
DB2 Server for VSE & VM

SQL Reference

 Version 7 Release 5

SC09-2989-02

IBM

DB2 Server for VSE & VM

SQL Reference

 Version 7 Release 5

SC09-2989-02

IBM

Before using this information and the product it supports, be sure to read the general information under “Notices” on page 467.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling

1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Summary of Changes vii

Summary of Changes for DB2 Version 7 Release 5 vii

Enhancements, New Functions, and New

Capabilities vii

Chapter 1. Introduction 1

Who This Book Is For 1

Prerequisite Knowledge 1

How This Book Is Organized 1

Syntax Notation Conventions 2

SQL Reserved Words 5

Conventions for Representing Mixed Data Values . . 6

Short Forms Used in Syntax Diagrams 7

Chapter 2. Concepts 9

Static SQL 9

Dynamic SQL 9

Interactive SQL 10

Extended Dynamic SQL 10

Relational Database 10

Tables 10

Keys 11

Primary Keys 11

Integrity 11

Data Integrity 12

Entity Integrity 12

Referential Integrity 12

Relationships Between Tables 12

Foreign Keys 13

Referential Constraints 13

Delete Rules 13

Insert Rules 16

Update Rules 16

Activating and Deactivating Keys 17

Indexes 17

Views 17

Packages 18

Catalog 18

Application Processes, Concurrency, and Recovery 18

Isolation Level 20

Repeatable Read (RR) 20

Cursor Stability (CS) 21

Uncommitted Read (UR) 21

Isolation Level Restrictions 22

Isolation Level Escalation 22

Program Control of Isolation 22

Application Requesters and Application Servers . . 22

Distributed Relational Database 23

Application Servers in DRDA 25

Remote Unit of Work 26

Distributed Unit of Work 26

The Use of DB2 Family SQL on Various

Application Servers 26

Data Representation Considerations 29

Character Conversion 29

Character Sets and Code Pages 31

Coded Character Sets and CCSIDs 31

Authorization and Privileges 32

Chapter 3. Language Elements 35

Characters 35

Tokens 36

Spaces 36

Comments 36

Identifiers 36

SQL Identifiers 36

Host Identifiers 37

Naming Conventions 38

Authorization IDs and Authorization-names . . . 41

Example 1 41

Example 2 41

Data Types 42

Result Set Locators 42

Nulls 43

Character Strings 44

Graphic Strings 47

Numbers 47

Datetime Values 48

Null Values 51

Assigning Null Values Within the Database: . . 52

Returning Null Values to the Application from

the Database: 52

Null Values within Expressions and Predicates 52

Equality and Ordering of Null Values: 52

Checking for a Null Value: 52

Assignments and Comparisons 53

Numeric Assignments 54

String Assignments 55

Conversion Rules for String Assignments . . . 56

Datetime Assignments 57

Numeric Comparisons 57

String Comparisons 58

Conversion Rules for String Comparison . . . 58

Datetime Comparisons 59

Constants 59

Integer Constants 60

Floating-Point Constants 60

Decimal Constants 60

Character String Constants 60

Graphic String Constants 61

Special Registers 62

USER 62

CURRENT DATE 62

CURRENT SERVER 63

CURRENT TIME 63

CURRENT TIMESTAMP 63

CURRENT TIMEZONE 63

Column Names 63

Qualified Column Names 64

References to Host Variables 68

© Copyright IBM Corp. 1988, 2007 iii

|

||

The Metavariable host-variable 68

Host Structures and Indicator Arrays 69

Expressions 71

Without Operators 71

With the Concatenation Operator 72

With Arithmetic Operators 73

Two-Integer Operands 73

Integer and Decimal Operands 73

Two-Decimal Operands 73

Decimal Arithmetic in SQL 74

Floating-Point Operands 74

Datetime Operands 74

Datetime Arithmetic in SQL 75

Precedence of Operations 78

Predicates 79

Basic Predicate 79

Quantified Predicate 80

BETWEEN Predicate 81

EXISTS Predicate 83

IN Predicate 84

LIKE Predicate 86

NULL Predicate 89

Search Conditions 89

Example 1 90

Example 2 90

Chapter 4. Functions 91

Column Functions 91

AVG 91

COUNT 92

MAX 93

MIN 94

SUM 95

Scalar Functions 96

CHAR 96

DATE 98

DAY 99

DAYS 100

DECIMAL 101

DIGITS 101

FLOAT 102

HEX 103

HOUR 104

INTEGER 104

LENGTH 105

MICROSECOND 106

MINUTE 106

MONTH 107

SECOND 107

STRIP 108

SUBSTR 110

TIME 112

TIMESTAMP 113

TRANSLATE 115

VALUE 117

VARGRAPHIC 118

YEAR 120

Chapter 5. Queries 121

Authorization 121

subselect 121

select-clause 122

from-clause 124

where-clause 125

group-by-clause 125

having-clause 126

Examples of a subselect 127

Example 1 127

Example 2 127

Example 3 127

Example 4 127

Example 5 127

Example 6 128

Example 7 128

fullselect 128

Examples of a fullselect 130

Conversion Rules for Operations that Combine

Strings 130

select-statement 133

order-by-clause 133

update-clause 134

with-clause 135

Examples of a select-statement 136

Chapter 6. Statements 137

How SQL Statements Are Invoked 139

Embedding a Statement in an Application

Program 140

Dynamic Preparation and Execution 141

Static Invocation of a select-statement 141

Dynamic Invocation of a select-statement . . . 141

Interactive Invocation 142

SQL Return Codes 142

SQLCODE 142

SQLSTATE 143

SQL Comments 143

Example 143

ACQUIRE DBSPACE 144

ALLOCATE CURSOR 146

ALTER DBSPACE 148

ALTER PROCEDURE 150

ALTER PSERVER 155

ALTER TABLE 157

ASSOCIATE LOCATORS 166

BEGIN DECLARE SECTION 169

CALL 171

CLOSE 175

Extended CLOSE 177

COMMENT ON 178

COMMENT ON PROCEDURE 180

COMMIT 182

CONNECT (for VM) 185

CONNECT (for VSE) 191

CREATE INDEX 198

CREATE PACKAGE 201

CREATE PROCEDURE 208

CREATE PSERVER 216

CREATE SYNONYM 218

CREATE TABLE 219

CREATE VIEW 231

DECLARE CURSOR 235

iv SQL Reference

Extended DECLARE CURSOR 240

DELETE 242

DESCRIBE 247

Extended DESCRIBE 251

DESCRIBE CURSOR 252

DESCRIBE PROCEDURE 254

DROP 257

DROP PROCEDURE 260

DROP PSERVER 261

DROP STATEMENT 262

END DECLARE SECTION 263

EXECUTE 264

Extended EXECUTE 268

EXECUTE IMMEDIATE 270

EXPLAIN 273

FETCH 283

Extended FETCH 287

GRANT (Package Privileges) 288

GRANT (System Authorities) 290

GRANT (Table Privileges) 293

INCLUDE 296

INSERT 298

LABEL ON 303

LOCK DBSPACE 305

LOCK TABLE 306

OPEN 307

Extended OPEN 312

PREPARE 313

Extended PREPARE 317

PUT 322

Extended PUT 325

REVOKE (Package Privileges) 327

REVOKE (System Authorities) 328

REVOKE (Table Privileges) 330

ROLLBACK 334

SELECT INTO 336

UPDATE 338

UPDATE STATISTICS 344

WHENEVER 346

Appendix A. SQL Limits 349

Notes 351

Appendix B. SQLCA and SQLDA . . . 353

SQL Communication Area (SQLCA) 353

In COBOL and Assembler 353

In PL/I and C 353

In Fortran 353

Description of Fields 353

INCLUDE SQLCA Declarations 357

SQL Descriptor Area (SQLDA) 359

Description of Fields 359

Fields in an Occurrence of SQLVAR 360

SQLTYPE and SQLLEN 362

CCSID Usage 363

INCLUDE SQLDA Declarations 364

Appendix C. DB2 Server for VSE & VM

Catalog 369

“Roadmap” to Catalog 370

Updateable Columns 371

SYSACCESS 373

SYSCATALOG 375

SYSCCSIDS 378

SYSCHARSETS 378

SYSCOLAUTH 379

SYSCOLSTATS 380

SYSCOLUMNS 381

SYSDBSPACES 384

SYSDROP 385

SYSFIELDS 386

SYSFPARMS 387

SYSINDEXES 388

SYSKEYCOLS 390

SYSKEYS 391

SYSLANGUAGE 392

SYSOPTIONS 393

SYSPARMS 395

SYSPROGAUTH 396

SYSPSERVERS 397

SYSROUTINES 398

SYSSTRINGS 400

SYSSYNONYMS 402

SYSTABAUTH 403

SYSUSAGE 405

SYSUSERAUTH and SYSUSERLIST 406

SYSVIEWS 406

Appendix D. Sample Tables 409

Relationships Among the Tables 409

ACTIVITY Table 410

Relationship of ACTIVITY to Other Tables . . . 411

CL_SCHED Table 411

DEPARTMENT Table 411

Relationship of DEPARTMENT to Other Tables 412

EMPLOYEE Table 412

Relationship of EMPLOYEE to Other Tables . . 413

EMP_ACT Table 413

Relationship of EMP_ACT to Other Tables . . 415

IN_TRAY Table 415

PROJECT Table 415

Relationship of PROJECT to Other Tables . . . 416

PROJ_ACT Table 416

Relationship of PROJ_ACT to Other Tables . . 418

Appendix E. Data Conversion Chart 419

Appendix F. Terminology Differences 423

Terminology Cross-Reference 423

Appendix G. DRDA Considerations 425

Omissions from the Standards 425

Extensions to the Standards 425

DB2 Server for VSE & VM Facility Restrictions . . 426

Appendix H. Incompatibilities Between

Releases 427

Definition of an Incompatibility 427

Impact on Existing Applications 427

Contents v

V2R1 and V1R3.5 Incompatibilities 428

V2R2 and V2R1 Incompatibilities 430

Detailed Notes on V2R2-V2R1 Incompatibilities 432

V3R1 and V2R2 Incompatibilities 433

Detailed Notes on V3R1-V2R2 Incompatibilities 437

V3R3 and V3R2 Incompatibilities (VM Only) . . . 444

Detailed Notes on V3R3-V3R2 Incompatibilities 449

V3R4 and V3R3 Incompatibilities (VM Only) . . . 450

Detailed Notes on V3R4-V3R3 Incompatibilities 454

V3R4 and V3R2 Incompatibilities (VSE Only) . . . 454

Detailed Notes on V3R4-V3R2 Incompatibilities 462

V3R5 and V3R4 Incompatibilities 463

V5R1 and V3R5 Incompatibilities 464

V6R1 and V5R1 Incompatibilities 464

V7R1 and V6R1 Incompatibilities 465

V7R2 and V7R1 Incompatibilities 465

Notices 467

Programming Interface Information 469

Trademarks 469

Bibliography 471

Index 475

Contacting IBM 493

Product information 493

vi SQL Reference

Summary of Changes

This is a summary of the technical changes to the DB2 Server for VSE & VM

database management system for this edition of the book. Several manuals are

affected by some or all of the changes discussed here. For your convenience, the

changes made in this edition are identified in the text by a vertical bar (|) in the

left margin. This edition may also include minor corrections and editorial changes

that are not identified.

This summary does not list incompatibilities between releases of the DB2 Server

for VSE & VM product; see either the DB2 Server for VSE & VM SQL Reference, DB2

Server for VM System Administration, or the DB2 Server for VSE System

Administration manuals for a discussion of incompatibilities.

Summary of Changes for DB2 Version 7 Release 5

Version 7 Release 5 of the DB2 Server for VSE & VM database management

system is intended to run on the Z/VM Version 5 Release 2 or later environment

and on the Z/VSE(®) Version 3 Release 1 or later environment.

Enhancements, New Functions, and New Capabilities

The following have been added to DB2 Version 7 Release 5:

Explain Option on DBSU REBIND PACKAGE Command

This new functionality allows the EXPLAIN(YES/NO) option on REBIND

PACKAGE command. If EXPLAIN(YES) is issued, then all four update tables

(structure, plan, cost, reference) will be updated. If EXPLAIN(NO) is issued, then

none of the four update tables will be updated.

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 Server for VSE & VM Database Services Utility

v DB2 Server for VSE & VM Performance Tuning Handbook

v DB2 Server for VSE & VM Quick Reference

v DB2 Server for VSE & VM SQL Reference

For Fetch only

This new functionality accepts the ″FOR FETCH ONLY″ clause after a cursor select

statement. It causes a cursor to become read-only (no UPDATEs or DELETEs are

permitted using this cursor). If a read-only cursor is referenced in an UPDATE or

DELETE statement, SQLCODE -510 will be issued and the statement is not

processed. In addition, under the SBLOCK preprocessor option, ″FOR FETCH

ONLY″ forces blocking to be used on the read-only cursor regardless of whether

there is a COMMIT. If there is no ″FOR FETCH ONLY″ clause, under SBLOCK,

blocking would only be done if a COMMIT was absent.

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 Server for VM Messages and Codes

v DB2 Server for VSE & VM Application Programming

v DB2 Server for VSE & VM Performance Tuning Handbook

v DB2 Server for VSE & VM Quick Reference

© Copyright IBM Corp. 1988, 2007 vii

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

v DB2 Server for VSE & VM SQL Reference

Application Message Formatter

This functionality provides an Application Programming Interface (API) that

retrieves the descriptive text for an SQLCODE, given an SQLCA input parameter.

The API will be available for Assembly, COBOL, C, PL/I and FORTRAN.

In DB2 for VM and DB2 for VSE Online, the user may specify the language of the

returned text. The languages supported by DB2 for VSE/VM are American English

(AMENG), uppercase English (UCENG), German (GER), French (FRANC) and

Japanese (KANJI). VSE Batch does not support switching to another language.

Therefore the default will be used regardless of the user’s specification. The values

of SQLCODE, SQLSTATE, SQLERRD1 and SQLERRD2 will be automatically

appended to the returned text. The user may also specify to have the entire

SQLCA included. If the SQLCODE could not be found in the repository, the entire

SQLCA will be returned in the buffer.

If the SQLCA was set by another product (such as DB2 UBD), the descriptive text

is retrieved if the SQLCODE exists in the DB2 for VM/VSE repositories. However,

the token substitutions may not be correct.

For more information, see DB2 Server for VSE & VM Application Programming.

Convert buffer read/write to compiler macro

The DRDA code has over 100 small modules. Each call to an external module has a

certain amount of overhead associated with it. Certain modules are called very

frequently and this can add up to a significant amount of time. This functionality

improves the performance by converting few modules to macros or internal

procedures, to reduce this overhead.

Modify Build Tree Creation

This functionality modifies Build Tree creation used by DRDA parsing and

generation. It is built in such a way that every code point that is used to search

through the tree must be converted to a different format before the search can be

done. If modified build tree was created with the converted point, then the code

point would not have to be converted every time the tree must be searched. This

improves the performance of the DRDA code path length with the minimal search.

Split code point search routines

When parsing a data stream within each parser action routine, a binary search is

done to find the specific code point. Some action specific routines are quite large,

so the binary search can be long. Splitting and spreading the code point evenly

among other modules would reduce the overheads and improves the performance

of the DRDA code path length.

DRDA Multi-Row Insert

Multi Row insert is a means of caching homogenous insert statements and sending

them as a block to the server for processing. This reduces the overhead of sending

a large number of singular inserts and receiving as many responses.

Buffering of homogenous inserts eliminates the need to send an SQL statement to

the DB2 server every time an insert is made, thereby improving performance over

DRDA.

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 Server for VSE & VM Application Programming

viii SQL Reference

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

v DB2 Server for VSE & VM Database Administration

v DB2 Server for VM System Administration

v DB2 Server for VSE & VM Performance Tuning Handbook

v DB2 Server for VSE & VM Quick Reference

v DB2 Server for VSE & VM SQL Reference

Connection Pooling for DRDA TCP/IP in Online Resource

Adapter

Connection pooling is a technique that allows multiple users to share a cached set

of pre-established connections that provide access to a database. Establishing a

connection between a user and a server takes a sizeable time. Users who have

validated their entry to a database once need not establish a connection every time

a request is submitted. Instead, they can use a pre-established connection from a

pool of such connections and get their results much faster.

From the user’s point of view, there is a considerable improvement in response

time after this line item is implemented.

For more information, see the following documentation on DB2 Server for VSE &

VM:

v DB2 Server for VSE System Administration

v DB2 Server for VSE & VM Application Programming

v DB2 Server for VSE & VM Operation

v DB2 Server for VSE & VM Performance Tuning Handbook

IBM DB2 Server for VSE, Client Edition

This feature allows the customer the flexibility to install and use only the client

(run-time support) component of DB2 Server for VSE without the requirement to

buy and install the server component during the installation process of DB2 server

for VSE product. The client-only installation enables customers to reduce the total

cost of ownership when they have their databases residing on a non-local platform

(like VM, z/OS, LUW) and have a large number of their DB2 applications on VSE

(like ISQL on CICS, DBSU on VSE, other online/batch applications on VSE).

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 Server for VSE System Administration

v DB2 Server for VSE Program Directory

IBM DB2 Server for VM, Client Edition

This feature allows the customer the flexibility to install and use only the client

(run-time support) component of DB2 Server for VM without the requirement to

buy and install the server component during the installation process of DB2 server

for VM product. The client-only installation enables our customers to reduce the

total cost of ownership when they have their databases residing on a non-local

platform (like VM, z/OS, LUW) and have a large number of their DB2 applications

on VM (like ISQL, DBSU, other user applications on VM).

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 Server for VM System Administration

v DB2 Server for VM Program Directory

Summary of Changes ix

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Handling Commit Responses from DB2 UDB Stored Procedures

This feature will allow DB2 Resource Manager on VSE/VM to accept and process

results of a stored procedure running in a UDB server with a COMMIT statement

in the stored procedure.

Currently, DB2 for VM/VSE client does not handle responses from ’COMMIT’

statements coded in DB2 UDB stored procedures. Implementation of this feature

will enable handling responses of COMMIT statements in DB2 UDB stored

procedures and thus allow users to have COMMIT statements in their stored

procedures, while using DB2 for VM/VSE client.

COMMIT statements, however, are not allowed in stored procedures on the DB2

Server for VM/VSE.

For more information, see DB2 Server for VSE & VM Application Programming.

Make on-line programs AMODE 31 RMODE ANY

This feature converts DB2 server for VSE online program which presently operate

under 24 bit addressing mode from AMODE 24, to AMODE 31 RMODE ANY.

Presently, all the online programs are loaded below 16M line. Implementation of

this line item ensures that all the online program will be loaded above the 16M

line, which results in more virtual storage below the line, which can be utilized by

other applications.

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 Server for VSE System Administration

v DB2 Server for VSE Program Directory

Provide BIND File Support in VM and in VSE Batch Environments

This feature provides the facility of binding packages across servers. The process of

binding is achieved by dividing the program preparation method into two steps.

The first step does the precompilation of the embedded SQL programs with the

prep parameter ’BIND’. Invocation of VSE/VM preprocessor creates a ’bindfile’.

The bindfile can be bound against any DB2 server using VSE/VM binder. During

this process, the access path is generated, SQL statements are verified,

authorization checks are performed, and package on the target server is created.

This line item eliminates the need of re-prepping the source code or porting of

packages across DB2 servers.

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 REXX SQL for VM/ESA Installation and Reference

v DB2 Server for VM Messages and Codes

v DB2 Server for VSE & VM Application Programming

v DB2 Server for VSE & VM Database Administration

v DB2 Server for VM Program Directory

v DB2 Server for VSE Program Directory

Convert TCP/IP LE/C interface to EZASMI API

The feature of converting TCP/IP LE/C interface to EZASMI API intends to

replace the current LE/C interface and implement the EZA Assembler Interface

(EZASMI)to enhance performance in DB2 Client/Server for VSE over DRDA.

Currently, either LE/C interface or CSI Assembler Interface is used for TCP/IP

functions. The EZASMI interface makes the code all Assembler.

x SQL Reference

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

For more information, see DB2 Server for VSE Program Directory

Summary of Changes xi

|

xii SQL Reference

Chapter 1. Introduction

This introductory chapter:

v Identifies the book’s purpose and audience

v Explains how the book is organized

v Explains how to use the book

v Explains how to read the syntax diagrams.

Note: For ease of reading, this book follows the following convention:

v the term DB2 Server for VSE & VM is used where the discussion refers to both

operating system environments (VM and VSE)

v the terms DB2 Server for VM and DB2 Server for VSE are used where the

discussion must refer explicitly to either the VM or VSE operating system

environments.

Who This Book Is For

This book is for programmers, system administrators, and database administrators

who want to use SQL to access a DB2 Server for VSE & VM database. This book is

a reference rather than a tutorial or guide. It assumes you are already familiar with

SQL. This book also assumes that you will be writing applications for the VM or

VSE environment and therefore presents the full functions of the DB2 Server for

VSE & VM program.

Prerequisite Knowledge

It is assumed that you possess an understanding of system administration,

database administration, or application programming in the DB2 Server for VM or

DB2 Server for VSE environment, as provided by the appropriate guide, and you

have some knowledge of the following:

v VM (CMS, CP) or VSE (CICS or batch, as applicable)

v A programming language

v Structured Query Language (SQL).

It also assumes that you are familiar with the information found in the DB2 Server

for VSE & VM Overivew manual.

How This Book Is Organized

This book has the following sections:

v Chapter 1, “Introduction,” on page 1 identifies the purpose, the audience, and

the use of the book.

v Chapter 2, “Concepts,” on page 9 discusses the basic concepts of relational

databases and SQL.

v Chapter 3, “Language Elements,” on page 35 describes the basic syntax of SQL

and the language elements that are common to many SQL statements.

v Chapter 4, “Functions,” on page 91 contains syntax diagrams, semantic

descriptions, rules, and usage examples of SQL column and scalar functions.

v Chapter 5, “Queries,” on page 121 describes the various forms of a query, which

is a component of various SQL statements.

© Copyright IBM Corp. 1988, 2007 1

v Chapter 6, “Statements,” on page 137 contains syntax diagrams, semantic

descriptions, rules, and examples of all SQL statements.

v The appendixes contain information about SQL limits, SQLCA, SQLDA, system

catalog tables, SQL reserved words, supplied sample tables, and terminology

differences.

Syntax Notation Conventions

Throughout this manual, syntax is described using the structure defined below.

v Read the syntax diagrams from left to right and from top to bottom, following

the path of the line.

The ►►─── symbol indicates the beginning of a statement or command.

The ───► symbol indicates that the statement syntax is continued on the next

line.

The ►─── symbol indicates that a statement is continued from the previous line.

The ───►◄ symbol indicates the end of a statement.

Diagrams of syntactical units that are not complete statements start with the

►─── symbol and end with the ───► symbol.

v Some SQL statements, Interactive SQL (ISQL) commands, or database services

utility (DBS Utility) commands can stand alone. For example:

Others must be followed by one or more keywords or variables. For example:

v Keywords may have parameters associated with them which represent

user-supplied names or values. These names or values can be specified as either

constants or as user-defined variables called host_variables (host_variables can only

be used in programs).

v Keywords appear in either uppercase (for example, SAVE) or mixed case (for

example, CHARacter). All uppercase characters in keywords must be present;

you can omit those in lowercase.

v Parameters appear in lowercase and in italics (for example, synonym).

v If such symbols as punctuation marks, parentheses, or arithmetic operators are

shown, you must use them as indicated by the syntax diagram.

v All items (parameters and keywords) must be separated by one or more blanks.

v Required items appear on the same horizontal line (the main path). For example,

the parameter integer is a required item in the following command:

►► SAVE ►◄

►► SET AUTOCOMMIT OFF ►◄

►► DROP SYNONYM synonym ►◄

2 SQL Reference

This command might appear as:

 SHOW DBSPACE 1

v Optional items appear below the main path. For example:

This statement could appear as either:

 CREATE INDEX

or

 CREATE UNIQUE INDEX

v If you can choose from two or more items, they appear vertically in a stack.

If you must choose one of the items, one item appears on the main path. For

example:

Here, the command could be either:

 SHOW LOCK DBSPACE ALL

or

 SHOW LOCK DBSPACE 1

If choosing one of the items is optional, the entire stack appears below the main

path. For example:

Here, the command could be:

 BACKWARD

or

 BACKWARD 2

or

 BACKWARD MAX

►► SHOW DBSPACE integer ►◄

►► CREATE

UNIQUE
 INDEX ►◄

►► SHOW LOCK DBSPACE ALL

integer
 ►◄

►► BACKWARD

integer

MAX

 ►◄

Chapter 1. Introduction 3

v The repeat symbol indicates that an item can be repeated. For example:

This statement could appear as:

 ERASE NAME1

or

 ERASE NAME1 NAME2

A repeat symbol above a stack indicates that you can make more than one

choice from the stacked items, or repeat a choice. For example:

v If an item is above the main line, it represents a default, which means that it will

be used if no other item is specified. In the following example, the ASC keyword

appears above the line in a stack with DESC. If neither of these values is

specified, the command would be processed with option ASC.

v When an optional keyword is followed on the same path by an optional default

parameter, the default parameter is assumed if the keyword is not entered.

However, if this keyword is entered, one of its associated optional parameters

must also be specified.

In the following example, if you enter the optional keyword PCTFREE =, you

also have to specify one of its associated optional parameters. If you do not

enter PCTFREE =, the database manager will set it to the default value of 10.

v Words that are only used for readability and have no effect on the execution of

the statement are shown as a single uppercase default. For example:

►►

ERASE

▼

name

►◄

►►

VALUES

(

▼

 ,

constant

host_variable_list

NULL

special_register

)

►◄

►►
 ASC

DESC

►◄

►►
 PCTFREE = 10

PCTFREE = integer

►◄

4 SQL Reference

Here, specifying either REVOKE ALL or REVOKE ALL PRIVILEGES means the

same thing.

v Sometimes a single parameter represents a fragment of syntax that is expanded

below. In the following example, fieldproc_block is such a fragment and it is

expanded following the syntax diagram containing it.

SQL Reserved Words

The following words are reserved in the SQL language. They cannot be used in

SQL statements except for their defined meaning in the SQL syntax or as host

variables, preceded by a colon.

In particular, they cannot be used as names for tables, indexes, columns, views, or

dbspaces unless they are enclosed in double quotation marks (").

►►

REVOKE ALL
 PRIVILEGES

►◄

►►

NOT NULL

UNIQUE

PRIMARY KEY

 fieldproc_block ►◄

fieldproc_block:

 FIELDPROC program_name

▼

,

(

constant

)

Chapter 1. Introduction 5

ACQUIRE

ADD

ALL

ALTER

AND

ANY

AS

ASC

AVG

BETWEEN

BY

CALL

CHAR

CHARACTER

COLUMN

COMMENT

COMMIT

CONCAT

CONNECT

COUNT

CREATE

CURRENT

DBA

DBSPACE

DELETE

DESC

DISTINCT

DOUBLE

DROP

EXCLUSIVE

EXECUTE

EXISTS

EXPLAIN

FIELDPROC

FOR

FROM

GRANT

GRAPHIC

GROUP

HAVING

IDENTIFIED

IN

INDEX

INSERT

INTO

IS

LIKE

LOCK

LONG

MAX

MIN

MODE

NAMED

NHEADER

NOT

NULL

OF

ON

OPTION

OR

ORDER

PACKAGE

PAGE

PAGES

PCTFREE

PCTINDEX

PRIVATE

PRIVILEGES

PROGRAM

PUBLIC

RESOURCE

REVOKE

ROLLBACK

ROW

RUN

SCHEDULE

SELECT

SET

SHARE

SOME

STATISTICS

STORPOOL

SUM

SYNONYM

TABLE

TO

UNION

UNIQUE

UPDATE

USER

VALUES

VIEW

WHERE

WITH

WORK

Conventions for Representing Mixed Data Values

When mixed data values are shown in examples the following conventions apply:

Convention Meaning

< Represents the mixed shift-out character (X'0E').

> Represents the mixed shift-in character (X'0F').

x Represents an SBCS character (where x can be any lowercase

character).

▌XX▐ Represents a DBCS character (where ▌XX▐ can be any double

uppercase character).

6 SQL Reference

Short Forms Used in Syntax Diagrams

Some words have been shortened in some of the syntax diagrams in this book. The

words are:

Full Word Short Form

character char

expressions exp

string str

Chapter 1. Introduction 7

8 SQL Reference

Chapter 2. Concepts

SQL is a standardized language for defining and manipulating data in a relational

database. In accordance with the relational model of data, the database is perceived

as a set of tables, relationships are represented by values in tables, and data is

retrieved by specifying a result table that can be derived from one or more base

tables.

SQL statements are processed by a database manager. One of the functions of the

database manager is to transform the specification of a result table into a sequence

of internal operations that optimize data retrieval. This transformation occurs when

the SQL statement is prepared. Statement preparation is also known as binding.

All executable SQL statements must be prepared before they can be processed. The

result of preparation is the executable or operational form of the statement. The

method of preparing an SQL statement and the persistence of its operational form

distinguish static SQL from dynamic SQL.

Static SQL

The source form of a static SQL statement is embedded within an application

program written in a host language such as COBOL. The statement is prepared

before the program is run and the operational form of the statement persists

beyond the execution of the program.

A source program containing static SQL statements must be processed by an SQL

preprocessor before it is compiled. The preprocessor checks the syntax of the SQL

statements, turns them into host language comments, and generates host language

statements to invoke the database manager.

The preparation of an SQL application program includes parsing and validation,

the binding of its SQL statements, and the compilation of the modified source

program.

Dynamic SQL

A dynamic SQL statement is prepared during the execution of an SQL application

and the operational form of the statement does not persist beyond the unit of

work. The source form of the statement is a character string that is passed to the

database manager by the program using the static SQL statement PREPARE or

EXECUTE IMMEDIATE.

SQL statements embedded in a REXX application are dynamic SQL statements.

1

SQL statements submitted to an interactive SQL facility are also dynamic SQL

statements.

1. The DB2 REXX SQL feature must be installed.

© Copyright IBM Corp. 1988, 2007 9

Interactive SQL

An interactive SQL facility is associated with the database manager. Essentially,

every interactive SQL facility is an SQL application program that reads statements

from a terminal, prepares and processes them dynamically, and displays the results

to the user. Such SQL statements are said to be issued interactively. The DB2 Server

for VSE & VM Interactive SQL Guide and Reference manual discusses interactive SQL

in greater detail. An associated product, Query Management Facility (QMF), also

uses DB2 Server for VSE & VM interactively.

Extended Dynamic SQL

Extended dynamic statements support direct creation and maintenance of packages

for DB2 Server for VSE & VM data and provide a function similar to that provided

by the DB2 Server for VSE & VM preprocessors. These functions are particularly

useful where:

v The current preprocessors do not support the language of the application or

support program that is needed.

v SQL statements are conceived and built dynamically, but are processed

repetitively (in a different logical unit of work). In this case it is a performance

benefit to avoid having to repeat the preprocessing of statements each time they

are processed, as would be required for normal dynamic statements.

v It is desirable to build and maintain an application package of SQL statements to

be shared by a group of users.

Individual SQL statements can be added or deleted without affecting or repeating

the preprocessing of other SQL statements in the group (a group can be stored in

one package).

By using the extended dynamic statements, development programmers can write

their own preprocessors or database interface routines that support preplanned

access to the database manager. Preplanned access means that access paths to data

are optimized once when the statement is prepared. They need not be prepared

again for each execution.

Extended dynamic SQL statements may be used only in Assembler and REXX

programs.

Relational Database

A relational database is a database that can be perceived as a set of tables and

manipulated in accordance with the relational model of data.

Tables

Tables are logical structures maintained by the database manager. Tables are made

up of columns and rows. A column is the vertical component of a table. It has a

name and a defined data type (for example, character, decimal, or integer). A row is

the horizontal component of a table. At the intersection of every column and row

is a specific data item called a value. A row contains a sequence of values such that

the nth value is a value of the nth column of the table. There is no inherent order

of the rows within a table but there is a defined order of columns for a table.

Concepts

10 SQL Reference

A base table is created with the CREATE TABLE statement and holds persistent user

data. A result table or an active set is a set of rows that the database manager selects

or generates from one or more base tables.

Keys

A key is one or more columns identified as such in the description of a table, an

index, or a referential constraint. The same column can be part of more than one

key. A key composed of more than one column is called a composite key.

A composite key is an ordered set of columns of the same table. The ordering of the

columns is not constrained by their ordering within the table. The term value when

used with respect to a composite key denotes a composite value. Thus, a rule such

as “the value of the foreign key must be equal to the value of the primary key”

means that each component of the value of the foreign key must be equal to the

corresponding component of the value of the primary key.

A unique key is a key that is constrained so that no two of its values are equal. The

constraint is enforced by the database manager during the execution of INSERT

and UPDATE statements. The mechanism used to enforce the constraint is called a

unique index. Thus, every unique key is a key of a unique index.

Primary Keys

A primary key is a unique key that is part of the definition of a table. A table can

have at most one primary key, and the columns of a primary key cannot contain

null values. Primary keys are optional and can be defined in CREATE TABLE

statements or ALTER TABLE statements.

The unique index on a primary key is called the primary index. When a primary

key is defined in a CREATE TABLE statement, the primary index is automatically

created by the database manager.

When a primary key is defined in an ALTER TABLE statement, a primary index is

automatically created by the database manager even if a unique index exists on the

same columns of that primary key.

Integrity

Integrity refers to the accuracy of data in the database. Integrity is maintained in

the following ways:

1. An entire group of related changes is either made to the database, or the entire

operation is canceled. For example, when money is transferred from one bank

account to another, the database manager ensures that both the deduction from

the one account and the deposit to the other account complete successfully or

none of the changes are made. This is called atomic integrity; it protects other

users and programs from using inconsistent data.

2. Duplicate rows of information for the same entity can be avoided. For example,

an EMPLOYEE table consisting of employee number, employee name, and

department number can be defined so that values are unique for an employee

number and name, eliminating duplicate rows for any employee. This is called

entity integrity.

3. Integrity of data in related tables can be ensured. For example, a

DEPARTMENT table may contain department numbers and other information

related to the EMPLOYEE table. A relation can be defined so that only valid

Concepts

Chapter 2. Concepts 11

and existing department numbers as specified in the DEPARTMENT table can

appear in the EMPLOYEE table. Changes to the DEPARTMENT table can be

automatically reflected in the EMPLOYEE table. This is called referential

integrity. Rules or referential constraints can be defined by users to ensure

referential integrity between tables.

Data Integrity

The database manager protects other users and programs from using inconsistent

or wrong data by preventing more than one user or application from

simultaneously updating data; by allowing the user to rollback uncommitted

changes; and by using entity integrity and referential integrity.

Entity Integrity

Entity integrity may be maintained in two ways: by defining a primary key on a

table or placing a unique constraint on a column.

You define a primary key on a table to ensure that duplicate rows do not occur.

The database manager enforces the uniqueness of the primary key by

automatically creating a unique index on its columns. A primary key is a part of

the table definition and is defined when the table is created or altered. Primary

keys are also used in defining referential integrity.

Columns that are not used to define a primary key can be defined to have unique

values. Define a unique constraint on a column when you wish the database

manager not to accept a row of data if a unique column already contains the same

value in another row.

Referential Integrity

Referential integrity allows the definition of relationships between tables such that

the existence of values in one table depends on the existence of the same values in

another table. The database manager supports referential integrity by providing for

the definition of primary keys, foreign keys, and through a set of rules defining the

relationships among the tables. Together, these are known as referential constraints.

Relationships Between Tables

The relationship defined by a referential constraint is a set of connections between

the rows of two or more tables. The tables are related through matching column

values in the tables. A table is considered a parent table if its primary key is

referenced in a referential constraint, or a dependent table if it has a foreign key

and is related to a parent table through a referential constraint. A table can be both

a parent and a dependent table, depending on its relationship to other tables.

The relationship is defined using the CREATE TABLE statement for new tables and

the ALTER TABLE statement for existing tables. When you use these statements,

you specify the rules that must be followed in both parent and dependent tables

when rows are deleted.

The following relationships may occur:

v A parent table has a primary key and is a parent in at least one relationship.

v A dependent table has at least one foreign key (defined below) and is a dependent

in at least one relationship. A table can be a dependent in any number of

relationships.

v A table can be both a dependent table and a parent table, but not of itself.

Concepts

12 SQL Reference

v A table is a descendent of table T if it is a dependent of T or it is a dependent of

a descendent of T.

v An independent table is neither a parent nor a dependent.

Foreign Keys

A foreign key consists of one or more columns in the dependent table that together

must either take on a value that exists in the primary key of the parent table, or be

a null foreign key. When a row is updated or inserted into a dependent table, each

non-null foreign key insert or update value must match a value of the

corresponding primary key in the parent table. There can be multiple foreign keys

defined on a dependent table referencing the same or different parent tables. The

columns in the key may be nullable. If any of the columns contain a null value, the

foreign key value is considered null. If the foreign key value is not null, then it

must match an existing primary key value in the referencing parent table.

Referential Constraints

A referential constraint consists of a foreign key, the identification of a table

containing a primary key, a constraint name and rules that govern changes. A

referential constraint requires that a value can exist in one table (the dependent

table) only if it also exists in another table (the parent table). After referential

constraints have been defined, the enforcement of the referential constraint is

immediate and the insert, update and delete rules are enforced when the INSERT

(or PUT), UPDATE, and DELETE statements are issued. See “ALTER TABLE” on

page 157 and “CREATE TABLE” on page 219 for information on how to declare

referential constraints.

Referential constraints can be specified when tables are defined, or they can be

added later. If they are added later, the database manager checks the references in

the existing data. You can either drop or deactivate referential constraints to load

large volumes of data, for example. After you load your data, you must recreate or

reactivate your referential constraints. See “Activating and Deactivating Keys” on

page 17 for more information.

Delete Rules

In order to maintain referential integrity, delete rules are imposed on all

relationships. Every relationship includes a delete rule that was implicitly or

explicitly specified when the referential constraint was declared by creating a

foreign key. The options are:

v RESTRICT

The deletion of a parent row is restricted. No deletions are allowed on a parent

row until it has no dependent rows. This is the default action if no option is

specified when the foreign key is created.

v CASCADE

The deletion of a row in the parent table will cause the deletion of any

dependent rows in a dependent table. When a dependent row is deleted, if the

dependent table is also a parent table, then the delete rule of the referential

constraint applies in turn. Each referential constraint in which a table is a parent

has its own delete rule, and all applicable delete rules determine the result of the

delete operation. Consequently a row in the parent table cannot be deleted if the

deletion cascades to any of its descendents that has a dependent row in a

referential constraint with a delete rule of RESTRICT.

v SET NULL

Concepts

Chapter 2. Concepts 13

The deletion of a row in a parent table causes the corresponding values of the

foreign key in any dependent rows to be set to null. Only nullable columns of

the foreign key are set to null.

You may delete rows from a dependent table at any time, without taking any

action on the parent table.

The following terminology applies to the delete rules.

v A table T2 is delete-connected to another table T1 if a delete of rows in table T1

can involve table T2. The following conditions determine whether tables are

considered to be delete-connected:

1. Dependent tables are always delete-connected to their parents irrespective of

the delete rule.

2. A table T2 is delete-connected to another table T1 if a delete of rows in table

T1 can cause a delete of rows in T2’s parent table(s). IBM-SQL2 allows the

concept of a self-referencing table, one that is delete-connected to itself. Note

that DB2 Server for VSE & VM does not directly support a self-referencing

table.

In the relationship below, T2 and TX are both delete-connected to T1.

T1

Cascade

TX

Any delete rule

T2

v A table T2 is delete-connected through multiple paths to table T1 if there is more

than one relationship by which T2 is delete-connected to T1.

In the diagram below, T2 is delete-connected to T1 with a delete rule of

RESTRICT through two paths, one through T3 and a second by direct path. Note

that T2 is not delete-connected to T1 along the path through T4 because a delete

of rows in T1 will not cause a delete of rows in T4, which is T2’s parent table

along this path.

2. This is the term used to refer to IBM’s SQL as published in the IBM SQL Reference, Volume 1 (SC26-8416)

Concepts

14 SQL Reference

Cascade

T3

Set Null

Set NullRestrict Restrict

T2

T4

T1

v A referential cycle is a set of referential constraints for two or more tables such

that each table in the set is a descendent of itself.

v A self-referencing table is a table that is a parent and dependent in the same

referential constraint. The constraint is called a self-referencing constraint.

These relationships are depicted in the following example.

Restrict

T1

Cascade

T2

Set Null Cascade

T3 T4 T5

Table T3, T4 and T5 are dependents of table T2 which is a dependent of table T1.

Since T1 is a parent table, the delete rule of referential constraint applies when a

row of T1 is deleted. Specifically, deletion of a row in table T1 will cause all

dependent rows in table T2 to be deleted. Since T2 is also a parent table, the delete

rule of referential constraint also applies when a row of T2 is deleted. Specifically,

the DELETE RESTRICT rule in table T3, the DELETE SET NULL rule in table T4

and the DELETE CASCADE rule in table T5 will apply. Note that if a row in T2 is

to be deleted because its parent row in T1 is to be deleted, and this row has a

dependent row in T3, then the entire delete operation will fail and will be rolled

back.

Concepts

Chapter 2. Concepts 15

DELETE Rule Restrictions

It is necessary to impose restrictions on referential constraint relationships to

ensure that operations on delete-connected tables return consistent results with no

dependence on a defined order of operations.

Definition Restrictions: The following restrictions are checked whenever a

referential constraint is defined when a table is created or altered.

v If a table has more than one referential constraint referencing the same parent,

all the delete rules on those constraints must be the same and must not be SET

NULL.

v If a table is delete-connected to the same parent through multiple paths, all of

the delete rules on a path, except for the last one, must be CASCADE. The last

delete rule on all paths must be the same, and must not be SET NULL.

v A referential cycle involving two or more tables must not cause a table to be

delete-connected to itself. In general, for a referential cycle involving n tables,

where n >= 2, there can be at most n − 2 delete rules that are CASCADE. For

example, in a referential cycle involving two tables, neither delete rule can be

CASCADE. In a referential cycle involving four tables, at most two delete rules

may be CASCADE.

Delete with Subquery Restrictions: The following restriction is enforced when a

DELETE statement is prepared or preprocessed with a WHERE clause containing a

subquery. If T2 is the object table of a DELETE statement, and T1 is referenced in a

subquery of the WHERE clause, T1 must not be a table that can be affected by the

DELETE on T2. The following example demonstrates the principle.

DELETE FROM T2 WHERE FIELD2 IN (SELECT FIELD1 FROM T1);

The following rules are enforced on tables T1 and T2.

1. T1 and T2 must not be the same table.

2. T1 must not be a dependent of T2 in a relationship with a delete rule of

CASCADE or SET NULL.

3. T1 must not be a dependent of another table T3 in a relationship with a delete

rule of CASCADE or SET NULL if deletes of T2 cascade to T3.

Insert Rules

The database manager checks the implicit insert rules when a row is inserted into

either a parent table or a dependent table in a referential structure.

When a row is inserted into a parent table, the database manager ensures that:

v The primary key is unique and does not contain a null value.

When a row is inserted into a dependent table, the database manager ensures that

either:

v The foreign key has a matching primary key in the parent table, or

v The foreign key contains a null value in one or more of its columns.

Update Rules

When a key value is updated, the database manager checks the implicit update

rules.

When a primary key is updated, the primary key must be unique and not null,

and all dependent rows must be deleted or updated before the parent row can be

updated.

Concepts

16 SQL Reference

When a foreign key is updated, it must have a matching primary key in the parent

table or be a null key. A foreign key is considered null when any of its column

values becomes null.

Activating and Deactivating Keys

After a referential constraint has been defined, referential integrity is immediately

enforced and the primary and foreign keys are active. The database manager

ensures that data integrity is maintained.

You may want to deactivate referential constraints, for example, to improve

performance when loading large volumes of data. You can deactivate a table’s

primary key, any of its foreign keys, or a dependent foreign key. When any of

these keys are deactivated, both the parent table and dependent table become

unavailable to all users except the owner or someone possessing DBA authority.

After loading the data, referential constraints must be activated again. Activating

them causes the database manager to validate the references in the data.

When the keys are reactivated, the referential constraints are automatically

enforced once again. See “ALTER TABLE” on page 157 for more information on

activating and deactivating keys.

Indexes

An index is an ordered set of pointers to rows of a base table. Each index is based

on the values of data in one or more table columns. An index is an object that is

separate from the data in the table. When you request an index, the database

manager builds this structure and maintains it automatically.

Indexes are used by the database manager to:

v Improve performance. In most cases, access to data is faster than without an

index.

v Ensure uniqueness. A table with a unique index cannot have rows with identical

keys.

Views

A view provides an alternative way of looking at the data in one or more tables.

A view is a named specification of a result table. The specification is a SELECT

statement that is effectively processed whenever the view is referenced in an SQL

statement. Thus, a view can be thought of as having columns and rows just like a

base table. For retrieval, all views can be used just like base tables. Whether a view

can be used in an insert, update, or delete operation depends on its definition as

explained in the description of CREATE VIEW. (See “CREATE VIEW” on page 231

for more information.)

An index cannot be created for a view. However, an index created for a table on

which a view is based may improve the performance of operations on the view.

When the column of a view is directly derived from a column of a base table, that

column inherits any constraints that apply to the column of the base table. For

example, if a view includes a foreign key of its base table, INSERT and UPDATE

operations using that view are subject to the same referential constraint as the base

Concepts

Chapter 2. Concepts 17

table. Likewise, if the base table of a view is a parent table, DELETE operations

using that view are subject to the same rules as DELETE operations on the base

table.

Packages

A package is an object that contains control structures (called sections) used to

process SQL statements. Packages are produced during program preparation. The

control structures can be thought of as the bound or operational form of SQL

statements. All control structures in a package are derived from the SQL statements

embedded in a single source program.

Catalog

The database manager maintains a set of tables containing information about the

data it controls. These tables are collectively known as the catalog. The catalog tables

contain information about objects such as tables, views, and indexes.

Tables in the catalog are like any other database tables. If you have authorization,

you can use SQL statements to look at data in the catalog tables in the same way

that you retrieve data from any other table. The database manager ensures that the

catalog contains accurate descriptions of the relational database at all times.

Application Processes, Concurrency, and Recovery

All SQL programs run as part of an application process. An application process

involves the execution of one or more programs, and is the unit to which the

database manager allocates resources and locks. Different application processes

may involve the execution of different programs, or different executions of the

same program.

More than one application process may request access to the same data at the same

time. Locking is the mechanism used to maintain data integrity under such

conditions, preventing, for example, two application processes from updating the

same row of data simultaneously.

The database manager acquires locks in order to prevent uncommitted changes

made by one application process from being perceived by any other. The database

manager will release all locks it has acquired on behalf of an application process

when that process ends, but an application process itself can also explicitly request

that locks be released sooner. This operation is called commit.

The recovery facilities of the database manager provide a means of “backing out”

uncommitted changes made by an application process. This might be necessary in

the event of an error on the part of an application process, or in a “deadlock”

situation. An application process itself, however, can explicitly request that its

database changes be backed out. This operation is called rollback.

A logical unit of work (LUW), also known as a unit of work, is a recoverable sequence

of operations within an application process. At any time, an application process is

a single unit of work, but during the life of an application process there may be

many recovery operations performed as a result of the commit or rollback

operations.

A unit of work is initiated when an application process is initiated. A unit of work

is also initiated when the previous unit of work is terminated by something other

Concepts

18 SQL Reference

than the termination of the application process. A unit of work is terminated by a

commit operation, a rollback operation, or the termination of a process. A commit

or rollback operation affects only the database changes made within the unit of

work it terminates. While these changes remain uncommitted, other application

processes are unable to perceive them and they can be backed out. Once

committed, these database changes are accessible by other application processes

and can no longer be backed out.

A lock acquired by the database manager on behalf of an application process is

held until its associated recovery operation has passed.

The initiation and termination of a unit of work define points of consistency within

an application process. For example, a banking transaction might involve the

transfer of funds from one account to another. Such a transaction would require

that these funds be subtracted from the first account, and added to the second.

Following the subtraction step, the data is inconsistent. Only after the funds have

been added to the second account is consistency reestablished. When both steps

are complete, the commit operation can be used to terminate the unit of work,

thereby making the changes available to other application processes.

 If a problem occurs before the unit of work terminates, the database manager will

back out uncommitted changes in order to restore the consistency of the data that

it assumes existed when the unit of work was initiated.

Point of
consistency

one unit of work

New point of
consistency

database updates back out updates

Data is returned to
its initial state;
End unit of work

Begin
unit of work

TIME LINE

Failure;
Begin rollback

Figure 1. Unit of Work with a Commit Statement

Point of
consistency

one unit of work

New point of
consistency

database updates back out updates

Data is returned to
its initial state;
End unit of work

Begin
unit of work

TIME LINE

Failure;
Begin rollback

Figure 2. Unit of Work with a Rollback Statement

Concepts

Chapter 2. Concepts 19

Cursor operations within a single unit of work are not protected from the result of

other operations within the same unit of work. One example is a DELETE

statement that deletes a row selected by a previous OPEN statement. Another

example is two concurrently open cursors (at least one of which is updateable)

operating on some of the same data.

Isolation Level

The isolation level associated with an application process defines the degree of

isolation of that application process from other concurrently executing application

processes. The isolation level of an application process, P, therefore specifies:

v The degree to which rows read and updated by P are available to other

concurrently executing application processes

v The degree to which update activity of other concurrently executing application

processes can affect P.

Isolation level is specified as an attribute of a package and applies to the

application processes that use the package. The database manager provides a

means of specifying an isolation level of a package through the program

preparation process. The isolation levels are supported by automatically locking

the appropriate data. Depending on the type of lock, this limits or prevents access

to the data by concurrent application processes. The DB2 Server for VSE & VM

database manager supports three types of locks:

Share Limits concurrent application processes to read-only operations on the

data.

Update

Limits concurrent application processes to read-only operations on the

data. This lock expresses an intent to possibly update the data. If the data

is updated, the database manager upgrades the lock to an exclusive lock.

Exclusive

Prevents concurrent application processes from accessing the data in any

way.

The following descriptions of isolation levels refer to locking data in row units.

Data can be locked in larger physical units than base table rows. However,

logically, locking occurs at least at the base table row level. Similarly, the database

manager can escalate a lock to a higher level. An application process is guaranteed

at least the minimum requested lock level.

The DB2 Server for VSE & VM database manager supports three isolation levels.

Other database managers support additional levels (see the IBM SQL Reference for

details of these additional levels). Regardless of the isolation level, it places

exclusive locks on every row that is inserted, updated, or deleted. Thus, all

isolation levels ensure that any row that is changed during a unit of work is not

accessed by any other application (except for those using an isolation level of UR)

until the unit of work is complete. The isolation levels are:

Repeatable Read (RR)

Level RR ensures that:

v Any row that is read during a unit of work is not changed by other application

processes until the unit of work is complete.

v Any row that was changed by another application process cannot be read until it

is committed by that application process.

Concepts

20 SQL Reference

In addition to any exclusive locks, an application process running at level RR

acquires at least share locks on all the rows it reads. Furthermore, the locking is

performed so that the application process is completely isolated from the effects of

concurrent application processes.

Cursor Stability (CS)

Like level RR, level CS ensures that:

v Any row that was changed by another application process cannot be read until it

is committed by that application process.

Unlike RR:

v CS does not completely isolate the application process from the effects of

concurrent application processes. At level CS, application processes that run the

same query more than once might see additional rows. These additional rows

are called phantom rows.

For example, a phantom row can occur in the following situation:

1. Application process P1 reads the set of rows n that satisfy some search

condition.

2. Application process P2 then INSERTs one or more rows that satisfy the

search condition and COMMITs those INSERTs.

3. P1 reads the set of rows again with the same search condition and obtains

both the original rows and the rows inserted by P2.

v CS only ensures that the current row of every cursor is not changed by other

application processes. Thus, the rows that were read during a unit of work can

be changed by other application processes.

In addition to any exclusive locks, an application process running at level CS has

at least a share lock for the current row of every cursor.

Uncommitted Read (UR)

Unlike CS or RR, level UR allows:

v Any row that is read during a unit of work to be changed by other application

processes.

v Any row that was changed by another application process to be read even if that

change has not been committed by that application process.

Level UR allows an application to access most uncommitted changes of other

applications. However, tables, views and indexes that are being created or dropped

by other applications are not available while the application is processing. Any

other changes by other applications can be read before they are committed or

rolled back.

Non-read-only statements under level UR will behave as if the isolation level were

cursor stability.

Like CS, UR does not completely isolate the application process from the effects of

concurrent application processes. At level UR, application processes that run the

same query more than once might see phantom rows, or may experience

nonrepeatable reads.

For example, a nonrepeatable read can occur in the following situation:

Concepts

Chapter 2. Concepts 21

1. Application process P1 reads the row from the database, then goes on to

process other SQL requests.

2. Application process P2 either modifies or deletes the row and COMMITs the

change.

3. P1 attempts to read the original row again, and either receives the modified

row, or discovers that the original row has been deleted.

An application process running at level UR does not require any share locks.

Isolation Level Restrictions

Isolation levels, Cursor Stability and Uncommitted Read, only apply to Public

dbspaces with ROW or PAGE level locking. Private dbspaces and Public dbspaces

with DBSPACE level locking always use Repeatable Read isolation level. Data

definition statements, such as CREATE, ACQUIRE or GRANT, and any statements

that access the System Catalogs are always executed with Repeatable Read,

regardless of the isolation level specified.

Isolation Level Escalation

Another relational database manager may request the DB2 Server for VSE & VM

database manager to perform an operation on a DB2 Server for VSE & VM

database (see “Application Requesters and Application Servers”). If the request

specifies an isolation level other than one supported by the DB2 Server for VSE &

VM database manager, the level is changed accordingly:

v Read Stability (RS) is changed to level RR

For more information on these isolation levels, see the IBM SQL Reference. Lock

level escalation is discussed in the chapter on preprocessing and running programs

in the DB2 Server for VSE & VM Application Programming manual.

Program Control of Isolation

The DB2 Server for VSE & VM database manager supports a facility that allows

programs to dynamically modify the isolation level. The fact that a program will

use this facility is indicated by the specification of the value USER instead of a

specific isolation level when the program is prepared. Refer to the DB2 Server for

VSE & VM Application Programming manual for details on how to do this.

Application Requesters and Application Servers

Application requesters and application servers work together to provide data to an

application, regardless of where that data is located. The application requester

accepts a database request from an application and passes it to an application

server. In a distributed relational database, it transforms a database request from

the application into communication protocols suitable for use in a distributed

database network. The application server receives and processes the requests sent by

the application requester.

Note: An application requester is sometimes called a user machine in VM and a

user partition in VSE. An application server is sometimes called a database

machine in VM and a database partition in VSE.

In this example, an application requester in Rochester is requesting data from an

application server in Toronto.

Concepts

22 SQL Reference

An application process must be connected to the application server facility of a

database manager before SQL statements that reference tables or views can be

processed. A CONNECT statement establishes a connection between an application

process and its server. VM and CICS/VSE applications may also use an implicit

connection, in which case an explicit CONNECT statement is not necessary. An

application process has only one server at any time, but the server can change

when a CONNECT statement is processed.

Distributed Relational Database

A distributed relational database consists of a set of tables and other objects that

are spread across different but interconnected computer systems. Each computer

system has a relational database manager to manage the tables and other objects in

its environment. The database managers communicate and cooperate with each

other in a way that allows a given database manager to process SQL statements on

another computer system.

The following diagram shows how data is requested and transmitted between two

relational database systems participating in a complete Distributed Relational

Database Architecture (DRDA) relationship. Each of the two systems may request

data from the other.

Toronto

Program SQL
package

Application
server

Application
requester

Rochester

Figure 3. Requesting and Receiving Data Between an Application Requester and Application

Server

Concepts

Chapter 2. Concepts 23

The following diagram shows supported IBM relational database DRDA

connections; AIX connections are the same as those for OS/2. Incoming arrows

indicate application server support; outgoing arrows indicate application requester

support. Note that the relationships displayed are for unlike IBM systems only.

Some of the systems shown provide other protocols for like-system connections.

Application
Programs

Application
Programs

Application
Requester

Application
Requester

Application
Server

TablesTables

Application
Server

Figure 4. Requester/Server Data Flow

MVS VM

OS/2
or

AIX

OS/400

VSE

Figure 5. IBM Relational Database Connections

Concepts

24 SQL Reference

Distributed relational databases are built on formal requester-server protocols and

functions. Working together, the application requester and application server

handle the communication and location considerations so that the application is

isolated from these considerations and can operate as if it were accessing a local

database. DB2 Server for VM supports application servers and application

requesters for DRDA communication protocols. DB2 Server for VSE supports

application servers and application requesters for online CICS/VSE application

programs for DRDA. DB2 Server for VSE also provides Remote Unit of Work

(RUOW) application requester support for batch applications. For more

information on DRDA communication protocols, see the Distributed Relational

Database Architecture Reference.

Two communication protocols can be used by the DB2 Server for VSE & VM

database manager. These protocols allow the data to be used within distributed

relational databases or as a non-distributed relational database. The two protocols

are:

SQLDS A protocol for a DB2 Server for VSE & VM database manager to

communicate with other like database managers.

DRDA A protocol for communicating with both like and unlike database

managers.

The following table shows the protocols that are used between DB2 Server for VSE

& VM application requesters and application servers.

 Application Requester Communication Protocol Application Server

DB2 for VSE SQLDS DB2 Server for VM

Used for guest sharing.

DB2 for VSE SQLDS DB2 Server for VSE

DB2 for VSE DRDA DB2 Server for VSE

DB2 for VSE DRDA DB2 Server for VM

DB2 for VSE DRDA DB2 for MVS

DB2 for VSE DRDA DB2 for OS/400

DB2 for VSE DRDA DB2 for OS/2

DB2 for VSE DRDA DB2 for AIX

DB2 for VM SQLDS DB2 Server for VM

DB2 for VM DRDA DB2 Server for VM

DB2 for VM DRDA DB2 Server for VSE

DB2 for VM DRDA DB2 for MVS

DB2 for VM DRDA DB2 for OS/400

DB2 for VM DRDA DB2 for OS/2

DB2 for VM DRDA DB2 for AIX

For more information on the communication protocols, see the DB2 Server for VSE

& VM Performance Tuning Handbook.

Application Servers in DRDA

The application server can be local to or remote from the environment where the

process is initiated. This environment includes a local directory that describes the

Concepts

Chapter 2. Concepts 25

application servers that can be identified in a CONNECT statement. The format

and maintenance of this directory are described in the “Network Information”

sections for each SQL product in the Distributed Relational Database Connectivity

Guide manual.

To process a static SQL statement that references tables or views, the application

server uses the bound form of the statement. This bound statement is taken from a

package that the database manager previously created through a bind operation.

Data managed by any remote application server that implements the DRDA

architecture can be accessed and manipulated by VSE Batch application programs

that have the ability to execute SQL statements.

Remote Unit of Work

A remote unit of work (RUOW) is a logical unit of work that allows for the remote

preparation and execution of SQL statements. An application process at computer

system A can connect to an application server at computer system B and, within

one or more logical units of work, process any number of static or dynamic SQL

statements that reference objects at B. After terminating a unit of work at B, the

application process can connect to an application server at computer system C, and

so on.

The DB2 Server for VM requester can remotely prepare and run most SQL

statements given the following conditions:

v All objects referenced in a single SQL statement are managed by the same

application server.

v All of the SQL statements in a unit of work are processed by the same

application server.

The DB2 Server for VSE requester can remotely prepare and run most SQL

statements given the following conditions:

v The Online Resource Adapter must be enabled.

v The remote server must be known to the Online Resource Adapter.

DB2 Server for VSE also provides DRDA support that consists of remote unit of

work (RUOW) Application Requester (AR) support for Batch applications.

Distributed Unit of Work

A distributed unit of work (DUOW) is a logical unit of work that allows a user or

application program to read or update data at multiple locations. An application

process at computer system A can connect to an application server at computer

system B, process static or dynamic SQL statements that reference objects at B, then

connect to an application server at computer system C, and process SQL

statements that reference objects at C, and so on, before terminating the unit of

work. Each SQL statement can access one application server. Commits and

rollbacks are coordinated at all locations so that if a failure occurs anywhere in the

system, data integrity is preserved.

The Use of DB2 Family SQL on Various Application Servers

This section will mainly be of interest to people who are writing applications that

are:

v DB2 Server for VSE CICS applications, or are to be run on DB2 Server for VM

application requesters and

Concepts

26 SQL Reference

v accessing data that is controlled by the application servers of one or more unlike

relational database managers.

The section will also be of interest to people with the opposite requirement (for

instance a DB2 for OS/2 application requester connected to a DB2 Server for VM

or DB2 Server for VSE application server).

The DB2 family’s support of SQL is a superset of SQL92 Entry Level (SQL92E).

3

Not all DB2 family members support all elements of SQL. For a complete

discussion of the individual family members’ support of SQL, please see the IBM

SQL Reference, Version 2, Volume 1.

For the most part, an application may use the statements and clauses that are

supported by the database manager of the application server to which it is

currently connected even though that application may be running on the

application requester of a database manager that does not support some of those

statements and clauses.

There are some restrictions that apply. Due to the different availability dates of the

IBM relational database products, it is not possible to provide a complete list of

these. The rest of this section will, therefore, outline some general guidelines that

govern the inter-operability of statements and provide examples of statements that

can and cannot be used among products.

v All Data Definition and Authorization statements that are supported by an

application server can be issued from any application requester.

Example: A CICS application running as a DB2 Server for VSE application

requester connected to a DB2 for MVS application server may use a CREATE

TABLESPACE statement. Similarly, an application running on a DB2 for MVS

application requester connected to a DB2 Server for VM or DB2 Server for VSE

application server may use an ACQUIRE DBSPACE statement.

v Most other statements that do not contain any host variables can be issued from

any application requester.

Example: An application running on a DB2 Server for VM application requester

connected to a DB2 for MVS application server may issue the following

statement even though the DB2 Server for VM database manager does not

support the WITH HOLD clause.

 EXEC SQL DECLARE PRIMARY_CURSOR CURSOR WITH HOLD

 FOR SELECT_COURSES;

v Some statements without host variables are not sent to the application server;

rather, they are processed completely by the application requester. Such

statements may only be used on application requesters of products that support

statements.

Example 1: An application running on a DB2 Server for VM application requester

cannot issue the DECLARE STATEMENT statement against a DB2 for MVS

application server.

3. SQL92E is the term used to refer to the combination of the following standards:

 ISO (International Standards Organization) 9075-1992(E)

 ANSI (American National Standard for Information Systems) X3.135-1992

 FIPS (Federal Information Processing Standards) publication 127-2.

 The above documents list more than one level of conformance. The levels are Entry, Transitional (FIPS only), Intermediate, and

Full SQL. We are concerned with Entry SQL and we designate that with the abbreviation SQL92E.

Concepts

Chapter 2. Concepts 27

Example 2: An application running on a DB2 Server for VM application requester

cannot issue the DECLARE VARIABLE statement against a DB2 for OS/400

application server.

v Some statements without host variables are the joint responsibility of the

application requester and application server. Such statements must be fully

understood by the application requester.

Example: An application running on a DB2 Server for VM application requester

connected to a DB2 for OS/400 application server cannot issue the following

statement, because the PRIOR clause is not supported by the DB2 Server for VM

database manager.

EXEC SQL FETCH PRIOR FROM PAGE_CURSOR;

v If a statement or clause contains host variables and an application requester does

not understand that statement or clause, those host variables are assumed to be

input host variables. If this is not a valid assumption, the application server will

reject the statement.

Example 1: An application running on a DB2 Server for VM application requester

could issue the following statement to a DB2 for MVS application server:

 EXEC SQL SET CURRENT SQLID = :CUR_USER;

because :CUR_USER references an input host variable.

Example 2: However, an application running on a DB2 Server for VM application

requester could not issue the following statement to a DB2 for MVS application

server:

 EXEC SQL SET :TIME_UPDATED = CURRENT TIME;

because :TIME_UPDATED references an output host variable.

v Only DB2 Server for VSE & VM supports Extended Dynamic SQL. However, an

application on a DB2 Server for VM application requester or a DB2 Server for

VSE CICS application requester can issue most extended dynamic statements for

non-modifiable packages against unlike application servers. A list of restrictions

can be found in Appendix G, “DRDA Considerations,” on page 425.

v Only DB2 Server for VSE & VM supports Insert Cursors. However, an

application on a DB2 Server for VM application requester or a DB2 Server for

VSE CICS application requester can declare Insert Cursors and issue PUT

statements against unlike application servers. Note that there is no blocking of

input data because the application requester turns PUT statements into INSERT

statements. The purpose of this support is to allow an application to run without

having to make this change in the source program.

v In IBM-SQL, all objects (that is, tables, views, indexes, and packages) have a

two-part name. DB2 for MVS application servers also support three-part names

for tables, views, and aliases (a non-IBM-SQL object). The high order part of the

name identifies an application server (also called a location in DB2 for MVS). In

addition to the heterogeneous remote unit of work facility using DRDA

protocols among unlike products, DB2 for MVS supports a homogeneous

distributed unit of work facility using private protocols. This facility makes use of

three-part names in order to allow statements within the same unit of work to

be issued against different application servers as long as data is only modified at

one of those application servers.

For example, an application which is run on a DB2 Server for VM application

requester can issue the following statements in order to read data controlled by

DB2 for MVS application servers at Halifax, Montreal and Toronto and use the

information obtained there to update a DB2 for MVS table at Halifax.

Concepts

28 SQL Reference

EXEC SQL CONNECT TO HALIFAX;

 EXEC SQL SELECT SUM(WEEKLY_NET) -- processed by DB2 at Halifax

 INTO :TOT3

 FROM FORCASTING.SALES;

 EXEC SQL SELECT SUM(WEEKLY_NET) -- routed by DB2 at Halifax to be

 -- processed by DB2 at Montreal

 INTO :TOT1

 FROM MONTREAL.FORCASTING.SALES;

 EXEC SQL SELECT SUM(WEEKLY_NET) -- routed by DB2 at Halifax to be

 -- processed by DB2 at Toronto

 INTO :TOT2

 FROM TORONTO.FORCASTING.SALES;

 TOT = TOT1 + TOT2 + TOT3;

 EXEC SQL UPDATE FORCASTING.TOTALS -- processed by DB2 at Halifax

 SET WEEKLY_NET = :TOT;

DRDA protocols are used in the communications between the application

requester and the application server at Halifax. Private DB2 for MVS protocols

are used in the communications between Halifax and Toronto as well as the

communications between Halifax and Montreal. Three-part names allow

statements within the same unit of work to be issued against different

application servers.

For more information on distributed unit of work, refer to the DB2 for MVS

library.

Data Representation Considerations

Different systems represent data in different ways. When data is moved from one

system to another, data conversion must sometimes be performed. Products

supporting DRDA will automatically perform any necessary conversions at the

receiving system.

With numeric data, the information needed to perform the conversion is the data

type of the data and how that data type is represented by the sending system. For

example, when a floating point variable from an OS/400 application requester is

assigned to a column of a table at a VM application server, the DB2 Server for VM

database manager, knowing the data type and the sending system, converts the

number from IEEE format to S/390 format.

With character data, additional information is needed to convert character strings.

String conversion depends on both the coded character set of the data and the

operation that is to be performed with that data. Character conversions are

performed in accordance with the IBM Character Data Representation Architecture

(CDRA). For more information on character conversion, refer to Character Data

Representation Architecture Reference and Registry.

Character Conversion

A string is a sequence of bytes that may represent characters. Within a string, all

the characters are represented by a common coding representation. In some cases,

it might be necessary to convert these characters to a different coding

representation. The process of conversion is known as character conversion.

Character conversion, when required, is automatic and is transparent to the

application when it is successful. A knowledge of conversion is therefore

Concepts

Chapter 2. Concepts 29

unnecessary when all the strings involved in a statement’s execution are

represented in the same way. This is frequently the case for stand-alone installations

and for networks within the same country or region. Thus, for many readers,

character conversion may be irrelevant.

Character conversion can occur when an SQL statement is processed remotely.

Consider, for example, these two cases:

v The values of host variables sent from the application requester to the

application server

v The values of result columns sent from the application server to the application

requester.

In either case, the string could have a different representation at the sending and

receiving systems. Conversion can also occur during string operations on the same

system.

The following list defines some of the terms used when discussing character

conversion.

character set A defined set of characters. For example, the

following character set appears in several code

pages:

v 26 non-accented letters A through Z

v 26 non-accented letters a through z

v digits 0 through 9

v . , : ; ? () ’ ″ / - _ & + % * = < :>

code page A set of assignments of characters to code points.

In EBCDIC, for example, "A" is assigned code point

X'C1' and "B" is assigned code point X'C2'. Within a

code page, each code point has only one specific

meaning.

code point A unique bit pattern that represents a character.

coded character set A set of unambiguous rules that establish a

character set and the one-to-one relationships

between the characters of the set and their coded

representations.

encoding scheme A set of rules used to represent character data. For

example:

v Single-Byte EBCDIC

v Single-Byte ASCII (see Note)

v Double-Byte EBCDIC

v Mixed Single-, Double- and Multi-Byte ASCII.

Note: Single-Byte ASCII is an encoding scheme

used to represent strings in many

environments, including OS/2. In the

OS/2 environment, ASCII refers to the PC

Data encoding scheme.

substitution character A unique character that is substituted during

character conversion for any characters in the

source coding representation that do not have a

match in the target coding representation.

Concepts

30 SQL Reference

Character Sets and Code Pages

The following example shows how a typical character set might map to different

code points in two different code pages.

 Even with the same encoding scheme, there are many different coded character

sets, and the same code point can represent a different character in different coded

character sets. Furthermore, a byte in a character string does not necessarily

represent a character from a single-byte character set (SBCS). Character strings are

also used for mixed and bit data. Mixed data is a mixture of single-byte characters,

double-byte characters and possibly multi-byte characters. On some platforms,

mixed data may be comprised of 2, 3, 4 or more bytes. Bit data is not associated

with any character set. Note that this is not the case with graphic strings; the

database manager assumes that every pair of bytes in every graphic string

represents a character from a double-byte character set (DBCS).

For more details on character conversion, see:

v “Conversion Rules for String Comparison” on page 58 for rules on string

comparisons

v “Conversion Rules for Operations that Combine Strings” on page 130 for rules

on concatenation.

Coded Character Sets and CCSIDs

IBM’s Character Data Representation Architecture (CDRA) deals with the

differences in string representation and encoding. The Coded Character Set Identifier

(CCSID) is a key element of this architecture. A CCSID is a 2-byte (unsigned)

binary number that uniquely identifies an encoding scheme and one or more pairs

of character sets and code pages.

A CCSID is an attribute of strings, just as a length is an attribute of strings. In DB2

Server for VSE & VM databases, different columns can have different CCSID

0 0

Code page: pp1 (ASCII)

Code
point: 2F

Character set ss1
(in code page pp1)

Character set ss1
(in code page pp 2)

Code page: pp2 (EBCDIC)

0 0 # 0@ ÂP 0

1 1

1 1 $ 1A AÀQ J1

2

” s

t

u

% v

. > ! ÂN :ö

/ À* ¢ Á® {
}

O ;

2 2 % 2B BÅ SR K2

3

3 3 ¬C CÁ TS L3

4

4 4 * 4

3

D DÃ UT M4

E ECA

E E

5

5 5 (5E EÄ VU N5

F FDB

F F

Concepts

Chapter 2. Concepts 31

attributes and each string in a column has the CCSID attribute of that column.

Note that not all IBM relational database managers support the specification of

CCSIDs at the column level.

Character conversion involves the use of a CCSID Conversion Selection Table. The

Conversion Selection Table, which is stored in the SYSTEM.SYSSTRINGS catalog

table, contains a list of valid source and target combinations. For each pair of

CCSIDs, the Conversion Selection Table contains information used to perform the

conversion from one coded character set to the other. This information includes an

indication of whether conversion is required. (In some cases, no conversion is

necessary even though the strings involved have different CCSIDs.)

Default CCSID

Every application server and application requester has a default CCSID (or default

CCSIDs in installations that support DBCS data). A list of the CCSIDs supported

by the DB2 Server for VSE & VM database manager can be found in the CCSID

column of the SYSTEM.SYSCCSIDS catalog table.

A default CCSID is the CCSID of the default subtype; for example, the USER special

register could have either an SBCS or mixed subtype, and its default CCSID would

be the subtype’s CCSID specified by the application server. The CCSID of the

following types of strings is determined at the application server:

v String constants

v Special registers with string values (such as USER and CURRENT SERVER)

v The result of the scalar functions CHAR, DIGITS, HEX, and VARGRAPHIC

v String columns defined by CREATE TABLE and ALTER TABLE statements

v The character representation of datetime values.

The default CCSID of strings stored in host variables is determined at the

application requester.

Statements are converted from the default CCSID of the application requester to

the default CCSID of the application server.

In VM: When an application server or application requester is initialized with

PROTOCOL=SQLDS (see SQLSTART and SQLINIT in the DB2 Server for VSE &

VM Database Administration manual), the default CCSID of the application

requester is the same as that of the application server regardless of the values

reported on the application requester when an SQLINIT QUERY is performed.

In VSE: When an application requester accesses a local application server, the

default CCSID of the application requester is the same as that of the application

server, regardless of the values reported on the application requester when a

DSQQ transaction is performed.

Authorization and Privileges

Users can successfully process SQL statements only if they are authorized to

perform the specified function. To create a table, a user must be authorized to

create tables; to alter a table, a user must be authorized to alter the table; and so

forth.

Two forms of permission exist:

v Authority to

– connect to a specific database manager

– allocate resources such as private dbspaces and public dbspaces

Concepts

32 SQL Reference

– administer the database manager. This is called DBA (Database

Administrator) authority.
v Privilege to

– access objects in the database

– create indexes on specific tables.

Authorization, then, refers to who is allowed to access what data, whereas privileges

refer to how an authorized user can use the data. For example, authorized users

can create, modify, and delete tables. These users then have privileges on those

tables and can selectively grant and revoke those privileges to other users.

The person or persons holding DBA authority are charged with the task of

controlling the database manager and are responsible for the safety and integrity of

the data. Those with DBA authority control who will have access to the database

manager and the extent of this access.

Concepts

Chapter 2. Concepts 33

34 SQL Reference

Chapter 3. Language Elements

This chapter defines the basic syntax of SQL and language elements that are

common to many SQL statements.

v “Characters”

v “Tokens” on page 36

v “Identifiers” on page 36

v “Naming Conventions” on page 38

v “Authorization IDs and Authorization-names” on page 41

v “Data Types” on page 42

v “Null Values” on page 51

v “Assignments and Comparisons” on page 53

v “Constants” on page 59

v “Special Registers” on page 62

v “Column Names” on page 63

v “References to Host Variables” on page 68

v “Expressions” on page 71

v “Predicates” on page 79

v “Search Conditions” on page 89.

Characters

The basic symbols of keywords and operators in the SQL language as supported

by this product are single-byte EBCDIC characters. Characters of the language are

classified as letters, digits, or special characters.

A letter is any one of the uppercase characters A through Z, the lowercase letters a

through z, plus the three characters reserved as alphabetic extenders for national

languages (for example, in code page 37, $ is at 5B, # is at 7B, @ is at 7C).

A digit is any of the characters 0 through 9.

A special character is one of the characters listed below:

 space / slash

" quote or double-quote : colon

% percent ; semi-colon

& ampersand < less than

' apostrophe or single quote = equals

(left parenthesis > greater than

) right parenthesis ? question mark

* asterisk _ underscore

+ plus sign ¬ logical NOT *

, comma ^ caret *

− minus sign | vertical bar *

. period ! exclamation point *

* Not supported in IBM-SQL. For portability of programs, consider alternative

characters.

A character set composed of characters not found in the default U.S. English

EBCDIC character set can be created (thus, for instance, expanding the set of

© Copyright IBM Corp. 1988, 2007 35

characters defined as letters). Such a character set could be useful in folding, which

converts lowercase characters of a character string into uppercase. For information

on how to create these characters, refer to the section on defining your own

character set in the DB2 Server for VM System Administration or DB2 Server for VSE

System Administration manual. Also, see “SYSCHARSETS” on page 378.

Tokens

The basic syntactic units of the language are called tokens. A token consists of one

or more characters, excluding the blank character, and excluding characters within

a string constant (for example ’string’) or delimited identifier (for example

″field1″). These terms are defined later.

Tokens are classified as ordinary or delimiter tokens:

v An ordinary token is a numeric constant, an ordinary identifier, a host identifier,

or a keyword.

Examples:

 1 .1 +2 3 :SALARY E SELECT

v A delimiter token is a string constant, a delimited identifier, an operator symbol,

or any of the special characters shown in the syntax diagrams. A question mark

(?) is also a delimiter token when it serves as a parameter marker, as explained

under “PREPARE” on page 313.

Examples:

 ’string’ "field1" = , .

Spaces

A space is a sequence of one or more blank characters. Tokens, other than string

constants and delimited identifiers, must not include a space. Any token can be

followed by a space. Every ordinary token must be followed by a delimiter token

or a space. If the syntax does not allow an ordinary token to be followed by a

delimiter token, that ordinary token must be followed by a space.

Comments

Static SQL statements may include host language comments or SQL comments.

Either type of comment may be specified wherever a space may be specified,

except within a delimiter token or between the keywords EXEC and SQL. SQL

comments are introduced by two consecutive hyphens (--) and terminated by the

end of the line. For more information, see “SQL Comments” on page 143.

Uppercase and Lowercase

Letters used in an ordinary token other than a C variable must be uppercase

letters. Thus, lowercase letters can only be used in string constants, delimited

identifiers, and C language host variables. In all other tokens, the lowercase letters

will be folded to uppercase.

Identifiers

An identifier is a token used to form a name. An identifier in an SQL statement is

either an SQL identifier or a host identifier.

SQL Identifiers

There are two types of SQL identifiers: ordinary identifiers and delimited identifiers.

Characters

36 SQL Reference

v An ordinary identifier is an uppercase letter followed by zero or more characters,

each of which is an uppercase letter, a digit, or the underscore character. The

database manager “folds” lowercase characters in ordinary identifiers to

uppercase (see “Characters” on page 35 for a complete definition of a letter). An

ordinary identifier must not be a reserved word. (See the back cover for a list of

DB2 Server for VSE & VM reserved words.)

Most ordinary identifiers may include DBCS characters if the following support

is true:

– For a VM application requester, the CHARNAME parameter of the SQLINIT

EXEC must identify a mixed character set; at the application server, the

SYSTEM.SYSOPTIONS catalog must have the DBCS option set to YES and the

CHARNAME option must be a mixed CHARNAME

– For VSE, the CHARNAME option in the SYSTEM.SYSOPTIONS catalog table

must be a mixed CHARNAME; at the application server, the

SYSTEM.SYSOPTIONS catalog must have the DBCS option set to YES and the

CHARNAME option must be a mixed CHARNAME

Note: The ordinary identifiers that cannot include DBCS characters are

identified in “Naming Conventions” on page 38.

See “SYSOPTIONS” on page 393 for more information on the DBCS and

CHARNAME options.

v A delimited identifier is a sequence of characters enclosed within quotation marks

("). Any character except a quote (") may be used between the quotation marks;

however, leading blanks and trailing blanks are not allowed, and periods (.)

should be avoided. Lowercase characters are not folded to uppercase, the

identifier need not start with a letter, and the value of a delimited identifier may

be the same as a reserved word.

Examples:

 WKLYSAL WKLY_SAL "WKLY_SAL" "UNION"

 "wkly sal" "wkly_sal" "Dave’s Table"

 Note that "Dave"s Table" is incorrect.

SQL identifiers are also classified according to their maximum length. A long

identifier has a maximum length of 18 bytes. A short identifier has a maximum

length of 8 bytes. The length of either a long or short identifier does not include

quotation marks around delimited identifiers.

Host Identifiers

A host_identifier is a name declared in a host program. The rules for forming a

host_identifier are the rules of the host language. In addition, a host_identifier:

v has a maximum length of 18 characters in Fortran

v in IBM VM systems, host identifiers can contain DBCS characters if the SQLINIT

EXEC is invoked with DBCS set to YES and the CHARNAME parameter

specifies a mixed character set. Values in the SYSTEM.SYSOPTIONS table do not

affect the use of DBCS characters in host identifiers.

v in VSE, can include DBCS characters if, in the SYSTEM.SYSOPTIONS catalog

table at the application server, the CHARNAME option specifies a mixed

character set and the DBCS option is set to YES.

v should not begin with SQL or RDI

v should not begin with SQ for Fortran.

Identifiers

Chapter 3. Language Elements 37

Naming Conventions

The rules for forming a name depend on the type of the object designated by the

name. Though names may include any character, it is not advisable to use special

characters, such as #, @, or $, with the DRDA protocol. Special characters may not

be supported by all code pages (see “Character Conversion” on page 29 for more

information on code pages).

The syntax diagrams use the metavariables in the following list to represent actual

object names and values. The list does not include all metavariables used; there are

also metavariables whose scope is limited to a particular diagram and these are

defined locally.

authorization_name A short identifier that designates a user or group of

users. It must only include SBCS characters. See

“Authorization IDs and Authorization-names” on

page 41.

collection_id A short identifier that provides a logical grouping

for SQL objects. A collection_id used as the qualifier

of the name of a table, view, index, or package is

an authorization_name. Collection_id is the same as

owner_name. It must not include DBCS characters.

column_name A qualified or unqualified name that designates a

column of a table or view. The unqualified form of

a column_name is a long identifier. The qualified

form is a qualifier followed by a period and a long

identifier. The qualifier is a table name, a view

name, a synonym, or a correlation name.

constraint_name A long identifier that designates a referential

constraint on a table.

correlation_name A long identifier that designates a table, a view, or

individual rows of a table or view.

cursor_name In the Positioned UPDATE and Positioned DELETE

statements: a long identifier that designates an SQL

cursor. In all other statements: a long, ordinary

identifier that designates an SQL cursor.

Cursor_names, in these statements, unlike other

ordinary identifiers, can be SQL reserved words

(though the use of reserved words in ordinary

identifiers is not recommended because that usage

is not supported in either IBM-SQL or ISO/ANSI

SQL). It must not include DBCS characters.

cursor_variable A host_identifier used to name or identify a cursor

in an extended dynamic statement. The

host_identifier’s attribute must be VARCHAR and its

length attribute must be 18.

dbspace_name A qualified or unqualified name that designates a

dbspace. The unqualified form of a dbspace_name is

a long identifier. An unqualified dbspace_name in an

SQL statement is implicitly qualified by the

Naming Conventions

38 SQL Reference

authorization ID of that statement. The qualified

form is a collection_id followed by a period and a

long identifier.

descriptor_name A host_identifier, optionally preceded by a colon,

that designates an SQL descriptor area (SQLDA).

Note that a descriptor_name never includes an

indicator variable.

host_variable A sequence of tokens that designates a host

variable. A host_variable includes at least one

host_identifier, as explained in “Host Identifiers” on

page 37.

host_variable_list A list of one or more host variables, host

structures, or both, which takes the following form:

►►

▼

 ,

host_variable

►◄

In this context, a host_variable can also reference a

host structure. See “Host Structures and Indicator

Arrays” on page 69 for more information on host

structures.

index_id An unqualified index_name. It is a long identifier.

index_name A qualified or unqualified name that designates an

index. The unqualified form of an index_name is a

long identifier. An unqualified index_name in an

SQL statement is implicitly qualified by the

authorization ID of that statement. The qualified

form is a collection_id followed by a period and a

long identifier.

owner_name A short identifier that designates an owner of a

database object such as a table, view, index, or

package. Owner_name is the same as collection_id. It

must not include DBCS characters.

package_id An unqualified package_name. It is a short ordinary

identifier. It must not include DBCS characters.

package_name A qualified or unqualified name that designates a

package. The unqualified form of a package_name is

a short ordinary identifier. An unqualified

package_name in an SQL statement is implicitly

qualified by the authorization ID of that statement.

The qualified form is a collection_id followed by a

period and a short ordinary identifier.

package_spec A metavariable used to name or identify packages

within extended dynamic statements.

►►

collection_id

.

host_identifier

.

 ►

Naming Conventions

Chapter 3. Language Elements 39

► package_id

host_identifier
 ►◄

If a host_identifier is used it must be CHAR(8) and,

if the name in the host_identifier is less than 8

characters, it must be padded to the right with

blanks.

 In C, the host variable must have a datatype of C

NUL-terminated and a length of 9.

password A short ordinary identifier that designates a

password. It must not include DBCS characters.

section_variable A host_identifier used to identify a statement that

has been prepared into an extended dynamic

package. The section_variable’s data type must be

INTEGER.

server_name A long identifier that designates an application

server. It must not include DBCS characters.

statement_name A long ordinary identifier that designates a

prepared SQL statement. Statement_names, unlike

other ordinary identifiers, can be SQL reserved

words (though the use of reserved words in

ordinary identifiers is not recommended because

that usage is not supported in either IBM-SQL or

ISO/ANSI SQL). It must not include DBCS

characters.

synonym A long identifier that names a synonym, a table, or

a view. Synonym is a different term to refer to a

table or view that must exist at the current server.

A synonym is named when it is preceded by the

keyword SYNONYM; it names a local table or

view when it is used in an SQL statement. A

qualified name is never interpreted as a synonym.

table_id An unqualified table_name. It is a long identifier.

table_name A qualified or unqualified name that designates a

table. The unqualified form of a table_name is a

long identifier. An unqualified table_name in an

SQL statement is implicitly qualified by the

authorization ID of that statement. The qualified

form is a collection_id followed by a period and a

long identifier.

view_id An unqualified view_name. It is a long identifier.

view_name A qualified or unqualified name that designates a

view. The unqualified form of a view_name is a

long identifier. An unqualified view_name in an

SQL statement is implicitly qualified by the

authorization ID of that statement. The qualified

form is a collection_id followed by a period and a

long identifier.

Naming Conventions

40 SQL Reference

Authorization IDs and Authorization-names

An authorization ID is a character string that is obtained by the database manager

when a connection is established between the database manager and either an

application process or a program preparation process. It designates a set of

privileges. It may also designate a user or a group of users, but this property is not

controlled by the database manager.

Authorization IDs are used by the database manager to provide:

v Authorization checking of SQL statements

v Implicit qualifiers for the names of tables, views, indexes, dbspaces, and

packages.

An authorization ID applies to every SQL statement. The authorization ID that

applies to a static SQL statement is the authorization ID that is used during

program preparation. The authorization ID that applies to a dynamic SQL

statement is the authorization ID that was obtained by the database manager when

a connection was established between the database manager and the process. This

is called the run-time authorization ID.

An authorization-name specified in an SQL statement should not be confused with

the authorization ID of the statement. An authorization-name is an identifier that is

used in GRANT and REVOKE statements to designate a target of the grant or

revoke. It cannot be identical to the authorization ID of the GRANT or REVOKE

statement. Note that the premise of a grant of privileges to X is that X will

subsequently be the authorization ID of statements which require those privileges.

Examples:

Example 1

Assume SMITH is your user ID and the authorization ID that the database

manager obtained when the connection was established with the application

process. You process the following statement interactively:

 GRANT SELECT ON TDEPT TO KEENE

SMITH is the authorization ID of the statement. Thus, the authority to process the

statement is checked against SMITH and SMITH is the implicit qualifier of TDEPT.

KEENE is an authorization-name specified in the statement. KEENE is given the

SELECT privilege on SMITH.TDEPT.

Example 2

Assume SMITH has administrative authority and is the authorization ID of the

following statements:

 DROP TABLE TDEPT

Removes the SMITH.TDEPT table.

 DROP TABLE SMITH.TDEPT

Removes the SMITH.TDEPT table.

 DROP TABLE KEENE.TDEPT

Removes the KEENE.TDEPT table.

Naming Conventions

Chapter 3. Language Elements 41

Data Types

For information about specifying the data types of columns, see “CREATE TABLE”

on page 219.

The smallest unit of data that can be manipulated in SQL is called a value. How

values are interpreted depends on the data type of their source. The sources of

values are:

 Constants

 Columns

 Host variables

 Functions

 Expressions

 Special registers.

Figure 6 illustrates the various data types supported by the database manager.

Result Set Locators

This data type is used to identify host variables that are used by the DB2 Server

for VSE & VM requester to uniquely indicate a query result set returned by a

fixed
length

fixed
length

data types

string datetime numeric

character graphic date timestamp time binary
integer

packed
decimal

floating
point

varying
length

varying
length

small large single double

short shortlong long

Figure 6. Data Types Supported by the Database Manager

Data Types

42 SQL Reference

stored procedure. These host variables are called result set locator variables. They

are only supported in client applications written in Assembler, C, COBOL, and

PL/I. These variables should be included in the SQL DECLARE section and cannot

be array variables.

The syntax used to declare a result set locator variable for each language follows:

Nulls

All data types include the null value. The null value is a special value that is

distinct from all non-null values; it denotes an unknown value. Although all data

types include the null value, columns defined as NOT NULL cannot contain null

values.

RESULT SET LOCATOR

►► ►◄

 Assembler

C

COBOL

PL/I

Assembler:

 variable-name DC

DS
 F

C:

auto

extern

static

_Packed

const

volatile

 ►

►

▼

 ,

SQL TYPE IS RESULT_SET_LOCATOR VARYING

variable-name

;

= init-value

COBOL:

 01 variable-name SQL TYPE IS RESULT-SET-LOCATOR VARYING .

PL/I:

 DECLARE

DCL

▼

 variable-name

,

(

variable-name

)

 ►

► SQL TYPE IS RESULT_SET_LOCATOR VARYING ;

Alignment and/or Scope and/or Storage

Data Types

Chapter 3. Language Elements 43

Character Strings

A character string is a sequence of bytes. The length of the string is the number of

bytes in the sequence. If the length is zero, the value is called the empty string. The

empty string should not be confused with the null value.

Fixed-Length Character Strings

All values of a fixed-length string column have the same length, which is

determined by the length attribute of the column. The length attribute must be

between 1 and 254 inclusive. Therefore, every fixed-length string column is a short

string column.

Varying-Length Character Strings

The values of a varying-length string column can have different lengths. The

maximum length is determined by the length attribute of the column. The length

attribute must be between 1 and 32,767.

A varying-length character string column with a length attribute greater than 254 is

a long string column; otherwise it is a short string column. A derived character string

with a maximum length greater than 254 is a long string; otherwise it is a short

string. Long strings and long string columns cannot be referenced in:

v A function other than SUBSTR or LENGTH. (In SUBSTR and LENGTH, the

argument may be a long string column but it may not be a long string host

variable.)

v A GROUP BY clause

v An ORDER BY clause

v A CREATE INDEX statement

v A PRIMARY KEY, FOREIGN KEY, or UNIQUE clause

v A SELECT DISTINCT statement’s select list

v A subselect of a UNION or UNION ALL

v A subselect of an INSERT

v A predicate, with the exception of the first operand of the LIKE predicate.

v As anything but a host variable on the right side of the SET clause of an

UPDATE statement.

The SUBSTR function can be used to convert portions of long strings to short

strings. A further restriction on long strings is that, although the argument of the

SUBSTR function may be a long string, the result cannot be a long string.

Note also that blocking is turned off for any cursor operation involving a long

string.

Character String Host Variables

Fixed-length string variables can be used in all host languages except REXX.

Varying-length string variables can be used in all host languages except Fortran.

Varying-length string variables in Assembler, C, and COBOL are simulated. In C,

varying-length string variables can also be represented by NUL-terminated strings.

String variables with values longer than 254 bytes are subject to the same

restrictions as long string columns.

Character Subtypes

Each character string is further defined as having one of the following subtypes:

bit data Data that is not associated with a coded character set and is

therefore never converted. The CCSID for bit data is 65535

(X'FFFF').

SBCS data Data in which every character is represented by a single byte. Each

Data Types

44 SQL Reference

SBCS string has an associated CCSID. If necessary, an SBCS string

is converted before it is used in an operation with a character

string that has a different CCSID.

mixed data Data that may contain a mixture of characters from a single-byte

character set (SBCS), a double-byte character set (DBCS) and a

multi-byte character set (MBCS). Each mixed string has an

associated CCSID. If necessary, a mixed string is converted before

an operation with a character string that has a different CCSID. If a

mixed data string contains a DBCS character, it cannot be

converted to SBCS data.

Each database has a default character subtype, either SBCS or mixed. Host

variables assume the default character subtype value. This default subtype can be

overridden on a per package basis. Different rules for truncation, padding, and

concatenation apply to character subtypes.

If mixed data values are used then the following rules apply to ensure proper

formation.

1. Two single-byte EBCDIC codes are given special meanings:

v X'0E', the shift-out character, used to mark the beginning of a sequence of

double-byte codes.

v X'0F', the shift-in character, used to mark the end of a sequence of

double-byte codes.

2. Shift-out and shift-in characters must be paired. The following examples are

incorrect:

 'xy<▌AABB▐' '▌AABB▐<xy'

3. A trailing shift-out character is an error. The following examples are incorrect:

 'xy<' '<'

4. Neither a shift-out nor shift-in character can be nested. It follows that either a

shift-in encountered while processing SBCS or a shift-out encountered while

processing DBCS is incorrect. The following examples are incorrect:

 'xy<▌AABB▐<▌CC▐' '▌GG▐> abc>de'

 '><▌AA▐' '>' '>xyz'

5. The substring of data between a shift-out and a shift-in character is always an

even number of bytes (or zero bytes - see redundant shift character pairs in the

next rule). The following example is incorrect:

 'xy<▌AABBC▐>'

6. Redundant shift-out and shift-in or shift-in and shift-out pairs are allowed in

properly formed mixed data. The following examples are valid:

 '<><▌BB▐>' '<▌AA▐><▌BB▐>'

 'xy<>z' '<>xyz<><>'

Generally, redundant pairs will not affect “character sensitive” facilities. For

example, in the case of the LIKE predicate, specifying:

 WHERE COL1 LIKE '%A<>'

is identical to

 COL1 LIKE '%A'

Note: The basic equal predicate is not “character sensitive.” For example,

specifying:

 WHERE COL1 = 'A<>'

Data Types

Chapter 3. Language Elements 45

would not find a match on the column value

 'A'

In order for the database manager to recognize double-byte characters in a mixed

data string, two conditions must be present:

1. During DB2 Server for VM installation, the DBCS option must be set to YES on

both the application requester and application server. During DB2 Server for

VSE installation, the DBCS option must be set to YES. See “SYSOPTIONS” on

page 393.

2. Within the string, the double-byte characters must be enclosed between paired

shift-out and shift-in characters.

The pairing is detected as the string is read from left to right. The code X'0E' is

interpreted as a shift-out character if X'0F' occurs later; otherwise it is incorrect.

The first X'0F' following the X'0E' is the paired shift-in character.

There must be an even number of bytes between the paired characters, and

each pair of bytes is considered to be a double-byte character. There can be

more than one set of paired shift-out and shift-in characters in the string.

The length of a mixed data string is its total number of bytes, counting two bytes

for each double-byte character and one byte for each shift-out or shift-in character.

Defining Mixed Data for a Distributed Relational Database: The method of

representing DBCS characters within a mixed data string differs between ASCII

and EBCDIC.

v ASCII reserves a set of code points for SBCS characters and another set as the

first half of DBCS characters. Upon encountering the first half of a DBCS

character, the system knows that it is to read the next byte in order to obtain the

complete character.

v EBCDIC makes use of two special code points, X'0E' and X'0F', to introduce and

end a string of DBCS characters respectively.

When defining mixed data, the integer specified in

 CHAR(integer)

indicates the number of bytes to be used for the column. One effect of this is that

more double-byte characters can be stored in a mixed ASCII column than in a

mixed EBCDIC column.

Examples:

 ▌FF▐r▌EE▐d needs at least CHAR(6) in ASCII

 <▌FF▐>r<▌EE▐>d needs at least CHAR(10) in EBCDIC

Because of these differences, mixed data is not transparently portable between DB2

for OS/2 and DB2 Server for VSE & VM. To minimize the effects of these

differences, use varying-length strings in applications that require mixed data and

operate on both ASCII and EBCDIC systems. In the previous example, this would

mean defining the columns as VARCHAR(10).

Extended UNIX Code (EUC) also allows for a form of ASCII mixed data. It is an

encoding scheme supported by UNIX in far eastern countries which allows for

MBCS characters. Each EUC codepage is made up of three character sets, or

planes, denoted by G0, G1, and G2 or four character sets, denoted by G0, G1, G2

and G3. The group in which the data belongs is determined by the range of its first

and second bytes. G0 is comprised of single-byte characters and is the ASCII

Data Types

46 SQL Reference

invariant coded character set. G1 characters are double-byte characters within

another range. G2 and G3 characters are triple-byte characters, distinguished by

the first byte and the range of the last three bytes.

Graphic Strings

A graphic string is any sequence of double-byte characters (and does not include

shift-out or shift-in characters). The length of the string is the number of its

characters. Like character strings, graphic strings can be empty. There is no

subtype associated with graphic strings.

Every graphic string has a CCSID that identifies a double-byte coded character set.

If necessary, a graphic string is converted before it is used in an operation with a

graphic string that has a different CCSID.

Fixed-Length Graphic Strings

All values of a fixed-length graphic column have the same length, given by the

length attribute of the column. The length attribute cannot be greater than 127.

Therefore, every fixed-length graphic string column is a short string column.

Varying-Length Graphic Strings

The values of a varying-length graphic string column can have different lengths.

The maximum length is determined by the length attribute of the column. The

length attribute must be between 1 and 16383.

A varying-length graphic string column with a length attribute greater than 127 is

a long string column; otherwise it is a short string column. A derived graphic string

with a maximum length greater than 127 is a long string; otherwise it is a short

string. Long graphic strings are subject to the same limitations that apply to long

character strings.

Graphic String Host Variables

Graphic variables can be used in COBOL, PL/I, and REXX.

Numbers

All numbers have a sign and a precision. The precision of binary integers and

decimal numbers is the total number of binary or decimal digits excluding the

sign. The precision of floating-point numbers is either single or double, referring to

the number of hexadecimal digits in the fraction. If a column value is zero, the

sign is positive.

Small Integer

A small integer is a System/390* binary integer with a precision of 15 bits. The

range of small integers is -32768 to 32767.

Large Integer

A large integer is a System/390 binary integer with a precision of 31 bits. The range

of large integers is -2,147,483,648 to +2,147,483,647.

Single Precision Floating-Point

A single precision floating-point number is a System/390 short (32 bits) floating-point

number. The range of magnitude is approximately -7.2E75 to -5.4E-79, 0, +5.4E-79

to 7.2E+75.

Data Types

Chapter 3. Language Elements 47

Double Precision Floating-Point

A double precision floating-point number is a System/390 long (64 bits) floating-point

number. The range of magnitude is approximately -7.2E75 to -5.4E-79, 0, +5.4E-79

to 7.2E+75.

Decimal

A decimal value is a packed decimal number with an implicit decimal point. The

position of the decimal point is determined by the precision and the scale of the

number. The scale, which is the number of digits in the fractional part of the

number, can be neither negative nor greater than the precision. The maximum

precision is 31 digits.

All values of a decimal column have the same precision and scale. The range of a

decimal variable or the numbers in a decimal column is -n to +n, where the

absolute value of n is the largest number that can be represented with the

applicable precision and scale. The maximum range is from 1.0E-31 up to but not

including 1.0E+32.

Note: The precision always remains equal to the attribute that defined the

precision. For example, a decimal data type defined with a 6,2 attribute

cannot have a 7,2 value stored in it.

Numeric Host Variables

Binary integer variables can be used in all host languages. Floating-point variables

can be used in all host languages. Decimal variables can be used in all host

languages except C and Fortran.

Datetime Values

Although datetime values can be used in certain arithmetic and string operations

and are compatible with certain strings, they are neither strings nor numbers.

However, strings can represent datetime values; see “String Representations of

Datetime Values” on page 49.

Date

A date is a three-part value (year, month, and day) designating a point in time

under the Gregorian calendar, which is assumed to have been in effect from the

year 1 A.D. The range of the year part is 0001 to 9999. The range of the month part

is 1 to 12. The range of the day part is 1 to x, where x is 28, 29, 30, or 31,

depending on the month.

Note: Historical dates do not always follow the Gregorian calendar. For example,

dates between 1582-10-04 and 1582-10-15 are accepted as valid dates

although they never existed in the Gregorian calendar.

The internal representation of a date is a string of 4 bytes in packed decimal

notation. Each byte consists of two decimal digits. The first 2 bytes represent the

year, the third byte the month, and the last byte the day.

The length of a DATE column as described in the catalog is four bytes,

representing the internal length. The length of a DATE column as described in the

SQLDA is ten bytes, unless your site specified a date installation exit when the

database manager was installed. In the latter case, the string format of a date may

be up to 254 bytes in length.

Data Types

48 SQL Reference

Time

A time is a three-part value (hour, minute, and second) designating a time of day

using a 24-hour clock. The range of the hour part is 0 to 24, while the range of the

minute and second parts is 0 to 59. If the hour is 24, the minute and second

specifications are both zero.

The internal representation of a time is a string of 3 bytes. Each byte consists of

two digits in packed decimal notation. The first byte represents the hour, the

second byte the minute, and the last byte the second.

The length of a TIME column as described in the catalog is 3 bytes, representing

the internal length. The length of a TIME column as described in the SQLDA is 8

bytes, unless your site specified a time installation exit when the database manager

was installed. In the latter case, the string format may be up to 254 bytes in length.

Timestamp

A timestamp is a seven-part value (year, month, day, hour, minute, second, and

microsecond) that designates a date and time as defined previously, except that the

time includes a specification of microseconds. The range of the microsecond part is

000000 to 999999. If the hour is 24, the microsecond value is 000000.

The internal representation of a timestamp is a string of 10 bytes in packed

decimal notation. Each byte consists of two decimal digits. The first 4 bytes

represent the date, the next 3 bytes the time, and the last 3 bytes the microseconds.

The length of a TIMESTAMP column as described in the catalog is 10 bytes,

representing the internal length. The length of a TIMESTAMP column as described

in the SQLDA is 26 bytes.

String Representations of Datetime Values

Values whose data types are DATE, TIME, or TIMESTAMP are represented in an

internal form that is transparent to the user of SQL. Dates, times, and timestamps,

however, can also be represented by character strings. These representations

directly concern the user of SQL because there are no constants or variables whose

data types are DATE, TIME, or TIMESTAMP. Thus, to be retrieved, a datetime

value must be assigned to a character string variable. The format of the resulting

string will depend on how you defined datetime formats using the DATE and

TIME preprocessor options, or how your site chose to represent datetime values at

the time the database manager was installed.

When a valid string representation of a datetime value is used in an operation with

an internal datetime value, the string representation is converted to the internal

form of the date, time, or timestamp before the operation is performed. If the

CCSID of the string is not the same as the default CCSID, the string is first

converted to the coded character set identified by the default CCSID before the

string is converted to the internal form of the datetime value.

The following sections define the valid string representations of datetime values.

Date Strings: A string representation of a date is a character string that starts

with a digit and has a length of at least 8 characters. An input string representation

of a date or time value with LOCAL specified can be any short character string.

Trailing blanks can be included. Leading zeros can be omitted from the month and

day portions.

Data Types

Chapter 3. Language Elements 49

Valid string formats for dates are listed in Table 1. Each format is identified by

name and includes an associated abbreviation (for use by the CHAR function) and

an example of its use. For a site-defined date string format, the format and length

must have been specified when the database manager was installed.

 Table 1. Formats for String Representations of Dates

Format Name Abbreviation Date Format Example

International

Organization for

Standardization

ISO yyyy-mm-dd 1987-10-12

IBM USA standard USA mm/dd/yyyy 10/12/1987

IBM European

standard

EUR dd.mm.yyyy 12.10.1987

Japanese industrial

standard Christian

era

JIS yyyy-mm-dd 1987-10-12

Site-defined (see

“Defining Your Own

Datetime Format” in

the DB2 Server for

VM System

Administration or DB2

Server for VSE System

Administration

manual)

LOCAL Any site-defined

form

—

Time Strings: A string representation of a time is a character string that starts

with a digit and has a length of at least 4 characters. An input string representation

of a date or time value with LOCAL specified can be any short character string.

Trailing blanks can be included; a leading zero can be omitted from the hour part

of the time and seconds can be omitted entirely. If you choose to omit seconds, an

implicit specification of 0 seconds is assumed. Thus 13.30 is equivalent to 13.30.00.

Valid string formats for times are listed in Table 2. Each format is identified by

name and includes an associated abbreviation (for use by the CHAR function) and

an example of its use. In the case of a site-defined time string format, the format

and length must have been specified when the database manager was installed.

 Table 2. Formats for String Representations of Times

Format Name Abbreviation Time Format Example

International

Organization for

Standardization

ISO hh.mm.ss 13.30.05

IBM USA standard USA hh.mm AM or PM

1 1.30 PM

IBM European

standard

EUR hh.mm.ss 13.30.05

Japanese industrial

standard Christian

era

JIS hh.mm.ss 13.30.05

Data Types

50 SQL Reference

Table 2. Formats for String Representations of Times (continued)

Format Name Abbreviation Time Format Example

Site-defined (see

“Defining Your Own

Datetime Format” in

the DB2 Server for

VM System

Administration or DB2

Server for VSE System

Administration

manual)

LOCAL Any site-defined

form

—

Notes:

1 A single space must separate the time and the AM or PM, as shown in the

example.

In the USA time format, the hour must not be greater than 12 and cannot be 0

except for the special case of 00:00 AM. Using the ISO format of the 24-hour clock,

the correspondence between the USA format and the 24-hour clock is as follows:

 Table 3. USA Format

USA Format 24 Hour Clock

12:01 AM through 12:59 AM 00.01.00 through 00.59.00

01:00 AM through 11:59 AM 01.00.00 through 11.59.00

12:00 PM (noon) through 11:59 PM 12.00.00 through 23.59.00

12:00 AM (midnight) 24.00.00

00:00 AM (midnight) 00.00.00

Timestamp Strings: A string representation of a timestamp is a character string

that starts with a digit and has a length of at least 16 characters. The complete

string representation of a timestamp has the form yyyy-xx-dd-hh.mm.ss.zzzzzz.

Trailing blanks can be included. Leading zeros can be omitted from the month,

day, and hour part of the timestamp, and trailing zeros can be truncated or

omitted entirely from microseconds. If you choose to omit any digit of the

microseconds portion, an implicit specification of 0 is assumed. Thus,

1990-3-2-8.30.00.10 is equivalent to 1990-03-02-08.30.00.100000.

Null Values

Null is a special value used to represent "not applicable" or "undefined". For

example:

 In the PROJECT sample table, the value for MAJPROJ in the PROJNO 'AD3100'

row is null. In this case a value is not applicable because AD3100 is itself a

major project.

 In the DEPARTMENT sample table, the value for MGRNO in the DEPTNO

'D01' row is null. In this case the value is undefined.

Null is not the same as blank, an empty string, or zero. Columns can be defined to

allow or disallow null values. In an application, a null value can be represented in

a host variable by assigning a negative value to that host variable’s associated

indicator variable.

Data Types

Chapter 3. Language Elements 51

Assigning Null Values Within the Database:

v Either a host variable with a negative indicator variable or the NULL keyword

can be used in an INSERT or UPDATE statement to enter a null value into the

database.

v Nullable columns omitted from an INSERT statement are also set to NULL.

v In referential constraints with a DELETE rule of SET NULL, when a row is

deleted from a parent table, the nullable foreign key columns of the

corresponding rows in the dependent table will be set to null values.

Returning Null Values to the Application from the Database:

v Null values returned to the application are the result of: null values in the

database, host variables with negative indicator variables or arithmetic errors.

Null Values within Expressions and Predicates

v If there is a null value as an operand of any arithmetic expression or string

expression, then the value of that expression is the null value.

v If the first argument of any scalar function except VALUE has a null value, then

the value of that function is null.

v The COUNT column function includes rows with a column having the null

value but the other column functions ignore NULLs.

v The value of a column function is null if all of the column values are null.

v Search conditions containing null values are evaluated by applying three-valued

logic (see Table 5 on page 89) to the truth values of the component predicates. If

the truth-value of a search condition is unknown for a row, the row does not

satisfy the search condition.

v If a basic predicate contains an expression which has a null value then the

truth-value of the predicate is unknown.

v The effect of null values on quantified predicates, BETWEEN predicates, and IN

predicates can be determined by applying the rules for: the definition of the

predicates in terms of the basic predicates, null values in basic predicates, and

three-valued logic.

v The truth-value of the LIKE predicate is unknown if the value of the column, the

pattern or the escape character is null.

v The truth-value of the EXISTS predicate is true even if only null values are

returned by the subselect.

v The NULL predicate is true if the column value is null.

Equality and Ordering of Null Values:

v Two null values are not considered to be equal when compared. For instance,

the truth-value of an '=' predicate is unknown if both operands have a null

value.

v In contrast to the previous point, ORDER BY, GROUP BY and DISTINCT treat

all null values as if they were equal. Furthermore, the ORDER BY clause handles

a null value as if it was larger than any other value.

Checking for a Null Value:

v The correct way to check for null values is with the NULL predicate. For

example:

 WHERE MGRNO IS NOT NULL

Null Values

52 SQL Reference

On the other hand, the predicate:

 WHERE NOT MGRNO = :HV:IND

will never return any rows if IND has a negative value. In order to search for a

null value among other values, the null value must be specified in a separate

predicate. For example:

 WHERE NOT MGRNO < 1000 OR MGRNO IS NULL

Rows for which MGRNO is null will not satisfy the predicate:

 WHERE NOT MGRNO < 1000

Assignments and Comparisons

Assignment operations are performed during the execution of FETCH, INSERT,

PUT, SELECT INTO, and UPDATE statements. Comparison operations are

performed during the execution of statements that include predicates and other

language elements such as MAX, MIN, DISTINCT, GROUP BY, and ORDER BY.

The basic rule for both operations is that the data type of the operands involved

must be compatible. The compatibility rule also applies to UNION, concatenation,

and the VALUE scalar function. The compatibility matrix is as follows:

 Operand Binary

Integer

Decimal

Number

Floating

Point

Character

String

Graphic

String

 Date Time Time-

stamp

Binary

Integer

Yes Yes Yes No No No No No

Decimal

Number

Yes Yes Yes No No No No No

Floating

Point

Yes Yes Yes No No No No No

Character

String

No No No Yes No * * *

Graphic

String

No No No No Yes No No No

Date No No No * No Yes No No

Time No No No * No No Yes No

Time-

stamp

No No No * No No No Yes

Note: * The compatibility of datetime values and character strings is limited to assignment and comparison:

v Datetime values can be assigned to character string columns and to character string variables as explained in

“Datetime Assignments” on page 57.

v A valid string representation of a date can be assigned to a date column or compared with a date.

v A valid string representation of a time can be assigned to a time column or compared with a time.

v A valid string representation of a timestamp can be assigned to a timestamp column or compared with a

timestamp.

A basic rule for assignment operations is that a null value cannot be assigned to a

column that cannot contain null values, nor to a host variable that does not have

an associated indicator variable. (See “References to Host Variables” on page 68 for

a discussion of indicator variables.)

Null Values

Chapter 3. Language Elements 53

Numeric Assignments

The basic rule for numeric assignments is that the whole part of a decimal or

integer number cannot be truncated. If necessary, the fractional part of a decimal

number is truncated.

Decimal or Integer to Floating-Point

Floating-point numbers are approximations of real numbers. Hence, when a

decimal or integer number is assigned to a floating-point column or variable, the

result may not be identical to the original number.

Because of the added length of double precision floating-point numbers (64 bits

rather than the 32 bits of a single precision value), the approximation is more

accurate if the receiving column or variable is defined as double precision rather

than single precision. Accuracy is lost if the precision of the target is less than that

of the assigned value, as would be the case if a number greater than 16,777,216

were assigned to a single precision floating-point column.

Floating-Point or Decimal to Integer

When a floating-point or decimal number is assigned to an integer column or

variable, the fractional part of the number is lost.

Decimal to Decimal

When a decimal number is assigned to a decimal column or variable, the number

is converted, if necessary, to the precision and the scale of the target. The necessary

number of leading zeros is appended or eliminated, and, in the fractional part of

the number, the necessary number of trailing zeros is appended, or the necessary

number of trailing digits is eliminated.

Integer to Decimal

When an integer is assigned to a decimal column or variable, the number is

converted first to a temporary decimal number and then, if necessary, to the

precision and scale of the target. The precision and scale of the temporary decimal

number is 5,0 for a small integer or 11,0 for a large integer.

Floating-Point to Floating-Point

When a single precision floating-point number is assigned to a double precision

floating-point column or variable, the single precision data is padded with eight

hex zeros.

When a double precision floating-point number is assigned to a single precision

floating-point column or variable, the double precision data is converted and

rounded up on the seventh hex digit.

Floating-Point to Decimal

When a single precision floating-point number is converted to decimal, the number

is first converted to a temporary decimal number of precision 6 by rounding on the

seventh decimal digit. Nine zeros are then appended to the number to bring the

precision to 15. Because of the rounding involved, a number less than 0.5*10-6 is

reduced to 0.

When a double precision floating-point number is converted to decimal, the

number is first converted to a temporary decimal number of precision 15. Then, if

necessary, the number is truncated to the precision and scale of the target. In this

conversion, the number is rounded (using floating-point arithmetic) to a precision

of 15 decimal digits. As a result, a number less than 0.5*10-15 is reduced to 0. The

Null Values

54 SQL Reference

scale is given the largest possible value that allows the whole part of the number

to be represented without loss of significance.

Example: This example shows the effect of rounding a double precision

floating-point number by using a temporary decimal number:

 The floating-point number .123456789098765E-05

 in decimal notation is: .00000123456789098765

 +5

 Rounding adds 5 ---------------------

 in the 16th position .00000123456789148765

 and truncates the result to: .000001234567891

To COBOL Integers

Assignments to COBOL integer variables use the full size of the integer. Thus, the

value placed in the COBOL data item may be out of the range of values.

In COBOL, for example, if COL1 contains a value of 12345, the COBOL statements:

 01 A PIC S9999 BINARY.

 EXEC SQL SELECT COL1

 INTO :A

 FROM TABLEX

 END-EXEC.

result in the value 12345 being placed in A, even though A has been defined with

only 4 digits.

Notice that the following COBOL statement:

 MOVE 12345 TO A.

results in 2345 being placed in A.

String Assignments

The general rule for string assignments is that the length of a string assigned to a

column must not be greater than the length attribute of the column. (Trailing

blanks are included in the length of the string.)

Following are exceptions to this rule:

v If the source of the assignment is a column value, the string is truncated, if

necessary, to the length attribute of the target column.

v If the source of the assignment is a fixed-length host variable and the target is a

short varying-length column, all the trailing blanks of the source string, if any,

are always truncated before assignment. Hence, if the host variable’s length

attribute is greater than the target column’s length attribute and all the excess

positions in the original source string contained blanks, the assignment is

completed without an error being returned.

When a string is assigned to a fixed-length string column or host variable and the

length of the string is less than the length attribute of the target, the string is

padded on the right with the necessary number of blanks (SBCS blanks for

character strings of all subtypes, DBCS blanks for graphic strings).

For example, the mixed value 'ab <▌CC▐>' padded to a length of 8 becomes

'ab<▌CC▐> '.

Bit data is padded with blanks, not with X'00''s.

Null Values

Chapter 3. Language Elements 55

When a string of length n is assigned to a varying-length string variable with a

maximum length greater than n, the characters after the nth character of the

variable are undefined and might or might not be set to blanks.

When a string is assigned to a variable and the string is longer than the length

attribute of the variable, the string is truncated on the right by the necessary

number of characters. When this occurs, the value 'W' is assigned to the

SQLWARN1 field of the SQLCA. Furthermore, if an indicator variable is provided,

it is set to the original length of the string.

The truncation rules for character strings are based on the subtype of the target.

The rules are as follows:

v If the target is bit or SBCS, blind truncation occurs.

v If the target is mixed, there is compensation for any incomplete DBCS string. For

example, with a target

 CHAR(8) MIXED DATA:

the character string

 'abc <▌DDEE▐>fg'

becomes

 'abc <▌DD▐> '

If truncation is to occur on mixed character data but the data does not follow the

proper rules regarding mixed data, then the data will be truncated as SBCS and

SQLWARN1 will be set to 'Z'.

For a description of the SQLCA, see “SQL Communication Area (SQLCA)” on page

353.

The above rules apply when both the source and the target are strings. When a

datetime data type is involved, see “Datetime Assignments” on page 57.

Conversion Rules for String Assignments

A string assigned to a column or host variable is first converted, if necessary, to the

coded character set of the target. Character conversion is necessary only if all of

the following are true:

v The CCSIDs are different.

v Neither CCSID is 65535 (X'FFFF').

v The string is neither null nor empty.

v The CCSID Conversion Selection Table indicates that conversion is necessary.

The database manager returns an error for any of the following conditions;

v The CCSID Conversion Selection Table is used but does not contain any

information about the pair of CCSIDs.

v A character of the string cannot be converted, and the operation is assignment to

a column or assignment to a host variable without an associated indicator

variable.

The database manager returns a warning for any of the following conditions:

v A character of the string is converted to the substitution character.

v A character of the string cannot be converted, and the operation is assignment to

a host variable with an associated indicator variable. For example, a DBCS

Null Values

56 SQL Reference

character cannot be converted and placed in a host variable with an SBCS

CCSID. In this example, the string is not assigned to the host variable and the

associated indicator variable is set to -2.

Datetime Assignments

A value assigned to a DATE column must be a date or a valid string representation

of a date. A date can only be assigned to a DATE column, a character string

column, or a character string variable. A value assigned to a TIME column must be

a time or a valid string representation of a time. A time can only be assigned to a

TIME column, a character string column, or a character string variable. A value

assigned to a TIMESTAMP column must be a timestamp or a valid string

representation of a timestamp. A timestamp can only be assigned to a TIMESTAMP

column, a character string column, or a character string variable.

When a datetime value is assigned to a character string variable or column, it is

converted to a string representation. Leading zeros are not omitted from any part

of the date, time, or timestamp. The required length of the target varies depending

on the format of the string representation. If the length of the target is greater than

required, it is padded on the right with blanks. If the length of the target is less

than required, the result depends on the type of datetime value involved, and on

the type of target.

If the target is a column, truncation is not allowed. The length must be at least 10

for a date, 8 for a time, and 26 for a timestamp.

When the target is a host variable, the following rules for DATE, TIME, and

TIMESTAMP apply:

DATE

 The length of the variable must not be less than 10.

TIME

 If the USA format is used, the length of the variable must not be less than 8.

This format does not include seconds.

 If the ISO, EUR, or JIS format is used, the length of the variable must not be

less than 5. If the length is 5, 6, or 7, the seconds part of the time is omitted

from the result, and SQLWARN1 is set to 'W'. In this case, the seconds part of

the time is assigned to the indicator variable if one is provided, and, if the

length is 6 or 7, blank padding occurs so that the value is a valid string

representation of a time.

TIMESTAMP

 The length of the variable must not be less than 19. If the length is between 19

and 25, the timestamp is truncated like a string, causing the omission of one or

more digits of the microsecond part. If the length is 20, the trailing decimal

point is replaced by a blank so that the value is a valid string representation of

a timestamp.

For further information on string lengths for datetime values, see “Datetime

Values” on page 48.

Numeric Comparisons

Numbers are compared algebraically; that is, with regard to sign. For example, −2

is less than +1.

Null Values

Chapter 3. Language Elements 57

If one number is an integer and the other number is decimal, the comparison is

made with a temporary copy of the integer, which has been converted to decimal.

When decimal numbers with different scales are compared, the comparison is

made with a temporary copy of one of the numbers that has been extended with

trailing zeros so that its fractional part has the same number of digits as the other

number.

If one number is floating-point and the other number is integer or decimal, the

comparison is made with a temporary copy of the integer or decimal number,

which has been converted to double precision floating-point. Similarly, if one

number is single precision floating-point and one is double precision floating-point,

the comparison is made with a temporary copy of the single precision

floating-point number that has been converted to double precision.

Two floating-point numbers are equal only if the bit configurations of their

normalized forms are identical.

String Comparisons

Two strings are compared by comparing the corresponding bytes of each string. If

the strings do not have the same length, the comparison is made with a temporary

copy of the shorter string that has been padded on the right with blanks so that it

has the same length as the other string. All character subtypes use an SBCS blank

character for padding. However, when a comparison other than simple equals or

not equals occurs between two varying-length string values, the pad character is

X'00'.

Note: The only place where this will make a difference is when a value being

compared contains non-printable characters, that is, characters whose code

point is less than X'40'. Examples of places where X'00' is used are: the

greater than predicate, sorting in response to an ORDER BY clause, and

retrieving ordered data using an index.

Two strings are equal if they are both empty or if all corresponding bytes are

equal. An empty string is equal to a blank string. If two strings are not equal, their

relationship is determined by the comparison of the first pair of unequal bytes

from the left end of the strings. This comparison is made according to the EBCDIC

collating sequence of the CCSID under which they are compared. If a field

procedure is defined on a column, the comparison will be made according to the

EBCDIC collating sequence of the value encoded by the field procedure, if the

encoded value is a string.

Conversion Rules for String Comparison

When two strings are compared, one of the strings is first converted, if necessary,

to the coded character set of the other string. Character conversion is necessary

only if all of the following are true:

v The CCSIDs of the two strings are different.

v Neither CCSID is 65535 (X'FFFF').

v If either string selected for conversion is null or empty.

v The CCSID Conversion Selection Table indicates that conversion is necessary.

If one string has an SBCS CCSID and the other has a mixed CCSID, the SBCS

string is converted. Otherwise, the string selected for conversion depends on the

type of each operand. The following table shows which operand is selected for

conversion, given the operand types.

Null Values

58 SQL Reference

Table 4. Selecting the Operand for Character Conversion

First

Operand

Second Operand

Column

Value

Derived

Value Constant

Special

Register Host Variable

Column

Value second second second second second

Derived

Value first second second second second

Constant first first second second second

Special

Register first first second second second

Host Variable first first first first second

A host variable containing data in a foreign encoding scheme is always converted

to the native form of data before it is used in any operation. The above rules are

based on the assumption that this conversion has already occurred.

An error occurs if a character of the string cannot be converted or the CCSID

Conversion Selection Table is used but does not contain any information about the

pair of CCSIDs. A warning occurs if a character of the string is converted to the

substitution character.

Datetime Comparisons

A DATE, TIME, or TIMESTAMP value can be compared either with another value

of the same data type or with a string representation of that data type. All

comparisons are chronological, which means the farther a point in time is from

January 1, 0001, the greater the value of that point in time.

Comparisons involving TIME values and string representations of time values

always include seconds. If the string representation omits seconds, zero seconds

are implied. Therefore the following predicate is true:

 TIME(’03.42.00’) = ’03.42’

Note: TIME(’00.00.00’) does not compare as an equal to TIME(’24.00.00’).

Comparisons involving TIMESTAMP values are chronological without regard to

representations that might be considered equivalent. Thus, the following predicate

is true:

 TIMESTAMP(’1990-02-23-00.00.00’)>’1990-02-22-24.00.00’

In comparisons of DATE and TIME, two strings which are not identical are

considered to be equal if they represent the same date (that is, '1991-1-1' =

'1991-01-01').

Constants

A constant (also called a literal) specifies a value. Constants are classified as string

constants or numeric constants. Numeric constants are further classified as integer,

floating-point, or decimal. String constants are further classified as character or

graphic.

Null Values

Chapter 3. Language Elements 59

All constants have the attribute NOT NULL. A negative sign in a numeric constant

with a value of zero is ignored.

Integer Constants

An integer constant specifies an integer as a signed or unsigned number with a

maximum of 10 digits that does not include a decimal point. The data type of an

integer constant is large integer, and its value must be within the range of a large

integer.

Examples: 64 -15 +100 32767 720176

In syntax diagrams the term integer is used for an integer constant that must not

include a sign.

Floating-Point Constants

A floating-point constant specifies a floating-point number as two numbers separated

by an E. The first number can include a sign and a decimal point; the second

number can include a sign but not a decimal point. The value of the constant is the

product of the first number and the power of 10 specified by the second number; it

must be within the range of floating-point numbers. The number of characters in

the constant must not exceed 30. Excluding leading zeros, the number of digits in

the first number must not exceed 17 and the number of digits in the second must

not exceed 2. The data type of a floating-point constant is double precision

floating-point.

Examples: 15E1 2.E5 2.2E-1 +5.E+2

Decimal Constants

A decimal constant specifies a decimal number as a signed or unsigned number that

includes a decimal point and at most 31 digits. The precision is the total number of

digits (including leading and trailing zeros). When precision is greater than 31, and

a precision of 31 is possible by eliminating leading zeros, then those zeros are

eliminated.

Examples: 25.5 1000. -15. +37589.3333333333

Character String Constants

A character string constant specifies a varying-length character string. There are two

forms of character string constant:

v A sequence of characters that starts and ends with a string delimiter ('). This

form of string constant specifies the character string contained between the

string delimiters. The length of the character string must not be greater than 254.

Two consecutive string delimiters represent one string delimiter within the

character string. Two consecutive apostrophes not contained within a string

represent an empty string.

Examples: ’Peggy’ ’14.12.1985’ ’32’ ’DON’’T CHANGE’ ’’

v An X followed by a sequence of characters that starts and ends with a string

delimiter is called a hexadecimal constant. Note that hexadecimal constants are

just another way of representing character data. The characters between the

string delimiters must be an even number of hexadecimal digits. The number of

hexadecimal digits must not exceed 254. A hexadecimal digit is a digit or any of

the letters A through F (uppercase or lowercase). Under the conventions of

Constants

60 SQL Reference

hexadecimal notation, each pair of hexadecimal digits represents a character.

This form of string constant lets you specify characters that do not have a

keyboard representation.

Hexadecimal constants, as character string constants, are converted from the

CCSID of the application requester to the CCSID of the application server as

part of the CCSID conversion of statements. One example of where this may

give unexpected results is the following situation. Consider the case of an

application requester which uses CCSID=851 (an ASCII CCSID) and a DB2

Server for VSE & VM application server which uses CCSID=500 (an EBCDIC

CCSID). The table T1 has a character column defined as FOR BIT DATA. The

statement

 INSERT INTO T1 VALUES (X’41’)

will insert the hexadecimal value X'C1' into the column, because CCSID

conversion of the statement happens before the statement is interpreted (note

that for CCSID=851, 'A' = X'41' and for CCSID=500, 'A' = X'C1'). To have no

conversion occur and have the value X'41' inserted into the column, use a host

variable instead of the constant.

Examples: X’FFFF’ X’535164A1’ X’C5C2C3C4C9C3’ X’4153434949’

The subtype is classified as mixed data if it includes a DBCS substring (that is, it

contains properly matched shift control characters) and the application server and

application requester both support DBCS characters (that is, the CHARNAME is a

mixed CHARNAME). In all other cases, a character string constant is classified as

SBCS data. For example, X’0E42C142C2’ would be interpreted as SBCS data

because it contains improperly matched shift control characters.

Examples of mixed character string constants:

 'abc<▌XXYYZZ▐>' '<▌XXYYZZ▐>' 'a<▌XXYYZZ▐>b' '<▌XX▐>ab<▌YYZZ▐>cd'

Character constants of the bit subtype cannot be defined.

The CCSID assigned to a constant is the appropriate default CCSID of the

application server at bind time. Since a character string constant is always part of a

statement, it is converted with the statement from the default CCSID of the

application requester to the default CCSID of the application server. For example,

an ASCII constant might get converted to an EBCDIC representation. A special case

is the above example where a hexadecimal constant which is first converted to its

character representation before it is converted from the default CCSID of the

application requester to the default CCSID of the application server.

Graphic String Constants

A graphic string constant is a short, varying-length string that specifies a graphic

string. There are three forms of graphic string constant, two for static SQL

statements in PL/I and one for all other contexts. In the following description of

these three forms, the string of characters (▌XXYYZZ▐) is the actual string, consisting

of 0 to 127 double-byte characters. The character G (N may be used as a synonym

for G) and the string delimiter (here represented by the apostrophe [']) are required

in the positions indicated.

The forms of graphic string constants are:

v In PL/I source programs: <▌’XXYYZZ’GG▐> and '<▌XXYYZZ▐>'G.

Constants

Chapter 3. Language Elements 61

In the first form, ▌’▐, is the double-byte string delimiter X'427D' and, in this case,

▌GG▐ is the double-byte character X'42C7'. To use that character within the

double-byte character sequence, it must be doubled.

See “PREPARE” on page 313 for more information on the use of DBCS constants

in prepared statements in PL/I Version 2 programs.

v In all other contexts: G'<▌XXYYZZ▐>'

Here, ' is the EBCDIC string delimiter, X'7D'. With this form of graphic string

constant, the empty string can be denoted by G’<>’. G must be the single-byte

character G.

The CCSID assigned to a constant is the appropriate default CCSID of the

application server at bind time, assuming that the application server and

application requester support DBCS characters (that is, the CHARNAME is a

mixed CHARNAME). Since a graphic string constant is always part of a statement,

it is converted with the statement from the default CCSID of the application

requester to the default CCSID of the application server.

Graphic string constants are only supported in COBOL, PL/I, and REXX.

Special Registers

A special register is a storage area that is defined for an application process by the

database manager and stores information that can be referenced in SQL statements.

A reference to a special register is a reference to a value provided by the

application server. If the value is a string, its CCSID is a default CCSID (based on

the default subtype value, CHARSUB) of the application server.

USER

The USER special register specifies a CHAR(8) value that identifies the run-time

authorization ID. The authorization ID is padded on the right with blanks, if

necessary, so that the value of USER is always a fixed-length character string of

length 8.

Example

Select all notes from the IN_TRAY sample table that the user placed there.

 SELECT * FROM IN_TRAY

 WHERE SOURCE = USER

CURRENT DATE

The CURRENT DATE special register specifies a date that is based on a reading of

the time-of-day clock when the SQL statement is processed at the application

server. The data type is DATE. If this special register is used more than once

within a single SQL statement, or used with CURRENT TIME or CURRENT

TIMESTAMP within a single statement, all values are based on a single clock

reading.

Example

Using the PROJECT table, set the project end date (PRENDATE) of the MA2111

project (PROJNO) to the current date.

 UPDATE PROJECT

 SET PRENDATE = CURRENT DATE

 WHERE PROJNO = ’MA2111’

Constants

62 SQL Reference

CURRENT SERVER

The CURRENT SERVER special register specifies a CHAR(18) value that identifies

the current application server. The server-name ID is padded on the right with

blanks, if necessary, so that the value of CURRENT SERVER is always a

fixed-length character string of length 18.

The CURRENT SERVER can be changed by the CONNECT statement.

Example

Set the host variable APPL_SERVE (varchar(18)) to the name of the application

server to which the application is connected.

 SELECT CURRENT SERVER

 INTO :APPL_SERVE

 FROM ONE_ROW_TABLE

CURRENT TIME

The CURRENT TIME special register specifies a time that is based on a reading of

the time-of-day clock when the SQL statement is processed at the application

server. The data type is TIME. If this special register is used more than once within

a single SQL statement, or used with CURRENT DATE or CURRENT TIMESTAMP

within a single statement, all values are based on a single clock reading.

CURRENT TIMESTAMP

The CURRENT TIMESTAMP special register specifies a timestamp that is based on

a reading of the time-of-day clock when the SQL statement is processed at the

application server. The data type is TIMESTAMP. If this special register is used

more than once within a single SQL statement, or used with CURRENT DATE or

CURRENT TIME within a single statement, all values are based on a single clock

reading.

CURRENT TIMEZONE

The CURRENT TIMEZONE special register specifies the difference between UTC

(Universal Coordinated Time, formerly known as GMT) and local time at the

application server. The data type is DECIMAL(6,0). The difference is represented

by a time duration (a decimal number in which the first two digits are the number

of hours, the next two digits are the number of minutes, and the last two digits are

the number of seconds). The number of hours is between -24 and 24 exclusive.

Subtracting CURRENT TIMEZONE from a local time converts that local time to

UTC.

Example

Using the IN_TRAY table select all the rows from the table and adjust the value

from the RECEIVED column to account for timezone.

 SELECT RECEIVED - CURRENT TIMEZONE, SOURCE,

 SUBJECT, NOTE_TEXT FROM IN_TRAY

Column Names

The meaning of a column name depends on its context. A column name can be

used to:

v Declare the name of a column, as in a CREATE TABLE statement.

v Identify a column, as in a CREATE INDEX statement.

v Specify values of the column, as in the following contexts:

Special Registers

Chapter 3. Language Elements 63

– In a column function, a column name specifies all values of the column in the

group or intermediate result table to which the function is applied. (Groups

and intermediate result tables are explained under Chapter 5, “Queries,” on

page 121.) For example, MAX(SALARY) applies the function MAX to all

values of the column SALARY in a group.

– In a GROUP BY or ORDER BY clause, a column name specifies all values in

the intermediate result table to which the clause is applied. For example,

ORDER BY DEPT orders an intermediate result table by the values of the

column DEPT.

– In an expression, a search condition, or a scalar function, a column name specifies

a value for each row or group to which the construct is applied. For example,

when the search condition CODE = 20 is applied to some row, the value

specified by the column name CODE is the value of the column CODE in that

row.

Qualified Column Names

A qualifier for a column name can be a table name, a view name, a synonym, or a

correlation name.

Whether a column name can be qualified depends on its context:

v In some forms of the COMMENT ON and LABEL ON statements, the column

name must be qualified.

v Where the column name specifies values of the column, a column name can be

qualified at the user’s option.

v In all other contexts, a column name must not be qualified.

Where a qualifier is optional it can serve two purposes. See “Column Name

Qualifiers to Avoid Ambiguity” on page 66 and “Column Name Qualifiers in

Correlated References” on page 67 for details.

Correlation Names

A correlation name can be defined in the FROM clause of a query and in the first

clause of an UPDATE or DELETE statement. For example, the clause shown below

establishes Z as a correlation name for X.MYTABLE.

 FROM X.MYTABLE Z

A correlation name is associated with a table or view only within the context in

which it is defined. Hence, the same correlation name can be defined for different

purposes in different statements, or in different clauses of the same statement.

As a qualifier, a correlation name can be used to avoid ambiguity or to establish a

correlated reference. It can also be used merely as a shorter name for a table or

view. In the example, Z might have been used merely to avoid having to enter

X.MYTABLE more than once.

If a correlation name is specified for a table name or view name, any qualified

reference to a column of that instance of the table or view must use the correlation

name, rather than the table name or view name. For example, the reference to

EMPLOYEE.PROJECT in the following example is incorrect, because a correlation

name has been specified for EMPLOYEE:

 ┌───────────┐

 FROM EMPLOYEE E │ INCORRECT │

 WHERE EMPLOYEE.PROJECT=’ABC’ └───────────┘

Column Names

64 SQL Reference

The qualified reference to PROJECT should instead use the correlation name, 'E', as

shown below:

 FROM EMPLOYEE E

 WHERE E.PROJECT='ABC'

Names specified in a FROM clause are either exposed or non-exposed. A correlation

name is always an exposed name. All exposed names in the FROM clause must be

unique. A table name, view name, or synonym is said to be exposed in that FROM

clause if a correlation name is not specified. For example, in the following FROM

clause, a correlation name is specified for EMPLOYEE but not for DEPARTMENT,

so DEPARTMENT is an exposed name, and EMPLOYEE is not:

 FROM EMPLOYEE E, DEPARTMENT

The names are compared after qualifying any unqualified table or view names.

The first two FROM clauses shown below are correct, because each one contains no

more than one reference to EMPLOYEE that is exposed:

1. Given the FROM clause:

 FROM EMPLOYEE E1, EMPLOYEE

a qualified reference such as EMPLOYEE.PROJECT denotes a column of the

second instance of EMPLOYEE in the FROM clause. A qualified reference to the

first instance of EMPLOYEE must use the correlation name “E1” (E1.PROJECT).

2. Given the FROM clause:

 FROM EMPLOYEE, EMPLOYEE E2

a qualified reference such as EMPLOYEE.PROJECT denotes a column of the

first instance of EMPLOYEE in the FROM clause. A qualified reference to the

second instance of EMPLOYEE must use the correlation name “E2”

(E2.PROJECT).

3. Given the FROM clause:

 ┌────────────┐

 FROM EMPLOYEE, EMPLOYEE │ INCORRECT │

 └────────────┘

a reference to either the first or second instance of EMPLOYEE will be incorrect

as neither is uniquely identified.

4. Given the following statement:

 SELECT * ┌───────────┐

 FROM EMPLOYEE E1, EMPLOYEE E2 │ INCORRECT │

 WHERE EMPLOYEE.PROJECT = ’ABC’ └───────────┘

the qualified reference EMPLOYEE.PROJECT is incorrect, because both

instances of EMPLOYEE in the FROM clause have correlation names. Instead,

references to PROJECT must be qualified with either correlation name

(E1.PROJECT or E2.PROJECT).

5. Given the FROM clause:

 FROM EMPLOYEE, X.EMPLOYEE

a reference to a column in the second instance of EMPLOYEE must use

X.EMPLOYEE (X.EMPLOYEE.PROJECT). This FROM clause is only valid if the

authorization ID of the statement is not X.

A correlation name specified in a FROM clause must not be the same as:

v Any other correlation name in that FROM clause

Column Names

Chapter 3. Language Elements 65

v Any unqualified table name, view name, or synonym exposed in the FROM

clause

v The second SQL identifier of any qualified table name, view name, or synonym

in the FROM clause.

For example, the following FROM clauses are incorrect:

 FROM EMPLOYEE E, EMPLOYEE E ┌───────────┐

 FROM EMPLOYEE DEPARTMENT, DEPARTMENT │ INCORRECT │

 FROM X.T1, EMPLOYEE T1 └───────────┘

The following FROM clause is technically correct, though potentially confusing:

 FROM EMPLOYEE DEPARTMENT, DEPARTMENT EMPLOYEE

Column Name Qualifiers to Avoid Ambiguity

In the context of a function, a GROUP BY clause, ORDER BY clause, an expression,

or a search condition, a column name refers to values of a column in some table or

view. The tables and views that might contain the column are called the object

tables of the context. Two or more object tables might contain columns with the

same name. One reason for qualifying a column name is to designate the table

from which the column comes.

Table Designators: A qualifier that designates a specific object table is called a

table designator. The clause that identifies the object tables also establishes the table

designators for them. For example, the object tables of an expression in a SELECT

clause are named in the FROM clause that follows it, as in this statement:

 SELECT CORZ.COLA, OWNY.MYTABLE.COLA

 FROM OWNX.MYTABLE CORZ, OWNY.MYTABLE

This example illustrates how to establish table designators in the FROM clause:

v A name that follows a table or view name is both a correlation name and a table

designator. Thus, CORZ is a table designator. CORZ qualifies the first column

name in the select list.

v An exposed name is its own table designator. Thus, OWNY.MYTABLE is a table

designator. OWNY.MYTABLE qualifies the second column name in the select

list.

Avoiding undefined or ambiguous references: When a column name refers to

values of a column, exactly one object table must include a column with that name.

The following situations are considered errors:

v No object table contains a column with the specified name. The reference is

undefined.

v The column name is qualified by a table designator, but the table designated

does not include a column with the specified name. Again the reference is

undefined.

v The name is unqualified and more than one object table includes a column with

that name. The reference is ambiguous.

Avoid ambiguous references by qualifying a column name with a uniquely defined

table designator. If the column is contained in several object tables with different

names, the table names can be used as designators.

When qualifying a column with the exposed table name form of a table designator,

either the qualified or unqualified form of the exposed table name may be used.

However, the qualifier used and the table used must be the same after fully

qualifying the table name or view name and the table designator.

Column Names

66 SQL Reference

1. If the authorization ID of the statement is CORPDATA:

 SELECT CORPDATA.EMPLOYEE.WORKDEPT

 FROM EMPLOYEE

is a valid statement.

2. If the authorization ID of the statement is REGION:

 SELECT CORPDATA.EMPLOYEE.WORKDEPT ┌───────────┐

 FROM EMPLOYEE │ INCORRECT │

 └───────────┘

is incorrect, because EMPLOYEE represents the table REGION.EMPLOYEE, but

the qualifier for WORKDEPT represents a different table,

CORPDATA.EMPLOYEE.

Column Name Qualifiers in Correlated References

A subselect is a form of a query that can be used as a component of various SQL

statements. Refer to Chapter 5, “Queries,” on page 121 for more information on

subselects. A subselect used within a search condition of any statement is called a

subquery.

A subquery can include search conditions of its own, and these search conditions

can, in turn, include subqueries. Thus an SQL statement can contain a hierarchy of

subqueries. Those elements of the hierarchy that contain subqueries are said to be

at a higher level than the subqueries they contain.

Every element of the hierarchy has a clause that establishes one or more table

designators. This is the FROM clause, except in the highest level of an UPDATE or

DELETE statement. A search condition of a subquery can reference not only

columns of the tables identified by the FROM clause of its own element of the

hierarchy, but also columns of tables identified at any level along the path from its

own element to the highest level of the hierarchy. A reference to a column of a

table identified at a higher level is called a correlated reference.

A correlated reference to column C of table T can be of the form C, T.C, or Q.C, if

Q is a correlation name defined for T. However, a correlated reference in the form

of an unqualified column name is not good practice. The following explanation is

based on the assumption that a correlated reference is always in the form of a

qualified column name and that the qualifier is a correlation name.

A qualified column name, Q.C, is a correlated reference only if these three

conditions are met:

v Q.C is used in a search condition of a subquery.

v Q does not designate a table used in the FROM clause of that subquery.

v Q does designate a table used at some higher level.

Q.C refers to column C of the table or view at the level where Q is used as the

table designator of that table or view. Because the same table or view can be

identified at many levels, unique correlation names are recommended as table

designators. If Q designates a table at more than one level, Q.C refers to the lowest

level that contains the subquery that includes Q.C.

In the following statement, Q is used as a correlation name for T1 and T2, but Q.C

refers to the correlation name associated with T2, because it is the lowest level that

contains the subquery that includes Q.C.

 SELECT *

 FROM T1 Q

 WHERE A < ALL (SELECT B

 FROM T2 Q

Column Names

Chapter 3. Language Elements 67

WHERE B < ANY (SELECT D

 FROM T3

 WHERE D = Q.C))

References to Host Variables

A host variable is an Assembler language storage area, C variable, COBOL data

item, Fortran variable, PL/I variable, or a REXX variable that is referenced in an

SQL statement. Host variables are defined by statements of the host language (that

is, they are given a name and a data type), as described in the DB2 Server for VSE

& VM Application Programming manual. Note that host variables cannot be

referenced in dynamic SQL statements; instead, parameter markers must be used

(see “Parameter markers” on page 314).

All host variables used in an SQL statement must be declared in an SQL declare

section in all host languages other than REXX, where variables do not have to be

declared. No variables may be declared outside an SQL declare section with names

identical to variables declared inside an SQL declare section. An SQL declare

section begins with BEGIN DECLARE SECTION and ends with END DECLARE

SECTION.

The Metavariable host-variable

The metavariable host_variable, as used in the syntax diagrams, is a reference to a

host language variable (the main variable) and an optional associated host language

variable (the indicator variable). A host_variable in the INTO clause of a FETCH or a

SELECT INTO statement is an output variable to which a value is assigned by the

database manager. In all other contexts a host_variable is an input variable which

provides a value to the database manager.

The general form of a host_variable reference is:

►► :host_identifier

INDICATOR

:host_identifier

 ►◄

The first host_identifier designates the main variable. Depending on the operation, it

either furnishes a value to the database manager, or is furnished one. An input

variable furnishes a value; an output variable is furnished one. For example, an input

variable can specify a comparand in a WHERE clause or a replacement for a

column value in an UPDATE statement. An output variable can receive a column

value when a row is fetched from a table. A given host_variable can serve as both

an input and an output variable in the same program.

The second host_identifier designates the associated indicator variable and it must be

defined as a half-word integer (corresponding to the data type SMALLINT). The

indicator variable does one of the following:

v Identifies the null value. When the indicator variable is negative, this signifies

that its associated main variable has the null value.

v Records the original length of a truncated string.

v Indicates that a character could not be converted.

v Indicates that there is an error in the arithmetic expression.

v Records the seconds portion of a time if the time is truncated on assignment to

its associated main variable.

Column Names

68 SQL Reference

Indicator variables, including indicator variables in predicates, can be used to

identify null values on input to the database manager (UPDATE, INSERT, or PUT

statements or predicates of SELECT, DELETE and UPDATE), or on output from the

database manager (INTO clause of SELECT and FETCH statements).

If the second host_identifier is omitted, the host_variable does not have an indicator

variable. The value specified by the host_variable reference :V1 is always the value

of V1, and the null value cannot be assigned to the variable. It is always good

practice to include an output indicator variable. Thus, this form should not be used

in an INTO clause unless the corresponding result column cannot contain null

values. If this form is used and the column contains nulls, the database manager

will return an error at run-time.

An SQL statement that references host variables must be within the scope of the

declaration of those host variables. For host variables referenced in the SELECT

statement of a cursor, that rule applies to the OPEN statement rather than to the

DECLARE CURSOR statement.

For more information on host variables, see the DB2 Server for VSE & VM

Application Programming manual.

Example:

Using the PROJECT table:

v Set the host variable PNAME (varchar(26)) to the project name (PROJNAME)

v Set the host variable STAFF (dec(5,2)) to the mean staffing level (PRSTAFF)

v Set the host variable MAJPROJ (char(6)) to the major project (MAJPROJ) for

project (PROJNO) ‘IF1000’.

Columns PRSTAFF and MAJPROJ may contain null values, so provide indicator

variables STAFF_IND (smallint) and MAJPROJ_IND (smallint).

 SELECT PROJNAME, PRSTAFF, MAJPROJ

 INTO :PNAME, :STAFF :STAFF_IND, :MAJPROJ :MAJPROJ_IND

 FROM PROJECT

 WHERE PROJNO = ’IF1000’

Host Structures and Indicator Arrays

Host structures and indicator arrays can be defined in C, COBOL, and PL/I. Host

structures are defined by statements of the host language, as explained in the DB2

Server for VSE & VM Application Programming manual. As used here, the term "host

structure" does not include an SQLCA or SQLDA.

The form of a host structure reference is identical to the form of a host_variable

reference. The reference :S1:I1 is a host structure reference if S1 names a host

structure. I1 must be defined as either an indicator variable or a one-dimensional

array of half-word integer variables . S1 is the main structure and I1 is its indicator

variable or indicator array.

In the discussion that follows, let S1 be a structure defined with variables V1, V2,

and V3. Let I1 be a one-dimensional array of three half-word integers. Each Vn is a

subfield of S1 as follows:

 S1

 V1

 V2

 V3

 I1(3)

Column Names

Chapter 3. Language Elements 69

A host structure can be used in any context where a host_variable_list can be

referenced. A host structure reference is equivalent to a reference to each of the

subfields contained within the structure in the order which they are defined in the

host language structure declaration. The nth variable of the indicator array is the

indicator variable for the nth subfield of the main structure.

Host structures and variable arrays used as indicator arrays must also be declared

in an SQL declare section, the same as host_variables.

In PL/I, for example, the statement:

 EXEC SQL FETCH CURSOR1 INTO :S1;

is equivalent to:

 EXEC SQL FETCH CURSOR1 INTO :V1, :V2, :V3;

If the main structure has m more subfields than the indicator array, the last m

subfields of the main structure do not have associated indicator variables. If the

main structure has m less subfields than the indicator array, the last m variables of

the indicator array are ignored. If an indicator variable (rather than an indicator

array) is specified, only the first subfield of the main structure has an indicator

variable. If an indicator array is not specified for a host structure, no subfield of

the main structure has an indicator variable.

The following restrictions apply to the use of a host structure in place of a list of

host_variables. (For language specific information and examples, please refer to the

DB2 Server for VSE & VM Application Programming manual.)

v A host structure may be any two-level structure or substructure defined within

an SQL declare section. For multi-level structures, all of the deepest two-level

structures may be used as host structures.

v Elements of indicator arrays cannot be referenced individually in SQL statements

as host variables or indicator variables. However, an indicator array may be

referenced following a host variable or host structure subfield. In this case, the

first element of the indicator array contains the indicator information.

For example, the statement:

 EXEC SQL FETCH CURSOR2 INTO :V2:I1;

will result in the first element of I1 receiving the indicator value. The second

and third elements of I1 are not affected by this statement.

v If different structures are declared with identical subfield or sub-structure names,

any reference to these names must be qualified to the extent needed to ensure

that the reference is not ambiguous. In an SQL statement, the format of a

qualified name is S1.V1.

v The use of qualified field or subfield names is not supported by the package_spec

metavariable. Host structure subfields can be used in the package*us.spec as host

variables, but must be unqualified. (In this case, it is not possible to use a

subfield that has been declared with the same name as a subfield in a different

host structure.)

A subfield of a structure, including structures which are not valid as host

structures, may also be used as a host variable. The only requirement is that the

structure must be declared within an SQL declare section.

See “Examples” on page 169 for additional coding examples.

Column Names

70 SQL Reference

Expressions

An expression specifies a value.

Without Operators

If no operators are used, the result of the expression is the specified value.

Examples:

 SALARY :SALARY ’SALARY’ MAX(SALARY)

►►

▼

 | operator |

(1)

function

+

(expression)

−

constant

column_name

host_variable

special_register

labeled_duration

►◄

operator:

 (2)

CONCAT

/

*

+

−

labeled_duration:

 function

(expression)

constant

column_name

host_variable

 YEAR

YEARS

MONTH

MONTHS

DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECOND

SECONDS

MICROSECOND

MICROSECONDS

Notes:

1 Not all combinations of operands and operations are supported.

2 Either || or !! can be used as an alternative to CONCAT in all DB2 Server for VSE &

VM-supported code pages. However, !! is not supported in IBM-SQL.

Expressions

Chapter 3. Language Elements 71

With the Concatenation Operator

The concatenation operator (CONCAT) links two string operands to form a string

expression.

The operands of concatenation must be compatible strings. Note that datetime data

types (including the CURRENT DATE, CURRENT TIME, and CURRENT

TIMESTAMP special registers) can be used as operands in a character string

expression because the datetime data types are compatible with the character data

type. If both operands are character strings, the sum of their length attributes must

not exceed 254; if both are graphic strings, the sum of their length attributes must

not exceed 127.

If either operand can be null, the result can be null, and if either is null, the result

is the null value. Otherwise, the result consists of the first operand string followed

by the second.

With mixed data this result will not have redundant shift codes “at the seam”.

Thus, if the first operand is a string ending with a “shift-in” character, while the

second operand is a character string beginning with a “shift-out” character, these

two bytes are eliminated from the result. Note that no check is made for

improperly formed mixed data when doing concatenation.

The length of the result is the sum of the lengths of the operands, unless

redundant shift codes are eliminated, in which case the length is two less than the

lengths of the operands.

If both operands are fixed-length character strings (neither of which is mixed data)

the result is a fixed-length character string whose length attribute is the sum of the

length of the operands. Otherwise, the result is a varying-length character string

whose length attribute is the sum of the length attributes of the operands.

If both operands are fixed-length graphic strings, the result is a fixed-length

graphic string whose length attribute is the sum of the length of the operands.

Otherwise, the result is a varying-length graphic string whose length attribute is

the sum of the length attributes of the operands.

The CCSID of the result is determined by the CCSID of the operands as explained

under “Conversion Rules for Operations that Combine Strings” on page 130.

If an operand is a string from a column with a field procedure, the operation

applies to the decoded form of the value; the result does not inherit the field

procedure.

Example 1: FIRSTNME CONCAT ’ ’ CONCAT LASTNAME

Example 2: Given:

 COLA defined as VARCHAR(5) with value ’AA’

 COLB defined as VARCHAR(5) with value ’BB ’

 COLC defined as CHAR(5) with value ’CC ’

 COLD defined as CHAR(5) with value ’DDDDD’

The value of COLA CONCAT COLB CONCAT COLC CONCAT COLD is:

 ’AABB CC DDDDD’

Expressions

72 SQL Reference

With Arithmetic Operators

Arithmetic operators (+, -, *, /) link two numeric or datetime operands to form a

numeric expression.

If arithmetic operators are used, the result of the expression is a number derived

from the application of the operators to the values of the operands. If any operand

can be null, or the expression is used in an outer SELECT list, the result can be

null. If any operand has the null value, the result of the expression is the null

value. Arithmetic operators must not be applied to character strings. For example,

USER+2 is incorrect.

The prefix operator + (unary plus) does not change its operand. The prefix operator

- (unary minus) reverses the sign of a nonzero operand. If the data type of A is

small integer, the data type of -A is large integer. If the data type of A is small float,

then the data type of -A is large float. The first character of the token following a

prefix operator must not be a plus or minus sign.

The infix operators +, -, *, and / specify addition, subtraction, multiplication, and

division, respectively. Either an error or a warning results if the second operand of

division has a value of zero.

Two-Integer Operands

If both operands of an arithmetic operator are integers, the operation is performed

in binary and the result is a large integer. Any remainder of division is lost. The

result of an integer arithmetic operation (including unary minus) must be within

the range of large integers.

Integer and Decimal Operands

If one operand is an integer and the other is decimal, the operation is performed in

decimal using a temporary copy of the integer that has been converted to a

decimal number with zero scale and precision as defined in the following table:

 Operand Precision of Decimal Copy

Column or variable:large integer 11

Column or variable:small integer 5

Constant Same as the number of digits (including

leading zeros) in the constant

Two-Decimal Operands

If both operands are decimal, the operation is performed in decimal. The result of

any decimal arithmetic operation is a decimal number with a precision and scale

that are dependent on the operation and the precision and scale of the operands. If

the operation is addition or subtraction and the operands do not have the same

scale, the operation is performed with a temporary copy of one of the operands

that has been extended with trailing zeros so that its fractional part has the same

number of digits as the other operand.

Unless specified otherwise, all functions and operations that accept decimal

numbers allow a precision of up to 31 digits. The result of a decimal operation

cannot have a precision greater than 31.

Expressions

Chapter 3. Language Elements 73

Decimal Arithmetic in SQL

The following formulas define the precision and scale of the result of decimal

operations in SQL. The symbols p and s denote the precision and scale of the first

operand and the symbols p' and s' denote the precision and scale of the second

operand.

The precision of the result of addition and subtraction is min(31, max(p-s,

p'-s')+max(s, s')+1) and the scale is max(s, s').

The precision of the result of multiplication is min(31, p+p') and the scale is min(31,

s+s').

The precision of the result of division is 31 and the scale is 31-p+s-s'. If the scale is

negative, a negative value is returned in the SQLCODE field of the SQLCA.

Precision and scale can be influenced by decimal constants with leading or trailing

zeros.

Floating-Point Operands

If either operand of an arithmetic operator is floating-point, the operation is

performed in floating-point. If necessary, the operands are first converted to double

precision floating-point numbers. Thus, if any element of an expression is a

floating-point number, the result of the expression is a double precision

floating-point number.

An operation involving a floating-point number and an integer is performed with

a temporary copy of the integer that has been converted to double precision

floating-point. An operation involving a floating-point number and a decimal

number is performed with a temporary copy of the decimal number that has been

converted to double precision floating-point. The result of a floating-point

operation must be within the range of floating-point numbers.

Datetime Operands

Datetime values can be incremented, decremented, and subtracted. These

operations may involve decimal numbers called durations. Following is a definition

of durations and a specification of the rules for datetime arithmetic.

Durations

A duration is a number representing an interval of time. There are four types of

durations:

Labeled Durations (see diagram on page 71)

A labeled duration represents a specific unit of time as expressed by a

number (which can be the result of an expression) followed by one of the

seven duration keywords: YEARS, MONTHS, DAYS, HOURS, MINUTES,

SECONDS, or MICROSECONDS (the singular form of these keywords is

also acceptable: YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, and

MICROSECOND.). The number specified is converted as if it were

assigned to a DECIMAL(15,0) number. A labeled duration can only be used

as an operand of an arithmetic operator in which the other operand is a

value of data type DATE, TIME, or TIMESTAMP. Thus, the expression

START_DATE + 2 MONTHS + 14 DAYS is valid, while the expression

START_DATE + (2 MONTHS + 14 DAYS) is not. In both of these

expressions, the labeled durations are 2 MONTHS and 14 DAYS.

Date Duration

A date duration represents a number of years, months, and days, expressed

Expressions

74 SQL Reference

as a DECIMAL(8,0) number. To be properly interpreted, the number must

have the format yyyyxxdd, where yyyy represents the number of years, xx

the number of months, and dd the number of days. The result of

subtracting one DATE value from another, as in the expression END_DATE

- START_DATE, is a date duration.

Time Duration

A time duration represents a number of hours, minutes, and seconds,

expressed as a DECIMAL(6,0) number. To be properly interpreted, the

number must have the format hhmmss where hh represents the number of

hours, mm the number of minutes, and ss the number of seconds. The

result of subtracting one TIME value from another is a time duration.

Timestamp Duration

A timestamp duration represents a number of years, months, days, hours,

minutes, seconds, and microseconds, expressed as a DECIMAL (20,6)

number. To be properly interpreted, the number must have the format

yyyyxxddhhmmsszzzzzz, where yyyy, xx, dd, hh, mm, and ss represent,

respectively, the number of years, months, days, hours, minutes, and

seconds, and zzzzzz represents the number of microseconds. The result of

subtracting one timestamp value from another is a timestamp duration.

Datetime Arithmetic in SQL

The only arithmetic operations that can be performed on datetime values are

addition and subtraction. If a datetime value is the operand of addition, the other

operand must be a duration. The specific rules governing the use of the addition

operator with datetime values follow.

v If one operand is a date, the other operand must be a date duration or labeled

duration of years, months, or days.

v If one operand is a time, the other operand must be a time duration or a labeled

duration of hours, minutes, or seconds.

v If one operand is a timestamp, the other operand must be a duration. Any type

of duration is valid.

v Neither operand of the addition operator can be a parameter marker.

The rules for the use of the subtraction operator on datetime values are not the

same as those for addition because a datetime value cannot be subtracted from a

duration, and because the operation of subtracting two datetime values is not the

same as the operation of subtracting a duration from a datetime value. The specific

rules governing the use of the subtraction operator with datetime values follow.

v If the first operand is a date, the second operand must be a date, a date

duration, a string representation of a date, or a labeled duration of years,

months, or days.

v If the second operand is a date, the first operand must be a date, or a string

representation of a date.

v If the first operand is a time, the second operand must be a time, a time

duration, a string representation of a time, or a labeled duration of hours,

minutes, or seconds.

v If the second operand is a time, the first operand must be a time, or string

representation of a time.

v If the first operand is a timestamp, the second operand must be a timestamp, a

string representation of a timestamp, or a duration.

v If the second operand is a timestamp, the first operand must be a timestamp or

a string representation of a timestamp.

Expressions

Chapter 3. Language Elements 75

v Neither operand of the subtraction operator can be a parameter marker.

Date Arithmetic

Dates can be subtracted, incremented, or decremented.

Subtracting Dates: The result of subtracting one date (DATE2) from another

(DATE1) is a date duration that specifies the number of years, months, and days

between the two dates. The data type of the result is DECIMAL(8,0). If DATE1 is

greater than or equal to DATE2, DATE2 is subtracted from DATE1. If DATE1 is

less than DATE2, however, DATE1 is subtracted from DATE2, and the sign of the

result is made negative. The following procedural description clarifies the steps

involved in the operation RESULT = DATE1 - DATE2.

 If DAY(DATE2) <= DAY(DATE1)

 then DAY(RESULT) = DAY(DATE1) - DAY(DATE2).

 If DAY(DATE2) > DAY(DATE1)

 then DAY(RESULT) = N + DAY(DATE1) - DAY(DATE2)

 where N = the last day of MONTH(DATE2).

 MONTH(DATE2) is then incremented by 1.

 If MONTH(DATE2) <= MONTH(DATE1)

 then MONTH(RESULT) = MONTH(DATE1) - MONTH(DATE2).

 If MONTH(DATE2) > MONTH(DATE1)

 then MONTH(RESULT) = 12 + MONTH(DATE1) - MONTH(DATE2).

 YEAR(DATE2) is then incremented by 1.

 YEAR(RESULT) = YEAR(DATE1) - YEAR(DATE2).

For example, the result of DATE('3/15/2000') - '12/31/1999' is 215 (or, a duration

of 0 years, 2 months, and 15 days).

Incrementing and Decrementing Dates: The result of adding a duration to a

date, or of subtracting a duration from a date, is itself a date. The result must fall

between the dates January 1, 0001 and December 31, 9999 inclusive. If a duration

of years is added or subtracted, only the year portion of the date is affected. The

month is unchanged, as is the day unless the result would be February 29 of a

non-leap-year. Here the day portion of the result is set to 28, and the SQLWARN7

condition is set, indicating that an end-of-month adjustment was made to correct

an incorrect date.

Similarly, if a duration of months is added or subtracted, only months and, if

necessary, years are affected. (For the purposes of the operation, a month is a

calendar page. Adding n months to a date, for example, is like turning n pages of

a calendar starting with the page on which the date appears.) The day portion of

the date is unchanged unless the result would be incorrect (September 31, for

example). Here, the day is set to the last day of the month, and the SQLWARN7

field in SQLCA is set indicating the adjustment.

Adding or subtracting a duration of days will, of course, affect the day portion of

the date, and potentially the month and year.

Date durations, whether positive or negative, may also be added to and subtracted

from dates. As with labeled durations, the result is a valid date and SQLWARN7 is

set whenever an end-of-month adjustment is necessary.

When a positive date duration is added to a date, or a negative date duration is

subtracted from a date, the date is incremented by the specified number of years,

months, and days, in that order. Thus, DATE1 + X, where X is a positive

Expressions

76 SQL Reference

DECIMAL(8,0) number, is equivalent to the expression DATE1 + YEAR(X) YEARS

+ MONTH(X) MONTHS + DAY(X) DAYS.

When a positive date duration is subtracted from a date, or a negative date

duration is added to a date, the date is decremented by the specified number of

days, months, and years in that order. Thus, DATE1 − X, where X is a positive

DECIMAL(8,0) number, is equivalent to the expression DATE1 − DAY(X) DAYS −

MONTH(X) MONTHS − YEAR(X) YEARS.

When adding durations to dates, adding one month to a given date gives the same

date one month later unless that date does not exist in the later month. In that case,

the date is set to that of the last day of the later month. For example, January 28

plus one month gives February 28; and one month added to January 29, 30, or 31

results in either February 28 or, for a leap year, February 29.

Note: If one or more months is added to a given date and then the same number

of months is subtracted from the result, the final date is not necessarily the

same as the original date.

Time Arithmetic

Times can be subtracted, incremented, or decremented.

Subtracting Times: The result of subtracting one time (TIME2) from another

(TIME1) is a time duration that specifies the number of hours, minutes, and

seconds between the two times. The data type of the result is DECIMAL(6,0). If

TIME1 is greater than or equal to TIME2, TIME2 is subtracted from TIME1. If

TIME1 is less than TIME2, however, TIME1 is subtracted from TIME2, and the sign

of the result is made negative. The following procedural description clarifies the

steps involved in the operation RESULT = TIME1 - TIME2.

 If SECOND(TIME2) <= SECOND(TIME1)

 then SECOND(RESULT) = SECOND(TIME1) - SECOND(TIME2).

 If SECOND(TIME2) > SECOND(TIME1)

 then SECOND(RESULT) = 60 + SECOND(TIME1) - SECOND(TIME2).

 MINUTE(TIME2) is then incremented by 1.

 If MINUTE(TIME2) <= MINUTE(TIME1)

 then MINUTE(RESULT) = MINUTE(TIME1) - MINUTE(TIME2).

 If MINUTE(TIME2) > MINUTE(TIME1)

 then MINUTE(RESULT) = 60 + MINUTE(TIME1) - MINUTE(TIME2).

 HOUR(TIME2) is then incremented by 1.

 HOUR(RESULT) = HOUR(TIME1) - HOUR(TIME2).

For example, the result of TIME('11:02:26') - '00:32:56' is 102930 (a duration of 10

hours, 29 minutes, and 30 seconds).

Incrementing and Decrementing Times: The result of adding a duration to a

time, or of subtracting a duration from a time, is itself a time. Any overflow or

underflow of hours is discarded, thereby ensuring that the result is always a time.

If a duration of hours is added or subtracted, only the hours portion of the time is

affected. The minutes and seconds are unchanged.

Similarly, if a duration of minutes is added or subtracted, only minutes and, if

necessary, hours are affected. The seconds portion of the time is unchanged.

Expressions

Chapter 3. Language Elements 77

Adding or subtracting a duration of seconds will, of course, affect the seconds

portion of the time, and potentially the minutes and hours.

Time durations, whether positive or negative, also can be added to and subtracted

from times. The result is a time that has been incremented or decremented by the

specified number of hours, minutes, and seconds, in that order.

For example, TIME1 + X, where X is a DECIMAL(6,0) number, is equivalent to the

expression

 TIME1 + HOUR(X) HOURS + MINUTE(X) MINUTES + SECONDS(X) SECONDS

Timestamp Arithmetic

Timestamps can be subtracted, incremented, or decremented.

Subtracting Timestamps: The result of subtracting one timestamp (TS2) from

another (TS1) is a timestamp duration that specifies the number of years, months,

days, hours, minutes, seconds, and microseconds between the two timestamps. The

data type of the result is DECIMAL(20,6). If TS1 is greater than or equal to TS2,

TS2 is subtracted from TS1. If TS1 is less than TS2, however, TS1 is subtracted from

TS2 and the sign of the result is made negative. The following procedural

description clarifies the steps involved in the operation RESULT = TS1 - TS2.

If MICROSECOND(TS2) <= MICROSECOND(TS1) then

 MICROSECOND(RESULT) = MICROSECOND(TS1) -

 MICROSECOND(TS2).

If MICROSECOND(TS2) > MICROSECOND(TS1)

 then MICROSECOND(RESULT) = 1000000 +

 MICROSECOND(TS1) - MICROSECOND(TS2),

 and SECOND(TS2) is incremented by 1.

The seconds and minutes part of the timestamps are subtracted as specified in the

rules for subtracting times.

If HOUR(TS2) <= HOUR(TS1)

 then HOUR(RESULT) = HOUR(TS1) - HOUR(TS2).

If HOUR(TS2) > HOUR(TS1)

 then HOUR(RESULT) = 24 + HOUR(TS1) - HOUR(TS2)

 and DAY(TS2) is incremented by 1.

The date part of the timestamps is subtracted as specified in the rules for

subtracting dates.

Incrementing and Decrementing Timestamps: The result of adding a duration to

a timestamp, or of subtracting a duration from a timestamp, is itself a timestamp.

Date and time arithmetic is performed as previously defined, except that an

overflow or underflow of hours is carried into the date part of the result, which

must be within the range of valid dates. Microseconds overflow into seconds.

Precedence of Operations

Expressions within parentheses are evaluated first. When the order of evaluation is

not specified by parentheses, prefix operators are applied before multiplication and

division, and multiplication and division are applied before addition and

subtraction. Operators at the same precedence level are applied from left to right.

Example:

Expressions

78 SQL Reference

1.10 * (SALARY + BONUS) + SALARY / :VAR3

2 1 4 3

Concatenation is performed before datetime arithmetic.

Predicates

A predicate specifies a condition that is true, false, or unknown about a given row

or group.

The following rules apply to all types of predicates:

v All values specified in the same predicate must be compatible.

v The length attribute of a host variable referenced in a predicate must not be

greater than 254 bytes.

v With the exception of the LIKE predicate, a long string column must not be

referenced.

v A view column referenced in a predicate must not be derived from a column

function.

v If a basic predicate or a LIKE predicate contains an operand with a null value,

then it is evaluated as unknown. Other predicates containing negative indicator

values are evaluated according to:

– The rules for defining the predicate in terms of the basic predicates

– The rules for nulls in basic predicates

– The truth tables for logic with three values.

v The value of an indicator variable provided at runtime for a parameter marker

in a predicate must not be negative.

Basic Predicate

 A basic predicate compares two values.

A subselect in a basic predicate must specify a single result column and must not

return more than one value.

►► expression =

(1)

<>

<

>

<=

>=

 expression

(subselect)
 ►◄

Notes:

1 Either ¬= or ^= may be used as an alternative to the <> operand in all code pages

supported by the DB2 Server for VSE & VM database manager. However, these

alternatives are not supported in IBM-SQL. Portable applications should use <>.

Expressions

Chapter 3. Language Elements 79

If the value of either operand is null or the subselect returns no value, the result of

the predicate is unknown. Otherwise the result is either true or false.

For values x and y:

Predicate Is True If and Only If...

x = y x is equal to y

x<> y x is not equal to y

x < y x is less than y

x > y x is greater than y

x>= y x is greater than or equal to y

x<= y x is less than or equal to y

Examples:

 EMPNO = ’528671’

 PRTSTAFF <> :VAR1

 SALARY + BONUS + COMM < 20000

SALARY > (SELECT AVG(SALARY) FROM EMPLOYEE)

Quantified Predicate

 A quantified predicate compares a value with a set of values.

The subselect must specify a single result column and can return any number of

values, including null values.

A quantified predicate has the same form as a basic predicate except that the

second operand is a subselect preceded by SOME, ANY, or ALL.

When ALL is specified, the result of the predicate is:

v true if any of the following are true:

– the subselect returns no values

– the specified relationship is true for every value returned by the subselect

– the subselect returns no value and the first operand is null.

v false if the specified relationship is false for at least one value returned by the

subselect.

v unknown if the specified relationship is not false for any of the values returned

by the subselect and at least one comparison is unknown because of a null

value.

►► expression =

(1)

<>

<

>

<=

>=

 SOME

ANY

ALL

 (subselect) ►◄

Notes:

1 Either ¬= or ^= may be used as an alternative to the <> operand in all code pages

supported by the DB2 Server for VSE & VM database manager. However, these

alternatives are not supported in IBM-SQL. Portable applications should use <>.

Basic

80 SQL Reference

When SOME or ANY is specified, the result of the predicate is:

v true if the specified relationship is true for at least one value returned by the

subselect.

v false if any of the following are true:

– the subselect returns no values

– the specified relationship is false for every value returned by the subselect.

v unknown if the specified relationship is not true for any of the values returned

by the subselect and at least one comparison is unknown because of a null

value.

Use the information below when referring to the following examples.

 TBLA: COLA TBLB: COLB

 1 2

 2 3

 3

 4

Example 1

 SELECT * FROM TBLA WHERE COLA = ANY(SELECT COLB FROM TBLB)

Results in 2,3. The subselect returns (2,3). COLA in rows 2 and 3 equals at least

one of these values.

Example 2

 SELECT * FROM TBLA WHERE

 COLA > ANY(SELECT COLB FROM TBLB)

Results in 3,4. The subselect returns (2,3). COLA in rows 3 and 4 is greater than at

least one of these values.

Example 3

 SELECT * FROM TBLA WHERE COLA> ALL(SELECT COLB FROM TBLB)

Results in 4. The subselect returns (2,3). COLA in row 4 is the only one that is

greater than both these values.

Example 4

 SELECT * FROM TBLA WHERE COLA> ALL(SELECT COLB FROM TBLB WHERE COLB<0)

Results in 1,2,3,4. The subselect returns no values. Thus, the predicate is true for all

rows in TBLA.

BETWEEN Predicate

 The BETWEEN predicate compares a value with a range of values. The BETWEEN

predicate:

 value1 BETWEEN value2 AND value3

is logically equivalent to the search condition:

 value1 >= value2 AND value1 <= value3

►► expression BETWEEN expression AND expression

NOT
 ►◄

Quantified

Chapter 3. Language Elements 81

The BETWEEN predicate:

 value1 NOT BETWEEN value2 AND value3

is logically equivalent to the search condition:

 NOT(value1 BETWEEN value2 AND value3)

that is:

 value1 < value2 OR value1 > value3

If any expression evaluates to a datetime data type, then comparisons will be done

with all expressions converted to the appropriate datetime data type.

The values for the expressions in the BETWEEN predicate can have different

CCSID values. If a conversion is necessary then it will be based on the above

logical equivalence. Conversion is based on the rules for comparisons (see

“Conversion Rules for String Comparison” on page 58). If a column’s CCSID is

chosen as the final CCSID value then both the other values are converted, if

necessary, to that CCSID; this need not be true if the value is not a column’s

CCSID.

Example 1

 EMPLOYEE.SALARY BETWEEN 20000 AND 40000

Example 2

 SALARY NOT BETWEEN 20000 + :HV1 AND 40000

Example 3

Given the following:

 ┌────────────┬───────────────┬───────┐

 │ Expression │ Type │ CCSID │

 ├────────────┼───────────────┼───────┤

 │ CON_1 │ constant │ 00001 │

 │ HV_2 │ host variable │ 00002 │

 │ HV_3 │ host variable │ 00003 │

 └────────────┴───────────────┴───────┘

When evaluating the predicate:

 CON_1 BETWEEN :HV_2 AND :HV_3

conversion will be based on considering this to be the same as:

 CON_1 >= :HV_2 AND CON_1 <= :HV_3

The values in both HV_2 and HV_3 will be converted to CCSID 00001.

Example 4

Given the following:

 ┌────────────┬───────────────┬───────┐

 │ Expression │ Type │ CCSID │

 ├────────────┼───────────────┼───────┤

 │ CON_1 │ constant │ 00001 │

 │ HV_2 │ host variable │ 00002 │

 │ COL_3 │ column │ 00003 │

 └────────────┴───────────────┴───────┘

When evaluating the predicate:

 CON_1 BETWEEN :HV_2 AND COL_3

BETWEEN

82 SQL Reference

conversion will be based on considering this to be the same as:

 CON_1 >= :HV_2 AND CON_1 <= COL_3

Because the CCSID of the column (that is, 00003) is used as the final CCSID value,

the values of CON_1 and HV_2 both will be converted to 00003 before any

comparisons are done.

Example 5

Given the following:

 ┌────────────┬───────────────┬───────┐

 │ Expression │ Type │ CCSID │

 ├────────────┼───────────────┼───────┤

 │ COL_1 │ column │ 00001 │

 │ HV_2 │ host variable │ 00002 │

 │ CON_3 │ constant │ 00003 │

 └────────────┴───────────────┴───────┘

When evaluating the predicate:

 COL_1 BETWEEN :HV_2 AND CON_3

conversion will be based on considering this to be the same as:

 COL_1 >= :HV_2 AND COL_1 <= CON_3

The values in both HV_2 and CON_3 will be converted to CCSID 00001. (Note the

difference in this example’s conversion when using a column and example 4.)

Example 6

Given the following:

 ┌────────────┬─────────────────┬──────────────┐

 │ Expression │ Type │ Value │

 ├────────────┼─────────────────┼──────────────┤

 │ COL_1 │ column CHAR(10) │ '01/01/1992' |

 └────────────┴─────────────────┴──────────────┘

When evaluating the predicate:

 COL_1 BETWEEN '07/20/1991' AND '10/22/1992'

the comparison will be done as character strings and the predicate will evaluate to

false.

When evaluating the predicate:

 COL_1 BETWEEN DATE('7/20/1991') AND '10/22/1992'

the comparison will be done as date types and the predicate will evaluate to true.

EXISTS Predicate

 The EXISTS predicate tests for the existence of certain rows. The subselect may

specify any number of columns, and

v The result is true only if the number of rows specified by the subselect is not

zero

v The result is false only if the number of rows specified by the subselect is zero

►► EXISTS (subselect)

NOT
 ►◄

BETWEEN

Chapter 3. Language Elements 83

v The result cannot be unknown.

The values returned by the subselect are ignored.

Example: EXISTS (SELECT * FROM EMPLOYEE WHERE SALARY > 60000)

IN Predicate

 The IN predicate compares a value with a set of values.

In the subselect form, the subselect must identify a single result column and may

return any number of values, including null values.

An IN predicate of the form:

 expression IN (subselect)

is equivalent to a quantified predicate of the form:

 expression = ANY (subselect)

An IN predicate of the form:

 expression NOT IN (subselect)

is equivalent to a quantified predicate of the form:

 expression <> ALL (subselect)

If any value evaluates to a datetime data type, then comparisons will be done with

all values converted to the appropriate datetime data type.

In the non-subselect form of the IN predicate, the second operand is a set of one or

more values specified by any combination of constants, host variables, host

structures, or special registers. This form of the IN predicate is equivalent to the

subselect form except that the second operand consists of the specified values

rather than the values returned by a subselect.

The values for the expressions in the IN predicate can have different CCSIDs.

Conversion occurs where required based on the assumption that:

 value1 IN (value2, value3, ...)

is logically equivalent to the clause:

 value1 = value2 OR value1 = value3 OR ...

Conversion is based on the rules for comparisons (see “Conversion Rules for String

Comparison” on page 58).

Examples

►► expression IN

NOT

▼

 (subselect)

,

(

constant

)

host_variable_list

special_register

 ►◄

EXISTS

84 SQL Reference

Example 1

 DEPTNO IN (’D01’, ’B01’, ’C01’)

Example 2

 EMPNO IN (SELECT EMPNO FROM EMPLOYEE WHERE WORKDEPT = ’E11’)

Example 3

Given the following:

 ┌────────────┬───────────────┬───────┐

 │ Expression │ Type │ CCSID │

 ├────────────┼───────────────┼───────┤

 │ COL_1 │ column │ 00001 │

 │ HV_2 │ host variable │ 00002 │

 │ HV_3 │ host variable │ 00003 │

 │ CON_4 │ constant │ 00004 │

 └────────────┴───────────────┴───────┘

When evaluating the predicate:

 COL_1 IN (:HV_2, :HV_3, CON_4)

conversion will be based on considering this to be the same as:

 COL_1 = :HV_2 OR COL_1 = :HV_3 OR COL_1 = CON_4

The values in HV_2, HV_3, and CON_4 will be converted to CCSID 00001.

Example 4

Given the following:

 ┌────────────┬───────────────┬───────┐

 │ Expression │ Type │ CCSID │

 ├────────────┼───────────────┼───────┤

 │ HV_1 │ host variable │ 00001 │

 │ CON_2 │ constant │ 00002 │

 │ CON_3 │ constant │ 00002 │

 │ HS_4 │ host structure│ │

 │ HV_41 │ host variable │ 00003 │

 │ HV_42 │ host variable │ 00004 │

 └────────────┴───────────────┴───────┘

When evaluating the predicate:

 :HV_1 IN (CON_2, CON_3, :HS_4)

conversion will be based on considering this to be the same as:

 :HV_1 = CON_2 OR :HV_1 = CON_3 OR :HV_1 = :HV_41 OR :HV_1 = :HV_42

Thus, the value in HV_1 will be converted to CCSID 00002 before it is compared to

CON_2 and CON_3, and the values in HV_41 and HV_42 will be converted to

CCSID 00001 before they are compared to HV_1.

IN

Chapter 3. Language Elements 85

LIKE Predicate

 The LIKE predicate searches for strings that have a certain pattern. The pattern is

specified by a string in which the underscore and percent sign have special

meanings.

The column_name must identify a string column. If a character string column is

identified, the other operands must be character strings. If a graphic string column

is identified, the other operands must be graphic strings. With character strings,

the terms character, percent sign, and underscore in the following description refer to

single-byte characters. With graphic strings, the terms refer to double-byte

characters.

Note that trailing blanks in a pattern are usually part of the pattern. The exception

to this is that trailing blanks in a pattern that is specified within a fixed-length host

variable are ignored when that pattern is compared against a varying-length

column.

Simple Description

For character columns, a simple description of the LIKE pattern is as follows:

v The underscore sign (_) represents any single character.

v The percent sign (%) represents a string of zero or more characters.

v Any other character represents itself.

Rigorous Description

Let x denote a value of a column and y denote the string specified by the second

operand.

The string y is interpreted as a sequence of the minimum number of substring

specifiers so each character of y is part of exactly one substring specifier. A

substring specifier is an underscore, a percent sign, or any non-empty sequence of

characters other than an underscore or a percent sign.

The result of the predicate is unknown if x or y is the null value. Otherwise, the

result is either true or false. The result is true if x and y are both empty strings or

if there exists a partitioning of x into substrings such that:

v A substring of x is a sequence of zero or more contiguous characters and each

character of x is part of exactly one substring.

v If the nth substring specifier is an underscore, the nth substring of x is any

single character.

v If the nth substring specifier is a percent sign, the nth substring of x is any

sequence of zero or more characters.

v If the nth substring specifier is neither an underscore nor a percent sign, the nth

substring of x is equal to that substring specifier and has the same length as that

substring specifier.

►► column_name LIKE

NOT
 USER

host_variable

string_constant

 ►

►
ESCAPE

host_variable

string_constant

 ►◄

LIKE

86 SQL Reference

v The number of substrings of x is the same as the number of substring specifiers.

It follows that if y is an empty string and x is not an empty string, the result is

false.

The predicate x NOT LIKE y is equivalent to the search condition NOT(x LIKE y).

If the CCSID of either the pattern value or the escape value is different than the

CCSID of the column, that value is converted to adhere to the CCSID of the

column before the predicate is applied.

With Mixed Data

If the column has a mixed subtype, the pattern can include both SBCS and DBCS

characters. The special characters in the pattern are interpreted as follows:

v An SBCS underscore refers to one SBCS character.

v A DBCS underscore refers to one DBCS character.

v A percent (either SBCS or DBCS) refers to any number of characters of any type,

either SBCS or DBCS.

v Any redundant shifts in either column values or the pattern value are ignored.

With a Field Procedure

If the column has a field procedure, the procedure is invoked to decode the values

of the column, and the comparisons are made with the decoded values.

The ESCAPE Clause

This clause allows the definition of patterns intended to match values that contain

the actual percent and underscore characters. The following rules govern the use of

the ESCAPE clause:

v If a character string column is identified, the escape character must be a

character string constant or variable of length 1.

v If a graphic string column is identified, the escape character must be a graphic

string constant or variable of length 1.

v If the ESCAPE host_variable has a negative indicator variable, the result of the

predicate is unknown.

v The host_variable or string_constant forming the pattern must not contain the

escape character except when followed by the escape character, '%' or '_'.

For example, if '+' is the escape character, any occurrences of '+' other than '++',

'+_', or '+%' in the pattern is an error.

v An escape clause cannot be used with a pattern having a mixed subtype.

If both the pattern and the escape character are constants, the entire pattern will

always be checked for incorrect occurrences of the escape character.

If either the pattern or the escape character is a host_variable, occurrences of the

escape character in the pattern will not be validated unless the portion of the

pattern proceeding the escape character matches at least one row.

USER as a Pattern

The rules for the LIKE predicate are unchanged with the special register USER.

This means that the value of the special register USER is treated as a pattern.

USER evaluates to a CHAR(8) string whose value is the user ID of the currently

connected user. If the value of USER contains a '_' it will match any character and

the result of:

 WHERE C1 LIKE USER

LIKE

Chapter 3. Language Elements 87

would not be the same as the result of:

 WHERE C1 = USER

It is recommended that the 'equals' predicate be used where user IDs may contain

special characters, and the value of USER is not to be treated as a pattern.

Examples:

Example 1: Search for the string ‘SYSTEMS’ appearing anywhere within the

PROJNAME column in the PROJECT table.

 PROJECT.PROJNAME LIKE '%SYSTEMS%'

Example 2: Search for a string with a first character of ‘J’ that is exactly two

characters long in the FIRSTNME column of the EMPLOYEE table.

 EMPLOYEE.FIRSTNME LIKE 'J_'

Example 3: In:

 C1 LIKE ’AAAA+%BBB%’ ESCAPE ’+’

'+' is the escape character and indicates that the search is for a string that starts

with 'AAAA%BBB'. The '+%' is interpreted as a single occurrence of '%' in the

pattern.

Example 4::

 both: WHERE COL1 LIKE ’aaa<▌AABB▐%%▌CC▐>’

 and : WHERE COL1 LIKE ’aaa<▌AABB▐>%<▌CC▐>’

 would match the value -->’aaa<▌AABBDDZZCC▐>’

 as well as the value -->’aaa<▌AABB▐>dzx<▌CC▐>’

Example 5::

 WHERE COL1 LIKE ’a%<▌CC▐>’

 would match the values --> ’a<▌CC▐>’ and

 ’ax<▌CC▐>’ and

 ’ab<▌DDEE▐>fg<▌CC▐>’

Example 6::

 WHERE COL1 LIKE ’a_<▌CC▐>’

 would match the value --> ’ax<▌CC▐>’

 but not the value --> ’a<▌XXCC▐>’

Example 7::

 WHERE COL1 LIKE ’a<__▌CC▐>’

 would match the value --> ’a<▌XXCC▐>’

 but not the value --> ’ax<▌CC▐>’

Example 8::

 WHERE COL1 LIKE ’<>’

 would match the "empty string" value.

Example 9::

 WHERE COL1 LIKE ’ab<▌CC▐>_’

 would match the values --> ’ab<▌CC▐>d and

 ’ab<><▌CC▐>d

LIKE

88 SQL Reference

NULL Predicate

 The NULL predicate tests for null values.

The result of a NULL predicate cannot be unknown. If the value of the column is

null, the result is true. If the value is not null, the result is false. If NOT is

specified, the result is reversed.

To search for fields that contain null values, the words IS NULL must be used.

'WHERE PAY IS NULL' is correct, but 'WHERE PAY = NULL' is incorrect.

Examples:

 EMPLOYEE.PHONE IS NULL

 SALARY IS NOT NULL

Search Conditions

 A search condition specifies a condition that is true, false, or unknown about a given

row or group. When the condition is “true,” the row or group qualifies for the

results. When the condition is “false” or “unknown,” the row or group does not

qualify.

The result of a search condition is derived by application of the specified logical

operators (AND, OR, NOT) to the result of each specified predicate. If logical

operators are not specified, the result of the search condition is the result of the

specified predicate.

AND and OR are defined in the following table in which P and Q are any

predicates:

 Table 5. Truth Tables for AND and OR

P Q P AND Q P OR Q

True True True True

True False False True

True Unknown Unknown True

False True False True

►► column_name IS NULL

NOT
 ►◄

►►

NOT
 predicate

(search_condition)
 ►

►

▼

AND

predicate

OR

NOT

(search_condition)

►◄

NULL

Chapter 3. Language Elements 89

Table 5. Truth Tables for AND and OR (continued)

P Q P AND Q P OR Q

False False False False

False Unknown False Unknown

Unknown True Unknown True

Unknown False False Unknown

Unknown Unknown Unknown Unknown

NOT(true) is false, NOT(false) is true, and NOT(unknown) is unknown.

Search conditions within parentheses are evaluated first. If the order of evaluation

is not specified by parentheses, NOT is applied before AND, and AND is applied

before OR. The order in which operators at the same precedence level are

evaluated is undefined to allow for optimization of search conditions.

Examples:

Example 1

1 2 or 3 42 or 3

MAJPROJ = ' MA2100 ' DEPTNO = ' D11 ' DEPTNO = ' B03 ' DEPTNO = ' E11 'AND OR OR

Example 2

2 1 3

MAJPROJ = ' MA2100 ' DEPTNO = ' D11 ' DEPTNO = ' B03 ' DEPTNO = ' E11 'AND OR OR

NULL

90 SQL Reference

Chapter 4. Functions

A function is an operation denoted by a function name followed by one or more

operands which are enclosed in parentheses. The operands of functions are called

arguments. Most functions have a single argument that is specified by an expression.

The result of a function is a single value derived by applying the function to the

result of the expression.

Functions are classified as column functions or scalar functions. The argument of a

column function is a set of values. An argument of a scalar function is a single

value. If multiple arguments are allowed, each argument is a single value.

In the syntax of SQL, the term function is used only in the definition of an

expression. Thus a function can be used only where an expression can be used.

Additional restrictions apply to the use of column functions as specified in the

following section and in Chapter 5, “Queries,” on page 121.

Column Functions

The following information applies to all column functions, except for the

COUNT(*) variation of the COUNT function.

The argument of a column function is a set of values derived from one or more

columns. The scope of the set is a group or an intermediate result table as

explained in Chapter 5, “Queries,” on page 121. For example, the result of the

following SELECT statement is the number of distinct values of JOB for employees

in department D01:

 SELECT COUNT(DISTINCT JOB)

 FROM EMPLOYEE

 WHERE WORKDEPT = ’D01’

The keyword DISTINCT is not considered an argument of the function but rather a

specification of an operation that is performed before the function is applied. If

DISTINCT is specified, duplicate values are eliminated. If ALL is implicitly or

explicitly specified, duplicate values are not eliminated.

The DISTINCT operation can only be applied to values of a column. If DISTINCT

is omitted, the values of the arguments are specified by an expression. That

expression must not include a column function and must include at least one

column-name, a requirement that is not satisfied by a reference to a view column

derived from a constant or expression without a column-name. If a column_name is

a correlated reference (which is allowed in a subquery of a HAVING clause) the

expression must not include operators.

AVG

 The AVG function returns the average of a set of numbers.

►►

AVG

(
 ALL

numeric_expression

DISTINCT

column_name

)

►◄

© Copyright IBM Corp. 1988, 2007 91

The argument values must be numbers and their sum must be within the range of

the data type of the result. The result can be null.

The data type of the result is the same as the data type of the argument values,

except that:

v The result is a double-precision floating-point if the argument values are

single-precision floating-point.

v The result is a large integer if the argument values are small integers.

If the data type of the argument values is decimal with precision p and scale s, the

precision of the result is 31 and the scale is 31-p+s. Negative scale is not allowed.

The function is applied to the set of values derived from the argument values by

the elimination of null values. If DISTINCT is specified, duplicate values are

eliminated.

If the function is applied to an empty set, the result is a null value. Otherwise, the

result is the average value of the set.

The order in which the summation part of the operation is performed is undefined,

but every intermediate result must be within the range of the result data type.

If the type of the result is integer, the fractional part of the average is lost.

Examples

Example 1: Using the PROJECT table, set the host variable AVERAGE

(decimal(5,2)) to the average staffing level (PRSTAFF) of projects in department

(DEPTNO) ‘D11’.

 SELECT AVG(PRSTAFF)

 INTO :AVERAGE

 FROM PROJECT

 WHERE DEPTNO = ’D11’

Results in AVERAGE being set to 4.25 (that is, 17 / 4) when using the sample

table.

Example 2: Using the PROJECT table, set the host variable ANY_CALC to the

average of each unique staffing level value (PRSTAFF) of projects in department

(DEPTNO) ‘D11’.

 SELECT AVG(DISTINCT PRSTAFF)

 INTO :ANY_CALC

 FROM PROJECT

 WHERE DEPTNO = ’D11’

Results in ANY_CALC being set to 4.66 (that is, 14 / 3) when using the sample

table.

COUNT

 The COUNT function returns the number of rows or values in a set of rows or

values.

►► COUNT (DISTINCT column_name)

(*)
 ►◄

AVG

92 SQL Reference

The column_name must not identify a long string column. The result of the function

is a large integer and must be within the range of large integers. The result cannot

be null.

The argument of COUNT(*) is a set of rows. The result is the number of rows in

the set.

The argument of COUNT(DISTINCT column_name) is a set of values. The function

is applied to the set of values derived from the argument values by the elimination

of null values and duplicate values. The result is the number of values in the set.

Examples

Example 1: Using the EMPLOYEE TABLE, set the host variable FEMALE (int) to

the number of rows where the value of the SEX column is ‘F’.

 SELECT COUNT(*)

 INTO :FEMALE

 FROM EMPLOYEE

 WHERE SEX = ’F’

Results in FEMALE being set to 13 when using the sample table.

Example 2: Using the EMPLOYEE table, set the host variable FEMALE_IN_DEPT

(int) to the number of departments (WORKDEPT) that have at least one female as

a member.

 SELECT COUNT(DISTINCT WORKDEPT)

 INTO :FEMALE_IN_DEPT

 FROM EMPLOYEE

 WHERE SEX = ’F’

Results in FEMALE_IN_DEPT being set to 5 when using the sample table. (There

is at least one female in departments A00, C01, D11, D21, and E11.)

MAX

 The MAX function returns the maximum value in a set of values.

The argument values can be any values other than long strings.

The data type and length attribute of the result are the same as the data type and

length attribute of the argument values. When the argument is a string, the result

has the same CCSID as the argument. The result can be null.

The function is applied to the set of values derived from the argument values by

the elimination of null values.

►►

MAX

(
 ALL

expression

(1)

DISTINCT

column_name

)

►◄

Notes:

1 Although it is allowed, the keyword DISTINCT does not affect the result of the

function.

COUNT

Chapter 4. Functions 93

If the function is applied to an empty set, the result is a null value. Otherwise, the

result is the maximum value in the set.

Examples

Example 1: Using the EMPLOYEE table, set the host variable MAX_SALARY

(decimal(7,2)) to the maximum monthly salary (SALARY / 12) value.

 SELECT MAX(SALARY) /12

 INTO :MAX_SALARY

 FROM EMPLOYEE

Results in MAX_SALARY being set to 4395.83 when using the sample table.

Example 2: Using the PROJECT table, set the host variable LAST_PROJ (char(24))

to the project name (PROJNAME) that comes last in the collating sequence.

 SELECT MAX(PROJNAME)

 INTO :LAST_PROJ

 FROM PROJECT

Results in LAST_PROJ being set to ‘WELD LINE PLANNING’ when using the

sample table.

MIN

 The MIN function returns the minimum value in a set of values.

The argument values can be any values other than long strings.

The data type and length attribute of the result are the same as the data type and

length attribute of the argument values. When the argument is a string, the result

has the same CCSID as the argument. The result can be null.

The function is applied to the set of values derived from the argument values by

the elimination of null values.

If the function is applied to an empty set, the result is a null value. Otherwise, the

result is the minimum value in the set.

Examples

Example 1: Using the EMPLOYEE table, set the host variable COMM_SPREAD

(decimal(7,2)) to the difference between the maximum and minimum commission

(COMM) for the members of department (WORKDEPT) ‘D11’.

 SELECT MAX(COMM) - MIN(COMM)

 INTO :COMM_SPREAD

 FROM EMPLOYEE

 WHERE WORKDEPT = ’D11’

►►

MIN

(
 ALL

expression

(1)

DISTINCT

column_name

)

►◄

Notes:

1 Although it is allowed, the keyword DISTINCT does not affect the result of the

function.

MAX

94 SQL Reference

Results in COMM_SPREAD being set to 1118 (that is, 2580 - 1462) when using the

sample table.

Example 2: Using the PROJECT table, set the host variable FIRST_FINISHED

(char(10)) to the estimated ending date (PRENDATE) of the first project scheduled

to be completed.

 SELECT MIN(PRENDATE)

 INTO :FIRST_FINISHED

 FROM PROJECT

Results in FIRST_FINISHED being set to ‘1982-09-15’ when using the sample table.

SUM

 The SUM function returns the sum of a set of numbers.

The argument values must be numbers and their sum must be within the range of

the data type of the result.

The data type of the result is the same as the data type of the argument values

except that the result is a large integer if the argument values are small integers

and double precision floating-point if the argument values are single precision

floating-point. If the data type of the argument values is decimal, the precision of

the result is 31 and the scale is the same as the scale of the argument values. The

result can be null.

The function is applied to the set of values derived from the argument values by

the elimination of null values. If DISTINCT is specified, duplicate values are

eliminated.

If the function is applied to an empty set, the result is a null value. Otherwise, the

result is the sum of the values in the set.

Examples

Example 1: Using the EMPLOYEE table, set the host variable JOB_BONUS

(decimal(9,2)) to the total bonus (BONUS) paid to clerks (JOB=‘CLERK’).

 SELECT SUM(BONUS)

 INTO :JOB_BONUS

 FROM EMPLOYEE

 WHERE JOB = ’CLERK’

Results in JOB_BONUS being set to 2800 when using the sample table.

Example 2: Assume that a table SALES has the following columns and values:

 Name: CUSTOMER SALES MONTHS

Type: smallint int int

Desc: Customer number Total value of

purchases by this

customer

Number of months

that customer has

bought something

►►

SUM

(
 ALL

numeric_expression

DISTINCT

column_name

)

►◄

MIN

Chapter 4. Functions 95

Name: CUSTOMER SALES MONTHS

Values: 101 1000 5

102 500 1

103 300 3

Set the host variable TOT_AVG_SALE (integer) to the sum of the average monthly

sales per customer.

 SELECT SUM(SALES / MONTHS)

 INTO :TOT_AVG_SALE

 FROM SALES

Results in TOT_AVG_SALE being set to 800. Note that the expression for each row

is calculated before it is added to the sum.

Scalar Functions

A scalar function can be used wherever an expression can be used. The restrictions

on the use of column functions do not apply to scalar functions. For example, the

argument of a scalar function can be a function; that is, scalar functions can be

nested. However, the restrictions that apply to the use of expressions and column

functions also apply when an expression or column function is used within a

scalar function. For example, the argument of a scalar function can be a column

function only if a column function is allowed in the context in which the scalar

function is used.

The restrictions on the use of column functions do not apply to scalar functions

because a scalar function is applied to a single value rather than a set of values.

For example, the result of the following SELECT statement has as many rows as

there are employees in department D11:

 SELECT EMPNO, LASTNAME, YEAR(CURRENT DATE - BIRTHDATE)

 FROM EMPLOYEE

 WHERE WORKDEPT = ’D11’

CHAR

 The CHAR function returns a string representation of a datetime value or decimal

value.

The first argument must be a decimal number, timestamp, date, or time. The

second argument, if applicable, is the name of a string format.

The result of the function is a fixed-length character string. The CCSID of the

string is the default CCSID (based on the default subtype value, CHARSUB) of the

►► CHAR (date_expression)

time_expression

,ISO

,USA

,EUR

,JIS

,LOCAL

timestamp_expression

decimal_expression

 ►◄

SUM

96 SQL Reference

application server. If the first argument can be null, the result can be null; if the

first argument is null, the result is the null value.

The other rules depend on the data type of the first argument:

v If the first argument is a decimal number:

The second argument must not be specified. The result is the fixed length

character string representation of the argument. The first character of the result

is a minus sign if the argument is negative; otherwise, the first character is

blank.

The result includes a decimal point, sign, and p digits, where p is the precision

of the argument. The length of the result is 2+p.

v If the first argument is a timestamp:

The second argument is not applicable and must not be specified.

The result is the character string representation of the timestamp. The length of

the result is 26.

v If the first argument is a date:

Omission of the second argument is an implicit specification of the string format

specified at installation time. The installation default for the string format can be

overridden by preprocessor options. If LOCAL is implicitly or explicitly

specified, a date installation exit must be installed.

The result is the character string representation of the date in the format

specified by the second argument. If LOCAL is specified, the length of the result

is the length specified in the SYSOPTIONS catalog during start-up. Otherwise,

the length of the result is 10.

v If the first argument is a time:

Omission of the second argument is an implicit specification of the string format

specified at installation time. The installation default can be overridden by

preprocessor options. If LOCAL is implicitly or explicitly specified, a time exit

must be installed.

The result is the character string representation of the time in the format

specified by the second argument. If LOCAL is specified, the length of the result

is the length specified in the SYSOPTIONS catalog during start-up. Otherwise,

the length of the result is 8.

Examples

Example 1: Assume the column PRSTDATE has an internal value equivalent to

1988-12-25.

 CHAR(PRSTDATE, USA)

Results in the value ‘12/25/1988’.

Example 2: Assume the column STARTING has an internal value equivalent to

17.12.30, and the host variable HOUR_DUR (decimal(6,0)) is a time duration with a

value of 050000 (that is, 5 hours).

 CHAR(STARTING, USA)

Results in the value ‘5:12 PM’.

 CHAR(STARTING + :HOUR_DUR, USA)

Results in the value ‘10:12 PM’.

CHAR

Chapter 4. Functions 97

Example 3: Assume the column RECEIVED (timestamp) has an internal value

equivalent to the combination of the PRSTDATE and STARTING columns.

 CHAR(RECEIVED)

Results in the value ‘1988-12-25-17.12.30.000000’.

DATE

 The DATE function returns a date from a value.

The argument must be a timestamp, a date, a positive number less than or equal to

3652059, a valid string representation of a date, or a character string of length 7.

If the argument is a character string of length 7, it must represent a valid date in

the form yyyynnn, where yyyy are digits denoting a year, and nnn are digits

between 001 and 366 denoting a day of that year.

The result of the function is a date. The data type is DATE. If the argument can be

null, the result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

v If the argument is a timestamp:

The result is the date part of the timestamp.

v If the argument is a date:

The result is that date.

v If the argument is a number:

The result is the date that is n-1 days after January 1, 0001, where n is the

number that would occur if the INTEGER function were applied to the

argument.

v If the argument is a character string:

The result is the date represented by the character string.

Notes:

1. When a string representation of a date is SBCS with a CCSID that is not the

same as the default CCSID for SBCS data, that value is converted to adhere

to the default CCSID for SBCS data before it is interpreted and converted to

a date value.

2. When a string representation of a date is mixed with a CCSID that is not the

same as the default CCSID for mixed data, that value is converted to adhere

to the default CCSID for mixed data before it is interpreted and converted to

a date value.

Examples

Example 1: Assume that the column RECEIVED (timestamp) has an internal

value equivalent to ‘1988-12-25-17.12.30.000000’.

 DATE(RECEIVED)

Results in an internal representation of ‘1988-12-25’.

Example 2:

►► DATE (expression) ►◄

CHAR

98 SQL Reference

DATE(’1988-12-25’)

Results in an internal representation of ‘1988-12-25’.

 DATE(’25.12.1988’)

Results in an internal representation of ‘1988-12-25’.

 DATE(35)

Results in an internal representation of ‘0001-02-04’.

DAY

 The DAY function returns the day part of a value.

The argument must be a date, timestamp, date duration, or timestamp duration. If

a decimal number, the argument must be:

v DECIMAL(8,0) for date duration

v DECIMAL(20,6) for timestamp duration

to be properly interpreted.

The result of the function is a large integer. If the argument can be null, the result

can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

v If the argument is a date or a timestamp:

The result is the day part of the value, which is an integer between 1 and 31.

v If the argument is a date duration or timestamp duration:

The result is the day part of the value, which is an integer between -99 and 99.

A nonzero result has the same sign as the argument.

Examples

Example 1: Using the PROJECT table, set the host variable END_DAY (smallint)

to the day that the WELD LINE PLANNING project (PROJNAME) is scheduled to

stop (PRENDATE).

 SELECT DAY(PRENDATE)

 INTO :END_DAY

 FROM PROJECT

 WHERE (PROJNAME) = ’WELD LINE PLANNING’

Results in END_DAY being set to 15 when using the sample table.

Example 2: Assume that the column DATE1 (date) has an internal value

equivalent to 2000-03-15 and the column DATE2 (date) has an internal value

equivalent to 1999-12-31.

 DAY(DATE1 - DATE2)

Results in the value 15.

►► DAY (date_expression

timestamp_expression

date_duration_expression

timestamp_duration_expression

) ►◄

DATE

Chapter 4. Functions 99

DAYS

 The DAYS function returns an integer representation of a date.

The argument must be a date, a timestamp, or a valid string representation of a

date.

Notes:

1. When a string representation of a date is SBCS with a CCSID that is not the

same as the default CCSID for SBCS data, that value is converted to adhere to

the default CCSID for SBCS data before it is interpreted and converted to a

date value.

2. When a string representation of a date is mixed with a CCSID that is not the

same as the default CCSID for mixed data, that value is converted to adhere to

the default CCSID for mixed data before it is interpreted and converted to a

date value.

The result of the function is a large integer. If the argument can be null, the result

can be null; if the argument is null, the result is the null value.

The result is 1 more than the number of days from January 1, 0001 to D, where D

is the date that would occur if the DATE function were applied to the argument.

Examples

Example 1: Using the PROJECT table, set the host variable EDUCATION_DAYS

(int) to the number of elapsed days (PRENDATE - PRSTDATE) estimated for the

project (PROJNO) ‘IF2000’.

 SELECT DAYS(PRENDATE) - DAYS(PRSTDATE)

 INTO :EDUCATION_DAYS

 FROM PROJECT

 WHERE (PROJNO) = ’IF2000’

Results in EDUCATION_DAYS being set to 396 when using the sample table.

Example 2: Using the PROJECT table, set the host variable TOTAL_DAYS (int) to

the sum of elapsed days (PRENDATE - PRSTDATE) estimated for all projects in

department (DEPTNO) ‘E21’.

 SELECT SUM(DAYS(PRENDATE) - DAYS(PRSTDATE))

 INTO :TOTAL_DAYS

 FROM PROJECT

 WHERE (DEPTNO) = ’E21’

Results in TOTAL_DAYS being set to 1584 when using the sample table.

►► DAYS (date_expression

timestamp_expression

date_string_expression

) ►◄

DAYS

100 SQL Reference

DECIMAL

 The DECIMAL function returns a decimal representation of a number.

numeric_expression

An expression that returns a value of any numeric data type.

precision_integer

An integer constant with a value in the range of 1 to 31.

 The default for the precision_integer depends on the data type of the

numeric_expression:

v 15 for floating-point and decimal

v 11 for large integer

v 5 for small integer.

scale_integer

An integer constant in the range of 0 to the precision_integer value.

The result of the function is a decimal number with precision of p and scale of s,

where p and s are the second and third arguments. If the first argument can be

null, the result can be null; if the first argument is null, the result is the null value.

The result is the same number that would occur if the first argument were

assigned to a decimal column or variable with a precision of p and a scale of s. An

error occurs if the number of significant decimal digits required to represent the

whole part of the number is greater than p-s.

Examples

Example 1: Use the DECIMAL function in order to force a DECIMAL data type

(with a precision of 5 and a scale of 2) to be returned in a select-list for the

EDLEVEL column (data type = SMALLINT) in the EMPLOYEE table. The EMPNO

column should also appear in the select list.

 SELECT EMPNO, DECIMAL(EDLEVEL,5,2)

 FROM EMPLOYEE

Example 2: Assume the host variable PERIOD is of type INTEGER. Then, in order

to use its value as a date duration it must be ″cast″ as decimal(8,0).

 SELECT PRSTDATE + DECIMAL(:PERIOD,8)

 FROM PROJECT

DIGITS

 The DIGITS function returns a character string representation of a number.

►► DECIMAL (numeric_expression

,0

,precision_integer

,scale_integer

 ►

►) ►◄

►► DIGITS (integer_expression

decimal_expression
) ►◄

DECIMAL

Chapter 4. Functions 101

The argument is an expression that returns a value of an integer, small integer, or

decimal data type.

The result of the function is a fixed-length character string. The CCSID of the

string is the default CCSID (based on the default subtype value, CHARSUB) of the

application server. If the argument can be null, the result can be null; if the

argument is null, the result is the null value.

The result is a string of digits that represents the absolute value of the argument

without regard to its scale. Thus, the result does not include a sign or a decimal

point. The result includes any necessary leading zeros so that the length of the

string is:

v 5 if the argument is a small integer

v 10 if the argument is a large integer

v p if the argument is a decimal number with a precision of p.

Examples

Example 1: Using the EMP_ACT table, set the host variable TIME_DISPLAY

(char(5)) to the time (EMPTIME) that employee number (EMPNO) ‘000130’ is to

spend on an activity (ACTNO) 90.

 SELECT DIGITS(EMPTIME)

 INTO :TIME_DISPLAY

 FROM EMP_ACT

 WHERE EMPNO = ’000130’ AND ACTNO = 90

TIME_DISPLAY will be set to ’00100’ when using the sample table.

Example 2: Return activity number (ACTNO) from the EMP_ACT table as a

character string in a select list. The EMPNO and PROJNO columns should also

appear in the select list.

 SELECT EMPNO, PROJNO, DIGITS(ACTNO)

 FROM EMP_ACT

FLOAT

 The FLOAT function returns a floating-point representation of a number.

The argument is an expression that returns a value of any numeric data type.

The result of the function is a double precision floating-point number. If the

argument can be null, the result can be null; if the argument is null, the result is

the null value.

The result is the same number that would occur if the argument were assigned to

a double precision floating-point column or variable.

Example

Using the EMPLOYEE table, find the ratio of salary to commission for employees

whose commission is not zero. The columns involved (SALARY and COMM) have

DECIMAL data types. To eliminate the possibility of out-of-range results, FLOAT is

applied to SALARY so that the division is carried out in floating point:

►► FLOAT (numeric_expression) ►◄

DIGITS

102 SQL Reference

SELECT EMPNO, FLOAT(SALARY)/COMM

 FROM EMPLOYEE

 WHERE COMM > 0

HEX

 The HEX function returns a hexadecimal representation of a value.

The argument is an expression that returns a value of any data type other than a

long string.

The result of the function is a character string. The CCSID of the string is the

default CCSID (based on the default subtype value, CHARSUB) of the application

server. If the argument can be null, the result can be null; if the argument is null,

the result is the null value.

The result is a string of hexadecimal digits. The first two represent the first byte of

the argument, the next two represent the second byte of the argument, and so

forth. If the argument is a datetime value, the result is the hexadecimal

representation of the internal form of the argument.

If the argument is a single-byte character string (SBCS), the length of the argument

must be 127 or less, and the length of the result is twice the defined (maximum)

length of the argument. If the argument is a double-byte character string (DBCS),

the length of the argument must be 63 or less, and the length of the result is four

times the defined (maximum) length of the argument.

The result is fixed-length if the argument is fixed length. If the argument is

varying-length, the result is also varying-length.

Examples

Example 1: Using the DEPARTMENT table set the host variable HEX_MGRNO

(char(12)) to the hexadecimal representation of the manager number (MGRNO) for

the ‘PLANNING’ department (DEPTNAME).

 SELECT HEX(MGRNO)

 INTO :HEX_MGRNO

 FROM DEPARTMENT

 WHERE DEPTNAME = ’PLANNING’

HEX_MGRNO will be set to ’F0F0F0F0F2F0’ when using the sample table.

Example 2: Suppose COL_1 is a column with a data type of char(1) and a value

of 'B'. The hexadecimal representation of the letter 'B' is X'C2'. HEX(COL_1) returns

a two-character string 'C2'.

Example 3: Suppose COL_3 is a column with a data type of decimal(6,2) and a

value of 40.1. HEX(COL_3) returns the internal representation, an eight-character

string '0004010C'.

►► HEX (expression) ►◄

FLOAT

Chapter 4. Functions 103

HOUR

 The HOUR function returns the hour part of a value.

The argument must be a time, timestamp, time duration, or timestamp duration. If

a decimal number, the argument must be:

v DECIMAL(6,0) for time duration

v DECIMAL(20,6) for timestamp duration

to be properly interpreted.

The result of the function is a large integer. If the argument can be null, the result

can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

v If the argument is a time or timestamp:

The result is the hour part of the value, which is an integer between 0 and 24.

v If the argument is a time duration or timestamp duration:

The result is the hour part of the value, which is an integer between -99 and 99.

A nonzero result has the same sign as the argument.

Example

Using the CL_SCHED sample table, select all the classes that start in the afternoon.

 SELECT * FROM CL_SCHED

 WHERE HOUR(STARTING) BETWEEN 12 AND 17

INTEGER

 The INTEGER function returns an integer representation of a number.

The argument is an expression that returns a value of any numeric data type.

The result of the function is a large integer. If the argument can be null, the result

can be null; if the argument is null, the result is the null value.

The result is the same number that would occur if the argument were assigned to

a large integer column or variable. If the whole part of the argument is not within

the range of integers, an error occurs. The decimal part of the argument is

truncated if present.

Example

Using the EMPLOYEE table, select a list containing salary (SALARY) divided by

education level (EDLEVEL). Truncate any decimal in the calculation. The list

should also contain the values used in the calculation and employee number

(EMPNO). The list should be in descending order of the calculated value.

►► HOUR (time_expression

timestamp_expression

time_duration_expression

timestamp_duration_expression

) ►◄

►► INTEGER (numeric_expression) ►◄

HOUR

104 SQL Reference

SELECT INTEGER(SALARY / EDLEVEL), SALARY, EDLEVEL, EMPNO

 FROM EMPLOYEE

 ORDER BY 1 DESC

LENGTH

 The LENGTH function returns the length of a value.

The argument is an expression that returns a value of any data type. The

expression cannot be a long string host variable.

The result of the function is a large integer. If the argument can be null, the result

can be null; if the argument is null, the result is the null value.

The result is the length of the argument. The length of strings includes blanks. The

length of a varying-length string is the actual length, not the maximum length.

The length of a graphic string is the number of DBCS characters. The length of all

other values is the number of bytes used to represent the value:

v 2 for small integer

v 4 for large integer

v The integer part of (p/2)+1 for packed decimal numbers with precision p

v 4 for single-precision float

v 8 for double-precision float

v The length of the string for character strings

v 4 for date

v 3 for time

v 10 for timestamp

Note that no special consideration is given for mixed character strings. Shift-in,

shift-out, and each byte of a DBCS character within a mixed string are all

considered to be single bytes.

Examples

Example 1: Assume the host variable ADDRESS is a varying-length character

string with a value of ‘895 Don Mills Road’.

 LENGTH(:ADDRESS)

Returns the value 18.

Example 2: Assume that START_DATE is a column of type DATE.

 LENGTH(START_DATE)

Returns the value 4.

Example 3: Assume that START_DATE is a column of type DATE.

 LENGTH(CHAR(START_DATE, EUR))

Returns the value 10.

►► LENGTH (expression) ►◄

INTEGER

Chapter 4. Functions 105

MICROSECOND

 The MICROSECOND function returns the microsecond part of a value.

The argument must be a timestamp or timestamp duration. If a decimal number,

the argument must be DECIMAL(20,6) for timestamp duration to be properly

interpreted.

The result of the function is a large integer. If the argument can be null, the result

can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

v If the argument is a timestamp:

The result is the microsecond part of the value, which is an integer between 0

and 999 999.

v If the argument is a duration:

The result is the microsecond part of the value, which is an integer between

−999 999 and 999 999. A nonzero result has the same sign as the argument.

Example

Assume a table TABLEA contains two columns, TS1 and TS2, of type TIMESTAMP.

Select all rows in which the microseconds portion of TS1 is not zero and the

seconds portion of TS1 and TS2 are identical.

 SELECT * FROM TABLEA

 WHERE MICROSECOND(TS1) <> 0 AND SECOND(TS1) = SECOND(TS2)

MINUTE

 The MINUTE function returns the minute part of a value.

The argument must be a time, timestamp, time duration, or timestamp duration. If

a decimal number, the argument must be:

v DECIMAL(6,0) for time duration

v DECIMAL(20,6) for timestamp duration

to be properly interpreted.

The result of the function is a large integer. If the argument can be null, the result

can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

v If the argument is a time or a timestamp:

The result is the minute part of the value, which is an integer between 0 and 59.

v If the argument is a time duration or timestamp duration.

►► MICROSECOND (timestamp_expression

timestamp_duration_expression
) ►◄

►► MINUTE (time_expression

timestamp_expression

time_duration_expression

timestamp_duration_expression

) ►◄

MICROSECOND

106 SQL Reference

The result is the minute part of the value, which is an integer between -99 and

99. A nonzero result has the same sign as the argument.

Example

Using the CL_SCHED sample table, select all classes with a duration less than 50

minutes.

 SELECT * FROM CL_SCHED

 WHERE HOUR(ENDING - STARTING) = 0 AND

 MINUTE(ENDING - STARTING) < 50

MONTH

 The MONTH function returns the month part of a value.

The argument must be a date, timestamp, date duration, or timestamp duration. If

a decimal number, the argument must be:

v DECIMAL(8,0) for date duration

v DECIMAL(20,6) for timestamp duration

to be properly interpreted.

The result of the function is a large integer. If the argument can be null, the result

can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

v If the argument is a date or a timestamp:

The result is the month part of the value, which is an integer between 1 and 12.

v If the argument is a date duration or timestamp duration:

The result is the month part of the value, which is an integer between -99 and

99. A nonzero result has the same sign as the argument.

Example

Select all rows from the EMPLOYEE table for people who were born (BIRTHDATE)

in DECEMBER.

 SELECT * FROM EMPLOYEE

 WHERE MONTH(BIRTHDATE) = 12

SECOND

 The SECOND function returns the seconds part of a value.

The argument must be a time, timestamp, time duration, or timestamp duration. If

a decimal number, the argument must be:

►► MONTH (date_expression

timestamp_expression

date_duration_expression

timestamp_duration_expression

) ►◄

►► SECOND (time_expression

timestamp_expression

time_duration_expression

timestamp_duration_expression

) ►◄

MINUTE

Chapter 4. Functions 107

v DECIMAL(6,0) for time duration

v DECIMAL(20,6) for timestamp duration

to be properly interpreted.

The result of the function is a large integer. If the argument can be null, the result

can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

v If the argument is a time or timestamp:

The result is the seconds part of the value, which is an integer between 0 and 59.

v If the argument is a time duration or timestamp duration:

The result is the seconds part of the value, which is an integer between -99 and

99. A nonzero result has the same sign as the argument.

Examples

Example 1: Assume that the host variable TIME_DUR (decimal(6,0)) has the value

153045.

 SECOND(:TIME_DUR)

Returns the value 45.

Example 2: Assume that the column RECEIVED (timestamp) has an internal

value equivalent to 1988-12-25-17.12.30.000000.

 SECOND(RECEIVED)

Returns the value 30.

STRIP

 The STRIP function returns a value in which blanks, or another specified character,

have been removed from the end or the beginning of a string.

character_string or graphic_string

Either a character-compatible expression (CHAR, VARCHAR, TIME, DATE,

TIMESTAMP) or a graphic expression (GRAPHIC, VARGRAPHIC). The

argument cannot be a long string.

 Note that the argument cannot have a subtype of mixed.

L

T

►►

STRIP
 ,B ,’ ’

(

character_string

)

,’ ’

,L

,T

,strip_character

,B

,B

,’G< >’

graphic_string

,’G< >’

,L

,T

,strip_character

,B

►◄

SECOND

108 SQL Reference

B One of L, T, or B (not in quotation marks) to remove leading, trailing, or both

leading and trailing characters from a string. If a value other than L, T, or B is

specified, an error will occur.

 The default value is B.

strip_character

A character constant indicating the character to be stripped from string.

 The default is either a single character space or a graphic double character

space (X'4040') depending on the data type of string.

The data type and CCSID of the result depends on the data type of the string

argument. The possible data types and CCSIDs are shown in the following table:

 Input Data Type Output Data Type Output CCSID

CHAR(n) VARCHAR(n) same as that of string

VARCHAR(n) VARCHAR(n) same as that of string

GRAPHIC(n) VARGRAPHIC(n) same as that of string

VARGRAPHIC(n) VARGRAPHIC(n) same as that of string

DATE VARCHAR(n)1 CCSID of the default subtype

TIME VARCHAR(n)1 CCSID of the default subtype

TIMESTAMP VARCHAR(26) CCSID of the default subtype

1 For DATE and TIME data types, the value of n is determined by the

SYSTEM.SYSOPTIONS values for datetime formats. If a LOCAL format datetime

value is used, then n is the LOCAL length specified in SYSTEM.SYSOPTIONS,

otherwise 8, 10, and 26 will be used for TIME, DATE, and TIMESTAMP

respectively.

The defined length of the result is identical to the defined length of the string

argument.

If the first argument can be null, then the result can be null. If the first argument is

null, the result is the null value.

Examples

Example 1: Assume the host variable HELLO (char(9)) has a value of ‘ Hello ’.

 STRIP(:HELLO)

Returns the value ‘Hello’.

 STRIP(:HELLO, T)

Returns the value ‘ Hello’.

Example 2: Assume the host variable BALANCE (char(9)) has a value of

‘000345.50’.

 STRIP(:BALANCE,L,’0’,)

Returns the value ‘345.50’.

Example 3: This example shows the treatment of a graphic string.

 STRIP(G’<▌XXLLMMNNXXXX▐>’, T,G’<▌XX▐>’)

STRIP

Chapter 4. Functions 109

Returns the value G’<▌XXLLMMNN▐>’

Example 4: This example shows that spaces are treated like any other character.

Therefore, if spaces precede the character that is to be stripped from the start of the

string, then nothing is stripped.

 STRIP(’ 00123.400’,B,’0’)

Returns the value ‘ 00123.4’.

SUBSTR

 The SUBSTR function returns a substring of a string. If any argument of the

SUBSTR function can be null, the result can be null; if any argument is null, the

result is the null value. The CCSID of the result is the same as that of string.

string

Denotes an expression that specifies the string from which the result is

derived. string must be a character string or a graphic string. If a long string is

specified, it must be a column, not a host variable, and the resulting string

must have a length attribute of not more than 254 bytes (127 characters for

graphic data).

 A substring of string is zero or more contiguous characters of string. If string is

a graphic string, a character is a DBCS character. If string is a character string,

a character is a byte.

 The SUBSTR function accepts mixed data strings. However, because SUBSTR

operates on a strict byte-count basis, the result will not necessarily be a

properly formed mixed data string.

 The SUBSTR function also accepts a datetime argument type for extended

flexibility in extracting datetime substring values.

Note: TIMESTAMP expressions always have an implicit length of 26 and

datatype of CHAR. If the statement is a dynamically prepared one,

DATE and TIME expressions each have an implicit length of 254 and a

data type of VARCHAR. If the statement is not a dynamically prepared

one, DATE and TIME expressions each have an implicit data type of

CHAR and a length which is determined by the value for datetime

formats in the SYSTEM.SYSOPTIONS catalog table. If the datetime

format is LOCAL, the length is the LOCAL length in the

SYSTEM.SYSOPTIONS catalog table; otherwise, it is 8 for TIME and 10

for DATE.

start

Denotes an expression that specifies the position of the first character of the

result. It must be a positive binary integer that is not greater than the length

attribute of string. (The length attribute of a varying-length string is its

maximum length.)

length

Denotes an expression that specifies the length of the result. If specified,

length-expression must evaluate to a binary integer in the range 0 to n, where n

►► SUBSTR (string_expression, start_integer_expression ►

►
,length_integer_expression

) ►◄

STRIP

110 SQL Reference

is the length attribute of string - start + 1. It must not, however, be the integer

constant 0. (SUBSTR(col,1,1-1) is valid; SUBSTR(col,1,0) is not).

 If length is explicitly specified, string is effectively padded on the right with the

necessary number of blank characters so that the specified substring of string

always exists.

 The default for length is the number of characters from the character specified

by the start to the last character of string. However, if string is a varying-length

string with an actual length less than start (for example, SUBSTR('abcde', 7),

the default is zero and the result is the empty string.

If string is a character string:

v If length is explicitly specified by an integer constant less than or equal to 254,

the result is a fixed-length character string with a length attribute of length.

v If length is not explicitly specified, but string is a fixed-length character string

and start is an integer constant, the result is a fixed-length character string with

a length attribute of:

 LENGTH(string) - start + 1

v If length is not explicitly specified, but string is a varying-length character string

or start is not an integer constant, the result is a varying-length character string

with a length attribute that is the same as the length attribute of string.

(Remember, that if the actual length of the string is less than the start position,

the actual length of the substring is zero.)

v The maximum length attribute of the result is 254.

If string is a graphic string:

v If length is explicitly specified by an integer constant less than or equal to 127,

the result is a fixed-length graphic string with a length attribute of length.

v If length is not explicitly specified, but string is a fixed-length graphic string and

start is an integer constant, the result is a fixed-length graphic string with a

length attribute of:

 LENGTH(string) - start + 1

v If length is not explicitly specified, but string is a varying-length graphic string or

start is not an integer constant, the result is a varying-length graphic string with

a length attribute that is the same as the length attribute of string. (Remember,

that if the actual length of the string is less than the start position, the actual

length of the substring is zero.)

v The maximum length attribute of the result is 127.

If string is a fixed-length string, omission of length is an implicit specification of

LENGTH(string) - start + 1. If string is a varying-length string, omission of length is

an implicit specification of zero or LENGTH(string) - start + 1, whichever is greater.

Examples

Example 1: Assume the host variable NAME (varchar(50)) has a value of ‘KATIE

AUSTIN’ and the host variable SURNAME_POS (int) has a value of 7.

 SUBSTR(:NAME, :SURNAME_POS)

Returns the value ‘AUSTIN’

 SUBSTR(:NAME, :SURNAME_POS, 1)

Returns the value ‘A’.

SUBSTR

Chapter 4. Functions 111

Example 2: Select all rows from the PROJECT table for which the project name

(PROJNAME) starts with the word ‘OPERATION ’.

 SELECT * FROM PROJECT

 WHERE SUBSTR(PROJNAME,1,10) = ’OPERATION ’

The space at the end of the constant is necessary to preclude initial words such as

‘OPERATIONS’.

Example 3: Assume there is a host variable VC300 (VARCHAR(300)), the host

variable START (int) has a value of 30, and the host variable LNGTH (int) has a

value of 250. Obtain a substring of VC300 starting at START with a length of

LNGTH.

Attempt 1:

 SUBSTR(:VC300, :START, :LNGTH)

This is not allowed because LNGTH is a host variable and the resulting size is

assumed to be that of the source string (300). Thus the size of the host variable

exceeds the maximum allowed size of 254.

Attempt 2:

 SUBSTR(SUBSTR(:VC300, :START, 254), 1, :LNGTH)

This attempt is successful.

1. The inner substring, that is:

 SUBSTR(:VC300, :START, 254)

produces a CHAR(254) result whose value is taken from position 30 to position

273 of VC300 (and contains trailing blanks if VC300 is less than 273 bytes long).

2. The outer substring, that is:

 SUBSTR(inner_result, 1, :LNGTH)

produces a VARCHAR(254) result whose value is taken from position one to

position 250 of the inner_result. The length of the result is 250.

Attempt 3:

 SUBSTR(:VC300, 299)

This is not allowed because the result is a varying-length string with length

attribute 300 which is longer than 254.

TIME

 The TIME function returns a time from a value.

The argument must be a timestamp, a time, or a valid string representation of a

time.

►► TIME (time_expression

timestamp_expression

time_string_expression

) ►◄

SUBSTR

112 SQL Reference

The result of the function is a time. The data type is TIME. If the argument can be

null, the result can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

v If the argument is a timestamp:

The result is the time part of the timestamp.

v If the argument is a time:

The result is that time.

v If the argument is a character string:

The result is the time represented by the character string.

Notes:

1. When a string representation of a time is SBCS with a CCSID that is not the

same as the default CCSID for SBCS data, that value is converted to adhere

to the default CCSID for SBCS data before it is interpreted and converted to

a time value.

2. When a string representation of a time is mixed with a CCSID that is not the

same as the default CCSID for mixed data, that value is converted to adhere

to the default CCSID for mixed data before it is interpreted and converted to

a time value.

Example

Select all notes from the IN_TRAY sample table that were received at least one

hour later in the day (any day) than the current time.

 SELECT * FROM IN_TRAY

 WHERE TIME(RECEIVED) >= CURRENT TIME + 1 HOUR

TIMESTAMP

 The TIMESTAMP function returns a timestamp from a value or a pair of values.

The rules for the arguments depend on whether the second argument is specified.

v If only one argument is specified:

It must be an expression that returns a timestamp, a valid string representation

of a timestamp, a character string of length 8, or a character string of length 14.

A character string of length 8 is assumed to be a System/390 Store Clock value.

A character string of length 14 must be a string of digits that represents a valid

date and time in the form yyyyxxddhhmmss, where yyyy is the year, xx is the

month, dd is the day, hh is the hour, mm is the minute, and ss is the seconds.

v If both arguments are specified:

The first argument must be an expression that returns either a date or a valid

string representation of a date. The second argument must be an expression that

returns either a time or a valid string representation of a time.

►► TIMESTAMP (timestamp_expression)

timestamp_str_expression

yyyymmddhhmmss_character_expression

390_storeclock_character_expression

date_expression

,time_expression

date_str_expression

,time_str_expression

 ►◄

TIME

Chapter 4. Functions 113

The result of the function is a timestamp. The data type is TIMESTAMP. If either

argument can be null, the result can be null; if either argument is null, the result is

the null value.

The other rules depend on whether the second argument is specified:

v If both arguments are specified:

The result is a timestamp with the date specified by the first argument and the

time specified by the second argument. The microsecond part of the timestamp

is zero.

v If only one argument is specified and it is a timestamp:

The result is that timestamp.

v If only one argument is specified and it is a character string:

The result is the timestamp represented by that character string. The

interpretation of a character string as a Store Clock value will yield a timestamp

with a year between 1900 to 2042 as described in the IBM System/370 Principles of

Operation manual.

Notes:

1. When a string representation of a timestamp or date and time is SBCS with a

CCSID that is not the same as the default CCSID for SBCS data, that value is

converted to adhere to the default CCSID for SBCS data before it is

interpreted and converted to a timestamp value.

2. When a string representation of a timestamp or date and time is mixed with

a CCSID that is not the same as the default CCSID for mixed data, that value

is converted to adhere to the default CCSID for mixed data before it is

interpreted and converted to a timestamp value.

Example

Assume the column START_DATE (date) has a value equivalent to 1988-12-25, and

the column START_TIME (time) has a value equivalent to 17.12.30.

 TIMESTAMP(START_DATE, START_TIME)

Returns the value ’1988-12-25-17.12.30.000000’.

TIMESTAMP

114 SQL Reference

TRANSLATE

 The TRANSLATE function returns a value in which one or more characters in a

string expression may have been translated into other characters.

char_string_exp or graphic_string_exp

A short string expression that has either a character data type (CHAR,

VARCHAR, DATE, TIME, or TIMESTAMP) or a graphic data type (GRAPHIC

or VARGRAPHIC). This argument cannot be a long string.

when the first argument is char_string_exp:

to_string_exp

Is a short string expression that has a character data type.

 If the length attribute of to_string_exp is less than the length attribute of

from_string_exp, then to_string-exp is padded to the longer length using

either the pad_char or a space.

 If the length attribute of to_string_exp is more than the length attribute

of from_string_exp, the extra characters in to_string_exp are ignored,

without a warning.

from_string_exp

Is a short string expression that has a character data type.

 If there are duplicate characters in from_string_exp, the first one

scanning from the left is used. No warning is issued.

 The default value for from_string_exp is a string of 256 characters

starting with the character X'00' and ending with the character X'FF'

(decimal 255).

pad_char

Is a CHAR(1) constant used to pad to_string_exp if it is shorter than

from_string_exp. If the length is not equal to one, an error will occur.

 The default pad_char is a space.

Note: None of the arguments can have a subtype of mixed.

►► TRANSLATE (char_string_exp char_string_exp options)

graphic_string_exp
 ►◄

char_string_exp options:

 ,’ABC...XYZ’,’abc...xyz’

,X’000102...FDFEFF’

,to_string_exp

,’ ’

,from_string_exp

,pad_char

graphic_string_exp:

graphic_string_exp

,to_string_exp

,from_string_exp
 ,G’< >’

,pad_char

TRANSLATE

Chapter 4. Functions 115

If to_string_exp is not supplied, then from_string_exp must not be supplied.

In this case, char_string_exp is simply translated to upper case. This is done

based on the folding rules specified in the SYSCHARSETS catalog table.

when the first argument is graphic_string_exp:

to_string_exp

Is a short string expression that also returns a graphic data type.

 If the length attribute of to_string_exp is less than the length attribute of

from_string_exp, then to_string_exp is padded to the longer length using

either the pad_char or a graphic space.

 If the length attribute of to_string_exp is more than the length attribute of

from_string_exp, the extra characters in to_string_exp are ignored, without a

warning.

from_string_exp

Is a short string expression that has a graphic data type.

 If there are duplicate characters in from_string_exp, the first one scanning

from the left is used. No warning is issued.

pad_char

Is a GRAPHIC(1) constant that is used to pad to_string_exp if it is shorter

than from_string_exp. If the length is not equal to 1, an error will occur.

 The default pad_char is a graphic space.

Translation Process

The result string is built character by character from char_string_exp, translating

characters in from_string_exp to the corresponding character in to_string_exp. For

each character in char_string_exp, the same character is searched for in

from_string_exp. If the character is found to be the nth character in from_string_exp,

the resulting string will contain the nth character from to_string_exp. If to_string_exp

is less than n characters long, the resulting string will contain the pad character. If

the character is not found in from_string_exp, it is moved to the result string

untranslated.

The data type and CCSID of the result depends on the data type of the string

argument. The possible data types and CCSIDs are shown in the following table:

 Input Data Type Output Data Type Output CCSID

CHAR(n) VARCHAR(n) same as that of string

VARCHAR(n) VARCHAR(n) same as that of string

GRAPHIC(n) VARGRAPHIC(n) same as that of string

VARGRAPHIC(n) VARGRAPHIC(n) same as that of string

DATE VARCHAR(n)1 CCSID default of the subtype

TIME VARCHAR(n)1 CCSID default of the subtype

TIMESTAMP VARCHAR(26) CCSID default of the subtype

1 For DATE and TIME data types, the value of n is determined by the

SYSTEM.SYSOPTIONS values for datetime formats. If a LOCAL format datetime

value is used, then n is the LOCAL length specified in SYSTEM.SYSOPTIONS,

otherwise 8, 10, and 26 will be used for TIME, DATE, and TIMESTAMP

respectively.

TRANSLATE

116 SQL Reference

The length of the result is identical to the length of the string argument. If any

argument can be null, the result can be null; if any argument is null, the result is

the null value.

The use of an argument expression (for example, column or host variable) defined

as mixed character is not allowed.

Examples

Example 1: Assume the host variable SITE (varchar(30)) has a value of ’Pivabiska

Lake Place’.

 TRANSLATE(:SITE)

Returns the value ’PIVABISKA LAKE PLACE’.

 TRANSLATE(:SITE,’$’,’L’)

Returns the value ’Pivabiska $ake Place’.

 TRANSLATE(:SITE,’$$’,’Ll’)

Returns the value ’Pivabiska $ake P$ace’.

 TRANSLATE(:SITE,’pLA’,’Place’,’.’)

Returns the value ’pivAbiskA LAk. pLA..’.

Example 2: Produce a list that includes the first three columns from all rows in

the IN_TRAY sample table and order the list on SUBJECT in a case insensitive

manner.

 SELECT SUBJECT, RECEIVED, SOURCE, TRANSLATE(SUBJECT)

 FROM IN_TRAY

 ORDER BY 4

Example 3: This shows the treatment of a graphic string.

 TRANSLATE(G’ <▌JJOOHHNN▐>’,G’ <▌AACCKK▐>’,G’ <▌OOHHNN▐>’)

Returns the value G’<▌JJAACCKK▐>’.

VALUE

 The VALUE function returns the first non-null result in a series of expressions.

v None of the expressions can be long strings.

v The data types of the arguments must be compatible.

If any argument is numeric, all arguments must be numeric (SMALLINT,

INTEGER, DECIMAL, and FLOAT). If any argument is a character string, all

arguments must be character-compatible strings (CHAR, VARCHAR, DATE, TIME,

TIMESTAMP). If any argument is a graphic string, all arguments must be graphic

strings (GRAPHIC and VARGRAPHIC).

►►

VALUE

(

expression

▼

,expression

)

►◄

TRANSLATE

Chapter 4. Functions 117

The arguments are evaluated in the order in which they are specified, and the

result value of the function is equal to the first argument that is not NULL. If the

arguments can be null, the result can be null; if all the arguments are null, the

result is the null value.

v If all arguments are dates, the result data type is a date; if all arguments are

times, the result data type is a time; and if all arguments are timestamps, the

result data type is a timestamp.

v If the arguments are strings, the CCSID of the result is calculated using the rules

given in “Conversion Rules for Operations that Combine Strings” on page 130.

v If all arguments are fixed-length strings, the result is a fixed-length string of

length n, where n is the length of the longest argument.

v If any argument is a varying-length string, the result is a varying-length string

with length attribute n, where n is the length attribute of the argument with the

greatest length attribute. The actual length of the result is the actual length of

the selected argument.

v If the arguments are numeric, the result data type is the strongest of the

argument data types (FLOAT > DECIMAL > INTEGER > SMALLINT).

v If the resultant data type is DECIMAL, precision and scale values are

determined as follows: scale is the largest result scale of any data type, and

precision is 'MIN(31,SCALE+n)' where 'n' is the largest integral part (precision

minus scale) result of any argument. For example, in VALUE(A, B, C), where A

is DECIMAL(10, 4), B is DECIMAL(8, 5), C is DECIMAL(5, 2), the resulting scale

is MAX(4, 5, 2) = 5 and the resulting precision is

 MIN(31, 5 + MAX(10-4, 8-5, 5-2)) = 11

If scale + 'n' is greater than 31, then there is a potential for a conversion error

because there may be a value whose integer part will not fit and an error occurs.

For example, in VALUE(X, Y) where X is DECIMAL(27, 2) and Y is

DECIMAL(14, 9) the resultant data type is DECIMAL(31,9). If the value of 'X' is

1000000000000000000000000.02 and the value of 'Y' is 30000.000000004, then a

decimal overflow occurs because 'X' will not fit in DECIMAL(31,9).

Examples

Example 1: Select all the values from all the rows in the DEPARTMENT table. If

the value for department manager (MGRNO) is missing (that is, null) then return a

value of ‘ABSENT’.

 SELECT DEPTNO, DEPTNAME, VALUE(MGRNO, ’ABSENT’), ADMRDEPT

 FROM DEPARTMENT

Example 2: Select the employee number (EMPNO) and salary (SALARY) from all

the rows in the EMPLOYEE table. If the salary is missing (that is, null) then return

a value of zero.

 SELECT EMPNO, VALUE(SALARY,0)

 FROM EMPLOYEE

VARGRAPHIC

 The VARGRAPHIC function returns a graphic string representation of a character

string.

►► VARGRAPHIC (expression) ►◄

VALUE

118 SQL Reference

The argument must be a character string (CHAR, VARCHAR) or a character

compatible string (DATE, TIME, TIMESTAMP). If varying-length, the maximum

length must not be greater than 127. If the argument is a character string constant

that is to be interpreted as mixed data, it must contain properly paired shift control

characters.

The result of the function is a varying-length graphic string. If the subtype of the

argument is SBCS then the CCSID of the result is the system default CCSID for

graphic data. If the subtype of the argument is mixed, then the CCSID of the result

is the graphic CCSID which makes up the DBCS portion of the mixed argument

CCSID. For details, see the DB2 Server for VM System Administration or DB2 Server

for VSE System Administration manual for the table showing mixed CCSIDs and

their corresponding DBCS (and SBCS) component CCSIDs.

If the argument can be null, the result can be null; if the argument is null, the

result is the null value. The result includes all DBCS characters of the argument

and the DBCS equivalent of all single-byte characters of the argument. The first

character of the result is the first logical character of the argument, the second

character of the result is the second logical character of the argument, and so on.

The result does not include X'0E' or X'0F'.

The DBCS equivalent of X'40' is X'4040'. The DBCS equivalent of every single-byte

character (nn) other than X'40' is X'42nn'.

The length of the result depends on the number of logical characters in the

argument. If the length or maximum length of the argument is n bytes, the

maximum length of the result is n (DBCS characters).

VARGRAPHIC will convert a mixed data value to GRAPHIC in the following

manner:

v DBCS characters from the source will be placed into the target unchanged

v SBCS characters from the source will have their DBCS equivalent placed into the

target

v No shift-in or shift-out characters will be transferred to the target.

Example

Using the EMPLOYEE table, set the host variable VAR_DESC (vargraphic(24)) to

the VARGRAPHIC equivalent of the first name (FIRSTNME) for employee number

(EMPNO) ‘000050’.

 SELECT VARGRAPHIC(FIRSTNME)

 INTO :VAR_DESC

 FROM EMPLOYEE

 WHERE EMPNO = ’000050’

VAR_DESC will be set to the GRAPHIC form of ’JOHN’ when using the sample

table. The hex representation of this is: X'42D142D642C842D5'.

VARGRAPHIC

Chapter 4. Functions 119

YEAR

 The YEAR function returns the year part of a value.

The argument must be a date, timestamp, date duration, or timestamp duration. If

a decimal number, the argument must be:

v DECIMAL(8,0) for date duration

v DECIMAL(20,6) for timestamp duration

to be properly interpreted.

The result of the function is a large integer. If the argument can be null, the result

can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument specified:

v If the argument is a date or a timestamp:

The result is the year part of the value, which is an integer between 1 and 9 999.

v If the argument is a date duration or timestamp duration:

The result is the year part of the value, which is an integer between -9 999 and

9 999. A nonzero result has the same sign as the argument.

Examples

Example 1: Select all the projects in the PROJECT table that are scheduled to start

(PRSTDATE) and end (PRENDATE) in the same calendar year.

 SELECT * FROM PROJECT

 WHERE YEAR(PRSTDATE) = YEAR(PRENDATE)

Example 2: Select all the projects in the PROJECT table that are scheduled to take

less than one year to complete.

 SELECT * FROM PROJECT

 WHERE YEAR(PRENDATE - PRSTDATE) < 1

►► YEAR (date_expression

timestamp_expression

date_duration_expression

timestamp_duration_expression

) ►◄

YEAR

120 SQL Reference

Chapter 5. Queries

A query specifies a result table.

In a program, a query is a component of certain SQL statements. There are three

forms of a query:

v The subselect

v The fullselect

v The select-statement.

There is another form of select, described under “SELECT INTO” on page 336.

Authorization

For any form of a query, the privileges held by the authorization ID of the

statement must include at least one of the following for each of the tables or views

identified in the statement:

v Ownership of the table or view

v The SELECT privilege on the table or view

v DBA authority.

subselect

 The subselect is a component of the fullselect, the CREATE VIEW statement, and

the INSERT statement. It is also a component of certain predicates which, in turn,

are components of a subselect. A subselect that is a component of a predicate is

called a subquery. If more than one table or view is identified in the FROM clause,

the subselect is called a join. (See the DB2 Server for VSE & VM Application

Programming manual for information on joining tables.)

A subselect specifies a result table derived from the tables or views identified in

the FROM clause. The derivation can be described as a sequence of operations in

which the result of each operation is input for the next. (This is only a way of

describing the subselect. The method used to perform the derivation may be quite

different from this description.)

The sequence of the (hypothetical) operations is:

1. FROM clause

2. WHERE clause

3. GROUP BY clause

4. HAVING clause

5. SELECT clause.

►► select_clause from_clause

where_clause

group_by_clause

having_clause
 ►◄

© Copyright IBM Corp. 1988, 2007 121

select-clause

 The SELECT clause specifies the columns of the final result table. The column

values are produced by the application of the select list to R. The select list is the

names or expressions specified in the SELECT clause. R is the result of the

previous operation of the subselect. For example, if the only clauses specified are

SELECT, FROM, and WHERE, R is the result of that WHERE clause.

ALL

Retains all rows of the final result table and does not eliminate redundant

duplicates. This is the default.

DISTINCT

Eliminates all but one of each set of duplicate rows of the final result table.

DISTINCT must not be used more than once in a subselect. This restriction

includes SELECT DISTINCT and the use of DISTINCT in a column function of

the select list or HAVING clause, but does not include subqueries of the

subselect.

 Two rows are duplicates of one another only if each value in the first row is

equal to the corresponding value in the second row. (For determining duplicate

rows, two null values are considered equal.)

Select List Notation

 Represents a list of names that identify the columns of table R. The first name

in the list identifies the first column of R, the second name identifies the

second column of R, and so on.

 The list of names is established when the statement containing the SELECT

clause is prepared. Hence, * does not identify any columns that have been

added to a table after the statement has been prepared.

expression

Can be any expression of the type described in Chapter 3. Each column name

used in the select list must unambiguously identify a column of R. The

operand of an operator must not be a column function that includes the

keyword DISTINCT.

name.*

Represents a list of names that identify the columns of name. The name can be a

table name, view name, or correlation name, and must designate a table or

view named in the FROM clause. The first name in the list identifies the first

column of the table or view, the second name in the list identifies the second

column of the table or view, and so on.

 The list of names is established when the statement containing the SELECT

clause is prepared. Hence, * does not identify any columns that have been

added to a table after the statement has been prepared.

►►

SELECT
 ALL

DISTINCT

▼

*

,

expression

table_name.*

view_name.*

correlation_name.*

►◄

select-clause

122 SQL Reference

The number of columns in the result of SELECT is the same as the number of

expressions in the operational form of the select list (that is, the list established

during program preparation) and must not exceed 255. The result table of a

subquery must be a single column, unless the subquery is used in the EXISTS

predicate.

Limitation on Long String Columns

No column in the list may be a long string column if:

v SELECT DISTINCT is used

v The subselect is a subquery

v The subselect is an operand of UNION or UNION ALL.

Note:

The restriction does not apply to a subquery of an EXISTS predicate because an

EXISTS subquery does not return values.

Applying the Select List

Some of the results of applying the select list to R depend on whether GROUP BY

or HAVING is used. Those results are described separately.

If GROUP BY or HAVING is used::

v Each column-name in the select list must either identify a grouping column or be

specified within a column function.

v The select list is applied to each group of R, and the result contains as many

rows as there are groups in R. When the select list is applied to a group of R,

that group is the source of the arguments of the column functions in the select

list.

If neither GROUP BY nor HAVING is used:

v The select list must not include any column functions, or it must be entirely a

list of column functions.

v If the select list does not include column functions, it is applied to each row of R

and the result contains as many rows as there are rows in R.

v If the select list is a list of column functions, R is the source of the arguments of

the functions and the result of applying the select list is one row.

In either case the nth column of the result contains the values specified by

applying the nth expression in the operational form of the select list.

Null attribute of result columns

Result columns allow null values if they are derived from:

v Any column function but COUNT

v A column that allows null values

v An arithmetic expression in an outer select list

v An arithmetic expression that allows nulls

v A scalar function or string expression that allows null values

v A host variable that has an indicator variable

v A result of a UNION if at least one of the corresponding items in the select list

is nullable.

Names of result columns

A result column derived from a column name acquires the unqualified name of

that column. All other result columns have no names.

select-clause

Chapter 5. Queries 123

Data type of result columns

Each column of the result of SELECT acquires a data type from the expression

from which it is derived.

 When the expression is ... The data type of the result column is ...

the name of any numeric column the same as the data type of the column,

with the same precision and scale for

decimal columns.

an integer constant INTEGER.

a decimal or floating-point constant the same as the data type of the constant,

with the same precision and scale for

decimal constants. For floating-point

constants, the data type is DOUBLE

PRECISION.

the name of any numeric host variable the same as the data type of the variable,

with the same precision and scale for

decimal variables. If the data type of the

variable is not identical to an SQL data type

(for example, DISPLAY SIGN LEADING

SEPARATE in COBOL), the result column is

decimal.

an arithmetic or string expression the same as the data type of the result.

Decimal results have the same precision and

scale as described under “Expressions” on

page 71.

any function (see Chapter 4 to determine the data type of

the result.)

the name of any string column the same as the data type of the column,

with the same length attribute.

the name of any string host variable the same as the data type of the variable,

with a length attribute equal to the length of

the variable. If the data type of the variable

is not identical to an SQL data type (for

example, a NUL-terminated string in C), the

result column is a varying-length string.

a character string constant of length n VARCHAR(n)

a graphic string constant of length n VARGRAPHIC(n)

the name of a datetime column the same as the data type of the column.

from-clause

 The FROM clause specifies an intermediate result table. If a single table or view is

identified, the intermediate result table is simply that table or view. If more than

one table or view is identified, the intermediate result table consists of all possible

combinations of the rows of the identified tables or views. Each row of the result is

a row from the first table or view concatenated with a row from the second table

►►

FROM

▼

 ,

table_name

view_name

correlation_name

►◄

select-clause

124 SQL Reference

or view, concatenated in turn with a row from the third, and so on. The number of

rows in the result is the product of the number of rows in all the named tables or

views.

The following rules apply to the names specified in a FROM clause:

v Each table_name or view_name must identify an existing table or view at the

application server.

v Each correlation_name is defined as a designator of the table or view identified

by the immediately preceding table_name or view_name.

v The exposed names must be unique. An exposed name is a correlation_name, a

table_name that is not followed by a correlation_name, or a view_name that is

not followed by a correlation_name.

If a correlation_name is specified for a table or view, any qualified reference to a

column of that table or view in the subselect must use that correlation_name. For

more information about the FROM clause, see “Correlation Names” on page 64.

where-clause

 The WHERE clause specifies an intermediate result table that consists of those

rows of R for which the search_condition is true. R is the result of the FROM

clause of the subselect.

The search_condition must conform to the following rules:

v Each column name must unambiguously identify a column of R or be a

correlated reference. A column name is a correlated reference if it identifies a

column of a table or view identified in an outer subselect.

v A column function must not be specified unless the WHERE clause is specified

in a subquery of a HAVING clause and the argument of the function is a

correlated reference to a group.

Any subquery in the search_condition is effectively processed for each row of R and

the results are used in the application of the search_condition to the given row of R.

A subquery is actually processed for each row of R only if it includes a correlated

reference. In fact, a subquery with no correlated references is processed just once,

whereas a subquery with a correlated reference may have to be processed once for

each row.

group-by-clause

 The GROUP BY clause specifies an intermediate result table that consists of a

grouping of the rows of R. R is the result of the previous clause of the subselect.

Each column_name must unambiguously identify a column of R other than a long

string column. Each identified column is called a grouping column.

►► WHERE search_condition ►◄

►►

GROUP BY

▼

 ,

column_name

►◄

from-clause

Chapter 5. Queries 125

The result of GROUP BY is a set of groups of rows. The rows within each group

are in an arbitrary order. In each group of more than one row, all values of each

grouping column are equal; and all rows with the same set of values of the

grouping columns are in the same group. For grouping, all null values within a

grouping column are considered equal.

Because every row of a group contains the same value of any grouping column,

the name of a grouping column can be used in a search condition in a HAVING

clause or an expression in a SELECT clause; in each case, the reference specifies

only one value for each group.

If the grouping column contains varying-length strings with trailing blanks, the

values in the group can differ in the number of trailing blanks and may not all

have the same length. In that case, a reference to the grouping column still

specifies only one value for each group, but the value for a group is chosen

arbitrarily from the available set of values. Thus, the actual length of the result

value is unpredictable.

If a field procedure is not involved, the collating sequence depends on the CCSID

of the application server. With the DRDA protocol, the application server could be

using an ASCII CCSID, producing an unexpected result to an application program

assuming an EBCDIC CCSID and code page (see the IBM SQL Reference manual for

details).

GROUP BY is ignored if used in a subquery of a basic predicate.

having-clause

 The HAVING clause specifies an intermediate result table that consists of those

groups of R for which the search_condition is true. R is the result of the previous

clause of the subselect. If this clause is not GROUP BY, R is considered a single

group with no grouping columns.

Each column name in the search_condition must:

v unambiguously identify a grouping column of R, or

v be specified within a column function, or

v be a correlated reference. A column name is a correlated reference if it identifies

a column of a table or view identified in an outer subselect.

A group of R to which the search condition is applied supplies the argument for

each column function in the search condition, except for any function whose

argument is a correlated reference.

If the search condition contains a subquery, the subquery can be thought of as

being processed each time the search condition is applied to a group of R, and the

results used in applying the search condition. In actuality, the subquery is

processed for each group only if it contains a correlated reference. For an

illustration of the difference, see examples 6 and 7 under “Examples of a subselect”

on page 127.

►► HAVING search_condition ►◄

group-by-clause

126 SQL Reference

A correlated reference to a group of R must either identify a grouping column or

be contained within a column function.

The HAVING clause must not be used in a subquery of a basic predicate.

Examples of a subselect

Example 1

Select all columns and rows from the EMPLOYEE table.

 SELECT * FROM EMPLOYEE

Example 2

Join the EMP_ACT and EMPLOYEE tables, select all the columns from the

EMP_ACT table and add the employee’s surname (LASTNAME) from the

EMPLOYEE table to each row of the result.

SELECT EMP_ACT.*, LASTNAME

 FROM EMP_ACT, EMPLOYEE

 WHERE EMP_ACT.EMPNO = EMPLOYEE.EMPNO

Example 3

Using a join-condition on the EMPLOYEE and DEPARTMENT tables, select the

employee number (EMPNO), employee name (FIRSTNME concatenated with

MIDINIT concatenated with LASTNAME), department number (WORKDEPT in

the EMPLOYEE table and DEPTNO in the DEPARTMENT table) and department

name (DEPTNAME) of all employees who were born (BIRTHDATE) earlier than

1930.

 SELECT EMPNO, FIRSTNME CONCAT ’ ’ CONCAT MIDINIT CONCAT ’ ’ CONCAT LASTNAME,

 WORKDEPT, DEPTNAME

 FROM EMPLOYEE, DEPARTMENT

 WHERE WORKDEPT = DEPTNO

 AND YEAR(BIRTHDATE) < 1930

Example 4

Select the job (JOB) and the minimum and maximum salaries (SALARY) for each

group of rows with the same job code in the EMPLOYEE table, but only for groups

with more than one row and with a maximum salary greater than or equal to 27

000.

 SELECT JOB, MIN(SALARY), MAX(SALARY)

 FROM EMPLOYEE

 GROUP BY JOB

 HAVING COUNT(*) > 1 AND MAX(SALARY) >= 27000

Example 5

Select all the rows of EMP_ACT table for employees (EMPNO) in department

(WORKDEPT) ‘E11’. (Employee department numbers are shown in the EMPLOYEE

table.)

 SELECT * FROM EMP_ACT

 WHERE EMPNO IN (SELECT EMPNO FROM EMPLOYEE

 WHERE WORKDEPT = ’E11’)

having-clause

Chapter 5. Queries 127

Example 6

From the EMPLOYEE table, select the department number (WORKDEPT) and

maximum departmental salary (SALARY) for all departments whose maximum

salary is less than the average salary for all employees.

 SELECT WORKDEPT, MAX(SALARY)

 FROM EMPLOYEE

 GROUP BY WORKDEPT

 HAVING MAX(SALARY) < (SELECT AVG(SALARY)

 FROM EMPLOYEE)

The subquery in the HAVING clause would only be processed once in this

example.

Example 7

Using the EMPLOYEE table, select the department number (WORKDEPT) and

maximum departmental salary (SALARY) for all departments whose maximum

salary is less than the average salary in all other departments.

 SELECT WORKDEPT, MAX(SALARY)

 FROM EMPLOYEE EMP_COR

 GROUP BY WORKDEPT

 HAVING MAX(SALARY) < (SELECT AVG(SALARY)

 FROM EMPLOYEE

 WHERE NOT WORKDEPT = EMP_COR.WORKDEPT)

Note: In contrast to example 6, the subquery in the HAVING clause would need to

be executed for each group.

fullselect

 A fullselect specifies a result table. If UNION is not used, the result of the fullselect

is the result of the specified subselect.

UNION or UNION ALL

Derives a result table by combining two other result tables (R1 and R2). If

UNION ALL is specified, the result consists of all rows in R1 and R2. If

UNION is specified without the ALL option, the result is the set of all rows in

either R1 or R2, with duplicate rows eliminated. In either case, each row of the

UNION table is either a row from R1 or a row from R2. The columns of the

result are not named in the SQLDA.

Two rows are duplicates if each value in the first is equal to the corresponding

value of the second. (For determining duplicates, two null values are considered

equal.)

UNION and UNION ALL are associative operations. However, when UNION and

UNION ALL are used in the same statement, the result depends on the order in

which the operations are performed. Operations within parentheses are performed

first. When the order is not specified by parentheses, operations are performed in

left-to-right order.

►►

subselect

(fullselect)

▼

UNION

subselect

UNION ALL

(fullselect)

►◄

subselect

128 SQL Reference

Rules for columns

 R1 and R2 must have the same number of columns, and the data type of the

nth column of R1 must be compatible with the data type of the nth column of

R2.

 R1 and R2 must not include long string columns.

 The nth column of the result of UNION and UNION ALL is derived from the

nth columns of R1 and R2. The following table shows all valid combinations of

operand columns and, for each combination, the data type of the result column.

If one operand column is... And the other operand is...

The data type of the result

column is...

CHAR(x) CHAR(y) CHAR(z) where z = max(x,y)

VARCHAR(x) CHAR(y) or VARCHAR(y) VARCHAR(z) where z =

max(x,y)

bit data mixed, SBCS, or bit data bit data

mixed data mixed or SBCS data mixed data

SBCS data SBCS data SBCS data

GRAPHIC(x) GRAPHIC(y) GRAPHIC(z) where z =

max(x,y)

VARGRAPHIC(x) GRAPHIC(y) or

VARGRAPHIC(y)

VARGRAPHIC(z) where z =

max(x,y)

DATE DATE DATE

TIME TIME TIME

TIMESTAMP TIMESTAMP TIMESTAMP

FLOAT (double) any numeric type FLOAT (double)

FLOAT (single) FLOAT (single) FLOAT (single)

FLOAT (single) DECIMAL, NUMERIC,

INTEGER, or SMALLINT

FLOAT (double)

DECIMAL(w,x) DECIMAL(y,z) or

NUMERIC(y,z,)

DECIMAL(p,s) where p =

max(x,z)+max(w-x,y-z) s =

max(x,z) (see note below)

DECIMAL(w,x) INTEGER DECIMAL(p,x) where p =

x+max(w-x,11) (see note

below)

DECIMAL(w,x) SMALLINT DECIMAL(p,x) where p =

x+max(w-x,5) (see note

below)

INTEGER INTEGER INTEGER

INTEGER SMALLINT INTEGER

SMALLINT SMALLINT SMALLINT

Note: A decimal result column must not have a precision greater than 31.

 If neither operand column allows nulls, the result column does not allow nulls.

Otherwise, the result column allows nulls. If the description of any operand

column is not the same as the description of the result column, its values are

converted to conform to the description of the result column.

 The conversion operation is exactly the same as if the values were assigned to

the result column. For example, if one operand column is CHAR(10), and the

fullselect

Chapter 5. Queries 129

other operand column is CHAR(5), the result column is CHAR(10), and the

values derived from the CHAR(5) column are padded on the right with five

blanks.

Examples of a fullselect

Example 1

Select all columns and rows from the EMPLOYEE table.

 SELECT * FROM EMPLOYEE

Example 2

List the employee numbers (EMPNO) of all employees in the EMPLOYEE table

whose department number (WORKDEPT) either begins with ‘E’ or who are

assigned to projects in the EMP_ACT table whose project number (PROJNO)

begins with either ‘MA2100’, ‘MA2110’, or ‘MA2112’.

 SELECT EMPNO FROM EMPLOYEE

 WHERE WORKDEPT LIKE ’E%’

 UNION

 SELECT EMPNO FROM EMP_ACT

 WHERE PROJNO IN(’MA2100’, ’MA2110’, ’MA2112’)

Example 3

Make the same query as in example 2, and, in addition, “tag” the rows from the

EMPLOYEE table with ‘emp’ and the rows from the EMP_ACT table with

‘emp_act’.

 SELECT EMPNO, ’emp’ FROM EMPLOYEE

 WHERE WORKDEPT LIKE ’E%’

 UNION

 SELECT EMPNO, ’emp_act’ FROM EMP_ACT

 WHERE PROJNO IN(’MA2100’, ’MA2110’, ’MA2112’)

Example 4

Make the same query as in example 2, only use UNION ALL so that no duplicate

rows are eliminated.

 SELECT EMPNO FROM EMPLOYEE

 WHERE WORKDEPT LIKE ’E%’

 UNION ALL

 SELECT EMPNO FROM EMP_ACT

 WHERE PROJNO IN(’MA2100’, ’MA2110’, ’MA2112’)

Conversion Rules for Operations that Combine Strings

The operations that combine strings are concatenation, UNION, and UNION ALL.

These rules also apply to the VALUE scalar function. In each case, the CCSID of

the result is determined at bind time, and the execution of the operation may

involve conversion of strings to the coded character set identified by that CCSID.

The CCSID of the result is determined by the CCSIDs of the operands. The CCSIDs

of the first two operands determine an intermediate result CCSID, this CCSID and

the CCSID of the next operand determine a new intermediate result CCSID, and so

on. The last intermediate result CCSID and the CCSID of the last operand

determine the CCSID of the result string or column. For each pair of CCSIDs, the

result CCSID is determined by the sequential application of the following rules:

v If the CCSIDs are equal, the result is that CCSID.

v If either CCSID is 65535 (X'FFFF'), the result is 65535.

v If one CCSID denotes SBCS data and the other denotes mixed data, the result is

the CCSID for mixed data.

fullselect

130 SQL Reference

v Otherwise, the result CCSID is determined by the following table:

fullselect

Chapter 5. Queries 131

Table 6. Selecting the CCSID of the Intermediate Result

First

Operand

Second Operand

Column

Value

Derived

Value Constant

Special

Register Host Variable

Column

Value first first first first first

Derived

Value second first first first first

Constant second second first first first

Special

Register second second first first first

Host Variable second second second second first

However, a host variable containing data in a foreign encoding scheme is always

converted to the native form of data before it is used in any operation. The

above rules are based on the assumption that this conversion has already

occurred.

Note that an intermediate result is considered to be a derived value operand.

For example, assume COLA, COLB, and COLC are columns with CCSIDs 37,

278, and 500, respectively. The result CCSID of COLA CONCAT COLB CONCAT

COLC would be determined as follows:

– The result of the CCSID of COLA CONCAT COLB is first determined to be

37, because both operands are columns, so the CCSID of the first operand is

chosen.

– The result CCSID of “intermediate result” CONCAT COLC is determined to

be 500, because the first operand is a derived value and the second operand

is a column, so the CCSID of the second operand is chosen.

An operand of concatenation or the selected argument of the VALUE scalar

function is converted, if necessary, to the coded character set of the result string.

Each string of an operand of UNION or UNION ALL is converted, if necessary, to

the coded character set of the result column. Character conversion is necessary

only if all of the following are true:

v The CCSIDs are different.

v Neither CCSID is 65535 (X'FFFF').

v The string is neither null nor empty.

v The CCSID Conversion Selection Table indicates that conversion is necessary.

An error occurs if a character of a string cannot be converted or if the CCSID

Conversion Selection Table is used but does not contain any information about the

CCSID pair. A warning occurs if a character of a string is converted to the

substitution character.

Examples

Example 1

Given the following:

 Expression Type CCSID

COL_1 column 00001

HV_2 host variable 00002

COL_3 column 00003

fullselect

132 SQL Reference

When evaluating the predicate:

 COL_1 CONCAT :HV_2 CONCAT COL_3

The resulting CCSID of the first two operands is 00001. Because the result of the

first concatenation is a derived string, the second concatenation will have a result

CCSID of 00003 (the column CCSID is chosen over the CCSID of the derived

string). The final CCSID is 00003.

Example 2

Using the information from the previous example, when evaluating the predicate:

 VALUE(COL_1, :HV_2, COL_3)

The resulting CCSID of the first two operands is 00001. However, the expression

type is column, not derived string, since the two operands are not combined as in

the concatenation example. Using the rules for the intermediate CCSID and the

third operand’s CCSID, 00001 (the intermediate CCSID) is chosen as the final

CCSID. This is because the CCSID of the first column is chosen over the CCSID of

the second column.

select-statement

 The select-statement is the form of a query that can be directly specified in a

DECLARE CURSOR statement, or prepared and then referenced in a DECLARE

CURSOR statement. It can also be issued interactively, causing a result table to be

displayed at your terminal. In either case, the table specified by a select-statement is

the result of the fullselect.

order-by-clause

 The ORDER BY clause specifies an ordering of the rows of the result table. If a

single column is identified, the rows are ordered by the values of that column. If

more than one column is identified, the rows are ordered by the values of the first

identified column, then by the values of the second identified column, and so on.

A long string column must not be identified.

►► fullselect

order_by_clause

for_fetch_only_clause

for_read_only_clause

(1)

update_clause

with_clause
 ►◄

Notes:

1 The update-clause cannot be specified if the fullselect contains an order-by-clause.

►►

ORDER BY

▼

 ,

ASC

column_name

integer

DESC

►◄

fullselect

Chapter 5. Queries 133

|

|

A named column may be identified by an integer or a column_name. An unnamed

column must be identified by an integer. A column is unnamed if it is derived

from a constant, an arithmetic expression, or a function. If the fullselect includes a

UNION operator, every column of the result table is unnamed.

column_name

Must unambiguously identify a column of the result table. Although columns

not included in the result table cannot be referenced in the ORDER BY clause,

the rules for unambiguous column references are the same as in the other

clauses of the fullselect. See “Column Name Qualifiers to Avoid Ambiguity” on

page 66 for more information

integer

Must be greater than 0 and not greater than the number of columns in the

result table. The integer n identifies the nth column of the result table.

ASC

Uses the values of the column in ascending order. This is the default.

DESC

Uses the values of the column in descending order.

Ordering is performed in accordance with the comparison rules described in

Chapter 3. The null value is higher than all other values. If your ordering

specification does not determine a complete ordering, rows with duplicate values

of the last identified column have an arbitrary order. If the ORDER BY clause is

not specified, the rows of the result table have an arbitrary order.

If a field procedure is not involved, the collating sequence depends on the CCSID

of the application server. With the DRDA protocol, the application server could be

using an ASCII CCSID, producing an unexpected result to an application program

assuming an EBCDIC CCSID and code page (see the IBM SQL Reference for

details).

for_fetch_only/for_read_only clause

The FOR FETCH/READ ONLY clause forces blocking on read only cursors

without the use of BLOCK as a preprocessing option.

 If the application has been preprocessed with the NOBLOCK option (no

blocking) then the FOR FETCH ONLY will be ignored.

 FOR READ ONLY is a synonym of the FOR FETCH ONLY.

update-clause

 The UPDATE clause identifies the columns that can be updated in a subsequent

Positioned UPDATE statement. Each column_name must be unqualified and must

identify a column of the table or view identified in the first FROM clause of the

fullselect. The clause must not be specified if the result table of the fullselect is

read-only.

If an UPDATE clause is specified, only the columns identified in that clause can be

updated in subsequent Positioned UPDATE statements.

►►

▼

 ,

FOR UPDATE OF

column_name

►◄

order-by-clause

134 SQL Reference

|

|

|

|

|

|

If a dynamically prepared select-statement does not include an UPDATE clause, its

associated cursor is not updateable.

The use of this clause for statically prepared select-statements and statically

prepared Positioned UPDATE statements depends on whether the NOFOR

preprocessor option is in effect. If the UPDATE clause is not specified:

v If NOFOR is in effect, all updateable columns can be updated in subsequent

Positioned UPDATE statements.

v If NOFOR is not in effect, the cursor associated with the select-statement is not

updateable.

See the DB2 Server for VSE & VM Application Programming manual for information

on preprocessing and running programs.

If blocking is not in effect, a row may be deleted from a non-read-only table if the

FOR UPDATE OF clause is specified.

If blocking is in effect and you intend to perform a positioned delete operation,

blocking must be explicitly turned off by specifying the FOR UPDATE OF clause in

the DECLARE statement.

Notes:

1. There is no corresponding FOR DELETE OF clause.

2. The order-by clause is not allowed with the update-clause.

with-clause

 The WITH clause specifies the isolation level at which the statement is executed.

RR

Repeatable read

CS

Cursor stability

UR

Uncommitted read

 WITH UR can be specified only if the result table is read-only.

The isolation level specified on the SELECT statement will override any other

isolation level specification; for example, in ISQL, if SET ISOLATION CS has been

specified, and a SELECT statement WITH UR is executed, that statement will use

an isolation level of uncommitted read. A SELECT statement without the WITH

clause will use an isolation level of CS, as defined by the SET ISOLATION

statement. As another example, a statement specifying WITH UR in a package

prepped with ISOL(CS) will use an isolation level of uncommitted read.

If a SELECT statement specifying WITH UR is used with a cursor that is not

read-only, SQLCODE -173 will be returned indicating that WITH UR cannot be

specified on a select statement used in a non-read-only cursor.

►► WITH RR

CS

UR

 ►◄

update-clause

Chapter 5. Queries 135

Examples of a select-statement

Example 1

Select all columns and rows from the EMPLOYEE table.

 SELECT * FROM EMPLOYEE

Example 2

Select the project name (PROJNAME), start date (PRSTDATE), and end date

(PRENDATE) from the PROJECT table. Order the result table by the end date with

the most recent dates appearing first.

 SELECT PROJNAME, PRSTDATE, PRENDATE

 FROM PROJECT

 ORDER BY PRENDATE DESC

Example 3

Select the department number (WORKDEPT) and average departmental salary

(SALARY) for all departments in the EMPLOYEE table. Arrange the result table in

ascending order by average departmental salary.

 SELECT WORKDEPT, AVG(SALARY)

 FROM EMPLOYEE

 GROUP BY WORKDEPT

 ORDER BY 2

Example 4

Declare a cursor named UP_CUR to be used in a PL/I program to update the start

date (PRSTDATE) and the end date (PRENDATE) columns in the PROJECT table.

The program must receive both of these values together with the project number

(PROJNO) value for each row.

 EXEC SQL DECLARE UP_CUR CURSOR FOR

 SELECT PROJNO, PRSTDATE, PRENDATE

 FROM PROJECT

 FOR UPDATE OF PRSTDATE, PRENDATE;

select-statement

136 SQL Reference

Chapter 6. Statements

This chapter contains syntax diagrams, semantic descriptions, rules, and examples

of the use of the SQL statements listed in the following table.

 Table 7. SQL Statements

SQL Statement Function Refer to Page

ACQUIRE DBSPACE Obtains and names a dbspace. “ACQUIRE DBSPACE” on

page 144

ALLOCATE CURSOR Defines a cursor and associates it with a result set

locator variable.

“ALLOCATE CURSOR” on

page 146

ALTER DBSPACE Alters the percentage of free space. Also alters the lock

size of a PUBLIC dbspace.

“ALTER DBSPACE” on

page 148

ALTER PROCEDURE Alters the definition of an existing stored procedure. “ALTER PROCEDURE” on

page 150

ALTER PSERVER Alters the definition of an existing stored procedure

server.

“ALTER PSERVER” on page

155

ALTER TABLE Adds a column to a table or manages referential

constraints.

“ALTER TABLE” on page

157

ASSOCIATE LOCATORS Obtains the RESULT SET LOCATOR value for each

result set returned by a stored procedure.

“ASSOCIATE LOCATORS”

on page 166

BEGIN DECLARE

SECTION

Marks the beginning of a host variable declaration

section.

“BEGIN DECLARE

SECTION” on page 169

CALL Invokes a stored procedure. “CALL” on page 171

CLOSE Closes a cursor. “CLOSE” on page 175

Extended CLOSE Closes a cursor defined by an Extended DECLARE

CURSOR statement.

“Extended CLOSE” on page

177

COMMENT ON Replaces or adds a comment to the description of a

table, view, or column.

“COMMENT ON” on page

178

COMMENT ON

PROCEDURE

Replaces or adds a comment to the description of a

stored procedure identified.

“COMMENT ON

PROCEDURE” on page 180

COMMIT Terminates a logical unit of work and commits the

database changes made by that logical unit of work.

“COMMIT” on page 182

CONNECT Connects to an application server. “CONNECT (for VM)” on

page 185

CREATE INDEX Defines an index on a table. “CREATE INDEX” on page

198

CREATE PACKAGE Creates a package. “CREATE PACKAGE” on

page 201

CREATE PROCEDURE Defines a stored procedure. “CREATE PROCEDURE”

on page 208

CREATE PSERVER Defines a stored procedure server. “CREATE PSERVER” on

page 216

CREATE SYNONYM Defines an alternate name for a table or view. “CREATE SYNONYM” on

page 218

CREATE TABLE Defines a table. “CREATE TABLE” on page

219

© Copyright IBM Corp. 1988, 2007 137

Table 7. SQL Statements (continued)

SQL Statement Function Refer to Page

CREATE VIEW Defines a view of one or more tables or views. “CREATE VIEW” on page

231

DECLARE CURSOR Defines an SQL cursor. “DECLARE CURSOR” on

page 235

Extended DECLARE

CURSOR

Defines a cursor that is to be associated with a

statement that was prepared using an Extended

PREPARE statement.

“Extended DECLARE

CURSOR” on page 240

DELETE Deletes zero or more rows from a table. “DELETE” on page 242

DESCRIBE Describes the result columns of a prepared statement. “DESCRIBE” on page 247

Extended DESCRIBE Describes the result columns of a SELECT statement that

was prepared using an Extended PREPARE statement.

“Extended DESCRIBE” on

page 251

DESCRIBE CURSOR Obtains information about the result set that is

associated with the cursor and puts that information

into a descriptor.

“DESCRIBE CURSOR” on

page 252

DESCRIBE PROCEDURE Obtains information about the result sets returned by a

stored procedure and puts that information into a

descriptor.

“DESCRIBE PROCEDURE”

on page 254

DROP Deletes a dbspace, index, package. synonym, table, or

view

“DROP” on page 257

DROP PROCEDURE Deletes the definition of a stored procedure. “DROP PROCEDURE” on

page 260

DROP PSERVER Deletes the definition of a stored procedure server. “DROP PSERVER” on page

261

DROP STATEMENT Deletes a statement from a package created with

CREATE PACKAGE.

“DROP STATEMENT” on

page 262

END DECLARE SECTION Marks the end of a host variable declaration section. “END DECLARE

SECTION” on page 263

EXECUTE Executes a prepared SQL statement. “EXECUTE” on page 264

Extended EXECUTE Executes an SQL statement prepared using an Extended

PREPARE statement.

“Extended EXECUTE” on

page 268

EXECUTE IMMEDIATE Prepares and executes an SQL statement. “EXECUTE IMMEDIATE”

on page 270

EXPLAIN Obtains information about the structure and execution

performance of a DELETE, INSERT, UPDATE, or

SELECT statement.

“EXPLAIN” on page 273

FETCH Assigns values of a row of a result table to host

variables.

“FETCH” on page 283

Extended FETCH Assigns values of a row in a result table to host

variables using a cursor defined by an Extended

DECLARE CURSOR statement.

“Extended FETCH” on page

287

GRANT (Package

Privileges)

Grants privilege to execute statements in a package “GRANT (Package

Privileges)” on page 288

GRANT (System

Authorities)

Grants system authorities. “GRANT (System

Authorities)” on page 290

GRANT (Table Privileges) Grants privileges on a table or view. “GRANT (Table Privileges)”

on page 293

INCLUDE Inserts declarations into a source program. “INCLUDE” on page 296

138 SQL Reference

Table 7. SQL Statements (continued)

SQL Statement Function Refer to Page

INSERT Inserts zero or more rows into a table. “INSERT” on page 298

LABEL ON Replaces or adds a label on the description of a table,

view, or column.

“LABEL ON” on page 303

LOCK DBSPACE Either prevents concurrent processes from changing a

dbspace or prevents concurrent processes from using a

dbspace.

“LOCK DBSPACE” on page

305

LOCK TABLE Either prevents concurrent processes from changing a

table or prevents concurrent processes from using a

table.

“LOCK TABLE” on page

306

OPEN Opens a cursor. “OPEN” on page 307

Extended OPEN Opens a cursor defined by an Extended DECLARE

CURSOR statement.

“Extended OPEN” on page

312

PREPARE Prepares an SQL statement (with optional parameters)

for execution within the same logical unit of work.

“PREPARE” on page 313

Extended PREPARE Prepares an SQL statement into a package created with

CREATE PACKAGE.

“Extended PREPARE” on

page 317

PUT Inserts (a row of) data into a table. “PUT” on page 322

Extended PUT Inserts (a row of) data into a table using a cursor

defined by an Extended DECLARE CURSOR statement.

“Extended PUT” on page

325

REVOKE (Package

Privileges)

Revokes the privilege to execute statements in a

package.

“REVOKE (Package

Privileges)” on page 327

REVOKE (System

Authorities)

Revokes system authorities. “REVOKE (System

Authorities)” on page 328

REVOKE (Table Privileges) Revokes privileges on a table or view. “REVOKE (Table

Privileges)” on page 330

ROLLBACK Terminates a logical unit of work and backs out the

database changes made by that unit of work.

“ROLLBACK” on page 334

SELECT INTO Specifies a result table of no more than one row and

assigns the values to host variables.

“SELECT INTO” on page

336

UPDATE Updates the values of one or more columns in zero or

more rows of a table.

“UPDATE” on page 338

UPDATE STATISTICS Update statistics on tables and indexes in system

catalogs.

“UPDATE STATISTICS” on

page 344

WHENEVER Defines actions to be taken on the basis of SQL return

codes.

“WHENEVER” on page 346

How SQL Statements Are Invoked

The SQL statements described in this chapter are classified as executable or

nonexecutable. The Invocation section in the description of each statement indicates

whether the statement is executable.

An executable statement can be invoked in three ways:

v Embedded in an application program

v Dynamically prepared and processed

v Issued interactively.

Chapter 6. Statements 139

Depending on the statement, you can use some or all of these methods. The

Invocation section in the description of each statement tells you which methods can

be used.

A nonexecutable statement can only be embedded in an application program.

In addition to the statements described in this chapter, there is one more SQL

statement construct: the select-statement. (See “select-statement” on page 133.) It is

not included in this chapter because it is used differently from other statements.

A select-statement can be invoked in three ways:

v Included in DECLARE CURSOR and implicitly processed by OPEN

v Dynamically prepared, referenced in DECLARE CURSOR, and implicitly

processed by OPEN

v Entered interactively.

The first two methods are called, respectively, the static and the dynamic invocation

of select-statement.

The different methods of invoking an SQL statement are discussed below in more

detail. For each method, the discussion includes the mechanism of execution,

interaction with host variables, and testing if the execution was successful.

Embedding a Statement in an Application Program

You can include SQL statements in a source program that will be submitted to the

preprocessor. Such statements are said to be embedded in the program. An

embedded statement can be placed where a similar host language statement is

allowed in the program. You must precede each embedded statement with EXEC

SQL.

Executable statements

An executable statement embedded in an application program is run every time a

statement of the host language would be processed if specified in the same place.

(Thus, for example, a statement within a loop is run every time the loop is

processed, and a statement within a conditional construct is run only when the

condition is satisfied.)

An embedded statement can contain references to host variables. A host variable

referenced in this way can be used in two ways:

v As input (the current value of the host variable is used in the execution of the

statement)

v As output (the variable is assigned a new value as a result of executing the

statement).

In particular, all references to host variables in expressions and predicates are

effectively replaced by current values of the variables, that is, the variables are

used as input. The treatment of other references is described individually for each

statement.

All executable statements should be followed by a test of an SQL return code (see

“SQL Return Codes” on page 142). Alternatively, you can use the WHENEVER

statement (which is itself nonexecutable) to change the flow of control immediately

after the execution of an embedded statement.

140 SQL Reference

If the program is prepared with the NOEXIST option (see the DB2 Server for VSE &

VM Application Programming manual), then objects referenced in SQL statements

need not exist when the statements are prepared.

Nonexecutable statements

An embedded nonexecutable statement is processed only by the preprocessor. The

preprocessor reports any errors encountered in the statement. The statement is

never processed, and acts as a no-operation if placed among executable statements

of the application program. Therefore, you should not follow such statements by a

test of an SQL return code.

Dynamic Preparation and Execution

Your application program can dynamically build an SQL statement in the form of a

character string placed in a host variable. In general, the statement is built from

some data available to the program (for example, input from a terminal). The

statement so constructed can be prepared for execution by means of the

(embedded) statement PREPARE and processed by means of the (embedded)

statement EXECUTE. Alternatively, you can use the (embedded) statement

EXECUTE IMMEDIATE to prepare and process a statement in one step.

A statement that is going to be dynamically prepared must not contain references

to host variables. It can instead contain parameter markers. (See “PREPARE” on

page 313 for rules concerning the parameter markers.) When the prepared

statement is processed, the parameter markers are effectively replaced by current

values of the host variables specified in the EXECUTE statement. (See “EXECUTE”

on page 264 for rules concerning this replacement.) After prepared, a statement can

be processed several times with different values of host variables. Note that

parameter markers are not allowed in EXECUTE IMMEDIATE.

The successful or unsuccessful execution of the statement is indicated by the

setting of an SQL return code in the SQLCA after the EXECUTE (or EXECUTE

IMMEDIATE) statement. You should check the SQL return code as described above

for embedded statements. See “SQL Return Codes” on page 142 for more

information.

Static Invocation of a select-statement

You can include a select-statement as a part of the (nonexecutable) statement

DECLARE CURSOR. Such a statement is processed every time you open the cursor

by means of the (embedded) statement OPEN. After the cursor is open, you can

retrieve the result table a row at a time by successive executions of the FETCH

statement.

The select-statement used in this way may contain references to host variables.

These references are effectively replaced by the values that the variables have at

the moment of executing OPEN.

Dynamic Invocation of a select-statement

Your application program can dynamically build a select-statement in the form of a

character string placed in a host variable. In general, the statement is built from

some data available to the program (for example, a query obtained from a

terminal). The statement so constructed can be prepared for execution by means of

the (embedded) statement PREPARE, and referenced by a (nonexecutable)

statement DECLARE CURSOR. The statement is then processed every time you

Chapter 6. Statements 141

open the cursor by means of the (embedded) statement OPEN. After the cursor is

open, you can retrieve the result table one row at a time by successive executions

of the FETCH statement.

The select-statement used in that way must not contain references to host variables.

It can instead contain parameter markers. (See “PREPARE” on page 313 for rules

concerning the parameter markers.) The parameter markers are effectively replaced

by the values of the host variables specified in the OPEN statement. (See “OPEN”

on page 307 for rules concerning this replacement.)

Interactive Invocation

A capability for entering SQL statements from a terminal is part of the architecture

of the database manager. This product provides ISQL and the Database Services

utility for this facility. An associated product, Query Management Facility (QMF),

also provides interactive access to DB2 Server for VSE & VM databases. A

statement entered in this way is said to be issued interactively. See the DB2 Server

for VSE & VM Interactive SQL Guide and Reference manual and the DB2 Server for

VSE & VM Database Services Utility manual for more information and examples.

A statement issued interactively must be an executable statement that does not

contain parameter markers or references to host variables. These make sense only

in the context of an application program.

SQL Return Codes

An application program containing executable SQL statements must either provide

a structure named SQLCA or a stand-alone integer variable named SQLCODE

(SQLCOD in Fortran and RPG). An SQLCA is provided automatically in REXX and

RPG. In other languages, an SQLCA can be obtained by using the INCLUDE

SQLCA statement. INCLUDE SQLCA must not be used if a stand-alone SQLCODE

is provided.

The SQLCA includes an integer variable named SQLCODE (SQLCOD in Fortran

and RPG). The option of providing a stand-alone SQLCODE instead of an SQLCA

allows for conformance with the ISO/ANSI SQL standard. This option can be

requested with either the STDSQL(89) or NOSQLCA preprocessor option as

described in the DB2 Server for VSE & VM Application Programming manual.

SQLCODE

Regardless of whether the application program provides an SQLCA or a

stand-alone variable, SQLCODE is set by the database manager after each SQL

statement is processed. All IBM database managers conform to the ISO/ANSI SQL

standard, as follows:

v If SQLCODE = 0 and SQLWARN0 is blank, execution was successful.

v If SQLCODE = 100, “no data” was found. For example, a FETCH statement

returned no data, because the cursor was positioned after the last row of the

result table.

v If SQLCODE > 0 and not = 100, execution was successful with a warning.

v If SQLCODE = 0 and SQLWARN0 = 'W', execution was successful with a

warning.

v If SQLCODE < 0, execution was not successful.

The meaning of SQLCODE values other than 0 and 100 is usually product-specific.

142 SQL Reference

SQLSTATE

SQLSTATE is also set by the database manager after execution of each SQL

statement. Thus, application programs can check the execution of SQL statements

by testing SQLSTATE instead of SQLCODE. SQLSTATE (SQLSTT in Fortran and

RPG) is a character string variable in the SQLCA.

SQLSTATE provides application programs with common codes for common error

conditions. Furthermore, SQLSTATE is designed so that application programs can

test for specific errors or classes of errors. The coding scheme is the same for all

database managers and is based on the proposed ISO/ANSI SQL2 standard. See

“SQLSTATEs” in the DB2 Server for VM Messages and Codes or the DB2 Server for

VSE Messages and Codes manual for more information and a complete list of the

possible values of SQLSTATE.

SQL Comments

Static SQL statements can include host language or SQL comments. SQL comments

are introduced by two hyphens.

These rules apply to the use of SQL comments:

v The two hyphens must be on the same line, not separated by a space.

v Comments can be started wherever a space is valid (except within a delimiter

token or before or between 'EXEC' and 'SQL').

v Comments are terminated by the end of line.

v Comments are not allowed within statements that are dynamically prepared

(using PREPARE or EXECUTE IMMEDIATE) or prepared using any of the

extended dynamic PREPARE statements.

v In COBOL, the hyphens must be preceded by a space.

For host language rules regarding the use of SQL comments, see the DB2 Server for

VSE & VM Application Programming manual.

Example

This example shows how to include comments in a statement:

 CREATE VIEW PRJ_MAXPER -- projects with most support personnel

 AS SELECT PROJNO, PROJNAME -- number and name of project

 FROM PROJECT

 WHERE DEPTNO = ’E21’ -- systems support dept code

 AND PRSTAFF > 1

Chapter 6. Statements 143

ACQUIRE DBSPACE

The ACQUIRE DBSPACE statement causes the database manager to find and name

an available dbspace.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v DBA authority to acquire either a public dbspace or a dbspace for another user

v RESOURCE authority to acquire a private dbspace.

Syntax

Description

PUBLIC/PRIVATE

Is the type of dbspace requested. If the dbspace is PUBLIC, its owner becomes

PUBLIC; if the type is PRIVATE, its owner becomes the authorization ID of the

statement.

NAMED dbspace-name

Provides a name for the dbspace. The name must be a valid SQL identifier. It

must be unique within all the dbspaces owned by the same user, but may

duplicate the name of a dbspace owned by another user.

 If the dbspace name of a private dbspace is qualified, the qualifier is the owner

of the dbspace. Otherwise, the authorization ID of the statement is the owner

of the dbspace. The owner has all privileges on the dbspace. The privileges can

be granted by the owner and cannot be revoked from the owner.

►► ACQUIRE PUBLIC

PRIVATE
 DBSPACE NAMED dbspace_name ►

►

▼

,

(1)

8

(

NHEADER =

integer

)

128

PAGES =

integer

33

PCTINDEX =

integer

15

PCTFREE =

integer

PAGE

LOCK =

DBSPACE

ROW

STORPOOL =

integer

 ►◄

Notes:

1 If any of these clauses is specified more than once, the value with the first

specification is used.

ACQUIRE DBSPACE

144 SQL Reference

If the dbspace name of a public dbspace is qualified, the qualifier must be

"PUBLIC".

NHEADER

Is the number of 4096-byte logical pages in the dbspace that the database

manager reserves for header pages. Header pages record information about the

contents of the dbspace. NHEADER cannot be larger than eight pages.

PAGES

Is the minimum number of 4096-byte logical pages required for this dbspace.

The database manager determines the page number by rounding the number

you specify to the next higher multiple of 128.

PCTINDEX

Is the percentage of all pages in the dbspace that the database manager is to

reserve for the construction of indexes.

PCTFREE

Is the percentage of space on each page that the database manager is to keep

free when data is inserted into the dbspace.

LOCK

Is the lock size, applicable to public dbspaces only. The lock size determines

the extent of locking that the database manager acquires when a user reads or

updates data. If ROW is specified, only a row in the table is locked; PAGE or

DBSPACE cause the smallest lockable unit to be a page (4096 bytes) or the

dbspace, respectively.

STORPOOL

Is the storage pool number. This parameter tells the database manager to

acquire the dbspace from a specified storage pool. If a dbspace of the specified

type and size is not available in the storage pool, the ACQUIRE DBSPACE is

not successful and the database manager returns an error. If STORPOOL is not

specified, the database manager acquires a dbspace of the correct size and type

from any recoverable storage pool. For more information, see the DB2 Server

for VM System Administration or DB2 Server for VSE System Administration

manual.

Examples

Acquire a private dbspace in storage pool number 3 and call it FCPSPACE. Leave

25% of the space free on each page.

 ACQUIRE PRIVATE DBSPACE NAMED FCPSPACE

 (STORPOOL=3, PCTFREE=25)

ACQUIRE DBSPACE

Chapter 6. Statements 145

ALLOCATE CURSOR

The ALLOCATE CURSOR statement defines a cursor and associates it with a result

set locator variable.

Invocation

This statement can be embedded in an application program. It is an executable

statement that can be dynamically prepared. It cannot by issued interactively.

Authorization

None required.

Syntax

Description

cursor-name

Identifies a cursor name, which must be unique within the logical unit of work

in which it is used. It is an ordinary identifier.

CURSOR FOR RESULT SET rs–locator–variable

Identifies a result set locator variable that has been declared in the application

program according to the rules for declaring result set locator variables. The

result set locator variable must contain a valid result set locator value, as is

returned by the ASSOCIATE LOCATORS or DESCRIBE PROCEDURE SQL

statement.

Notes

1. Dynamically prepared ALLOCATE CURSOR statements:

One restriction is that a statement identifier cannot be used for an ALLOCATE

CURSOR statement if the same statement identifier has been used for a

DECLARE CURSOR statement. For example, the following SQL statements are

not valid because the PREPARE statement uses STMT1 as an identifier for the

ALLOCATE CURSOR statement when it has already been used for a DECLARE

CURSOR statement:

DECLARE C1 CURSOR FOR STMT1;

PREPARE STMT1 FROM

 ’ALLOCATE C2 CURSOR FOR RESULT SET ?’; INVALID

If an ALLOCATE CURSOR statement is dynamically prepared, the DYNALC

prep option must be used for the preprocessor to successfully process any

FETCH statements issued against the allocated cursor. If the prep option is not

used, the preprocessor returns SQLCODE -504 for these FETCH statements

because the cursor was not identified by the prep.

2. Rules for using an allocated cursor:

The following rules apply when you use an allocated cursor:

v You cannot open an allocated cursor by using the SQL OPEN cursor

statement.

v You can close an allocated cursor by using the SQL CLOSE cursor statement.

This closes the cursor in the stored procedure as well.

►► ALLOCATE cursor-name CURSOR FOR RESULT SET rs-locator-variable ►◄

ALLOCATE CURSOR

146 SQL Reference

v You can allocate only one cursor to each result set.

3. Mortality of an allocated cursor:

A rollback and an implicit and explicit close will destroy allocated cursors. A

commit destroys allocated cursors that are not defined WITH HOLD by the

stored procedure. However, note that DB2 Server for VSE & VM does not

support CURSOR WITH HOLD. Destroying an allocated cursor closes the

associated cursor in the stored procedure.

4. For the ALLOCATE CURSOR statement to be successful, the application must

be connected to the site at which the stored procedure was executed.

Examples

The statement in the following example is assumed to be in a PL/I program.

Define and associate cursor C1 with the result set locator variable :loc1 and the

related result set returned by the stored procedure:

 EXEC SQL ALLOCATE C1 CURSOR FOR RESULT SET :loc1

ALLOCATE CURSOR

Chapter 6. Statements 147

ALTER DBSPACE

The ALTER DBSPACE statement lets you change the amount of free space that the

database manager reserves on each data page, and lets you change the type of a

lock on a public dbspace.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v For a private dbspace:

 Ownership of the dbspace or

 DBA authority.

v For a public dbspace:

 DBA authority.

Syntax

Description

dbspace_name

Identifies the dbspace to be changed. It must be a dbspace that exists at the

application server.

PCTFREE

Is the percentage of space on each page that the database manager is to keep

empty when inserting data into the dbspace’s tables. A common practice is to

set PCTFREE to a higher value when a dbspace is acquired, load the data, and

create an index defined in the same order as the data was loaded. After this

process is complete, the PCTFREE is lowered. Some or all of the free space is

now available for inserts. The judicious use of reserved free space may result

in a more favorable placement of data on pages and, therefore, improve access

time.

LOCK

Alters the lock size of a public dbspace. The valid lock sizes are DBSPACE,

PAGE, and ROW. If DBSPACE is specified, the system locks the whole

dbspace. Page causes the smallest lockable unit to be a page (4096 bytes); ROW

causes this unit to be a row.

►►

ALTER DBSPACE

dbspace_name

▼

 ,

(1)

(

PCTFREE = integer

)

LOCK =

PAGE

DBSPACE

ROW

►◄

Notes:

1 If either of these clauses is specified more than once, the value with the first

specification is used.

ALTER DBSPACE

148 SQL Reference

Examples

Example 1

Alter your private dbspace named FCPSPACE so that no space is reserved on any

of the pages.

 ALTER DBSPACE FCPSPACE (PCTFREE=0)

Example 2

Alter a public dbspace named SPACE so that the pages are locked and the amount

of free space is reduced to 3%.

 ALTER DBSPACE PUBLIC.SPACE

 (PCTFREE=3, LOCK=PAGE)

ALTER DBSPACE

Chapter 6. Statements 149

ALTER PROCEDURE

The ALTER PROCEDURE statement is used to alter the definition of an existing

stored procedure. It updates the catalog and the corresponding cached information.

The STOP PROC command must be issued with the REJECT option before the

ALTER PROCEDURE statement will be accepted.

Invocation

This statement can be issued from an application program or interactively. It is an

executable statement that can be dynamically prepared.

Authorization

The issuer of the ALTER PROCEDURE must have DBA authority.

Syntax

ALTER PROCEDURE

►► ALTER PROCEDURE procedure-name

AUTHID

authid
 ►

►

▼

 ,

(1)

options

►◄

Notes:

1 One or more clauses may be specified, however each clause may be specified

at most once.

ALTER PROCEDURE

150 SQL Reference

options:

 LANGUAGE ASSEMBLE

C

COBOL

PLI

EXTERNAL NAME

external-program-name

SERVER GROUP

server-group-name

DEFAULT SERVER GROUP YES

DEFAULT SERVER GROUP NO

(1)

GENERAL

PARAMETER STYLE

(2)

GENERAL WITH NULLS

STAY RESIDENT

NO

YES

PROGRAM TYPE MAIN

(3)

PROGRAM TYPE SUB

RUN OPTIONS

run-time-options

RESULT

SET

integer

SETS

COMMIT ON RETURN

NO

YES

(4)

(5)

NOT DETERMINISTIC

(4)

(6)

DETERMINISTIC

(4)

CONTAINS SQL

(4)

NO SQL

(4)

READS SQL DATA

(4)

MODIFIES SQL DATA

(4)

NO COLLID

(4)

COLLID

collection-id

(4)

WLM ENVIRONMENT

name

(name,*)

(4)

NO WLM ENVIRONMENT

(4)

ASUTIME

NO LIMIT

LIMIT

integer

(4)

EXTERNAL SECURITY

DB2

USER

DEFINER

(4)

NO DBINFO

(4)

DBINFO

Notes:

1 SIMPLE CALL may be used as an alternative to GENERAL. This is for

compatibility within the DB2 family.

2 SIMPLE CALL WITH NULLS may be used as an alternative to GENERAL

WITH NULLS. This is for compatibility within the DB2 family.

3 Currently, DB2 Server for VSE & VM supports stored procedures written as

main programs only.

4 This parameter is included for compatibility with the DB2 family. If specified,

it is ignored.

ALTER PROCEDURE

Chapter 6. Statements 151

5 VARIANT may be specified as an alternative to NOT DETERMINISTIC. This

is for compatibility within the DB2 family.

6 NOT VARIANT may be specified as an alternative to DETERMINISTIC. This

is for compatibility within the DB2 family.

Only the parameters that are meaningful to DB2 Server for VSE & VM are

described here. If a parameter is not specified on the ALTER PROCEDURE

statement, its value is unchanged.

Description

procedure-name

Names the stored procedure. For DB2 Server for VSE & VM, the name must be

an ordinary identifier of 18 characters or less.

authid

The authorization ID for the stored procedure. The authid must be an ordinary

identifier of 8 characters or less. If specified, then only the version of

procedure-name that is accessible only by authid will be altered.

LANGUAGE

Specifies the programming language used to create the stored procedure. All

stored procedure programs must be designed to run in the IBM Language

Environment.

ASSEMBLE

Specifies that the stored procedure is written in Assembler.

C Specifies that the stored procedure is written in C.

COBOL

Specifies that the stored procedure is written in COBOL.

PLI Specifies that the stored procedure is written in PLI.

EXTERNAL NAME external-program-name

Identifies the load module or phase associated with the stored procedure. The

external-program-name must be an ordinary identifier of 8 characters or less. The

load module or phase does not need to exist when the ALTER PROCEDURE

statement is issued. However, when a CALL for the stored procedure is issued,

the load module must exist and be accessible to the stored procedure server.

SERVER GROUP server-group-name

Identifies the group of stored procedure servers in which this stored procedure

will run. If specified, server-group-name must be an ordinary identifier of 18

characters or less. server-group-name must be defined in

SYSTEM.SYSPSERVERS.

 The SERVER GROUP clause can be specified without a server group name.

This provides the ability to take a stored procedure out of a named group and

move it to the default group. If server-group-name is not specified, the stored

procedure must be able to run in the default group. The DEFAULT SERVER

GROUP clause determines whether the stored procedure can run in the default

stored procedure server group.

DEFAULT SERVER GROUP

Specifies whether the stored procedure can run in the default server group.

YES The stored procedure can run in the default server group.

NO The stored procedure cannot run in the default server group. If NO is

ALTER PROCEDURE

152 SQL Reference

specified, the SERVER GROUP clause must have been provided on the

CREATE PROCEDURE statement, or it must be provided on the

ALTER PROCEDURE statement.

PARAMETER STYLE

Identifies the linkage convention used to pass parameters to the stored

procedure. All of the linkage conventions provide arguments to the stored

procedure containing the parameters specified on the SQL CALL statement. See

the DB2 Server for VSE & VM Database Administration manual for more

information. The following parameter styles options are valid for DB2 Server

for VSE & VM:

GENERAL

If the GENERAL linkage convention is used:

v the SQL CALL statement must provide a parameter for each

parameter expected by the stored procedure

v input parameters cannot be null

v nulls can be passed for output parameters only

v the stored procedure cannot return nulls for output parameters

GENERAL WITH NULLS

If the GENERAL WITH NULLS linkage convention is used:

v the SQL CALL statement must provide a parameter for each

parameter expected by the stored procedure. When the database

manager invokes the stored procedure, it sends it the parameters

specified on the SQL CALL statement, as well as an array of

indicator variables (with one indicator variable for each parameter).

The stored procedure must contain a declaration for this array.

v input parameters can be null. This is achieved through the use of

indicator variables, or by specifying the keyword null.

v the stored procedure can return nulls for output parameters, by

using indicator variables.

STAY RESIDENT

Specifies whether the stored procedure load module or phase remains loaded

in memory after the stored procedure ends. Possible values are:

NO The load module or phase is deleted from memory after the stored

procedure ends.

YES The load module or phase remains loaded in memory after the stored

procedure ends.

PROGRAM TYPE

Specifies whether the stored procedure runs as a MAIN routine or as a SUB

routine. Currently, DB2 Server for VSE & VM supports only stored procedures

written as MAIN routines. If PROGRAM TYPE SUB is specified, DB2 Server

for VSE & VM will override it with PROGRAM TYPE MAIN.

RUN OPTIONS

Specifies the Language Environment run-time options to be passed to the

stored procedure. The options must be specified as a character string up to 254

bytes enclosed in single quotation marks. If this option is not specified, or an

empty string is passed, then DB2 Server for VSE & VM passes no run-time

options to the Language Environment, and Language Environment uses its

installation defaults. Note that DB2 Server for VSE & VM does not do any

ALTER PROCEDURE

Chapter 6. Statements 153

checking of the options provided. For a complete description of Language

Environment run-time options, see Language Environment for MVS & VM

Programming Reference.

RESULT SETS or RESULT SET

Specifies the maximum number of query result sets that can be returned by

this stored procedure. The largest value that can be specified is 32767.

COMMIT ON RETURN

Indicates whether the unit of work should be committed immediately upon

return from the stored procedure.

NO The database manager should not issue COMMIT when the stored

procedure returns.

YES The database manager should issue COMMIT when the stored

procedure returns when the following statements are true:

v The SQLCODE returned by the CALL statement is not negative

v The stored procedure is not in a must abort state

The COMMIT operation includes the work performed by the calling

application as well as the stored procedure. Any cursors that are open

when the COMMIT occurs will be closed during COMMIT processing.

Examples

Example 1

 ALTER PROCEDURE MYPROC STAY RESIDENT NO

ALTER PROCEDURE

154 SQL Reference

ALTER PSERVER

The ALTER PSERVER statement alters the definition of an existing stored

procedure server.

The STOP PSERVER command must be issued with the NOIMPLICIT option

before the ALTER PSERVER statement will be accepted.

Invocation

This statement can be issued from an application program or interactively. It is an

executable statement that can be dynamically prepared.

Authorization

The issuer of the ALTER PSERVER statement must have DBA authority.

Syntax

Description

procedure-server

The name of the stored procedure server. This must be an ordinary identifier of

8 characters or less.

GROUP

The name of the group that this stored procedure server will be in after the

ALTER PSERVER statement has been executed. If a group name is specified, it

must be an ordinary identifier of 1 to 18 characters. If the GROUP clause is

specified without group-name, the stored procedure server will be put in the

default group.

group-name

The name of the stored procedure group. It cannot be any of the following:

 GROUP

 IMPLICIT

 NOIMPLICIT

 NORMAL

 QUICK

AUTOSTART

Determines whether the database manager will issue a START PSERVER

command for this stored procedure server when the database is started.

NO START PSERVER will not be issued when the database is started.

YES START PSERVER will be issued when the database is started.

►►

ALTER PSERVER

▼

 ,

(1)

procedure-server

GROUP

group-name

AUTOSTART NO

AUTOSTART YES

DESCRIPTION

description

►◄

Notes:

1 One or more clauses may be specified, however each clause may be specified at most

once.

ALTER PSERVER

Chapter 6. Statements 155

DESCRIPTION

This field provides the database administrator with a place to provide

information about this stored procedure server, such as virtual storage

requirements, other servers in the group, and so on. Description can be up to

254 characters and must be enclosed in single quotation marks.

Examples

Example 1

 ALTER PSERVER SRV1 GROUP GRP2, AUTOSTART NO

ALTER PSERVER

156 SQL Reference

ALTER TABLE

The ALTER TABLE statement adds a single column to an existing table, and adds,

drops, activates, or deactivates primary and foreign keys.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v Ownership of the table

v The ALTER privilege for the table

v DBA authority.

To create, drop, activate, or deactivate a foreign key, the authorization ID of the

statement must also hold at least one of the following on the parent table:

v Ownership of the table

v The REFERENCES privilege for the table

v Administrative authority.

To drop, activate, or deactivate a primary key, the authorization ID of the

statement must also hold at least one of the following on each table that has a

foreign key referencing the primary key that is being dropped.

v Ownership of the table

v The ALTER privilege for the table

v DBA authority.

Syntax

ALTER TABLE

Chapter 6. Statements 157

►► ALTER TABLE table_name ADD column-definition-block

ADD

primary-key-block

referential-constraint-block

unique-block

DROP

PRIMARY KEY

FOREIGN KEY

constraint_name

UNIQUE

constraint_name

ACTIVATE

ALL

PRIMARY KEY

FOREIGN KEY

constraint_name

UNIQUE

constraint_name

DEACTIVATE

ALL

PRIMARY KEY

FOREIGN KEY

constraint_name

UNIQUE

constraint_name

DATA CAPTURE

NONE

CHANGES

 ►◄

column-definition-block:

 column_name data-type

(1)

fieldproc-block

data-type:

 INTeger

SMALLINT

(53)

FLOAT

(integer)

REAL

DOUBLE PRECISION

(5,0)

DECimal

NUMERIC

(

integer

)

,integer

(1)

(1)

CHARacter

(integer)

FOR SBCS DATA

VARCHAR

(integer)

FOR MIXED DATA

LONG VARCHAR

FOR BIT DATA

CCSID

integer

(1)

GRAPHIC

(integer)

(1)

VARGRAPHIC

(integer)

CCSID

integer

LONG VARGRAPHIC

DATE

TIME

TIMESTAMP

Notes:

1 These clauses may be specified in any order.

ALTER TABLE

158 SQL Reference

Description

table_name

Identifies the table to be changed. It must be a table that exists at the

application server and must not be a view or a catalog table. If the table_name

is qualified, the qualifier is the owner of the table. Otherwise, the authorization

ID of the statement is the owner of the table.

ADD

Adds a column to the table. All column values are NULL and the column is

the last table column on the rightmost side. That is, if initially there are n

columns, the added column is column n+1. The value of n cannot be greater

than 254.

fieldproc-block:

 FIELDPROC program_name

▼

,

(

constant

)

primary-key-block:

PRIMARY KEY

▼

 ,

(1)

ASC

(

column_name

)

DESC

PCTFREE = 10

PCTFREE = integer

Notes:

1 There can be up to 16 columns in a primary key.

referential-constraint-block:

FOREIGN KEY

(

constraint_name

▼

 ,

column_name

)

REFERENCES

table_name

►

►
RESTRICT

ON DELETE

CASCADE

SET NULL

unique-block:

UNIQUE

constraint_name

▼

 ,

(1)

ASC

(

column_name

)

DESC

PCTFREE = 10

PCTFREE = integer

Notes:

1 There can be up to 16 columns on a unique constraint.

ALTER TABLE

Chapter 6. Statements 159

Adding the new column must not make the total byte count of all columns

exceed the maximum record size of approximately 4072 bytes. For more

information, see “Notes” on page 228.

column_definition_block

column_name

Names the column to be added to the table. The name cannot already be

used by an existing column of the table.

data_type

Is one of the data types in the descriptions listed under “CREATE TABLE”

on page 219.

fieldproc_block

FIELDPROC program_name

Names a field procedure for the column. A field procedure may be

used only with a short string column. If FIELDPROC is omitted, the

column has no field procedure.

constant

Is a parameter passed to the field procedure when the ALTER TABLE

statement invokes it. A parameter list is optional. The number of

parameters and the data type of each are determined by the field

procedure. The maximum length of the parameter list is 254 bytes,

including commas, but excluding insignificant blanks and excluding

the delimiting parentheses after blank compression takes place.

primary_key_block

PRIMARY KEY

Is a set of column values in the table that enforces a unique constraint.

Only one primary key is allowed in a parent table. Primary key values

must be unique and must be defined as NOT NULL.

 Defining a primary key on a table sets up the table to be referenced by

another table’s foreign key to establish a referential constraint.

column_name

Identifies the column or columns that comprise the primary keys. Each

column_name must be an unqualified name that identifies a column of the

table. No column in a primary key can contain a long string. The same

column cannot be specified more than once.

ASC

Creates the primary key such that the values from this column are

arranged in ascending order. This is the default.

DESC

Creates the primary key such that the values from this column are

arranged in descending order.

PCTFREE

Is the percentage of space in each index page reserved for later insertions

and updates of primary keys. The integer may range from 0 to 99, but for

practical purposes should not exceed 50. Increasing PCTFREE causes the

index to take up more space, but reduces the time required to insert or

update primary key rows of the indexed table.

ALTER TABLE

160 SQL Reference

referential_constraint_block

FOREIGN KEY

Defines a foreign key composed of the identified columns. Consists of one

or more columns in this dependent table that together must take on a

value that exists in the primary key of the referenced parent table. The

columns in the dependent table may contain nulls. If any of the columns

contain a null value, the foreign key is considered null.

constraint_name

Provides a name for the referential constraint. A constraint_name cannot be

used more than once in the same table. Although the database manager

generates a constraint_name if one is not specified, a constraint_name

should be explicitly chosen to make it easier for a user to drop, activate,

and deactivate the foreign key.

column_name

Identifies the column or columns that comprise the foreign key. Each

column_name must be an unqualified name that identifies a column of the

table. The data type and length of foreign key columns must match the

data type and length of the primary key columns. Only the null attribute

of a foreign key column may be different. The same column cannot be

specified more than once.

REFERENCES table_name

Specifies the name of the parent table involved in the referential constraint.

The table_name cannot identify the table that is being altered.

ON DELETE

Defines the delete rule to be followed when a row is deleted from the

parent table in a relationship.

RESTRICT

Prevents deletion of a parent row until all the dependent rows have

been deleted. This is the default.

CASCADE

Causes all dependent rows to be deleted also.

SET NULL

Sets to null all columns of the foreign key values in each dependent

row that can contain nulls. At least one column of the foreign key in

the dependent table must be able to contain nulls.

 The following restrictions for ON DELETE are checked when a table is

altered.

v If a table has more than one referential constraint referencing the same

parent, all the delete rules on those constraints must be the same and

must not be SET NULL.

v If a table is delete-connected to the same parent through multiple paths,

all of the delete rules on the paths, except for the last one, must be

CASCADE. The last delete rule on all paths must be the same and must

not be SET NULL.

v A referential cycle involving two or more tables must not cause a table

to be delete-connected to itself.

For additional information and examples of application restrictions see

“Definition Restrictions” on page 16.

ALTER TABLE

Chapter 6. Statements 161

unique_block

UNIQUE

Adds a unique index automatically for the column or columns

specified. If there are duplicates in the values of the columns, then a

unique constraint is not added.

constraint_name

Provides a name for the unique constraint. A constraint_name cannot be

used more than once in the same table. Although the database

manager generates a constraint_name if one is not specified, a

constraint_name should be explicitly chosen to make it easier for a user

to drop, activate, and deactivate the unique constraint.

column_name

Identifies the column or columns that comprise the unique key. Each

column_name must be an unqualified name that identifies a column of

the table. No column in a unique constraint can be nullable. No

column in a unique constraint can contain a long string. The same

column cannot be specified more than once. These columns should not

be the same as that of a primary key in the same table.

ASC

Creates the unique key such that the values from this column are

arranged in ascending order. This is the default.

DESC

Creates the unique key such that the values from this column are

arranged in descending order.

PCTFREE

Is the percentage of space in each index page reserved for later

insertions and updates of unique keys. The integer may range from 0

to 99, but for practical purposes should not exceed 50. Increasing

PCTFREE causes the index to take up more space, but reduces the time

required to insert or update unique keys.

DROP PRIMARY KEY

Drops the definition of the primary key, thereby removing all referential

constraints in which the table is a parent. Dropping a primary key causes

the foreign keys that reference the parent table to be dropped.

DROP FOREIGN KEY constraint_name

Drops the definition of the foreign key, thereby removing the named

referential constraint.

DROP UNIQUE constraint_name

Drops the unique index associated with the constraint and the information

in the system catalog tables.

ACTIVATE ALL

Causes all the referential constraints defined for a primary key to be

enforced automatically. ACTIVATE ALL is equivalent to activating the

primary key, then activating all the explicitly inactive foreign keys and

unique constraints.

ACTIVATE PRIMARY KEY

Causes the primary key to be enforced automatically. If the primary key is

already active, this clause drops and re-creates the primary key index. If

the primary key is inactive, then the primary key index is re-created first.

If any dependent foreign keys are deactivated implicitly when the primary

ALTER TABLE

162 SQL Reference

key is made inactive, those foreign keys are verified against the primary

key. If the primary key index is created successfully and the dependent

foreign key values are found in the primary key of the object table, then

the primary key and the dependent foreign keys are activated. None of the

keys are activated if an error occurs.

ACTIVATE FOREIGN KEY constraint_name

Causes the referential constraint defined by the named foreign key to be

enforced automatically. If the primary key of the parent table referenced by

this foreign key is inactive, the foreign key is not activated. If the

associated primary key is active, the foreign key values are verified against

the values in the primary key. If all values are found in the parent primary

key, the dependent foreign key is activated.

ACTIVATE UNIQUE constraint_name

Activates a unique key on an existing table.

DEACTIVATE ALL

Suspends the restrictions imposed by the referential constraints and makes

the parent and dependent tables involved in a referential constraint

unavailable to users other than the DBA and the owner of the table. All

primary and foreign keys become inactive. DEACTIVATE ALL is

equivalent to deactivating the primary key, all active foreign keys in the

table, and all unique constraints.

DEACTIVATE PRIMARY KEY

Suspends the restrictions imposed by the referential constraints and makes

the parent and dependent tables involved in a referential constraint

unavailable to users other than the DBA and the owner of the table.

Deactivating a primary key drops the primary key index from the object

table and implicitly deactivates all active dependent foreign keys.

DEACTIVATE FOREIGN KEY constraint_name

Suspends the restrictions imposed by the referential constraints and makes

the parent and dependent tables involved in a referential constraint

unavailable to users other than the DBA and the owner of the table.

DEACTIVATE UNIQUE constraint_name

Deactivates a unique key on an existing table.

DATA CAPTURE

Specifies if log records for this table should contain the full before image

(DATA CAPTURE CHANGES) or the partial before image (DATA CAPTURE

NONE) for UPDATE operations. If this option is not specified, it defaults to

DATA CAPTURE NONE. If DataPropagator Capture is being used to capture

changes to this table, DATA CAPTURE CHANGES must be specified. If

DataPropagator Capture is not being used to capture updates to this table,

DATA CAPTURE NONE should be specified to reduce the amount of data

logged for updates to this table.

NONE

Include the partial before image in log records for UPDATE operations. If

DataPropagator Capture is not being used to capture updates to this table,

DATA CAPTURE NONE should be specified to reduce the amount of data

logged for updates to this table.

CHANGES

Include the full before image in log records for UPDATE operations. If

DataPropagator Capture is being used to capture changes to this table,

DATA CAPTURE CHANGES must be specified.

ALTER TABLE

Chapter 6. Statements 163

Notes

It is not possible to:

v Use NOT NULL. All values in a new column are NULL when created.

v See an added column in any existing view of the table.

v Change the name of a column unless the table is dropped and recreated with the

new column name.

v Add a PRIMARY KEY, FOREIGN KEY, or UNIQUE constraint on any catalog

table.

It is not a good practice to:

v Duplicate a referential constraint in the same table (that is, to have two foreign

keys with the same column list referencing the same table).

v Duplicate a unique constraint in the same table (that is, to have two unique

constraints with the same column list in the same table).

v Have a unique constraint with the same columns as the primary key of the same

table.

In these cases, a warning is issued but the duplicate specification is accepted.

Adding, dropping, activating, or deactivating keys invalidates the packages that

access tables affected by these changes in the keys. When an SQL statement

attempts to invoke an incorrect package, the database manager tries to dynamically

rebind the package.

The characteristics of a primary key or foreign key cannot be directly altered. All

specifications of the key must first be dropped and then respecified.

Examples

Example 1

Add a new column named RATING, which is one character long, to the

DEPARTMENT table.

 ALTER TABLE DEPARTMENT

 ADD RATING CHAR

Example 2

Add a new column named SITE_NOTES to the PROJECT table. Create

SITE_NOTES as a varying-length column with a maximum length of 1000

characters. The values of the column do not have an associated character set and

therefore should not be translated.

 ALTER TABLE PROJECT

 ADD SITE_NOTES VARCHAR(1000) FOR BIT DATA

Example 3

Assume a new table EQUIPMENT has been created with the following columns:

 Column Name Data Type

 EQUIP_NO INT

 EQUIP_DESC VARCHAR(50)

 LOCATION VARCHAR(50)

 EQUIP_OWNER CHAR(3)

Add a referential constraint to the EQUIPMENT table so that the owner

(EQUIP_OWNER) must be a department number (DEPTNO) that is present in the

DEPARTMENT table. If a department is removed from the DEPARTMENT table,

ALTER TABLE

164 SQL Reference

the owner (EQUIP_OWNER) values for all equipment owned by that department

should become unassigned (or set to null). Give the constraint the name

DEPT_EQUIP.

 ALTER TABLE EQUIPMENT

 ADD FOREIGN KEY DEPT_EQUIP (EQUIP_OWNER)

 REFERENCES DEPARTMENT

 ON DELETE SET NULL

Example 4

Add a constraint to the PROJECT table to ensure that there are not two entries in

the table with the same value for project name (PROJNAME).

 ALTER TABLE PROJECT

 ADD UNIQUE (PROJNAME)

See example 1 in “CREATE INDEX” on page 198 for an alternate method of

ensuring unique project names.

Example 5

Alter a table to create log records with the partial before image for UPDATE

operations where DataPropagator Capture is not capturing updates for the table:

 ALTER TABLE SALARY1

 DATA CAPTURE NONE

Example 6

Alter a table to create log records with the full before image for UPDATE

operations because DataPropagator Capture requires this information for update

log records:

 ALTER TABLE SALARY2

 DATA CAPTURE CHANGES

ALTER TABLE

Chapter 6. Statements 165

ASSOCIATE LOCATORS

The ASSOCIATE LOCATORS statement obtains the RESULT SET LOCATOR value

for each result set data type returned by a stored procedure.

Invocation

This statement can be embedded in an application program. It is an executable

statement that can be dynamically prepared. It cannot by issued interactively.

Authorization

None required.

Syntax

Description

rs-locator-variable

Identifies a result set locator variable that has been declared according to the

rules for declaring result set locator variables. One result set locator variable is

required for each result set that is returned by a stored procedure. If a stored

procedure returns fewer result sets than the number of result set locator

variables specified, then the extra variables are assigned a value of zero.

WITH PROCEDURE host-variable or procedure-name

Identifies the stored procedure that returns result set locators. The procedure

name may be specified either directly or within a host variable.

 If a host-variable is specified, it must be a character-string variable and it must

not include an indicator variable. Note that the value is not converted to

uppercase.

 If procedure-name is specified, it must be an ordinary identifier, which implies

that it cannot contain blanks or special characters, and the value is converted

to uppercase. Therefore, if it is necessary to use a lowercase name that contains

blanks or special characters, then the name must be specified in a

host-variable. The procedure name must be left-justified. The form in which a

procedure name exists varies according to the server where the procedure is

stored.

DB2 Server for VSE & VM:

The name of the procedure to execute. The name can be up to 18

►► ASSOCIATE

RESULT

SET
 LOCATOR

(1)

LOCATORS

 ►

►

▼

 ,

(

rs-locator-variable

)

WITH PROCEDURE

host-variable

procedure-name

►◄

Notes:

1 RESULT SET LOCATOR variables are only supported in client applications written in

Assembler, C, COBOL, and PL/I.

ASSOCIATE LOCATORS

166 SQL Reference

characters long and must match a value in the NAME column of the

SYSTEM.SYSROUTINES catalog table.

DB2 Common Server/DB2 Universal Database (except OS/390 and OS/400):

procedure-name

The name (with no extension) of the procedure to execute. This

is used both as the name of the stored procedure library and

the function name within that library.

procedure-library!function-name

The exclamation point character acts as a delimiter between the

library name and the function name of the stored procedure.

absolute-path!function-name

The absolute-path specifies the complete path to the stored

procedure library.

In all of these cases the total length of the procedure name including

its implicit or explicit full path must not be longer than 254 bytes.

DB2 Universal Database Server for OS/390:

An implicit or explicit three-part name. The parts are as follows:

high order

The location name of the server where the procedure is stored.

middle

SYSPROC

low order

Some value in the PROCEDURE column of the

SYSIBM.SYSPROCEDURES catalog table.

DB2 Universal Database Server for OS/400:

The external program name is assumed to be the same as the

procedure name.

 For portability, the procedure name should be specified as a single token no

larger than eight bytes.

 The ASSOCIATE LOCATORS statement can only be executed against a stored

procedure that has already been invoked by the program using the SQL CALL

statement.

Notes

1. More than one locator can be assigned to a result set. The same ASSOCIATE

LOCATORS statement can be issued more than once with different result set

locator variables.

2. If the number of result set locator variables listed in the ASSOCIATE

LOCATORS statement is less than the number of result sets returned by the

stored procedure, all variables in the statement are assigned a value, and a

warning is issued.

If the number of result set locator variables listed in the ASSOCIATE

LOCATORS statement is more than the number of locators returned by the

stored procedure, then the extra variables are assigned a value of zero.

3. The ASSOCIATE LOCATORS statement assigns result set locator values to

result set locator variables from the SQLVAR sections of the SQLDA. The first

SQLDATA field is assigned to the first locator variable, the second SQLDATA

field to the second locator variable, and so on.

ASSOCIATE LOCATORS

Chapter 6. Statements 167

4. For the ASSOCIATE LOCATORS statement to be successful, the application

must be connected to the site at which the stored procedure was executed.

Examples

The statements in the following examples are assumed to be in PL/I programs.

Example 1

Use :loc1 and :loc2 to obtain the result set locator values for the two result sets

returned by stored procedure P1:

 EXEC SQL ASSOCIATE RESULT SET LOCATORS (:loc1, :loc2)

 WITH PROCEDURE P1;

Example 2

Use :loc1 and :loc2 to obtain the result set locator values for the two result sets

returned by the stored procedure named by host variable :hv1:

 EXEC SQL ASSOCIATE LOCATORS (:loc1, :loc2)

 WITH PROCEDURE :hv1;

ASSOCIATE LOCATORS

168 SQL Reference

BEGIN DECLARE SECTION

The BEGIN DECLARE SECTION statement marks the beginning of an SQL declare

section where host variables must be defined.

Invocation

This statement can only be embedded in an application program. It is not an

executable statement. It is not supported in REXX.

Authorization

None required.

Syntax

Description

The BEGIN DECLARE SECTION statement can be coded in the application

program wherever variable declarations can appear in accordance with the rules of

the host language. An SQL declare section ends with an END DECLARE SECTION

statement, described on page “END DECLARE SECTION” on page 263.

The BEGIN DECLARE SECTION and the END DECLARE SECTION statements

must be paired and may not be nested.

SQL statements (other than the 'INCLUDE text-file-name' form of the INCLUDE

statement) cannot be specified within an SQL declare section.

In programs other than REXX, all variables referenced in SQL statements must be

declared in one or more SQL declare sections. With the exception of Assembler, the

SQL declare section must appear before the first reference to the variable. In REXX,

host variables are declared without the use of these statements; meaning they are

implicitly declared.

Variables declared outside an SQL declare section must not have the same name as

variables declared within an SQL declare section.

Examples

Example 1

In an Assembler program, define the host variables HVSMINT (smallint),

HVVCHR24 (varchar(24)), and HVDEC72 (dec(7,2)).

 EXEC SQL BEGIN DECLARE SECTION

 HVSMINT DS H

 HVVCHR24 DS H,CL24

 HVDEC72 DS PL4’12345.67’

 EXEC SQL END DECLARE SECTION

Example 2

In a C program, define the host variables hv_smint (smallint), hv_vchar24

(varchar(24)), hv_double (float), and host structure name_structure (char(9),char(9)).

 EXEC SQL BEGIN DECLARE SECTION;

 static short hv_smint;

 static struct hv_char {

►► BEGIN DECLARE SECTION ►◄

BEGIN DECLARE SECTION

Chapter 6. Statements 169

short hv_vchar24_len;

 char hv_vchar24_value[24];

 } hv_vchar24;

 static double hv_double;

 static struct name_struct {

 char lname[9];

 char fname[9];

 } name_structure;

 EXEC SQL END DECLARE SECTION;

Example 3

In a COBOL program, define the host variables HV-SMINT (smallint),

HV-VCHAR24 (varchar(24)), HV-DEC72 (dec(7,2)), and host structure

NAME-STRUCTURE (char(9),char(9)).

 WORKING-STORAGE SECTION.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 01 HV-SMINT PIC S9(4) COMP-4.

 01 HV-VCHAR24.

 49 HV-VCHAR24-LENGTH PIC S9(4) COMP-4.

 49 HV-VCHAR24-VALUE PIC X(24).

 01 HV-DEC72 PIC S9(5)V9(2) COMP-3.

 01 NAME-STRUCTURE.

 05 FNAME PIC X(9).

 05 LNAME PIC X(9).

 EXEC SQL END DECLARE SECTION END-EXEC.

Example 4

In a Fortran program, define the host variables HVSMINT (smallint), HVCHAR24

(char(24)), and HVDOUBLE (float).

 EXEC SQL BEGIN DECLARE SECTION

 INTEGER*2 HVSMINT

 CHARACTER*24 HVCHAR24

 REAL*8 HVDOUBLE

 EXEC SQL END DECLARE SECTION

Note: Because varying-length character strings are not supported in Fortran, a

character host variable large enough to use the largest expected value must be

used.

Example 5

In a PL/I program, define the host variables HV_SMINT (smallint), HV_VCHAR24

(varchar(24)), HV_DEC72 (dec(7,2)), and host structure NAME_STRUCTURE

(char(9),char(9)).

 EXEC SQL BEGIN DECLARE SECTION;

 DCL HV_SMINT BINARY FIXED(15);

 DCL HV_VCHAR24 CHAR(24) VARYING;

 DCL HV_DEC72 FIXED DECIMAL(7,2);

 DCL 01 NAME_STRUCTURE,

 05 FNAME CHAR(9),

 05 LNAME CHAR(9);

 EXEC SQL END DECLARE SECTION;

BEGIN DECLARE SECTION

170 SQL Reference

CALL

The CALL statement invokes a stored procedure. The database manager uses the

cached information from SYSTEM.SYSROUTINES, SYSTEM.SYSPARMS, and

SYSTEM.SYSPSERVERS to process the statement.

Invocation

This statement must be embedded in an application program. It is an executable

statement that cannot be dynamically prepared. However, a host variable can be

specified for the procedure-name, enabling the procedure name to be resolved at

run time.

Authorization

The privileges required to execute the CALL statement are determined by the

application server and must be held by the owner of the package containing the

CALL statement. If the server is DB2 Server for VSE & VM, that authorization ID

must have at least one of the following for each of the packages associated with

the stored procedure:

v Run privilege on the package

v Ownership of the package

v DBA authority

Syntax

Description

procedure-name or host variable

Identifies the procedure to call. The procedure name may be specified either

directly or within a host variable.

 If procedure-name is specified it must be an ordinary identifier, which implies

that it cannot contain blanks or special characters, and that the value is

converted to upper case. If it is necessary to use lower case names, blanks, or

special characters, the name must be specified in a host-variable.

 If a host-variable is specified, it must be a character-string variable and it must

not include an indicator variable. Note that the value is not converted to upper

case. Procedure-name must be left-justified.

 The procedure name can take one of several forms. The forms supported vary

according to the server at which the procedure is stored.

v DB2 Server for VSE & VM:

The name of the procedure to execute. The name can be up to 18 characters

long, and must match a value in the NAME column of the

SYSTEM.SYSROUTINES catalog table.

►► CALL procedure-name

host-variable

▼

(

)

,

host-variable

constant

NULL

USING DESCRIPTOR

descriptor-name

 ►◄

CALL

Chapter 6. Statements 171

v DB2 common server / DB2 Universal Database (except OS/390 and

OS/400):

procedure-name

The name (with no extension) of the procedure to execute. This is

used both as the name of the stored procedure library and the

function name within that library.

procedure-library!function-name

The exclamation character (!) acts as a delimiter between the library

name and the function name of the stored procedure.

absolute-path!function-name

The absolute-path specifies the complete path to the stored

procedure library.

In all these cases, the total length of the procedure name including its

implicit or explicit full path must not be longer than 254 bytes.

v DB2 Universal Database Server for OS/390:

An implicit or explicit three part name. The parts are as follows:

high order

The location name of the server where the procedure is stored.

middle

SYSPROC

low order

Some value in the PROCEDURE column of the

SYSIBM.SYSPROCEDURES catalog table.

v DB2 Universal Database Server for OS/400:

The external program name is assumed to be the same as the

procedure-name

 For portability, procedure-name should be specified as a single token no larger

than 8 bytes. Note that when the SQL CALL statement is preprocessed, the

database manager does not check whether the procedure is defined, or

whether the caller is authorized to invoke it. This checking is done at run time

only.

Parameters (host variable, constant, or NULL)

Identifies a list of values to be passed as parameters to the procedure.

 Each specification of a host-variable, constant, or NULL is a parameter of the

CALL. If USING DESCRIPTOR is specified, each host variable described by the

identified SQLDA is a parameter of the CALL. The nth parameter of the CALL

corresponds to the nth parameter of the stored procedure. When the CALL

statement is executed, the number of parameters of the CALL must be the

same as the number of parameters expected by the stored procedure, and each

pair of corresponding parameters must be consistent as explained below.

 Each parameter of the stored procedure is defined at the server. In addition to

attributes such as data type and length, the description of each parameter

indicates how it is used by the stored procedure:

v IN means the parameter is used only as an input value

v OUT means the parameter is used only as an output value

v INOUT means the parameter is used as both an input and an output value

DB2 Server for VSE & VM gets the parameter descriptions from the cached

information from the new catalog table SYSTEM.SYSPARMS.

CALL

172 SQL Reference

Other servers might acquire parameter descriptions from other sources such as

the SQL DECLARE PROCEDURE statement.

 When the CALL statement is executed, the value of each parameter of the

CALL defined as IN or INOUT is assigned to the corresponding parameter of

the stored procedure in accordance with the DB2 Server for VSE & VM rules

for assigning values to host variables. Control is then passed to the stored

procedure in accordance with the calling conventions of the host language.

When execution of the stored procedure is complete, the value of each

parameter defined as OUT or INOUT is assigned to the corresponding

parameter of the CALL in accordance with the DB2 Server for VSE & VM rules

for assigning values to host variables.

Note: DB2 Server for VSE & VM does not support the use of structures or

arrays for stored procedure parameters.

host-variable

The parameter of the CALL is the identified host variable. Host-variable must

identify a host variable (not a structure) described in the program according to

the rules for declaring host variables and the data type of the variable must be

compatible with the data type of the corresponding parameter of the stored

procedure. If an indicator variable is specified, its value must not be negative

unless

v the parameter style for the stored procedure (as defined in

SYSTEM.SYSROUTINES) is GENERAL WITH NULLS

v the parameter style for the stored procedure (as defined in

SYSTEM.SYSROUTINES) is GENERAL and the corresponding parameter of

the stored procedure is defined as OUT.

constant

The parameter of the CALL is the specified value. The data type of the

constant must be compatible with the datatype of the corresponding parameter

of the stored procedure and that parameter must be defined as IN.

NULL

The parameter of the CALL is the null value. The corresponding parameter of

the stored procedure must be defined as IN and the description of the stored

procedure must allow for null parameters.

USING DESCRIPTOR descriptor-name

Identifies an SQLDA that must contain a valid description of host variables

(unless the stored procedure has no parameters in which case the SQLDA is

not used). In C, the descriptor-name can be a pointer to an SQLDA.

 Before the CALL statement is processed, the user must set the following fields

in the SQLDA:

v SQLN to indicate the number of SQLVAR occurrences provided in the

SQLDA (this number must not be less than SQLD)

v SQLDABC to indicate the number of bytes of storage allocated for the

SQLDA (this number must be not less than SQLN*44+16)

v SQLD to indicate the number of variables used in the SQLDA when

processing the statement (this number must be the same as the number of

parameters defined for the stored procedure).

v SQLVAR occurrences to indicate the attributes of the variables

CALL

Chapter 6. Statements 173

Notes

1. The capability of calling stored procedures is provided to improve the

performance of distributed operations, but the capability is not limited to

distributed operations. Thus, the application server can be the local DB2 Server

for VSE & VM.

2. The values of all parameters are passed from the application requester to the

application server. To improve the performance of this operation, host variables

that correspond to OUT parameters and have lengths of more than a few bytes

should be set to null before the CALL statement is issued.

3. If accounting is active, the activity done and resources used by the database

manager on behalf of the stored procedure will be included in the accounting

records of the userid that issued the SQL CALL.

Examples

Example 1

A package for a PL/I application exists on DB_A. A package for the stored

procedure REPORT1 exists on DB_B. The SYSTEM.SYSROUTINES table on DB_B

describes the procedure REPORT1 which allows nulls and has two parameters. The

first parameter is defined as IN and the second as OUT. Here are some of the

statements in the PL/I application that runs at DB_A:

 EXEC SQL CONNECT TO DB_B;

 VAR1 = 920176;

 IVAR2 = -1;

 EXEC SQL

 CALL REPORT1(:VAR1, :VAR2 INDICATOR :IVAR2);

CALL

174 SQL Reference

CLOSE

The CLOSE statement closes a cursor. In doing so, it stops the usage of the group

of rows pointed to by the named cursor. Closing the cursor permits the database

manager to release the resources associated with maintaining an open cursor.

Invocation

This statement can only be embedded in an application program. It is an

executable statement that cannot be dynamically prepared.

Authorization

None required. See “DECLARE CURSOR” on page 235 for the authorization

required to use a cursor.

Syntax

Description

cursor_name

Is an ordinary identifier that identifies the cursor to be closed. The cursor_name

must identify a cursor defined in a DECLARE statement of your program.

 When the CLOSE statement is processed, the cursor must be in the open state.

When the CLOSE statement is processed, the indicated cursor leaves the open

state, and its active set becomes undefined. No FETCH or PUT statement can be

processed on the cursor, and no DELETE or UPDATE statement can refer to its

current position, until the cursor is reopened by an OPEN statement.

Notes

Explicitly closing cursors as soon as possible can improve performance.

When a CLOSE statement is processed in a program that is blocking PUTS, the

remaining rows in an incomplete block are inserted. SQLERRD(3) contains the

number of rows that were successfully inserted.

Note that both the COMMIT and ROLLBACK statements automatically close all

cursors (except when blocking an insert cursor - a COMMIT or ROLLBACK

statement issued when there is an OPEN with a blocked insert cursor results in an

error). CLOSE, however, does not cause a commit or rollback operation; these

operations must be coded separately.

Examples

In a COBOL program, use the cursor C1 to fetch the values from the first four

columns of the EMP_ACT table a row at a time and put them in the following host

variables:

v EMP (char(6))

v PRJ (char(6))

v ACT (smallint)

v TIM (dec(5,2)).

Finally, close the cursor.

►► CLOSE cursor_name ►◄

CLOSE

Chapter 6. Statements 175

EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 77 EMP PIC X(6).

 77 PRJ PIC X(6).

 77 ACT PIC S9(4) COMP-4.

 77 TIM PIC S9(3)V9(2) COMP-3.

 EXEC SQL END DECLARE SECTION END-EXEC.

 .

 .

 .

 EXEC SQL DECLARE C1 CURSOR FOR

 SELECT EMPNO, PROJNO, ACTNO, EMPTIME

 FROM EMP_ACT END-EXEC.

 EXEC SQL OPEN C1 END-EXEC.

 EXEC SQL FETCH C1 INTO :EMP, :PRJ, :ACT, :TIM END-EXEC.

 IF SQLSTATE = ’02000’

 PERFORM DATA-NOT-FOUND

 ELSE

 PERFORM GET-REST-OF-ACTIVITY UNTIL SQLSTATE IS NOT EQUAL TO ’00000’.

 EXEC SQL CLOSE C1 END-EXEC.

 .

 .

 .

 GET-REST-OF-ACTIVITY.

 EXEC SQL FETCH C1 INTO :EMP, :PRJ, :ACT, :TIM END-EXEC.

 .

 .

 .

CLOSE

176 SQL Reference

Extended CLOSE

The Extended CLOSE statement “closes” the cursor_name which was opened by an

Extended OPEN statement.

Invocation

This statement can only be embedded in an application program written in

Assembler or REXX.

Authorization

The authorization ID of the statement must have one of the following:

v ownership of the package

v DBA authority

v EXECUTE privilege on the package.

Syntax

Description

cursor_variable

Identifies the cursor that is to be closed. The cursor must have been defined by

a preceding Extended DECLARE CURSOR statement in the same logical unit

of work.

 When the cursor is closed, its active set becomes undefined. No FETCH or PUT

statement can be processed on the cursor, and no DELETE or UPDATE statement

can refer to its current position, until the cursor is reopened by an Extended OPEN

statement.

Notes

CLOSE permits the database manager to release the resources associated with

maintaining an open cursor.

In most respects, the Extended CLOSE statement is identical to the CLOSE

statement (“CLOSE” on page 175). However, in the Extended CLOSE statement,

the cursor_variable is a host variable, thereby making it possible for a user to

provide the cursor_variable when the program is run and to CLOSE the cursor in a

logical unit of work or program other than the one in which the statement was

prepared.

Examples

CLOSE :CURSOR1

►► CLOSE cursor_variable ►◄

Extended CLOSE

Chapter 6. Statements 177

COMMENT ON

The COMMENT ON statement adds or replaces comments (also called remarks) in

the catalog descriptions of tables, views, or columns.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include one of

the following:

v Ownership of the table or view

v DBA authority.

Syntax

Description

TABLE

Indicates that the comment applies to a table or view.

table_name or view_name

Identifies a table or view to which the comment applies. The name must

identify a table or view that exists at the application server.

 The comment is placed in the REMARKS column of the

SYSTEM.SYSCATALOG catalog table for the row that describes the table or

view.

COLUMN

Indicates that the comment applies to a column.

table_name.column_name or view_name.column_name

Identifies the column, qualified by the name of the table or view in which

it appears. The column_name must identify a column of the specified table

or view that exists at the application server.

►► COMMENT ON options_a IS str_constant

table_name

(

options_b

)

view_name

 ►◄

options_a

 TABLE table_name

view_name

COLUMN

table_name.column_name

view_name.column_name

options_b

▼

 ,

column_name

IS

str_constant

COMMENT ON

178 SQL Reference

The comment is placed into the REMARKS column of the

SYSTEM.SYSCOLUMNS catalog table, for the row that describes the

column.

Multiple comments

To comment on more than one column in the same table or view within the

same statement, follow the table or view name with a list of one or more

column names and string constant pairs in parentheses. The column_name must

identify a column of the specified table or view that exists at the application

server.

IS Introduces the comment that you want to make.

string_constant

Can be any SQL character string constant of up to 254 characters. The

constant may contain mixed double-byte and single-byte characters.

Examples

Example 1

Insert a comment for the EMPLOYEE table into the catalog.

 COMMENT ON TABLE EMPLOYEE

 IS ’Reflects first quarter 1981 reorganization’

Example 2

Insert a comment for the EMP_VIEW1 view into the catalog.

 COMMENT ON TABLE EMP_VIEW1

 IS ’View of the EMPLOYEE table without salary information’

Example 3

Insert a comment for the EDLEVEL column of the EMPLOYEE table into the

catalog.

 COMMENT ON COLUMN EMPLOYEE.EDLEVEL

 IS ’highest grade level passed in school’

Example 4

Insert two comments into the catalog for two different columns of the EMPLOYEE

table.

 COMMENT ON EMPLOYEE

 (WORKDEPT IS ’see DEPARTMENT table for names’,

 EDLEVEL IS ’highest grade level passed in school ’)

COMMENT ON

Chapter 6. Statements 179

COMMENT ON PROCEDURE

The COMMENT ON PROCEDURE statement adds or replaces comments to the

REMARKS column of the SYSTEM.SYSROUTINES catalog table for the row that

describes the stored procedure identified.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

The issuer must have DBA authority.

Syntax

Description

PROCEDURE

Indicates that the comment applies to a stored procedure.

procedure_name

Identifies a stored procedure that has been defined (meaning, a CREATE

PROCEDURE has been processed successfully for it).

AUTHID

Indicates that authid is specified.

authid

Identifies the authorization ID for the stored procedure. If specified, the

comment will only be added or updated for the version of procedure_name

that is accessible only by authid.

IS Introduces the comment that you want to make.

string_constant

Can be any SQL character string constant of up to 254 characters. The

constant may contain mixed double-byte and single-byte characters. The

comment is placed into the REMARKS column of the

SYSTEM.SYSROUTINES catalog table, for the row that describes the stored

procedure.

Examples

Example 1

Insert a comment for the STORPRC1 stored procedure into the catalog.

 COMMENT ON PROCEDURE STORPRC1

 IS ’Calculates project cost for the current month in person-hours’

Example 2

Insert a comment for the STORPRC2 stored procedure with AUTHID USER1 into

the catalog.

►► COMMENT ON PROCEDURE procedure_name

AUTHID

authid
 ►

► IS string_constant ►◄

COMMENT ON PROCEDURE

180 SQL Reference

COMMENT ON PROCEDURE STORPRC2 USERID USER1

 IS ’Calculates average turn-around time for service calls for the current week’

COMMENT ON PROCEDURE

Chapter 6. Statements 181

COMMIT

The COMMIT statement terminates the current logical unit of work and commits

the application server changes that were made by that logical unit of work.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that cannot be dynamically prepared.

Authorization

None required.

Syntax

Description

RELEASE

Specifies that when the COMMIT process is complete, your connection to the

application server is severed.

 For VM users, when the next SQL statement is entered, you are automatically

connected with your logon user ID to the default application server. This

eliminates the need to enter a CONNECT statement to return to the system

default user ID after being connected to an application server as another user

ID.

 For VSE interactive users, when the next SQL statement is entered, you are

automatically connected to the CICS default user ID on the same application

server. For VSE interactive users connected to a remote DRDA application

server, when the next SQL statement is entered, you are automatically

connected with your CICS signon user ID to the same application server.

 For VSE batch applications, an explicit CONNECT with a user ID and

password is necessary after a COMMIT RELEASE to establish an SQL user ID.

 In any case, if you are connected to an application server with a user ID other

than the default user ID and you enter a COMMIT without specifying

RELEASE, you will remain connected to the application server under that user

ID.

 The COMMIT statement terminates the logical unit of work in which it is

processed and initiates a new logical unit of work. All changes that were made by

any of the following statements during the logical unit of work are committed:

 ACQUIRE DBSPACE GRANT Package Privileges

 ALTER DBSPACE GRANT System Authorities

 ALTER PROCEDURE Alter a Stored Procedure

 ALTER PSERVER Alter a Stored Procedure Server

 ALTER TABLE GRANT Table Privileges

 COMMENT ON INSERT

 CREATE INDEX LABEL ON

 CREATE PACKAGE Extended PREPARE

 CREATE PROCEDURE Define a Stored Procedure

►►
 WORK

COMMIT

RELEASE

►◄

COMMIT

182 SQL Reference

CREATE PSERVER Define a Stored Procedure Server

 CREATE SYNONYM PUT

 CREATE TABLE Extended PUT

 CREATE VIEW REVOKE Package Privileges

 DELETE REVOKE System Authorities

 DROP REVOKE Table Privileges

 DROP PROCEDURE Remove a Stored Procedure

 DROP PSERVER Remove a Stored Procedure Server

 DROP STATEMENT UPDATE

 EXPLAIN UPDATE STATISTICS

All locks acquired by the logical unit of work are released. All cursors that were

opened during the logical unit of work are closed. All statements that were

prepared during the logical unit of work using the non-extended form of the

PREPARE statement are destroyed. Any cursors associated with a prepared

statement that is destroyed cannot be opened until the statement is prepared again.

Notes

If a COMMIT or ROLLBACK does not immediately precede the termination of an

application process, the database manager attempts to commit the work. If there

are errors during the commit process, it may not be successful. It is strongly

recommended that each application process explicitly ends its logical unit of work before

terminating.

The logical unit of work must be completed by using the COMMIT or ROLLBACK

statements before the CONNECT statement can be used to switch to another user

ID or application server.

TCP/IP does not perform any security checking during a physical connect. The

Batch application requester will use the DRDA security handshaking flows during

the logical connect to perform user ID and password verification. The physical

TCP/IP connection will be deallocated and reallocated whenever the application

switches to a different user ID or server name (using the CONNECT statement),

and DRDA security handshaking flows will be used again during the logical

connect. Either of these switches will not require the application to issue a

COMMIT RELEASE or ROLLBACK RELEASE. The Batch Resource Adapter will

retain and use the current user ID, password, and server name (unless different

ones are specified with a new CONNECT statement) after the new TCP/IP

physical connection is established. If a COMMIT RELEASE or ROLLBACK

RELEASE was issued prior to a CONNECT statement, then all user ID, password

and server name information is lost and must be supplied with the next

CONNECT.

Examples

In a PL/I program, transfer a certain amount of commission (COMM) from one

employee (EMPNO) to another in the EMPLOYEE table. Subtract the amount from

one row and add it to the other. Use the COMMIT statement to ensure that no

permanent changes are made to the database until both operations are completed

successfully.

 XFRCOMM: PROC OPTIONS(MAIN);

 EXEC SQL BEGIN DECLARE SECTION;

 DCL AMOUNT FIXED DECIMAL(5,2);

 DCL FROM_EMPNO CHAR(6);

 DCL TO_EMPNO CHAR(6);

 EXEC SQL END DECLARE SECTION;

 EXEC SQL INCLUDE SQLCA;

COMMIT

Chapter 6. Statements 183

EXEC SQL WHENEVER SQLERROR GOTO SQLERR;

 EXEC SQL CONNECT TO TOROLAB3;

 GET LIST (AMOUNT, FROM_EMPNO, TO_EMPNO);

 EXEC SQL UPDATE EMPLOYEE

 SET COMM = COMM - :AMOUNT

 WHERE EMPNO = :FROM_EMPNO;

 EXEC SQL UPDATE EMPLOYEE

 SET COMM = COMM + :AMOUNT

 WHERE EMPNO = :TO_EMPNO;

 EXEC SQL COMMIT WORK;

 RETURN;

 SQLERR:

 DISPLAY (’Unexpected Error -changes will be backed out’);

 PUT SKIP LIST (SQLCA);

 EXEC SQL WHENEVER SQLERROR CONTINUE; /* continue if error on rollback */

 EXEC SQL ROLLBACK WORK;

 RETURN;

 END; /* XFRCOMM */

COMMIT

184 SQL Reference

CONNECT (for VM)

Overall Notes

The CONNECT statement connects an application process or a user, or both, to an

application server.

Invocation

This statement can only be embedded within an application program. It is an

executable statement that cannot be dynamically prepared. It should be noted,

however, that interactive SQL facilities, such as ISQL, provide an interface that

gives the appearance of interactive execution.

Authorization

The privileges held by the authorization ID of the statement or, when specified, the

authorization_name in the statement must include authorization to connect to the

identified application server. If an authorization_name is specified in the statement,

the appropriate password must also be specified.

Syntax

Description

An application process can only be connected to one application server at a time.

This is called the current server. A default application server is established when

the application requester is initialized. When an application process is started, it is

implicitly connected to the default application server. The application process can

explicitly connect to a different application server by issuing a CONNECT

statement with the TO clause. There is no default connection for CONNECT with

no options. A connection lasts until one of the following occurs:

v COMMIT RELEASE or ROLLBACK RELEASE is processed

v CONNECT ... TO ... successfully switches databases

v the application terminates

v a severe error causes the connection to be severed.

authorization_name/host_variable

Is the user ID trying to CONNECT to the application server. If used within an

interactive facility, it must be a valid ordinary identifier with a maximum

length of 8. If it is used in an application program, it must be a valid host

variable, specified without an indicator variable, declared as a fixed-length

8-character string, and initialized before the statement is processed. (For

programs written in C the host variable must be declared as a NUL-terminated

string with a length of 9.) The value can be less than 8 characters; unused

character positions in the host variable must be padded with blanks to the

right.

►► CONNECT

authorization_name

IDENTIFIED BY

password

host_variable

host_variable

 ►

►
TO

server_name

host_variable

 ►◄

CONNECT (for VM)

Chapter 6. Statements 185

IDENTIFIED BY password/host_variable

Is the password of the authorization_name. If used within an interactive facility,

it must be a valid ordinary identifier with a maximum length of 8. If it is used

in an application program, it must be a valid host variable, specified without

an indicator variable, declared as a fixed-length 8-character string, and

initialized before the statement is processed. (For programs written in C, the

host variable must be declared as a NUL-terminated string with a length of 9.)

The value can be less than 8 characters; unused character positions in the host

variable must be padded with blanks to the right.

TO server_name/host_variable

Identifies the application server by the specified server_name or by a

host_variable which contains the server_name. The server_name must be a valid

ordinary identifier. Unlike authorization_name and password, if it is used in an

application, it may be specified either directly or within a host variable.

 If a host_variable is specified, it must be a character string variable with a

length attribute that is not greater than 18, and an indicator variable may not

be specified. (For programs written in C, if the host variable is declared as a

NUL-terminated string, it must have a length attribute that is between 2 and

19.) The server_name that is contained within the host_variable must be

left-justified and must not be delimited by quotation marks; if a fixed-length, it

must be padded on the right with blanks if its length is less than that of the

host variable.

 The default is the currently active application server. If no application server is

currently active, the default is the application server established by SQLINIT.

(See the DB2 Server for VSE & VM Database Administration for information on

SQLINIT.)

When the CONNECT statement is processed, the server_name must identify an

application server described in the local directory (see the DB2 Server for VM

System Administration manual) and the application process must be in the

connectable state. (See “Notes” on page 187 for information about connection

states.)

If the CONNECT statement is successful:

v The application process is disconnected from its previous application server, if

any, and connected to the identified application server

v The name of the application server is placed in the CURRENT SERVER special

register

v When using the DRDA protocol, information about the application server is

placed in the SQLERRP field of the SQLCA. If the application server is an IBM

product, the information has the form pppvvrrm, where:

– ppp identifies the product as follows:

 DSN for DB2 for OS/390

 ARI for DB2 Server for VSE & VM

 QSQ for DB2 for OS/400

 SQL for DB2 for OS/2 and DB2 for AIX.

– vv is a two-digit version identifier such as '02'

– rr is a two-digit release identifier such as '03'

– m is a one-digit modification level such as '0'.

For example, if the application server is Version 7 Release 5 of the DB2 Server

for VSE & VM, the value of SQLERRP is 'ARI06010'.

When using the SQLDS protocol, SQLERRP is set to 'ARI '.

CONNECT (for VM)

186 SQL Reference

For more information on the DRDA protocol and the SQLDS protocol, see

“Distributed Relational Database” on page 23.

v The authorization ID and the server_name of the connection are placed in the

SQLERRMC field of the SQLCA. The authorization ID precedes the server_name

and these are separated by X'FF'.

If the CONNECT statement is unsuccessful because the application process is not

in the connectable state or the server_name is not listed in the local directory, the

connection state of the application process is unchanged. If the CONNECT

statement is unsuccessful for any other reason, the application process remains in

the connectable state.

CONNECT with No Operand

This form of the CONNECT statement returns information about the current

authorization ID and application server. The information is returned in the

SQLERRP and SQLERRMC fields of the SQLCA as described above. This form of

CONNECT:

v Does not require the application process to be in the connectable state.

v If already connected, does not change the connection state. If unconnected,

causes a connection to the default application server.

Notes

It is a good practice for the first SQL statement processed by an application process

to be the CONNECT statement.

Summary of Variations of the CONNECT Statement

The various clauses may be specified in the following combinations:

1. CONNECT

This returns information about the currently connected authorization ID and

application server.

2. CONNECT authorization_name IDENTIFIED BY password

This switches to a new authorization ID on the currently established

application server.

3. CONNECT TO server_name

This switches the currently established authorization ID to a new application

server.

4. CONNECT authorization_name IDENTIFIED BY password TO server_name

This switches to both a new authorization ID and application server.

Only variations 1 and 2 are available in single user mode.

 Table 8. CONNECT Variations Supported by Communication Protocols

Variation SQLDS Protocol DRDA Protocol

Single User

Mode

Multiple User

Mode

Variation 1 Yes Yes Yes Yes

Variation 2 Yes Yes Yes Yes

Variation 3 Yes Yes No Yes

Variation 4 Yes Yes No Yes

Connection States: An application process is in one of four states at any time:

v Connectable and connected

CONNECT (for VM)

Chapter 6. Statements 187

v Unconnectable and connected

v Connectable and unconnected

v Implicitly connectable.

An application process is initially in the implicitly connectable state.

The connectable and connected state: An application process is connected to an

application server and CONNECT statements can be processed. The process enters

this state when it completes a rollback or successful commit from the

unconnectable and connected state, or a CONNECT statement is successfully

processed from the connectable and unconnected state.

The unconnectable and connected state: An application process is connected to an

application server, but a CONNECT statement cannot be successfully processed to

change application servers or to change authorization IDs. The process enters this

state from the connectable and connected state when it processes any SQL

statement other than CONNECT, COMMIT or ROLLBACK.

The connectable and unconnected state: An application process is not connected to an

application server. The only SQL statement that can be processed is CONNECT.

The process enters this state when an SQL statement is unsuccessful because of a

failure that causes a rollback operation at the application server and the loss of the

connection. The process can also enter this state if it processes a CONNECT

statement unsuccessfully.

The implicitly connectable state: An application process is not connected to an

application server and CONNECT statements can be processed. The process enters

this state when it completes a rollback or successful commit with the release option

from the unconnectable and connected state.

The following diagram shows the state transitions:

CONNECT (for VM)

188 SQL Reference

Additional Rules: It is not an error to process consecutive CONNECT statements

because CONNECT itself does not remove the application process from the

connectable state. It is an error to process any SQL statement other than

CONNECT, COMMIT, or ROLLBACK, and then process CONNECT with any

options. To avoid the error, process a commit or rollback operation before

processing the CONNECT.

A CONNECT to the current application server is treated like any other CONNECT.

Such a CONNECT can cause the redundant deallocation and allocation of a

conversation.

Notes

A VM user ID may be transformed when using DRDA protocol. See the DB2 Server

for VM System Administration manual for more information on the CMS

communications directory which may cause this transformation.

The old connection will not be disconnected until the new connection is made

successfully. Two connections are therefore held for a short interval. If there are

Failure of implicit connect
Implicitly
Connectable

Begin process (first SQL statement)

CONNECT with system failure

Successful CONNECT

Connectable
and

Connected

SQL other than CONNECT,
COMMIT, or ROLLBACK

System failure
with rollback
and deallocate

Connectable
and

Unconnected

Unconnectable
and

Connected

with
RELEASE

ROLLBACK or
successful COMMIT

Figure 7. VM Connection State Transitions

CONNECT (for VM)

Chapter 6. Statements 189

many applications running concurrently that switch application servers, this may

cause a wait for sessions. If experiencing delays, use COMMIT RELEASE which

will disconnect explicitly.

Examples

Example 1

In a PL/I program, connect to the application server TOROLAB3.

 EXEC SQL CONNECT TO TOROLAB3;

Example 2

In a PL/I program, switch to a different application server called TOROLAB4.

Assume your user ID on TOROLAB4 is different than the one you are currently

using.

 EXEC SQL BEGIN DECLARE SECTION;

 DCL USERID CHAR(8);

 DCL PASWRD CHAR(8);

 EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT :USERID IDENTIFIED BY :PASWRD

 TO TOROLAB4;

Example 3

In a PL/I program, connect to an application server whose name is stored in the

host variable APP_SERVER (varchar(18)). Following a successful connection, copy

the 3 character product identifier of the application server to the host variable

PRODUCT (char(3)).

 EXEC SQL CONNECT TO :APP_SERVER;

 IF SQLSTATE = ’00000’ THEN

 PRODUCT = SUBSTR(SQLERRP,1,3);

CONNECT (for VM)

190 SQL Reference

CONNECT (for VSE)

Overall Notes

The CONNECT statement connects an application process or a user, or both, to an

application server.

Invocation

This statement can only be embedded within an application program. It is an

executable statement that cannot be dynamically prepared. It should be noted,

however, that interactive SQL facilities, such as ISQL, provide an interface that

gives the appearance of interactive execution.

Authorization

The privileges held by the authorization ID of the statement or, when specified, the

authorization_name in the statement must include authorization to connect to the

identified application server. If an authorization_name is specified in the statement,

the appropriate password must also be specified.

Syntax

Description

An application process can only be connected to one application server at a time.

This is called the current server. A default application server is established when

the application requester is initialized. When an application process is started and

a CONNECT statement is issued, the application is connected to the default

application server. The application process can explicitly connect to a different

application server by issuing a CONNECT statement with the TO clause. There is

no default connection for CONNECT with no options. A connection lasts until one

of the following occurs:

v COMMIT RELEASE or ROLLBACK RELEASE is processed

v CONNECT ... TO ... successfully switches databases

v the application terminates

v a severe error causes the connection to be severed.

authorization_name/host_variable

Is the user ID trying to CONNECT to the application server. If used within an

interactive facility, it must be a valid ordinary identifier with a maximum

length of 8. If it is used in an application program, it must be a valid host

►► CONNECT

(1)

(1)

authorization_name

IDENTIFIED BY

password

host_variable

host_variable

 ►

►
TO

server_name

host_variable

 ►◄

Notes:

1 An implicit connect is not allowed by a Batch application requester. Therefore, the

user ID and password must be supplied on the CONNECT statement used for Batch

application requester processing.

CONNECT (for VSE)

Chapter 6. Statements 191

variable, specified without an indicator variable, declared as a fixed-length

8-character string, and initialized before the statement is processed. (For

programs written in C the host variable must be declared as a NUL-terminated

string with a length of 9.) The value can be less than 8 characters; unused

character positions in the host variable must be padded with blanks to the

right.

IDENTIFIED BY password/host_variable

Is the password of the authorization_name. If used within an interactive facility,

it must be a valid ordinary identifier with a maximum length of 8. If it is used

in an application program, it must be a valid host variable, specified without

an indicator variable, declared as a fixed-length 8-character string, and

initialized before the statement is processed. (For programs written in C, the

host variable must be declared as a NUL-terminated string with a length of 9.)

The value can be less than 8 characters; unused character positions in the host

variable must be padded with blanks to the right.

Note: An implicit connect is not allowed by a Batch application requester.

Therefore, the user ID and password must be supplied on the

CONNECT statement used for Batch application requester processing.

TO server_name/host_variable

Identifies the application server by the specified server_name or by a

host_variable which contains the server_name. The server_name must be a valid

ordinary identifier. This option may be used only in an application and, unlike

authorization_name and password, it may be specified either directly or within

a host variable.

 If a host_variable is specified, it must be a character string variable with a

length attribute that is not greater than 18, and an indicator variable may not

be specified. (For programs written in C, if the host variable is declared as a

NUL-terminated string, it must have a length attribute that is between 2 and

19.) The server_name that is contained within the host_variable must be

left-justified and must not be delimited by quotation marks; if a fixed-length, it

must be padded on the right with blanks if its length is less than that of the

host variable.

 The default is the application server as defined in the DBNAME directory. If a

batch application attempts the connect, then the server_name must be one that

exists in the DBNAME directory. If it is a remote server, it must be identified

as using TCP/IP communication. Otherwise, an SQL error will be returned to

the batch application. (See the DB2 Server for VSE System Administration manual

for information on the DBNAME directory.)

When the CONNECT statement is processed, the server_name must identify an

application server described in the DBNAME directory (see the DB2 Server for VSE

System Administration manual) and the application process must be in the

connectable state. (See “Notes” on page 193 for information about connection

states.)

If the CONNECT statement is successful:

v The application process is disconnected from its previous application server, if

any, and connected to the identified application server

v The name of the application server is placed in the CURRENT SERVER special

register.

CONNECT (for VSE)

192 SQL Reference

If you are connected using SQLDS protocol, the SQLERRP field in the SQLCA is

set to 'ARI '. If you are connected using DRDA protocol, the format of

SQLERRP will be pppvvrrm, where:

– ppp identifies the product as follows:

 DSN for DB2 for OS/390

 ARI for DB2 Server for VSE & VM

 QSQ for DB2 for OS/400

 SQL for DB2 for OS/2 and DB2 for AIX.

– vv is a two-digit version identifier such as '02'

– rr is a two-digit release identifier such as '03'

– m is a one-digit modification level such as '0'.

v The authorization ID and the server_name of the connection are placed in the

SQLERRMC field of the SQLCA. The authorization ID precedes the server_name

and these are separated by X'FF'.

If the CONNECT statement is unsuccessful because the application process is not

in the connectable state or the server_name is not listed in the DBNAME directory,

the connection state of the application process is unchanged. If the CONNECT

statement is unsuccessful for any other reason, the application process remains in

the connectable state.

CONNECT with No Operand

This form of the CONNECT statement returns information about the current

authorization ID and application server. The information is returned in the

SQLERRP and SQLERRMC fields of the SQLCA as described above. This form of

CONNECT:

v Does not require the application process to be in the connectable state.

v Does not change the connection state.

Notes

In a batch program, either

v CONNECT

v CONNECT userid IDENTIFIED BY pw

v CONNECT userid IDENTIFIED BY pw TO server_name

v CONNECT TO server_name

must be the first SQL statement processed by the program. If a CONNECT TO

server_name statement is processed first, it must be followed by one of the other

three CONNECT statements above.

If a CONNECT with no options is processed first, the SQLERRMT fields will be set

to a blank user ID and blank server name. In this case, there is no default

application server. If the new target server is remote, then a new DRDA connection

to that remote server will be allocated and DRDA security handshaking will be

performed. If the new target server is local, DRDA flows are not possible and an

XPCC connection will be used. A CONNECT statement with no parameters

specified returns current connection information in the SQLERRP field of SQLCA.

If a DRDA connection exists when a CONNECT with no options is specified, the

current connection information is returned in the SQLERRP field of the SQLCA.

One of the remaining forms from the list above is required to establish the proper

identification of the user on the application server.

CONNECT (for VSE)

Chapter 6. Statements 193

If a CONNECT TO server_name is processed first, the server name is placed in the

CURRENT SERVER register. Also, the SQLERRMC field in the SQLCA is set with

eight blanks and the server_name separated by X'FF'. However, a CONNECT

authorization_name IDENTIFIED BY password must be processed to complete the

connection and establish the user identification before any other SQL statements

are processed.

If the TO clause is not specified, the application is connected to the default

application server. The server_name must be one that exists in the DBNAME

directory. If it is a remote server, it must be identitified as using TCP/IP

communication. Otherwise, an SQL error will be returned to the batch application.

TCP/IP does not perform any security checking during a physical connect. The

Batch application requester will use the DRDA security handshaking flows during

the logical connect to perform user ID and password verification. The physical

TCP/IP connection will be deallocated and reallocated whenever the application

switches to a different user ID or server name (using the CONNECT statement),

and DRDA security handshaking flows will be used again during the logical

connect. Either of these switches will not require the application to issue a

COMMIT RELEASE or ROLLBACK RELEASE. The Batch Resource Adapter will

retain and use the current user ID, password, and server name (unless different

ones are specified with a new CONNECT statement) after the new TCP/IP

physical connection is established. If a COMMIT RELEASE or ROLLBACK

RELEASE was issued prior to a CONNECT statement, then all user ID, password

and server name information is lost and must be supplied with the next

CONNECT.

If a Logical Unit of Work is ended by a COMMIT, and a CONNECT TO server_name is

the next SQL statement processed, a new connection is made to the application

server specified, with the user ID and password being the same as in the previous

connection.

If a Logical Unit of Work is ended with a COMMIT RELEASE, the next SQL statement

must be either:

v CONNECT userid IDENTIFIED BY pw or

v CONNECT userid IDENTIFIED BY pw TO server_name

to re-establish the proper user ID.

Summary of Variations of the CONNECT Statement

The various clauses may be specified in the following combinations:

1. CONNECT

This returns information about the currently connected authorization ID and

application server.

2. CONNECT authorization_name IDENTIFIED BY password

This switches to a new authorization ID on the currently established

application server.

3. CONNECT TO server_name

This switches the currently established authorization ID to a new application

server.

4. CONNECT authorization_name IDENTIFIED BY password TO server_name

This switches to both a new authorization ID and application server.

CONNECT (for VSE)

194 SQL Reference

Connection States

An application process is in one of three states at any time:

v Connectable and connected

v Unconnectable and connected

v Connectable and unconnected.

The connectable and connected state: An application process is connected to an

application server and CONNECT statements can be processed. The process enters

this state when it completes a rollback or successful commit from the

unconnectable and connected state, or a CONNECT statement is successfully

processed from the connectable and unconnected state.

The unconnectable and connected state: An application process is connected to

an application server, but a CONNECT statement cannot be successfully processed

to change application servers or to change authorization IDs. The process enters

this state from the connectable and connected state when it processes any SQL

statement other than CONNECT, COMMIT or ROLLBACK.

The connectable and unconnected state: An application process is not connected

to an application server. The only SQL statement that can be processed is

CONNECT. The process is initially in this state or enters this state when an SQL

statement is unsuccessful because of a failure that causes a rollback operation at

the application server and the loss of the connection. The process can also enter

this state if it successfully completes a commit or rollback with the release option

from the unconnectable and connected state or it processes a CONNECT statement

unsuccessfully.

 The following diagram shows the state transitions:

CONNECT with system failure

Successful CONNECT

Connectable
and

Connected

SQL other than
CONNECT,COMMIT,
or ROLLBACK

System failure
with rollback
and deallocate

Connectable
and

Unconnected

Unconnectable
and

Connected
ROLLBACK or
successful COMMIT

ROLLBACK or
successful
COMMIT with
RELEASE

Figure 8. VSE Connection State Transitions

CONNECT (for VSE)

Chapter 6. Statements 195

Additional Rules

It is not an error to process consecutive CONNECT statements because CONNECT

itself does not remove the application process from the connectable state. It is an

error to process any SQL statement other than CONNECT, COMMIT, or

ROLLBACK, and then process CONNECT with any options. To avoid the error,

process a commit or rollback operation before processing the CONNECT.

Notes

If a program is connectable and connected, a CONNECT TO server_name results in the

old connection being disconnected before the new connection is attempted. If the

new connection fails, the program’s state is connectable and unconnected.

A CONNECT to the same application server without changing the authorization

ID is treated as a no-operation; the connection is not disconnected and

reconnected.

Examples

Example 1

In a PL/I program, connect to the application server TOROLAB3.

 EXEC SQL CONNECT TO TOROLAB3;

Example 2

In a PL/I program, switch to a different application server called TOROLAB4.

Assume your user ID on TOROLAB4 is different than the one you are currently

using.

 EXEC SQL BEGIN DECLARE SECTION;

 DCL USERID CHAR(8);

 DCL PASWRD CHAR(8);

 EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT :USERID IDENTIFIED BY :PASWRD

 TO TOROLAB4;

Example 3

In a PL/I program, connect to an application server whose name is stored in the

host variable APP_SERVER (varchar(18)).

 EXEC SQL CONNECT TO :APP_SERVER;

Resolving Remote Server Name to Target Database

CICS Applications: If the CICS/VSE transaction issues an SQL CONNECT

statement with the ″TO server name″ clause, the server name is established

explicitly for the transaction and the Online Resource Adapter uses the DBNAME

Directory to resolve the server name to the target database.

If the CICS/VSE transaction did not issue an SQL CONNECT statement with

the“TO server name” clause, the Online Resource Adapter attempts to connect to

the default application server, as defined in the DBNAME Directory.

If the target database is a Remote server and the communications protocol to be

used is SNA, the application requester issues a GDS ALLOCATE command to

acquire a session for the remote system where the server runs. The SYSID used in

this ALLOCATE command is the SYSID value from the DBNAME Directory entry

(and the SYSID must match a CEDA DEF CONNECTION definition). Then the

CONNECT (for VSE)

196 SQL Reference

application requester issues a GDS CONNECT PROCESS command to initiate an

APPC basic conversation with the Remote server. The PROCNAME used by this

CONNECT PROCESS command is the REMTPN value from the DBNAME

Directory entry.

If the target database is a Remote server and the communications protocol to be

used is TCP/IP, the application requester issues a CONNECT to the TCP/IP

listener port number that is specified by the TCPPORT value from the DBNAME

Directory entry. The target database is identified by the IPADDR or TCPHOST

values from the DBNAME Directory entry.

If the target database is a Local or Host VM (guest sharing) server, normal

communications occurs using XPCC.

The default application server is determined when the CIRB transaction is invoked

and can be changed subsequently by a CIRC transaction. For more information on

establishing a default application server, see DB2 Server for VSE & VM Database

Administration.

Batch Applications: Batch applications access the Remote server in the same way

as CICS Transactions, but SNA communications protocol is not supported, only

TCP/IP. In addition, the Batch application must issue an SQL CONNECT

statement as the first SQL statement because an implicit connect is not allowed for

Batch applications.

Communications Protocols for Remote Server Access: The communications

method used to access a Remote server by CICS applications is specified by the

Communications Protocol setting in the SQLGLOB file, which can be either SNA or

TCP/IP. The remote server to be accessed must be connected by the desired

protocol. The default protocol in the SQLGLOB Default User entry is SNA, but this

can be changed. The protocol option can be specified for each user ID in the

SQLGLOB file. For more information about the SQLGLOB file, see DB2 Server for

VSE & VM Database Administration.

The communications method used to access a remote server by Batch applications

can only be TCP/IP; SNA is not supported for Batch applications.

If a server is identified in the DBNAME Directory as a Remote server, it must

contain information that identifies which communications protocols can be used to

access the Remote server. Either SNA or TCP/IP information (or both) can be

specified in the DBNAME Directory. For more information about the DBNAME

Directory, see DB2 Server for VSE & VM Database Administration.

CONNECT (for VSE)

Chapter 6. Statements 197

CREATE INDEX

The CREATE INDEX statement creates an index on a table.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v Ownership of the table

v The INDEX privilege for the table

v DBA authority.

If the index name includes a qualifier that is not the same as the authorization ID

of the statement, the privileges held by the authorization ID of the statement must

include DBA authority.

Syntax

Description

UNIQUE

Prevents the table from containing two or more rows with the same value of

the index key. The constraint is enforced when rows of the table are updated

or new rows are inserted.

 The constraint is also checked during the execution of the CREATE INDEX

statement. If the table already contains rows with duplicate key values, the

index is not created.

 When UNIQUE is used, null values are treated as any other values. For

example, if the key is a single column that can contain null values, that column

can contain no more than one null value. Unique indexes will not allow values

which differ only by the number of trailing blanks.

INDEX index_name

Provides a name for the index. The name, including the implicit or explicit

qualifier, must not identify an index that already exists at the application

server.

►► CREATE INDEX index_name

UNIQUE
 ►◄

►►

ON

table_name

(

▼

 ,

ASC

column_name

DESC

)

►◄

►►
 PCTFREE = 10

PCTFREE = integer

►◄

CREATE INDEX

198 SQL Reference

If the index name is qualified, the qualifier is the owner of the index.

Otherwise, the authorization ID of the statement is the owner of the index. The

owner has the privilege of dropping the index.

ON table_name

Identifies the table on which you want the index to be created. The table_name

must be the name of a base table (not a view) that exists at the application

server. The indicated table may be empty.

(column_name,...)

Identifies a column that is to be part of the index key.

 Each column_name must be an unqualified name that identifies a column of the

table. Up to 16 unique columns may be specified. Indexes cannot be created for

views or for columns containing long strings.

ASC

Puts the index entries in ascending order by the column. This is the

default.

DESC

Puts the index entries in descending order by the column.

PCTFREE

Controls the amount of free space reserved in an index for later insertions and

updates. PCTFREE defines the percentage (integer) of the total space of the

index that is to be reserved for this purpose. PCTFREE may range from 0 to

99, but for practical purposes should not exceed 50. Increasing PCTFREE

causes the index to take more space in the database, but reduces the time

required to insert or update rows in the indexed table. If you do not include a

PCTFREE clause on the CREATE INDEX statement, the database manager sets

PCTFREE to 10.

Notes

If the named table already contains data, CREATE INDEX creates the index entries

for it. If the table does not yet contain data, CREATE INDEX creates a description

of the index; the index entries are created when data is inserted into the table.

The sum of the length attributes of the indexed columns, plus approximately 25%

of the length attributes of any indexed columns of varying-length character type,

must not exceed 255 bytes. If you are creating the index after data has been loaded

into the table, a sort is invoked during the preprocessing of the CREATE INDEX

command. If duplicate keys are allowed in the index, then the sort will require 4

bytes to be added to the encoded key. These four bytes are part of the 255 total

bytes.

At preprocessing time, the database manager optimizer chooses which index, if

any, is to be used in processing a given query or data manipulation statement. The

index provides a fast means to access the table directly by the indexed columns.

However, there is a slight increase in the time required to update the indexed

columns because the database manager must also update the index. It is good

practice to create indexes before preprocessing programs that might take advantage

of them. When you create a new index, existing packages are not marked incorrect

because they can still use their original access path. However, an existing program

may run more efficiently by taking advantage of the new index. If this is the case,

you should preprocess the program again. A new package is then created for the

program, possibly using the new index.

CREATE INDEX

Chapter 6. Statements 199

An index is maintained by the database manager until it is explicitly dropped

using a DROP INDEX statement, or until its table or dbspace is dropped.

Recovery of a CREATE INDEX statement could result in the index being marked

as invalid. The database manager will end if an attempt is made to mark an index

as not valid if the system limit of not valid indexes has been reached. The database

manager will not allow a CREATE INDEX statement to proceed if the number of

currently not valid indexes plus the number of potentially not valid indexes

(currently executing CREATE INDEX statements plus DBSU REORGANIZE INDEX

commands) has reached the limit.

If doing many updates to an indexed column or inserting many rows into an

indexed table (as the Database Services utility does), it is often best to drop the

index before doing the updates and then re-create it after the updates are complete.

Because the index is not being updated while the table is being updated, this can

be a significant performance improvement.

For information on how to calculate the length of an encoded key refer to the DB2

Server for VSE & VM Database Administration manual.

Examples

Example 1

Create an index named UNIQUE_NAM on the PROJECT table. The purpose of the

index is to ensure that there are not two entries in the table with the same value

for project name (PROJNAME). The index entries are to be in ascending order.

 CREATE UNIQUE INDEX UNIQUE_NAM

 ON PROJECT(PROJNAME)

See example 4 in ALTER TABLE for an alternate method of ensuring unique

project names.

Example 2: Create an index named JOB_BY_DEPT on the EMPLOYEE table.

Arrange the index entries in ascending order by job title (JOB) within each

department (WORKDEPT). Leave 33 percent of the space in the index free for later

insertions.

 CREATE INDEX JOB_BY_DEPT

 ON EMPLOYEE (WORKDEPT, JOB)

 PCTFREE = 33

CREATE INDEX

200 SQL Reference

CREATE PACKAGE

The CREATE PACKAGE statement creates a package.

Invocation

This statement can only be embedded in an application program written in

Assembler or REXX.

Authorization

None required. However, a DBA authority is required to create a package that is to

be owned by someone else.

Syntax

Description

package_spec

Provides a name for the package.

 If the package_spec is identical to the name of an existing package and the

REPLACE option is specified, the existing package is implicitly dropped and

replaced with a new package.

USING OPTIONs option

USING OPTIONs host_variable

The options are as follows:

CCSIDSbcs (integer)

This option specifies the default CCSID to be used if a character column of

subtype SBCS is defined by a CREATE or ALTER TABLE statement in this

package without an explicit CCSID being specified for the column. If this

option is not specified, the target application server will use its system

default.

 This option can only be used when connected to a DB2 Server for VM or

DB2 Server for VSE application server.

CCSIDMixed (integer)

This option specifies the default CCSID to be used if a character column of

subtype mixed is defined by a CREATE or ALTER TABLE statement in this

package without an explicit CCSID being specified for the column. If this

option is not specified, the target application server will use its system

default.

►►
 (1)

CREATE PACKAGE

▼

package_spec

(2)

USING OPTIONs

option

host_variable

►◄

Notes:

1 PROGRAM is equivalent to PACKAGE, and is provided for compatibility with some

older versions of the SQL/DS product.

2 An option may be specified only once.

CREATE PACKAGE

Chapter 6. Statements 201

This option can only be used when connected to a DB2 Server for VM or

DB2 Server for VSE application server.

CCSIDGraphic (integer)

This option specifies the default CCSID to be used if a graphic column is

defined by a CREATE or ALTER TABLE statement in this package without

an explicit CCSID being specified for the column. If this option is not

specified, the target application server will use its system default.

 This option can only be used when connected to a DB2 Server for VM or

DB2 Server for VSE application server.

CHARSUB Sbcs

CHARSUB Mixed

CHARSUB Bit

This option specifies the default character subtype to be used if a character

column is defined by a CREATE or ALTER TABLE statement in this

package without an explicit subtype or CCSID being specified. If this

option is not specified, the target application server will use its system

default.

 This option can only be used when connected to a DB2 Server for VM or

DB2 Server for VSE application server.

DATE ISO

DATE USA

DATE EUR

DATE JIS

DATE LOCAL

This option specifies which output date format will be used by the SQL

statements. If the DATE option is not specified, the format specified at

installation time is used. If LOCAL is implicitly or explicitly specified, a

DATE installation exit must be installed.

 If using DRDA protocol, ISO is the default format.

 The DATE LOCAL option is not supported for non-modifiable packages

created by using extended dynamic statements with DRDA protocol. If

specified, an error will occur indicating an incorrect parameter.

EXPLAIN NO

EXPLAIN YES

This option, if set to YES, specifies whether explanatory information for all

explainable SQL statements in a package should be produced. NO is the

default.

ISOLation RR

ISOLation CS

ISOLation USER

ISOLation RS

ISOLation UR

This option specifies the isolation level for the package. The DB2 Server for

VSE & VM database manager supports RR, CS, UR, and USER. For a

description of isolation levels, see “Isolation Level” on page 20. For

information on USER, see the section on preprocessing and running a

program in the DB2 Server for VSE & VM Application Programming manual.

RR is the default.

CREATE PACKAGE

202 SQL Reference

In a VM environment, RS is not directly supported by the application

server. In a VSE environment, RS is not supported at all. In both VM and

VSE, isolation level RS is upgraded to level RR. (See the IBM SQL Reference

manual for details on RS.)

 The ISOLATION USER option is not supported for non-modifiable

packages created by using extended dynamic statements with DRDA

protocol. If specified, USER will be overridden with CS.

KEEP

REVOKE

This option applies if the package has previously been created and the

owner of the package has granted the EXECUTE privilege on the resulting

package to other users.

 KEEP causes these grants of the EXECUTE privilege to remain in effect

when the new package is created. KEEP is the default.

 If the REVOKE option is specified, or if the owner of the package is not

entitled to grant all privileges embodied in the program, the preprocessor

revokes all existing grants of the EXECUTE privilege.

LABEL (label_text)

This option specifies a label for the package. Label_text can be, at most, 30

characters in length. If specified, label_text is stored in column PLABEL in

the SYSTEM.SYSACCESS catalog table; the default is 30 spaces.

NOBLocK

BLocK

SBLocK

This option specifies if rows should be inserted and retrieved in groups.

 If the BLocK option is specified, all eligible query cursors return results in

groups of rows. All eligible insert cursors process inserts in groups of rows.

 If NOBLocK is specified, rows are not grouped.

 SBLocK is primarily for use with application servers that support the FOR

FETCH ONLY clause on the DECLARE CURSOR statement. When SBLock

is specified, all eligible cursors return results in group of rows. This is the

default.

NOCHECK

CHECK

ERROR

This option specifies what action to take when an SQL statement is

prepared into the package and checked for validity. For all options, if a

statement fails its validity check, an appropriate SQLCODE and SQLSTATE

is returned in the SQLCA.

v If NOCHECK is specified and any SQL statement fails its validity check,

the package will not be created. This is the default.

v If CHECK is specified, the package is not created, even if all SQL

statements pass their validity check.

v If ERROR is specified, the package is created even if any SQL statement

fails its validity check. The subsequent execution of a not valid statement

results in a -525 SQLCODE, SQLSTATE 51015. Note that for a modifiable

package, ERROR and EXIST may not be specified together.

NODESCRIBE

CREATE PACKAGE

Chapter 6. Statements 203

|

|

|

|

|

DESCRIBE

This option allows the use of the Extended DESCRIBE for statements

added to the created package.

 If DESCRIBE is specified, Extended DESCRIBE statements can be

processed.

 If NODESCRIBE is specified, these Extended DESCRIBE statements cannot

be processed. This is the default. NODESCRIBE is not supported with

DRDA protocol and will be changed to DESCRIBE.

NOEXIST

EXIST

This option specifies the action to be taken when objects referenced in a

program are checked for existence and their access authorizations are

checked.

 If NOEXIST is specified, a warning is returned to the program if object and

authorization existence is not found. This will not affect the creation of the

package (for instance, if NOCHECK is in effect and everything else is

valid, then the package will be created). NOEXIST is the default.

 If EXIST is specified, an error is returned to the program if an object does

not exist or if the authorization ID of an Extended PREPARE statement

does not have the appropriate privileges on an object. In such a case, the

package is not created, even if ERROR is specified. For modifiable

packages, ERROR and EXIST may not be specified together.

NOMODIFY

MODIFY

This option specifies whether the created package can be modified after it

is stored through a COMMIT. Sections are added to the package by using

the Extended PREPARE and deleted by using the DROP STATEMENT

function.

 Sections in packages created with the MODIFY option can also be

processed or dropped before committing the logical unit of work in which

they were prepared.

 The MODIFY option should not be used if the entire package will be

replaced using the REPLACE option. Once a package has been created

with the MODIFY option specified, it can be changed but not replaced by

subsequent CREATE PACKAGE statements. To replace a package created

with the MODIFY option, it is necessary to enter a DROP PACKAGE

statement and then enter a CREATE PACKAGE.

 NOMODIFY is supported with DRDA protocol; however, there are some

restrictions (see Appendix G, “DRDA Considerations,” on page 425).

MODIFY is not supported with DRDA protocol and will be changed to

NOMODIFY. NOMODIFY is the default.

OWner (authorization_name)

This option specifies the owner of the package being created. If this option

is not specified, the binder’s authorization ID at the application server is

used.

 For DB2 Server for VSE & VM application servers, the authorization_name

must be the same as the binder’s authorization ID at the application server.

QUALifier (collection_id)

This option specifies the default collection_id to be used within the package

CREATE PACKAGE

204 SQL Reference

to resolve unqualified object names. If this option is not specified, the

binder’s authorization ID at the application server is used.

 For DB2 Server for VSE & VM application servers, the collection-id must be

the same as the binder’s authorization ID at the application server.

RELease COMMIT

RELease DEALLOCATE

This option specifies when the application server should release the

package execution resources and any associated locks.

 If COMMIT is specified, the resources are released when a logical unit of

work (LUW) is committed or rolled back. This is the default.

 If DEALLOCATE is specified, the resources are released when the

application process terminates.

 For DB2 Server for VSE & VM application servers, the only acceptable

option is RELEASE(COMMIT).

REPLACE

NEW

This option specifies whether the package being created is new or whether

it will replace an existing package that has the same name. REPLACE is

the default.

 If NEW is specified, an error results if a package already exists with the

same name.

 If REPLACE is specified and no previous package exists with the same

name, no error or warning is given. If NEW is specified along with KEEP

or REVOKE, an error results.

CREATE PACKAGE

Chapter 6. Statements 205

TIME ISO

TIME USA

TIME EUR

TIME JIS

TIME LOCAL

This option specifies which output time format will be used by the SQL

statements. If the TIME option is not specified, the format specified at

installation time is used. If LOCAL is implicitly or explicitly specified, a

TIME installation exit must be installed.

 If using DRDA protocol, ISO is the default format.

 The TIME LOCAL option is not supported for non-modifiable packages

created by using extended dynamic statements with DRDA protocol. If

specified, an error will occur indicating an incorrect parameter.

host_variable

Contains a list of options, delimited by a comma or blank. This host variable

must be declared as VARCHAR and has a maximum length of 8192.

Notes

The package is stored in the database when a COMMIT is issued.

When the logical unit of work, in which the CREATE PACKAGE statement is

entered, is committed (using COMMIT), a new package is created. ROLLBACK

prevents the storage of the new package. A package created with the MODIFY

option can be committed even if it contains no statements. Only one package may

be created or modified within a logical unit of work.

Before SQL/DS Version 3 Release 1, the values for the ISOLATION, DATE, and

TIME bind options were derived from the corresponding options with which the

application was preprocessed. With SQL/DS Version 3 Release 1, these options

became pure bind options, meaning that their values are to be based only on their

specification in the CREATE PACKAGE statement. This change will only take

effect after the application issuing the CREATE PACKAGE statement has been

repreprocessed, reassembled, and relinked.

Note: For DB2 Server for VSE, if a combination of the NOBIND, BIND, or the

PACKAGE, NOPACKAGE or the CHECK, NOCHECK and ERROR was

specified, the preprocessor will generate an error message. For example, if

PACKAGE, NOPACKAGE, NOBIND, BIND were all specified, the

preprocessor will display the following error messages:

 ARI0583E - Keywords PACKAGE and NOPACKAGE were both found.

 - Specify only one.

 ARI0583E - Keywords NOBIND and BIND were both found.

 - Specify only one.

 ARI0586I - Preprocessing ended with 2 errors and

 - 0 warnings.

For DB2 Server for VSE, if NOBIND, NOCHECK and NOPACKAGE are all

specified, no action would be taken for this preprocessing. This is

considered an error and the following error messages will be displayed:

 ARI5411E - Keywords NOBIND, NOCHECK and NOPACKAGE are

 - specified. No preprocess will be done for this

 - operation.

 ARI0586I - Preprocessing ended with 1 errors and

 - 0 warnings.

CREATE PACKAGE

206 SQL Reference

The restriction for non-modifiable packages created by using extended dynamic

statements with DRDA protocol are as follows:

v Only one CREATE PACKAGE statement is permitted in a logical unit of work.

v After a CREATE PACKAGE with the NOMODIFY option has been issued, only

Extended PREPARE SQL statements can follow in the same logical unit of work.

The following statements are the only ones valid in a package created using

CREATE PACKAGE:

– Extended DECLARE CURSOR

– Extended DROP STATEMENT

– Extended OPEN, FETCH, PUT, and CLOSE

– Extended EXECUTE

– Extended DESCRIBE

v After the unit of work containing the CREATE PACKAGE has completed, an

Extended PREPARE or DROP STATEMENT cannot be used to change the

package that was created with the CREATE PACKAGE statement.

Examples

CREATE PACKAGE JERRY.MUSICIANS USING OPTIONS DESCRIBE NEW BLOCK

CREATE PACKAGE

Chapter 6. Statements 207

CREATE PROCEDURE

The CREATE PROCEDURE statement inserts the definition of a stored procedure

and the parameters it requires into SYSTEM.SYSROUTINES and

SYSTEM.SYSPARMS, and into the cache.

Invocation

This statement can be issued from an application program or interactively. It is an

executable statement that can be dynamically prepared. The PSERVER GROUP in

which the procedure will run must exist (there must be at least one PSERVER

defined in that group), before the procedure can be defined.

Authorization

The issuer of the CREATE PROCEDURE must have DBA authority.

Syntax

►► CREATE PROCEDURE procedure-name

AUTHID

authid

 (

parameters
) ►

CREATE PROCEDURE

208 SQL Reference

►

▼

 , (1)

FENCED

(8)

LANGUAGE

ASSEMBLE

C

COBOL

PLI

EXTERNAL

NAME

external-program-name

SERVER GROUP

server-group-name

DEFAULT SERVER GROUP YES

DEFAULT SERVER GROUP NO

PARAMETER STYLE

(3)

GENERAL WITH NULLS

(2)

GENERAL

STAY RESIDENT NO

STAY RESIDENT YES

PROGRAM TYPE MAIN

(4)

PROGRAM TYPE SUB

RUN OPTIONS

run-time-options

RESULT SET 0

RESULT

SET

integer

SETS

COMMIT ON RETURN NO

COMMIT ON RETURN YES

(5)

NOT DETERMINISTIC

(6)

DETERMINISTIC

(7)

CONTAINS SQL

(7)

NO SQL

(7)

READS SQL DATA

(7)

MODIFIES SQL DATA

(7)

NO COLLID

(7)

COLLID

collection-id

(7)

WLM ENVIRONMENT

name

(name,*)

(7)

NO WLM ENVIRONMENT

(7)

ASUTIME NO LIMIT

(7)

ASUTIME LIMIT

integer

(7)

EXTERNAL SECURITY DB2

(7)

EXTERNAL SECURITY

USER

DEFINER

(7)

NO DBINFO

(7)

DBINFO

►◄

CREATE PROCEDURE

Chapter 6. Statements 209

Notes:

1 This parameter is included for compatibility with the DB2 family. If specified,

it is ignored.

2 As an alternative to GENERAL, SIMPLE CALL may be used. This is for

compatibility within the DB2 family.

3 As an alternative to GENERAL WITH NULLS, SIMPLE CALL WITH NULLS

may be used. This is for compatibility within the DB2 family.

4 Currently, DB2 Server for VSE & VM supports stored procedures written as

main programs only.

5 VARIANT may be specified as an alternative to NOT DETERMINISTIC. This

is for compatibility within the DB2 family.

6 NOT VARIANT may be specified as an alternative to DETERMINISTIC. This

is for compatibility within the DB2 family.

7 This parameter is included for compatibility with the DB2 family. If specified,

it is ignored.

8 One or more clauses may be specified, however each clause may be specified

at most once.

Description

Only the parameters that are meaningful to DB2 Server for VSE & VM are

described.

procedure-name

Names the stored procedure. For DB2 Server for VSE & VM, the name must be

an ordinary identifier of 18 characters or less. The name must not identify a

stored procedure that already exists on the server. In addition, the name cannot

be ’AUTHID’ or ’ACTION’.

authid

The authorization ID for the stored procedure. authid must be an ordinary

identifier of 8 characters or less. If specified, then the stored procedure being

defined will be accessible only by authid. Note that authid cannot be ’AUTHID’

or ’ACTION’.

LANGUAGE

Specifies the programming language used to create the stored procedure. All

stored procedure programs must be designed to run in the IBM Language

Environment.

ASSEMBLE

Specifies that the stored procedure is written in Assembler.

C Specifies that the stored procedure is written in C.

COBOL

Specifies that the stored procedure is written in COBOL.

PLI Specifies that the stored procedure is written in PLI.

 Note that the LANGUAGE clause must be specified on the CREATE

PROCEDURE statement.

EXTERNAL NAME external-program-name

Identifies the load module or phase associated with the stored procedure. The

load module or phase does not need to exist when the CREATE PROCEDURE

CREATE PROCEDURE

210 SQL Reference

statement is issued. However, when a CALL for the stored procedure is issued,

the load module must exist and be accessible to the stored procedure server.

 If external-program-name is not specified, the name of the load module or phase

is assumed to be the same as the name of the stored procedure. In this case,

the name of the stored procedure must be 8 characters or less. Note that the

EXTERNAL clause must be specified on the CREATE PROCEDURE statement.

SERVER GROUP server-group-name

Identifies the name of the group of servers to be used to run this stored

procedure. Server-group-name must be an ordinary identifier of 18 characters

or less, and must be defined in SYSTEM.SYSPSERVERS.

 If SERVER GROUP is specified without server-group-name, the stored procedure

must be able to run in the default server group. At least one server must exist

in the specified group. Note that the SERVER GROUP clause must be specified

on the CREATE PROCEDURE statement.

DEFAULT SERVER GROUP

Specifies whether the stored procedure can run in the default server group.

YES The stored procedure can run in the default server group. This is the

default.

NO The stored procedure cannot run in the default server group. If NO is

specified, a server-group-name must be provided on the SERVER

GROUP clause.

PARAMETER STYLE

Identifies the linkage convention used to pass parameters to the stored

procedure. All of the linkage conventions provide arguments to the stored

procedure containing the parameters specified on the SQL CALL statement. See

the DB2 Server for VSE & VM Database Administration manual for more

information. The following parameter styles options are valid for DB2 Server

for VSE & VM:

GENERAL

If the GENERAL linkage convention is used:

v the SQL CALL statement must provide a parameter for each

parameter expected by the stored procedure

v input parameters cannot be null

v nulls can be passed for output parameters only

v the stored procedure cannot return nulls for output parameters

Note that DB2 Server for VSE & VM does not support the parameter

style DB2SQL.

GENERAL WITH NULLS

If the GENERAL WITH NULLS linkage convention is used:

v the SQL CALL statement must provide a parameter for each

parameter expected by the stored procedure. When the database

manager invokes the stored procedure, it sends it the parameters

specified on the SQL CALL statement, as well as an array of

indicator variables (with one indicator variable for each parameter).

The stored procedure must contain a declaration for this array.

v input parameters can be null. This is achieved through the use of

indicator variables, or by specifying the keyword null.

v the stored procedure can return nulls for output parameters, by

using indicator variables.

CREATE PROCEDURE

Chapter 6. Statements 211

STAY RESIDENT

Specifies whether the stored procedure load module or phase remains loaded

in memory after the stored procedure ends. Possible values are:

NO The load module or phase is deleted from memory after the stored

procedure ends. This is the default.

YES The load module or phase remains loaded in memory after the stored

procedure ends.

PROGRAM TYPE

Specifies whether the stored procedure runs as a MAIN routine or as a SUB

routine. Currently, DB2 Server for VSE & VM supports stored procedures

written as MAIN routines only.

RUN OPTIONS

Specifies the Language Environment run-time options to be passed to the

stored procedure. The options must be specified as a character string up to 254

bytes and must be enclosed in single quotation marks. If this option is not

specified, or an empty string is passed, then DB2 Server for VSE & VM passes

no run-time options to the Language Environment, and Language Environment

uses its installation defaults. Note that DB2 Server for VSE & VM does not do

any checking of the options provided. For a complete description of Language

Environment run-time options, see Language Environment for MVS & VM

Programming Reference.

RESULT SETS or RESULT SET

Specifies the maximum number of query result sets that can be returned by

this stored procedure. The default is RESULT SETS 0, indicating that there are

no result sets. The largest value that can be specified is 32767.

COMMIT ON RETURN

Indicates whether the transaction should be committed immediately upon

return from the stored procedure.

NO The database manager should not issue COMMIT when the stored

procedure returns. This is the default.

YES The database manager should issue COMMIT when the stored

procedure returns when the following statements are true:

v The SQLCODE returned by the CALL statement is not negative

v The stored procedure is not in a must abort state

The COMMIT operation includes the work performed by the calling

application as well as the stored procedure. Any cursors that are open

when the COMMIT occurs will be closed during COMMIT processing.

CREATE PROCEDURE

212 SQL Reference

Parameters

 The fields of the parameters syntax diagram are:

IN The parameter is an input-only parameter to the stored procedure.

OUT The parameter is an output-only parameter to the stored procedure.

INOUT

The parameter is both an input and output parameter to the stored

procedure.

parameter-name

a one- to eight-character ordinary identifier defining the name of the

parameter for use in messages. If you do not specify a name, the

position of the parameter in the parameter list is used in the DB2

Server for VSE & VM messages.

INTEGER or INT

Large integer parameter

SMALLINT

Small integer parameter

REAL Single precision floating point

parameters:

▼

 ,

IN

data-type

OUT

parameter-name

(1)

INOUT

AS LOCATOR

data-type:

 INT

INTEGER

SMALLINT

REAL

FLOAT

DOUBLE

DOUBLE PRECISION

DECIMAL

DEC

(

integer

)

,integer

CHARACTER

CHAR

(integer)

FOR

SBCS

DATA

MIXED

BIT

VARCHAR(integer)

FOR

SBCS

DATA

MIXED

BIT

GRAPHIC(integer)

VARGRAPHIC(integer)

Notes:

1 This parameter is included for compatibility with the DB2 family. If specified, it is

ignored.

CREATE PROCEDURE

Chapter 6. Statements 213

FLOAT, DOUBLE, or DOUBLE PRECISION

Double precision floating point

DECIMAL or DEC

Decimal parameter. The (integer,integer) optional arguments are the

precision and scale respectively. The precision is the total number of

digits from 1 to 31. The scale is the number of digits to the right of the

decimal point, from 0 to the precision.

CHARACTER or CHAR

Fixed length character string parameter. The (integer) optional

argument specifies the length of the string, from 1 to 254. If you do not

specify (integer), the length is set to 1.

VARCHAR

Varying length character string parameter. The maximum length is

specified by the argument (integer) and varies from 1 to 32767. If the

length is greater than 254 then it is a long string column.

GRAPHIC

Fixed-length graphic string parameter. The (integer) optional argument

specifies the length of the string, from 1 to 127. If you do not specify

the (integer) argument, the length is set to 1.

VARGRAPHIC

Varying-length graphic character string parameter. The maximum

length is specified by the argument (integer) and varies from 1 to 16383

characters.

FOR subtype DATA

Specifies a subtype for a character string parameter. The subtype can

be one of the following:

SBCS Specifies that the parameter is a single-byte character string.

MIXED

Specifies that the parameter holds mixed single-byte and

double-byte data. This option is valid only when the DBCS

value is set to YES.

BIT Specifies that the parameter holds bit data. Character

conversion does not occur for data that is defined FOR BIT

DATA

 As an example, in the following parameters string:

PARM1 CHAR(10) IN, PARM2 INTEGER INOUT, PARM3 INT OUT

PARM1, PARM2, and PARM3 are identifiers for error messages. You can

specify any name you want. The stored procedure associated with the

PARMLIST string would expect three parameters:

v An input character parameter of length 10

v An integer parameter for both input and output

v An integer parameter for output only

Notes

1. If a parameter represents a DB2 Server for VSE & VM DATE, TIME, or

TIMESTAMP value, it must be defined as CHARACTER or VARCHAR in the

PARMLIST.

CREATE PROCEDURE

214 SQL Reference

2. Refer to the appendices of the DB2 Server for VSE & VM Application

Programming manual for the programming language declarations that

correspond to the datatypes in the PARMLIST.

Examples

Example 1

 CREATE PROCEDURE MYPROC (IN INT, IN PARM2 CHAR(10), OUT CHAR(20))

 EXTERNAL NAME MYMOD,

 LANGUAGE COBOL,

 PARAMETER STYLE GENERAL

 CREATE PROCEDURE MYPROC2 (IN INT, IN CHAR(10), OUT CHAR(20))

 EXTERNAL NAME MYMOD2,

 LANGUAGE COBOL,

 PARAMETER STYLE GENERAL WITH NULLS,

 RUN OPTIONS ’HEAP(,,ANY),BELOW(4K,,),ALL31(ON),STACK,(,,ANY,)’

CREATE PROCEDURE

Chapter 6. Statements 215

CREATE PSERVER

The CREATE PSERVER statement inserts the definition of a stored procedure

server into SYSTEM.SYSPSERVERS and puts the new definition into the cache.

Invocation

This statement can be issued from an application program or interactively. It is an

executable statement that can be dynamically prepared.

Authorization

The issuer of the CREATE PSERVER statement must have DBA authority.

Syntax

Description

procedure-server

The name of the stored procedure server. The name must be an ordinary

identifier of 8 characters or less. The name must not identify a stored

procedure server that already exists on the server. In addition, the name cannot

be one of the following:

 GROUP

 IMPLICIT

 NOIMPLICIT

 NORMAL

 QUICK

GROUP

The name of the group that this stored procedure server is in. Using stored

procedure groups gives the database administrator more flexibility in defining

the system. The use of stored procedure groups is optional; if the GROUP

clause is not specified, the stored procedure server becomes part of the default

group. If the GROUP clause is specified, the group-name must be an ordinary

identifier of 1 to 18 characters.

AUTOSTART

Determines whether the database manager will issue a START PSERVER

command for this stored procedure server when the database is started.

NO The stored procedure server will not be started when the database is

initialized. This is the default.

YES The stored procedure server will be started when the database is

initialized.

►►

▼

 ,

(1)

CREATE PSERVER

procedure-server

GROUP

group-name

AUTOSTART NO

AUTOSTART YES

DESCRIPTION

description

►◄

Notes:

1 One or more clauses may be specified, however each clause may be specified at most

once.

CREATE PSERVER

216 SQL Reference

DESCRIPTION

This field provides the database administrator with a place to provide

information about this stored procedure server, such as virtual storage

requirements, other servers in the group, and so on. Description can be up to

254 characters and must be enclosed in single quotation marks. The default is

NULL.

Examples

Example 1

 CREATE PSERVER SRV1 GROUP GRP1, AUTOSTART YES

 CREATE PSERVER SRV2 GROUP GRP2, AUTOSTART YES

CREATE PSERVER

Chapter 6. Statements 217

CREATE SYNONYM

The CREATE SYNONYM statement defines an alternative name for a table or

view. This lets you refer to a table or view owned by another user without having

to enter the qualified name. You may also define a synonym for a table or view

that you own.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

None required.

Syntax

Description

synonym

Provides an alternative name to use when referring to the table or view. The

synonym must be an SQL identifier that is not identical to one of your

synonyms or the unqualified name of a table or view that you own.

FOR

Identifies the qualified name of the table or view for which the synonym is to

be created. The qualifier is required, even when you are creating a synonym

for one of your own tables or views. You can create a synonym for a table or

view that does not as yet exist in the system catalog.

 The synonym is defined only for your authorization ID, that is, the

authorization ID of the statement. If many users want to have the same

synonym, each user must enter a CREATE SYNONYM statement.

qualified_table_name

qualified_view_name

Identifies the object to which the synonym will apply. The name consists of

two parts and denotes a table or view already described or which will be

described in the catalog.

Notes

A synonym cannot be used with the table or view it represents in the same

statement.

Examples

Define an alternative name, PARTS, for TRUDEAU.INVENTORY.

 CREATE SYNONYM PARTS

 FOR TRUDEAU.INVENTORY

►► CREATE SYNONYM synonym FOR qualified_table_name

qualified_view_name
 ►◄

CREATE SYNONYM

218 SQL Reference

CREATE TABLE

The CREATE TABLE statement defines a table. You provide the name of the table

and the names and attributes of its columns. Moreover, you may specify the

dbspace where the table is to be created.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v DBA authority

v RESOURCE authority

v A private dbspace that was acquired for you.

If the table name is qualified by an identifier other than your authorization ID, you

must have DBA authority.

See the description of the IN clause for further information on authorization.

CREATE TABLE

Chapter 6. Statements 219

Syntax

►►

CREATE TABLE

table_name

(

▼

 ,

(1)

column_definition_block

(1)

primary_key_block

referential_constraint_block

unique_block

)

▼

IN

dbspace_name

(2)

DATA CAPTURE

NONE

CHANGES

►◄

Notes:

1 There can be up to 255 columns in a table.

2 The same clause must not be specified more than once.

column_definition_block:

 column_name data_type

(1)

fieldproc_block

Notes:

1 These clauses may be specified in any order.

data_type:

 INTeger

SMALLINT

(53)

FLOAT

(integer)

REAL

DOUBLE PRECISION

(5,0)

DECimal

NUMERIC

(

integer

)

,integer

(1)

CHARacter

(integer)

FOR SBCS DATA

VARCHAR

(integer

FOR MIXED DATA

LONG VARCHAR

FOR BIT DATA

CCSID

integer

(1)

GRAPHIC

(integer)

CCSID

integer

VARGRAPHIC

(integer)

LONG VARGRAPHIC

DATE

TIME

TIMESTAMP

NOT NULL

UNIQUE

PRIMARY KEY

CREATE TABLE

220 SQL Reference

Description

table_name

Provides a name for the table. The name, including the implicit or explicit

qualifier, must not identify a table, view, or synonym that already exists at the

application server.

 If the table name is qualified, the qualifier is the owner of the table. Otherwise,

the authorization ID of the statement is the owner of the table. The owner has

all privileges on the table. The privileges can be granted by the owner and

cannot be revoked from the owner.

 If user SCOTT preprocesses a program that creates a table named SUMMARY,

and user JONES runs the program, the owner of the SUMMARY table is

fieldproc_block:

 FIELDPROC program_name

▼

,

(

constant

)

primary-key-block:

PRIMARY KEY

(

▼

 ,

(1)

ASC

column_name

DESC

)

PCTFREE = 10

PCTFREE = integer

Notes:

1 A PRIMARY KEY can have up to 16 columns.

referential-constraint-block:

FOREIGN KEY

(

constraint_name

▼

 ,

column_name

)

REFERENCES

table_name

►

►
RESTRICT

ON DELETE

CASCADE

SET NULL

unique-block:

UNIQUE

constraint_name

▼

 ,

(1)

ASC

(

column_name

)

DESC

PCTFREE = 10

PCTFREE = integer

Notes:

1 There can be up to 16 columns on a unique constraint.

CREATE TABLE

Chapter 6. Statements 221

SCOTT. Note that JONES must be a DBA to run the program. Any program

preprocessed by SCOTT can refer to the SUMMARY table simply by the name

SUMMARY. When another authorization ID preprocesses a program that refers

to the SUMMARY table, the program must use SCOTT as a prefix to the

table_name, SCOTT.SUMMARY.

(column_name,...)

Names a column of the table. Do not qualify column_name and do not use the

same name for more than one column of the table.

data_type

Specifies one of the types in the following list.

INTeger

For a large integer. The value may range from -2147483648 to 2147483647.

SMALLINT

For a small integer. The value may range from -32 768 to 32 767.

FLOAT(integer)

FLOAT

For a floating-point number. If the integer is between 1 and 21 inclusive,

the format is that of single precision floating-point. If the integer is

between 22 and 53 inclusive, the format is that of double precision

floating-point. If the integer is omitted from the specification, double

precision floating-point is assumed.

 In place of FLOAT(integer) you may specify either:

REAL For single precision floating-point

DOUBLE PRECISION For double precision floating-point

DECIMAL(precision-integer,scale-integer)

For a packed decimal number. The first integer is the precision of the

number; that is, the total number of digits; it can range from 1 to 31. The

second integer is the scale of the number; that is, the number of digits to

the right of the decimal point; the scale of the number can range from 0 to

the precision of the number.

 DECIMAL(p) can be used for DECIMAL(p,0), and DECIMAL can be used

for DECIMAL(5,0).

NUMERIC

NUMERIC is a synonym for DECIMAL.

CHARacter(integer)

CHARacter

For a fixed-length character string of length integer, which can range from 1

to 254 bytes. If the length specification is omitted, a length of 1 character is

assumed.

VARCHAR(integer)

For a varying-length character string of maximum length integer, which can

range from 1 to 32 767 bytes. An integer greater than 254 defines a long

string column.

LONG VARCHAR

For a varying-length character string with a maximum length of 32 767

bytes.

 A LONG VARCHAR column is always a long string column (even if its

actual length is 254 or less).

CREATE TABLE

222 SQL Reference

GRAPHIC(integer)

For a fixed-length graphic string of length integer, which can range from 1

to 127 double-byte characters. If the length specification is omitted, a

length of 1 character is assumed.

VARGRAPHIC(integer)

For a varying-length graphic string of maximum length integer, which must

range from 1 to 16 383 double-byte characters. An integer greater than 127

double-byte characters defines a long string column.

LONG VARGRAPHIC

For a varying-length string of double-byte characters, of maximum length

16 383 bytes. A LONG VARGRAPHIC column is always a long string

column (even if its actual length is 127 double-byte characters or less).

DATE

For a date.

TIME

For a time.

TIMESTAMP

For a timestamp.

column clauses (can be specified in any order)

NOT NULL

Prevents the column from containing null values.

NOT NULL PRIMARY KEY

Establishes a primary key column. (See “PRIMARY KEY” in the

primary-key-block section for a definition of a primary key.)

NOT NULL UNIQUE

Establishes a unique index on the column. (See “UNIQUE” in the

“unique-block” section for a definition of a unique index.)

FOR SBCS DATA

Indicates the column will contain single-byte characters.

FOR MIXED DATA

Indicates the column might contain values that have a mixture of

single-byte or double-byte characters.

FOR BIT DATA

Indicates that the values of a character column are not associated with a

coded character set and therefore are never converted. For example, the bit

pattern of the data should not be modified when moving table data

between ASCII and EBCDIC environments. The database manager sets the

SUBTYPE column in the SYSCOLUMNS catalog table to 'B' when this

option is specified.

CCSID integer

Uniquely identifies an encoding scheme and one or more pairs of character

sets and code pages, for either character or graphic data.

 Depending on the specification of subtypes and CCSIDs, the database

manager assigns different values:

v If either SBCS or mixed data is specified, then the database default

CCSID for the subtype is assigned.

v If a CCSID is specified, then the subtype that matches the CCSID is

assigned.

CREATE TABLE

Chapter 6. Statements 223

v If neither SBCS nor mixed data is specified and a CCSID is also not

specified, then first the default subtype is assigned; then the database

default CCSID for that subtype is assigned.

v If graphic data is specified without a CCSID, then the database default

CCSID for graphic data is assigned.

 The choice of CCSID, including allowing it to default, may significantly

affect performance. For performance implications related to CCSID, consult

the DB2 Server for VSE & VM Performance Tuning Handbook manual.

fieldproc-block

FIELDPROC program_name

Names a field procedure for the column. Use a field procedure only

with a short string column. The column has no field procedure if you

omit FIELDPROC.

constant

Is a parameter of the field procedure. A parameter list is optional. The

number of parameters and the data type of each are determined by the

field procedure. The maximum length of the parameter list is 254

bytes, including commas, but excluding insignificant blanks and the

delimiting parentheses after blank compression occurs.

primary-key-block

PRIMARY KEY

Is a set of column values in the table that enforces a unique constraint.

Only one primary key is allowed in a parent table. Primary key values

must be unique and must be defined as NOT NULL.

 Defining a primary key on a table sets up the table to be referenced by

another table’s foreign key to establish a referential constraint.

column_name

Identifies the column or columns that comprise the primary key. Each

column_name must be an unqualified name that identifies a column of

the table, and that column must be defined as NOT NULL. No column

in a primary key can contain a long string. The same column cannot be

specified more than once.

ASC

Creates the primary key such that the values from this column are

arranged in ascending order. This is the default.

DESC

Creates the primary key such that the values from this column are

arranged in descending order.

PCTFREE

Is the percentage of space in each index page reserved for later

insertions and updates of the primary key. The integer can range from

0 to 99, but for practical purposes should not exceed 50. Increasing

PCTFREE causes the index to take up more space, but reduces the time

required to insert or update primary key rows of the indexed table.

referential-constraint-block

FOREIGN KEY

Defines a foreign key which consists of one or more columns in a

dependent table that together must take on a value that exists in the

CREATE TABLE

224 SQL Reference

primary key of the related parent table. The columns in the dependent

table may contain nulls. If any of the columns contain a null value, the

foreign key is considered null.

constraint_name

Provides a name for the referential constraint. You cannot use a

constraint_name more than once in the same table. Although the

database manager generates a constraint_name if you do not specify

one, you should specify your own constraint_name to make it easier for

you to drop, activate, and deactivate the foreign key.

column_name

Identifies the column or columns that comprise the foreign key. Each

column_name must be an unqualified name that identifies a column of

the table. The data type and length of foreign key columns must match

the data type and length of the primary key columns. Only the null

attribute of a foreign key column may be different. The same column

cannot be specified more than once.

REFERENCES table_name

Specifies the name of the parent table involved in the referential

constraint. The table_name cannot identify the table that is being

created. The identified table must already exist and cannot be the

system catalog table.

ON DELETE

Defines the delete rule to be followed when a row is deleted from the

parent table in a relationship.

RESTRICT

Prevents deletion of a parent row until all the dependent rows

have been deleted. RESTRICT is the default value.

CASCADE

Causes all dependent rows to be deleted also.

SET NULL

Sets to null all columns of the foreign keys in each dependent row

that can contain nulls. At least one column of the foreign key in

the dependent table must be able to contain nulls.

 The following restriction for ON DELETE is checked when a table is

created.

v If a table has more than one referential constraint referencing the

same parent, all the delete rules on those constraints must be the

same and must not be SET NULL.

v If a table is delete-connected to the same parent through multiple

paths, all of the delete rules on a path, except for the last one, must

be CASCADE. The last constraint on all paths must be the same, and

must not be SET NULL.

unique-block

UNIQUE

Adds a unique index for the column or columns specified. If there are

duplicates in the values of the columns, then a unique constraint is not

added.

constraint_name

Provides a name for the unique constraint. You cannot use the same

CREATE TABLE

Chapter 6. Statements 225

constraint_name more than once in the same table. Although the

database manager generates a constraint_name if you do not specify

one, you should specify your own constraint_name to make it easier

for you to drop, activate, and deactivate the unique constraint.

column_name

Identifies the column or columns that comprise the unique key. Each

column_name must be an unqualified name that identifies a column of

the table, and that column must be defined as NOT NULL. No column

in a unique constraint can be nullable. You cannot specify the same

column more than once. These columns should not be the same as that

of a primary key in the same table.

ASC

Creates the unique key such that the values from this column are

arranged in ascending order. This is the default.

DESC

Creates the unique key such that the values from this column are

arranged in descending order.

PCTFREE

Is the percentage of space in each index page reserved for later

insertions and updates of unique keys. The integer may range from 0

to 99, but for practical purposes should not exceed 50. Increasing

PCTFREE causes the index to take up more space, but reduces the time

required to insert or update unique keys.

IN dbspace_name

The name of the dbspace into which the table is to be placed. The dbspace

must exist at the application server. The default qualifier portion of

dbspace_name is the authorization ID of the statement. If dbspace_name is

omitted, the table will be created in one of the owner’s private dbspaces (if

the owner does not have any private dbspace, an error condition will

result).

 A newly created table is placed in one of the existing dbspaces of the

database according to the following rules:

1. Specifying a dbspace_name in the CREATE TABLE statement puts the

table into the named dbspace. The owner of the dbspace must be either

the user who preprocessed the current program, or PUBLIC. If you

have DBA authority, you can create a table in a private dbspace of any

user by qualifying the dbspace_name with its owner’s user ID, as

follows:

 CREATE TABLE ... IN SCOTT.DSP3

2. Not specifying a dbspace_name in the CREATE TABLE statement puts

the table into any private dbspace owned by the authorization ID who

preprocessed the program. Consider the following case:

a. The person who preprocessed the program has DBA authority.

b. No dbspace is specified.

c. The table name is qualified with an authorization_name.

The database manager places the table into any private dbspace owned

by the specified authorization ID. If there is no such dbspace, an error

condition results.

3. If the dbspace_name is not qualified, the database manager will not place

the table into a nonrecoverable dbspace by default. Specify the

dbspace_name to create a table in a nonrecoverable dbspace.

CREATE TABLE

226 SQL Reference

4. If both the table_name and the dbspace_name are qualified, but are not

qualified with the same authorization_name, and the authorization ID

who preprocessed the program has DBA authority, the database

manager uses both qualifiers. That is, if JIM has DBA authority, he may

create table KELLI.SUPPLIERS in JOE.SPACE1.

Table 9 summarizes where a table is placed depending on what is

specified. X represents the user ID of the person who preprocessed the

program. X is denoted as optional below because if no user ID is

specified, the creator always defaults to the user ID of the person who

preprocessed the program (X). Y represents some other user ID.

 Table 9. Default table placement when user X preprocesses the program.

DBA Authority

Needed? Table Creator Table Name

DBSPACE

Owner DBSPACE Name

Database

Manager Action

No X A User X creates

X.A in a private

dbspace owned

by X.

Yes Y A User X creates

Y.A in any private

dbspace owned

by Y.

No X A X B User X creates

X.A in X.B1

Yes A Y B User X creates

X.A in Y.B

Yes Y A B User X creates

Y.A in Y.B1

Yes Y A Z B User X creates

Y.A in Z.B

1 If there is no PRIVATE DBSPACE B, but there is PUBLIC DBSPACE B, the PUBLIC DBSPACE will be used.

Concatenate the desired authorization_names to both the table_name and

the dbspace_name to avoid confusion. This concatenation always

identifies both the owner of the table and where the table will be

placed.

DATA CAPTURE

Specifies if log records for this table should contain the full before image

(DATA CAPTURE CHANGES) or the partial before image (DATA

CAPTURE NONE) for UPDATE operations. If this option is not specified,

it defaults to DATA CAPTURE NONE. If DataPropagator Capture is being

used to capture changes to this table, DATA CAPTURE CHANGES must

be specified. If DataPropagator Capture is not being used to capture

updates to this table, DATA CAPTURE NONE should be specified to

reduce the amount of data logged for updates to this table.

NONE

Include the partial before image in the log records for UPDATE operations.

If DataPropagator Capture is not being used to capture updates to this

table, DATA CAPTURE NONE should be specified to reduce the amount

of data logged for updates to this table.

CHANGES

Include the full before image in the log records for UPDATE operations. If

CREATE TABLE

Chapter 6. Statements 227

DataPropagator Capture is being used to capture changes to this table,

DATA CAPTURE CHANGES must be specified.

Notes

Once a table has been created, the data types of its columns may not be changed,

and columns may not be deleted from a table. However, new columns may be

added to the table (with the ALTER TABLE statement).

Byte counts

The sum of the byte counts of the columns must not be greater than 4077. The list

that follows gives the byte counts of columns by data type for columns that do not

allow null values. For a column that allows null values the byte count is one more

than shown in the list.

Data Type Byte Count

INTEGER 4

SMALLINT 2

FLOAT(n) If n is from 1 to 21, the byte count is 4. If n is from

22 to 53, the byte count is 8.

DECIMAL(p, s) (p/2 + 1), rounded down to an integer.

CHAR(n) n

VARCHAR(n) n+2, or 6 if n>254

LONG VARCHAR 6

DATE 4

TIME 3

TIMESTAMP 10

GRAPHIC(n) 2n

VARGRAPHIC(n) 2n+2, or 6 if n>127

LONG VARGRAPHIC 6

Dbspace use for long string columns: Actual data for a long string column is

stored in its own internal table in the dbspace. Thus, each table that contains long

string columns uses one of the available 255 tables in the dbspace.

Tables as part of a referential structure: Tables that are part of a referential

structure must be defined in DBSPACEs that are in the same type of storage pool.

That is, both parent and dependent tables in the same referential structure must be

in DBSPACEs that are in either a recoverable storage pool or a nonrecoverable

storage pool. If the tables are not in the same type of storage pool, any attempt to

define or change a referential constraint will produce an error.

Examples

Example 1

Given that you have DBA authority, create a table named ‘ROSSITER.INVENTORY’

with the following columns:

part number integer between 1 and 9,999, must be present

description character of length 1 to 24

quantity on hand integer between 0 and 100,000

CREATE TABLE

228 SQL Reference

CREATE TABLE ROSSITER.INVENTORY

 (PARTNO SMALLINT NOT NULL,

 DESCRIPTION VARCHAR(24),

 QONHAND INT)

Example 2

Given that you have DBA authority, create the SITE1_SUPPLIERS table in the

PUBLIC dbspace SPACE3 with the following columns and make KRISTEL the

owner of the table:

supplier number integer between 1 and 99, must be present

name character of length 15

address character of length 1 to 35

 CREATE TABLE KRISTEL.SITE1_SUPPLIERS

 (SUPPNO SMALLINT NOT NULL,

 NAME CHAR(15),

 ADDRESS VARCHAR(15))

 IN "PUBLIC".SPACE3

Example 3

Create the EQUIPMENT table in one of your private dbspaces with the following

columns:

equipment number integer between 0100000 and 8999999

equipment description varying length string of up to 50 characters

location varying length string of up to 50 characters

equipment owner the number of the department that owns this

equipment, null if not owned by any department

Ensure there is a unique entry in the table for each piece of equipment and order

the entries in ascending order by equipment number (EQUIP_NO).

Also define a referential constraint with the table so that the equipment owner

(EQUIP_OWNER) must be a department (DEPTNO) that is present in the

DEPARTMENT table. If a department is removed from the DEPARTMENT table,

the equipment owner values for all equipment owned by that department should

become unassigned (that is, set to null). Give the constraint a name of

DEPT_EQUIP.

 CREATE TABLE EQUIPMENT

 (EQUIP_NO INT NOT NULL,

 EQUIP_DESC VARCHAR(50),

 LOCATION VARCHAR(50),

 EQUIP_OWNER CHAR(3),

 PRIMARY KEY(EQUIP_NO),

 FOREIGN KEY DEPT_EQUIP (EQUIP_OWNER)

 REFERENCES DEPARTMENT

 ON DELETE SET NULL)

Example 4

On a DB2 Server for VM or DB2 Server for VSE application server with mixed data

supported and with a default character subtype (that is, CHARSUB) of mixed,

create a table named ‘MAPS’ in one of your private dbspaces. This table is

designed to be maintained from a DB2 for OS/2 application requester. The table is

to have the following columns (all values must be present):

 Column Description Data Stored

MAP_NUMBER map number 7 SBCS characters (to be

converted to EBCDIC)

LAST_UPD last update date

CREATE TABLE

Chapter 6. Statements 229

Column Description Data Stored

DESC description up to 40 ASCII mixed (to be

converted to EBCDIC)

MAP the map up to 4000 bytes (not to be

converted to EBCDIC)

 CREATE TABLE MAPS

 (MAP_NUMBER CHAR(7) FOR SBCS DATA NOT NULL,

 LAST_UPD DATE NOT NULL,

 DESC VARCHAR(40) NOT NULL,

 MAP VARCHAR(4000) FOR BIT DATA NOT NULL)

Example 5

Similar to example 4, except that the default character subtype in the system is

SBCS.

 CREATE TABLE MAPS

 (MAP_NUMBER CHAR(7) NOT NULL,

 LAST_UPD DATE NOT NULL,

 DESC VARCHAR(40) FOR MIXED DATA NOT NULL,

 MAP VARCHAR(4000) FOR BIT DATA NOT NULL)

Example 6

Similar to example 5, except that not only is the default character subtype SBCS

but the default CCSIDs for both SBCS and mixed are not those required in the

table (the table requires an SBCS CCSID of 290 and a mixed CCSID of 5026).

 CREATE TABLE MAPS

 (MAP_NUMBER CHAR(7) CCSID 290 NOT NULL,

 LAST_UPD DATE NOT NULL,

 DESC VARCHAR(40) CCSID 5026 NOT NULL,

 MAP VARCHAR(4000) FOR BIT DATA NOT NULL)

Example 7

Create a table and include the partial before image on UPDATE log records

because DataPropagator Capture is not capturing updates for this table:

 CREATE TABLE SALARY1

 OR

 CREATE TABLE SALARY1

 DATA CAPTURE NONE

Example 8

Create a table and include the full before image on UPDATE log records because

DataPropagator Capture requires this information for update log records:

 CREATE TABLE SALARY2

 DATA CAPTURE CHANGES

CREATE TABLE

230 SQL Reference

CREATE VIEW

The CREATE VIEW statement creates a view on one or more tables or views.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v DBA authority, or

v For each table or view identified in the subselect:

– The SELECT privilege on the view, or

– Ownership of the table or view.

If the specified view name includes a qualifier that is not the same as the

authorization ID of the statement, the privileges held by the authorization ID of

the statement must include DBA authority. If the view name is qualified by an

identifier that is not your authorization ID, you must have DBA authority.

Syntax

Description

view_name

Provides a name for the view. The name, including the implicit or explicit

qualifier, must not identify a table, view, or synonym that already exists at the

application server.

 The implicit or explicit qualifier of the view_name is the owner of the view.

The owner always acquires the SELECT privilege on the view, and the

authority to drop the view. The SELECT may be granted to others only if the

owner has the authority to grant the SELECT privilege on every table or view

identified in the first FROM clause of the subselect.

 If the owner has the INSERT, UPDATE, or DELETE privileges on the table or

view identified in the first FROM clause of subselect, then the owner also

acquires these privileges on the view being created. Only the owner of the

table or view identified in the first FROM clause of the subselect can grant the

privilege.

(column_name,...)

Names the columns in the view. If you specify a list of column names, it must

consist of as many names as there are columns in the result table of the

subselect. Each column_name must be unique and unqualified. If you do not

specify a list of column names, the columns of the view inherit the names of

the columns of the result table of the subselect.

►► CREATE VIEW view_name

▼

,

(

column_name

)

 ►

► AS subselect

WITH CHECK OPTION
 ►◄

CREATE VIEW

Chapter 6. Statements 231

You must specify a list of column names if the result table of the subselect has

duplicate column names or an unnamed column (a column derived from a

constant, function, or expression).

AS subselect

Defines the view. At any time, the view consists of the rows that would result

if the subselect were processed. Note that the subselect is not processed when

the view is created, which means that semantic errors (for example, specifying

"WHERE COL = '10'" when COL is a decimal column) are not detected until

the view is used. To determine whether a statement contains semantic errors,

you can enter a 'SELECT *' against the view after creating it.

 subselect must not reference host variables. For an explanation of subselect, see

Chapter 5, “Queries,” on page 121.

WITH CHECK OPTION

Specifies the constraint that every row of the view must conform to the search

condition of the view. The constraint is enforced by the database manager

whenever rows of the view are inserted or updated. If the search condition is

not true for any inserted or updated row, an error is returned, and no rows are

inserted or updated.

 The search condition of a view is the search condition specified in the first

WHERE clause of the subselect used to define the view.

 WITH CHECK OPTION must not be specified if the view is read-only or if its

search condition includes a subquery. WITH CHECK OPTION is ignored if the

view is updateable but does not have a search condition. If WITH CHECK

OPTION is specified for an updateable view that does not allow inserts, the

constraint only applies to updates.

 If WITH CHECK OPTION is omitted, the search condition of the view is not

used in the checking of any insert or update operations. The view can then be

used to insert a row that does not conform to the search condition of the view

and to update a row so that it no longer conforms to the search condition of

the view. A row that does not conform to the search condition of a view cannot

be retrieved using that view. It is also possible for this situation to exist when

WITH CHECK OPTION is specified; this can happen when the view is directly

or indirectly dependent on a view that was defined without the constraint.

 The WITH CHECK OPTION constraint on view V is inherited by any

updateable view that is directly or indirectly dependent on V. Thus, if an

updateable view is defined on V, the constraint on V also applies to that view,

regardless of whether WITH CHECK OPTION is specified in the definition of

that view.

 Consider the following updateable views:

v V1 defined on T0

v V2 defined on V1 WITH CHECK OPTION

v V3 defined on V2

v V4 defined on V3 WITH CHECK OPTION

v V5 defined on V4

When a row of V5 or V4 is inserted or updated, it is checked against the

conjunction of the search conditions of V4 and V2. When a row of V3 or V2 is

inserted or updated, it is checked against the search condition of V2. When a

row of V1 is inserted or updated, it is not checked against any search

condition.

CREATE VIEW

232 SQL Reference

FOR UPDATE OF, ORDER BY, and UNION cannot be used in the definition of a

view.

Notes

Read-only views

A view is read-only if its definition involves any of the following:

v The first FROM clause identifies more than one table or view

v The first FROM clause identifies a read-only view

v The first SELECT clause specifies the keyword DISTINCT

v The outer subselect contains a GROUP BY clause

v The outer subselect contains a HAVING clause

v The first SELECT clause contains a column function

v It contains a subquery such that the base object of the outer subselect, and of the

subquery, is the same table

v The first FROM clause identifies a catalog table with no updatable columns.

A read-only view cannot be the object of an INSERT, UPDATE, or DELETE

statement. Note that the fact that a table contains expressions does not make it a

read only view. As long as the expressions reference a single base table, such a view

can be used to delete rows from the base table or to update columns that are

defined without expressions. Rows can also be inserted into such views if the

columns defined as expressions are nullable.

If you use a 'SELECT *' clause in the view definition and then you add a column

to an underlying table (with the ALTER TABLE statement), the new column will

not appear in the view.

There is no specific number for the limit on the number of columns in a view,

because it depends on many factors which affect this limit. A view of up to 140

columns should work in most situations.

Examples

Example 1

Create a view named MA_PROJ upon the PROJECT table that contains only those

rows with a project number (PROJNO) starting with the letters ‘MA’.

 CREATE VIEW MA_PROJ

 AS SELECT * FROM PROJECT

 WHERE SUBSTR(PROJNO, 1, 2) = ’MA’

Example 2

Create a view as in example 1, but select only the columns for project number

(PROJNO), project name (PROJNAME) and employee in charge of the project

(RESPEMP).

 CREATE VIEW MA_PROJ

 AS SELECT PROJNO, PROJNAME, RESPEMP

 FROM PROJECT

 WHERE PROJNO LIKE ’MA____’

Example 3

Create a view as in example 2, but, in the view, call the column for the employee

in charge of the project IN_CHARGE.

CREATE VIEW

Chapter 6. Statements 233

CREATE VIEW MA_PROJ

 (PROJNO, PROJNAME, IN_CHARGE)

 AS SELECT PROJNO, PROJNAME, RESPEMP FROM PROJECT

 WHERE SUBSTR(PROJNO, 1, 2) = ’MA’

Note: Even though you are changing only one of the column names, the names of

all three columns in the view must be listed in the parentheses that follow

MA_PROJ.

Example 4

Create a view named PRJ_LEADER that contains the first four columns (PROJNO,

PROJNAME, DEPTNO, RESPEMP) from the PROJECT table together with the last

name (LASTNAME) of the person who is responsible for the project (RESPEMP).

Obtain the name from the EMPLOYEE table by matching EMPNO in EMPLOYEE

to RESEMP in PROJECT.

 CREATE VIEW PRJ_LEADER

 AS SELECT PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME

 FROM PROJECT, EMPLOYEE

 WHERE RESPEMP = EMPNO

Example 5

Create a view as in example 4, but in addition to the columns PROJNO,

PROJNAME, DEPTNO, RESEMP and LASTNAME, show the total pay (SALARY +

BONUS +COMM) of the employee who is responsible. Also select only those

projects with mean staffing (PRSTAFF) greater than one.

 CREATE VIEW PRJ_LEADER (PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME, TOTAL_PAY)

 AS SELECT PROJNO, PROJNAME, DEPTNO, RESPEMP, LASTNAME, SALARY+BONUS+COMM

 FROM PROJECT, EMPLOYEE

 WHERE RESPEMP = EMPNO AND PRSTAFF > 1

Example 6

This example shows something that can happen when a view defined WITH

CHECK OPTION depends on a view defined without this option. In this case, a

view named VV depends on a view named WW, and WW depends on the

EMPLOYEE sample table. The view definitions are as follows:

 CREATE VIEW WW

 AS SELECT * FROM EMPLOYEE

 WHERE SALARY < 35000.00

 CREATE VIEW VV

 AS SELECT * FROM WW

 WHERE SALARY > 30000.00

 WITH CHECK OPTION

Assume both views have a single owner, who uses VV in the following UPDATE

statement:

 UPDATE VV SET SALARY = SALARY + 5000.00

The update applies to every row in which SALARY is greater than 30000 but less

than 35000. After the update, all rows that were visible to WW have salaries

greater than 35000. Such salaries conform to the search condition of VV but not to

that of WW. Even so, because WW is not defined WITH CHECK OPTION, all

these rows are updated. As a result, any row in EMPLOYEE that was visible to VV

is now invisible to WW and is therefore also invisible to VV.

CREATE VIEW

234 SQL Reference

DECLARE CURSOR

The DECLARE CURSOR statement defines the cursor through which a user may

OPEN, FETCH, PUT, or CLOSE the results of a statement prepared using

PREPARE. There are two types of cursor:

v A query cursor is a cursor associated with a select-statement and used by an

application to access rows in a result table.

v An insert cursor is a cursor associated with an insert-statement and used by an

application to insert rows into an active set.

Invocation

This statement can only be embedded in an application program. It is not an

executable statement.

Authorization

No authorization is required to use this statement except in the case of Fortran.

Programs in these languages will fail if the authorization ID is not the same as that

used to preprocess the program.

To use the OPEN statement for the cursor, the privileges held by the authorization

ID of the statement are outlined below.

The cursor must always be linked to a select-statement or an insert-statement. This

linked statement may be identified in one of three ways. The authorization

required to manipulate the cursor varies accordingly.

1. If the statement is a fullselect of the form identified by select-statement, then the

authorization ID is the one that is used to preprocess the program. This

authorization ID must have SELECT privileges on every table and view

identified in the SELECT.

2. If the statement is an INSERT (using VALUES), then the authorization ID is the

one that preprocesses the program. This authorization ID must have INSERT

authority on that table.

3. If the statement is a prepared SELECT or INSERT (using VALUES) statement

named by a statement_name clause, then the authorization ID is the run-time

authorization ID. Depending on whether the statement to be prepared is a

SELECT or INSERT (using VALUES), this authorization ID must have

appropriate SELECT or INSERT privileges.

Someone with DBA authority may do any of the above.

Syntax

►► DECLARE cursor-name CURSOR

WITH RETURN

(1)

WITH HOLD

 FOR ►

► select-statement

statement-name
 ►◄

Notes:

1 Note that DB2 Server for VSE & VM does not support CURSOR WITH HOLD.

DECLARE CURSOR

Chapter 6. Statements 235

Description

cursor_name

Provides a name for the cursor. The name must not be the same as the name of

another cursor declared in your source program. In REXX, cursor_name must

not be the same as a statement_name prepared in the program.

 A cursor in the open state designates an active set (for query cursors this is also

known as the cursor’s result table) and a position relative to the rows of that active

set. The active set is specified by the SELECT or INSERT statement of the cursor.

A program may contain many DECLARE CURSOR statements that define different

cursors and associate them with different queries or inserts. During processing of a

program, several of these cursors may be in the open state at one time. The

DECLARE CURSOR statement that defines a cursor must occur earlier in the

program than any cursor manipulation statement operating on that cursor. The

DECLARE CURSOR statement does not result in any actual processing when the

program is run (that is, it does not automatically open the cursor).

The DECLARE CURSOR statement must precede all statements that explicitly

reference the cursor by name.

Following is a description of each form of DECLARE CURSOR.

DECLARE CURSOR for SELECT

select-statement

Specifies the SELECT statement of the cursor.

 The select-statement must not include parameter markers, but can include

references to host variables. In host languages, other than assembler and REXX,

the declarations of the host variables must precede the DECLARE CURSOR

statement in the source program. Host variable declarations can follow the

DECLARE CURSOR statement in assembler and host variables are not

declared at all in REXX.

 The result table is read-only if any of the following are true:

v The first FROM clause identifies more than one table or view.

v The first FROM clause identifies a read-only view.

v The first SELECT clause specifies the keyword DISTINCT.

v The outer subselect contains a GROUP BY clause.

v The outer subselect contains a HAVING clause.

v The first SELECT clause contains a column function.

v The select-statement contains a subquery such that the base object of the outer

subselect and of the subquery is the same table.

v The select-statement contains a UNION or UNION ALL operator.

v The select-statement includes an ORDER BY clause.

v Isolation UR is used.

If the select-statement of a cursor contains CURRENT DATE, CURRENT TIME, or

CURRENT TIMESTAMP, all references to these special registers will yield the same

value on each FETCH. This value is determined when the cursor is opened.

Examples:

Example 1: In a PL/I program, use the cursor C1 to fetch the values for a given

project (PROJNO) from the first four columns of the EMP_ACT table a row at a

time and put them into the following host variables: EMP (char(6)), PRJ (char(6)),

DECLARE CURSOR

236 SQL Reference

ACT (smallint), and TIM (dec(5,2)). Obtain the value of the project to search for

from the host variable SEARCH_PRJ (char(6)).

 EXEC SQL BEGIN DECLARE SECTION;

 DCL EMP CHAR(6);

 DCL PRJ CHAR(6);

 DCL SEARCH_PRJ CHAR(6);

 DCL ACT BINARY FIXED(15);

 DCL TIM DEC FIXED(5,2);

 EXEC SQL END DECLARE SECTION;

 .

 .

 .

 EXEC SQL DECLARE C1 CURSOR FOR

 SELECT EMPNO, PROJNO, ACTNO, EMPTIME

 FROM EMP_ACT

 WHERE PROJNO = :SEARCH_PRJ;

 EXEC SQL OPEN C1;

 EXEC SQL FETCH C1 INTO :EMP, :PRJ, :ACT, :TIM;

 IF SQLSTATE = ’02000’ THEN

 CALL DATA_NOT_FOUND;

 ELSE

 DO WHILE (SUBSTR(SQLSTATE,1,2) = ’00’ | SUBSTR(SQLSTATE,1,2) = ’01’);

 EXEC SQL FETCH C1 INTO :EMP, :PRJ, :ACT, :TIM;

 END;

 EXEC SQL CLOSE C1;

 .

 .

 .

Example 2: In a PL/I program, declare a cursor named INCREASE to return from

the EMPLOYEE table all the employee numbers (EMPNO), surnames

(LASTNAME) and price (SALARY increased by 10 percent) of people who have

the job of clerk (JOB). Order the result table in descending order by the increased

salary.

 EXEC SQL DECLARE INCREASE CURSOR FOR

 SELECT EMPNO, LASTNAME, SALARY * 1.1

 FROM EMPLOYEE

 WHERE JOB = ’CLERK’

 ORDER BY 3 DESC;

Example 3: In a PL/I program, declare a cursor named UP_CUR to update all the

columns of the DEPARTMENT table.

 EXEC SQL DECLARE UP_CUR CURSOR FOR

 SELECT *

 FROM DEPARTMENT

 FOR UPDATE OF DEPTNO, DEPTNAME, MGRNO, ADMRDEPT;

Example 4: In a PL/I program, declare a cursor named DEL_CUR to examine, and

potentially delete, rows in the DEPARTMENT table.

 EXEC SQL DECLARE DEL_CUR CURSOR FOR

 SELECT *

 FROM DEPARTMENT;

DECLARE CURSOR for INSERT

insert-statement

This is an INSERT using VALUES statement as defined with the INSERT

statement. The insert-statement must not include parameter markers, but can

include references to host variables. In host languages, other than assembler

DECLARE CURSOR

Chapter 6. Statements 237

and REXX, the declarations of the host variables must precede the DECLARE

CURSOR statement in the source program. In assembler host variable

declarations can follow the DECLARE CURSOR statement. In REXX, host

variables are not declared at all.

 Once a cursor has been defined and opened, you may insert new rows into the

table using the PUT statement.

Example 5: This example shows portions of a pseudo COBOL program. In this

program, use the cursor C2 to insert a row into the DEPARTMENT table based on

the values in the host variables DPT_NO (char(3), DPT_NM (varchar(29)),

MGR_NO (char(6)), and DPT_AD (char(3)).

 * in working storage:

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 77 DPT-NO PIC X(3).

 77 MGR-NO PIC X(6).

 77 DPT-AD PIC X(3).

 01 DPT-NM.

 49 DPT-NM-LEN PIC S9(4) COMP VALUE +29.

 49 DPT-NM-VAL PIC X(29) VALUE SPACES.

 EXEC SQL END DECLARE SECTION END-EXEC.

 * at start of processing:

 EXEC SQL DECLARE C2 CURSOR FOR

 INSERT INTO DEPARTMENT

 VALUES (:DPT-NO, :DPT-NM, :MGR-NO, :DPT-AD) END-EXEC.

 EXEC SQL OPEN C2 END-EXEC.

 * loop as many times as necessary:

 * solicit values from screen and assign to DPT-NO, DPT-NM, MGR-NO, DPT-AD

 EXEC SQL PUT C2 END-EXEC.

 * at end of processing

 EXEC SQL CLOSE C2 END-EXEC.

DECLARE CURSOR for Dynamic Queries

statement_name

Identifies a SELECT or INSERT statement defined in a PREPARE statement.

(When communicating with an application server that is not DB2 Server for

VM or DB2 Server for VSE, this restriction might not be enforced.) The

DECLARE CURSOR statement and its associated PREPARE statement must be

in the same logical unit of work. They may be specified in either order, except

in Fortran programs when the string-constant form of the PREPARE statement

is used. For information on this restriction, see “PREPARE” on page 313.

Example 6

This example is similar to Example 1 under DECLARE CURSOR for SELECT. The

difference is that the right hand side of the WHERE clause is to be specified

dynamically; thus the entire select-statement is placed into a host variable and

dynamically prepared.

 EXEC SQL BEGIN DECLARE SECTION;

 DCL EMP CHAR(6);

 DCL PRJ CHAR(6);

 DCL SEARCH_PRJ CHAR(6);

 DCL ACT BINARY FIXED(15);

 DCL TIM DEC FIXED(5,2);

 DCL SELECT_STMT CHAR(200) VARYING;

 EXEC SQL END DECLARE SECTION;

 SELECT_STMT = ’SELECT EMPNO, PROJNO, ACTNO, EMPTIME ’ ||

DECLARE CURSOR

238 SQL Reference

’FROM EMP_ACT ’ ||

 ’WHERE PROJNO = ?’;

 .

 .

 .

 EXEC SQL PREPARE SELECT_PRJ FROM :SELECT_STMT;

 EXEC SQL DECLARE C1 CURSOR FORSELECT_PRJ;

 EXEC SQL OPEN C1 USING :SEARCH_PRJ;

 EXEC SQL FETCH C1 INTO :EMP, :PRJT, :ACT, :TIM;

 IF SQLSTATE = ’02000’ THEN

 CALL DATA_NOT_FOUND;

 ELSE

 DO WHILE (SUBSTR(SQLSTATE,1,2) = ’00’ | SUBSTR(SQLSTATE,1,2) = ’01’);

 EXEC SQL FETCH C1 INTO :EMP, :PRJ, :ACT, :TIM;

 END;

 EXEC SQL CLOSE C1;

 .

 .

 .

DECLARE CURSOR WITH RETURN

WITH RETURN

Specifies that the cursor, if declared in a stored procedure, can return a result

set to a caller.

Example 7: The following statements could be included in a stored procedure. If

the cursors are opened and not closed, the result sets are returned to the requester.

 EXEC SQL DECLARE CURS1 CURSOR WITH RETURN FOR

 SELECT A.X,Y,Z FROM TABLEX A, TABLEY B WHERE A.X = B.X

 EXEC SQL DECLARE CURS2 CURSOR WITH RETURN FOR STMT1

Overall Notes

The scope of cursor_name is the source program in which it is defined; that is, the

program submitted to the preprocessor. Thus, you can only reference a cursor by

statements that are preprocessed with the cursor declaration. For example, a

program called from another separately preprocessed program cannot use a cursor

that was opened by the calling program.

The NOFOR Option

The NOFOR preprocessor option concerns the use of the UPDATE clause when a

cursor is declared for a static (embedded) query. With NOFOR in effect, this clause

is optional. When the clause is used, updates are restricted to the columns

designated within it. NOFOR is only useful when the UPDATE statements are

static. See the DB2 Server for VSE & VM Application Programming manual for more

details on the NOFOR preprocessor option.

DECLARE CURSOR

Chapter 6. Statements 239

Extended DECLARE CURSOR

The Extended DECLARE CURSOR statement defines the cursor through which a

user may OPEN, FETCH, PUT, or CLOSE the results of a statement prepared using

Extended PREPARE. There are two types of cursor:

v A query cursor is a cursor associated with a select-statement and used by an

application to access rows in a result table.

v An insert cursor is a cursor associated with an insert-statement and used by an

application to insert rows into an active set.

Invocation

This statement can only be embedded in an application program written in

Assembler or REXX.

Authorization

The authorization ID of the statement must have one of the following:

v ownership of the package

v DBA authority

v EXECUTE privilege on the package.

Syntax

Description

cursor_variable

Provides a name for the cursor. The name placed into cursor_variable must be

unique within the logical unit of work in which it is used.

CURSOR FOR section_variable

Identifies a select-statement or insert-statement defined in an Extended

PREPARE statement. A cursor need not be declared in the same logical unit of

work or program in which the statement was prepared.

IN package_spec

Identifies the package in which the referenced SQL statement resides. The

package_spec must identify a package that exists at the application server.

Notes

Cursors are associated with a prepared select-statement or insert-statement by the

value returned in the section_variable and the package_spec specified in the Extended

DECLARE CURSOR statement. Extended DECLARE CURSOR may be used for

any select-statement or insert-statement in a package created using the CREATE

PACKAGE statement.

A cursor name used in a WHERE CURRENT OF clause of a DELETE statement or

an UPDATE statement cannot be specified from a host variable. Therefore, at

execution time, the content of cursor_name in the Extended DECLARE CURSOR

statement must be the same as the cursor_name hard-coded in the WHERE

CURRENT OF clause.

►► DECLARE cursor_variable CURSOR FOR section_variable IN package_spec ►◄

Extended DECLARE CURSOR

240 SQL Reference

After the Extended DECLARE CURSOR statement is entered, a cursor is

established; the cursor can then be opened and used to retrieve or insert rows

through the Extended OPEN, FETCH, and PUT statements.

Examples

DECLARE :CURSOR1 CURSOR FOR :STMID IN :USERID.:PACKNAME

Extended DECLARE CURSOR

Chapter 6. Statements 241

DELETE

The DELETE statement deletes rows from a table or view. Deleting a row from a

view deletes the row from the table on which the view is based.

There are two forms of this statement:

v The Searched DELETE form deletes one or more rows (optionally determined by

a search condition).

v The Positioned DELETE form deletes exactly one row (as determined by the

current position of a cursor).

Invocation

A Searched DELETE statement can be embedded in an application program or

issued interactively. A Positioned DELETE must be embedded in an application

program. Both Searched DELETE and Positioned DELETE are executable

statements that can be dynamically prepared.

A Positioned DELETE in Fortran, and programs prepared using extended dynamic

SQL cannot be used with the DRDA protocol.

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v Ownership of the table

v The DELETE privilege for the table or view

v DBA authority.

The DELETE privilege on a view is only inherent in DBA authority. Ownership of

a view does not necessarily include the DELETE privilege on the view because the

privilege may not have been granted when the view was created, or it may have

been granted, but subsequently revoked.

If the search-condition includes a subquery, the privileges designated by the

authorization ID of the statement must also include the SELECT privilege on every

table or view identified in the subquery. The privilege may have been explicitly

granted or may be inherent in another privilege. The SELECT privilege on a table

or view is inherent in DBA authority and ownership of a table or view.

DELETE

242 SQL Reference

Syntax

Description

FROM table_name or view_name

Identifies the table or view from which rows are to be deleted. The name must

identify a table or view that exists at the application server, but must not

identify a catalog table, a view of a catalog table, or a read-only view. (For an

explanation of read-only views, see “CREATE VIEW” on page 231.)

Note: Someone with DBA authority may delete rows from a few of the catalog

tables. See “Updateable Columns” on page 371.

correlation_name

Can be used within the search_condition to designate the table or view. (For an

explanation of correlation_name, see Chapter 3.)

WHERE

Specifies the rows to be deleted. You can omit the clause, give a search

condition, or name a cursor. If you omit the clause, all rows of the table or

view are deleted.

search_condition

Is any search condition as described in Chapter 3. Each column_name in the

search condition, other than in a subquery, must name a column of the

table or view.

 The search_condition is applied to each row of the table or view and the

deleted rows are those for which the result of the search_condition is true.

 If the search condition contains a subquery, the subquery can be thought of

as being processed each time the search condition is applied to a row, and

the results used in applying the search condition. In actuality, a subquery

with no correlated references is processed once, whereas a subquery with a

correlated reference may have to be processed once for each row.

Searched delete (I,P)

►► DELETE FROM table_name

view_name

correlation_name
 ►◄

►►

WHERE

search_condition

WITH

RR

CS

 ►◄

Positioned delete (P)

►►

DELETE FROM

table_name

view_name

 (1)

WHERE CURRENT OF

cursor_name

►◄

Notes:

1 A Positioned DELETE in Fortran, and programs prepared using Extended dynamic

SQL cannot be used with DRDA protocol.

DELETE

Chapter 6. Statements 243

The following restriction is enforced when a DELETE statement is prepared

or preprocessed with a WHERE clause containing a subquery. Let T2

denote the object table of a DELETE statement, and let T1 denote a table

that is referenced in the FROM clause of a subquery of that statement, T1

must not be a table that can be affected by the DELETE on T2. The

following example demonstrates the relationships.

 DELETE FROM T2 WHERE FIELD2 IN (SELECT FIELD1 FROM T1);

The following rules apply to the above situation:

v T1 and T2 must not be the same table.

v T1 must not be a dependent of T2 in a relationship with a delete rule of

CASCADE or SET NULL.

v T1 must not be a dependent of another table T3 in a relationship with a

delete rule of CASCADE or SET NULL if deletes of T2 cascade to T3.

WITH

Specifies the isolation level used when locating the rows to be deleted by

the statement.

RR

Repeatable read

CS

Cursor stability

 The default isolation level of the statement is the isolation level of the

package. WITH can only be specified on a SEARCHED delete; it is

incompatible with the WHERE CURRENT OF clause.

CURRENT OF cursor_name

Identifies the cursor to be used in the delete operation. The cursor_name

must identify a declared cursor as explained in “DECLARE CURSOR” on

page 235. The cursor_name can be a delimited identifier. If cursor_name is a

reserved word, it must be a delimited identifier.

 The table or view specified must also be specified in the FROM clause of

the SELECT statement of the cursor, and the result table of the cursor must

not be read-only. (For an explanation of read-only result tables, see

“DECLARE CURSOR” on page 235.)

 When the DELETE statement is processed, the cursor must be positioned

on a row; that row is the one deleted. The cursor goes into a between state

in which it remains open but has no current row until you reposition it

with a FETCH statement. You cannot use the cursor for further deletions or

updates while it is in the between state.

 To maintain data integrity between tables when data is deleted from a parent table,

the database manager checks that delete rules are followed. The delete rule in a

referential constraint clause defines what action should be taken by the system

when a parent row is deleted. The delete rules are:

v The RESTRICT rule prevents the deletion of a parent row unless all the

dependent rows have been deleted first. This is the default rule.

v The CASCADE rule tells the database manager to delete the descendent rows as

well as the parent row. Multi-level cascade is supported, subject to the

restrictions described in “Definition Restrictions” on page 16.

DELETE

244 SQL Reference

v The SET NULL rule tells the database manager to set all nullable columns of the

foreign key to null before deleting the parent row. At least one column of the

foreign key must be nullable.

Notes

If an error occurs during the execution of any delete operation, no rows are

deleted. If an error occurs during the execution of a Positioned DELETE, the

position of the cursor is unchanged. However, it is possible for an error to make

the position of the cursor incorrect, in which case the cursor is closed. It is also

possible for a delete operation to cause a rollback, in which case the cursor is

closed.

If an error occurs during the execution of a Searched DELETE, it is necessary to

inspect SQLWARN6 to determine the extent of the failure. The following are

current settings of SQLWARN6 along with possible responses:

1. SQLWARN6 is set to 'S'. A severe error has occurred, leaving the system in an

unusable state.

v No further requests are possible. The application must end, or, in a DB2

Server for VSE & VM environment, may switch to another database

2. SQLWARN6 is set to 'W'. An error occurred causing the LUW to be rolled back

automatically. The system is still in a usable state. The application can either:

v begin a new LUW and proceed or

v end.

3. SQLWARN6 is blank. An error has occurred, but the LUW is still active. For

recoverable storage pools any changes made by the request have been rolled

back, hence the failing request has not left any partial results in the database.

For more information about recoverable storage pools, see the DB2 Server for

VM System Administration or DB2 Server for VSE System Administration manual.

The application can do one of the following:

v Continue forward processing of the LUW

v Commit the changes made before the failing request

v Roll back the LUW.

Unless appropriate locks already exist, one or more exclusive locks are acquired by

executing a successful DELETE statement. Until the locks are released, they can

prevent other application processes from performing operations on the table. For

further information about locking, see the description of the COMMIT WORK,

ROLLBACK WORK, LOCK TABLE, and LOCK DBSPACE statements. The isolation

level associated with the application process defines the degree to which rows

deleted by one process are visible to other concurrent processes.

If an application process deletes a row on which any of its cursors are positioned,

those cursors are positioned before the next row of their result table. Let C be a

cursor that is positioned before row R (as a result of an OPEN, a DELETE through

C, a DELETE through some other cursor, or a searched DELETE). In the presence

of INSERT, UPDATE, and DELETE operations that affect the base table from which

R is derived, the next FETCH operation referencing C does not necessarily position

C on R. For example, the operation can position C on R’, where R’ is a new row

that is now the next row of the result table.

When a DELETE statement is completed, the number of rows deleted is returned

in SQLERRD(3) in the SQLCA. The value in SQLERRD(3) does not include the

number of rows that were deleted as a result of a CASCADE delete rule.

DELETE

Chapter 6. Statements 245

SQLERRD(5) in the SQLCA shows the number of rows affected by referential

constraints. It includes rows that were deleted as a result of a CASCADE delete

rule and rows in which foreign keys were set to NULL as the result of a SET

NULL delete rule.

If you preprocess your program with the BLOCK option, and you wish to process

a Positioned DELETE dynamically, the cursor must be a SELECT...FOR UPDATE

statement, even if you do not plan to process any updates with the cursor. The

FOR UPDATE clause is needed to tell the database manager that blocking should

be overridden when the SELECT statement is prepared. If you do not use the FOR

UPDATE clause in this instance, an error will occur on your DELETE statement at

execution time.

Examples

Example 1

Delete department (DEPTNO) ‘D11’ from the DEPARTMENT table.

 DELETE FROM DEPARTMENT

 WHERE DEPTNO = ’D11’

Example 2

Delete all the departments from the DEPARTMENT table (that is, empty the table).

 DELETE FROM DEPARTMENT

Example 3

Use a PL/I program statement to delete all the subprojects (MAJPROJ is NULL)

from the PROJECT table for a department (DEPTNO) equal to that in the host

variable HOSTDEPT (char(6)).

 EXEC SQL DELETE FROM PROJECT

 WHERE DEPTNO = :HOSTDEPT AND MAJPROJ IS NULL;

Example 4

Code a portion of a PL/I program that will be used to display retired employees

(JOB) and then, if requested to do so, remove certain employees from the

EMPLOYEE table.

 EXEC SQL DECLARE C1 CURSOR FOR

 SELECT *

 FROM EMPLOYEE

 WHERE JOB = ’RETIRED’;

 EXEC SQL OPEN C1;

 EXEC SQL FETCH C1 INTO ... ;

 PUT ... ;

 GET LIST (REMOVE);

 IF REMOVE = ’YES’ THEN

 EXEC SQL DELETE FROM EMPLOYEE

 WHERE CURRENT OF C1;

 EXEC SQL CLOSE C1;

DELETE

246 SQL Reference

DESCRIBE

The DESCRIBE statement obtains information about a prepared statement. It is

primarily used for describing a SELECT statement. For an explanation of prepared

statements, see “PREPARE” on page 313.

Invocation

This statement can only be embedded in an application program. It is an

executable statement that cannot be dynamically prepared.

Authorization

None required. See “PREPARE” on page 313 for the authorization required to

create a prepared statement.

Syntax

Description

statement_name

Identifies the statement about which information is to be obtained. When the

DESCRIBE statement is processed, the name must identify a statement

dynamically prepared in the same logical unit of work.

INTO descriptor_name

Identifies an SQL descriptor area (SQLDA). Before the DESCRIBE statement is

processed, the following variable in the SQLDA must be set:

SQLN Indicates the number of variables represented by SQLVAR. (SQLN acts

as a dimension of the SQLVAR array.) SQLN must be set to a value

greater than or equal to zero before the DESCRIBE statement is

processed. When the USING clause is set to NAMES, LABELS, or ANY,

this should specify the maximum number of expected select list items.

When the USING clause is set to BOTH, twice the expected number of

select list items should be specified.

When the DESCRIBE statement is processed, the database manager assigns

values to the variables of the SQLDA as follows:

SQLDAID This field serves only as an SQLDA eye-catcher. It is set to

'SQLDA' by the database manager when a DESCRIBE is first

processed.

SQLDABC 16 + SQLN*44 (the length of the SQLDA).

SQLD For a SELECT statement, the number of columns described by

occurrences of SQLVAR (or, if USING BOTH was specified on

DESCRIBE, twice the number of columns).

 For a non-SELECT statement, 0.

SQLVAR This is an array with an arbitrary number of occurrences of the

►► DESCRIBE statement_name INTO descriptor_name

NAMES

USING

ANY

BOTH

LABELS

 ►◄

DESCRIBE

Chapter 6. Statements 247

five variables listed below. If the value of SQLD is 0, or greater

than the value of SQLN, no values are assigned to occurrences

of SQLVAR.

 If the value of SQLD is n, where n is greater than 0 but less

than or equal to the value of SQLN, values are assigned to the

first n occurrences of SQLVAR so that the first occurrence of

SQLVAR contains a description of the first column of the result

table, the second occurrence of SQLVAR contains a description

of the second column of the result table, and so on.

 In cases where the USING clause is set to BOTH, the database

manager returns twice as many SQLVAR entries as there are

columns in the select list. Given that there are n columns, the

first n SQLVAR entries are for column names and the second n

entries are for column labels.

SQLTYPE A code showing the data type of the column

and whether it can contain null values. For

information about the SQLTYPE codes returned

following the execution of a DESCRIBE

statement, see Table 22 on page 362.

SQLLEN A length value depending on the data type of

the result columns. For the possible values of

SQLLEN, see Table 22 on page 362.

SQLDATA Contains the CCSID of a string column, as

shown in Table 23 on page 363.

SQLIND Indicates the subtype of a character column, if

using the SQLDS protocol. Does not provide

any information if using the DRDA protocol.

For values, see Table 21 on page 360.

SQLNAME Contains the name or label associated with the

column used in the select list of the DESCRIBE

statement. Exceptions to this are select list

items that are unnamed, such as built-in

functions (SUM(SALARIES)), constants (’ABC’),

and expressions (A+B+C). In these cases,

position 1 of SQLNAME is blank (X'40'), and

positions 3 through 30 contain a description of

the unnamed field. Because a blank is not

allowed in the first byte of SQL identifiers, the

application program can tell whether a column

name is returned.

 If no column name is returned, the following

rules govern the content and format of the

SQLNAME field.

 If the select list item involves:

v A basic function: SQLNAME contains the

name of the function followed by the

column name in parentheses (for example,

SUM(SALARIES)). Position 2 of SQLNAME

is blank.

v A DISTINCT object of a function: SQLNAME

contains the name of the function, followed

DESCRIBE

248 SQL Reference

by the keyword DISTINCT and the name of

the column in parentheses (for example,

SUM(DISTINCT SALARIES)). If this entire

description is too long to fit in positions 3

through 30 of SQLNAME, it is truncated,

and position 2 is set to X'FF'.

v An expression: SQLNAME is set to the

character string EXPRESSION n, where n is a

number that identifies the nth expression in

the select list. For example, for the sixth

expression in the select list, the database

manager sets positions 3 through n of

SQLNAME to EXPRESSION 6. Position 2 is

blank. This rule is true even for expressions

that contain built-in functions, and, because

expressions include constants, for constants

such as 'ABC'.

v A function whose object is an expression:

SQLNAME contains the name of the

function followed by the character string

EXPRESSION n in parentheses (for example,

SUM(EXPRESSION 7)). Position 2 is blank.

USING

Indicates what value to assign to each SQLNAME variable in the SQLDA.

If the requested value does not exist, SQLNAME is set to a length of 0.

NAMES

Assigns the name of the column. This is the default.

LABELS

Assigns the label of the column. (Column labels are defined by the

LABEL ON statement.)

ANY

Assigns the column label, and if the column has no label, the column

name.

BOTH

Assigns both the label and name of the column. In this case, two

occurrences of SQLVAR per column are needed to accommodate the

additional information. The first n occurrences of SQLVAR for each of

the columns in the result table contain the column names. The second

n occurrences contain the column labels.

Notes

Before the DESCRIBE statement is processed, the value of SQLN must be set to

indicate how many occurrences of SQLVAR are provided in the SQLDA and

enough storage must be allocated to contain SQLN occurrences. To obtain the

description of the columns of the result table of a prepared SELECT statement, the

number of occurrences of SQLVAR must not be less than the number of columns.

Allocating the SQLDA

Among the possible ways to allocate the SQLDA are the three described below.

First Technique: Allocate an SQLDA with enough occurrences of SQLVAR to

accommodate any select list that the application will have to process. At the

DESCRIBE

Chapter 6. Statements 249

extreme, the number of SQLVARs could equal the maximum number of columns

allowed in a result table. Having done the allocation, the application can use this

SQLDA repeatedly.

This technique uses a large amount of storage that is never deallocated, even when

most of this storage is not used for a particular select list.

Second Technique: Repeat the following two steps for every processed select list:

1. Process a DESCRIBE statement with an SQLDA that has no occurrences of

SQLVAR; that is, an SQLDA for which SQLN is zero. The value returned for

SQLD is equal to the required number of occurrences of SQLVAR.

2. Use the returned value of SQLD to allocate an SQLDA with enough

occurrences of SQLVAR. Then process the DESCRIBE statement again, using

this new SQLDA.

This technique allows better storage management than the first technique, but it

doubles the number of DESCRIBE statements.

Third Technique: Allocate an SQLDA that is large enough to handle most, and

perhaps all, select lists but is also reasonably small. If an execution of DESCRIBE

fails because the SQLDA is too small, allocate a larger SQLDA and process

DESCRIBE again. For the new SQLDA, use the value of SQLD returned from the

first execution of DESCRIBE for the number of occurrences of SQLVAR.

This technique is a compromise between the first two techniques. Its effectiveness

depends on a good choice of size for the original SQLDA.

Examples

In a PL/I program, process a DESCRIBE statement with an SQLDA that has no

occurrences of SQLVAR. If SQLD is greater than zero, use the value to allocate an

SQLDA with the necessary number of occurrences of SQLVAR and then process a

DESCRIBE statement using that SQLDA.

 EXEC SQL BEGIN DECLARE SECTION;

 DCL STMT1_STR CHAR(200) VARYING;

 EXEC SQL END DECLARE SECTION;

 EXEC SQL INCLUDE SQLDA;

 EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

 ... /* code to prompt user for a query, then to generate */

 /* a select-statement in the STMT1_STR */

 EXEC SQL PREPARE STMT1_NAME FROM :STMT1_STR;

 ... /* code to set SQLN to zero and to allocate the SQLDA */

 EXEC SQL DESCRIBE STMT1_NAME INTO :SQLDA;

 ... /* code to check that SQLD is greater than zero, to set */

 /* SQLN to SQLD, then to re-allocate the SQLDA */

 EXEC SQL DESCRIBE STMT1_NAME INTO :SQLDA;

 ... /* code to prepare for the use of the SQLDA */

 EXEC SQL OPEN DYN_CURSOR;

 ... /* loop to fetch rows from result table */

 EXEC SQL FETCH DYN_CURSOR USING DESCRIPTOR :SQLDA;

 .

 .

 .

DESCRIBE

250 SQL Reference

Extended DESCRIBE

The Extended DESCRIBE statement obtains information about a select-statement

prepared by an Extended PREPARE statement.

Invocation

This statement can only be embedded in an application program written in

Assembler or REXX.

Authorization

The authorization ID of the statement must have one of the following:

v ownership of the package

v DBA authority

v EXECUTE privilege on the package.

Syntax

Description

section_variable

Identifies a statement defined by an Extended PREPARE statement (see

“Extended PREPARE” on page 317). The Extended DESCRIBE statement does

not have to be in the same logical unit of work or program as the PREPARE

statement that was originally used to process the statement.

IN package_spec

Identifies the package in which the referenced SQL statement resides. The

package_spec must identify a package that exists at the application server.

 The DESCRIBE option must have been specified on the CREATE PACKAGE

statement that was used to create the package.

INTO descriptor_name

Identifies an output SQLDA structure that is to receive information about the

columns that are to be retrieved by the described SQL statement. This is

identical to the descriptor used for the dynamic DESCRIBE statement.

USING

This works the same as in the dynamic DESCRIBE statement, and follows the

same rules. (See “DESCRIBE” on page 247 for more information). The labels

returned in the SQLDA are those which were in the SYSCOLUMNS catalog

table when the SQL statement was prepared.

Examples

DESCRIBE :STMID IN :USERID.:PACKNAME INTO MYSQLDA

►► DESCRIBE section_variable IN package_spec ►

► INTO descriptor_name

NAMES

USING

ANY

BOTH

LABELS

 ►◄

Extended DESCRIBE

Chapter 6. Statements 251

DESCRIBE CURSOR

The DESCRIBE CURSOR statement obtains information about the result set that is

associated with the cursor. The information, such as column information, is put

into a descriptor. Use DESCRIBE CURSOR for result set cursors from stored

procedures. The cursor must be defined with the ALLOCATE CURSOR statement.

Invocation

This statement can be embedded in an application program only. It is an

executable statement that cannot be dynamically prepared.

Authorization

None required.

Syntax

Description

cursor-name or host-variable

Identifies a name for the cursor. The name specified for cursor-name must be

unique within the logical unit of work in which it is used. It is an ordinary

identifier.

 If a host-variable is specified, the following rules apply:

v It must be a character string variable with a length attribute that is not

greater than 18 bytes (A C NULL-terminated character string may be up to

19 bytes).

v It must be preceded by a colon and must not be followed by an indicator

variable.

v The cursor name must be left justified within the host variable and must not

contain embedded blanks.

v If the length of the cursor name is less that the length of the host variable, it

must be padded on the right with blanks.

INTO descriptor-name

Identifies an SQL descriptor area (SQLDA). The information returned in the

SQLDA describes the columns in the result set associated with the named

cursor. The considerations for allocating and initializing the SQLDA are similar

to those of a DESCRIBE statement used for describing a SELECT statement.

After executing the DESCRIBE CURSOR statement, the contents of the SQLDA

are the same as the DESCRIBE of a SELECT statement, with the following

exceptions:

v The first five bytes of the SQLDAID field are set to ’SQLRS’.

v Bytes 6 to 8 of the SQLDAID field are reserved. If the cursor is declared

WITH HOLD in a stored procedure, the high-order bit of the eighth byte is

set to one.

Note: DB2 Server for VSE & VM does not support CURSOR WITH HOLD.

As a result, neither does its requester. If a cursor is opened WITH

►► DESCRIBE CURSOR cursor-name INTO descriptor-name

host-variable
 ►◄

DESCRIBE CURSOR

252 SQL Reference

HOLD by a stored procedure, it will be implicitly closed by the DB2

Server for VSE & VM requester when the unit of work is committed.

Notes

1. For the DESCRIBE CURSOR statement to be successful, the application must be

connected to the site at which the stored procedure was executed.

Examples

The statements in the following examples are assumed to be in PL/I programs.

Example 1

Place information about the result set associated with cursor C1 into the descriptor

named by :sqlda1:

 EXEC SQL DESCRIBE CURSOR C1 INTO :sqlda1

Example 2

Place information about the result set associated with the cursor named by :hv1

into the descriptor named by :sqlda2:

 EXEC SQL DESCRIBE CURSOR :hv1 INTO :sqlda2

DESCRIBE CURSOR

Chapter 6. Statements 253

DESCRIBE PROCEDURE

The DESCRIBE PROCEDURE statement obtains information about the result sets

returned by a stored procedure. The information, such as the number of result sets,

is put into a descriptor.

Invocation

This statement can be embedded in an application program only. It is an

executable statement that cannot be dynamically prepared.

Authorization

None required.

Syntax

Description

host-variable or procedure-name

Identifies the stored procedure to describe. The procedure name may be

specified either directly or within a host-variable.

 If a host-variable is specified, it must be a character-string variable and it must

not include an indicator variable. Note that the value is not converted to

uppercase. Procedure name must be left-justified.

 If procedure-name is specified, it must be an ordinary identifier, which implies

that it cannot contain blanks or special characters, and the value is converted

to uppercase. Therefore, if it is necessary to use a lowercase name that contains

blanks or special characters, then the name must be specified in a host

variable. The form in which a procedure name exists varies according to the

server where the procedure is stored.

DB2 Server for VSE & VM:

The name of the procedure to execute. The name can be up to 18

characters long and must match a value in the NAME column of the

SYSTEM.SYSROUTINES catalog table.

DB2 Common Server/UDB:

procedure-name

The name (with no extension) of the procedure to execute. This

is used both as the name of the stored procedure library and

the function name within that library.

procedure-library!function-name

The exclamation point character acts as a delimiter between the

library name and the function name of the stored procedure.

absolute-path!function-name

The absolute-path specifies the complete path to the stored

procedure library.

In all of these cases the total length of the procedure name including

its implicit or explicit full path must not be longer than 254 bytes.

►► DESCRIBE PROCEDURE host-variable INTO descriptor-name

procedure-name
 ►◄

DESCRIBE PROCEDURE

254 SQL Reference

DB2 for MVS V4 or DB2 for OS/390 V5 Server:

An implicit or explicit three-part name. The parts are as follows:

high order

The location name of the server where the procedure is stored.

middle

SYSPROC

low order

Some value in the PROCEDURE column of the

SYSIBM.SYSPROCEDURES catalog table.

DB2 for OS/400 (V3.1 or later) Server:

The external program name is assumed to be the same as the

procedure-name. For portability, the procedure-name should be

specified as a single token no larger than eight bytes. The ASSOCIATE

LOCATORS statement can only be executed against a stored procedure

that has already been invoked by the program using the SQL CALL

statement.

INTO descriptor-name

Identifies an SQL descriptor area (SQLDA). The information returned in the

SQLDA describes the result sets returned by the stored procedure. Before the

DESCRIBE PROCEDURE statement is processed, the following variable in the

SQLDA must be set:

SQLN Indicates the number of variables represented by SQLVAR. (SQLN acts

as a dimension of the SQLVAR array.) SQLN must be set to a value

greater than or equal to zero before the DESCRIBE PROCEDURE

statement is processed. This value should reflect the expected number

of result sets the stored procedure is to return.

When the DESCRIBE PROCEDURE statement is processed, the database

manager assigns values to the variables of the SQLDA as follows:

SQLDAID

This field serves only as an SQLDA eye-catcher. It is set to 'SQLPR'.

SQLD This field is set to the total number of result sets. A value of zero in the

field indicates there are no result sets.

SQLVAR

This is an array with an arbitrary number of occurrences of the

variables listed below, and others that are not mentioned. There is one

SQLVAR entry for each result set. If the value of SQLD is zero, or

greater than the value of SQLN, no values are assigned to the

occurrences of SQLVAR. If the value of SQLD is n, where n is greater

than zero but less than or equal to the value of SQLN, values are

assigned to the first n occurrences of SQLVAR. Therefore, the first

occurrence of SQLVAR contains a description of the first result set, the

second occurrence of SQLVAR contains a description of the second

result set, and so on.

SQLDATA

This field of each SQLVAR entry is set to the result set locator

value associated with the result set.

SQLIND

This field of each SQLVAR entry is set to the estimated number

of rows in the result set.

DESCRIBE PROCEDURE

Chapter 6. Statements 255

SQLNAME

This field is set to the name of the cursor used by the stored

procedure to return the result set.

Notes

1. A value of –1 in the SQLIND field indicates that an estimated number of rows

in the result set is not provided.

2. DESCRIBE PROCEDURE does not return information about the parameters

expected by the stored procedure.

Examples

The statements in the following examples are assumed to be in PL/I programs.

Example 1

Place information about the result sets returned by stored procedure P1 into the

descriptor named by :sqlda1:

 EXEC SQL DESCRIBE PROCEDURE P1 INTO :sqlda1

Example 2

Place information about the result sets returned by stored procedure named by

:hv1 into the descriptor named by :sqlda2:

 EXEC SQL DESCRIBE PROCEDURE :hv1 INTO :sqlda2

DESCRIBE PROCEDURE

256 SQL Reference

DROP

The DROP statement deletes an object. Any objects that are directly or indirectly

dependent on that object are also deleted. Whenever an object is deleted, its

description is deleted from the catalog and any packages that reference the object

are invalidated.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v Ownership of the table, view, index, synonym, dbspace or package.

v DBA authority.

Syntax

Description

DBSPACE dbspace_name

Identifies the dbspace to be dropped. It must be a dbspace that exists at the

application server. Dropping a dbspace destroys the contents of a dbspace.

When the logical unit of work is committed, the dbspace is available to be

acquired. All existing packages with dependencies on tables within the

dropped dbspace are automatically marked unusable. Both private and public

dbspaces can be dropped, but only someone with DBA authority can drop a

public dbspace. No user, even with DBA authority, can drop the dbspace

containing the database manager catalogs.

INDEX index_name

Identifies the index to be dropped. It must be an index that exists at the

application server. The table on which the index is defined is not affected. All

existing packages that use the dropped index are marked unusable.

 An index created by a primary key cannot be dropped.

PACKAGE package_spec

Identifies the package to be dropped. It must be a package that exists at the

application server. Once a package is dropped, the program that uses that

package cannot be run. An owner can only drop packages which that owner

has preprocessed. Only someone with DBA authority can drop another user’s

package.

►► DROP DBSPACE dbspace_name

INDEX

index_name

(1)

PACKAGE

package_spec

SYNONYM

synonym

TABLE

table_name

VIEW

view_name

 ►◄

Notes:

1 PROGRAM is equivalent to PACKAGE and is provided for compatibility with older

versions of SQL/DS.

DROP

Chapter 6. Statements 257

DROP PACKAGE cannot support a qualified host structure subfield name in

the package_spec. A host structure subfield name may be used here as a normal

host_variable but must be unqualified. If being unqualified results in an

ambiguous reference, the subfield identifier name cannot be used with DROP

PACKAGE.

 If the package was created using a host identifier which was not an ordinary

identifier (such as a package name beginning with a number), it must be

dropped using a host identifier; otherwise an SQL error will result. For

example, if a package named 071PACK was created using a host identifier and

a

 DROP PACKAGE 071PACK

statement is issued, an SQLCODE of -105 (SQLSTATE of 37501) will result.

SYNONYM synonym

Identifies a synonym to be dropped. In a static DROP SYNONYM statement,

the name must identify a synonym that is owned by the owner of the package.

In a dynamic DROP SYNONYM statement, the name must identify a synonym

that is owned by the authorization ID that is executing the statement.

 Dropping a synonym has no effect on the table or view that it references.

Dropping a synonym does not affect the packages of existing programs that

use the synonym, because in the packages the synonym has already been

resolved to a real table name. However, a program containing a dropped

synonym cannot be preprocessed successfully, either automatically or by user

request.

TABLE table_name

Identifies a table to be dropped. It must be a base table that exists at the

application server and cannot be a catalog table. The table is deleted from the

database and the contents of the table are lost. All indexes, keys, constraints,

and views defined on the table, and all privileges granted on the table, are also

dropped. Synonyms are not dropped. No user, even with DBA authority, can

drop a table which forms part of the database manager system catalog.

 All existing packages affected by dropping the table are marked unusable. The

unusable packages remain in the database until they are explicitly dropped by

a DROP PACKAGE statement. When an SQL statement attempts to invoke an

unusable package, the database manager tries to dynamically rebind the

package. However, if the SQL statement refers to a dropped DBSPACE or table,

that SQL statement returns an error code at execution time.

VIEW view_name

Identifies the view to be dropped. It must be a view that exists at the

application server. The definition of the view is deleted from the catalog. The

definition of any view that is directly or indirectly dependent on that view is

also deleted. Whenever the definition of a view is deleted from the catalog, all

privileges on that view are also deleted.

 All existing packages that use the dropped view are marked unusable.

Notes

If a DROP statement is issued for an object while some program that depends on

the object is running and has a logical unit of work in progress, the DROP

statement does not take effect until the end of the running logical unit of work.

Meanwhile, the program that has issued the DROP waits.

DROP

258 SQL Reference

When dropping a table, the database manager temporarily requires additional

space so it can restore the table in case the logical unit of work is not committed.

The database manager behaves as though a table approximately doubles in size

immediately before it is dropped. The empty pages are taken from the DBSPACE

from which the table was dropped. If the number of empty pages is less than

approximately double the table size, the database manager will stop processing

and will not issue a ROLLBACK. Note that if all rows of a table have previously

been deleted, such additional space is not required.

Examples

Example 1

Drop your table named MY_IN_TRAY.

 DROP TABLE MY_IN_TRAY

Example 2

Drop your view named MA_PROJ.

 DROP VIEW MA_PROJ

Example 3

Drop the package named PACKA.

 DROP PACKAGE PACKA

Example 4

Drop the dbspace named MYSPACE that is owned by MIKE. (Note that the

authorization id submitting this statement must have DBA authority.)

 DROP DBSPACE MIKE.MYSPACE

DROP

Chapter 6. Statements 259

DROP PROCEDURE

The DROP PROCEDURE statement removes the definition of a stored procedure

from the database manager, and takes the information for that procedure out of the

cache.

The STOP PROC command must be issued with the REJECT option before the

DROP PROCEDURE statement will be accepted.

Invocation

This statement can be issued from an application program or interactively. It is an

executable statement that can be dynamically prepared.

Authorization

The issuer of the DROP PROCEDURE statement must have DBA authority.

Syntax

Description

procedure-name

must identify a stored procedure that has been defined (that is, a CREATE

PROCEDURE has been processed for it).

 Note that DROP PROCEDURE removes the definition of the procedure only;

the package associated with the procedure, as well as the load module or

phase, is untouched.

authid

The authorization ID for the stored procedure. If specified, then only the

version of procedure-name that is accessible only by authid will be dropped.

RESTRICT

This is included for compatibility with the DB2 family. If specified, it is

ignored.

Examples

Example 1

 DROP PROCEDURE MYPROC

►► DROP PROCEDURE procedure-name

AUTHID

authid

RESTRICT
 ►◄

DROP PROCEDURE

260 SQL Reference

DROP PSERVER

The DROP PSERVER statement removes the definition of a stored procedure server

from the database manager, and takes the information for that server out of the

cache.

The STOP PSERVER command must be issued with the NOIMPLICIT option

before the DROP PSERVER statement will be accepted.

A stored procedure server cannot be dropped if the following are all true:

v The stored procedure server is the only one in its group

v Stored procedures exist that must run in this stored procedure server’s group.

Note: If the drop fails for this reason, issue the ALTER PROCEDURE statement

and use the SERVER GROUP clause to indicate that the procedure is to be

moved to a different group, then issue the DROP PSERVER statement again.

Invocation

This statement can be issued from an application program or interactively. It is an

executable statement that can be dynamically prepared.

Authorization

The issuer of the DROP PSERVER statement must have DBA authority.

Syntax

Description

procedure-server

The name of the stored procedure server. This name must be an ordinary

identifier of 1 to 8 characters.

Examples

Example 1

 DROP PSERVER SRV1

►► DROP PSERVER procedure-server ►◄

DROP PSERVER

Chapter 6. Statements 261

DROP STATEMENT

The DROP STATEMENT statement selectively deletes a statement from a package.

DROP STATEMENT applies only to packages created with a CREATE PACKAGE

statement with the MODIFY option.

Invocation

This statement can only be embedded in an application program written in

Assembler or REXX.

Authorization

The authorization ID of the statement must have one of the following:

v ownership of the package

v DBA authority

v EXECUTE privilege on the package.

Syntax

Description

section_variable

Identifies the statement defined by an Extended PREPARE statement.

IN package_spec

Identifies the package in which the referenced SQL statement resides. The

package_spec must identify a package that exists at the application server.

Notes

When a statement references an incorrect package, dynamic re-preprocessing will

occur to restore the package to a usable state. If the package has any unresolved

dependencies, the re-processing will fail and a message will be issued.

Examples

DROP STATEMENT :STMID IN :USERID.:PACKNAME

►► DROP STATEMENT section_variable IN package_spec ►◄

DROP STATEMENT

262 SQL Reference

END DECLARE SECTION

The END DECLARE SECTION statement marks the end of a host variable declare

section.

Invocation

This statement can only be embedded in an application program. It is not an

executable statement. It is not supported in REXX.

Authorization

None required.

Syntax

Description

See “BEGIN DECLARE SECTION” on page 169 for a description of the END

DECLARE SECTION statement.

Examples

See “BEGIN DECLARE SECTION” on page 169 for examples using the END

DECLARE SECTION statement.

►► END DECLARE SECTION ►◄

END DECLARE SECTION

Chapter 6. Statements 263

EXECUTE

The EXECUTE statement processes a prepared SQL statement.

Invocation

This statement can only be embedded in an application program. It is an

executable statement that cannot be dynamically prepared.

Authorization

See “PREPARE” on page 313 for the authorization required to create a prepared

statement.

Syntax

Description

statement_name

Is an ordinary identifier that identifies the prepared statement to be processed.

Statement_name must identify a statement that was previously prepared within

the logical unit of work and the prepared statement must not be a SELECT

statement.

USING

Introduces a list of host variables, host structures, or both, whose values are

substituted for the parameter markers (question marks) in the prepared

statement. (For an explanation of parameter markers, see “PREPARE” on page

313.) If the prepared statement includes parameter markers, the USING clause

must be used. USING is ignored if there are no parameter markers.

host_variable_list

Identifies one or more host variable, host structure, or both that must be

declared in the program in accordance with the rules for declaring host

variables and host structures.

 The total number of host variables and host structure subfields must be the

same as the number of parameter markers in the prepared statement. The

nth variable or subfield corresponds to the nth parameter marker in the

prepared statement.

DESCRIPTOR descriptor_name

Identifies an input SQLDA structure that provides information concerning

input variables that were specified as parameter markers (?) when the

statement was prepared.

 Before the EXECUTE statement is processed, the user must set the

following fields in the SQLDA:

v SQLN to indicate the number of SQLVAR occurrences provided in the

SQLDA

v SQLDABC to indicate the number of bytes of storage allocated for the

SQLDA

v SQLD to indicate the number of variables used in the SQLDA when

processing the statement

►► EXECUTE statement_name

USING

host_variable_list

USING DESCRIPTOR

descriptor_name

 ►◄

EXECUTE

264 SQL Reference

v SQLVAR occurrences to indicate the attributes of the variables and the

addresses of the data areas allowed to contain the result.

The SQLDA must have enough storage to contain all SQLVAR occurrences.

Therefore, the value in SQLDABC must be greater than or equal to 16 +

SQLN*(44).

 SQLD must be set to a value greater than or equal to zero and less than or

equal to SQLN. It must be the same as the number of parameter markers

in the prepared statement. The nth variable described by the SQLDA

corresponds to the nth parameter marker in the prepared statement. (For a

description of an SQLDA, see “SQL Descriptor Area (SQLDA)” on page

359.)

Parameter Marker Replacement

Before the prepared statement is processed, each parameter marker in the

statement is effectively replaced by its corresponding host variable or host

structure subfield. The replacement is an assignment operation in which the source

is the value of the host variable or host structure subfield and the target is a

variable within the database manager. The assignment rules are those described for

assignment to a column in “Assignments and Comparisons” on page 53. The

attributes of the target variable depend on the role that the parameter marker plays

in its SQL statement. The rules for the various roles are shown below. In those

rules, “P” represents the parameter marker in question.

Arithmetic Operand: When P is an operand for an infix operator, the other

operand cannot also be a parameter marker. The data type, scale, and precision of

the target for P are the same as those of the other operand. When P is the operand

of unary minus, the data type of the target is double precision floating point.

The Pattern in a LIKE Predicate: With P in this role, the target is a varying length

string.

v If the first operand in the predicate is a short character string column, the target

is a VARCHAR(n), where n is 10 more than the length attribute of the column,

with this exception: if that length attribute is greater than 244, n is 254.

v If the first operand in the predicate is a long character string column, the target

is VARCHAR(255).

v If the first operand is a short graphic string column, the target is

VARGRAPHIC(n), where n is 5 more than the length attribute of the column,

with the following exception: if that length attribute is greater than 122, n is 127.

v If the first operand in the predicate is a long graphic string column, the target is

VARGRAPHIC(128).

Comparand: In this case, P can be a comparand in a basic predicate (for example,

“?>10”), in an IN predicate, or in a BETWEEN predicate. At least one of the

comparands in such a predicate must not be a parameter marker.

For a basic predicate, the other comparand cannot be a parameter marker.

When the parameter marker is specified as a comparison operand in the

BETWEEN predicate,

v If there is an operand that is specified solely as a column name (or a column

function with the argument being a column with a field procedure defined on

it), then the attributes of the leftmost operand are used.

v Otherwise, the attributes of the leftmost operand that is not a parameter marker

are used.

EXECUTE

Chapter 6. Statements 265

When the parameter marker is specified as a comparison operand in the IN

predicate,

v The attributes of the leftmost operand that is not a parameter marker are used.

The attributes of the target for P are the same as those of the other comparand in

the predicate, unless the data type of that comparand is DATE, TIME, or

TIMESTAMP, in which case the target is effectively CHAR(254).

Assignment Operand: For this case, P must be the value for a column in an INSERT

or UPDATE. The attributes of the target are the same as those of the column, with

the following exceptions:

v If the column has the data type DATE, the target is CHAR(n), where n is the

value of the LOCAL DATE LENGTH install option. If that option is not

specified, n is 10.

v If the column has the data type TIME, the target is CHAR(n), where n is the

value of the LOCAL TIME LENGTH install option. If that option is not

specified, n is 8.

v If the column has the data type TIMESTAMP, the target is CHAR(26).

If the column has the data type DATE, TIME, or TIMESTAMP, trailing blanks are

removed from the resulting string before assignment to the target. This is the one

exception to the rule that the target is treated like a column.

General Rules: Let V denote a host variable that corresponds to a parameter

marker P. The value of V is assigned to the target variable for P in accordance with

the rules for assigning a value to a column:

v V must be compatible with the target.

v If V is a string, its length must not be greater than the length attribute of the

target. (Trailing blanks are included in the length of the string.)

The following is an exception to the rule:

– If V is a fixed length host variable and the target is short varying-length

column, all the trailing blanks of V, if any, are always truncated before

assignment. Hence, if V’s length attribute is greater than the target’s length

attribute and all the excess positions in V contain blanks, the assignment is

completed without an error being returned.

v If V is a number, the absolute value of its integral part must not be greater than

the maximum absolute value of the integral part of the target.

v If the attributes of V are not identical to the attributes of the target, the value is

converted to conform to the attributes of the target.

When the prepared statement is processed, the value used in place of P is the

value of the target variable V. For example, if V is CHAR(6) and the target is

CHAR(8), the value used in place of P is the value of V padded on the right with

two blanks.

Examples

This example of portions of a COBOL program shows how an INSERT statement

with parameter markers is prepared and processed.

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 77 EMP PIC X(6).

 01 PROJECT.

 05 PRJ PIC X(6).

 05 ACT PIC S9(4) COMP-4.

 05 TIM PIC S9(3)V9(2).

EXECUTE

266 SQL Reference

01 HOLDER.

 49 HOLDER-LENGTH PIC S9(4) COMP-4.

 49 HOLDER-VALUE PIC X(80).

 EXEC SQL END DECLARE SECTION END-EXEC.

 .

 .

 .

 MOVE 70 TO HOLDER-LENGTH.

 MOVE "INSERT INTO EMP_ACT (EMPNO, PROJNO, ACTNO, EMPTIME)

- VALUES (?, ?, ?, ?)" TO HOLDER.

 EXEC SQL PREPARE MYINSERT FROM :HOLDER END-EXEC.

 IF SQLCODE = 0

 PERFORM DO-INSERT THRU END-DO-INSERT

 ELSE

 PERFORM ERROR-CONDITION.

 DO-INSERT.

 MOVE "000010" TO EMP.

 MOVE "AD3100" TO PRJ.

 MOVE 160 TO ACT.

 MOVE .50 TO TIM.

 EXEC SQL EXECUTE MYINSERT USING :EMP, :PROJECT END-EXEC.

 END-DO-INSERT.

 .

 .

 .

EXECUTE

Chapter 6. Statements 267

Extended EXECUTE

The Extended EXECUTE statement processes an SQL statement that was prepared

previously using an Extended PREPARE statement.

Invocation

This statement can only be embedded in an application program written in

Assembler or REXX.

Authorization

The authorization ID of the statement must have one of the following:

v ownership of the package

v DBA authority

v EXECUTE privilege on the package.

Syntax

Description

section_variable

Identifies a statement defined by an Extended PREPARE statement. The

Extended EXECUTE statement does not have to be in the same logical unit of

work or program as the Extended PREPARE statement that was originally used

to process the statement.

IN package_spec

Identifies the package in which the referenced SQL statement resides. The

package_spec must identify a package that exists at the application server.

USING DESCRIPTOR descriptor_name1

Identifies an input SQLDA structure that provides information concerning

input variables that were specified as parameter markers (?) when the

statement was prepared.

USING OUTPUT DESCRIPTOR descriptor_name2

Identifies an output SQLDA structure that provides information about

variables into which individual fields are to be returned by the query.

 This clause is only valid when using the EXECUTE statement against a section

created by the PREPARE SINGLE ROW statement and in such cases the clause

is required.

 Before the Extended EXECUTE statement is processed, the user must set the fields

in the SQLDA described in the “Description” section of “EXECUTE” on page 264

and Table 20 on page 360.

►► EXECUTE section_variable IN package_spec ►

►
USING DESCRIPTOR

descriptor_name1
 ►

►
USING OUTPUT DESCRIPTOR

descriptor_name2
 ►◄

Extended EXECUTE

268 SQL Reference

Notes

When the statement is processed, the host variables specified in the SQLDA are

substituted, in order, into the statement in place of the parameter markers (?) that

were given in the Extended PREPARE statement. Each variable must be of a data

type that is compatible with its usage in the “prepared” SQL statement. Extended

EXECUTE will fail if the prepared statement was a select-statement (in this case, an

Extended DECLARE CURSOR coupled with an Extended OPEN, FETCH, and

CLOSE should be used).

Examples

 EXECUTE :STMID IN :USERID.:PACKNAME

 USING DESCRIPTOR INSQLDA

 USING OUTPUT DESCRIPTOR OUTSQLDA

Extended EXECUTE

Chapter 6. Statements 269

EXECUTE IMMEDIATE

The EXECUTE IMMEDIATE statement:

v Prepares an executable form of an SQL statement from a character string form of

the statement

v Processes the SQL statement

v Destroys the executable form.

EXECUTE IMMEDIATE combines the basic functions of the PREPARE and

EXECUTE statements. It may be used to prepare and process SQL statements that

contain neither host variables nor parameter markers.

Invocation

This statement can only be embedded in an application program. It is an

executable statement that cannot be dynamically prepared.

Authorization

The authorization rules are those defined for the SQL statement specified by

EXECUTE IMMEDIATE. For example, see “INSERT Rules” on page 300 for the

authorization rules that apply when an INSERT statement is processed using

EXECUTE IMMEDIATE. The authorization ID is the run-time authorization ID.

Syntax

Description

string_constant

String constants are supported in all languages except Assembler and C.

 It is advisable to avoid using either delimited identifiers or DBCS strings in

statements specified in string constants.

host_variable

Identifies a host variable that must be described in the program in accordance

with the rules for declaring host variables. An indicator variable must not be

specified.

 In Assembler, C, COBOL, REXX, the host variable must be a varying-length

string variable. In C, it cannot be a NUL-terminated string. In Fortran, the

host_variable must be a fixed-length string variable. In PL/I, the host variable

can either be a fixed-length or varying-length string variable. The host variable

must have a maximum length of 8192.

 See “PREPARE” on page 313 for more information on the use of DBCS

constants in prepared statements in PL/I Version 2 programs.

 The string_constant or host_variable must contain one of the following SQL

statements:

ACQUIRE DBSPACE

ALTER DBSPACE

►► EXECUTE IMMEDIATE string_constant

host_variable
 ►◄

EXECUTE IMMEDIATE

270 SQL Reference

ALTER PROCEDURE

ALTER PSERVER

ALTER TABLE

COMMENT ON

CREATE INDEX

CREATE PROCEDURE

CREATE PSERVER

CREATE SYNONYM

CREATE TABLE

CREATE VIEW

DELETE

DROP

DROP PROCEDURE

DROP PSERVER

EXPLAIN

GRANT Package Privileges

GRANT System Authorities

GRANT Table/View Privileges

INSERT

LABEL ON

LOCK DBSPACE

LOCK TABLE

REVOKE Package Privileges

REVOKE System Authorities

REVOKE Table/View Privileges

UPDATE

UPDATE STATISTICS

Furthermore, the statement string must not:

v Begin with EXEC SQL and end with a statement terminator

v Include references to host variables or parameter markers

v Include comments.

Notes

When an EXECUTE IMMEDIATE statement is processed, the specified statement

string is parsed and checked for errors. If the SQL statement is incorrect it is not

processed and the error condition that prevents its execution is reported in the

SQLCA. If the SQL statement is valid, but an error occurs during its execution, that

error condition is reported in the SQLCA.

If the same SQL statement is to be processed more than once, it is more efficient to

use the PREPARE and EXECUTE statements rather than the EXECUTE

IMMEDIATE statement.

EXECUTE IMMEDIATE

Chapter 6. Statements 271

Examples

Use PL/I program statements to move an SQL statement to the host variable

QSTRING (char(80)) and prepare and process whatever SQL statement is in the

host variable QSTRING.

 IF ACCOUNTS = ’BIG’ THEN

 QSTRING = ’INSERT INTO WORK_TABLE SELECT * FROM EMP_ACT WHERE ACTNO <100’;

 ELSE

 QSTRING = ’INSERT INTO WORK_TABLE SELECT * FROM EMP_ACT WHERE ACTNO >=100’;

 .

 .

 .

 EXEC SQL EXECUTE IMMEDIATE :QSTRING;

EXECUTE IMMEDIATE

272 SQL Reference

EXPLAIN

The EXPLAIN statement places information about the structure and execution

performance for a DELETE, INSERT, UPDATE, or SELECT statementinto one or

more user-supplied tables.

The information applies to the statement for which the EXPLAIN was issued, and

for any statements that have been generated internally by the database manager.

Internal statements are generated to ensure referential integrity.

The result tables used by the EXPLAIN statement are updated during

preprocessing of the containing program.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include both:

v Ownership of an explanation table for each of the specified options

v The proper privileges to process the SQL statement defined by the

explainable_sql_statement.

Syntax

Description

COST

Inserts into the COST_TABLE the complete cost of the command being

analyzed and for any statements internally generated by the database manager

to enforce referential integrity.

PLAN

Inserts information into the PLAN_TABLE about the order in which tables are

accessed during execution of the statement being analyzed and for any

internally generated statements used to enforce referential integrity. Also

describes the indexes used to access the tables, the methods that the database

manageruses to do joins, and the sorts done as part of processing.

REFERENCE

Inserts one row into the REFERENCE_TABLE for each column referenced in

the statement and for any statements internally generated by the database

managerto enforce referential integrity.

►► EXPLAIN

▼

 ALL

,

COST

PLAN

REFERENCE

STRUCTURE

SET QUERYNO =

integer
 ►

► FOR explainable_sql_statement ►◄

EXPLAIN

Chapter 6. Statements 273

STRUCTURE

Inserts one row into the STRUCTURE_TABLE for each query block in the

statement.

ALL

Inserts information into all four of the above tables.

SET QUERYNO=integer

An integer constant that can fit into an INTEGER field. The SET QUERYNO

clause lets you place an integer value into the QUERYNO fields of the rows in

the explanation tables. Assigning a different number on each EXPLAIN will

make it easier to identify information collected. The integer value must not be

preceded by a sign and may range from 1 to 2147483647.

 The SET QUERYNO clause is optional. If you omit it, a null value is placed in

the fields of the rows inserted by the EXPLAIN statement.

FOR explainable_sql_statement

The SQL statement to be analyzed. You can analyze UPDATE, DELETE, and

INSERT statements as well as SELECT statements. (SELECT statements are

considered the primary candidates for EXPLAIN analysis.)

explainable_sql_statement is not a quoted-string and must not be put in a host

variable. Host variables may not be placed in the statement; rather parameter

markers must be used and the entire EXPLAINstatement must be dynamically

prepared and processed.

 The length of the SQL statement is limited to 8192 characters.

 The database manager supplies customizable macros to build a set of EXPLAIN

tables for each authorization ID that needs it. For IBM VM systems, the macro file

is ARISEXP MACRO; for VSE systems, the macro is an A-type member, ARISEXP.

Both macros contain comments describing the required customizing procedure.

EXPLAIN may be invoked either explicitly as an SQL statement or implicitly with

the EXPLAIN(YES) option for CREATE PACKAGE statement, application program

preprocessing and the EXPLAIN(YES) option of the DBSU REBIND PACKAGE

command. The following tables describe the columns required in each table

associated with EXPLAIN. For more information about interpreting the data in

these tables, see the DB2 Server for VSE & VM Performance Tuning Handbook,

GC09-2987.

 Table 10. Columns in COST_TABLE

Column Name Data Type Description

QUERYNO INTEGER Query number is intended to distinguish among

queries. QUERYNO is set to the value specified in

the SET QUERYNO clause. If the clause is omitted,

QUERYNO is set to NULL.

For an entry generated by the EXPLAIN(YES)

option during program preprocessing, QUERYNO

corresponds to the section number in the package

for the statement being explained.

EXPLAIN

274 SQL Reference

|

|

|

|

|

|

|

Table 10. Columns in COST_TABLE (continued)

Column Name Data Type Description

RINO SMALLINT NOT NULL RINO is set to zero for the user’s original statement

and will be automatically incremented by one for

each internally-generated statement that is processed

for referential integrity or cascade delete. RINO is

intended to distinguish among queries and

internally-generated queries. If RINO reaches 32,767,

the next internally-generated statement will have a

corresponding RINO value of 1, and so on.

QBLOCKNO SMALLINT NOT NULL Query block number, where 1 is the outer-level

query block. Different query blocks (as occur in

subqueries) receive different numbers.

PKGNAME CHAR(8) NOT NULL This identifies the name of the package in which

this SQL statement originated. This field is blank for

explicit EXPLAIN processing invoked by the

EXPLAIN statement.

PKGOWNER CHAR(8) NOT NULL This identifies the owner of the package in which

this SQL statement originated. This field is blank for

explicit EXPLAIN processing invoked by the

EXPLAIN statement.

COST FLOAT NOT NULL When QBLOCKNO is 1, this is a floating point

number that represents the total estimated cost of

executing the statement for which the EXPLAIN is

issued and for any statement internally generated by

the database managerto enforce referential integrity.

For other values of QBLOCKNO, this is the cost of

the subquery that has this query block as its root (as

opposed to the cost of the query block alone). To

find the cost of the query block alone, use

information from the STRUCTURE_TABLE. The

technique for doing this is described in the DB2

Server for VSE & VM Database Administration

manual.

TIMESTAMP TIMESTAMP NOT NULL The time at which the EXPLAIN statement was

processed.

 Table 11. Columns in PLAN_TABLE

Column Name Data Type Description

QUERYNO INTEGER Query number is intended to distinguish among queries. (See

COST_TABLE for a description of QUERYNO.)

RINO SMALLINT

NOT NULL

RINO is intended to distinguish among queries and

internally-generated queries. (See COST_TABLE for a description of

RINO.)

QBLOCKNO SMALLINT

NOT NULL

Query block number, where 1 is the outer level query block (which

may have subqueries). Different query blocks receive different

numbers. The plans for executing different query blocks do not

refer to each other. However, STRUCTURE_TABLE provides the

parent block for each query block, and indicates when the query

block is done. This information is always implicitly part of the

execution plan.

PKGNAME CHAR(8) NOT

NULL

This identifies the name of the package in which this SQL

statement originated. This field is blank for explicit EXPLAIN

processing invoked by the EXPLAIN statement.

EXPLAIN

Chapter 6. Statements 275

Table 11. Columns in PLAN_TABLE (continued)

Column Name Data Type Description

PKGOWNER CHAR(8) NOT

NULL

This identifies the owner of the package in which this SQL

statement originated. This field is blank for explicit EXPLAIN

processing invoked by the EXPLAIN statement.

PLANNO SMALLINT

NOT NULL

A number identifying the current step of the plan. PLANNO

indicates the order in which the database managerdoes the actions

of the plan for processing the query block. The PLAN_TABLE row

with PLANNO 1 indicates the first action, PLANNO 2 indicates the

second action, and so on. For each query block, each row entered

as the result of an execution of EXPLAIN PLAN has a different

PLANNO value.

METHOD SMALLINT

NOT NULL

METHOD is the action done at this step; it is either 0, 1, 2 or 3.

Method is 0 only for the first table accessed (which has PLANNO

1). Because this is the first table, there is not yet a composite. Also,

because there is no composite, SORTCOMP (described below) is

blank for this row.

Methods 1 and 2 correspond to plan steps that are joins, and

identify the method by which the join is performed. Method 1 is

the nested loop join. That is, for each row of the composite, the

database managerfinds and joins matching rows of the new table.

Method 2 is the merge scan join. In a merge scan join, the database

managerscans the composite and the new table in order according

to the join column. It then joins rows with matching join columns.

This resembles processes used in merging files, except that one row

in the composite may match many rows of the new table, and

many rows in the composite may match one row of the new table.

Method 3 indicates that the database managermust perform

additional sorts at the end of processing the query block. The

following sorts are possible:

 ORDER BY

 GROUP BY

 SELECT DISTINCT

 UNION.

When METHOD is 3, CREATOR is all blanks, TNAME is the

empty string, TABNO is zero, and SORTNEW is N.

CREATOR CHAR(8) NOT

NULL

Creator of the new table accessed in this plan step.

TNAME VARCHAR(18)

NOT NULL

Name of the new table accessed in the plan step.

TABNO SMALLINT

NOT NULL

Because a table may be joined to itself, there may be several

references to the same table in a query block. TABNO distinguishes

the different references. TABNO, CREATOR, and TNAME

correspond to the columns with the same names in

REFERENCE_TABLE. When there is no new table then these

columns have the values specified when METHOD is 3 (see above).

EXPLAIN

276 SQL Reference

Table 11. Columns in PLAN_TABLE (continued)

Column Name Data Type Description

ACCESSTYPE CHAR(2) NOT

NULL

Indicates how the database manager will access the data. These are

the character values that can appear in ACCESSTYPE:

I1 Accesses the new table by a fetch operation on a

fully-qualified unique index. This includes fetching the

first or last value of the index.

I Accesses the new table using an index and specific key

values (identified in ACCESSCREATOR and

ACCESSNAME).

N Accesses the new table using an index on the column in

an IN predicate with a list of literals.

W Accesses the new table using an index, but without

specific key values. This non-selective index scan locates

the rows in a table when it is more efficient to scan the

index than to scan all pages in the DBSPACE.

R Accesses the new table by a scan of the DBSPACE in

which it resides.

L Accesses the new table through the internal list. The

internal list is like a temporary table. It is created to

contain the result of a materialized view.

For any type of index access, ACCESSCREATOR and

ACCESSNAME identify the index. ACCESSTYPE is blank for the

top block of INSERT statements, as well as for UPDATE and

DELETE statements that use WHERE CURRENT OF CURSOR

clauses. ACCESSCREATOR is blanks and ACCESSNAME is the

null value in that case. (Access for INSERT’s is performed using

the first index created; UPDATE and DELETE statements using the

CURRENT OF CURSOR clause access using their cursors.)

MATCHCOLS SMALLINT

NOT NULL

For ACCESSTYPE ‘I1’, ‘I’, or ‘N’, the number of index keys that

have key-matching predicates used in an index scan; otherwise, 0.

ACCESSCREATOR CHAR(8) NOT

NULL

For ACCESSTYPE ‘I1’, ‘I’, ‘N’, or ‘W’, ACCESSCREATOR contains

the owner of the access path (index) that the database manageruses

to access the table. Otherwise, ACCESSCREATOR contains blanks.

ACCESSNAME VARCHAR(18)

NOT NULL

For ACCESSTYPE ‘I1’, ‘I’, ‘N’, or ‘W’, ACCESSNAME contains the

name of the access path (index) that the database manageruses to

access the table. Otherwise, ACCESSNAME contains blanks.

INDEXONLY CHAR(1) NOT

NULL

Indicates whether an index is sufficient to satisfy the request, and

to what degree.

Y All predicates may be applied to the index pages and all

data may be retrieved from the index pages.

W All sargable predicates may be applied to the index pages,

but data pages must be accessed to retrieve data satisfying

the predicates or residual predicates.

N Data pages must be accessed to resolve predicates and

retrieve data. Note that, in a few circumstances, some

predicate filtering may still be achieved using an index.

EXPLAIN

Chapter 6. Statements 277

Table 11. Columns in PLAN_TABLE (continued)

Column Name Data Type Description

SORTNEW CHAR(1) NOT

NULL

To access a table in a particular order, the database manager may

sort some fields of some rows of the new table (for example, for

merge scan joins). These are the character values that can appear in

SORTNEW:

N If the database manager does not sort the new table.

U If the database manager does sort, and removes

duplicates.

Y If the database manager sorts, and does not remove

duplicates.

SORTNEW is blank when no sort of the new table is possible, that

is, when METHOD is 3 and there is no new table.

SORTCOMP CHAR(1) NOT

NULL

To access a composite in a particular order, the database manager

may sort some fields of some rows of the composite. These are the

character values that can appear in SORTCOMP:

N If the database manager does not sort the composite.

U If the database manager does sort, and removes

duplicates.

Y If the database manager does sort, and does not remove

duplicates.

SORTCOMP is blank when no sort of the composite is possible;

that is, when METHOD is 0 and there is no composite yet.

SORTN_UNIQ CHAR(1) NOT

NULL

Whether a sort is performed on the new table to remove duplicate

rows. Y = Yes; N = No.

SORTN_JOIN CHAR(1) NOT

NULL

Whether a sort is performed on the new table if METHOD is 2. Y =

Yes; N = No.

SORTN_ORDERBY CHAR(1) NOT

NULL

Whether an ORDER BY clause results in a sort on the new table. Y

= Yes; N = No.

SORTN_GROUPBY CHAR(1) NOT

NULL

Whether a GROUP BY clause results in a sort on the new table. Y =

Yes; N = No.

SORTC_UNIQ CHAR(1) NOT

NULL

Whether a sort is performed on the composite table to remove

duplicate rows. Y = Yes; N = No.

SORTC_JOIN CHAR(1) NOT

NULL

Whether a sort is performed on the composite table if METHOD is

2. Y = Yes; N = No.

SORTC_ORDERBY CHAR(1) NOT

NULL

Whether an ORDER BY clause results in a sort on the composite

table. Y = Yes; N = No.

SORTC_GROUPBY CHAR(1) NOT

NULL

Whether a GROUP BY clause results in a sort on the composite

table. Y = Yes; N = No.

TIMESTAMP TIMESTAMP

NOT NULL

The time at which the EXPLAIN statement was processed.

REMARKS VARCHAR(254)

NOT NULL

A field into which you can insert any character string of 254 or

fewer characters.

 Table 12. Columns in REFERENCE_TABLE

Column Name Data Type Description

QUERYNO INTEGER Query number. QUERYNO is intended for your use to distinguish among

queries. (See COST_TABLE for a description of QUERYNO.)

RINO SMALLINT

NOT NULL

RINO is intended to distinguish among queries and internally generated

queries. (See COST_TABLE for a description of RINO.)

EXPLAIN

278 SQL Reference

Table 12. Columns in REFERENCE_TABLE (continued)

Column Name Data Type Description

QBLOCKNO SMALLINT

NOT NULL

Query block number, where 1 is the top level query block, that may have

subqueries. Different query blocks receive different numbers.

PKGNAME CHAR(8) NOT

NULL

This identifies the name of the package in which this SQL statement originated.

This field is blank for explicit EXPLAIN processing invoked by the EXPLAIN

statement.

PKGOWNER CHAR(8) NOT

NULL

This identifies the owner of the package in which this SQL statement originated.

This field is blank for explicit EXPLAIN processing invoked by the EXPLAIN

statement.

REFTYPE CHAR(6) NOT

NULL

An indication of the purpose of the current row in this table. Rows are inserted

for three reasons:

1. For each SQL statement, REFTYPE has a value indicating the type of

statement:

SELECT

A select statement

INSERT

An insert statement

UPDATE

An update statement

DELETE

A delete statement

SELUPD

A select statement with a ‘FOR UPDATE’ clause

DELCUR

A delete where current of cursor statement

UPDCUR

An update where current of cursor statement

2. For each table referenced, REFTYPE has the value ‘TABLE’.

3. For each column referenced, REFTYPE has the value ‘COLUMN’.

CREATOR CHAR(8) NOT

NULL

Creator of a table referenced in the query block.

TNAME VARCHAR(18)

NOT NULL

Name of the table referenced in the query block.

TABNO SMALLINT

NOT NULL

Because there may be several references to the same table in a query block

(because a table may be joined to itself), TABNO differentiates among the

different references. TABNO may correspond to the order of tables in the FROM

clause of the query.

CNAME VARCHAR(18)

NOT NULL

Name of the column.

COLNO SMALLINT

NOT NULL

Column number of a column in the table identified by CREATOR, TNAME, and

TABNO. EXPLAIN REFERENCE causes at most one new row to be entered in

REFERENCE_TABLE for a particular column (COLNO) of a table (TABNO) in a

query block (QBLOCKNO).

EXPLAIN

Chapter 6. Statements 279

Table 12. Columns in REFERENCE_TABLE (continued)

Column Name Data Type Description

FILTER FLOAT NOT

NULL

The filter factor associated with the query block’s most selective predicate on

this column.

The selectivity of a predicate is the fraction of the rows of the column’s table

that is estimated to satisfy the predicate. Not all columns referenced in a

statement have filter factors, however.

For each reference to a column, the EXPLAIN statement determines a filter

factor if the reference to the column meets these qualifications:

1. The column must be in a predicate that is connected by the AND logical

operator to the rest of the WHERE clause. If the predicate is not connected

by AND, it must have the only predicate in the WHERE clause.

2. The predicate in which the column appears must have the form “column op

expression.”

For each such column reference, the EXPLAIN statement determines a “filter

factor.” The smallest of these filter factors is returned in FILTER. This value is

between 0.0 and 1.0, and will be 1.0 if there are no predicates with filter factors

for the column. Filter factor may be used to estimate the cost of modifying rows

and indexes. Also, a small filter factor is one indicator that an index on the

column might be useful for processing the statement.

DBSSPRED CHAR(1) NOT

NULL

Is there a sargable predicate (predicate applied at the first stage) associated with

this column?

Y There is a sargable predicate associated with this column. However, this

sargable predicate may not necessarily be the most selective one.

N There may be no sargable predicate associated with this column.

For each reference to a column, the EXPLAIN statement determines sargability if

the reference to the column meets these qualifications:

1. The column must be in a predicate that is connected by the AND logical

operator to the rest of the WHERE clause. If the predicate is not connected

by AND, it must have the only predicate in the WHERE clause.

2. The predicate in which the column appears must have the form “column op

expression.”

For each such column reference, the EXPLAIN statement determines the

sargability of the predicate associated with the column. If a sargable predicate

exists, the value is set to ’Y’; otherwise, it is set to ’N’.

JOINPRED CHAR(1) NOT

NULL

Is there a sargable equi-join predicate (using equal value in tables to join)

associated with this column? Y = Yes; N = No.

If yes, then DBSSPRED must be Y as well.

ORDERCOL SMALLINT

NOT NULL

If this column is referenced in an ORDER BY clause, give its relative position in

the ORDER BY clause and sort direction. If the column is not referenced in the

ORDER BY clause, ORDERCOL is zero. Sort direction is indicated by a positive

number for ascending order and a negative number for descending order.

GROUPCOL SMALLINT

NOT NULL

If this column is referenced in a GROUP BY clause, give its relative position in

the GROUP BY clause. If the column is not referenced in the GROUP BY clause,

GROUPCOL is zero.

UPDATECOL CHAR(1) NOT

NULL

If this column is in the SET clause of an UPDATE statement, indicate how it is

updated.

L Updated by a literal.

X Updated by a column or expression.

blank Column is not referenced in the SET clause

EXPLAIN

280 SQL Reference

Table 12. Columns in REFERENCE_TABLE (continued)

Column Name Data Type Description

TIMESTAMP TIMESTAMP

NOT NULL

The time at which the EXPLAIN statement was processed.

 Table 13. Columns in STRUCTURE_TABLE

Column Name Data Type Description

QUERYNO INTEGER Query number. QUERYNO is intended to

distinguish among queries. (See COST_TABLE for

a description of QUERYNO.)

RINO SMALLINT NOT NULL RINO is intended to distinguish among queries

and internally generated queries. (See

COST_TABLE for a description of RINO.)

QBLOCKNO SMALLINT NOT NULL Query block number, where 1 is the top level

query block that may have subqueries. Different

query blocks will receive different numbers.

PKGNAME CHAR(8) NOT NULL This identifies the name of the package in which

this SQL statement originated. This field is blank

for explicit EXPLAIN processing invoked by the

EXPLAIN statement.

PKGOWNER CHAR(8) NOT NULL This identifies the owner of the package in which

this SQL statement originated. This field is blank

for explicit EXPLAIN processing invoked by the

EXPLAIN statement.

ROWCOUNT INTEGER NOT NULL Estimated number of rows returned for the query

or subquery corresponding to this query block. For

queries, this is the estimated size of the response.

For update and delete statements, this is the

estimated number of affected rows. ROWCOUNT

can be used in estimating update costs. For insert

statements, the ROWCOUNT for the top level

query block (QBLOCKNO 1) is always 0, but the

ROWCOUNT’s for other query blocks, if any, are

normal estimates. ROWCOUNT is also 0 for

UPDATE and DELETE statements that use

WHERE CURRENT OF CURSOR clauses.

TIMES FLOAT NOT NULL Estimated number of times that “dependent”

query blocks of this block will be processed for

each execution of this query block. This field is no

longer in use, but is retained to provide for

compatibility with older versions of the SQL/DS

product.

PARENT SMALLINT NOT NULL The query block for which this block is performed.

This may be the query block in whose WHERE

clause the current query block appears. However,

some query blocks can be processed earlier, at the

opening of a “parent” query block, because there

are no correlations to intermediate query blocks

tables. In this case, PARENT identifies that

ancestor, rather than the parent given by the

statement’s structure.

EXPLAIN

Chapter 6. Statements 281

Table 13. Columns in STRUCTURE_TABLE (continued)

Column Name Data Type Description

ATOPEN CHAR (1) NOT NULL These are the characters that can appear in

ATOPEN:

Y If the query is done once at each open

(new invocation) of the PARENT.

N If the number of times that the current

query block is invoked (per invocation of

its parent) equals the TIMES field value of

the parent.

TIMESTAMP TIMESTAMP NOT NULL The time at which the EXPLAIN statement was

processed.

Examples

Place information about a SELECT statement that selects all the rows from the

EMP_ACT table into your tables named REFERENCES_TABLE and COST_TABLE.

Tag the entries that contain this information with the reference number 1500.

 EXPLAIN REFERENCE, COST

 SET QUERYNO = 1500

 FOR SELECT * FROM EMP_ACT

EXPLAIN

282 SQL Reference

FETCH

The FETCH statement positions a cursor on the next row of its result table and

assigns the values of that row to host variables, host structures, or both.

Invocation

This statement can only be embedded in an application program. It is an

executable statement that cannot be dynamically prepared.

Authorization

See “DECLARE CURSOR” on page 235 for an explanation of the authorization

required to use a cursor.

Syntax

Description

cursor_name

Identifies the select cursor to be used in the fetch operation. The cursor_name

must identify a declared cursor as explained in “DECLARE CURSOR” on page

235. When the FETCH statement is processed, the cursor must be in the open

state.

 If the cursor is currently positioned on or after the last row of the result table:

v SQLCODE is set to +100, and SQLSTATE is set to '02000'.

v The cursor is positioned after the last row.

v Host variables and host structure subfields are not assigned values.

If the cursor is currently positioned before a row, the cursor is positioned on

that row, and the values of that row are assigned to host variables and host

structure subfields as specified by INTO or USING.

 If the cursor is currently positioned on a row other than the last row, after

execution of the FETCH statement the cursor is positioned on the next row.

Values of that row are assigned to host variables and host structure subfields

as specified by INTO or USING.

INTO

Introduces a list of host variables, host structures, or both.

host_variable_list

Identifies one or more host variables, host structures, or both, that must be

declared in the program in accordance with the rules for declaring host

variables and host structures.

 The first value in the result row is assigned to the first host variable or host

structure subfield in the list, the second value to the second variable or

subfield, and so on.

USING DESCRIPTOR descriptor_name

Identifies an output SQLDA that must contain a valid description of zero or

more host variables.

►► FETCH cursor_name INTO host_variable_list

USING DESCRIPTOR

descriptor_name
 ►◄

FETCH

Chapter 6. Statements 283

Before the FETCH statement is processed, the user must set some fields in the

SQLDA as described in the “Description” section of “EXECUTE” on page 264

and Table 20 on page 360.

 The data type of a variable must be compatible with its corresponding value. If the

value is numeric, the variable must have the capacity to represent the whole part

of the value. For a datetime value, the variable must be a character string variable

of a minimum length as defined in “String Representations of Datetime Values” on

page 49. If the value is null, an indicator variable must be specified.

Each value with a corresponding variable is assigned to the variable in accordance

with the assignment rules described in Chapter 3. If the number of variables is less

than the number of values in the row, the SQLWARN3 field of the SQLCA is set to

'W'. If an assignment error occurs, the value is not assigned to the variable, and no

more values are assigned to variables. Any values that have already been assigned

to variables remain assigned.

Error Conditions

See the DB2 Server for VSE & VM Application Programming manual for a description

of the possible errors when FETCH is processed.

Notes

Cursor Positioning

An open cursor has three possible positions:

v Before a row

v On a row

v After the last row.

If a cursor is on a row, that row is called the current row of the cursor. A cursor

referenced in an UPDATE or DELETE statement must be positioned on a row. A

cursor can only be on a row as a result of a FETCH statement.

It is possible for an error to occur that makes the state of the cursor unpredictable.

Examples

There are two tables, FORUM and ARCHIVE, each with the following columns:

 Name: FORUM RECEIVED SOURCE TOPIC ENTRY_TEXT

Type: char(8)

not null

timestamp

not null

char(8)

not null

char(64)

not null

varchar(4000)

not null

Desc: Forum name Date and

time entry

received

Userid of

person

appending

entry

Topic within

the forum

The text

appended in

this entry

The FORUM table contains a number of named forums. Each forum contains one

or more topics and each topic contains one or more entries. When a topic is no

longer current its entries are either deleted or moved to the ARCHIVE table.

The following PL/I program performs maintenance on the forum table. A user can

invoke the program with one of three commands. Each command is accompanied

by a string of text that can be found within the TOPIC column of the entries for a

given topic (this need not be the entire TOPIC value). The three commands are:

FETCH

284 SQL Reference

v 1 (changes the contents of the TOPIC value for all that topic’s entries)

v 2 (moves all entries for that topic to the ARCHIVE table)

v 3 (deletes all entries for that topic without archiving them).

 CLEANUP: PROC OPTIONS(MAIN);

 DCL NOT_END BIT(1);

 DCL ACTION BINARY FIXED(15); /* 1=chg-topic 2=archive 3=delete */

 EXEC SQL BEGIN DECLARE SECTION;

 DCL SRCH_FORUM CHAR(8);

 DCL SRCH_TOPIC CHAR(66) VARYING;

 DCL NEW_TOPIC CHAR(64) VARYING;

 DCL FORUM CHAR(8);

 DCL 1 ENTRY,

 5 TSTMP CHAR(26),

 5 PERSON CHAR(8),

 5 TOPIC CHAR(64) VARYING;

 DCL TXT CHAR(4000) VARYING;

 EXEC SQL END DECLARE SECTION;

 EXEC SQL INCLUDE SQLCA;

 EXEC SQL WHENEVER NOT FOUND CONTINUE;

 EXEC SQL WHENEVER SQLWARNING CONTINUE;

 EXEC SQL WHENEVER SQLERROR GOTO ERRCHK;

 EXEC SQL CONNECT TO TOROLAB3;

 GET LIST (ACTION, SRCH_FORUM, SRCH_TOPIC, NEW_TOPIC);

 SRCH_TOPIC = ’%’ || SRCH_TOPIC || ’%’;

 EXEC SQL DECLARE CUR CURSOR FOR

 SELECT * FROM FORUM

 WHERE FORUM = :SRCH_FORUM AND TOPIC LIKE :SRCH_TOPIC

 FOR UPDATE OF TOPIC;

 EXEC SQL OPEN CUR;

 EXEC SQL FETCH CUR INTO :FORUM, :ENTRY, :TXT;

 IF SQLSTATE = ’02000’

 THEN DO;

 DISPLAY (’No notes found for requested forum and topic’);

 GO TO FINISHED;

 END;

 NOT_END = ’1’B;

 DO WHILE (NOT_END);

 EXEC SQL FETCH CUR INTO :FORUM, :ENTRY, :TXT;

 IF SQLSTATE = ’02000’ THEN

 NOT_END = ’0’B;

 ELSE DO;

 SELECT;

 WHEN (ACTION = 1) /* change topic value */

 EXEC SQL UPDATE FORUM

 SET TOPIC = :NEW_TOPIC

 WHERE CURRENT OF CUR;

 WHEN (ACTION = 2) /* archive entry to another table */

 DO;

 EXEC SQL INSERT INTO ARCHIVE

 VALUES (:FORUM, :TSTMP, :PERSON, :TOPIC, :TXT);

 EXEC SQL DELETE FROM FORUM WHERE CURRENT OF CUR;

 END;

 WHEN (ACTION = 3) /* delete topic */

 EXEC SQL DELETE FROM FORUM WHERE CURRENT OF CUR;

 END; /* select */

 END; /* else do */

 END; /* do while */

 FINISHED:

 EXEC SQL CLOSE CUR;

 EXEC SQL COMMIT WORK;

 RETURN;

 ERRCHK:

 DISPLAY (’Unexpected Error -changes will be backed out’);

FETCH

Chapter 6. Statements 285

PUT SKIP LIST (SQLCA);

 EXEC SQL WHENEVER SQLERROR CONTINUE; /* continue if error on rollback */

 EXEC SQL ROLLBACK WORK;

 RETURN;

 END; /* CLEANUP */

FETCH

286 SQL Reference

Extended FETCH

The Extended FETCH statement positions a cursor on the next row of its result

table and assigns the values of that row to host variables. The cursor must have

been opened using the Extended OPEN statement.

Invocation

This statement can only be embedded in an application program written in

Assembler or REXX.

Authorization

The authorization ID of the statement must have one of the following:

v ownership of the package

v DBA authority

v EXECUTE privilege on the package.

Syntax

Description

cursor_variable

Identifies the cursor that is to be used. The cursor must have been defined by a

preceding Extended DECLARE CURSOR statement in the same logical unit of

work.

USING DESCRIPTOR descriptor_name

Identifies an output SQLDA that must contain a valid description of host

variables.

 Before the Extended FETCH statement is processed, the user must set some

fields in the SQLDA as described in the “Description” section of “EXECUTE”

on page 264 and Table 20 on page 360.

 The indicated cursor must be declared and opened.

Notes

In most respects, the Extended FETCH statement is identical to the FETCH

statement (see “FETCH” on page 283). However, in the Extended FETCH

statement, the cursor_name is a host variable, thereby making it possible for a user

to provide the cursor name when the program is run and to FETCH in a logical

unit of work or program other than the one in which the statement was prepared.

Extended DECLARE CURSOR, OPEN, and FETCH must occur in the same logical

unit of work.

Examples

FETCH :CURSOR1 USING DESCRIPTOR MYSQLDA

►► FETCH cursor_variable USING DESCRIPTOR descriptor_name ►◄

Extended FETCH

Chapter 6. Statements 287

GRANT (Package Privileges)

This form of the GRANT statement grants the privilege to process statements in a

package.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

To process this statement, the privileges held by the authorization ID of the

statement must include the EXECUTE privilege on the package and GRANT

authority on that privilege. Someone with DBA authority may grant the EXECUTE

privilege on a package owned by another user.

Syntax

 Description

EXECUTE ON package_name

Identifies the package upon which the EXECUTE privilege is being granted.

The package_name must identify a package that exists at the application server.

TO

Specifies to whom the privileges are granted.

authorization_name,...

Lists one or more authorization IDs. You cannot use the ID of the GRANT

statement itself; you cannot grant privileges to yourself.

PUBLIC

Grants the EXECUTE privilege on the package to all users.

WITH GRANT OPTION

Allows the named authorization_names to grant the EXECUTE privilege on the

package to other users.

 If WITH GRANT OPTION is omitted, the named authorization_names cannot

grant the EXECUTE privilege to others unless they have received that

authority from some other source.

►►

(1)

GRANT EXECUTE ON

package_name

▼

 ,

TO

authorization_name

PUBLIC

►

►
WITH GRANT OPTION

 ►◄

Notes:

1 RUN can be specified as a synonym for EXECUTE to support applications developed

for previous releases of SQL/DS.

GRANT

288 SQL Reference

The GRANT authority cannot be passed to PUBLIC. If you use PUBLIC and

WITH GRANT OPTION together, the statement is processed; but a warning is

given and the EXECUTE privilege is granted to PUBLIC without GRANT

authority.

Notes

Only the authorization ID that preprocesses a package (or an authorization ID with

DBA authority) can drop that package from the database. A 'drop' privilege cannot

be granted to another authorization ID.

Examples

Example 1

Grant the ability to process the TIMESHEET package (which is used by the

TIMESHEET program) to everyone.

 GRANT EXECUTE ON TIMESHEET TO PUBLIC

Example 2

Grant the ability to process the TABB package (which is used by the TABB

program) to KING, BROWN, and BLACK. Allow them to grant this privilege to

others.

 GRANT EXECUTE ON TABB

 TO KING, BROWN, BLACK

 WITH GRANT OPTION

GRANT

Chapter 6. Statements 289

GRANT (System Authorities)

This form of the GRANT statement changes passwords and authorities.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

DBA authority is needed to grant authorities and to change others’ passwords.

DBA authority is not needed for someone to change their own password if they

have been granted connect authority explicitly by a DBA. (A user able to access the

database only because connect authority has been granted to ALLUSERS cannot

use this command to change their own password.)

Syntax

Description

CONNECT

Grants CONNECT authority to the specified authorization_names. A user can

use this parameter with the IDENTIFIED BY clause to change his or her own

password.

DBA

Grants DBA authority to the specified authorization_names. This also means that

the specified authorization_names will be automatically granted CONNECT and

RESOURCE authority. Someone with DBA authority has all privileges on all

►► GRANT

▼

 CONNECT TO AUTH

DBA

ID

RESOURCE

,

CONNECT TO

authorization_name

(1)

ALLUSERS

SCHEDULE TO

subsystemid

IDENTIFIED BY

password

 ►◄

AUTH:

▼

 ,

authorization_name

ID:

▼

 ,

IDENTIFIED BY

password

Notes:

1 ALLUSERS can only be specified once and is not applicable to a VSE application

server.

GRANT

290 SQL Reference

objects in the database, including the authority to drop any object. However, a

DBA may not grant any privileges on an object the DBA does not own unless

the owner has given the DBA that right. A DBA also cannot revoke any

privilege on an object unless the DBA granted that privilege in the first place.

For a complete description of DBA authority, see the DB2 Server for VSE & VM

Database Administration manual.

RESOURCE

Grants RESOURCE authority to the specified user(s). This also means that the

specified user(s) will be automatically granted CONNECT authority. Someone

with RESOURCE authority has the ability to create tables in public dbspaces.

TO

Introduces a list of one or more authorization_names

authorization_name

An authorization id.

ALLUSERS

Specifies that the CONNECT authority is granted implicitly to every

system-defined user. Granting CONNECT to ALLUSERS is a special case

that establishes implicit connect capability for all users in the system when

operating under the DB2 Server for VM environment.

VSE Users

ALLUSERS is not a valid option since implicit CONNECT authority

is not applicable to VSE application servers.

IDENTIFIED BY password...

Adds or changes the password for each authorization_name specified. If you

specify IDENTIFIED BY, you must include a password for every

authorization_name specified. The password specifies the new or changed

password for each of the specified authorization_names. Passwords are limited

to eight characters. The passwords and authorization_names must correspond as

shown in example 2 below. If the password is the same as the one that

currently exists for the authorization_name, or if no passwords are specified, the

change has no real effect.

SCHEDULE

Grants the authority to connect users without specifying a password. Used

with the VSE Guest Sharing facility. For more information, see the DB2 Server

for VM System Administration or the DB2 Server for VSE System Administration

manual.

TO subsystemid

The subsystem ID of the CICS subsystem running under the VSE guest.

IDENTIFIED BY password

The new or changed password by which the subsystem will identify itself.

Examples

Example 1

Grant DBA authority to THOMPSON and THORN.

 GRANT DBA TO THOMPSON, THORN

GRANT

Chapter 6. Statements 291

Example 2

Grant CONNECT authority to BRIAN (with the password CONCON), ED (with

the password NDPNDP), and JOHN (with the password LIBLIB).

 GRANT CONNECT TO BRIAN, ED, JOHN

 IDENTIFIED BY CONCON, NDPNDP, LIBLIB

GRANT

292 SQL Reference

GRANT (Table Privileges)

This form of the GRANT statement grants privileges on table and views.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include the

privilege being granted and GRANT authority on that privilege. Someone with

DBA authority may grant table privileges on a table or view owned by another

user.

Syntax

Description

ALL or ALL PRIVILEGES

Grants table privileges on the table or view identified in the ON clause. The

privileges granted are those possessed by the authorization ID of the GRANT

statement. ALL PRIVILEGES is the default.

ALTER

Grants the privilege to use the ALTER TABLE statement. This privilege cannot

be granted on a view.

DELETE

Grants the privilege to use the DELETE statement.

►► GRANT

▼

▼

 ALL

PRIVILEGES

,

(1)

ALTER

DELETE

(1)

INDEX

INSERT

(1)

REFERENCES

SELECT

UPDATE

,

(

column_name

)

 ►

►

▼

 ,

ON

table_name

TO

authorization_name

view_name

PUBLIC

WITH GRANT OPTION

►◄

Notes:

1 The ALTER, INDEX and REFERENCES options do not apply to views.

GRANT

Chapter 6. Statements 293

INDEX

Grants the privilege to use the CREATE INDEX statement. This privilege

cannot be granted on a view.

INSERT

Grants the privilege to use the INSERT statement.

REFERENCES

Grants the privilege to create, drop, activate, or deactivate a referential

constraint in which the table is the parent table. This privilege does not apply

to views.

 This privilege is required to reference the parent table when a referential

constraint is defined or added by the CREATE TABLE or ALTER TABLE

statement respectively.

 This privilege is also required on the parent table when the user wants to use

the ALTER TABLE statement to drop, activate, or deactivate a foreign key on a

dependent table that references the parent table.

SELECT

Grants the privilege to use the SELECT statement or the CREATE VIEW

statement.

UPDATE

Allows the grantee(s) to update the table or view.

(column_name,...)

Restricts the update privilege to the columns listed. If a list of column

names is not specified or if UPDATE is granted using the specification of

ALL PRIVILEGES, the grantee(s) may update all updateable columns of

the table, even those created later by the ALTER TABLE statement.

ON table_name or view_name

Identifies the table or view upon which you are granting the privileges. The

table_name or view_name must identify a table or view that exists at the

application server.

TO

Indicates to whom the privileges are granted.

authorization_name,...

Lists one or more authorization IDs. The ID of the GRANT statement itself

cannot be used. (Privileges cannot be granted to oneself.)

PUBLIC

Grants the privileges to all users.

WITH GRANT OPTION

Allows the named authorization_names to grant the privileges to other

authorization_names. If you omit WITH GRANT OPTION, the named

authorization_names cannot grant the privileges to others unless they have that

authority from some other source.

 You cannot pass the GRANT authority to PUBLIC. If you use PUBLIC and

WITH GRANT OPTION together, the statement is processed; but a warning is

given and the privileges are granted to PUBLIC without GRANT authority.

GRANT

294 SQL Reference

Examples

Example 1

Given that you have DBA authority, and that you have all grant authorities on the

table WESTERN_COURSES (owned by KATHLEEN), grant all privileges on the

table to PUBLIC.

 GRANT ALL ON KATHLEEN.WESTERN_COURSES

 TO PUBLIC

Example 2

Grant the appropriate privileges on your CALENDAR table so that ROANNA and

EMMA can read it and insert new entries into it, but do not allow them to change

or remove any entries. Do not allow ROANNA or EMMA to grant those privileges

to others.

 GRANT SELECT, INSERT ON CALENDAR

 TO ROANNA, EMMA

Example 3

Grant the UPDATE privilege on the RATING and CRITIQUE columns from the

public table TORONTO_RESTAURANT (owned by ONTARIO) to MARGARET

and COMPDEPT. Allow them to grant those privileges to others.

GRANT UPDATE (RATING, CRITIQUE) ON ONTARIO.TORONTO_RESTAURANT

 TO MARGARET, COMPDEPT

 WITH GRANT OPTION

GRANT

Chapter 6. Statements 295

INCLUDE

The INCLUDE statement inserts declarations, statements, or both, into a source

program.

Invocation

This statement can only be embedded in an application program. It is not an

executable statement. It is not supported in REXX.

Authorization

None required.

Syntax

Description

SQLCA

Indicates the description of an SQL communication area (SQLCA) is to be

included. INCLUDE SQLCA must not be specified more than once in the same

program. INCLUDE SQLCA must not be specified if the program includes a

stand-alone SQLCODE (see “SQL Return Codes” on page 142). For a

description of the SQLCA, see “SQL Communication Area (SQLCA)” on page

353.

SQLDA

Indicates the description of an SQL descriptor area (SQLDA) is to be included.

SQLDA should not be specified in a COBOL, or Fortran program, as it will be

interpreted as a text_file_name. For a description of the SQLDA, see “SQL

Descriptor Area (SQLDA)” on page 359.

text_file_name

Identifies an external source file to be used as input when your program is

precompiled.

 The statements contained in the external source specified by text_file_name may

be host language statements or SQL statements (except for another INCLUDE

statement). INCLUDE text_file_name statements may not be nested, but the

external source may contain INCLUDE SQLDA or INCLUDE SQLCA

statements. The INCLUDE text_file_name may appear in an SQL DECLARE

section or the entire SQL DECLARE section(s) may be placed within an

external source file.

Notes

The INCLUDE statement may be used to obtain secondary input from a CMS file

in VM or a source member in VSE. If a source program input to a preprocessor

uses the INCLUDE facility, any files to be used as secondary input must be

accessed by the user. The INCLUDE statement causes input to be read from the

specified file name until the end of the file, at which time the SYSIN input in VM

or the SYSIPT input in VSE resumes.

►► INCLUDE SQLCA

SQLDA

text_file_name

 ►◄

INCLUDE

296 SQL Reference

In VM

The file to be included must have one of the following file types:

 Language File Type

 Assembler ASMCOPY

 C CCOPY

 COBOL COBCOPY

 Fortran FORTCOPY

 PL/I PLICOPY

In VSE

The source member must be cataloged as one of the following source types:

 Language Source Type

 Assembler A

 C B

 COBOL C

 Fortran G

 PL/I P

For COBOL programs, INCLUDE SQLCA must not be specified in other than the

Working Storage Section.

See the DB2 Server for VSE & VM Application Programming manual for more

information on using external source files.

Examples

Include an SQL Communications Area into a PL/I program.

 EXEC SQL INCLUDE SQLCA;

INCLUDE

Chapter 6. Statements 297

INSERT

The INSERT statement inserts rows into a table or view. Inserting a row into a

view also inserts the row into the table on which the view is based.

There are two forms of this statement:

v The INSERT using VALUES form inserts a single row into the table or view using

the values provided or referenced.

v The INSERT by subselect form inserts one or more rows into the table or view

using values from other tables or views.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v Ownership of the table

v The INSERT privilege for the table or view

v DBA authority.

The INSERT privilege on a view is only inherent in DBA authority. Ownership of a

view does not necessarily include the INSERT privilege on the view because the

privilege may not have been granted when the view was created, or it may have

been granted, but subsequently revoked.

If a subselect is specified, the privileges held by the authorization ID of the

statement must also include at least one of the following:

v Ownership of the tables or views identified in the subselect

v The SELECT privilege on every table or view identified in the subselect

v DBA authority.

Syntax

Description

INTO table_name

►► INSERT INTO table_name

view_name

▼

,

(

column_name

)

 ►

►

▼

 ,

VALUES

(

constant

)

host_variable_list

NULL

special_register

subselect

WITH

RR

CS

►◄

INSERT

298 SQL Reference

INTO view_name

Identifies the object of the insert operation. The name must identify a table or

view that exists at the application server, but it must not identify a catalog

table, a view of a catalog table, or a read-only view (see “Read-only views” on

page 233). However, someone with DBA authority may insert rows into a few

of the catalog tables. See “Updateable Columns” on page 371.

 A value cannot be inserted into a view column that is derived from:

v A constant, expression, or scalar function

v The same base table column as some other column of the view.

If the object of the insert operation is a view with such columns, a list of

column names must be specified, and the list must not identify these columns.

(column_name,...)

Specifies the columns for which insert values are provided. Each name must be

an unqualified name that identifies a column of the table or view. The same

column must not be identified more than once. A view column that cannot

accept insert values must not be identified.

 Omission of the column list is an implicit specification of a list in which every

column of the table or view is identified in left-to-right order. This list is

established when the statement is prepared and therefore does not include

columns that were added to a table after the statement was prepared.

 SQL statements can be implicitly or explicitly rebound (prepared again). The

effect of a rebind on INSERT statements that do not include a column list is to

re-establish the list. Therefore, the number of columns into which data will be

inserted may change.

VALUES

Introduces one row of values to be inserted. The values of the row are the

values of the constants, host variables, host structure subfields, and keywords

specified in the clause.

 Each host variable and host structure named must be described in the program

in accordance with the rules for declaring host variables and host structures.

 The number of values in the VALUES clause must equal the number of names

in the column list. The first value is inserted in the first column in the list, the

second value in the second column, and so on.

 For an explanation of constant and host-variable-list, see Chapter 3. For a

description of special-register, see “Special Registers” on page 62. NULL

specifies the null value. A constant or special register cannot be used to specify

the insert value for a long string column.

subselect

Inserts the rows of the result table of a subselect. There may be one, more than

one, or none. If there are none, SQLCODE is set to +100 and SQLSTATE is set

to '02000'.

 (For an explanation of subselect, see Chapter 5, “Queries,” on page 121.)

 The base object of the INSERT, and the base object of the subselect, or any

subquery of the subselect, must not be the same table.

 The number of columns in the result table must equal the number of names in

the column list. The value of the first column of the result is inserted in the

first column in the list, the second value in the second column, and so on.

INSERT

Chapter 6. Statements 299

A non-null value cannot be inserted into a long string column using a

subselect.

WITH Specifies the isolation level at which the subselect is executed.

RR

Repeatable read

CS

Cursor stability

 The default isolation level of the statement is the isolation level of the package.

INSERT Rules

Insert values must satisfy the following rules. If they do not, or if any other errors

occur during the execution of the INSERT statement, no rows are inserted.

v Default values: The value inserted in any column that is not in the column list is

null. Columns that do not allow null values must be included in the column list.

Similarly, if you insert into a view, the null value is inserted into any column of

the base table that is not included in the view. Hence, all columns of the base

table that are not in the view must allow null values.

v Assignment: Insert values are assigned to columns in accordance with the

assignment rules described in Chapter 3.

v Validity: If the table named, or the base table of the view named, has one or

more unique indexes, each row inserted into the table must conform to the

constraints imposed by those indexes.

If you name a view whose definition includes WITH CHECK OPTION, each

row inserted into the view must conform to the definition of the view. If the

view you name is dependent on other views whose definitions include WITH

CHECK OPTION, the inserted rows must also conform to the definitions of

those views.

If you name a view whose definition does not include WITH CHECK OPTION,

rows can be inserted that do not conform to the definition of the view. Those

rows cannot appear in the view but are inserted into the base table of the view.

For an explanation of the rules governing these situations, see “CREATE VIEW”

on page 231.

v Referential Integrity: For each constraint defined on the table, each non-null insert

value of each foreign key must be equal to a primary key value of the parent

table.

v Length: If the insert value is a number, the column must be a numeric column

with the capacity to represent the integral part of the number. For INSERT using

VALUES, if the insert value is a string, the column must be a string column with

a length attribute at least as great as the length of the string. For INSERT by

subselect, the column may be a string column with a shorter length attribute, in

which case truncation will occur with no error. Note that character string values

may also be assigned to datetime columns as defined in “Datetime

Assignments” on page 57.

If you are inserting rows into a parent table that is part of a referential constraint,

the database manager implicitly checks that the primary key remains unique and

does not contain null values.

Notes

Rows are inserted in an order determined by the database manager; that is, no

facility is provided to specify the position in the table of a newly inserted row.

INSERT

300 SQL Reference

If an error occurs during the execution of an INSERT, you must inspect

SQLWARN6 to determine the extent of the error. The following are current settings

for SQLWARN6 when there is an error indication and the possible responses:

1. SQLWARN6 is set to 'S'. A severe error has occurred, leaving the system in an

unusable state.

v No further requests are possible. The application must end, or, in a DB2

Server for VSE & VM environment, may switch to another database.

2. SQLWARN6 is set to 'W'. An error occurred causing the LUW to be rolled back

automatically. The system is still in a usable state. The application can either:

v begin a new LUW and proceed or

v stop.

3. SQLWARN6 is blank. An error has occurred, but the LUW is still active. For

recoverable pools, any changes made by the request have been rolled back,

hence the failing request has not left any partial results in the database. For

information on nonrecoverable storage pools, see the DB2 Server for VM System

Administration or the DB2 Server for VSE System Administration manual. The

application can do one of the following:

v Continue forward processing of the LUW

v Commit the changes made before the failing request

v Roll back the LUW.

The order of rows being inserted is determined by the database manager; no

facility is provided to specify the position in the table of a newly inserted row. The

SQLERRD(3) portion of the SQLCA indicates the number of rows that were

inserted.

Unless appropriate locks already exist, one or more exclusive locks are acquired at

the execution of a successful INSERT statement. Until the locks are released, an

inserted row can only be accessed by the application process that performed the

insert. For further information about locking, see the description of the COMMIT,

ROLLBACK, LOCK TABLE, and LOCK DBSPACE statements.

Put blocking is available with the DRDA protocol if the application has been

preprocessed with the IBLOCK option. The database manager does not notify the

application program of an insert error until the INSERTs that fills a block is

processed. To determine when (or if) rows are actually inserted into the database,

your program should examine SQLERRD(3) in the SQLCA when doing INSERTs.

For example, assuming 10 data rows to be inserted fit into one block, and that the

data for the fourth insert is in error. The database manager tries to process the

block of ten inserts, but encounters the error in the fourth row. It stops processing

the block - that is, three rows are inserted successfully. SQLERRD(3) contains the

number of rows that were successfully inserted. In this case, it contains a value of

3. If all rows were inserted successfully, it would contain 10. The application

program can use SQLERRD(3) to determine where the error occurred.

Examples

Example 1

Insert a new department with the following specifications into the DEPARTMENT

table:

v Department number (DEPTNO) is ‘E31’

v Department name (DEPTNAME) is ‘ARCHITECTURE’

v Managed by (MGRNO) a person with number ‘00390’

v Reports to (ADMRDEPT) department ‘E01’.

INSERT

Chapter 6. Statements 301

|

|

|

|

|

|

|

|

|

|

|

|

INSERT INTO DEPARTMENT

 VALUES (’E31’, ’ARCHITECTURE’, ’00390’, ’E01’)

Example 2

Insert a new department into the DEPARTMENT table as in example 1, but do not

assign a manager to the new department.

 INSERT INTO DEPARTMENT (DEPTNO, DEPTNAME, ADMRDEPT)

 VALUES (’E31’, ’ARCHITECTURE’, ’E01’)

Example 3

Create a temporary table MA_EMP_ACT with the same columns as the EMP_ACT

table. Load MA_EMP_ACT with the rows from the EMP_ACT table with a project

number (PROJNO) starting with the letters ‘MA’.

 CREATE TABLE MA_EMP_ACT

 (EMPNO CHAR(6) NOT NULL,

 PROJNO CHAR(6) NOT NULL,

 ACTNO SMALLINT NOT NULL,

 EMPTIME DEC(5,2),

 EMSTDATE DATE,

 EMENDATE DATE)

 INSERT INTO MA_EMP_ACT

 SELECT * FROM EMP_ACT

 WHERE SUBSTR(PROJNO, 1, 2) = ’MA’

Example 4

Use a PL/I program statement to add a skeleton project to the PROJECT table.

Obtain the project number (PROJNO), project name (PROJNAME), department

number (DEPTNO), and responsible employee (RESPEMP) from host variables and

a host structure. Use the current date as the project start date (PRSTDATE). Assign

a NULL value to the remaining columns in the table.

 .

 .

 DCL 1 PROJECT,

 5 PRJNO CHAR(5),

 5 PRJNM CHAR(24) VARYING;

 DCL 1 EMPLOYEE,

 5 DPTNO CHAR(3),

 5 REMP CHAR(6),

 5 LNAME CHAR(25);

 .

 .

 .

 EXEC SQL INSERT INTO PROJECT (PROJNO, PROJNAME, DEPTNO, RESPEMP, PRSTDATE)

 VALUES (:PROJECT, :EMPLOYEE.DPTNO, :REMP, CURRENT DATE);

INSERT

302 SQL Reference

LABEL ON

The LABEL ON statement adds or replaces labels in the catalog descriptions of

tables, views, or columns.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v Ownership of the table or view

v DBA authority.

Syntax

Description

TABLE

Indicates that the label is for a table or a view.

table_name

view_name

Identifies a table or view to which the label applies. The name must

identify a table or view at the application server.

 The label is placed into the TLABEL column of the SYSTEM.SYSCATALOG

catalog table for the row that describes the table or view.

COLUMN

Indicates that the label is for a column.

table_name.column_name

view_name.column_name

Identifies the column, qualified by the name of the table or view in which it

appears. The column_name must identify a column of the specified table or

view that exists at the application server.

►► LABEL ON options_a IS string_constant

table_name

(

options_b

)

view_name

 ►◄

options_a

 TABLE table_name

view_name

COLUMN

table_name.column_name

view_name.column_name

options_b

▼

 ,

column_name

IS

string_constant

LABEL ON

Chapter 6. Statements 303

The label is placed in the CLABEL column of the SYSTEM.SYSCOLUMNS

catalog table, for the row that describes the column.

Multiple Labels:

To define a label for more than one column within the same table or view

within the same statement, the table or view name is followed by a list of one

or more column_name and string-constant pairs in parentheses.

 The column_name must identify a column of the specified table or view that

exists at the application server.

IS Introduces the label you want to provide.

string_constant

Can be any SQL character string constant of up to 30 characters. The

constant may contain mixed double-byte and single-byte characters.

Notes

Unlike synonyms, labels cannot be used as identifiers. Instead, they can be used in

displays created by applications that process SQL statements dynamically.

A DESCRIBE statement specified with USING BOTH or USING LABELS can be

used to return column labels in an SQLDA. The program can then move the label

from the SQLNAME field of the SQLDA into a work area. A column is considered

to have no label if either its LABEL column in SYSTEM.SYSCOLUMNS is NULL,

or if it has a zero length value. If there is no column label when the program

issues a DESCRIBE, the SQLNAME field of the SQLDA is set to length 0, and the

field is cleared to 30 blanks. For this reason, the program should move the label

into a work area using the length returned in SQLDA only after it makes sure that

the length is not zero.

Examples

Example 1

Insert a label for the EMP_ACT table into the catalog.

 LABEL ON TABLE EMP_ACT

 IS ’EMPLOYEE ACTIVITY BY PROJECT’

Example 2

Insert a label for the EMP_VIEW1 view into the catalog.

 LABEL ON TABLE EMP_VIEW1

 IS ’EMPLOYEE WITHOUT SALARY’

Example 3

Insert a label for the EDLEVEL column of the EMPLOYEE table into the catalog.

 LABEL ON COLUMN EMPLOYEE.EDLEVEL

 IS ’HIGHEST GRADE LEVEL’

Example 4

Insert a label for two different columns of the EMPLOYEE table into the catalog.

 LABEL ON EMPLOYEE

 (WORKDEPT IS ’DEPTNO IN EMPLOYEE’,

 EDLEVEL IS ’HIGHEST GRADE LEVEL ’)

LABEL ON

304 SQL Reference

LOCK DBSPACE

The LOCK DBSPACE statement either prevents concurrent application processes

from changing a dbspace or prevents concurrent application processes from using

a dbspace.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v Ownership of the dbspace

v DBA authority.

Syntax

Description

dbspace_name

Identifies the dbspace to be locked. The dbspace must exist at the application

server. You cannot lock any dbspace containing the database manager's system

catalog.

 The LOCK statement can be used to lock both private and public dbspaces. If

the dbspace_name is unqualified, the database manager will first look for a

private dbspace and, if that does not exist, it will look for a public dbspace

with the same dbspace name.

IN SHARE MODE

Prevents concurrent application processes from executing any but read-only

operations on the dbspace.

IN EXCLUSIVE MODE

Prevents concurrent application processes from executing any operations on

the dbspace. This option requires a Z lock on the dbspace.

 Locking prevents concurrent operations. A lock is not necessarily acquired during

the execution of LOCK DBSPACE if a suitable lock already exists. The lock that

prevents the concurrent operations is held until the termination of the unit of

work.

Examples

Obtain a lock on the dbspace named DSP3. Allow others to read from the DSP3

while it is locked.

 LOCK DBSPACE DSP3 IN SHARE MODE

►► LOCK DBSPACE dbspace_name IN SHARE

EXCLUSIVE
 MODE ►◄

LOCK DBSPACE

Chapter 6. Statements 305

LOCK TABLE

The LOCK TABLE statement either prevents concurrent application processes from

changing a table or prevents concurrent application processes from using a table.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v Ownership of the table

v The SELECT privilege for the table

v DBA authority.

Syntax

Description

table_name

Identifies the table. The table_name must identify a base table that exists at the

application server. If you lock a table in a private dbspace the entire dbspace is

locked because locking is always performed at the dbspace level for private

dbspaces.

IN SHARE MODE

Prevents concurrent application processes from executing any but read-only

operations on the table.

IN EXCLUSIVE MODE

Prevents concurrent application processes from executing any operations on

the table. This option requires an IX lock on the dbspace and a Z lock on the

table.

 Locking prevents concurrent operations. A lock is not necessarily acquired during

the execution of LOCK TABLE if a suitable lock already exists. The lock that

prevents the concurrent operations is held until the termination of the unit of

work.

The lock is acquired when the LOCK TABLE statement is processed.

Examples

Obtain a lock on the DEPARTMENT table. Do not allow others to either update or

read from DEPARTMENT while it is locked.

 LOCK TABLE DEPARTMENT IN EXCLUSIVE MODE

►► LOCK TABLE table_name IN SHARE

EXCLUSIVE
 MODE ►◄

LOCK TABLE

306 SQL Reference

OPEN

The OPEN statement opens a cursor.

Invocation

This statement can be embedded only in an application program. It is an

executable statement that cannot be dynamically prepared.

Authorization

See “DECLARE CURSOR” on page 235 for the authorization required to use a

cursor. The authorization for the OPEN statement is checked when the related

DECLARE CURSOR statement is prepared.

Syntax

Description

cursor_name

Identifies the cursor to be opened. The cursor_name must identify a declared

cursor as explained in the Notes for the DECLARE CURSOR statement. When

the OPEN statement is processed, the cursor must be in the closed state, and it

must have been successfully prepared or declared.

 If using an insert-cursor and the program is blocking, this statement tells the

application server to prepare to block the rows to be inserted. If not blocking,

the application server prepares to insert a single row into the database. Rows

are not actually inserted into the database until one or more PUT statements

have been processed.

 If opening a query-cursor, the result table of the cursor is derived by evaluating

that select-statement. The evaluation uses the current values of any special

registers specified in the select-statement and the current values of any host

variables or host structures specified in it or in the USING clause of the OPEN

statement. The rows of the result table may be derived during the execution of

the OPEN statement, and a temporary table created to hold them; or they may

be derived during the execution of subsequent FETCH statements. In either

case, the cursor is placed in the open state and positioned before the first row

of its result table. If the table is empty, the position of the cursor is effectively

“after the last row.”

USING

Introduces a list of host variables or host structures or both whose values are

substituted for the parameter markers (question marks) of a prepared

statement. (For an explanation of parameter markers, see “PREPARE” on page

313.) If the DECLARE CURSOR statement names a prepared statement that

includes parameter markers, you must use USING. If the prepared statement

does not include parameter markers, USING is ignored. USING must not be

used if the select-statement of the cursor is specified in the DECLARE

CURSOR statement.

 A USING clause cannot appear in the OPEN statement for an insert-cursor.

►► OPEN cursor_name

USING

host_variable_list

USING DESCRIPTOR

descriptor_name

 ►◄

OPEN

Chapter 6. Statements 307

host_variable_list

Identifies a list of host variables, host structures, or both, that must be

declared in the program in accordance with the rules for declaring host

variables and host structures.

 The total number of host variables and host structure subfields must be the

same as the number of parameter markers in the prepared statement. The

nth variable or subfield corresponds to the nth parameter marker in the

prepared statement.

USING DESCRIPTOR descriptor_name

Identifies an input SQLDA that must contain a valid description of host

variables.

 Before the OPEN statement is processed, the user must set some fields in the

SQLDA as described in the “Description” section of “EXECUTE” on page 264

and Table 20 on page 360.

 If the select-statement of the cursor was prepared (rather than declared) and that

statement contains parameter markers, when that statement is evaluated each

parameter marker in the statement is effectively replaced by its corresponding host

variable. With the exception of the LIKE predicate, the replacement of a parameter

marker is an assignment operation in which the source is the value of the host

variable, and the target is a variable within the database manager. The attributes of

the target variable are determined as follows:

v If the parameter marker was specified as the operand of a unary minus, the

target is double-precision floating-point.

v If the parameter marker was specified as the operand of an arithmetic operator,

the data type, scale, and precision of the target are the same as the other

operand of that operator.

v If the parameter marker was specified as a comparison operand, the attributes of

the target are the same as the other operand of the predicate. However, if the

data type of the other operand is DATE, TIME, or TIMESTAMP, the target is

effectively CHAR(254).

v When the parameter marker is specified as a comparison operand in the

BETWEEN predicate,

– If there is an operand that is specified solely as a column name (or a column

function with the argument being a column with a field procedure defined on

it), then the attributes of the leftmost operand are used.

– Otherwise, the attributes of the leftmost operand that is not a parameter

marker are used.

v When the parameter marker is specified as a comparison operand in the IN

predicate,

– The attributes of the leftmost operand that is not a parameter marker are

used.

If the parameter marker is the pattern in a LIKE predicate, then:

v If the first operand in the predicate is a character string column, the target is

VARCHAR(n), where n is 10 more than the length attribute of the column with

this exception: if that length is greater than 246, then n is 256.

v If the first operand in the predicate is a graphic string column, the target is

VARCHAR(n), where n is 5 more than the length attribute of the column with

this exception: if that length is greater than 123, then n is 128.

OPEN

308 SQL Reference

Let V denote a host variable that corresponds to parameter marker P. The value of

V is assigned to the target variable for P in accordance with the rules for assigning

a value to a column. Thus:

v V must be compatible with the target.

v If V is a string, its length must not be greater than the length attribute of the

target.

v If V is a number, the absolute value of its integer part must not be greater than

the maximum absolute value of the integer part of the target.

v If the attributes of V are not identical to the attributes of the target, the value is

converted to conform to the attributes of the target.

When the SELECT statement of the cursor is evaluated, the value used in place of

P is the value of the target variable for P. For example, if V is CHAR(6), and the

target is CHAR(8), the value used in place of P is the value of V padded with two

blanks.

The USING clause is intended for a prepared SELECT statement that contains

parameter markers. However, it can also be used when the SELECT statement of

the cursor is part of the DECLARE CURSOR statement. In this case the OPEN

statement is processed as if each host variable in the SELECT statement were a

parameter marker, except that the attributes of the target variables are the same as

the attributes of the host variables in the SELECT statement. The effect is to

override the values of the host variables in the SELECT statement of the cursor

with the values of the host variables specified in the USING clause.

Notes

Closed state of cursors

All cursors in a program are in the closed state when:

v The program is initiated

v A program initiates a new unit of work by executing a COMMIT or ROLLBACK

statement.

A cursor can also be in the closed state because:

v A CLOSE statement was processed

v An error was detected that made the position of the cursor unpredictable.

To retrieve rows from the active set of a query-cursor, a FETCH statement must be

processed while the cursor is open. To insert rows into the active set of an

insert-cursor, a PUT statement must be processed while the cursor is open. The only

way to change the state of a cursor from closed state to open is to process an

OPEN statement.

Effect of temporary tables: If the result table of a query cursor is not read-only,

its rows are derived during the execution of subsequent FETCH statements. The

same method may be used for a read-only result table. However, if a result table is

read-only, the database manager may choose to use the temporary table method

instead. With this method the entire result table is inserted into a temporary table

during the execution of the OPEN statement. When a temporary table is used, the

results of a program can differ in these two ways:

v An error can occur during OPEN that would otherwise not occur until some

later FETCH statement.

v An INSERT, UPDATE, and DELETE statement processed while the cursor is

open cannot affect the result table.

OPEN

Chapter 6. Statements 309

Conversely, if a temporary table is not used, INSERT, UPDATE, and DELETE

statements processed while the cursor is open can affect the result table if issued

from the same application process. The effect of such operations is not always

predictable. For example, if cursor C is positioned on a row of its result table

defined as SELECT * FROM T, and you insert a row into T, the effect of that insert

on the result table is not predictable because its rows are not ordered. A

subsequent FETCH C might or might not retrieve the new row of T.

Examples

Example 1

Write the embedded statements in a COBOL program that will:

1. Define a cursor C1 that is to be used to retrieve all rows from the

DEPARTMENT table for departments that are administered by (ADMRDEPT)

department ‘A00’

2. Place the cursor C1 before the first row to be fetched.

 EXEC SQL DECLARE C1 CURSOR FOR

 SELECT DEPTNO, DEPTNAME, MGRNO FROM DEPARTMENT

 WHERE ADMRDEPT = ’A00’ END-EXEC.

 EXEC SQL OPEN C1 END-EXEC.

Example 2

Code an OPEN statement to associate a cursor DYN_CURSOR with a dynamically

defined select-statement in a PL/I program. Assume each prepared

select-statement always has two parameter markers in its WHERE clause with the

first having a data type of integer and the second having a data type of

varchar(64). (The related host variable definitions, PREPARE statement and

DECLARE CURSOR statement are also shown in the example below.)

 EXEC SQL BEGIN DECLARE SECTION;

 DCL HV_INT BINARY FIXED(31);

 DCL HV_VCHAR64 CHAR(64) VARYING;

 DCL STMT1_STR CHAR(200) VARYING;

 EXEC SQL END DECLARE SECTION;

 EXEC SQL PREPARE STMT1_NAME FROM :STMT1_STR;

 EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

 EXEC SQL OPEN DYN_CURSOR USING :HV_INT, :HV_VCHAR64;

Example 3

Code an OPEN statement as in example 2, but in this case the number and data

types of the parameter markers in the WHERE clause are not known.

 EXEC SQL BEGIN DECLARE SECTION;

 DCL STMT1_STR CHAR(200) VARYING;

 EXEC SQL END DECLARE SECTION;

 EXEC SQL INCLUDE SQLDA;

 EXEC SQL PREPARE STMT1_NAME FROM :STMT1_STR;

 EXEC SQL DECLARE DYN_CURSOR CURSOR FOR STMT1_NAME;

 EXEC SQL OPEN DYN_CURSOR USING DESCRIPTOR :SQLDA;

Example 4

This example shows the SQL statements used with a cursor CURSOR3 in a PL/I

program. In this program, CURSOR3 inserts a row into the MA_ACT view (and

therefore into the EMP_ACT table, which is the base table for the view) based on

OPEN

310 SQL Reference

the values in the host variables EMNUM (char(6)), PJNUM (char(6)), ACNUM

(smallint), EMTIM (dec(5,2)), STDAT (date), and EMDAT (date).

 EXEC SQL DECLARE CURSOR3 CURSOR FOR

 INSERT INTO MA_ACT

 VALUES (:EMNUM, :PJNUM, :ACNUM, :EMTIM, :STDAT, :EMDAT);

 EXEC SQL OPEN CURSOR3;

 EXEC SQL PUT CURSOR3;

 EXEC SQL CLOSE CURSOR3;

OPEN

Chapter 6. Statements 311

Extended OPEN

The Extended OPEN statement opens a cursor declared using an Extended

DECLARE CURSOR statement for a previously prepared statement. The open

cursor retrieves the results of a query, or inserts values into the database.

Invocation

This statement can only be embedded in an application program written in

Assembler or REXX.

Authorization

The authorization ID of the statement must have one of the following:

v ownership of the package

v DBA authority

v EXECUTE privilege on the package.

Syntax

Description

cursor_variable

Identifies the cursor that is to be opened. The cursor must have been defined

by a preceding Extended DECLARE CURSOR statement in the same logical

unit of work.

USING DESCRIPTOR descriptor_name

Identifies an input SQLDA structure that provides information concerning

input variables that were specified as parameter markers (?) when the

statement was prepared.

 Before the Extended OPEN statement is processed, the user must set the fields

in the SQLDA described in the “Description” section of “EXECUTE” on page

264 and Table 20 on page 360.

 When the cursor is to be used for inserting data into a table, the USING

DESCRIPTOR clause should not be included because the clause must be in the

PUT statement.

Notes

In most respects, the Extended OPEN statement is similar to the OPEN statement

(see “OPEN” on page 307). However, in the Extended OPEN statement, the

cursor_name is a host variable, thereby making it possible for a user to provide the

cursor name when the program is run and to open the cursor in a logical unit of

work or program other than the one in which the statement was prepared.

Extended DECLARE CURSOR and Extended OPEN must occur in the same logical

unit of work.

Examples

OPEN :CURSOR1 USING DESCRIPTOR MYSQLDA

►► OPEN cursor_variable

USING DESCRIPTOR

descriptor_name
 ►◄

Extended OPEN

312 SQL Reference

PREPARE

The PREPARE statement is used by application programs to dynamically prepare

an SQL statement for execution. The PREPARE statement creates an executable

SQL statement, called a prepared statement, from a character string form of the

statement, called a statement string. The prepared statement is a named object that

can be referred to only within the logical unit of work in which it is created.

Invocation

This statement can only be embedded in an application program. It is an

executable statement that cannot be dynamically prepared.

Authorization

The authorization rules are those defined for the SQL statement specified by the

PREPARE statement. For example, see Chapter 5, “Queries,” on page 121 for the

authorization rules that apply when a select-statement is prepared. The

authorization ID is the run-time authorization ID.

Syntax

Description

statement_name

Provides a name for the prepared statement. No two prepared statements in a

single source program may use the same statement name. In REXX, the

statement_name must not be the same as the cursor_name declared in the

program.

FROM

Introduces the statement string. The statement string is the value of the

specified string_constant or the identified host_variable.

string_constant

String constants are supported in all languages except Assembler and C.

 You should avoid using either delimited identifiers or DBCS strings in

statements specified in string constants because results are unpredictable.

 When the string_constant form of the PREPARE statement is used in

Fortran programs:

v If the statement_name is referenced in a DECLARE CURSOR statement,

the PREPARE statement must come first.

v Any unqualified objects are qualified with the authorization ID of the

person preparing the program.

host_variable

Identifies a host variable that is described in the program in accordance

with the rules for declaring character string variables. An indicator variable

must not be specified.

 In Assembler, C, COBOL, and REXX, the host variable must be a

varying-length string variable. In C, it cannot be a NUL-terminated string.

In Fortran, the host variable must be a fixed-length string variable. In PL/I,

►► PREPARE statement_name FROM string_constant

host_variable
 ►◄

PREPARE

Chapter 6. Statements 313

the host variable can either be a fixed-length or varying-length string

variable. The host variable must have a maximum length of 8192.

 In a PL/I Version 2 program, a prepared statement containing DBCS

characters must be coded as a mixed string using the new PL/I Mixed

format.

 For example:

 DYNSTR = ’SELECT COL1 FROM TABLE WHERE COL2 = G’<....>’M;

 EXEC SQL PREPARE STMT1 FROM :DYNSTR;

Rules for statement strings

The string_constant or host_variable must contain one of the following SQL

statements:

 ACQUIRE DBSPACE

ALLOCATE CURSOR

ALTER DBSPACE

ALTER TABLE

ASSOCIATE LOCATORS

COMMENT ON

CREATE INDEX

CREATE SYNONYM

CREATE TABLE

CREATE VIEW

DELETE

DROP

EXPLAIN

GRANT Package Privileges

GRANT System Authorities

GRANT Table Privileges

INSERT

LABEL ON

LOCK DBSPACE

LOCK TABLE

REVOKE Package Privileges

REVOKE System Authorities

REVOKE Table Privileges

select-statement

UPDATE

UPDATE STATISTICS

Furthermore, the statement string must not:

v Begin with EXEC SQL and end with a statement terminator

v Include references to host variables

v Include comments.

Parameter markers: Although a statement string cannot include references to host

variables, it may include parameter markers; those can be replaced by the values of

host variables when the prepared statement is processed. A parameter marker is a

question mark (?) that is used where a host variable could be used if the statement

string were a static SQL statement. For an explanation of how parameter markers

are replaced by values, see “OPEN” on page 307 and “EXECUTE” on page 264.

Rules for parameter markers:

v Parameter markers must not be used:

– In a select list (SELECT ? is incorrect)

– As an operand of the concatenation operator

– As both operands of a single arithmetic or comparison operator (WHERE ? =

? is incorrect)

– As an operand in a datetime arithmetic expression

v At least one of the operands of the BETWEEN or IN predicates must not be a

parameter marker.

v An argument of a scalar function cannot be specified solely as a parameter

marker. For example, VALUE(COL1, COL2, ?) is not valid.

v If a scalar function is used in other than a SELECT list, and it has an argument

that can be specified as an arithmetic expression, a parameter marker can be

included in that expression, provided that it is the operand of an arithmetic

operator and that the other operand is a number.

PREPARE

314 SQL Reference

Notes

When a PREPARE statement is processed, the statement string is parsed and

checked for errors. If the statement string is incorrect, a prepared statement is not

created and the error condition that prevents its creation is reported in the SQLCA.

Prepared statements can be referred to in the following kinds of statements, with

the following restrictions shown:

 In ... The prepared statement ...

 DESCRIBE has no restrictions

 DECLARE CURSOR must be a select-statement or an insert-statement

 EXECUTE must not be a select-statement

A prepared statement can be processed many times. Indeed, if a prepared

statement is not processed more than once and does not contain parameter

markers, it is more efficient to use the EXECUTE IMMEDIATE statement rather

than the PREPARE and EXECUTE statements.

All prepared statements created in a logical unit of work are destroyed when the

logical unit of work is terminated.

Examples

Example 1

Prepare and process a non-select-statement in a COBOL program. Assume the

statement is contained in a host variable HOLDER and that the program will place

a statement string into the host variable based on some instructions from the user.

The statement to be prepared does not have any parameter markers.

 EXEC SQL PREPARE STMT_NAME FROM :HOLDER END-EXEC.

 EXEC SQL EXECUTE STMT_NAME END-EXEC.

Example 2

Prepare and process a non-select-statement as in example 1, except code it for a

PL/I program. Also assume the statement to be prepared can contain any number

of parameter markers.

 EXEC SQL PREPARE STMT_NAME FROM :HOLDER;

 EXEC SQL EXECUTE STMT_NAME USING DESCRIPTOR :INSERT_DA;

Assume that the following statement is to be prepared:

 INSERT INTO DEPARTMENT VALUES(?, ?, ?, ?)

To insert department number G01 named COMPLAINTS, which has no manager

and reports to department A00, the structure INSERT_DA should have the

following values before running the EXECUTE statement.

PREPARE

Chapter 6. Statements 315

SQLDAID
SQLDABC
SQLN
SQLD

SQLTYPE
SQLLEN
SQLDATA
SQLIND
SQLNAME

SQLTYPE
SQLLEN
SQLDATA
SQLIND
SQLNAME

SQLTYPE
SQLLEN
SQLDATA
SQLIND
SQLNAME

SQLTYPE
SQLLEN
SQLDATA
SQLIND
SQLNAME

188
4
4

452
3

GO1
0

448
29

COMPLAINTS
0

453
6

452
3

A00
0

-1

PREPARE

316 SQL Reference

Extended PREPARE

The Basic Extended PREPARE and Single Row Extended PREPARE forms of the

Extended PREPARE statement permit a statement to be prepared and stored in a

package for later execution.

The Empty Extended PREPARE form of the Extended PREPARE statement

provides support for dynamic SQL statements in non-modifiable packages. It is

used in conjunction with the Temporary Extended PREPARE form of the Extended

PREPARE statement.

The Temporary Extended PREPARE form of the Extended PREPARE statement

provides support for dynamic SQL statements in non-modifiable packages.

The package you are preparing into must have been created with the CREATE

PACKAGE statement.

Invocation

This statement can only be embedded in an application program written in

Assembler or REXX.

Authorization

The authorization ID of the first three forms of the Extended PREPARE statement

must have at least one of the following:

v ownership of the package

v DBA authority.

The authorization ID of the Temporary Extended PREPARE form must have at

least one of the following:

v ownership of the package

v DBA authority

v EXECUTE privilege on the package.

Extended PREPARE

Chapter 6. Statements 317

Syntax

Description

host_variable

Specifies the statement that is to be prepared. Host_variable is a varying-length

string host variable of maximum length 8192. It does not have an associated

indicator variable.

SETTING section_variable

In the Basic Extended PREPARE statement, the section_variable is set by the

database manager to an identifier for the statement that is prepared. It is used

in subsequent Extended DESCRIBE, DROP STATEMENT, Extended EXECUTE,

and Extended DECLARE CURSOR statements to specify the corresponding

prepared statement.

 In the Single Row Extended PREPARE statement, the section_variable is set by

the database manager to an identifier for the statement that is prepared. It is

used in subsequent Extended DESCRIBE, DROP STATEMENT, and Extended

EXECUTE (with the OUTPUT Descriptor clause) statements to specify the

corresponding prepared statement.

Basic Extended PREPARE

►► PREPARE FROM host_variable ►◄

►► SETTING section_variable IN package_spec ►

►
USING DESCRIPTOR

descriptor_name
 ►◄

Single Row Extended PREPARE

►► PREPARE SINGLE ROW FROM host_variable ►◄

►► SETTING section_variable IN package_spec ►

►
USING DESCRIPTOR

descriptor_name
 ►◄

Empty Extended PREPARE

►► PREPARE FROM NULL SETTING section_variable IN package_spec ►◄

Temporary Extended PREPARE

►► PREPARE FROM host_variable FOR section_variable ►◄

►► IN package_spec ►◄

Extended PREPARE

318 SQL Reference

In the Empty Extended PREPARE statement, the section_variable is set by the

database manager to an identifier for the indefinite section that is created. It is

used in subsequent Temporary Extended PREPARE, Extended DESCRIBE,

Extended EXECUTE, DROP STATEMENT and Extended DECLARE CURSOR

statements to specify the corresponding section.

FOR section_variable

Identifies a statement defined by an Empty Extended PREPARE statement.

This should be set to the value returned by the database manager as a result of

the Empty Extended PREPARE statement.

IN package_spec

Identifies the package in which the prepared statement is to be stored. If the

qualified package_spec does not refer to an existing package, an error will result.

USING DESCRIPTOR descriptor_name

Identifies an input SQLDA structure that provides information concerning

input variables that were specified as parameter markers (?) when the

statement was prepared. Extended PREPARE only utilizes the following fields

in an SQLDA: SQLD, SQLTYPE, SQLLEN, and, optionally, SQLNAME (for

CCSID override).

 USING DESCRIPTOR may be specified for Temporary Extended PREPARE without

an error indication, but it is ignored.

 Normally if a prepared statement contains parameter markers (?), an SQLDA

would be provided at run time by the Extended EXECUTE or Extended OPEN

statement that references that prepared statement. However, an SQLDA can be

used to improve run-time performance and reduce conversions in those cases

where data types and lengths are known at statement preparation time for the

parameter markers in the prepared SQL statement. Another reason for

providing an SQLDA at statement preparation time is to override the

restrictions on the use of parameter markers as outlined under “Rules for

parameter markers” under the PREPARE statement. Also, if an SQLDA is not

provided at statement preparation time, it is assumed that none of the

variables used within predicates are nullable; therefore, an error results if a

negative indicator value is provided at execution time.

 An input SQLDA may also be specified on a subsequent Extended EXECUTE

or Extended OPEN; in such cases, if the information does not match that of the

PREPARE SQLDA, errors may result.

 The fields described in the SQLDA should match the parameter markers (?) in

the statement being prepared. If there are fewer fields specified in the SQLDA,

an error will result. If there are more fields specified in the SQLDA, they will

be ignored.

 Before the Extended PREPARE statement is processed, the user must set the

fields in the SQLDA described in the “Description” section of “EXECUTE” on

page 264 and Table 20 on page 360.

 The Basic Extended PREPARE form of the Extended PREPARE statement adds an

SQL statement to an existing package. If the package is new, the Extended

PREPARE statement must be preceded by a CREATE PACKAGE statement.

Existing packages, created using the MODIFY option of CREATE PACKAGE, can

be extended using this format of the PREPARE statement.

The USING DESCRIPTOR clause must be used when preparing a statement that

contains parameter markers, if using the DRDA protocol.

Extended PREPARE

Chapter 6. Statements 319

The Single Row Extended PREPARE form of the Extended PREPARE statement

indicates that the select-statement contained in the host_variable is a single row

Select. Select-statements prepared using ″PREPARE SINGLE ROW″ must be

processed using the Extended EXECUTE with OUTPUT DESCRIPTOR command.

The Single Row Extended PREPARE form of the Extended PREPARE statement is

not supported with the DRDA protocol.

The Empty Extended PREPARE form of the Extended PREPARE statement allows

for the creation of an indefinite section in a program. The section is subsequently

used when a statement is dynamically prepared using a Temporary Extended

PREPARE statement.

This format of the Extended PREPARE must follow the CREATE

PACKAGE...USING NOMODIFY... format of the CREATE PACKAGE statement

and must exist in the same logical unit of work as the CREATE PACKAGE

statement.

If the above restriction is violated, execution of the statement will be unsuccessful.

The Temporary Extended PREPARE form of the Extended PREPARE statement

prepares the statement contained in the created indefinite section. This section

must have been created by an Empty Extended PREPARE statement. The section

number for this section is contained in the section_variable.

This format of the Extended PREPARE may not be processed in a logical unit of

work in which update to the package is already in progress. If the above restriction

is violated, execution of the statement will be unsuccessful.

See “Rules for statement strings”, “Parameter Markers”, and “Rules for parameter

markers” on page 314 for a list of the SQL statements which may be contained in

the host_variable and the rules for using parameter markers in the host_variable.

Notes

The various formats to the Extended PREPARE statement permit statements to be

created for different programs in different logical units of work.

Because a DBA can add a statement to a package on behalf of the owner (creator)

of the module, where the owner is not authorized for the added function, the DBA

should grant the proper authorization to the owner.

Examples

Example of Basic Extended PREPARE

PREPARE FROM :XSTRING SETTING :STMID

 IN :USERID.:PACKNAME USING DESCRIPTOR MYSQLDA

Example of Single Row Extended PREPARE

PREPARE SINGLE ROW FROM :XSTRING SETTING :STMID

 IN :USERID.:PACKNAME USING DESCRIPTOR MYSQLDA

Example of Empty Extended PREPARE

PREPARE FROM NULL SETTING :STMID

 IN :USERID.:PACKNAME

Example of Temporary Extended PREPARE

Extended PREPARE

320 SQL Reference

PREPARE FROM :XSTRING FOR :STMID

 IN :USERID.:PACKNAME

Extended PREPARE

Chapter 6. Statements 321

PUT

The PUT statement inserts a row into a table. It is most often used when blocking

is in effect in order to create a block of rows to be inserted into a table at one time

and thus improve performance.

Invocation

This statement can only be embedded in an application program. It is an

executable statement that cannot be dynamically prepared.

Authorization

For an explanation of the authorization required to use a cursor, see “DECLARE

CURSOR” on page 235.

Syntax

Description

cursor_name

Is an ordinary identifier that identifies the insert cursor to be used in the PUT

operation. The cursor_name must identify a declared cursor as explained in

“DECLARE CURSOR” on page 235. When the PUT statement is processed, the

cursor must be in the open state.

FROM

This is only used in a PUT statement that is used in conjunction with a

dynamic INSERT statement, in which case either FROM or USING

DESCRIPTOR is required.

 Introduces a list of host variables, host structure, or both, whose values are

substituted for the parameter markers (question marks) in the

dynamically-prepared INSERT statement. (For an explanation of parameter

markers, see “PREPARE” on page 313.)

host_variable_list

Identifies a list of host variables, host structures, or both, that must be

declared in the program in accordance with the rules for declaring host

variables and host structures.

 The total number of host variables and host structure subfields must be the

same as the number of parameter markers in the prepared statement. The

nth variable or subfield corresponds to the nth parameter marker in the

prepared statement.

USING DESCRIPTOR descriptor_name

This is only used in a PUT statement that is used in conjunction with a

dynamic INSERT statement, in which case either FROM or USING

DESCRIPTOR is required.

 Identifies an input SQLDA structure that provides information concerning

input variables that were specified as parameter markers (?) when the INSERT

statement was prepared.

►► PUT cursor_name

FROM

host_variable_list

USING DESCRIPTOR

descriptor_name

 ►◄

PUT

322 SQL Reference

Before the PUT statement is processed, the user must set the fields in the

SQLDA described in the “Description” section of “EXECUTE” on page 264 and

Table 20 on page 360.

Notes

When blocking is used, every time a PUT statement is processed, a single row of

data is added to an insert-block. Rows are not inserted into the database until the

block is full, or, until a CLOSE statement is processed. The PUT statement can also

be processed when blocking is not in effect. In this case, one data row is inserted

directly into a table.

Insert blocking is available with the DRDA protocol if the application has been

preprocessed with the BLOCK option.

The database manager does not notify your program of an insert error until the

PUT that fills a block is processed. To determine when (or if) rows are actually

inserted into the database, your program should examine SQLERRD(3) in the

SQLCA when doing PUTs.

For example, suppose that 10 data rows to be inserted fit into one block, and that

the data for the fourth insert is in error. PUTs 1 through 9 have successful SQLCA

notifications, even though the insert for the fourth PUT has an error. On the tenth

PUT, the block is full. The database manager tries to process the block of ten

inserts, but encounters the error in the fourth row. It stops processing the block -

that is, three rows are inserted successfully. SQLERRD(3) contains the number of

rows that were successfully inserted. In this case, it contains a value of 3. If all

rows were inserted successfully, it would contain 10. You can use SQLERRD(3) to

determine where the error occurred.

Examples

Example 1

This example of statements from a PL/I program illustrates the use of a PUT

statement with a static INSERT statement. The host variables EMPNO, FIRSTNME,

MIDINIT, LASTNAME and EDLEVEL are compatible with the columns by the

same name in the EMPLOYEE table. In this program, cursor PUTCUR inserts

blocks of skeleton rows into the EMPLOYEE table.

 EXEC SQL DECLARE PUTCUR CURSOR FOR

 INSERT INTO EMPLOYEE (EMPNO, FIRSTNME, MIDINIT, LASTNAME, EDLEVEL)

 VALUES (:EMPNO, :FIRSTNME, :MIDINIT, :LASTNAME, :EDLEVEL);

 EXEC SQL OPEN PUTCUR;

 ... /* code to start a loop */

 ... /* code to pick up values and assign them to host variables */

 EXEC SQL PUT PUTCUR;

 ... /* code to end a loop */

 EXEC SQL CLOSE PUTCUR;

Example 2: Similar to example 1, except that it uses a PUT statement with a

dynamic INSERT statement.

 EXEC SQL PREPARE INSERT_STMT FROM

 ’INSERT INTO EMPLOYEE (EMPNO, FIRSTNME, MIDINIT, LASTNAME, EDLEVEL)

 VALUES (? ? ? ? ?)’;

 EXEC SQL DECLARE PUTCUR CURSOR FORINSERT_STMT;

PUT

Chapter 6. Statements 323

|

|

EXEC SQL OPEN PUTCUR;

 ... /* code to start a loop */

 ... /* code to pick up values and assign them to host variables */

 /* and to the three subfields FIRSTNME, MIDINIT, LASTNAME */

 /* of host structure EMPNAME. */

 EXEC SQL PUT PUTCUR FROM :EMPNO, :EMPNAME, :EDLEVEL;

 ... /* code to end a loop */

 EXEC SQL CLOSE PUTCUR;

PUT

324 SQL Reference

Extended PUT

The Extended PUT statement inserts a row into a table. It is most often used when

blocking is in effect in order to create a block of rows to be inserted into a table at

one time and thus improve performance. The cursor must have been opened with

an Extended OPEN.

Invocation

This statement can only be embedded in an application program written in

Assembler or REXX.

Authorization

The authorization ID of the statement must have one of the following:

v ownership of the package

v DBA authority

v EXECUTE privilege on the package.

Syntax

Description

cursor_variable

Identifies the insert cursor that is to be used. The cursor must have been

defined by a preceding Extended DECLARE CURSOR statement in the same

logical unit of work.

FROM host_variable,...

Identifies variables in the program that will be used to provide the values that

are to be inserted with the Extended PUT. The number of variables must be

the same as the number of parameter markers in the prepared statement. The

nth variable corresponds to the nth parameter marker in the prepared

statement.

USING DESCRIPTOR descriptor_name

Identifies an input SQLDA structure that provides information concerning

input variables that were specified as parameter markers (?) when the

statement was prepared.

 Before the Extended PUT statement is processed, the user must set the fields in

the SQLDA described in the “Description” section of “EXECUTE” on page 264

and Table 20 on page 360.

 The indicated cursor must be declared and opened.

Notes

In most respects, the Extended PUT statement is identical to the PUT statement

(see “PUT” on page 322); however, in the Extended PUT statement, the

cursor_variable is a host variable. This feature makes it possible for a user to

provide the cursor name when the program is run and to enter a PUT statement in

►► PUT cursor_variable

▼

,

FROM

host_variable

USING DESCRIPTOR

descriptor_name

 ►◄

Extended PUT

Chapter 6. Statements 325

a logical unit of work or program other than the one in which the statement was

prepared. Extended DECLARE CURSOR, OPEN, and PUT must occur in the same

logical unit of work.

Examples

PUT :CURSOR1 FROM :X, :Y

PUT :CURSOR2 USING DESCRIPTOR SQLDA

Extended PUT

326 SQL Reference

REVOKE (Package Privileges)

This form of the REVOKE statement revokes the privilege to process statements in

a package.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

This authorization ID must previously have granted the specified privileges to

every authorization_name (or PUBLIC) specified in the FROM clause.

Note that someone with DBA authority can indirectly revoke the EXECUTE

privilege on a package by obtaining the owner’s password from the

SYSTEM.SYSUSERAUTH catalog table and then connecting as the owner.

Syntax

Description

EXECUTE ON package_name

Identifies the package from which the EXECUTE privilege is being removed.

The package_name must identify a package that exists at the application server.

FROM authorization_name,...

Identifies the user from whom the privilege is revoked. authorization_name,... is

a list of one or more authorization IDs. Do not use the same authorization_name

more than once.

 You cannot use the authorization_name of the REVOKE statement itself. (You

cannot revoke privileges from yourself.)

PUBLIC

Revokes the privilege from PUBLIC.

Examples

All users currently have the right to process the TREMAR package. PAYROLL,

HANNA, and TREVOR have explicitly been granted this privilege. The other users

have it because a GRANT EXECUTE TO PUBLIC statement was previously

processed.

Remove the right to process the package from all users but PAYROLL.

 REVOKE EXECUTE ON TREMAR FROM HANNA, PUBLIC, TREVOR

►►

(1)

REVOKE EXECUTE

ON

package_name

▼

 ,

FROM

authorization_name

(2)

PUBLIC

►◄

Notes:

1 RUN can be used as a synonym for EXECUTE and is provided for compatibility with

previous versions of SQL/DS.

2 PUBLIC is specified only once.

REVOKE

Chapter 6. Statements 327

REVOKE (System Authorities)

This form of the REVOKE statement allows a user having DBA authority to revoke

authorities from other users.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

The authorization ID of the statement must have DBA authority.

Syntax

Description

CONNECT

Revokes CONNECT authority from the specified authorization_names. Revoking

CONNECT causes all authorities to be revoked with it and the

authorization_name to be deleted from the catalog SYSUSERAUTH.

 Revoking CONNECT does not cause objects owned by that authorization_name

to be dropped. Neither does it cause table privileges for that authorization_name

to be revoked. A user with DBA authority can later drop the objects and

revoke the privileges.

DBA

Revokes DBA authority from the specified authorization_names. A user having

DBA authority cannot revoke any authority from himself or herself. Revoking

DBA authority automatically causes all authorities to be revoked except

CONNECT.

RESOURCE

Revokes RESOURCE authority from the specified authorization_names. No one

can revoke RESOURCE authority from a user that has DBA authority.

Revoking RESOURCE authority implies no other revocations.

FROM

Introduces a list of one or more authorization_names.

authorization_name

An authorization ID.

►►

REVOKE

▼

▼

 ,

CONNECT FROM

authorization_name

(1)

ALLUSERS

,

DBA

FROM

authorization_name

RESOURCE

SCHEDULE FROM

subsystemid

►◄

Notes:

1 ALLUSERS can only be specified once.

REVOKE

328 SQL Reference

ALLUSERS

Specifies that implicit CONNECT authority is to be revoked for all

system-defined users.

VSE Users

ALLUSERS is not a valid option because implicit CONNECT

authority is not applicable to VSE application servers.

SCHEDULE

Allows the DBA to revoke access by a CICS subsystem. Used with the VSE

Guest sharing facility of the DB2 Server for VM product. For more information

see the DB2 Server for VM System Administration or the DB2 Server for VSE

System Administration manual.

FROM subsystemid

Is the subsystem ID of the CICS subsystem running under the VSE guest.

Notes

If you enter REVOKE for an authority that the user does not have, the revocation

is ignored for that authority.

Examples

Example 1

Given that VEILLEUX, MARINA, and HEARST have DBA authority, enter the

statements necessary to revoke all authority from VEILLEUX. Leave MARINA with

only CONNECT authority and leave HEARST with both CONNECT and

RESOURCE authority.

 REVOKE DBA FROM VEILLEUX, MARINA, HEARST

 REVOKE CONNECT FROM VEILLEUX

 GRANT RESOURCE TO HEARST

Example 2

All users have previously been granted implicit connect authority from their VM

user ID. PAYROLL, HANNA, and TREVOR have explicitly been granted this

authority. The other users have it because a GRANT CONNECT TO ALLUSERS

statement was previously processed.

Remove implicit connect authority from all users but PAYROLL.

 REVOKE CONNECT FROM HANNA, TREVOR, ALLUSERS

VSE Users

Example 2 does not apply to VSE.

REVOKE

Chapter 6. Statements 329

REVOKE (Table Privileges)

This form of the REVOKE statement revokes privileges on the table or view.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that can be dynamically prepared.

Authorization

This authorization ID must previously have granted the specified privileges to

every authorization_name (or PUBLIC) specified in the FROM clause.

Note that someone with DBA authority can indirectly revoke privileges on a table

or view by obtaining the owner’s password from the SYSTEM.SYSUSERAUTH

catalog table and then connecting as the owner.

Syntax

Description

ALL or ALL PRIVILEGES

Revokes table privileges on the table or view identified in the ON clause. The

privileges revoked are those possessed by the authorization ID of the REVOKE

statement. ALL PRIVILEGES is the default.

ALTER

Revokes the privilege to use the ALTER TABLE statement. This privilege does

not apply to views.

DELETE

Revokes the privilege to use the DELETE statement.

►►

REVOKE

▼

 PRIVILEGES

ALL

,

(1)

ALTER

DELETE

(1)

INDEX

INSERT

(1)

REFERENCES

SELECT

UPDATE

ON

table_name

view_name

►

►

▼

 ,

FROM

authorization_name

(2)

PUBLIC

►◄

Notes:

1 The ALTER, INDEX, and REFERENCES options are not applicable to views.

2 PUBLIC may only be specified once per statement.

REVOKE

330 SQL Reference

INDEX

Revokes the privilege to use the CREATE INDEX statement. This privilege

does not apply to views.

INSERT

Revokes the privilege to use the INSERT statement.

REFERENCES

Revokes the privilege to either create referential constraints or to change

existing referential constraints. This privilege does not apply to views.

SELECT

Revokes the privilege to use the SELECT statement or the CREATE VIEW

statement.

UPDATE

Revokes the privilege to use the UPDATE statement. Note that a list of column

names can be used only with GRANT, not with REVOKE. You must therefore

revoke UPDATE on all columns.

ON table_name

ON view_name

Identifies the table or view from which the privileges are being revoked. The

table_name or view_name must identify a table or view that exists at the

application server.

FROM authorization_name,...

Identifies from whom the privileges are revoked. authorization_name,... is a list

of one or more authorization IDs.

 You cannot use the authorization_name of the REVOKE statement itself. (You

cannot revoke privileges from yourself.)

PUBLIC

Revokes a grant of privileges to PUBLIC.

Dependent Privileges

When a privilege is revoked from a user, every privilege dependent on that

privilege is also revoked.

A privilege P2 possessed by user U2 is dependent on privilege P1 possessed by

user U1 if all of these are true:

v P1 and P2 are the same privilege.

v U1 granted the privilege to U2.

v No other user granted the same privilege to U2 before U1 granted it.

Also, table privilege P2 is dependent on table privilege P1 if P2 was derived from

P1 as a result of a CREATE VIEW statement.

Revoking a privilege that was used to create a package invalidates the package.

Multiple Grants: If you granted the same privilege to the same user more than

once, revoking that privilege from that user negates all those grants. It does not

negate any grant of that privilege made by others.

If a user has more than one source for a privilege, that privilege is not revoked

until it is revoked by all sources (see example 2 below).

REVOKE

Chapter 6. Statements 331

Notes

The only way to revoke the WITH GRANT OPTION is to revoke the privilege

itself and then to grant it again without the WITH GRANT OPTION.

Examples

Example 1

This example shows the effect of revoking a privilege that has a dependent

privilege. To illustrate this process, the diagram that follows shows a sequence of

GRANT and REVOKE statements.

 ┌────────────────────────┐

 │ Database Administrator │

 └────────┬───────┬───────┘

 1GW 3R

 ø ø

 ┌─────────┐

 │ PAULINE │

 └────┬────┘

 2G

 ø

 ┌─────────┐

 │ DAVE │

 └─────────┘

The statements illustrated in the above diagram are:

 1GW) from DBA: GRANT SELECT ON TBLA TO PAULINE WITH GRANT OPTION

 2G) from PAULINE: GRANT SELECT ON TBLA TO DAVE

 3R) from DBA: REVOKE SELECT ON TBLA FROM PAULINE

Following this sequence of statements neither PAULINE nor DAVE has the

SELECT privilege on TBLA. The explicit revoking of PAULINE’s privilege

implicitly revokes DAVE’s as well.

Example 2

This extends example 1 in order to show the effect of having received a privilege

from more than one source.

 ┌────────────────────────────────┐

 │ Database Administrator │

 └─┬───────┬────────────────┬─────┘

 1GW 7R 2GW

 ø ø ø

 ┌────────────┐ ┌────────────┐

 │ PAULINE │ │ SIMON │

 └──────────┬─┘ └─┬──────────┘

 3GW 5GW

 ø ø

 ┌────────────┐

 │ DAVE │

 └┬──────────┬┘

 4G 6G

 ø ø

 ┌────────────┐ ┌────────────┐

 │ JAY │ │ RICHARD │

 └────────────┘ └────────────┘

Following this sequence of statements from the users indicated:

REVOKE

332 SQL Reference

1GW) from DBA: GRANT SELECT ON TBLA TO PAULINE WITH GRANT OPTION

 2GW) from DBA: GRANT SELECT ON TBLA TO SIMON WITH GRANT OPTION

 3GW) from PAULINE GRANT SELECT ON TBLA TO DAVE WITH GRANT OPTION

 4G) from DAVE: GRANT SELECT ON TBLA TO JAY

 5GW from SIMON: GRANT SELECT ON TBLA TO DAVE WITH GRANT OPTION

 6G) from DAVE: GRANT SELECT ON TBLA TO RICHARD

 7R) from Admin: REVOKE SELECT ON TBLA FROM PAULINE

PAULINE loses her SELECT privilege on TBLA, but DAVE retains his (having

obtained it from SIMON as well).

JAY loses his SELECT privilege because he obtained it from DAVE at a time when

DAVE had only obtained the SELECT WITH GRANT privilege from PAULINE.

RICHARD retains his SELECT privilege because he obtained it from DAVE at a

time when DAVE had obtained the SELECT WITH GRANT privilege from both

PAULINE and SIMON.

Example 3

This example shows how the revocation of a PUBLIC privilege varies depending

on whether: that privilege was granted specifically to that user or that privilege

was obtained using a GRANT TO PUBLIC.

 ┌────────────────────────────────┐

 │ Database Administrator │

 └─┬────────────┬───────────────┬─┘

 1GW 2GP 4RP

 ø │ │

 ┌─────────┐ │ │

 │ MARY │ │ │

 └───────┬─┘ │ │

 3G ├─────────┐ │

 ø ø ø ø

 ┌─────────┐ ┌──────────────────────────┐

 │ RICHARD │ │ LOUIS (and other public) │

 └─────────┘ └──────────────────────────┘

Following this sequence of statements from the users indicated:

 1GW) from DBA: GRANT SELECT ON TBLA TO MARY WITH GRANT OPTION

 2GP) from DBA: GRANT SELECT ON TBLA TO PUBLIC

 3G) from MARY: GRANT SELECT ON TBLA TO RICHARD

 4RP) from DBA: REVOKE SELECT ON TBLA FROM PUBLIC

RICHARD retains the SELECT privilege on TBLA even though he was originally

granted it as a member of the public. LOUIS only had the SELECT privilege as a

member of the public, so loses that privilege.

REVOKE

Chapter 6. Statements 333

ROLLBACK

The ROLLBACK statement ends a logical unit of work and back out the database

changes that were made by that logical unit of work.

Invocation

This statement can be embedded in an application program or issued interactively.

It is an executable statement that cannot be dynamically prepared.

Authorization

None required.

Syntax

Description

RELEASE

Re-establishes the default user ID and default database for a subsequent logical

unit of work. If this default user ID had been overridden with an explicit

CONNECT, in the terminating logical unit of work that explicitly established

user ID is replaced by the default user ID. By not specifying RELEASE, the

user ID and database at termination of the logical unit of work are retained for

a subsequent logical unit of work. For VSE interactive users connected to a

remote DRDA application server, when the next SQL statement is entered, you

are automatically connected with your CICS signon user ID to the same

application server.

 ROLLBACK terminates the logical unit of work in which ROLLBACK is processed.

All changes made by the following statements during a logical unit of work, are

backed out:

ACQUIRE DBSPACE

ALTER DBSPACE

ALTER PROCEDURE

ALTER PSERVER

ALTER TABLE

COMMENT ON

CREATE INDEX

CREATE PROCEDURE

CREATE PSERVER

CREATE SYNONYM

CREATE TABLE

CREATE VIEW

DELETE

DROP

DROP PROCEDURE

DROP PSERVER

EXPLAIN

GRANT Package Privileges

GRANT System Authorities

►►
 WORK

ROLLBACK

RELEASE

►◄

ROLLBACK

334 SQL Reference

GRANT Table/View Privileges

INSERT

LABEL ON

PUT

REVOKE Package Privileges

REVOKE System Authorities

REVOKE Table/View Privileges

UPDATE

UPDATE STATISTICS

All locks acquired by the logical unit of work are released. All cursors that were

opened during the logical unit of work are closed. All statements that were

prepared during the logical unit of work are destroyed. Any cursors associated

with a prepared statement that is destroyed cannot be opened until the statement

is prepared again.

Notes

If a COMMIT or ROLLBACK does not immediately precede the termination of an

application process, the database manager attempts to commit the work (it may,

however, not always be successful). It is strongly recommended that each

application process explicitly ends its logical unit of work before terminating.

ROLLBACK should not be issued after a severe error has occurred (one which sets

the SQLWARN0 field in the SQLCA to 'S'). In this situation, the only statement that

can be issued is a CONNECT statement to another application server.

The logical unit of work must be completed by using the COMMIT or ROLLBACK

statements before the CONNECT statement can be used to switch to another user

ID or application server.

TCP/IP does not perform any security checking during a physical connect. The

Batch application requester will use the DRDA security handshaking flows during

the logical connect to perform user ID and password verification. The physical

TCP/IP connection will be deallocated and reallocated whenever the application

switches to a different user ID or server name (using the CONNECT statement),

and DRDA security handshaking flows will be used again during the logical

connect. Either of these switches will not require the application to issue a

COMMIT RELEASE or ROLLBACK RELEASE. The Batch Resource Adapter will

retain and use the current user ID, password, and server name (unless different

ones are specified with a new CONNECT statement) after the new TCP/IP

physical connection is established. If a COMMIT RELEASE or ROLLBACK

RELEASE was issued prior to a CONNECT statement, then all user ID, password

and server name information is lost and must be supplied with the next

CONNECT.

Examples

The PL/I program in “COMMIT” on page 182 illustrates how the ROLLBACK

statement is used.

ROLLBACK

Chapter 6. Statements 335

SELECT INTO

The SELECT INTO statement produces a result table consisting of at most one row,

and assigns the values in that row to host variables. If the table is empty, the

statement assigns +100 to SQLCODE and '02000' to SQLSTATE and does not assign

values to the host variables. If more than one row satisfies the search condition,

statement processing is terminated and an error occurs.

Invocation

This statement can only be embedded in an application program. It is an

executable statement that cannot be dynamically prepared.

In Fortran, REXX, and programs prepared using extended dynamic SQL, SELECT

INTO cannot be used with the DRDA protocol.

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v DBA authority, or

v For each table or view identified in the SELECT INTO statement:

– The SELECT privilege on the table or view, or

– Ownership of the table or view.

Syntax

Description

The result table is derived by evaluating the from_clause, where_clause, and

select_clause, in this order.

See Chapter 5, “Queries,” on page 121 for a description of the select_clause,

from_clause, and where_clause.

INTO

Introduces a list of host variables, host structures, or both.

host_variable_list

Identifies a list of host variables, host structures, or both, that must be

declared in the program in accordance with the rules for declaring host

variables and host structures.

 The first value in the result row is assigned to the first host_variable or host

structure subfield in the list, the second value to the second variable, and so

on. If the number of host variables and host structure subfields is less than the

number of select_list values, the value W is assigned to the SQLWARN3 field

of the SQLCA. (See “SQL Communication Area (SQLCA)” on page 353.) Note

that there is no warning if there are more variables than the number of

select_list values. For a datetime value, the variable must be a character string

variable of a minimum length as defined in Chapter 3.

►► select_clause INTO host_variable_list from_clause

where_clause
 ►

►
with_clause

 ►◄

SELECT INTO

336 SQL Reference

If the value is null, an indicator variable must be specified.

 Each assignment to a variable is made according to the rules described in

Chapter 3.

WITH

Specifies the isolation level at which the statement is executed.

RR

Repeatable read

CS

Cursor stability

UR

Uncommitted read

If an error occurs, no value is assigned to the host variable or to variables later in

the list, though any values that have already been assigned to variables remain

assigned.

If an error occurs because the result table has more than one row, values may or

may not be assigned to the host variables. If values are assigned to the host

variables, the row that is the source of the values is undefined and not predictable.

See the DB2 Server for VSE & VM Application Programming manual for a description

of the possible errors when SELECT INTO is processed.

Examples

Example 1

Using a COBOL program statement, put the maximum salary (SALARY) from the

EMPLOYEE table into the host variable MAX-SALARY (dec(9,2)).

 EXEC SQL SELECT MAX(SALARY)

 INTO :MAX-SALARY

 FROM EMPLOYEE

 END-EXEC.

Example 2

Using a PL/I program statement, select the row from the EMPLOYEE table with a

employee number (EMPNO) value the same as that stored in the host variable

HOST_EMP char(6)). Then put the first name (FIRSTNME) and last name

(LASTNAME) into the host structure HOST_NAME, and education level

(EDLEVEL) into the host variable HOST_EDUCATE (integer) from that row.

 EXEC SQL SELECT FIRSTNME, LASTNAME, EDLEVEL

 INTO :HOST_NAME, :HOST_EDUCATE

 FROM EMPLOYEE

 WHERE EMPNO = :HOST_EMP;

►► WITH RR

CS

UR

 ►◄

SELECT INTO

Chapter 6. Statements 337

UPDATE

The UPDATE statement updates the values of specified columns in rows of a table

or view. Updating a row of a view updates a row of its base table.

There are two forms of this statement:

v The Searched UPDATE form updates zero or more rows (optionally determined

by a search condition).

v The Positioned UPDATE form updates exactly one row (as determined by the

current position of a cursor).

Invocation

A Searched UPDATE statement can be embedded in an application program or

issued interactively. A Positioned UPDATE must be embedded in an application

program. Both Searched UPDATE and Positioned UPDATE are executable

statements that can be dynamically prepared.

A Positioned UPDATE in Fortran, and programs prepared using extended dynamic

SQL cannot be used with the DRDA protocol.

Authorization

The privileges held by the authorization ID of the statement must include at least

one of the following:

v Ownership of the table

v The UPDATE privilege for the table or columns in the table or view

v DBA authority.

The UPDATE privilege on a view is only inherent in DBA authority. Ownership of

a view does not necessarily include the UPDATE privilege on the view because the

privilege may not have been granted when the view was created, or it may have

been granted, but subsequently revoked.

If the search_condition includes a subquery, the privileges designated by the

authorization ID of the statement must also include at least one of the following:

v Ownership of the tables or views identified in the subquery

v The SELECT privilege on every table or view identified in the subquery

v DBA authority.

UPDATE

338 SQL Reference

Syntax

Description

table_name or view_name

Identifies the table or view to be updated. The name must identify a table or

view that exists at the application server, but must not identify a catalog table,

a view of a catalog table, or a read-only view. For an explanation of read-only

views, see “CREATE VIEW” on page 231.

Note: Someone with DBA authority may update rows from a few of the

catalog tables. See “Updateable Columns” on page 371.

correlation_name

Can be used within search_condition to designate the table or view. (For an

explanation of correlation_name, see “Correlation Names” on page 64.)

SET

Introduces a list of column names and values.

column_name

Identifies a column to be updated. The column_name must identify a

column of the specified table or view, but must not identify a view column

derived from a scalar function, constant, or expression. The column names

must not be qualified, and a column must not be specified more than once.

 For a Positioned UPDATE, allowable column names can be further

restricted to those in a certain list. This list appears in the UPDATE clause

Searched UPDATE:

►► UPDATE table_name

view_name

correlation_name
 ►

►

▼

 ,

SET

column_name

=

expression

NULL

WHERE

search_condition

►

►
WITH

RR

CS

 ►◄

Positioned UPDATE:

►►

UPDATE

table_name

view_name

▼

 ,

SET

column_name

=

expression

NULL

►

► WHERE CURRENT OF cursor_name ►◄

UPDATE

Chapter 6. Statements 339

of the select statement for the associated cursor. The column names need

not be in the select-list of the select statement for the associated cursor If

the select statement is dynamically prepared, the UPDATE clause must

always be present. Otherwise, the clause can be omitted under the

conditions described in “The NOFOR Option” on page 239.

 A view column derived from the same column as another column of the

view can be updated, but both columns cannot be updated in the same

UPDATE statement.

expression or NULL

Indicates the new value of the column. The expression is any expression of

the type described in Chapter 3. It must not include a column function.

NULL specifies the null value.

 A column_name in an expression must name a column of the named table

or view. For each row that is updated, the value of the column in the

expression is the value of the column in the row before the row is updated.

 If the column_name on the left hand side of the SET identifies a long string

column, the only type of expression allowed is a host-variable.

WHERE

Specifies the rows to be updated. You can omit the clause, give a search

condition, or name a cursor. If the clause is omitted, all rows of the table or

view are updated.

search_condition

Is any search condition described in Chapter 3. Each column_name in the

search condition, other than in a subquery, must name a column of the

table or view. The search condition must not include a subquery where the

base object of both the UPDATE and the subquery is the same table.

 The search_condition is applied to each row of the table or view and the

updated rows are those for which the result of the search_condition is true.

 If the search condition contains a subquery, the subquery can be thought of

as being processed each time the search condition is applied to a row, and

the results used in applying the search condition. In actuality, the subquery

is processed for each row only if it contains a correlated reference to a

column of the table or view.

WITH

Specifies the isolation level used when locating the rows to be updated by

the statement.

RR

Repeatable read

CS

Cursor stability

 The default isolation level of the statement is the isolation level of the

package. WITH can only be specified on a SEARCHED update; it is

incompatible with the WHERE CURRENT OF clause.

CURRENT OF cursor_name

Identifies the cursor to be used in the update operation. The cursor_name

must identify a declared cursor as explained in “DECLARE CURSOR” on

page 235. The cursor_name can be a delimited identifier. If cursor_name is a

reserved word, it must be a delimited identifier.

UPDATE

340 SQL Reference

The table or view specified must also be identified in the FROM clause of

the select-statement of the cursor, and the result table of the cursor must

not be read-only. (For an explanation of read-only result tables, see

“DECLARE CURSOR” on page 235.)

 When the UPDATE statement is processed, the cursor must be positioned

on a row and that row is updated.

Update values must satisfy the following rules. If they do not, or if any other

errors occur during the execution of the UPDATE statement, no rows are updated.

v Assignment:

Update values are assigned to columns under the assignment rules described in

Chapter 3.

v Validity:

If the identified table, or the base table of the identified view, has one or more

unique indexes, each row updated in the table must conform to the constraints

imposed by those unique indexes.

In the case of a multiple-row update of a unique key, the uniqueness constraint

is effectively checked at the end of the operation.

If a view is used that is defined using the WITH CHECK OPTION, each

updated row must conform to the definition of the view. If a view is used that is

not defined using WITH CHECK OPTION, rows can be changed so that they no

longer conform to the definition of the view. Such rows are updated in the base

table of the view and no longer appear in the view.

If a view is used that is dependent on other views whose definitions include

WITH CHECK OPTION, the updated rows must also conform to the definition

of those views.

v Referential Integrity:

The value of the primary key in a parent row must not be changed by a

Positioned UPDATE. A primary key value may be changed using a Searched

UPDATE if there are no rows that are dependent on the old key value and if the

new value of the primary key is unique. A non-null update value of a foreign

key must be equal to a value of the primary key of the parent table of the

relationship.

When an UPDATE statement completes execution, the value of SQLERRD(3) in the

SQLCA is the number of rows updated. (For a description of the SQLCA, see “SQL

Communication Area (SQLCA)” on page 353.)

Differences Between Searched Updates in Recoverable and

Non-Recoverable Storage Pools

Recoverable Storage Pool: Uniqueness is checked after all rows are updated.

Non-Recoverable Storage Pool: When multiple-row updates are performed

against a column that has a unique index, the database manager is sensitive to the

order (ascending or descending) of the data. Since the database manager

automatically creates a unique index on a primary key column, a Searched

UPDATE cannot be used to perform multiple-row updates against the primary key

column. This is to ensure that updates to the primary key are independent of the

order of the data. For the same reason, a Positioned UPDATE cannot be used to

update primary key columns.

Locking: Unless appropriate locks already exist, one or more exclusive locks are

acquired by the execution of a successful UPDATE statement. Until the locks are

UPDATE

Chapter 6. Statements 341

released, the updated row can only be accessed by the application process that

performed the update. For further information on locking, see the descriptions of

the COMMIT, ROLLBACK, LOCK TABLE, and LOCK DBSPACE statements.

Blocking: The blocking options, SBLocK or BLocK, in the SQLPREP command

and the CREATE PACKAGE statement improves performance as they insert and

retrieve rows in groups. However, if a program was preprocessed with the NOFOR

option, query cursors referenced in Positioned UPDATE statements are unavailable

for blocking. If a Positioned UPDATE is coded in a program and NOFOR is not in

effect, then a FOR UPDATE OF clause must be included in the select-statement.

See the DB2 Server for VSE & VM Application Programming manual for more

information on blocking when preprocessing and running a program.

Error Conditions: It is possible for an error to occur that makes the state of the

cursor unpredictable. If an error occurs during the execution of a Positioned

UPDATE that makes the position of a cursor unpredictable, the cursor is closed.

If an error occurs during the execution of a Searched UPDATE, you must inspect

SQLWARN6 to determine the extent of the error. The following are the current

settings of SQLWARN6 along with possible responses:

1. SQLWARN6 is set to 'S'. A severe error has occurred, leaving the system in an

unusable state.

v No further requests are possible. The application must end, or, in a DB2

Server for VSE & VM environment, may switch to another database.

2. SQLWARN6 is set to 'W'. An error occurred causing the LUW to be rolled back

automatically. The system is still in a usable state. The application can:

v begin a new LUW and proceed

v stop.

3. SQLWARN6 is blank. An error has occurred, but the LUW is still active. Any

changes made by the request have been rolled back, hence the failing request

has not left any partial results in the database. The application can:

v continue forward processing of the LUW

v commit the changes made before the failing request

v roll back the LUW.

Examples

Example 1

Change the job (JOB) of employee number (EMPNO) ‘000290’ in the EMPLOYEE

table to ‘LABORER’.

 UPDATE EMPLOYEE

 SET JOB = ’LABORER’

 WHERE EMPNO = ’000290’

Example 2

Increase the project staffing (PRSTAFF) by 1.5 for all projects that department

(DEPTNO) ‘D21’ is responsible for in the PROJECT table.

 UPDATE PROJECT

 SET PRSTAFF = PRSTAFF + 1.5

 WHERE DEPTNO = ’D21’

Example 3

All the employees except the manager of department (WORKDEPT) ‘E21’ have

been temporarily laid off. Indicate this by changing their job (JOB) to NULL and

their pay (SALARY, BONUS, COMM) values to zero in the EMPLOYEE table.

UPDATE

342 SQL Reference

UPDATE EMPLOYEE

 SET JOB=NULL, SALARY=0, BONUS=0, COMM=0

 WHERE DEPTNO = ’E21’

 AND JOB <> ’MANAGER’

Example 4

In a PL/I program display the rows from the EMPLOYEE table and then, if

requested to do so, change the job (JOB) of certain employees to the new job keyed

in.

 EXEC SQL DECLARE C1 CURSOR FOR

 SELECT *

 FROM EMPLOYEE

 FOR UPDATE OF JOB;

 EXEC SQL OPEN C1;

 EXEC SQL FETCH C1 INTO ... ;

 PUT ... ;

 GET LIST (CHANGE, NEWJOB);

 IF CHANGE = ’YES’ THEN

 EXEC SQL UPDATE EMPLOYEE

 SET JOB = :NEWJOB

 WHERE CURRENT OF C1;

 EXEC SQL CLOSE C1;

UPDATE

Chapter 6. Statements 343

UPDATE STATISTICS

The UPDATE STATISTICS statement causes internal statistics of tables and indexes

to be updated with current information.

Invocation

This statement can be embedded in an application program, or it can be issued

interactively.

Authorization

The privileges held by the authorization ID of the statement must include

CONNECT authority.

Syntax

Description

Invoking UPDATE STATISTICS can improve performance on statements that access

data from tables. These statistics, contained in the catalog tables, include the table

size, various index characteristics, and other information.

ALL

Updates statistics for all columns. In the case of a column which is not a first

column of any index, the column statistics are an approximation. If ALL is not

specified, statistics are only updated for a column which is the first column of

any index.

FOR TABLE

Indicates the table for which you want the statistics updated. If the table name

is qualified, the qualifier is the owner of the table. Otherwise, the authorization

ID of the statement is the owner of the table.

table_name

Identifies the table whose statistics you want updated. The name must

identify a base table that exists at the application server.

FOR DBSPACE

Updates the statistics for all tables in the designated dbspace. If the dbspace

name is qualified, the qualifier is the owner of the dbspace. Otherwise, the

authorization ID of the statement is the owner of the dbspace.

dbspace_name

Identifies the dbspace containing the tables whose statistics you want

updated. The name must identify a dbspace that exists at the application

server.

Examples

This shows the statements that are embedded in a PL/I program in order to add

an index on project name (PROJNAME) to the PROJECT table and to update the

statistics on that table. This is so that programs using that table that are

subsequently reprepared can consider those statistics when determining an access

strategy.

►► UPDATE STATISTICS FOR

ALL
 TABLE table_name

DBSPACE

dbspace_name
 ►◄

UPDATE STATISTICS

344 SQL Reference

EXEC SQL CREATE INDEX PROJNAME

 ON PROJECT(PROJNAME);

 EXEC SQL UPDATE STATISTICS FOR TABLE PROJECT;

UPDATE STATISTICS

Chapter 6. Statements 345

WHENEVER

The WHENEVER statement specifies the next host language statement to which

execution will be transferred when a specified exception condition occurs.

Invocation

This statement can only be embedded in an application program. It is not an

executable statement. It is not supported in REXX.

Authorization

None required.

Syntax

Description

The SQLERROR, SQLWARNING or NOT FOUND, clause identifies the type of

exception condition.

SQLERROR

Identifies any condition that results in a negative value in SQLCODE.

SQLWARNING

Identifies any condition that results in a warning condition (SQLWARN0 is

'W'), or that results in a positive value other than +100 in SQLCODE.

NOT FOUND

Identifies any condition that results in an SQLCODE of +100 and an

SQLSTATE of '02000'.

The CONTINUE, GO TO, or STOP clause specifies the next statement to be

processed when the identified type of exception condition exists.

CONTINUE

Causes the next sequential instruction of the source program to be processed.

GOTO host_label

GO TO host_label

Causes control to pass to the statement identified by host_label. For host_label,

substitute a host identifier optionally preceded by a colon. The form of the host

identifier depends on the host language. In COBOL, for example, it can be a

section-name or an unqualified paragraph-name. In a Fortran program, it is an

unsigned integer variable not preceded by a colon.

►► WHENEVER SQLERROR CONTINUE

SQLWARNING

(1)

STOP

GOTO

host_label

GO TO

:

NOT FOUND

CONTINUE

GOTO

host_label

GO TO

:

 ►◄

Notes:

1 STOP is not valid for C, and Fortran.

WHENEVER

346 SQL Reference

STOP

Causes program termination. If a logical unit of work is in progress, it is rolled

back.

Notes

There are three types of WHENEVER statements:

 WHENEVER SQLERROR

 WHENEVER SQLWARNING

 WHENEVER NOT FOUND

Every executable SQL statement in a program is within the scope of one implicit or

explicit WHENEVER statement of each type. The scope of a WHENEVER

statement is related to the listing sequence of the statements in the program, not

their execution sequence.

An SQL statement is within the scope of the last WHENEVER statement of each

type that is specified before that SQL statement in the source program. If a

WHENEVER statement of some type is not specified before an SQL statement, that

SQL statement is within the scope of an implicit WHENEVER statement of that

type in which CONTINUE is specified.

Examples

Write the statements that need to be embedded in a COBOL program in order to:

1. Go to the label HANDLER for any statement that produces an error

2. Continue processing for any statement that produces a warning

3. Go to the label ENDDATA for any statement that does not return data when

expected to do so.

 EXEC SQL WHENEVER SQLERROR GOTO HANDLER END-EXEC.

 EXEC SQL WHENEVER NOT FOUND GOTO ENDDATA END-EXEC.

WHENEVER

Chapter 6. Statements 347

WHENEVER

348 SQL Reference

Appendix A. SQL Limits

The tables that follow describe certain limits imposed by this product.

 Table 14. Identifier Length Limits

Identifier Limits DB2 Server for VSE & VM

Longest authorization name 8

Longest constraint name 18

Longest correlation name 18

Longest cursor name 18

Longest host identifier 256

a

Longest long identifier 18

Longest short identifier 8

Longest server name 18

Longest statement name 18

Longest unqualified column name 18

Longest unqualified package name 8

Longest unqualified table/view/index name 18

 Table 15. Numeric Limits

Numeric Limits DB2 Server for VSE & VM

Smallest INTEGER value -2147483648

Largest INTEGER value +2147483647

Smallest SMALLINT value -32768

Largest SMALLINT value +32767

Largest decimal precision 31

Smallest FLOAT value -7.2x1075

Largest FLOAT value +7.2x1075

Smallest positive FLOAT value +5.4x10-79

Largest negative FLOAT value -5.4x10-79

Smallest REAL value -7.2x1075

Largest REAL value +7.2x1075

Smallest Positive REAL value +5.4x10-79

Largest Negative REAL value -5.4x10-79

 Table 16. String Limits

String Limits DB2 Server for VSE & VM

Maximum byte count of CHAR 254

Maximum byte count of VARCHAR 32767

Maximum character count of GRAPHIC 127

Maximum character count of VARGRAPHIC 16383

© Copyright IBM Corp. 1988, 2007 349

Table 16. String Limits (continued)

String Limits DB2 Server for VSE & VM

Maximum byte count of character constant 254

Longest concatenated character string 254

Longest concatenated graphic string 127

Maximum character count of a graphic constant

b 127

 Table 17. Datetime Limits

Datetime Limits

c DB2 Server for VSE & VM

Smallest DATE value 0001-01-01

Largest DATE value 9999-12-31

Smallest TIME value 00:00:00

Largest TIME value 24:00:00

Smallest TIMESTAMP value 0001-01-01-00.00.00.000000

Largest TIMESTAMP value 9999-12-31-24.00.00.000000

 Table 18. Database Manager Limits

Database Manager Limits DB2 Server for VSE & VM

Most columns in a table 255

Most columns in a view 140

d

Maximum byte count of a row including all overhead 4080

e

Maximum byte count of a table

f 32 x 109

Maximum byte count of an index

f 32 x 109

Most rows in a table 2 x 109

Longest index key 255

Most columns in an index key 16

Most indexes on a table 255

Most tables referenced in an SQL statement or a view

g 15

Most host variable declarations in a preprocessed

program

storage

Most host variables in an SQL statement 256

Longest host variable used for insert or update 32767

Longest SQL statement 8192

Most elements in a select list 255

Most predicates in a WHERE or HAVING clause 200

Most JOIN columns 40

Maximum number of columns in a GROUP BY clause 16

Maximum total length of columns in a GROUP BY clause 255

Maximum number of columns in an ORDER BY clause 16

Maximum total length of columns in an ORDER BY

clause

255

Maximum size of an SQLDA 22524

Maximum number of prepared statements 512

h

SQL Limits

350 SQL Reference

Table 18. Database Manager Limits (continued)

Database Manager Limits DB2 Server for VSE & VM

Most declared cursors in a program 512

h

Maximum number of cursors opened at one time storage

Most tables in a relational database storage

Most CCSID overrides in an INSERT or SELECT

statement

i

80

Notes

a Individual host language compilers may further restrict this. The database

manager, and not the Fortran compiler, places a limit of 18 on host

identifiers in Fortran programs.

b May be further restricted by preprocessors and utilities.

c Shown in ISO format.

d

e The row length of a formatted data row is 4080 bytes including overhead

items such as the data value of the row, null byte, and the varchar length

field. These items and others affecting the length of a row in a table are

discussed in DB2 Server for VSE & VM Database Administration.

f The numbers shown are architectural limits. The practical limits may be

less.

g In a complex select-statement, the number of tables that can be joined may

be significantly less.

h In C, COBOL and PL/I the sum of the number of declared cursors and the

number of prepared statements that are not referenced by a cursor must

not be greater than 512. In REXX, the sum of the number of declared

cursors and the number of prepared statements that are not referenced by

a cursor must not be greater than 40.

i Though a table may be created with more than 80 different combinations

of CCSID and datatype, insert-statement and select-statement impose a

limitation of 80 CCSID overrides. For overrides above 80, use a second

insert-statement or select-statement.

SQL Limits

Appendix A. SQL Limits 351

SQL Limits

352 SQL Reference

Appendix B. SQLCA and SQLDA

SQL Communication Area (SQLCA)

An SQLCA is a structure or a collection of variables that is updated at the end of

the execution of every SQL statement. A program that contains executable SQL

statements must provide either an SQLCA structure or a standalone SQLCODE

field.

In all host languages except REXX, the SQL INCLUDE statement can be used to

provide the declaration of the SQLCA. A similar set of variables is used for this

purpose in REXX (see the DB2 REXX SQL for VM/ESA Installation and Reference

manual for details).

In COBOL and Assembler

The name of the storage area must be SQLCA.

In PL/I and C

The name of the structure must be SQLCA. Every executable SQL statement must

be within the scope of its declaration.

In Fortran

The name of the COMMON area for the INTEGER and SMALLINT variables of

the SQLCA must be SQLCA1; the name of the COMMON area for the

CHARACTER and VARCHAR variables must be SQLCA2.

Description of Fields

 Table 19. Fields of SQLCA

Assembler,

COBOL, or PL/I

Name

1

 C Name

1

 Fortran Name

1

 Data Type Usage

SQLCAID sqlcaid Not used CHAR(8) An 'eye catcher' for storage dumps,

containing 'SQLCA'.

SQLCABC sqlcabc Not used INTEGER Contains the maximum length of the

SQLCA: 136.

SQLCODE sqlcode SQLCOD INTEGER Contains an SQL return code.2

Code Means

0 Successful

execution,

although

SQLWARN

indicators (see

below) might have

been set.

positive Successful

execution, but with

a warning

message.

negative Error condition.

© Copyright IBM Corp. 1988, 2007 353

Table 19. Fields of SQLCA (continued)

Assembler,

COBOL, or PL/I

Name

1

 C Name

1

 Fortran Name

1

 Data Type Usage

SQLERRML3 sqlerrml3 SQLTXL SMALLINT Length indicator for SQLERRMC, in

the range 0 through 70. 0 means that

the value of SQLERRMC is not

pertinent.

SQLERRMC3 sqlerrmc3 SQLTXT VARCHAR (70) Contains one or more tokens,

separated by X'FF', that are

substituted for variables in the

descriptions of error and warning

conditions.2

In some cases the last token appears

as “FOnn”. This token specifies the

format number of the SQLCODE

message text. “FO” represents the

word “format”; “nn” identifies the

version of the message that applies

in this particular case.

After a CONNECT statement is

issued, the authorization-ID and

server-name are returned.

SQLERRP sqlerrp SQLERP CHAR(8) For DRDA, after a CONNECT

statement is issued, SQLERRP

begins with a three-letter identifier

indicating the product (DSN for DB2

for MVS, SQL for DB2 for OS/2 and

DB2 for AIX, QSQ for OS/400, and

ARI for DB2 Server for VSE & VM).

For non-DRDA, SQLERRP begins

with the three letter identifier ARI.

If the SQLCODE field indicates an

error or warning condition, this field

will contain the name of the module

that returned the error.

SQLERRD(1) sqlerrd[0] SQLERR(1) INTEGER Contains the Relational Data System

(RDS) error code.

SQLERRD(2) sqlerrd[1] SQLERR(2) INTEGER Contains the Database Storage

System (DBSS) return code.

SQLERRD(3) sqlerrd[2] SQLERR(3) INTEGER Contains the number of rows

affected after INSERT, UPDATE, and

DELETE. With blocking, the

SQLERRD(3) associated with the

final row in the block contains the

number of rows in the block.

SQLCA

354 SQL Reference

Table 19. Fields of SQLCA (continued)

Assembler,

COBOL, or PL/I

Name

1

 C Name

1

 Fortran Name

1

 Data Type Usage

SQLERRD(4) sqlerrd[3] SQLERR(4) INTEGER When preprocessing a SELECT,

INSERT by subselect, searched

UPDATE, or searched DELETE

statement, this field contains

timerons, a short floating point value

that indicates a rough relative

estimate of resources required; it

does not reflect an estimate of the

time required. When preparing a

dynamically defined SQL statement,

use this value as an indicator of the

relative cost of the prepared SQL

statement. For a particular

statement, this number can vary

with changes to the statistics in the

catalog. It is also subject to change

between releases of DB2 Server for

VSE & VM.

For other conditions, the content of

this field is not predictable.

SQLERRD(5) sqlerrd[4] SQLERR(5) INTEGER Following the execution of a

successful DELETE statement, this

field will contain the number of

dependent rows affected. This

includes the rows that were set to

null as a result of the SET NULL

rule, and the rows that were deleted

as a result of the CASCADE rule. If

the object table is not part of a

referential structure, this field is set

to zero.

If processing of a datetime local exit

fails, this field will contain the

datetime local exit function number.

This is a fullword number

describing the function to be

performed. Datetime local exits are

discussed in the DB2 Server for VM

System Administration or the DB2

Server for VSE System Administration.

SQLERRD(6) sqlerrd[5] SQLERR(6) INTEGER Reserved for future use.

SQLWARN sqlwarn SQLWRN (0:10) ARRAY A set of indicators each containing

either a blank or a setting as

indicated below.

SQLWARN0 sqlwarn0 SQLWRN(0) CHAR(1) Blank if all other indicators are

blank. Contains 'W' if at least one

other indicator contains 'V', 'W', or

'Z'. Contains 'S' if SQLWARN6 is set

to 'S', which overrides any 'W'.

SQLCA

Appendix B. SQLCA and SQLDA 355

Table 19. Fields of SQLCA (continued)

Assembler,

COBOL, or PL/I

Name

1

 C Name

1

 Fortran Name

1

 Data Type Usage

SQLWARN1 sqlwarn1 SQLWRN(1) CHAR(1) Contains 'W' if the value of a string

column was truncated when

assigned to a host variable. Contains

'Z' if, on truncation of mixed

character data, the data does not

follow the proper rules regarding

mixed data. If both types of

truncation occur, 'Z' overrides 'W'.

SQLWARN2 sqlwarn2 SQLWRN(2) CHAR(1) Contains 'W' if null values were

eliminated from the argument of a

function.

SQLWARN3 sqlwarn3 SQLWRN(3) CHAR(1) Contains 'W' if the number of

columns in a select list is greater

than the number of host variables

supplied for the INTO clause of a

SELECT or FETCH statement.

SQLWARN4 sqlwarn4 SQLWRN(4) CHAR(1) Contains 'W' if a prepared UPDATE

or DELETE statement does not

include a WHERE clause.

SQLWARN5 sqlwarn5 SQLWRN(5) CHAR(1) Contains 'W' if the SQL statement

would cause a performance

degradation.

SQLWARN6 sqlwarn6 SQLWRN(6) CHAR(1) Contains 'W' if the database

manager was forced to end a logical

unit of work. Contains 'S' when the

database manager issues a severe

SQLCODE; that is, one which

predicates that the database

manager is in an unusable state.

SQLWARN7 sqlwarn7 SQLWRN(7) CHAR(1) Contains 'W' if an adjustment was

made to a date or timestamp value

for the last day of the month.

Contains 'Z' if the conversion of an

operand with a decimal data type

caused the loss of any non-zero

digits in the fractional part of the

number.

SQLWARN8 sqlwarn8 SQLWRN(8) CHAR(1) Contains 'W' if a statement has been

disqualified for blocking. Contains

'Z' if a character that could not be

converted was replaced with a

substitute character.

SQLWARN9 sqlwarn9 SQLWRN(9) CHAR(1) Contains 'W' if blocking was

canceled for a cursor because of

insufficient storage in the user’s

virtual machine.

SQLCA

356 SQL Reference

Table 19. Fields of SQLCA (continued)

Assembler,

COBOL, or PL/I

Name

1

 C Name

1

 Fortran Name

1

 Data Type Usage

SQLWARNA sqlwarna SQLWRN(A) CHAR(1) Contains 'W' if blocking was

canceled because a blocking factor

of at least 2 rows could not be

maintained. Contains 'V' if there was

a conversion error when converting

the value of one of the fields in the

SQLCA at the application requester.

SQLSTATE sqlstate SQLSTT CHAR(5) Contains a return code for the

outcome of the most recent

execution of an SQL statement4. This

return code conforms to the SQL92

standard.

1: The field names are those present in an SQLCA obtained from using an INCLUDE statement.

2: For the specific meanings of DB2 Server for VSE & VM return codes and of variables in error messages, see the

DB2 Server for VM Messages and Codes or the DB2 Server for VSE Messages and Codes manual for your database

manager.

3: In COBOL and C, SQLERRM includes SQLERRML and SQLERRMC. In PL/I, the varying-length string

SQLERRM is equivalent to SQLERRML prefix to SQLERRMC. In Assembler, the storage area SQLERRM is

equivalent to SQLERRML and SQLERRMC.

4: For a description of SQLSTATE values, see the DB2 Server for VM Messages and Codes or DB2 Server for VSE

Messages and Codes manual.

INCLUDE SQLCA Declarations

The description of the SQLCA that is given by INCLUDE SQLCA is shown for each of

the host languages.

Assembler

 SQLCA DS 0F

 SQLCAID DS CL8

 SQLCABC DS F

 SQLCODE DS F

 SQLERRM DS H,CL70

 SQLERRP DS CL8

 SQLERRD DS 6F

 SQLWARN DS 0C

 SQLWARN0 DS C

 SQLWARN1 DS C

 SQLWARN2 DS C

 SQLWARN3 DS C

 SQLWARN4 DS C

 SQLWARN5 DS C

 SQLWARN6 DS C

 SQLWARN7 DS C

 SQLWARN8 DS C

 SQLWARN9 DS C

 SQLWARNA DS C

 SQLSTATE DS CL5

C

 #ifndef SQLCODE

 struct sqlca

 {

SQLCA

Appendix B. SQLCA and SQLDA 357

unsigned char sqlcaid[8];

 long sqlcabc;

 long sqlcode;

 short sqlerrml;

 unsigned char sqlerrmc[70];

 unsigned char sqlerrp[8];

 long sqlerrd[6];

 unsigned char sqlwarn[11];

 unsigned char sqlstate[5];

 };

 #define SQLCODE sqlca.sqlcode

 #define SQLWARN0 sqlca.sqlwarn[0]

 #define SQLWARN1 sqlca.sqlwarn[1]

 #define SQLWARN2 sqlca.sqlwarn[2]

 #define SQLWARN3 sqlca.sqlwarn[3]

 #define SQLWARN4 sqlca.sqlwarn[4]

 #define SQLWARN5 sqlca.sqlwarn[5]

 #define SQLWARN6 sqlca.sqlwarn[6]

 #define SQLWARN7 sqlca.sqlwarn[7]

 #define SQLWARN8 sqlca.sqlwarn[8]

 #define SQLWARN9 sqlca.sqlwarn[9]

 #define SQLWARNA sqlca.sqlwarn[10]

 #define SQLSTATE sqlca.sqlstate

 #endif

 struct sqlca sqlca;

COBOL

 01 SQLCA.

 05 SQLCAID PIC X(8).

 05 SQLCABC PIC S9(9) COMPUTATIONAL.

 05 SQLCODE PIC S9(9) COMPUTATIONAL.

 05 SQLERRM.

 49 SQLERRML PIC S9(4) COMPUTATIONAL.

 49 SQLERRMC PIC X(70).

 05 SQLERRP PIC X(8).

 05 SQLERRD OCCURS 6 TIMES

 PIC S9(9) COMPUTATIONAL.

 05 SQLWARN.

 10 SQLWARN0 PIC X(1).

 10 SQLWARN1 PIC X(1).

 10 SQLWARN2 PIC X(1).

 10 SQLWARN3 PIC X(1).

 10 SQLWARN4 PIC X(1).

 10 SQLWARN5 PIC X(1).

 10 SQLWARN6 PIC X(1).

 10 SQLWARN7 PIC X(1).

 10 SQLWARN8 PIC X(1).

 10 SQLWARN9 PIC X(1).

 10 SQLWARNA PIC X(1).

 05 SQLSTATE PIC X(5).

Fortran

 INTEGER*4 SQLCOD,

 * SQLERR(6),

 * SQLTXL*2

 COMMON /SQLCA1/ SQLCOD,SQLERR,SQLTXL

 CHARACTER SQLERP*8,

 * SQLWRN(0:10),

 * SQLTXT*70

 * SQLSTT*5

 COMMON /SQLCA2/ SQLERP,SQLWRN,SQLTXT,SQLSTT

SQLCA

358 SQL Reference

PL/I

 DCL 1 SQLCA,

 2 SQLCAID CHAR(8),

 2 SQLCABC BIN FIXED(31),

 2 SQLCODE BIN FIXED(31),

 2 SQLERRM CHAR(70) VAR,

 2 SQLERRP CHAR(8),

 2 SQLERRD(6) BIN FIXED(31),

 2 SQLWARN,

 3 SQLWARN0 CHAR(1),

 3 SQLWARN1 CHAR(1),

 3 SQLWARN2 CHAR(1),

 3 SQLWARN3 CHAR(1),

 3 SQLWARN4 CHAR(1),

 3 SQLWARN5 CHAR(1),

 3 SQLWARN6 CHAR(1),

 3 SQLWARN7 CHAR(1),

 3 SQLWARN8 CHAR(1),

 3 SQLWARN9 CHAR(1),

 3 SQLWARNA CHAR(1),

 2 SQLSTATE CHAR(5);

SQL Descriptor Area (SQLDA)

An SQLDA is a structure or collection of variables that is required for execution of

the SQL DESCRIBE statement, and may optionally be used by the OPEN, FETCH,

EXECUTE, and PUT statements. An SQLDA communicates with dynamic and

extended SQL; it can be used in a DESCRIBE statement, modified with the

addresses of host variables, and then reused in a FETCH statement. The DB2 Server

for VSE & VM Application Programming manual describes the use of an SQLDA.

The meaning of the information in an SQLDA depends on its use. In DESCRIBE

and Extended DESCRIBE, an SQLDA provides information to an application

program about a prepared statement. In EXECUTE, OPEN, PUT, and Extended

EXECUTE, Extended OPEN, and Extended PUT an SQLDA provides information

to the database manager about input host variables. In Extended EXECUTE,

FETCH and Extended FETCH, an SQLDA provides output information.

SQLDAs are supported in all languages, however predefined declarations are only

provided by Assembler, C, and PL/I. In these languages the SQL INCLUDE

statement can be used to provide a SQLDA declaration. A similar set of variables is

used for this purpose in REXX (see the DB2 REXX SQL for VM/ESA manual for

details).

Description of Fields

An SQLDA consists of four variables followed by an arbitrary number of

occurrences of a sequence of five variables collectively named SQLVAR. In OPEN,

FETCH, PUT, and EXECUTE, each occurrence of SQLVAR describes a host

variable. In DESCRIBE, they describe columns of a result table.

SQLCA

Appendix B. SQLCA and SQLDA 359

Table 20. Fields of SQLDA

Assembler or

PL/I Name

2 C Name

2 Data Type

Usage in DESCRIBE and

Extended DESCRIBE (set

by the database manager

except for SQLN)

Usage in EXECUTE, FETCH, OPEN,

PUT, and extended dynamic statements

of the same name (set by the user prior

to executing the statement)

SQLDAID sqldaid CHAR(8) An 'eye catcher' for storage

dumps, containing 'SQLDA

'.

For CCSID when the protocol is SQLDS,

the sixth position of this field must be set

to '+'; for example, 'SQLDA+ '1 (See

SQLNAME in Table 21) Not used

otherwise.

SQLDABC sqldabc INTEGER Length of the SQLDA,

equal to SQLN*44+16.

Number of bytes of storage allocated for

the SQLDA. Enough storage must be

allocated to contain SQLN occurrences.

SQLDABC must be set to a value greater

than or equal to 16+SQLN*44.

SQLN sqln SMALLINT Unchanged by the database

manager. Must be set to a

value greater than or equal

to zero before the

DESCRIBE statement is

processed. Indicates the

total number of

occurrences of SQLVAR.

Total number of occurrences of SQLVAR

provided in the SQLDA. SQLN must be

set to a value greater than or equal to

zero.

SQLD sqld SMALLINT For a SELECT statement,

the number of columns

described by occurrences of

SQLVAR (or, if USING

BOTH was specified on

DESCRIBE, twice the

number of columns).

For a non-SELECT

statement, 0.

The number of host variables described

by occurrences of SQLVAR to be used in

the SQLDA when executing this

statement. SQLD must be set to a value

greater than or equal to zero and less

than or equal to SQLN.

1: When SQLDS or DRDA protocols are being used, the database manager calculates the CCSID value of the user

data area before the first FETCH (or PUT) cursor operation. This CCSID value is ONLY recalculated on subsequent

FETCHes (or PUTs) if position 6 of the SQLDAID field has been set to '+'. Using this mechanism, it is possible to

dynamically change the CCSID value for an open cursor.

2: The field names are those present in an SQLCA obtained from an INCLUDE statement.

Fields in an Occurrence of SQLVAR

 Table 21. Fields in SQLVAR

Assembler or

PL/I Name C Name Data Type

Usage in DESCRIBE and

Extended DESCRIBE (set

by the database manager

except for SQLN)

Usage in EXECUTE, FETCH, OPEN,

PUT, and extended dynamic statements

of the same name (set by the user prior

to executing the statement)

SQLTYPE sqltype SMALLINT Indicates the data type of

the column and whether it

can contain nulls. For a

description of the type

codes, see Table 22 on page

362.

Indicates the data type of the host

variable and whether an indicator

variable is provided. For a description of

the type codes, see Table 22 on page 362.

SQLDA

360 SQL Reference

Table 21. Fields in SQLVAR (continued)

Assembler or

PL/I Name C Name Data Type

Usage in DESCRIBE and

Extended DESCRIBE (set

by the database manager

except for SQLN)

Usage in EXECUTE, FETCH, OPEN,

PUT, and extended dynamic statements

of the same name (set by the user prior

to executing the statement)

SQLLEN sqllen SMALLINT The length attribute of the

column. For datetime

columns, the length of the

string representation of the

values. See Table 22 on

page 362.

The length attribute of the host variable.

See Table 22 on page 362.

SQLDATA sqldata pointer For string columns,

SQLDATA contains the

CCSID of the column. For

character string columns,

SQLDATA can alternatively

contain the value X'FFFF'

indicating bit data. For

datetime columns, the

SQLDATA contains the

CCSID of the string

representation of the

values. See Table 23 on

page 363 for more

information.

A pointer to the storage area that either

holds the parameter value (if SQLDA is

used for input), or is to hold a select list

result (if the SQLDA is used for output).

For varying-length character strings, the

actual data should be preceded by a

halfword field that specifies the length

of the character string. (The value

should not include the length of the

halfword.) The data must be aligned on

a halfword boundary.

SQLIND sqlind pointer For character and datetime

data, byte 1 of SQLIND is

set as follows:

v X'FF' for a bit value

v X'01' for a SBCS value

v X'02' for a mixed value

This information is not

available when using the

DRDA protocol.

Contains the address of the indicator

variable where applicable. The indicator

variable must be declared as a 15-bit

integer.

For an Input SQLDA, the indicator

should be set to 0 to indicate that the

parameter value is not null and to a

negative value to indicate that the

parameter value is null.

For an Output SQLDA, the database

manager fills in the indicator using the

following rules:

 0 Denotes that the parameter is

not null, and is in the

associated storage area.

<0 Denotes that the parameter

value is null.

>0 Denotes that a returned value

was truncated because the

storage area provided was not

large enough. If the truncated

item was a DBCS or character

string, the indicator variable

contains the length in characters

before truncation. (Applies only

for the FETCH statement.)

When a time value is truncated

at its seconds part on output,

the seconds are placed in the

SQLIND.

SQLDA

Appendix B. SQLCA and SQLDA 361

Table 21. Fields in SQLVAR (continued)

Assembler or

PL/I Name C Name Data Type

Usage in DESCRIBE and

Extended DESCRIBE (set

by the database manager

except for SQLN)

Usage in EXECUTE, FETCH, OPEN,

PUT, and extended dynamic statements

of the same name (set by the user prior

to executing the statement)

SQLNAME sqlname VARCHAR

(30)

Contains the name or label

associated with the column

used in the select list of the

DESCRIBE statement. For

more information, see

“SQLNAME” on page 248.

For character, datetime and graphic data,

SQLNAME may be used to override

1

the default CCSID. An override is

indicated by the following:

v the length of the SQLNAME field is 8

v the first 2 bytes of SQLNAME have a

value of X'0000'

v for SQLDS protocol, the sixth position

of the SQLAID field must be '+'; for

example, 'SQLDA+ ' (see SQLDAID in

Table 20 on page 360).

The override itself is present in bytes 3

and 4 of the SQLNAME. See Table 23 on

page 363 for the relation between the

character subtypes, the graphic data

type, and the CCSID.

Note that bytes 5 to 8 of the SQLNAME

field are reserved by IBM for future use

in override situations for character and

graphic data.

For all other data, SQLNAME is not

used.

1: It is important to note that this use of the SQLNAME field is only for overrides. Applications that use the

defaults and have properly initialized SQLDAs need not be concerned.

Note: Note that in a remote unit of work application a DESCRIBE of a SELECT statement will return the

application server’s CCSIDs and that these will not necessarily be the same as any host variables that may be in the

select list (these will have CCSIDs from the application requester).

SQLTYPE and SQLLEN

The following table shows the values that may appear in the SQLTYPE and

SQLLEN fields of the SQLDA. In DESCRIBE, an even value of SQLTYPE means

the column does not allow nulls, and an odd value means the column does allow

nulls. In EXECUTE, FETCH, OPEN, and PUT, an even value of SQLTYPE means

no indicator variable is provided, and an odd value means that SQLIND contains

the address of an indicator variable.

 Table 22. SQLTYPE and SQLLEN Values for DESCRIBE, EXECUTE, FETCH, OPEN, and PUT

 For DESCRIBE For EXECUTE, FETCH, OPEN, and PUT

 SQLTYPE COLUMN DATA TYPE SQLLEN

HOST VARIABLE DATA

TYPE SQLLEN

384/385 date 10 or length of

LOCAL date

format

fixed-length character

string representation of a

date

length attribute of

the host variable

388/389 time

1 8 or length of

LOCAL time

format

fixed-length character

string representation of a

time

length attribute of

the host variable

SQLDA

362 SQL Reference

Table 22. SQLTYPE and SQLLEN Values for DESCRIBE, EXECUTE, FETCH, OPEN, and PUT (continued)

 For DESCRIBE For EXECUTE, FETCH, OPEN, and PUT

 SQLTYPE COLUMN DATA TYPE SQLLEN

HOST VARIABLE DATA

TYPE SQLLEN

392/393 timestamp

1 26 fixed-length character

string representation of a

timestamp

length attribute of

the host variable

448/449 varying-length character

string

length attribute of

the column

varying-length character

string

length attribute of

the host variable

452/453 fixed-length character

string

length attribute of

the column

fixed-length character

string

length attribute of

the host variable

456/457 long varying-length

character string

length attribute of

the column

long varying-length

character string

length attribute of

the host variable

460/461 N/A N/A NUL-terminated character

string

length attribute of

the host variable

464/465 varying-length graphic

string

length attribute of

the column

varying-length graphic

string

length attribute of

the host variable

468/469 fixed-length graphic string length attribute of

the column

fixed-length graphic string length attribute of

the host variable

472/473 long varying-length

graphic string

length attribute of

the column

long varying-length

graphic string

length attribute of

the host variable

480/481 floating point 4 for single

precision, 8 for

double precision

floating point 4 for single

precision, 8 for

double precision

484/485 packed decimal precision in byte

1; scale in byte 2

packed decimal precision in byte

1; scale in byte 2

488/489 zoned decimal

2 precision in byte

1; scale in byte 2

zoned decimal

2 precision in byte

1; scale in byte 2

496/497 large integer 4 large integer 4

500/501 small integer 2 small integer 2

504/505 N/A N/A DISPLAY SIGN LEADING

SEPARATE

precision in byte

1; scale in byte 2

1: Since host variables do not have datetime data types, character string variables must be used to retrieve

datetime values. Thus, when the SQLDA describes host variables, these type-codes denote fixed-length

character string variables.

2: Zoned decimal is not supported for local operations.

CCSID Usage

The following table describes the SQLDATA field for the DESCRIBE statement and

the SQLNAME field for host variables.

 Table 23. CCSID Values for SQLDATA and SQLNAME

Data Type Subtype Bytes 1 & 2 Bytes 3 & 4

Character SBCS data X'0000' The CCSID value

Character mixed data X'0000' The CCSID value

Datetime SBCS data X'0000' The CCSID value

Datetime mixed data X'0000' The CCSID value

SQLDA

Appendix B. SQLCA and SQLDA 363

Table 23. CCSID Values for SQLDATA and SQLNAME (continued)

Data Type Subtype Bytes 1 & 2 Bytes 3 & 4

Character bit data X'0000' X'FFFF'

Graphic N/A X'0000' The CCSID value

Any other data type N/A N/A N/A

INCLUDE SQLDA Declarations

The description of the SQLDA that is given by INCLUDE SQLDA is shown for

assembler, PL/I and C. Though you can use an SQLDA in VS COBOL II, and

Fortran, the INCLUDE statement does not provide the code; you must provide it, as

shown in the DB2 Server for VSE & VM Application Programming manual.

Assembler

 SQLDA DSECT

 SQLDAID DS CL8

 SQLDABC DS F

 SQLN DS H

 SQLD DS H

 SQLVAR DS 0F

 SQLVARN DSECT

 SQLTYPE DS H

 SQLLEN DS 0H

 SQLPRCSN DS CL1

 SQLSCALE DS CL1

 SQLDATA DS A

 SQLIND DS A

 SQLNAME DS H,CL30

 &SYSECT CSECT

C

 #ifndef SQLDASIZE

 struct sqlda {

 unsigned char sqldaid[8];

 long sqldabc;

 short sqln;

 short sqld;

 struct sqlvar {

 short sqltype;

 short sqllen;

 unsigned char *sqldata;

 short *sqlind;

 struct sqlname {

 short length;

 char data[30];

 } sqlname;

 } sqlvar[1];

 };

 #define SQLDASIZE(n)

 (sizeof(struct sqlda)+((n)-1)*sizeof(struct sqlvar))

 #endif

Note: SQLDA character array variables sqldaid and sqlname.data are not

NUL-terminated. They cannot be directly used by C string manipulation

functions.

The SQLDA must not be declared within the SQL declare section.

SQLDA

364 SQL Reference

Using the defined preprocessor function SQLDASIZE, your program can

dynamically allocate an SQLDA of adequate size for use with each EXECUTE

statement. For example, the code fragment below allocates an SQLDA adequate for

five fields and uses it in an EXECUTE statement S3:

 struct sqlda *sqlptr;

 sqlptr = (struct sqlda *)malloc(SQLDASIZE(5));

 sqlptr->SQLN=5;

 /* Add code to set the rest of values and pointers in the SQLDA */

 EXEC SQL EXECUTE S3 USING DESCRIPTOR *sqlptr;

Note: The variable used to point to the SQLDA is not defined in a SQL declare

section. Its context within an SQL statement (following INTO or USING

DESCRIPTOR) is enough to identify it.

You can use a similar technique to allocate an SQLDA for use with a DESCRIBE

statement. The following program fragment illustrates the use of SQLDA with

DESCRIBE for three fields and a 'prepared' statement S1:

 struct sqlda *sqlptr;

 EXEC SQL DECLARE C1 CURSOR FOR S1;

 sqlptr = (struct sqlda *)malloc(SQLDASIZE(3));

 sqlptr->sqln=5;

 EXEC SQL DESCRIBE S1 INTO *sqlptr;

 if (sqlptr->sqld > sqlptr->sqln)

 --get a bigger one

 Set sqldata and sqlind

 EXEC SQL OPEN C1;

 EXEC SQL FETCH C1 USING DESCRIPTOR *sqlptr;

There is no standard C to support packed decimal data. If data in packed decimal

format is required, the SQLDA must be filled in with an SQLTYPE of 484 or 485,

with the appropriate values for precision and scale in SQLLEN. The C program

would then deal with the data in its packed format.

PL/I

 DCL 1 SQLDA BASED(SQLDAPTR),

 2 SQLDAID CHAR(8),

 2 SQLDABC BIN FIXED(31),

 2 SQLN BIN FIXED(15),

 2 SQLD BIN FIXED(15),

 2 SQLVAR (SQLSIZE REFER(SQLN)),

 3 SQLTYPE BIN FIXED(15),

 3 SQLLEN BIN FIXED(15),

 3 SQLDATA PTR,

 3 SQLIND PTR,

 3 SQLNAME CHAR(30) VAR;

 DCL SQLSIZE BIN FIXED(15);

 DCL SQLDAPTR PTR;

The SQLDA must not be declared within the SQL declare section.

In addition to the structure above, you should also declare an additional mapping

for the same area. The SQLPRCSN and SQLSCALE fields of the second mapping

are used when decimal data is used. An example of this mapping follows.

 DCL 1 SQLDA BASED(SQLDAPTR),

 2 SQLDAIDX CHAR(8),

 2 SQLDABCX BIN FIXED(31),

 2 SQLNX BIN FIXED(15),

 2 SQLDX BIN FIXED(15),

 2 SQLVARX(SQLSIZE REFER(SQLNX)),

SQLDA

Appendix B. SQLCA and SQLDA 365

3 SQLTYPEX BIN FIXED(15),

 3 SQLPRCSN format 1 or format 2

 3 SQLSCALE format 1 or format 2

 3 SQLDATAX PTR,

 3 SQLINDX PTR,

 3 SQLNAMEX CHAR(30) VAR:

You can declare the SQLPRCSR and SQLSCALE fields in one of two formats:

Format 1

 3 SQLPRCSN BIT(8),

 3 SQLSCALE BIT(8),

The fields must be set by 8-bit strings. For example, for a precision of 5 and a scale

of 2, the following assignments are required:

 SQLDAPTR->SQLPRCSN = ’00000101’B,

 SQLDAPTR->SQLSCALE = ’00000010’B,

Format 2

 3 SQLPRCSN CHAR(1),

 3 SQLSCALE CHAR(1),

This format requires the declaration of additional variables. These are a CHAR(2)

variable and a BASED FIXED BIN (15) variable for both precision and scale. For

example:

 DCL PRCSNC CHAR(2)

 DCL PRCSNN FIXED BIN(15) BASED (ADDR(PRCSNC));

 DCL SCALEC CHAR(2);

 DCL SCALEN FIXED BIN(15) BASED (ADDR(SCALEC));

For a precision of 5 and a scale of 2, the following assignments are required:

 PRCSNN = 5;

 SCALEN = 2;

The SQLDAX fields for a precision of 5 and a scale of 2 would be:

 SQLDAPTR->SQLPRCSN = SUBSTR(PRCSNC,2,1);

 SQLDAPTR->SQLSCALE = SUBSTR(SCALEC,2,1);

This format, though more complex than Format 1, allows PL/I manipulation of the

precision and scale fields. For example, the value of the SQLPRCSN field can be

determined by simply reversing the substring operation above. That is:

 SUBSTR(PRCSNC,2,1) = SQLDAPTR->SQLPRCSN;

Such an operation is not possible using Format 1.

Because the PL/I SQLDA is declared as a based structure, your program can

dynamically allocate an SQLDA of adequate size with each EXECUTE statement.

For example, the code fragment below allocates an SQLDA adequate for five fields

and uses it to EXECUTE statement S3:

 SQLSIZE=5;

 ALLOCATE SQLDA SET(SQLDAPTR);

 /*Add code to set values and pointers in the SQLDA*/

 EXEC SQL EXECUTE S3 USING DESCRIPTOR SQLDA;

The statement SQLSIZE=5 determines the size of the SQLDA to be allocated by

means of the PL/I REFER feature. The ALLOCATE statement allocates an SQLDA

SQLDA

366 SQL Reference

of the size desired, and sets SQLDAPTR to point to it. (Before an EXECUTE

statement is issued using this SQLDA, your program must fill its contents.)

You can use a similar technique to allocate an SQLDA for use with a DESCRIBE

statement. The following program fragment illustrates the use of SQLDA with

DESCRIBE for three fields and a 'prepared' statement S1:

 EXEC SQL DECLARE C1 CURSOR FOR S1;

 SQLSIZE=3;

 ALLOCATE SQLDA SET(SQLDAPTR);

 EXEC SQL DESCRIBE S1 INTO SQLDA;

 IF SQLID>SQLN THEN

 - get a bigger one;

 Set SQLDATA and SQLIND;

 EXEC SQL OPEN C1;

 EXEC SQL FETCH C1 USING DESCRIPTOR SQLDA;

SQLDA

Appendix B. SQLCA and SQLDA 367

SQLDA

368 SQL Reference

Appendix C. DB2 Server for VSE & VM Catalog

This appendix is intended to help you to use the catalog for your database

manager. It contains Product-Sensitive Programming Interface and Associated

Guidance Information.

The DB2 Server for VSE & VM database manager automatically maintains

information about the database in a set of tables called the catalog. The catalog

tables are created by the database manager during database generation. They

describe tables, columns, indexes, keys, packages, authorities, and other objects in

the database. Data in the catalog tables is available to authorized users through

normal SQL query facilities; however, the catalog is primarily intended for use by

the database manager.

During database generation, the catalog is defined as normal tables with PUBLIC

read authorization. After database generation, a user with DBA authority can

revoke the select privilege from PUBLIC. Usually all users are allowed to access

the catalog, so you can use SQL statements to retrieve information in the catalog.

For example, this SQL statement finds what column names in table SALARY begin

with the letter ‘D’:

 SELECT CNAME FROM SYSTEM.SYSCOLUMNS

 WHERE TNAME = ’SALARY’

 AND CNAME LIKE ’D%’

SYSTEM is the owner of all catalog tables except SYSLANGUAGE (which is

owned by SQLDBA). You must qualify all references to catalog tables with the

owner name, unless you have a synonym defined.

After database generation, the only information in the tables not available to

everyone is password information. You must have DBA authority to access the

catalog table that contains passwords (SYSUSERAUTH). A view, called

SYSUSERLIST, is defined on SYSUSERAUTH when the catalog tables are created.

The owner of the view is SQLDBA, so you must refer to the view as

SQLDBA.SYSUSERLIST. This view is accessible to all users and contains all the

columns of SYSUSERAUTH except the passwords. If you do not have DBA

authority, you must query the view (SYSUSERLIST) instead of the underlying table

(SYSUSERAUTH).

Some of the information in the catalog is of little interest to most users. Statistics

maintained in the catalog, for example, are used by the database manager to

determine optimal access paths. These statistics may be quite meaningless to you.

If you wish, you can define views on the catalog tables containing only columns

that are meaningful to you.

Some of the information in the catalog is maintained in a form for internal use by

the database manager and is provided as additional guidance on database

administration tasks. Two special data types are used: DBAINT and DBAHW.

These appear externally like INTEGER and SMALLINT data. However, DBAINT

and DBAHW do not sort as expected when they contain negative values.

Consequently, queries that use ORDER BY, GROUP BY, or predicates that involve >

or < operations on these values may not work as expected.

© Copyright IBM Corp. 1988, 2007 369

The database manager updates its catalog during normal operation in response to

SQL data definition and control statements. It also updates its catalog when

programs are preprocessed.

You can create and maintain your own installation-dependent catalog tables using

SQL statements.

Note: Data in the catalog tables is available to authorized users through normal

SQL query facilities; however, the catalog is primarily intended for use by

the database manager, and is therefore subject to change.

“Roadmap” to Catalog

 Item Catalog Table

authorization SYSUSERAUTH

SYSUSERLIST

 406

character conversion SYSSTRINGS 400

character set SYSCHARSETS 378

coded character set identifiers SYSCCSIDS

SYSSTRINGS

 378

 400

column SYSCOLUMNS

SYSKEYCOLS

 381

 390

column update privilege SYSCOLAUTH 379

column with field procedure SYSFIELDS 386

constraint SYSKEYS 391

dbspace SYSDBSPACES

SYSUSAGE

SYSDROP

 384

 405

 385

dbspace waiting to be dropped SYSDROP 385

default SYSOPTIONS 393

dropped dbspace SYSDROP 385

dropped table SYSDROP 385

field procedures SYSFPARMS

SYSFIELDS

 387

 386

foreign key SYSKEYS 391

index SYSINDEXES

SYSUSAGE

 388

 405

index column statistics SYSCOLSTATS

SYSCOLUMNS

SYSINDEXES

 380

 381

 388

key SYSKEYS 391

key column SYSKEYCOLS 390

language for character set SYSLANGUAGE 392

option SYSOPTIONS 393

package SYSACCESS

SYSUSAGE

 373

 405

package run privilege SYSPROGAUTH 396

password SYSUSERAUTH 406

370 SQL Reference

Item Catalog Table

privilege SYSCOLAUTH

SYSPROGAUTH

SYSTABAUTH

 379

 396

 403

primary key SYSKEYS 391

statistics SYSCATALOG

SYSCOLSTATS

SYSCOLUMNS

SYSDBSPACES

SYSINDEXES

 375

 380

 381

 384

 388

synonym SYSSYNONYMS 402

stored procedures SYSPARMS

SYSROUTINES

SYSPSERVERS

 395

 398

 397

table SYSCATALOG

SYSCOLUMNS

SYSUSAGE

 375

 381

 405

table privilege SYSTABAUTH 403

table waiting to be dropped SYSDROP 385

unique constraint SYSKEYS 391

view SYSVIEWS

SYSCATALOG

SYSCOLUMNS

SYSACCESS

SYSUSAGE

 406

 375

 381

 373

 405

view privilege SYSTABAUTH 403

Updateable Columns

Only someone with DBA authority may enter UPDATE, INSERT and DELETE

statements against catalog tables. Furthermore, only the following columns may be

altered. It is not possible to add columns to the catalog.

 Catalog Column Update Insert Delete

SYSACCESS

VALID

1 X

SYSCATALOG

CLUSTERTYPE X

CLUSTERROW X

AVGROWLEN X

ROWCOUNT X

NPAGES X

PCTPAGES X

SYSCCSIDS

all columns X X X

SYSCHARSETS

all columns X X X

Roadmap

Appendix C. DB2 Server for VSE & VM Catalog 371

Catalog Column Update Insert Delete

SYSCOLSTATS

VAL10 X

VAL50 X

VAL90 X

FREQ1VAL X

FREQ1PCT X

FREQ2VAL X

FREQ2PCT X

SYSCOLUMNS

COLCOUNT X

HIGH2KEY X

LOW2KEY X

AVGCOLLEN X

COLINFO X

SUBTYPE

2 X

SYSDBSPACES

NACTIVE X

NPAGES

3 X

SYSDROP

all columns X

SYSINDEXES

CLUSTER X

KEYLEN X

FIRSTKEYCOUNT X

FULLKEYCOUNT X

NLEAF X

NLEVELS X

CLUSTERRATIO X

SYSLANGUAGE

all columns X X X

SYSOPTIONS

all columns X X X

SYSSTRINGS

all columns X X X

Notes:

1. It is advisable to enter a REBIND command, rather than updating VALID to

force dynamic re-preprocessing,

Updateable Columns

372 SQL Reference

2. Updating this field is only effective if the corresponding CCSID field value for

the row is null. Upon successful update of the SUBTYPE value, all packages

which reference the column whose SUBTYPE has been updated must be

re-preprocessed.

3. CAUTION:

Changing NPAGES makes the dbspace appear to be a different size without

actually changing it. NPAGES should not be changed in a production

environment, to do so may cause errors to occur. It is intended for testing

purposes only.

SYSACCESS

Packages are stored in tables. The database manager uses SYSACCESS to record

information about the tables in which packages are stored. For package tables that

are in use, SYSACCESS records information about:

v Packages created by the preprocessors or by a CREATE PACKAGE statement.

v View definitions (views are stored as packages).

When a package table is not in use, SYSACCESS indicates whether the table is

available or unavailable.

The columns in SYSACCESS are:

 Column Name Data Type Description and Comments

TNAME VARCHAR(18)

NOT NULL

When the package table is in use, TNAME is either the name of the

package or the name of a view. A view definition is stored as a package;

the name of the package is the name of the view. The TABTYPE field

indicates whether this row describes a real package or a view.

When the package table is unused, TNAME is either ‘!0x AVAILABLE’

or ‘¢0x UNAVAILABLE’ to indicate whether the table is available or

unavailable. A package table is available when it is unused and the

DBSPACE is not full. A package table is unavailable when it is unused

and the DBSPACE is full. A package table may also be marked as

unavailable when a package is dropped from a DBSPACE that was

previously marked full. Such package tables are marked as available the

next time the database manager pre-allocates packages. The x is a

number from one to five that is used internally.

CREATOR CHAR(8)

NOT NULL

The owner of the package or view who either preprocessed the program

associated with this package, explicitly created the package (by CREATE

PACKAGE), or created this view.

If the package table is unused, CREATOR is a non-readable unique value

that is based on the system clock. (The database manager generates this

value for unused package tables because TNAME and CREATOR serve

as a key for an index on SYSTEM.SYSACCESS.)

DBSPACENO DBAHW

NOT NULL

The number of the DBSPACE that contains this package. (When

DBSPACEs are defined by database generation or by ADD DBSPACE

processing, the database manager assigns each DBSPACE a number for

internal use.)

TABID DBAHW

NOT NULL

Packages are stored as tables. TABID contains the internal identifier of

that table. (In the DB2 Server for VSE & VM Diagnosis Guide and Reference

manual, this identifier is known as the DBSS RID.)

Updateable Columns

Appendix C. DB2 Server for VSE & VM Catalog 373

Column Name Data Type Description and Comments

LINKID DBAHW

NOT NULL

A package may occupy more than one row of the table in which it is

stored. The database manager connects these rows in the correct order by

a mechanism called a unary link. LINKID is the identifier of that unary

link.

FIRSTROW DBAINT

NOT NULL

The internal identifier for the first row of the unary link. (In the DB2

Server for VSE & VM Diagnosis Guide and Reference manual, row identifiers

are known as DBSS TIDs.)

FIRSTROW is 0 for unused package tables.

TIMESTAMP CHAR(17)

NOT NULL

The date and time when this package was created. The field has the

format MM/DD/YY HH:MM:SS. It is updated when the database

manager automatically preprocesses the package. (The database manager

attempts to preprocess a package when some dependency is lost; for

example, when a package tries to use an index that was dropped.)

TIMESTAMP is blank if the package table is unused.

VALID CHAR(1)

NOT NULL

The possible values are:

Y if the package is valid.

N if the package is not valid because:

v a view, index, table, or DBSPACE has been dropped

v the application server CHARNAME has been

changed and the package or view definition has a

dependency on a changed system table. In this case,

please refer to the DB2 Server for VM System

Administration or the DB2 Server for VSE System

Administration manual for a list of all affected tables.

blank if the package table is unused.

TABTYPE CHAR(1)

NOT NULL

The possible values are:

X if this row describes a package.

V if this row describes a view definition.

blank if the package table is unused.

CONSTKN CHAR(8)

FOR BIT DATA

The consistency token for this package. The field is one of:

eight blanks If this entry is for a view, the view was created or

repreprocessed on an SQL/DS database Version 3

Release 1 or later. If not for a view, CTOKEN(NO) was

specified or allowed to default in the preprocessor

options.

timestamp CTOKEN(YES) was specified in the preprocessor

options.

null The package or view was migrated from an SQL/DS

database prior to Version 3 Release 1.

SYSACCESS

374 SQL Reference

Column Name Data Type Description and Comments

PLABEL VARCHAR(30) The label for this package. The field is one of:

thirty blanks If this entry is for a view, the view was created or

repreprocessed on an SQL/DS database Version 3

Release 1 or later. If for a package, the LABEL option

was not specified in either the preprocessor options or

in a CREATE PACKAGE statement.

label-text LABEL(label-text) was specified in the preprocessor

options or for CREATE PACKAGE.

null The package or view was migrated from an SQL/DS

database prior to Version 3 Release 1.

SYSCATALOG

The SYSCATALOG table contains a row for each table or view in the database,

including itself and other catalog tables.

The columns in SYSCATALOG are:

 Column Name Data Type Description and Comments

TNAME VARCHAR(18)

NOT NULL

The name of the table or view being described.

CREATOR CHAR(8)

NOT NULL

The owner of the table or view. (The CREATOR of the catalog is

SYSTEM.)

TABLETYPE CHAR(1)

NOT NULL

The possible values are:

V if the object is a view.

R if the object is a real table.

NCOLS SMALLINT

NOT NULL

The number of columns in the table or view.

REMARKS VARCHAR(254)

NOT NULL

The information from a COMMENT statement entered for the table or

view. The remarks are deleted from SYSCATALOG when the table or

view is dropped.

If the DBCS option is enabled, users can store mixed data (EBCDIC and

DBCS) in the REMARKS column.

DBSPACENO DBAHW

NOT NULL

The possible values are:

0 if the object is a view.

number

if the object is a real table. This number is the internal number

of the DBSPACE in which the table is stored. This is the

DBSPACE number to which some of the SHOW operator

commands refer (such as SHOW DBSPACE).

DBSPACENAME VARCHAR(18)

NOT NULL

The name of the DBSPACE containing the table.

SYSACCESS

Appendix C. DB2 Server for VSE & VM Catalog 375

Column Name Data Type Description and Comments

TABID DBAHW

NOT NULL

The possible values are:

0 if the object is a view.

number

if the object is a real table. This number is the internal identifier

of the table. (In the DB2 Server for VSE & VM Diagnosis Guide

and Reference manual, the internal identifier is referred to as the

DBSS RID.)

CLUSTERTYPE CHAR(1)

NOT NULL

The possible values are:

I if the rows are clustered by an index.

D if the rows are clustered by default rules.
This is its initial value. Internally, the physical placement of rows is

determined by an index or (if no index is available) by default rules. The

default rules place each new row near the previously inserted row.

CLUSTERTYPE is updated by CREATE and DROP INDEX statement on

this table.

In addition to the above values, the possible values for catalog tables are:

L if the rows are clustered by link rules. For certain catalog tables,

a direct addressing link is set up to enable faster access to a

specific row. A CLUSTERTYPE value of 'L' indicates that rows

are clustered in link order.

N if the rows are clustered by internal RDS rules.

CLUSTERROW DBAINT

NOT NULL

The possible values are:

0 if the object is a view. This is also an initial value.

number

if the object is a real table. This number is the highest internal

row identifier (DBSS TID) for any row in the table. The database

manager uses this value when it is clustering rows by default

rules.
See Note 1 for update rules on this column.

AVGROWLEN DBAHW

NOT NULL

The average length of the rows in this table, rounded to the nearest

integer. This field is set to -1 when the table is created. See Note 1 for

update rules on this column.

ROWCOUNT DBAINT

NOT NULL

The total number of rows in this table. This is updated to the following

values by CREATE TABLE, UPDATE STATISTICS, and

DATALOAD/RELOAD as indicated:

-2 When a DATALOAD with COMMITCOUNT option reaches the

commit threshold and commits the loaded rows if statistics are

collected while data is being loaded.

-1 When the table is initially created with CREATE TABLE.

>=0 When an UPDATE STATISTICS is performed, or when a

CREATE/REORGANIZE INDEX is performed, or when data is

loaded using DATALOAD/RELOAD (and update statistics is

not set off). The integer is equal to the total number of rows in

this table and it is updated only if one of the previously listed

operations is performed.

SYSCATALOG

376 SQL Reference

Column Name Data Type Description and Comments

NPAGES DBAINT

NOT NULL

The number of pages on which rows of this table appear. This number is

approximate because it does not contain those pages that contain only

long fields. Thus, the sum of the NPAGES for all tables in a DBSPACE

might be less than NACTIVE in SYSDBSPACES. (NACTIVE is the total

number of active data pages in a DBSPACE.)

This field is set to -1 when the table is created, and is updated to a

non-negative integer according to the same rules as the ROWCOUNT

column.

PCTPAGES DBAHW

NOT NULL

The approximate percentage of the total active pages in the DBSPACE

that have rows from this table on them. The initial value in this field is

-1. Loading, updating or dropping of any table can affect the actual

percentage of used pages for all tables in a given DBSPACE and

PCTPAGES may not reflect this. The database manager takes this into

account and dynamically calculates (but does not update) PCTPAGES

whenever it is used. The calculated value is NPAGES/
SYSDBSPACES.NACTIVE. See Note 1 for update rules on this column.

NOVERFLOW DBAINT

NOT NULL

The number of rows in this table that have overflowed from their

original page in storage to another page. If this number is large, it may

be time to reorganize the table by dumping it out of the database and

reloading it. See Note 1 for update rules on this column.

LFDTABID DBAHW

NOT NULL

The internal table identification (referred to in the DB2 Server for VSE &

VM Diagnosis Guide and Reference manual as the DBSS RID) of a

secondary table the database manager uses to store any long fields that

exist in this table. The secondary table is transparent to users.

This field is zero if the described table has no long fields.

LFDLINK DBAHW

NOT NULL

The rows in the secondary table that contains long field data are linked

together by an internal mechanism called a unary link. LFDLINK is the

identifier of that unary link. (In the DB2 Server for VSE & VM Diagnosis

Guide and Reference manual, the internal identifier is referred to as a DBSS

LID.) If the described table contains no long fields, LFDLINK is zero.

LFDDBSPACE DBAHW

NOT NULL

The number of the DBSPACE that contains the long field data table.

LFDDBSPACE is zero if there are no long fields in the described table.

TLABEL VARCHAR(30) A table label supplied by a user using a LABEL statement. The table

labels are deleted from SYSCATALOG when the table or view is

dropped.

If the DBCS option is enabled, users can store mixed data (EBCDIC and

DBCS) in the TLABEL column.

PARENTS SMALLINT The number of parent relationships in which the table is a dependent.

Can be NULL if migrated from SQL/DS Version 2 Release 1 or earlier.

DEPENDENTS SMALLINT The number of dependent relationships in which the table is a parent.

Can be NULL if migrated from SQL/DS Version 2 Release 1 or earlier.

INACTIVE SMALLINT The number of inactive keys for the table. This includes inactive primary

keys, inactive foreign keys, and foreign keys that reference an inactive

primary key in another table.

Can be NULL if migrated from SQL/DS Version 2 Release 1 or earlier.

SYSCATALOG

Appendix C. DB2 Server for VSE & VM Catalog 377

Column Name Data Type Description and Comments

DATACAPTURE CHAR(1) Records the value of the DATA CAPTURE specification for a table. This

value can be NULL if the database was migrated from Version 3

Release 5 or earlier, 'blank' if DATA CAPTURE NONE was specified for

the table, or Y if DATA CAPTURE CHANGES was specified.

Note 1: The value is always updated by an UPDATE STATISTICS

statement on this table or by the DATALOAD/RELOAD DBS

Utility commands if the collecting of statistics has not been turned

off by SET UPDATE STATISTICS OFF.

SYSCCSIDS

The SYSCCSIDS table contains a row for every CCSID supported by the

installation.

 Column Name Data Type Description and Comments

CCSID INTEGER

NOT NULL

Identifies the CCSIDs supported by the installation. The values in this

field identify valid CCSIDs when columns are created by the CREATE

TABLE or ALTER TABLE statement. This column is defined with a

UNIQUE constraint.

SUBTYPE CHAR(1)

NOT NULL

Identifies the subtype of the CCSID. The possible values are:

B for bit data.

M for mixed data.

S for SBCS data.

blank for anything other than non-character.

SBCSID INTEGER

NOT NULL

Identifies the SBCS portion of a mixed CCSID.

DBCSID INTEGER

NOT NULL

Identifies the DBCS portion of a mixed CCSID.

CHARNAME CHAR(18)

NOT NULL

The name of the character set specified by the SQLINIT EXEC (for

example, FRENCH, INTERNATIONAL, 937).

More information on CCSIDs can be found in the DB2 Server for VM System

Administration or the DB2 Server for VSE System Administration manual.

SYSCHARSETS

The rows in SYSCHARSETS contain information about various EBCDIC character

sets. The database manager reads a row from this table during initialization based

on the name specified by the CHARNAME parameter of the SQLSTART command.

The database manager uses the character sets to identify valid characters, to fold

lowercase characters to uppercase properly, and for the TRANSLATE function.

IBM supplies sample DBS Utility control files that you can use for loading

character set information into SYSCHARSETS. Or, you can define your own

character sets and have them loaded by someone with DBA authority. For more

information on how to define your own character set, see the DB2 Server for VM

System Administration or the DB2 Server for VSE System Administration manual.

SYSCHARSETS is only for SBCS character sets.

SYSCATALOG

378 SQL Reference

Column Name Data Type Description and Comments

NAME VARCHAR(18)

NOT NULL

The name used to identify the character set. NAME is usually the

national language name of the character set (for example, FRENCH) and

corresponds exactly to the CHARNAME in the SYSCCSIDS catalog table.

A CCSID is associated with each name.

CHARCLASS CHAR(192)

NOT NULL

FOR BIT DATA

This contains the character classifications for this character set.

CHARTRANS CHAR(192)

NOT NULL

FOR BIT DATA

This contains the character translation values for this character set. The

character translation values are used for lowercase to uppercase folding.

SYSCOLAUTH

SYSCOLAUTH records grants of the UPDATE privilege on tables and views when

the privilege is granted on a column-by-column basis. Each entry in

SYSCOLAUTH has a corresponding entry in SYSTABAUTH with a matching

timestamp. (SYSTABAUTH records privileges granted on entire tables, but not on

individual columns.) A SYSCOLAUTH entry identifies a particular column on

which an UPDATE privilege has been granted. For example, if the UPDATE

privilege is granted on several columns in one GRANT statement, the grant is

represented as one entry in SYSTABAUTH, and several entries in SYSCOLAUTH,

all having matching timestamps.

Some of the entries in SYSCOLAUTH represent privileges that are exercised by

preprocessed programs. These entries appear as though the creator of the program

(the user who preprocessed the program) granted the privilege to the program

itself. The columns in SYSCOLAUTH are:

 Column Name Data Type Description and Comments

GRANTOR CHAR(8) NOT

NULL

The user ID of the person who granted the UPDATE privilege on this

column.

GRANTEE CHAR(8)

NOT NULL

The user ID of the person who holds the UPDATE privilege. If the userid

is PUBLIC, the privilege is held by all users.

CREATOR CHAR(8)

NOT NULL

The owner of the table that contains the column.

TNAME VARCHAR(18)

NOT NULL

The name of the table that contains the column. (CREATOR.TNAME

uniquely identifies the table that contains the column.)

TIMESTAMP CHAR(12)

NOT NULL

The value of the System/390 time of day clock when the grant was

made. This value is used internally when privileges are revoked, and is

stored as a string of numbers and letters.

COLNAME VARCHAR(18)

NOT NULL

The name of the column on which the UPDATE privilege has been

granted.

Note: The authorization for update by column appears in a separate table, one

column per row, only because it is possible to grant the UPDATE privilege

on specific columns of the table. If the user has the UPDATE privilege on all

SYSCHARSETS

Appendix C. DB2 Server for VSE & VM Catalog 379

columns of a table, that information does not appear in SYSCOLAUTH;

rather, UPDATECOLS in SYSTABAUTH is set to ‘ ’. Otherwise,

UPDATECOLS contains ‘*’ to indicate that more information is in the

SYSCOLAUTH table.)

SYSCOLSTATS

The SYSCOLSTATS table keeps the column statistics listed below for a column

which is the first column of an index. SYSCOLSTATS is updated whenever an

index is created, reorganized or dropped, or UPDATE STATISTICS is run. The

statistics in SYSCOLSTATS are used internally by the database manager.

Because SYSCOLSTATS records the first and second-most frequent values in the

first column used by every index on every table in the database, you should

consider revoking public access to SYSCOLSTATS if any of these values could be

sensitive data.

The columns in SYSCOLSTATS are:

 Column Name Data Type Description and Comments

CNAME VARCHAR(18)

NOT NULL

The name of the column described.

TNAME VARCHAR(18)

NOT NULL

The name of the table in which the column (CNAME) is located.

CREATOR CHAR(8)

NOT NULL

The owner who created the table identified by TNAME. (Thus, CNAME

is the name of a column in the table identified by CREATOR.TNAME.)

VAL10 VARCHAR(12)

NOT NULL

FOR BIT DATA

The value of column CNAME at the tenth percentile. If the table TNAME

has N rows and all N values of CNAME are arranged in ascending order,

then VAL10 is at position 0.1 * N in this sequence.

VAL50 VARCHAR(12)

NOT NULL

FOR BIT DATA

The value of column CNAME at the 50th percentile. If the table TNAME

has N rows and all N values of CNAME are arranged in ascending order,

then VAL50 is at position 0.5 * N in this sequence.

VAL90 VARCHAR(12)

NOT NULL

FOR BIT DATA

The value of column CNAME at the 90th percentile. If the table TNAME

has N rows and all N values of CNAME are arranged in ascending order,

then VAL90 is at position 0.9 * N in this sequence.

FREQ1VAL VARCHAR(12)

NOT NULL

FOR BIT DATA

The most frequent value in the column. If there is more than one value,

the smaller is used. If the column is not a character data type,

FREQ1VAL may be unprintable.

FREQ1PCT SMALLINT

NOT NULL

The percent frequency of FREQ1VAL

FREQ2VAL VARCHAR(12)

NOT NULL

FOR BIT DATA

The second most frequent value in the column. If there is more than one

value, the smaller is used. If the column is not a character data type,

FREQ2VAL may be unprintable.

FREQ2PCT SMALLINT

NOT NULL

The percent frequency of FREQ2VAL

SYSCOLAUTH

380 SQL Reference

SYSCOLUMNS

The SYSCOLUMNS table contains a more detailed description of the database than

that contained in SYSCATALOG. Recall that SYSCATALOG contains a row for each

table or view in the database; SYSCOLUMNS contains a row for every column of

every table or view in the database (including the columns of the catalog tables).

The columns in SYSCOLUMNS are:

 Column Name Data Type Description and Comments

CNAME VARCHAR(18)

NOT NULL

The name of the column described.

TNAME VARCHAR(18)

NOT NULL

The name of the table or view in which the column (CNAME) is located.

CREATOR CHAR(8)

NOT NULL

The owner of the table or view identified by TNAME. (Thus, CNAME is

the name of a column in the table or view identified by

CREATOR.TNAME.)

COLNO SMALLINT

NOT NULL

The number of the column in the table. The value in COLNO

corresponds to the sequence that columns are specified in the CREATE

TABLE statement or added in the ALTER TABLE statement.

COLTYPE CHAR(8)

NOT NULL

The data type of the column: INTEGER, SMALLINT, CHAR, VARCHAR,

LNGVCHAR, DATE, TIME, TIMESTMP, GRAPHIC, VARGRAPH,

LONGVARG, FLOAT, DECIMAL, DBAINT, or DBAHW. These last two

data types are for information used only internally by the database

manager. (DBAINT data appears externally as INTEGER data; DBAHW

data appears externally as SMALLINT data.)

LENGTH CHAR(7)

NOT NULL

The size of the column as specified in the CREATE TABLE or ALTER

TABLE statements. If the column has a data type of CHAR, VARCHAR,

GRAPHIC, or VARGRAPHIC, LENGTH contains the value specified on

the CREATE TABLE or ALTER TABLE statements.

If the data type is LONG VARCHAR, LENGTH contains 32767. If the

data type is LONG VARGRAPHIC, LENGTH contains 16383.

If the data type is DATE, TIME, or TIMESTAMP, LENGTH is blank.

For INTEGER and SMALLINT, LENGTH is blank. For FLOAT, LENGTH

contains the length supplied for FLOAT in the CREATE TABLE or ALTER

TABLE statements. If no value was supplied for a FLOAT column,

LENGTH is blank. If the data type is DECIMAL, the precision and scale

of the column are in this field, in the form: (pp,ss). For example: (11, 2).

SYSCOLUMNS

Appendix C. DB2 Server for VSE & VM Catalog 381

Column Name Data Type Description and Comments

SYSLENGTH DBAHW

NOT NULL

If COLTYPE is CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC, then

this field contains the (maximum) length of the data, in bytes.

If COLTYPE is DATE, then SYSLENGTH contains 4.

If COLTYPE is TIME, then SYSLENGTH contains 3.

If COLTYPE is TIMESTAMP, then SYSLENGTH contains 10.

If COLTYPE is DECIMAL, then the first byte gives the number of digits

in the number, and the second gives the number of digits after the

decimal point. In other words, if COLTYPE is DECIMAL and LENGTH is

(pp,ss), then SYSLENGTH contains (256 x pp) + ss.

If COLTYPE is any one of the other numeric types, SYSLENGTH contains

the number of bytes occupied by a datum of that type: 2, 4, or 8.

SYSLENGTH never reflects the additional byte used internally to indicate

nulls or the halfword prefix for the length of VARCHAR or

VARGRAPHIC fields.

NULLS CHAR(1)

NOT NULL

The possible values are:

Y if null values are allowed in this column.

N if null values are not allowed in this column.

REMARKS VARCHAR(254)

NOT NULL

Information about the column supplied by a user by a COMMENT

statement. The remarks are deleted from SYSCOLUMNS when the table

or view is dropped.

If the application server default CHARNAME setting supports mixed

data (that is, CCSIDMIXED is not 0), users can store mixed data (both

SBCS and DBCS characters) in the REMARKS column.

COLCOUNT DBAINT

NOT NULL

The number of unique values in the column. COLCOUNT initially

contains -1 or 0. COLCOUNT captures only an approximate value for a

column which is not the first column of any index. See Note 1 for update

rules on this column.

HIGH2KEY VARCHAR(12)

NOT NULL

FOR BIT DATA

The first eight bytes of the second highest value in the column. (This

value is needed internally.) This field initially contains blanks. If

COLTYPE is not CHAR, VARCHAR, LNGVCHAR, GRAPHIC,

VARGRAPH, or LONGVARG, then HIGH2KEY may be unprintable. See

Note 1 for update rules on this column.

LOW2KEY VARCHAR(12)

NOT NULL

FOR BIT DATA

The first eight bytes of the second lowest value in this column. (This

value is needed internally.) This field initially contains blanks. If

COLTYPE is not CHAR, VARCHAR, LNGVCHAR, GRAPHIC,

VARGRAPH, or LONGVARG, then LOW2KEY may be unprintable. See

Note 1 for update rules on this column.

AVGCOLLEN DBAHW

NOT NULL

The average length of the values in this column. (This value is needed

internally.) This value is initially -1. See Note 1 for update rules on this

column. The value is always -1 for long fields.

ORDERFIELD CHAR(1)

NOT NULL

The possible values are:

Y if the rows are physically clustered in accord with the values in

this column.

N when the table is created, then set to ’Y’ if further information

about this column exists. This value is reset to X’FF’ when the

index is dropped.

This entry is valid only for a column in a single-column index.

SYSCOLUMNS

382 SQL Reference

Column Name Data Type Description and Comments

CLABEL VARCHAR(30) A column label supplied by a user using a LABEL statement. The column

labels are deleted from SYSCOLUMNS when the table or view is

dropped.

If the application server default CHARNAME setting supports mixed

data (that is, CCSIDMIXED is not 0), users can store mixed data (both

SBCS and DBCS characters) in the CLABEL column.

COLINFO CHAR(1) This indicates the presence of additional information about the column

which will be found in the table SYSTEM.SYSCOLSTATS.

Y further information exists, see SYSTEM.SYSCOLSTATS.

NULL when the table is created, then set to ’Y’ if further information

about this column exists.

 If this is the first column of an index and the index is dropped,

and there is no other index with this column as the first column,

this value is also set to NULL.

SUBTYPE

2 CHAR(1) The subtype is applicable for CHAR, VARCHAR, and LONG VARCHAR

columns only. The possible values are: .

B for bit data.

M for mixed data.

S for SBCS data.

NULL if any of the following cases is true:

v The column is in a table migrated from SQL/DS Version 2

Release 2 or earlier and has a data type of CHAR, VARCHAR,

or LONG VARCHAR.

v The data type is not character.

CCSID

3 INTEGER If CCSID conversion is required, it is done before data is stored in the

column. CCSID is applicable for CHAR, VARCHAR, LONG VARCHAR,

GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC columns only.

The possible values are:

1 to 65534 a valid CCSID for character or graphic data

65535 uniquely identifies bit character data

NULL if any of the following conditions exist:

v the data type is character or graphic and the column

is in a table migrated from a release previous to

SQL/DS Version 3 Release 1

v the data type is neither character nor graphic.

FLDPROC CHAR(1) Indicates whether the column has a field procedure. The possible values

are:

NULL if a column belongs to a table migrated to SQL/DS Version 3

Release 1 or later

Y if the column has a field procedure

N if the column does not have a field procedure.

Note 1:

The value is updated for all columns of the table by an UPDATE ALL

SYSCOLUMNS

Appendix C. DB2 Server for VSE & VM Catalog 383

STATISTICS statement on the table or a DBSPACE containing the table.

UPDATE STATISTICS has the same effect but only for the columns which

are the first columns of an index. CREATE or REORGANIZE INDEX

updates the value for one column, the first one in the index.

Note 2:

The SUBTYPE value is only used when the CCSID value is null. If a

SUBTYPE is encountered that is not valid and the CCSID value is null, a

SUBTYPE of SBCS is assumed.

Note 3:

More information on CCSIDs can be found in the DB2 Server for VM

System Administration or the DB2 Server for VSE System Administration

manual.

SYSDBSPACES

The SYSDBSPACES table contains a row for each PUBLIC and PRIVATE DBSPACE

in the database, including those DBSPACEs that no user has yet acquired. The

number of DBSPACEs available is determined during database generation. The size

of each DBSPACE is also specified at that time.

Additional DBSPACEs may be added from time to time by the ADD DBSPACE

operation.

The columns in SYSDBSPACES are:

 Column Name Data Type Description and Comments

DBSPACENAME VARCHAR(18)

NOT NULL

The name given to the DBSPACE by the user who acquired it. If the

DBSPACE has not been acquired, the field contains an empty string.

DBSPACENO DBAHW

NOT NULL

When the database is generated, the database manager assigns each

DBSPACE a number (for internal use). DBSPACENO is that number. This

is the number you would use in the SHOW DBSPACE operator

command.

OWNER CHAR(8)

NOT NULL

The possible values are:

blank if the DBSPACE is not yet assigned.

owner if the DBSPACE is PRIVATE.

PUBLIC if the DBSPACE is PUBLIC.

¬¬¬¬¬¬¬¬ if the DBSPACE has been dropped, but has not yet been

removed from the database. In this case,

DBSPACENAME will contain the number of the

DBSPACE to be removed. Note that the hex value for

the symbols displayed is ’5F’X. Depending on the active

CHARNAME the symbol may not display as ’¬’ on

your terminal.

DBSPACETYPE SMALLINT

NOT NULL

The possible values are:

1 if the DBSPACE is PUBLIC.

2 if the DBSPACE is PRIVATE.

NTABS DBAHW

NOT NULL

The number of tables contained in this DBSPACE. This field is updated

when CREATE TABLE and DROP TABLE statements are issued.

SYSCOLUMNS

384 SQL Reference

Column Name Data Type Description and Comments

NPAGES INTEGER

NOT NULL

The number of usable pages in the DBSPACE. NPAGES is specified in the

PAGES parameter of the ACQUIRE DBSPACE statement.

CAUTION:

Changing NPAGES makes the dbspace appear to be a different size

without actually changing it. NPAGES should not be changed in a

production environment, to do so may cause errors to occur. It is

intended for testing purposes only.

NRHEADER DBAHW

NOT NULL

The number of pages to be used for the DBSPACE header. This number

must be between 1 and 8. NRHEADER is specified in the NHEADER

parameter of the ACQUIRE DBSPACE statement.

PCTINDX DBAHW

NOT NULL

The percentage of pages to be used for indexes. PCTINDX is specified in

the PCTINDEX parameter of the ACQUIRE DBSPACE statement.

FREEPCT SMALLINT

NOT NULL

The percentage of space on each page to be kept free when rows are

inserted. Initially, the database manager gets the value for FREEPCT from

the PCTFREE parameter of the ACQUIRE DBSPACE statement. FREEPCT

can be updated by the PCTFREE parameter of the ALTER DBSPACE

statement.

For package DBSPACEs, FREEPCT is either 0 or 1. A FREEPCT of 0

indicates that the package DBSPACE is full. A FREEPCT of 1 indicates

that it is not full.

LOCKMODE CHAR(1)

NOT NULL

The possible values are:

S if the entire DBSPACE is to be locked.

P if page locking is to be done in this DBSPACE.

T if row locking is to be done in this DBSPACE.
LOCKMODE is updated by the LOCK parameter of the ACQUIRE

DBSPACE and ALTER DBSPACE statements.

NACTIVE DBAINT

NOT NULL

The number of active data pages in this DBSPACE (set to -1 when the

DBSPACE is acquired). This value is the number of data pages that must

be read for a complete DBSPACE scan. The value includes all data pages

that contain stored rows for this DBSPACE. NACTIVE is set by an

UPDATE STATISTICS statement issued for this DBSPACE, or for any

table in this DBSPACE, or by creating or reorganizing any index in this

DBSPACE, or by the DATALOAD/RELOAD DBS Utility commands if the

statistics collection has not been turned off by SET UPDATE STATISTICS

OFF. NACTIVE is set to zero for an UPDATE STATISTICS statement

issued on a package DBSPACE.

POOL DBAHW

NOT NULL

The number of the storage pool into which the database manager places

pages that belong to this DBSPACE. POOL is specified using the

STORPOOL parameter of the ACQUIRE DBSPACE statement.

If the value of POOL is negative, the storage pool is nonrecoverable. (The

absolute value of POOL is the storage pool number.)

SYSDROP

SYSDROP contains a list of tables and DBSPACEs waiting to be dropped. The

database manager uses this table when tables or DBSPACEs are dropped from the

database. When a DBSPACE or table is dropped, its description is dropped from

the catalog immediately, but the object is not dropped until the end of a logical

SYSDBSPACES

Appendix C. DB2 Server for VSE & VM Catalog 385

unit of work (LUW). Instead, the database manager makes an entry in SYSDROP

identifying the dropped table or DBSPACE. When the LUW is committed

(implicitly or explicitly), all objects identified in SYSDROP are dropped. This

allows the LUW containing the DROP statement to proceed without waiting on

any locks held against the object being dropped, while guaranteeing that the object

will be dropped. It also minimizes the performance cost if the LUW must be rolled

back. Any LUW accessing the table or DBSPACE when the DROP statement is

issued will complete, but no further access to the object is possible. For information

on diagnosing problems associated with the DROP statement, see the DB2 Server

for VSE & VM Diagnosis Guide and Reference manual.

 Column Name Data Type Description and Comments

DBSPACENO DBAHW

NOT NULL

The internal number of the DBSPACE containing an object to be dropped.

TABID DBAHW

NOT NULL

The internal identifier of a table to be dropped. (In the DB2 Server for

VSE & VM Diagnosis Guide and Reference manual, an internal table

identifier is known as a DBSS RID.)

QUALF CHAR(1)

NOT NULL

The possible values are:

S if the object to be dropped is a DBSPACE.

T if the object to be dropped is a table.

SYSFIELDS

The SYSFIELDS table contains a row for each column that has a field procedure

associated with it. The columns in SYSFIELDS are:

 Column Name Data Type Description and Comments

CREATOR CHAR(8)

NOT NULL

The owner of the package or view who created the table containing the

column with the field procedure.

TNAME VARCHAR(18)

NOT NULL

The name of the table containing this column.

COLNO SMALLINT

NOT NULL

The number of this column in the table.

CNAME VARCHAR(18)

NOT NULL

The name of this column

FLDTYPE CHAR(8)

NOT NULL

The data type of the encoded value in the field. Possible values are:

INTEGER for large integer.

SMALLINT for small integer.

DECIMAL for decimal.

FLOAT for floating-point.

CHAR for fixed length character string.

VARCHAR for varying length character string.

GRAPHIC for fixed length graphic string.

VARGRAPH for varying length graphic string.

SYSDROP

386 SQL Reference

Column Name Data Type Description and Comments

FLDLENGTH SMALLINT

NOT NULL

The length attribute of the field, or the precision for decimal fields. The

number does not include the internal prefixes that may be used to record

the actual length and null state. The value in this column depends on the

data type of the field as follows:

For INTEGER 4

For SMALLINT 2

For DECIMAL 1 byte - precision of number 1 byte - scale of number

For FLOAT 8

For CHAR Length of the string

For VARCHAR Maximum length of the string

For GRAPHIC Number of DBCS characters

For VARGRAPHIC

Maximum number of DBCS characters.

FPNAME CHAR(8)

NOT NULL

Name of the field procedure. Field procedure names are unique within

an installation.

FPWORKAREA SMALLINT

NOT NULL

Size, in bytes, of the work area required for the encoding and decoding

functions of the field procedure.

FPEXITPARML SMALLINT

NOT NULL

Length of the field procedure parameter value block.

FPPARMLIST VARCHAR(254)

NOT NULL

The parameter list given after FIELDPROC in the statement that created

the column. Insignificant blanks are removed.

SYSFPARMS

The SYSFPARMS table holds the field procedure value block contents for each field

procedure. Blocks longer than 254 characters will have more than one row in the

table. All field procedure value blocks of length greater than 0 will be recorded in

this table. The columns in SYSFPARMS are:

 Column Name Data Type Description and Comments

FPNAME CHAR(8)

NOT NULL

Name of the field procedure. Field procedure names are unique within

an installation.

CREATOR CHAR(8)

NOT NULL

The owner of the package or view who created the table that contains the

column with the field procedure.

TNAME VARCHAR(18)

NOT NULL

Name of the table that contains the column with the field procedure.

CNAME VARCHAR(18)

NOT NULL

Name of the column that has the field procedure.

SEQNO SMALLINT

NOT NULL

Indicates the sequence of the portion of the parameter value block

contained in this row. A long block may be divided among several rows

of the SYSFPARMS table. The value for the first portion of a block is 1.

Successive rows have sequential values.

FPEXITPARM VARCHAR(254)

NOT NULL

The parameter value block (or a portion of it) of the field procedure. This

control block is passed to the field procedure when it is invoked.

SYSFIELDS

Appendix C. DB2 Server for VSE & VM Catalog 387

SYSINDEXES

The SYSINDEXES table contains a row for every index currently in existence,

including the indexes that the database manager maintains on its own catalog

tables.

The columns in SYSINDEXES are:

 Column Name Data Type Description and Comments

INAME VARCHAR(18)

NOT NULL

The name of the index.

ICREATOR CHAR(8)

NOT NULL

The user ID of the person who created the index. The combination of

INAME and ICREATOR uniquely identifies the index.

TNAME VARCHAR(18)

NOT NULL

The table on which the index is defined.

CREATOR CHAR(8)

NOT NULL

The owner of the package or view who created the table on which the

index is defined.

COLNAMES VARCHAR(100)

NOT NULL

This contains the first 100 characters of the names of the columns on

which the index is defined. Each name is preceded by + (for ascending)

or - (for descending), and separated by commas and blanks. For example:

+AGE, +SALARY, -NEXM

INDEXTYPE CHAR(1)

NOT NULL

The possible values are:

U if the index is unique (duplicates not allowed).

D if duplicates are allowed.

CLUSTER CHAR(1)

NOT NULL

The possible values are:

C if the index is clustered.

N if the index is not clustered.

F if the index was the first index created and is now clustered

(used for default insert clustering).

W if the index was the first index created and is now not clustered

(still the default insert index).

blank if this is an inactive primary key index.
The value of CLUSTER is not directly related to the CLUSTERRATIO

value.

See Note 1 for update rules on this column.

IID DBAHW

NOT NULL

The internal index identifier assigned to the index by DBSS.

COLNUMBERS VARCHAR(34)

NOT NULL

FOR BIT DATA

An indicator array of binary integers of 15 bits (plus sign); it has one

more element than the number of columns in the index. The first element

is the number of columns in the index. The second element is the column

number defining the major ordering of the index; the remaining elements

define the minor orders of the index. The column number is positive if

the index is ascending on that column, and negative if it is descending.

Each of these binary integer halfwords is stored in internal format.

The size of this field restricts index definitions to 16 columns.

SYSINDEXES

388 SQL Reference

Column Name Data Type Description and Comments

KEYLEN DBAHW

NOT NULL

This is used internally by the database manager. It is the average length

of the key field. See Note 1 for update rules on this column.

FIRSTKEYCOUNT DBAINT

NOT NULL

This is used internally by the database manager. It gives the number of

distinct values for the index, considering the first column only. See Note

1 for update rules on this column.

FULLKEYCOUNT DBAINT

NOT NULL

This is used internally by the database manager. It gives the number of

distinct values for the index, considering all key columns. See Note 1 for

update rules on this column.

LOCKMODE CHAR(1)

NOT NULL

This is used internally by the database manager. It is:

K if key-interval locking is being performed on the index.

P if the pages of the index are being locked.
LOCKMODE is updated using the LOCK parameter of the ACQUIRE

DBSPACE and ALTER DBSPACE statements. When you specify

LOCK=ROW on either the ACQUIRE DBSPACE or ALTER DBSPACE

statements, the database manager internally uses key-interval locking for

that DBSPACE. (Note that this applies only to PUBLIC DBSPACEs

because you cannot specify a different lock size for PRIVATE DBSPACEs.)

NLEAF DBAINT

NOT NULL

This is used internally by the database manager. It is the number of

lowest-level pages in the index. See Note 1 for update rules on this

column.

NLEVELS DBAHW

NOT NULL

This is used internally by the database manager. It is the number of

levels in the index tree. See Note 1 for update rules on this column.

IPCTFREE SMALLINT

NOT NULL

The amount of free space reserved in the index for later insertions and

updates. IPCTFREE is specified in the CREATE INDEX statement and the

REORGANIZE INDEX command via the PCTFREE parameter.

CLUSTERRATIO SMALLINT This is used internally by the optimizer. The value here is a measure of

how clustered an index is. The value is a number between 0 and 10 000

where 10 000 represents a totally clustered index and 0 represents a

totally unclustered index. The value in this column is not directly related

to the CLUSTER value. See Note 1 for update rules on this column.

RELEASE CHAR(5) This column identifies the release for which the index was created. It

contains the value “2.1.0” for any release up to and including SQL/DS

Version 2 Release 1. For later releases, possible values are:

v 2.2.0 for SQL/DS Version 2 Release 2

v 3.1.0 for SQL/DS Version 3 Release 1

v 3.2.0 for SQL/DS Version 3 Release 2

v 3.3.0 for SQL/DS Version 3 Release 3

v 3.4.0 for SQL/DS Version 3 Release 4

v 3.5.0 for SQL/DS Version 3 Release 5

v 5.1.0 for DB2 Server for VSE & VM Version 5 Release 1

v 6.1.0 for DB2 Server for VSE & VM Version 7 Release 5

Non-unique indexes created under SQL/DS Version 2 Release 2 or later

have better performance characteristics than non-unique indexes from

previous releases.

SYSINDEXES

Appendix C. DB2 Server for VSE & VM Catalog 389

Column Name Data Type Description and Comments

KEYTYPE CHAR(1) This identifies whether the index is used for a primary key. The possible

values are:

P if the index was created for a primary key which is active.

I if the index was created for a key which is inactive.

U if the index was created for a unique constraint which is active.

blank if the index was not created for a primary key or unique

constraint.

Note 1: The value is updated for all indexes on a table or in the DBSPACE

by the UPDATE STATISTICS and UPDATE ALL STATISTICS

statements. CREATE and REORGANIZE INDEX updates the value

for the created or reorganized index.

SYSKEYCOLS

This table contains a row for every column in every key.

 Column Name Data Type Description and Comments

TNAME VARCHAR(18)

NOT NULL

The name of the table on which the key is defined.

TCREATOR CHAR(8)

NOT NULL

The owner of the package or view who created the table on which the

key is defined.

KEYTYPE CHAR(1)

NOT NULL

The possible values are:

P primary key

F foreign key

U unique constraint

KEYNAME CHAR(18)

NOT NULL

This is the key name specified in the FOREIGN KEY clause (KEYTYPE =

F) or the constraint name specified in the UNIQUE clause (KEYTYPE =

U). If the key or constraint name is not specified or it is a primary key,

the system generated name will be stored here.

CNAME VARCHAR(18)

NOT NULL

The column name.

KEYORD SMALLINT

NOT NULL

The position of the column within the key.

TABLEORD SMALLINT

NOT NULL

The position of the column within the table.

DATACODE SMALLINT

NOT NULL

The data type of the column in internal form.

SYSLENGTH SMALLINT

NOT NULL

This contains the length of the column. Its interpretation is the same as

the SYSLENGTH column in the SYSCOLUMNS table.

TIMESTAMP TIMESTAMP

NOT NULL

The date and time when this key was activated.

SYSINDEXES

390 SQL Reference

Column Name Data Type Description and Comments

FLDPROC CHAR(1) Indicates whether this column has a field procedure associated with it.

Possible values are:

Y if yes.

N if no.

NULL if the table containing the key was migrated from SQL/DS

Version 2 Release 2 or earlier.

CCSID

1 INTEGER If CCSID conversion is required, it is done before data is stored in the

column. CCSID is applicable for CHAR, VARCHAR, LONG VARCHAR,

GRAPHIC, VARGRAPHIC, and LONG VARGRAPHIC columns only.

The possible values are:

1 to 65534 a valid CCSID for character or graphic data

65535 uniquely identifies bit character data

NULL if any of the following conditions exist:

v the data type is character or graphic and the column

is in a table migrated from a release previous to

SQL/DS Version 3 Release 1

v the data type is neither character nor graphic.

Note 1:

More information on CCSIDs can be found in the DB2 Server for VM

System Administration or the DB2 Server for VSE System Administration

manual.

SYSKEYS

This table contains a row for each primary key, each foreign key, and each unique

constraint.

 Column Name Data Type Description and Comments

TNAME VARCHAR(18)

NOT NULL

The name of the table on which the key or constraint is defined.

TCREATOR CHAR(8)

NOT NULL

The owner of the package or view who created the table on which the

key or constraint is defined.

KEYTYPE CHAR(1)

NOT NULL

The possible values are:

P primary key

F foreign key

U unique constraint

KEYNAME CHAR(18)

NOT NULL

This is the key name specified in the FOREIGN KEY clause (KEYTYPE =

F) or the constraint name specified in the UNIQUE clause (KEYTYPE =

U). If the key name or the unique constraint name is not specified or it is

a primary key, the system generated name will be stored here. The

format of the generated name is ’PKEY’, ’FKEY’ or ’UKEY’ followed by a

special 12-bytes timestamp. The timestamp is the value of the

System/390 time of day clock when the key is defined and it is a string

of numbers and letters in base 35 representation. It is the same type of

timestamp that the database manager uses in the SYSTABAUTH table.

SYSKEYCOLS

Appendix C. DB2 Server for VSE & VM Catalog 391

Column Name Data Type Description and Comments

KEYCOLS SMALLINT

NOT NULL

This is the number of columns that form the primary or foreign key, or

unique constraint.

INAME VARCHAR(18)

NOT NULL

For a primary key this contains the name of the primary key index. For a

foreign key, this field is blank. For a unique constraint this contains the

name of the index.

REFTNAME VARCHAR(18)

NOT NULL

For a foreign key, this field contains the name of the parent table. For a

primary key and unique constraint, this field is blank.

REFTCREATOR CHAR(8)

NOT NULL

For a foreign key, this field contains the owner of the package or view

who created the parent table. For a primary key and unique constraint

this field is blank.

DELETERULE CHAR(1)

NOT NULL

For a foreign key, this column gives the associated DELETE rule. The

possible values are:

R if the delete rule is RESTRICT.

C if the delete rule is CASCADE.

N if the delete rule is SET NULL.
For a primary key and unique constraint this field is blank.

STATUS CHAR(1)

NOT NULL

The current status of the key. The possible values are:

A if the key is active.

I if the key is inactive.

D if the foreign key is implicitly inactive. (Dependent on an

inactive primary key).

TIMESTAMP TIMESTAMP

NOT NULL

The date and time when this key or constraint was activated.

SYSLANGUAGE

The SYSLANGUAGE table contains the names of all currently installed national

languages (for example, English or French); that is, it is not a programming

language such as COBOL. A unique four-character code identifies each language

and a brief description, if necessary, is contained in the REMARKS column.

Unlike all other catalog tables, the owner of SYSLANGUAGE is SQLDBA. To view

SYSLANGUAGE use the statement:

 SELECT * FROM SQLDBA.SYSLANGUAGE

The columns in SYSLANGUAGE are:

 Column Name Data Type Description and Comments

LANGUAGE VARCHAR(40)

NOT NULL

The name of the national language.

LANGKEY CHAR(4)

NOT NULL

The language key.

REMARKS VARCHAR(254) Comments or description of the language.

LANGID VARCHAR(5) The VM-compatible language ID of the installed language.

SYSKEYS

392 SQL Reference

SYSOPTIONS

The SYSOPTIONS table describes the options and defaults that may be

implemented for this database. The table summarizes the information contained in

the text that follows the table.

 Column Name Data Type Description and Comments

SQLOPTION VARCHAR(18)

NOT NULL

The name of the option being described by this row. SQLOPTION can be:

RELEASE if this row describes the release level of the database manager.

CHARNAME if this row describes the name of the character set that is currently in effect.

DBCS if this row describes the setting of the DBCS option.

CHARSUB if this row describes the default subtype for character columns.

DATE if this row describes the default format of DATE for the database manager.

TIME if this row describes the default format of TIME for the database manager.

LDATELEN if this row describes the length of the local (user defined) DATE format.

LTIMELEN if this row describes the length of the local (user defined) TIME format.

DEFAULT LANGUAGE

if this row describes the default language used for ISQL HELP text.

CCSIDSBCS if this row describes the default CCSID for SBCS character data and newly-created

SBCS character columns.

CCSIDMIXED if this row describes the default CCSID for mixed character data and newly-created

mixed character columns.

CCSIDGRAPHIC if this row describes the default CCSID for graphic data and newly-created graphic

columns.

MCCSIDSBCS if this row describes the default CCSID for migrated SBCS character columns.

MCCSIDMIXED if this row describes the default CCSID for migrated mixed character columns.

MCCSIDGRAPHIC if this row describes the default CCSID for migrated graphic columns.

SYSOPTIONS

Appendix C. DB2 Server for VSE & VM Catalog 393

Column Name Data Type Description and Comments

VALUE VARCHAR(18)

NOT NULL

This describes the option.

If SQLOPTION is RELEASE, then VALUE indicates the release level, such as “7.5.0” for DB2 Server for VSE

& VM Version 6 Release 1.

If SQLOPTION is CHARNAME, then VALUE indicates the value of CHARNAME that was specified when

the database manager was last started. The database management system is shipped with CHARNAME set to

INTERNATIONAL. (Character set information is stored in the SYSCHARSETS catalog table.)

If SQLOPTION is DBCS, then VALUE indicates whether the DBCS option is enabled. YES, in this case,

indicates that the DBCS option is enabled. NO indicates that it is not enabled. Note that a “YES” does not

necessarily mean that the DBCS option is currently in effect. It could be that the database administrator just

updated the value. If the value was just updated, then the DBCS option will not take effect until the database

manager is restarted.

If SYSOPTION is CHARSUB, then VALUE indicates the default character subtype to be used for the

database. The default is SBCS. MIXED is the other possible value. Note that the value indicated here does not

mean that value is currently in effect. It could be that the database administrator just updated the value. If the

value was just updated, then the value indicated will not be in effect until the database manager is restarted.

If SQLOPTION is DATE, then VALUE indicates the data format to be used for the database. The default for

DATE is ISO. However, JIS, USA, EUR or LOCAL may be used. Note that the value indicated here does not

necessarily mean that the value indicated for the option is currently in effect. It could be that the database

administrator just updated the value. If the value was just updated, then the value indicated will not be in

effect until the database manager is restarted.

If SQLOPTION is TIME, then VALUE indicates the TIME format to be used for the database. The default for

TIME is ISO. However, JIS, USA, EUR or LOCAL may be used. Note that the value indicated here does not

necessarily mean that the value indicated for the option is currently in effect. It could be that the database

administrator just updated the value. If the value was just updated, then the value indicated will not be in

effect until the database manager is restarted.

If SQLOPTION is LDATELEN, then VALUE indicates the length of the local DATE format. The default for

LDATELEN is 0, if no local DATE format is used. If a local DATE format is used, the length LDATELEN must

be greater than 9 and less than 255. Note that the value indicated here does not necessarily mean that the

value indicated for the option is currently in effect. It could be that the database administrator just updated

the value. If the value was just updated, then the value indicated will not be in effect until the database

manager is restarted.

If SQLOPTION is LTIMELEN, then VALUE indicates the length of the local TIME format. The default for

LTIMELEN is 0, if no local TIME format is used. If a local TIME format is used, the length LTIMELEN must

be greater than 7 and less than 255. Note that the value indicated here does not necessarily mean that the

value indicated for the option is currently in effect. It could be that the database administrator just updated

the value. If the value was just updated, then the value indicated will not be in effect until the database

manager is restarted.

If SQLOPTION is DEFAULT LANGUAGE, then VALUE indicates the default language to be used for ISQL

HELP text.

If SQLOPTION is CCSIDSBCS, then VALUE indicates the default CCSID for SBCS character data and

newly-created SBCS character columns.

If SQLOPTION is CCSIDMIXED, then VALUE indicates the default CCSID for mixed character data and

newly-created mixed character columns.

If SQLOPTION is CCSIDGRAPHIC, then VALUE indicates the default CCSID for graphic data and

newly-created graphic columns.

If SQLOPTION is MCCSIDSBCS, then VALUE indicates the default CCSID for migrated SBCS character

columns.

If SQLOPTION is MCCSIDMIXED, then VALUE indicates the default CCSID for migrated mixed character

columns.

If SQLOPTION is MCCSIDGRAPHIC, then VALUE indicates the default CCSID for migrated graphic

columns.

REMARKS VARCHAR(254)

NOT NULL

This contains remarks describing each row. The database manager places remarks in this column when the

SYSOPTIONS table is created.

The following table shows the actual entries you would see in a newly-installed

SYSOPTIONS table.

SYSOPTIONS

394 SQL Reference

SQLOPTION VALUE REMARKS

RELEASE 7.5.0 VERSION, RELEASE, MODIFICATION

CHARNAME INTERNATIONAL

1

CHARACTER SET FOR SQL STATEMENTS

DBCS NO

1 WHETHER SO/SI CHARACTERS ARE RECOGNIZED

CHARSUB SBCS DEFAULT CHARACTER SUBTYPE COLUMNS. POSSIBLE VALUES:

SBCS,MIXED

DATE ISO DEFAULT DATE: ISO, JIS, USA, EUR, LOCAL

TIME ISO DEFAULT TIME: ISO, JIS, USA, EUR, LOCAL

LDATELEN 0 LOCAL DATE LENGTH: 0 OR 9 < LEN < 255

LTIMELEN 0 LOCAL TIME LENGTH: 0 OR 7 < LEN < 255

DEFAULT

LANGUAGE

S001 DEFAULT LANGUAGE FOR HELP TEXT

CCSIDSBCS 500 DEFAULT CCSID FOR SBCS DATA AND NEWLY CREATED SBCS

CHARACTER COLUMNS

2

CCSIDMIXED 0 DEFAULT CCSID FOR MIXED DATA AND NEWLY CREATED MIXED

CHARACTER COLUMNS

CCSIDGRAPHIC 0 DEFAULT CCSID FOR GRAPHIC DATA AND NEWLY CREATED

GRAPHIC COLUMNS

MCCSIDSBCS 37

3 DEFAULT CCSID FOR MIGRATED SBCS CHARACTER COLUMNS

MCCSIDMIXED 0 DEFAULT CCSID FOR MIGRATED MIXED CHARACTER COLUMNS

MCCSIDGRAPHIC 0 DEFAULT CCSID FOR MIGRATED GRAPHIC COLUMNS

Note 1:

The CHARNAME value must be a mixed CHARNAME and DBCS value

must be set to YES for DBCS character support.

Note 2:

More information on CCSIDs can be found in the DB2 Server for VM

System Administration or the DB2 Server for VSE System Administration

manual.

Note 3:

Though 37 is the default CCSID migration value, 500 is the installation

default.

SYSPARMS

The SYSPARMS table describes the parameters for the stored procedures defined. It

contains a row for each parameter of each stored procedure. Table Table 24 shows

the definition of this catalog table.

 Table 24. Definition of SYSTEM.SYSPARMS

Column Name Data Type Description

NAME CHAR(18) NOT

NULL

The name of the STORED procedure with which this parameter is

associated.

AUTHID CHAR(8) NOT NULL The authorization ID associated with this version of the stored

procedure. See Table 28 on page 400 for an example of using the

AUTHID column.

SYSOPTIONS

Appendix C. DB2 Server for VSE & VM Catalog 395

Table 24. Definition of SYSTEM.SYSPARMS (continued)

Column Name Data Type Description

PARMNAME CHAR(18) NOT

NULL

The name of the parameter, or blank. This column is included for

compatibility with other database products. It is ignored by DB2

Server for VSE & VM.

ROUTINEID INTEGER NOT NULL Internal identifier of the stored procedure.

ROWTYPE CHAR(1) NOT NULL The type of the parameter. Possible values are:

P Input parameter

O Output parameter

B Both input and output

ORDINAL SMALLINT NOT

NULL

The ordinal number of the parameter within the parameter list.

TYPENAME CHAR(18) NOT

NULL

The name of the data type of the parameter.

DATATYPEID SMALLINT NOT

NULL

The internal ID of the data type of the parameter.

LENGTH INTEGER NOT NULL Maximum length of the data type or the precision of the parameter.

SCALE SMALLINT NOT

NULL

Scale of the parameter, if the data type is decimal. 0 otherwise.

SUBTYPE CHAR(1) NOT NULL If the data type of the parameter is character, this column contains

the character subtype. Possible values are:

B The subtype is FOR BIT DATA.

S The subtype is FOR SBCS DATA.

M The subtype is FOR MIXED DATA.

blank The data type of the parameter is not character.

CCSID INTEGER NOT NULL For all character and graphic data types, this column contains the

CCSID that the stored procedure assumes this parameter will be

tagged with. 0 for datatypes other than character and graphic.

SYSPROGAUTH

SYSPROGAUTH records privileges of users to run packages, and to grant these

privileges to other users. For the DB2 Server for VSE & VM database manager, a

program is a package stored in the database. The columns in SYSPROGAUTH are:

 Column Name Data Type Description and Comments

GRANTOR CHAR(8)

NOT NULL

The user ID of the person who

granted the RUN privilege.

GRANTEE CHAR(8)

NOT NULL

The user ID of the person who holds

the RUN privilege. If the userid is

PUBLIC, the program may be run by

all users.

CREATOR CHAR(8)

NOT NULL

The owner who preprocessed the

program. CREATOR.PROGNAME

uniquely identifies the package that

may be run by the grantee.

SYSPARMS

396 SQL Reference

Column Name Data Type Description and Comments

PROGNAME VARCHAR(8)

NOT NULL

The name of the package that may be

run by the grantee. The name is

obtained from the PREPNAME

preprocessor parameter.

CREATOR.PROGNAME is the

complete name of the package.

TIMESTAMP CHAR(12)

NOT NULL

The value of the System/390 time of

day clock when the grant was made.

This value is used internally when

privileges are revoked; it is stored as

a string of numbers and letters.

RUNAUTH CHAR(1)

NOT NULL

The possible values are:

Y if the user is allowed only to

run the package.

G if the user may also grant

the RUN privilege on the

package to someone else.

SYSPSERVERS

SYSTEM.SYSPSERVERS is added to allow the database administrator to define the

stored procedure servers at which stored procedure run, and to put them in

groups. This allows the database administrator to tune the stored procedure

workload. This table is unique to DB2 Server for VSE & VM. Table Table 25 shows

the definition of this catalog table.

 Table 25. Definition of SYSTEM.SYSPSERVERS

Column Name Data Type Description

PSERVER CHAR(8) NOT NULL The name of the stored procedure server. This name must not

contain any embedded blanks. If it does, any attempt to start the

stored procedure server fails. Note that a PSERVER can be in only

one group.

See “SYSPSERVERS” for more information on the PSERVER

column.

SERVGROUP CHAR(18) The group that this server is in. Grouping the stored procedures

enables the database administrator to tune the stored procedure

workload. For example, if the database manager wanted to dedicate

servers ACT1, ACT2, and ACT3 to accounting-related stored

procedures, he could define them all in the same group, perhaps

called ACCOUNT. In SYSTEM.SYSROUTINES, the row for any

accounting-related stored procedure would specify ACCOUNT in

the SERVGROUP column. When one of these stored procedures is

invoked, the database manager will select a free server from the

ACCOUNT group to run the stored procedure.

Any server for which the SERVGROUP column is NULL is in the

default server group.

AUTOSTART CHAR(1) Indicates whether the stored procedure server should be started

when the database manager is started. A value of ’Y’ indicates that

the server should be autostarted. ’N’ or NULL indicates that it

should not be autostarted. The default value for this column is

NULL.

SYSPROGAUTH

Appendix C. DB2 Server for VSE & VM Catalog 397

Table 25. Definition of SYSTEM.SYSPSERVERS (continued)

Column Name Data Type Description

DESCRIPTION CHAR(254) An optional column, in which the database manager can provide

information such as the stored procedures that use this server

group, specifications (for example virtual storage requirements) for

servers in this group, and so on. The default value for this column

is NULL.

Table 26 shows an example of a SYSTEM.SYSPSERVERS table.

 Table 26. Sample SYSTEM.SYSPSERVERS Table

PSERVER SERVGROUP AUTOSTART DESCRIPTION

1 PROCSRV1 Y Default server group

2 PROCSRV2 BILLING Y

3 PROCSRV3 BILLING Y

4 PROCSRV4 DAY_RPT Y

In Table 26, the first row identifies the only server in the default server group. The

second and third rows identify the servers that are in the group BILLING. The

fourth row identifies the only server in the group DAY_RPT.

SYSROUTINES

SYSROUTINES allows the database administrator to specify the load module or

phase name and package name for a given stored procedure, and to specify the

stored procedure server at which it will run. Note that several of the columns in

SYSTEM.SYSROUTINES in DB2 Server for VSE & VM correspond to columns in

stored procedure related catalog tables in DB2 for MVS and have been given the

same name. However, both tables have system-unique columns, and as a result the

definitions of the tables are not identical. Table 27 shows the definition of

SYSTEM.SYSROUTINES.

 Table 27. Definition of SYSTEM.SYSROUTINES

Column Name Data Type Description

NAME CHAR(18) NOT

NULL

The name of the STORED procedure. This is the name that is

specified in the SQL CALL statement.

AUTHID CHAR(8) NOT NULL The authorization ID that will be running this stored procedure.

The AUTHID column can be used to qualify which

SYSTEM.SYSROUTINES row is used to determine the load module,

run time options, and so on, to use when a particular stored

procedure is invoked. Possible reasons to use the AUTHID column

include:

v To restrict the use of a stored procedure to a particular

authorization ID

v To enable a particular authorization ID to test a new version of a

stored procedure

v To allow different authorization IDs to use different versions of a

stored procedure

If AUTHID for a stored procedure is blank, any authorization ID

can run that stored procedure. See Table 28 on page 400 for an

example of using the AUTHID column.

SYSPSERVERS

398 SQL Reference

Table 27. Definition of SYSTEM.SYSROUTINES (continued)

Column Name Data Type Description

LOADMOD CHAR(8) NOT NULL The name of the load module or phase associated with the stored

procedure.

ROUTINEID INTEGER NOT NULL Internal identifier of the routine.

PARMCOUNT SMALLINT NOT

NULL

The number of parameters for the routine.

LANGUAGE CHAR(8) NOT NULL Specifies the programming language used to create the stored

procedure. Possible values are ASSEMBLE, PLI, COBOL, and C.

PARAMETERSTYLE CHAR(1) NOT NULL Specifies which parameter linkage convention should be used for

this stored procedure. There are two possibilities:

blank The GENERAL linkage convention is used. When a stored

procedure is called, input parameters cannot be null. Also,

the stored procedure cannot nullify output parameters.

N The GENERAL WITH NULLS linkage convention is used.

The input parameters can be null, and an array of

indicator variables is passed to the stored procedure by

DB2 Server for VSE & VM This is the default.

STAYRESIDENT CHAR(1) NOT NULL Determines whether the stored procedure load module or phase is

removed from memory when the stored procedure ends. Possible

values are

Y The load module or phase remains in memory after the

stored procedure ends.

blank The load module or phase is removed from memory after

the stored procedure ends.

PROGRAMTYPE CHAR(1) NOT NULL Indicates whether the stored procedure runs as a main routine or as

a subroutine. The possible values are:

M The routine runs as a LE main routine.

S The routine runs as a LE subroutine.

COMMITON

RETURN

CHAR(1) NOT NULL If ’Y’, a COMMIT WORK will be issued on return from the stored

procedure. The default is ’N’. Note that since DB2 Server for VSE &

VM does not have CURSOR WITH HOLD support, any cursors

that are open on return will be closed if COMMITONRETURN is

’N’. This means that stored procedures that are to return result sets

must have a value of ’N’ in this column.

RESULTSETS SMALLINT NOT

NULL

Specifies the maximum number of result sets that the stored

procedure can return to a DRDA client. A value of 0 indicates that

no result sets will be returned.

SERVGROUP CHAR(18) Contains the name of the group of stored procedure servers that is

used to run this stored procedure. The servers are defined in the

SYSTEM.SYSPSERVERS catalog table, in the SERVGROUP column.

If this column is blank or NULL, the stored procedure must run in

the default server group. This implies that the column DEFSERV

cannot contain the value ’N’ in a row in which the column

SERVGROUP is blank or NULL.

SYSROUTINES

Appendix C. DB2 Server for VSE & VM Catalog 399

Table 27. Definition of SYSTEM.SYSROUTINES (continued)

Column Name Data Type Description

DEFSERV CHAR(1) Determines whether the stored procedure can run in the default

stored procedure server group.

’Y’ or NULL

Indicates that the procedure can run in the default server

group.

’N’ Indicates that the procedure cannot run in the default

server group.
If this column contains ’N’ then the SERVGROUP column must

contain the name of a stored procedure server group.

RUNOPTS VARCHAR(254) NOT

NULL

The IBM Language Environment run-time options to use for this

stored procedure. If RUNOPTS is blank, the installation default IBM

Language Environment run-time options are used.

REMARKS VARCHAR(254) NOT

NULL

A character string provided by the user with the COMMENT ON

statement.

Table 28 shows an example of a SYSTEM.SYSROUTINES table.

 Table 28. Sample SYSTEM.SYSROUTINES Table

PROCEDURE AUTHID SPECIFICNAME SERVGROUP DEFSERV

1 PROC1 PROG1 GROUP1 Y

2 PROC1 USER1 PROG2 GROUP1 N

3 PROC2 USER2 PROG3 Y

Note that in Table 28 rows 1 and 2 refer to the PROC1 stored procedure. By

creating multiple rows in the SYSTEM.SYSROUTINES table with the same value

for the NAME column, you can indicate that specified users have access to

different versions of the stored procedure. In this case, in row 1 the AUTHID

column is blank. Any user without a specific entry can use row 1. Row 2 applies

only to SQL CALL requests coming from AUTHID USER1. When this user invokes

the PROC1 stored procedure, a different load module or phase (PROG2) is loaded.

The load module or phase can be a test version of the stored procedure or a

version that is specific for that user.

Row 3 applies to stored procedure PROC2 and AUTHID USER2. Because there is

no other row for stored procedure PROC2, user USER2 is the only one who can

call this stored procedure.

As shown in Table 28, it is possible to have more than one row in

SYSTEM.SYSROUTINES for a given stored procedure. The search precedence used

to determine which row is selected for a specific client is as follows:

1. A row with AUTHID matching the caller’s AUTHID

2. A row with AUTHID blank

SYSSTRINGS

The SYSSTRINGS table contains a list of the valid conversion combinations of

source and target CCSIDs. More information on CCSIDs can be found in the DB2

Server for VM System Administration or the DB2 Server for VSE System Administration

manual.

SYSROUTINES

400 SQL Reference

Column Name Data Type Description and Comments

INCCSID INTEGER

NOT NULL

The CCSID of the string that is a

candidate for conversion.

OUTCCSID INTEGER

NOT NULL

The CCSID to which the string is to

be converted.

TRANSTYPE CHAR(2)

NOT NULL

Classifies the CCSIDs as follows:

SS for EBCDIC and ASCII SBCS

to EBCDIC SBCS data

conversion

SM for EBCDIC and ASCII SBCS

to EBCDIC mixed data

conversion

MS for EBCDIC mixed to

EBCDIC SBCS data

conversion

MM for EBCDIC mixed to

EBCDIC mixed data

conversion

PS for ASCII mixed to EBCDIC

SBCS data conversion

PM for ASCII mixed to EBCDIC

mixed data conversion

GG for ASCII graphic to

EBCDIC graphic data

conversion

US for UCS-2 to EBCDIC SBCS

data conversion

UI for UCS-2 to a single byte

component of an EBCDIC

mixed data conversion

UM for UCS-2 to EBCDIC mixed

data conversion

UG for UCS-2 to EBCDIC

graphic data conversion

ERRORBYTE CHAR(1)

FOR BIT DATA

Specifies the byte that is used in the

conversion table as an error indicator.

An error occurs whenever a code

point maps to the byte specified in

this field.1 Null indicates the absence

of an error indicator.

SUBBYTE CHAR(1)

FOR BIT DATA

Specifies the byte that is used in the

conversion table as a substitution

character.2 Null indicates the absence

of a substitution character.

TRANSPROC CHAR(8)

NOT NULL

Name of the conversion procedure

for MM, PM and GG TRANSTYPE.

This procedure only applies to the

DBCS portion of mixed data for the

MM and PM TRANSTYPE.

SYSSTRINGS

Appendix C. DB2 Server for VSE & VM Catalog 401

Column Name Data Type Description and Comments

TRANSTAB1 CHAR(64) The first 64 bytes of the 256-byte

conversion table or a blank. Used for

SS, SM, MM, MS, PS and PM

TRANSTYPEs.

TRANSTAB2 CHAR(192) The last 192 bytes of the 256-byte

conversion table or a blank. If either

TRANSTAB1 or TRANSTAB2

contains an empty string, then both

are considered an empty string. Used

for SS, SM, MM, MS, PS and PM

TRANSTYPEs.

Note 1:

If ERRORBYTE is X'3E', for example, that error byte indicates that no

conversion is defined for the code points that map to X'3E'. An error (-330

or -331 assigned to SQLCODE and 22021 assigned to SQLSTATE) or

warning (+331 assigned to SQLCODE and 01520 assigned to SQLSTATE)

occurs whenever a code point maps to it.

Note 2:

If SUBBYTE is X'3F', for example, that byte is substituted for the code

points that map to X'3F'. A warning (Z assigned to SQLWARN8, W

assigned to SQLWARN0, and 01517 assigned to SQLSTATE) occurs

whenever a code point maps to it.

SYSSYNONYMS

The SYSSYNONYMS table contains a row for every synonym currently in effect. (A

synonym is effective only for the user who defined it.) The columns in

SYSSYNONYMS are:

 Column Name Data Type Description and Comments

USERID CHAR(8)

NOT NULL

The owner who defined the synonym. The synonym is effective for this

user only.

ALTNAME VARCHAR(18)

NOT NULL

The user’s synonym for a table or view. USERID.ALTNAME uniquely

identifies the synonym.

CREATOR CHAR(8)

NOT NULL

The owner of the table or view for which user USERID defined a

synonym.

TNAME VARCHAR(18)

NOT NULL

CREATOR.TNAME is the real name of the table or view for which user

USERID defined a synonym.

Note: SYSSYNONYMS helps resolve unqualified table references in SQL

statements. If a user does not qualify the name of the table (by preceding it

with “creator.”), the preprocessor first looks to see if the user has a table by

that name. If the user does not, the name is assumed to be a synonym for

another user’s table, and the preprocessor consults SYSSYNONYMS to

determine the real table. The object of the synonym must be a table or a

view; it cannot be another synonym.

SYSSTRINGS

402 SQL Reference

SYSTABAUTH

SYSTABAUTH records:

v Privileges owned by users to access tables and views. For each privilege, it also

records the source of the privilege (for example, a grant from another user).

v Privileges on tables and views exercised by packages. Each such privilege

appears in SYSTABAUTH as if it were granted to the program by the user who

preprocessed the program. The database manager uses SYSTABAUTH to find

and invalidate packages when the necessary privileges are revoked from the

creator of a program.

The columns in SYSTABAUTH are:

 Column Name Data Type Description and Comments

GRANTOR CHAR(8)

NOT NULL

The owner who granted the privileges. If this row records the privileges

exercised by a package, then GRANTOR is the creator of the

corresponding program.

GRANTEE VARCHAR(8)

NOT NULL

The owner who holds the privileges or the name of the package that

exercises the privileges. If the value of GRANTEE is ‘PUBLIC’, the

privileges are held by all users.

GRANTEETYPE CHAR(1)

NOT NULL

The possible values are:

blank if the grantee is a user.

P if the grantee is a package.

SCREATOR CHAR(8)

NOT NULL

The owner who created the source table or source view on which

privileges have been granted.

STNAME VARCHAR(18)

NOT NULL

The name of the source table or source view on which privileges have

been granted. SCREATOR.STNAME uniquely identifies the source table

or view.

TCREATOR CHAR(8)

NOT NULL

The owner who created the target table or view on which the grantee

possesses some privileges.

TTNAME VARCHAR(18)

NOT NULL

The name of the target table or view on which the grantee possesses

some privileges. TCREATOR.TTNAME uniquely identifies the target table

or view.

Usually, TCREATOR.TTNAME is the same as SCREATOR.STNAME. An

exception occurs when a view is defined: an entry is made in

SYSTABAUTH, showing the underlying table(s) in SCREATOR.STNAME

and the view in TCREATOR.TTNAME.

TIMESTAMP CHAR(12)

NOT NULL

The value of the System/390 time of day clock when the grant was

made. This value is used internally when privileges are revoked; it is

stored as a string of numbers and letters.

UPDATECOLS CHAR(1)

NOT NULL

The possible values are:

blank if the grant did not involve the UPDATE privilege, or if the

UPDATE privilege was granted on all of the columns.

* if the UPDATE privilege was granted on some of the columns.

In this case, the SYSCOLAUTH table gives the names of the

columns on which the UPDATE privilege was granted.

SYSTABAUTH

Appendix C. DB2 Server for VSE & VM Catalog 403

Column Name Data Type Description and Comments

SELECTAUTH CHAR(1)

NOT NULL

The possible values are:

Y if the user is allowed to select rows from this table.

G if the user is allowed to grant this SELECT privilege.

blank otherwise.
The SELECT privilege is not automatically granted because a user might

be authorized to insert into a table, but not to read it.

INSERTAUTH CHAR(1)

NOT NULL

The possible values are:

Y if the user is allowed to insert into this object.

G if the user is allowed to grant this INSERT privilege.

blank otherwise.

UPDATEAUTH CHAR(1)

NOT NULL

The possible values are:

Y if the user is allowed to update this object.

G if the user is allowed to grant this UPDATE privilege.

blank otherwise.
The field UPDATECOLS, possibly together with several rows of the

SYSCOLAUTH table, identifies the columns on which the UPDATE

privilege was granted.

DELETEAUTH CHAR(1)

NOT NULL

The possible values are:

Y if the user is allowed to delete rows.

G if the user is allowed to grant this DELETE privilege.

blank otherwise.

ALTERAUTH CHAR(1)

NOT NULL

The possible values are:

Y if the object is a base table and the user is allowed to alter it.

G if the user is allowed to grant this ALTER privilege.

blank otherwise.

INDEXAUTH CHAR(1)

NOT NULL

The possible values are:

Y if the object is a table and the user is allowed to create an index

on it.

G if the user is allowed to grant this INDEX privilege.

blank otherwise.

REFAUTH CHAR(1) The possible values are:

Y if the user is allowed to form, drop, activate, or deactivate a

relationship where the object table is the parent table.

G if the user is allowed to grant this REFERENCES privilege.

NULL if the table or view was created prior to SQL/DS Version 2

Release 2.

blank otherwise.

Note: For information on updating columns see “Updateable Columns” on page

371.

SYSTABAUTH

404 SQL Reference

SYSUSAGE

SYSUSAGE records dependencies of one object on another. For example, a package

is dependent on the tables and indexes that it uses, or a view is dependent on the

tables on which it is defined. Each entry in SYSUSAGE describes one dependent

object and one base object. (The base object is the object that is depended upon.)

The columns in SYSUSAGE are:

 Column Name Data Type Description and Comments

BNAME VARCHAR(18)

NOT NULL

The name of the base object (table, view, index, or DBSPACE).

BCREATOR CHAR(8)

NOT NULL

The owner of the creator of the table or index, or the owner of the

DBSPACE. BCREATOR.BNAME uniquely identifies the base object.

BTYPE CHAR(1)

NOT NULL

A code indicating what the base object is:

R real table.

V view.

I index.

S DBSPACE.

DNAME VARCHAR(18)

NOT NULL

The name of the dependent view or package that is derived from or that

uses the object BNAME.

DCREATOR CHAR(8)

NOT NULL

The owner who defined the dependent view or package DNAME.

DCREATOR.DNAME uniquely identifies the dependent object.

DTYPE CHAR(1)

NOT NULL

The possible values are:

V if the dependent object is a view.

X if the dependent object is a package.
Views can depend on tables and other views; packages can depend on

any object.

TIMESTAMP CHAR(8)

NOT NULL

For packages, it is the value of the System/390 time of day clock when

the package was created; the value is used internally and is represented

as a string of numbers and letters.

For views, it is the date when the view was created, in the format

MM/DD/YY.

For each view or package defined, at least one entry is normally made in

SYSUSAGE.

Note: If you preprocess an application program that SELECTs an undefined table,

a package will be defined, but no entry will be made in the SYSUSAGE

table. In this case, the preprocessor will issue a warning.

If the view or package involves only one base object (for example, CREATE VIEW V

AS SELECT * FROM EMP), then one entry is made, with BNAME being the name of

that base object. If the view or package involves more than one base object, then an

entry is made for each such base object involved. SYSUSAGE enables the database

manager to find the packages and views that are affected if a given base object is

dropped.

SYSUSAGE

Appendix C. DB2 Server for VSE & VM Catalog 405

SYSUSERAUTH and SYSUSERLIST

The database manager uses SYSUSERAUTH to record system authorizations. The

system authorizations are DBA, RESOURCE, SCHEDULE, and CONNECT

authority. As in SYSTABAUTH, an entry in SYSUSERAUTH indicates either a

system authorization held by a user or a special privilege exercised by a program.

Only users with DBA authority can access SYSUSERAUTH; other users must

access the view SYSUSERLIST. The creator of the view is SQLDBA; thus, you must

refer to the view as SQLDBA.SYSUSERLIST. The SYSUSERLIST view contains all

columns of SYSUSERAUTH except PASSWORD. The columns in SYSUSERAUTH

(and SYSUSERLIST) are:

 Column Name Data Type Description and Comments

NAME CHAR(8)

NOT NULL

Either the user ID of a user, or the name of a program. The two

possibilities are distinguished by the contents of the AUTHOR field: if

AUTHOR is blank, this field contains a user ID; if not, it contains the

name of a program, and AUTHOR contains the user ID of the creator of

the program.

AUTHOR CHAR(8)

NOT NULL

This is blank (ignored) if NAME is the name of a DB2 Server for VSE &

VM user; if NAME is the name of a program, then this field contains the

user ID of the person who preprocessed the program.

RESOURCEAUTH CHAR(1)

NOT NULL

The possible values are:

Y if this user is authorized to create new tables and authorized to

acquire a private dbspace by issuing the ACQUIRE DBSPACE

statement.

blank otherwise.

DBAAUTH CHAR(1)

NOT NULL

The possible values are:

Y if this user has DBA authority.

blank otherwise.
A user with DBA authority is entitled to see everything in the database,

including the catalog tables, and may issue any SQL statement. A user

with DBA authority may also acquire and drop PUBLIC DBSPACEs.

Changes to the SYSUSERAUTH table may be made only by SQL

statements issued by a user with DBA authority (there is at least one

DBA at catalog generation time).

PASSWORD CHAR(8)

NOT NULL

This verifies the identity of a user on a CONNECT statement to a DB2

Server for VSE & VM system. It is updated using a GRANT CONNECT

or GRANT DBA statement.

SCHEDULEAUTH CHAR(1)

NOT NULL

The possible values are:

Y if this user is authorized to CONNECT another user without

specifying a password. (Used for CICS support by the DB2

Server for VSE database manager.)

blank otherwise.

SYSVIEWS

The SYSVIEWS table contains the definitions of all views. The views are stored in

the form of the original SQL statements that defined the views. The columns in

SYSVIEWS are:

SYSUSERAUTH and SYSUSERLIST

406 SQL Reference

Column Name Data Type Description and Comments

VIEWNAME VARCHAR(18)

NOT NULL

The name of the view.

VCREATOR CHAR(8)

NOT NULL

The owner who defined the view. VCREATOR.VIEWNAME uniquely

identifies the view.

SEQNO SMALLINT

NOT NULL

Because a view definition may consist of more than 254 characters, it

may have to be divided among several rows of SYSVIEWS. The row that

contains the first portion of a view definition has SEQNO = 1; successive

rows have increasing values of SEQNO. You can use SEQNO to order the

view definitions properly when you query this table.

VIEWTEXT VARCHAR(254)

NOT NULL

This contains the SQL statement that defined the view.

VIEWMAT CHAR(1) Indicates whether this view references another view resulting in view

materialization. Possible values are:

Y if a view materialization is involved.

N if a view materialization is not involved.

NULL if the view was created on an SQL/DS database prior to

SQL/DS Version 3 Release 1 and subsequently migrated to a

later version of the database manager.

VIEWCHECK CHAR(1) Indicates whether the view was created with the WITH CHECK OPTION

clause. Possible values are:

Y if a view was created with the clause

N if a view was created without the clause

NULL if a view was created prior to SQL/DS Version 3 Release 2.

SYSVIEWS

Appendix C. DB2 Server for VSE & VM Catalog 407

SYSVIEWS

408 SQL Reference

Appendix D. Sample Tables

The sample tables illustrated in this appendix are used in examples throughout the

DB2 Server for VSE & VM library. These tables simulate a database created for use

in organization or project management applications. As a group, the tables include

information that describes employees, departments, projects, and activities. This

appendix contains the following sample tables:

v “ACTIVITY Table” on page 410

v “CL_SCHED Table” on page 411

v “DEPARTMENT Table” on page 411

v “EMPLOYEE Table” on page 412

v “EMP_ACT Table” on page 413

v “IN_TRAY Table” on page 415

v “PROJECT Table” on page 415

v “PROJ_ACT Table” on page 416

Relationships Among the Tables

Figure 9 on page 410 shows the relationships among many of the tables. These

relationships are established by referential constraints, where a foreign key in the

dependent table references a primary key in the parent table. In the figure, the

referential constraint is symbolized by lines joining the keys; the arrowheads point

from the primary key to the foreign key. Only those columns named as foreign or

primary keys are listed in the figure. All tables have additional columns. You can

easily review the contents of any table by executing an SQL statement, such as

SELECT * FROM SQLDBA.DEPARTMENT.

© Copyright IBM Corp. 1988, 2007 409

ACTIVITY Table

The ACTIVITY tables describes the activities that can be performed during a

project. The table acts as a master list of possible activities, identifying the activity

number, and providing a description of the activity.

 Name: ACTNO ACTKWD ACTDESC

Type: smallint not null char(6) not null varchar(20) not null

Desc: Activity number Activity keyword Activity description

Values: 10 MANAGE Manage/advise

20 ECOST Estimate cost

30 DEFINE Define specs

40 LEADPR Lead program/design

50 SPECS Write specs

60 LOGIC Describe logic

70 CODE Code programs

80 TEST Test programs

90 ADMQS Adm query system

100 TEACH Teach classes

110 COURSE Develop courses

 DEPARTMENT PROJECT

 ┌──────────────┐ ┌───────────────┐

 ┌──────┼───DEPTNO─────┼───────┐ │ PROJNO──────┼─────────┐

 │ ┌──┼──►MGRNO │ RESTRICT────┼──►DEPTNO │ │

 │ │ │ ... │ ┌──────┼──►RESPEMP │ │

 │ │ │ │ │ │ ... │ │

 │ │ └──────────────┘ │ │ │ │

 │ │ │ └───────────────┘ RESTRICT

 SET │ │ │

 NULL │ ┌────SET NULL────┘ │

 │ │ │ │

 │ SET │ │

 │ NULL │ │

 │ │ EMPLOYEE ACTIVITY │

 │ │ ┌──────┼───────┐ ┌─────────────┐ │

 │ └──┼───EMPNO──────┼──┐ │ ACTNO─────┼┐ │

 └──────┼──►WORKDEPT │ │ │ ... ││ │

 │ ... │ │ │ ││ │

 │ │ │ └─────────────┘│ │

 └──────────────┘ │ │ │

 CASCADE │ │

 │ │ │

 │ RESTRICT │

 ┌──────────────────┘ │ │

 │ │ │

 │ EMP_ACT PROJ_ACT │ │

 │ ┌───────────────────┐ ┌──────────────────┐ │ │

 └──┼─►EMPNO │ ┌┼──PROJNO ◄────────┼───┼──┘

 │ PROJNO ◄─────┐ |RESTRICT┼──ACTNO ◄─────────┼───┘

 │ ACTNO <──────┼───┼───┘ └┼──ACTSTDATE |

 │ EMSTDATE ◄───┘ | | ... |

 │ │ │ │

 │ │ └──────────────────┘

 └───────────────────┘

Figure 9. Relationships among Tables in the Sample Application

ACTIVITY Table

410 SQL Reference

Name: ACTNO ACTKWD ACTDESC

120 STAFF Pers and staffing

130 OPERAT Oper computer sys

140 MAINT Maint software sys

150 ADMSYS Adm operating sys

160 ADMDB Adm databases

170 ADMDC Adm data comm

180 DOC Document

Relationship of ACTIVITY to Other Tables

ACTIVITY is a parent of the PROJ_ACT table.

CL_SCHED Table

The CL_SCHED table describes a classroom schedule.

 Name: CLASS_CODE DAY STARTING ENDING

Type: char(7) not null smallint not null time not null time not null

Desc: Class code

(room:teacher)

Day number of 4 day schedule Class start time Class end time

Values: 101:KAR 2 14.10.00 16.10.00

 202:LMM 3 14.40.00 16.40.00

 303:RAR 4 09.00.00 09.40.00

DEPARTMENT Table

The DEPARTMENT table describes each department in the business and identifies

its manager and the department to which it reports.

 Name: DEPTNO DEPTNAME MGRNO ADMRDEPT

Type: char(3) not null varchar(29) not null char(6) char(3) not null

Desc: Department

number

Name describing general activities

of department

Employee number

(EMPNO) of

department

manager

Department

(DEPTNO) that

this department

reports to

Values: A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00

 B01 PLANNING 000020 A00

 C01 INFORMATION CENTER 000030 A00

 D01 DEVELOPMENT CENTER ? A00

 D11 MANUFACTURING SYSTEMS 000060 D01

 D21 ADMINISTRATION SYSTEMS 000070 D01

 E01 SUPPORT SERVICES 000050 A00

 E11 OPERATIONS 000090 E01

 E21 SOFTWARE SUPPORT 000100 E01

ACTIVITY Table

Appendix D. Sample Tables 411

Relationship of DEPARTMENT to Other Tables

DEPARTMENT is a parent of the EMPLOYEE and PROJECT tables.

The DEPARTMENT table is a dependent of the EMPLOYEE table; the MGRNO

column is the foreign key in the DEPARTMENT table and references EMPNO, the

primary key in the EMPLOYEE table.

EMPLOYEE Table

The EMPLOYEE table identifies all employees by an employee number and lists

basic personnel information.

 Names: EMPNO FIRSTNME MIDINIT LASTNAME WORKDEPT PHONENO HIREDATE

Type: char(6) not

null

varchar(12)

not null

char(1) not

null

varchar(15)

not null

char(3) char(4) date

Desc: Employee

number

First name Middle

initial

Last name Department

(DEPTNO)

in which the

employee

works

Phone

number

Date of hire

 JOB EDLEVEL SEX BIRTHDATE SALARY BONUS COMM

char(8) smallint not null char(1) date dec(9,2) dec(9,2) dec(9,2)

Job Number of years of

formal education

Sex (M

male, F

female)

Date of birth Yearly salary Yearly bonus Yearly

commission

The following table lists the values in the EMPLOYEE table:

EMPNO

FIRSTNAME

MID

INIT

LASTNAME

WORK

DEPT

PHONE

NO

HIREDATE JOB

EDUC

LEVEL

SEX

BIRTHDATE

SALARY

BONUS

COMM

char(6)

not

null

varchar(12)

not null

char(1)

not

null

varchar(15)

not null

char(3) char(4) date char(8) smallint

not

null

char(1) date dec(9,2) dec(9,2) dec(9,2)

000010 CHRISTINE I HAAS A00 3978 1965-01-01 PRES 18 F 1933-08-24 52750 1000 4220

000020 MICHAEL L THOMPSON B01 3476 1973-10-10 MANAGER 18 M 1948-02-02 41250 800 3300

000030 SALLY A KWAN C01 4738 1975-04-05 MANAGER 20 F 1941-05-11 38250 800 3060

000050 JOHN B GEYER E01 6789 1949-08-17 MANAGER 16 M 1925-09-15 40175 800 3214

000060 IRVING F STERN D11 6423 1973-09-14 MANAGER 16 M 1945-07-07 32250 500 2580

000070 EVA D PULASKI D21 7831 1980-09-30 MANAGER 16 F 1953-05-26 36170 700 2893

000090 EILEEN W HENDERSON E11 5498 1970-08-15 MANAGER 16 F 1941-05-15 29750 600 2380

000100 THEODORE Q SPENSER E21 0972 1980-06-19 MANAGER 14 M 1956-12-18 26150 500 2092

000110 VINCENZO G LUCCHESSI A00 3490 1958-05-16 SALESREP 19 M 1929-11-05 46500 900 3720

000120 SEAN O’CONNELL A00 2167 1963-12-05 CLERK 14 M 1942-10-18 29250 600 2340

000130 DOLORES M QUINTANA C01 4578 1971-07-28 ANALYST 16 F 1925-09-15 23800 500 1904

000140 HEATHER A NICHOLLS C01 1793 1976-12-15 ANALYST 18 F 1946-01-19 28420 600 2274

000150 BRUCE ADAMSON D11 4510 1972-02-12 DESIGNER 16 M 1947-05-17 25280 500 2022

000160 ELIZABETH R PIANKA D11 3782 1977-10-11 DESIGNER 17 F 1955-04-12 22250 400 1780

000170 MASATOSHI J YOSHIMURA D11 2890 1978-09-15 DESIGNER 16 M 1951-01-05 24680 500 1974

000180 MARILYN S SCOUTTEN D11 1682 1973-07-07 DESIGNER 17 F 1949-02-21 21340 500 1707

000190 JAMES H WALKER D11 2986 1974-07-26 DESIGNER 16 M 1952-06-25 20450 400 1636

000200 DAVID BROWN D11 4501 1966-03-03 DESIGNER 16 M 1941-05-29 27740 600 2217

000210 WILLIAM T JONES D11 0942 1979-04-11 DESIGNER 17 M 1953-02-23 18270 400 1462

DEPARTMENT Table

412 SQL Reference

EMPNO

FIRSTNAME

MID

INIT

LASTNAME

WORK

DEPT

PHONE

NO

HIREDATE JOB

EDUC

LEVEL

SEX

BIRTHDATE

SALARY

BONUS

COMM

000220 JENNIFER K LUTZ D11 0672 1968-08-29 DESIGNER 18 F 1948-03-19 29840 600 2387

000230 JAMES J JEFFERSON D21 2094 1966-11-21 CLERK 14 M 1935-05-30 22180 400 1774

000240 SALVATORE M MARINO D21 3780 1979-12-05 CLERK 17 M 1954-03-31 28760 600 2301

000250 DANIEL S SMITH D21 0961 1969-10-30 CLERK 15 M 1939-11-12 19180 400 1534

000260 SYBIL P JOHNSON D21 8953 1975-09-11 CLERK 16 F 1936-10-05 17250 300 1380

000270 MARIA L PEREZ D21 9001 1980-09-30 CLERK 15 F 1953-05-26 27380 500 2190

000280 ETHEL R SCHNEIDER E11 8997 1967-03-24 OPERATOR 17 F 1936-03-28 26250 500 2100

000290 JOHN R PARKER E11 4502 1980-05-30 OPERATOR 12 M 1946-07-09 15340 300 1227

000300 PHILIP X SMITH E11 2095 1972-06-19 OPERATOR 14 M 1936-10-27 17750 400 1420

000310 MAUDE F SETRIGHT E11 3332 1964-09-12 OPERATOR 12 F 1931-04-21 15900 300 1272

000320 RAMLAL V MEHTA E21 9990 1965-07-07 FIELDREP 16 M 1932-08-11 19950 400 1596

000330 WING LEE E21 2103 1976-02-23 FIELDREP 14 M 1941-07-18 25370 500 2030

000340 JASON R GOUNOT E21 5698 1947-05-05 FIELDREP 16 M 1926-05-17 23840 500 1907

Relationship of EMPLOYEE to Other Tables

The EMPLOYEE table is a parent of the DEPARTMENT table, the PROJECT table,

and the EMP_ACT table.

The EMPLOYEE table is a dependent of the DEPARTMENT table; the foreign key

on the WORKDEPT column in the EMPLOYEE table references the primary key on

the DEPTNO column in the DEPARTMENT table.

EMP_ACT Table

The EMP_ACT table identifies the employee performing each activity listed for

each project.

 Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

Type: char(6) not null char(6) not null smallint not null dec(5,2) date date

Desc: Employee number Project number Activity number Proportion of

employee’s full

time to be spent on

one project

Date activity starts Date activity ends

Values: 000010 AD3100 10 .50 1982-01-01 1982-07-01

 000070 AD3110 10 1.00 1982-01-01 1983-02-01

 000230 AD3111 60 1.00 1982-01-01 1982-03-15

 000230 AD3111 60 .50 1982-03-15 1982-04-15

 000230 AD3111 70 .50 1982-03-15 1982-10-15

 000230 AD3111 80 .50 1982-04-15 1982-10-15

 000230 AD3111 180 1.00 1982-10-15 1983-01-01

 000240 AD3111 70 1.00 1982-02-15 1982-09-15

 000240 AD3111 80 1.00 1982-09-15 1983-01-01

 000250 AD3112 60 1.00 1982-01-01 1982-02-01

 000250 AD3112 60 .50 1982-02-01 1982-03-15

 000250 AD3112 60 .50 1982-12-01 1983-01-01

 000250 AD3112 60 1.00 1983-01-01 1983-02-01

 000250 AD3112 70 .50 1982-02-01 1982-03-15

 000250 AD3112 70 1.00 1982-03-15 1982-08-15

 000250 AD3112 70 .25 1982-08-15 1982-10-15

 000250 AD3112 80 .25 1982-08-15 1982-10-15

 000250 AD3112 80 .50 1982-10-15 1982-12-01

EMPLOYEE Table

Appendix D. Sample Tables 413

Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

 000250 AD3112 180 .50 1982-08-15 1983-01-01

 000260 AD3113 70 .50 1982-06-15 1982-07-01

 000260 AD3113 70 1.00 1982-07-01 1983-02-01

 000260 AD3113 80 1.00 1982-01-01 1982-03-01

 000260 AD3113 80 .50 1982-03-01 1982-04-15

 000260 AD3113 180 .50 1982-03-01 1982-04-15

 000260 AD3113 180 1.00 1982-04-15 1982-06-01

 000260 AD3113 180 .50 1982-06-01 1982-07-01

 000270 AD3113 60 .50 1982-03-01 1982-04-01

 000270 AD3113 60 1.00 1982-04-01 1982-09-01

 000270 AD3113 60 .25 1982-09-01 1982-10-15

 000270 AD3113 70 .75 1982-09-01 1982-10-15

 000270 AD3113 70 1.00 1982-10-15 1983-02-01

 000270 AD3113 80 1.00 1982-01-01 1982-03-01

 000270 AD3113 80 .50 1982-03-01 1982-04-01

 000030 IF1000 10 .50 1982-06-01 1983-01-01

 000130 IF1000 90 1.00 1982-01-01 1982-10-01

 000130 IF1000 100 .50 1982-10-01 1983-01-01

 000140 IF1000 90 .50 1982-10-01 1983-01-01

 000030 IF2000 10 .50 1982-01-01 1983-01-01

 000140 IF2000 100 1.00 1982-01-01 1982-03-01

 000140 IF2000 100 .50 1982-03-01 1982-07-01

 000140 IF2000 110 .50 1982-03-01 1982-07-01

 000140 IF2000 110 .50 1982-10-01 1983-01-01

 000010 MA2100 10 .50 1982-01-01 1982-11-01

 000110 MA2100 20 1.00 1982-01-01 1982-03-01

 000010 MA2110 10 1.00 1982-01-01 1983-02-01

 000200 MA2111 50 1.00 1982-01-01 1982-06-15

 000200 MA2111 60 1.00 1982-06-15 1983-02-01

 000220 MA2111 40 1.00 1982-01-01 1983-02-01

 000150 MA2112 60 1.00 1982-01-01 1982-07-15

 000150 MA2112 180 1.00 1982-07-15 1983-02-01

 000170 MA2112 60 1.00 1982-01-01 1983-06-01

 000170 MA2112 70 1.00 1982-06-01 1983-02-01

 000190 MA2112 70 1.00 1982-02-01 1982-10-01

 000190 MA2112 80 1.00 1982-10-01 1983-10-01

 000160 MA2113 60 1.00 1982-07-15 1983-02-01

 000170 MA2113 80 1.00 1982-01-01 1983-02-01

 000180 MA2113 70 1.00 1982-04-01 1982-06-15

 000210 MA2113 80 .50 1982-10-01 1983-02-01

 000210 MA2113 180 .50 1982-10-01 1983-02-01

 000050 OP1000 10 .25 1982-01-01 1983-02-01

 000090 OP1010 10 1.00 1982-01-01 1983-02-01

 000280 OP1010 130 1.00 1982-01-01 1983-02-01

 000290 OP1010 130 1.00 1982-01-01 1983-02-01

 000300 OP1010 130 1.00 1982-01-01 1983-02-01

 000310 OP1010 130 1.00 1982-01-01 1983-02-01

 000050 OP2010 10 .75 1982-01-01 1983-02-01

 000100 OP2010 10 1.00 1982-01-01 1983-02-01

 000320 OP2011 140 .75 1982-01-01 1983-02-01

 000320 OP2011 150 .25 1982-01-01 1983-02-01

EMP_ACT Table

414 SQL Reference

Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

 000330 OP2012 140 .25 1982-01-01 1983-02-01

 000330 OP2012 160 .75 1982-01-01 1983-02-01

 000340 OP2013 140 .50 1982-01-01 1983-02-01

 000340 OP2013 170 .50 1982-01-01 1983-02-01

 000020 PL2100 30 1.00 1982-01-01 1982-09-15

Relationship of EMP_ACT to Other Tables

The EMP_ACT table is a dependent of:

v The EMPLOYEE table; the foreign key on EMPNO in the EMP_ACT table

references the primary key, EMPNO, in the EMPLOYEE table.

v The PROJ_ACT table; the foreign key on the set of PROJNO, ACTNO,

EMSTDATE in the EMP_ACT table references the primary key, PROJNO,

ACTNO, ACSTDATE, in the PROJ_ACT table.

IN_TRAY Table

The IN_TRAY table contains a person’s note log.

 Name: RECEIVED SOURCE SUBJECT NOTE_TEXT

Type: timestamp not null char(8) not null char(64) varchar(4000)

Desc: Date and time note

was received

User id of person

who sent note

Brief description The text of the note

Values: 1965-01-01-07.00.00 SQLDBA English Here is a note from

your DBA.

PROJECT Table

The PROJECT table describes each project that the business is currently

undertaking. Data contained in each row includes the project number, name,

person responsible, and schedule dates as shown below.

 Name: PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ

Type: char(6)

not null

varchar(24) not null char(3) not

null

char(6) not

null

dec(5,2) date date char(6)

Desc: Project

number

Project name Department

responsible

Employee

responsible

Estimated

mean

staffing

Estimated

start date

Estimated

end date

Major

project, for

a

subproject

Values: AD3100 ADMIN SERVICES D01 000010 6.5 1982-01-01 1983-02-01 ?

 AD3110 GENERAL ADMIN

SYSTEMS

D21 000070 6 1982-01-01 1983-02-01 AD3100

 AD3111 PAYROLL

PROGRAMMING

D21 000230 2 1982-01-01 1983-02-01 AD3110

 AD3112 PERSONNEL

PROGRAMMING

D21 000250 1 1982-01-01 1983-02-01 AD3110

 AD3113 ACCOUNT

PROGRAMMING

D21 000270 2 1982-01-01 1983-02-01 AD3110

 IF1000 QUERY SERVICES C01 000030 2 1982-01-01 1983-02-01 ?

 IF2000 USER EDUCATION C01 000030 1 1982-01-01 1983-02-01 ?

EMP_ACT Table

Appendix D. Sample Tables 415

Name: PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ

 MA2100 WELD LINE

AUTOMATION

D01 000010 12 1982-01-01 1983-02-01 ?

 MA2110 W L

PROGRAMMING

D11 000060 9 1982-01-01 1983-02-01 MA2100

 MA2111 W L PROGRAM

DESIGN

D11 000220 2 1982-01-01 1982-12-01 MA2110

 MA2112 W L ROBOT

DESIGN

D11 000150 3 1982-01-01 1982-12-01 MA2110

 MA2113 W L PROD CONT

PROGS

D11 000160 3 1982-02-15 1982-12-01 MA2110

 OP1000 OPERATION

SUPPORT

E01 000050 6 1982-01-01 1983-02-01 ?

 OP1010 OPERATION E11 000090 5 1982-01-01 1983-02-01 OP1000

 OP2000 GEN SYSTEMS

SERVICES

E01 000050 5 1982-01-01 1983-02-01 ?

 OP2010 SYSTEMS

SUPPORT

E21 000100 4 1982-01-01 1983-02-01 OP2000

 OP2011 SCP SYSTEMS

SUPPORT

E21 000320 1 1982-01-01 1983-02-01 OP2010

 OP2012 APPLICATIONS

SUPPORT

E21 000330 1 1982-01-01 1983-02-01 OP2010

 OP2013 DB/DC SUPPORT E21 000340 1 1982-01-01 1983-02-01 OP2010

 PL2100 WELD LINE

PLANNING

B01 000020 1 1982-01-01 1982-09-15 MA2100

Relationship of PROJECT to Other Tables

PROJECT is a parent of the PROJ_ACT table.

PROJECT is a dependent of:

v The DEPARTMENT table; the foreign key on the DEPTNO column in PROJECT

references the primary key in the DEPARTMENT table.

v The EMPLOYEE table; the foreign key on the RESPEMP column in PROJECT

references the primary key in the EMPLOYEE table.

PROJ_ACT Table

The PROJ_ACT table lists the activities performed for each project. The table

contains information on the start and completion dates of the project activity as

well as staffing requirements as shown below.

 Name: PROJNO ACTNO ACSTAFF ACSTDATE ACENDATE

Type: char(6) not null smallint not null decimal(5,2) date not null date

Desc: Project number Activity number Estimated mean

staffing for

activity

Estimated start date

for activity

Estimated end date

for activity

Values: AD3100 10 0.50 1982-01-01 1982-07-01

 AD3110 10 1.00 1982-01-01 1983-01-01

 AD3111 60 0.50 1982-03-15 1982-04-15

PROJECT Table

416 SQL Reference

Name: PROJNO ACTNO ACSTAFF ACSTDATE ACENDATE

 AD3111 60 0.80 1982-01-01 1982-04-15

 AD3111 70 0.50 1982-03-15 1982-10-15

 AD3111 70 1.50 1982-02-15 1982-10-15

 AD3111 80 1.00 1982-09-15 1983-01-01

 AD3111 80 1.25 1982-04-15 1983-01-15

 AD3111 180 1.00 1982-10-15 1983-01-15

 AD3112 60 0.50 1982-02-01 1982-03-15

 AD3112 60 0.75 1982-01-01 1982-05-15

 AD3112 60 0.75 1982-12-01 1983-01-01

 AD3112 60 1.00 1983-01-01 1983-02-01

 AD3112 70 0.25 1982-08-15 1982-10-15

 AD3112 70 0.50 1982-02-01 1982-03-15

 AD3112 70 0.75 1982-01-01 1982-10-15

 AD3112 70 1.00 1982-03-15 1982-08-15

 AD3112 80 0.35 1982-08-15 1982-12-01

 AD3112 80 0.50 1982-10-15 1982-12-01

 AD3112 180 0.50 1982-08-15 1983-01-01

 AD3113 60 0.25 1982-09-01 1982-10-15

 AD3113 60 0.75 1982-03-01 1982-10-15

 AD3113 60 1.00 1982-04-01 1982-09-01

 AD3113 70 0.50 1982-06-15 1982-07-01

 AD3113 70 0.75 1982-09-01 1982-10-15

 AD3113 70 1.00 1982-07-01 1983-02-01

 AD3113 70 1.00 1982-10-15 1983-02-01

 AD3113 70 1.25 1982-06-01 1982-12-15

 AD3113 80 0.50 1982-03-01 1982-04-15

 AD3113 80 1.75 1982-01-01 1982-04-15

 AD3113 180 0.50 1982-06-01 1982-07-01

 AD3113 180 0.75 1982-03-01 1982-07-01

 AD3113 180 1.00 1982-04-15 1982-06-01

 IF1000 10 0.50 1982-01-01 1983-01-01

 IF1000 10 0.50 1982-06-01 1983-01-01

 IF1000 90 0.50 1982-10-01 1983-01-01

 IF1000 90 1.00 1982-01-01 1983-01-01

 IF1000 100 0.50 1982-01-01 1983-01-01

 IF2000 10 0.50 1982-01-01 1983-01-01

 IF2000 100 0.50 1982-03-01 1982-07-01

 IF2000 100 0.75 1982-01-01 1982-07-01

 IF2000 110 0.50 1982-03-01 1982-07-01

 IF2000 110 0.50 1982-10-01 1983-01-01

 MA2100 10 0.50 1982-01-01 1982-11-01

PROJ_ACT Table

Appendix D. Sample Tables 417

Name: PROJNO ACTNO ACSTAFF ACSTDATE ACENDATE

 MA2100 20 1.00 1982-01-01 1982-03-01

 MA2110 10 1.00 1982-01-01 1983-02-01

 MA2111 40 1.00 1982-01-01 1983-02-01

 MA2111 50 1.00 1982-01-01 1092-06-01

 MA2111 60 1.00 1982-06-01 1983-02-01

 MA2111 60 1.00 1982-06-15 1983-02-01

 MA2112 60 2.00 1982-01-01 1982-07-01

 MA2112 70 1.00 1982-02-01 1982-10-01

 MA2112 70 1.00 1982-06-01 1983-02-01

 MA2112 70 1.50 1982-02-15 1983-02-01

 MA2112 80 1.00 1982-10-01 1983-10-01

 MA2112 180 1.00 1982-07-01 1983-02-01

 MA2112 180 1.00 1982-07-15 1983-02-01

 MA2113 60 1.00 1982-02-15 1982-09-01

 MA2113 60 1.00 1982-07-15 1983-02-01

 MA2113 70 2.00 1982-04-01 1983-12-15

 MA2113 80 1.00 1982-01-01 1983-02-01

 MA2113 80 1.50 1982-09-01 1983-02-01

 MA2113 80 0.50 1982-10-01 1983-02-01

 MA2113 180 0.50 1982-10-01 1983-01-01

 OP1000 10 0.25 1982-01-01 1983-02-01

 OP1010 10 1.00 1982-01-01 1983-02-01

 OP1010 130 4.00 1982-01-01 1983-02-01

 OP2000 50 0.75 1982-01-01 1983-02-01

 OP2010 10 1.00 1982-01-01 1983-02-01

 OP2011 140 0.75 1982-01-01 1983-02-01

 OP2011 150 0.25 1982-01-01 1983-02-01

 OP2012 140 0.25 1982-01-01 1983-02-01

 OP2012 160 0.75 1982-01-01 1983-02-01

 OP2013 140 0.50 1982-01-01 1983-02-01

 OP2013 170 0.50 1982-01-01 1983-02-01

 PL2100 30 1.00 1982-01-01 1982-09-15

 PL2100 30 1.00 1982-02-01 1982-09-01

Relationship of PROJ_ACT to Other Tables

PROJ_ACT is a parent of the EMP_ACT table.

It is a dependent of:

v The ACTIVITY table; the foreign key on ACTNO in the PROJ_ACT table

references the primary key, ACTNO, in the ACTIVITY table.

v The PROJECT table; the foreign key on PROJNO in the PROJ_ACT table

references the primary key, PROJNO, in the PROJECT table.

PROJ_ACT Table

418 SQL Reference

Appendix E. Data Conversion Chart

 Source Data Type

Target Data Type

CHAR DATE DECIMAL

FLOAT-

DOUBLE

FLOAT-

SINGLE GRAPHIC INTEGER

CHAR YES3 YES6 NO NO NO NO NO

DATE YES7 YES NO NO NO NO NO

DECIMAL NO NO YES1,4 YES13 YES12,13 NO YES1,2

FLOAT-DOUBLE NO NO YES1,4,5 YES YES11 NO YES1,2

FLOAT-SINGLE NO NO YES1,4,5 YES10 YES NO YES1,2

GRAPHIC NO NO NO NO NO YES3 NO

INTEGER NO NO YES1 YES YES12 NO YES

LONG VARCHAR YES3 NO NO NO NO NO NO

LONG VARGRAPHIC NO NO NO NO NO YES3 NO

SMALLINT NO NO YES1 YES YES12 NO YES

TIME YES7 NO NO NO NO NO NO

TIMESTAMP YES7 NO NO NO NO NO NO

VARCHAR8 YES3 YES6 NO NO NO NO NO

VARGRAPHIC9 NO NO NO NO NO YES3 NO

Figure 10. Data Conversion Chart (Part 1 of 2)

© Copyright IBM Corp. 1988, 2007 419

Notes to Figure 10:

 1. An overflow error may result.

 2. The fractional part of the value is dropped.

 3. On output, if the length of the target is smaller than the length of the source,

truncation occurs. On input, an error occurs.

 4. The database manager automatically aligns the decimal point. Overflow of the

integer part may result. The fractional part may be truncated.

 5. The database manager attempts to create the best possible result in converting

from System/390 floating point to scaled fixed point decimal.

 6. The character string must contain a valid representation of a date, time, or

timestamp value. However, you cannot transfer data from a CHAR or

VARCHAR column into a host variable defined as a date, time, or timestamp

type.

 7. On output, when the source is a datetime data type and the corresponding

target is a character data type, certain truncation occurs for time and

timestamp. On input, an error occurs.

 8. This applies to VARCHAR fields less than or equal to 254. VARCHAR fields

greater than 254 are treated like LONG VARCHAR in data conversion.

 9. This applies to VARGRAPHIC fields less than or equal to 127. VARGRAPHIC

fields greater than 127 are treated like LONG VARGRAPHIC in data

conversion.

10. The single-precision data is padded with eight hex zeros.

11. The double-precision data is converted and rounded up on the seventh hex

digit.

12. Conversion is first done in double precision and then rounded to single

precision.

 Source Data Type

Target Data Type

LONG

VARCHAR

LONG

VAR-

GRAPHIC

SMALL-
INT TIME

TIME-

STAMP

VAR-

CHAR8

VAR-

GRAPHIC9

CHAR YES NO NO YES6 YES6 YES3 NO

DATE NO NO NO NO NO YES NO

DECIMAL NO NO YES1,2 NO NO NO NO

FLOAT-DOUBLE NO NO YES1,2 NO NO NO NO

FLOAT-SINGLE NO NO YES1,2 NO NO NO NO

GRAPHIC NO YES NO NO NO NO YES3

INTEGER NO NO YES1 NO NO NO NO

LONG VARCHAR YES NO NO NO NO YES3 NO

LONG VARGRAPHIC NO YES NO NO NO NO YES3

SMALLINT NO NO YES NO NO NO NO

TIME NO NO NO YES NO YES7 NO

TIMESTAMP NO NO NO NO YES YES7 NO

VARCHAR8 YES NO NO YES6 YES6 YES3 NO

VARGRAPHIC9 NO YES NO NO NO NO YES3

Figure 10. Data Conversion Chart (Part 2 of 2)

Data Conversion

420 SQL Reference

13. Some accuracy may be lost when converting DECIMAL data type numbers to

single- or double-precision floating point numbers.

Data Conversion

Appendix E. Data Conversion Chart 421

Data Conversion

422 SQL Reference

Appendix F. Terminology Differences

Some terminology used in this manual may be different from the terminology used

in other SQL products. The terminology used in the DB2 Server for VSE & VM

manuals may change in their future.

Terminology Cross-Reference

The following tables cross-reference ISO-ANS SQL(89) terms to DB2 Server for VSE

& VM terms.

 Table 29. ISO-ANS SQL(89) Term to DB2 Server for VSE & VM Term Cross-Reference

ISO-ANS SQL(89) Term DB2 Server for VSE & VM Term

comparison predicate basic predicate

comparison predicate subquery subquery in a basic predicate

degree of table/cursor number of items in a select list

grouped table result table created by a group-by or having clause

grouped view result view created by a group-by or having clause

grouping column column in a group-by clause

outer reference correlated reference

query expression fullselect

query specification subselect

query term subselect or fullselect in parentheses

result specification result

set function column function

sort specification order-by clause specification

table expression

►► from_clause

where_clause
 ►◄

►►

group_by_clause

having_clause
 ►◄

target specification host variable followed by an indicator variable

transaction logical unit of work or unit of work

value expression arithmetic expression

 Table 30. DB2 Server for VSE & VM Term to ISO-ANS SQL(89) Term Cross-Reference

DB2 Server for VSE & VM Term ISO-ANS SQL(89) Term

arithmetic expression value expression

basic predicate comparison predicate

column function set function

column in a group-by clause grouping column

correlated reference outer reference

© Copyright IBM Corp. 1988, 2007 423

Table 30. DB2 Server for VSE & VM Term to ISO-ANS SQL(89) Term Cross-Reference (continued)

DB2 Server for VSE & VM Term ISO-ANS SQL(89) Term

►► from_clause

where_clause
 ►◄

►►

group_by_clause

having_clause
 ►◄

table expression

fullselect query expression

host variable followed by an indicator variable target specification

logical unit of work or unit of work transaction

number of items in a select list degree of table/cursor

order-by clause specification sort specification

result result specification

result table created by a group-by or having clause grouped table

result view created by a group-by or having clause grouped view

subquery in a basic predicate comparison predicate subquery

subselect query specification

subselect or fullselect in parentheses query term

Terminology Differences

424 SQL Reference

Appendix G. DRDA Considerations

Users who are planning to design applications that:

v run on non-VM platforms and use the Distributed Relation Database

Architecture (DRDA) protocol to connect to DB2 Server for VSE & VM servers,

or

v run on VM/ESA and use the Distributed Relation Database Architecture (DRDA)

protocol to connect to servers other than DB2 Server for VSE & VM

need to be aware that DB2 Server for VSE & VM’s support of SQL does not exactly

match the IBM SQL standard4 or the SQL Entry Level standard.5 This appendix

attempts to provide some guidance in discrepancies to these standards.

Omissions from the Standards

For a list of where DB2 Server for VSE & VM does not support the IBM SQL or

SQL92 entry level standard, please consult the DB2 Server for VSE & VM SQL

Reference manual.

Extensions to the Standards

1. Packages that were created in SQLDS protocol by using extended dynamic

statements

6 cannot be processed in DRDA protocol, or the other way around.

2. There is no support for modifiable packages created by using extended

dynamic statements. If you request such support by specifying the MODIFY

option on the CREATE PACKAGE statement, the system will override this

option with NOMODIFY.

3. Nonmodifiable packages created by using extended dynamic statements are

supported with the following restrictions:

a. There is no support for the positioned UPDATE and positioned DELETE

statements.

b. If the Basic Extended PREPARE form of the extended PREPARE statement

prepares a statement that contains parameter markers, the USING

DESCRIPTOR clause must be used to identify an input SQLDA structure.

c. There is no support for the Single Row Extended PREPARE form of the

extended PREPARE statement.

d. There is no support for the NODESCRIBE option of the CREATE PACKAGE

statement. If specified, it will be ignored.

e. There is no support for “USER” in the ISOLATION option of the CREATE

PACKAGE statement. The system will override USER with CS.

f. There is no support for “LOCAL” in the DATE or TIME option of the

CREATE PACKAGE statement. If specified, SQLCODE -168 (SQLSTATE

42615) will be generated, indicating an incorrect parameter.

4. IBM SQL is a superset of the SQL99 Entry Level standard

5. Entry Level of the International Organization for Standardization (ISO) 9075-1992 Database Language SQL specification

6. Since DB2 RXSQL uses extended dynamic statements, any restrictions on the use of extended dynamics apply to DB2 RXSQL as

well.

© Copyright IBM Corp. 1988, 2007 425

g. DB2 Server for VSE & VM servers do not support cursors declared with the

“WITH HOLD” clause. However, applications may use the “WITH HOLD”

clause against other DRDA servers if they support it, except when extended

dynamic statements are involved.

4. There is no support for the semantics checking of the Flagger, but the syntax

checking of static SQL against the SAA and SQL-89 standards will still be

carried out.

DB2 Server for VSE & VM Facility Restrictions

1. There is no support for the USERID option of the SQLPREP EXEC.

2. There is no support for “USER” in the preprocessing parameter ISOLATION.

The system will override USER with CS.

3. There is no support for “LOCAL” in the preprocessor parameters DATE and

TIME. If specified, SQLCODE -168 (SQLSTATE 42615) will be generated,

indicating an incorrect parameter.

4. There is no support for the blocking of PUTs. However, the PUT operation will

still be supported one row at a time as unblocked inserts.

5. The following ISQL commands are not supported when using the DRDA

protocol, because they request functions specific to DB2 Server for VM:

v SET ISOLATION

v COUNTER

v SHOW

6. The following DBSU commands are not supported when using the DRDA

protocol, because they request functions specific to DB2 Server for VM:

v UNLOAD DBSPACE

v UNLOAD TABLE

v UNLOAD PACKAGE

v RELOAD DBSPACE

v RELOAD TABLE

v SET ISOLATION

v SET UPDATE STATISTICS

v REBIND PACKAGE

v REORGANIZE INDEX

7. Fortran packages and any other packages created by using extended dynamic

statements that were created in SQLDS protocol cannot be RELOADed by the

DBS Utility in DRDA protocol, or the other way around.

8. Portable packages created under SQL/DS Version 2 Release 2 cannot be

RELOADed by the DBS Utility in DRDA protocol.

9. If accounting data is sent from a DRDA application requester to a DB2 for VSE

& VM server, only the first 16 bytes of user-defined data

7 is captured by the

server and put into accounting records.

7. For example, from DDCS for OS/2 user-defined data can be set by the DFT_ACCOUNT_STR configuration parameter.

426 SQL Reference

Appendix H. Incompatibilities Between Releases

This appendix identifies the incompatibilities that exist between each release of the

product and the previous release, going back to Version 1 Release 3.5. There is a

separate section in the appendix for each release.

Note on Skipping Releases: If your migration plans call for skipping one or more

releases (for example, migrating directly from V2R2

to V3R4), you will still be affected by the

incompatibilities introduced by the releases that you

are skipping.

Within each section, the incompatibility items are grouped into the following

categories:

v SQL and Data

v Application Programming

v System Environment

Definition of an Incompatibility

For the purpose of this appendix, an “incompatibility” is defined to be a part of

the product that works differently than it did in the previous release, in such a

way that if used in an existing application, it will produce a different result,

necessitate a change to the application, or reduce performance. In this definition,

“application” can apply to a broad range of things (singly or in combination), such

as:

v Application program code

v Specifications for preprocessing application programs

v Interactive SQL queries

v ISQL functions

v DBS Utility functions

v Miscellaneous tools in your operating environment.

This appendix does not describe incompatibilities where certain operations in the

current release are less likely to generate an error condition than they did in the

previous release, as those changes will only have a positive impact on your

applications. (For example, the SUM and AVG column functions no longer

overflow as easily because they now use a larger accumulator, and a change to the

use of the equal (=) compare predicate with a negative indicator variable now

evaluates to UNKNOWN rather than generating an error condition.)

Impact on Existing Applications

Read the appropriate section of this appendix carefully to determine what changes

you will need to make to your applications when migrating from one release to the

next. You may also want to review the chapter in the manual on migration

considerations which discusses some of these incompatibilities in more detail, plus

other considerations for each release-to-release migration.

This appendix excludes the numerous changes and enhancements for which no

impact on existing applications is anticipated. These are listed in the Summary of

Changes section (included with each manual) of the appropriate release of the

© Copyright IBM Corp. 1988, 2007 427

library. Review that section to see where you could make changes to your existing

applications in order to take advantage of some of these enhancements.

V2R1 and V1R3.5 Incompatibilities

SQL and Data

1. Evaluation of HAVING and SELECT Clauses

Prior to V2R1, the HAVING clause was evaluated after the SELECT clause. This

caused a statement such as the following to fail on a zero divide and generate

SQLCODE -802, if a zero part number was encountered:

 SELECT 200/PARTNO FROM T1

 GROUP BY PARTNO HAVING PARTNO > 0

In V2R1, the HAVING clause is evaluated before the SELECT clause. This

means your applications now have the potential of producing different results.

In the above example, if a zero part number is encountered, the query does not

fail and SQLCODE -802 is not generated.

2. Null Values as a Grouping Criterion

Prior to V2R1, if any row had a null value in one of the columns referenced in

a GROUP BY clause, each such row was treated as a separate group.

In V2R1, null values are considered identical for purposes of grouping.

This means that your existing applications may generate fewer rows in the

result table than they did in previous releases, since multiple null-value-groups

are now consolidated into one group. Any derived column function values will

reflect this consolidation (for example, SUM(BONUS)).

3. Negative Decimal Zero Support

Prior to V2R1, the system recognized negative decimal zero as a valid value.

However, it did not evaluate positive and negative decimal zero values as

equivalent.

In V2R2, any negative decimal zeros found in SQL statements are converted to

positive decimal zeros before execution. This means that inserting, updating, or

deriving negative decimal zeros, or using them in a comparison, is no longer

possible. A utility called SQLZERO is provided which converts all negative

decimal zeros in the database to positive decimal zeros.

For a detailed discussion of this topic, see “Elimination of Negative Decimal

Zero” in the chapter which discusses migrating from V1R3.5 in the System

Planning and Administration manual, V2R1 or later.

4. Insertion of Invalid Decimal Values

Prior to V2R1, it was possible to insert invalid decimal data into the database

during DATALOAD by specifying string values that were invalid for

DECIMAL columns. For example, X'0000' has no sign value.

In V2R1, this is no longer allowed. Doing so will generate SQLCODE -424.

Application Programming

5. Use of ORDER BY Clause with SELECT INTO

Prior to V2R1, the SELECT INTO statement was allowed to contain an ORDER

BY clause.

In V2R1, this is no longer allowed. Doing so will generate SQLCODE -524.

6. Scope of Prepared Statements

Prior to V2R1, a prepared statement could sometimes, but not always, be

referenced in subsequent logical units of work (LUWs).

428 SQL Reference

In V2R1, this inconsistency is removed. A prepared statement may now only be

referenced within the same LUW in which it was prepared.

If your applications contain code that references prepared statements across

LUWs, they will have to be restructured accordingly.

7. SQLCODE Returned After a Format 2 INSERT

Prior to V2R1, when a format 2 INSERT (known as “INSERT via subselect” in

V2R2 and later releases) returned an empty answer set for insertion, SQLCODE

+0 was generated.

In V2R1, SQLCODE +100 is generated instead.

8. Preprocessor Errors Converted to Warnings

Prior to V2R1, a certain set of conditions generated errors during preprocessing.

In V2R1, these conditions now generate warnings, although the associated

SQLCODEs are still negative (starting with V3R1, the codes are presented as

positive numbers). These conditions and their corresponding SQLCODEs are

shown in the table below.

 SQLCODE DESCRIPTION

-134 IMPROPER USE OF THE LONG FIELD COLUMN column.

-135 THE INPUT FOR A LONG FIELD COLUMN IN AN INSERT OR UPDATE

MUST BE FROM A HOST VARIABLE OR THE KEYWORD NULL.

-150 THE VIEW CANNOT BE USED TO MODIFY DATA SINCE IT IS BASED

ON MORE THAN ONE TABLE.

-151 A COLUMN OF A VIEW CANNOT BE UPDATED SINCE IT IS DERIVED

FROM AN EXPRESSION.

-152 A COLUMN OF A VIEW CANNOT BE USED IN A WHERE-CLAUSE

SINCE IT IS DERIVED FROM A COLUMN FUNCTION.

-154 VIEW LIMITATIONS DO NOT ALLOW THE USE OF THE FOLLOWING

OPERATION: operation

-155 YOU CANNOT PERFORM A JOIN ON A VIEW CONTAINING A

GROUP-BY CLAUSE OR A DISTINCT KEYWORD.

-156 RESTRICTIONS APPLY WHEN SELECTING FROM A VIEW CREATED

WITH THE DISTINCT OR GROUP BY KEYWORD.

-202 COLUMN column WAS NOT FOUND IN ANY TABLE REFERENCED BY

THE COMMAND.

-205 COLUMN column WAS NOT FOUND IN TABLE creator.table.

-401 INCOMPATIBLE DATA TYPES FOUND IN AN EXPRESSION OR

COMPARE OPERATION.

-404 A CHARACTER STRING SPECIFIED IN AN INSERT OR UPDATE IS

TOO LARGE FOR THE TARGET COLUMN.

-405 THE NUMERIC VALUE, value, IS NOT WITHIN THE RANGE OF THE

DATA TYPE.

-407 AN UPDATE OR INSERT OF A NULL VALUE FOR A COLUMN

DEFINED AS NOT NULL IS NOT ALLOWED.

-408 AN UPDATE OR INSERT OF A DATA VALUE IS INCOMPATIBLE WITH

THE DATA TYPE OF THE ASSOCIATED TARGET COLUMN.

-414 LIKE WAS USED FOR A NUMERIC OR DATE/TIME COLUMN TYPE. IT

MUST ONLY BE USED WITH CHAR OR VARCHAR TYPE COLUMNS.

-415 THE DATA TYPES OF CORRESPONDING ITEMS IN THE

SELECT-CLAUSES CONNECTED BY A UNION ARE NOT IDENTICAL.

Appendix H. Incompatibilities Between Releases 429

SQLCODE DESCRIPTION

-416 YOU CANNOT SPECIFY A LONG FIELD COLUMN IN THE

SELECT-CLAUSE OF A UNION.

-419 THE PRECISION OF THE NUMERATOR AND/OR THE SCALE OF THE

DENOMINATOR ARE TOO LARGE FOR DECIMAL DIVISION.

-421 A HEXADECIMAL LITERAL WITH AN ODD LENGTH MAY NOT BE

USED WITH A DBCS COLUMN IN A PREDICATE.

V2R2 and V2R1 Incompatibilities

SQL and Data

1. Leading and Trailing zeros in Decimal Constants

Prior to V2R2, leading and trailing zeros of decimal constants were removed by

the system when calculating their scale and precision.

In V2R2, if the precision of a decimal constant is greater than 15, leading zeros

are removed to bring the precision down to 15. Trailing zeros are not removed.

If your current applications provide output from the result table without any

intervening formatting, this change has the potential of altering that output. If

formatting is involved, you may have to change the formatting logic to obtain

the same output.

Similarly, input to the database by means of INSERT or UPDATE may be

affected, if a decimal constant is involved.

2. Use of Host Variables with UNION

Prior to V2R2, two select-lists could be successfully UNION’ed even when they

contained corresponding items that were host variables of different data types

and different lengths. The statement below is an example of this, where host

variables :hw and :fw are halfword fixed binary (15) and fullword fixed binary

(31), respectively.

 SELECT :hw FROM T1

 UNION

 SELECT :fw FROM T1

In V2R2, the above statement is no longer allowed. Issuing it will generate

SQLCODE -415.

Note: In V3R1, some restrictions on the use of data types within a UNION are

removed, including the above incompatibility.

Application Programming

3. Atomic Operations Against the Database

Prior to V2R2, many types of operational errors (that is, SQL statement errors)

against the database caused the system to roll back the entire current logical

unit of work (LUW), leaving the application with no control over the status of

the LUW.

In V2R2, all operations against the database are now atomic. That is, within an

LUW, each operation can succeed or fail separately, with no effect on other

operations, provided they do not depend on it. If an operation fails, the

application is free to either continue working on the same LUW, or commit the

changes made so far, or roll back the LUW. Some system errors, such as

deadlocks, still require the entire LUW to be rolled back by the system. Also,

atomic operation is not supported for:

v Operations on data located in nonrecoverable storage pools

430 SQL Reference

v Operations on data when running without a log (LOGMODE=N).

As a result of this change, you may want to extend the logic of your LUW

processing in your applications.

Note: The next incompatibility item contains a special case of atomic operation.

4. Multiple Row Changes Within an Atomic Operation

Prior to V2R2, if an error occurred during a single operation involving multiple

row changes to the database, the database was potentially left in an

inconsistent state. (This was one of those operational errors that was not rolled

back by the system.) Some of the rows were processed; the rest were not. The

only practical way to avoid this inconsistency was to have the application roll

back the entire current LUW.

There was one exception to this: in the case of a data definition statement, such

as CREATE TABLE, the system itself rolled back the LUW to avoid a partial

definition of a table in the catalog. The application had no control over the

status of the LUW.

In V2R2, with atomic operation in place, the system automatically undoes that

portion of the multiple row operation that was processed prior to the error.

This eliminates the potential of an inconsistent database resulting from such an

operation, and leaves the application free to control the current LUW as it sees

fit.

See “Detailed Notes on V2R2-V2R1 Incompatibilities” on page 432 for an

example.

5. Four-Byte Floating-point Data

Prior to V2R2, all floating-point data had to be eight bytes.

In V2R2, it can be four bytes.

This leads to a potential problem in V2R2 for programs that allocate eight bytes

when using DESCRIBE on a FLOAT column. When using DESCRIBE,

applications should allocate storage based on the SQLLEN of a column (as

given in the SQLDA), not the SQLTYPE.

6. Arithmetic and Conversion Errors

Prior to V2R2, an arithmetic or conversion error terminated processing of the

statement and generated SQLCODE -802.

In V2R2, these types of errors are tolerated when they involve a host variable

that has an indicator variable. In such cases, processing of the SQL statement

continues; SQLCODE +802 is generated; a -2 is placed in the indicator variable;

and the associated database variable remains unchanged.

If your application is checking for these errors, this could impact its logic. The

types of errors that can now be tolerated are:

v Fixed point overflow

v Decimal overflow

v Exponent overflow

v Exponent underflow

v Divide exception.

For more detail, see the Messages and Codes manual, V2R2 or later, for

SQLCODEs +802 and -802.

7. GRANT Authority for PUBLIC

Prior to V2R2, “WITH GRANT OPTION” in a GRANT statement passed

GRANT authority to the user receiving the privilege in question, even when

the user was PUBLIC.

Appendix H. Incompatibilities Between Releases 431

In V2R2, when “PUBLIC” and “WITH GRANT OPTION” are used together, the

privilege is granted to PUBLIC, but without GRANT authority. In such cases, a

warning is given to that effect.

This can impact your current authorization of views or programs, since these

objects, which previously could have been grantable (for example, a value of 'G'

recorded for a program in catalog table SYSPROGAUTH), will no longer be so

(a value of 'Y' now in SYSPROGAUTH) if they depend on PUBLIC access to an

object.

For example, if a program contains a static SELECT statement involving table

T1, and the owner of the program is dependent on PUBLIC access to T1, then

'Y' is the highest authorization value attainable for that statement — and

therefore for the program. This means that the owner is still able to run the

program, but not to grant the RUN privilege on it to others. This, in turn,

means that when this program is preprocessed under V2R2, users who

previously may have had authority to run it (by virtue of receiving RUN

authority from the owner) will no longer have that authority.

System Environment

8. Change to Message Numbers

Prior to V2R2, the ARI message numbers were three digits long and were

followed by an action indicator. This identification formed a header for each

line of the message text, as illustrated below:

 ARI297A RESPONSE TO ARCHIVE PROMPT

 ARI297A IS NOT VALID.

In V2R2, these message numbers are expanded to four digits to accommodate

future expansion of the system. Message numbers existing in the earlier

releases now contain a high-order zero. Also, the message header is now only

used on the first line of the message. The above example becomes:

 ARI0297A RESPONSE TO ARCHIVE PROMPT

 IS NOT VALID.

This could impact any automated operating system facility that you may be

using (for example, the VM Programmable Operator) to scan the message

number and text.

Detailed Notes on V2R2-V2R1 Incompatibilities

1. Multiple Row Changes Within an Atomic Operation

In the following example, the operations are contained in one LUW. The second

operation involves multiple row changes to the database.

 DELETE FROM SUPPLIER WHERE SUPPNO = 64

 UPDATE INVENTORY SET PARTNO = PARTNO + 1

 INSERT INTO QUOTATIONS VALUES (64, 221, .25, 5, 100)

The DELETE statement removes a supplier from the SUPPLIER table. The

UPDATE statement changes the first two rows of the INVENTORY table, but

fails on the third row because the operation would create a duplicate primary

key value.8

Prior to V2R2, the system would have left the new values in the first two rows

of INVENTORY, with the rest of the table unchanged. To avoid this undesirable

inconsistency, the application would have had to contain logic to recognize this

error and roll back the entire LUW, thus undoing the DELETE.

8. In V3R2 this error will not occur, because the enforcement of uniqueness is done after all the rows are updated.

432 SQL Reference

In V2R2, when this error occurs, the system undoes the UPDATE statement by

reversing the changes made to the first two rows. Because neither the DELETE

nor the INSERT depends on the success of the UPDATE (these operations are

atomic), the application has the following options open to it:

v Proceed and perform the INSERT, or

v Commit the successful DELETE, or

v Roll back the LUW to undo the DELETE.

V3R1 and V2R2 Incompatibilities

SQL and Data

 1. Table Designation Rules

Prior to V3R1, the following set of ANS/ISO SQL rules for table designation

in FROM clauses were not fully enforced:

v Duplicate table or view names in a FROM clause must all have a correlation

name assigned to them.

v Correlation names in a FROM clause must be distinct from each other.

v Correlation names in a FROM clause must be distinct from the table or

view names in the same clause.

When the application contained ambiguities, such as

 SELECT A.COL1

 FROM A B, B A

where COL1 appeared in both table A and table B, the system accepted the

statement, employing its own set of rules to resolve the ambiguity. This

example represents only one type of ambiguity that could occur.

In V3R1, the ANS/ISO rules are fully enforced. Any violations generate

SQLCODE -211 (SQLSTATE 52012).

 2. New Reserved Words

Prior to V3R1, the following were not reserved words in SQL and could

therefore be used as ordinary identifiers:

v CHAR

v CHARACTER

v DOUBLE

v EXECUTE

v FIELDPROC

v GRAPHIC

v LONG

v PACKAGE.

Similarly, the following were not reserved words for the DBS Utility:

v REORGANIZE

v SCHEMA.

In V3R1, these are reserved words, so an existing application that uses any

words in the SQL group above as an ordinary identifier will have to be

changed before it is preprocessed, or SQLCODE -105 (SQLSTATE 37501) will

be generated. Similarly, the words in the DBS Utility group above can no

longer be used in DBS Utility commands as ordinary identifiers.

You can address this incompatibility by changing these ordinary identifiers to

use nonreserved words, or you can retain the original names by redefining

them as delimited identifiers.

 3. Significance of Trailing Blanks

Appendix H. Incompatibilities Between Releases 433

Prior to V3R1, trailing blanks were treated as significant in both object names

and VARCHAR and VARGRAPHIC column values.

In V3R1, such trailing blanks are not considered significant.

If your applications must continue to treat trailing blanks as significant, you

may have to undertake some redesign. See “Detailed Notes on V3R1-V2R2

Incompatibilities” on page 437 for further discussion and examples.

 4. Timestamp at the 24th Hour

Prior to V3R1, a timestamp value in which the hour portion was 24 and the

minute, second, or microsecond portion was not zero, was accepted as valid

data for insertion or updating.

In V3R1, an attempt to insert or update a column with such a value generates

SQLCODE -181 (SQLSTATE 22007). When the hour portion is 24, the other

time portions must now be zero.

If you have any of these invalid values in your tables after migrating to V3R1,

they will prevent you from doing a DBS Utility unload/reload operation or an

INSERT using a subselect. You will have to first correct these values to

conform to the rule mentioned above.

Application Programming

 5. Invalid Pointers in SQLDA and RDIIN

Prior to V3R1, the system checked for invalid pointers in the SQLDA and

RDIIN structures. This checking was extensive, often resulting in poor

performance.

In V3R1, in the interest of better performance, this checking has been

eliminated. It is up to the application programmer to follow the rules on

setting pointers in the SQLDA, as outlined in the chapter “Using Dynamic

Statements” in the V3R1 Application Programming manual. Pointers in the

RDIIN must not be changed by the application. If your application does not

satisfy these rules, the results will be unpredictable.

 6. Continuation Characters in Fortran

Prior to V3R1, the Fortran preprocessor ignored any continuation character

located in front of an EXEC SQL on the same line, provided it was not part of

an IF or ELSE statement — even though such coding was incorrect.

In V3R1, the continuation character is acknowledged and the EXEC SQL is

ignored.

 7. Missing Comma in COBOL Continuation Lines

Prior to V3R1, if you left out an intended comma from a list of parameters in

an SQL statement embedded in a COBOL program (as illustrated below) and

did not code a continuation character in the next line, the system would

assume a continuation character and misinterpret the parameter list, giving

potentially wrong results.

 SELECT *

 FROM T1

 WHERE COL1 IN (’AB’ <--- missing comma

 ’CD’, <--- no continuation character

 ’EF’)

In V3R1, this error is detected and reported at preprocessor time.

 8. DROP PROGRAM Statement Containing Host Variables

Prior to V3R1, the processing of a DROP PROGRAM statement that contained

host variables required a specific section in the access module. (In this form of

434 SQL Reference

the statement, the name of the owner of the program or the name of the

program or both are expressed as host variables.)

Note on New Terminology: As of V3R1, PACKAGE becomes the new

reserved word for PROGRAM, the latter

remaining as a synonym. Access modules are

now referred to as packages. This new

terminology is used below.

In V3R1, the host variable form of the DROP PACKAGE statement no longer

requires a section in the package. All the information required to execute the

statement is sent with the execution-time request. You will be affected if you

have this form of the DROP PACKAGE coded in your application programs.

If the programs that use these packages are explicitly repreprocessed, they will

have to be recompiled (or reassembled) and relinked in order to execute

successfully. Otherwise, errors will result, since there will be fewer sections in

the new package and this will cause a mismatch between section numbers in

the RDIIN structure and the new package.

 9. Data Type of String Constants

Prior to V3R1, application programs that assumed that string constants have a

data type of VARGRAPHIC because they are used in the context of GRAPHIC

and VARGRAPHIC data, were accepted.

In V3R1, such constants are considered to be VARCHAR, and if used in

conjunction with GRAPHIC or VARGRAPHIC data will result in an error,

such as SQLCODE -171 (SQLSTATE 53015) or SQLCODE -408 (SQLSTATE

53021).

If the host language is COBOL, PL/I, or C, you should use explicitly coded

graphic constants. See the section of the V3R1 SQL Reference manual that

discusses graphic string constants.

10. New Options in CREATE PROGRAM Statement

Prior to V3R1, when the following three options:

 ISOL({RR|CS|USER})

 DATE({ISO|USA|EUR|JIS|LOCAL})

 TIME({ISO|USA|EUR|JIS|LOCAL})

were used in conjunction with an extended dynamic access module, the

values for these options were determined when statements referencing the

extended dynamic access module were executed. The values were set based

on the corresponding preprocessing options of the program containing the

extended dynamic statements.

Note on New Terminology: As of V3R1, PACKAGE becomes the new

reserved word for PROGRAM, the latter

remaining as a synonym of the former. Access

modules are now referred to as packages. This

new terminology is used below.

In V3R1, these options are added to the CREATE PACKAGE statement, so that

they become preprocessing options. This means that their values are stored

with the package itself, and are enforced when the sections of the package are

executed. Consequently, your programs may now run at a different isolation

level than they did in V2R2.

Appendix H. Incompatibilities Between Releases 435

See “Detailed Notes on V3R1-V2R2 Incompatibilities” on page 437 for

examples that illustrate how incompatibilities may arise as a result of this

change.

11. Views Created from SELECT *

Prior to V3R1, views created as SELECT * FROM T1 required no special

attention when being migrated from release to release, even when columns

had been added to table T1 after the creation of the view.

In V3R1, a necessary change to the system now requires special attention in

the above situation. The first time the system encounters such a view in an

application, it attempts to rebuild the view, and fails with SQLCODE -835

(SQLSTATE 56049).

To avoid this failure, drop and recreate the view before running the

application on V3R1. Depending on how your application logic is coded, you

may have to change that logic in order to handle the extra columns that were

added to table T1. The best practice is to avoid the use of SELECT * for view

creation, and specify the explicit columns that the application requires.

12. Semicolon Delimiter in SYSVIEW Table

Prior to V3R1, when a view was created through the DBS Utility or by

running a preprocessed program, the CREATE VIEW statement was inserted

into column VIEWTEXT of catalog table SYSVIEWS with a semicolon

delimiter.

In V3R1, this delimiter is no longer included.

If your application has a dependency on the existence of this delimiter in the

SYSVIEWS table, you will need to change it accordingly.

13. Replacement of Error Message ARI0565E

Prior to V3R1, error message ARI0565E was issued during preprocessing of

Fortran programs whenever the input source contained no SQL statements

that required creation of a package.

In V3R1, this message is replaced by information message ARI0565I. In

addition, related message, ARI0598I, dealing with the status of the package, is

modified.

This could impact any automated operating system facility that you may be

using (for example, the VM Programmable Operator) to scan the message

number and text.

14. Replacement of SQLCODE -150

Prior to V3R1, an attempt to modify data through a view based on more than

one table generated SQLCODE -150.

In V3R1, this is replaced with SQLCODE +149 at preprocessor time, and

SQLCODE -149 (SQLSTATE 53007) at run time.

15. New Positive SQLCODEs

Prior to V3R1, a number of negative SQLCODEs and associated positive

RDSCODEs were returned during preprocessing to indicate a warning

situation.

In V3R1, new positive SQLCODEs are returned instead, which correspond

identically to the above negative SQLCODEs in code number and (in most

cases) message text and explanation. If the error is not removed, the

corresponding negative SQLCODEs will be issued at run time.

See “Detailed Notes on V3R1-V2R2 Incompatibilities” on page 437 for a list of

these new positive SQLCODEs.

System Environment

436 SQL Reference

16. Uppercase and Mixed Case in Message Text

Prior to V3R1, all message text was in uppercase for all the languages

available in the product except German, which was available only in mixed

case.

Note: The uppercase applied to both English language offerings, AMENG and

UCENG. It also applied to the English text embedded in the DBCS

languages Japanese and Korean (for example, “FORCE”, “SQLEND”).

In V3R1, the message text of three more languages is now changed to mixed

case only. These languages are AMENG (the default language setting), Italian,

and Spanish. If you are using any of these three languages and you have

existing case-sensitive applications that scan for specific message text in

uppercase only, you will have to modify them to detect lowercase as well.

This could impact any automated operating system facility that you may be

using for this purpose (for example, the VM Programmable Operator).

An alternative approach (for English users only) to modifying your

applications would be to specify UCENG instead of AMENG, through the SET

LANGUAGE command.

17. Authorization for Changing System Catalog Tables

Prior to V3R1, certain portions of the catalog could be updated, deleted, or

inserted into, by any user with DBA authority.

In V3R1, the number of columns in the catalog tables for which these changes

are allowed is reduced.

This change may affect the authorization of some of your applications. See

Appendix E of the V3R1 SQL Reference manual for a list of the columns that

can now be updated, deleted, or inserted.

18. Modification of Sample Tables and Applications

Prior to V3R1, the sample tables shipped with the product consisted of five

Manufacturing tables and four Organizational-project tables. The sample

applications shipped with the product used the Manufacturing tables.

In V3R1, the Manufacturing tables are not included, but can be installed

optionally. The Organization-project tables are enhanced to provide more

guidance on referential integrity and also consistency across the IBM relational

database products. The enhancements include:

v Two new tables

v A new column in an existing table

v Renaming of a table

v Modification of a foreign key definition.

The sample applications are now modified to use the enhanced

Organization-project tables. They now issue a ROLLBACK instead of a

COMMIT, so that they can be rerun without having to first restore the sample

database.

If you have any applications that use these tables, such as an online tutorial or

a test package for new releases, you will need to upgrade them accordingly.

Detailed Notes on V3R1-V2R2 Incompatibilities

1. Significance of Trailing Blanks

Prior to V3R1, delimited identifiers "TABLE1" and "TABLE1�" would be

considered two different tables, and VARCHAR values 'ABC' and 'ABC��' two

different values, where '�' represents a blank character.

In V3R1, in the case of the table names, the system would not accept the two

tables because they now have identical names. In the case of the VARCHAR

Appendix H. Incompatibilities Between Releases 437

values, they are considered equal, except in a LIKE comparison. However, if

specified at INSERT or UPDATE time, trailing blanks are included in the

varying length string data stored in the database.

If your applications must continue to treat trailing blanks as significant, you

may have to undertake some redesign. For example, prior to V3R1, if your

table had a VARCHAR column, COLX, containing 'AAA���' and you wanted to

select all values from COLX that were not equal to 'AAA', the following search

condition would satisfy this requirement, because it would return value

'AAA���' along with any other values not equal to 'AAA':

 WHERE COLX <> 'AAA'

In V3R1, value 'AAA���' does not get returned in the above example. This

search condition must be redesigned in order to get the same results as in prior

releases. One solution is:

 WHERE COLX NOT LIKE 'AAA'

For more discussion on migration considerations for this item, see

“Considerations for VARCHAR and VARGRAPHIC Compare” in the chapter

which discusses migrating from V2R2, in the System Administration manual,

V3R1 or later.

2. New Options in CREATE PROGRAM Statement

The following examples illustrate the incompatibilities that may arise when you

migrate to V3R1.

Load Module

Package

Execution

2.2 3.1

Figure 11. Legend

438 SQL Reference

Figure 12 illustrates how isolation levels are determined for packages created

using extended dynamic SQL in V2R2. For example, program PROG1 contains

the CREATE PROGRAM statement for package PACKA, and prepares a section

in the package. Program PROG2 subsequently executes the section in PACKA.

Since program PROG2 was preprocessed with isolation level cursor stability

(CS), the section executes using CS.

PACKA

section n section n

PACKB

. . .

SQLISL = C

EXECUTE :SECTION IN PACKA

. . .

EXECUTE :SECTION IN PACKB

SQLISL = R

EXECUTE :SECTION IN PACKB

. . .

EXECUTE :SECTION IN PACK A

. . .

CREATE PROGRAM PACKA

PREPARE FROM :STMTSTR

SETTING :SECTION IN PACKA

. . .

CREATE PROGRAM PACKB

PREPARE FROM :STMTSTR

SETTING :SECTION IN PACKB

(run at CS)

(run at CS)

(run at CS)

(run at RR)

PROG1 (ISOL=RR)

PROG3 (ISOL=USER)

PROG2 (ISOL=CS)

PROG4 (ISOL=USER)

Figure 12. Version 2 Release 2

Appendix H. Incompatibilities Between Releases 439

Figure 13 shows the same scenario in V3R1. In this case, the isolation level RR

is specified when the PACKA package is created. When program PROG2

executes a section in PACKA, isolation level RR is used.

PACKA

section n section n

PACKB

(run at CS)

(run at RR)

. . .

SQLISL = C

EXECUTE :SECTION IN PACKA

. . .

EXECUTE :SECTION IN PACKB

SQLISL = R

EXECUTE :SECTION IN PACKB

. . .

EXECUTE :SECTION IN PACK A
(run at RR)

PROG4 (ISOL=USER)PROG1 (ISOL=RR)

PROG3 (ISOL=USER)

PROG2 (ISOL=CS)

. . .

CREATE PACKAGE PACKA

OPTION ISOL(RR)

PREPARE FROM :STMTSTR

SETTING :SECTION IN PACKA

. . .

CREATE PACKAGE PACKB

OPTION ISOL(USER)

PREPARE FROM :STMTSTR

SETTING :SECTION IN PACKB

(run at RR)

Figure 13. Version 3 Release 1

440 SQL Reference

Figure 14 shows packages being migrated to V3R1. In this case, the isolation

level bind option will be automatically set to USER. Applications will notice no

change in isolation level handling from previous releases.

PACKA PACKB

section nsection n

section n section n

. . .

EXECUTE :SECTION IN PACK A

. . .

SQLISL = C

EXECUTE :SECTION IN PACKA

. . .

EXECUTE :SECTION IN PACKB

SQLISL = R

EXECUTE :SECTION IN PACKB

(run at CS)

(run at CS)

(run at CS)

(run at RR)

MIGRATION

PROG2 (ISOL=CS)

PACKB (ISOL=USER)PACKA (ISOL=USER)

PROG3 (ISOL=USER)

Figure 14. Migration

Appendix H. Incompatibilities Between Releases 441

Figure 15 and Figure 16 show that once an extended dynamic package has been

dropped and recreated in V3R1 with an isolation level other than USER, the

isolation level bind option will be enforced whenever the executing application

has also been preprocessed, assembled, and re-linked under V3R1. If the

PACKA package has been dropped and recreated in V3R1, with an isolation

level of RR, then:

v If program PROG2 is still pre-V3R1, when the section in PACKA is executed,

isolation level CS will be used.

v Otherwise, isolation level RR will be enforced whenever sections in PACKA

are executed.

3. New Positive SQLCODEs

These codes are shown in the table below.

 SQLCODE SQLSTATE DESCRIPTION

+117 01525 The number of data values to be inserted does not equal

the number of columns specified or implied.

+134 Improper use of long string.

PACKA

section n

(run at CS)

. . .

EXECUTE :SECTION IN PACK A

PROG1 (ISOL=RR)

PROG2 (ISOL=CS)

. . .

CREATE PACKAGE PACKA

OPTION ISOL(RR)

PREPARE FROM :STMTSTR

SETTING :SECTION IN PACKA

Figure 15. Dropping and Re-creating PACKA Without Repreprocessing PROG2

PACKA

section n

. . .

EXECUTE :SECTION IN PACK A
(run at RR)

PROG2 (ISOL=CS)

Figure 16. Re-preprocessing PROG2

442 SQL Reference

SQLCODE SQLSTATE DESCRIPTION

+135 The input for a long string column in an INSERT

statement or UPDATE statement must be from a host

variable or be the keyword NULL.

+149 The view cannot be used to modify data because it is

based on more than one table.

+151 A column of a view cannot be updated since it is derived

from an expression.

+154 View limitations do not allow you to use the following

operation: xxxxxx

+202 01533 Column xxxxxx was not found in any table referenced by

the statement.

+204 01532 xxxxxx was not found in the system catalog.

+205 01533 Column xxxxxx was not found in table yyyyyy.

+206 01533 The xxxxxx on yyyyyy was not found.

+401 Incompatible data types found in an expression or

compare operation.

+404 A character string specified in an INSERT or UPDATE

statement is too large for the target column.

+405 The numeric value, xxxxxx, is not within the range of the

data type.

+407 Either an UPDATE statement or an INSERT statement

with a null value for a column defined as NOT NULL is

not allowed, or a null host variable value is not allowed in

a SELECT list.

+408 An UPDATE or INSERT of a data value is incompatible

with the data type of the associated target column.

+414 The LIKE clause was used for a numeric or date/time

column type. LIKE must only be used with character or

graphic compatible columns.

+415 The corresponding columns, n, of the operand of a

UNION or a UNION ALL do not have comparable

column descriptions.

+416 You cannot specify a long string column in the SELECT

clause of a UNION.

+419 The precision of the numerator and/or the scale of the

denominator are too large for decimal division.

+421 A hexadecimal literal associated with a graphic compatible

column in a predicate cannot have an odd length.

+551 01548 User xxxxxx does not have the yyyyyy privilege.

+552 01542 xxxxxx is not authorized to perform this statement.

+668 Table xxxxxx is inactive and you cannot access it.

Appendix H. Incompatibilities Between Releases 443

V3R3 and V3R2 Incompatibilities (VM Only)

Note: This section does not include the restrictions on the use of DRDA protocol,

as that topic is covered in the appendix describing DRDA considerations.

SQL and Data

 1. New Reserved Word, CONCAT

Prior to V3R3, CONCAT was not a reserved word in SQL and could therefore

be used as an ordinary identifier.

In V3R3, CONCAT is a reserved word, and can be used as an alternative to

the concatenation operator (||). Any existing applications that use it as an

ordinary identifier will have to be changed before they are preprocessed

under V3R3; otherwise SQLCODE -105 (SQLSTATE 37501) will be generated.

You can address this incompatibility by changing this ordinary identifier to

use a nonreserved word, or you can retain the original name by redefining it

as a delimited identifier.

 2. REVOKE UPDATE

Prior to V3R3, the REVOKE statement for the UPDATE privilege ignored any

column names that might be present as parameters of the UPDATE option —

even though such coding was invalid. (This statement is only done on a table

basis, never a column basis.)

In V3R3, such parameters are not allowed. If they are used, SQLCODE -105

(SQLSTATE 37501) will be generated.

 3. Numeric Data in Character Strings

Prior to V3R3, columns with a data type of CHAR or VARCHAR accepted

numeric data, including FLOAT, on insert or update. For example, the

following statements did not create an error:

 CREATE TABLE T1 (COL CHAR(8))

 CREATE TABLE T2 (COL VARCHAR(8))

 INSERT INTO T1 (123)

 INSERT INTO T2 (123)

 INSERT INTO T1 (1E1)

 INSERT INTO T2 (1E1)

 UPDATE T1 SET COL = 123

 UPDATE T2 SET COL = 123

 UPDATE T1 SET COL = 1E1

 UPDATE T2 SET COL = 1E1

In V3R3, these inserts and updates now generate SQLCODE -408 (SQLSTATE

53021).

If you want to use the value 123, you must now use it as a character literal

('123'). Float literals are no longer allowed for character columns.

 4. Invalid String Representation of Datetime

Prior to V3R3, when a predicate was being evaluated that contained an

operand that was one of the special registers CURRENT DATE, CURRENT

TIME, or CURRENT TIMESTAMP, and one of the other operands was a

character column of the correct length but containing a value that was not a

valid string representation of a datetime, the application ran successfully. Any

row containing such an invalid value was returned if it met the search

condition. For example, all invalid date values in column, ORDERDATE, were

returned for the following condition:

 WHERE CURRENT DATE <> ORDERDATE

444 SQL Reference

In V3R3, SQLCODE -180 (SQLSTATE 22007) is generated under the above

condition.

 5. Internally Generated Table Names

Prior to V3R3, the system internally built a composite table name that

included the name of the relational database, based on a certain maximum

length.

In V3R3, this length is slightly increased, and the internal process is now

common to the SQL/DS and DRDA protocols. As a result, there is a very

small probability that some of your SQL statements could exceed an internal

limitation of the system and generate an SQLCODE -101 (SQLSTATE 54001).

The more table names you have in a statement, the greater the probability of

this occurring. If you experience this error, one possible solution would be to

break the statement down into two separate statements.

Application Programming

 6. Setting of SQLN Field

Prior to V3R3, if field SQLD in the SQLDA area held a greater value than the

SQLN field after a DESCRIBE, the system set SQLN to zero.

In V3R3, the value of SQLN is not changed.

If your application tests SQLN for zero to verify successful completion of the

DESCRIBE, the logic will have to be revised to test for SQLD > SQLN.

 7. C NUL-Terminated Strings - Variable Length

Prior to V3R3, a C input string with a length greater than 1 was treated as a

fixed length character host variable. It was not mandatory to have a NUL

present in it except when the input host variable length was 255, in which

case SQLCODE -426 (SQLSTATE 22523) was generated.

In V3R3, a C input string is no longer treated as fixed length. A NUL must be

present on all C NUL-terminated input strings except those with a length of 1;

otherwise SQLCODE -302 (SQLSTATE 22001) is generated. SQLCODE -426

(SQLSTATE 22523) is no longer generated.

 8. C NUL-Terminated Strings - NUL Byte

Prior to V3R3, the NUL byte in a C NUL-terminated string was treated as a

blank.

In V3R3, it is treated as a string terminator.

 9. C NUL-Terminated Strings - Trailing Blanks

Prior to V3R3, any trailing blanks in a C NUL-terminated string were

removed when using the string to update or insert a VARCHAR column or to

compare to a VARCHAR column.

In V3R3, these blanks will no longer be removed.

10. C NUL-Terminated Strings - Length

Prior to V3R3, the scalar function, LENGTH, with a C NUL-terminated string

as its argument, returned the defined length.

In V3R3, this function now returns the length according to the position of the

NUL terminator. (This length excludes the terminator itself.)

11. SQL Statement String

Prior to V3R3, an SQL statement string could end with a statement terminator,

when used in conjunction with EXECUTE IMMEDIATE, PREPARE, or

Extended PREPARE. An example of such a statement is

 DROP TABLE T1;

Appendix H. Incompatibilities Between Releases 445

which has a trailing semicolon. This was allowed in application programs,

even though such coding was invalid. It was also allowed in ISQL and QMF*,

since those facilities also use the above three statements to process

interactively issued statements.

In V3R3, this statement terminator is not allowed. If it is used, SQLCODE -104

(SQLSTATE 37501) will be generated.

If you have been using such a terminator for the CREATE VIEW statement,

your use of catalog table SYSVIEWS could be affected, as described in item

“SYSVIEWS” on page 406 under V3R1 and V2R2 Incompatibilities.

12. Preprocessing of Extended Dynamic Statements

Prior to V3R3, a cursor-variable with a defined length greater than 18 was

accepted by the preprocessor, even though such variables should only be

defined with a length of 18.

In V3R3, the preprocessor traps this condition and generates SQLCODE -324

(SQLSTATE spaces). You will have to change any applications that use these

invalid cursor-variable lengths in your extended dynamic statements.

13. Data Type of Hexadecimal Constants

Prior to V3R3, application programs that assumed that hexadecimal constants

have a data type of VARGRAPHIC, because they are used in the context of

GRAPHIC and VARGRAPHIC data, were accepted.

In V3R3, such constants are considered to be VARCHAR. If used in

conjunction with GRAPHIC or VARGRAPHIC data, they will cause a number

of specific SQLCODEs and corresponding SQLSTATEs, dependent on

individual cases.

This also means that SQLCODE -421 (SQLSTATE 53055), dealing with

hexadecimal literals of odd length, is no longer generated.

14. Non-updatable View

Prior to V3R3, a user with DBA authority who tried to update a view that was

not updatable got an appropriate error, such as SQLCODE -154 (SQLSTATE

56009). A user without DBA authority, however, got an authorization error,

SQLCODE -551 (SQLSTATE 59001).

In V3R3, the latter user receives the same error message as the DBA user,

instead of the authorization message.

15. SYSTEM Table Missing from the System Catalog

Prior to V3R3, if you tried to INSERT, DELETE, or UPDATE a table or view

created by 'SYSTEM', but which was not in the system catalog, SQLCODE

-823 (SQLSTATE 53032) was generated, indicating that you lacked proper

authorization.

In V3R3, SQLCODE -204 (SQLCODE 52004) is generated instead, indicating

that the object could not be found in the system catalog.

16. Folding of Lowercase in PREP and DBSU

Prior to V3R3, folding of lowercase into uppercase in PREP and the DBS

Utility was done by adding X’40’ to the hexadecimal representation of the

lowercase character. Sometimes this resulted in characters being folded

incorrectly (for example, in the Katakana character set).

In V3R3, this is done using the 370 built-in Assembler instruction

TRANSLATE and the user-specified character translation table, in order to be

consistent with how the application server handles this operation. One

exception to this is when the DBS Utility processes SCHEMA input files.

Folding is no longer done on these files; this makes it consistent with the DBS

Utility control file, which only allows uppercase input.

446 SQL Reference

If your applications have built-in dependencies on the previous folding

scheme, you could get different results. For example, a Katakana user may

have a character in his or her coding scheme that has a hexadecimal value

that appears to the database manager as one of the 26 lowercase English

letters. Instead of being folded to uppercase English, the Katakana character

will now be folded according to the Katakana character translation table.

If you have lowercase in your DBS Utility SCHEMA input file, you will have

to change it to uppercase.

17. Loading Audit Trace

Prior to V3R3, the Database Administration manual contained sample table

definition and DATALOAD parameters for creating a security audit table and

loading trace records into it.

In V3R3, the position of the columns within the table are changed and a new

column, EXTLUWID, added. If you have been loading audit trace data using

this table definition and a DATALOAD job, you will need to change the

DATALOAD job, as documented in the V3R3 Database Administration manual.

If you also want to make use of the new EXTLUWID column, you will need

to recreate the table as well.

18. Switching Databases without Connect Authority

Prior to V3R3, if you attempted to switch databases and did not have connect

authority for the new database, SQLCODE -561 (SQLSTATE 42505) was

generated as a warning situation. It was possible to continue processing on

the original database with a non-CONNECT statement.

In V3R3, this situation is treated as a severe error, SQLWARN0 and

SQLWARN6 are set to 'S', and any subsequent non-CONNECT statement

results in termination of the application. Only a CONNECT statement is

accepted.

19. SQLCODE Generated by Operator FORCE Command

Prior to V3R3, either SQLCODE -933 (SQLSTATE 57027) or SQLCODE -948

(SQLSTATE 57027) was returned to the application, when the operator issued

a FORCE command to roll back the current logical unit of work.

In V3R3, only SQLCODE -933 (SQLSTATE 57027) is returned.

20. SQLSTATE Changes

Prior to V3R3, certain SQLCODEs had associated SQLSTATEs that did not

conform to the SAA standards.

In V3R3, these SQLSTATEs are replaced with ones that do conform. See

“Detailed Notes on V3R3-V3R2 Incompatibilities” on page 449 for a list of

these codes, along with their old and new SQLSTATEs.

System Environment

21. The Use of DBCS Characters with the CHARNAME Setting

Prior to V3R3, you could use graphic or mixed constants, the VARGRAPHIC

scalar function, or you could define columns as GRAPHIC or FOR MIXED

DATA, independent of the CHARNAME setting on the application server.

Furthermore, you could use graphic or mixed constants, independent of the

CHARNAME setting on the application requester.

In V3R3, the above usages result in error conditions such as SQLCODE -640

(SQLSTATE 56031) and SQLCODE -332 (SQLSTATE 57017), if the

corresponding CHARNAME does not define a character set with mixed

CCSID (that is, if CCSIDMIXED = 0).

22. Setting of CHARNAME

Appendix H. Incompatibilities Between Releases 447

Prior to V3R3, if no CHARNAME was specified, SQLSTART defaulted to

CHARNAME = ENGLISH.

In V3R3, it defaults to the CHARNAME used on the previous invocation. If

the CHARNAME setting does not define a character set with mixed CCSID

(that is, if CCSIDMIXED = 0), then the default character subtype (CHARSUB)

will be forced to a value of SBCS.

See the V3R3 System Administration manual for the initial default

CHARNAME value after installation or migration.

23. Addressing Mode 31-Bit

Prior to V3R3, application programs running in single user mode in a VM

environment of XA, ESA 1.0 ESA, or ESA 1.1 ESA, as well as any user exits

(accounting, datetime, or field procedures) executed in these environments on

the database machine, whether single or multiple user mode, only ran in

24-bit addressing mode.

In V3R3, if the database manager is running in 31-bit addressing mode

(AMODE 31) on the database machine, the above application programs and

user exits will also run in this mode.

If you have application programs or user exits that fit into this category, you

must do one of the following:

v Ensure that they can accommodate 31-bit addressing mode

v Operate the database machine in 370 mode

v Set the AMODE SQLSTART parameter to 24 to force the database manager

to run in 24-bit addressing mode.

For information on converting your applications to accommodate 31-bit

addressing mode, see the VM/XA* Application Conversion Guide For more

information on single user mode and user exits, see the System Administration

manual.

24. Section Size in a Package

Prior to V3R3, during the preprocessing of a program, the system allocated a

section size for each statement in the package.

In V3R3, due to other design changes, it is necessary to increase the size of

these sections for SELECT statements. As a result, when an existing package is

subjected to a dynamic repreparation, it may cause the dbspace to become

full, generating SQLCODE -946 (SQLSTATE 57025).

If this occurs in your installation, you will have to explicitly prepare the

program with the SQLPREP EXEC, making sure that you have a dbspace that

can accommodate the revised package.

Also, the larger sections increase the amount of virtual storage required to run

the package. For example, if you have many dynamic SELECT statements in a

logical unit of work, they will use up more storage than in the previous

release.

25. Three-Part Object Names

Prior to V3R3, an object that was created on a database named (for example)

DBX could be successfully referenced later by an application, even though the

name for that database had been changed (to, say, DBY). All you had to do

was use the revised name, DBY, when you established the database for the

application by means of the SQLINIT EXEC.

In V3R3, the system maintains the name of the database that was used at the

time of the object’s creation (DBX in this example), as the first part of the

object name, thereby making it a three-part name. If you now establish the

database for the application under a different name (for example, DBY) the

448 SQL Reference

system uses that name as the new qualifier when you try to reference the

object. This results in a mismatch of object names and causes SQLCODE -114

(SQLSTATE 56061) to be generated.

This problem can be avoided by simply not changing the names of your

databases.

26. Special Characters for CONCAT Operation and Not Equal Condition

Prior to V3R3, the class of the hexadecimal values in the table below was 0.

 CHARNAME Hexadecimal Values

ENGLISH X'5A', X'B0'

FRENCH X'BA', X'BB'

GERMAN X'BA', X'BB'

ITALIAN X'BA', X'BB'

KATAKANA X'5A', X'B0'

SPANISH X'BA', X'BB'

In V3R3, the class of these hexadecimal characters is changed to 6. This is

reflected in the CHARCLASS column values of the SYSTEM.SYSCHARSETS

catalog table. This change provides additional special characters that can be

used to depict the CONCAT operation and the not equal condition in SQL

syntax. This, in turn, provides greater flexibility in the use of these two SQL

facilities between application requesters and servers that are assigned different

CHARNAMES.

This could affect your applications, if they are dependent on previous

reclassifications of any of the above characters from class 0 to class 3, for use

in ordinary identifiers. For example, if you had reclassified the explanation

mark (!) so that DANGER! could be used as an ordinary identifier, this will no

longer work because the explanation mark is one of the characters that is now

assigned to class 6.

See the DB2 Server for VM System Administration manual for details on these

classifications.

Detailed Notes on V3R3-V3R2 Incompatibilities

1. SQLSTATE Changes

These changes are shown in the following table.

SQLCODE

Old

SQLSTATE

New

SQLSTATE DESCRIPTION

-131 53004 22019 Either the LIKE predicate has an invalid escape character, or the

string pattern contains an invalid occurrence of the escape

character.

-551 59001 42501 User wwwwww does not have the xxxxxx privilege to perform

yyyyyy on zzzzzz.

-552 59002 42502 xxxxxx is not authorized to yyyyyy.

-554 59002 42502 You cannot grant a privilege to yourself.

-555 59002 42502 You cannot revoke an authority or a privilege from yourself.

-556 59002 42502 An attempt to revoke a privilege from xxxxxx was denied.

Either xxxxxx does not have this privilege, or yyyyyy does not

have this authority to revoke this privilege.

Appendix H. Incompatibilities Between Releases 449

SQLCODE

Old

SQLSTATE

New

SQLSTATE DESCRIPTION

-556 59004 42504 An attempt to revoke a privilege from xxxxxx was denied.

Either xxxxxx does not have this privilege, or yyyyyy does not

have this authority to revoke this privilege.

-558 59004 42504 You cannot revoke an authority from xxxxxx because xxxxxx

has DBA authority.

-560 59005 42505 A CONNECT statement contains an incorrect password for

xxxxxx.

-561 59005 42505 User xxxxxx does not have CONNECT authority.

-566 59001 42501 User ID xxxxxx does not have authorization to modify package

yyyyyy.

-606 59002 42502 The COMMENT ON or LABEL on statement failed because the

specified table or column is not owned by xxxxxx.

-610 59002 42502 The statement failed because a user without DBA authority

attempted to create a table in a DBSPACE owner by another

user or by the system.

-708 59002 42502 You cannot ALTER, LOCK, or DROP a PUBLIC DBSPACE

because you do not have DBA authority.

-713 37515 53015 Incorrect isolation level value xxxxxx specified. Only values C

or R may be used.

-801 22004 22003 Exception error xxxxxx occurred during yyyyyy operation on

zzzzzz data.

-802 22004 22003 Exception error xxxxxx occurred during yyyyyy operation on

zzzzzz data, position nnnnnn. psw1 psw2.

-815 59005 42502 CONNECT denied by accounting user exit routine.

-30053 59006 42506 Owner xxxxxx authorization failed.

V3R4 and V3R3 Incompatibilities (VM Only)

Note: This section does not include the restrictions on the use of DRDA protocol,

as that topic is covered in the appendix describing DRDA considerations.

SQL and Data

 1. Enhanced EXPLAIN Tables

Prior to V3R4, the tables used by the EXPLAIN statement had some major

differences from the corresponding tables in the DB2* product.

In V3R4, these differences are minimized to enhance the EXPLAIN functions

and make them more compatible with those in the DB2 product. As a result,

there are significant changes to the design of these tables, and the EXPLAIN

statement no longer works on the old tables. These changes include new

columns dispersed among old ones, the loss of one column, a column data

type change, and a column length change.

See the DB2 Server for VSE & VM SQL Reference manual for the new design of

these tables.

If you have used the EXPLAIN tables in prior releases, you will have to

recreate the revised tables before using the EXPLAIN statement in V3R4. To

assist you in this task, a DBSU job file containing the necessary create

statements is now included as a MACRO file (called ARISEXP) with the

product.

450 SQL Reference

Similarly, if you have applications which depend upon the design of the old

EXPLAIN tables, you will need to modify these applications to reflect the new

design.

Application Programming

 2. Reason Codes for Incorrect Host Variable Declarations

Prior to V3R4, a large number of SQLERRD1 codes were associated with

SQLCODE -314 (SQLSTATE spaces) at preprocessor time for invalid host

variables.

In V3R4, with the introduction of host structures and the associated parsing of

declaration statements by the preprocessor, the values of some of these

SQLERRD1 codes have changed.

If your application has dependencies on specific SQLERRD1 values, you

should look for these changes in the DB2 Server for VM Messages and Codes

manual and modify your application accordingly.

 3. Structured Declarations in COBOL and C

Prior to V3R4, there were a number of error situations for structure

declarations in the SQL DECLARE SECTION that were not checked by the

COBOL and C preprocessors.

In V3R4, these situations are subjected to validation checks, resulting in the

following potential errors, which must be corrected before compilation:

 SQLCODE SQLSTATE Condition

-107 54003 Host variable name too long

-307 spaces Duplicate host variable names

-314 spaces Syntax and semantic errors in a host variable

 4. Qualified Field Names in RPG

Prior to V3R4, it was not necessary to qualify the name of a field or subfield

in an SQL statement, when that field or subfield name had been duplicated in

more than one data structure.

In V3R4, you must qualify these names as follows:

v file-name.field-name

v DS-name.subfield-name

The preprocessor needs this information in order to interpret the reference. If

the qualifier is missing, a preprocessor ARI5370E message is generated.

 5. Use of Structures in RPG as Host Variables

Prior to V3R4, when the database manager referenced an RPG structure as a

host variable, one of two things happened:

v If the structure contained one or more subfields, the database manager

accepted the reference. The structure was interpreted as a single character

field with a length equal to the length of the total structure.

v If the structure contained no subfields, the database manager rejected the

reference, generating an error message.

In V3R4:

v If the structure contains one or more subfields, the reference to it is now

interpreted as a reference to each subfield in the structure, giving

unpredictable results and potential errors at execution time.

Appendix H. Incompatibilities Between Releases 451

v If the structure contains no subfields, the reference to it is now interpreted

as a reference to a fixed length character string with a length equal to the

length of the data structure.

Note: Individual subfields within a structure can still be directly referenced as

valid host variables. There is no change to this.

If your application references RPG structures as host variables, you will have

to change either the declaration section or the SQL statements affected.

 6. Application Programs in an Unconnected State

Prior to V3R4, if an application program was connectable but in an

unconnected state as a result of a severe error (SQLWARN6 = S) and issued a

non-connect SQL statement, the database manager initiated an abend of the

application.

In V3R4, SQLCODE -900 (SQLSTATE 51018) is generated and the abend does

not occur. If your application is dependent on the abend scenario in this

situation, you will have to change it. Otherwise, it may enter an infinite loop.

 7. Use of Host Variables in CONNECT Statement

Prior to V3R4, if you used a host variable for the userid or password in a

CONNECT statement and the data type of that variable did not satisfy one of

the conditions listed below, an error was generated at run time:

v C programs: C-NUL string of length 9

v Assembler, COBOL, or PL/I programs: fixed length character string of

length 8.

In V3R4, these conditions are checked by the preprocessor. If they fail the

check, SQLCODE -324 (SQLSTATE spaces) is generated.

 8. Data Types of Parameter Markers in Predicates

Prior to V3R4, the resolution of data types for a parameter marker was

dependent on the highest order of the data types of all the operands to the

left of the parameter marker. Highest order, in the case of numeric operands,

implies FLOAT > DECIMAL > INTEGER > SMALLINT.

In V3R4, this resolution process is changed to become more consistent with

the DB2 product. If there is an operand expressed as a column name in a

BETWEEN predicate, the data type of any parameter marker is resolved as

that of the leftmost such operand. Otherwise, the data type of the parameter

marker is resolved as that of the leftmost operand that is not a parameter

marker — whether in a BETWEEN predicate or an IN predicate.

This could cause a different result from previous releases for predicates that

can have more than two operands (namely BETWEEN and IN), but only if

your application assigns parameter marker values that are inappropriate for

your data.

See “Detailed Notes on V3R4-V3R3 Incompatibilities” on page 454 for some

examples and further discussion.

 9. Bad Input Records in DATALOAD

Prior to V3R4, a bad input record would terminate DATALOAD command

processing on multiple tables when the DBS Utility was running in multiple

user mode — whether or not it was preprocessed with the NOBLOCK option.

An insert error would be indicated with one of the following codes, followed

by message ARI0862E:

SQLCODE SQLSTATE

-405 53020

-424 22502

-530 23503

452 SQL Reference

-802 22003, 22012, or 22502

-803 23505

In V3R4, such command processing is no longer terminated, if the DBS Utility

is preprocessed with the NOBLOCK option. The error indications are still

generated, but the processing skips over the bad record and continues.

If you have a dependency in your application on this termination approach

prior to V3R4, you may want to address this change in the case of the

NOBLOCK option.

10. Index Dependency of a Package

Prior to V3R4, when a SELECT DISTINCT was applied to a single column

that had a unique index, the system assumed uniqueness within the column,

rather than applying a sort. However, this kind of index dependency was not

recorded in the package.

In V3R4, this technique now records the index dependency in the package (for

system integrity), even though the index is not actually used to access the

table. In addition, the technique is extended to column functions that use

DISTINCT — for example, SELECT COUNT(DISTINCT(COL4)), where COL4

has a unique index.

If the index is dropped, the package will now be marked as invalid, causing a

dynamic reprep. After the reprep, the application will take longer to execute,

because a sort will be needed to process DISTINCT correctly.

System Environment

11. Invocation of TRACE for Storage

Prior to V3R4, if you specified level 2 trace for the STAT or PA component of

the TRACDBSS or TRACRDS parameter, respectively, when starting the

database manager, you received the Working Storage Manager tracing.

In V3R4, you can use the same specifications, but the Working Storage

manager tracing is no longer part of the output.

In order to get this part, you must now use the TRACSTG parameter, or select

the STG component when using the TRACE operator command. The format

from this trace is different.

12. DBCS Data Conversion Errors

Prior to V3R4, if there was a loading error in a DBCS data conversion routine,

SQLCODE -332 (SQLSTATE 57017) was generated with reason code 9. If there

was a dropping error in a DBCS data conversion routine, SQLCODE -901

(SQLSTATE 58004) or SQLCODE -30020 (SQLSTATE 58009) was generated.

In V3R4, the above codes are replaced with SQLCODE -674 (SQLSTATE 57011)

with a separate reason code for each specific error.

13. Saved Segments in Installation Process

Prior to V3R4, you could install into saved segments during the installation

process (with the I5688103 EXEC), or at post installation time.

In V3R4, this step is no longer in the I5688013 EXEC. Installing into saved

segments must be done afterwards.

If you have automated the running of this EXEC by providing an input file

containing the answers to the prompts (rather than submitting them from the

console), the EXEC will fail when trying to process your input to the removed

saved segment step. You will have to modify your answer file accordingly.

14. Enhancement to COLDLOG

Appendix H. Incompatibilities Between Releases 453

Prior to V3R4, the COLDLOG reconfiguration function erased the log contents

before starting the database manager. No warning was given if there were any

logical units of work in the log that were needed for recovery processing.

In V3R4, the log content is not erased until after startup, and the user is

warned beforehand if the log content is needed for recovery.

If you have automated the COLDLOG function in some way by providing a

predetermined set of answers to the prompts (rather than submitting them

from the console), the SQLLOG EXEC will fail. You will have to modify your

automated process to accommodate the change. See the DB2 Server for VM

System Administration manual for more information on this function.

Detailed Notes on V3R4-V3R3 Incompatibilities

1. Data Types of Parameter Markers in Predicates

In this first example, prior releases would resolve the data type of the

parameter marker as DEC(4,2), whereas V3R4 would resolve it as INTEGER

(assuming INTEGERCOL is the name of a column with a data type of

INTEGER).

 23.55 BETWEEN ? AND INTEGERCOL

The next two examples illustrate how these data type differences can produce

quite different end results when the SQL statement is executed. In this next

example, the predicate would generate SQLCODE -302 (SQLSTATE 22003) in

prior releases, when the leftmost parameter marker is assigned a value of 345

and the rightmost parameter marker is assigned a value of 206.7. This error will

not occur in V3R4.

 EDLEVEL IN (16, ?, 17.3, ?)

This is because the prior releases assign a data type of DEC(3,1) to the

rightmost parameter marker, to which the value 206.7 cannot be assigned. V3R4

assigns a data type of SMALLINT to the rightmost parameter marker (based on

the column EDLEVEL) and then truncates 206.7 to accommodate this data type.

In the next example, the predicate would generate SQLCODE -302 (SQLSTATE

22001) in V3R4, but not in prior releases, when the parameter marker is

assigned a value of 'GHIJKL'.

 DEPTNO IN (’ABCDEF’, ?, ’ABC’)

This is because V3R4 assigns a data type of CHAR(3) to the parameter marker

(based on column DEPTNO), to which the value 'GHIJKL' cannot be assigned.

Prior releases assign a data type of CHAR(6) to the parameter marker.

V3R4 and V3R2 Incompatibilities (VSE Only)

SQL and Data

 1. New Reserved Word, CONCAT

Prior to V3R4, CONCAT was not a reserved word in SQL and could therefore

be used as an ordinary identifier.

In V3R4, CONCAT is a reserved word, and can be used as an alternative to

the concatenation operator (||). Any existing applications that use it as an

ordinary identifier will have to be changed before they are preprocessed

under V3R4; otherwise SQLCODE -105 (SQLSTATE 37501) will be generated.

454 SQL Reference

You can address this incompatibility by changing this ordinary identifier to

use a nonreserved word, or you can retain the original name by redefining it

as a delimited identifier.

 2. REVOKE UPDATE

Prior to V3R4, the REVOKE statement for the UPDATE privilege ignored any

column names that might be present as parameters of the UPDATE option —

even though such coding was invalid. (This statement is only done on a table

basis, never a column basis.)

In V3R4, such parameters are not allowed. If they are used, SQLCODE -105

(SQLSTATE 37501) will be generated.

 3. Numeric Data in Character Strings

Prior to V3R4, columns with a data type of CHAR or VARCHAR accepted

numeric data, including FLOAT, on insert or update. For example, the

following statements did not create an error:

 CREATE TABLE T1 (COL CHAR(8))

 CREATE TABLE T2 (COL VARCHAR(8))

 INSERT INTO T1 (123)

 INSERT INTO T2 (123)

 INSERT INTO T1 (1E1)

 INSERT INTO T2 (1E1)

 UPDATE T1 SET COL = 123

 UPDATE T2 SET COL = 123

 UPDATE T1 SET COL = 1E1

 UPDATE T2 SET COL = 1E1

In V3R4, these inserts and updates now generate SQLCODE -408 (SQLSTATE

53021).

If you want to use the value 123, you must now use it as a character literal

('123'). Float literals are no longer allowed for character columns.

 4. Invalid String Representation of Datetime

Prior to V3R4, when a predicate was being evaluated that contained an

operand that was one of the special registers CURRENT DATE, CURRENT

TIME, or CURRENT TIMESTAMP, and one of the other operands was a

character column of the correct length but containing a value that was not a

valid string representation of a datetime, the application ran successfully. Any

row containing such an invalid value was returned if it met the search

condition. For example, all invalid date values in column, ORDERDATE, were

returned for the following condition:

 WHERE CURRENT DATE <> ORDERDATE

In V3R4, SQLCODE -180 (SQLSTATE 22007) is generated under the above

condition.

 5. Internally Generated Table Names

Prior to V3R4, the system internally built a composite table name that

included the name of the relational database, based on a certain maximum

length.

In V3R4, this length is slightly increased, and the internal process is the same,

whether DRDA server support is involved or not. As a result, there is a very

small probability that some of your SQL statements could exceed an internal

limitation of the system and generate an SQLCODE -101 (SQLSTATE 54001).

The more table names you have in a statement, the greater the probability of

this occurring. If you experience this error, one possible solution would be to

break the statement down into two separate statements.

 6. Enhanced EXPLAIN Tables

Appendix H. Incompatibilities Between Releases 455

Prior to V3R4, the tables used by the EXPLAIN statement had some major

differences from the corresponding tables in the DB2* product.

In V3R4, these differences are minimized to enhance the EXPLAIN functions

and make them more compatible with those in the DB2 product. As a result,

there are significant changes to the design of these tables and the EXPLAIN

statement no longer works on the old tables. These changes include new

columns dispersed among old ones, the loss of one column, a column data

type change, and a column length change.

See the DB2 Server for VSE & VM SQL Reference manual for the new design of

these tables.

If you have used the EXPLAIN tables in prior releases, you will have to

recreate the revised tables before using the EXPLAIN statement in V3R4. To

assist you in this task, a DBSU job file containing the necessary create

statements is now included as an A-type member (called ARIXEXP) with the

product.

Similarly, if you have applications which depend upon the design of the old

EXPLAIN tables, you will need to modify these applications to reflect the new

design.

Application Programming

 7. Setting of SQLN Field

Prior to V3R4, if field SQLD in the SQLDA area held a greater value than the

SQLN field after a DESCRIBE, the system set SQLN to zero.

In V3R4, the value of SQLN is not changed.

If your application tests SQLN for zero to verify successful completion of the

DESCRIBE, the logic will have to be revised to test for SQLD > SQLN.

 8. C NUL-Terminated Strings - Variable Length

Prior to V3R4, a C input string with a length greater than 1 was treated as a

fixed length character host variable. It was not mandatory to have a NUL

present in it except when the input host variable length was 255, in which

case SQLCODE -426 (SQLSTATE 22523) was generated.

In V3R4, a C input string is no longer treated as fixed length. A NUL must be

present on all C NUL-terminated input strings except those with a length of 1;

otherwise SQLCODE -302 (SQLSTATE 22001) is generated. SQLCODE -426

(SQLSTATE 22523) is no longer generated.

 9. C NUL-Terminated Strings - NUL Byte

Prior to V3R4, the NUL byte in a C NUL-terminated string was treated as a

blank.

In V3R4, it is treated as a string terminator.

10. C NUL-Terminated Strings - Trailing Blanks

Prior to V3R4, any trailing blanks in a C NUL-terminated string were

removed when using the string to update or insert a VARCHAR column or to

compare to a VARCHAR column.

In V3R4, these blanks will no longer be removed.

11. C NUL-Terminated Strings - Length

Prior to V3R4, the SQL/DS scalar function, LENGTH, with a C

NUL-terminated string as its argument, returned the defined length.

In V3R4, this function now returns the length according to the position of the

NUL terminator. (This length excludes the terminator itself.)

12. SQL Statement String

456 SQL Reference

Prior to V3R4, an SQL statement string could end with a statement terminator,

when used in conjunction with EXECUTE IMMEDIATE, PREPARE, or

Extended PREPARE. An example of such a statement is

 DROP TABLE T1;

which has a trailing semicolon. This was allowed in application programs,

even though such coding was invalid. It was also allowed in ISQL and QMF*,

since those facilities also use the above three statements to process

interactively issued statements.

In V3R4, this statement terminator is not allowed. If it is used, SQLCODE -104

(SQLSTATE 37501) will be generated.

If you have been using such a terminator for the CREATE VIEW statement,

your use of catalog table SYSVIEWS could be affected, as described in item

“SYSVIEWS” on page 406 under V3R1 and V2R2 Incompatibilities.

13. SQL/DS Preprocessing of Extended Dynamic Statements

Prior to V3R4, a cursor-variable with a defined length greater than 18 was

accepted by the preprocessor, even though such variables should only be

defined with a length of 18.

In V3R4, the preprocessor traps this condition and generates SQLCODE -324

(SQLSTATE spaces). You will have to change any applications that use these

invalid cursor-variable lengths in your extended dynamic statements.

14. Reason Codes for Incorrect Host Variable Declarations

Prior to V3R4, a large number of SQLERRD1 codes were associated with

SQLCODE -314 (SQLSTATE spaces) at preprocessor time for invalid host

variables.

In V3R4, with the introduction of host structures and the associated parsing of

declaration statements by the preprocessor, the values of some of these

SQLERRD1 codes have changed.

If your application has dependencies on specific SQLERRD1 values, you

should look for these changes in the DB2 Server for VM Messages and Codes or

DB2 Server for VSE Messages and Codes manual and modify your application

accordingly.

15. Structured Declarations in COBOL and C

Prior to V3R4, there were a number of error situations for structure

declarations in the SQL DECLARE SECTION that were not checked by the

COBOL and C preprocessors.

In V3R4, these situations are subjected to validation checks, resulting in the

following potential errors, which must be corrected before compilation:

 SQLCODE SQLSTATE Condition

-107 54003 Host variable name too long

-307 spaces Duplicate host variable names

-314 spaces Syntax and semantic errors in a host variable

16. Data Type of Hexadecimal Constants

Prior to V3R4, application programs that assumed that hexadecimal constants

have a data type of VARGRAPHIC, because they are used in the context of

GRAPHIC and VARGRAPHIC data, were accepted.

Appendix H. Incompatibilities Between Releases 457

In V3R4, such constants are considered to be VARCHAR. If used in

conjunction with GRAPHIC or VARGRAPHIC data, they will cause a number

of specific SQLCODEs and corresponding SQLSTATEs, dependent on

individual cases.

This also means that SQLCODE -421 (SQLSTATE 53055), dealing with

hexadecimal literals of odd length, is no longer generated.

17. Non-updatable View

Prior to V3R4, a user with DBA authority who tried to update a view that was

not updatable got an appropriate error, such as SQLCODE -154 (SQLSTATE

56009). A user without DBA authority, however, got an authorization error,

SQLCODE -551 (SQLSTATE 59001).

In V3R4, the latter user receives the same error message as the DBA user,

instead of the authorization message.

18. SYSTEM Table Missing from the System Catalog

Prior to V3R4, if you tried to INSERT, DELETE, or UPDATE a table or view

created by 'SYSTEM', but which was not in the system catalog, SQLCODE

-823 (SQLSTATE 53032) was generated, indicating that you lacked proper

authorization.

In V3R4, SQLCODE -204 (SQLCODE 52004) is generated instead, indicating

that the object could not be found in the system catalog.

19. Folding of Lowercase in PREP and DBSU

Prior to V3R4, folding of lowercase into uppercase in PREP and the DBS

Utility was done by adding X’40’ to the hexadecimal representation of the

lowercase character. Sometimes this resulted in characters being folded

incorrectly (for example, in the Katakana character set).

In V3R4, this is done using the 370 built-in Assembler instruction

TRANSLATE and the user-specified character translation table, in order to be

consistent with how the application server handles this operation. One

exception to this is when the DBS Utility processes SCHEMA input files.

Folding is no longer done on these files; this makes it consistent with the DBS

Utility control file, which only allows uppercase input.

If your applications have built-in dependencies on the previous folding

scheme, you could get different results. For example, a Katakana user may

have a character in his or her coding scheme that has a hexadecimal value

that appears to the SQL/DS system as one of the 26 lowercase English letters.

Instead of being folded to uppercase English, the Katakana character will now

be folded according to the Katakana character translation table.

If you have lowercase in your DBS Utility SCHEMA input file, you will have

to change it to uppercase.

20. Loading Audit Trace

Prior to V3R4, the Database Administration manual contained sample table

definition and DATALOAD parameters for creating a security audit table and

loading trace records into it.

In V3R4, the position of the columns within the table are changed and a new

column, EXTLUWID, added. If you have been loading audit trace data using

this table definition and a DATALOAD job, you will need to change the

DATALOAD job, as documented in the V3R4 Database Administration manual.

If you also want to make use of the new EXTLUWID column, you will need

to recreate the table as well.

21. Use of Host Variables in CONNECT Statement

458 SQL Reference

Prior to V3R4, if you used a host variable for the userid or password in a

CONNECT statement and the data type of that variable did not satisfy one of

the conditions listed below, an error was generated at run time:

v C programs: C-NUL string of length 9

v Assembler, COBOL, or PL/I programs: fixed length character string of

length 8.

In V3R4, these conditions are checked by the preprocessor. If they fail the

check, SQLCODE -324 (SQLSTATE spaces) is generated.

22. Data Types of Parameter Markers in Predicates

Prior to V3R4, the resolution of data types for a parameter marker was

dependent on the highest order of the data types of all the operands to the

left of the parameter marker. Highest order, in the case of numeric operands,

implies FLOAT > DECIMAL > INTEGER > SMALLINT.

In V3R4, this resolution process is changed to become more consistent with

the DB2 product. If there is an operand expressed as a column name in a

BETWEEN predicate, the data type of any parameter marker is resolved as

that of the leftmost such operand. Otherwise, the data type of the parameter

marker is resolved as that of the leftmost operand that is not a parameter

marker — whether in a BETWEEN predicate or an IN predicate.

This could cause a different result from previous releases for predicates that

can have more than two operands (namely BETWEEN and IN), but only if

your application assigns parameter marker values that are inappropriate for

your data.

See “Detailed Notes on V3R4-V3R2 Incompatibilities” on page 462 for some

examples and further discussion.

23. Bad Input Records in DATALOAD

Prior to V3R4, a bad input record would terminate DATALOAD command

processing on multiple tables when the DBS Utility was running in multiple

user mode — whether or not it was preprocessed with the NOBLOCK option.

An insert error would be indicated with one of the following codes, followed

by message ARI0862E:

SQLCODE SQLSTATE

-405 53020

-424 22502

-530 23503

-802 22003, 22012, or 22502

-803 23505

In V3R4, such command processing is no longer terminated, if the DBS Utility

is preprocessed with the NOBLOCK option. The error indications are still

generated, but the processing skips over the bad record and continues.

If you have a dependency in your application on this termination approach

prior to V3R4, you may want to address this change in the case of the

NOBLOCK option.

24. Index Dependency of a Package

Prior to V3R4, when a SELECT DISTINCT was applied to a single column

that had a unique index, the system assumed uniqueness within the column,

rather than applying a sort. However, this kind of index dependency was not

recorded in the package.

In V3R4, this technique now records the index dependency in the package (for

system integrity), even though the index is not actually used to access the

Appendix H. Incompatibilities Between Releases 459

table. In addition, the technique is extended to column functions that use

DISTINCT — for example, SELECT COUNT(DISTINCT(COL4)), where COL4

has a unique index.

If the index is dropped, the package will now be marked as invalid, causing a

dynamic reprep. After the reprep, the application will take longer to execute,

because a sort will be needed to process DISTINCT correctly.

25. SQLSTATE Changes

Prior to V3R4, certain SQLCODEs had associated SQLSTATEs that did not

conform to the SAA standards.

In V3R4, these SQLSTATEs are replaced with ones that do conform. See

“Detailed Notes on V3R4-V3R2 Incompatibilities” on page 462 for a list of

these codes, along with their old and new SQLSTATEs.

System Environment

26. The Use of DBCS Characters with the CHARNAME Setting

Prior to V3R4, you could use graphic or mixed constants, the VARGRAPHIC

scalar function, or you could define columns as GRAPHIC or FOR MIXED

DATA, independent of the CHARNAME setting on the application server.

Furthermore, you could use graphic or mixed constants, independent of the

CHARNAME setting on the application requester.

In V3R4, the above usages result in error conditions such as SQLCODE -640

(SQLSTATE 56031) and SQLCODE -332 (SQLSTATE 57017), if the

corresponding CHARNAME does not define a character set with mixed

CCSID (that is, if CCSIDMIXED = 0).

27. Setting of CHARNAME

Prior to V3R4, if no CHARNAME is specified, SQLSTART defaulted to

CHARNAME = ENGLISH.

In V3R4, it defaults to the CHARNAME used on the previous invocation. If

the CHARNAME setting does not define a character set with mixed CCSID

(that is, if CCSIDMIXED = 0), then the default character subtype (CHARSUB)

will be forced to a value of SBCS.

See the V3R4 System Administration manual for the initial default

CHARNAME value after installation or migration.

28. Addressing Mode 31-Bit

Prior to V3R4, user exits and field procedures , executed in a VSE

environment, only ran in 24-bit addressing mode.

In V3R4, with VSE/ESA* 1.3 or later releases, they can be executed in 31-bit

addressing mode. If the SQL/DS system is running in 31-bit addressing mode

(that is, ESA or VMESA supervisor mode) on the application server, then user

exits (except accounting) will be executed in 31-bit addressing mode.

If you have user exits (except accounting) that fit into this category, you must

do one of the following to avoid any potential problems:

v Ensure that they can accommodate 31-bit addressing mode

v Operate the application server in 370 or VM supervisor mode.

For more information on user exits, see the DB2 Server for VSE System

Administration manual.

29. Section Size in a Package

Prior to V3R4, during the preprocessing of a program, the system allocated a

section size for each statement in the package.

460 SQL Reference

In V3R4, due to other design changes, it is necessary to increase the size of

these sections for SELECT statements. As a result, when an existing package is

subjected to a dynamic repreparation, it may cause the dbspace to become

full, generating SQLCODE -946 (SQLSTATE 57025).

If this occurs in your installation, you will have to explicitly prepare the

program with the SQLPREP EXEC, making sure that you have a dbspace that

can accommodate the revised package.

Also, the larger sections increase the amount of virtual storage required to run

the package. For example, if you have many dynamic SELECT statements in a

logical unit of work, they will use up more storage than in the previous

release.

30. Three-Part Object Names

Prior to V3R4, an object that was created on a database named (for example)

DBX could be successfully referenced later by an application, even though the

name for that database had been changed (to, say, DBY). All you had to do

was use the revised name, DBY, when you established the database for the

application.

In V3R4, the system maintains the name of the database that was used at the

time of the object’s creation (DBX in this example), as the first part of the

object name, thereby making it a three-part name. If you now establish the

database for the application under a different name (for example, DBY), the

system uses that name as the new qualifier when you try to reference the

object. This results in a mismatch of object names, and causes SQLCODE -114

(SQLSTATE 56061) to be generated.

This problem can be avoided by simply not changing the names of your

databases.

31. Special Characters for CONCAT Operation and Not Equal Condition

Prior to V3R4, the class of the hexadecimal values in the table below was 0.

 CHARNAME Hexadecimal Values

ENGLISH X'5A', X'B0'

FRENCH X'BA', X'BB'

GERMAN X'BA', X'BB'

ITALIAN X'BA', X'BB'

KATAKANA X'5A', X'B0'

SPANISH X'BA', X'BB'

In V3R4, the class of these hexadecimal characters is changed to 6. This is

reflected in the CHARCLASS column values of the SYSTEM.SYSCHARSETS

catalog table. This change provides additional special characters that can be

used to depict the CONCAT operation and the not equal condition in SQL

syntax. This, in turn, provides greater flexibility in the use of these two SQL

facilities between application requesters and servers that are assigned different

CHARNAMES.

This could affect your applications, if they are dependent on previous

reclassifications of any of the above characters from class 0 to class 3, for use

in ordinary identifiers. For example, if you had reclassified the explanation

mark (!) so that DANGER! could be used as an ordinary identifier, this will no

longer work because the explanation mark is one of the characters that is now

assigned to class 6.

See the DB2 Server for VSE System Administration manual for details on these

classifications.

Appendix H. Incompatibilities Between Releases 461

32. Invocation of TRACE for Storage

Prior to V3R4, if you specified level 2 trace for the STAT or PA component of

the TRACDBSS or TRACRDS parameter, respectively, when starting the

SQL/DS system, you received the Working Storage Manager tracing.

In V3R4, you can use the same specifications, but the Working Storage

manager tracing is no longer part of the output.

In order to get this part, you must now use the TRACSTG parameter, or select

the STG component when using the TRACE operator command. The format

from this trace is different.

33. Change to Headers in Multiline Operator Console Messages

Prior to V3R4, for ease of reading, only the first line of a multiline message

contained the message header identification, as illustrated below:

 ARI0418A SQL/DS is not ready. Retry the enable

 transaction CIRB after SQL/DS starts.

However, operator console messages which were multiline could not be

handled by the VSE Programmed Operator tool, because the system sent such

messages one line at a line. The tool could not identify the extra lines.

In V3R4, these operating console messages are sent as one multiline record, so

that the VSE Programmed Operator tool can handle them. (For the console

operator, there is no change to the appearance of these messages.)

If you have your own application equivalent to the above tool, it could be

affected by this change.

Detailed Notes on V3R4-V3R2 Incompatibilities

1. Data Types of Parameter Markers in Predicates

In this first example, prior releases would resolve the data type of the

parameter marker as DEC(4,2), whereas V3R4 would resolve it as INTEGER

(assuming INTEGERCOL is the name of a column with a data type of

INTEGER).

 23.55 BETWEEN ? AND INTEGERCOL

The next two examples illustrate how these data type differences can produce

quite different end results when the SQL statement is executed. In this next

example, the predicate would generate SQLCODE -302 (SQLSTATE 22003) in

prior releases, when the leftmost parameter marker is assigned a value of 345

and the rightmost parameter marker is assigned a value of 206.7. This error will

not occur in V3R4.

 EDLEVEL IN (16, ?, 17.3, ?)

This is because the prior releases assign a data type of DEC(3,1) to the

rightmost parameter marker, to which the value 206.7 cannot be assigned. V3R4

assigns a data type of SMALLINT to the rightmost parameter marker (based on

the column EDLEVEL) and then truncates 206.7 to accommodate this data type.

In the next example, the predicate would generate SQLCODE -302 (SQLSTATE

22001) in V3R4, but not in prior releases, when the parameter marker is

assigned a value of 'GHIJKL'.

 DEPTNO IN (’ABCDEF’, ?, ’ABC’)

This is because V3R4 assigns a data type of CHAR(3) to the parameter marker

(based on column DEPTNO), to which the value 'GHIJKL' cannot be assigned.

Prior releases assign a data type of CHAR(6) to the parameter marker.

462 SQL Reference

2. SQLSTATE Changes

These changes are shown in the following table.

SQLCODE

Old

SQLSTATE

New

SQLSTATE DESCRIPTION

-131 53004 22019 Either the LIKE predicate has an invalid escape character, or the

string pattern contains an invalid occurrence of the escape

character.

-551 59001 42501 User wwwwww does not have the xxxxxx privilege to perform

yyyyyy on zzzzzz.

-552 59002 42502 xxxxxx is not authorized to yyyyyy.

-554 59002 42502 You cannot grant a privilege to yourself.

-555 59002 42502 You cannot revoke an authority or a privilege from yourself.

-556 59002 42502 An attempt to revoke a privilege from xxxxxx was denied.

Either xxxxxx does not have this privilege, or yyyyyy does not

have this authority to revoke this privilege.

-556 59004 42504 An attempt to revoke a privilege from xxxxxx was denied.

Either xxxxxx does not have this privilege, or yyyyyy does not

have this authority to revoke this privilege.

-558 59004 42504 You cannot revoke an authority from xxxxxx because xxxxxx

has DBA authority.

-560 59005 42505 A CONNECT statement contains an incorrect password for

xxxxxx.

-561 59005 42505 User xxxxxx does not have CONNECT authority.

-566 59001 42501 User ID xxxxxx does not have authorization to modify package

yyyyyy.

-606 59002 42502 The COMMENT ON or LABEL on statement failed because the

specified table or column is not owned by xxxxxx.

-610 59002 42502 The statement failed because a user without DBA authority

attempted to create a table in a DBSPACE owner by another

user or by the system.

-708 59002 42502 You cannot ALTER, LOCK, or DROP a PUBLIC DBSPACE

because you do not have DBA authority.

-713 37515 53015 Incorrect isolation level value xxxxxx specified. Only values C

or R may be used.

-801 22004 22003 Exception error xxxxxx occurred during yyyyyy operation on

zzzzzz data.

-802 22004 22003 Exception error xxxxxx occurred during yyyyyy operation on

zzzzzz data, position nnnnnn. psw1 psw2.

-815 59005 42502 CONNECT denied by accounting user exit routine.

-30053 59006 42506 Owner xxxxxx authorization failed.

V3R5 and V3R4 Incompatibilities

1. SQL/DS Database Archive Incompatibilities

Archives that were created on prior releases of SQL/DS cannot be restored by

the SQL/DS V3R5 database manager. If this is attempted, the database manager

will issue message ARI2038E and terminate. See the DB2 Server for VM Messages

and Codes or DB2 Server for VSE Messages and Codes manual for more details on

this message.

Appendix H. Incompatibilities Between Releases 463

2. SQL/DS VSAM Shareoptions Changes under VSE

In prior releases of SQL/DS (VSE), the VSAM SQL/DS directory, data and log

data sets were defined with SHAREOPTIONS(1). In SQL/DS V3R5, these

VSAM files must now be defined with SHAREOPTIONS(2).

3. SQLSTATE Values Changes

Many SQLSTATE values have changed in SQL/DS V3R5. The new SQLSTATE

values and their former values can be found in the DB2 Server for VM Messages

and Codes or DB2 Server for VSE Messages and Codes manuals. Changing

SQLSTATEs is an incompatible change since many SQLSTATE values that are

returned from diagnostic situations will be different from previous releases of

SQL/DS. Application programmers should review any programs that use

SQLSTATE in the SQLCA each time an SQL statement is executed.

4. Messages and Codes Changes

Some SQL/DS messages and codes have changed, and some new ones have

been added in SQL/DS V3R5. See the DB2 Server for VM Messages and Codes

and DB2 Server for VSE Messages and Codes manuals for details.

5. Display CICS Information on SHOW CONNECT

If the package that the connected user is running was created in SQL/DS

Version 2 Release 2 or earlier, the CICS information will not be displayed by

the SHOW CONNECT command because the RDIIN for V2R2 or earlier does

not contain the RDIIN extension area. The package must be reprepped with

SQL/DS V3R5 and recompiled to make the CICS information available.

V5R1 and V3R5 Incompatibilities

1. Messages and Codes Changes

Many messages and codes have changed, and some new ones have been added

in DB2 Server for VSE & VM Version 5 Release 1. See the DB2 Server for VM

Messages and Codes and DB2 Server for VSE Messages and Codes manuals.

2. DB2 Database Archive Incompatibilities

Archives that were created on prior releases cannot be restored by the DB2

Server for VSE & VM Version 5 Release 1 database manager. If this is

attempted the database manager will issue message ARI2038E and terminate.

See the DB2 Server for VM Messages and Codes and DB2 Server for VSE Messages

and Codes manuals for more details on this message.

3. DBSU

If you use R350 DBSU to unload and reload a table in a R510 database, the

value of the DATACAPTURE column will be lost.

4. Date/Time Exits and Field Procedures

VM Users with Date/Time or Field Procedure Exits that are dependant on

running in a 370 Mode virtual machine must convert to execute in a ESA mode

virtual machine. Note that exits requiring AMODE=24 are not affected, as we

still support running the Server code in AMODE=24. The above also applies to

Single User Mode application programs. The above also applies to Vendor

programs that run on the Server, such as database monitoring or tape mount

handling programs.

V6R1 and V5R1 Incompatibilities

1. Running the Database Server in 24-bit Addressing Mode (VM)

464 SQL Reference

With Version 7 Release 5 the RDS component is linkedited with the AMODE

ANY option, instead of AMODE 24. This allows RDS to be loaded and

executed above the 16 MB line. This will free up valuable storage below the 16

MB line. However, if you use the AMODE(24) parameter, then RDS cannot be

executed above the line. If this is attempted, a program check will occur at start

up time.

To avoid this, you must use a maximum virtual storage size of 16MB which

will force RDS to be loaded below the line. If you need to run with

AMODE(24) all of the time, you should create an RDS saved segment that

resides below the 16MB line. If you only use AMODE(24) some of the time,

such as with some single user mode applications, you can create an alternate

bootstrap package which specifies an alternate RDS saved segment which

resides below the 16MB line, or specifies that RDS is run from free storage.

The AMODE parameter value is saved in the ″resid SQLDBN Q″ file. See the

DB2 Server for VM System Administration or DB2 Server for VSE System

Administration manual for details on the AMODE parameter and saved

segments.

2. Exploiting RDS above the 16 Megabyte Line

With Version 7 Release 5, the RDS component is linkedited with the ″RMODE

ANY″ option. This allows RDS to be loaded and executed above the 16MB line.

This will free up valuable storage below the 16 MB line. As the RDS code will

be loaded above the 16MB line before other storage is allocated, extremely

storage constrained systems may need to increase their partition size to

maximize their below the 16MB line free storage.

3. DBNAME Directory format change

The format of the DBNAME directory source member, ARISDIRD, has been

changed to support DRDA Online Requester support.

V7R1 and V6R1 Incompatibilities

There are no incompatibilities between DB2 Server for VM V6R1 and DB2 Server

for VM V7R1.

DB2 Server for VSE only:

1. DBNAME Directory format change

ARISDIRD has been restructured to improve readability and flexibility. Each

DBNAME entry is now defined explicitly by its type (Local, Remote or Host

VM (Guest Sharing)). CICS AXE Transaction TPNs (Transaction Program

Names) are still included in the directory as a type of ’LOCALAXE’. The

DBNAME Directory Builder program, ARICBDID has been rewritten as a

REXX/VSE procedure with extensive error and dependency checking. Support

for TCP/IP information is added and ’alias’ DBNAMEs are supported. ALL

DBNAMEs must be specified in the new DBNAME Directory, including the

Product Default DBNAME ″SQLDS″. A migration REXX/VSE procedure,

ARICCDID, is provided to assist in migrating to the new format.

V7R2 and V7R1 Incompatibilities

There are no incompatibilities between DB2 Server for VM V7R2 and DB2 Server

for VM V7R1.

There are no incompatibilities between DB2 Server for VSE V7R2 and DB2 Server

for VSE V7R1.

Appendix H. Incompatibilities Between Releases 465

466 SQL Reference

Notices

IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10594-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1988, 2007 467

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Mail Station P300

522 South Road

Poughkeepsie, NY 12601-5400

U.S.A

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language,

which illustrates programming techniques on various operating platforms. You

may copy, modify, and distribute these sample programs in any form without

payment to IBM, for the purposes of developing, using, marketing, or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

468 SQL Reference

Programming Interface Information

This book documents intended Programming Interfaces that allow the customer to

write programs to obtain services of DB2 Server for VSE & VM.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, or other countries, or both:

 AIX

 APL2

 C/370

 CICS

 CICS/ESA

 CICS/VSE

 CUA

 DATABASE 2

 DataPropagator

 DB2

 DFSMS/VM

 DFSORT

 Distributed Relational Database Architecture

 DRDA

 Enterprise Systems Architecture/390

 IBM

 Information Warehouse

 Language Environment

 MVS

 Operating System/2

 Operating System/400

 OS/2

 OS/400

 QMF

 RACF

 S/390

 SAA

 SystemView

 System/390

 VM/ESA

 VSE/ESA

 VTAM

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Unix and Unix-based trademarks and logos are trademarks or registered

trademarks of The Open Group.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 469

470 SQL Reference

Bibliography

This bibliography lists publications that are

referenced in this manual or that may be helpful.

DB2 Server for VM Publications

v DB2 Server for VSE & VM Application

Programming, SC09-2889

v DB2 Server for VSE & VM Database

Administration, SC09-2888

v DB2 Server for VSE & VM Database Services

Utility, SC09-2983

v DB2 Server for VSE & VM Diagnosis Guide and

Reference, LC09-2907

v DB2 Server for VSE & VM Overivew, GC09-2995

v DB2 Server for VSE & VM Interactive SQL Guide

and Reference, SC09-2990

v DB2 Server for VSE & VM Master Index and

Glossary, SC09-2890

v DB2 Server for VM Messages and Codes,

GC09-2984

v DB2 Server for VSE & VM Operation, SC09-2986

v DB2 Server for VSE & VM Quick Reference,

SC09-2988

v DB2 Server for VM System Administration,

SC09-2980

v DB2 Server for VSE & VM Performance Tuning

Handbook, GC09-2987

v DB2 Server for VSE & VM SQL Reference,

SC09-2989

DB2 Server for VSE Publications

v DB2 Server for VSE & VM Application

Programming, SC09-2889

v DB2 Server for VSE & VM Database

Administration, SC09-2888

v DB2 Server for VSE & VM Database Services

Utility, SC09-2983

v DB2 Server for VSE & VM Diagnosis Guide and

Reference, LC09-2907

v DB2 Server for VSE & VM Overivew, GC09-2995

v DB2 Server for VSE & VM Interactive SQL Guide

and Reference, SC09-2990

v DB2 Server for VSE & VM Master Index and

Glossary, SC09-2890

v DB2 Server for VSE Messages and Codes,

GC09-2985

v DB2 Server for VSE & VM Operation, SC09-2986

v DB2 Server for VSE System Administration,

SC09-2981

v DB2 Server for VSE & VM Performance Tuning

Handbook, GC09-2987

v DB2 Server for VSE & VM SQL Reference,

SC09-2989

Related Publications

v DB2 Server for VSE & VM Data Restore,

SC09-2991

v DRDA: Every Manager's Guide, GC26-3195

v IBM SQL Reference, Version 2, Volume 1,

SC26-8416

v IBM SQL Reference, SC26-8415

VM/ESA Publications

v VM/ESA: General Information, GC24-5745

v VM/ESA: VMSES/E Introduction and Reference,

GC24-5837

v VM/ESA: Installation Guide, GC24-5836

v VM/ESA: Service Guide, GC24-5838

v VM/ESA: Planning and Administration,

SC24-5750

v VM/ESA: CMS File Pool Planning,

Administration, and Operation, SC24-5751

v VM/ESA: REXX/EXEC Migration Tool for

VM/ESA, GC24-5752

v VM/ESA: Conversion Guide and Notebook,

GC24-5839

v VM/ESA: Running Guest Operating Systems,

SC24-5755

v VM/ESA: Connectivity Planning, Administration,

and Operation, SC24-5756

v VM/ESA: Group Control System, SC24-5757

v VM/ESA: System Operation, SC24-5758

v VM/ESA: Virtual Machine Operation, SC24-5759

v VM/ESA: CP Programming Services, SC24-5760

v VM/ESA: CMS Application Development Guide,

SC24-5761

v VM/ESA: CMS Application Development

Reference, SC24-5762

v VM/ESA: CMS Application Development Guide for

Assembler, SC24-5763

v VM/ESA: CMS Application Development Reference

for Assembler, SC24-5764

© Copyright IBM Corp. 1988, 2007 471

v VM/ESA: CMS Application Multitasking,

SC24-5766

v VM/ESA: CP Command and Utility Reference,

SC24-5773

v VM/ESA: CMS Primer, SC24-5458

v VM/ESA: CMS User’s Guide, SC24-5775

v VM/ESA: CMS Command Reference, SC24-5776

v VM/ESA: CMS Pipelines User’s Guide, SC24-5777

v VM/ESA: CMS Pipelines Reference, SC24-5778

v VM/ESA: XEDIT User’s Guide, SC24-5779

v VM/ESA: XEDIT Command and Macro Reference,

SC24-5780

v VM/ESA: Quick Reference, SX24-5290

v VM/ESA: Performance, SC24-5782

v VM/ESA: Dump Viewing Facility, GC24-5853

v VM/ESA: System Messages and Codes, GC24-5841

v VM/ESA: Diagnosis Guide, GC24-5854

v VM/ESA: CP Diagnosis Reference, SC24-5855

v VM/ESA: CP Diagnosis Reference Summary,

SX24-5292

v VM/ESA: CMS Diagnosis Reference, SC24-5857

v CP and CMS control block information is not

provided in book form. This information is

available on the IBM VM/ESA operating

system home page (http://www.ibm.com/
s390/vm).

v IBM VM/ESA: CP Exit Customization, SC24-5672

v VM/ESA REXX/VM User’s Guide, SC24-5465

v VM/ESA REXX/VM Reference, SC24-5770

C for VM/ESA Publications

v IBM C for VM/ESA Diagnosis Guide, SC09-2149

v IBM C for VM/ESA Language Reference,

SC09-2153

v IBM C for VM/ESA Compiler and Run-Time

Migration Guide, SC09-2147

v IBM C for VM/ESA Programming Guide,

SC09-2151

v IBM C for VM/ESA User’s Guide, SC09-2152

Virtual Storage Extended/Enterprise Systems

Architecture (VSE/ESA) Publications

v IBM VSE/ESA Administration, SC33-6505

v IBM VSE/ESA Diagnosis Tools, SC33-6514

v IBM VSE/ESA General Information, GC33-6501

v IBM VSE/ESA Guide for Solving Problems,

SC33-6510

v IBM VSE/ESA Guide to System Functions,

SC33-6511

v IBM VSE/ESA Installation, SC33-6504

v IBM VSE/ESA Messages & Codes, SC33-6507

v IBM VSE/ESA Networking Support, SC33-6508

v IBM VSE/ESA Operation, SC33-6506

v IBM VSE/ESA Planning, SC33-6503

v IBM VSE/ESA System Control Statements,

SC33-6513

v IBM VSE/ESA System Macros User’s Guide,

SC33-6515

v IBM VSE/ESA System Macros Reference,

SC33-6516

v IBM VSE/ESA System Utilities, SC33-6517

v IBM VSE/ESA Unattended Node Support,

SC33-6512

v IBM VSE/ESA Using IBM Workstations,

SC33-6509

CICS/VSE Publications

v CICS/VSE Application Programming Reference,

SC33-0713

v CICS/VSE Application Programming Guide,

SC33-0712

v CICS Application Programming Primer (VS

COBOL II), SC33-0674

v CICS/VSE CICS-Supplied Transactions, SC33-0710

v CICS/VSE Customization Guide, SC33-0707

v CICS/VSE Facilities and Planning Guide,

SC33-0718

v CICS/VSE Intercommunication Guide, SC33-0701

v CICS/VSE Performance Guide, SC33-0703

v CICS/VSE Problem Determination Guide,

SC33-0716

v CICS/VSE Recovery and Restart Guide, SC33-0702

v CICS/VSE Release Guide, GC33-1645

v CICS/VSE Report Controller User’s Guide,

SC33-0705

v CICS Transaction Server for VSE/ESA V1R1.0

Resource Definition Guide, SC33-0709

v CICS/VSE Resource Definition (Online),

SC33-0708

v CICS/VSE System Definition and Operations

Guide, SC33-0706

v CICS/VSE System Programming Reference,

SC33-0711

v CICS/VSE User’s Handbook, SX33-6079

v CICS/VSE XRF Guide, SC33-0704

472 SQL Reference

CICS/ESA Publications

v CICS/ESA General Information, GC33-0803

VSE/Virtual Storage Access Method (VSE/VSAM)

Publications

v VSE/VSAM Commands and Macros, SC33-6532

v VSE/VSAM Introduction, GC33-6531

v VSE/VSAM Messages and Codes, SC24-5146

v VSE/VSAM Programmer’s Reference, SC33-6535

VSE/Interactive Computing and Control Facility

(VSE/ICCF) Publications

v VSE/ICCF Administration and Operation,

SC33-6562

v VSE/ICCF Primer, SC33-6561

v VSE/ICCF User’s Guide, SC33-6563

VSE/POWER Publications

v VSE/POWER Administration and Operation,

SC33-6571

v VSE/POWER Application Programming,

SC33-6574

v VSE/POWER Networking, SC33-6573

v VSE/POWER Remote Job Entry, SC33-6572

Distributed Relational Database Architecture

(DRDA) Library

v Application Programming Guide, SC26-4773

v Architecture Reference, SC26-4651

v Connectivity Guide, SC26-4783

v DRDA: Every Manager's Guide, GC26-3195

v Planning for Distributed Relational Database,

SC26-4650

v Problem Determination Guide, SC26-4782

C/370 for VSE Publications

v IBM C/370 General Information, GC09-1386

v IBM C/370 Programming Guide for VSE,

SC09-1399

v IBM C/370 Installation and Customization Guide

for VSE, GC09-1417

v IBM C/370 Reference Summary for VSE,

SX09-1246

v IBM C/370 Diagnosis Guide and Reference for

VSE, LY09-1805

VSE/REXX Publication

v VSE/REXX Reference, SC33-6642

Other Distributed Data Publications

v IBM Distributed Data Management (DDM)

Architecture, Architecture Reference, Level 4,

SC21-9526

v IBM Distributed Data Management (DDM)

Architecture, Implementation Programmer’s Guide,

SC21-9529

v VM/Directory Maintenance Licensed Program

Specification, GC20-1836

v IBM Distributed Relational Database Architecture

Reference, SC26-4651

v IBM Systems Network Architecture, Format and

Protocol Reference, SC30-3112

v SNA LU 6.2 Reference: Peer Protocols, SC31-6808

v Reference Manual: Architecture Logic for LU Type

6.2, SC30-3269

v IBM Systems Network Architecture, Logical Unit

6.2 Reference: Peer Protocols, SC31-6808

v Distributed Data Management (DDM) General

Information, GC21-9527

CCSID Publications

v Character Data Representation Architecture,

Executive Overview, GC09-2207

v Character Data Representation Architecture

Reference and Registry, SC09-2190

DB2 Server RXSQL Publications

v DB2 REXX SQL for VM/ESA Installation and

Reference, SC09-2891

C/370 Publications

v IBM C/370 Installation and Customization Guide,

GC09-1387

v IBM C/370 Programming Guide, SC09-1384

Communication Server for OS/2 Publications

v Up and Running!, GC31-8189

v Network Administration and Subsystem

Management Guide, SC31-8181

v Command Reference, SC31-8183

v Message Reference, SC31-8185

v Problem Determination Guide, SC31-8186

Distributed Database Connection Services

(DDCS) Publications

v DDCS User’s Guide for Common Servers,

S20H-4793

v DDCS for OS/2 Installation and Configuration

Guide, S20H-4795

VTAM Publications

Bibliography 473

v VTAM Messages and Codes, SC31-6493

v VTAM Network Implementation Guide, SC31-6494

v VTAM Operation, SC31-6495

v VTAM Programming, SC31-6496

v VTAM Programming for LU 6.2, SC31-6497

v VTAM Resource Definition Reference, SC31-6498

v VTAM Resource Definition Samples, SC31-6499

CSP/AD and CSP/AE Publications

v Developing Applications, SH20-6435

v CSP/AD and CSP/AE Installation Planning Guide,

GH20-6764

v Administering CSP/AD and CSP/AE on VM,

SH20-6766

v Administering CSP/AD and CSP/AE on VSE,

SH20-6767

v CSP/AD and CSP/AE Planning, SH20-6770

v Cross System Product General Information,

GH23-0500

Query Management Facility (QMF) Publications

v Introducing QMF, GC27-0714

v Installing and Managing QMF for VSE,

GC27-0721

v QMF Reference, SC27-0715

v Installing and Managing QMF for VM,

GC27-0720

v Developing QMF Applications, SC27-0718

v QMF Messages and Codes, GC27-0717

v Using QMF, SC27-0716

Query Management Facility (QMF) for Windows

Publications

v Getting Started with QMF for Windows,

SC27-0723

v Installing and Managing QMF for Windows,

GC27-0722

DL/I DOS/VS Publications

v DL/I DOS/VS Application Programming,

SH24-5009

COBOL Publications

v VS COBOL II Migration Guide for VSE,

GC26-3150

v VS COBOL II Migration Guide for MVS and

CMS, GC26-3151

v VS COBOL II General Information, GC26-4042

v VS COBOL II Language Reference, GC26-4047

v VS COBOL II Application Programming Guide,

SC26-4045

v VS COBOL II Application Programming

Debugging, SC26-4049

v VS COBOL II Installation and Customization for

CMS, SC26-4213

v VS COBOL II Installation and Customization for

VSE, SC26-4696

v VS COBOL II Application Programming Guide for

VSE, SC26-4697

Data Facility Storage Management

Subsystem/VM (DFSMS/VM) Publications

v DFSMS/VM RMS User’s Guide and Reference,

SC35-0141

Systems Network Architecture (SNA)

Publications

v SNA Transaction Programmer’s Reference Manual

for LU Type 6.2, GC30-3084

v SNA Format and Protocol Reference: Architecture

Logic for LU Type 6.2, SC30-3269

v SNA LU 6.2 Reference: Peer Protocols, SC31-6808

v SNA Synch Point Services Architecture Reference,

SC31-8134

Miscellaneous Publications

v IBM 3990 Storage Control Planning, Installation,

and Storage Administration Guide, GA32-0100

v Dictionary of Computing, ZC20-1699

v APL2 Programming: Using Structured Query

Language, SH21-1056

v ESA/390 Principles of Operation, SA22-7201

Related Feature Publications

v DB2 for VM Control Center Operations Guide,

GC09-2993

v DB2 for VSE Control Center Operations Guide,

GC09-2992

v DB2 Replication Guide and Reference, SC26-9920

474 SQL Reference

Index

Special characters
- (subtract) operator 71

: (colon)
See host variable

!! (concatenate) operator 71

? (question mark)
See parameter marker

* (asterisk)
in subselect 122

* (multiply) operator 71

> (greater than) operator 79, 80

> shift-in character 6

>= (greater than or equal to)

operator 79, 80

< (less than) operator 79, 80

< shift-out character 6

<> (not equal to) operator 79, 80

<= (less than or equal to) operator 79,

80

|| (concatenate) operator 71

+ (add) operator 71

= (equal to) operator
in predicate 79, 80

in UPDATE statement 339

¬= (not equal to) operator 79, 80

⁄ (divide) operator 71

^= (not equal to) operator 80

A
access privilege 33

ACQUIRE DBSPACE statement
description 144

EXECUTE IMMEDIATE

statement 271

PREPARE statement 314

ACTIVATE ALL clause
of ALTER TABLE statement 162

ACTIVATE FOREIGN KEY clause
of ALTER TABLE statement 163

ACTIVATE PRIMARY KEY clause
of ALTER TABLE statement 162

ACTIVATE UNIQUE clause
of ALTER TABLE statement 163

activating and deactivating keys 17

active set
DECLARE CURSOR statement 236

description 11

ACTIVITY sample table 410

ADD clause
of ALTER TABLE statement 157

administration
authority 33

ALL
clause of EXPLAIN statement 274

clause of subselect 122

clause of UPDATE STATISTICS

statement 344

in a quantified predicate 80

ALL (continued)
keyword

AVG function 91

column function 91

MAX function 93

MIN function 94

SUM function 95

ALL clause
of GRANT statement 293

of REVOKE statement 330

ALL PRIVILEGES clause
of GRANT statement 293

of REVOKE statement 330

ALLOCATE CURSOR statement
description 146, 147

ALLUSERS
in CONNECT clause of GRANT

statement 290, 291

in CONNECT clause of REVOKE

statement 328

alphabetic extender
basic symbol 35

ALTER clause
of GRANT statement 293

of REVOKE statement 330

ALTER DBSPACE statement
description 148

EXECUTE IMMEDIATE

statement 271

PREPARE statement 314

ALTER privilege
in ALTER TABLE statement 157

ALTER PROCEDURE statement
description 150

EXECUTE IMMEDIATE

statement 271

ALTER PSERVER statement
description 155, 216, 260, 261

EXECUTE IMMEDIATE

statement 271

ALTER TABLE statement
description 157

EXECUTE IMMEDIATE

statement 271

GRANT statement 293, 294

PREPARE statement 314

ALTERAUTH column 369

of SYSTABAUTH 404

ALTNAME column 369

of SYSSYNONYMS 402

ambiguous reference
column name 66

AND
in a search condition 89

truth table 89

ANY
in a quantified predicate 80

in USING clause
of DESCRIBE statement 247

of Extended DESCRIBE

statement 251

application
default CCSID in server and

requester 32

process 18

requester 22

server 22

application program
embedding statements 140

applying the select list 123

arithmetic
date 76

datetime 75

decimal 74

floating-point 74

integer 73

operators 73

time 77

timestamp 78

arithmetic expression
ISO-ANS SQL(89) equivalent

term 423

arithmetic operator
in syntax diagrams 2

AS clause
of CREATE VIEW statement 232

ASC clause
of ALTER TABLE statement 160, 162

of CREATE INDEX statement 199

of CREATE TABLE statement 224,

226

select-statement 134

ASCII
mixed data 46

assembler
application program

BEGIN DECLARE SECTION

statement 169

host variable 68, 270

INCLUDE SQLCA 357, 364

INCLUDE SQLDA 359

INCLUDE statement 297

PREPARE statement 313

SQLCA 353

varying-length string variables 44

assignment
datetime

DATE 57

TIME 57

TIMESTAMP 57

numbers 54, 55

operation rules 53

strings
bit 56

mixed 56

SBCS 56

SQLCA 56

SQLWARN1 56

truncation 56

ASSOCIATE LOCATORS statement
description 166, 168

© Copyright IBM Corp. 1988, 2007 475

asterisk
in COUNT function 93

in subselect 122

atomic integrity 11

attribute
CCSID 31

length
column 44

host variable 79

AUTHOR column 369

of SYSUSERAUTH and

SYSUSERLIST 406

authority
administration 33

connect 32

DBA 33

GRANT statement 290

resource 32

authorization
description 32

authorization id
description 41

authorization_name
description 38

in CONNECT statement 185, 191

in GRANT statement 288, 290, 291,

293, 294

in REVOKE statement 327, 328, 330

length limitation 349

AVG function 91

precision 92

scale 92

AVGCOLLEN column 369

of SYSCOLUMNS 382

AVGROWLEN column 369

of SYSCATALOG 376

B
base table 11

basic predicate 79

description 79

ISO-ANS SQL(89) equivalent

term 423

BCREATOR column 369

of SYSUSAGE 405

BEGIN DECLARE SECTION

statement 169, 170

BETWEEN predicate
description 81

NOT keyword 81

BINDERROR column 369

binding statements 9

bit data
CREATE TABLE statement 223

description 44

SQLDA 361

blank
DBCS 55

SBCS 55

BLOCK option
of CREATE PACKAGE statement 203

blocking
CLOSE statement 175

cursor 322

DELETE statement 246

description 246

blocking (continued)
long string restriction 44

OPEN statement 307

BNAME column 369

of SYSUSAGE 405

BOTH
in USING clause

of DESCRIBE statement 247

of Extended DESCRIBE

statement 251

BTYPE column 369

of SYSUSAGE 405

built-in function 91

C
C

application program
BEGIN DECLARE SECTION

statement 169

host structure 69

host variable 68, 270

INCLUDE SQLCA 357

INCLUDE SQLDA 364

INCLUDE statement 297

PREPARE statement 313

SQLCA 353

SQLDA 359

varying-length string variables 44

CALL statement
description 171

cascade
delete rule 13

DELETE statement 244

ON DELETE clause
of ALTER TABLE statement 161

of CREATE TABLE statement 225

catalog
description 18

catalog tables 369

DB2 Server for VSE & VM database

manager 369

description 18

owner of (SYSTEM) 369

roadmap 370

SYSACCESS 373, 375

SYSCATALOG 375, 378

SYSCCSIDS 378

SYSCHARSETS 378, 379

SYSCOLAUTH 379, 380

SYSCOLSTATS 380, 381

SYSCOLUMNS 381, 384

SYSDBSPACES 384, 385

SYSDROP 385, 386

SYSFIELDS 386, 387

SYSFPARMS 387, 388

SYSINDEXES 388, 390

SYSKEYCOLS 390, 391

SYSKEYS 391, 392

SYSLANGUAGE 392, 393

SYSOPTIONS 393, 395

SYSPARMS 395

SYSPROGAUTH 396, 397

SYSPSERVERS 397

SYSROUTINES 398

SYSSTRINGS 400, 402

SYSSYNONYMS 402

catalog tables (continued)
SYSTABAUTH 403, 404

SYSUSAGE 405

SYSUSERAUTH and

SYSUSERLIST 406

SYSUSERLIST view 406

SYSVIEWS 406, 409

CCSID
See coded character set identifier

(CCSID)

CCSID column 369

of SYSCCSIDS 378

of SYSCOLUMNS 383

of SYSKEYCOLS 391

CCSID keyword
of CREATE TABLE statement 223

CCSIDGRAPHIC option
of CREATE PACKAGE statement 202

CCSIDMIXED option
of CREATE PACKAGE statement 201

CCSIDSBCS option
of CREATE PACKAGE statement 201

CDRA
See character data representation

architecture (CDRA)

char 7

CHAR
data type 44, 222

function
EUR 96

ISO 96

JIS 96

LOCAL 96

USA 96

character 35

subtype
default 45

CHARACTER
data type 158

character conversion
character set 30

code page 30

code point 30

coded character set 30

description 133

DRDA 29

encoding scheme 30

rules for comparison 58

rules for operations combining

strings 130

substitution character 30

character data representation architecture

(CDRA) 31

character set 30

character string
assignment 55

bit data 44

comparison 58

constant 60

description 44

empty 44

fixed-length 44

host variable 44

MBCS 45

mixed data 45

planes 46

SBCS data 44

476 SQL Reference

character string (continued)
varying-length 44

character subtype
description 44

SQLDA 361

character_constant
in LIKE predicate 86

CHARCLASS column 369

of SYSCHARSETS 379

CHARNAME column 369

of SYSCCSIDS 378

CHARSUB option
of CREATE PACKAGE statement 202

CHARTRANS column 369

of SYSCHARSETS 379

CHECK option
of CREATE PACKAGE statement 203

choose
in syntax diagrams 3

CICS
GRANT statement 291

CL_SCHED sample table 411

CLABEL column 369

LABEL ON statement 304

of SYSCOLUMNS 383

CLOSE statement
description 175

CLOSE statement, Extended 177

closed state of cursor 309

CLUSTER column 369

of SYSINDEXES 388

CLUSTERRATIO column 369

of SYSINDEXES 388, 389

CLUSTERROW column 369

of SYSCATALOG 376

CLUSTERTYPE column 369

of SYSCATALOG 376

CNAME column 369

of SYSCOLSTATS 380

of SYSCOLUMNS 381

of SYSFIELDS 386

of SYSFPARMS 387

of SYSKEYCOLS 390

COBOL
application program

BEGIN DECLARE SECTION

statement 170

host structure 69

host variable 68, 270

INCLUDE SQLCA 358

INCLUDE statement 297

integers 55

PREPARE statement 313

SQLCA 353

varying-length string variables 44

code page 30

code point 30

coded character set identifier (CCSID)
constants 61

conversion selection table 32

default 32

default override 362

description 31

graphic constants 62

maximum number of overrides 350

string representation of datetime

values 49

coded character set identifier (CCSID)

(continued)
SYSOPTIONS catalog table 393

COLCOUNT column 369

of SYSCOLUMNS 382

COLINFO column 369

of SYSCOLUMNS 383

collection_id
description 38

COLNAME column 369

of SYSCOLAUTH 379

COLNAMES column 369

of SYSINDEXES 388

COLNO column 369

of SYSCOLUMNS 381

of SYSFIELDS 386

COLNUMBERS column 369

of SYSINDEXES 388

colon
See host variable

COLTYPE column 369

of SYSCOLUMNS 381

column
grouping 125

in tables 10

length attribute 44

long string 44

maximum number in a table 350

maximum number in a view 350

maximum number in an index

key 350

name
of a result column 123

qualifier 64

rules for UNION 129

short string 44

unnamed 133

COLUMN clause
of COMMENT ON statement 178

of LABEL ON statement 303

column function 91

See also function

ISO-ANS SQL(89) equivalent

term 423

column in a GROUP BY clause
ISO-ANS SQL(89) equivalent

term 423

column name
ambiguous reference 66

undefined reference 66

column name qualification
correlation name 64

synonym 64

table name 64

view name 64

column_name
description 38, 179

in ALTER TABLE statement 158, 162

in COMMENT ON PROCEDURE

statement 180

in COMMENT ON statement 178

in CREATE INDEX statement 198,

199

in CREATE TABLE statement 220,

226

in CREATE VIEW statement 231

in FOR UPDATE clause 134

column_name (continued)
in GRANT statement 293, 294

in GROUP BY clause 125

in INSERT statement 298, 299

in LABEL ON statement 303

in LIKE predicate 86

in NULL predicate 89

in ORDER BY clause 133

in UPDATE statement 339

length limitation 349

COMMENT ON PROCEDURE statement
description 180

COMMENT ON statement
column name qualification 64

description 178

EXECUTE IMMEDIATE

statement 271

PREPARE statement 314

comments
host language 36

in catalog 178, 180

in static SQL statements 36, 143

commit 18

COMMIT statement
description 182

communication protocol
DRDA 25

SQLDS 25

comparison
compatibility rules 53

datetime values 59

numbers 57

operation 53

predicate
DB2 Server for VSE & VM

equivalent term 423

predicate subquery
DB2 Server for VSE & VM

equivalent term 423

strings 58

comparison operator
in a basic predicate 79

in a quantified predicate 80

compatibility
data type 53

rules 53

composite key 11

CONCAT operator 71

concatenation
field procedure 72

operator 72

shift-in character 72

shift-out character 72

concurrency
LOCK DBSPACE statement 305

LOCK TABLE statement 306

connect
authority 32

CONNECT (for VM) statement 185, 190

CONNECT (for VSE) statement 191, 196

CONNECT clause
of GRANT statement 290

of REVOKE statement 328

connection states 187, 195

consistency
points of 19

Index 477

constant
character string 60

character subtypes
DBCS option 61

mixed 61

SBCS 61

decimal 60

description 59

floating-point 60

graphic string 61

hexadecimal 60

in IN predicate 84

in INSERT statement 298

integer 60

CONSTKN column 369

of SYSACCESS 374

constraint_name
description 38

in ALTER TABLE statement 158, 161,

162

in CREATE TABLE statement 221,

225

length limitation 349

CONTINUE clause
of WHENEVER statement 346

conventions
mixed data representation 6

syntax diagram notation 2

conversion
character 29

numbers
for assignments 54

for comparisons 58

scale and precision 54, 58

correlated reference
description 67

FROM clause 67, 125

ISO-ANS SQL(89) equivalent

term 423

correlation name
defining 64

qualifying a column name 64

correlation_name
description 38

in DELETE statement 243

in FROM clause 124

in subselect 122

in UPDATE statement 339

length limitation 349

COST clause
of EXPLAIN statement 273

COST_TABLE
EXPLAIN statement 274

COUNT function 92

asterisk (*) 92

create index
privilege 33

CREATE INDEX statement
description 198

EXECUTE IMMEDIATE

statement 271

GRANT statement 294

PREPARE statement 314

CREATE PACKAGE statement
description 201

DROP STATEMENT statement 262

CREATE PROCEDURE statement
description 208

EXECUTE IMMEDIATE

statement 271

CREATE PSERVER statement
EXECUTE IMMEDIATE

statement 271

CREATE SYNONYM statement
description 218

EXECUTE IMMEDIATE

statement 271

PREPARE statement 314

CREATE TABLE statement
description 219

EXECUTE IMMEDIATE

statement 271

PREPARE statement 314

CREATE VIEW statement
description 231

EXECUTE IMMEDIATE

statement 271

PREPARE statement 314

creation, package 10

CREATOR column 369

of SYSACCESS 373

of SYSCATALOG 375

of SYSCOLAUTH 379

of SYSCOLSTATS 380

of SYSCOLUMNS 381

of SYSFIELDS 386

of SYSFPARMS 387

of SYSINDEXES 388

of SYSPROGAUTH 396

of SYSSYNONYMS 402

CS attribute
isolation level 21

isolation option
CREATE PACKAGE

statement 202

CURRENT DATE special register 62

CURRENT SERVER special register 63

CURRENT TIME special register 63

CURRENT TIMESTAMP special

register 63

CURRENT TIMEZONE special

register 63

cursor
See also DECLARE CURSOR statement

blocking 322

closed state 309

closed upon error
DELETE statement 245

FETCH statement 284

UPDATE statement 341

closing 175, 177

COMMIT statement 183

current row 284

defining 235

Extended DECLARE CURSOR

statement 240

Extended FETCH statement 287

Extended OPEN statement 312

Extended PUT statement 325

insert 235, 307

maximum declared in a program 350

maximum number opened at one

time 350

cursor (continued)
moving position 283

opening 307, 312

positions when open 284

query 235, 307

result table 236

ROLLBACK statement 335

CURSOR FOR clause
of Extended DECLARE CURSOR

statement 240

cursor stability
isolation level 21

cursor_name
description 38

in CLOSE statement 175

in DECLARE CURSOR

statement 235, 236

in DELETE statement 243, 244

in Extended DECLARE CURSOR

statement 240

in FETCH statement 283

in OPEN statement 307

in PUT statement 322

in UPDATE statement 339, 340

length limitation 349

cursor_variable
description 38

in Extended CLOSE statement 177

in Extended DECLARE CURSOR

statement 240

in Extended FETCH statement 287

in Extended OPEN statement 312

in Extended PUT statement 325

cursor-name 146, 252

D
DATA CAPTURE clause

of ALTER TABLE statement 163

of CREATE TABLE statement 227

data conversion
DRDA 29

data integrity 12, 18

data type
character string 44

compatibility 53

date 48

datetime 48

DBAHW 369, 381

DBAINT 369, 381

description 42, 222

graphic string 47

numeric 47

of result columns 124

result set locator 42

time 49

timestamp 49

database
COMMIT statement 182

CONNECT statement 185, 191

ROLLBACK statement 334

database interface routine 10

DATACODE column 369

of SYSKEYCOLS 390

date 48

arithmetic operations
duration 76

478 SQL Reference

date (continued)
description 48

duration
description 74

representation, internal & SQLDA 48

string 49

DATE
assignment 57

data type 158, 223

function 98

DATE option
of CREATE PACKAGE statement 202

datetime
arithmetic operations 75, 78

assignment
EUR 57

ISO 57

JIS 57

microseconds 57

USA 57

comparison
DATE 59

TIME 59

TIMESTAMP 59

data type
description 48

string representation 49

format
EUR 50

ISO 50

JIS 50

LOCAL 50

USA 50

using CHAR function 97

operand 74

DAY
function 99

labeled duration 71

DAYS
function 100

labeled duration 71

DB2 Server for VSE & VM / ISO-ANS

SQL(89) equivalent terms 423, 425

DBA authority
ACQUIRE DBSPACE statement 144

activating keys 17

CREATE TABLE statement 219

deactivating keys 17

description 33

DROP statement 257, 258

Extended PREPARE statement 320

of GRANT statement 290

REVOKE statement 328

SYSTABAUTH catalog table 404

SYSUSERAUTH catalog table 406

DBA clause
of REVOKE statement 328

DBAAUTH column 369

of SYSUSERAUTH and

SYSUSERLIST 406

DBAHW
catalog 369

SYSCOLUMNS catalog table 381

DBAINT
catalog 369

SYSCOLUMNS catalog table 381

DBCS
See also double-byte character set

(DBCS)

character 6

option 37, 46

DBCSID column 369

of SYSCCSIDS 378

DBNAME directory
CONNECT statement 192

DBNAME Directory format
incompatibilities 465

DBSPACE clause
description 345

of DROP statement 257

of UPDATE STATISTICS

statement 344

DBSPACE value for LOCK clause
of ACQUIRE DBSPACE

statement 145

of ALTER DBSPACE statement 148

dbspace_name
description 38

in CREATE TABLE statement 226

in DROP statement 257

in LOCK DBSPACE statement 305

in UPDATE STATISTICS

statement 344

dbspace-name
in ACQUIRE DBSPACE

statement 144

in ALTER DBSPACE statement 148

in ALTER PROCEDURE

statement 150

in CREATE TABLE statement 220

DBSPACENAME column 369

of SYSCATALOG 375

of SYSDBSPACES 384

DBSPACENO column 369

of SYSACCESS 373

of SYSCATALOG 375

of SYSDBSPACES 384

of SYSDROP 386

DBSPACETYPE column 369

of SYSDBSPACES 384

DCREATOR column 369

of SYSUSAGE 405

DEACTIVATE ALL clause
of ALTER TABLE statement 163

DEACTIVATE FOREIGN KEY clause
of ALTER TABLE statement 163

DEACTIVATE PRIMARY KEY clause
of ALTER TABLE statement 163

deactivate referential constraint 13

DEACTIVATE UNIQUE clause
of ALTER TABLE statement 163

DEC
See DECIMAL

decimal
arithmetic

addition 74

division 74

multiplication 74

precision 74

scale 74

SQLCODE of the SQLCA 74

subtraction 74

constant 60

decimal (continued)
data type 48

numbers 48

operands 73

precision 47, 73

scale 73

DECIMAL
data type 158, 222

function 101

precision 101

scale 101

declarations
inserting into a program 296

DECLARE CURSOR statement 235

description 235

dynamic select 141

OPEN statement 307

PREPARE statement 315

select-statement invocation 140

static select 141

DECLARE CURSOR statement,

Extended 240, 241

default
in syntax diagrams 4

degree
of cursor

DB2 Server for VSE & VM

equivalent term 423

of table
DB2 Server for VSE & VM

equivalent term 423

delete
on view 18

DELETE clause
of GRANT statement 293

of REVOKE statement 330

delete rule
cascade 13

description 13

of referential constraint 13

restrict 13

restrictions 16

set null 13

DELETE statement
description 242, 311

EXECUTE IMMEDIATE

statement 271

EXPLAIN statement 273

Extended DECLARE CURSOR

statement 240

FETCH statement 284

GRANT statement 293

OPEN statement 309

Positioned form 242

PREPARE statement 314

Searched form 242

delete-connected
definition 14

through multiple paths 14

DELETEAUTH column 369

of SYSTABAUTH 404

DELETERULE column 369

of SYSKEYS 392

deleting
SQL objects 257

delimited identifier 37

Index 479

delimiter token
description 36

DEPARTMENT sample table 411

dependent privilege 331

dependent table
definition 12

DEPENDENTS column 369

of SYSCATALOG 377

DESC clause
of ALTER TABLE statement 160, 162

of CREATE INDEX statement 199

of CREATE TABLE statement 224,

226

select-statement 134

descendent table
definition 13

DESCRIBE CURSOR statement
description 252, 253

DESCRIBE option
of CREATE PACKAGE statement 204

DESCRIBE PROCEDURE statement
description 254, 256

DESCRIBE statement
description 247

LABEL ON statement 304

PREPARE statement 315

SQLDA 359

SQLLEN value 362

SQLTYPE value 362

variables in SQLDA after

DESCRIBE 247, 248

DESCRIBE statement, Extended 251

descriptor name
description 39

descriptor_name
in DESCRIBE statement 247

in EXECUTE statement 264

in Extended DESCRIBE

statement 251

in Extended EXECUTE

statement 268

in Extended FETCH statement 287

in Extended OPEN statement 312

in Extended PREPARE statement 318

in Extended PUT statement 325

in FETCH statement 283

in OPEN statement 307, 308

in PUT statement 322

digit 35

DIGITS function 101

DISTINCT
clause of subselect 122

comparison rules 53

in DESCRIBE statement 248

keyword
AVG function 91

column function 91

COUNT function 92

MAX function 93

MIN function 94

SUM function 95

distributed relational database
application requester, server 23

restrictions 425, 427

Distributed Relational Database

Architecture (DRDA) 23

DNAME column 369

DNAME column (continued)
of SYSUSAGE 405

DOUBLE PRECISION
data type 158, 222

double precision floating-point 48

double-byte character set (DBCS)
COMMENT ON PROCEDURE

statement 180

COMMENT ON statement 179

in LIKE predicate 87

LABEL ON statement 304

truncated during assignment 56

DRDA
See also Distributed Relational

Database Architecture (DRDA)

data conversion 29

DRDA protocol
description 25

restrictions 425, 427

DROP FOREIGN KEY clause
of ALTER TABLE statement 162

DROP PRIMARY KEY clause
of ALTER TABLE statement 162

DROP PROCEDURE statement
EXECUTE IMMEDIATE

statement 271

DROP PSERVER statement
EXECUTE IMMEDIATE

statement 271

drop referential constraint 13

DROP statement
description 257

EXECUTE IMMEDIATE

statement 271

PREPARE statement 314

DROP STATEMENT statement 262

DROP UNIQUE clause
of ALTER TABLE statement 162

DTYPE column 369

of SYSUSAGE 405

DUOW (distributed unit of work) 26

duplicate rows
in fullselect 128

preventing 12

duration
date 74

labeled 74

time 75

timestamp 75

dynamic select
DECLARE CURSOR statement 141

FETCH statement 141

OPEN statement 141

dynamic SQL 9

description 9, 140

EXECUTE IMMEDIATE

statement 270

EXECUTE statement 264

execution 141

host variables 141

obtaining information with

DESCRIBE 247

parameter markers 141

preparation 141

PREPARE statement 313

SQLDA 359

statement 9

E
EBCDIC

mixed data 46

embedding statements 140

EMP_ACT sample table 413

EMPLOYEE sample table 412

empty character string 60

empty string 44

encoding scheme 30

END DECLARE SECTION

statement 263

entity integrity 11, 12

error
closes cursor 309

DELETE statement 244

description 324

during PUT 323

FETCH statement 284

INSERT statement 301

UPDATE statement 341

ERROR option
of CREATE PACKAGE statement 203

ERRORBYTE column 369

of SYSSTRINGS 401

escalate
isolation level 22

lock 20

ESCAPE clause
in LIKE predicate 87

ESCAPE keyword
in LIKE predicate 86

EUC (Extended UNIX Code) 46

EUR (IBM European standard) 50

format 50

EUR attribute
DATE option

CREATE PACKAGE

statement 202

evaluation order of operations 78

exclusive
isolation level 20

EXCLUSIVE option
IN EXCLUSIVE MODE clause

of LOCK DBSPACE

statement 305

of LOCK TABLE statement 306

executable statement 139, 140

EXECUTE IMMEDIATE statement
building statements 141

description 270

executing statements 141

PREPARE statement 315

EXECUTE ON clause
of GRANT statement 288

of REVOKE statement 327

EXECUTE statement
description 264

executing statements 141

PREPARE statement 315

SQLDA 359

SQLLEN value 362

SQLTYPE value 362

EXECUTE statement, Extended 268, 269

EXIST option
of CREATE PACKAGE statement 204

EXISTS predicate
description 83

480 SQL Reference

EXISTS predicate (continued)
NOT keyword 83

exp 7

EXPLAIN column 369

EXPLAIN option
of CREATE PACKAGE statement 202

EXPLAIN statement
description 273

EXECUTE IMMEDIATE

statement 271

PREPARE statement 314

explainable statement 274

exposed name
table 66

expression
arithmetic operators 71, 73

column_name 71

concatenation operator 72

constant 71

datetime operands 74

decimal operands 73

expression 71

floating-point operands 74

function 71

host_variable 71

in a basic predicate 79

in a quantified predicate 80

in a subselect 122

in BETWEEN predicate 81

in DESCRIBE statement 249

in IN predicate 84

integer operands 73

labeled_duration 71

numeric 73

operators 71

precedence of operation 78

special_register 71

string 72

subselect 122

value 71

Extended CLOSE statement 177

Extended DECLARE CURSOR

statement 240, 241

Extended DESCRIBE statement
description 251

SQLDA 359

extended dynamic SQL
description 9, 10

Extended EXECUTE statement
description 268

SQLDA 359

Extended FETCH statement
description 287

SQLDA 359

Extended OPEN statement
description 312

SQLDA 359

Extended PREPARE statement 317, 321

Extended PUT statement
description 325

SQLDA 359

extender, alphabetic 35

F
FETCH

assignment rules 53

FETCH statement
description 283

dynamic select 141

OPEN statement 309

SQLDA 359

SQLLEN value 362

SQLTYPE value 362

static select 141

FETCH statement, Extended 287

field procedure
in LIKE predicate 87

FIELDPROC clause
of ALTER TABLE statement 160

of CREATE TABLE statement 221,

224

FIRSTKEYCOUNT column 369

of SYSINDEXES 389

FIRSTROW column 369

of SYSACCESS 374

fixed-length
character string 44

graphic string 47

FLDLENGTH column 369

of SYSFIELDS 387

FLDPROC column 369

of SYSCOLUMNS 383

of SYSKEYCOLS 391

FLDTYPE column 369

of SYSFIELDS 386

FLOAT
data type 158, 222

function 102

floating-point
arithmetic 74

constant 60

number 47

precision 47

folding 36

FOR BIT DATA clause
of ALTER TABLE statement 158

of CREATE TABLE statement 223

FOR clause
of CREATE SYNONYM

statement 218

of EXPLAIN statement 274

of Extended PREPARE statement 318

of UPDATE STATISTICS

statement 344

FOR DBSPACE clause
of UPDATE STATISTICS

statement 344

FOR MIXED DATA clause
of ALTER TABLE statement 158

of CREATE TABLE statement 223

FOR SBCS DATA clause
of ALTER TABLE statement 158

of CREATE TABLE statement 223

FOR TABLE clause
of UPDATE STATISTICS

statement 344

FOR UPDATE OF clause
of DELETE statement 246

of select-statement 134

for_fetch_only clause
select-statement 134

for_read_only clause
select-statement 134

foreign key
activating and deactivating 17

description 13

multiple 13

FOREIGN KEY clause
of ALTER TABLE statement 161

of CREATE TABLE statement 224

Fortran
application program

BEGIN DECLARE SECTION

statement 170

host variable 68, 270

INCLUDE SQLCA 358

INCLUDE statement 297

PREPARE statement 313

SQLCA 353

varying-length string variables 44

FPEXITPARM column 369

of SYSFPARMS 387

FPEXITPARML column 369

of SYSFIELDS 387

FPNAME column 369

of SYSFIELDS 387

of SYSFPARMS 387

FPPARMLIST column 369

of SYSFIELDS 387

FPWORKAREA column 369

of SYSFIELDS 387

fragment of syntax
in syntax diagrams 5

FREEPCT column 369

of SYSDBSPACES 385

FREQ1PCT column 369

of SYSCOLSTATS 380

FREQ1VAL column 369

of SYSCOLSTATS 380

FREQ2PCT column 369

of SYSCOLSTATS 380

FREQ2VAL column 369

of SYSCOLSTATS 380

FROM clause
of DELETE statement 243

of Extended PUT statement 325

of PREPARE statement 313

of PUT statement 322

of REVOKE statement 327, 330, 331

of SELECT INTO statement 336

of subselect 121, 124

FROM NULL clause
of Extended PREPARE statement 318

FULLKEYCOUNT column 369

of SYSINDEXES 389

fullselect
description 128

in parentheses
ISO-ANS SQL(89) equivalent

term 424

ISO-ANS SQL(89) equivalent

term 424

select-statement 133

function 96

column
AVG 91

COUNT 92

description 91

MAX 93

MIN 94

Index 481

function (continued)
column (continued)

SUM 95

DESCRIBE statement 248

description 91

nesting 96

scalar
CHAR 96

DATE 98

DAY 99

DAYS 100

DECIMAL 101

description 96

DIGITS 101

FLOAT 102

HEX 103

HOUR 104

INTEGER 104

LENGTH 105

MICROSECOND 106

MINUTE 106

MONTH 107

SECOND 107

STRIP 108

SUBSTR 110

TIME 112

TIMESTAMP 113

TRANSLATE 115

VALUE 117

VARGRAPHIC 118

YEAR 120

G
GO TO clause

See also GOTO clause

of WHENEVER statement 346

GOTO clause
of WHENEVER statement 346

GRANT statement
EXECUTE IMMEDIATE

statement 271

PREPARE statement 314

used to grant
Package Privileges 288, 289

System Authorities 290, 292

Table Privileges 293, 295

GRANTEE column 369

of SYSCOLAUTH 379

of SYSPROGAUTH 396

of SYSTABAUTH 403

GRANTEETYPE column 369

of SYSTABAUTH 403

GRANTOR column 369

of SYSCOLAUTH 379

of SYSPROGAUTH 396

of SYSTABAUTH 403

GRAPHIC
data type 158, 223

graphic string
constant

support 62

description 47

fixed-length 47

host variable 47

GROUP BY clause
comparison rules 53

GROUP BY clause (continued)
maximum number of columns 350

maximum total length of

columns 350

of subselect 121, 125

results with subselect 123

grouped
table

DB2 Server for VSE & VM

equivalent term 423

view
DB2 Server for VSE & VM

equivalent term 423

grouping column
DB2 Server for VSE & VM equivalent

term 423

identified in GROUP BY 125

H
HAVING clause

maximum number of predicts 350

of subselect 121, 126

results with subselect 123

HEX
function 103

hexadecimal 103

hexadecimal constant 60

HIGH2KEY column 369

of SYSCOLUMNS 382

host identifier 36, 37

host language
comments 36

host structure
description 69

in FETCH statement 283

in INSERT statement 298

in OPEN statement 307

in PUT statement 322

in SELECT INTO statement 336

indicator array 69

host variable
CCSID

application requester/server 32

character string 44

description 68

embedded statements 140

host_identifier 68

in BEGIN DECLARE SECTION

statement 169

in DECLARE CURSOR

statement 237

in END DECLARE SECTION

statement 263

in syntax diagrams 2

INDICATOR keyword 68

indicator variable 68

length attribute 79

main variable 68

maximum number in an SQL

statement 350

maximum number of declarations in a

precompiled program 350

null value 68

numeric 48

parameter markers 68

statement preparation 141

host variable (continued)
substitution for parameter

markers 264

host variable followed by an indicator

variable
ISO-ANS SQL(89) equivalent

term 424

host_identifier
length limitation 349

host_label
in WHENEVER statement 346

host_variable
description 39

in CREATE PACKAGE

statement 201, 206

in EXECUTE IMMEDIATE

statement 270

in EXECUTE statement 264

in Extended PUT statement 325

in FETCH statement 283

in INSERT statement 298

in LIKE predicate 86

in OPEN statement 307

in PREPARE statement 313

in PUT statement 322

in SELECT INTO statement 336

in SELECT statement 337

host_variable_list
description 39, 267

in EXECUTE statement 264

in FETCH statement 283

in INSERT statement 298

in OPEN statement 307, 308

in PUT statement 322

in SELECT INTO statement 336

host_variable_structure
in FETCH statement 283

host_variable-list
in IN predicate 84

host-variable 252, 254

HOUR
function 104

labeled duration 71

HOURS
labeled duration 71

I
IBM European standard

See EUR (IBM European standard)

IBM USA standard (USA)
See USA (IBM USA standard)

ICREATOR column 369

of SYSINDEXES 388

IDENTIFIED BY clause
of CONNECT statement 186, 192

of GRANT statement 290, 291

identifier
delimited 37

description 36

host 37

long 37

ordinary 37

short 37

IID column 369

of SYSINDEXES 388

482 SQL Reference

IMMEDIATE keyword
of EXECUTE IMMEDIATE

statement 270

IN clause
of CREATE TABLE statement 226

of DROP STATEMENT

statement 262

of Extended DECLARE CURSOR

statement 240

of Extended EXECUTE

statement 268

of Extended PREPARE statement 318

IN EXCLUSIVE MODE clause
description 305

LOCK DBSPACE statement 305

LOCK TABLE statement 306

IN predicate
description 84

NOT keyword 84

IN SHARE MODE clause
LOCK DBSPACE statement 305

LOCK TABLE statement 306

IN_TRAY sample table 415

INACTIVE column 369

of SYSCATALOG 377

INAME column 369

of SYSINDEXES 388

of SYSKEYS 392

INCCSID column 369

of SYSSTRINGS 401

INCLUDE SQLCA
language specifics 357

INCLUDE SQLDA
language specifics 364

INCLUDE statement
description 296

SQLCA 353

SQLDA 359

incompatibilities, release to release
2.1 and 1.3.5 428, 430

2.2 and 2.1 430, 433

3.1 and 2.2 433, 444

3.3 and 3.2 (VM only) 444, 450

3.4 and 3.2 (VSE only) 454, 463

3.4 and 3.3 (VM only) 450, 454

3.5 and 3.4 463

5.1 and 3.5 464

6.1 and 5.1 464

7.1 and 6.1 465

7.2 and 7.1 465

description 427

independent table
definition 13

index
activating and deactivating 17

description 17

key 11

longest key 350

maximum byte count 350

maximum number on a table 350

INDEX clause
of DROP statement 257

of GRANT statement 293, 294

of REVOKE statement 330, 331

index key
CREATE INDEX statement 198

index_id
description 39

index_name
description 39

in CREATE INDEX statement 198

in DROP statement 257

length limitation 349

INDEXAUTH column 369

of SYSTABAUTH 404

INDEXTYPE column 369

of SYSINDEXES 388

indicator array 69

indicator variable
description 68

EXECUTE IMMEDIATE

statement 270

PREPARE statement 313

SQLDA 361

infix operator 73

insert
on view 17

INSERT
assignment rules 53

INSERT by subselect 298

INSERT clause
of GRANT statement 293, 294

of REVOKE statement 330, 331

insert cursor
in DECLARE CURSOR

statement 235

in OPEN statement 307

insert rule
description 16

INSERT statement
description 298

EXECUTE IMMEDIATE

statement 271

EXPLAIN statement 273

GRANT statement 294

OPEN statement 309

PREPARE statement 314

INSERT using VALUES 298

insert-block
in PUT statement 323

insert-statement
in DECLARE CURSOR

statement 235, 237

INSERTAUTH column 369

of SYSTABAUTH 404

INT
See INTEGER

integer
arithmetic 73

constant 60

division 73

operand 73

operands 73

precision 47

INTEGER
data type 158, 222

function 104

integrity
atomic 11

data 12, 18

entity 11

referential 12

interactive entry of SQL statements 142

interactive SQL
description 10

QMF 10

International Standards Organization

(ISO)
format 50

INTO clause
of DESCRIBE statement 247

of FETCH statement 283

of INSERT statement 298, 299

of SELECT INTO statement 336

invalidation of packages 164, 257, 258

invocation of statements 139

IPCTFREE column 369

of SYSINDEXES 389

IS clause
of COMMENT ON PROCEDURE

statement 180

of COMMENT ON statement 179

of LABEL ON statement 303, 304

ISO
See International Standards

Organization (ISO)

ISO attribute
DATE option

CREATE PACKAGE

statement 202

ISO-ANS SQL(89) / DB2 Server for VSE

& VM equivalent terms 423, 425

isolation level
cursor stability 21

description 20

escalation 22

exclusive 20

program control 22

repeatable read 20

share 20

uncommitted read 21

update 20

USER 22

ISOLATION option
of CREATE PACKAGE statement 202

J
Japanese Industrial Standard

See JIS (Japanese Industrial Standard)

JIS (Japanese Industrial Standard)
format 50

JIS attribute
DATE option

CREATE PACKAGE

statement 202

join
definition 121

example 127

K
KEEP option

of CREATE PACKAGE statement 203

key
activating and deactivating 17

composite 11

definition 11

primary 11

Index 483

key (continued)
primary index 11

unique 11

unique index 11

KEYCOLS column 369

of SYSKEYS 392

KEYLEN column 369

of SYSINDEXES 389

KEYNAME column 369

of SYSKEYCOLS 390

of SYSKEYS 391

KEYORD column 369

of SYSKEYCOLS 390

KEYTYPE column 369

of SYSINDEXES 390

of SYSKEYCOLS 390

of SYSKEYS 391

keyword
in syntax diagrams 2

L
label

See also LABEL ON statement

columns 303

producing with LABEL ON

statement 303

tables 303

views 303

LABEL ON statement
column name qualification 64

description 303

EXECUTE IMMEDIATE

statement 271

PREPARE statement 314

LABEL option
of CREATE PACKAGE statement 203

labeled duration
DAY 71, 74

DAYS 71, 74

HOUR 71, 75

HOURS 71, 75

MICROSECOND 71, 75

MICROSECONDS 71, 75

MINUTE 71, 75

MINUTES 71, 75

MONTH 71, 74

MONTHS 71, 74

SECOND 71, 75

SECONDS 71, 75

YEAR 71, 74

YEARS 71, 74

LABELS
in USING clause

of DESCRIBE statement 247

of Extended DESCRIBE

statement 251

LANGID column 369

of SYSLANGUAGE 392

LANGKEY column 369

of SYSLANGUAGE 392

LANGUAGE column 369

of SYSLANGUAGE 392

large integer
definition 47

length
attribute

column 44

host variable 79

LENGTH
function 105

LENGTH column 369

of SYSCOLUMNS 381

letter 35, 36

LFDDBSPACE column 369

of SYSCATALOG 377

LFDLINK column 369

of SYSCATALOG 377

LFDTABID column 369

of SYSCATALOG 377

LIKE predicate
description 86

limits in the database manager 349

LINKID column 369

of SYSACCESS 374

literal
description 59

LOCAL attribute
DATE option

CREATE PACKAGE

statement 202

LOCAL time standard
format 51

lock
COMMIT statement 183

dbspace 305

DELETE statement 245

description 18

escalation 20

INSERT statement 301

LOCK DBSPACE statement 305

LOCK TABLE statement 306

ROLLBACK statement 335

table 306

types 20

UPDATE statement 341

LOCK clause
of ACQUIRE DBSPACE

statement 145

of ALTER DBSPACE statement 148

LOCK DBSPACE statement
description 305

EXECUTE IMMEDIATE

statement 271

PREPARE statement 314

LOCK TABLE statement
description 306

EXECUTE IMMEDIATE

statement 271

PREPARE statement 314

LOCKMODE column 369

of SYSDBSPACES 385

of SYSINDEXES 389

logical operators 89

logical unit of work (LUW)
COMMIT statement 182

CREATE PACKAGE statement 206

description 18

DROP statement 258

Extended CLOSE statement 177

Extended DESCRIBE statement 251

Extended FETCH statement 287

logical unit of work (LUW) (continued)
Extended OPEN statement 312

Extended PREPARE statement 320

Extended PUT statement 326

initiating closes cursors 309

ISO-ANS SQL(89) equivalent

term 424

prepared statement referenced only

in 313

ROLLBACK statement 334

terminating 334

terminating destroys prepared

statements 315

long identifier 37

long string
blocking restriction 44

column 44

CREATE TABLE statement 228

description 44, 230

limitations in select-list 123

restriction in INSERT statement 300

LONG VARCHAR
data type 158, 222

LONG VARGRAPHIC
data type 158, 223

LOW2KEY column 369

of SYSCOLUMNS 382

lowercase 35, 36

LUW
See logical unit of work (LUW)

M
main variable

description 68

maintenance, package 10

MAX
comparison rules 53

function 93

MBCS (multi-byte characters) 47

MICROSECOND
function 106

labeled duration 71, 75

MICROSECONDS
labeled duration 71

MIN
comparison rules 53

function 94

MINUTE
function 106

labeled duration 71, 75

MINUTES
labeled duration 71

mixed data
ASCII 46

COMMENT ON statement 179, 180

conditions 46

CREATE TABLE statement 223

description 45

EBCDIC 46

EUC 46

in LIKE predicate 87

LABEL ON statement 304

MBCS 46

representation conventions 6

rules 45, 46

SQLDA 361

484 SQL Reference

mixed data (continued)
string assignments 55, 56

MODE keyword
description 306

IN SHARE MODE clause
of LOCK DBSPACE

statement 305

of LOCK TABLE statement 306

MODIFY option
of CREATE PACKAGE statement 204

of DROP STATEMENT

statement 262

MONTH
function 107

labeled duration 71, 74

MONTHS
labeled duration 71

multiple foreign keys 13

multiple path
delete-connected 14

N
NAME column 369

of SYSCHARSETS 379

of SYSUSERAUTH and

SYSUSERLIST 406

NAMED clause
of ACQUIRE DBSPACE

statement 144

NAMES
in USING clause

of DESCRIBE statement 247

of Extended DESCRIBE

statement 251

naming conventions
SQL 38

NCOLS column 369

of SYSCATALOG 375

NEW option
of CREATE PACKAGE statement 205

NHEADER clause
of ACQUIRE DBSPACE

statement 145

NLEAF column 369

of SYSINDEXES 389

NLEVELS column 369

of SYSINDEXES 389

NOBLOCK option
of CREATE PACKAGE statement 203

NOCHECK option
of CREATE PACKAGE statement 203

NODESCRIBE option
of CREATE PACKAGE statement 204

NOEXIST option
of CREATE PACKAGE statement 204

NOFOR option
UPDATE statement 342

NOMODIFY option
of CREATE PACKAGE statement 204

nonexecutable statement 139, 141

nonrecoverable dbspace
CREATE TABLE statement 226

nonrecoverable storage pool
UPDATE statement 341

NOT
in a search condition 89

NOT FOUND clause
of WHENEVER statement 346

NOT keyword
in EXISTS predicate 83

in LIKE predicate 86

NOT NULL clause
of CREATE TABLE statement 223

NOVERFLOW column 369

of SYSCATALOG 377

NPAGES column 369

of SYSCATALOG 377

of SYSDBSPACES 385

NRHEADER column 369

of SYSDBSPACES 385

NTABS column 369

of SYSDBSPACES 384

NULL
keyword

in INSERT statement 298

in UPDATE statement 339, 340

predicate
description 89

NOT keyword 89

null value 89

null attribute of result column 123

null foreign key 13

null value
assign to database 52

assigned to host variable 337

assignment 53

attribute of a result column 123

checking 52

CREATE INDEX statement 198

definition 43

duplicate rows 122

elimination with VALUE

function 117

equality and ordering 52

grouping columns 126

in expression or predicate 52

return from database 52

NULLS column 369

of SYSCOLUMNS 382

number of items in a select list
ISO-ANS SQL(89) equivalent

term 424

numbers 47

numeric
assignments

COBOL integer 55

decimal 54

floating-point 54

integer 54

comparisons
decimal 58

floating-point 58

integer 58

expression 73

numeric conversion
DRDA 29

NUMERIC data type
synonym for DECIMAL data 158,

222

numeric host variable 48

O
object table 66

ON clause
of CREATE INDEX statement 199

of GRANT statement 293, 294

of REVOKE statement 330, 331

ON DELETE clause
of ALTER TABLE statement 161

of CREATE TABLE statement 221,

225

open state of cursor
FETCH statement 284

OPEN statement 307

OPEN statement
description 307

dynamic select 141

select-statement invocation 140

SQLDA 359

SQLLEN value 362

SQLTYPE value 362

static select 141

OPEN statement, Extended 312

operand
datetime 74

decimal 73

floating-point 74

integer 73

string 72

operation
assignment 53, 57

comparison 57, 59

description 53

precedence 78

operations in SQL 53

operator
arithmetic 73

optional
default parameter

in syntax diagrams 4

item
in syntax diagrams 3

keyword
in syntax diagrams 4

OR
in a search condition 89

truth table 89

ORDER BY clause
comparison rules 53

ISO-ANS SQL(89) equivalent

term 424

maximum number of columns 350

maximum total length of

columns 350

of select-statement 133

order of evaluation 78

ORDERFIELD column 369

of SYSCOLUMNS 382

ordinary identifier
description 37

ordinary token
description 36

ORIGINAL column 369

OUTCCSID column 369

of SYSSTRINGS 401

outer reference
DB2 Server for VSE & VM equivalent

term 423

Index 485

overflow 420

OWNER column 369

of SYSDBSPACES 384

owner of catalog tables (SYSTEM) 369

OWNER option
of CREATE PACKAGE statement 204

owner_name
description 39

P
package

CREATE PACKAGE statement 201,

206

description 18

DROP statement 257, 258

DROP STATEMENT statement 262

Extended PREPARE statement 317

GRANT statement 288

invalidation 164, 257, 258

preprocessing 164, 262

section 18

PACKAGE clause
of DROP statement 257

package_id
description 39

package_name
description 39

in DROP statement 257

in GRANT statement 288

in REVOKE statement 327

length limitation 349

package_spec
description 39

in CREATE PACKAGE statement 201

in DROP STATEMENT

statement 262

in Extended DECLARE CURSOR

statement 240

in Extended DESCRIBE

statement 251

in Extended EXECUTE

statement 268

in Extended PREPARE statement 318

padding
bit data 55

string 55

PAGE value for LOCK clause
description 149

of ACQUIRE DBSPACE

statement 145

of ALTER DBSPACE statement 148

PAGES clause
of ACQUIRE DBSPACE

statement 145

parameter marker
EXECUTE statement 264

Extended EXECUTE statement 269

Extended PREPARE statement 319

OPEN statement 307, 308

PREPARE statement 314

PUT statement 322

rules 314

SQLDA 361

statement preparation 141

parent table
definition 12

parentheses
in syntax diagrams 2

with UNION 128

PARENTS column 369

of SYSCATALOG 377

password
catalog 369

CONNECT statement 185, 191

description 40

GRANT statement 290, 291

PASSWORD column 369

of SYSUSERAUTH and

SYSUSERLIST 406

PCTFREE clause
description 200

of ACQUIRE DBSPACE

statement 145

of ALTER DBSPACE statement 148

of ALTER TABLE statement 160, 162

of CREATE INDEX statement 199

of CREATE TABLE statement 224,

226

PCTINDEX clause
of ACQUIRE DBSPACE

statement 145

PCTINDX column 369

of SYSDBSPACES 385

PCTPAGES column 369

of SYSCATALOG 377

percent sign (%)
in LIKE predicate 86

phantom row 21

PL/I
application program

BEGIN DECLARE SECTION

statement 170

graphic string constants 61

host structure 69

host variable 68, 270

INCLUDE statement 297

PREPARE statement 313

SQLCA 353, 359

SQLDA 359, 365

varying-length string variables 44

PLABEL column 369

of SYSACCESS 375

PLAN clause
of EXPLAIN statement 273

PLAN_TABLE
EXPLAIN statement 275

points of consistency 19

POOL column 369

of SYSDBSPACES 385

Positioned form
of DELETE statement 242

of UPDATE statement 338

precedence
level 78

operation
addition 78

concatenation 79

datetime arithmetic 79

division 78

expression 78

multiplication 78

parentheses 78

prefix operator 78

precedence (continued)
operation (continued)

subtraction 78

precision
decimal data 48

of a number 47

results of arithmetic operations 73

predicate
basic 79

BETWEEN 81

comparison rules 53

condition 79

description 79

EXISTS 83

false 79

IN 84

in a search condition 89

LIKE 86

NULL 89

quantified 80

true 79

unknown 79

prefix operator 73

PREPARE statement
building statements 141

description 313

EXECUTE IMMEDIATE

statement 271

PREPARE statement, Extended 317, 321

prepared SQL statement
DECLARE CURSOR statement 238

dynamically prepared by

PREPARE 313, 315

executing 264, 267

Extended DECLARE CURSOR

statement 240

Extended DESCRIBE statement 251

Extended EXECUTE statement 268

Extended PREPARE statement 317

maximum number 350

obtaining information with

DESCRIBE 247

SQLDA provides information 359

preparing statements 9

preplanned database access 10

preprocess
ALTER TABLE statement 164

DROP statement 258

DROP STATEMENT statement 262

preprocessor 10

description 239

NOFOR option 239

primary
activating and deactivating keys 17

index 11

key 11, 12

primary key
activating and deactivating 17

PRIMARY KEY clause
of ALTER TABLE statement 160

of CREATE TABLE statement 223,

224

PRIVATE clause
in ACQUIRE DBSPACE

statement 144

486 SQL Reference

private dbspace
privileges for CREATE TABLE 219,

226

privilege
access objects 33

create index 33

dependencies 331

PROCEDURE clause
of COMMENT ON PROCEDURE

statement 180

procedure-name 254

PROGNAME column 369

of SYSPROGAUTH 397

program
as an application process 18

declaring a host_identifier 37

Extended CLOSE statement 177

Extended DESCRIBE statement 251

Extended FETCH statement 287

Extended OPEN statement 312

Extended PUT statement 326

inserting declarations 296

inserting statements 296

program control
isolation level 22

program_name
in ALTER TABLE statement 158, 160

in CREATE TABLE statement 221,

224

PROJ_ACT sample table 416

PROJECT sample table 415

PUBLIC clause
in ACQUIRE DBSPACE

statement 144

in GRANT statement 288, 293, 294

in REVOKE statement 327, 330, 331

punctuation mark
in syntax diagrams 2

PUT
assignment rules 53

PUT statement
description 322

OPEN statement 309

SQLDA 359

SQLLEN value 362

SQLTYPE value 362

PUT statement, Extended 325, 326

Q
QMF 10

QUALF column 369

of SYSDROP 386

qualification of column names 64

QUALIFIER option
of CREATE PACKAGE statement 204

quantified predicate
description 80

query
description 121

expression
DB2 Server for VSE & VM

equivalent term 423

specification
DB2 Server for VSE & VM

equivalent term 423

query (continued)
term

DB2 Server for VSE & VM

equivalent term 423

query cursor
in DECLARE CURSOR

statement 235

in OPEN statement 307

query management facility (QMF) 10

question mark
See parameter marker

R
reactivate referential constraint 13

read stability
isolation level 22, 203

read-only
cursor 236

table 236

view 233

REAL data type 158, 222

recoverable storage pool
UPDATE statement 341

recreate referential constraint 13

REFAUTH column 369

of SYSTABAUTH 404

REFERENCE clause
of EXPLAIN statement 273

REFERENCE_TABLE
EXPLAIN statement 278

REFERENCES clause
of ALTER TABLE statement 161

of CREATE TABLE statement 221,

225

of GRANT statement 293, 294

of REVOKE statement 330, 331

REFERENCES privilege
in ALTER TABLE statement 157

referential constraint
deactivate 13

delete rule
cascade 13

restrict 13

set null 13

description 13

drop 13

GRANT statement 294

INSERT statement 300

key 11

reactivate 13

recreate 13

UPDATE statement 341

referential cycle
definition 15

referential integrity 12

REFTCREATOR column 369

of SYSKEYS 392

REFTNAME column 369

of SYSKEYS 392

relational database
description 10

distributed 23

RELEASE column 369

of SYSINDEXES 389

RELEASE keyword
of COMMIT statement 182

RELEASE keyword (continued)
ROLLBACK statement 334

RELEASE option
of CREATE PACKAGE statement 205

release to release incompatibilities
2.1 and 1.3.5 428, 430

2.2 and 2.1 430, 433

3.1 and 2.2 433, 444

3.3 and 3.2 (VM only) 444, 450

3.4 and 3.2 (VSE only) 454, 463

3.4 and 3.3 (VM only) 450, 454

3.5 and 3.4 463

5.1 and 3.5 464

6.1 and 5.1 464

7.1 and 6.1 465

7.2 and 7.1 465

description 427

remarks
in catalog 178, 180

REMARKS column 369

of SYSCATALOG 178, 180, 375

of SYSCOLUMNS 179, 382

of SYSLANGUAGE 392

of SYSOPTIONS 394

remote unit of work (RUOW) 26

repeat symbol
in syntax diagrams 4

repeatable read
isolation level 20

REPLACE option
of CREATE PACKAGE statement 205

required item
in syntax diagrams 2

reserved word 37

reserved words
SQL 5

resource
authority 32

RESOURCE authority
ACQUIRE DBSPACE statement 144

CREATE TABLE statement 219

RESOURCE clause
of GRANT statement 291

of REVOKE statement 328

RESOURCEAUTH column 369

of SYSUSERAUTH and

SYSUSERLIST 406

restrict
delete rule 13

DELETE statement 244

ON DELETE clause
of ALTER TABLE statement 161

of CREATE TABLE statement 225

restrictions
delete rule 16

delete with subquery 16

DRDA protocol 425, 427

isolation level 22

result
ISO-ANS SQL(89) equivalent

term 424

result columns of subselect 124

result set locator data type 42

result specification
DB2 Server for VSE & VM equivalent

term 423

Index 487

result table
DECLARE CURSOR statement 236

definition 11

REVOKE option
of CREATE PACKAGE statement 203

REVOKE statement
EXECUTE IMMEDIATE

statement 271

GRANT option 332

PREPARE statement 314

used to revoke
Package Privileges 327, 328

System Authorities 328, 329

Table Privileges 330, 333

REXX
application program

BEGIN DECLARE SECTION

statement 169

host variable 68, 270

PREPARE statement 313

varying-length string variables 44

dynamic SQL 9

extended dynamic SQL 10

rollback
description 18

ROLLBACK statement 334, 335

row
deleting 242

inserting 298

maximum byte count 350

maximum number in a table 350

ROW value for LOCK clause
of ACQUIRE DBSPACE

statement 145

of ALTER DBSPACE statement 148

ROWCOUNT column 369

of SYSCATALOG 376

RR attribute
isolation level 20

CREATE PACKAGE

statement 202

RS attribute
isolation level 22, 203

isolation option
CREATE PACKAGE

statement 202

rs-locator-variable 166

run-time authorization ID 41

RUNAUTH column 369

of SYSPROGAUTH 397

RUOW (remote unit of work)
See remote unit of work (RUOW)

S
sample table

ACTIVITY 410

CL_SCHED 411

DEPARTMENT 411

EMP_ACT 413

EMPLOYEE 412

IN_TRAY 415

PROJ_ACT 416

PROJECT 415

SBCS
character 6

SBCS data
CREATE TABLE statement 223

description 44

SQLDA 361

SBCSID column 369

of SYSCCSIDS 378

SBLOCK option
of CREATE PACKAGE statement 203

scalar function
See also function

CCSID 32

description 96

scale
decimal data 48

scale of data
comparisons in SQL 58

conversion of numbers in SQL 54

determined by SQLLEN variable 361

results of arithmetic operations 73

SCHEDULE clause
of GRANT statement 290, 291

of REVOKE statement 328, 329

SCHEDULEAUTH column 369

of SYSUSERAUTH and

SYSUSERLIST 406

SCREATOR column 369

of SYSTABAUTH 403

search condition
DELETE statement 243

description 89

false 89

order of evaluation 90

parentheses 90

predicate 89

true 89

unknown 89

search_condition
in DELETE statement 243

in HAVING clause 126

in UPDATE statement 339, 340

in WHERE clause 125

Searched form
of DELETE statement 242

of UPDATE statement 338

SECOND
function 107

labeled duration 71, 75

SECONDS
labeled duration 71

section
in package 18

section_variable
description 40

in DROP STATEMENT

statement 262

in Extended DECLARE CURSOR

statement 240

in Extended DESCRIBE

statement 251

in Extended PREPARE statement 318

SECTNO column 369

SECTTYPE column 369

SELECT clause
of GRANT statement 293, 294

of REVOKE statement 330, 331

of SELECT INTO statement 336

of subselect 121, 122

SELECT INTO
assignment rules 53

description 336, 337

select list 122

application 123

maximum number of elements 350

notation 122

select-statement
fullselect 133

in DECLARE CURSOR

statement 235, 236

in EXECUTE IMMEDIATE

statement 271

in PREPARE statement 314

invocation 140

SELECTAUTH column 369

of SYSTABAUTH 404

self-referencing table
definition 15

SEQNO column 369

of SYSFPARMS 387

of SYSVIEWS 407

server_name
description 40

in CONNECT statement 185, 191

length limitation 349

SET clause
of UPDATE statement 339

set function
DB2 Server for VSE & VM equivalent

term 423

set null
delete rule 13

DELETE statement 244

ON DELETE clause
of ALTER TABLE statement 161

of CREATE TABLE statement 225

SET QUERYNO clause
of EXPLAIN statement 274

SETTING clause
of Extended PREPARE statement 318

share
isolation level 20

SHARE option
IN SHARE MODE clause

LOCK DBSPACE statement 305

LOCK TABLE statement 306

shift-in character
convention (>) 6

not truncated by assignments 56

representation of DBCS delimiter

character X’0F’ 6

shift-in character X'0F'
mixed data values 45

shift-out character
convention (<) 6

representation of DBCS delimiter

character X’0E’ 6

shift-out character X'0E'
mixed data values 45

short identifier 37

short string
column 44

single precision floating-point 47

SINGLE ROW clause
of Extended PREPARE statement 318

single row select 336

488 SQL Reference

single-byte character in LIKE

predicates 87

small integer
definition 47

SMALLINT
data type 158, 222

SOME
in a quantified predicate 80

sort specification
DB2 Server for VSE & VM equivalent

term 423

space 36

special character 35

special register
CCSID 32

CURRENT DATE 62

CURRENT SERVER 63

CURRENT TIME 63

CURRENT TIMESTAMP 63

CURRENT TIMEZONE 63

description 62

USER 62

special_register
in IN predicate 84

in INSERT statement 298

SQL communication area (SQLCA)
contents 353

entry changed by UPDATE 341

INCLUDE statement 296

INSERT statement 301

PUT statement 323

SQL descriptor area (SQLDA)
contents 359

DESCRIBE statement 249

EXECUTE statement 264

Extended EXECUTE statement 269

Extended PREPARE statement 319

FETCH statement 284

INCLUDE statement 296

LABEL ON statement 304

maximum size 350

OPEN statement 308

PUT statement 322

SQL identifier 36

SQLABC field of SQLCA 353

SQLAID field of SQLCA 353

SQLCABC field of SQLCA 353

SQLCAID field of SQLCA 353

SQLCOD field of SQLCA 353

SQLCODE
+100 283, 299, 336, 346

description 142

field of SQLCA 353

negative 346

positive 346

statement execution 140

SQLD field of SQLDA 247, 360

SQLDA
See also SQL descriptor area (SQLDA)

CCSID values in SQLDATA field 363

CCSID values in SQLNAME

field 363

date field length 48

SQLLEN field values for host

variables 362

SQLTYPE field values for host

variables 362

SQLDA (continued)
time field length 49

timestamp field length 49

SQLDABC field of SQLDA 247, 360

SQLDAID field of SQLDA 247, 360

SQLDATA field of SQLDA 248, 361

SQLDS communication protocol 25

SQLER fields of SQLCA 354, 355

SQLERL field of SQLCA 354

SQLERM field of SQLCA 354

SQLERP field of SQLCA 354

SQLERR(n) fields of SQLCA 354, 355

SQLERRD(3)
CLOSE statement 175

DELETE statement 245

INSERT statement 301

UPDATE statement 341

SQLERRD(n) fields of SQLCA 354, 355

SQLERRMC field of SQLCA 354

SQLERRML field of SQLCA 354

SQLERROR clause
of WHENEVER statement 346

SQLERRP field of SQLCA 354

SQLIND field of SQLDA 248, 361

SQLINIT EXEC
CONNECT statement 186

SQLLEN field of SQLDA 248, 361

SQLN field of SQLDA 247, 360

SQLNAME field of SQLDA 248, 362

SQLOPTION column 369

of SYSOPTIONS 393

SQLSTATE
’02000’ 283, 299, 336, 346

description 143

SQLSTATE field of SQLCA 357

SQLSTT field of SQLCA 357

SQLTXL field of SQLCA 354

SQLTXT field of SQLCA 354

SQLTYPE field of SQLDA 248, 360

SQLVAR array of SQLDA 360

SQLVAR field of SQLDA 247

SQLWARN fields of SQLCA 355, 357

SQLWARN0
WHENEVER statement 346

SQLWARN3
FETCH statement 284

SELECT INTO statement 336

SQLWARN6
DELETE statement 245

INSERT statement 301

UPDATE statement 342

SQLWARNING clause
of WHENEVER statement 346

SQLWRN fields of SQLCA 355, 357

statement
binding 9

executable 139

explainable 274

invocation 139

maximum length 350

nonexecutable 139, 141

preparation 9

statement_name
description 40

in DECLARE CURSOR

statement 235, 238

in DESCRIBE statement 247

statement_name (continued)
in EXECUTE statement 264

in PREPARE statement 313

length limitation 349

statement_variable
in Extended EXECUTE

statement 268

statements
ACQUIRE DBSPACE 144, 145

ALLOCATE CURSOR 146, 147

ALTER DBSPACE 148, 149, 150

ALTER PROCEDURE 154

ALTER PSERVER 155, 156

ALTER TABLE 157, 165

ASSOCIATE LOCATORS 166, 168

BEGIN DECLARE SECTION 169,

170

CALL 171, 174

CLOSE 175, 176

CLOSE, Extended 177

COMMENT ON 178, 179

COMMENT ON PROCEDURE 180

COMMIT 182, 184

CONNECT (for VM) 185, 190

CONNECT (for VSE) 196

CREATE INDEX 198, 200

CREATE PACKAGE 201, 207

CREATE PROCEDURE 208, 215

CREATE PSERVER 216, 217

CREATE SYNONYM 218

CREATE TABLE 219, 230

CREATE VIEW 231, 234

DECLARE CURSOR 235, 239

DECLARE CURSOR, Extended 240,

241

DELETE 242, 246

DESCRIBE 247, 250

DESCRIBE CURSOR 252, 253

DESCRIBE PROCEDURE 254, 256

DESCRIBE, extended 251

DESCRIBE, Extended 251

description 165, 176, 207, 250, 251,

259, 269, 272, 282, 286, 287, 297, 302,

304, 312, 316, 326, 343

DROP 257, 259

DROP PROCEDURE 260

DROP PSERVER 261

DROP STATEMENT 262

END DECLARE SECTION 263

EXECUTE 264, 267

EXECUTE IMMEDIATE 270, 272

EXECUTE, Extended 268, 269

EXPLAIN 273, 282

FETCH 283, 286

FETCH, Extended 287

GRANT (Package Privileges) 288,

289

GRANT (System Authorities) 290,

292

GRANT (Table Privileges) 293, 295

INCLUDE 296, 297

INCLUDE SQLCA 357, 358, 359

INCLUDE SQLDA 364, 365

INSERT 298, 302

inserting into a program 296

LABEL ON 303, 304

LOCK DBSPACE 305

Index 489

statements (continued)
LOCK TABLE 306

OPEN 307, 311

OPEN, Extended 312

PREPARE 313, 316

PREPARE, Extended 317, 321

PUT 322, 324

PUT, Extended 325, 326

REVOKE (Package Privileges) 327,

328

REVOKE (System Authorities) 328,

329

REVOKE (Table Privileges) 330, 333

ROLLBACK 334, 335

SELECT INTO 336, 337

UPDATE 338, 343

UPDATE STATISTICS 344, 345

WHENEVER 346, 347

static select
DECLARE CURSOR statement 141

FETCH statement 141

OPEN statement 141

static SQL 9

invocation 140

statement 9

STATISTICS keyword
in UPDATE STATISTICS

statement 344

STATUS column 369

of SYSKEYS 392

STMT column 369

STNAME column 369

of SYSTABAUTH 403

STOP clause
of WHENEVER statement 346, 347

storage pool
nonrecoverable 341

recoverable 341

stored procedures
using the DECLARE CURSOR

statement 239

STORPOOL clause
description 145

of ACQUIRE DBSPACE

statement 145

str 7

string
assignment

conversion rules 56

trailing blanks 55

column
CCSID 32

comparison 58

constant
CCSID 32

character 60

graphic 61

hexadecimal 60

definition 29

empty 44

expression 72

operand 72

padding 55

truncation 56

variable
fixed-length 44

varying-length 44

string_constant
in LIKE predicate 86

STRIP
function 108

STRUCTURE clause
of EXPLAIN statement 274

STRUCTURE_TABLE
EXPLAIN statement 281

SUBBYTE column 369

of SYSSTRINGS 401

subfield
of a structure 70

subquery
description 67

HAVING clause 126

in a basic predicate
ISO-ANS SQL(89) equivalent

term 424

in DELETE statement 242

in UPDATE statement 338

subselect 121

WHERE clause 135

subselect 339

description 67, 121, 128

FROM clause 121

GROUP BY clause 121

HAVING clause 121

in a basic predicate 79

in a quantified predicate 80

in CREATE VIEW statement 232

in EXISTS predicate 83

in fullselect 128

in INSERT statement 298, 299

in parentheses
ISO-ANS SQL(89) equivalent

term 424

ISO-ANS SQL(89) equivalent

term 424

quantified predicate 80

SELECT clause 121

WHERE clause 121

substitution character 30

SUBSTR
function 110

substring 110

subsystemid
in GRANT statement 290, 291

in REVOKE statement 328, 329

subtype
SQLDA 361

SUBTYPE column 369

in CREATE TABLE 223

of SYSCCSIDS 378

of SYSCOLUMNS 383

SUM function 95

synonym
defining 218

description 40

dropping 258

in DROP statement 257, 258

qualifying a column name 64

SYNONYM clause
of DROP statement 257, 258

syntax diagram
notation conventions 2

SYSACCESS catalog table 373, 375

SYSCATALOG catalog table 375, 378

SYSCCSIDS catalog table 378

SYSCHARSETS catalog table 378, 379

SYSCOLAUTH catalog table 379, 380

SYSCOLSTATS catalog table 380, 381

SYSCOLUMNS catalog table 381, 384

SYSDBSPACES catalog table 384, 385

of SYSDBSPACES 385

SYSDROP catalog table 385, 386

SYSFIELDS catalog table 386, 387

SYSFPARMS catalog table 387, 388

SYSINDEXES catalog table 388, 390

SYSKEYCOLS catalog table 390, 391

SYSKEYS catalog table 391, 392

SYSLANGUAGE catalog table 392, 393

SYSLENGTH column 369

of SYSCOLUMNS 382

of SYSKEYCOLS 390

SYSOPTIONS catalog table 393, 395

SYSPARMS catalog table 395

SYSPROGAUTH catalog table 396, 397

SYSPSERVERS catalog table 397

SYSROUTINES catalog table 398

SYSSTRINGS catalog table 400, 402

SYSSYNONYMS catalog table 402

SYSTABAUTH catalog table 403, 404

SYSTEM
owner of catalog tables 369

SYSUSAGE catalog table 405

SYSUSERAUTH and SYSUSERLIST

catalog table 406

SYSUSERLIST view on

SYSUSERAUTH 406

SYSUSERLIST 406

SYSVIEWS catalog table 406, 409

T
TABID column 369

of SYSACCESS 373

of SYSCATALOG 376

of SYSDROP 386

table
changing

ALTER TABLE 157

creating 219

definition 10

designator 66

dropping 257, 258

maximum byte count 350

maximum number in a relational

database 350

maximum number referenced in a

statement 350

maximum number referenced in a

view 350

primary key 11

temporary 309

TABLE clause
of COMMENT ON statement 178

of DROP statement 257, 258

of LABEL ON statement 303

table description, key 11

table designator
FROM clause 66

table expression
DB2 Server for VSE & VM equivalent

term 423

490 SQL Reference

table_id
description 40

table_name
description 40

in ALTER TABLE statement 157, 158,

161

in COMMENT ON PROCEDURE

statement 180

in COMMENT ON statement 178

in CREATE INDEX statement 198,

199

in CREATE SYNONYM

statement 218

in CREATE TABLE statement 221,

225

in DELETE statement 243

in DROP statement 257, 258

in FROM clause 124

in GRANT statement 293, 294

in INSERT statement 298, 299

in LABEL ON statement 303

in REVOKE statement 330, 331

in subselect 122

in UPDATE statement 339

in UPDATE STATISTICS

statement 344

length limitation 349

table-name
in DELETE statement 243

TABLEORD column 369

of SYSKEYCOLS 390

TABLETYPE column 369

of SYSCATALOG 375

TABTYPE column 369

of SYSACCESS 374

target specification
DB2 Server for VSE & VM equivalent

term 423

TCREATOR column 369

of SYSKEYCOLS 390

of SYSKEYS 391

of SYSTABAUTH 403

temporary tables in OPEN 309

terminating
logical unit of work (LUW) 182, 334

termination
COMMIT statement 183

description 184

text_file_name with INCLUDE

statement 296

time 49

arithmetic 77

arithmetic operations
duration 77

data type
description 49

duration 75

representation, internal & SQLDA 49

string 50

TIME
assignment 57

data type
in ALTER TABLE 158

in CREATE TABLE 223

function 112

TIME option
of CREATE PACKAGE statement 206

timestamp 49

arithmetic operations 78

data type
description 49

duration 75

representation, internal & SQLDA 49

string 51

TIMESTAMP
assignment 57

data type
in ALTER TABLE 158

in CREATE TABLE 223

function 113

TIMESTAMP column 369

of SYSACCESS 374

of SYSCOLAUTH 379

of SYSKEYCOLS 390

of SYSKEYS 392

of SYSPROGAUTH 397

of SYSTABAUTH 403

of SYSUSAGE 405

TLABEL column 369

LABEL ON statement 303

of SYSCATALOG 377

TNAME column 369

of SYSACCESS 373

of SYSCATALOG 375

of SYSCOLAUTH 379

of SYSCOLSTATS 380

of SYSCOLUMNS 381

of SYSFIELDS 386

of SYSFPARMS 387

of SYSINDEXES 388

of SYSKEYCOLS 390

of SYSKEYS 391

of SYSSYNONYMS 402

TO clause
of CONNECT statement 185, 191

of GRANT statement 288, 293, 294

token
delimiter 36

description 36

ordinary 36

trailing blanks
string assignment 55

transaction
DB2 Server for VSE & VM equivalent

term 423

TRANSLATE
function 115

TRANSPROC column 369

of SYSSTRINGS 401

TRANSTAB1 column 369

of SYSSTRINGS 402

TRANSTAB2 column 369

of SYSSTRINGS 402

TRANSTYPE column 369

of SYSSTRINGS 401

truncation
numbers 54

on output 420

string 56

truth table 89

truth valued logic 89

TTNAME column 369

of SYSTABAUTH 403

types of locks 20

U
unary

minus 73

plus 73

uncommitted read
isolation level 21

undefined reference
column name 66

underscore (_)
in LIKE predicate 86

UNION ALL clause
of fullselect 128

UNION clause
duplicate rows 128

of fullselect 128

UNIQUE clause
of ALTER TABLE statement 162

of CREATE INDEX statement 198

of CREATE TABLE statement 223,

225

unique constraint
description 12

key 11

unique index 11

unit of work
See also logical unit of work (LUW)

ISO-ANS SQL(89) equivalent

term 424

Universal Coordinated Time (UTC) 63

unnamed column
ORDER BY clause 133

update
isolation level 20

on view 17

UPDATE
assignment rules 53

UPDATE clause
of GRANT statement 293, 294

of REVOKE statement 330, 331

of select-statement 134

update rule
description 16

UPDATE statement
description 338

EXECUTE IMMEDIATE

statement 271

EXPLAIN statement 273

Extended DECLARE CURSOR

statement 240

FETCH statement 284

OPEN statement 309

Positioned UPDATE form 338

PREPARE statement 314

Searched UPDATE form 338

UPDATE STATISTICS statement
description 344

EXECUTE IMMEDIATE

statement 271

PREPARE statement 314

UPDATEAUTH column 369

of SYSTABAUTH 404

UPDATECOLS column 369

of SYSTABAUTH 403

uppercase 35, 36

UR attribute
isolation level 21

Index 491

UR attribute (continued)
isolation option

CREATE PACKAGE

statement 202

USA (IBM USA standard)
format 50

USA attribute
DATE option

CREATE PACKAGE

statement 202

user
CONNECT statement 185, 191

USER
isolation level 22

USER attribute
isolation option

CREATE PACKAGE

statement 202

user ID 369

COMMIT statement 182

ROLLBACK statement 334

USER keyword
in LIKE predicate 86

USER special register 62

USERID column 369

of SYSSYNONYMS 402

using AMODE(24)
incompatibilities 464

USING clause
of DESCRIBE statement 247, 249

of EXECUTE statement 264

of Extended DESCRIBE

statement 251

of OPEN statement 307

USING DESCRIPTOR clause
of EXECUTE statement 264

of Extended EXECUTE

statement 268

of Extended FETCH statement 287

of Extended OPEN statement 312

of Extended PREPARE statement 318

of Extended PUT statement 325

of FETCH statement 283

of OPEN statement 307, 308

of PUT statement 322

USING OPTIONS clause
of CREATE PACKAGE statement 201

USING OUTPUT DESCRIPTOR clause
of Extended EXECUTE

statement 268

UTC (Universal Coordinated Time)
See Universal Coordinated Time

(UTC)

V
VAL10 column 369

of SYSCOLSTATS 380

VAL50 column 369

of SYSCOLSTATS 380

VAL90 column 369

of SYSCOLSTATS 380

VALID column 369

of SYSACCESS 374

value
in tables 10

interpreting by data type 42

VALUE
function 117

VALUE column 369

of SYSOPTIONS 394

value expression
DB2 Server for VSE & VM equivalent

term 423

VALUES clause
of INSERT statement 298, 299

VARCHAR
data type 158, 222

VARGRAPHIC
data type 158, 223

function
shift-in 119

shift-out 119

varying-length
character string 44

graphic string 47

VCREATOR column 369

of SYSVIEWS 407

view
CREATE VIEW statement 231

creating 231

description 17, 234

dropping 258

read-only 233

VIEW clause
of DROP statement 257, 258

view_id
description 40

view_name
description 40, 218

in COMMENT ON PROCEDURE

statement 180

in COMMENT ON statement 178

in CREATE SYNONYM

statement 218

in CREATE VIEW statement 231

in DELETE statement 243

in DROP statement 257, 258

in FROM clause 124

in GRANT statement 293, 294

in INSERT statement 298, 299

in LABEL ON statement 303

in REVOKE statement 330, 331

in subselect 122

in UPDATE statement 339

length limitation 349

VIEWCHECK column 369

of SYSVIEWS 407

VIEWMAT column 369

of SYSVIEWS 407

VIEWNAME column 369

of SYSVIEWS 407

VIEWTEXT column 369

of SYSVIEWS 407

VSE guest
GRANT statement 291

W
WHENEVER statement 346, 347

WHERE clause
maximum number of predicts 350

of DELETE statement 243

of SELECT INTO statement 336

WHERE clause (continued)
of subselect 121, 125

of UPDATE statement 339, 340

WHERE CURRENT OF clause
of DELETE statement 243, 244

Extended DECLARE CURSOR

statement 240

of UPDATE statement 339, 340

Extended DECLARE CURSOR

statement 240

WITH CHECK OPTION clause
INSERT statement 300

of CREATE VIEW statement 232

UPDATE statement 341

WITH clause
of DELETE statement 244

of subselect 135

of UPDATE statement 340

WITH GRANT OPTION clause
of GRANT statement 288, 293, 294

WITH RETURN
in DECLARE CURSOR

statement 239

WORK keyword
COMMIT statement 182

ROLLBACK statement 334

Y
YEAR

function 120

labeled duration 71, 74

YEARS
labeled duration 71

492 SQL Reference

Contacting IBM

Before you contact DB2 customer support, check the product manuals for help

with your specific technical problem.

For information or to order any of the DB2 Server for VSE & VM products, contact

an IBM representative at a local branch office or contact any authorized IBM

software remarketer.

If you live in the U.S.A., then you can call one of the following numbers:

v 1-800-237-5511 for customer support

v 1-888-426-4343 to learn about available service options

Product information

DB2 Server for VSE & VM product information is available by telephone or by the

World Wide Web at http://www.ibm.com/software/data/db2/vse-vm

This site contains the latest information on the technical library, product manuals,

newsgroups, APARs, news, and links to web resources.

If you live in the U.S.A., then you can call one of the following numbers:

v 1-800-IBM-CALL (1-800-426-2255) to order products or to obtain general

information.

v 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the United States, go to the IBM

Worldwide page at http://www.ibm.com/planetwide

In some countries, IBM-authorized dealers should contact their dealer support

structure for information.

© Copyright IBM Corp. 1988, 2007 493

494 SQL Reference

IBMR

File Number: S370/4300-50

Program Number: 5697-F42

Printed in USA

SC09-2989-02

Spine information:

 IBM DB2 Server for VSE & VM SQL Reference Version 7 Release 5

	Contents
	Summary of Changes
	Summary of Changes for DB2 Version 7 Release 5
	Enhancements, New Functions, and New Capabilities
	Explain Option on DBSU REBIND PACKAGE Command
	For Fetch only
	Application Message Formatter
	Convert buffer read/write to compiler macro
	Modify Build Tree Creation
	Split code point search routines
	DRDA Multi-Row Insert
	Connection Pooling for DRDA TCP/IP in Online Resource Adapter
	IBM DB2 Server for VSE, Client Edition
	IBM DB2 Server for VM, Client Edition
	Handling Commit Responses from DB2 UDB Stored Procedures
	Make on-line programs AMODE 31 RMODE ANY
	Provide BIND File Support in VM and in VSE Batch Environments
	Convert TCP/IP LE/C interface to EZASMI API

	Chapter 1. Introduction
	Who This Book Is For
	Prerequisite Knowledge

	How This Book Is Organized
	Syntax Notation Conventions
	SQL Reserved Words
	Conventions for Representing Mixed Data Values
	Short Forms Used in Syntax Diagrams

	Chapter 2. Concepts
	Static SQL
	Dynamic SQL
	Interactive SQL
	Extended Dynamic SQL
	Relational Database
	Tables
	Keys
	Primary Keys
	Integrity
	Data Integrity
	Entity Integrity
	Referential Integrity
	Relationships Between Tables
	Foreign Keys
	Referential Constraints
	Delete Rules
	DELETE Rule Restrictions

	Insert Rules
	Update Rules
	Activating and Deactivating Keys

	Indexes
	Views
	Packages
	Catalog
	Application Processes, Concurrency, and Recovery
	Isolation Level
	Repeatable Read (RR)
	Cursor Stability (CS)
	Uncommitted Read (UR)
	Isolation Level Restrictions
	Isolation Level Escalation
	Program Control of Isolation

	Application Requesters and Application Servers
	Distributed Relational Database
	Application Servers in DRDA
	Remote Unit of Work
	Distributed Unit of Work
	The Use of DB2 Family SQL on Various Application Servers
	Data Representation Considerations

	Character Conversion
	Character Sets and Code Pages
	Coded Character Sets and CCSIDs
	Default CCSID

	Authorization and Privileges

	Chapter 3. Language Elements
	Characters
	Tokens
	Spaces
	Comments
	Uppercase and Lowercase

	Identifiers
	SQL Identifiers
	Host Identifiers

	Naming Conventions
	Authorization IDs and Authorization-names
	Example 1
	Example 2

	Data Types
	Result Set Locators
	Nulls
	Character Strings
	Fixed-Length Character Strings
	Varying-Length Character Strings
	Character String Host Variables
	Character Subtypes

	Graphic Strings
	Fixed-Length Graphic Strings
	Varying-Length Graphic Strings
	Graphic String Host Variables

	Numbers
	Small Integer
	Large Integer
	Single Precision Floating-Point
	Double Precision Floating-Point
	Decimal
	Numeric Host Variables

	Datetime Values
	Date
	Time
	Timestamp
	String Representations of Datetime Values

	Null Values
	Assigning Null Values Within the Database:
	Returning Null Values to the Application from the Database:
	Null Values within Expressions and Predicates
	Equality and Ordering of Null Values:
	Checking for a Null Value:

	Assignments and Comparisons
	Numeric Assignments
	Decimal or Integer to Floating-Point
	Floating-Point or Decimal to Integer
	Decimal to Decimal
	Integer to Decimal
	Floating-Point to Floating-Point
	Floating-Point to Decimal
	To COBOL Integers

	String Assignments
	Conversion Rules for String Assignments
	Datetime Assignments
	Numeric Comparisons
	String Comparisons
	Conversion Rules for String Comparison
	Datetime Comparisons

	Constants
	Integer Constants
	Floating-Point Constants
	Decimal Constants
	Character String Constants
	Graphic String Constants

	Special Registers
	USER
	Example

	CURRENT DATE
	Example

	CURRENT SERVER
	Example

	CURRENT TIME
	CURRENT TIMESTAMP
	CURRENT TIMEZONE
	Example

	Column Names
	Qualified Column Names
	Correlation Names
	Column Name Qualifiers to Avoid Ambiguity
	Column Name Qualifiers in Correlated References

	References to Host Variables
	The Metavariable host-variable
	Host Structures and Indicator Arrays

	Expressions
	Without Operators
	With the Concatenation Operator
	With Arithmetic Operators
	Two-Integer Operands
	Integer and Decimal Operands
	Two-Decimal Operands
	Decimal Arithmetic in SQL
	Floating-Point Operands
	Datetime Operands
	Durations

	Datetime Arithmetic in SQL
	Date Arithmetic
	Time Arithmetic
	Timestamp Arithmetic

	Precedence of Operations

	Predicates
	Basic Predicate
	Quantified Predicate
	Example 1
	Example 2
	Example 3
	Example 4

	BETWEEN Predicate
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	EXISTS Predicate
	IN Predicate
	Example 1
	Example 2
	Example 3
	Example 4

	LIKE Predicate
	Simple Description
	Rigorous Description
	With Mixed Data
	With a Field Procedure
	The ESCAPE Clause
	USER as a Pattern

	NULL Predicate
	Search Conditions
	Example 1
	Example 2

	Chapter 4. Functions
	Column Functions
	AVG
	Examples

	COUNT
	Examples

	MAX
	Examples

	MIN
	Examples

	SUM
	Examples

	Scalar Functions
	CHAR
	Examples

	DATE
	Examples

	DAY
	Examples

	DAYS
	Examples

	DECIMAL
	Examples

	DIGITS
	Examples

	FLOAT
	Example

	HEX
	Examples

	HOUR
	Example

	INTEGER
	Example

	LENGTH
	Examples

	MICROSECOND
	Example

	MINUTE
	Example

	MONTH
	Example

	SECOND
	Examples

	STRIP
	Examples

	SUBSTR
	Examples

	TIME
	Example

	TIMESTAMP
	Example

	TRANSLATE
	Translation Process
	Examples

	VALUE
	Examples

	VARGRAPHIC
	Example

	YEAR
	Examples

	Chapter 5. Queries
	Authorization
	subselect
	select-clause
	Select List Notation
	Limitation on Long String Columns
	Applying the Select List
	Null attribute of result columns
	Names of result columns
	Data type of result columns

	from-clause
	where-clause
	group-by-clause
	having-clause
	Examples of a subselect
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	fullselect
	Examples of a fullselect
	Example 1
	Example 2
	Example 3
	Example 4

	Conversion Rules for Operations that Combine Strings
	Example 1
	Example 2

	select-statement
	order-by-clause
	update-clause
	with-clause
	Examples of a select-statement
	Example 1
	Example 2
	Example 3
	Example 4

	Chapter 6. Statements
	How SQL Statements Are Invoked
	Embedding a Statement in an Application Program
	Executable statements
	Nonexecutable statements

	Dynamic Preparation and Execution
	Static Invocation of a select-statement
	Dynamic Invocation of a select-statement
	Interactive Invocation

	SQL Return Codes
	SQLCODE
	SQLSTATE

	SQL Comments
	Example

	ACQUIRE DBSPACE
	ALLOCATE CURSOR
	ALTER DBSPACE
	ALTER PROCEDURE
	ALTER PSERVER
	ALTER TABLE
	ASSOCIATE LOCATORS
	BEGIN DECLARE SECTION
	CALL
	CLOSE
	Extended CLOSE
	COMMENT ON
	COMMENT ON PROCEDURE
	COMMIT
	CONNECT (for VM)
	CONNECT (for VSE)
	CREATE INDEX
	CREATE PACKAGE
	CREATE PROCEDURE
	CREATE PSERVER
	CREATE SYNONYM
	CREATE TABLE
	CREATE VIEW
	DECLARE CURSOR
	Extended DECLARE CURSOR
	DELETE
	DESCRIBE
	Extended DESCRIBE
	DESCRIBE CURSOR
	DESCRIBE PROCEDURE
	DROP
	DROP PROCEDURE
	DROP PSERVER
	DROP STATEMENT
	END DECLARE SECTION
	EXECUTE
	Extended EXECUTE
	EXECUTE IMMEDIATE
	EXPLAIN
	FETCH
	Extended FETCH
	GRANT (Package Privileges)
	GRANT (System Authorities)
	GRANT (Table Privileges)
	INCLUDE
	INSERT
	LABEL ON
	LOCK DBSPACE
	LOCK TABLE
	OPEN
	Extended OPEN
	PREPARE
	Extended PREPARE
	PUT
	Extended PUT
	REVOKE (Package Privileges)
	REVOKE (System Authorities)
	REVOKE (Table Privileges)
	ROLLBACK
	SELECT INTO
	UPDATE
	UPDATE STATISTICS
	WHENEVER

	Appendix A. SQL Limits
	Notes

	Appendix B. SQLCA and SQLDA
	SQL Communication Area (SQLCA)
	In COBOL and Assembler
	In PL/I and C
	In Fortran
	Description of Fields
	INCLUDE SQLCA Declarations
	Assembler
	C
	COBOL
	Fortran
	PL/I

	SQL Descriptor Area (SQLDA)
	Description of Fields
	Fields in an Occurrence of SQLVAR
	SQLTYPE and SQLLEN
	CCSID Usage
	INCLUDE SQLDA Declarations
	Assembler
	C
	PL/I

	Appendix C. DB2 Server for VSE & VM Catalog
	“Roadmap” to Catalog
	Updateable Columns
	SYSACCESS
	SYSCATALOG
	SYSCCSIDS
	SYSCHARSETS
	SYSCOLAUTH
	SYSCOLSTATS
	SYSCOLUMNS
	SYSDBSPACES
	SYSDROP
	SYSFIELDS
	SYSFPARMS
	SYSINDEXES
	SYSKEYCOLS
	SYSKEYS
	SYSLANGUAGE
	SYSOPTIONS
	SYSPARMS
	SYSPROGAUTH
	SYSPSERVERS
	SYSROUTINES
	SYSSTRINGS
	SYSSYNONYMS
	SYSTABAUTH
	SYSUSAGE
	SYSUSERAUTH and SYSUSERLIST
	SYSVIEWS

	Appendix D. Sample Tables
	Relationships Among the Tables
	ACTIVITY Table
	Relationship of ACTIVITY to Other Tables

	CL_SCHED Table
	DEPARTMENT Table
	Relationship of DEPARTMENT to Other Tables

	EMPLOYEE Table
	Relationship of EMPLOYEE to Other Tables

	EMP_ACT Table
	Relationship of EMP_ACT to Other Tables

	IN_TRAY Table
	PROJECT Table
	Relationship of PROJECT to Other Tables

	PROJ_ACT Table
	Relationship of PROJ_ACT to Other Tables

	Appendix E. Data Conversion Chart
	Appendix F. Terminology Differences
	Terminology Cross-Reference

	Appendix G. DRDA Considerations
	Omissions from the Standards
	Extensions to the Standards
	DB2 Server for VSE & VM Facility Restrictions

	Appendix H. Incompatibilities Between Releases
	Definition of an Incompatibility
	Impact on Existing Applications
	V2R1 and V1R3.5 Incompatibilities
	V2R2 and V2R1 Incompatibilities
	Detailed Notes on V2R2-V2R1 Incompatibilities

	V3R1 and V2R2 Incompatibilities
	Detailed Notes on V3R1-V2R2 Incompatibilities

	V3R3 and V3R2 Incompatibilities (VM Only)
	Detailed Notes on V3R3-V3R2 Incompatibilities

	V3R4 and V3R3 Incompatibilities (VM Only)
	Detailed Notes on V3R4-V3R3 Incompatibilities

	V3R4 and V3R2 Incompatibilities (VSE Only)
	Detailed Notes on V3R4-V3R2 Incompatibilities

	V3R5 and V3R4 Incompatibilities
	V5R1 and V3R5 Incompatibilities
	V6R1 and V5R1 Incompatibilities
	V7R1 and V6R1 Incompatibilities
	V7R2 and V7R1 Incompatibilities

	Notices
	Programming Interface Information
	Trademarks

	Bibliography
	Index
	Contacting IBM
	Product information

