
MERVA Family

MERVA Connection/2

SH12-6293-00

IBM

MERVA Family

MERVA Connection/2

SH12-6293-00

IBM

Note!
Before using this information and the product it supports, be sure to read the general information under “Appendix D.
Notices” on page 105.

First Edition (November 1997)

This edition applies to

v Version 3 Release 3 of IBM MERVA for OS/2 LAN (5622-122)

v Version 3 Release 3 of IBM MERVA for OS/2 Standalone (5622-127)

v OS/2 based features of products of the MERVA family

v Version 1 Release 2 of IBM MERVA for AIX (5765-449)

v AIX based features of products of the MERVA family

and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1993, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

About This Book . vii

Chapter 1. Introduction to MERVA Connection/2 1
Objectives of MERVA Connection/2 1
Functions Provided by MERVA Connection/2 1

Language Support . 1
Security . 1
Message Integrity . 2

Components of MERVA Connection/2 2

Chapter 2. MERVA Connection/2 Client Setup 5
MERVA Connection/2 Requirements. 5

Machine Requirements . 5
Programming Requirements. 5

Installing MERVA Connection/2 5
Customizing Communications Server 6

Basic SNA Customization 7
SNA Customization for MERVA Connection/2 7

Customizing TCP/IP . 8
Basic TCP/IP Customization 8
TCP/IP Customization for MERVA Connection/2 8

Customizing MERVA Connection/2 8
Variable Format Application Profile 9
Variable Format Application Profile Parameters. 10
Fix Format Application Profile 12
Selecting the Communication Type 13

Chapter 3. RAPI Server Setup on AIX 15
Remote API Server Requirements 15

Machine Requirements . 15
Programming Requirements. 15

Installing the RAPI Server . 15
Customizing SNA Services . 15

Basic SNA Customization 16
SNA Customization for the RAPI Server 16

Customizing TCP/IP Services 18
Basic TCP/IP Customization 18
TCP/IP Customization for the RAPI Server 18

Chapter 4. Remote API Server Setup on OS/2 21
Remote API Server Requirements 21

Machine Requirements . 21
Programming Requirements. 21

Installing Remote API Server 21
Installing the Remote MERVA API Server Program 21
Installing the Sample Communications Server Configuration Files 21

Customizing SNA Services . 22
Basic SNA Customization 22
SNA Customization for the Remote API Server 23
Customizing the Trace File for SNA 23

Customizing TCP/IP Services 24
Customizing Client Network Services 24
Customizing Super Daemon Services 24

© Copyright IBM Corp. 1993, 1997 iii

Customizing the Trace File for TCP/IP 24

Chapter 5. Verifying Correct Installation and Customization 27

Chapter 6. The Application Programming Interface 29
Structure of the MERVA API Program on the Client Side 29
C Language Data Types . 29
Additional Functions . 30
Starting and Ending the Conversation 30

ENMSetProfile - Select a Profile 30
ENMStartRAPI - Establish Connection to MERVA OS/2 or MERVA AIX . . . 31
ENMRestartRAPI - Reconnect Remote API Program to MERVA OS/2 or

MERVA AIX . 32
ENMEndRAPI - Disconnect from MERVA OS/2 or MERVA AIX 33
ENMSetSecurity - Set Conversation Security Information 33
ENMSetTestEnv - Set Test Environment 34

Functions Enabling the API Program to be Triggered 35
ENMWaitSemList - Wait for a List of Semaphores. 35
ENMCloseSem - Close a Semaphore 36
ENMSetSem - Set a Semaphore 37
ENMClearSem - Clear a Semaphore 38
ENMCreateSem - Create a Semaphore 39
ENMOpenSem - Open a Semaphore 41

Handling Errors . 42
ENMGetReason - Get Reason Code for Internal Error 42

Chapter 7. Resynchronization 45
How Resynchronization Is Implemented 46
Using the Resynchronization Mechanism 46
Hints and Tips . 47

Recovering after a Failed Call 47
Not Using Resynchronization 47

Chapter 8. Security . 49
Encryption of Transferred Information 49
Authentication of Transferred Information 49
User Exit Interfaces . 49

Introduction . 49
User Exit Points . 50

User Exit Interfaces in C Language 51
User Exit for Encryption . 52
User Exit for Decryption . 52
User Exit for MAC Generation 53
User Exit for MAC Verification 53

Chapter 9. Building API Programs 55
Compiling Your Own Program 55
Compiling the Sample Programs 55

List of Sample Files . 55

Chapter 10. Replacing Security User Exits 57
Security User Exits . 57

Generating and Activating Security User Exits on the Client Application
System . 57

Generating and Activating Security User Exits on the MERVA Server System
for MERVA OS/2 . 58

iv MERVA Connection/2

Generating and Activating Security User Exits on the MERVA Server System
for MERVA AIX. 60

Chapter 11. Diagnosis Information 61
Log Files on the Client Application Side 61

Diagnosis Log . 61
Programmer’s Log . 61

Log Files on the MERVA OS/2 Side 62
Log Files on the MERVA AIX Side 62

Appendix A. Sample SNA Definitions 63
Customizing an APPN End Node (OS/2) 64

SNA Local Node Characteristics 64
SNA Connections . 64
Defining Additional Resources 65

Customizing an APPN Network Node (AIX) 67
Initial Node Setup . 67
Check and Modify the Initial Node Setup 67
Defining Additional Resources 68

Customizing an APPN Network Node (OS/2) 69
Customizing an APPC Peer-to-Peer Connection (OS/2) 70

Complete Peer-to-Peer Configuration Tables (OS/2) 70

Appendix B. Sample Security User Exits 73
Module ENM4SNIL - Empty Functions 73
Module ENM4SSEC - Sample Functions 74

Appendix C. Sample Programs 79
Program SMPLO1 . 80
Program SMPLO2 . 87
Program SMPLO2S. 93
Program SMPLO3 . 95

Appendix D. Notices . 105
Trademarks . 106

Glossary of Terms and Abbreviations 109

Bibliography . 111
IBM Publications . 111

MERVA Family Books . 111
MERVA OS/2 Books . 111
MERVA AIX Books . 111
MERVA ESA Books . 111

Further IBM Publications . 111
S.W.I.F.T. Publications . 112

Index . 113

Readers’ Comments — We’d Like to Hear from You 115

Contents v

vi MERVA Connection/2

About This Book

This book is intended for application programmers who want to access an
installation of Message Entry and Routing with Interfaces to Various Applications for
AIX (abbreviated to MERVA AIX in this book) or an installation of Message Entry
and Routing with Interfaces to Various Applications OS/2 Version 3 (abbreviated to
MERVA OS/2 V3 in this book) from an application program executing in an OS/2
system.

This book can help you to install and customize MERVA Connection/6000, and to
write programs using the MERVA Remote Application Program Interface (RAPI).

It is assumed that you have prior knowledge of and experience with:

v Operating System/2 (OS/2)

v Advanced Interactive Executive (AIX) operating system

v Systems Network Architecture (SNA)

v Application Programming Interface (API) of MERVA OS/2

v Application Programming Interface of MERVA AIX

v Transaction Control Protocol/Internet Protocol (TCP/IP)

© Copyright IBM Corp. 1993, 1997 vii

viii MERVA Connection/2

Chapter 1. Introduction to MERVA Connection/2

This chapter introduces MERVA Connection/2 and briefly describes the facilities
supported by MERVA Connection/2.

Objectives of MERVA Connection/2

MERVA Connection/2 provides an interface for application programs on the OS/2
system. It is called the Remote MERVA API (RAPI). Using the Remote MERVA API,
you can create an application on OS/2; to send messages to MERVA and receive
messages from MERVA with a minimum effort.

MERVA Connection/2 enables you to adapt your OS/2 application to any MERVA
system (MERVA OS/2 and MERVA AIX). For example, MERVA Connection/2
provides the functionality to attach a telex provider software to MERVA.

To use OS/2; applications as banking applications, messages created on the OS/2
system must be transferred to a MERVA system. Messages received from any
networks must be transferred from a MERVA system to the OS/2 system.

While this can be achieved by saving messages to files and transferring the files,
this solution requires operator intervention and can cause message integrity
problems. It may also not be transparent to the application. Therefore, the best
method is to implement a direct connection from the application on the OS/2 system
to MERVA OS/2 or MERVA AIX, as if MERVA OS/2 or MERVA AIX was a
component of the application.

MERVA Connection/2 is a tool that makes it easier for you to implement such a
solution. MERVA Connection/2 is not a ready-to-use SWIFT interface on the OS/2
system. It does not have a user interface.

Functions Provided by MERVA Connection/2

MERVA Connection/2 provides the complete functionality of the MERVA AIX or
MERVA OS/2 API on the OS/2 system. Additional calls are available for establishing
an intersystem connection and making use of MERVA alarms. MERVA Connection/2
provides a real-time interface to MERVA AIX or MERVA OS/2.

Language Support

Easy portability of MERVA API programs between OS/2 and AIX is provided by the
C Language interface.

Security

Security aspects are dealt with by a flexible user exit interface (see “Chapter 8.
Security” on page 49).

© Copyright IBM Corp. 1993, 1997 1

Message Integrity

A resynchronization mechanism ensures that the remote API program can provide
the same level of message integrity as a local API program (see Figure 10 on
page 45).

Components of MERVA Connection/2

Figure 1 names the components of MERVA Connection/2 and illustrates the
programming concepts of MERVA Connection/2.

MERVA Connection/2 has two main components:

v The Remote MERVA API Client is installed and executed on OS/2, the Client
Application System. MERVA AIX or MERVA OS/2 are not installed in the Client
Application System.

v The Remote MERVA API Server is installed and executes in a OS/2 system or
AIX system, the MERVA Server System. The Remote MERVA API Server is a
part of the MERVA AIX or MERVA OS/2 system installed on the MERVA Server
System.

┌────────────────────┐ ┌────────────────────┐
│Client Application │ │MERVA Server System │
│System │ │ │
│ ┌─────────────────┐│ │ ┌─────────────────┐│
│ │OS/2 ││ │ │OS/2 or AIX ││
│ │ ││ │ │ ││
│ │ Financial ││ │ │ MERVA ││
│ │ Application ││ │ │ ││
│ └───────┐ ┌───────┘│ │ │ SWIFT Link ││
│ ┌───────┘ └───────┐│ │ │ MERVA Link ││
│ │ Application ││ │ │ ││
│ │ Interface ││ │ │ ││
│ │ ││ │ │ ││
│ │Remote MERVA API ││ │ │ Local MERVA API ││
│ └───────┐ ┌───────┘│ │ └───────┐ ┌───────┘│
│ ┌───────┘ └───────┐│ │ ┌───────┘ └───────┐│
│ │Connection/2 ││ │ │ ││
│ │ ││ │ │ ││
│ │ ││ │ │ ││
│ │Remote MERVA API ││ │ │Remote MERVA API ││
│ │ Client ││ │ │ Server ││
│ └──────┐ ┌──────┘│ │ └──────┐ ┌──────┘│
└───────┐││ ││┌──────┘ └───────┐││ ││┌──────┘

│││ ││└────────────────────────────────┘││ │││
│││ │└──────────────────────────────────┘│ │││
│││ │ ┌────────────────────────────┐ │ │││
│││ └>>>│API context with input data │>>>┘ │││
│││ └────────────────────────────┘ │││
│││ ┌────────────────────────────┐ │││
││└──<<<│API context with output data│<<<──┘││
││ └────────────────────────────┘ ││
│└──┘│
│ SNA or TCP/IP │
│ Data Communication Services │
└──┘

Figure 1. MERVA Connection/2 Concept

2 MERVA Connection/2

The Remote MERVA API Client provides the calling interface for a Financial
Application that must use MERVA services. It forwards the API call with the input
parameters to the Remote MERVA API Server on the MERVA Server System. The
Remote MERVA API Server calls the MERVA API function and passes the received
parameters. The output data and the return code of the API function are returned to
the Remote MERVA API Client. The Remote MERVA API Client returns control to
the calling program as if the API function had been executed locally.

Chapter 1. Introduction to MERVA Connection/2 3

4 MERVA Connection/2

Chapter 2. MERVA Connection/2 Client Setup

This chapter describes all aspects for the installation and customization of the
Remote MERVA API Client. It starts with a description of the prerequisites for
MERVA Connection/2.

MERVA Connection/2 Requirements

A number of requirements must be met by an OS/2 system in order to install and
execute the Remote MERVA API Client.

Machine Requirements

The Remote MERVA API Client can be installed on any OS/2 system with
approximately one megabyte free space on its hard disk.

The MERVA Connection/2 Client Application System and the MERVA Server
System must be interconnected by a Data Communication Link. As specified by the
used Data Communication Service (SNA APPC or TCP/IP), Token Ring, SDLC,
Twinax, or other types of intersystem links can be used. A corresponding data link
adapter must be installed in the OS/2 system.

For a list of the alternatives available and the hardware required, refer to the
appropriate books listed in the “Bibliography” on page 111.

Programming Requirements

The following software must be installed on OS/2 :

v IBM OS/2 Warp Version 3, or a subsequent release

v Personal Communications 4.0 or Communication Server 4.1 or

TCP/IP for OS/2 Version 3.0, or a subsequent release

v The C Compiler Visual Age for C++ Version 3.0

Personal Communications or Communication Server are required only if an SNA
APPC connection is used for the communication between the Remote MERVA API
Client and Server. These are not required if a TCP/IP connection is used for that
purpose; in this case TCP/IP for OS/2 must be installed on the OS/2 system.

Installing MERVA Connection/2

The directory CONNECT2 on the MERVA OS/2 V3.3 CD contains all files necessary
to install MERVA Connection/2:
\CONNECT2\

ENMORAPI.DLL
ENMORAPI.LIB
ENMOSXIT.DLL
ENMRATP .DLL
ENMRADT .H
ENMRAPD .H
ENMRAPI .H
SAMPLE .PRF
SMPLO4 .EXE

© Copyright IBM Corp. 1993, 1997 5

\SAMPLES\
SMPLO1 .C
SMPLO1 .DEF
SMPLO1 .MAK
SMPLO2 .C
SMPLO2 .DEF
SMPLO2 .MAK
SMPLO2S .C
SMPLO2S .DEF
SMPLO3 .C
SMPLO3 .DEF
SMPLO3 .MAK
SMPLO4 .C
SMPLO4 .DEF
SMPLO4 .MAK

\USEREXIT\
ENM4SNIL.C
ENM4SSEC.C
ENMOSXIT.DEF
ENMOSSEC.MAK

\CONNECT2\ Contains all dynamic link libraries, include files and a sample
program for a first installation check (see “Chapter 5. Verifying
Correct Installation and Customization” on page 27). The libraries
ENMORAPI.DLL, ENMOSXIT.DLL and ENMRATP.DLL must be
moved to a directory existing in the LIBPATH environment variable.

v The library ENMORAPI.DLL holds the API entry points and entry
points for encryption and authentication routines. This library
must be linked by the programs using the Remote MERVA API.

v The library ENMOSXIT.DLL contains entry points for encryption
and authentication routines. See “User Exit Interfaces” on
page 49 for more information.

v The library ENMRATP.DLL contains the code for the Remote
MERVA API Client SNA APPC routines. These routines are
loaded at runtime if necessary.

The include files ENMRADT.H, ENMRAPI.H and ENMRAPD.H
should be moved to your working directory or into any directory
which is contained in the INCLUDE environment variable.

\CONNECT2\SAMPLES\
This directory contains source files, module definition files (for
Visual Age for C++) and makefiles for sample API programs. To
compile these samples move the appropriate files to your working
directory and process the makefiles.

\CONNECT2\USEREXIT\
This directory contains sources, a module definition file (for Visual
Age for C++) and a makefile for the generation of your own security
user exits. See “User Exit Interfaces” on page 49 for more details
on this issue.

Customizing Communications Server

MERVA Connection/2 can use SNA APPC services for the communication between
the Remote MERVA API Client and Server. As an alternative, MERVA Connection/2
can use TCP/IP services for that purpose.

6 MERVA Connection/2

If SNA APPC services are used, Communications Server or Personal
Communications must be installed on the OS/2 system and be customized for
binding APPC sessions between the two partner systems.

Basic SNA Customization

Various methods apply for the interconnection of two OS/2 systems or a AIX system
and a OS/2 system. The applicable customization is described in the books of SNA
Server for AIX and Communications Server /2.

A sample for the Communications Server customization that is independent of
MERVA Connection/2 is provided in “Appendix A. Sample SNA Definitions” on
page 63. For beginners in Communications Server customization it is recommended
to read through this example.

The following list shows the structure of the Communications Server setup program
and tells you how to reach the different panels:

SETUP...
│
·

OPEN CONFIGURATION
│
·

TOKEN RING/ETHERNET/ETC.
│
·

CPI COMMUNICATIONS
│

┌─────────────────┬─────────┴──────┬────────────────────┐
│ │ │ │
· · · ·

SNA CONNECTIONS DLC - SNA LOCAL SNA FEATURES
│ TOKEN-RING NODE │
│ OR OTHER CHARACTERISTICS │
· LAN TYPES │

CONNECTION LIST │
│ │
· ┌────┬──────┬────────┬─────┬─────┬──────┴───┬────────┬───────┐

ADAPTER LIST │ │ │ │ │ │ │ │ │
│ · │ · │ · │ · │ ·
· LOCAL LUS │ PARTNER LUS │ MODES │ TP DEFINITIONS │ TP DEFAULTS

CONNECTION TO... │ │ │ │
· · · ·

TP SECURITY CONV.SECURITY LU-TO-LU SECURITY CPI-C SIDE INFO

SNA Customization for MERVA Connection/2

An LU 6.2 Side Information Profile is the only resource that may need to be added
to the SNA customization for access by the Remote MERVA API Client. A Side
Information Profile defines a Symbolic Destination Name for the Remote MERVA
API Server in the partner system. The parameters of a symbolic destination in
Communications Server are:

v Symbolic Destination Name (example: MERVA)

v Local LU Name (example: LU1)

v Fully Qualified Partner LU Name (example: APPN1.LUA)

v APPC Session Mode Name (example: APPCLU62)

v Partner TP Name (example: ENMRAS)

Chapter 2. MERVA Connection/2 Client Setup 7

Sample configuration files can be found in the \SAMPLES\CONNECT\PC\ directory
on the MERVA OS/2 V3.3 CD. See also “Appendix A. Sample SNA Definitions” on
page 63.

The LU names and the Mode name have been specified by the basic SNA
customization. The Partner TP Name is specified by the partner, the Remote
MERVA API Server. The sample Remote MERVA API Server TP name in the
MERVA AIX and MERVA OS/2 environment is ENMRAS.

If there is already a Symbolic Destination defined with all parameters correct except
the TP name, there is no need to define a Symbolic Destination specifically for the
Remote MERVA API Server. The existing Symbolic Destination can be used to
identify the partner system and the APPC session characteristics, and the
applicable TP name is specified in the MERVA Connection/2 Application Profile. The
TP name in the Side Information Profile is disregarded in this case.

Customizing TCP/IP

MERVA Connection/2 can use TCP/IP services for the communication between the
Remote MERVA API Client and Server if the server supports the TCP/IP
communication protocol. If TCP/IP is used, TCP/IP for OS/2 must be installed on
the OS/2 system. The TCP/IP support for a Remote API Server has not been
initially available with MERVA AIX and MERVA OS/2. This is why you must check
whether the applicable Remote MERVA API Server supports TCP/IP.

Basic TCP/IP Customization

The OS/2 system must be customized as a host in an internet, a network of
interconnected hosts using TCP/IP communication protocols. No specific MERVA
Connection/2 requirements apply for the basic TCP/IP customization (refer to the
Online Reference Guide to TCP/IP of the TCP/IP for OS/2 package about TCP/IP
installation and configuration).

TCP/IP Customization for MERVA Connection/2

TCP/IP customization for MERVA Connection/2 is not applicable. All information
related to the TCP/IP connection to the Remote API Server is provided in the
MERVA Connection/2 Application Profile.

You must, however, ensure that the partner host name specified in the MERVA
Connection/2 Application Profile can be interpreted by the TCP/IP service. A partner
host name can be interpreted if it is defined in the OS/2 hosts file
(C:\MPTN\ETC\HOSTS), or if it is known by a Name Server in the TCP/IP network.

Customizing MERVA Connection/2

Any Financial Application that uses the Remote MERVA API must be customized in
the Client Application System. The most important customization information is the
identification of the applicable Remote MERVA API Server.

A MERVA Connection/2 application is customized by providing information in a
MERVA Connection/2 Application Profile, a flat ASCII file that is generated and
updated using any text editor.

8 MERVA Connection/2

Two formats are supported for an application profile, a fix format profile and a
variable format profile. The fix format profile supports only an SNA connection
between Remote MERVA API Client and Server and is only supported due to
backward compatibility. The variable format supports additional functions such as
TCP/IP interconnection, conversation security, and test environment.

Variable Format Application Profile

The variable format application profile provides an extended means to specify
environment parameters for a remote MERVA application. The features of the
variable format are:

v Parameter Keywords An application parameter is specified in a line by its own in
the format parameter_keyword = parameter_value . Any number of blanks may
precede the parameter keyword and the mandatory equal sign.

v Parameter Sequence Application parameters can be specified in any sequence. If
a parameter is set twice in the profile, the second of the two parameters
becomes effective.

v Comments Comments can be part of an application profile. Any line that does not
start with a valid parameter keyword is considered as a comment line. An empty
line is also considered as a comment line. The first line of a profile must,
however, not start with a digit. According to conventions in other AIX
configuration profiles, it is recommended to start a comment line with a hash
character ’#’.

A parameter value can be followed by a comment. The comment must be
separated from the parameter value by at least one blank.

An example of a Remote API Client application profile in variable format is shown in
Figure 2. It provides the same function as the sample profile shown in Figure 3 on
page 13.

#---
MERVA Connection/2: Client Application Profile
#---

log_level = 1 minimum logging level
#log_mode = append append new log entries
system_type = PS2 type of local/remote system

programmer_log = plog.log name of programmer's log file
diagnosis_log = dlog.log name of diagnosis log file
control_file = mip.ctl name of MIP control file

symbolic_destination = MERVA SNA APPC SI profile for RAPI Server
#partner_tp_name = ENMRAS SNA APPC RAPI Server TP name

#partner_host_name = merva2 TCP/IP partner host name
#rapi_port_number = 7118 TCP/IP port number of RAPI Server
#tcp_nodelay = on TCP_NODELAY flag will be set

#client_user_id = mrvuser conversation security user id
#client_password = passwd conversation security user password

#test_environment = on RAPI Client test environment active

Figure 2. Variable Format Application Profile Sample

Chapter 2. MERVA Connection/2 Client Setup 9

The application profile parameters that are not supported by a fix format application
profile are shown in a comment line. Remove the hash character at the begin of a
comment line to activate the parameter in that line.

Variable Format Application Profile Parameters

The parameters supported by the Remote API Client and the corresponding
parameter keywords in a variable format profile are described in the following.

Logging Level

The parameter keyword for the logging level parameter is log_level . The parameter
value is a single digit, 1, 2, 3, or 4. Logging level 1 is the lowest level, only error
messages are written to the logfile. Logging level 4 is the highest, providing the
most information.

Log File Mode

The parameter keyword for the log file mode parameter is log_mode . The
parameter value is either append or new . Actually, only the initial characters ’a’ or
’n’ are relevant. A log file mode parameter that does not start with either of these
two characters is ignored. The log file mode applies to both, the programmer’s log
and the diagnosis log.

Log file mode append means that the plog and dlog entries are appended to
existing log files. This is the default log file mode if this parameter is missing from
the application profile.

Log file mode new means that existing log files are deleted and the plog and dlog
entries are written to an empty file.

System Type

The parameter keyword for the system type parameter is system_type . The
parameter value is PS2. It identifies the type of the client application system.

Name of Programmer’s Log

The parameter keyword for the programmer’s log is programmer_log . The
parameter value is the name of an OS/2 file. A programmer’s log is not generated
when this parameter is not specified.

Name of Diagnosis Log

The parameter keyword for the diagnosis log is diagnosis_log . The parameter
value is the name of an OS/2 file. A diagnosis log is not generated when this
parameter is not specified.

Name of Message Integrity Control File

The parameter keyword for the MIP control file is control_file . The parameter value
is the name of an OS/2 file. The Message Integrity Control File is a mandatory
resource for the Remote MERVA API Client. The Remote API Client cannot be
initialized when this parameter is not specified.

10 MERVA Connection/2

SNA APPC Symbolic Destination

The parameter keyword for the SNA APPC symbolic destination is
symbolic_destination . The parameter value is the name of a Side Information
profile defined in Communications Server. It identifies and describes the APPC
partner process in the Remote API Server. The maximum length of a symbolic
destination name is 8 characters.

SNA APPC Partner TP Name

The parameter keyword for the SNA APPC partner TP name is partner_tp_name .
The parameter value is the transaction program name (TPN) of the Remote API
Server as it is defined in the partner system. The TP name specified in this
parameter takes precedence over the TP name specified in the Side Information
profile. If this parameter is not specified, the TP name specified in the Side
Information profile applies. The maximum length of a TP name is 8 characters.

TCP/IP Partner Host Name

The parameter keyword for the TCP/IP partner host name is partner_host_name .
The parameter value is the name of the AIX or OS/2 host that houses the RAPI
server, or its dotted decimal TCP/IP address. The maximum length of a partner host
name is 16 characters.

TCP/IP Port Number

The parameter keyword for the TCP/IP port number of the Remote API Server is
rapi_port_number . The parameter value is the number assigned to the Remote
MERVA API Server, an inetd subserver, in the applicable partner host system. The
maximum value of a TCP/IP port number is 64 KB - 1 (65.535).

TCP NODELAY Option

The parameter keyword for the TCP NODELAY option is tcp_nodelay . The
parameter value is either 1 or on if the TCP_NODELAY flag must be set. It is either
0 or off if the TCP_NODELAY flag must not be set. The default parameter value is
1, which can speed up the TCP/IP communication noticeable.

Client User Identifier

The parameter keyword for the conversation security client user ID is
client_user_id . The parameter value is the conversation security user identifier that
applies for the conversation with the partner system. The client user must be
defined in the partner system and must be authorized to access the Remote API
Server transaction program. The maximum length of a user ID is 8 characters.

The client user ID specified in this parameter applies only if the user application
program did not provide a user ID before the application profile is handled. The
user ID provided by the application program can, however, be erased by
client_user_id = ″″. A second client user ID statement in this application profile can
then set a client user ID of its choice.

Client User Password

The parameter keyword for the conversation security client user password is
client_password . The parameter value is the conversation security user password
that applies for the specified client user. A password is disregarded by the Remote

Chapter 2. MERVA Connection/2 Client Setup 11

API Client if a user ID is not specified in the application profile or by the application
program. The maximum length of a client user password is 8 characters.

The client user password specified in this parameter applies only if the user
application program did not provide a user password before the application profile is
handled.

The password provided by the application program can, however, be erased by
client_password = ″″. A second client password statement in this application profile
can then set a client user password of its choice.

Client Process Test Environment

The parameter keyword for the Client process test environment is
test_environment . The parameter value is either on or 1 to activate the test
environment when the Client process starts. The test environment is inactive if this
parameter is not specified or if any other parameter value is specified. The Remote
API Client function ENMSetTestEnv() is a means to set or reset the client process
test environment in a Remote API Client user program for specific phases of the
Client process.

A Remote API Client process in test environment writes a processing trace to the
standard output device (normally the user terminal). This trace can be used for
processing and error analysis. The programmer’s log and the diagnosis log are
other sources of information for error analysis.

Fix Format Application Profile

The parameters of a MERVA application can be provided in a fix format application
profile that contains six parameters. The parameters can be specified in one line
separated by at least one blank, in six separate lines, or as parameter groups in 2
to 5 lines.

The sequence of parameters is fix. It must be:

1. Logging level (1..4)

2. Name of programmer’s log

3. Name of diagnosis log

4. SNA symbolic destination name of the Remote API Server

5. Name of the message integrity control file

6. System type of the client application system (PS2)

A parameter file that starts with a digit (the logging level) is interpreted as a fix
format application profile. It is interpreted as a variable format application profile
otherwise.

An example of a Remote API Client application profile in fix format is shown in
Figure 3 on page 13.

12 MERVA Connection/2

The fix format of an application profile is supported for compatibility reasons with
older versions of the Remote MERVA API feature only. New functions, such as
conversation security and TCP/IP support, are not supported by an application
profile in fix format.

Application profiles in variable format must be used to benefit from the full
functionality provided by the Remote API Client feature.

Selecting the Communication Type

The Remote API Client can establish a conversation with a Remote API Server
using SNA APPC services or using TCP/IP services. The corresponding partner
system address information must be provided in the application profile, and the
appropriate customization must be applied to the applicable data communication
services.

Both, SNA APPC and TCP/IP partner information can be provided in an application
profile. If the SNA symbolic destination name of the Remote API Server is available,
the Remote API Client tries to establish an APPC conversation with the Remote API
Server. TCP/IP partner information is disregarded in this case.

TCP/IP partner information is used to establish a TCP/IP connection to the Remote
API Server if an SNA symbolic destination name is not available from the
application profile.

The Remote API Client does not support a preferred connection type and an
automatic connection type switch if both, SNA APPC and TCP/IP partner
information, is available from the application profile.

1
plog.log
dlog.log
MERVA
mip.ctl
PS2

Figure 3. Fix Format Application Profile Sample

Chapter 2. MERVA Connection/2 Client Setup 13

14 MERVA Connection/2

Chapter 3. RAPI Server Setup on AIX

This chapter describes all aspects for the installation and customization of the
Remote API (RAPI) Server in the MERVA AIX environment.

Remote API Server Requirements

A number of requirements must be met by an OS/2 system in order to install and
execute the Remote MERVA API Server.

Machine Requirements

The MERVA Connection/2 Client Application System and the MERVA Server
System must be interconnected by a Data Communication Link. As specified by the
Data Communication Service used (SNA APPC or TCP/IP), Token Ring, SDLC,
Twinax, or other types of intersystem links can be used. A corresponding data link
adapter must be installed in the AIX system.

For a list of the alternatives available and the hardware required, refer to the
appropriate books listed in the “Bibliography” on page 111.

Programming Requirements

The following software must be installed on the RISC System/6000:

v IBM AIX Version 4.1.3, or a subsequent release

v SNA Server for AIX Version 3.1, or Communications Server for AIX Version 4.1,
or a subsequent release

SNA Server for AIX or Communications Server for AIX is required only if an SNA
APPC connection must be used for the communication between the Remote
MERVA API Client and Server. SNA Server for AIX or Communications Server for
AIX is not required if a TCP/IP connection is used for that purpose.

Installing the RAPI Server

The Remote MERVA API Server is automatically installed when MERVA AIX is
installed in an AIX system. No specific installation tasks apply for the RAPI server in
the MERVA AIX environment.

Customizing SNA Services

MERVA Connection/2 can use SNA APPC services for the communication between
the Remote MERVA API Client and Server. As an alternative, MERVA Connection/2
can use TCP/IP services for that purpose.

If SNA APPC services are used, SNA Server for AIX or Communications Server for
AIX must be installed in the AIX system. and be customized for binding APPC
sessions between the two partner systems.

© Copyright IBM Corp. 1993, 1997 15

Basic SNA Customization

Various methods apply for the interconnection of an OS/2 and an AIX system. The
applicable customization is described in the books of SNA Server for AIX or
Communications Server for AIX.

A sample for the SNA customization that is independent of MERVA Connection/2 is
provided in “Appendix A. Sample SNA Definitions” on page 63.

SNA Customization for the RAPI Server

An LU 6.2 TP Name Profile is the only resource that must be added to the SNA
customization to support the Remote MERVA API Server. A TPN Profile defines the
characteristics of an inbound APPC Transaction Program. The characteristics of an
inbound TP are, for example:

v TP Name (sample: ENMRAS)

v Full Path Name of the Executable

v Command Line Parameters

v TP Access Security

v AIX User for the TP Process

To define a TPN Profile in SNA Server for AIX or Communications Server for AIX
call smitty sna and select:

1. Configure SNA Profiles

2. Advanced Configuration

3. Sessions

4. LU 6.2

5. LU 6.2 Transaction Program Name (TPN)

6. Add a Profile

A sample LU 6.2 TPN profile for ENMRAS in the Communications Server for AIX
environment is shown in Figure 4 on page 17.

16 MERVA Connection/2

The sample TPN profile in Figure 4 defines that both the sample TPN Profile name
and the sample Transaction program name (TPN) are ENMRAS.

Command line parameter keyword trace is used to request an inbound
conversation trace. It is written to a file in the /tmp file system starting with the
name /tmp/enmtpi.t. If you specify a trace directory name starting and ending with a
forward slash instead of the keyword trace , a conversation trace is written to a
trace file starting with enmtpi.t. in that directory.

The sample Full path to TP executable specifies an AIX shell script that calls the
Remote API Server program enmtpi via a symbolic link from the MERVA AIX IPC
directory (for example, /u/merva1/ipc) to the MERVA installation directory (for
example, /usr/lpp/merva/bin).

The AIX shell script enmtpi.cmd reads, for example,
#!/bin/bsh
/u/merva1/ipc/enmtpi $1 $2 $3 $4 $5 $6 &

This sample AIX shell script ensures that the program enmtpi is called with the full
path name as the first parameter. The full path name is needed to identify the
applicable MERVA AIX instance (MERVA AIX IPC directory name).

Multiple instances of this TP must be enabled to allow concurrent inbound
conversations with multiple clients.

Add LU 6.2 TPN Profile

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
* Profile name [ENMRAS]
Transaction program name (TPN) [ENMRAS]
Transaction program name (TPN) is in hexadecimal? no +
PIP data? no +

If yes, Subfields (0-99) [0] #
Use command line parameters? yes +
Command line parameters [trace]
Conversation type mapped +
Sync level confirm +
Resource security level none +

If access, Resource Security Acc List Prof. []
Full path to TP executable [/u/merva1/ipc/enmtpi.cmd]
Multiple instances supported? yes +
Use user id from attach? no +
User ID [210] #
Server synonym name [ENMRASRV]
Restart action once +
Communication type signals +

If IPC, communication IPC queue key [0] #
Time out Attaches? yes +
If yes, time-out value (0-3600 seconds) [60] #

Standard INPUT file/device [/dev/null]
Standard OUTPUT file/device [/dev/null]
Standard ERROR file/device [/dev/null]

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

Figure 4. LU 6.2 Transaction Program Name Profile for ENMRAS

Chapter 3. RAPI Server Setup on AIX 17

The User ID 210 represents the MERVA Instance Owner merva1 in this sample.

Customizing TCP/IP Services

MERVA Connection/2 can use TCP/IP services for the communication between the
Remote MERVA API Client and Server. TCP/IP customization applies in the Remote
MERVA API Server environment.

Basic TCP/IP Customization

The OS/2 system must be customized as a host in an internet, a network of
interconnected hosts using TCP/IP communication protocols. No specific MERVA
Connection/2 requirements apply for the basic TCP/IP customization.

TCP/IP Customization for the RAPI Server

The Remote MERVA API Server executes as an inetd subserver if TCP/IP services
are used for the communication between the Remote MERVA API Client and
Server. An inetd subserver is defined in two steps, the definition of the internet
service and the definition of the inetd subserver.

Customizing Client Network Services (/etc/services)

To add an entry to the file /etc/services, call smit tcpip or smitty tcpip and select:

1. Further Configuration

2. Client Network Services

3. Services

4. Add a Service

A sample internet services profile for the Remote API Server enmras is shown in
Figure 5. The sample TCP socket port number for the Remote MERVA API Server
is 7118. This port number aligns with other sample port numbers in the MERVA AIX
environment.

Customizing Super Daemon Services (/etc/inetd.conf)

To add an entry to the file /etc/inetd.conf, call smit tcpip or smitty tcpip and select:

1. Further Configuration

2. Server Network Services

3. Other Available Services

Add an Internet Service

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Official Internet SERVICE Name [enmras]
* Transport PROTOCOL tcp +
* Socket PORT Number [7118] #
Unofficial Internet SERVICE NAMES []
(separate names with blanks)

Figure 5. Internet Service Profile Sample

18 MERVA Connection/2

4. Super Daemon (inetd)

5. inetd Subservers

6. Add an inetd Subserver

You must specify the service name and the transport protocol in that initial screen
before you can enter the other subserver parameters. A sample for the initial screen
is shown in Figure 6.

When you have specified the subserver name and the transport protocol you must
press the ENTER key to get the screen that provides the full set of subserver
parameters. A sample inetd subserver profile is shown in Figure 7.

The USER Name (for example, merva1) is the name of the MERVA Instance
Owner. The service program enmtci executes under the identifier of this AIX user.
The program must, however, have root authority at its begin to check whether the
client is authorized to access the server system. This is why program enmtci must
be owned by the root user, must be executable by members of its owning group,
and must have set the AIX setuid flag. The user specified as USER Name must be
a member of the group that owns program enmtci .

You can also use the following path name as the Service Program PATH Name :
/home/<merva instance owner>/ipc/enmtci

Add an inetd Subserver

Please refer to help for information concerning subserver dependencies

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Available Subservers [enmras tcp] +

Figure 6. inetd Subserver Profile Identification Sample

Add an inetd Subserver

Please refer to help for information concerning subserver dependencies

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Internet SERVICE Name [enmras]
* Transport PROTOCOL tcp +
* SOCKET Type stream +
* WAIT for Server to Release Socket nowait +
* USER Name [merva1]
* Service Program PATH Name [/usr/lpp/merva/bin/enmtci]
Service Program Command Line ARGUMENTS [/u/merva1/ipc/ trace]

Figure 7. inetd Subserver Profile Sample

Chapter 3. RAPI Server Setup on AIX 19

|

|

<merva instance owner> denotes the home directory of the MERVA instance
owner.

The service program enmtci switches to normal user authority (user merva1) as
soon as the client authorization has been executed.

The Service Program Command Line ARGUMENTS are as follows:

v The first command line argument must be the IPC directory of the applicable
MERVA AIX instance.

v An inbound conversation trace can be requested in another command line
argument. The command line parameter keyword ’trace’ causes a conversation
trace to be written to a file in the /tmp file system starting with the name
/tmp/enmtci.t. If you specify a trace directory name starting and ending with a
forward slash, a conversation trace is written to a trace file starting with enmtci.t.
in that directory.

v Command line parameter keyword delay can be specified (separated from other
parameters by a blank) to keep the inbound TCP/IP socket as it was passed to
the inbound TP. By default, the Remote API Server TP for TCP/IP (enmtci) sets
the TCP_NODELAY flag for the inbound socket. A significantly decreased
execution time of a remote API application program can be the effect of that flag.
Depending on the size of the API Response Data Units, the flag can have no
effect at all, or save up to 90% of the execution time.

20 MERVA Connection/2

|
|

Chapter 4. Remote API Server Setup on OS/2

This chapter describes all aspects for the installation and customization of the
Remote API (RAPI) Server in the MERVA OS/2 environment.

Remote API Server Requirements

A number of requirements must be met by a OS/2 system in order to install and
execute the Remote MERVA API Server.

Machine Requirements

The MERVA Connection/2 Client Application System and the MERVA Server
System must be interconnected by a Data Communication Link. As specified by the
Data Communication Service used (SNA APPC or TCP/IP), Token Ring, SDLC,
Twinax, or other types of intersystem links can be used. A corresponding data link
adapter must be installed in the OS/2 system.

For a list of the alternatives available and the hardware required, refer to the
appropriate books listed in the “Bibliography” on page 111.

Programming Requirements

The following software must be installed on your OS/2 PC:

v IBM OS/2 Warp Version 3, or a subsequent release

v Personal Communications 4.1 or Communication Server 4.1 or

TCP/IP for OS/2 Version 3.0, or a subsequent release

v MERVA OS/2 V3.3, including the latest available PTF level, or a subsequent
release.

Installing Remote API Server

The Remote MERVA API Server is automatically installed when MERVA OS/2 is
installed in a OS/2 system. Specific customization tasks apply for the Remote API
Server in the OS/2 environment.

Installing the Remote MERVA API Server Program

Refer to “Customizing SNA Services” on page 22 or “Customizing TCP/IP Services”
on page 24 on how to install MERVA Connection/2 with SNA or TCP/IP.

Refer to “Chapter 10. Replacing Security User Exits” on page 57 on how to replace
the Security User Exits provided with MERVA Connection/2.

Installing the Sample Communications Server Configuration Files

The directory \SAMPLES\CONNECT\PC\ on the MERVA OS/2 V3.3 CD contains a
sample set of Communications Server configuration files. If you want to use these,
unzip them to the directory where Communications Server is installed:

unzip enmsrvnn.zip *:* -d x :\CMLIB or

© Copyright IBM Corp. 1993, 1997 21

unzip enmsrvpp.zip *:* -d x :\CMLIB

in which x is the drive where Communications Server is installed on (usually the
CMLIB directory). The zip file enmsrvnn.zip contains a Communications Server
configuration file using APPN on the Server side. The zip file enmsrvpp.zip
contains a Communications Server configuration file using a peer-to-peer
connection for the Server side. Change the name of the default configuration file in
Communications Server to enmsrvnn or enmsrvpp by double-clicking on the icon
“Replace Default Configuration” of the Communications Server folder. The files with
the extension NDF are plain text files and can be read by any text editor. All other
files can only be read by the Communications Server setup program.

Customizing SNA Services

The Remote API Server can use SNA APPC services for the communication
between the Remote MERVA API Client and Server. As an alternative, the Remote
API Server can use TCP/IP services for that purpose.

If SNA APPC services are used, one of the following programs must be installed
and be customized for binding APPC sessions between the two partner systems on
the OS/2 system:

v Personal Communications 4.1

v Communication Server 4.1

Whenever the term Communications Server is used in this book, Personal
Communications is also meant (both are sufficient for MERVA Connection/2).

If TCP/IP is used, TCP/IP for OS/2 Version 3.0 or higher must be installed on the
OS/2 system.

Basic SNA Customization

Various methods apply for the interconnection of two OS/2 system. The applicable
customization is described in the books of Communications Server.

22 MERVA Connection/2

SNA Customization for the Remote API Server

An LU 6.2 TP is the only resource that must be added to the Communications
Server customization to support the Remote MERVA API Server. A TP defines the
characteristics of an inbound APPC Transaction Program. The characteristics of an
inbound TP are, for example:

v TP Name (example: ENMRAS)

v Full Path Name of the Executable

v Command Line Parameters

v TP Access Security

A sample LU 6.2 TP definition is shown in Figure 8.

If Conversation security is used, an appropriate entry must be added to
Conversation security in the SNA Features List. It is recommended to use the
Utilize User Profile Management option. Therefore, any user registered in the
Server’s User Profile Management has automatically the access right for the
Transaction Program.

Customizing the Trace File for SNA

The trace file path must be set with an Environment variable. Add the following line
to CONFIG.SYS:
SET ENM_TRC_DIR=C:\TRACE\

The path name given is the path to a directory where all trace files will be written.
Replace ‘C:\TRACE\’ with an appropriate path name. The trace file names will be of
the type
<partner host name>.trc

If the ENM_TRC_DIR environment variable is not set, no trace file will be written.

Note that this change to CONFIG.SYS does not take effect until the OS/2 system is
rebooted.

Figure 8. Transaction Program Definition in Communications Server Setup

Chapter 4. Remote API Server Setup on OS/2 23

Customizing TCP/IP Services

MERVA Connection/6000 can also use TCP/IP services for the communication
between the Remote MERVA API Client and Server. As prerequisite, TCP/IP for
OS/2 Version 3.0 must be installed on the Remote API Server and all Remote API
Clients.

The Remote MERVA API Server executes as an inetd subserver if TCP/IP services
are used for the communication between the Remote MERVA API Client and
Server. An inetd subserver is defined in two steps, the definition of the internet
service and the definition of the inetd subserver.

Customizing Client Network Services

The file C:\MPTN\ETC\SERVICES contains all TCP/IP services available on the
Remote API Server. It is used to map a service to a specific port and a transport
protocol.

Add the following line to the C:\MPTN\ETC\SERVICES file:
enmras 7118/tcp # MERVA Connection Remote Api Server

This defines the TCP/IP service ‘enmras’, maps it to the port 7118, and defines ‘tcp’
as transport protocol for this service. The name of the service and the port number
may be freely choosen. The service name should match the name given in
INETD.LST (see below) and the port number must match the port number given in
the profile of the Client.

Customizing Super Daemon Services

The file
%ETC%\INETD.LST

contains all services that were started with the inetd daemon. Next to the service
name, the transport protocol and the executable file to start are indicated.

Add the following line to the %ETC%\INETD.LST file:
enmras tcp <drive>:\merva2\base\enmotci.exe

Note: The implementation of inetd in TCP/IP for OS/2 3.0 is somewhat incomplete
in comparison with TCP/IP on AIX. No parameters are allowed in
%ETC%\INETD.LST and the Configuration program supplied with TCP/IP for
OS/2 3.0 doesn’t allow selfdefined services for inetd. Particulary, take the
following into consideration: The TCP/IP Configuration program overrides
all changes made in %ETC%\INETD.LST! That is, if the configuration is
saved with the Configuration program, all changes made to
%ETC%\INETD.LST must be done again!

Customizing the Trace File for TCP/IP

The trace file path must be set with an Environment variable. Add the following line
to CONFIG.SYS:
SET ENM_TRC_DIR=C:\TRACE\

24 MERVA Connection/2

|

|

|

The path name given is the path to a directory where all trace files will be written.
Replace ‘C:\TRACE\’ with an appropriate path name. The trace file names will be of
the type
<partner host name>.trc

If the ENM_TRC_DIR environment variable is not set, no trace file will be written.

Note that this change to CONFIG.SYS does not take effect until the OS/2 system is
rebooted.

Chapter 4. Remote API Server Setup on OS/2 25

26 MERVA Connection/2

Chapter 5. Verifying Correct Installation and Customization

To verify that the installation and customization of MERVA Connection/2 was
successful, run the sample program SMPLO4.EXE. This program is an already
compiled version of the sample source SMPLO4.C and is also included in the file
enmorsrc.zip on the MERVA Connection/2 disk. SMPLO4.EXE expects to find the
profile SMPLO4.PRF in the directory C:\ENMRAPI\, see “Installing MERVA
Connection/2” on page 5 on how to obtain the profile.

Before you can run this program, the user ID SAMPLE with the password
SAMPLE1 has to be defined in MERVA. This user ID must be approved for
application programs (see MERVA OS/2 V3 Application Programming for a
description of the prerequesites for the sample programs). The program also checks
that the queues API_IN and API_OUT have been customized.

© Copyright IBM Corp. 1993, 1997 27

28 MERVA Connection/2

Chapter 6. The Application Programming Interface

The following description of the API is based on the descriptions in MERVA OS/2
V3 Application Programming and MERVA AIX Application Programming. This
chapter describes only the differences between the MERVA Remote API
programming on the OS/2 system and the MERVA OS/2 or MERVA AIX API
programming.

Structure of the MERVA API Program on the Client Side

One major task of the MERVA API program on the OS/2 system is that it must call
functions that deal with connecting and disconnecting to and from MERVA OS/2
system or the MERVA AIX system.

�1� Before the API functions can be called, the Remote MERVA API Client on
OS/2 must be initialized by calling the function ENMSetProfile. This function
tells the Remote MERVA API Client the name of the profile. The profile is
described in “Customizing MERVA Connection/2” on page 8.

�2� After having set the profile name, the connection to the Remote MERVA API
Server on the MERVA OS/2 or MERVA AIX side can be established. To do
this, call the function ENMStartRAPI. When this function is called, the
Remote MERVA API Client is initialized and the network connection to the
Remote MERVA API Server is established.

After the ENMStartRAPI call, the MERVA OS/2 or MERVA AIX API functions
can be called as if the program ran locally on a MERVA OS/2 or MERVA
AIX machine.

�3� Before terminating the program, the connection to the Remote MERVA API
Server must be released by calling the function ENMEndRAPI. It is
important to call this function even if an error occurs in the API program,
otherwise, the Remote MERVA API Server misses the termination and is
not ready to receive the next connection request when the API program is
started again.

C Language Data Types

The file enmrapi.h contains the data types and prototypes of the MERVA OS/2 and
MERVA AIX API functions. When compiling a MERVA OS/2 or MERVA AIX API
program locally on the MERVA machine, the file enmoapi.h is included. When
compiling an API program on the Client OS/2 system, the file enmrapi.h is included
instead.

�1� ENMSetProfile(profile name)
�2� ENMStartRAPI(application name)

|
| API program logic with MERVA OS/2 or MERVA AIX API calls
|

�3� ENMEndRAPI()

Figure 9. Remote MERVA API Program Structure

© Copyright IBM Corp. 1993, 1997 29

For the description of the API calls in this book, some data types defined in the
supplied include file enmrapi.h are used. Their meanings are as follows:

Type Definition

USHORT unsigned short

UCHAR unsigned char

PUCHAR unsigned char*

PUSHORT unsigned short*

ULONG unsigned long

PULONG unsigned long*

Additional Functions

MERVA Connection/2 provides more API calls than the MERVA OS/2 and MERVA
AIX API. They are divided into the following categories:

v Functions for starting and ending the conversation

v Functions enabling the API program to be triggered by MERVA OS/2 alarms

v Functions for error handling.

Starting and Ending the Conversation

If you want that the API program starts and ends the conversation between the
Remote MERVA API Client and the Remote MERVA API Server, use the following
functions:

v ENMSetProfile - Select a Profile

v ENMStartRAPI - Establish Connection to MERVA

v ENMRestartRAPI - Reconnect Remote API Program to MERVA

v ENMEndRAPI - Disconnect from MERVA

v ENMSetSecurity - Set conversation security information

v ENMSetTestEnv - Set test environment

Each function is described in the following.

ENMSetProfile - Select a Profile

Specify the name of the profile you want to use.

C Definition

void ENMSetProfile (PUCHAR pucProfileName);

Parameter Description

The following parameter is required:

v pucProfileName (PUCHAR)

Pointer to a null-terminated string with a maximum length of 80 characters. This
is the full path name of the profile.

Note: If several API programs run concurrently, each must use a different profile
name.

30 MERVA Connection/2

Remarks

The format and contents of the profile file are described in “Customizing MERVA
Connection/2” on page 8.

C Language Example:

#include "enmrapi.h"

ENMSetProfile ("enm6r1.prf");

ENMStartRAPI - Establish Connection to MERVA OS/2 or MERVA AIX

C Definition
USHORT ENMStartRAPI (PUCHAR pucApplicationName);

Parameter Description

The following parameters are required:

v retCode (USHORT) - output

retCode Meaning

0 Function completed successfully.

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason, described in
“Handling Errors” on page 42. The reason code is also written to
the Remote API diagnosis log on the OS/2 system (see
“Chapter 11. Diagnosis Information” on page 61). If it is an
internal error of the MERVA OS/2 or MERVA AIX API, the reason
code is zero.

v pucApplicationName (PUCHAR) - input

A pointer to a null-terminated string of up to 8 characters. This name is registered
by the Remote MERVA API Server.

Note: If several API programs run concurrently, each must use a different name.

Remarks

This call establishes the conversation with MERVA (Remote MERVA API Server)
and initializes internal buffers and variables. After this function was called, the
program must not end without calling ENMEndRAPI.

C Language Example

#include "enmrapi.h"

USHORT rc = 0;

if ((rc = ENMStartRAPI ("APPLID")) == 0)
puts("Conversation is up\n");

else
puts("Error in ENMStartRAPI, Reason %d\n", ENMGetReason());

ENMSetProfile

Chapter 6. The Application Programming Interface 31

ENMRestartRAPI - Reconnect Remote API Program to MERVA OS/2 or
MERVA AIX

C Definition
USHORT ENMRestartRAPI (PUCHAR pucApplicationName);

Parameter Description

The following parameters are required:

v retCode (USHORT) - output

retCode Meaning

0 Function completed successfully.

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason, described in
“Handling Errors” on page 42. The reason code is also written to
the Remote API diagnosis log on the OS/2 system (see
“Chapter 11. Diagnosis Information” on page 61). If it is an
internal error of the MERVA OS/2 or MERVA AIX API, the reason
code is zero.

v pucApplicationName (PUCHAR) - input

A pointer to a null-terminated string of up to 8 characters. This name is registered
by the Remote MERVA API Server.

Note: If several API programs run concurrently, each must use a different name.

Remarks

If the connection is established with this call instead of ENMStartRAPI, the
resynchronization described in Figure 10 on page 45 is provided for the following
API calls:

v ENMAdd

v ENMDelete

v ENMPut

v ENMRouteAdd

v ENMRoutePut

If the connection was not interrupted within the critical time period in a previous
session, this call has the same functions as ENMStartRAPI. Therefore, you can
also use it if the previous connection did not end abnormally.

C Language Example

#include "enmrapi.h"

USHORT rc = 0;

if ((rc = ENMRestartRAPI ("APPLID")) == 0)
puts("Conversation is up\n");

else
puts("Error in ENMStartRAPI");

ENMRestartRAPI

32 MERVA Connection/2

ENMEndRAPI - Disconnect from MERVA OS/2 or MERVA AIX

C Definition
USHORT ENMEndRAPI (void);

Parameter Description

The following parameter is required:

v retCode (USHORT) - output

retCode Meaning

0 Function completed successfully.

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason, described in
“Handling Errors” on page 42. The reason code is also written to
the Remote API diagnosis log on the OS/2 system (see
“Chapter 11. Diagnosis Information” on page 61). If it is an
internal error of the MERVA OS/2 or MERVA AIX API, the reason
code is zero.

Remarks

The RAPI conversation to MERVA is terminated.

C Language Example

#include "enmrapi.h"

USHORT rc = 0;

if ((rc = ENMEndRAPI ()) == 0)
puts("Conversation successfully terminated\n");

else
puts("Error in ENMEndRAPI");

ENMSetSecurity - Set Conversation Security Information

C Definition
VOID ENMSetSecurity (PUCHAR pucUserID,

PUCHAR pucPassword);

Parameter Description

The following parameters are required:

v pucUserID (PUCHAR) - input

A pointer to a null-terminated string of up to 8 characters containing the client
user ID.

v pucPassword (PUCHAR) - input

A pointer to a null-terminated string of up to 8 characters containing the client
password.

Remarks

A MERVA application program can provide conversation security information to be
used for client authorization in the Remote API Server system. The function

ENMEndRAPI

Chapter 6. The Application Programming Interface 33

|
|

ENMSetSecurity() must be used for that purpose. The parameters of this function
are a client user ID and a password. Either of these parameters or both can be
empty.

Conversation security information must be provided before ENMStartRAPI() or
ENMRestartRAPI() is issued. An ENMSetSecurity() function call has no effect
thereafter.

Conversation security information can also be provided via application profile
parameters. Normally, the information provided by ENMSetSecurity() takes
precedence over profile parameters. There is, however, a means to overwrite the
security information set by ENMSetSecurity() via application profile parameters.

C Language Example

#include "enmrapi.h"

ENMSetSecurity ("SAMPLE", "SAMPLEPW");

ENMSetTestEnv - Set Test Environment

C Definition
VOID ENMSetTestEnv (UCHAR ucTestEnvIndicator);

Parameter Description

The following parameter is required:

v ucTestEnvIndicator (UCHAR) - input

Function parameter 1 activates the test environment, 0 inactivates it.

Remarks

A MERVA application program can activate or inactivate the Remote API Client test
environment for specific sections of the application program. The function
ENMSetTestEnv() must be used for that purpose. It can be called as often as
required.

The variable ENMTestEnv is provided as part of the Remote MERVA API to test
whether the Remote API Client test environment is active or inactive. The
instruction ENMSetTestEnv(!ENMTestEnv); toggels the test environment setting
either from active to inactive, or from inactive to active.

C Language Example

#include "enmrapi.h"

#define TESTENV_ON '1'

ENMSetTestEnv (TESTENV_ON);

ENMSetSecurity

34 MERVA Connection/2

Functions Enabling the API Program to be Triggered

If you want that the API program is triggered by MERVA alarms, use the following
functions (the semaphores reside on the MERVA system):

v ENMWaitSemList - Wait for a List of Semaphores

v ENMCloseSem - Close a Semaphore

v ENMSetSem - Set a Semaphore

v ENMClearSem - Clear a Semaphore

v ENMCreateSem - Create a Semaphore

v ENMOpen - Open a Semaphore.

Each function is described in the following.

ENMWaitSemList - Wait for a List of Semaphores

This call blocks the current process until one of the specified semaphores is
cleared. It allows the API program to wait for a list of up to 16 semaphores and up
to 16 different MERVA alarms.

C Definition

USHORT ENMWaitSemList(PUSHORT Index,
ULONG timeout,
ULONG SemHandle,

...,
(ULONG) 0);1

Parameter Description

The following parameters are required:

v retCode (USHORT) - output

retCode Meaning

0 Function completed successfully.

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason, described in
“Handling Errors” on page 42. The reason code is also written to
the Remote API diagnosis log on the OS/2 system (see
“Chapter 11. Diagnosis Information” on page 61). If it is an
internal error of the MERVA OS/2 or MERVA AIX API, the reason
code is zero.

6 (ERR_OUT_OF_MEMORY) The system does not have enough
memory to complete the function.

121 No semaphore is cleared. The timeout was reached.

255 An internal sempahore error occured, which is dependent on the
server system (OS/2 or AIX). ENMGetReason() (see
“ENMGetReason - Get Reason Code for Internal Error” on
page 42) will provide a reason code of the form 3xxx, where ’xxx’
is the error number of the server system.

1. The last parameter ((ULONG)0) is not part of the C function prototype. It is only mentioned here to show that the list of
SemHandle parameters must be terminated by the value 0 (4 bytes).

ENMSetTestEnv

Chapter 6. The Application Programming Interface 35

v Index (PUSHORT) - output

In this parameter, ENMWaitSemList returns an index (0..15) that tells you which
of the semaphores is cleared.

v timeout (ULONG) - input

Code Meaning

-1 Wait indefinitely for a semaphore to be cleared.

0 Return immediately.

>1 Wait the indicated number of milliseconds for a semaphore to be cleared
before resuming execution.

v SemHandle (ULONG) - input

Up to 16 semaphore handles that were created by the calls of ENMCreateSem
or ENMOpenSem.

v (ULONG)0 - input

This parameter terminates the list of semaphores. Its value must be zero and a
4-byte value. If the parameter is missing, ENMWaitSemList is not able to
recognize the end of the semaphore list.

C Language Example
/*

The following are OS/2 semaphore names
with prefix, which were used in present
code:

#define TRIGGER "\\SEM\\SAMPLE2"
#define STOP "\\SEM\\STOP.SMP"

*/
/*

We recommend to use this new form of
a semaphore name:

*/
#define TRIGGER "SAMPLE2"
#define STOP "STOP.SMP"

#include "enmrapi.h"

USHORT rc = 0;
ULONG SemTrigger;
ULONG SemStop;
USHORT Index = 0;

if ((rc = ENMCreateSem (&SemStop, STOP)) == 0)
if ((rc = ENMCreateSem (&SemTrigger, TRIGGER)) == 0)

if ((rc = ENMSetSem (SemStop)) == 0)
if ((rc = ENMSetSem(SemTrigger)) == 0)

rc = ENMWaitSemList(&Index, -1L,
SemStop,
SemTrigger,
(ULONG)0);

ENMCloseSem - Close a Semaphore

This call closes a semaphore obtained with an ENMCreateSem or ENMOpenSem
call.

C Definition
USHORT ENMCloseSem (ULONG SemHandle);

ENMWaitSemList

36 MERVA Connection/2

Parameter Description

The following parameters are required:

v retCode (USHORT) - output

retCode Meaning

0 Function completed successfully.

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason, described in
“Handling Errors” on page 42. The reason code is also written to
the Remote API diagnosis log on the OS/2 system (see
“Chapter 11. Diagnosis Information” on page 61). If it is an
internal error of the MERVA OS/2 or MERVA AIX API, the reason
code is zero.

6 The system does not have enough memory to complete the
function.

255 An internal sempahore error occured, which is dependent on the
server system (OS/2 or AIX). ENMGetReason() (see
“ENMGetReason - Get Reason Code for Internal Error” on
page 42) will provide a reason code of the form 3xxx, where ’xxx’
is the error number of the server system.

v SemHandle (ULONG) - input

Generated by ENMCreateSem or ENMOpenSem.

C Language Example

/*
The following is a OS/2 semaphore name
with prefix, which was used in present
code:

#define TRIGGER "\\SEM\\SAMPLE2"
*/
/*

We recommend to use this new form of
a semaphore name:

*/
#define TRIGGER "SAMPLE2"

#include "enmrapi.h"

USHORT rc = 0;
ULONG SemTrigger;

if ((rc = ENMCreateSem (&SemTrigger, TRIGGER)) == 0)
rc = ENMCloseSem (SemTrigger);

ENMSetSem - Set a Semaphore

Remarks

ENMSetSem sets a semaphore unconditionally. For MERVA OS/2 or MERVA AIX
this means that the semaphore can be cleared by raising an alarm.

C Definition
USHORT ENMSetSem (ULONG SemHandle);

ENMCloseSem

Chapter 6. The Application Programming Interface 37

Parameter Description

The following parameters are required:

v retCode (USHORT) - output

retCode Meaning

0 Function completed successfully.

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason, described in
“Handling Errors” on page 42. The reason code is also written to
the Remote API diagnosis log on the OS/2 system (see
“Chapter 11. Diagnosis Information” on page 61). If it is an
internal error of the MERVA OS/2 or MERVA AIX API, the reason
code is zero.

6 The system does not have enough memory to complete the
function.

100 The limit of open semaphores in the system is exceeded.

255 An internal sempahore error occured, which is dependent on the
server system (OS/2 or AIX). ENMGetReason() (see
“ENMGetReason - Get Reason Code for Internal Error” on
page 42) will provide a reason code of the form 3xxx, where ’xxx’
is the error number of the server system.

v SemHandle (ULONG) - input

Generated by ENMCreateSem or ENMOpenSem.

C Language Example

/*
The following is a OS/2 semaphore name
with prefix, which was used in present
code:

#define TRIGGER "\\SEM\\SAMPLE2"
*/
/*

We recommend to use this new form of
a semaphore name:

*/
#define TRIGGER "SAMPLE2"

#include "enmrapi.h"

USHORT rc = 0;
ULONG SemTrigger;

if ((rc = ENMCreateSem (&SemTrigger, TRIGGER)) == 0)
rc = ENMSetSem (SemTrigger);

ENMClearSem - Clear a Semaphore

This call clears a semaphore unconditionally. If processes are blocked on the
semaphore, they are restarted.

C Definition
USHORT ENMClearSem (ULONG SemHandle);

ENMSetSem

38 MERVA Connection/2

Parameter Description

The following parameters are required:

v retCode (USHORT) - output

retCode Meaning

0 Function completed successfully.

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason, described in
“Handling Errors” on page 42. The reason code is also written to
the Remote API diagnosis log on the OS/2 system (see
“Chapter 11. Diagnosis Information” on page 61). If it is an
internal error of the MERVA OS/2 or MERVA AIX API, the reason
code is zero.

6 The system does not have enough memory to complete the
function.

255 An internal sempahore error occured, which is dependent on the
server system (OS/2 or AIX). ENMGetReason() (see
“ENMGetReason - Get Reason Code for Internal Error” on
page 42) will provide a reason code of the form 3xxx, where ’xxx’
is the error number of the server system.

v SemHandle (ULONG) - input

Generated by ENMCreateSem or ENMOpenSem.

C Language Example

/*
The following is a OS/2 semaphore name
with prefix, which was used in present
code:

#define TRIGGER "\\SEM\\SAMPLE2"
*/
/*

We recommend to use this new form of
a semaphore name:

*/
#define TRIGGER "SAMPLE2"

#include "enmrapi.h"

USHORT rc = 0;
ULONG SemTrigger;

if ((rc = ENMCreateSem (&SemTrigger, TRIGGER)) == 0)
rc = ENMClearSem (SemTrigger);

ENMCreateSem - Create a Semaphore

This call creates an OS/2 or AIX semaphore. The semaphore is used by several
API programs to synchronize their access to resources or to wait for MERVA
alarms.

C Definition

USHORT ENMCreateSem (PULONG SemHandle,
PUCHAR SemName);

ENMClearSem

Chapter 6. The Application Programming Interface 39

Parameter Description

The following parameters are required:

v retCode (USHORT) - output

retCode Meaning

0 Function completed successfully.

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason, described in
“Handling Errors” on page 42. The reason code is also written to
the Remote API diagnosis log on the OS/2 system (see
“Chapter 11. Diagnosis Information” on page 61). If it is an
internal error of the MERVA OS/2 or MERVA AIX API, the reason
code is zero.

6 The system does not have enough memory to complete the
function.

100 The limit of open semaphores in the system is exceeded.

123 The name of the semaphore is not valid.

183 The semaphore already exists.

255 An internal sempahore error occured, which is dependent on the
server system (OS/2 or AIX). ENMGetReason() (see
“ENMGetReason - Get Reason Code for Internal Error” on
page 42) will provide a reason code of the form 3xxx, where ’xxx’
is the error number of the server system.

v SemHandle (PULONG) - output

Address of the semaphore handle.

v SemName (PUCHAR) - input

Pointer to a null-terminated string containing the name of the semaphore to be
created. The semaphore name is a logical name without path details. The \SEM\
prefix used for OS/2 semaphores is not necessary, although you may still use
semaphore names with this prefix (if no prefix is provided, MERVA Connection/2
will add this prefix automatically on the OS/2 side). For portability reasons, we
recommend to use the new semaphore names without \SEM\.

C Language Example

/*
The following is a OS/2 semaphore name
with prefix, which was used in present
code:

#define TRIGGER "\\SEM\\SAMPLE2"
*/
/*

We recommend to use this new form of
a semaphore name:

*/
#define TRIGGER "SAMPLE2"

#include "enmrapi.h"

USHORT rc = 0;
ULONG SemTrigger;

rc = ENMCreateSem (&SemTrigger, TRIGGER);

ENMCreateSem

40 MERVA Connection/2

ENMOpenSem - Open a Semaphore

This call opens an existing semaphore created by another process with
ENMCreateSem. The other process can also run on the PS/2 or the RISC
System/6000.

C Definition

USHORT ENMOpenSem (PULONG SemHandle,
PUCHAR SemName);

Parameter Description

The following parameters are required:

v retCode (USHORT) - output

retCode Meaning

0 Function completed successfully.

2 An internal error has occurred. The API program receives further
information by calling the function ENMGetReason, described in
“Handling Errors” on page 42. The reason code is also written to
the Remote API diagnosis log on the OS/2 system (see
“Chapter 11. Diagnosis Information” on page 61). If it is an
internal error of the MERVA OS/2 or MERVA AIX API, the reason
code is zero.

6 The system does not have enough memory to complete the
function.

100 Limit of open semaphores in the system is exceeded.

123 The name for the semaphore is not valid.

187 The semaphore does not exist.

255 An internal sempahore error occured, which is dependent on the
server system (OS/2 or AIX). ENMGetReason() (see
“ENMGetReason - Get Reason Code for Internal Error” on
page 42) will provide a reason code of the form 3xxx, where ’xxx’
is the error number of the server system.

v SemHandle (PULONG) - output

Address of the handle of the opened semaphore.

v SemName (PUCHAR) - input

Pointer to a null-terminated string containing the name of the semaphore to be
opened.

C Language Example

/*
The following is a OS/2 semaphore name
with prefix, which was used in present
code:

#define TRIGGER "\\SEM\\SAMPLE2"
*/
/*

We recommend to use this new form of
a semaphore name:

*/

ENMOpenSem

Chapter 6. The Application Programming Interface 41

#define TRIGGER "SAMPLE2"

#include "enmrapi.h"

USHORT rc = 0;
ULONG SemTrigger;

rc = ENMOpenSem (&SemTrigger, TRIGGER);

Handling Errors

If you want that the API call returns reason codes, use the function ENMGetReason
- Get Reason Code for Internal Error. This function is described in the following.

ENMGetReason - Get Reason Code for Internal Error

This call returns the reason code for an internal error in MERVA Connection/2.

If an internal error occurs either in MERVA Connection/2 or in the local MERVA
OS/2 or MERVA AIX API, an API call returns the return code 2. If it is an error of the
MERVA Connection/2, ENMGetReason returns a more specific reason code.
Otherwise, the reason code is 0.

C Definition
USHORT ENMGetReason (void);

Parameter Description

The following parameter is required:

v retCode (USHORT) - output

Code Meaning

2xxx All reason codes between 2000 and 2999 indicate
communication problems.

2110 The APPC conversation cannot be established or is canceled.

2120 The Communications Side Information object is not found.

2130 Connection to Remote MERVA API Server program failed.

2140 Deallocation failed because the conversation has already been
terminated.

2150 Conversation is interrupted while trying to receive data.

2200 An empty data buffer was received.

29xx xx is a return code of the CPI-C call.

2999 A general communication problem occurred (see diagnosis log).

3xxx An internal semaphore error occured. ’xxx’ is the error number
provided by OS/2 or AIX. Error codes of both systems are not
identical!

7006 The Remote MERVA API Server failed while allocating memory.

7012 The Remote MERVA API Server does not accept further API calls
due to a previous error.

ENMOpenSem

42 MERVA Connection/2

7013 The Remote MERVA API Server received a negative return code
from user exit ENMExitDecrypt.

7014 The Remote MERVA API Server received a negative return code
from user exit ENMExitEncrypt.

7015 The Remote MERVA API Server received a negative return code
from user exit ENMExitMacVerify or ENMExitMacGen.

7016 The Remote MERVA API Server received an incorrect API
request.

7018 The Remote MERVA API Server received an error when
converting ASCII to EBCDIC. See the diagnosis log of MERVA
OS/2 or MERVA AIX.

7019 The Remote MERVA API Server received an error while
accessing the message integrity control file.

7030 Internal message space has not been created.

8002 The Remote MERVA API Client cannot open the programmer’s
log file specified in the profile.

8003 The Remote MERVA API Client cannot close the programmer’s
log file specified in the profile.

8004 The Remote MERVA API Client cannot open the diagnosis log
file specified in the profile.

8005 The Remote MERVA API Client cannot close the diagnosis log
file specified in the profile.

8006 The Remote MERVA API Client could not allocate memory.

8007 The Remote MERVA API Client cannot write to the diagnosis log
file specified in the profile.

8008 The Remote MERVA API Client cannot write to the programmer’s
log file specified in the profile.

8010 The RRemote MERVA API Client failed because the profile name
in ENMSetProfile was incorrect or was not specified.

8011 The Remote MERVA API Client failed because the profile
specified in ENMSetProfile does not exist.

8013 The Remote MERVA API Client received a negative return code
from user exit ENMExitDecrypt.

8014 The Remote MERVA API Client received a negative return code
from user exit ENMExitEncrypt.

8015 The Remote MERVA API Client received a negative return code
from user exit ENMExitMacVerify.

8016 The Remote MERVA API Client received a negative return code
from user exit ENMExitMacGen.

8017 Conversation has not been started with ENMStartAPPC.

8019 The Remote MERVA API Client could not access the message
integrity control file.

8020 The Remote MERVA API Client could not load ENMRATP.DLL.

8021 Partner system info is missing in the profile.

ENMGetReason

Chapter 6. The Application Programming Interface 43

C Language example

#include "enmrapi.h"

USHORT rc = 0;
USHORT reason = 0;

rc = ENMFree();
if (rc) {

reason = ENMGetReason();
if (reason) {
printf ("Internal error in MERVA Connection/2 occurred, reason code %d",

reason);
}

}

ENMGetReason

44 MERVA Connection/2

Chapter 7. Resynchronization

If a network connection is interrupted, the recovery procedure must ensure that all
changes of message status in MERVA (such as Add, Route, or Delete) are done
only once. This affects both programs using the remote API and programs calling
the local MERVA OS/2 or MERVA AIX API.

During normal processing, an API call is transferred from the Remote MERVA API
Client to the Remote MERVA API Server (positions (1) and (2) in Figure 10). The
return data from MERVA is transferred back from the Remote MERVA API Server to
the Remote MERVA API Client (positions (3) and (4)) and to the calling program.

The return code ERR_SYSTEM of the API call and a corresponding reason code
(2000 to 2999) of an additional ENMGetReason call indicates whether the network
connection is interrupted (see MERVA OS/2 V3 Application Programming). MERVA
Connection/2 does not know whether the call completed successfully,
unsuccessfully, or whether it is not executed on the MERVA system. In the example
shown in Figure 10 this means that the API program does not know whether the
message has been added to the MERVA queue.

With MERVA Connection/2 the API program reestablishes the connection in the next
run using ENMRestartRAPI. It recreates the message with the same contents and
fields, and repeats the call that failed. This mechanism is provided for those API
calls that are important for the integrity of the message database:

v ENMAdd

v ENMDelete

v ENMPut

v ENMRouteAdd

v ENMRoutePut

Figure 10. Resynchronization Support

© Copyright IBM Corp. 1993, 1997 45

How Resynchronization Is Implemented

The Remote MERVA API Client generates an internal unique identifier when it
receives a call from the application program. The identifier is saved locally and also
sent to the Remote MERVA API Server. The Remote MERVA API Server deletes the
identifier after the API call has been executed and the return data is passed back to
the Remote MERVA API Client.

If the network connection terminates before the return data is passed back,
identifier and return data are saved. After the connection is reestablished, the same
identifier arrives with the first of the above mentioned API calls. The saved return
data is passed back as if the call was executed now.

The necessary control data is saved in files. On the Remote MERVA API Client you
can specify the file name in the MERVA Connection/2 profile as described in
“Customizing MERVA Connection/2” on page 8. On the Remote MERVA API Server
the file name must be the same as the application name specified in the
ENMStartRAPI or ENMRestartRAPI call.

To ensure that resynchronization works correctly, note the following:

v Specify unique file names for the Message Integrity Control file (MIP) in the
profiles of your application programs.

v Use unique application names for the ENMStartRAPI and ENMRestartRAPI calls
if you run more than one remote API program.

Using the Resynchronization Mechanism

The following is a structure of a program that issues calls in a loop:

ENMSetProfile
ENMRestartRAPI
ENMAttach
do

ENMCreate
ENMWriteField
read message from application
ENMRouteAdd

until (no more message to send)
ENMDetach
ENMEndRAPI

If the network connection breaks down after the ENMRouteAdd call is issued, the
API program terminates. When it is restarted, the loop is entered as if there had
been no interruption in the previous run.

Notes:

1. Use the same profile as in the previous run.

2. Call ENMRestartRAPI using the same application name.

3. Call ENMCreate and ENMWriteField using the same data as in the previous run
(same message, same field contents).

4. Call ENMRouteADD using the same queue name.

5. After resynchronization continue with the loop as in normal processing.

46 MERVA Connection/2

If the program runs like that, it does not have to check how far processing went in
the previous run when the ENMRouteADD call was interrupted.

Hints and Tips

Recovering after a Failed Call

If calling ENMAdd or ENMRouteAdd fails, you usually call ENMClear to clear the
message space (see MERVA OS/2 V3 Application Programming).

If these calls fail after reestablishing the connection as described before because of
other reasons than network problems, calling ENMClear may return the return code
ERR_NO_MSG_CREATED

(that is, 202).

This means that the API call was executed in the first run. The error message can
be ignored.

The same applies to an ENMFree call returning the message
ERR_NO_MSG_LOCKED

(that is, 201)

after calling of ENMDelete, ENMPut, or ENMRoutePut failed.

Not Using Resynchronization

If you do not use the resynchronization option, call ENMStartRAPI instead of
ENMRestartRAPI. ENMStartRAPI deletes the internal control information for
resynchronization. Then each API call is considered as a new one.

MERVA Connection/2 does not save the type or input data of the API call that failed
due to the network failure. Therefore, when using ENMRestartRAPI, you must
ensure that the same call is repeated after reconnecting to the MERVA system if
one of the above mentioned calls failed.

MERVA Connection/2 does not recognize an inappropriate API call. The call is not
executed if the internal state indicates that the last API call from the previous run
was executed. If this is not considered, an API call with new data could be treated
as a repeated call from a previous run.

Chapter 7. Resynchronization 47

48 MERVA Connection/2

Chapter 8. Security

Security is a fundamental requirement for all financial institutions. When discussing
the security of message transfers, a number of different aspects must be
considered:

v Encryption of transferred information

v Authentication of transferred information.

These requirements are supported by MERVA Connection/2.

Encryption of Transferred Information

Using MERVA Connection/2 you can encrypt all information that is exchanged.

You do this by activating user exits. User exits allow you to include your own
algorithm or even other products that support encryption and decryption routines.

There are two user exits:

v ENM4ExitEncrypt for encryption

v ENM4ExitDecrypt for decryption.

See “User Exit Interfaces” for more information on how to implement these routines.

Authentication of Transferred Information

Using MERVA Connection/2 you can generate an authentication key covering all
exchanged information. You do this by activating user exits. User exits allow you to
include your own algorithm or even other products that support authentication
routines.

There are two user exits:

v ENM4ExitMacGen for MAC generation

v ENM4ExitMacVerify for MAC verification.

See “User Exit Interfaces” for more detailed information on how to implement these
routines.

User Exit Interfaces

The following introduces the user exit interfaces of MERVA Connection/2.

Introduction

There is a fundamental difference between an API call and a user exit:

v For an API call, you write a program that calls the API routine provided by
MERVA Connection/2.

© Copyright IBM Corp. 1993, 1997 49

v A user exit is a routine written by you and called by MERVA Connection/2. The
user exit routines must contain the declaration for the function name and formal
parameter list, as described in the following.

User Exit Points

Figure 11 on page 51 shows what happens when an API function is called by an
API program on the OS/2 system. You can see who is calling a user exit at which
processing step. In the figure, the following abbreviations are used for the user
exits:

ENCRYP ENM4ExitEncrypt

DECRYP ENM4ExitDecrypt

MACGEN ENM4ExitMacGen

MACVFY ENM4ExitMacVerify

50 MERVA Connection/2

User Exit Interfaces in C Language

The data types used in these routines can be different, depending on whether they
are implemented on the PS/2 or the RISC System/6000. See the coded samples (
“Appendix B. Sample Security User Exits” on page 73) for more information.

Figure 11. User Exit Points

Chapter 8. Security 51

User Exit for Encryption

C Definition
unsigned short ENM4ExitEncrypt (unsigned char* pucApplId,

unsigned char* pucBuffer,
unsigned short usBufferLen);

Purpose of the User Exit Routine

Encrypts the passed data buffer.

Parameter Description

The following parameters are required:

v pucApplId (unsigned char*) - input

Address of a null-terminated string with a maximum length of 8. The string
contains the application identifier that you passed as a parameter of the API call
ENMStartRAPI. You can use this string to provide different encryption keys for
different partner connections, or decide for which connections or for which API
programs the information is to be encrypted.

v pucBuffer (unsigned char*) - input/output

Address of the data buffer to be encrypted.

v usBufferLen (unsigned short) - input

Length of the data buffer to be encrypted.

User Exit for Decryption

C Definition
unsigned short ENM4ExitDecrypt (unsigned char* pucApplId,

unsigned char* pucBuffer,
unsigned short usBufferLen);

Purpose of the User Exit Routine

Decrypts the passed data buffer.

Parameter Description

The following parameters are required:

v pucApplId (unsigned char*) - input

Address of a null-terminated string with a maximum length of 8. The string
contains the application identifier that you passed as a parameter of the API call
ENMStartRAPI. You can use this string to provide different decryption keys for
different partner connections, or to decide for which connections or for which API
programs the information is to be decrypted.

v pucBuffer (unsigned char*) - input, output

Address of the data buffer to be decrypted.

v usBufferLen (unsigned short) - input

Length of the data buffer to be decrypted.

ENM4ExitEncrypt

52 MERVA Connection/2

User Exit for MAC Generation

C Definition
unsigned short ENM4ExitMacGen (unsigned char* pucApplId,

unsigned char* pucBuffer,
unsigned short usBufferLen,
unsigned char* pucMacBuffer);

Purpose of the User Exit Routine

Generates a MAC (Message Authentication Code) for the passed data buffer.

Parameter description

The following parameters are required:

v pucApplId (unsigned char*) - input

Address of a null-terminated string with a maximum length of 8. The string
contains the application identifier you passed as a parameter of the API call
ENMStartRAPI. You can use this string to provide different MAC generation
algorithms for different partner connections, or to decide for which connections or
for which API programs a MAC shall be generated.

v pucBuffer (unsigned char*) - input

Address of the data buffer for which to generate a MAC.

v usBufferLen (unsigned short) - input

Length of the data buffer for which to generate a MAC.

v pucMacBuffer (unsigned char*) - output

Address of the area to copy the generated MAC to. The address can be up to 32
bytes in length.

User Exit for MAC Verification

C Definition
unsigned short ENM4ExitMacVerify (unsigned char* pucApplId,

unsigned char* pucBuffer,
unsigned short usBufferLen,
unsigned char pucMacBuffer);

Purpose of the User Exit Routine

Generates a MAC for the passed data buffer and compares it with the passed
MAC. Set the return code to 0 if the MAC matches, and otherwise to 1.

Parameter Description

The following parameters are required:

v pucApplId (unsigned char*) - input

Address of a null-terminated string with a maximum length of 8. The string
contains the application identifier you passed as a parameter of the API call
ENMStartRAPI. You can use this string to provide different MAC verification
algorithms for different partner connections, or to decide on which connections or
for which API programs a MAC is to be verified.

v pucBuffer (unsigned char*) - input

Address of the data buffer for which to generate a MAC and for which the
passed MAC has been generated on the partner side.

ENM4ExitMacGen

Chapter 8. Security 53

v usBufferLen (unsigned short) - input

Length of the data buffer for which to generate a MAC.

v pucMacBuffer (unsigned char*) - input

Address of the area holding the MAC key that has been received from the
partner. The address can be up to 32 bytes in length.

ENM4ExitMacVerify

54 MERVA Connection/2

Chapter 9. Building API Programs

This chapter describes how to compile MERVA Connection/2 programs in the C
programming language.

Compiling Your Own Program

To generate your API program on the OS/2 system, issue the following commands:

v icc /C /DOS2 /Gd+ /Gm+ /Gs- /Gt+ <name>.c

v ilink /NOE <name>.obj ENMORAPI.LIB <name>.def

It may be necessary to link additional libraries to your program.

Compiling the Sample Programs

To generate the executable files for the delivered sample programs, place the
contents of the \CONNECT2\SAMPLES\ directory (see the following list) in a
working directory of your choice. All sample programs use the profile SAMPLE.PRF
which must reside in the same path as the sample program.

List of Sample Files
SMPLO1.MAK

Makefile for SMPLO1. Use nmake /f smplo1.mak to generate the
sample API program SMPLO1.

SMPLO1.C Sample program (attaching to MERVA, querying queue information,
creating messages, sending messages etc.)

SMPLO1.DEF Module definitions file for SMPLO1

SMPLO2.MAK
Makefile for SMPLO2. Use nmake /f smplo2.mak to generate the
sample API programs SMPLO2 and SMPLO2S.

SMPLO2.C MERVA triggering sample program

SMPLO2.DEF Module definitions file for SMPLO2

SMPLO2S.C Program used to stop SMPLO2 from running

SMPLO2S.DEF
Module definitions file for SMPLO2S

SMPLO3.MAK
Makefile for SMPLO3. Use nmake /f smplo3.mak to generate the
sample API program SMPLO3.

SMPLO3.C Program to load Telex Messages through API queues

SMPLO3.DEF Module definitions file for SMPLO3

SMPLO4.MAK
Makefile for SMPLO4. Use nmake /f smplo4.mak to generate the
sample API program SMPLO4.

SMPLO4.C Sample to verify Connection/2 installation

SMPLO4.DEF Module definitions file for SMPLO4

© Copyright IBM Corp. 1993, 1997 55

SAMPLE.PRF File containing a sample profile

SMPLO4.EXE Compiled version of SMPLO4.C for immediate use

56 MERVA Connection/2

Chapter 10. Replacing Security User Exits

This chapter describes how you can replace the provided security user exits by
generating and activating your own security user exits on the client application
system and the MERVA server system (MERVA OS/2 and MERVA AIX side).

Security User Exits

Two sets of sample security user exits are provided (see “User Exit Interfaces” on
page 49):

enm4ssec These routines contain sample code for encryption and
authentication. They show how to access the variables of the formal
parameter list in the function call but do not provide genuine
security. The provided code on the client application system is the
shared library enmosxit.dll, on the MERVA OS/2 side it is the
dynamic link library enm4ssec.dll, and on the MERVA AIX side it is
the shared library libenmssec.a.

enm4snil These routines do not contain any code. Use this file if no
encryption or authentication is desired. The provided code on the
client application system is the shared library enmosxit.dll, on the
MERVA OS/2 side it is the dynamic link library enm4snil.dll, and on
the MERVA AIX side it is the shared library libenmsnil.a.

On the client application system the shared library containing the user exits is
enmosxit.dll. If you want to add your own user exits exchange this library with your
own. You may use ENMOSXIT.MAK to achieve this.

On the MERVA OS/2 side the dynamic link library containing the user exits must
have the name enmosxit.dll. The shipped version of enmosxit.dll is a copy of the
sample library enm4snil.dll.

On the MERVA AIX side the shared library containing the user exits must have the
name libenmsxit.a. The shipped version of libenmsxit.a is a copy of the sample
library libenmsnil.a.

If you want to use the second set (enm4ssec) of sample user exit routines, copy
(and rename) the following files:

v enmrssec.dll to enmosxit.dll on the remote application side

v enm4ssec.dll to enmosxit.dll on the MERVA OS/2 side

v libenmssec.a to libenmsxit.a on the MERVA AIX side.

Generating and Activating Security User Exits on the Client
Application System

On the remote application side the user exit routines must be placed in shared
libraries.

To replace the sample user exits by your own routines, use enm4ssec.c as a
skeleton. Generate a shared library to replace enmosxit.dll. To do this, replace all
occurences of “enm4snil” in enmosxit.mak and enmosxit.lrf with “enm4ssec”.
Then start the compilation of the DLL with the following command:

© Copyright IBM Corp. 1993, 1997 57

nmake all /f enmosxit.mak

This will generate a new enmosxit.dll with the user exits contained in enm4ssec.c.
Replace the previous version of the DLL with the new one. The files that you need
for the generation reside in the compressed file enmorsrc.zip.

Generating and Activating Security User Exits on the MERVA Server
System for MERVA OS/2

On the MERVA OS/2 side the user exit routines must be placed in DLLs.

If you want to replace the sample user exits with your own routines, use
enm4ssec.c as a skeleton. The following file generates a new enmosxit.dll from
enm4ssec.c:

58 MERVA Connection/2

The makefile enmossec.mak is also provided in the compressed file enmorsrc.zip
(see “Installing MERVA Connection/2” on page 5 on how to unpack this file).

#---
MAKEFILE - MERVA Connection/2 User Exits DLL
#- -
Compile-Options:
/C Compile, do not link
/Gd- Static linking of the runtime library
/O- No Optimization
/Ti Generate debugger information
/N2 End make after 2 errors
/Gm+ Link with multithreaded library
/Gs- Don't remove stack probes
/Gt+ Enable variables for passing to 16 bit functions
/W2 Compiler messages severity level 2
/Ge- Compile for DLL (not for EXE)
#
/DOS2 Defines the variable OS2 which indicates the use of OS/2
#
Linker-Options:
/NOE Don't use extended dictionary to search libraries
/STACK: Set the Stack size
#
Usage:
nmake all /f enmossec.mak
#---

#---
Options
#---
C_OPT = /C /DOS2 /O- /Ti /N2 /Gd- /Gm+ /Gs- /Gt+ /W2 /Ge-
L_OPT = /NOE /STACK:65536

#---
Objects which are to be generated in this makefile
#---
ALL: ENMOSXIT.DLL \

ENMOSXIT.LIB

#---
Link ENMOSXIT.DLL
#---
ENMOSXIT.DLL: ENM4SSEC.OBJ

ILINK $(L_OPT) /DLL ENM4SSEC.OBJ \
/OUT:ENMOSXIT.DLL \
/MAP:ENMOSXIT.MAP \
OS2386.LIB CPPOM30.LIB \
ENMOSXIT.DEF

#---
Compile ENM4SSEC
#---
ENM4SSEC.OBJ: ENM4SSEC.C \

ENM4SXIT.H
$(CC) $(C_OPT) ENM4SSEC.C

#---
Generate LIB file for User Exits DLL
#---
ENMOSXIT.LIB: ENMOSXIT.DEF

IMPLIB ENMOSXIT.LIB ENMOSXIT.DEF

Figure 12. Make File enmossec.mak to Generate a DLL

Chapter 10. Replacing Security User Exits 59

Use the following command to create the new DLL:

nmake /f enmossec.mak

Replace the old enmosxit.dll with the newly generated enmosxit.dll.

If your source file name is different from enm4ssec.c, replace every occurrence of
enm4ssec within the make file enmossec.mak with your source file name.

Generating and Activating Security User Exits on the MERVA Server
System for MERVA AIX

The sample security user exits can be accessed by the Remote MERVA API Server
on the MERVA AIX side if you copy the library libenmssec.a to the library
libenmsxit.a. If you want to replace the sample user exits by your own routines, use
the enm4ssec.c as a skeleton. The file can be retrieved from directory
/usr/lpp/merva/samples. The file enm4ssec.mak generates a new library
libenmssec.a from the source file enm4ssec.c.

Use the following command:

make -f enm4ssec.mak all

Replace /usr/lpp/merva/lib/libenmsxit.a with your new library using the following
command:

cp libenmssec.a /usr/lpp/merva/lib/libenmsxit.a

60 MERVA Connection/2

Chapter 11. Diagnosis Information

This chapter describes the diagnosis information that is written to log files on the
client application side, the MERVA OS/2 side, and the MERVA AIX side.

Log Files on the Client Application Side

Two logs are written. You can choose their names and directories by setting them in
the MERVA Connection/2 profile (see “Customizing MERVA Connection/2” on
page 8).

Each message written to the logs consists of two parts, the message header and
the message body, as shown in Figure 13.

Diagnosis Log

The diagnosis log provides you with:

v Error messages that help you recover from errors when using the API calls or
errors concerning the communication with the MERVA system.

v Trace information when the API Trace is switched on with the call ENMTrace
(see MERVA OS/2 V3 Application Programming).

Programmer’s Log

The programmer’s log is a general debugging tool. It contains all entries of the
diagnosis log and additional more detailed information to be analyzed by your IBM
representative.

Date The date is in the form YYYYMMDD, where YYYY is the year, MM
is the month, and DD is the day.

Time The time is in the form HHMMSS, where HH is the hour, MM are
the minutes, and SS are the seconds.

Module name The module name is an 8-character code identifying the module the
message originated from.

Function name
The function name is a 15-character code identifying the function
the message originated from.

* 19930402192358ENM4RAPI ENMRestartRAPI 00000 00000
ENM9153: API function ENMRestartRAPI called.

Parameters:
App: SAMPLE3

* 19930402192357ENM4RUTL APIInit 00000 00000
ENM9108: Error in CPIC Call CMALLC RC = 19.

* 19930402192413ENM4RAPI ENMRestartRAPI
ENM9109: Error in RAPI Initialization.

* 19930402192413ENM4RAPI ENMRestartRAPI
ENM9152: API function returned with reason code 2130.

Figure 13. Example of Diagnosis Log with API Trace Entries

© Copyright IBM Corp. 1993, 1997 61

The layout of the message is as follows:

Message The variable-length message to be recorded. See MERVA OS/2 V3
Messages and Codes for the meaning of the messages.

Note: Logging entries are appended to the existing files. If you want that MERVA
Connection/2 creates new log files, delete the old log files.

Log Files on the MERVA OS/2 Side

Diagnosis information concerning the Remote MERVA API Server program is
provided by the MERVA OS/2 log files. Error and trace information is written to the
diagnosis log. IBM service information is written to the programmer’s log. You can
list or browse the diagnosis log file using the Display/Print Diagnosis Log (DPD)
function of MERVA OS/2.

The log files are located on the disk and directory x:\MERVA2\, where x is the drive
on which MERVA OS/2 is installed. See the MERVA OS/2 V3 Diagnosis Guide for
further information.

Log Files on the MERVA AIX Side

Diagnosis information concerning the Remote MERVA API Server program is
provided by the MERVA AIX log files. Error and trace information is written to the
diagnosis log. IBM service information is written to the programmer’s trace log. You
can list or browse the diagnosis log file using the Display Diagnosis Log function in
the MERVA AIX menu program.

The log files are located in the MERVA AIX instance logging directory as selected in
the Create MERVA AIX Instance step described in the MERVA AIX Installation and
Customization Guide.

62 MERVA Connection/2

Appendix A. Sample SNA Definitions

MERVA Connection/2 can use LU 6.2 sessions for the communication between the
Remote MERVA API Client and Server in the SNA Data Communication
environment. There are many ways how the data communication subsystems in the
client and server systems can be customized to bind the required sessions.

This appendix provides two examples for these many ways. The first is based on a
customization example shown in the SNA Server for AIX User’s Guide (Configuring
an APPN Network of Two Nodes), and uses the naming conventions of the latter
example. This example uses APPN and can only be used if a Network Node is
available in the LAN (see “Customizing an APPN Network Node (AIX)” on page 67
and “Customizing an APPN Network Node (OS/2)” on page 69). The MERVA server
system resides on the network node in this example. The second example uses an
APPC peer-to-peer connection for communication. In this case, no Network Node is
necessary but the maintenance of such a configuration is more costly in terms of
time.

The naming conventions for the SNA resources in the sample Network Node (also
MERVA Connection/2 server) in the first example are:

NNA The control point (CP) name or local node (LN) name of the MERVA server
(either AIX or OS/2). A second server in this APPN network would be
named NNB.

ENMRAS
The name of the Transaction Program (MERVA Connection/2 server) on the
network node.

LUA The name of an independent LU 6.2 in NNA.

The sample token ring address of NNA is 100000000000. This is just an examplary
address, you have to replace it with your actual address of the network node.

The naming conventions for the SNA resources in the sample end node (Client
Application System) are:

EN1 The end node name (client side).

TR1 The name of the Token Ring Link in EN1 that provides the connection to
the network node server (NNA).

LU1 The name of an independent LU 6.2 in EN1.

MERVA
The symbolic destination name used in EN1.

In the peer-to-peer example, a second end node is used for the server side:

EN2 The end node name (server side).

LUB The name of an independent LU 6.2 in EN2.

ENMRAS
The name of the Transaction Program (MERVA Connection/2 server) in
EN2.

Note: For the APPN example at least one workstation (the network node) must
have software installed, which provides the network node services (for

© Copyright IBM Corp. 1993, 1997 63

example Communications Server or SNA Server for AIX). For the
peer-to-peer example, Personal Communications is fully sufficient.

Customizing an APPN End Node (OS/2)

The sample customizations of an APPN End Node (MERVA Connection/2 Client
Application System), an APPN Network Node (MERVA Connection/6000 Server
System), and an APPN Network Node (MERVA Connection/2 Server System) are
provided in the following sections.

A detailed description how to configure an end node in a two-node APPN network
can be found in the SNA Server for AIX User’s Guide. In the following it is assumed
that you are familiar with this description.

The MERVA Connection/2 SNA customization samples define an APPN network of
two nodes in a token ring. The name of the sample network is APPN1. The MERVA
Server System is defined as an APPN Network Node (NN), and the Client
Application System is defined as an APPN End Node (EN). A second Client
Application System can be easily added to this sample network.

SNA Local Node Characteristics

The local node setup can be performed by entering the applicable parameters in
the OS/2 Communications Manager Setup’s ″SNA local node characteristics″ panel
shown in Figure 14. Start Communications Server Setup , select “Setup...” and a
configuration file. Then double-click on “CPI Communications” and in the following
profile list choose “SNA local node characteristics”.

The field Local node ID may be left blank. Use the Options... button, to get to an
additional panel where you can enter the End node alias.

SNA Connections

To create a link station for the End node, select “SNA connections” in the profile list.
Choose To network node and click on the Create... button. Select the appropriate
adapter type and push Continue... . The following panel is shown in Figure 15 on
page 65.

Figure 14. SNA Local Node Characteristics

64 MERVA Connection/2

Fill in the LAN destination address and allow “Activate at startup”. After clicking on
the OK button, your link station is defined.

Defining Additional Resources

A Local LU, a Partner LU, an APPC Session Mode, and a Side Information Profile
are the additional resources required for the communication with the MERVA Server
System. Select “SNA features” in the profile list of Communications Server Setup.

Local LU and Partner LU

The sample LU 6.2 Local LU profile for node EN1 is shown in Figure 16.

To define the Partner LU select “Partner LU” in the features list and fill in
“APPN1.LUA” as the LU name and “LUA” as the LU alias . Turn on Conversation
security .

Figure 15. Connection to a Network Node

Figure 16. LU 6.2 Local LU Profile in Node EN1

Appendix A. Sample SNA Definitions 65

Mode

The sample LU 6.2 Mode for application sessions (APPCLU62) is shown in
Figure 17. In the “Features List” select Modes to get to this panel.

The sample Mode in Figure 17 defines an SNA logon mode that can be used for
APPC sessions to all kinds of partner systems.

CPI Communications Side Information

The sample CPI Communications (CPIC) Side Information for the Remote MERVA
API Server is shown in Figure 18.

Figure 17. LU 6.2 Mode Profile in Node EN1

Figure 18. LU 6.2 Side Information Profile ENMRAS

66 MERVA Connection/2

Click on the Continue... button to insert the User ID and the password for
conversation security.

Customizing an APPN Network Node (AIX)

A detailed description how to configure a network node in a two-node APPN
network can be found in the SNA Server for AIX User’s Guide. In the following it is
assumed that you are familiar with this description.

Initial Node Setup

The initial node setup can be performed by entering the applicable parameters in
the SNA Server for AIX Initial Node Setup menu or by entering the following
command:

mk_qcinit -w APPN1 -d CPA -y token_ring -N yes -t appn_network_node

The w-flag defines the APPN network name (APPN1). The d-flag defines the control
point name (CPA). The y-flag defines the data link type (token_ring). The N-flag
specifies whether the link station is a calling link station (yes). The t-flag specifies
the APPN network node type (appn_network_node).

The initial node setup modifies the APPN Control Point Profile node_cp and creates
the SNA DLC profile tok0.00001. A Token Ring Link Station profile is not generated.
The sample Network Node uses only dynamically generated link stations.

Check and Modify the Initial Node Setup

You may wish to check the initial node setup for the APPN end node by comparing
the modified and generated profiles with following figures. The profiles modified or
generated by the initial node setup are not modified in this example.

Control Point Profile

The sample SNA Control Point profile for node NNA is shown in Figure 19.

Change/Show Control Point Profile

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Profile name node_cp
XID node ID [*]
Network name [APPN1]
Control Point (CP) name [CPA]
Control Point alias [CPA]
Control Point type appn_network_node +
....
....
....

Figure 19. SNA Control Point in Node NNA

Appendix A. Sample SNA Definitions 67

The Control Point profile modified by the initial node setup is not modified by the
MERVA Connection/2 configuration sample.

Token Ring SNA DLC Profile

The sample Token Ring SNA DLC profile TR1 for node EN1 is shown in Figure 20.

The Token Ring SNA DLC profile generated by the initial node setup is not modified
by the MERVA Connection/2 configuration sample.

Defining Additional Resources

A Local LU, a Partner LU, an APPC Session Mode, and an RTPN Profile are the
additional resources required for the communication with the Client Application
System.

Local LU Profile

The sample LU 6.2 Local LU profile for node NNA is shown in Figure 21 on
page 69.

Change/Show Token Ring SNA DLC Profile

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[TOP] [Entry Fields]
Current profile name tok0.00001
New profile name []
Data link device name [tok0] +
....
....
....
Dynamic link stations supported? yes +

Link Recovery Parameters
Retry interval (1-10000 seconds) [60] #
Retry limit (0 or 1-500 attempts) [20] #

....

....

....

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

Figure 20. Token Ring SNA DLC Profile TR1 in Node EN1

68 MERVA Connection/2

Mode Profile

The sample LU 6.2 Mode profile for application sessions (APPCLU62) is shown in
Figure 17 on page 66 for OS/2. It is the same in nodes EN1 and NNA on both OS/2
and AIX.

TP Name Profile

The Remote MERVA API Server TP must be defined in an LU 6.2 TPN profile. The
sample TP name is ENMRAS. A sample LU 6.2 TPN profile for ENMRAS is shown
in Figure 4 on page 17.

Customizing an APPN Network Node (OS/2)

An APPN Network Node can only be customized with Communication Server.
Personal Communications is capable of APPN functions, but only as an End Node.

Start the Communication Server Setup program, select “Setup...” and a
configuration file. Then double-click on “CPI Comunications” and in the follwing
profile list choose “SNA local node characteriststics”.

Add LU 6.2 Local LU Profile

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

[Entry Fields]
* Profile name [LUA]
Local LU name [LUA]
Local LU alias [LUA]
Local LU is dependent? no +

If yes,
....
....
Conversation Security Access List Profile name []
Recovery resource manager (RRM) enabled? no +

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

Figure 21. LU 6.2 Local LU Profile in Node NNA

Appendix A. Sample SNA Definitions 69

Select Network Node as node type. The field Local node ID may be left blank.

This is all you have to do if you want to customize an APPN Network Node with
Communication Server.

Customizing an APPC Peer-to-Peer Connection (OS/2)

The following tables describe a simple peer-to-peer connection between the client
and the server side of MERVA Connection/2. Both stations run OS/2 (refer to the
accompanying documentation for other operating systems, for example, AIX). You
have to adapt the network name NETNAME used in this example (replace it with
your network name) and the LAN destination address of the server to your needs.

Start Communications Manager/2 Setup, choose “Setup...” and a configuration
name of your choice. Then, select “APPC APIs over Token-ring” in the list box. Now,
the Communications Manager Profile list appears. Go through this list by
configuring all profiles in this list. The following tables provide all entries you should
make in these profiles. Take care to distinguish between the values for the server
(on the left) and the client (on the right).

Complete Peer-to-Peer Configuration Tables (OS/2)
Table 1. DLC Token-Ring or Other LAN Types

Parameter Server side Client side

C&SM LAN ID NETNAME (change!) NETNAME (change!)

All others no changes no changes

Table 2. SNA Local Node Characteristics

Parameter Server side Client side

Network ID NETNAME (change!) NETNAME (change!)

Local node name EN2 EN1

Node type End node End node

Local node ID (maybe blank) (maybe blank)

Figure 22. SNA Local Node Characteristics for Network Node

70 MERVA Connection/2

Table 2. SNA Local Node Characteristics (continued)

Parameter Server side Client side

Local node alias name EN2 EN1

Activate Attach Manager at
startup

(yes) (yes)

All others no changes no changes

Do not make any changes in the “NetWare(R)...” panel.

Table 3. SNA Connections

Parameter Server side Client side

Partner Type - To end node (click on
“Create...”)

Adapter Type - Token-ring or other LAN
types (“Continue...”)

Link name - TR1

Activate at startup - (yes)

LAN destination address - (insert server network
address Entry.2 , then “OK”)

All others - no changes

Table 4. SNA dependent LU Server Definitions

Parameter Server side Client side

Whole profile no changes no changes

Table 5. SNA Features

Parameter Server side Client side

Local LUs

Lu name LUB LUA

Alias LUB LUA

NAU address Independent LU Independent LU

Partner LUs

Fully qualified LU name NETNAME.LUA (change!) NETNAME.LUB (change!)

Alias LUA LUB

Conversation security
verification

(yes) (yes)

Modes

Mode name APPCLU62 APPCLU62

Class of service #CONNECT #CONNECT

Mode session limit 4 4

Minimum contention winners 2 2

Maximum RU size 1024 1024

Transaction program definitions

Service TP (no) -

Transaction programe (TP)
name

ENMTPI

Appendix A. Sample SNA Definitions 71

Table 5. SNA Features (continued)

Parameter Server side Client side

OS/2 program path and file
name

X:\EXAMPLE\ENMOTPI.EXE -

Programm Initialization
parameter (PIP) allowed

(no) -

Conversation security
required

(yes) (click on “Continue...”) -

Presentation type Background -

Operation type Non-queued, Attach Manager
started

-

Transaction program defaults

All parameters no changes no changes

Transaction program security

All parameters no changes no changes

Conversation security

UserID SAMPLE (or your choice) -

Password SAMPLE1 (also retype) -

Utilize User Profile
Management

(yes) (click on “Add”) -

LU-to-LU security

All parameters no changes no changes

CPI Communications side information

Symbolic destination name - MERVA

Partner LU (Fully qualified
name)

- NETNAME.LUB (change!)

Service TP - (no)

TP name - ENMTPI

Security type - Program

Mode name - APPCLU62 (click on “OK”)

User ID - SAMPLE (or your choice)

Password (and retype) - SAMPLE1

Generally applies:

All others no changes no changes

72 MERVA Connection/2

Appendix B. Sample Security User Exits

This appendix contains listings of sample security user exits that you can use.

Module ENM4SNIL - Empty Functions

This program is integrated into MERVA Connection/2 in the supplied version. No
actions are taken in the functions. This means that data transferred between the
MERVA system and the remote application system is not encrypted and no
authentication key is built or transferred. You can use this program as a skeleton for
your code.

/*--*\
| ENM4SNIL.C |
--/
#if defined(WIN32)
#include <windows.h>

#elif defined(OS2)
#define INCL_BASE
#include <os2.h>

#endif

#include <stdlib.h>
#include <stdio.h>
#include <stddef.h>
#include <string.h>
#include <time.h>

#include "enm4sxit.h"

#ifndef __32BIT__
#define APIENTRY16 APIENTRY
#define PUCHAR16 PUCHAR

#endif

USHORT APIENTRY16 ENM4ExitMacGen (PUCHAR16 pucApplId,
PUCHAR16 pucBuffer,
USHORT usBufferLen,
PUCHAR16 pucMacBuffer)

{
return(0);

}

USHORT APIENTRY16 ENM4ExitMacVerify (PUCHAR16 pucApplId,
PUCHAR16 pucBuffer,
USHORT usBufferLen,
PUCHAR16 pucMacBuffer)

{
return(0);

}

USHORT APIENTRY16 ENM4ExitEncrypt (PUCHAR16 pucApplId,
PUCHAR16 pucBuffer,
USHORT usBufferLen)

Figure 23. Sample Security User Exit ENM4SNIL.C (Part 1 of 2)

© Copyright IBM Corp. 1993, 1997 73

Module ENM4SSEC - Sample Functions

This module is supplied as an example for coding security functions. Simple
encryption and authentication routines are included. However, they do not provide
genuine security.

{
return(0);

}

USHORT APIENTRY16 ENM4ExitDecrypt (PUCHAR16 pucApplId,
PUCHAR16 pucBuffer,
USHORT usBufferLen)

{
return(0);

}

Figure 23. Sample Security User Exit ENM4SNIL.C (Part 2 of 2)

74 MERVA Connection/2

/*--*\
| ENM4SSEC.C |
--/
#if defined(OS2)
#define INCL_BASE
#include <OS2.H>

#endif
#ifdef WIN32
#include <windows.h>

#endif
#include<stdlib.h>
#include<stdio.h>
#include<stddef.h>
#include<string.h>
#include<time.h>
#include "enm4sxit.h"
/* defines that this module can be compiled with Cset/2 and IBM C/2 */
#ifndef __32BIT__

#define APIENTRY16 APIENTRY
#define PUCHAR16 PUCHAR

#endif
unsigned char Enm36Table[36]= {'\x00', '\x01', '\x02', '\x03',

'\x04', '\x05', '\x06', '\x07',
'\x08', '\x09', '\x0A', '\x0B',
'\x0C', '\x1D', '\x1E', '\x1F',
'\x10', '\x11', '\x12', '\x13',
'\x14', '\x15', '\x16', '\x17',
'\x18', '\x19', '\x1A', '\x1B',
'\x1C', '\x1D', '\x1E', '\x1F',
'\x20', '\x21', '\x22', '\x23' };

#define ENM_MAX_BASE 36
#define ENM_FILL_CHAR 0

unsigned short EnmBasestr(unsigned short base,
unsigned long num,
unsigned char* basestring,
unsigned short max_len)

{

Figure 24. Sample Security User Exit ENM4SSEC.C (Part 1 of 3)

Appendix B. Sample Security User Exits 75

unsigned long count=0,reminder=0;
short position;
unsigned long number;
number = num;
position = max_len-1;
memset (basestring, ENM_FILL_CHAR, max_len);
basestring[position]=0;

if (base > ENM_MAX_BASE) return(1);
do {

if (--position < 0) return(1);
reminder = number % (unsigned long)base;
count = number / (unsigned long)base;
if (!count) {

basestring[position++]=Enm36Table[reminder];
break;

}
basestring[position]=Enm36Table[reminder];
number = count;

} while (1);
return(0);

}
USHORT APIENTRY16 ENM4ExitMacGen (PUCHAR16 pucApplId,

PUCHAR16 pucBuffer,
USHORT usBufferLen,
PUCHAR16 pucMacBuffer){

register i;
unsigned long ulAddedByteValues=0;
unsigned short rc = 0;

if (!strcmp(pucApplId,"APPLAUTH") || !strcmp(pucApplId,"APPLSECR")) {
for (i=0;i<usBufferLen;i++) {

ulAddedByteValues += (unsigned long) pucBuffer[i];
}
rc = EnmBasestr(2,

ulAddedByteValues,
pucMacBuffer,
32);

}
return(rc);

}

USHORT APIENTRY16 ENM4ExitMacVerify (PUCHAR16 pucApplId,
PUCHAR16 pucBuffer,
USHORT usBufferLen,
PUCHAR16 pucMacBuffer)

{
register i;
unsigned long ulAddedByteValues=0;
unsigned char ucaCalcMacBuffer[32];
unsigned short rc = 0;

if (!strcmp(pucApplId,"APPLAUTH") || !strcmp(pucApplId,"APPLSECR")) {
for (i=0;i<usBufferLen;i++) {

ulAddedByteValues += (unsigned long) pucBuffer[i];
}
memset (ucaCalcMacBuffer,0,32);

Figure 24. Sample Security User Exit ENM4SSEC.C (Part 2 of 3)

76 MERVA Connection/2

rc = EnmBasestr(2,
ulAddedByteValues,
ucaCalcMacBuffer,
32);

if (!rc) rc = memcmp(ucaCalcMacBuffer,pucMacBuffer,32);
}
return(rc);

}
USHORT APIENTRY16 ENM4ExitEncrypt (PUCHAR16 pucApplId,

PUCHAR16 pucBuffer,
USHORT usBufferLen)

{
register i;

if (!strcmp(pucApplId,"APPLENCR") || !strcmp(pucApplId,"APPLSECR")) {
for (i=0;i<usBufferLen;i++) {

pucBuffer[i] = pucBuffer[i] [255; /* negation */
}

}
return(0);

}

USHORT APIENTRY16 ENM4ExitDecrypt (PUCHAR16 pucApplId,
PUCHAR16 pucBuffer,
USHORT usBufferLen)

{
register i;

if (!strcmp(pucApplId,"APPLENCR") || !strcmp(pucApplId,"APPLSECR")) {
for (i=0;i<usBufferLen;i++) {

pucBuffer[i] = pucBuffer[i] [255; /* negation */
}

}
return(0);

}

Figure 24. Sample Security User Exit ENM4SSEC.C (Part 3 of 3)

Appendix B. Sample Security User Exits 77

78 MERVA Connection/2

Appendix C. Sample Programs

This appendix includes listings of sample MERVA Connection/2 programs written in
C.

© Copyright IBM Corp. 1993, 1997 79

Program SMPLO1

/******************** Sample program for MERVA Connection/2 *******************/
/* */
/* PROGRAM NAME: SMPLO1 */
/* ------------- */
/* Sample API application for loading / unloading messages to/from API queues*/
/* */
/* COPYRIGHT: */
/* ---------- */
/* (C) Copyright International Business Machines Corporation 1993 */
/* */
/* REVISION LEVEL: 1.0 */
/* --------------- */
/* */
/* */
/* WHAT THIS PROGRAM DOES: */
/* ----------------------- */
/* This program demonstrates the use of API calls of MERVA Connection/NT/2 */
/* to either load messages to API queues or unload them from queues to a */
/* file member. The function to execute is specified on the commandline as */
/* first parameter followed by the name of the member to be used. */
/* */
/* Load Messages: Messages are loaded from the member to the API_IN queue */
/* and are routed as defined by the routing that had been */
/* set up for this queue. */
/* */
/* Unload Messages: Messages in the API_OUT queue are exported to the member.*/
/* Note: This function does NOT check if new messages */
/* enter the queue while the messages are unloaded. */
/* So there can be messages left in the queue if */
/* they were routed/added to the queue after the */
/* unload started. */
/* */
/* */
/* FILE MEMBERS NEEDED TO COMPILE: */
/* ------------------------------- */
/* SMPLO1.C - This file */
/* ENMRAPI.H - The API include file */
/* */
/* PROGRAMS TO BE LINKED: */
/* ---------------------- */
/* */
/* ENMORAPI.LIB - Remote MERVA API library */
/* */
/* */
/* EXPECTED INPUT: */
/* --------------- */
/* The user is expected to supply the function to perform (l or u) and the */
/* name of the member where the messages are to be stored or loaded from. */
/* */
/* EXPECTED OUTPUT: */
/* ---------------- */
/* If "unload" was selected: */
/* all messages that were in the queue API_OUT when the program was */
/* started, are written to the member. */
/* */

Figure 25. Sample Program SMPLO1.C (Part 1 of 7)

80 MERVA Connection/2

/* If "load" was selected: */
/* all messages from the member are added to the API_IN queue and */
/* routed as defined by the routing table of MERVA OS/2 V3. */
/* */
/* */
/* MERVA OS/2 V3 CALLS USED: */
/* --------------------------- */
/* ENMAttach - Attach to MERVA OS/2 */
/* ENMDetach - Detach from MERVA OS/2 */
/* ENMCreate - Create a new message */
/* ENMWriteField - Set specific fields (telexheader) in a message */
/* ENMRouteAdd - Route a message from a source to a destination queue */
/* ENMQueryQueue - Query queue information */
/* ENMNextEntry - Get next message from queue */
/* ENMDelete - Delete message from queue */
/* */
/* ADDITIONAL MERVA Connection/2 CALLS USED: */
/* --- */
/* ENMSetProfile - Select the profile to be used */
/* ENMStartAPPC - Establish connection to MERVA OS/2 V3 */
/* ENMEndAPPC - Disconnect from MERVA OS/2 V3 */
/* ENMGetReason - Get reason code for internal error */
/* */
/**/
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <stddef.h>
#include <stdarg.h>
#include <time.h>
#include "enmrapi.h"

#define MSGSIZE 28000

/* Function prototypes for the used functions. */
USHORT load_msgs (FILE *, QNAME);

USHORT unload_msgs (QNAME , FILE *);

USHORT read_msg (char *, USHORT *, FILE *);

FILE *OpenReadFile (UCHAR *);

FILE *OpenWriteFile (UCHAR *, USHORT);

USHORT ReadRecord (FILE *, UCHAR *, USHORT, USHORT *);

USHORT WriteRecord (FILE *, UCHAR *, USHORT);

/* The main entry of the program. */
int main(int argc, char *argvì¦)
{

FILE *pFile; /* handle for the file to be used */
USHORT rc = 0; /* returncode of API calls */
SHORT rs = 0; /* addit. return-, reasoncode */

Figure 25. Sample Program SMPLO1.C (Part 2 of 7)

Appendix C. Sample Programs 81

printf("\n ---------------- Merva OS/2 V3 API Sample ---------------- \n");
printf("\n --- Loading/unloading messages through API queues of ----- \n");
printf("\n --------------------- Merva OS/2 V3 ---------------------- \n\n");

if (argc != 3) {
printf("\n Usage: SMPLO1 {l|u} member\n");
printf("\n l | u:\n");
printf(" either one or the other option has to be specified:\n");
printf(" l: load messages from a member to the API_IN queue\n");
printf(" u: unload messages from the API_OUT queue to a member\n");
printf("\n member:\n");
printf(" name of file member to read from or write to messages.\n");
return(-1);

}

switch (argvì1¦ì0¦)
{

case 'l':
case 'L':

/* If option is L => load messages from file member, */
/* open member for read access. */
pFile = OpenReadFile(argvì2¦);
if (pFile == NULL) {

printf("\nCould not open the file '%s'\n",argvì2¦);
return(-2);

}
break;

case 'u':
case 'U':

/* If option is U => unload messages to file member, */
/* open member for write access. */
pFile = OpenWriteFile(argvì2¦, 1024);
if (pFile == NULL) {

printf("\nCould not open the file '%s'\n",argvì2¦);
return(-2);

}
break;

default:
/* Invalid parameter specified. */
printf("\nParameter 1, invalid value: '%s'\n", argvì1¦);
return(-3);

}

ENMSetProfile ("SAMPLE.PRF");

if ((rc = ENMStartRAPI ("SMPLO1")) == 0) {
printf("APPC or TCP/IP Conversation is up\n");

/* Now Attach to MERVA OS/2 using the UserID SAMPLE */
/* and call the appropriate function depending on option selected. */
rc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if (rc == NO_ERROR) {

printf("\nProgram attached to Merva...\n");

Figure 25. Sample Program SMPLO1.C (Part 3 of 7)

82 MERVA Connection/2

switch(argvì1¦ì0¦)
{

case 'l':
case 'L':

rc = load_msgs(pFile, "API_IN");
break;

case 'u':
case 'U':

rc = unload_msgs("API_OUT", pFile);
break;

}
/* Close the file member. */
fclose(pFile);

/* Now do the detach from MERVA OS/2. */
rc = ENMDetach();
if (rc == NO_ERROR)

printf("\n... Program detached\n");
else

printf("\nCould not detach from MERVA, rc = %d\n", rc);
}
else

printf("\nCould not attach to MERVA, rc = %d\n", rc);

if ((rc = ENMEndAPPC ()) != 0)
printf("\nCould not stop APPC, rc = %d\n", rc);

}
else {

rs = ENMGetReason();
printf("Error in ENMStartRAPI, rc = %d, rs = %d\n", rc,rs);

}

return(rc);
}

/**/
/* Function : load_msgs */
/* What it does: This function loads the messages from the given file */
/* and does a minimal check if the {1: is included in the */
/* message (Basic header). It then adds and routes the */
/* message to API_IN queue and prints a dot on the screen */
/* to show that the message was added. */
/**/
USHORT load_msgs(FILE *pFile, QNAME qnQueue)
{

USHORT rc = 0; /* returncode of API calls */
MMSG Message; /* Actual storage of the message */
CHAR msgTxtìMSGSIZE¦; /* storage for 1 message (max length)*/
FIELD fldAssociated; /* field for network identifier */
USHORT msgcnt=0; /* number of messages loaded so far */
USHORT msgLngth; /* actual length of message */

fldAssociated.msgnet = NET_SWIFT;
strcpy(fldAssociated.msgmac, "MAC!");

Figure 25. Sample Program SMPLO1.C (Part 4 of 7)

Appendix C. Sample Programs 83

printf("\nLoading messages \n");

while ((rc = ReadRecord(pFile, msgTxt, 1024, &msgLngth)) == 0) {
if (memcmp(msgTxt, "{1:", 3) != 0) {

printf("\nMessage %d header is not SWIFT II format\n", msgcnt+1);
printf("\n%i messages loaded.\n", msgcnt);
return(rc);

}
/* Create a new message. */
rc = ENMCreate(&Message);
if (rc != NO_ERROR) {

printf("\nCould not create a message, rc = %d\n", rc);
printf("\n%i messages loaded.\n", msgcnt);
return(rc);

}
/* Set the destination network to 'SWIFT network'. */
rc = ENMWriteField(FLD_MSGNET, &fldAssociated);
if (rc != NO_ERROR) {

printf("\nCould not set destination network, rc = %d\n", rc);
printf("\n%i messages loaded.\n", msgcnt);
return(rc);

}
/* Set MAC field to test-message */
rc = ENMWriteField(FLD_MSGMAC, &fldAssociated);
if (rc != NO_ERROR) {

printf("\nCould not set MAC field, rc = %d\n", rc);
printf("\n%i messages loaded.\n", msgcnt);
return(rc);

}
/* Copy the message read to the created message area */
/* and call ENMRouteAdd to add it to the system. */
memcpy(Message, msgTxt, msgLngth);
rc = ENMRouteAdd(qnQueue);
if (rc != NO_ERROR) {

printf("\nCould not add message to queue, rc = %d\n", rc);
printf("\n%i messages loaded.\n", msgcnt);
return(rc);

} else {
putchar('.');
msgcnt++;

}
}
printf("\n%i messages loaded.\n", msgcnt);
return(NO_ERROR);

}

/**/
/* Function : unload_msgs */
/* What it does: This function determines the number of messages in the */
/* queue and unloads them to the file member. After */
/* unloading, the messages are deleted from the queue. */
/**/
USHORT unload_msgs(QNAME qnQueue, FILE *pFile)
{

Figure 25. Sample Program SMPLO1.C (Part 5 of 7)

84 MERVA Connection/2

USHORT rc = 0; /* returncode of API calls */
USHORT usMsg_count = 0; /* number of messages in the queue */
USHORT usMsg_length = 0; /* individual length of message */
USHORT usCount = 0; /* Count of unloaded messages so far */
MMSG Message; /* Actual storage of the message */

printf("\nUnloading messages \n");

/* Query the number of messages in the queue. */
rc = ENMQueryQueue(qnQueue, &usMsg_count);
if (rc != NO_ERROR) {

printf("\nCould not query number of messages in queue %s, rc = %d\n",
qnQueue, rc);

return(rc);
}
/* Read messages from the queue with ENMNextEntry. */
for (usCount = 0; usCount < usMsg_count; usCount++)
{

rc = ENMNextEntry(qnQueue, ON, &Message, &usMsg_length);
if (rc != NO_ERROR) {

printf("\nCould not retrieve message #%i out of %i total.\n",
usCount+1, usMsg_count);

return(rc);
}
if ((rc = WriteRecord(pFile, Message, 1024)) != 0) {

printf("\nCould not write message #%i to file member.\n", usCount+1);
if ((rc = ENMFree()) != 0)

printf("\nCould not free message #%i.\n", usCount+1);
return(-5);

}
/* Message successfully written to file member , so send dot */
/* to the screen and delete the message from the queue. */
putchar('.');
rc = ENMDelete();
if (rc != NO_ERROR) {

printf("\nCould not delete message #%i from queue, rc = %d\n",
usCount, rc);

return(rc);
}

}
printf("\n%i messages unloaded.\n", usCount);
return(NO_ERROR);

}

/***/
/* Function : ReadRecord */
/* What it does: Read one record from the file member. */
/* Arguments : pFile (FILE*) - file member handle */
/* pucBuffer (unsigned char*) - data buffer */
/* usRecLength (unsigned short) - expected record length */
/* pusLength (unsigned short*) - ret. string length of buffer */
/***/
USHORT ReadRecord(FILE *pFile, UCHAR *pucBuffer,

USHORT usRecLength, USHORT *pusLength)
{

Figure 25. Sample Program SMPLO1.C (Part 6 of 7)

Appendix C. Sample Programs 85

if (fread(pucBuffer, usRecLength, 1, pFile) == 1) {
*pusLength = strlen(pucBuffer);
return(0);

} else {
return(12);

}
}

/***/
/* Function : WriteRecord */
/* What it does: Read one record from the file member. */
/* Arguments : pFile (FILE*) - file member handle */
/* pucBuffer (unsigned char*) - data buffer */
/* usRecLength (unsigned short) - record length to write */
/***/
USHORT WriteRecord(FILE *pFile, UCHAR *pucBuffer, USHORT usRecLength)
{

if (fwrite(pucBuffer, usRecLength, 1, pFile) == 1) {
return(0);

} else {
return(12);

}
}

/***/
/* Function : OpenReadFile */
/* What it does: Opens file member for read access. */
/* Arguments : pFile (FILE*) - file member handle */
/***/
FILE *OpenReadFile(UCHAR *pFile)
{
return(fopen(pFile, "rb"));

}

/***/
/* Function : OpenWriteFile */
/* What it does: Opens file member for write access. */
/* Arguments : pFile (FILE*) - file member handle */
/* usRecLength (unsigned short) - record length to write */
/***/
FILE *OpenWriteFile(UCHAR *pFile, USHORT usRecLength)
{
UCHAR ucaOpenStringì40¦;

sprintf (ucaOpenString, "wb, lrecl=%d, recfm=f, type=record",usRecLength);
return(fopen(pFile, ucaOpenString));

}

Figure 25. Sample Program SMPLO1.C (Part 7 of 7)

86 MERVA Connection/2

Program SMPLO2

/*************** Trigger sample program for MERVA Connection/2 ****************/
/* */
/* PROGRAM NAME: SMPLO2 */
/* ------------- */
/* Sample API application with triggering by MERVA OS/2 */
/* */
/* COPYRIGHT: */
/* ---------- */
/* (C) Copyright International Business Machines Corporation 1994 */
/* */
/* REVISION LEVEL: 1.0 */
/* --------------- */
/* */
/* WHAT THIS PROGRAM DOES: */
/* ----------------------- */
/* This program demonstrates the triggering concept of MERVA OS/2. It will */
/* monitor the Queue API_OUT for messages coming into the queue and will */
/* write them to the file specified on the command line. It does the */
/* monitoring by using semaphores that are cleared by MERVA OS/2 instead of */
/* continuously polling if there are messages in the queue. */
/* The program checks first if there are messages in the queue and will */
/* unload them to the file. Then it waits on a semaphore until new messages */
/* enter the queue. When new messages are entered, MERVA OS/2 will clear the */
/* semaphore and the program can continue reading messages from the queue */
/* until all messages are processed. */
/* This processing loop is ended by starting the program SAMPLE2S in another */
/* OS/2 session. */
/* */
/* */
/* WHAT YOU NEED TO COMPILE THIS PROGRAM: */
/* -------------------------------------- */
/* */
/* REQUIRED FILES: */
/* --------------- */
/* SMPLO2.C - This file */
/* ENMRAPI.H - The API include file */
/* */
/* OS2.H - OS/2 System include File or */
/* STDLIB.H - Miscellaneous function declarations */
/* STRING.H - String function declarations */
/* STDIO.H - Input/Output function declartions */
/* */
/* REQUIRED LIBRARIES: */
/* ------------------- */
/* OS2386.LIB - OS/2 library */
/* CPPOM30.LIB - Visual Age for C++ Library (or equivalent) */
/* ENMORAPI.LIB - MERVA OS/2 Application Programming Interface library */
/* */
/* REQUIRED PROGRAMS: */
/* ------------------ */
/* Visual Age for C++ (or equivalent) */
/* */
/* Compiler & Linker options (Visual Age for C++) */
/* ------------------------- */
/* /C /DOS2 /O+ /N2 /Gd+ /Gm+ /Gs- /Gt+ */
/* /NOE /STACK:65536 */

Figure 26. Sample Program SMPLO2.C (Part 1 of 6)

Appendix C. Sample Programs 87

/* */
/* */
/* EXPECTED INPUT: */
/* --------------- */
/* The user is expected to supply a filename where the unloaded message */
/* are stored in. */
/* */
/* EXPECTED OUTPUT: */
/* ---------------- */
/* All messages that where in the queue API_OUT are written to the file */
/* while the program is running. */
/* */
/* */
/* CALLS USED (Dynamic Link References): */
/* ------------------------------------- */
/* */
/* ENMNextEntry - MERVA OS/2 API function */
/* */
/* ENMCreateSem \ */
/* ENMSetSem \ */
/* ENMWaitSemList -- Remote API Semaphore functions */
/* ENMCloseSem / */
/* ENMClearSem / */
/* */
/**/

/* Define the following values to include the OS/2 Base services for */
/* Semaphores and error codes. */
#define INCL_BASE
#define INCL_DOSSEMAPHORES
#define INCL_DOSERRORS
#include <os2.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "enmrapi.h"

/* The following define is the semaphore that will be cleared by MERVA OS/2 */
/* when Messages enter the queue. Please be sure to set this name (SAMPLE2) */
/* in the MERVA OS/2 Customizer Alarm definition for the queue API_OUT, */
/* where the messages are unloaded from. */

/* You may either use semaphore names with the \SEM\ prefix or without, */
/* but for portability reasons, we recommend the new form without prefix. */

#define TRIGGER "SAMPLE2"
#define STOP "SAMPLE2"

/* Function prototype for the unload_msgs function. */
SHORT unload_msgs(QNAME qnQueue, FILE *pFile);

/* The main entry of the program. */
int main(int argc, char *argvì¦)
{

FILE *pFile; /* handle for the file to be used */

Figure 26. Sample Program SMPLO2.C (Part 2 of 6)

88 MERVA Connection/2

USHORT rc=0; /* returncode of API calls */
USHORT rcf=0; /* returncode of functions */

printf("\nÊ┐┐┐ \n");
printf("├ MERVA OS/2 Version 3.3 API Triggering Sample ├\n");
printf("├ ├\n");
printf("├ Purpose: Triggered unload of messages using the MERVA ├\n");
printf("├ API functions. ├\n");
printf(" ┐┐┐─\n");

if (argc != 2) {
printf("\n Usage: SMPLO2 file\n");
printf("\n file:\n");
printf(" name of file in local directory to write\n");
printf(" messages to.\n");
printf("\n The program uses queue API_OUT to unload messages\n");
printf(" to the file.\n");
return(-1);

}
/* Try to open the file that was given on the commandline. */
pFile = fopen(argvì1¦, "wb");
if (pFile == NULL) {

printf("\nCould not open the file '%s'\n", argvì1¦);
return(-2);

}

ENMSetProfile ("SAMPLE.PRF"); /* pass profile to enmrapi */

if ((rc = ENMStartRAPI ("SMPLO2")) == 0) {
printf("APPC or TCP/IP Conversation is up\n");

/* Now Attach to MERVA OS/2 using the USERID SAMPLE */
rc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if (rc != NO_ERROR) {

printf("\nCould not attach to MERVA, rc = %d\n", rc);
} else {

/* If attached, call the unload_msgs function to do the work. */
rcf = unload_msgs("API_OUT", pFile);

/* Close the file. */
fclose(pFile);

/* Now do the detach from MERVA OS/2. */
rc = ENMDetach();
if (rc != NO_ERROR) {

printf("\n\nCould not detach from MERVA, rc = %d\n\n", rc);
} else {

if (rcf != NO_ERROR)
printf("\nProgram stopped due to previous error.\n\n");

}

/* Now end the conversation */
rc = ENMEndRAPI();
if (rc)

printf("\nError ending the conversation, rc = %d.\n\n");

Figure 26. Sample Program SMPLO2.C (Part 3 of 6)

Appendix C. Sample Programs 89

}

} else {
printf("Error in ENMStartRAPI, rc = %d, rs = %d\n", rc, ENMGetReason());

}

return (rc);
}

/***/
/* Function : unload_msgs */
/* What it does: It contains the loop to retrieve the messages from the */
/* queue and write them to the file. If no messages are */
/* currently in the queue, it will wait to be triggered by */
/* MERVA OS/2. */
/***/
SHORT unload_msgs(QNAME qnQueue, FILE *pFile)
{

USHORT usMsg_length; /* Msg length returned by NextEntry */
USHORT usCount; /* Number of messages unloaded */
MMSG Message; /* Actual storage of the message */
CHAR lengthì4¦; /* length field for msgs in the file */
USHORT rc; /* Returncode of functions */
ULONG SemTrigger; /* Handle to Trigger semaphore */
ULONG SemStop; /* Handle to Stop Semaphore */
USHORT usIndex = 0; /* Index of semaphore cleared */
BOOL fStop = FALSE; /* Boolean variable to control loop */
FILE *out = stdout;

/* Create the trigger semaphore. This one will be cleared by MERVA OS/2. */
/* It has to be PUBLIC so that MERVA OS/2 can access the semaphore. */
rc = ENMCreateSem(&SemTrigger, TRIGGER);
if (rc) {

printf("\nError %d, reason %d while creating semaphore %s\n",
rc, ENMGetReason(), TRIGGER);

return(rc);
}
/* Create the 'Stop' semaphore that will be used to stop the program */
/* from another session. It is also public. */
rc = ENMCreateSem(&SemStop, STOP);
if (rc) {

printf("\nError %d, reason %d while creating semaphore %s.\n",
rc, ENMGetReason(), STOP);

return(rc);
}
/* Now set the 'Stop' semaphore so that the process can wait till */
/* it is cleared from the stop program, SAMPLE2S. */
rc = ENMSetSem(SemStop);
if (rc) {

printf("\nError %d, reason %d while setting semaphore %s.\n",
rc, ENMGetReason(), STOP);

return(rc);
}
usCount = 0;

Figure 26. Sample Program SMPLO2.C (Part 4 of 6)

90 MERVA Connection/2

rc = 0;
do {

/* Try to read the next message in the queue, lock the message */
/* in order to be able to delete it after writing. */
rc = ENMNextEntry(qnQueue, ON, &Message, &usMsg_length);
if (rc == NO_ERROR) {

/* Print message only the first time, then only fullstops. */
if (usCount == 0) printf("Unloading messages, please wait\n");
usCount++;
/* We found one or more message(s) in the queue, so unload them */
/* to the file. First write the length field (4bytes) and then */
/* the total message to the file. */
*(int *)&lengthì0¦ = usMsg_length + 4;
*(int *)&lengthì2¦ = 0;
if (fwrite(length,4,1,pFile) != 1) {

printf("\nWrite error\n");
return(-4);

}
if (fwrite(Message, usMsg_length, 1, pFile) != 1) {

printf("\nCould not write message #%i to file.\n", usCount);
return(-5);

}
/* Message succesfully written to file, so send dot */
/* to the screen and delete the message from the queue. */
putc('.', out);
fflush(out);
rc = ENMDelete();
if (rc != NO_ERROR) {

printf("\nCould not delete message #%i from queue, rc = %d\n",
usCount, rc);

return(rc);
}

} else {
if (rc != ERR_MSG_NOT_FOUND) {

/* If error in NextEntry call, print it here and leave. */
printf("Error in ENMNextEntry call, rc = %d\n", rc);
/* Try to free the locked message before exiting the function */
(void) ENMFree();
return(rc);

} else {
printf("\n%i Messages unloaded, Waiting to be triggered.\n"

"(Start SMPLO2S in another session to stop)\n",
usCount);

usCount = 0;
/* Set the trigger semaphore so that we can wait on it. */
rc = ENMSetSem(SemTrigger);
if (rc) {

printf("\nError %d, reason %d while setting semaphore %s.\n",
rc, ENMGetReason(), STOP);

return(rc);
}

}
}
/* Now wait on the two semaphores to be cleared. The wait is an */
/* undefined wait to block processing until one semaphore is cleared. */

Figure 26. Sample Program SMPLO2.C (Part 5 of 6)

Appendix C. Sample Programs 91

rc = ENMWaitSemList(&usIndex, /* ptr to usIndex, triggering Sem */
-1L, /* wait indefinitly */
SemStop, /* first Semaphore */
SemTrigger, /* second Semaphore */
0L); /* 0 signals last parameter */

if (rc == 0)
/* If the first semaphore in the list is cleared, the program */
/* was asked to shut down, so indicate the end of the loop. */
if (usIndex == 0) fStop = TRUE;

} while(!fStop);

/* Issue an ending message, clear the used semaphores and close them */
/* If messages were unloaded, but no info messages so far, do one */
/* last message. */
if (usCount > 0)

printf("\n%i Messages unloaded.\n", usCount);

printf("Program stopped via SMPLO2S from another session.\n");
ENMClearSem(SemTrigger);
ENMClearSem(SemStop);
ENMCloseSem(SemTrigger);
ENMCloseSem(SemStop);
return(0);

}

Figure 26. Sample Program SMPLO2.C (Part 6 of 6)

92 MERVA Connection/2

Program SMPLO2S

/************** Trigger sample Stop program for MERVA/2 ***********************/
/* */
/* PROGRAM NAME: SMPLO2S */
/* ------------- */
/* Stop program for the MERVA trigger sample program SMPLO2.EXE */
/* */
/* COPYRIGHT: */
/* ---------- */
/* (C) Copyright International Business Machines Corporation 1994 */
/* */
/* REVISION LEVEL: 1.0 */
/* --------------- */
/* */
/* WHAT THIS PROGRAM DOES: */
/* ----------------------- */
/* This program stops the trigger sample program by clearing the stop */
/* semaphore. This program has to be started in another session while the */
/* trigger sample program is running. */
/* */
/* WHAT YOU NEED TO COMPILE THIS PROGRAM: */
/* -------------------------------------- */
/* */
/* REQUIRED FILES: */
/* --------------- */
/* */
/* SMPLO2S.C - This file */
/* */
/* OS2.H - OS/2 System include File */
/* STDLIB.H - Miscellaneous function declarations */
/* STRING.H - String function declarations */
/* STDIO.H - Input/Output function declartions */
/* */
/* REQUIRED LIBRARIES: */
/* ------------------- */
/* */
/* OS2386.LIB - OS/2 library */
/* */
/* REQUIRED PROGRAMS: */
/* ------------------ */
/* */
/* IBM Visual Age for C++ */
/* */
/* EXPECTED INPUT: */
/* --------------- */
/* No input is expected. */
/* */
/* EXPECTED OUTPUT: */
/* ---------------- */
/* The box indicating that the Stop program was started. */
/* Any errors are written to the screen. */
/* */
/* CALLS USED (Dynamic Link References): */
/* ------------------------------------- */
/* */
/* ENMOpenSem \ */
/* ENMClearSem -- Remote API Semaphore functions */
/* ENMCloseSem / */
/**/

Figure 27. Sample Program SMPLO2S.C (Part 1 of 2)

Appendix C. Sample Programs 93

#define INCL_DOSSEMAPHORES
#define INCL_DOSERRORS
#include <os2.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "enmrapi.h"

#define STOP "\\SEM\\STOP.SMP"

int main(int argc, char *argvì¦)
{

SHORT rc = 0;
ULONG SemStop;

printf("\nÊ┐┐┐ \n");
printf("├ MERVA Version 3.3 API Sample Stop Program ├\n");
printf("├ ├\n");
printf("├ Purpose: Stops API sample program 2 using a semaphore ├\n");
printf(" ┐┐┐─\n");

ENMSetProfile ("SAMPLE.PRF"); /* pass profile to enmrapi */

if ((rc = ENMStartRAPI ("SMPLO2S")) == 0) {
printf("APPC or TCP/IP Conversation is up\n");

/* Now Attach to MERVA OS/2 using the USERID SAMPLE */
rc = ENMAttach("SAMPLE", "SAMPLE1", "API");
if (rc != NO_ERROR) {

printf("\nCould not attach to MERVA, rc = %d\n", rc);
} else {

rc = ENMOpenSem(&SemStop, STOP);
if (rc)
{

printf("\n error %d, reason %d while opening semaphore %s.\n",
rc, ENMGetReason(), STOP);

}
rc = ENMClearSem(SemStop);
if (rc)
{

printf("\n error %d, reason %d while clearing semaphore %s.\n",
rc, ENMGetReason(), STOP);

}
ENMCloseSem(SemStop);

/* Now do the detach from MERVA OS/2. */
rc = ENMDetach();
if (rc != NO_ERROR) {

printf("\n\nCould not detach from MERVA, rc = %d\n\n", rc);
}

}

/* Now end the conversation */
rc = ENMEndRAPI();
if (rc) {

printf("\n\nError ending conversation, rc = %d\n\n", rc);
} /* End if */

} else {
printf("Error in ENMStartRAPI, rc = %d, rs = %d\n", rc, ENMGetReason());

}

return (rc);
}

Figure 27. Sample Program SMPLO2S.C (Part 2 of 2)94 MERVA Connection/2

Program SMPLO3

/********* Sample program for MERVA Connection/2 or Connection/NT *************/
/* */
/* PROGRAM NAME: SMPLO3 */
/* ------------- */
/* Sample API application for loading telex messages to API_IN queue. */
/* */
/* COPYRIGHT: */
/* ---------- */
/* (C) Copyright International Business Machines Corporation 1992 */
/* */
/* REVISION LEVEL: 1.0 */
/* --------------- */
/* */
/* */
/* WHAT THIS PROGRAM DOES: */
/* ----------------------- */
/* This program demonstrates the use of API calls of MERVA OS/2 to load */
/* telex messages to an API queue (API_IN). */
/* */
/* Telexes in a special format (created with a simple editor) were loaded */
/* from the specified file to the API_IN queue. */
/* It's possible to load SWIFT messages in TMP/2 format, messages in Telex */
/* Link format and negatively achnowledged telexes in the free format. */
/* */
/* */
/* WHAT YOU NEED TO COMPILE THIS PROGRAM: */
/* -------------------------------------- */
/* */
/* REQUIRED FILES: */
/* --------------- */
/* SMPLO3.C - This file */
/* ENMRAPI.H - The API include file */
/* */
/* STDLIB.H - Miscellaneous function declarations */
/* STRING.H - String function declarations */
/* STDIO.H - Input/Output function declarations */
/* */
/* REQUIRED LIBRARIES: */
/* ------------------- */
/* OS2386.LIB - OS/2 library */
/* DOSCALLS.LIB - OS/2 library */
/* CPPOM30.LIB - Visual Age for C++ standard multithreaded lib */
/* ENMORAPI.LIB - MERVA/2 Application Programming Interface library */
/* */
/* REQUIRED PROGRAMS: */
/* ------------------ */
/* Visual Age for C++ */
/* */
/* */
/* EXPECTED INPUT: */
/* --------------- */
/* The user is expected to supply the filename where the messages are */
/* loaded from. The file should contain the telex headers of one or more */
/* messages in a special format: see the example file 'SAMPLE3.DAT'. */
/* */

Figure 28. Sample Program SMPLO3.C (Part 1 of 9)

Appendix C. Sample Programs 95

/* EXPECTED OUTPUT: */
/* ---------------- */
/* All messages from the specified file were added to the API_IN queue. */
/* */
/* */
/* CALLS USED (Dynamic Link References): */
/* ------------------------------------- */
/* ENMAttach - Attach to MERVA/2 */
/* ENMDetach - Detach from MERVA/2 */
/* ENMCreate - Create a new message */
/* ENMReadField - Read specific fields (MRN) from message */
/* ENMWriteField - Set specific fields (telexheader) in a message */
/* ENMAdd - Add a message to a queue */
/* ENMClear - Clear the message buffer */
/* */
/**/
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "enmrapi.h"

#define MSGSIZE 28000
#define DATSIZE 80
#define TAGSIZE 10

/* Function prototypes for the used functions. */
SHORT read_tag(char *tag, FILE *pFile);
SHORT read_data(char *data, FILE *pFile);
SHORT read_msg(char *msg, FILE *pFile);
SHORT build_txhead(PFIELD pfield, char *tag, char *data);

CHAR MsgBufìMSGSIZE+1¦; /* buffer for one message (max.length)*/
CHAR DataBufìDATSIZE+1¦; /* buffer for the data (max.length)*/
CHAR TagBufìTAGSIZE+1¦; /* buffer for the tag (max.length)*/

/* The main entry of the program. */
int main(int argc, char *argvì¦)
{

FILE *pFile; /* handle for the file to be used */
INT rc=0, i=0; /* returncode of API calls */
SHORT rs=0; /* additional reason code of API call*/
USHORT eof=0; /* end of file identifier */
QNAME qnQueue1; /* name of the api_in queue */
QNAME qnQueue2; /* name of the api_out queue */
MMSG message; /* actual storage of the message */
CHAR mrnìMRNlen+1¦; /* actual storage of the MRN */
PFIELD pField; /* pointer to Field */

printf("\nÊ┐┐┐ \n");
printf("├ MERVA OS/2 Version 3.3 Sample for Telex ├\n");
printf("├ ├\n");
printf("├ Purpose: Loading telex messages through API queues of ├\n");
printf("├ MERVA OS/2 V3 ├\n");
printf(" ┐┐─\n");

Figure 28. Sample Program SMPLO3.C (Part 2 of 9)

96 MERVA Connection/2

if (argc != 2) {
printf("\n Usage: SMPLO3 file\n");
printf("\n file: name of file in local directory\n");
printf(" containing the telex headers of\n");
printf(" one or more messages in special\n");
printf(" format (see 'SMPLO3.DAT'). \n");
return(-1);

}
pFile = fopen(argvì1¦, "rb");
if (pFile == NULL) {

printf("\nCould not open the file '%s'\n", argvì1¦);
return(-2);

}

ENMSetProfile ("SAMPLE.PRF"); /* pass profile to enmrapi */

if ((rc = ENMStartRAPI ("SAMPLE3")) == 0) {
/* Attach to MERVA/2 using the USERID SAMPLE. */
rc = ENMAttach("sample", "sample1", "API");
if (rc != NO_ERROR) {

printf("\nCould not attach to MERVA, rc = %d\n", rc);
} else {

printf("\nProgram attached to MERVA...\n");

strcpy(qnQueue1, "API_IN");
strcpy(qnQueue2, "API_OUT");

/* Create messages, read the MRN, write the network id 'NET_TELEX', */
/* read the tags and data for the telex header, write the telex header */
/* and then add the message until 'end of file' or an error occured. */
while (rc == NO_ERROR && !eof) {

printf("\nCreating a telex message: ");

if (rc == NO_ERROR) {
/* Create a new message. */
rc = ENMCreate(&message);
if (rc != NO_ERROR)

printf("Could not create a message, rc = %d", rc);
}
if (rc == NO_ERROR) {

/* Read the MRN of the created message. */
rc = ENMReadField(FLD_MRN, (PPFIELD)&pField);
if (rc != NO_ERROR)

printf("Could not read field MRN, rc = %d", rc);
else

strncpy(mrn, pField->mrn, MRNlen+1);
}
if (rc == NO_ERROR) {

/* Set the destination network to 'Telex network'. */
pField->msgnet = NET_TELEX;
rc = ENMWriteField(FLD_MSGNET, pField);
if (rc != NO_ERROR)

printf("Could not set destination network, rc = %d", rc);
}

Figure 28. Sample Program SMPLO3.C (Part 3 of 9)

Appendix C. Sample Programs 97

/* Read one after another the tags and the associated data from */
/* the specified input file to build the telex header. */
if (rc == NO_ERROR) {

memset (pField, '\0', sizeof(FIELD));
while (rc == NO_ERROR) {

memset (TagBuf, '\0', sizeof(TagBuf));
/* Read the next tag from the input file into 'TagBuf'. */
rc = read_tag(TagBuf, pFile);
if (rc == EOF) {

rc = NO_ERROR; /* End of file is not an error. */
eof = 1; /* Remark this to end the loop. */
break; /* Stop to read tags. */

}
if (rc != NO_ERROR)

printf("Could not read the tag %s", TagBuf);
else {

if (strcmp(TagBuf, ":NEXTMSG:") == 0)
/* If next message reached stop to read tags for now. */
break;

if (strcmp(TagBuf, ":MESSAGE:") == 0) {
memset (MsgBuf, '\0', sizeof(MsgBuf));
/* Read the message from the input file into 'MsgBuf'. */
rc = read_msg(MsgBuf, pFile);
if (rc != NO_ERROR) {

printf("The message exceeds the maximum length.");
eof = 1; /* Don't continue to read the file. */

}
} else {

memset (DataBuf, '\0', sizeof(DataBuf));
/* Read the data from the input file into 'DataBuf'. */
rc = read_data(DataBuf, pFile);
if (rc != NO_ERROR)

printf("Could not read data for the tag %s", TagBuf);
else {

/* Build the telex header: Copy the DataBuf into the */
/* associated field (pField) depending on the tag. */
rc = build_txhead(pField, TagBuf, DataBuf);
if (rc != NO_ERROR)

printf("Unknown tag %s", TagBuf);
}

}
}

}
}
if (rc == NO_ERROR) {

/* Write the complete telex header. */
rc = ENMWriteField(FLD_TXHEAD, pField);
if (rc != NO_ERROR)

printf("Could not set telex header, rc = %d", rc);
}
if (rc == NO_ERROR) {

/* Copy the message read to the created message area */
/* and call ENMRouteAdd to add it to the system. */
memcpy(message, MsgBuf, strlen(MsgBuf));
rc = ENMRouteAdd(qnQueue1);

Figure 28. Sample Program SMPLO3.C (Part 4 of 9)

98 MERVA Connection/2

if (rc != NO_ERROR)
printf("Could not add message to queue, rc = %d", rc);

}
if (rc == NO_ERROR)

printf(" MRN = %s", mrn);
else {

/* Clear the message area if there was an error. */
rc = ENMClear();
if (rc != NO_ERROR)

printf("\nCould not clear the message, rc = %d", rc);
}

}
/* Close the input file. */
fclose(pFile);

/* Now do the detach from MERVA. */
rc = ENMDetach();
if (rc == NO_ERROR) printf("\n\n... Program detached\n\n");
else printf("\n\nCould not detach from MERVA, rc = %d\n\n", rc);

}

rc = ENMEndRAPI();
if (rc)

printf("\n\nError ending the conversation, rc = %d\n\n");
}
else {

rs = ENMGetReason();
printf("Error in ENMStartRAPI, rc = %d, rs = %d\n", rc,rs);

}

return(rc);
}

/**/
/* Function : read_tag */
/* What it does: Reads the tag from the input file. */
/* At first search the next colon, assuming that's the */
/* beginning of the tag. If found, read the next characters */
/* until the 2nd colon or the max.size of tag (TAGSIZE) is */
/* reached. If OK, return NO_ERROR. */
/**/
SHORT read_tag(char *tag, FILE *pFile)
{

int ch;
int i=1;

do { /* Read the first colon of the tag. */
ch = fgetc(pFile);

} while (ch != EOF && (char)ch != ':');

if ((char)ch == ':') {
do { /* Read the tag until the 2nd colon. */

(tag++) = (char)ch; / Build the tag. */
if (i == TAGSIZE) { /* Max.size of tag reached, so stop. */

*(tag++) = '\0';

Figure 28. Sample Program SMPLO3.C (Part 5 of 9)

Appendix C. Sample Programs 99

return(1);
}
i++;
ch = fgetc(pFile);

} while (ch != EOF && ch != 10 && ch != 13 && (char)ch != ':');

if ((char)ch == ':') {
*(tag++) = (char)ch;
*(tag++) = '\0';
return(NO_ERROR);

}
}
if (ch == EOF) return(EOF);
else return(2);

}

/**/
/* Function : read_data */
/* What it does: Reads the data from the input file. */
/* For all tags describing a field of the telex header the */
/* associated data is read from the input file. */
/* The data will be read until the 'end of file', a carriage */
/* return (0x0D), a line feed (0x0A) or a '|' (0x7C) appears. */
/* To read the message data (tag :MESSAGE:), the function */
/* 'read_msg' will be called instead of this one. */
/**/
SHORT read_data(char *data, FILE *pFile)
{

int ch;
int i=1;

ch = fgetc(pFile);

/* Read while not 'end of file', not CR LF and not '|' (0x7C) */
/* ('|' indicates the end of the data for this tag.) */
while (ch != EOF && ch != 10 && ch != 13 && (char)ch != '|')
{

if (i > DATSIZE) { /* Max.size of data reached, so stop.*/
*(data++) = '\0';
return(1);

}
(data++) = (char)ch; / Build the data. */
i++;
ch = fgetc(pFile);

}
*(data++) = '\0';
return(NO_ERROR);

}

/**/
/* Function : read_msg */
/* What it does: Reads the message from the input file. */
/* For the tag :MESSAGE: the associated data is read from the */
/* input file. */
/* The data will be read until the 'end of file' (0x1A) or */
/* a '|' (0x7C) appears. */

Figure 28. Sample Program SMPLO3.C (Part 6 of 9)

100 MERVA Connection/2

/**/
SHORT read_msg(char *msg, FILE *pFile)
{

int ch;
int i=1;

ch = fgetc(pFile);

/* Read while not 'end of file' and not '|' (0x7C) */
/* ('|' indicates the end of the message.) */
while (ch != EOF && ch != 26 && (char)ch != '|')
{

if (i > MSGSIZE) { /* Max.size of msg reached, so stop. */
*(msg++) = '\0';
return(1);

}
(msg++) = (char)ch; / Build the message. */
i++;
ch = fgetc(pFile);

}
*(msg++) = '\0';
return(NO_ERROR);

}

/**/
/* Function : build_txhead */
/* What it does: Builds the telex header. */
/* Depending on the tag, the associated field of the telex */
/* header will be filled with the data read from input file. */
/**/
SHORT build_txhead(PFIELD pfield, char *tag, char *data)
{

if (strcmp(tag, ":KEY_CAL:") == 0) {
strncpy(pfield->txhead.testkey_cal, data, 1);
return(NO_ERROR);

}
if (strcmp(tag, ":KEY_RC:") == 0) {

strncpy(pfield->txhead.testkey_rc, data, 1);
return(NO_ERROR);

}
if (strcmp(tag, ":KEY_VAL:") == 0) {

strncpy(pfield->txhead.testkey_val, data, TESTKEYlen);
return(NO_ERROR);

}
if (strcmp(tag, ":KEY_TXT1:") == 0) {

strncpy(pfield->txhead.testkey_comment1, data, TEST_COMMlen);
return(NO_ERROR);

}
if (strcmp(tag, ":KEY_TXT2:") == 0) {

strncpy(pfield->txhead.testkey_comment2, data, TEST_COMMlen);
return(NO_ERROR);

}
if (strcmp(tag, ":S_ADDR0:") == 0) {

strncpy(pfield->txhead.sender_addr0, data, ADDRlen);
return(NO_ERROR);

}

Figure 28. Sample Program SMPLO3.C (Part 7 of 9)

Appendix C. Sample Programs 101

if (strcmp(tag, ":S_ADDR1:") == 0) {
strncpy(pfield->txhead.sender_addr1, data, ADDRlen);
return(NO_ERROR);

}
if (strcmp(tag, ":S_ADDR2:") == 0) {

strncpy(pfield->txhead.sender_addr2, data, ADDRlen);
return(NO_ERROR);

}
if (strcmp(tag, ":S_ADDR3:") == 0) {

strncpy(pfield->txhead.sender_addr3, data, ADDRlen);
return(NO_ERROR);

}
if (strcmp(tag, ":DATE:") == 0) {

strncpy(pfield->txhead.date, data, DATElen);
return(NO_ERROR);

}
if (strcmp(tag, ":TO_ID:") == 0) {

strncpy(pfield->txhead.to_id, data, TO_IDlen);
return(NO_ERROR);

}
if (strcmp(tag, ":R_ADDR0:") == 0) {

strncpy(pfield->txhead.receiver_addr0, data, ADDRlen);
return(NO_ERROR);

}
if (strcmp(tag, ":R_ADDR1:") == 0) {

strncpy(pfield->txhead.receiver_addr1, data, ADDRlen);
return(NO_ERROR);

}
if (strcmp(tag, ":R_ADDR2:") == 0) {

strncpy(pfield->txhead.receiver_addr2, data, ADDRlen);
return(NO_ERROR);

}
if (strcmp(tag, ":R_ADDR3:") == 0) {

strncpy(pfield->txhead.receiver_addr3, data, ADDRlen);
return(NO_ERROR);

}
if (strcmp(tag, ":LINE:") == 0) {

strncpy(pfield->txhead.line, data, LINElen);
return(NO_ERROR);

}
if (strcmp(tag, ":DIAL_UP1:") == 0) {

strncpy(pfield->txhead.dial_up1, data, DIAL_UPlen);
return(NO_ERROR);

}
if (strcmp(tag, ":ANSBACK1:") == 0) {

strncpy(pfield->txhead.answ_back1, data, ANSW_BAlen);
return(NO_ERROR);

}
if (strcmp(tag, ":DIAL_UP2:") == 0) {

strncpy(pfield->txhead.dial_up2, data, DIAL_UPlen);
return(NO_ERROR);

}
if (strcmp(tag, ":ANSBACK2:") == 0) {

strncpy(pfield->txhead.answ_back2, data, ANSW_BAlen);
return(NO_ERROR);

Figure 28. Sample Program SMPLO3.C (Part 8 of 9)

102 MERVA Connection/2

}
if (strcmp(tag, ":TYPE:") == 0) {

strncpy(pfield->txhead.type, data, 1);
return(NO_ERROR);

}
if (strcmp(tag, ":T_TIME:") == 0) {

strncpy(pfield->txhead.timed_time, data, TIMElen);
return(NO_ERROR);

}
if (strcmp(tag, ":T_DATE:") == 0) {

strncpy(pfield->txhead.timed_date, data, DATElen);
return(NO_ERROR);

}
if (strcmp(tag, ":REF_TEXT:") == 0) {

strncpy(pfield->txhead.ref_text, data, REFlen);
return(NO_ERROR);

}
if (strcmp(tag, ":NOTE:") == 0) {

strncpy(pfield->txhead.note, data, NOTElen);
return(NO_ERROR);

}
return(1);

}

Figure 28. Sample Program SMPLO3.C (Part 9 of 9)

Appendix C. Sample Programs 103

104 MERVA Connection/2

Appendix D. Notices

This information was developed for products and services offered in the U.S.A. IBM
may not offer the products, services, or features discussed in this document in other
countries. Consult your local IBM representative for information on the products and
services currently available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or
service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However,
it is the user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Deutschland
Informationssysteme GmbH
Department 3982
Pascalstrasse 100
70569 Stuttgart
Germany

© Copyright IBM Corp. 1993, 1997 105

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement or
any equivalent agreement between us.

The following paragraph does apply to the US only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries, or both:

v ACF/VTAM

v Advanced Peer-to-Peer Networking

v AIX

v AIX/6000

v APPN

v AS/400

v C/2

v C/400

v CICS/ESA

v COBOL/400

v DATABASE 2

v DB2

v IBM

v MERVA

v MVS/ESA

v MVS/SP

v Operating System/2

v OS/2

106 MERVA Connection/2

v OS/400

v Personal System/2

v POWER Architecture

v PS/2

v RACF

v RISC System/6000

v RS/6000

v SAA

v Series/1

v Systems Application Architecture

v S/390

v VSAM

v VTAM

Workstation (AWS) and Directory Services Application (DSA) are trademarks of
S.W.I.F.T., La Hulpe in Belgium.

Pentium is a trademark of Intel Corporation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Microsoft, Windows, and the Windows 95 logo are trademarks or registered
trademarks of Microsoft Corporation.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix D. Notices 107

108 MERVA Connection/2

Glossary of Terms and Abbreviations

This glossary defines terms and abbreviations as
they are used in this book. If you do not find the
terms you are looking for, refer to Dictionary of
Computing, New York: McGraw-Hill, 1994, or the
S.W.I.F.T. User Handbook.

A
Advanced Program-to-Program Communication. A
communications architecture that allows transaction
programs to exchange information on a peer-to-peer
basis. SNA LU 6.2 allows APPC architecture to operate
on an SNA network.

API socket. MERVA Application Programming
Interface on the RISC System/6000.

API executer. A program of MERVA Connection/2 that
is installed and runs on OS/2 or AIX. It communicates
with the API socket on the RISC System/6000.

API. Application program interface.

application program interface. (1) A set of run-time
routines or system calls that allows an application
program to use a particular service provided by either
the operating system or another licensed program. (2)
The formally defined programming language interface
that is between a system control program or a licensed
program and the user of the program.

APPC. Advanced Program-to-Program
Communications.

APPN. Advanced Peer-to-Peer Networking. Enhances
APPC usability through reduced configuration
requirements, dynamic directory searches, route
calculation capabilities, and intermediate session
routing.

C
call. To activate a program or procedure, usually by
specifying the entry conditions and jumping to an entry
point.

Common Programming Interface. An interface
providing languages and services that can be used to
develop applications that take advantage of Systems
Application Architecture (SAA) consistency.

Communications Side Information. An object in CPI
Communications containing initialization parameters.
These are, for example:

v The name of the partner program (for example, of the
API executer) with which a program can establish a
conversation

v The name of the logical unit (LU) at the partner
program’s node, which CPI Communications requires
to establish a conversation.

CPI. Common Programming Interface.

CPI Communications. Provides a consistent
application programming interface for applications that
require program-to-program communication. The
interface makes use of the SNA LU 6.2 protocol to
create a rich set of interprogram services.

CPI-C. CPI Communications.

CSI. Communications Side Information.

customization. The process of describing optional
changes to defaults of a software program that is
already installed on the system and configured so that it
can be used.

customize. (1) To describe to the system the devices,
programs, users, and user defaults for a particular data
processing system or network. (2) To describe optional
preferences or changes to defaults in a software
program that is already installed and configured.

E
EPM. Extended Programming Model.

H
handle. A data structure that is a temporary local
identifier for an object. You create a handle by allocating
it. You make a handle to identify an object at a specific
location by binding it.

I
identifier. (1) A name you use to refer to a data object.
An identifier contains some combination of letters, digits,
and underscores, but its first character cannot be a
digit. (2) In programming languages, a lexical unit that
names a language object, such as the name of an
array, record, label, or procedure. An identifier usually
begins with a letter optionally followed by letters, digits,
or other characters. (3) A sequence of bits or characters
that identifies a program, device, or system to another
program, device, or system.

include file. A text file that contains declarations used
by a group of functions, programs, or users.

© Copyright IBM Corp. 1993, 1997 109

I
Input Sequence Number (ISN). A sequential number
that identifies a message sent to the SWIFT network.

J
JCL. Job Control Language.

L
logical unit. (1) A type of network addressable unit
that enables end users to communicate with each other
and gain access to network resources. (2) In SNA, a
port through which an end user accesses the SNA
network in order to communicate with another user, and
through which the end user accesses the functions
provided by system services control points (SSCPs). An
LU can support at least two sessions, one with an
SSCP and one with another LU, and may be capable of
supporting many sessions with other LUs.

loop. A sequence of instructions performed repeatedly
until an ending condition is reached.

LU. Logical unit.

M
MAC. Message Authentication Code.

Message Authentication Code. A code of a specific
length that is calculated with a particular algorithm from
a message buffer. It is sent with the message. The
partner recalculates it and compares it with the received
code. This allows modifications of the transferred data
to be detected.

Message Reference Number. A unique 16-digit
number assigned by MERVA to each message for
identification purposes. The message reference number
consists of an 8-digit domain identifier and an 8-digit
sequential number.

MRN. Message Reference Number.

N
node. An end point of a link, or a junction common to
two or more links in a network. Nodes can be
processors, controllers, or workstations, and they can
vary in routing and other functional capabilities.

P
partner. In data communications, the remote
application program or the remote computer.

peer-to-peer communications. Pertaining to data
communications between two nodes that have equal
status in the interchange. Either node can begin the
conversation.

R
Reduced Instruction Set Computer. A class of
computer designs that uses a relatively small set of
frequently used instructions that execute in one cycle.

RISC. Reduced Instruction Set Computer.

RISC System/6000. A family of workstations and
servers based on POWER Architecture. They are
primarily designed for running multi-user numerical
computing applications that use the UNIX operating
system.

S
semaphore. (1) Entity used to control access to
system resources. Processes can be locked to a
resource with semaphores if the processes follow
certain programming conventions. (2) Provides a
general method to synchronize two processes.

SMIT. System Management Interface Tool.

SNA. System Network Architecture.

System Network Architecture. (1) An architecture for
controlling the transfer of information in a data
communications network. (2) The description of the
logical structure, formats, protocols, and operating
sequences for transmitting information units through,
and controlling the configuration and operation of,
networks.

T
TCP/IP. Transmission Control Protocol/Internet
Protocol. A communications subsystem that allows you
to set up local area and wide area network.

110 MERVA Connection/2

Bibliography

IBM Publications

With exception of the General Information and the
Licensed Program Specifications all MERVA books
are available as softcopy on the

v MERVA Family C-Kit, SK2T-0157

MERVA Family Books
v MERVA OS/2 Client User’s Guide, SH12-6282

v MERVA Family USE Administration Guide,
SH12-6065

MERVA OS/2 Books
v MERVA OS/2 V3 and MERVA ESA V3 General

Information, GH12-6018

v MERVA OS/2 V3 Licensed Program
Specifications, GH12-6057

v MERVA OS/2 V3 Application Programming,
SH12-6058

v MERVA OS/2 V3 Diagnosis Guide, SH12-6059

v MERVA OS/2 V3 User’s Guide, SH12-6060

v MERVA OS/2 V3 Installation and
Customization Guide, SH12-6061

MERVA AIX Books
v MERVA AIX Licensed Program Specifications,

GH12-6180

v MERVA AIX User’s Guide, SH12-6181

v MERVA AIX Installation and Customization
Guide, SH12-6182

v MERVA AIX Application Programming,
SH12-6183

v MERVA AIX Diagnosis Guide, SH12-6184

MERVA ESA Books
v MERVA OS/2 V3 and MERVA ESA V3 General

Information, GH12-6018

v MERVA ESA V3 Licensed Program
Specifications, GH12-6019

v MERVA ESA V3 Application Programming
Interface Guide, SH12-6183

v MERVA ESA V3 Operations Guide, SH12-6021

v MERVA ESA V3 User’s Guide, SH12-6022

v MERVA ESA V3 Macro Reference, SH12-6023

v MERVA ESA V3 Installation Guide, SH12-6025

v MERVA ESA V3 Messages and Codes,
SH12-6026

v MERVA ESA V3 Customization Guide,
SH12-6027

v MERVA ESA V3 Concepts and Components,
SH12-6028

v MERVA ESA V3 Advanced MERVA Link,
LY12-5081

v MERVA ESA V3 Workstation Based Functions,
SH12-6069

v MERVA ESA V3 IFT Connection for MVS,
SH12-6280

v MERVA ESA V3 Traffic Reconciliation
Reference, SH12-6281

Further IBM Publications

Most operating and system software
documentation is available online. Check the
corresponding product packages (OS/2 Warp,
OS/2 Warp Connect, OS/2 Server, Database 2,
Database Server, Communication Server,
Personal Communications) for available online
books. Some of the online books are available in
printed form, too. The following books might be
useful:

v IBM DATABASE 2 Information and Concepts
Guide for Common Server, S20H-4664

v IBM DATABASE 2 Administration Guide for
Common Server, S20H-4580

v IBM DATABASE 2 OS/2 Command Reference
for Common Server, S20H-4645

v IBM DATABASE 2 for OS/2 Planning Guide,
S20H-4784

v IBM DATABASE 2 for OS/2 Installation and
Operation Guide, S20H-4785

v IBM Communications Server Version 4.1 Up
and Running !, GC31-8189

v IBM Personal Communications Version 4.1 for
OS/2 Up and Running !, GC31-8258

v IBM TCP/IP Version 2 for OS/2 Installation and
Administration, SC31-6075

© Copyright IBM Corp. 1993, 1997 111

S.W.I.F.T. Publications

The following books are published by the Society
for Worldwide Interbank Financial
Telecommunication, s.c., in La Hulpe, Belgium:

v S.W.I.F.T. User Handbook (1996)

v S.W.I.F.T. Dictionary (1996)

v S.W.I.F.T. Directory (1996)

v S.W.I.F.T. FIN Security Guide (1996)

v S.W.I.F.T. Card Readers User Guide (1996)

112 MERVA Connection/2

Index

A
activating security user exits 57, 58, 60
API

building programs 55
Remote MERVA API Client 3
Remote MERVA API Server 3

API functions (C) 33, 34
data types 29
ENMClearSem 38
ENMCloseSem 36
ENMCreateSem 39
ENMEndRAPI 33
ENMGetReason 42
ENMOpenSem 41
ENMRestartRAPI 32
ENMSetProfile 30
ENMSetSem 37
ENMStartRAPI 31
ENMWaitSemList 35

authentication 49

C
Communications Server

installing sample configuration files 21
connection to MERVA AIX

disconnecting 33
reconnecting remote program 32
starting 31

connection to MERVA OS/2
disconnecting 33
reconnecting remote program 32
starting 31

conversation to MERVA AIX
ending 30
starting 30

conversation to MERVA OS/2
ending 30
starting 30

D
decryption

user exit for 52
diagnosis log

on the MERVA AIX side 62
on the MERVA OS/2 side 62
on the remote application side 61

disconnecting from MERVA (C) 33

E
encryption

of transferred information 49
user exit for 52

ENM4ExitDecrypt 52
ENM4ExitEncrypt 52
ENM4ExitMacVerify (C) 53

ENMClearSem 38
ENMCloseSem 36
ENMCreateSem 39
ENMEndRAPI 33
ENMGetReason 42
ENMOpenSem 41
ENMRestartRAPI 32
ENMSetProfile 30
ENMSetSecurity 33
ENMSetSem 37
ENMSetTestEnv 34
ENMStartRAPI 31
ENMWaitSemList 35
error handling

getting the reason code 42

G
generating security user exits 57, 58, 60

L
language support 1
log files

on the MERVA AIX side 62

M
MAC

user exit to generate 53
user exit to verify 53

MERVA AIX
Display Diagnosis Log function 62
logging directory 62

MERVA Connection/2
differences to MERVA AIX API 29
differences to MERVA OS/2 API 29
functions provided by 1
language support 1
objectives 1

MERVA Connection/2 Client
Client requirements 5
customizing a Client application 8
customizing SNA services 6
customizing TCP/IP services 8
installing the Client 5

MERVA OS/2
additional functions 30
diagnosis log 62
Display/Print Diagnosis Log (DPD) function 62
programmer’s log 62

message authentication code 53

N
Notices 105

P
profile

selecting 30

© Copyright IBM Corp. 1993, 1997 113

programmer’s log
Display/Print Diagnosis Log (DPD) function 62
on the MERVA AIX side 62
on the MERVA OS/2 side 62
on the remote application side 61

programs, sample
smplo1 80
smplo2 87
smplo2s 93
smplo3 95

R
RAPI Server AIX

server requirements 15
RAPI Server AIX system

customizing SNA services 15
customizing TCP/IP services 18
installing the server 15

RAPI Server OS/2
server requirements 21

RAPI Server OS/2 system
customizing SNA services 22
installing the Server 21

reason code, returning 42
reconnecting remote program (ENMRestartRAPI) 32
resynchronization 45

S
sample

programs (C) 80
security exits 58
security user exits 73
SNA definitions 63

sample programs
smplo1 80
smplo2 87
smplo2s 93
smplo3 95

security considerations
overview 49
replacing user exits 57

security information 33
security user exits

activating on remote application side 57
activating on the MERVA AIX side 60
activating on the MERVA OS/2 side 58
generating on remote application side 57
generating on the MERVA AIX side 60
generating on the MERVA OS/2 side 58
sample 58, 73

semaphore
clearing 38
closing 36
creating 39
opening 41
setting 37

semaphores
waiting for a list of 35

setting conversation security information 33
setting semaphores 37

setting test environment 34
smplo1 80
smplo2 87
smplo2s 93
smplo3 95

T
test environment 34

U
user exit

replacing security 57
user exit points 51
user exits

ENM4ExitDecrypt (C) 52
ENM4ExitEncrypt (C) 52
ENM4ExitMacGen 53
ENM4ExitMacVerify 53
for MAC generation 53
for MAC verification 53
generating authentication key with 49
introduction to interfaces 49
sample security exit 73
using to encrypt data 49

114 MERVA Connection/2

Readers’ Comments — We’d Like to Hear from You

MERVA Family
MERVA Connection/2

Publication No. SH12-6293-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any way
it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SH12-6293-00

SH12-6293-00

IBM
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Deutschland Entwicklung GmbH
Information Development, Dept. 0446
Postfach 1380
71003 Boeblingen
Germany

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBM

Program Number: 5622-122 OS/2 LAN
5622-127 OS/2 Standalone
5765-449 AIX

Printed in Denmark by IBM Danmark A/S

SH12-6293-00

