM, and TOFFIELD:

Call DSLAPIPL with PARWSTOR PARMLIST INTWSTOR TOFPARM
TOFFIELD

Figure 15. Processing Structure of Program DSLBA22x (Part 1 of 4)

Appendix B. Sample Programs 219

Read the fields SW20, SW32, SW50, and SW59 from the Internal Queue
Buffer through the Internal TOF and put it in the field buffer:

┌─P INTFUNC = 'READ'
³ TOFMODIF = 'VFIRST'
³ TOFFDNAM = SWIFT field name
³ LENGTH2 = Zero (DSLAPI calculates the actual data length
³ from the data buffer in TOFFIELD)
³ Call DSLAPI via EXEC CICS link program ('DSLAPCIC')
³ with address list (PARMLIST)
³ Put data you have in the data buffer to the appropriate
└── fields in the map.

Figure 15. Processing Structure of Program DSLBA22x (Part 2 of 4)

Preparing address list for DSLAPI with external program DSLAPIPL
for the working storage area INTWSTOR:

Call DSLAPIPL with PARWSTOR PARMLIST INTWSTOR.

Retrieve the same queue element and put it in the Internal Queue
Buffer with the 'Get Next' Function:

INTFUNC = 'GETN'
INTQUEUE = 'D3VE0' (for example)
INTQSN = QSN you have saved in the Common Area (to get the

same Queue Element)
Call DSLAPI via EXEC CICS link program ('DSLAPCIC')
with address list (PARMLIST)

Write the fields SW20, SW32, SW50, and SW59 from the field buffer
(TOFFIELD) through the Internal TOF to the Internal Queue Buffer
(INTWSTOR):

┌─P INTFUNC = 'WRIT'
³ TOFMODIF = 'VFIRST'
³ TOFFDNAM = SWIFT field name
³ LENGTH2 = Zero (DSLAPI calculates the actual data length
³ from the data buffer in TOFFIELD)
³ Put data you verified in the map to the data buffer in
³ TOFFIELD (T─DATA)
³ Call DSLAPI via EXEC CICS link program ('DSLAPCIC')
└── with address list (PARMLIST)

Figure 15. Processing Structure of Program DSLBA22x (Part 3 of 4)

220 API Guide

Preparing address list for DSLAPI with external program DSLAPIPL
for the working storage area INTWSTOR:

Call DSLAPIPL with PARWSTOR PARMLIST INTWSTOR.

Take the queue element from the Internal Queue Buffer (INTWSTOR)
and put it in the MERVA queue with the 'PUT with Back─Reference'
Function:

INTFUNC = 'PUTB'
INTBQUEUE = 'D3VE0' (for example)
INTBQSN = INTQSN (QSN from the element you want to route)
INTQUEUE = 'D3SWN' (for example)
Call DSLAPI via EXEC CICS link program ('DSLAPCIC')
with address list (PARMLIST)

Termination DSLAPI:

INTFUNC = 'TERM'
Call DSLAPI via EXEC CICS link program ('DSLAPCIC')
with address list (PARMLIST)

Figure 15. Processing Structure of Program DSLBA22x (Part 4 of 4)

Appendix B. Sample Programs 221

Sample Application Program DSLBA23x
With the application program DSLBA23x you can display messages of all
MERVA ESA queues in S.W.I.F.T format. The following example uses the
field-service program DSLAPFFS. Figure 16 shows the processing structure of the
program DSLBA23x.

Preparing address list for DSLAPI with external program DSLAPIPL
for the working storage areas INTWSTOR and MSGSWIFT:

Call DSLAPIPL with PARWSTOR PARMLIST INTWSTOR MSGSWIFT.

Initializing DSLAPI:
INTFUNC = 'INIT'
Call DSLAPI via EXEC CICS link program ('DSLAPCIC')
with address list (PARMLIST)

Browse a queue element and put it in the Internal Queue Buffer
with the 'Get Next Unconditionally' Function:

INTFUNC = 'GETU'
INTQUEUE = Queue name you entered in Panel
INTQSN = Zero (to get the first queue element) or
INTQSN = QSN of the last call you have saved in the Common

Area (to get the next Queue Element)
Call DSLAPI via EXEC CICS link program ('DSLAPCIC')
with address list (PARMLIST)

Map the message in SWIFT format from the Internal Queue Buffer
(INTWSTOR) through the Internal TOF to the Message Buffer
(MSGSWIFT) with the 'Get SWIFT Message' Function:

INTFUNC = 'GETS'
Call DSLAPI via EXEC CICS link program ('DSLAPCIC')
with address list (PARMLIST)

Initializing field service program DSLAPFFS:

FLDFUNC = 'INIT'
Call DSLAPFFS with FLDWSTOR MSGSWIFT.

Get the message line by line from MSGSWIFT until end of message:

┌─P FLDFUNC = 'DATA'
³
└── Call DSLAPFFS with FLDWSTOR MSGSWIFT.

Termination DSLAPI:

INTFUNC = 'TERM'
Call DSLAPI via EXEC CICS link program ('DSLAPCIC')
with address list (PARMLIST)

Figure 16. Processing Structure of Program DSLBA23x

222 API Guide

High-Level Language MFS Exit
The sample high-level language (HLL) MFS exit, DSLBA30x, is an HLL version of
the Assembler sample separation exit DSLMS911. It returns the last-but-one data
area of the field named in the MFS field reference.

A separation exit routine is usually used to isolate part of a field. It can be invoked
by defining a subfield of the field and specifying a separation exit routine (SEPR=)
for the subfield. A subfield of the MSGTRACE field has been defined in this way
in the MERVA field definition table, DSLFDTT, to invoke separation exit
DSLMS911:

MSGTRLB1 DSLLSUBF LENGTH=(0,80,V),SEPR=911

The exit routine first checks that it has been invoked properly: there must be an
output buffer for the subfield to be returned, and the exit routine must have been
invoked to read the subfield.

Then field-level access services (FLDG) are used to obtain the name of the field
and its position from the MFS field reference. The exit routine determines the
last-but-one data area number by using the TOF LASTDA modifier to obtain the
index of the last data area.

If the field has more than one data area, the last-but-one data area is then read into
the output buffer, otherwise the data-size field in the output buffer prefix is set to
zero to indicate there is no subfield. Then control is returned to MFS.

Note that the sample does not support subfields in nested repeatable sequences.

#pragma runopts(EXECOPS)
/***
* *
* Function : MERVA ESA sample MFS separation exit DSLMS911 *
* Returns the last-but-one data area of the field named in *
* the MFS field-reference. *
* It is invoked by defining a subfield of the field and *
* specifying a separation exit (SEPR=911) for the subfield. *
* A subfield of the MERVA MSGTRACE field is so defined: *
* MSGTRLB1 DSLLSUBF LENGTH=(0,80,V),SEPR=911 *
* *
***/

#include <cics.h>
#include <string.h>
#include <stddef.h>
#include "dslapc.h"

struct obuf { /* mfslobuf */
struct BufferPrefix pfx;
char odata[1]; /* we dont know the length */

};
union {

char fld_string[100];
int fld_value;

} fld_buffer;

Figure 17. DSLBA30C C/370 Sample HLL MFS Exit (Part 1 of 4)

Appendix B. Sample Programs 223

int main(int argc, char *argv[]) {
struct {char *parm1; char *parm2; char *parm3;} *ca_ptr;
struct INTWSTOR *ws_ptr;
struct MFSL *mfs_ptr;
struct TOFPARM tofpl;
struct obuf *optr;
char cics;
void call_fld_service

(char,struct INTWSTOR *, void *, void *);
void call_tof_service

(char,struct INTWSTOR *,struct TOFPARM *, void *);

/* access the parameters */
if (argc > 1) { /* not CICS */

cics = 0;
ws_ptr = (struct INTWSTOR *) argv[0];
mfs_ptr = (struct MFSL *) argv[1];

} else {
cics = 1;
EXEC CICS ADDRESS COMMAREA(ca_ptr);
EXEC CICS ADDRESS EIB(dfheiptr);
ws_ptr = (struct INTWSTOR *) ca_ptr->parm1;
mfs_ptr = (struct MFSL *) ca_ptr->parm2;

}

if (mfs_ptr->MFSLOBUF == NULL) { /* an output buffer is needed */
mfs_ptr->MFSLRET = MFSROK;
return;

} else {
optr = (struct obuf *) mfs_ptr->MFSLOBUF;

}

if (!mfs_ptr->MFSLOPT2.MFSLO2RD) {
mfs_ptr->MFSLREAS = MFSREMC7;
mfs_ptr->MFSLRET = MFSRWNG;
return;

}

/* FLDSTEX must be on if we were invoked for a subfield */
memcpy(ws_ptr->INTFUNC,"FLDG",4);
call_fld_service(cics,ws_ptr,"FLDSTEX",&fld_buffer);
if (memcmp(ws_ptr->INTRC," ",2) != 0 || /* no MFS fld.ref. */

memcmp(fld_buffer.fld_string,"0",1) == 0) {
optr->pfx.datasize = 0; /* indicate field is empty */
mfs_ptr->MFSLRET = MFSROK;
return;

}
/* get the subfields main field-name from the MFS fld.ref. */
call_fld_service(cics,ws_ptr,"FLDNAME0",&fld_buffer);
if (memcmp(fld_buffer.fld_string," ",1) == 0) {

optr->pfx.datasize = 0; /* indicate field is empty */
mfs_ptr->MFSLRET = MFSROK;
return;

} else {
memcpy(tofpl.TOFFDNAM,fld_buffer.fld_string,8);

}

Figure 17. DSLBA30C C/370 Sample HLL MFS Exit (Part 2 of 4)

224 API Guide

/* move the MFS fld-reference to the API TOFPARM.. */
call_fld_service(cics,ws_ptr,"FLDNI",&fld_buffer);
tofpl.TOFFDNL = fld_buffer.fld_value;
call_fld_service(cics,ws_ptr,"FLDFG",&fld_buffer);
tofpl.TOFFDFG = fld_buffer.fld_value;
call_fld_service(cics,ws_ptr,"FLDRS",&fld_buffer);
tofpl.TOFFDOC = fld_buffer.fld_value;
call_fld_service(cics,ws_ptr,"FLDDA",&fld_buffer);
tofpl.TOFFDDA = fld_buffer.fld_value;

/* find the last data area index of the field */
memset(tofpl.TOFMODIF,' ',sizeof tofpl.TOFMODIF);
memcpy(tofpl.TOFMODIF,"LASTDA",6);
memcpy(ws_ptr->INTFUNC,"READ",4);
call_tof_service(cics,ws_ptr,&tofpl,optr);
if (memcmp(ws_ptr->INTRC," ",2) != 0 || /* something wrong */

tofpl.TOFTSVRC != 0) {
optr->pfx.datasize = 0; /* indicate field is empty */
mfs_ptr->MFSLRET = MFSROK;
return;

}

if (tofpl.TOFFDDA > 1) {
/* now read last data area but one */
tofpl.TOFFDDA --;
memset(tofpl.TOFMODIF,' ',sizeof tofpl.TOFMODIF);
memcpy(ws_ptr->INTFUNC,"READ",4);
call_tof_service(cics,ws_ptr,&tofpl,optr);
if (memcmp(ws_ptr->INTRC," ",2) != 0 || /* something wrong */

tofpl.TOFTSVRC != 0) {
optr->pfx.datasize = 0; /* indicate field is empty */

}
} else {

optr->pfx.datasize = 0; /* indicate field is empty */
}
mfs_ptr->MFSLRET = MFSROK;
return;

}

void call_tof_service(char cics, struct INTWSTOR *ws_ptr,
struct TOFPARM *tofpl, void *buf_ptr) {

struct { char *parm1;
char *parm2;
char *parm3;

} apipl;

if (cics) {
apipl.parm1 = (char *) ws_ptr;
apipl.parm2 = (char *) tofpl;
apipl.parm3 = (char *) buf_ptr;
EXEC CICS LINK PROGRAM("DSLAPCIC") COMMAREA(&apipl) LENGTH(12);

} else {
DSLAPI(ws_ptr,tofpl,buf_ptr);

}
}

Figure 17. DSLBA30C C/370 Sample HLL MFS Exit (Part 3 of 4)

Appendix B. Sample Programs 225

void call_fld_service(char cics, struct INTWSTOR *ws_ptr,
void * fldname, void * flddata) {

struct { char *parm1;
char *parm2;
char *parm3;

} apipl;

if (cics) {
apipl.parm1 = (char *) ws_ptr;
apipl.parm2 = fldname;
apipl.parm3 = flddata;
EXEC CICS LINK PROGRAM("DSLAPCIC") COMMAREA(&apipl) LENGTH(12);

} else {
DSLAPI(ws_ptr,fldname,flddata);

}
}

Figure 17. DSLBA30C C/370 Sample HLL MFS Exit (Part 4 of 4)

226 API Guide

Appendix C. Batch Utilities in REXX

A number of batch utilities written in REXX are distributed with MERVA ESA.
This appendix describes these programs.

All batch utilities are named in a consistent fashion: DSLBAnnR, where ‘nn’ is the
utility number, and ‘R’ indicates the programming language REXX:

DSLBA12R Print a specified or all queue elements of a queue

DSLBA13R Print the MERVA ESA journal

DSLBA14R Scanning a message TOF to display the TOF structure

DSLBA15R Print the MERVA ESA User file

DSLBA16R Print a cross-reference of function names and allowed user IDs
from the User file

DSLBA17R Check date fields in the user file

DSLBA50R Print queue status list

DSLBA51R Print queue key list

DSLBA52R Copy or move messages from one queue to another. Optionally
sort them by key value

DSLBA53R Scan a queue for ‘old’ messages.

Batch utilities are distributed in the MERVA ESA samples library,
MERVA.SDSLSAM0. In VSE they are distributed in the source sublibrary.

© Copyright IBM Corp. 1987, 2001 227

DSLBA12R - Print Queue Element(s)
DSLBA12R reads a specified or all queue elements of a queue, maps them to
SWIFT II format, and then prints them. Dependencies: MERVA ESA must be active.

Job Control Statements
The following figure shows the MVS JCL to run DSLBA12R.

In the JCL, the lowercase parameters have the following meanings:

loadlib The name of the load library containing the MERVA ESA
programs.

curfile The name of the currency code file. Needed only when
CURCODE=FILE is specified in your DSLPRM.

samplib The name of the library containing the program DSLBA12R.

listds The name of the listing data set. Must be preallocated, record
format VB, logical record length 136 recommended.

Runtime Parameters
The following parameters can be specified in the PARM field of the EXEC
statement:

parm1 Queue name.

parm2 Queue sequence number (QSN). If not specified, or specified as ‘*’,
all queue elements not flagged ‘in-service’ are printed.

parm3 Log level. From 1 (basic) to 4 (all). The default is 2.

Customization
In the MERVA ESA customization module DSLPRM you can set the following
parameter:

prtname Your institution name as it should appear in the printout of (most)
REXX batch utilities.

//....... JOB
//REXXB EXEC PGM=DSLAREXX,REGION=8M,
// PARM='DSLBA12R,parm1 parm2 parm3'
//*
//* .. MERVA ESA LOAD LIBRARY
//STEPLIB DD DSN=loadlib,DISP=SHR
//*
//* .. IF CURCODE=FILE SPECIFIED IN DSLPRM
//DWSCUR DD DSN=curfile,DISP=SHR
//*
//* .. ON THIS PDS: DSLBA12R
//SYSEXEC DD DSN=samplib,DISP=SHR
//*
//* .. LISTING DATASET (VB136)
//SYSTSPRT DD DSN=listds,DISP=OLD
//

Figure 18. MVS JCL to Run Batch Utility DSLBA12R - Print Queue Elements

DSLBA12R

228 API Guide

Sample Printout
The following figure shows the information printed after the execution of the
DSLBA12R utility.

MERVA ESA V4.1 DSLBA12R 11. Oct. 1999 15:32:11
(C) Copyright IBM Corp. 1997, 1999

+ --- +
| S A M P L E B A N K B o e b l i n g e n |
+ --- +

DDDDD SSSSSS LLL BBBBB AAAA 111 2222 RRRRR
DDDDDD SSSSSS LLL BBBBBB AAAAAA 1111 222222 RRRRRR
DD DD SS LLL BB BB AA AA 11111 22 22 RR RR
DD DD SS LLL BB BB AA AA 111 22 RR RR
DD DD SSSSSS LLL BBBBBB AAAAAA 111 22 RRRRRR
DD DD SSSSSS LLL BBBBBB AAAAAA 111 22 RRRRRR
DD DD SS LLL BB BB AA AA 111 22 RR RR
DD DD SS LLL BB BB AA AA 111 22 22 RR RR
DDDDDD SSSSSS LLLLLL BBBBBB AA AA 111 222222 RR RR
DDDDD SSSSSS LLLLLL BBBBB AA AA 111 222222 RR RR

Print unconditionally specified queue element, or if no QSN specified,
or specified as '*', all queue elements not flagged 'in-service'.

DSLBA12R_001I : Runtime parameter 'Queue name' : L1DE0

DSLBA12R_002I : Runtime parameter 'Queue sequence number' : *

DSLBA12R_003I : Runtime parameter 'Log level' : 2
Allowed log levels are: 1 .. 4, and '*'.

==

DSLBA12R_011I : GETN of the following element in queue L1DE0 was successful:
- INTQSN : 40
- INTKEY1 : T5
- INTKEY2 :

Message (183 characters):
--
{1:F01VNDEBET2AXXX0000000000}{2:I100VNDOBET2XVIBN}{3:{108:A new refere
nce}}{4: :20:T5 :32A:960505DEM55,55 :50:Emil Eisbaer :52A:SAMPBANK

:59:/5678 Eusebia Eldorado :71A:BEN -}
--

Figure 19. Printout of the DSLBA12R Utility (Part 1 of 2)

DSLBA12R

Appendix C. Batch Utilities in REXX 229

==

DSLBA12R_011I : GETN of the following element in queue L1DE0 was successful:
- INTQSN : 43
- INTKEY1 : T7
- INTKEY2 :
- INTDOUBL: DOUBLE

Message (175 characters):
--
{1:F01VNDEBET2AXXX0000000000}{2:I100VNDOBET2ABICN}{4: :20:T7 :32A:96
0303DEM77,00 :50:Gustav Gans :52D:SAMPBANKXXX :53A:SAMPBANK001 :59
:/7890 Gerhard Geier :71A:OUR -}
--
==

DSLBA12R_011I : GETN of the following element in queue L1DE0 was successful:
- INTQSN : 44
- INTKEY1 : T8
- INTKEY2 :
- INTDOUBL: DOUBLE

DSLBA12R_103W : MSGG for queue element 44 in queue L1DE0
failed with intrc 00.
MFS has detected checking errors.
DSL883I MFS04141 MFS=PUT/NET ID= RC=04 RS=141
DWS3516 Field SW79 contains a non-SWIFT character

Message (122 characters):
--
{1:F01VNDEBET2AXXX0000000000}{2:I199VNDOBET2AXXXN}{3:{108:A new refere
nce}}{4: :20:T8 :79:Hi. This MT199 has errors! -}
--

...

==

DSLBA12R_005I : QSN MSGG return code
---------- -----------------------------
0000000040 (blank) = ok
0000000043 (blank) = ok
0000000044 *** 00 = checking error ***
...

DSLBA12R_006I : Number of successfully GETNed queue elements: 35
Number of successfully MSGGed queue elements: 24

DSLBA12R_007I : DSLBA12R ended with return code 4 - Warning.
Total processing time was 4.37 seconds.

Figure 19. Printout of the DSLBA12R Utility (Part 2 of 2)

DSLBA12R

230 API Guide

DSLBA13R - Print the MERVA Journal
DSLBA13R counts occurrences of journal IDs and optionally prints specified or all
journal records to a sequential data set. Dependencies: MERVA ESA must be active.

Job Control Statements
The following figure shows the MVS JCL to run DSLBA13R.

In the JCL, the lowercase parameters have the following meanings:

loadlib The name of the load library containing the MERVA ESA
programs.

samplib The name of the library containing the program DSLBA13R.

listds The name of the listing data set. Must be preallocated, record
format VB, logical record length 136 recommended.

Runtime Parameters
The following parameters can be specified in the PARM field of the EXEC
statement:

parm1 Start date. If specified, must be a 6-digit number in the format
YYMMDD, an 8-digit number in the format YYYYMMDD, or ‘*’. It
is not checked that it is a valid date.

parm2 Start time. If specified, must be a 4-digit number in the format
HHMM, a 6-digit number in the format HHMMSS, a 8-digit
number in the format HHMMSSPP, or ‘*’. It is not checked that it
is a valid time.

parm3 Journal ID from 00 to FF. If no journal ID is specified or specified
as ‘*’, then all journal records are printed. If specified as ‘-’ (dash),
then the journal IDs are only counted and no journal records are
printed.

parm4 Log level. From 1 (basic) to 4 (all). The default is 2.

Customization
In the MERVA ESA customization module DSLPRM you can set the following
parameter:

prtname Your institution name as it should appear in the printout of (most)
REXX batch utilities.

//....... JOB
//REXXB EXEC PGM=DSLAREXX,REGION=8M,
// PARM='DSLBA13R,parm1 parm2 parm3 parm4'
//*
//* .. MERVA ESA LOAD LIBRARY
//STEPLIB DD DSN=loadlib,DISP=SHR
//*
//* .. ON THIS PDS: DSLBA13R
//SYSEXEC DD DSN=samplib,DISP=SHR
//*
//* .. LISTING DATASET (VB136)
//SYSTSPRT DD DSN=listds,DISP=OLD
//

Figure 20. MVS JCL to Run Batch Utility DSLBA13R - Print MERVA Journal

DSLBA13R

Appendix C. Batch Utilities in REXX 231

Sample Printout
The following figure shows the information printed after the execution of the
DSLBA13R utility.

MERVA ESA V4.1 DSLBA13R 11. Oct. 1999 17:25:56
(C) Copyright IBM Corp. 1997, 1999

+ --- +
| S A M P L E B A N K B o e b l i n g e n |
+ --- +

DDDDD SSSSSS LLL BBBBB AAAA 111 3333 RRRRR
DDDDDD SSSSSS LLL BBBBBB AAAAAA 1111 333333 RRRRRR
DD DD SS LLL BB BB AA AA 11111 33 33 RR RR
DD DD SS LLL BB BB AA AA 111 33 RR RR
DD DD SSSSSS LLL BBBBBB AAAAAA 111 3333 RRRRRR
DD DD SSSSSS LLL BBBBBB AAAAAA 111 3333 RRRRRR
DD DD SS LLL BB BB AA AA 111 33 RR RR
DD DD SS LLL BB BB AA AA 111 33 33 RR RR
DDDDDD SSSSSS LLLLLL BBBBBB AA AA 111 333333 RR RR
DDDDD SSSSSS LLLLLL BBBBB AA AA 111 3333 RR RR

Count occurrences of journal IDs and optionally print specified or
all journal records.

DSLBA13R_001I : Runtime parameter 'From date' : 19990501

DSLBA13R_002I : Runtime parameter 'From time' : *

DSLBA13R_003I : Runtime parameter 'Journal ID' : 04
'-' = count only, '*' = all

DSLBA13R_004I : Runtime parameter 'Log level' : 2
Allowed log levels are:
1 = basic .. 4 = all

DSLBA13R_006I : Current DSLPRM settings:

MERVA name (NAME) : MERVAESA
MERVA identifier (DSLID) : MHEG
CVT extension (CVTEXTO) : 124
Journal size (JRNBUF) : 15950

segmentation : SEG
2- or 4-digit year : YYYY

Note: These are the values of the first DSLPRM module
found in the STEPLIB concatenation.

Figure 21. Printout of the DSLBA13R Utility (Part 1 of 2)

DSLBA13R

232 API Guide

===
- -
JOURNAL ID and KEY OF RECORD : X'04' - 19990506160931000 SON DSLNUSR

MAS1 A105
- -
JOURNAL ID and KEY OF RECORD : X'04' - 19990509143245000 SON DSLNUSR

MASDBCS D804
- -
JOURNAL ID and KEY OF RECORD : X'04' - 19990514110937000 SON DSLNUSR

MAS2 A105
- -
JOURNAL ID and KEY OF RECORD : X'04' - 19990514125640000 SON DSLNUSR

MASHEG A105
- -
JOURNAL ID and KEY OF RECORD : X'04' - 19990514130336000 SON DSLNUSR

MASHEG4 A105
- -
JOURNAL ID and KEY OF RECORD : X'04' - 19990514135208000 SON DSLNUSR

MAS4 A105
- -
JOURNAL ID and KEY OF RECORD : X'04' - 19990515143805000 SON DSLNUSR

DFHAC200 A105
- -
JOURNAL ID and KEY OF RECORD : X'04' - 19990614155827000 SON DSLNUSR

SL000A A105
- -
JOURNAL ID and KEY OF RECORD : X'04' - 19990716145108000 SON DSLNUSR

CHINA1 A105
- -
JOURNAL ID and KEY OF RECORD : X'04' - 19990716145202000 SON DSLNUSR

HUGO A107

...

===

DSLBA13R_009I : Total number of journal records processed: 18669
- record type X'00': 136
- record type X'02': 136
- record type X'03': 122
- record type X'04': 460 ** printed **
- record type X'05': 172
- record type X'06': 936
- record type X'07': 9190
- record type X'08': 134
- record type X'09': 122
- record type X'10': 204
- record type X'13': 209
- record type X'14': 688
- record type X'16': 5822
- record type X'17': 132
- record type X'18': 7
- record type X'50': 55
- record type X'51': 52
- record type X'5F': 3
- record type X'70': 38
- record type X'72': 12
- record type X'77': 2
- record type X'7F': 37

DSLBA13R_010I : DSLBA13R ended with return code 0 - successful.
Total processing time was 187.73 seconds.

Figure 21. Printout of the DSLBA13R Utility (Part 2 of 2)

DSLBA13R

Appendix C. Batch Utilities in REXX 233

DSLBA13R

234 API Guide

DSLBA14R - Scanning a TOF
If you are uncertain about TOFs, and are not quite sure what nesting identifiers,
field groups, data areas, and so on, are, an EXEC like the following can be a help.

It simply scans a TOF, listing out each data area of each field together with the
field’s field reference, that is, its nesting identifier, field group index, data area
index, and occurrence number. Three levels of nested repeatable sequences are
allowed for. Dependencies: MERVA ESA must be active.

Job Control Statements
The following figure shows the MVS JCL to run DSLBA14R.

In the JCL, the lowercase parameters have the following meanings:

loadlib The name of the load library containing the MERVA ESA
programs.

samplib The name of the library containing the program DSLBA14R.

listds The name of the listing data set. Must be preallocated, record
format VB, logical record length 136 recommended.

Runtime Parameters
The following parameters can be specified in the PARM field of the EXEC
statement:

parm1 Queue name.

parm2 Queue sequence number (QSN). If not specified, the first queue
element found is scanned.

parm3 Log level. From 1 (basic) to 4 (all). The default is 2.

Customization
In the MERVA ESA customization module DSLPRM you can set the following
parameter:

prtname Your institution name as it should appear in the printout of (most)
REXX batch utilities.

//....... JOB
//REXXB EXEC PGM=DSLAREXX,REGION=8M,
// PARM='DSLBA14R,parm1 parm2 parm3'
//*
//* .. MERVA ESA LOAD LIBRARY
//STEPLIB DD DSN=loadlib,DISP=SHR
//*
//* .. ON THIS PDS: DSLBA14R
//SYSEXEC DD DSN=samplib,DISP=SHR
//*
//* .. LISTING DATASET (VB136)
//SYSTSPRT DD DSN=listds,DISP=OLD
//

Figure 22. MVS JCL to Run Batch Utility DSLBA14R - Scan a TOF

DSLBA14R

Appendix C. Batch Utilities in REXX 235

Sample printout
The following figure shows the information printed after the execution of the
DSLBA14R utility.

MERVA ESA V4.1 DSLBA14R 26. Feb. 1999 10:13:22
(C) Copyright IBM Corp. 1997, 1999

+ --- +
| S A M P L E B A N K B o e b l i n g e n |
+ --- +

DDDDD SSSSSS LLL BBBBB AAAA 111 44 RRRRR
DDDDDD SSSSSS LLL BBBBBB AAAAAA 1111 444 RRRRRR
DD DD SS LLL BB BB AA AA 11111 44 RR RR
DD DD SS LLL BB BB AA AA 111 44 RR RR
DD DD SSSSSS LLL BBBBBB AAAAAA 111 444444 RRRRR
DD DD SSSSSS LLL BBBBBB AAAAAA 111 444444 RRRRRR
DD DD SS LLL BB BB AA AA 111 44 RR RR
DD DD SS LLL BB BB AA AA 111 44 RR RR
DDDDDD SSSSSS LLLLLL BBBBBB AA AA 111 44 RR RR
DDDDD SSSSSS LLLLLL BBBBB AA AA 111 44 RR RR

P r i n t a T O F S C A N .

DSLBA14R_001I : DSLBA14R started by user HEG at 26. Feb. 1999 10:13:22

--

INTQUEUE : L1DE0
INTQSN : 3
INTKEY1 : T-990630-M100-17
INTKEY2 :

Nesting Level
| Field Group Index
| | Repeatable Sequence Index
| | | Data Area
| | | |
| | | | No. of Nested Repeatable Sequences
| | | | | Nested Repeatable Sequence no. 1 .. 3 (3 blank if zero)
V V V V V V V V

DSLERRM 0 1 1 1 1 1 0 79
DSLEXIT 0 1 1 1 1 1 0 8 S100
NLEXIT 0 1 1 1 1 1 0 8 DSLEXIT
MSGTRACE 0 1 1 1 1 1 0 40 MAS1 L1DE0 00009902260953259605
MSGTRACE 0 1 1 2 1 1 0 40 DSLECQUUL1DE0 00009902260953379605
DSLUMR 0 1 1 1 1 1 0 28 MERVAESA00000003990226095337
SWBH 1 1 1 1 1 1 0 25 F01VNDEBET2AXXX0000000000
SWAH 1 2 1 1 1 1 0 17 I100VNDOBET2AXXXN
SAAH 1 2 1 1 1 1 0 12 VNDOBET2XXX
SAAH 1 2 1 2 1 1 0 12 VNDOBET2AXXX
SAAH 1 2 1 3 1 1 0 36 *VENDOR O
SAAH 1 2 1 4 1 1 0 20 *IBM GSDL BOEBLINGEN
SW103 1 3 1 1 1 1 0 ·· has no data areas
SW113 1 3 1 1 1 1 0 ·· has no data areas

Figure 23. Printout of the DSLBA14R Utility (TOFSCAN) (Part 1 of 2)

DSLBA14R

236 API Guide

SW108 1 3 1 1 1 1 0 13 My SW108 ref.
SW115 1 3 1 1 1 1 0 ·· has no data areas
SW119 1 3 1 1 1 1 0 ·· has no data areas
SW20 1 5 1 1 1 1 0 16 T-990630-M100-17
SW32 1 5 1 1 1 1 0 15 990630USD123,45
SW50 1 5 1 1 1 1 0 12 Anton Ameise
SW50 1 5 1 2 1 1 0 14 Am Weberhof 7a
SW50 1 5 1 3 1 1 0 12 52070 Aachen
SW50 1 5 1 4 1 1 0 7 Germany
SW52 1 5 1 1 1 1 0 ·· has no data areas
SA52 1 5 1 1 1 1 0 ·· has no data areas
SW53 1 5 1 1 1 1 0 ·· has no data areas
SA53 1 5 1 1 1 1 0 ·· has no data areas
SW54 1 5 1 1 1 1 0 ·· has no data areas
SA54 1 5 1 1 1 1 0 ·· has no data areas
SW56 1 5 1 1 1 1 0 ·· has no data areas
SA56 1 5 1 1 1 1 0 ·· has no data areas
SW57 1 5 1 1 1 1 0 10 1234567890
SA57 1 5 1 1 1 1 0 ·· has no data areas
SW59 1 5 1 1 1 1 0 10 Berta Baer
SW59 1 5 1 2 1 1 0 14 Bundesallee 2b
SW59 1 5 1 3 1 1 0 12 10719 Berlin
SW59 1 5 1 4 1 1 0 7 Germany
SW70 1 5 1 1 1 1 0 21 No details of Payment
SW70 1 5 1 2 1 1 0 26 Just to have a second line
SW71 1 5 1 1 1 1 0 3 OUR
SW72 1 5 1 1 1 1 0 29 /REC/ This is SWIFT II format
SWTRAIL 1 255 1 1 1 1 0 ·· has no data areas

·· TOFSCAN finished

--

DSLBA14R_004I : DSLBA14R ended with return code 0 - successful.
Total processing time was 0.85 seconds.

Figure 23. Printout of the DSLBA14R Utility (TOFSCAN) (Part 2 of 2)

DSLBA14R

Appendix C. Batch Utilities in REXX 237

DSLBA15R - Print the User File
You can use the batch utility DSLBA15R to list all or selected user file records.
Dependencies:
v MERVA ESA must be active.
v EXDSP=YES must have been specified in the DSLPRM parameter module.

Job Control Statements
The following figure shows the MVS JCL to list the MERVA ESA user file.

In the JCL, the lowercase parameters have the following meanings:

loadlib The name of the load library containing the MERVA ESA
programs.

samplib The name of the library containing the program DSLBA15R.

listds The name of the listing data set. Must be preallocated, record
format VB, logical record length 136 recommended.

Runtime Parameters
The following parameters can be specified in the PARM field of the EXEC
statement:

parm1 User ID or user ID pattern. parm1 may be one of:
v A user ID, for example MYUSER. The user file record of this

user ID will be listed.
v A string with a trailing ‘*’, for example MYUS*. The user file

records of all user IDs starting with the specified pattern will be
listed.

v Not specified or ‘*’. All user file records will be listed.

parm2 Output format

F1 List all values of the user file. This is the default.

F2 The following values are listed in line format:
1. User ID
2. User name
3. Origin ID
4. User type (B, K, L, ..)
5. FLM administrator

//....... JOB
//REXXB EXEC PGM=DSLAREXX,REGION=8M,
// PARM='DSLBA15R,parm1 parm2 parm3'
//*
//* .. MERVA ESA LOAD LIBRARY
//STEPLIB DD DSN=loadlib,DISP=SHR
//*
//* .. ON THIS PDS: DSLBA15R
//SYSEXEC DD DSN=samplib,DISP=SHR
//*
//* .. LISTING DATASET (VB136)
//SYSTSPRT DD DSN=listds,DISP=OLD
//

Figure 24. MVS JCL to Run Batch Utility DSLBA15R - List User File

DSLBA15R

238 API Guide

6. Group ID (if DSLPRM USGRP=YES)

parm3 Log level. From 1 (basic) to 4 (all). The default is 2.

Customization
In the MERVA ESA customization module DSLPRM you can set the following
parameter:

prtname Your institution name as it should appear in the printout of (most)
REXX batch utilities.

Sample Printout of User File
The following figure shows the information printed after the execution of the
DSLBA15R utility.f

MERVA ESA V4.1 DSLBA15R 11. Oct. 1999 13:41:54
(C) Copyright IBM Corp. 1997, 1999

+ --- +
| S A M P L E B A N K B o e b l i n g e n |
+ --- +

DDDDD SSSSSS LLL BBBBB AAAA 111 555555 RRRRR
DDDDDD SSSSSS LLL BBBBBB AAAAAA 1111 555555 RRRRRR
DD DD SS LLL BB BB AA AA 11111 55 RR RR
DD DD SS LLL BB BB AA AA 111 55 RR RR
DD DD SSSSSS LLL BBBBBB AAAAAA 111 55555 RRRRRR
DD DD SSSSSS LLL BBBBBB AAAAAA 111 555555 RRRRRR
DD DD SS LLL BB BB AA AA 111 55 RR RR
DD DD SS LLL BB BB AA AA 111 55 RR RR
DDDDDD SSSSSS LLLLLL BBBBBB AA AA 111 555555 RR RR
DDDDD SSSSSS LLLLLL BBBBB AA AA 111 55555 RR RR

Print M E R V A E S A U s e r F i l e .

DSLBA15R_001I : Runtime parameter 'User ID' : MAS1

DSLBA15R_002I : Runtime parameter 'Output format' : F1
Allowed formats are: F1, F2, and '*'.

DSLBA15R_003I : Runtime parameter 'Log level' ... : 1
Allowed log levels are: 1 .. 4, and '*'.

DSLBA15R_011I : User file record of User Id MAS1.

--

Figure 25. Printout of the DSLBA15R Utility (Part 1 of 2)

DSLBA15R

Appendix C. Batch Utilities in REXX 239

User ID : MAS1
Name : MASTER USER 1
Origin ID : VNDEBET2AXXX
Group ID :
User type : M
FLM administrator ... : YES
Language ID : E
Noprompt line format : W
Default network : S
User functions : CMD MSC USR FLM L1RFINN L1DE0

L1AI0 L1VE0 L1ACK L1PR0 L2DE0 L3*
TX2USESQ USEERROR

Allowed message types : ********
Unauthorized commands : QSWITCH QW
User data 1 : USER DATA LINE 1
User data 2 : USER DATA LINE 2

PF-key-set name :
Rejected Sign-Ons ... : 0
Password : --------
Date of last Pw chg : 1999/08/09
Time of last Pw chg : 12:44:07
Date of last update : 1999/10/04
Time of last update : 12:32:55
Update user ID : MAS1
Date of last sign-on : 1999/10/11

--

DSLBA15R_018I : DSLBA15R ended with return code 0 - successful.
Total processing time was 0.34 seconds.

Figure 25. Printout of the DSLBA15R Utility (Part 2 of 2)

DSLBA15R

240 API Guide

DSLBA16R - Print Cross Reference Function Names - Allowed User
IDs

You can use the batch utility DSLBA16R to print a cross reference of function
names and allowed user IDs from the user file. Dependencies:
v MERVA ESA must be active.
v EXDSP=YES must have been specified in the DSLPRM parameter module.

Job Control Statements
The following figure shows the MVS JCL to print the cross-reference.

In the JCL, the lowercase parameters have the following meanings:

loadlib The name of the load library containing the MERVA ESA
programs.

samplib The name of the library containing the program DSLBA16R.

listds The name of the listing data set. Must be preallocated, record
format VB, logical record length 136 recommended.

Runtime Parameters
The following parameters can be specified in the PARM field of the EXEC
statement:

parm1 Function name. If no function name is specified, or specified with
an ‘*’ (asterisk), then all function names are listed. Any other
wildcard is used literally. For example if you specify ‘L1*’, a
cross-reference ‘L1*’ and its allowed user IDs is printed, not a a
cross-reference for L1AI0, L1DE0, L1VE0, ··.

parm2 Output format

F1 Print each user ID on a separate line

F2 Like F1, plus a list with all user IDs

F3 Print six user IDs on each line

F4 Like F3, plus a list with all user IDs.

parm3 Log level. From 1 (basic) to 4 (all). The default is 2.

//....... JOB
//REXXB EXEC PGM=DSLAREXX,REGION=8M,
// PARM='DSLBA16R,parm1 parm2 parm3'
//*
//* .. MERVA ESA LOAD LIBRARY
//STEPLIB DD DSN=loadlib,DISP=SHR
//*
//* .. ON THIS PDS: DSLBA16R
//SYSEXEC DD DSN=samplib,DISP=SHR
//*
//* .. LISTING DATASET (VB136)
//SYSTSPRT DD DSN=listds,DISP=OLD
//

Figure 26. MVS JCL to Run Batch Utility DSLBA16R

DSLBA16R

Appendix C. Batch Utilities in REXX 241

Customization
In the MERVA ESA customization module DSLPRM you can set the following
parameter:

prtname Your institution name as it should appear in the printout of (most)
REXX batch utilities.

Sample Printout
The following figure shows the information printed after the execution of the
DSLBA16R utility.

MERVA ESA V4.1 DSLBA16R 23. Oct. 1999 12:43:44
(C) Copyright IBM Corp. 1997, 1999

+ --- +
| S A M P L E B A N K B o e b l i n g e n |
+ --- +

DDDDD SSSSSS LLL BBBBB AAAA 111 6666 RRRRR
DDDDDD SSSSSS LLL BBBBBB AAAAAA 1111 666666 RRRRRR
DD DD SS LLL BB BB AA AA 11111 66 RR RR
DD DD SS LLL BB BB AA AA 111 66 RR RR
DD DD SSSSSS LLL BBBBBB AAAAAA 111 66666 RRRRRR
DD DD SSSSSS LLL BBBBBB AAAAAA 111 666666 RRRRRR
DD DD SS LLL BB BB AA AA 111 66 66 RR RR
DD DD SS LLL BB BB AA AA 111 66 66 RR RR
DDDDDD SSSSSS LLLLLL BBBBBB AA AA 111 666666 RR RR
DDDDD SSSSSS LLLLLL BBBBB AA AA 111 6666 RR RR

Print M E R V A E S A F u n c t i o n N a m e s and which
User IDs are allowed to each of them.
The list is sorted by Function name, within the Function by User ID.
User IDs in pending state and their assigned functions are ignored.

DSLBA16R_001I : Runtime parameter 'Function name' : *

DSLBA16R_002I : Runtime parameter 'Output format' : F1
Allowed formats are: F1 .. F4, and '*'.

DSLBA16R_003I : Runtime parameter 'Log level' ... : 1
Allowed log levels are: 1 .. 4, and '*'.

Figure 27. Printout of the DSLBA16R Utility (Part 1 of 2)

DSLBA16R

242 API Guide

DSLBA16R_010I : All assigned Function Names with their allowed User IDs.

no. Function no. User ID Origin ID
----- -------- ----- -------- ------------

1 AUT 1 CBROWN VNDEBET2AXXX
2 EJONES VNDEBET2AXXX
3 GSMITH VNDOBET2AXXX
4 MAS1 VNDEBET2AXXX

2 CMD 1 CBROWN VNDEBET2AXXX
2 EJONES VNDEBET2AXXX
3 GSMITH VNDOBET2AXXX
4 IFTADMIN
5 MASBOP VNDEBET2AXXX
6 MASHEGO VNDOBET2AXXX
7 MASMLINK VNDEBET2AXXX
8 MASSWIFT VNDEBET2AXXX
9 MAS1 VNDEBET2AXXX

10 MAS2 VNDEBET2AXXX

3 EKAIBZCQ 1 IFTADMIN
2 MAS1 VNDEBET2AXXX

...

DSLBA16R_013I : Total number of records in user file : 23
Total number of users in pending state : 2
Total number of Function names used : 73

DSLBA16R_014I : DSLBA16R ended with return code 0 - successful.
Total processing time was 1.88 seconds.

Figure 27. Printout of the DSLBA16R Utility (Part 2 of 2)

DSLBA16R

Appendix C. Batch Utilities in REXX 243

DSLBA17R - Check Date Fields in the User File
You can use the batch utility DSLBA17R to print the
v last sign-on date
v password change date
v last User file update date

with elapsed days since today of all or specified User file records. You can flag
those records where the number of elapsed days is greater than a specified value.
This can be used, for example, to list user IDs that did not sign-on to MERVA since
nnn days or did not change their password since nnn days.

DSLBA17R runs also against User file records processed with previous MERVA
releases. If it finds 2-digit year dates from those releases, it will interpret the date
according to the SWIFT rules.

Dependencies:
v MERVA ESA must be active.
v EXDSP=YES must have been specified in the DSLPRM parameter module.
v The last sign-on date in the User file is only maintained by MERVA when a

SONNUM value greater than 0 (zero) has been specified in the DSLPRM
parameter module.

Job Control Statements
The following figure shows the MVS JCL to list the dates of the MERVA ESA User
file.

In the JCL, the lowercase parameters have the following meanings:

loadlib The name of the load library containing the MERVA ESA
programs.

samplib The name of the library containing the program DSLBA17R.

listds The name of the listing data set. Must be preallocated, record
format VB, logical record length 136 recommended.

Runtime Parameters
The following parameters can be specified in the PARM field of the EXEC
statement:

//....... JOB
//REXXB EXEC PGM=DSLAREXX,REGION=8M,
// PARM='DSLBA17R,parm1 parm2 parm3 parm4 parm5 parm6
// ... parm9'
//*
//* .. MERVA ESA LOAD LIBRARY
//STEPLIB DD DSN=loadlib,DISP=SHR
//*
//* .. ON THIS PDS: DSLBA17R
//SYSEXEC DD DSN=samplib,DISP=SHR
//*
//* .. LISTING DATASET (VB136)
//SYSTSPRT DD DSN=listds,DISP=OLD
//

Figure 28. DSLBA17R (Check User File Dates) Sample JCL (MVS)

DSLBA17R

244 API Guide

parm1 User ID or user ID pattern. parm1 may be one of:
v A user ID, for example MYUSER. The dates of the User file

record of this user ID will be listed.
v A string with a trailing ‘*’, for example MYUS*. The dates of the

User file records of all user IDs starting with the specified
pattern will be listed.

v ‘*’. The dates of all User file records will be listed.

parm2 SO (‘last sign-on date’)

parm3 Number of days for SO (‘last sign-on date’). The meaning of
‘Number of days’ is described in detail below.

parm4 PW (‘last password change date’)

parm5 Number of days for PW (‘last password change date’). The
meaning of ‘Number of days’ is described in detail below.

parm6 UF (‘last User file change date’)

parm7 Number of days for UF (‘last User file change date’). The meaning
of ‘Number of days’ is described in detail below.

parm8 List level

ALL List all (matching) user IDs and flag those that are within
one of the specified dates. ALL is forced when only one
user ID is to be processed.

ONLY List only those (matching) user IDs that are within one of
the specified dates.

parm9 Log level. From 1 (basic) to 4 (all). The default is 2.

The meaning of the Number of days is as follows:
v The Number of days is a positive number

Flag all users who signed on / changed their password / with changed User file
within the last nnn days

v The Number of days is a negative number
Flag all users who did not sign on / did not change their password / with
unchanged User file within the last nnn days

v The Number of days is 0 (zero)
The last sign-on date / password change date / User file change date is not
used as criterion to flag a record.

To list, for example, all MAS user IDs that have not signed on for 60 days or have
not changed their password for 150 days, you would specify:
PARM='DSLBA17R,MAS* SO -60 PW -150 UF 0 ALL 2'

Customization
In the MERVA ESA customization module DSLPRM you can set the following
parameter:

prtname Your institution name as it should appear in the printout of (most)
REXX batch utilities.

DSLBA17R

Appendix C. Batch Utilities in REXX 245

Sample Printout of User File Dates Report
The following figure shows the information printed after the execution of the
DSLBA17R utility.

MERVA ESA V4.1 DSLBA17R 16. Jul. 1999 11:28:47
(C) Copyright IBM Corp. 1999

+ --- +
| S A M P L E B A N K B o e b l i n g e n |
+ --- +

DDDDD SSSSSS LLL BBBBB AAAA 111 777777 RRRRR
DDDDDD SSSSSS LLL BBBBBB AAAAAA 1111 777777 RRRRRR
DD DD SS LLL BB BB AA AA 11111 77 RR RR
DD DD SS LLL BB BB AA AA 111 77 RR RR
DD DD SSSSSS LLL BBBBBB AAAAAA 111 77 RRRRR
DD DD SSSSSS LLL BBBBBB AAAAAA 111 77 RRRRRR
DD DD SS LLL BB BB AA AA 111 77 RR RR
DD DD SS LLL BB BB AA AA 111 77 RR RR
DDDDDD SSSSSS LLLLLL BBBBBB AA AA 111 77 RR RR
DDDDD SSSSSS LLLLLL BBBBB AA AA 111 77 RR RR

Print M E R V A E S A U s e r F i l e dates:
Last Sign-on date, Password change, User file change.

Note: The last sign-on date is stored only if your installation
specified the DSLPRM parameter SONNUM greater than 0.

DSLBA17R_001I : Specified runtime parameter line:
MAS* SO -60 PW -150 UF 0 ALL 3

DSLBA17R_002I : Runtime parameters:

1. User ID (pattern) : MAS*
2. No. of days SO - Sign-On : -60
3. No. of days PW - Password : -150
4. No. of days UF - user file : 0
5. List level : ALL
6. Log level : 2

DSLBA17R_003I : DSLBA17R will flag/list all user file records
matching the specified user ID pattern MAS*
- where the user has not signed-on for 60 days
- where the user has not changed the password for 150 days

DSLBA17R_005I : Current DSLPRM settings:

CVT extension, MVS only (CVTEXTO) : 124
MERVA identifier (DSLID) : MHEG
MERVA name (NAME) : MERVAESA

Note: These are the values of the first DSLPRM module
found in the STEPLIB concatenation.

DSLBA17R_008I : User file record(s) and the last date
- the user signed-on
- the user changed the password
- the user file record was changed.

Figure 29. DSLBA17R (Check User File Dates) Sample Printout (Part 1 of 2)

DSLBA17R

246 API Guide

All User file records where the number of days is greater than specified are flagged
with ‘>’ under heading F (flag) and an ‘*’ (asterisk) is printed right next to the
number of days.

--··

Last Sign-On Password Change User ··
F No. User ID User name YYYY/MM/DD Days YYYY/MM/DD Days YYYY/
- ----- -------- ------------------ ---------- ---- ---------- ---- -----
> 1 MASGCH MASTER USER GCH * 1997/09/15 304* 1997/
> 2 MASHUS MASTER USER HUS 1998/04/14 93* 1998/04/14 93 1998/

3 MASO MASTER USER O 1998/07/07 9 1998/04/02 105 1998/
4 MAS1 MASTER USER 1 1998/07/15 1 1998/02/27 139 1998/
5 MAS2 MASTER USER 2 1998/07/07 9 1998/02/27 139 1998/

> 6 MAS3 MASTER USER 3 1998/04/15 92* 1998/02/27 139 1998/
> 7 MAS4 MASTER USER 4 1998/05/06 71* 1998/02/27 139 1998/
> 8 MAS5 MASTER USER 5 1998/07/16 0 1998/01/21 176* 1998/
> 9 MAS6 MASTER USER 6 1998/04/14 93* 1998/01/21 176* 1998/

--··

DSLBA17R_010I : Number of user file records processed : 9
Number of user file records flagged : 6
Users not signed-on for 60 days ... : 5
No password change for 150 days ... : 3

DSLBA17R_009I : DSLBA17R ended with return code 0 - successful.
Total processing time was 1.18 seconds.

Figure 29. DSLBA17R (Check User File Dates) Sample Printout (Part 2 of 2)

DSLBA17R

Appendix C. Batch Utilities in REXX 247

DSLBA50R - Print Queue Status List
You can use the batch utility DSLBA50R to list the MERVA ESA queues and their
status in batch. The queues can be listed in alphabetical order or in descending
order of the number of messages in the queue. Dependencies: MERVA ESA must
be active.

The program shows how an API program can use the DQ command and the
DQSORTED command to retrieve the names of all or specified MERVA ESA
queues together with their status.

Job Control Statements
The following figure shows the MVS JCL to print a queue status list.

In the JCL, the lowercase parameters have the following meanings:

loadlib The name of the load library containing the MERVA ESA
programs.

samplib The name of the library containing the program DSLBA50R.

listds The name of the listing data set. Must be preallocated, record
format VB, logical record length 84 recommended.

Runtime Parameters
The runtime parameters are passed to DSLBA50R via SYSTSIN under MVS and via
SYSIPT under VSE. They have the form KEYWORD = VALUE. Each pair must be
coded on a separate line. The input is folded to uppercase and leading and trailing
blanks are stripped off from the specified keyword value. Lines starting with a ‘*’
are treatened as comments, a ‘;’ starts a line comment.

Keyword Descr. Possible values

QUEUE Queue pattern Queue pattern. If specified as ‘*’, all queue names are
listed. DSLBA50R accepts the same queue pattern as the
DQ command (Display the Queue Status).

This parameter is required.

//....... JOB
//REXXB EXEC PGM=DSLAREXX,REGION=8M,PARM=DSLBA50R
//*
//SYSTSIN DD *

* Comments start with '*' and ';'
QUEUE = cccccccc ; Queue pattern
DISPLAY = ccccccc ; Display mode
LOGLEVEL = n ; Log level

/*
//*
//* .. MERVA ESA LOAD LIBRARY
//STEPLIB DD DSN=loadlib,DISP=SHR
//*
//* .. ON THIS PDS: DSLBA50R
//SYSEXEC DD DSN=samplib,DISP=SHR
//*
//* .. LISTING DATASET (VB84)
//SYSTSPRT DD DSN=listds,DISP=OLD
//

Figure 30. DSLBA50R (Print Queue Status) Sample JCL (MVS)

DSLBA50R

248 API Guide

Keyword Descr. Possible values

DISPLAY Display mode
ALL All (matching) queues are listed

FILled Only (matching) queues that contain
messages are listed.

FILLED* Only (matching) queues that contain
messages are listed. The list includes
also hidden queues.

SORTed Only (matching) queues that contain
messages are listed. The queues are
listed in descending order of the
number of messages in the queue.

This parameter is optional, the default value used is
ALL.

LOGLEVEL Log level Log level from 1 (basic) to 4 (all).

This parameter is optional, the default is 2. You should
use 4 in case of problems only.

Customization
In the MERVA ESA customization module DSLPRM you can set the following
parameter:

prtname Your institution name as it should appear in the printout of (most)
REXX batch utilities.

Sample Printout of Print Queue Status List
The following figure shows the information printed after the execution of the
DSLBA50R utility. The headings used are the same as with the DQ command, with
the exception that leading zeros are suppressed and the keys defined are shown as
1, 2, or 1 and 2.

DSLBA50R

Appendix C. Batch Utilities in REXX 249

MERVA ESA V4.1 DSLBA50R 13. Aug. 1999 13:32:10
(C) Copyright IBM Corp. 1999

+ --- +
| S A M P L E B A N K B o e b l i n g e n |
+ --- +

DDDDD SSSSSS LLL BBBBB AAAA 555555 0000 RRRRR
DDDDDD SSSSSS LLL BBBBBB AAAAAA 555555 000000 RRRRRR
DD DD SS LLL BB BB AA AA 55 00 00 RR RR
DD DD SS LLL BB BB AA AA 55 00 00 RR RR
DD DD SSSSSS LLL BBBBBB AAAAAA 55555 00 00 RRRRR
DD DD SSSSSS LLL BBBBBB AAAAAA 555555 00 00 RRRRRR
DD DD SS LLL BB BB AA AA 55 00 00 RR RR
DD DD SS LLL BB BB AA AA 55 00 00 RR RR
DDDDDD SSSSSS LLLLLL BBBBBB AA AA 555555 000000 RR RR
DDDDD SSSSSS LLLLLL BBBBB AA AA 55555 0000 RR RR

Print a Q u e u e S t a t u s L i s t of all or specified queues.

DSLBA50R_002I : Runtime parameters:
1. QUEUE - Queue pattern : L*
2. DISPLAY - Display mode : ALL
3. LOGLEVEL - Log level ... : 1

DSLBA50R_005I : Performed command is: DQ L*

DSLBA50R_007I : Total number of queue names processed: 79

DSLBA50R_008I : Number Function S KEY USR WAIT THRSH T
------ -------- - --- --- ------ ----- -

1 L1ACK 1,2 0 0 100
2 L1AI0 1 0 2 50
3 L1AO0 1,2 0 0 100
4 L1CES 0 0 100
5 L1CESI N 0 0 100
6 L1CSE N 1,2 0 0 100
7 L1CSEO 0 0 100
8 L1DE0 1 0 10 50
9 L1DO0 1 0 352 100 T
10 L1ERROR 0 0 100
11 L1FREE 0 0 100
12 L1PR0 N 0 0 100
13 L1PR1 N 0 0 100
14 L1RFINN 0 0 30
15 L1RFINU 0 0 30...

79 L3VE0 1,2 0 0 20

DSLBA50R_011I : DSLBA50R ended with return code 0 - successful.
Total processing time was 0.54 seconds.

Figure 31. DSLBA50R (Print Queue Status) Sample Printout

DSLBA50R

250 API Guide

DSLBA51R - Print Queue Key List
You can use the batch utility DSLBA51R to print a queue key list of all or specified
queues. Optionally only queue elements are listed matching a specified KEY1
and/or KEY2 value. This effectively searches for a key value over the queue data
set. Dependencies: MERVA ESA must be active.

Note: DSLBA51R issues a DQ queue_pattern FILLED command and then loops
through the returned queue names.

Job Control Statements
The following figure shows the MVS JCL to print a queue key list in batch.

Runtime Parameters
The runtime parameters are passed to DSLBA51R via SYSTSIN under MVS and via
SYSIPT under VSE. They have the form KEYWORD = VALUE. Each pair must be
coded on a separate line. The input is folded to uppercase with the exception of
the entered KEY1 and KEY2 value and leading and trailing blanks are stripped off
from the specified keyword value. Lines starting with a ‘*’ are treatened as
comments, a ‘;’ starts a line comment.

Keyword Descr. Possible values

QUEUE Queue name Queue name or queue name pattern. If specified as ‘*’,
all queues are processed. DSLBA51R accepts the same
queue pattern as the DQ command (Display the Queue
Status).

This parameter is required.

KEY1 Key 1 value Key 1 value to be matched. This parameter is optional.

KEY2 Key 2 value Key 2 value to be matched. This parameter is optional.

LOGLEVEL Log level Log level from 1 (basic) to 4 (all).

This parameter is optional, the default is 2. You should
use 4 in case of problems only.

//....... JOB
//REXXB EXEC PGM=DSLAREXX,REGION=8M,PARM=DSLBA51R
//*
//SYSTSIN DD *

* Comments start with '*' and ';'
QUEUE = cccccccc ; Queue name (pattern)
KEY1 = ccccccccc.. ; Key 1 value
KEY2 = ccccccccc.. ; Key 2 value
LOGLEVEL = n ; Log level

/*
//*
//* .. MERVA ESA LOAD LIBRARY
//STEPLIB DD DSN=loadlib,DISP=SHR
//*
//* .. ON THIS PDS: DSLBA51R
//SYSEXEC DD DSN=samplib,DISP=SHR
//*
//* .. LISTING DATASET (VB136)
//SYSTSPRT DD DSN=listds,DISP=OLD
//

Figure 32. DSLBA51R (Print Queue Key List) Sample JCL (MVS)

DSLBA51R

Appendix C. Batch Utilities in REXX 251

Notes:

1. DSLBA51R does not translate the entered key values to uppercase, the values
are taken exactly as entered.

2. The keys can be generic, that is, they can contain wildcards:

‘%’ matches any single character

‘*’ matches any number of characters, including no characters.
3. Specify a ‘_’ (underscore) for any leading, trailing, or imbedded blank in a key

value. To list, for example, all L1* queues that have a key 1 value of ‘1998 ABC
001’, you would specify:
QUEUE = L1*
KEY1 = 1998_ABC_001

4. Special characters like ampersands can be entered as they are, that is, there is
no need to enclose them in quotes or paranthesis or to double them. To list, for
example, all L1* queues that have a key-1 value that contains ‘O’Smith’, you
would specify:
QUEUE = L1*
KEY1 = *O'Smith*

Data Set Names
In the JCL, the lowercase data set names have the following meanings:

loadlib The name of the load library containing the MERVA ESA
programs.

samplib The name of the library containing the program DSLBA51R.

listds The name of the listing data set. Must be preallocated, record
format VB, logical record length 136 recommended.

Customization
In the MERVA ESA customization module DSLPRM you can set the following
parameter:

prtname Your institution name as it should appear in the printout of (most)
REXX batch utilities.

Sample Printout of Print Queue Key List
The following figure shows the information printed after the execution of the
DSLBA51R utility.

DSLBA51R

252 API Guide

MERVA ESA V4.1 DSLBA51R 22. Jun. 1998 10:34:05
(C) Copyright IBM Corp. 1999

+ --- +
| S A M P L E B A N K B o e b l i n g e n |
+ --- +

DDDDD SSSSSS LLL BBBBB AAAA 555555 111 RRRRR
DDDDDD SSSSSS LLL BBBBBB AAAAAA 555555 1111 RRRRRR
DD DD SS LLL BB BB AA AA 55 11111 RR RR
DD DD SS LLL BB BB AA AA 55 111 RR RR
DD DD SSSSSS LLL BBBBBB AAAAAA 55555 111 RRRRR
DD DD SSSSSS LLL BBBBBB AAAAAA 555555 111 RRRRRR
DD DD SS LLL BB BB AA AA 55 111 RR RR
DD DD SS LLL BB BB AA AA 55 111 RR RR
DDDDDD SSSSSS LLLLLL BBBBBB AA AA 555555 111 RR RR
DDDDD SSSSSS LLLLLL BBBBB AA AA 55555 111 RR RR

Print a Q u e u e K e y L i s t of all or specified queues.
Optionally list only those queue elements matching a specified KEY1
and/or KEY2 value.

DSLBA51R_002I : Runtime parameters:
1. QUEUE - Queue name (pattern) : L1*
2. KEY1 - Key 1 value : 19980812*
3. KEY2 - Key 2 value :
4. LOGLEVEL - Log level : 2

DSLBA51R_004I : Current DSLPRM settings:

MERVA identifier (DSLID) : MHEG
MERVA name (NAME) : MERVAESA
CVT extension ... (CVTEXTO) : 124

Note: These are the values of the first DSLPRM module
found in the STEPLIB concatenation.

DSLBA51R_009I : Queue Key List for queue L1ACK

Queue QSN B Key 1 Key 2
-------- ---------- - ------------------------ -----------...
L1ACK 0000000144 19980812-0001 120036
L1ACK 0000000145 19980812-0002 120037
L1ACK 0000000146 X 19980812-0003 120038
L1ACK 0000000147 19980812-0004 120039

DSLBA51R_009I : Queue Key List for queue L1DE0

Queue QSN B Key 1 Key 2
-------- ---------- - ------------------------ -----------...
L1DE0 0000000179 19980812-0001
L1DE0 0000000180 19980812-0002
L1DE0 0000000182 19980812-0003
L1DE0 0000000183 19980812-0004
L1DE0 0000000184 19980812-0005

Figure 33. DSLBA51R (Print Queue Key List) Sample Printout (Part 1 of 2)

DSLBA51R

Appendix C. Batch Utilities in REXX 253

Listing Fields
The ‘Queue Key List’ of the listing contains the following information:

Queue Queue name

QSN Queue sequence number

B Shows that the message is currently in use by another user
(‘BUSY’)

Key 1 Key 1 of the message

Key 2 Key 2 of the message.

L1DE0 0000000185 19980812-0006
L1DE0 0000000186 19980812-0007
L1DE0 0000000188 19980812-0008...

DSLBA51R_011I : Number of queues processed : 6

(Matching)
Number Queue Elements
------ -------- --------

1 L1ACK 4
2 L1DE0 8
3 L1DO0 0
4 L1PR0 0
5 L1PR1 0
6 L1VE0 10

DSLBA51R_010I : DSLBA51R ended with return code 0 - successful.
Total processing time was 0.33 seconds.

Figure 33. DSLBA51R (Print Queue Key List) Sample Printout (Part 2 of 2)

DSLBA51R

254 API Guide

DSLBA52R - Copy or Move Messages (and Sort by Key)
You can use the batch utility DSLBA52R to copy or move messages from one
queue to another. Optionally the messages can be written to the output queue in
order of their key 1 and/or key 2 value of the input queue, that is, the messages
can be sorted. As the program bypasses the normal message flow as defined by the
function table and the routing tables, the influence on security considerations has
to be evaluated carefully.

Dependencies: MERVA ESA must be active.

Job Control Statements
The following figure shows the MVS JCL to copy or move messages from one
queue to another.

Runtime Parameters
The runtime parameters are passed to DSLBA52R via SYSTSIN under MVS and via
SYSIPT under VSE. They have the form KEYWORD = VALUE. Each pair must be
coded on a separate line. The input is folded to uppercase and leading and trailing
blanks are stripped off from the specified keyword value. Lines starting with a ‘*’
are treatened as comments, a ‘;’ starts a line comment.

//....... JOB
//REXXB EXEC PGM=DSLAREXX,REGION=0K,PARM=DSLBA52R
//*
//* .. RUNTIME PARAMETERS
//SYSTSIN DD *

* Comments start with '*' and ';'
* HELP
* -- Required parameters --
FUNCTION = cccccc ; Function (COPY, LIST, or MOVE)
QUEUE1 = cccccccc ; Input queue name
QUEUE2 = cccccccc ; Output queue name
* -- Optional parameters --
BUSY = ccccccc ; BUSY disposition (PROCESS or SKIP)
FROMQSN = nnnnnnnnnn ; From QSN
LOGLEVEL = n ; Log level 1 .. 4
SORT = cccc ; Sort order (ASIS, K1, K12, K2, or K21)
TOQSN = nnnnnnnnnn ; To QSN

/*
//*
//* .. MERVA ESA LOAD LIBRARY
//STEPLIB DD DSN=loadlib,DISP=SHR
//*
//* .. ON THIS PDS: DSLBA52R
//SYSEXEC DD DSN=samplib,DISP=SHR
//*
//* .. LISTING DATASET (VB136)
//SYSTSPRT DD DSN=listds,DISP=OLD
//

Figure 34. DSLBA52R (Copy or Move Messages) Sample JCL (MVS)

DSLBA52R

Appendix C. Batch Utilities in REXX 255

Required parameters:

Keyword Descr. Possible values

FUNCTION Function to be
performed COPY Copy the queue elements from the input queue

QUEUE1 to the output queue QUEUE2

LIST List the queue elements of queue QUEUE1

MOVE Move the queue elements from the input queue
QUEUE1 to the output queue QUEUE2

This parameter is required.

QUEUE1 Input queue name The name of the input queue. The messages of this
queue will be processed. The entered input queue name
can be further checked in user exit USEREXIT_Q1 of
DSLBA52R.

This parameter is required.

QUEUE2 Output queue name The name of the output queue. The entered output
queue name can be further checked in user exit
USEREXIT_Q2 of DSLBA52R.

This parameter is required, unless function LIST is used.

Optional parameters:

Keyword Descr. Possible values

BUSY BUSY dispo sition Specifies what happens when a message is BUSY. If
specified, the keyword value must be one of:

PROCess The message is processed (copied or
moved).

SKIP The message is not processed.

This parameter is optional. If omitted, the default value
used is SKIP.

FROMQSN From QSN Only messages with a QSN greater than or equal to this
QSN will be processed.

This parameter is optional. If omitted, the default value
used is 0. See also TOQSN.

LOGLEVEL Log level
1 Only overview data is shown in the listing.

2 Detailed data for each message is shown. When
parameter SORT = ASIS is specified, (only) one
line is printed per message.

3 Detailed data for each message is shown.

4 Should be used in case of problems only.

This parameter is optional. If omitted, the default value
used is 2.

DSLBA52R

256 API Guide

Keyword Descr. Possible values

SORT SORT order Specifies the order in which the messages are written to
the target queue. If specified, the keyword value must be
one of:

ASIS Write the messages in their existing (QSN)
sequence

K1 Write the messages sorted by their (input
queue) key–1 value

K12 Write the messages sorted by their (input
queue) key–1 and key–2 value

K2 Write the messages sorted by their (input
queue) key-2 value

K21 Write the messages sorted by their (input
queue) key–2 and key–1 value

This parameter is optional. If omitted, the default value
used is ASIS.

TOQSN To QSN Only messages with a QSN less than or equal to this
QSN will be processed.

This parameter is optional. If omitted, all messages are
processed. See also FROMQSN.

HELP as the only parameter prints a description of the runtime parameters.

Data Set Names
In the JCL, the lowercase data set names have the following meanings:

loadlib The name of the load library containing the MERVA ESA
programs.

samplib The name of the library containing the program DSLBA52R.

listds The name of the listing data set. Must be preallocated, record
format VB, logical record length 136 recommended.

Customization
In the MERVA ESA customization module DSLPRM you can set the following
parameter:

prtname Your institution name as it should appear in the printout of (most)
REXX batch utilities.

You can use the following routines in DSLBA52R to reject entered runtime
parameters:
1. USEREXIT_Q1 can be used to reject the entered value for runtime parameter

QUEUE1, input queue.
2. USEREXIT_Q2 can be used to reject the entered value for runtime parameter

QUEUE2, output queue.

Sample Queue Key List after Run of DSLBA52R
The following figure shows the queue key list of input queue L1DE0 and output
queue L1SRT after DSLBA52R copied the messages in key–2 / key–1 order.

DSLBA52R

Appendix C. Batch Utilities in REXX 257

Note: The blanks in key 2 after the date and the currency have been inserted for
easier reading. They are not part of the data.

Queue L1DE0 (Input) Queue L1SRT (Output, sorted by K21)

No. Key 1 Key 2 No. Key 1 Key 2
--- -------- ------------------ --- -------- ------------------

1 TRN-0001 991010 AUD 1000,00 1 TRN-0001 991010 AUD 1000,00
2 TRN-0002 991010 CHF 1000,00 2 TRN-0006 991010 AUD 2000,00
3 TRN-0003 991010 DEM 1000,00 3 TRN-0011 991010 AUD 3000,00
4 TRN-0004 991010 GBP 1000,00 4 TRN-0016 991010 AUD 4000,00
5 TRN-0005 991010 USD 1000,00 5 TRN-0021 991010 AUD 5000,00
6 TRN-0006 991010 AUD 2000,00 6 TRN-0026 991010 AUD 6000,00
7 TRN-0007 991010 CHF 2000,00 7 TRN-0031 991010 AUD 7000,00
8 TRN-0008 991010 DEM 2000,00 8 TRN-0036 991010 AUD 8000,00
9 TRN-0009 991010 GBP 2000,00 9 TRN-0002 991010 CHF 1000,00
10 TRN-0010 991010 USD 2000,00 10 TRN-0007 991010 CHF 2000,00

11 TRN-0011 991010 AUD 3000,00 11 TRN-0012 991010 CHF 3000,00
12 TRN-0012 991010 CHF 3000,00 12 TRN-0017 991010 CHF 4000,00
13 TRN-0013 991010 DEM 3000,00 13 TRN-0022 991010 CHF 5000,00
14 TRN-0014 991010 GBP 3000,00 14 TRN-0027 991010 CHF 6000,00
15 TRN-0015 991010 USD 3000,00 15 TRN-0032 991010 CHF 7000,00
16 TRN-0016 991010 AUD 4000,00 16 TRN-0037 991010 CHF 8000,00
17 TRN-0017 991010 CHF 4000,00 17 TRN-0003 991010 DEM 1000,00
18 TRN-0018 991010 DEM 4000,00 18 TRN-0008 991010 DEM 2000,00
19 TRN-0019 991010 GBP 4000,00 19 TRN-0013 991010 DEM 3000,00
20 TRN-0020 991010 USD 4000,00 20 TRN-0018 991010 DEM 4000,00

21 TRN-0021 991010 AUD 5000,00 21 TRN-0023 991010 DEM 5000,00
22 TRN-0022 991010 CHF 5000,00 22 TRN-0028 991010 DEM 6000,00
23 TRN-0023 991010 DEM 5000,00 23 TRN-0033 991010 DEM 7000,00
24 TRN-0024 991010 GBP 5000,00 24 TRN-0038 991010 DEM 8000,00
25 TRN-0025 991010 USD 5000,00 25 TRN-0004 991010 GBP 1000,00
26 TRN-0026 991010 AUD 6000,00 26 TRN-0009 991010 GBP 2000,00
27 TRN-0027 991010 CHF 6000,00 27 TRN-0014 991010 GBP 3000,00
28 TRN-0028 991010 DEM 6000,00 28 TRN-0019 991010 GBP 4000,00
29 TRN-0029 991010 GBP 6000,00 29 TRN-0024 991010 GBP 5000,00
30 TRN-0030 991010 USD 6000,00 30 TRN-0029 991010 GBP 6000,00

31 TRN-0031 991010 AUD 7000,00 31 TRN-0034 991010 GBP 7000,00
32 TRN-0032 991010 CHF 7000,00 32 TRN-0039 991010 GBP 8000,00
33 TRN-0033 991010 DEM 7000,00 33 TRN-0005 991010 USD 1000,00
34 TRN-0034 991010 GBP 7000,00 34 TRN-0010 991010 USD 2000,00
35 TRN-0035 991010 USD 7000,00 35 TRN-0015 991010 USD 3000,00
36 TRN-0036 991010 AUD 8000,00 36 TRN-0020 991010 USD 4000,00
37 TRN-0037 991010 CHF 8000,00 37 TRN-0025 991010 USD 5000,00
38 TRN-0038 991010 DEM 8000,00 38 TRN-0030 991010 USD 6000,00
39 TRN-0039 991010 GBP 8000,00 39 TRN-0035 991010 USD 7000,00
40 TRN-0040 991010 USD 8000,00 40 TRN-0040 991010 USD 8000,00

Figure 35. DSLBA52R (Copy or Move Messages) Queue Key List Before and After (Part 1 of
2)

DSLBA52R

258 API Guide

Sample Printout of DSLBA52R
The following figure shows the information printed after the execution of the
DSLBA52R utility.

41 TRN-0041 991012 AUD 1000,00 41 TRN-0041 991012 AUD 1000,00
42 TRN-0042 991012 CHF 1000,00 42 TRN-0046 991012 AUD 2000,00
43 TRN-0043 991012 DEM 1000,00 43 TRN-0042 991012 CHF 1000,00
44 TRN-0044 991012 GBP 1000,00 44 TRN-0047 991012 CHF 2000,00
45 TRN-0045 991012 USD 1000,00 45 TRN-0043 991012 DEM 1000,00
46 TRN-0046 991012 AUD 2000,00 46 TRN-0048 991012 DEM 2000,00
47 TRN-0047 991012 CHF 2000,00 47 TRN-0044 991012 GBP 1000,00
48 TRN-0048 991012 DEM 2000,00 48 TRN-0049 991012 GBP 2000,00
49 TRN-0049 991012 GBP 2000,00 49 TRN-0045 991012 USD 1000,00
50 TRN-0050 991012 USD 2000,00 50 TRN-0050 991012 USD 2000,00

Figure 35. DSLBA52R (Copy or Move Messages) Queue Key List Before and After (Part 2 of
2)

MERVA ESA V4.1 DSLBA52R 26. Nov. 1999 17:23:43
(C) Copyright IBM Corp. 1999

+ --- +
| S A M P L E B A N K B o e b l i n g e n |
+ --- +

DDDDD SSSSSS LLL BBBBB AAAA 555555 2222 RRRRR
DDDDDD SSSSSS LLL BBBBBB AAAAAA 555555 222222 RRRRRR
DD DD SS LLL BB BB AA AA 55 22 22 RR RR
DD DD SS LLL BB BB AA AA 55 22 RR RR
DD DD SSSSSS LLL BBBBBB AAAAAA 55555 22 RRRRR
DD DD SSSSSS LLL BBBBBB AAAAAA 555555 22 RRRRRR
DD DD SS LLL BB BB AA AA 55 22 RR RR
DD DD SS LLL BB BB AA AA 55 22 22 RR RR
DDDDDD SSSSSS LLLLLL BBBBBB AA AA 555555 222222 RR RR
DDDDD SSSSSS LLLLLL BBBBB AA AA 55555 222222 RR RR

Copy or move messages from one queue to another.
HELP as the only parameter prints a description.

DSLBA52R_001I : DSLBA52R started by user HEG at 26. Nov. 1999 17:23:43

DSLBA52R_003I : Runtime parameters:
1. FUNCTION - Function : COPY
2. QUEUE1 - Input queue name : L1DE0
3. QUEUE2 - Output queue name : L1SRT
4. BUSY - BUSY disposition : SKIP
5. FROMQSN - From QSN :
6. LOGLEVEL - Log level : 2
7. SORT - Sort order : K21
8. TOQSN - To QSN :

DSLBA52R_006I : MERVA ID is MHEG, MERVA name is MERVAESA.

DSLBA52R_007I : Queue management routine defined is DSLQMCNV.
The access features defined are VXBD.

Figure 36. DSLBA52R (Copy or Move Messages) Sample Printout (Part 1 of 3)

DSLBA52R

Appendix C. Batch Utilities in REXX 259

DSLBA52R_013I : Detailed statistical data
(Copy from input queue L1DE0 to output queue L1SRT)

GET
Err In no. Input QSN rc BUSY Key 1
--- ------- ---------- -- ---- -----------------------

Out no. Output QSN PUT_rc Key 2
------- ---------- -- -----------------------

1 0000000001 ok TRN-0001
1 0000000501 ok 991010AUD1000,00

2 0000000002 ok TRN-0002
9 0000000509 ok 991010CHF1000,00

3 0000000003 ok TRN-0003
17 0000000517 ok 991010DEM1000,00

4 0000000004 ok TRN-0004
25 0000000525 ok 991010GBP1000,00

5 0000000005 ok TRN-0005
33 0000000533 ok 991010USD1000,00

6 0000000006 ok TRN-0006
2 0000000502 ok 991010AUD2000,00

7 0000000007 ok TRN-0007
10 0000000510 ok 991010CHF2000,00

8 0000000008 ok TRN-0008
18 0000000518 ok 991010DEM2000,00

9 0000000009 ok TRN-0009
26 0000000526 ok 991010GBP2000,00

10 0000000010 ok TRN-0010
34 0000000534 ok 991010USD2000,00

11 0000000011 ok TRN-0011
3 0000000503 ok 991010AUD3000,00

12 0000000012 ok TRN-0012
11 0000000511 ok 991010CHF3000,00

...

DSLBA52R_014I : Overview statistical data

No. of elements matching QSN range : 50

No. of GETs with intrc ' ' : 50
- thereof BUSY : 0
No. of GETs with intrc 01 : 0
No. of GETs with intrc 02 : 0
No. of GETs with rc <= -2 : 0

No. of PUTs with intrc ' ' : 50
No. of PUTs with intrc 01 : 0
No. of PUTs with intrc 02 : 0
No. of PUTs with rc <= -2 : 0

Figure 36. DSLBA52R (Copy or Move Messages) Sample Printout (Part 2 of 3)

DSLBA52R

260 API Guide

Listing Fields
The ‘Detailed statistical data’ of the listing contains the following information:

Err A ‘>’ indicates an error with the message, for example:
v The message could not be read
v The message is currently in use by another user (‘BUSY’)
v The copy or move failed

In no. Running number of messages in input queue (before sort)

Out no. Running number of messages in output queue (after sort)

Input QSN Input queue QSN

Output QSN Output queue QSN after a successful COPY or MOVE

GET rc Return code of API function GET - ‘ok’ indicates that the message
was successfully read from the input queue

PUT(B)_rc Return code of API function PUT/PUTB - ‘ok’ indicates that the
message was successfully copied/moved from the input queue to
the output queue

BUSY Shows that the message is currently in use by another user
(‘BUSY’)

Key 1 Key 1 of the message

Key 2 Key 2 of the message.

DSLBA52R_015I : Number of (matching) input messages : 50
Number of messages GET ok : 50
- thereof BUSY : 0
Number of messages GET failed : 0
Number of messages PUT ok : 50
Number of messages PUT failed : 0

DSLBA52R_010I : DSLBA52R ended with return code 0 - successful.

DSLBA52R_016I : DSLBA52R ended at 26. Nov. 1999 17:23:47

Figure 36. DSLBA52R (Copy or Move Messages) Sample Printout (Part 3 of 3)

DSLBA52R

Appendix C. Batch Utilities in REXX 261

DSLBA53R - Scan a Queue for ‘Old’ Messages
You can use the batch utility DSLBA53R to scan a MERVA ESA queue for
messages that are as old or older than a specified number of days. Those messages
can either be:
v Flagged in the output listing
v Deleted from the queue
v Moved to another queue.

This can be used, for example, to move old messages to an archive queue, or to
delete old messages from a protocol queue. As the program bypasses the normal
message flow as defined by the function table and the routing tables, the influence
on security considerations has to be evaluated carefully.

To get the age of a message, DSLBA53R computes the number of elapsed days
from the date of the first or the last MSGTRACE entry of the message until today.
The 2-digit year date of the MSGTRACE is interpreted according to the SWIFT
rules. If a message has no MSGTRACE entry, a warning message is issued.

Dependencies: MERVA ESA must be active.

Job Control Statements
The following figure shows the MVS JCL to scan a MERVA ESA queue for ‘old’
messages.

//....... JOB
//REXXB EXEC PGM=DSLAREXX,REGION=0K,PARM=DSLBA53R
//*
//* .. RUNTIME PARAMETERS
//SYSTSIN DD *

* Comments start with '*' and ';'
* HELP
* -- Required parameters --
FUNCTION = cccccc ; Function (DELETE, LIST, or MOVE)
BACKDAYS = nnnn ; Number of days
QUEUE1 = cccccccc ; Input queue name
QUEUE2 = cccccccc ; Output queue name (for MOVE)
* -- Optional parameters --
BUSY = ccccccc ; BUSY disposition (PROCESS or SKIP)
FLDMODIF = ccccc ; FIRST or LAST msgtrace entry
FROMQSN = nnnnnnnnnn ; From QSN
LOGLEVEL = n ; Log level
TOQSN = nnnnnnnnnn ; To QSN

/*
//*
//* .. MERVA ESA LOAD LIBRARY
//STEPLIB DD DSN=loadlib,DISP=SHR
//*
//* .. ON THIS PDS: DSLBA53R
//SYSEXEC DD DSN=samplib,DISP=SHR
//*
//* .. LISTING DATASET (VB136)
//SYSTSPRT DD DSN=listds,DISP=OLD
//

Figure 37. DSLBA53R (Search for ‘Old’ Messages) Sample JCL (MVS)

DSLBA53R

262 API Guide

Runtime Parameters
The runtime parameters are passed to DSLBA53R via SYSTSIN under MVS and via
SYSIPT under VSE. They have the form KEYWORD = VALUE. Each pair must be
coded on a separate line. The input is folded to uppercase and leading and trailing
blanks are stripped off from the specified keyword value. Lines starting with a ‘*’
are treatened as comments, a ‘;’ starts a line comment.

Required parameters:

Keyword Descr. Possible values

FUNCTION Function to be
performed DELete Delete the queue elements from the input queue

LIST List the queue elements

MOVE Move the queue elements from the input queue
QUEUE1 to the output queue QUEUE2

This parameter is required.

BACKDAYS Number of days Only queue elements as old or older than nnn days are
further processed. To determine the age of a message,
the first or the last MSGTRACE entry (see parameter
FDLMODIF) found is compared with today’s date.

With FUNCTION DELETE and MOVE the entered
parameter is checked against the value specified in
customization variable backdays_limit. The default value
used is 7, that is, with FUNCTION DELETE and MOVE
any BACKDAYS value less than 7 is rejected.

This parameter is required.

QUEUE1 Input queue name The name of the input queue. The messages of this
queue will be processed. The entered input queue name
can be further checked in user exit USEREXIT_Q1 of
DSLBA53R.

This parameter is required.

QUEUE2 Output queue name The name of the output queue for FUNCTION MOVE.
To this queue the messages that are ‘too old’ are written
(moved). The entered output queue name can be further
checked in user exit USEREXIT_Q2 of DSLBA53R.

This parameter is required with FUNCTION = MOVE.

Optional parameters:

Keyword Descr. Possible values

BUSY BUSY dispo sition Specifies what happens when a message is BUSY. If
specified, the keyword value must be one of:

PROCess The message is processed (deleted or
moved)

SKIP The message is not processed.

This parameter is optional. If omitted, the default value
used is SKIP.

DSLBA53R

Appendix C. Batch Utilities in REXX 263

Keyword Descr. Possible values

FLDMODIF MSGTRACE field
READ modifier FIRST The first MSGTRACE of a message is used to

determine the age

LAST The last MSGTRACE of a message is used to
determine the age

This parameter is optional. If omitted, the default value
used is FIRST.

FROMQSN From QSN Only messages with a QSN greater than or equal to this
QSN will be processed.

This parameter is optional. If omitted, the default value
used is 0. See also TOQSN.

LOGLEVEL Log level
1 Only overview data is shown in the listing.

2 Detailed data for each message is shown.

3 The key-1 and key-2 value for each message are
shown.

4 Should be used in case of problems only.

This parameter is optional. If omitted, the default value
used is 2.

TOQSN To QSN Only messages with a QSN less than or equal to this
QSN will be processed.

This parameter is optional. If omitted, all messages are
processed. See also FROMQSN.

HELP as the only parameter prints a description of the runtime parameters.

Data Set Names
In the JCL, the lowercase data set names have the following meanings:

loadlib The name of the load library containing the MERVA ESA
programs.

samplib The name of the library containing the program DSLBA53R.

listds The name of the listing data set. Must be preallocated, record
format VB, logical record length 136 recommended.

DSLBA53R

264 API Guide

Customization
In the MERVA ESA customization module DSLPRM you can set the following
parameter:

prtname Your institution name as it should appear in the printout of (most)
REXX batch utilities.

In the CUSTOMIZATION SECTION of DSLBA53R you can set the following
installation-specific variable:

backdays_limit
With FUNCTION DELETE and MOVE the entered value for the
runtime parameter BACKDAYS is checked against the variable
‘backdays_limit’. If the entered value is lower than the limit set,
the entered parameter is rejected, and DSLBA53R will not start.
The IBM supplied default value is 7 days.

You can use the following routines in DSLBA53R to reject entered runtime
parameters:
1. USEREXIT_Q1 can be used to reject the entered value for runtime parameter

QUEUE1, input queue.
2. USEREXIT_Q2 can be used to reject the entered value for runtime parameter

QUEUE2, output queue for MOVE.

DSLBA53R

Appendix C. Batch Utilities in REXX 265

Sample Printout of DSLBA53R
The following figure shows the information printed after the execution of the
DSLBA53R utility.

MERVA ESA V4.1 DSLBA53R 1. Jul. 1999 12:26:22
(C) Copyright IBM Corp. 1999

+ --- +
| S A M P L E B A N K B o e b l i n g e n |
+ --- +

DDDDD SSSSSS LLL BBBBB AAAA 555555 3333 RRRRR
DDDDDD SSSSSS LLL BBBBBB AAAAAA 555555 333333 RRRRRR
DD DD SS LLL BB BB AA AA 55 33 33 RR RR
DD DD SS LLL BB BB AA AA 55 33 RR RR
DD DD SSSSSS LLL BBBBBB AAAAAA 55555 3333 RRRRR
DD DD SSSSSS LLL BBBBBB AAAAAA 555555 3333 RRRRRR
DD DD SS LLL BB BB AA AA 55 33 RR RR
DD DD SS LLL BB BB AA AA 55 33 33 RR RR
DDDDDD SSSSSS LLLLLL BBBBBB AA AA 555555 333333 RR RR
DDDDD SSSSSS LLLLLL BBBBB AA AA 55555 3333 RR RR

Scan a MERVA queue for 'old' messages.
HELP as the only parameter prints a description.

DSLBA53R_001I : DSLBA53R started by user HEG at 1. Jul. 1999 09:42:12

DSLBA53R_003I : Runtime parameters:
1. FUNCTION - Function : DELETE
2. BACKDAYS - Number of days .. : 10
3. QUEUE1 - Input queue name : L1DE0
4. QUEUE2 - Output queue name :
5. BUSY - BUSY disposition : SKIP
6. FLDMODIF - MSGTRACE position : FIRST
7. FROMQSN - From QSN :
8. LOGLEVEL - Log level : 2
9. TOQSN - To QSN :

DSLBA53R_005I : MERVA ID is MHEG, MERVA name is MERVAESA.

DSLBA53R_006I : Queue management routine defined is DSLQMCNV.
The access features defined are VXBD.

DSLBA53R_102W : The message 8 with QSN 258 is currently in use by
another user (BUSY).
As you specified runtime parameter BUSY = SKIP,
DSLBA53R will skip it (will not delete / move it).

DSLBA53R_107W : The message no. 31 with QSN 281 does not have a
MSGTRACE field.

Figure 38. DSLBA53R (Search for ‘Old’ Messages) Sample Printout (Part 1 of 2)

DSLBA53R

266 API Guide

DSLBA53R_010I : Detailed statistical data

KEY1 and KEY2 are printed in the second line with log level >= 3.
The full MSGTRACE entry is printed separately with log level 4.

Too MSGTRACE DELE
Err Old Number QSN BUSY YYYY/MM/DD Days rc
--- --- ------ ---------- ---- ---------- ---- --

1 0000000251 1999/06/29 2
DEL 2 0000000252 1999/06/17 14 ok
DEL 3 0000000253 1999/06/17 14 ok
DEL 4 0000000254 1999/06/17 14 ok
DEL 5 0000000255 1999/06/17 14 ok
DEL 6 0000000256 1999/06/17 14 ok
DEL 7 0000000257 1999/06/17 14 ok

> YES 8 0000000258 BUSY 1999/06/17 14
DEL 9 0000000259 1999/06/17 14 ok
DEL 10 0000000260 1999/06/17 14 ok

11 0000000261 1999/06/30 1
12 0000000262 1999/06/30 1
13 0000000263 1999/06/29 2

DEL 14 0000000264 1999/06/17 14 ok
DEL 15 0000000265 1999/06/17 14 ok

16 0000000266 1999/06/29 2
DEL 17 0000000267 1999/06/17 14 ok
DEL 18 0000000268 1999/06/17 14 ok
DEL 19 0000000269 1999/06/17 14 ok
DEL 20 0000000270 1999/06/17 14 ok
DEL 21 0000000271 1999/06/17 14 ok
DEL 22 0000000272 1999/06/17 14 ok
DEL 23 0000000273 1999/06/17 14 ok
DEL 24 0000000274 1999/06/17 14 ok
DEL 25 0000000275 1999/06/17 14 ok

26 0000000276 1999/06/30 1
27 0000000277 1999/06/30 1
28 0000000278 1999/06/29 2

DEL 29 0000000279 1999/06/17 14 ok
DEL 30 0000000280 1999/06/17 14 ok

> 31 0000000281
32 0000000282 1999/07/01 0

DSLBA53R_012I : Overview statistical data

No. of messages within From/To QSN : 32
No. of messages with MSGTRACE entry : 31
- thereof younger than BACKDAYS : 9
- thereof as old or older than BACKDAYS : 22

-- thereof successfully deleted : 21
-- thereof not deleted because BUSY : 1
-- thereof delete from QDS failed : 0

No. of messages without MSGTRACE entry : 1

DSLBA53R_008I : DSLBA53R ended with return code 4 - Warning.

DSLBA53R_013I : DSLBA53R ended at 1. Jul. 1999 09:42:15

Figure 38. DSLBA53R (Search for ‘Old’ Messages) Sample Printout (Part 2 of 2)

DSLBA53R

Appendix C. Batch Utilities in REXX 267

Listing Fields
The ‘Detailed statistical data’ of the listing contains the following information:

Err A ‘>’ indicates an error with the message, for example:
v The message has no MSGTRACE entry
v The message could not be deleted or moved, because it is

currently in use by another user (‘BUSY’)
v The delete or move failed

Too Old DEL, MVD, or YES to show that the message is as old or older
than BACKDAYS days:

DEL The message was successfully deleted from the input
queue

MVD The message was successfully moved from the input queue
to the output queue

YES The message is as old or older than BACKDAYS days in
function LIST or message could not be deleted or moved

Number Running number

QSN Input queue QSN

BUSY Shows that the message is currently in use by another user
(‘BUSY’)

MSGTRACE YYYY/MM/DD
The date of the first or the last MSGTRACE entry

Days Number of days between the MSGTRACE entry and today

DELE rc Return code of API function DELE - ‘ok’ indicates that the message
was successfully deleted from the input queue

PUTB rc Return code of API function PUTB - ‘ok’ indicates that the message
was successfully moved from the input queue to the output queue

Output QSN Output queue QSN after a successful MOVE

Key 1 Key 1 of the message. Is printed in the second line with log level ≥
3

Key 2 Key 2 of the message. Is printed in the second line with log level ≥
3

MSGTRACE Full first or last MSGTRACE entry of the message. Is printed with
a separate message with log level ≥ 4.

DSLBA53R

268 API Guide

Appendix D. Field-Level Access Fields

This appendix lists the various fields in the MERVA internal structures that can be
accessed using the FLDG and FLDP DSLAPI services. Refer to “Field-Level Access
for Exit Routines” on page 33 for a description of the field-level access services,
and to the definitions of the FLDG 105 and FLDP services 107.

Note that the FLDG and FLDP services are Product-Sensitive Programming
Interfaces.

Fields in the following structures can be accessed:

DSLAPI MERVA ESA API customization fields

DSLCOM MERVA ESA service communication area

DSLPRM MERVA ESA customization parameter module

TUCB Terminal user control block

DSLMFS PL MFS parameter list

DSLMFS PS MFS permanent storage

DSLMFS TS MFS temporary storage

DSLMFS FLDREF MFS field reference

DSLNIC Nucleus intertask communication parameter list

DSLUSR User file record

DSLCWA MERVA fields in the CICS CWA

DSLFNT MERVA ESA function table entry.

You can use the following Assembler code to generate a listing of the Assembler
definitions of these structures. Mappings in high-level languages are not supplied
(except for the MFS parameter list, structure MFSL, in copybook DSLMFSPL).
DSLCOM DSECT=YES Service communication area
DSLPARM TYPE=MAP DSLPARM TYPE=MAP
DSLMFS MF=TUCB,TYPE=DSECT TUCB
DSLMFS MF=L MFS parameter list
DSLMFS MF=PS MFS permanent storage
DSLMFS MF=TS MFS temporary storage
DSLMFS MF=FLDREF MFS field reference
DSLNIC MF=L Inter-task communication parm-list
DSLUSR MF=U,DSECT=YES User file record
DSLCWA , MERVA fields in the CICS CWA
DSLFNT TYPE=MAP Function table entry
END

Refer to MERVA for ESA Macro Reference for more information on these Assembler
macros.

The following information is provided for each field:

Field The name you use to access the field

Type The type of data returned to you when you retrieve the field, or that you
must provide when changing the fields value:

© Copyright IBM Corp. 1987, 2001 269

ADDRESS 4-byte, fullword, binary storage address.

BINARY 4-byte, fullword, binary value.

BIT The character ‘0’ or ‘1’. The field name may define a 1-, or
multiple-bit pattern. A ‘1’ indicates all bits are ones,
otherwise the value is ‘0’.

BYTE A byte in bit representation, that is, a string of 8 ‘0’ or ‘1’
characters.

CHARS Character string.

PACKED Packed-decimal value.

Size The length in bytes of a character string or packed value.

Write A ‘Y’ occurs in this column if the field is writeable, in other words, if you
can change the field using the FLDP function.

Description
A short description of the field.

Table 19. MERVA ESA API Customization Fields, DSLAPI

Field Type Size Write Description

APICQMG BYTE Y Queue management requests

APICQBIN BIT Y Binary key, do not modify

APICQDIR BIT Y Direct queue management (DB2 MVS only)

APICQLAZ BIT Y Defer write requests (‘lazy’)

APICQWRB BIT Y Set write back indicator

APICQMIT BIT Y Commit direct DB2 queue management requests

APICMSG BYTE Y Message mapping

APICMCLR BIT Y Clear message buffer before mapping

APICMCHK BIT Y Check message

Table 20. MERVA ESA Service Communication Area, DSLCOM

Field Type Size Write Description

COMPRMA ADDRESS Address of MERVA parameter table

COMSRVPA ADDRESS Address of DSLSRVP

COMTSVA ADDRESS Address of DSLTOFSV

COMFDTA ADDRESS Address of field definition table

COMOMSGA ADDRESS Address of DSLOMSG (message module)

COMMSGTA ADDRESS Address of operator message table

COMMFSA ADDRESS Address of DSLMMFS

COMMTTA ADDRESS Address of message type table

COMFNTA ADDRESS Address of function table

COMFLVPA ADDRESS Address of DSLFLVP

COMFLTTA ADDRESS Address of file table

COMMFSMA ADDRESS Address of MFS error-message buffer

COMXSPS ADDRESS HLL exit manager scratchpad storage

COMTRAPA ADDRESS Address of DSLTRAP

270 API Guide

Table 20. MERVA ESA Service Communication Area, DSLCOM (continued)

Field Type Size Write Description

COMTRATA ADDRESS Address of trace table

COMTRAST BYTE Trace status

COMTRAFL BIT GETMAIN for trace table failed

COMTRACT BIT DSLTRAP is active

COMTRAJP BIT DSLTRAP journal put is pending

COMTRASF BYTE Y Special trace switches

COMTRAMF BIT Y Trace MERVA ESA MFS

COMTRATF BIT Y Trace MERVA ESA TOF supervisor

The following fields form the DSLTRAP parameter list:

COMTRAI1 BINARY Y First part trace ID

COMTRAI2 BINARY Y Second part trace ID

COMTRASE BINARY Y Session ID

COMTRARE BINARY Y Register 14

COMTRADA CHARS 24 Y Data part

COMTRARC BINARY DSLTRAP return code

COMTRAWK ADDRESS Work area address of DSLTRAP

The following fields are used by programs not linked to DSLNUC:

COMNICPL ADDRESS Address of DSLNIC parameter list

COMTUCBA ADDRESS Address of TUCB

COMMTBA ADDRESS Address of MFS load table

COMERRA ADDRESS Address of DSLEERR

COMEPTA ADDRESS Address of EUD program table

The following fields are used by programs linked to DSLNUC or loaded to DSLNUC:

COMJRNPA ADDRESS Address of DSLJRNP

COMNCSA ADDRESS Address of DSLNCS

COMNMOPA ADDRESS Address of DSLNMOP

COMQMGTA ADDRESS Address of DSLQMGT

COMTIMPA ADDRESS Address of DSLTIMP

COMTIME ADDRESS MERVA startup time

COMSTAT0 BYTE MERVA ready status byte

COMSTAT1 BYTE MERVA status byte

COMSTSHU BIT MERVA shutdown is set

COMSTCAN BIT MERVA cancel is set

COMSPNR BYTE MVS getmain subpool number

The following fields are used or reserved for network programs:

Appendix D. Field-Level Access Fields 271

COMDSNL ADDRESS Used by S.W.I.F.T Link for Address of table

COMRECON ADDRESS Used by reconciliation

COMDTNL ADDRESS Used by Telex Link

COMDWNN ADDRESS Y Used by national network programs

COMUSER1 ADDRESS Y Reserved for user

COMUSER2 ADDRESS Y Reserved for user

COMUSER3 ADDRESS Y Reserved for user

COMUSER4 ADDRESS Y Reserved for user

The following field is used only under IMS:

COMPCBLA ADDRESS Address of PCB-address-list

The following fields are used only under CICS:

COMCWAA ADDRESS Address of DSLCWA

COMEISTG ADDRESS Address of exec interface storage

COMEIB ADDRESS Address of exec interface block

COMCOM ADDRESS Reserved

Table 21. MERVA ESA Customization Parameter Module, DSLPRM

Field Type Size Write Description

Module names:

NPFDT CHARS 8 Field definition table name

NPFNT CHARS 8 Function table name

NPMTT CHARS 8 Message type table name

NPMSG CHARS 8 Operator message table name

NPTFD CHARS 8 IMS: Terminal feature table name

Buffer sizes:

NPEXSPA BINARY Size of exit SPA

NPEXTS BINARY Size of exit temporary storage

NPMFSPS BINARY Size of MFS permanent storage

NPMFSTS BINARY Size of MFS temporary storage

NPMFSRK BINARY Size of MFS retype-buffer

NPTOFSZ BINARY Size of TOF

NPNICBUF BINARY Buffer length for DSLNIC

NPNICPL BINARY Parm list length for DSLNIC

Other parameters:

272 API Guide

NPCWAOFF BINARY CICS: Bytes left free in CWA

NPCVTABO BINARY MERVA offset in the CVT extension

NPNQE BINARY Number of QDS queue elements

NPUSER BINARY 2 Max. number of active users

NPMCBNUM BINARY 2 Number of MCBs

NPDM BINARY 2 Number of unsolicited messages

NPSVC BINARY 2 MVS: SVC instruction

NPMERVID CHARS 4 MERVA ID for operator messages

NPCID CHARS 3 CICS: MERVA ID for CICS signon

NPBITS BYTE MERVA parameter bits -1-

NPEXSEC BIT External security bit

NPEXUSR BIT Extended origin ID check in USR function

NPEXQUE BIT Queue test commands allowed

NPQDS2 BIT Secondary queue data set used

NPQCONT BIT Continue after failure in one QDS

NPQUETRA BIT Queue trace of DSLQMGT

NPQUETRL BIT Queue trace is ‘large’

NPNOPINT BIT No operator intervention with DSL090A

NPTRACE BYTE Y MERVA trace status

NPTREXT BIT Y External trace on

NPTRINT BIT Y Internal trace on

NPRTRACE BYTE Y Routing trace status

NPRTRALL BIT Y Routing trace all on

NPRTRWNG BIT Y Routing trace warning on

NPRTRSEV BIT Y Routing trace severe error on

NPRTROFF BIT Y Routing trace off

NPLANCDS CHARS 1 Country specific decimal separator

NPLANCTS CHARS 1 Country specific thousands separator

NPJRNBUF BINARY Journal buffer length

NPFLT CHARS 8 File table name

NPFLVTS BINARY DSLFLVP TS size

NPLAN CHARS 1 Language for sign-on panel

NPBITS2 BYTE MERVA parameter bits -2-

NPCINTER BIT CICS: When no NIC/INTRA, use INTER

NPUCTRAN BIT Uppercase translation for display

NPTSAUX BIT CICS auxiliary TS used

NPUSFPW BIT Passwords not displayed in user file

NPEXAFO BIT Automatic force during sign-on

NPMVSSS BIT MERVA uses subsystem control block

NPRECON BIT Reconciliation active

NPPGCALL BIT End-user-driver can be called by pgm

NPBITS3 BYTE MERVA parameter bits -3-

Appendix D. Field-Level Access Fields 273

NPLSTOP BIT Stop if routing table loads fail

NPUMRYES BIT Unique message reference is used

NPUMRIMM BIT UMR is got immediately with MT command

NPXSTOP BIT Stop if (DSLN) user exit loads fail

NPEXDSP BIT DSLNUSR allows API display and list request

NPEXJRN BIT Journal display command is allowed

NPJRNSEG BIT Journal records are segmented

NPRECONT BIT Continue after Reconciliation error

NPBITS4 BYTE MERVA parameter bits -4-

NPEXUMSK BIT User file data masking

NPCURFIL BIT File access for currency codes

NPCURTAB BIT File and table access for currency codes

NPDBCSON BIT DBCS support

NPEXUID BIT MERVA user ID sign-on bypassed

NPJRNLYY BIT Four-digit year in journal

NPSDRC BIT RC of DSLSDI, DSLSDO, and DSLSDY like
reason code

NPNOCHK BIT No password check with EXSEC=YES

NPAPSMSG BINARY DSLAPI message buffer size

NPMSGLIM BINARY IMS: Message limit for transaction

NPPGBUF BINARY EUD-to-PGM interface data buffer size

NPOPID CHARS 3 Master operator ID, “***”, or “///”

NPNAME CHARS 8 Name for UMR and others

NPAPIUID CHARS 8 User ID for DSLAPI cmd requests

NPLMSTAT BYTE Large message status

NPLMYES BIT Large messages used

NPLMSTOP BIT Stop MERVA if DSLQLRG fails

NPLMSIZE BINARY Minimum size of a large message

NPMAXBUF BINARY Maximum dynamic buffer length

NPTOFINC BINARY TOF increase value

NPTIER BINARY Monthly usage level (message volume)

NPEUDTRN CHARS 8 DSLEUD transaction code

NPMRVUSR CHARS 8 User ID when user file is empty

NPRACSVC BINARY 2 MVS: RACF® SVC instruction no.

NPSONNUM BINARY Number of sign-on trials before user ID will be
revoked

NPIRQNO BINARY 2 Number of request queue elements

NPITCM1 BINARY Intertask communication method CICS
transactions

NPITCM2 BINARY Intertask communication method non-CICS
transactions

NPITCM3 BYTE Intertask communication method modifier

NPITCM3P BIT Intraregion communication uses single ECB

274 API Guide

NPITCCQN CHARS 5 CICS TS server queue name

NPITCAC CHARS 25 APPC requestor parameters

NPITCACS CHARS 8 SYMDEST used by requestor

NPITCACL CHARS 17 Partner LU Name for requestor

NPITCAS CHARS 113 APPC server parameters

NPITCASD CHARS 8 SYMDEST used by server

NPITCALU CHARS 8 NOSCHED local LU name

NPITCATP CHARS 64 MERVA TP Name

NPITCAPL CHARS 17 Partner LU name

NPITCAUI CHARS 8 User ID

NPITCAPR CHARS 8 Profile

NPWSAS CHARS 90 Workstation APPC/MVS server parameters

NPWSASD CHARS 8 SYMDEST used by server

NPWSALU CHARS 8 NOSCHED local LU name

NPWSATPL BINARY 2 TP name length

NPWSATP CHARS 64 TP name

NPWSAPR CHARS 8 Profile

NPBITS5 BYTE MERVA parameter bits -5-

NPUGYES BIT Group users on

NPUGREQ BIT Group users is required

NPEXGRP BIT Extended group ID check in USR function

NPEXQUM BIT Queue test cmds allowed for master user

NPJRNSWS BYTE Journal File SWITCH status

NPJRNSWT BIT Journal File SWITCH status specified

NPJRNSWM BIT Journal File SWITCH mask

NPBITS6 BYTE MERVA parameter bits -6-

NPSDIRDB BIT DSLSDI, DSLSDO, and DSLSDY use direct DB2
queue management

NPQIONM CHARS 8 Queue management routine name

NPQIOTP CHARS 4 Queue management access type

NPITCACT CHARS 64 MERVA TP name used by client

NPITCACM CHARS 8 MERVA mode name used by client

NPWSSEC BYTE Workstation security bits

NPWSSENC BIT Encryption

NPWSSAUT BIT Authentication

NPWSSPWD BIT Password scrambling

NPWSSOFF BIT None

NPWSTP# BINARY 2 Workstation TCP/IP server port number

NPMQMNM CHARS 48 MQ manager name

NPITCRTQ CHARS 96 ITC MQ reply-to queue names

NPITCRTN CHARS 48 Normal or model queue name

NPITCRTD CHARS 48 Dynamic queue name

Appendix D. Field-Level Access Fields 275

NPITCRCV CHARS 96 ITC MQ receive queue names

NPITCRVN CHARS 48 Normal or model queue name

NPITCRVD CHARS 48 Reserved

NPITCSND CHARS 96 ITC MQ send queue names

NPITCSDN CHARS 48 Normal or model queue name

NPITCSDD CHARS 48 Reserved

NPITCWTT BINARY 4 ITC wait time interval

NPISCRTQ CHARS 96 ISC MQ reply-to queue names

NPISCRTN CHARS 48 Normal or model queue name

NPISCRTD CHARS 48 Reserved

NPISCRCV CHARS 96 ISC MQ receive queue names

NPISCRVN CHARS 48 Normal or model queue name

NPISCRVD CHARS 48 Reserved

NPISCSND CHARS 96 ISC MQ send queue names

NPISCSDN CHARS 48 Normal or model queue name

NPISCSDD CHARS 48 Reserved

NPISCMID CHARS 33 ISC MQ MERVA IDs

NPISCMQP CHARS 16 ISC MQ MERVA ID for primary nucleus

NPISCMQL CHARS 16 ISC MQ MERVA ID for secondary nucleus

NPISCSDS CHARS 1 ISC queue name silable type

NPISCPRM CHARS 1 ISC nucleus primary instance

NPISCSTT CHARS 1 ISC nucleus instance start

NPISCXCF CHARS 28 ISC XCF names

NPISCXGP CHARS 8 XCF group name

NPISCXMB CHARS 16 XCF group member name

NPISCJWT BINARY 4 Join wait time interval

NPMFCLIC BINARY 4 Number of client licences

NPDB2PLB CHARS 8 DB2 plan name for batch nucleus program

NPDB2SS CHARS 4 DB2 subsystem name for batch nucleus pgm

NPRTNAM CHARS 60 Bank’s name in printout of batch utilities

Table 22. Terminal User Control Block, DSLMFS MF=TUCB

Field Type Size Write Description

TUCBLL BINARY Length

TUCBRV1 CHARS 4 Reserved for IMS

TUCBTRAN CHARS 8 Transaction name

TUCBLTN CHARS 8 Logical terminal name

TUCBRSV1 CHARS 2 transaction/terminal ID

The following fields concern the current MERVA function:

TUCNAME CHARS 8 Function name

276 API Guide

TUCROUTN CHARS 8 Name of routing table

TUCROUTA ADDRESS Address of routing table

The following fields concern the current MERVA queue:

TUCHSN BINARY Highest QSN used in this queue

TUCFQE BINARY First QKTE in this queue

TUCLQE BINARY Last QKTE in this queue

TUCECBA ADDRESS ECB address for posting after put

TUCSIZE BINARY Size for storing messages in queue

TUCTRESH BINARY Threshold number of this queue

TUCKFLD1 CHARS 8 Name of key field 1

TUCKLEN1 BINARY Length of key 1

TUCKOFF1 BINARY Offset to start of key 1

TUCKFLD2 CHARS 8 Name of key field 2

TUCKLEN2 BINARY Length of key 2

TUCKOFF2 BINARY Offset to start of key 2

TUCNXTNM CHARS 8 Name of next function

TUCHCONM CHARS 8 Name of hard-copy function

TUCTRAN CHARS 8 Transaction name

TUCLTE1 CHARS 8 Logical terminal name

TUCLTE2 CHARS 8 Logical terminal name

TUCNSO BINARY Number of signed on end users

TUCMSGST BYTE Message-processing status

TUCDENT BIT New message generation allowed

TUCPROT BIT Screen protected

TUCKMSG BIT Keep message after print

TUCPRON BIT Noprompt only display allowed

TUCNRKY BIT Retype verification allowed

TUCPROM BIT Noprompt processing allowed

TUCCHCK BIT Message check specified

TUCFRAME BIT Frame message ID specified

TUCQUEST BYTE Queue status 1

TUCIGNAC BIT IMS only: ignore active status

TUCHLDC BIT Function in ‘hold’ currently

TUCHLDI BIT Function in ‘hold’ initial

TUCACTIV BIT Function active

TUCNOTY BIT Notify = yes is specified

TUCDSLQ BIT Function with queue

TUCDUMQ BIT Function with dummy queue

TUCSTART BIT Start command executed

TUCRSI BIT Restart info in this queue

Appendix D. Field-Level Access Fields 277

TUCFRAMT CHARS 8 Name of top-frame message ID

TUCFRAMB CHARS 8 Name of bottom-frame message ID

TUCUAPL ADDRESS User application action

TUCFMID CHARS 1 Printer format ID

TUCCOMPF CHARS 1 Compression format

TUCCOMND BYTE Valid commands

TUCCAUT BIT Authenticate command

TUCCDEL BIT Delete command

TUCCOK BIT OK command

TUCCROU BIT Route command

TUCXPND BYTE Field expansion requirements for function

TUCXPCO BIT Common names expansion

TUCXPPR BIT Private names expansion

TUCXPNC BIT Noprompt message conditional expansion

TUCXPPC BIT Prompt message conditional expansion

TUCXPCL BIT Clear is requested

TUCXPNO BIT No field expansion

TUCMLIM BINARY Message limit within IMS scheduled cycle

TUCPFGN BINARY PF-key-groupnumber

TUCMSGS2 BYTE Message-processing status 2

TUCMS2M2 BIT SWIFT II display mode

TUCPFKY CHARS 8 User PF-key table name

TUCFPGM CHARS 8 Name of DSLEUD function program

TUCCOPYQ CHARS 8 Name of copy queue

TUCRELA1 ADDRESS Address of first related function

TUCRELA2 ADDRESS Address of second related function

TUCMSGID CHARS 8 Message ID for mapping and formatting

TUCNQE BINARY Number of QEs in this queue

TUCQUST2 BYTE Second queue status

TUCQ2DQF BIT No display with DQ filled

TUCQ2TOF BIT No TOF format in this queue

TUCQ2LST BIT Start message selection with queue list

TUCQ2STS BIT Store = small specified

TUCQ2STL BIT Store = large specified

TUCLIID CHARS 1 ID of list MCB

TUCLILEN BINARY Maximum length of list data

TUCCKIND BYTE Checkpoint/message limit indicator

TUCMLSET BIT Message limit set

TUCCKSET BIT Checkpoint set

TUCINTQ CHARS 8 Intermediate queue EDI-SWI conversion

The following fields address various data blocks:

278 API Guide

TUCBPCBA ADDRESS Address of I/O PCB (IMS)

TUCBPCBL ADDRESS Address of PCB list (IMS)

TUCBCMLA ADDRESS Address of command table list

TUCBCMPA ADDRESS Address of command parser buffer

TUCBUSRA ADDRESS Address of user file record

TUCBLDSA ADDRESS Address of LDS buffer

TUCBRKYA ADDRESS Address of retype buffer

TUCBTOFA ADDRESS Address of TOF buffer

TUCBMFSP ADDRESS Address of MFS permanent storage

TUCBMFST ADDRESS Address of MFS temporary storage

TUCBNCPL ADDRESS Address of DSLNIC-parmlist

The following fields concern the end-user session:

TUCBTRML BINARY Size of terminal buffer

TUCBROWN BINARY Rows per page/screen

TUCBCOLN BINARY Columns per page/screen

TUCBDEVC BYTE Device capabilities

TUCBHIL BIT Extended highlight indication

TUCBCOLR BIT Extended color indication

TUCBALTC BIT Alternate screen size to be used

TUCBUCTR BIT Uppercase translation required

TUCBILUC BIT Input lines underscored

TUCBDVTR BIT Bracket translation

TUCBDEV BYTE Device type

TUCBSCR BIT Screen

TUCBHCP BIT Terminal printer

TUCBSCS BIT SCS printer

TUCBSYS BIT System printer

TUCBACTP BINARY Actual page

TUCBACTL BINARY Actual line

TUCBACTN BINARY Actual nesting ID

TUCBACTG BINARY Actual field group

TUCBACTO BINARY Actual occurrence

TUCBACTF CHARS 8 Actual field name

TUCBACTD BINARY Actual data area

TUCBACTI CHARS 1 Actual option indicator

TUCBACTS CHARS 1 Actual scroll mode P or S

TUCBACTA CHARS 1 Actual occurrence action indicator A or ’ ’

TUCBCOMP CHARS 1 Actual compression mode

TUCBWNDW CHARS 3 Actual window, values: MSG BOT TOP

TUCBCRS BYTE Y

Appendix D. Field-Level Access Fields 279

TUCBCRSI BIT Y Cursor selection indicator

TUCBPFKI BIT Y PF-key has been pressed

TUCBENTR BIT Y Enter key was pressed

TUCBNOND BIT Y Suppress automatic end

TUCBCRSR BINARY Y Row of cursor receive/send

TUCBCRSC BINARY Y Column of cursor receive/send

TUCBCRST CHARS 15 Y TOF reference of cursor receive/send

TUCBPCTR BYTE Y Screen paging control

TUCBCHEC BIT Y Simulate checking error on page

TUCBPCRS BIT Y Put cursor on TOF field

TUCBXCRS BIT Y Put cursor on row/column specification

TUCBPIEP BIT Y Beep indicator

TUCBSUPS BIT Y Suppress scrolling

TUCBDYPR BIT Y Dynamic protection of windows

TUCBPNPL BIT Y Put cursor on prefix area

TUCBPNPI BIT Y Put cursor on noprompt line

TUCBMFRE BINARY MFS reason code (I/O-buffer --> TOF)

TUCBMIDT CHARS 8 Top window message ID

TUCBMIDM CHARS 8 Message window message ID

TUCBMIDB CHARS 8 Bottom window message ID

TUCBUSER CHARS 8 User identification

TUCBORIG CHARS 34 User origin

TUCBLID CHARS 1 User language

TUCBNID CHARS 1 User line format

TUCBMSTA CHARS 3 Message status, values: msg.fun

TUCBMSGC CHARS 5 Message generation count

TUCBPFKN CHARS 8 Y User PF-key table name

TUCBPFGR BINARY Y PF-keyset-group number

TUCBCNTR BYTE Y Control flags for end-user process

TUCBCMDL BIT Y Set cursor on command-line

TUCBEMSG BIT Y Erase DSLMSG data areas

TUCBSPMG BIT Y Suppress generating check messages

TUCBPFDY BIT Y PF-key set dynamically

TUCBMTCM BIT Y Message generation command active

TUCBSON BIT Y Sign-on in process

TUCBLSTP BIT Y Last page is reached

TUCBCMDH BIT Y Intensified display for command line

TUCBLINE BINARY Top line in message

TUCBESPA ADDRESS Address SPA area of DSLE...-exits

TUCBFUN CHARS 8 Actual (new) function name

TUCBCNTS BYTE Y Control flags 2 for end-user process

TUCBEOMC BIT Y EOM command active

280 API Guide

TUCBDAEN BIT Y Data checking modus for page

TUCBQUCC BIT Y Queue test command in process

TUCBACCN BINARY Current nesting ID

TUCBACCO BINARY Current occurrence

TUCBACCD BINARY Current data area

TUCBACSL BINARY Slot length

TUCBACSO BINARY Slot offset

TUCBACHL CHARS 8 Default panel for help

TUCBPFGS BINARY Y PF group of message window

TUCBCMPS CHARS 1 Y Save compression

TUCBMSTS CHARS 3 Y Save status msg/fun

TUCBMNFL BYTE Y MERVA Link flag

TUCBRMNA BIT Y Resume Merva Link application

TUCBACTM CHARS 8 Actual message ID

TUCBACTR BINARY Actual representative sequence number

TUCBNPRL BINARY Noprompt line number for CRS

TUCBCRSO BINARY Y Offset cursor in screen slot

TUCBWS1A ADDRESS Address free space in storage pool 1

TUCBWS1L BINARY Length free space pool 1

TUCBWS2A ADDRESS Address free space in storage pool 2

TUCBWS2L BINARY Length free space pool 2

TUCBWS3A ADDRESS Address free space in storage pool 3

TUCBWS3L BINARY Length free space pool 3

TUCBOCPS CHARS 4 Y Cursor position previous panel (row/column)

TUCBPSNO CHARS 4 Y Sign-on sequence no (feedback DSLNUSR)

TUCBHDCT BYTE Message header display format

TUCBHDS2 BIT Y Header type 2 display

TUCBOTTO CHARS 1 Y EUD : TOF trace

TUCBOTMF CHARS 1 Y EUD : MFS trace

TUCBOTPG CHARS 1 Y EUD : PGM trace

TUCBOTRN CHARS 12 Y Online trace setting reserved

Table 23. MFS Parameter List, DSLMFS MF=L

Field Type Size Write Description

MFSLTYP BINARY Y Type code

MFSLMED BINARY Y Medium-code

MFSLOPT1 BYTE Y

MFSLO1NM BIT Y OPT=NOMSG

MFSLO1FN BIT Y OPT=FUNC

MFSLO1CH BIT Y OPT=CHECK

MFSLO1RT BIT Y OPT=RETRY

MFSLO1CN BIT Y OPT=CONT

Appendix D. Field-Level Access Fields 281

Table 23. MFS Parameter List, DSLMFS MF=L (continued)

Field Type Size Write Description

MFSLO1PT BIT Y OPT=PROT

MFSLO1BT BIT Y OPT=BATCH

MFSLO1EM BIT Y OPT=ERRMSG

MFSLOPT2 BYTE Y

MFSLO2NI BIT Y OPT=NXTNI

MFSLO2DE BIT Y OPT=DEEDIT

MFSLO2CL BIT Y OPT=CLRPERM

MFSLO2DY BIT Y OPT=DYNBUF

MFSLO2DL BIT Y OPT=DELETE

MFSLO2WR BIT Y OPT=WRITE

MFSLO2RD BIT Y OPT=READ

MFSLRET BYTE Y Return code

MFSLREAS BINARY Y Reason code function dependent

MFSLMODN BINARY Y Module message number

MFSLMILF CHARS 1 Y Line format for network

MFSLWORK BYTE Y Work indicator

MFSLCECI BIT Y MFS exit invoked under CICS

MFSLXMGR BIT Y MFS exit invoked as an HLL exit

MFSLCOMA ADDRESS Y Address of MERVA ESA communication area

MFSLPERM ADDRESS Y Address of permanent storage

MFSLTEMP ADDRESS Y Address of temporary storage

MFSLENVA ADDRESS Y Address of environment string

MFSLMSG ADDRESS Y Address of message ID/load module name

MFSLTOF ADDRESS Y Address of DSLTOF

MFSLFLD ADDRESS Y Address of field reference

MFSLIBUF ADDRESS Y Address of input buffer

MFSLOBUF ADDRESS Y Address of output buffer

Table 24. MFS Permanent Storage, DSLMFS MF=PS

Field Type Size Write Description

MFSPP BINARY Storage length

MFSPENV CHARS 8 Y External environment string

MFSPIENV CHARS 8 Y Internal environment string

MFSPIND BYTE Permanent indicator

MFSPDYNP BIT Dynamic permanent storage

MFSPINRV BIT Reserved

MFSPPEMS BIT Y Pass error message to caller

MFSPTOFU BIT TOF full during MFS cycle

MFSPUSED BIT Save area in use (recursive test)

MFSPUEMS BIT Process error message (recursive)

282 API Guide

Table 24. MFS Permanent Storage, DSLMFS MF=PS (continued)

Field Type Size Write Description

MFSPINXM BIT Exit manager init by DSLMMFS

MFSPBAT BIT DC or batch process (BATCH=YES)

MFSPINDX BYTE MFS disable indicator

MFSPRCTR BINARY MFS recursion counter

MFSPRASF BYTE Save trace status from COMTRASF

MFSPTCTR BINARY Number of dynamic GETMAINs

MFSPTDAM ADDRESS Maximum dynamic area size

MFSPTDAA ADDRESS Current dynamic area size

MFSPTS ADDRESS Address of temporary storage pool

MFSPTSC ADDRESS Free space pointer

MFSPTSE ADDRESS End address of pool

MFSPTSA ADDRESS Address of actual temporary storage

MFSPMTBA ADDRESS Address of internal load table

MFSPUCOM ADDRESS Y User exit communication field

MFSPCCOM CHARS 16 Y Check exit communication field

MFSPSCOM CHARS 16 Y Separation exit communication field

MFSPMODN CHARS 8 Module/MCB/PFK table name

MFSPMODY CHARS 8 Module entry name

MFSPMODA ADDRESS Load module address

MFSPMODE ADDRESS Module entry address

MFSPMCBM ADDRESS MCB message descriptor address

MFSPMCBD ADDRESS MCB device descriptor address

MFSPMIDN CHARS 8 Message identification

MFSPMTTE ADDRESS Address of current MTT entry

MFSPPFKN CHARS 8 PF-key table name

MFSPPFKA ADDRESS PF-key table address

MFSPMPTE ADDRESS Address of current MPT entry

MFSPEMSB BINARY MFS error message (highest severity)

MFSPEMSA BINARY Actual message length

MFSPEMSR BINARY Error message reason

MFSPEMSG CHARS 80 Message

MOMSRETC BYTE Return code

MOMSRSNC BYTE Reason code

MOMSTAB ADDRESS Address of message table

MOMSLAN CHARS 1 Language ID

MOMSMID CHARS 7 Message ID

MOMSWORK CHARS 8 Work area

The following fields are the MFS Error message substitution variables:

Appendix D. Field-Level Access Fields 283

MFSPOMRC CHARS 2 Y @0 MFS return code

MFSPOMRS BINARY Y @1 MFS reason code

MFSPOMID CHARS 8 Y @2 Message ID

MFSPOMOD CHARS 8 Y @3 MCB/module name

MFSPOMFL CHARS 8 Y @4 Name of TOF field

MFSPOMLV BINARY Y @5 Nesting identifier/module number

MFSPOMSQ BINARY Y @6 Field group index

MFSPOMOC BINARY Y @7 Repeatable sequence index

MFSPOMDA BINARY Y @8 Field data area

MFSPOML1 BINARY Y @9 Page/line number

MFSPOML2 BINARY Y @10 Line number 2

MFSPOMTS BINARY Y @11 Sub-function reason code

MFSPOMTC BINARY Y @12 Sub-function return code

MFSPOMCN CHARS 8 Y @13 Screen command name

MFSPOMPN BINARY Y @14 Parameter number

MFSPOMST CHARS 24 Y @15 String/key

MFSPOMPP CHARS 3 Y @16 Prefix command

MFSPOMFI CHARS 1 Y @17 Language id/form

MFSPTBL BINARY Buffer length for message initialization

MFSPTD CHARS 20 Permanent area for message initialization

MFSPPSND CHARS 8 Send status DSLMPSXX

MFSPPBL BINARY Buffer length for window control

MFSPPDL BINARY Data length in buffer +4

Table 25. MFS Temporary Storage, DSLMFS MF=TS

Field Type Size Write Description

MFSTUSLL BINARY Storage length

MFSTUS00 BINARY Y Reserved (’DY’ = dynamic indicator)

MFSTUSNX ADDRESS Address of next level temporary storage

MFSTUSPR ADDRESS Address of prev level temporary storage

MFSTIENV CHARS 8 Y Internal environment information

MFSTPLSV ADDRESS Y Parmlist save word

MFSTPRET ADDRESS Y Return save word

MFSAVBAK BINARY Y Backward chain pointer

MFSAVFOR BINARY Y Forward chain pointer

MFSAVRET BINARY Y Return location

MFSAVENT BINARY Y Entry address

MFSAVR0 BINARY Y r0-r12

Table 26. MFS Field Reference, DSLMFS MF=FLDREF

Field Type Size Write Description

FLDNI BINARY Y Field nesting identifier

284 API Guide

Table 26. MFS Field Reference, DSLMFS MF=FLDREF (continued)

Field Type Size Write Description

FLDFG BINARY Y Field group index

FLDRS BINARY Y Field repeatable seq. index

FLDNAME CHARS 8 Y Field name

FLDDA BINARY Y Field data area index

FLDOPT CHARS 1 Y Field option indicator

FLDSTAT BYTE Y Field status

FLDSTEX BIT Y Sub-field extension exists

FLDSTEM BIT Y Data area empty

FLDINIT BIT Y TOF request type was init

FLDCHEK BIT Y TOF checking required

FLDSTX2 BIT Y 2nd extension exists

The following sub-field fields exist if FLDSTEX is 1:

FLDNAME0 CHARS 8 Y Field master name

FLDOFF BINARY Y Offset of subfield

FLDLEN BINARY Y Length of subfield

FLDLENM BINARY Y Maximum length of subfield

The following nested repeatable sequence fields can exist if FLDSTX2 is 1:

FLDRSXNN BINARY Y Number of RS indexes used (following)

FLDRSXO1 BINARY Y Occurrence index in first rep seq

FLDRSXO2 BINARY Y Occurrence index in nested rep seqs

FLDRSXO3 BINARY Y Occurrence index in nested rep seqs

FLDRSXO4 BINARY Y Occurrence index in nested rep seqs

FLDRSXO5 BINARY Y Occurrence index in nested rep seqs

FLDRSXO6 BINARY Y Occurrence index in nested rep seqs

FLDRSXO7 BINARY Y Occurrence index in nested rep seqs

FLDRSXO8 BINARY Y Occurrence index in nested rep seqs

FLDRSXO9 BINARY Y Occurrence index in nested rep seqs

Table 27. Nucleus intertask communication parameter list, DSLNIC MF=L

Field Type Size Write Description

NICICB ADDRESS Address of ICB

NICTIME PACKED 4 MERVA startup time (0hhmmssF)

NICCOM ADDRESS Address of DSLCOM

NICECB ADDRESS Communication ECB

NICNAME ADDRESS Address of servicing module name (REQ)

NICPL ADDRESS Address of PARMLIST

NICBUF ADDRESS Address of buffer (REQ,RESP)

Appendix D. Field-Level Access Fields 285

Table 27. Nucleus intertask communication parameter list, DSLNIC MF=L (continued)

Field Type Size Write Description

NICTYPE BYTE Type of request

NICOPT BYTE Option byte

NICNTS BIT Interregion from DSLNTS only

NICINTER BIT Interregion from requestor

NICINTRA BIT Intraregion from requestor

NICVER3 BIT Error info in NICPL

NICDYNB BIT Dynamic buffer allowed

NICRC BYTE Return code

NICERRIP BINARY Error info parm list buffer

NICERRIB BINARY Error info buffer

Table 28. User File Record, DSLUSR MF=U

Field Type Size Write Description

USRULBM BINARY Maximal buffer length

USRULB BINARY Buffer length

USRUKEY CHARS 8 Key (user ID)

USRUSCPW CHARS 8 Scrambled password

USRUNAME CHARS 18 User’s name

USRUORID CHARS 34 Origin ID

USRUDATE CHARS 8 ISO date of last update

USRUTIME CHARS 8 Time of last update

USRUUUID CHARS 8 Update user ID

USRUDATP CHARS 8 ISO date of last password change

USRUTIMP CHARS 8 Time of last password change

USRUPFKS CHARS 8 PF-key setname

USRULID CHARS 1 Language ID

USRUNLIF CHARS 1 Noprompt line format

USRUDNW CHARS 1 Default network (for msg. type)

USRUAUT CHARS 1 Record authorization (U = not auth.)

USRUFTAB CHARS 18×8 Allowed functions (max 18)

USRUAMSG CHARS 24×8 Message types assigned to user

USRUNOCM CHARS 60 Commands forbidden for user ID

USRUUFLM CHARS 8 FLM administrator

USRUIDTA CHARS 17 Internal data area / reserved

USRUDATS CHARS 8 ISO date of last sign-on

USRUIMRX BINARY Traffic Reconciliation user class

USRUGRP CHARS 8 Group ID

USRUUSON BINARY Number of rejected sign-ons

USRUUTYP CHARS 1 User type (B,K,L,..)

USRUUDTA CHARS 48 User-data area 1

286 API Guide

Table 28. User File Record, DSLUSR MF=U (continued)

Field Type Size Write Description

USRUUDTB CHARS 48 User-data area 2

The following fields comprise the user file pending area:

USRUPW1P CHARS 8 Scrambled password

USRUPW2P CHARS 8 Scrambled password

USRUNAMP CHARS 18 User’s name

USRUORGP CHARS 34 Origin ID

USRUUSRP CHARS 8 Update user ID

USRULIDP CHARS 1 Language ID

USRUNOPP CHARS 1 Noprompt line format

USRUNETP CHARS 1 default network (for msg. type)

USRUFCTP CHARS 18×8 Allowed functions (max 18)

USRUPFKP CHARS 8 PF-key-set name

USRUMTPP CHARS 24×8 Message types assigned to user

USRUUCDP CHARS 60 Commands forbidden for user ID

USRUFLMP CHARS 8 FLM administrator

USRUDT1P CHARS 48 User-data area 1

USRUDT2P CHARS 48 User-data area 2

USRUAUT2 CHARS 1 Record authorization 2 (U = not auth.)

USRUUTPP CHARS 1 User type (B,K,L,..)

USRUUSNP BINARY Number of rejected sign-ons

USRUGRPP CHARS 8 Group ID

USRUIMRP BINARY Traffic Reconciliation user class

USRUFILL CHARS 29 For expansion

USRUWKEY CHARS 8 Alternate scrambling key

Table 29. CICS Common Work Area (CWA), DSLCWA

Field Type Size Write Description

CWATIME PACKED 4 MERVA startup time (0hhmmssF)

MERVA ESA Function Table
A field of the function table is accessed by specifying the qualified name
‘xxxxxxxx.yyyyyyyy’ as the field name in the FLDG call. Alternatively, it can be
specified as ‘xxxxxxxx.nnnnnnnn’.

xxxxxxxx is the field name as shown in the table below

yyyyyyyy stands for the actual function name

nnnnnnnn is a decimal number indicating the position of the requested
function table entry in the function table.

Appendix D. Field-Level Access Fields 287

The field name, the function name, and the number can be specified in their actual
length with a maximum of 8 bytes. Padding with blanks or leading zeroe is not
necessary.

An FLDG call for FNTNAME.nnnnnnnn returns the name of a function in an
8-byte character field.

An FLDG call for FNTINDEX returns the number of functions defined in the
function table in form of a binary value.

An FLDG call for FNTINDEX.yyyyyyyy returns the index of the named function
table entry in form of a binary value.

The function table to be evaluated is accessed in the address space where DSLAPI
is running. If DSLAPI is running in a different address space from MERVA ESA
nucleus, this function table is not necessarily identical to the one used by the
nucleus.

Table 30. Function Table Entry (FNT), DSLFNT

Field Type Size Write Description

FNTNAME CHARS 8 Function name

FNTROUTN CHARS 8 Name of routing table

FNTROUTA ADDRESS Address of routing table

FNTHSN BINARY Highest QSN used in this queue

FNTFQE BINARY First QKTE in this queue

FNTLQE BINARY Last QKTE in this queue

FNTECBA ADDRESS Address of trigger ECB

FNTSIZE BINARY Size for storing messages in queue

FNTTRESH BINARY Threshold number of this queue

FNTKFLD1 CHARS 8 Name of key field 1

FNTKLEN1 BINARY Length of key 1

FNTKOFF1 BINARY Offset to start of key 1

FNTKFLD2 CHARS 8 Name of key field 2

FNTKLEN2 BINARY Length of key 2

FNTKOFF2 BINARY Offset to start of key 2

FNTNXTNM CHARS 8 Name of next function

FNTHCONM CHARS 8 Name of hardcopy function

FNTTRAN CHARS 8 Transaction name

FNTLTE1 CHARS 8 Logical terminal name

FNTLTE2 CHARS 8 Logical terminal name

FNTNSO BINARY Number of signed–on end users

FNTMSGST BYTE Message processing status

FNTDENT BIT New message generation allowed

FNTPROT BIT Screen protected

FNTKMSG BIT Keep message after print

FNTPRON BIT Noprompt only display allowed

FNTNRKY BIT Retype verification allowed

288 API Guide

Table 30. Function Table Entry (FNT), DSLFNT (continued)

Field Type Size Write Description

FNTPROM BIT Noprompt processing allowed

FNTCHCK BIT Message check specified

FNTFRAME BIT Frame MSGID specified

FNTQUEST BYTE Queue status 1

FNTIGNAC BIT IMS only: ignore active status

FNTHLDC BIT Function in HOLD currently

FNTHLDI BIT Function in HOLD initial

FNTACTIV BIT Function in ACTIVE status

FNTNOTY BIT Notify = YES is specified

FNTDSLQ BIT Function with queue

FNTDUMQ BIT Function with dummy queue

FNTSTART BIT Start command executed

FNTRSI BIT Restart info in this queue

FNTFRAMT CHARS 8 Name of top-frame MSGID

FNTFRAMB CHARS 8 Name of bottom-frame MSGID

FNTUAPL BINARY User application action

FNTFMID CHARS 1 Printer format ID

FNTCOMPF CHARS 1 Compression format

FNTCOMND BYTE Valid commands

FNTCAUT BIT AUT command

FNTCDEL BIT DELETE command

FNTCOK BIT OK command

FNTCROU BIT ROUTE command

FNTXPND BYTE Field expansion request for function

FNTXPCO BIT Common names expansion

FNTXPPR BIT Private names expansion

FNTXPNC BIT Noprompt msg conditional expansion

FNTXPPC BIT Prompt msg conditional expansion

FNTXPCL BIT Clear is requested

FNTXPNO BIT No field expansion

FNTMLIM BINARY Message limit within IMS schedule cycle

FNTPFGN BYTE PF-key groupnumber

FNTMSGS2 BYTE Message processing status 2

FNTMS2M2 BIT SWIFT II display mode

FNTMS2FE BIT Four–eyes principle on

FNTMS2FQ BIT Check against all queues

FNTMS2FC BIT Any command forbidden

FNTCKAUT BIT Checkaut = Yes is specified

FNTXKEYS BIT Queue with extra keys

FNTPFKY CHARS 8 User PF-key table name

Appendix D. Field-Level Access Fields 289

Table 30. Function Table Entry (FNT), DSLFNT (continued)

Field Type Size Write Description

FNTFPGM CHARS 8 Name of DSLEUD function program

FNTCOPYQ CHARS 8 Name of copy queue

FNTRELA1 BINARY Address of first related function

FNTRELA2 BINARY Address of second related function

FNTMSGID CHARS 8 MSGID for mapping and formatting

FNTNQE BINARY Number of queue elements in this queue

FNTQUST2 BYTE Second queue status

FNTQ2DQF BIT No display with DQ filled

FNTQ2TOF BIT No TOF format in this queue

FNTQ2LST BIT Start msg sel with queue list

FNTQ2STS BIT Store = Small specified

FNTQ2STL BIT Store = Large specified

FNTQ2NM1 BIT Key 1 = NOMOD

FNTQ2NM2 BIT Key 2 = NOMOD

FNTQ2MQI BIT MQI attachment transaction

FNTLIID CHARS 1 ID of list MCB

FNTLILEN BINARY Maximum length of list data

FNTCKIND BYTE Checkpoint/msglim indicator

FNTMLSET BIT Msglim set

FNTCKSET BIT Checkpoint set

FNTQUST3 BYTE Third queue status

FNTQ3AUT BIT Function with automatic start

FNTINTQ CHARS 8 Intermediate queue EDI-SWIFT conversion

FNTDESCR CHARS 128 Descriptive text

290 API Guide

Appendix E. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Deutschland
Informationssysteme GmbH
Department 3982
Pascalstrasse 100

© Copyright IBM Corp. 1987, 2001 291

70569 Stuttgart
Germany

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement
or any equivalent agreement between us.

The following paragraph does apply to the US only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States,
other countries, or both:
v Advanced Peer-to-Peer Networking
v AIX
v APPN
v C/370
v CICS
v CICS/ESA
v CICS/MVS
v CICS/VSE
v DB2
v DB2 Universal Database
v Distributed Relational Database Architecture
v DRDA
v IBM
v IMS/ESA
v Language Environment
v MQSeries

292 API Guide

v MVS
v MVS/ESA
v MVS/XA
v OS/2
v OS/390
v RACF
v VisualAge
v VSE/ESA
v VTAM

Workstation (AWS) and Directory Services Application (DSA) are trademarks of
S.W.I.F.T., La Hulpe in Belgium.

Pentium is a trademark of Intel Corporation.

PC Direct is a trademark of Ziff Communications Company in the United States,
other countries, or both, and is used by IBM Corporation under license.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or
both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix E. Notices 293

294 API Guide

Glossary of Terms and Abbreviations

This glossary defines terms as they are used in
this book. If you do not find the terms you are
looking for, refer to the IBM Dictionary of
Computing, New York: McGraw-Hill, and the
S.W.I.F.T. User Handbook.

A
ACB. Access method control block.

ACC. MERVA Link USS application control command
application. It provides a means of operating MERVA
Link USS in USS shell and MVS batch environments.

Access method control block (ACB). A control block
that links an application program to VSAM or VTAM.

ACD. MERVA Link USS application control daemon.

ACT. MERVA Link USS application control table.

address. See SWIFT address.

address expansion. The process by which the full
name of a financial institution is obtained using the
SWIFT address, telex correspondent’s address, or a
nickname.

AMPDU. Application message protocol data unit,
which is defined in the MERVA Link P1 protocol, and
consists of an envelope and its content.

answerback. In telex, the response from the dialed
correspondent to the WHO R U signal.

answerback code. A group of up to 6 letters following
or contained in the answerback. It is used to check the
answerback.

APC. Application control.

API. Application programming interface.

APPC. Advanced Program-to-Program
Communication based on SNA LU 6.2 protocols.

APPL. A VTAM definition statement used to define a
VTAM application program.

application programming interface (API). An
interface that programs can use to exchange data.

application support filter (ASF). In MERVA Link, a
user-written program that can control and modify any
data exchanged between the Application Support Layer
and the Message Transfer Layer.

application support process (ASP). An executing
instance of an application support program. Each
application support process is associated with an ASP
entry in the partner table. An ASP that handles
outgoing messages is a sending ASP; one that handles
incoming messages is a receiving ASP.

application support program (ASP). In MERVA Link,
a program that exchanges messages and reports with a
specific remote partener ASP. These two programs must
agree on which conversation protocol they are to use.

ASCII. American Standard Code for Information
Interchange. The standard code, using a coded set
consisting of 7-bit coded characters (8 bits including
parity check), used for information interchange among
data processing systems, data communication systems,
and associated equipment. The ASCII set consists of
control characters and graphic characters.

ASF. Application support filter.

ASF. (1) Application support process. (2) Application
support program.

ASPDU. Application support protocol data unit,
which is defined in the MERVA Link P2 protocol.

authentication. The SWIFT security check used to
ensure that a message has not changed during
transmission, and that it was sent by an authorized
sender.

authenticator key. A set of alphanumeric characters
used for the authentication of a message sent via the
SWIFT network.

authenticator-key file. The file that stores the keys
used during the authentication of a message. The file
contains a record for each of your financial institution’s
correspondents.

B
Back-to-Back (BTB). A MERVA Link function that
enables ASPs to exchange messages in the local MERVA
Link node without using data communication services.

bank identifier code. A 12-character code used to
identify a bank within the SWIFT network. Also called
a SWIFT address. The code consists of the following
subcodes:
v The bank code (4 characters)
v The ISO country code (2 characters)
v The location code (2 characters)
v The address extension (1 character)

© Copyright IBM Corp. 1987, 2001 295

v The branch code (3 characters) for a SWIFT user
institution, or the letters “BIC” for institutions that
are not SWIFT users.

Basic Security Manager (BSM). A component of
VSE/ESA Version 2.4 that is invoked by the System
Authorization Facility, and used to ensure signon and
transaction security.

BIC. Bank identifier code.

BIC Bankfile. A tape of bank identifier codes supplied
by S.W.I.F.T.

BIC Database Plus Tape. A tape of financial
institutions and currency codes, supplied by S.W.I.F.T.
The information is compiled from various sources and
includes national, international, and cross-border
identifiers.

BIC Directory Update Tape. A tape of bank identifier
codes and currency codes, supplied by S.W.I.F.T., with
extended information as published in the printed BIC
Directory.

body. The second part of an IM-ASPDU. It contains
the actual application data or the message text that the
IM-AMPDU transfers.

BSC. Binary synchronous control.

BSM. Basic Security Manager.

BTB. Back-to-back.

buffer. A storage area used by MERVA programs to
store a message in its internal format. A buffer has an
8-byte prefix that indicates its length.

C
CBT. SWIFT computer-based terminal.

CCSID. Coded character set identifier.

CDS. Control data set.

central service. In MERVA, a service that uses
resources that either require serialization of access, or
are only available in the MERVA nucleus.

CF message. Confirmed message. When a sending
MERVA Link system is informed of the successful
delivery of a message to the receiving application, it
routes the delivered application messages as CF
messages, that is, messages of class CF, to an ACK wait
queue or to a complete message queue.

COA. Confirm on arrival.

COD. Confirm on delivery.

coded character set identifier (CCSID). The name of a
coded set of characters and their code point
assignments.

commit. In MQSeries, to commit operations is to make
the changes on MQSeries queues permanent. After
putting one or more messages to a queue, a commit
makes them visible to other programs. After getting
one or more messages from a queue, a commit
permanently deletes them from the queue.

confirm-on-arrival (COA) report. An MQSeries report
message type created when a message is placed on that
queue. It is created by the queue manager that owns
the destination queue.

confirm-on-delivery (COD) report. An MQSeries
report message type created when an application
retrieves a message from the queue in a way that
causes the message to be deleted from the queue. It is
created by the queue manager.

control fields. In MERVA Link, fields that are part of
a MERVA message on the queue data set and of the
message in the TOF. Control fields are written to the
TOF at nesting identifier 0. Messages in SWIFT format
do not contain control fields.

correspondent. An institution to which your
institution sends and from which it receives messages.

correspondent identifier. The 11-character identifier of
the receiver of a telex message. Used as a key to
retrieve information from the Telex correspondents file.

cross-system coupling facility. See XCF.

coupling services. In a sysplex, the functions of XCF
that transfer data and status information among the
members of a group that reside in one or more of the
MVS systems in the sysplex.

couple data set. See XCF couple data set.

CTP. MERVA Link command transfer processor.

currency code file. A file containing the currency
codes, together with the name, fraction length, country
code, and country names.

D
daemon. A long-lived process that runs unattended to
perform continuous or periodic systemwide functions.

DASD. Direct access storage device.

data area. An area of a predefined length and format
on a panel in which data can be entered or displayed.
A field can consist of one or more data areas.

data element. A unit of data that, in a certain context,
is considered indivisible. In MERVA Link, a data

296 API Guide

element consists of a 2-byte data element length field, a
2-byte data-element identifier field, and a field of
variable length containing the data element data.

datagram. In TCP/IP, the basic unit of information
passed across the Internet environment. This type of
message does not require a reply, and is the simplest
type of message that MQSeries supports.

data terminal equipment. That part of a data station
that serves as a data source, data link, or both, and
provides for the data communication control function
according to protocols.

DB2. A family of IBM licensed programs for relational
database management.

dead-letter queue. A queue to which a queue
manager or application sends messages that it cannot
deliver. Also called undelivered-message queue.

dial-up number. A series of digits required to
establish a connection with a remote correspondent via
the public telex network.

direct service. In MERVA, a service that uses resources
that are always available and that can be used by
several requesters at the same time.

display mode. The mode (PROMPT or NOPROMPT)
in which SWIFT messages are displayed. See PROMPT
mode and NOPROMPT mode.

distributed queue management (DQM). In MQSeries
message queuing, the setup and control of message
channels to queue managers on other systems.

DQM. Distributed queue management.

DTE. Data terminal equipment.

E
EBCDIC. Extended Binary Coded Decimal
Interchange Code. A coded character set consisting of
8-bit coded characters.

ECB. Event control block.

EDIFACT. Electronic Data Interchange for
Administration, Commerce and Transport (a United
Nations standard).

ESM. External security manager.

EUD. End-user driver.

exception report. An MQSeries report message type
that is created by a message channel agent when a
message is sent to another queue manager, but that
message cannot be delivered to the specified
destination queue.

external line format (ELF) messages. Messages that
are not fully tokenized, but are stored in a single field
in the TOF. Storing messages in ELF improves
performance, because no mapping is needed, and
checking is not performed.

external security manager (ESM). A security product
that is invoked by the System Authorization Facility.
RACF is an example of an ESM.

F
FDT. Field definition table.

field. In MERVA, a portion of a message used to enter
or display a particular type of data in a predefined
format. A field is located by its position in a message
and by its tag. A field is made up of one or more data
areas. See also data area.

field definition table (FDT). The field definition table
describes the characteristics of a field; for example, its
length and number of its data areas, and whether it is
mandatory. If the characteristics of a field change
depending on its use in a particular message, the
definition of the field in the FDT can be overridden by
the MCB specifications.

field group. One or several fields that are defined as
being a group. Because a field can occur more than
once in a message, field groups are used to distinguish
them. A name can be assigned to the field group
during message definition.

field group number. In the TOF, a number is assigned
to each field group in a message in ascending order
from 1 to 255. A particular field group can be accessed
using its field group number.

field tag. A character string used by MERVA to
identify a field in a network buffer. For example, for
SWIFT field 30, the field tag is :30:.

FIN. Financial application.

FIN-Copy. The MERVA component used for SWIFT
FIN-Copy support.

finite state machine. The theoretical base describing
the rules of a service request’s state and the conditions
to state transitions.

FMT/ESA. MERVA-to-MERVA Financial Message
Transfer/ESA.

form. A partially-filled message containing data that
can be copied for a new message of the same message
type.

G
GPA. General purpose application.

Glossary of Terms and Abbreviations 297

H
HFS. Hierarchical file system.

hierarchical file system (HFS). A system for
organizing files in a hierarchy, as in a UNIX system.
OS/390 UNIX System Services files are organized in an
HFS. All files are members of a directory, and each
directory is in turn a member of a directory at a higher
level in the HFS. The highest level in the hierarchy is
the root directory.

I
IAM. Interapplication messaging (a MERVA Link
message exchange protocol).

IM-ASPDU. Interapplication messaging application
support protocol data unit. It contains an application
message and consists of a heading and a body.

incore request queue. Another name for the request
queue to emphasize that the request queue is held in
memory instead of on a DASD.

InetD. Internet Daemon. It provides TCP/IP
communication services in the OS/390 USS
environment.

initiation queue. In MQSeries, a local queue on which
the queue manager puts trigger messages.

input message. A message that is input into the
SWIFT network. An input message has an input
header.

INTERCOPE TelexBox. This telex box supports
various national conventions for telex procedures and
protocols.

interservice communication. In MERVA ESA, a
facility that enables communication among services if
MERVA ESA is running in a multisystem environment.

intertask communication. A facility that enables
application programs to communicate with the MERVA
nucleus and so request a central service.

IP. Internet Protocol.

IP message. In-process message. A message that is in
the process of being transferred to another application.

ISC. Intersystem communication.

ISN. Input sequence number.

ISN acknowledgment. A collective term for the
various kinds of acknowledgments sent by the SWIFT
network.

ISO. International Organization for Standardization.

ITC. Intertask communication.

J
JCL. Job control language.

journal. A chronological list of records detailing
MERVA actions.

journal key. A key used to identify a record in the
journal.

journal service. A MERVA central service that
maintains the journal.

K
KB. Kilobyte (1024 bytes).

key. A character or set of characters used to identify
an item or group of items. For example, the user ID is
the key to identify a user file record.

key-sequenced data set (KSDS). A VSAM data set
whose records are loaded in key sequence and
controlled by an index.

keyword parameter. A parameter that consists of a
keyword, followed by one or more values.

KSDS. Key-sequenced data set.

L
LAK. Login acknowledgment message. This message
informs you that you have successfully logged in to the
SWIFT network.

large message. A message that is stored in the large
message cluster (LMC). The maximum length of a
message to be stored in the VSAM QDS is 31900 bytes.
Messages up to 2MB can be stored in the LMC. For
queue management using DB2 no distinction is made
between messages and large messages.

large queue element. A queue element that is larger
than the smaller of:

v The limiting value specified during the customization
of MERVA

v 32KB

LC message. Last confirmed control message. It
contains the message-sequence number of the
application or acknowledgment message that was last
confirmed; that is, for which the sending MERVA Link
system most recently received confirmation of a
successful delivery.

LDS. Logical data stream.

LMC. Large message cluster.

298 API Guide

LNK. Login negative acknowledgment message. This
message indicates that the login to the SWIFT network
has failed.

local queue. In MQSeries, a queue that belongs to a
local queue manager. A local queue can contain a list of
messages waiting to be processed. Contrast with remote
queue.

local queue manager. In MQSeries, the queue
manager to which the program is connected, and that
provides message queuing services to that program.
Queue managers to which a program is not connected
are remote queue managers, even if they are running
on the same system as the program.

login. To start the connection to the SWIFT network.

LR message. Last received control message, which
contains the message-sequence number of the
application or acknowledgment message that was last
received from the partner application.

LSN. Login sequence number.

LT. See LTERM.

LTC. Logical terminal control.

LTERM. Logical terminal. Logical terminal names
have 4 characters in CICS and up to 8 characters in
IMS.

LU. A VTAM logical unit.

M
maintain system history program (MSHP). A
program used for automating and controlling various
installation, tailoring, and service activities for a VSE
system.

MCA. Message channel agent.

MCB. Message control block.

MERVA ESA. The IBM licensed program Message
Entry and Routing with Interfaces to Various
Applications for ESA.

MERVA Link. A MERVA component that can be used
to interconnect several MERVA systems.

message. A string of fields in a predefined form used
to provide or request information. See also SWIFT
financial message.

message body. The part of the message that contains
the message text.

message category. A group of messages that are
logically related within an application.

message channel. In MQSeries distributed message
queuing, a mechanism for moving messages from one
queue manager to another. A message channel
comprises two message channel agents (a sender and a
receiver) and a communication link.

message channel agent (MCA). In MQSeries, a
program that transmits prepared messages from a
transmission queue to a communication link, or from a
communication link to a destination queue.

message control block (MCB). The definition of a
message, screen panel, net format, or printer layout
made during customization of MERVA.

Message Format Service (MFS). A MERVA direct
service that formats a message according to the
medium to be used, and checks it for formal
correctness.

message header. The leading part of a message that
contains the sender and receiver of the message, the
message priority, and the type of message.

Message Integrity Protocol (MIP). In MERVA Link,
the protocol that controls the exchange of messages
between partner ASPs. This protocol ensures that any
loss of a message is detected and reported, and that no
message is duplicated despite system failures at any
point during the transfer process.

message-processing function. The various parts of
MERVA used to handle a step in the
message-processing route, together with any necessary
equipment.

message queue. See queue.

Message Queue Interface (MQI). The programming
interface provided by the MQSeries queue managers. It
provides a set of calls that let application programs
access message queuing services such as sending
messages, receiving messages, and manipulating
MQSeries objects.

Message Queue Manager (MQM). An IBM licensed
program that provides message queuing services. It is
part of the MQSeries set of products.

message reference number (MRN). A unique 16-digit
number assigned to each message for identification
purposes. The message reference number consists of an
8-digit domain identifier that is followed by an 8-digit
sequence number.

message sequence number (MSN). A sequence
number for messages transferred by MERVA Link.

message type (MT). A number, up to 7 digits long,
that identifies a message. SWIFT messages are
identified by a 3-digit number; for example SWIFT
message type MT S100.

Glossary of Terms and Abbreviations 299

MFS. Message Format Service.

MIP. Message Integrity Protocol.

MPDU. Message protocol data unit, which is defined
in P1.

MPP. In IMS, message-processing program.

MQA. MQ Attachment.

MQ Attachment (MQA). A MERVA feature that
provides message transfer between MERVA and a
user-written MQI application.

MQH. MQSeries queue handler.

MQI. Message queue interface.

MQM. Message queue manager.

MQS. MQSeries nucleus server.

MQSeries. A family of IBM licensed programs that
provides message queuing services.

MQSeries nucleus server (MQS). A MERVA
component that listens for messages on an MQI queue,
receives them, extracts a service request, and passes it
via the request queue handler to another MERVA ESA
instance for processing.

MQSeries queue handler (MQH). A MERVA
component that performs service calls to the Message
Queue Manager via the provided Message Queue
Interface.

MRN. Message reference number.

MSC. MERVA system control facility.

MSHP. Maintain system history program.

MSN. Message sequence number.

MT. Message type.

MTP. (1) Message transfer program. (2) Message
transfer process.

MTS. Message Transfer System.

MTSP. Message Transfer Service Processor.

MTT. Message type table.

multisystem application. (1) An application program
that has various functions distributed across MVS
systems in a multisystem environment. (2) In XCF, an
authorized application that uses XCF coupling services.
(3) In MERVA ESA, multiple instances of MERVA ESA
that are distributed among different MVS systems in a
multisystem environment.

multisystem environment. An environment in which
two or more MVS systems reside on one or more
processors, and programs on one system can
communicate with programs on the other systems.
With XCF, the environment in which XCF services are
available in a defined sysplex.

multisystem sysplex. A sysplex in which one or more
MVS systems can be initialized as part of the sysplex.
In a multisystem sysplex, XCF provides coupling
services on all systems in the sysplex and requires an
XCF couple data set that is shared by all systems. See
also single-system sysplex.

MVS/ESA. Multiple Virtual Storage/Enterprise
Systems Architecture.

N
namelist. An MQSeries for MVS/ESA object that
contains a list of queue names.

nested message. A message that is composed of one
or more message types.

nested message type. A message type that is
contained in another message type. In some cases, only
part of a message type (for example, only the
mandatory fields) is nested, but this “partial” nested
message type is also considered to be nested. For
example, SWIFT MT 195 could be used to request
information about a SWIFT MT 100 (customer transfer).
The SWIFT MT 100 (or at least its mandatory fields) is
then nested in SWIFT MT 195.

nesting identifier. An identifier (a number from 2 to
255) that is used to access a nested message type.

network identifier. A single character that is placed
before a message type to indicate which network is to
be used to send the message; for example, S for SWIFT

network service access point (NSAP). The endpoint
of a network connection used by the SWIFT transport
layer.

NOPROMPT mode. One of two ways to display a
message panel. NOPROMPT mode is only intended for
experienced SWIFT Link users who are familiar with
the structure of SWIFT messages. With NOPROMPT
mode, only the SWIFT header, trailer, and pre-filled
fields and their tags are displayed. Contrast with
PROMPT mode.

NSAP. Network service access point.

nucleus server. A MERVA component that processes a
service request as selected by the request queue
handler. The service a nucleus server provides and the
way it provides it is defined in the nucleus server table
(DSLNSVT).

300 API Guide

O
object. In MQSeries, objects define the properties of
queue managers, queues, process definitions, and
namelists.

occurrence. See repeatable sequence.

option. One or more characters added to a SWIFT
field number to distinguish among different layouts for
and meanings of the same field. For example, SWIFT
field 60 can have an option F to identify a first opening
balance, or M for an intermediate opening balance.

origin identifier (origin ID). A 34-byte field of the
MERVA user file record. It indicates, in a MERVA and
SWIFT Link installation that is shared by several banks,
to which of these banks the user belongs. This lets the
user work for that bank only.

OSN. Output sequence number.

OSN acknowledgment. A collective term for the
various kinds of acknowledgments sent to the SWIFT
network.

output message. A message that has been received
from the SWIFT network. An output message has an
output header.

P
P1. In MERVA Link, a peer-to-peer protocol used by
cooperating message transfer processes (MTPs).

P2. In MERVA Link, a peer-to-peer protocol used by
cooperating application support processes (ASPs).

P3. In MERVA Link, a peer-to-peer protocol used by
cooperating command transfer processors (CTPs).

packet switched public data network (PSPDN). A
public data network established and operated by
network common carriers or telecommunication
administrations for providing packet-switched data
transmission.

panel. A formatted display on a display terminal.
Each page of a message is displayed on a separate
panel.

parallel processing. The simultaneous processing of
units of work by several servers. The units of work can
be either transactions or subdivisions of larger units of
work.

parallel sysplex. A sysplex that uses one or more
coupling facilities.

partner table (PT). In MERVA Link, the table that
defines how messages are processed. It consists of a

header and different entries, such as entries to specify
the message-processing parameters of an ASP or MTP.

PCT. Program Control Table (of CICS).

PDE. Possible duplicate emission.

PDU. Protocol data unit.

PF key. Program-function key.

positional parameter. A parameter that must appear
in a specified location relative to other parameters.

PREMIUM. The MERVA component used for SWIFT
PREMIUM support.

process definition object. An MQSeries object that
contains the definition of an MQSeries application. A
queue manager uses the definitions contained in a
process definition object when it works with trigger
messages.

program-function key. A key on a display terminal
keyboard to which a function (for example, a
command) can be assigned. This lets you execute the
function (enter the command) with a single keystroke.

PROMPT mode. One of two ways to display a
message panel. PROMPT mode is intended for SWIFT
Link users who are unfamiliar with the structure of
SWIFT messages. With PROMPT mode, all the fields
and tags are displayed for the SWIFT message.
Contrast with NOPROMPT mode.

protocol data unit (PDU). In MERVA Link a PDU
consists of a structured sequence of implicit and
explicit data elements:
v Implicit data elements contain other data elements.
v Explicit data elements cannot contain any other data

elements.

PSN. Public switched network.

PSPDN. Packet switched public data network.

PSTN. Public switched telephone network.

PT. Partner table.

PTT. A national post and telecommunication authority
(post, telegraph, telephone).

Q
QDS. Queue data set.

QSN. Queue sequence number.

queue. (1) In MERVA, a logical subdivision of the
MERVA queue data set used to store the messages
associated with a MERVA message-processing function.
A queue has the same name as the message-processing
function with which it is associated. (2) In MQSeries, an

Glossary of Terms and Abbreviations 301

object onto which message queuing applications can
put messages, and from which they can get messages.
A queue is owned and maintained by a queue
manager. See also request queue.

queue element. A message and its related control
information stored in a data record in the MERVA ESA
Queue Data Set.

queue management. A MERVA service function that
handles the storing of messages in, and the retrieval of
messages from, the queues of message-processing
functions.

queue manager. (1) An MQSeries system program that
provides queueing services to applications. It provides
an application programming interface so that programs
can access messages on the queues that the queue
manager owns. See also local queue manager and remote
queue manager. (2) The MQSeries object that defines the
attributes of a particular queue manager.

queue sequence number (QSN). A sequence number
that is assigned to the messages stored in a logical
queue by MERVA ESA queue management in
ascending order. The QSN is always unique in a queue.
It is reset to zero when the queue data set is formatted,
or when a queue management restart is carried out and
the queue is empty.

R
RACF. Resource Access Control Facility.

RBA. Relative byte address.

RC message. Recovered message; that is, an IP
message that was copied from the control queue of an
inoperable or closed ASP via the recover command.

ready queue. A MERVA queue used by SWIFT Link to
collect SWIFT messages that are ready for sending to
the SWIFT network.

remote queue. In MQSeries, a queue that belongs to a
remote queue manager. Programs can put messages on
remote queues, but they cannot get messages from
remote queues. Contrast with local queue.

remote queue manager. In MQSeries, a queue
manager is remote to a program if it is not the queue
manager to which the program is connected.

repeatable sequence. A field or a group of fields that
is contained more than once in a message. For example,
if the SWIFT fields 20, 32, and 72 form a sequence, and
if this sequence can be repeated up to 10 times in a
message, each sequence of the fields 20, 32, and 72
would be an occurrence of the repeatable sequence.

In the TOF, the occurrences of a repeatable sequence
are numbered in ascending order from 1 to 32767 and
can be referred to using the occurrence number.

A repeatable sequence in a message may itself contain
another repeatable sequence. To identify an occurrence
within such a nested repeatable sequence, more than
one occurrence number is necessary.

reply message. In MQSeries, a type of message used
for replies to request messages.

reply-to queue. In MQSeries, the name of a queue to
which the program that issued an MQPUT call wants a
reply message or report message sent.

report message. In MQSeries, a type of message that
gives information about another message. A report
message usually indicates that the original message
cannot be processed for some reason.

request message. In MQSeries, a type of message used
for requesting a reply from another program.

request queue. The queue in which a service request
is stored. It resides in main storage and consists of a set
of request queue elements that are chained in different
queues:

v Requests waiting to be processed

v Requests currently being processed

v Requests for which processing has finished

request queue handler (RQH). A MERVA ESA
component that handles the queueing and scheduling
of service requests. It controls the request processing of
a nucleus server according to rules defined in the finite
state machine.

Resource Access Control Facility (RACF). An IBM
licensed program that provides for access control by
identifying and verifying users to the system,
authorizing access to protected resources, logging
detected unauthorized attempts to enter the system,
and logging detected accesses to protected resources.

retype verification. See verification.

routing. In MERVA, the passing of messages from one
stage in a predefined processing path to the next stage.

RP. Regional processor.

RQH. Request queue handler.

RRDS. Relative record data set.

S
SAF. System Authorization Facility.

SCS. SNA character string

SCP. System control process.

302 API Guide

SDI. Sequential data set input. A batch utility used to
import messages from a sequential data set or a tape
into MERVA ESA queues.

SDO. Sequential data set output. A batch utility used
to export messages from a MERVA ESA queue to a
sequential data set or a tape.

SDY. Sequential data set system printer. A batch
utility used to print messages from a MERVA ESA
queue.

service request. A type of request that is created and
passed to the request queue handler whenever a
nucleus server requires a service that is not currently
available.

sequence number. A number assigned to each
message exchanged between two nodes. The number is
increased by one for each successive message. It starts
from zero each time a new session is established.

sign off. To end a session with MERVA.

sign on. To start a session with MERVA.

single-system sysplex. A sysplex in which only one
MVS system can be initialized as part of the sysplex. In
a single-system sysplex, XCF provides XCF services on
the system, but does not provide signalling services
between MVS systems. A single-system sysplex requires
an XCF couple data set. See also multisystem sysplex.

small queue element. A queue element that is smaller
than the smaller of:

v The limiting value specified during the customization
of MERVA

v 32KB

SMP/E. System Modification Program Extended.

SN. Session number.

SNA. Systems network architecture.

SNA character string. In SNA, a character string
composed of EBCDIC controls, optionally mixed with
user data, that is carried within a request or response
unit.

SPA. Scratch pad area.

SQL. Structured Query Language.

SR-ASPDU. The status report application support
PDU, which is used by MERVA Link for
acknowledgment messages.

SSN. Select sequence number.

subfield. A subdivision of a field with a specific
meaning. For example, the SWIFT field 32 has the
subfields date, currency code, and amount. A field can

have several subfield layouts depending on the way the
field is used in a particular message.

SVC. (1) Switched Virtual Circuit. (2) Supervisor call
instruction.

S.W.I.F.T. (1) Society for Worldwide Interbank
Financial Telecommunication s.c. (2) The network
provided and managed by the Society for Worldwide
Interbank Financial Telecommunication s.c.

SWIFT address. Synonym for bank identifier code.

SWIFT Correspondents File. The file containing the
bank identifier code (BIC), together with the name,
postal address, and zip code of each financial
institution in the BIC Directory.

SWIFT financial message. A message in one of the
SWIFT categories 1 to 9 that you can send or receive
via the SWIFT network. See SWIFT input message and
SWIFT output message.

SWIFT header. The leading part of a message that
contains the sender and receiver of the message, the
message priority, and the type of message.

SWIFT input message. A SWIFT message with an
input header to be sent to the SWIFT network.

SWIFT link. The MERVA ESA component used to
link to the SWIFT network.

SWIFT network. Refers to the SWIFT network of the
Society for Worldwide Interbank Financial
Telecommunication (S.W.I.F.T.).

SWIFT output message. A SWIFT message with an
output header coming from the SWIFT network.

SWIFT system message. A SWIFT general purpose
application (GPA) message or a financial application
(FIN) message in SWIFT category 0.

switched virtual circuit (SVC). An X.25 circuit that is
dynamically established when needed. It is the X.25
equivalent of a switched line.

sysplex. One or more MVS systems that communicate
and cooperate via special multisystem hardware
components and software services.

System Authorization Facility (SAF). An MVS or VSE
facility through which MERVA ESA communicates
with an external security manager such as RACF (for
MVS) or the basic security manager (for VSE).

System Control Process (SCP). A MERVA Link
component that handles the transfer of MERVA ESA
commands to a partner MERVA ESA system, and the
receipt of the command response. It is associated with a
system control process entry in the partner table.

Glossary of Terms and Abbreviations 303

System Modification Program Extended (SMP/E). A
licensed program used to install software and software
changes on MVS systems.

Systems Network Architecture (SNA). The
description of the logical structure, formats, protocols,
and operating sequences for transmitting information
units through, and for controlling the configuration and
operation of, networks.

T
tag. A field identifier.

TCP/IP. Transmission Control Protocol/Internet
Protocol.

Telex Correspondents File. A file that stores data
about correspondents. When the user enters the
corresponding nickname in a Telex message, the
corresponding information in this file is automatically
retrieved and entered into the Telex header area.

telex header area. The first part of the telex message.
It contains control information for the telex network.

telex interface program (TXIP). A program that runs
on a Telex front-end computer and provides a
communication facility to connect MERVA ESA with
the Telex network.

Telex Link. The MERVA ESA component used to link
to the public telex network via a Telex substation.

Telex substation. A unit comprised of the following:

v Telex Interface Program

v A Telex front-end computer

v A Telex box

Terminal User Control Block (TUCB). A control block
containing terminal-specific and user-specific
information used for processing messages for display
devices such as screen and printers.

test key. A key added to a telex message to ensure
message integrity and authorized delivery. The test key
is an integer value of up to 16 digits, calculated
manually or by a test-key processing program using the
significant information in the message, such as
amounts, currency codes, and the message date.

test-key processing program. A program that
automatically calculates and verifies a test key. The
Telex Link supports panels for input of test-key-related
data and an interface for a test-key processing program.

TFD. Terminal feature definitions table.

TID. Terminal identification. The first 9 characters of a
bank identifier code (BIC).

TOF. Originally the abbreviation of tokenized form, the
TOF is a storage area where messages are stored so that
their fields can be accessed directly by their field names
and other index information.

TP. Transaction program.

transaction. A specific set of input data that triggers
the running of a specific process or job; for example, a
message destined for an application program.

transaction code. In IMS and CICS, an alphanumeric
code that calls an IMS message processing program or
a CICS transaction. Transaction codes have 4 characters
in CICS and up to 8 characters in IMS.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of communication protocols that
support peer-to-peer connectivity functions for both
local and wide area networks.

transmission queue. In MQSeries, a local queue on
which prepared messages destined for a remote queue
manager are temporarily stored.

trigger event. In MQSeries, an event (such as a
message arriving on a queue) that causes a queue
manager to create a trigger message on an initiation
queue.

trigger message. In MQSeries, a message that contains
information about the program that a trigger monitor is
to start.

trigger monitor. In MQSeries, a continuously-running
application that serves one or more initiation queues.
When a trigger message arrives on an initiation queue,
the trigger monitor retrieves the message. It uses the
information in the trigger message to start a process
that serves the queue on which a trigger event
occurred.

triggering. In MQSeries, a facility that allows a queue
manager to start an application automatically when
predetermined conditions are satisfied.

TUCB. Terminal User Control Block.

TXIP. Telex interface program.

U
UMR. Unique message reference.

unique message reference (UMR). An optional
feature of MERVA ESA that provides each message
with a unique identifier the first time it is placed in a
queue. It is composed of a MERVA ESA installation
name, a sequence number, and a date and time stamp.

UNIT. A group of related literals or fields of an MCB
definition, or both, enclosed by a DSLLUNIT and
DSLLUEND macroinstruction.

304 API Guide

UNIX System Services (USS). A component of
OS/390, formerly called OpenEdition (OE), that creates
a UNIX environment that conforms to the XPG4 UNIX
1995 specifications, and provides two open systems
interfaces on the OS/390 operating system:

v An application program interface (API)

v An interactive shell interface

UN/EDIFACT. United Nations Standard for Electronic
Data Interchange for Administration, Commerce and
Transport.

USE. S.W.I.F.T. User Security Enhancements.

user file. A file containing information about all
MERVA ESA users; for example, which functions each
user is allowed to access. The user file is encrypted and
can only be accessed by authorized persons.

user identification and verification. The acts of
identifying and verifying a RACF-defined user to the
system during logon or batch job processing. RACF
identifies the user by the user ID and verifies the user
by the password or operator identification card
supplied during logon processing or the password
supplied on a batch JOB statement.

USS. UNIX System Services.

V
verification. Checking to ensure that the contents of a
message are correct. Two kinds of verification are:

v Visual verification: you read the message and
confirm that you have done so

v Retype verification: you reenter the data to be
verified

Virtual LU. An LU defined in MERVA Extended
Connectivity for communication between MERVA and
MERVA Extended Connectivity.

Virtual Storage Access Method (VSAM). An access
method for direct or sequential processing of fixed and
variable-length records on direct access devices. The
records in a VSAM data set or file can be organized in
logical sequence by a key field (key sequence), in the
physical sequence in which they are written on the data
set or file (entry sequence), or by relative-record
number.

Virtual Telecommunications Access Method (VTAM).
An IBM licensed program that controls communication
and the flow of data in an SNA network. It provides
single-domain, multiple-domain, and interconnected
network capability.

VSAM. Virtual Storage Access Method.

VTAM. Virtual Telecommunications Access Method
(IBM licensed program).

W
Windows NT service. A type of Windows NT
application that can run in the background of the
Windows NT operating system even when no user is
logged on. Typically, such a service has no user
interaction and writes its output messages to the
Windows NT event log.

X
X.25. An ISO standard for interface to packet switched
communications services.

XCF. Abbreviation for cross-system coupling facility,
which is a special logical partition that provides
high-speed caching, list processing, and locking
functions in a sysplex. XCF provides the MVS coupling
services that allow authorized programs on MVS
systems in a multisystem environment to communicate
with (send data to and receive data from) authorized
programs on other MVS systems.

XCF couple data sets. A data set that is created
through the XCF couple data set format utility and,
depending on its designated type, is shared by some or
all of the MVS systems in a sysplex. It is accessed only
by XCF and contains XCF-related data about the
sysplex, systems, applications, groups, and members.

XCF group. The set of related members defined to
SCF by a multisystem application in which members of
the group can communicate with (send data to and
receive data from) other members of the same group.
All MERVA systems working together in a sysplex
must pertain to the same XCF group.

XCF member. A specific function of a multisystem
application that is defined to XCF and assigned to a
group by the multisystem application. A member
resides on one system in a sysplex and can use XCF
services to communicate with other members of the
same group.

Glossary of Terms and Abbreviations 305

306 API Guide

Bibliography

MERVA ESA Publications
v MERVA for ESA Version 4: Application

Programming Interface Guide, SH12-6374
v MERVA for ESA Version 4: Advanced MERVA

Link, SH12-6390
v MERVA for ESA Version 4: Concepts and

Components, SH12-6381
v MERVA for ESA Version 4: Customization Guide,

SH12-6380
v MERVA for ESA Version 4: Diagnosis Guide,

SH12-6382
v MERVA for ESA Version 4: Installation Guide,

SH12-6378
v MERVA for ESA Version 4: Licensed Program

Specifications, GH12-6373
v MERVA for ESA Version 4: Macro Reference,

SH12-6377
v MERVA for ESA Version 4: Messages and Codes,

SH12-6379
v MERVA for ESA Version 4: Operations Guide,

SH12-6375
v MERVA for ESA Version 4: System Programming

Guide, SH12-6366
v MERVA for ESA Version 4: User’s Guide,

SH12-6376

MERVA ESA Components
Publications
v MERVA Automatic Message Import/Export Facility:

User’s Guide, SH12-6389
v MERVA Connection/NT, SH12-6339
v MERVA Connection/400, SH12-6340
v MERVA Directory Services, SH12-6367
v MERVA Extended Connectivity: Installation and

User’s Guide, SH12-6157
v MERVA Message Processing Client for Windows

NT: User’s Guide, SH12-6341
v MERVA-MQI Attachment User’s Guide,

SH12-6714
v MERVA Traffic Reconciliation, SH12-6392
v MERVA USE: Administration Guide, SH12-6338
v MERVA USE & Branch for Windows NT: User’s

Guide, SH12-6334

v MERVA USE & Branch for Windows NT:
Installation and Customization Guide, SH12-6335

v MERVA USE & Branch for Windows NT:
Application Programming Guide, SH12-6336

v MERVA USE & Branch for Windows NT:
Diagnosis Guide, SH12-6337

v MERVA USE & Branch for Windows NT:
Migration Guide, SH12-6393

v MERVA USE & Branch for Windows NT:
Installation and Customization Guide, SH12-6335

v MERVA Workstation Based Functions, SH12-6383

Other IBM Publications
v CICS/ESA V4.1 Application Programming Guide,

SC33-1169
v CICS/ESA V4.1 Application Programming

Reference, SC33-1170
v CICS Transaction Server for OS/390 V1.3

Application Programming Reference, SC33-1688
v CICS Transaction Server for OS/390 V1.3

Application Programming Guide, SC33-1687
v CICS/VSE V2.3 Application Programming Guide,

SC33-0712
v CICS/VSE V2.3 Application Programming

Reference, SC33-0713
v IBM C/370 V2 Programming Guide, SC09-1384
v IBM C/370 V2 Programming Guide for VSE,

SC09-1399
v IBM Language Environment for MVS & VM

Programming Guide, SC28-1939
v IBM Language Environment for MVS & VM

Programming Reference, SC28-1940
v IMS/ESA V5 Application Programming: Design

Guide, SC26-8016
v IMS/ESA V6 Application Programming: Design

Guide, SC26-8728
v OS PL/I V2 Programming Guide, SC26-4307
v TSO Extensions V2 REXX/MVS User’s Guide,

SC28-1882
v TSO Extensions V2 REXX/MVS Reference,

SC28-1883
v VS COBOL II Application Programming Guide for

MVS and CMS, SC26-4045
v VS COBOL II Application Programming Guide for

VSE, SC26-4697.

© Copyright IBM Corp. 1987, 2001 307

S.W.I.F.T. Publications
The following are published by the Society for
Worldwide Interbank Financial
Telecommunication, s.c., in La Hulpe, Belgium:
v S.W.I.F.T. User Handbook

v S.W.I.F.T. Dictionary

v S.W.I.F.T. FIN Security Guide

v S.W.I.F.T. Card Readers User Guide

308 API Guide

Index

Special Characters
38

Numerics
0COV, standard cover MCB 54, 149
0DSL, default message type 145, 158

A
accessing a MERVA queue from an exit

routine 31
ACK/NAK structure 89
ADDRESS command, REXX 37
AMODE (of DSLAPI) 6
API environment

customizing 52, 270
API message formatting services 11
API program (sample of) 23, 24
APICMCHK, API customization 53
APICMCLR, API customization 53
APICQBIN, API customization 52
APICQDIR, API customization 52
APICQLAZ, API customization 53
APICQMIT, API customization 53
APICQWRB, API customization 53
APISMSG, DSLPARM parameter 52
APISMSG parameter 118
APIUID 21, 22
APIUID, DSLPARM parameter 52
application-independent parameter list 8
Assembler

LOAD and DELETE 8
automatic delete 16
automatically started transactions 25

B
batch API program (sample of) 23, 24
batch program, writing a 23
batch utilities

DSLBA12R (print queue
elements) 228

DSLBA13R (print MERVA
journal) 231

DSLBA14R (scanning a TOF) 235
DSLBA15R (print user file) 238
DSLBA16R (cross ref. function

names) 241
DSLBA17R (print User file dates) 244
DSLBA50R (print queue status) 248
DSLBA51R (print queue key list) 251
DSLBA52R (copy or move

messages) 255
DSLBA53R (search for ‘old’

messages) 262
buffer, external 5
buffer, internal TOF 18
buffer, MFS message 20

buffer, small 5
buffer length 5
buffer prefix 5
BUFFER_PREFIX 35
buffer prefix manipulation 35

C
C

dynamic calling of DSLAPI 7
C programming language (for exit

routines) 31
call, TOF service 17
CICS 8

EIB 4
CICS transient data 28
CMD 22
CMD API function 13, 52, 98

in REXX 44, 99
CMD API function (sample of) 23, 24
COBOL

dynamic calling of DSLAPI 7
COBOL (for exit routines) 31
COBOL, setting addresses with 8
COBOL batch API program (sample

of) 23, 24
command execution program 22
COMMAREA, CICS 8
conversational transaction, writing a 26
copy messages 255
copybook

DSLAPFWS 60
DSLAPIMP 18, 52
DSLAPIUS 22
DSLFDTTC 54, 55
DSLMFSPL 34

cover MCB
0COV, standard 54, 149
TCOV, Telex 54

D
DAII function of DSLAPFTS 63
data area index 87
DATA function

of DSLAPFFS 61
of DSLAPFTS 62

DB2
commit 53
queue management 57

debugging a REXX EXEC 45
default message type 0DSL 145, 158
DELE API function 11, 15, 100, 101
DELE function of DSLCSE1 75
delete messages 262
deleting a field 17
DELR function of DSLCES1 67
determining message types 19
DP command (example of) 24
DQ command in batch 248

DQSORTED command in batch 248
DSLAP1T2 program 64
DSLAP2T1 program 65
DSLAPBGB 35
DSLAPBGD 35
DSLAPBSB 35
DSLAPBSD 35
DSLAPC C/370 header file

DSLAPC, C/370 81
header file DSLAPC 81

DSLAPCBL 202
DSLAPCIC program 9
DSLAPFFS program 60
DSLAPFTS program 61
DSLAPFWS copybook 60
DSLAPI 21

dynamic call 7
static call 7

DSLAPI (explicitly loading) 7
DSLAPI fields 270
DSLAPI GET (example of in REXX) 38
DSLAPI program

AMODE 6
calling

under CICS 9
parameter list 4
return code 4
return code in REXX 39
RMODE 6

DSLAPIBP (copybook) 35
DSLAPIJK 21
DSLAPIMH 88
DSLAPIMH copybook 88, 90
DSLAPIMP copybook 18, 52, 88

DSLAPIMP 81
DSLAPIMS copybook 88

DSLAPIMS 81
DSLAPITP copybook

DSLAPITP 81
DSLAPIUS copybook 22, 190
DSLAPIWS (example of) 24
DSLAPIWS copybook

DSLAPIWS 81
DSLAPPLI 202
DSLAREXX 37
DSLAREXX program 40, 46, 48
DSLBA01x (print operator cmd

response) 204
DSLBA02x (move a msg to another

queue) 205
DSLBA03x (import a message into

MERVA ESA) 205
DSLBA10R (update a queue

element) 210
DSLBA12R (print queue elements) 228
DSLBA13R (print MERVA journal) 231
DSLBA14R (scanning a TOF) 235
DSLBA15R (print user file utility) 238
DSLBA16R (cross ref. functions - allowed

users) 241
DSLBA17R (check user file dates) 244

© Copyright IBM Corp. 1987, 2001 309

DSLBA50R (print queue status list) 248
DSLBA51R (print queue key list

utility) 251
DSLBA52R (copy or move

messages) 255
DSLBA53R (search for ‘old’

messages) 262
DSLCES2 program 70
DSLCOM 34, 51
DSLCSE1 program 73
DSLEXIT exit field 54
DSLFDTTC copybook 54, 55
DSLFNTT 34
DSLHCP program 16
DSLLEXIT macro 54
DSLMFS FLDREF 34
DSLMFS PL 34
DSLMFS PS 34
DSLMFS TS 34
DSLMFSPL copybook 34
DSLMSG field 54
DSLMU054 19
DSLMU054 message type determination

exit 145
DSLMU242 exit 71
DSLNIC 34
DSLNUC, applications linked to 51
DSLPRM 22, 34
DSLPRM module

APISMSG parameter 52
APIUID parameter 52
EXDSP parameter 52, 238, 241, 244
SONNUM parameter 244
USGRP parameter 239

DSLSDI program 59
DSLSDO program 16, 59
DSLSDOR program 16
DSLTSV macro 51, 87, 102
DSLUMR field 55
DSLUSR 34
dynamic call of DSLAPI 7

E
EDIFACT

between EDIFACT and SWIFT 66
SWIFT 105 and 106 66

EMPT API function 17, 85, 102, 103
ENLEXIT exit field 54
exclusive use (of queue elements)

indicator of 15
relinquishing 15

exclusive use of messages 14
EXDSP, DSLPARM parameter 52, 190,

192, 238, 241, 244
exit fields

DSLEXIT 54
ENLEXIT 54
NLEXIT 54

exit program, MFS HLL
sample 223

exit routine, MFS 31
explicitly loading DSLAPI 7
exporting messages 11, 19
external buffer 5
external line format 55

F
field definition table 54
field group index 87
field reference, TOF 5
find messages with a specified key

value 251
FLDG API function 33, 105

in REXX 45
FLDP API function 33, 52, 107

in REXX 45, 106, 108
list of accessible fields 269

formatting services, API message 11
FREE API function 15, 16, 109
function names, printing allowed

users 241
function table

reading 287

G
GEKU API function 14, 111

in REXX 112
GET API function 10, 14, 113, 201

in REXX 114
GET function of DSLCSE1 74
GETC API function 11, 14, 115, 201
GETK API function 11, 14, 116

in REXX 117
GETM API function 19, 52, 88, 118

in REXX 42
GETN API function 11, 14, 120

in REXX 121
GETS API function 19, 52, 88, 122

in REXX 42
GETU API function 14, 124

in REXX 125

H
high level language exit routine 31
HLL exit routine 31
host command processor, REXX 37

I
importing messages 12, 19
IMS scratchpad area 26
IMS SPA 26
in-service indicator 11, 15
INIB function

of DSLAPFTS 62
INIT API function 23, 126
INIT function

of DSLAPFFS 60
of DSLAPFTS 62

initializing INTWSTOR 4
INTBUSY 15
INTCWA 51, 126
INTCWA (example of) 24
INTDOUBL 16, 82
interface working storage 4
INTERMSG (example of) 24
internal queue buffer 6, 13, 53

address of 51

internal queue buffer (relation to TOF
buffer) 18

internal TOF buffer 18
INTFRMID 19
INTFRMID (REXX variable) 42
INTFUNC (example of) 24
INTMSGID 19, 54
INTMSGID (REXX variable) 42
INTQBUFA 51
INTRC 4
INTRC (example of) 24
INTRC (example of in REXX) 38
INTTOFA 51
INTWSTOR 4, 19
INTWSTOR (example of) 24

J
JCL to execute a REXX EXEC 47
journal

four-digit year 92
printing the 231
record buffer 21
services 43
services parameters 5

journal key 20
journal key structure JRN2KEY 201
journal key variables

in REXX 43
journal segmentation

in REXX 43
journal services 20
JRLG API function 21, 128

in REXX 43, 129
JRLN API function 21, 130

in REXX 43, 131, 201
JRLP API function 21, 132

in REXX 43, 133
JRN2KEY 21, 201
JRNBUF, DSLPRM parameter 132
JRNBUF (in DSLPRM) 21
JRNG API function 21, 134

in REXX 43
JRNKDAT2 20, 92
JRNKDATE 93
JRNKDATE (REXX variable) 43
JRNKEY 21
JRNKFRC2 20, 92
JRNKSEG 92, 93
JRNKSEGS 92, 93
JRNKTIM2 20, 92
JRNKTIME 93
JRNKTIME (REXX variable) 43
JRNKUFLD 20
JRNKUSER 20, 92, 93
JRNKUSER (REXX variable) 43
JRNN API function 21, 135

in REXX 43, 201
JRNP API function 21, 137

in REXX 43
JRNRCORD (REXX variable) 43
JRNRID 20, 92, 93, 128
JRNRID (REXX variable) 43

310 API Guide

K
key, find messages with a specified 251
key, journal 20

L
L3ACKF (example of in REXX) 38
large buffers 6
LIST function of DSLCSE1 75

M
manipulating the buffer prefix 35
mapping messages

between SWIFT I and SWIFT II 64
from the internal queue buffer 18
to the internal queue buffer 18

MCB (relation to MFS) 18
MERVA

control fields 53
system fields 53

MERVA queue, accessing from an exit
routine 31

message buffer, MFS 20
message control block (relation to

MFS) 18
Message Format Services 18
message formatting services, API 11
message headers 88
message type

0DSL, default 158
message type determination exit,

DSLMU054 145
message types, determining 19
messages

copy 255
move 255
older than nnn days 262
sort 255

MFS 18
parameters 5

MFS (message formatting services)
in REXX 42

MFS exit routine 31
MFS message buffer 20
move messages 255, 262
MPFG API function 18, 88, 139

in REXX 42, 140
MPFP API function 19, 88, 141

in REXX 42, 142
MSGG API function 11, 18, 52, 143

in REXX 42, 144
MSGP API function 18, 52, 145

in REXX 147
MSGSMSG (REXX variable) 42
MSGSMSG buffer

DSLAPIMH 90
in REXX 88, 90

MSGSWIFT prefix 18, 52, 89
in REXX 42, 88

MSGTRACE field 54, 262
MVS

REXX support 37

N
nesting identifier 87
nesting identifier 0 53
NLEXIT exit field 54
nonconversational transaction, writing

a 25
nonexclusive use of messages 14
Notices 291

O
operator command service 22, 44, 204

P
parameter list, application-

independent 8
parameter list, DSLAPI

how to use 4
parameter list for exit routines 31
password change date, last 244
PL/I

dynamic calling of DSLAPI 7
PL/I FETCH and RELEASE 8
PLI (for exit routines) 31
prefix, buffer 5
prefix, manipulating the buffer 35
printing messages 12, 20

in REXX 42
program (sample of) 23, 24
PRTI API function 12, 20, 148
PRTL API function 12, 20, 150
PRTT API function 12, 20, 152
pseudoconversational transaction, writing

a 26
PUT API function 12, 15, 153, 154
PUT function of DSLCES1 67
PUTB API function 15, 16, 28, 155, 157
PUTB function of DSLCSE1 75
PUTF function of DSLCES2 70, 72
PUTM API function 19, 52, 88, 158

in REXX 42
PUTN function of DSLCES2 71, 72
PUTR API function 15, 160
PUTS API function 19, 52, 88, 163

in REXX 42

Q
QLF API function 14, 165, 167
QLL API function 14, 168
QLN API function 14, 167, 170
QLP API function 14, 171
queue key list 251
queue management

functions 13
parameters 5
services 13, 40

in REXX 40
queue status, list the 248

R
RC, REXX return code 40
READ API function 10, 17, 18, 85, 172,

174
reading a field in a message 17
reading messages from queues 10
reason codes, TOF 88
REEN API function 28, 175
repeatable sequence index

nested, in REXX 235
REPL API function 14, 16, 177, 178
request modifiers 87
restrictions for exit routines written in an

HLL 31
return code

REXX API 39
REXX

ADDRESS command 37
condition traps 40
host command processor 37
initializing variables 38
language processor environment,

initializing 40
length prefix 42
MSGSMSG 42
return code, RC 40
variables 37

REXX API
command service 44
field-level access services 45
general description 37
journal services 43
message format services 42
print services 42
queue management services 40
SNAP command 45
TOF services 41
user file services 44
WTO service 44

REXX API sample program
DSLBA01R 204
DSLBA02R 205
DSLBA03R 205
DSLBA10R 210

REXX batch utility
DSLBA12R 228
DSLBA13R 231
DSLBA14R 235
DSLBA15R 238
DSLBA16R 241
DSLBA17R 244
DSLBA50R 248
DSLBA51R 251
DSLBA52R 255
DSLBA53R 262

REXX EXEC
input and output streams under

MVS 46
input and output streams under

VSE 48
passing parameters to 46, 48
running under MVS 46
running under VSE 48

REXX variables
length 38
padding 38
truncating 38

Index 311

RMODE (of DSLAPI) 6
ROU API function 12, 15, 179, 180
ROUB API function 15, 16, 28, 181, 182
ROUB function of DSLCSE1 75
ROUD API function 11, 15, 183
ROUN API function 15, 185
routing messages 11

S
SAVE API function 187
SAVL API function 28, 188
scratchpad area, IMS 26
search for messages 251
segmentation, journal

in REXX 43
segmented records, key 201
service call, TOF 17
setting addresses with COBOL 8
sign-on date, last 244
small buffer 5
SNAP (REXX command) 45
SONNUM, DSLPARM parameter 244
sort messages 255
SPA, IMS 26
static call of DSLAPI 7
supervisor services, TOF 17
SW27, SWIFT field 71
SW77, SWIFT field 70
SWIFT

message 54
SWIFT I acknowledgment 90
SYSEXEC 46, 47
SYSIPT 48
SYSLST 48
SYSPRINT 47
SYSTSIN 47
SYSTSPRT 47

T
TCOV, Telex cover MCB 54
Telex Link message 54
TERM API function 5, 23, 189
terminal user control block 25
terminating DSLAPI 4
TOF

address of 51
parameters 5, 17
printing a 235

TOF buffer, internal 18
TOF reason codes 88
TOF service call 17
TOF services

in REXX 41
TOF supervisor services 17
TOFDATA 41
TOFPARM 5, 85
TOFPARM structure 41
tokenized form (TOF) supervisor

services 17
transactions, automatically started 25
transient data, CICS 28
TSO CALL command 46
TUCB 25, 34, 93, 276

fields used in printing 148

U
unique message reference (UMR) 55
updating messages 11
user file

access, suppressing 52
cross reference function names -

allowed users 241
listing the 238
print last password change dates 244
print last sign-on dates 244
print last update dates 244

user file (access to) 21
user file record

buffer 94
user file services 21
user ID, in the journal 52
USGRP operand (DSLPARM macro) 239
USRG API function 22, 52, 94, 190

in REXX 44, 191
USRN API function 22, 52, 94, 192

in REXX 44, 193

V
variable length buffer 5
VSE 204

REXX support 37, 48

W
WRIT API function 17, 18, 85, 194
write-back indicator 16, 53
write-to-operator service 22, 44
writing

a field in a message 17
a SWIFT message line by line 59

WTO API function 22, 197
in REXX 44, 198

312 API Guide

MERVA Requirement Request

Use the form overleaf to send us requirement requests for the MERVA product. Fill
in the blank lines with the information that we need to evaluate and implement
your request. Provide also information about your hardware and software
environments and about the MERVA release levels used in your environment.

Provide a detailed description of your requirement. If you are requesting a new
function, describe in full what you want that function to do. If you are requesting
that a function be changed, briefly describe how the function works currently,
followed by how you are requesting that it should work.

If you are a customer, provide us with the appropriate contacts in your
organization to discuss the proposal and possible implementation alternatives.

If you are an IBM employee, include at least the name of one customer who has
this requirement. Add the name and telephone number of the appropriate contacts
in the customer’s organization to discuss the proposal and possible implementation
alternatives. If possible, send this requirement online to MERVAREQ at SDFVM1.

For comments on this book, use the form provided at the back of this publication.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

Send the fax to:

To: MERVA Development, Dept. 5640 Fax Number: +49-7031-16-4881
Attention: Gerhard Stubbe Internet address:

mervareq@de.ibm.com
IBM Deutschland Entwicklung GmbH
Schoenaicher Str. 220
D-71032 Boeblingen
Germany

© Copyright IBM Corp. 1987, 2001 313

MERVA Requirement Request

To: MERVA Development, Dept. 5640 Fax Number: +49-7031-16-4881
Attention: Gerhard Strubbe Internet address:

mervareq@de.ibm.com
IBM Deutschland Entwicklung GmbH
Schoenaicher Str. 220
D-71032 Boeblingen Germany

Page 1 of ______

Customer’s Name __

Customer’s Address __

__

__
Customer’s
Telephone/Fax __

Contact Person at __
Customer’s Location
Telephone/Fax __

MERVA
Version/Release __

Operating System __
Sub-System
Version/Release __

Hardware __

Requirement
Description __

__

__

__

__

__

__

Expected Benefits __

__

__

314 API Guide

Readers’ Comments — We’d Like to Hear from You

MERVA for ESA
Application Program Interface Guide
Version 4 Release 1

Publication No. SH12-6374-01

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SH12-6374-01

SH12-6374-01

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH
Information Development, Dept. 0446
Schoenaicher Strasse 220
71032 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5648-B29

Printed in Denmark by IBM Danmark A/S

SH12-6374-01

Sp
in

e
in

fo
rm

at
io

n:

�
�

�
M

ER
VA

fo
r

E
SA

A
PI

G
ui

de
Ve

rs
io

n
4

R
el

ea
se

1

	Contents
	About This Book
	Who Should Read This Book
	How to Use This Book

	Summary of Changes
	Part 1. Using the MERVA ESA Application Program Interface
	Chapter 1. Introduction and Concepts
	Interface Working Storage
	Parameters
	Other API Parameter Structures

	Buffers
	External Buffers
	Internal Buffers

	Calling DSLAPI
	Static Call
	Dynamic Call
	CICS Considerations
	Setting Addresses with COBOL
	Alternative API Entry Name

	IMS Considerations

	Processing Messages with DSLAPI
	Reading
	Updating and Routing
	Exporting
	Importing
	Printing

	Chapter 2. The MERVA ESA API Services
	Queue Management Services
	Internal Queue Buffer
	Overview of Queue Management Functions
	Use of the BUSY (In-Service) Indicator
	Use of the DOUBLE (Write-Back) Indicator
	Automatic Delete

	Tokenized Form (TOF) Supervisor Services
	Overview of TOF Supervisor Functions
	API TOF Parameters
	The Internal TOF Buffer
	Defining a Field Buffer

	Message Formatting Services (MFS)
	Overview of MFS Functions
	Importing Messages and Determining Message Types
	Exporting Messages
	The MFS Message Buffer (MSGSWIFT)

	Print Services
	Overview of the Print Message Functions

	Journal Services
	Overview of Journal Functions
	Defining a Journal Record Buffer

	User File Services
	Overview of the User File Functions

	Operator Command Service
	Write-to-Operator Service

	Chapter 3. Writing an API Program
	Writing a Batch Program
	Writing a Nonconversational Transaction
	Writing a Conversational Transaction
	Writing a Pseudoconversational Transaction
	Saving the Tokenized Form of a Message in a Queue Data Set
	Saving the Tokenized Form of a Message in Your Own Database (IMS) or in Temporary Storage or Transient Data (CICS)

	Chapter 4. Writing an MFS Exit Routine in C, COBOL, or PL/I
	Restrictions for Exit Routines Written in an HLL
	Writing an Exit Routine That Runs Under CICS and in Batch
	Field-Level Access for Exit Routines
	Supported Fields
	Field Values

	MERVA Buffer Prefix Manipulation

	Chapter 5. The REXX Interface
	Overview
	Variables
	Initializing Variables
	Fixed-Length Variables
	Variable-Length Variables
	Case

	Return Codes
	Return Codes from the DSLAPI Host Command Environment
	REXX Condition Traps
	DSLAPI Return Codes

	The REXX Language Processor Environment

	DSLAPI Functions Supported by the REXX Interface
	Queue Management Services
	TOF Services
	Message Format Services
	Print Services
	Journal Services
	User File Services
	Command Service
	WTO Service
	Field-Level Access Services

	The SNAP Command
	Sample Programs Written in REXX
	Running a REXX EXEC under MVS
	REXX Input and Output Streams
	Passing Parameters to the EXEC
	Passing Parameters in the PARM Statement
	Passing Parameters via SYSTSIN

	JCL to Run EXECs from a PDS
	JCL to Execute an Instream EXEC

	Running a REXX EXEC under VSE
	REXX Input and Output Streams
	Passing Parameters to the EXEC
	Passing Parameters in the PARM Statement
	Passing Parameters via SYSIPT

	JCL to Run EXECs

	Chapter 6. Advanced Topics
	Applications Linked to DSLNUC
	Locating the TOF
	Locating the Internal Queue Buffer
	Customizing the API
	DSLPRM Parameters
	APISMSG
	APIUID
	EXDSP

	Runtime Environment Settings
	APICQBIN
	APICQDIR
	APICQLAZ
	APICQMIT
	APICQWRB
	APICMCLR
	APICMCHK

	MERVA Fields in Messages
	MSGTRACE
	Message Exit Fields
	DSLMSG
	UMR - Unique Message Reference

	External Line Format
	Queue Management Using DB2

	Chapter 7. Auxiliary API Services
	Field Services
	The Field Services Working Storage FLDWSTOR
	DSLAPFFS Read Fields from a SWIFT-Type Message
	The Initialization Function INIT
	The Data Retrieval Function DATA

	DSLAPFTS Write Fields to a SWIFT-Type Message
	The Initialization Function INIT
	The Initialization Function INIB
	The Data Insertion Function DATA
	The Data Insertion Function DAII

	SWIFT Message Conversion Services
	Working Storage Areas for the Message Services
	How to Call the DSLAP1T2 Program
	Parameters
	Return Codes

	How to Call the DSLAP2T1 Program
	Parameters
	Return Codes

	EDIFACT Message Conversion Services
	The Conversion Program DSLCES1
	The Conversion Working Storage CES1STOR
	Restart Recovery of DSLCES1
	Calling the Program DSLCES1

	The Conversion Program DSLCES2
	The Conversion Working Storage CES2STOR
	The Put EDIFACT Message Function PUTF
	The Put EDIFACT Message Function PUTN
	Calling the Program DSLCES2

	The Conversion Program DSLCSE1
	The Conversion Working Storage CSE1STOR
	Calling the Program DSLCSE1

	Part 2. DSLAPI Data Structures and Functions
	Chapter 8. Data Structures
	Interface Working Storage INTWSTOR
	TOF Access Parameters TOFPARM
	Field Reference
	Message Nesting Identifier TOFFDNL
	Field Group Index TOFFDFG
	Repeatable Sequence Index TOFFDOC
	Data Area Index TOFFDDA

	Request Modifiers
	TOF Reason Codes

	Message Buffer MSGSWIFT
	MSGSWIFT Prefix
	SWIFT ACK/NAK Structure

	Message Buffer MSGSMSG

	Journal Key JRNKEY
	Terminal User Control Block (TUCB)
	User File Record Buffer
	MFS Parameter List

	Chapter 9. DSLAPI Functions
	CMD Execute a MERVA Command
	DELE Delete a Queue Element
	EMPT Empty a Field (TOF)
	FLDG Get a MERVA Variable
	FLDP Set a MERVA Variable
	FREE Free a Queue Element
	GEKU Get a Queue Element by Key Unconditionally
	GET Get a Queue Element Unconditionally
	GETC Get a Queue Element Conditionally
	GETK Get a Queue Element by Key
	GETM Get Message (MFS)
	GETN Get Next Queue Element
	GETS Get SWIFT Message (MFS)
	GETU Get Next Queue Element Unconditionally
	INIT Initialize the API Environment
	JRLG Get a Journal Record
	JRLN Get Next Journal Record
	JRLP Put a Journal Record
	JRNG Get a Journal Record
	JRNN Get Next Journal Record
	JRNP Put a Journal Record
	MPFG Get Message Prefix (MFS)
	MPFP Put Message Prefix (MFS)
	MSGG Get Message (MFS)
	MSGP Put Message (MFS)
	PRTI Initialize Printing Environment
	PRTL Create a Print Line of a Message
	PRTT Terminate Printing Environment
	PUT Put a Queue Element
	PUTB Put a Queue Element with Automatic Delete
	PUTM Put Message (MFS)
	PUTR Restore a Queue Element
	PUTS Put SWIFT Message (MFS)
	QLF Queue List First
	QLL Queue List Last
	QLN Queue List Next
	QLP Queue List Previous
	READ Read a Field (TOF)
	REEN Reenter API Environment
	REPL Replace a Queue Element
	ROU Route a Queue Element
	ROUB Route a Queue Element with Automatic Delete
	ROUD Route Queue Element Directly
	ROUN Route Next Queue Element Directly
	SAVE Save API Environment
	SAVL Save API Environment
	TERM Terminate API
	USRG User File Record Get
	USRN User File Get Next
	WRIT Write a Field (TOF)
	WTO Write to Operator

	Part 3. Appendixes
	Appendix A. Migration and Compatibility
	Differences between MERVA ESA Version 3 Release 3 and Version 4 Release 1
	Differences between MERVA ESA Version 3 Release 2 and Release 3
	Differences between MERVA/ESA V3.1 and MERVA ESA Version 3 Release 2
	Differences between MERVA/370 Version 2 and MERVA ESA Version 3

	Appendix B. Sample Programs
	Batch Programs
	DSLBA01x
	DSLBA02x
	DSLBA03x
	DSLBA04x
	DSLBA05x
	DSLBA10R - Update a Queue Element
	Job Control Statements
	Runtime Parameters
	Sample printout

	Sample Transaction for Automatic Start
	Conversational Transaction
	Working Storage Structure of the Dialog Programs
	Sample Application Program DSLBA20x
	Sample Application Program DSLBA21x
	Sample Application Program DSLBA22x
	Sample Application Program DSLBA23x

	High-Level Language MFS Exit

	Appendix C. Batch Utilities in REXX
	DSLBA12R - Print Queue Element(s)
	Job Control Statements
	Runtime Parameters
	Customization
	Sample Printout

	DSLBA13R - Print the MERVA Journal
	Job Control Statements
	Runtime Parameters
	Customization
	Sample Printout

	DSLBA14R - Scanning a TOF
	Job Control Statements
	Runtime Parameters
	Customization
	Sample printout

	DSLBA15R - Print the User File
	Job Control Statements
	Runtime Parameters
	Customization
	Sample Printout of User File

	DSLBA16R - Print Cross Reference Function Names - Allowed User IDs
	Job Control Statements
	Runtime Parameters
	Customization
	Sample Printout

	DSLBA17R - Check Date Fields in the User File
	Job Control Statements
	Runtime Parameters
	Customization
	Sample Printout of User File Dates Report

	DSLBA50R - Print Queue Status List
	Job Control Statements
	Runtime Parameters
	Customization
	Sample Printout of Print Queue Status List

	DSLBA51R - Print Queue Key List
	Job Control Statements
	Runtime Parameters
	Data Set Names
	Customization
	Sample Printout of Print Queue Key List
	Listing Fields

	DSLBA52R - Copy or Move Messages (and Sort by Key)
	Job Control Statements
	Runtime Parameters
	Data Set Names
	Customization
	Sample Queue Key List after Run of DSLBA52R
	Sample Printout of DSLBA52R
	Listing Fields

	DSLBA53R - Scan a Queue for ‘Old’ Messages
	Job Control Statements
	Runtime Parameters
	Data Set Names
	Customization
	Sample Printout of DSLBA53R
	Listing Fields

	Appendix D. Field-Level Access Fields
	MERVA ESA Function Table

	Appendix E. Notices
	Trademarks

	Glossary of Terms and Abbreviations
	Bibliography
	MERVA ESA Publications
	MERVA ESA Components Publications
	Other IBM Publications
	S.W.I.F.T. Publications

	Index
	MERVA Requirement Request
	Readers’ Comments — We'd Like to Hear from You

