
DB2 Server for VSE & VM

Database Services Utility

Version 7 Release 5

SC09-2983-03

IBM

DB2 Server for VSE & VM

Database Services Utility

Version 7 Release 5

SC09-2983-03

IBM

Before using this information and the product it supports, be sure to read the general information under “Notices” on page 255.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling

1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1987, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About This Manual vii

Who Should Use This Manual vii

How to Use This Manual vii

Utilization vii

Organization vii

Components of the Relational Database

Management System viii

Prerequisites x

Knowledge x

Publications xi

Highlighting Conventions xi

Syntax Notation Conventions xiii

SQL Reserved Words xvii

Summary of Changes xix

Summary of Changes for DB2 Version 7 Release 5 xix

Enhancements, New Functions, and New

Capabilities xix

Part 1. User’s Guide 1

Chapter 1. Getting Started 3

Introducing the Database Services Utility 3

Loading Data into a Database 4

Starting and Using the Database Services Utility . . 7

Multiple User Mode 7

Single User Mode 7

Overview of Database Services Utility Files . . . 8

Working with an Input Control Card File in DB2

Server for VSE 9

Creating a Control Card File 9

Working with a Report 9

Working with a Control File in DB2 Server for VM 13

Using a Control File 13

Creating a Control File 13

Defining Input and Output Requirements 13

Using File Definitions 14

Using the SQLDBSU EXEC 15

Working with a Message File 17

Using the Database Services Utility on Remote

Application Servers Which Support DRDA Flow . . 19

Using SQL Statements within the Database Services

Utility 19

CONNECT 20

SELECT 22

COMMIT 24

Using SQL Comments 24

Querying the Current Status in DB2 Server for VM 25

Canceling a DB2 Server for VM Command 25

Exiting from the Database Services Utility 26

Chapter 2. Loading Data with the

Database Services Utility 27

DATALOAD Command Components 27

DATALOAD Procedures 31

Using the DATALOAD Command with a

Separate Data Input File 31

Using the DATALOAD Command with

Embedded Data 32

Data Format Support 34

JCL for the DB2 Server for VSE DATALOAD

Command 34

Using File Definitions with the DB2 Server for

VM DATALOAD Command 35

General Loading Procedures 36

Comparison Operators 36

Loading Null Values 36

Loading CURRENT DATE, CURRENT TIME,

and CURRENT TIMESTAMP Values 37

Loading Data into Multiple Tables 38

Combining Records to Load Multiple Table Rows 41

Committing Work While Loading Data 44

Restarting the Loading Process 46

Statistics Collection 48

Chapter 3. Unloading Data with the

Database Services Utility 51

DATAUNLOAD Procedures 51

Unloading Data in System-Defined Format . . . 52

Unloading Data in User-Specified Format . . . 57

Unloading NULL Values 58

Unloading a View 61

Using File Definitions with the DB2 Server for

VM DATAUNLOAD Command 62

UNLOAD Procedures 63

Unloading Data in System-Defined Format . . . 63

Using the UNLOAD DBSPACE Command . . . 66

Using the UNLOAD TABLE Command 66

Using File Definitions with the DB2 Server for

VM UNLOAD DBSPACE and UNLOAD TABLE

Commands 67

Chapter 4. Reloading Data with the

Database Services Utility 71

RELOAD Procedures 71

Reloading Data in System-Defined Format . . . 71

Using the PURGE Parameter 76

Using the NEW Parameter 76

Using the RELOAD DBSPACE Command . . . 77

Using the RELOAD TABLE Command 78

Using File Definitions with DB2 Server for VM

RELOAD DBSPACE and RELOAD TABLE

Commands 81

FILEDEFs Supporting RELOAD Command

Processing 82

© Copyright IBM Corp. 1987, 2007 iii

|

||

Release Coexistence Considerations for DB2 Server

for VM 82

Statistics Collection 82

Chapter 5. Unloading and Reloading

Packages with the Database Services

Utility 83

Package Procedures 83

Preprocessing 83

Using the UNLOAD PACKAGE Command . . . 85

Using the RELOAD PACKAGE Command . . . 87

Authorizing the Use of Packages 91

Preprocessing and Distributing an Application . . 91

Using File Definitions with DB2 Server for VM

UNLOAD and RELOAD PACKAGE Commands . . 92

FILEDEFs Supporting UNLOAD and RELOAD

PACKAGE 93

Chapter 6. Interpreting the Output of

the Database Services Utility 95

Understanding the Report and Message File Output 95

Command Input (DB2 Server for VSE & VM) . . 95

System Output (DB2 Server for VSE & VM) . . 95

Inclusion of Data in a Report (DB2 Server for

VSE) 95

Inclusion of Data in a Message File (DB2 Server

for VM) 96

Using the LIST Parameter on a DATALOAD

Command 99

Reading Report and Message-File Output in

Error Recovery 100

Part 2. Reference 103

Chapter 7. Using the Database

Services Utility from Application

Programs 105

In DB2 Server for VSE 105

Single User Mode Job Control 106

Multiple User Mode Job Control 108

In DB2 Server for VM 109

Names and Identifiers 110

General Rules for Naming Data Objects . . . 110

Qualifying Object Names 110

Using Special Characters and Blanks within

Identifiers 111

Reserved Words 111

SQL Reserved Words 111

Database Services Utility Reserved Words . . . 111

Using Reserved Words as Identifiers 111

Using the Database Services Utility from

Programming Languages 112

Addressing Mode 112

Register Contents for Database Services Utility

Dynamic Startup 113

Using the Database Services Utility from an

Assembler Program 113

Using the Database Services Utility from a C

Program 114

Using the Database Services Utility from a

COBOL Program 114

Using the Database Services Utility from a PL/I

Program 114

Using the Database Services Utility Application

Program Interface 114

Chapter 8. Command Reference . . . 135

Command Processing 135

COMMENT 137

COMMENT Format 138

REORGANIZE INDEX 138

REORGANIZE INDEX Format 138

SCHEMA 140

SCHEMA Format 140

SQL Statement Processing 143

SELECT and Arithmetic Exceptions 143

Processing Summary 144

Load-Data Commands 145

DATALOAD TABLE 145

DATALOAD TABLE Format 145

Table_Column_Id Subcommand 148

INFILE Subcommand 159

ENDDATA Subcommand 164

DATAUNLOAD 168

DATAUNLOAD Format 168

Data_Field_Id Subcommand 170

OUTFILE Subcommand 177

RELOAD DBSPACE 191

RELOAD DBSPACE Format 191

Release Coexistence Considerations for DB2

Server for VM 195

RELOAD TABLE 196

RELOAD TABLE Format 196

Release Coexistence Considerations for DB2

Server for VM 200

UNLOAD DBSPACE 201

UNLOAD DBSPACE Format 201

Release Coexistence Considerations for DB2

Server for VM 203

UNLOAD TABLE 204

UNLOAD TABLE Format 204

Release Coexistence Considerations for DB2

Server for VM 206

Load-Package Commands 207

Processing for the Load-Package Commands 207

RELOAD PACKAGE 208

RELOAD PACKAGE Format 208

UNLOAD PACKAGE 211

UNLOAD PACKAGE Format 211

REBIND PACKAGE 213

REBIND PACKAGE Format 213

Set-Item Commands 214

SET AUTOCOMMIT 214

SET AUTOCOMMIT Format 214

SET ERRORMODE 215

SET ERRORMODE Format 215

SET FORMAT 217

SET FORMAT Format 217

SET ISOLATION 218

SET ISOLATION Format 218

iv Database Services Utility

SET LINECOUNT, SET LINEWIDTH 219

SET LINECOUNT (LINEWIDTH) Format . . . 219

SET UPDATE STATISTICS 220

SET UPDATE STATISTICS Format 220

Chapter 9. Error Handling and

Debugging 223

Types of Errors 223

Return Codes 224

Storage Dumps 225

Dumps Initiated by the Database Services

Utility 225

Debugging 225

Chapter 10. Improving Performance 227

Nonrecoverable Storage Pool 227

Tape-File Support in DB2 Server for VM 227

Tape File Support Considerations 227

Locking Considerations 227

DATALOAD and RELOAD Locking

Considerations 228

SELECT, DATAUNLOAD, and UNLOAD

Locking Considerations 228

UNLOAD and RELOAD PACKAGE

Considerations 229

Update Statistics Considerations 229

Reorganizing Indexes 229

Double-Byte Character Set 230

Basic Support 230

Extended Support 231

Part 3. Appendixes 233

Appendix A. Sample Tables 235

DEPARTMENT Table 235

Relationship to Other Tables 236

EMPLOYEE Table 237

Relationship to Other Tables 240

PROJECT Table 241

Relationship to Other Tables 242

ACTIVITY Table 242

Relationship to Other Tables 243

PROJ_ACT Table 243

Relationship to Other Tables 245

EMP_ACT Table 245

Relationship to Other Tables 247

IN_TRAY Table 247

CL_SCHED Table 247

Appendix B. FILEDEF Command

Syntax and Notes 249

Specifying ddname 251

Specifying Device Type 251

Notices 255

Programming Interface Information 257

Trademarks 257

Bibliography 259

Index 263

Contacting IBM 269

Product information 269

Contents v

vi Database Services Utility

About This Manual

This manual is intended to help DB2 Server for VSE & VM users use the Database

Services (DBS) utility; it contains descriptions of the tasks connected with the use

of the Database Services Utility in a Virtual System Extended/Enterprise Systems

Architecture (VSE/ESA™) environment and in a Virtual Machine/Enterprise

Systems Architecture (VM/ESA®) environment. It also contains a reference section

for database users or application programmers who need more information about

the Database Services Utility. This manual follows the convention that VM refers to

the VM/ESA system unless otherwise specified and VSE refers to the VSE/ESA

system unless otherwise specified.

Who Should Use This Manual

This manual is a guide and reference for users of the Database Services Utility.

Any user of the DB2 Server for VSE & VM product is a potential user of this

manual; it is, however, particularly useful to database users who want to use batch

processing in their database operations.

How to Use This Manual

This manual describes and explains what the Database Services Utility is, how it

functions, and when to use it.

Utilization

This manual contains two parts. Each chapter in Part 1 has a task area, for

example, loading data or interpreting output. Within each task area, member subtasks

are grouped according to their importance or in order of performance.

To use the user-guide part of this manual, select the chapter that corresponds to

the general type of Database Services Utility activity that you want to perform.

Within that chapter, find the procedure that provides specific instructions for the

subtask that you want. Supplementary information, alternative procedures, and

examples are in boxes within the text. Perform the procedure’s numbered steps

and refer to the supplementary text within frames, figures, and examples as

necessary.

To use the reference part of this manual, find the general or specific topic of

interest in the table of contents or index and refer directly to its listed page or

pages.

Organization

The Summary of Changes summarizes the changes made to DB2 Server for VSE &

VM Version 7 Release 5.

Part 1 contains the following chapters:

Chapter 1, “Getting Started,” on page 3,

introduces the Database Services Utility and explains its use. It also

provides an example of a Database Services Utility job.

Chapter 2, “Loading Data with the Database Services Utility,” on page 27,

shows how to load tables with data specified by the user.

© Copyright IBM Corp. 1987, 2007 vii

Chapter 3, “Unloading Data with the Database Services Utility,” on page 51,

shows how to unload tables in a format specified by the user or in a

format provided by the Database Services Utility.

Chapter 4, “Reloading Data with the Database Services Utility,” on page 71,

shows how to reload tables with data in a format provided by the

Database Services Utility.

Chapter 5, “Unloading and Reloading Packages with the Database Services

Utility,” on page 83,

shows how to unload and reload packages.

Chapter 6, “Interpreting the Output of the Database Services Utility,” on page

95, describes VSE report output or VM message-file output, how to read it,

and how to understand it.

Part 2 contains the following chapters:

Chapter 7, “Using the Database Services Utility from Application Programs,” on

page 105,

contains rules for naming objects, lists reserved words, describes the

procedures required to initiate Database Services Utility processing from

application programs, and describes how to use the Database Services

Utility application program interface.

Chapter 8, “Command Reference,” on page 135,

describes command processing and contains complete descriptions of all

Database Services Utility commands.

Chapter 9, “Error Handling and Debugging,” on page 223,

describes the processing undertaken by the Database Services Utility

whenever errors are encountered and supplies information on the

processing of debug-type errors.

Chapter 10, “Improving Performance,” on page 227,

describes measures that could help improve the Database Services Utility’s

processing speed or efficiency.

Appendix A, “Sample Tables,” on page 235,

shows the contents of the sample tables supplied with the DB2 Server for

VSE & VM product.

Appendix B, “FILEDEF Command Syntax and Notes,” on page 249,

presents a syntax diagram and usage notes on the Conversational Monitor

System (CMS) FILEDEF command as it relates to the Database Services

Utility.

The Bibliography lists the publications that are related to this book.

Components of the Relational Database Management System

Figure 1 on page ix depicts a typical configuration with one database and two

users.

Figure 2 on page x depicts a typical configuration with one database, one batch

partition user, and a CICS
®

partition with several interactive users.

viii Database Services Utility

Storage
Pool

Database

Application Server

Communication Link (IUCV, APPC/VM or TCP/IP)

MDISK LINK

Database Manager

Database
Machine

User
Machine

Applications

Application Requester

Interactive SQL

Resource Adapter
Data System Control

Relational Data System

Database Storage
Subsystem

Preprocessors

DBS Utility

User
Machine

Applications

Application Requester

Interactive SQL

Preprocessors

DBS Utility

Resource Adapter

Figure 1. Basic Components of the RDBMS in VM/ESA

About This Manual ix

The database is composed of :

v A collection of data contained in one or more storage pools, each of which in turn

is composed of one or more database extents (dbextents). A dbextent is a VM

minidisk or a VSE VSAM cluster.

v A directory that identifies data locations in the storage pools. There is only one

directory per database.

v A log that contains a record of operations performed on the database. A database

can have either one or two logs.

The database manager is the program that provides access to the data in the

database. In VM it is loaded into the database virtual machine from the production

disk. In VSE it is loaded into the database partition from the DB2 Server for VSE

library.

The application server is the facility that responds to requests for information from

and updates to the database. It is composed of the database and the database

manager.

The application requester is the facility that transforms a request from an

application into a form suitable for communication with an application server.

Prerequisites

Knowledge

This manual assumes the following:

Online Resource Adapter

Interactive SQL

CICS Application

Batch Resource Adapter

Data System Control

Relational Data System

Database Storage
Subsystem

Application Requester

Application Server

Application Requester

Database Manager

Applications
Storage

Pool

ent

ent

Dbextent

Log

Database

DB2
for VSE
Library

Directory
Application
Program

VSE Batch
Partition

VSE

VSAM

Database
Partition

CICS Partition

Figure 2. Basic Components of the RDBMS in VSE/ESA

x Database Services Utility

v You have read the manuals listed under the heading “Publications” that follows

and understand the way the database manager works.

v You have a working knowledge of the IBM VSE/ESA environment and are

acquainted with job control language (JCL).

v You have a working knowledge of the VM Conversational Monitor System and

are acquainted with CMS commands.

v You know basic terms and concepts used in the DB2 Server for VSE System

Administration and DB2 Server for VM System Administration manuals.

v You have access to the manuals listed in the Bibliography.

Publications

This manual assumes that you are familiar with the information in the following

manuals:

 DB2 Server for VSE & VM Interactive SQL Guide and Reference, SC09-2990

 DB2 Server for VSE & VM Overview, GC09-2995

 DB2 Server for VSE System Administration, SC09-2981

 DB2 Server for VM System Administration, SC09-2980.

Highlighting Conventions

This manual observes the following text highlighting conventions:

 Convention Meaning

Italics Italic type denotes command variables, parameter values

and their symbolic equivalents, titles of stand-alone

documents, and strings of characters referred to as such.

Boldface Bold type is used for emphasis or for an important term that

is being defined.

Monospace Type Monospace type indicates material that is entered at a

display station, displayed on a screen, coded, or printed on

a computer printing device.

ALL CAPS Capital letters indicate keytop nomenclature, for example,

PFn, ENTER, CLEAR, INSERT, and DELETE. In addition,

the following situations call for all caps:

v Acronyms and other all-cap abbreviations

v Names of programs and other coded entities

v Names of files, tables, libraries, logs, and so forth

v Command, statement, and parameter names or constants

v Keyword and option names

v Data area and storage names.

“Quotation Marks” Quotation marks (double) enclose the headings of parts,

chapters, and lesser sections of stand-alone documents when

they are referenced; to designate specific, lengthy passages

of text (at least a sentence in length); and to denote

figurative and other special usage, such as jargon.

As Displayed Panel names, menu titles, and other display headers are

shown in uppercase or mixed case, as displayed.

About This Manual xi

xii Database Services Utility

Syntax Notation Conventions

Throughout this manual, syntax is described using the structure defined below.

v Read the syntax diagrams from left to right and from top to bottom, following

the path of the line.

The ►►─── symbol indicates the beginning of a statement or command.

The ───► symbol indicates that the statement syntax is continued on the next

line.

The ►─── symbol indicates that a statement is continued from the previous line.

The ───►◄ symbol indicates the end of a statement.

Diagrams of syntactical units that are not complete statements start with the

►─── symbol and end with the ───► symbol.

v Some SQL statements, Interactive SQL (ISQL) commands, or database services

utility (DBS Utility) commands can stand alone. For example:

Others must be followed by one or more keywords or variables. For example:

v Keywords may have parameters associated with them which represent

user-supplied names or values. These names or values can be specified as either

constants or as user-defined variables called host_variables (host_variables can only

be used in programs).

v Keywords appear in either uppercase (for example, SAVE) or mixed case (for

example, CHARacter). All uppercase characters in keywords must be present;

you can omit those in lowercase.

v Parameters appear in lowercase and in italics (for example, synonym).

v If such symbols as punctuation marks, parentheses, or arithmetic operators are

shown, you must use them as indicated by the syntax diagram.

v All items (parameters and keywords) must be separated by one or more blanks.

v Required items appear on the same horizontal line (the main path). For example,

the parameter integer is a required item in the following command:

►► SAVE ►◄

►► SET AUTOCOMMIT OFF ►◄

►► DROP SYNONYM synonym ►◄

© Copyright IBM Corp. 1987, 2007 xiii

This command might appear as:

 SHOW DBSPACE 1

v Optional items appear below the main path. For example:

This statement could appear as either:

 CREATE INDEX

or

 CREATE UNIQUE INDEX

v If you can choose from two or more items, they appear vertically in a stack.

If you must choose one of the items, one item appears on the main path. For

example:

Here, the command could be either:

 SHOW LOCK DBSPACE ALL

or

 SHOW LOCK DBSPACE 1

If choosing one of the items is optional, the entire stack appears below the main

path. For example:

Here, the command could be:

 BACKWARD

or

 BACKWARD 2

or

 BACKWARD MAX

►► SHOW DBSPACE integer ►◄

►► CREATE

UNIQUE
 INDEX ►◄

►► SHOW LOCK DBSPACE ALL

integer
 ►◄

►► BACKWARD

integer

MAX

 ►◄

xiv Database Services Utility

v The repeat symbol indicates that an item can be repeated. For example:

This statement could appear as:

 ERASE NAME1

or

 ERASE NAME1 NAME2

A repeat symbol above a stack indicates that you can make more than one

choice from the stacked items, or repeat a choice. For example:

v If an item is above the main line, it represents a default, which means that it will

be used if no other item is specified. In the following example, the ASC keyword

appears above the line in a stack with DESC. If neither of these values is

specified, the command would be processed with option ASC.

v When an optional keyword is followed on the same path by an optional default

parameter, the default parameter is assumed if the keyword is not entered.

However, if this keyword is entered, one of its associated optional parameters

must also be specified.

In the following example, if you enter the optional keyword PCTFREE =, you

also have to specify one of its associated optional parameters. If you do not

enter PCTFREE =, the database manager will set it to the default value of 10.

v Words that are only used for readability and have no effect on the execution of

the statement are shown as a single uppercase default. For example:

►►

ERASE

▼

name

►◄

►►

VALUES

(

▼

 ,

constant

host_variable_list

NULL

special_register

)

►◄

►►
 ASC

DESC

►◄

►►
 PCTFREE = 10

PCTFREE = integer

►◄

Syntax Notation Conventions xv

Here, specifying either REVOKE ALL or REVOKE ALL PRIVILEGES means the

same thing.

v Sometimes a single parameter represents a fragment of syntax that is expanded

below. In the following example, fieldproc_block is such a fragment and it is

expanded following the syntax diagram containing it.

►►

REVOKE ALL
 PRIVILEGES

►◄

►►

NOT NULL

UNIQUE

PRIMARY KEY

 fieldproc_block ►◄

fieldproc_block:

 FIELDPROC program_name

▼

,

(

constant

)

xvi Database Services Utility

SQL Reserved Words

The following words are reserved in the SQL language. They cannot be used in

SQL statements except for their defined meaning in the SQL syntax or as host

variables, preceded by a colon.

In particular, they cannot be used as names for tables, indexes, columns, views, or

dbspaces unless they are enclosed in double quotation marks (").

 ACQUIRE

ADD

ALL

ALTER

AND

ANY

AS

ASC

AVG

BETWEEN

BY

CALL

CHAR

CHARACTER

COLUMN

COMMENT

COMMIT

CONCAT

CONNECT

COUNT

CREATE

CURRENT

DBA

DBSPACE

DELETE

DESC

DISTINCT

DOUBLE

DROP

EXCLUSIVE

EXECUTE

EXISTS

EXPLAIN

FIELDPROC

FOR

FROM

GRANT

GRAPHIC

GROUP

HAVING

IDENTIFIED

IN

INDEX

INSERT

INTO

IS

LIKE

LOCK

LONG

MAX

MIN

MODE

NAMED

NHEADER

NOT

NULL

OF

ON

OPTION

OR

ORDER

PACKAGE

PAGE

PAGES

PCTFREE

PCTINDEX

PRIVATE

PRIVILEGES

PROGRAM

PUBLIC

RESOURCE

REVOKE

ROLLBACK

ROW

RUN

SCHEDULE

SELECT

SET

SHARE

SOME

STATISTICS

STORPOOL

SUM

SYNONYM

TABLE

TO

UNION

UNIQUE

UPDATE

USER

VALUES

VIEW

WHERE

WITH

WORK

© Copyright IBM Corp. 1987, 2007 xvii

xviii Database Services Utility

Summary of Changes

This is a summary of the technical changes to the DB2 Server for VSE & VM

database management system for this edition of the book. Several manuals are

affected by some or all of the changes discussed here. For your convenience, the

changes made in this edition are identified in the text by a vertical bar (|) in the

left margin. This edition may also include minor corrections and editorial changes

that are not identified.

This summary does not list incompatibilities between releases of the DB2 Server

for VSE & VM product; see either the DB2 Server for VSE & VM SQL Reference, DB2

Server for VM System Administration, or the DB2 Server for VSE System

Administration manuals for a discussion of incompatibilities.

Summary of Changes for DB2 Version 7 Release 5

Version 7 Release 5 of the DB2 Server for VSE & VM database management

system is intended to run on the Z/VM Version 5 Release 2 or later environment

and on the Z/VSE(®) Version 3 Release 1 or later environment.

Enhancements, New Functions, and New Capabilities

The following have been added to DB2 Version 7 Release 5:

Explain Option on DBSU REBIND PACKAGE Command

This new functionality allows the EXPLAIN(YES/NO) option on REBIND

PACKAGE command. If EXPLAIN(YES) is issued, then all four update tables

(structure, plan, cost, reference) will be updated. If EXPLAIN(NO) is issued, then

none of the four update tables will be updated.

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 Server for VSE & VM Database Services Utility

v DB2 Server for VSE & VM Performance Tuning Handbook

v DB2 Server for VSE & VM Quick Reference

v DB2 Server for VSE & VM SQL Reference

For Fetch only

This new functionality accepts the ″FOR FETCH ONLY″ clause after a cursor select

statement. It causes a cursor to become read-only (no UPDATEs or DELETEs are

permitted using this cursor). If a read-only cursor is referenced in an UPDATE or

DELETE statement, SQLCODE -510 will be issued and the statement is not

processed. In addition, under the SBLOCK preprocessor option, ″FOR FETCH

ONLY″ forces blocking to be used on the read-only cursor regardless of whether

there is a COMMIT. If there is no ″FOR FETCH ONLY″ clause, under SBLOCK,

blocking would only be done if a COMMIT was absent.

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 Server for VM Messages and Codes

v DB2 Server for VSE & VM Application Programming

v DB2 Server for VSE & VM Performance Tuning Handbook

v DB2 Server for VSE & VM Quick Reference

© Copyright IBM Corp. 1987, 2007 xix

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

v DB2 Server for VSE & VM SQL Reference

Application Message Formatter

This functionality provides an Application Programming Interface (API) that

retrieves the descriptive text for an SQLCODE, given an SQLCA input parameter.

The API will be available for Assembly, COBOL, C, PL/I and FORTRAN.

In DB2 for VM and DB2 for VSE Online, the user may specify the language of the

returned text. The languages supported by DB2 for VSE/VM are American English

(AMENG), uppercase English (UCENG), German (GER), French (FRANC) and

Japanese (KANJI). VSE Batch does not support switching to another language.

Therefore the default will be used regardless of the user’s specification. The values

of SQLCODE, SQLSTATE, SQLERRD1 and SQLERRD2 will be automatically

appended to the returned text. The user may also specify to have the entire

SQLCA included. If the SQLCODE could not be found in the repository, the entire

SQLCA will be returned in the buffer.

If the SQLCA was set by another product (such as DB2 UBD), the descriptive text

is retrieved if the SQLCODE exists in the DB2 for VM/VSE repositories. However,

the token substitutions may not be correct.

For more information, see DB2 Server for VSE & VM Application Programming.

Convert buffer read/write to compiler macro

The DRDA code has over 100 small modules. Each call to an external module has a

certain amount of overhead associated with it. Certain modules are called very

frequently and this can add up to a significant amount of time. This functionality

improves the performance by converting few modules to macros or internal

procedures, to reduce this overhead.

Modify Build Tree Creation

This functionality modifies Build Tree creation used by DRDA parsing and

generation. It is built in such a way that every code point that is used to search

through the tree must be converted to a different format before the search can be

done. If modified build tree was created with the converted point, then the code

point would not have to be converted every time the tree must be searched. This

improves the performance of the DRDA code path length with the minimal search.

Split code point search routines

When parsing a data stream within each parser action routine, a binary search is

done to find the specific code point. Some action specific routines are quite large,

so the binary search can be long. Splitting and spreading the code point evenly

among other modules would reduce the overheads and improves the performance

of the DRDA code path length.

DRDA Multi-Row Insert

Multi Row insert is a means of caching homogenous insert statements and sending

them as a block to the server for processing. This reduces the overhead of sending

a large number of singular inserts and receiving as many responses.

Buffering of homogenous inserts eliminates the need to send an SQL statement to

the DB2 server every time an insert is made, thereby improving performance over

DRDA.

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 Server for VSE & VM Application Programming

xx Database Services Utility

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

v DB2 Server for VSE & VM Database Administration

v DB2 Server for VM System Administration

v DB2 Server for VSE & VM Performance Tuning Handbook

v DB2 Server for VSE & VM Quick Reference

v DB2 Server for VSE & VM SQL Reference

Connection Pooling for DRDA TCP/IP in Online Resource

Adapter

Connection pooling is a technique that allows multiple users to share a cached set

of pre-established connections that provide access to a database. Establishing a

connection between a user and a server takes a sizeable time. Users who have

validated their entry to a database once need not establish a connection every time

a request is submitted. Instead, they can use a pre-established connection from a

pool of such connections and get their results much faster.

From the user’s point of view, there is a considerable improvement in response

time after this line item is implemented.

For more information, see the following documentation on DB2 Server for VSE &

VM:

v DB2 Server for VSE System Administration

v DB2 Server for VSE & VM Application Programming

v DB2 Server for VSE & VM Operation

v DB2 Server for VSE & VM Performance Tuning Handbook

IBM DB2 Server for VSE, Client Edition

This feature allows the customer the flexibility to install and use only the client

(run-time support) component of DB2 Server for VSE without the requirement to

buy and install the server component during the installation process of DB2 server

for VSE product. The client-only installation enables customers to reduce the total

cost of ownership when they have their databases residing on a non-local platform

(like VM, z/OS, LUW) and have a large number of their DB2 applications on VSE

(like ISQL on CICS, DBSU on VSE, other online/batch applications on VSE).

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 Server for VSE System Administration

v DB2 Server for VSE Program Directory

IBM DB2 Server for VM, Client Edition

This feature allows the customer the flexibility to install and use only the client

(run-time support) component of DB2 Server for VM without the requirement to

buy and install the server component during the installation process of DB2 server

for VM product. The client-only installation enables our customers to reduce the

total cost of ownership when they have their databases residing on a non-local

platform (like VM, z/OS, LUW) and have a large number of their DB2 applications

on VM (like ISQL, DBSU, other user applications on VM).

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 Server for VM System Administration

v DB2 Server for VM Program Directory

Summary of Changes xxi

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Handling Commit Responses from DB2 UDB Stored Procedures

This feature will allow DB2 Resource Manager on VSE/VM to accept and process

results of a stored procedure running in a UDB server with a COMMIT statement

in the stored procedure.

Currently, DB2 for VM/VSE client does not handle responses from ’COMMIT’

statements coded in DB2 UDB stored procedures. Implementation of this feature

will enable handling responses of COMMIT statements in DB2 UDB stored

procedures and thus allow users to have COMMIT statements in their stored

procedures, while using DB2 for VM/VSE client.

COMMIT statements, however, are not allowed in stored procedures on the DB2

Server for VM/VSE.

For more information, see DB2 Server for VSE & VM Application Programming.

Make on-line programs AMODE 31 RMODE ANY

This feature converts DB2 server for VSE online program which presently operate

under 24 bit addressing mode from AMODE 24, to AMODE 31 RMODE ANY.

Presently, all the online programs are loaded below 16M line. Implementation of

this line item ensures that all the online program will be loaded above the 16M

line, which results in more virtual storage below the line, which can be utilized by

other applications.

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 Server for VSE System Administration

v DB2 Server for VSE Program Directory

Provide BIND File Support in VM and in VSE Batch Environments

This feature provides the facility of binding packages across servers. The process of

binding is achieved by dividing the program preparation method into two steps.

The first step does the precompilation of the embedded SQL programs with the

prep parameter ’BIND’. Invocation of VSE/VM preprocessor creates a ’bindfile’.

The bindfile can be bound against any DB2 server using VSE/VM binder. During

this process, the access path is generated, SQL statements are verified,

authorization checks are performed, and package on the target server is created.

This line item eliminates the need of re-prepping the source code or porting of

packages across DB2 servers.

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 REXX SQL for VM/ESA Installation and Reference

v DB2 Server for VM Messages and Codes

v DB2 Server for VSE & VM Application Programming

v DB2 Server for VSE & VM Database Administration

v DB2 Server for VM Program Directory

v DB2 Server for VSE Program Directory

Convert TCP/IP LE/C interface to EZASMI API

The feature of converting TCP/IP LE/C interface to EZASMI API intends to

replace the current LE/C interface and implement the EZA Assembler Interface

(EZASMI)to enhance performance in DB2 Client/Server for VSE over DRDA.

Currently, either LE/C interface or CSI Assembler Interface is used for TCP/IP

functions. The EZASMI interface makes the code all Assembler.

xxii Database Services Utility

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

For more information, see DB2 Server for VSE Program Directory

Summary of Changes xxiii

|

xxiv Database Services Utility

Part 1. User’s Guide

This part of the manual presents procedures for performing the tasks provided by

the Database Services Utility, which is a part of the DB2 Server for VSE & VM

product. The major task areas covered are as follows:

v Familiarizing yourself with the DBS Utility

v Loading data into a DB2 Server for VSE & VM database

v Unloading data stored in a DB2 Server for VSE & VM database

v Reloading data into a DB2 Server for VSE & VM database in a format provided

by the DBS Utility

v Interpreting the output of the DBS Utility

v Unloading and reloading packages.

Examples and reference material necessary to perform these tasks are framed in

boxes with the procedures themselves. For additional reference information, see

Part 2, “Reference.”

Usual operation of the Database Services Utility is accessing the database in

multiple user mode; therefore, the task descriptions and procedures in this part of

the manual mainly address operation of the Database Services Utility with multiple

user mode.

© Copyright IBM Corp. 1987, 2007 1

2 Database Services Utility

Chapter 1. Getting Started

This chapter gives a brief overview of the Database Services (DBS) Utility and

explains how to start it. The fundamentals of using the utility are also described,

such as defining input and output requirements, working with a report in VSE, a

message file in VM, and using SQL statements within the utility. Finally, this

chapter describes how to exit from the utility.

Introducing the Database Services Utility

The Database Services Utility is an application program that supplies a user

interface to the IBM DB2 Server for VSE & VM product and that, with some

limitations, also works with other relational databases that use DRDA flow.

Consider using it to load or reload data into, or unload data from, a database. If

the amount of data to be processed is large, or if exact sequences of database

commands are to be used on a periodic basis, consider using the utility.

You usually employ the Database Services Utility for DB2 Server for VSE & VM for

large-scale processing of relational databases in a batch environment. Input to the

utility, as well as its reported output, is in the form of sequential files. In VM, you

have another way of using the Database Services Utility. Although DB2 Server for

VM batch processing is the utility’s usual operating mode, you can also use it

interactively by specifying a terminal as its input file. You can also direct its output

to a terminal instead of storing the output as a physical file.

In addition to loading data into and unloading it from a database, you can use the

utility to process SQL statements and to transfer packages into or out of databases.

You can do these operations in either single or multiple user mode.

The four primary Database Services Utility control commands are DATALOAD,

DATAUNLOAD, UNLOAD, and RELOAD. The UNLOAD and RELOAD

commands are qualified by the object they manipulate:

UNLOAD RELOAD

__

UNLOAD DBSPACE RELOAD DBSPACE

UNLOAD TABLE RELOAD TABLE

UNLOAD PACKAGE RELOAD PACKAGE

The DATALOAD command inserts data from a sequential file into a DB2 Server

for VSE & VM table. You specify the format of the sequential file.

The DATAUNLOAD command selects data from tables and copies it to a

sequential file. You specify the format of the sequential file.

The UNLOAD commands provide a backup function for existing tables, dbspaces,

and packages. These control commands are also useful for distributing copies of

data to other sites that use the database manager. The output of each UNLOAD

command is a sequential file formatted for the use of its corresponding RELOAD

command.

The RELOAD commands restore information previously backed up with UNLOAD

commands. The RELOAD commands are also useful for reorganizing database

tables or dbspaces and for receiving tables and packages from other sites. With the

© Copyright IBM Corp. 1987, 2007 3

RELOAD TABLE command, you can create new tables from logical views

previously unloaded from existing tables. You can then build an index for each

newly created table. The RELOAD package can be used to distribute packages to

other sites that use the DB2 Server for VSE & VM application server or other

application servers that support DRDA flow.

The Database Services Utility provides other commands for your convenience:

v A COMMENT command documents your Database Services Utility command

input.

v A REBIND PACKAGE command preprocesses existing packages.

v A REORGANIZE INDEX command efficiently reorganizes a table’s index in one

step.

v A SCHEMA command executes the SQL statements CREATE TABLE, CREATE

VIEW, and GRANT in a schema file. A schema file contains an authorization ID

and a list of table, view, and privilege definitions.

v A number of SET commands control various processing, environmental, and

formatting characteristics. The SET commands turn on or regulate certain SQL

statements.

Loading Data into a Database

You can use the Database Services Utility DATALOAD command to load or add

rows from a user-defined sequential file. The input to DATALOAD processing

consists of a set of Database Services Utility commands and input data records.

The utility commands identify:

v tables to be loaded

v Location of tabular column data in an input record

v Format of input-record fields

v Sequential file containing the input records.

You can specify how often DATALOAD processing commits insertions to the

database. Specify a number of input data records, and the insertions are committed

each time the DATALOAD command processes the specified number of records. If

a subsequent error occurs, the database manager only has to undo the database

changes made since the last commit point. The committing and restarting

capabilities of the database manager are useful when you are loading large

amounts of data with the utility.

Referential constraints (rules that require all values in dependent tables to match

corresponding values in parent tables) are enforced during DATALOAD

processing. This means that primary key rows must be loaded before their foreign

key rows. You can improve the utility’s performance by deactivating the

constraints before loading the data and activating them again afterwards. For

descriptions and instructions on DATALOAD processing, see Chapter 2, “Loading

Data with the Database Services Utility.”

Unloading Data from a Database

The DATAUNLOAD command allows you to selectively unload data from a

database to a sequential access method (SAM) output file. You can:

v Create a file for transporting data from a DB2 Server for VSE & VM to a

non-DB2 Server for VSE & VM processing environment

v Create a sequential file, modify it, and reload it into tables with the DATALOAD

command.

4 Database Services Utility

You can use the other Database Services Utility unload-data commands (UNLOAD

DBSPACE and UNLOAD TABLE) to:

v Create a backup for specific data

v Move data to another DB2 Server for VSE & VM database manager.

You can also use these UNLOAD commands, immediately followed by their

RELOAD counterparts, to:

v Reclaim fragmented disk space

v Reorder data records to match indexes.

The main difference between the DATAUNLOAD and UNLOAD commands is that

DATAUNLOAD allows you to specify more about the data you unload than the

UNLOAD commands allow. Consequently, the UNLOAD commands are simpler,

but it is easier to work with output data from a DATAUNLOAD command. For

descriptions and instructions on DATAUNLOAD and UNLOAD processing, see

Chapter 3, “Unloading Data with the Database Services Utility.”

Reloading Data into a Database

DATALOAD and RELOAD are essentially the same kind of operation: they both

insert data into databases; however, RELOAD inserts data that was previously

unloaded using the UNLOAD command while DATALOAD uses a user-defined

file of data, or the output file of a DATAUNLOAD command.

RELOAD processing can purge existing tables before reloading them (from

previously unloaded information). Similarly, you can unload a view as if it were a

table and reload it as a new table. When RELOAD creates a new table, it does not

automatically re-create all the entities associated with the old table; you must

specify views, indexes, keys, and access privileges. For descriptions and

instructions on RELOAD processing, see Chapter 4, “Reloading Data with the

Database Services Utility.”

Unloading Packages from a Database

You can use the Database Services Utility to unload a package from a DB2 Server

for VSE & VM database to a portable file. A package consists of the internally

optimized application SQL statements stored in (bound to) the database at

preprocessing time and used by the database with the application at execution

time. A portable file is one that contains an unloaded DB2 Server for VSE & VM

package that is ready for distribution to another application server. You can unload

a package to a file to:

v Create a backup of the package before making changes to it

v Reload a package to another application server.

The UNLOAD PACKAGE command unloads the package, along with information

about the way it was created, to a portable file. You can then send the file to the

application server that requires it. It is unnecessary to distribute source programs

or to preprocess and compile source code at the receiving location. For descriptions

and instructions on unloading packages, see Chapter 5, “Unloading and Reloading

Packages with the Database Services Utility,” on page 83.

Reloading Packages into a Database

You can use the Database Services Utility to load a package from a file into a DB2

Server for VSE & VM database. You can do this to achieve the following:

v Restore a previous version of a package

v Install an application that is distributed in a portable file.

Chapter 1. Getting Started 5

The database manager preprocesses reloaded packages to ensure that all

dependencies are satisfied on the installing system.

When a RELOAD PACKAGE command loads a package into an application server,

the module can replace another package with the same name. The new package

can carry over the run-privileges previously granted to users of the replaced

version. You can reload a package created and unloaded on a VM system, and use

it on a VSE system; or you can reload a package created and unloaded on a VSE

system, and use it on a VM system. For descriptions and instructions on reloading

packages, see Chapter 5, “Unloading and Reloading Packages with the Database

Services Utility.”

Processing SQL Statements with the Database Services Utility

The Database Services Utility executes SQL statements against the database. You

can use most SQL statements in a VM utility control file or a VSE utility input

control card file. SQL statements not supported by the Database Services Utility are

those used only in application programs (SELECT statements with INTO clauses,

cursor management commands, DESCRIBE, EXECUTE, INCLUDE, PREPARE, and

WHENEVER).

A Database Services Utility Job

DB2 Server for VM Components

A basic job has five components that control the input and output of data. All five

are discussed in more detail later in this chapter:

Control File The control file contains Database Services Utility commands and

SQL statements that the utility processes. The control file must

have a fixed format and a record length of 80 characters.

Message File This output file contains a list of all commands executed, as well as

the results of these commands. These results can be messages to

indicate whether the command was executed successfully, as well

as data that was obtained by a SELECT statement.

Input/Output File

Either this file contains data to be loaded or copied to a database,

or it is the file to which data is written. Its use depends on the

Database Services Utility command you are using.

File Definitions

File definitions specify input and output requirements for the

above three files.

SQLDBSU EXEC

This EXEC starts a Database Services Utility job. You can also use

the SQLDBSU EXEC to specify the input and output requirements

for the control and message files.

DB2 Server for VSE Files

A basic job has three components that control the input and output of data. All

three are discussed in more detail later in this chapter:

Input Control Card File

The input control card file contains Database Services Utility

commands and SQL statements that the utility processes. The input

control card file must have a fixed format and a record length of 80

characters.

Report The report contains a list of all commands executed, as well as the

6 Database Services Utility

results of these commands. These results can be messages to

indicate whether the command was executed successfully, as well

as data that was obtained by a SELECT statement.

Input/Output File

Either this file contains data to be loaded or copied to a database,

or it is the file to which data is written. Its use depends on the

Database Services Utility command you are using.

Starting and Using the Database Services Utility

The Database Services Utility can be started to access the database in either

multiple user mode or single user mode.

Multiple User Mode

Multiple user mode is the usual way of running the application server. It permits

multiple users to access a DB2 Server for VSE & VM application server

simultaneously. Unless you have database maintenance to perform or another task

requiring a dedicated database, run the utility with multiple user mode.

DB2 Server for VSE:

For more information about starting the Database Services Utility with multiple

user mode, see “Multiple User Mode Job Control” on page 108.

DB2 Server for VM:

The DB2 Server for VM Database Services Utility with multiple user mode cannot

run either in the CMS/DOS environment, or in CMS subset.

In preparation for running the Database Services Utility with multiple user mode,

initialize the user machine by specifying defaults using the SQLINIT EXEC. On the

CMS command line, type:

SQLINIT DBNAME(server-name)

where server-name is the name of the application server to be accessed. Press

ENTER.

For more information on the SQLINIT EXEC in multiple user mode, see “Running

the DB2 Server for VM Database Services Utility with Multiple User Mode” on

page 128.

Single User Mode

Run the Database Services Utility with single user mode to prevent concurrent

access of a DB2 Server for VSE & VM application server by other users. Unless you

have database maintenance to perform, are the sole user of an application server,

or are performing a task requiring a dedicated database, run the utility with

multiple user mode.

DB2 Server for VSE:

For more information on running the Database Services Utility with single user

mode, see “Single User Mode Job Control” on page 106.

Chapter 1. Getting Started 7

DB2 Server for VM:

In DB2 Server for VM single user mode, the SQLINIT EXEC is unnecessary; the

Database Services Utility and the application server are executed in the same

virtual machine, and you specify the desired application server with the DBNAME

parameter of the SQLDBSU EXEC.

For more information on using the SQLDBSU EXEC with single user mode, see

Chapter 7, “Using the Database Services Utility from Application Programs,” on

page 105 and “SQLDBSU EXEC Format” on page 129.

Note: Because usual operation of the Database Services Utility is with multiple

user mode, the task descriptions and procedures in this part of the manual

largely address operation of the utility with multiple user mode.

Overview of Database Services Utility Files

The Database Services Utility is a general purpose utility that requires two or three

files to run: one for Database Services Utility command or SQL statement input,

one for message output, and one for data output or input.

The required DB2 Server for VSE input file is the input control card file, and it is

assigned to SYSIPT. The input control card file contains utility control commands,

which are described in the following section.

The Database Services Utility creates a report; it is assigned to SYSLST. The report

lists the input control card file records, messages, and results.

The DB2 Server for VM control file and message file are usually CMS files. You can

define the control file to any sequential tape or DASD file supported by CMS

OS/QSAM, to a virtual reader file, or to the terminal. You can define the message

file to any sequential tape file supported by CMS OS/QSAM, to a virtual print file,

or to the terminal.

Often you require an additional file for Database Services Utility input or output.

The Database Services Utility commands that use additional files for input or

output contain a data definition name (ddname) parameter that you must specify to

identify the additional input or output file. In DB2 Server for VSE, the ddname

refers to the file name specified in the applicable DLBL or TLBL system control

statement. In DB2 Server for VM, this parameter refers to the ddname defined in a

CMS FILEDEF command. A ddname can be from one to eight characters. The first

character of a ddname must be alphabetic (or a national character). For more

information about file definition, see the relevant command description or refer to

Appendix B, “FILEDEF Command Syntax and Notes,” on page 249.

The required DB2 Server for VM input file is the control file (or command file),

and it is assigned to the ddname SYSIN. The control file contains utility control

commands, which are described in the following section.

The required DB2 Server for VM output file is the message file; it is assigned to the

ddname SYSPRINT. The utility lists the control file records, writes messages, and

prints results in the message file.

8 Database Services Utility

Note: You do not need an additional file when you use the DATALOAD command

if you place the data input information in the command file. You do require

an additional input or output file with all other commands that have a

ddname parameter.

The Database Services Utility supports the use of multiple-volume tape files and

variable-length, spanned records in either environment. For additional information

on tape support, refer to the DB2 Server for VM System Administration or the DB2

Server for VSE System Administration manual.

Working with an Input Control Card File in DB2 Server for VSE

Creating a Control Card File

Create a control file as follows.

1. Provide the following commands and statements shown in Figure 3 with the

JCL statements needed to run the job.

The following statement runs the Database Services Utility:

// EXEC ARIDBS,SIZE=AUTO

2. Ensure that the input control card file has a fixed record length.

3. Store the input control card file.

Working with a Report

The Database Services Utility creates a report on the device that your installation

assigned to SYSLST.

After you submit the Database Services Utility job that you created in Figure 3, and

it finishes processing the input control card file, look at the results in the report

shown in Figure 4 on page 10.

Note: The report may contain error messages if errors occurred when the Database

Services Utility was processing the commands in the input control card file.

// JOB DBS UTILITY EXAMPLE VSE MULTIPLE USER MODE JOB CONTROL

// EXEC PROC=ARIS62PL >——DB2 Server for VSE Production Library Definition

// EXEC ARIDBS, SIZE=AUTO >——invoke DBS Utility

 CONNECT your user ID IDENTIFIED BY your password;

 SELECT * FROM SQLDBA.DEPARTMENT;

 SELECT * FROM SQLDBA.PROJECT;

/*

/&

Figure 3. Example of a Simplified Input Control Card File

Chapter 1. Getting Started 9

ARI0801I DBS Utility started: 07/18/89 16:10:31. ◄────────────▌1▐

 AUTOCOMMIT = OFF ERRORMODE = OFF ◄────┬────▌2▐

 ISOLATION LEVEL = REPEATABLE READ ◄────┘

 ──────► CONNECT "SQLDBA " IDENTIFIED BY ********;

 ARI8004I User SQLDBA connected to database SQLDBA.

 ARI0500I SQL processing was successful.

 ARI0505I SQLCODE = 0 SQLSTATE = 00000 ROWCOUNT = 0

 ──────►

 ──────► SELECT * FROM SQLDBA.DEPARTMENT; ◄────────────▌3▐

 SELECT * FROM SQLDBA.DEPARTMENT PAGE 1

 DEPTNO DEPTNAME MGRNO ADMRDEPT ───┐

 ────── ───────────────────────────── ────── ──────── │

 A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00 │

 B01 PLANNING 000020 A00 │

 C01 INFORMATION CENTER 000030 A00 │

 D01 DEVELOPMENT CENTER A00 ├─────▌4▐

 D11 MANUFACTURING SYSTEMS 000060 D01 │

 D21 ADMINISTRATION SYSTEMS 000070 D01 │

 E01 SUPPORT SERVICES 000050 A00 │

 E11 OPERATIONS 000090 E01 │

 E21 SOFTWARE SUPPORT 000100 E01 │

 ARI0850I SQL SELECT processing successful: Rowcount = 9 ───┘

 ──────► SELECT * FROM SQLDBA.PROJECT; ◄────────────▌5▐

Figure 4. Database Services Utility: Example Report Output (Part 1 of 2)

10 Database Services Utility

Notes for Figure 4 on page 10:

▌1▐ The Database Services Utility start message.

▌2▐ The Database Services Utility default values. See “Set-Item Commands” on

page 214 in Chapter 8, “Command Reference,” on page 135 for details on

changing these defaults.

▌3▐ The first SELECT statement that the Database Services Utility is to process.

▌4▐ Results of the Database Services Utility processing the SELECT statement

show the rows retrieved from the table, a message to indicate that the

SELECT statement was successful, and the number of rows retrieved.

▌5▐ The next SELECT statement that the Database Services Utility is to process.

▌6▐ Results of the Database Services Utility processing the SELECT statement

show the rows retrieved from the table, a message to indicate that the

SELECT statement was successful, and the number of rows retrieved.

▌7▐ Database Services Utility has processed all commands in the input control

card file.

▌8▐ Database Services Utility completion messages.

 If you encounter the following message, look at the report to find the error or

errors:

ARI0807E ...Error(s) occurred during command processing.

 SELECT * FROM SQLDBA.PROJECT PAGE 2

 PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE ──┐

 ────── ─────────────────── ────── ─────── ─────── ────────── ────────── │

 AD3100 ADMIN SERVICES A00 000010 6.50 1982─01─01 1983─02─01 │

 MA2100 WELD LINE AUTOMATIO D01 000010 12.00 1982─01─01 1983─02─01 │

 AD3111 PAYROLL PROGRAMMING B01 000020 2.00 1982─01─01 1983─02─01 │

 PL2100 WELD LINE PLANNING B01 000020 1.00 1982─01─01 1982─09─15 │

 IF1000 QUERY SERVICES C01 000030 2.00 1982─01─01 1983─02─01 │

 IF2000 USER EDUCATION C01 000030 1.00 1982─01─01 1983─02─01 │

 OP1000 OPERATION SUPPORT E01 000050 6.00 1982─01─01 1983─02─01 │

 OP2000 GEN SYSTEMS SERVICE E01 000050 5.00 1982─01─01 1983─02─01 │

 MA2110 W L PROGRAMMING D11 000060 9.00 1982─01─01 1983─02─01 │

 AD3110 GENERAL AD SYSTEMS E11 000090 6.00 1982─01─01 1983─02─01 │

 OP1010 OPERATION E11 000090 5.00 1982─01─01 1983─02─01 ├──▌6▐

 OP2010 SYSTEMS SUPPORT E21 000100 4.00 1982─01─01 1983─02─01 │

 MA2112 W L ROBOT DESIGN D11 000150 3.00 1982─01─01 1982─12─01 │

 MA2113 W L PROD CONT PROGS D11 000160 3.00 1982─02─15 1982─12─01 │

 MA2111 W L PROGRAM DESIGN D11 000220 2.00 1982─01─01 1982─12─01 │

 AD3112 PERSONNEL PROGRAMMG D21 000250 1.00 1982─01─01 1983─02─01 │

 AD3113 ACCOUNT.PROGRAMMING D21 000270 2.00 1982─01─01 1983─02─01 │

 OP2011 SCP SYSTEMS SUPPORT E21 000320 1.00 1982─01─01 1983─02─01 │

 OP2012 APPLICATIONS SUPPOR E21 000330 1.00 1982─01─01 1983─02─01 │

 OP2013 DB/DC SUPPORT E21 000340 1.00 1982─01─01 1983─02─01 │

 ARI0850I SQL SELECT processing successful: Rowcount = 20 ──┘

 ARI0802I End of command file input. ◄────────────▌7▐

 ARI8997I ...Begin COMMIT processing. ─xxxxx┐

 ARI0811I ...COMMIT of any database changes successful. |

 ARI0809I ...No error(s) occurred during command processing. ├──▌8▐

 ARI0808I DBS processing completed: 07/18/89 16:10:33. ─xxxxx┘

Figure 4. Database Services Utility: Example Report Output (Part 2 of 2)

Chapter 1. Getting Started 11

Error types are listed and discussed in Chapter 9, “Error Handling and

Debugging,” on page 223. Item ▌6▐ in Figure 5 shows an example of an error

found in a report.

 Notes for Figure 5:

▌1▐ The Database Services Utility start message.

▌2▐ The Database Services Utility default values. See “Set-Item Commands” on

page 214 in Chapter 8, “Command Reference,” on page 135 for details on

changing these defaults.

▌3▐ The first SELECT statement that the Database Services Utility is to process.

▌4▐ Results of the Database Services Utility processing the SELECT statement

shows the rows retrieved from the table, a message to indicate that the

SELECT statement was successful, and the number of rows retrieved.

▌5▐ The next SELECT statement that the Database Services Utility is to process.

▌6▐ Messages indicating that the SELECT statement could not be successfully

processed. The message indicates that the SQLDBA.PROJJECT table could

 ARI0801I DBS Utility started: 07/18/89 16:10:47. ◄────────────▌1▐

 AUTOCOMMIT = OFF ERRORMODE = OFF ◄────┬────▌2▐

 ISOLATION LEVEL = REPEATABLE READ ◄────┘

 ──────► CONNECT "SQLDBA " IDENTIFIED BY ********;

 ARI8004I User SQLDBA connected to database SQLDBA.

 ARI0500I SQL processing was successful.

 ARI0505I SQLCODE = 0 SQLSTATE = 00000 ROWCOUNT = 0

 ──────►

 ──────► SELECT * FROM SQLDBA.DEPARTMENT; ◄────────────▌3▐

 SELECT * FROM SQLDBA.DEPARTMENT PAGE 1

 DEPTNO DEPTNAME MGRNO ADMRDEPT ───┐

 ────── ───────────────────────────── ────── ──────── │

 A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00 │

 B01 PLANNING 000020 A00 │

 C01 INFORMATION CENTER 000030 A00 │

 D01 DEVELOPMENT CENTER A00 ├─────▌4▐

 D11 MANUFACTURING SYSTEMS 000060 D01 │

 D21 ADMINISTRATION SYSTEMS 000070 D01 │

 E01 SUPPORT SERVICES 000050 A00 │

 E11 OPERATIONS 000090 E01 │

 E21 SOFTWARE SUPPORT 000100 E01 │

 ARI0850I SQL SELECT processing successful: Rowcount = 9 ───┘

 ──────► SELECT * FROM SQLDBA.PROJJECT; ◄────────────▌5▐

 ARI0503E An SQL error has occurred. ──┐

 SQLDBA.PROJJECT was not found in the system catalogs. │

 ARI0505I SQLCODE = ─204 SQLSTATE = 52004 ROWCOUNT = 0 ├──▌6▐

 ARI0504I SQLERRP: ARIXOCA SQLERRD1: ─100 SQLERRD2: 0 │

 ARI0851E SQL SELECT processing unsuccessful: Rowcount = 0 ──┘

 ARI8998I ...Begin ROLLBACK processing. ────┐

 ARI0811I ...ROLLBACK of any database changes successful. |

 ARI0813I ...Suspend command execution: ├─────▌7▐

 AUTOCOMMIT = OFF ERRORMODE = ON │

 ARI0802I End of command file input. ────┘

 ARI0807E ...Error(s) occurred during command processing. ◄───┬─────▌8▐

 ARI0808I DBS processing completed: 07/18/89 16:10:47. ◄───┘

Figure 5. Example of a Database Services Utility Error

12 Database Services Utility

not be found in the database; PROJJECT is misspelled. You should now

correct the spelling in the input control card file and run the job again.

▌7▐ Indicates that the Database Services Utility encountered an error and

cannot process any commands that follow. This message is not relevant to

the present example because no more commands follow. If commands

followed this one in error, they would not be processed.

Note: This command suspension can be controlled by the user; see “SET

ERRORMODE” in Chapter 8, “Command Reference,” on page 135.

▌8▐ Completion messages.

Working with a Control File in DB2 Server for VM

Using a Control File

The control file contains a group of SQL statements and Database Services Utility

commands to be executed. Grouping these commands in one file gives you the

option of saving the file for periodic execution of the sequence of commands in it;

you do not have to retype these commands. Use a control file when running a

batch job, testing statements or commands, or when you expect to use the same or

similar utility commands again.

Creating a Control File

Create a control file by using an editor program as follows.

1. Give your control file a file name, file type, and file mode and start the editor.

If you are doing this exercise to learn about the Database Services Utility, call

your control file COMMANDS DBSU A (if you are using your A-disk), and set

the width of the file to 80.

2. Type the desired utility commands and SQL statements. You must use

uppercase; for example, you can type:

SELECT * FROM SQLDBA.DEPARTMENT;

SELECT * FROM SQLDBA.PROJECT;

Note: Always end SQL statements with a semicolon.

3. If your editor program is set to variable length record format, set it to a fixed

length record format.

Note: This step sets the record length of the control file to a fixed length. If the

default of the editor is set to variable length record format, you must

repeat this step each time you edit the file.

4. Store the control file and leave the editor.

For more information on Database Services Utility commands, see Chapter 8,

“Command Reference,” on page 135. For more information on SQL statements, see

the DB2 Server for VSE & VM SQL Reference.

Defining Input and Output Requirements

You must define I/O requirements to the Database Services Utility for the control

file, the message file, and any input or output data files.

You define your input and output requirements to the Database Services Utility by

using FILEDEF commands. The SQLDBSU EXEC generates standard FILEDEF

Chapter 1. Getting Started 13

statements for the control and message files; if you are using an additional file for

data input or output, or need parameters not supplied by the SQLDBSU EXEC,

you must use a FILEDEF statement to supplement the EXEC. When you specify

options other than the SQLDBSU EXEC default options, the EXEC defaults are

overridden.

Because you use a data file for input or output with the RELOAD,

DATAUNLOAD, UNLOAD and SCHEMA commands, you must write a FILEDEF

statement for these commands. The DATALOAD command does not require a

FILEDEF statement when the input data is in the command file. For further details

about command specific FILEDEF information, see the section about using file

definitions for the particular command.

You should use a FILEDEF statement as an addition to the FILEDEF statements

issued by the SQLDBSU EXEC, not as a replacement. When you do use customized

FILEDEF statements in addition to the SQLDBSU EXEC, the FILEDEFs precede the

SQLDBSU EXEC.

Using File Definitions

Use a FILEDEF command to identify a CMS file, a virtual reader file, a virtual

printer file, or any sequential tape or DASD file supported by CMS/QSAM. The

FILEDEF command assigns a name to the file and specifies the file’s device type

and file options.

Figure 6 illustrates the syntax of a FILEDEF statement:

 ddname (data definition name)

Identifies the name of the input or output file that you are defining.

Device type can be one of the following parameters:

Terminal Your workstation

PRinter The spooled printer available to you

Reader The spooled reader available to you

DISK fn ft fm Virtual direct access storage device (DASD) CMS file

TAPn Magnetic tape drive, where n can be 1, 2, 3, or 4, representing

virtual units 181, 182, 183, and 184, respectively.

Options: To avoid error messages, specify only those options that are valid for a

particular device. Table 19 on page 251 shows valid options for each device type.

Format:

►► FIledef ddname Terminal

PRinter

Reader

DISK

fn_ft_fm

TAPn

(

Options

)

 ►◄

Figure 6. FILEDEF Statement Syntax

14 Database Services Utility

The message ARI0868I (in the message file) identifies the file characteristics used

by Database Services Utility processing.

The following shows a FILEDEF statement that defines an input data file. In this

example, DBSFILE is the name of the input file as it is referred to in your Database

Services Utility command.

FILEDEF DBSFILE DISK DBSFILE DATA A (RECFM F LRECL 800

DBSFILE is a file on DASD called DBSFILE DATA A. It has a fixed record length of

800.

For an explanation of FILEDEF parameters and options, see Appendix B, “FILEDEF

Command Syntax and Notes,” on page 249.

Using the SQLDBSU EXEC

If you have simple, straightforward I/O needs for the control and message files,

the SQLDBSU EXEC, without supplementary FILEDEF commands, is probably all

you need. You can choose only one of the following input control file options:

v A named CMS file for which SQLDBSU issues this FILEDEF:

FILEDEF SYSIN DISK file-name file-type file-mode

(RECFM FB LRECL 80 BLOCK 800

v A virtual reader file for which SQLDBSU issues this FILEDEF:

FILEDEF SYSIN READER (RECFM F LRECL 80

v A workstation as control file for which SQLDBSU issues this FILEDEF:

FILEDEF SYSIN TERMINAL (RECFM F LRECL 80

You can choose only one of the following output message file options with the

SQLDBSU EXEC.

v A named CMS file for which SQLDBSU issues this FILEDEF:

FILEDEF SYSPRINT DISK file-name file-type file-mode

(RECFM FBA LRECL 121 BLOCK 1210

v A virtual printer for which SQLDBSU issues this FILEDEF:

FILEDEF SYSPRINT PRINTER (RECFM FA LRECL 121

v A workstation as message file for which SQLDBSU issues this FILEDEF:

FILEDEF SYSPRINT TERMINAL (RECFM F LRECL 120

If, for example, your control file is COMMANDS DBSU and you want to have the

message file displayed on your terminal, your SQLDBSU EXEC statement is:

SQLDBSU SYSIN (COMMANDS DBSU A) SYSPRINT (T)

Note: When the control file is assigned as TERMINAL, do the following:

v Use the same character positions and same command syntax as if entering

commands or data into a CMS file; end all commands with a semicolon.

v Use uppercase or lowercase because CMS converts your input to

uppercase. If your input entered from the terminal must contain lowercase

values, you must issue the following FILEDEF before issuing the

SQLDBSU EXEC without the SYSIN parameter specification:

FILEDEF SYSIN TERMINAL (RECFM F LRECL 80 LOWCASE

If this FILEDEF is issued, all the Database Services Utility command and

SQL statement keywords must be entered in uppercase.

Chapter 1. Getting Started 15

v Do not submit command records with sequence numbers in positions

73–80 when you are using the READ FILE command. (When

SYSIN=TERMINAL, positions 73–80 are used for command information.)

Note: With single user mode, the SQLDBSU statement has additional parameters.

For detailed information on the SQLDBSU EXEC and startup of the Database

Services Utility, see Chapter 7, “Using the Database Services Utility from

Application Programs,” on page 105. For usage notes and syntax of the CMS

FILEDEF command, see Appendix B, “FILEDEF Command Syntax and Notes,” on

page 249.

Sample Startup

This procedure uses the control file you created in “Using the SQLDBSU EXEC” on

page 15 to startup the Database Services Utility with the SQLDBSU EXEC.

Note: Consider using the same file name for both the control and message files to

identify the input and output as belonging to the same job. Use different file

types for the control and message files to prevent the output data and

messages from overwriting the control file contents.

On the CMS command line, type:

SQLDBSU SYSIN (COMMANDS DBSU A) SYSPRINT (COMMANDS RESULT A)

Press ENTER to start the Database Services Utility. The commands in your

COMMANDS DBSU A file are now executed. The utility processes the commands

and displays the results as shown in Figure 7.

 Notes for Figure 7:

▌1▐ Informs the user that the Database Services Utility started.

▌2▐ Shows the input (or control) file name, the message file name, the database

being accessed, and the FILEDEFs in effect.

▌3▐ Identifies any errors that occur when Database Services Utility processes

the commands in the control file.

ARI0717I Start SQLDBSU EXEC: 07/18/89 16:09:52 EST◄──────────▌1▐

ARI0662I EMSG function value reset to: ON.

ARI0659I Line─edit symbols reset:

 LINEND=# LINEDEL=OFF CHARDEL=OFF ESCAPE=OFF TABCHAR=OFF

ARI0655I Input file (SYSIN): COMMANDS DBSU A ◄──────┐

ARI0656I Message file (SYSPRINT): COMMANDS RESULT A │

ARI0320I The default database name is SQLDBA. │

ARI0663I FILEDEFS in effect are: ├────▌2▐

ARISQLLD DISK ARISQLLD LOADLIB Q1 │

SYSIN DISK COMMANDS DBSU A1 │

SYSPRINT DISK COMMANDS RESULT A1 ◄──────┘

ARI0809I ...No errors occurred during command processing.◄───────────▌3▐

ARI0808I DBS processing completed: 07/18/89 16:09:55.◄──────────┐

ARI0660I Line─edit symbols restored: │

 LINEND=# LINEDEL=OFF CHARDEL=OFF ESCAPE=ó TABCHAR=ON │

ARI0657I EMSG function value restored to: TEXT. │

ARI0796I End SQLDBSU EXEC: 07/18/89 16:09:56 EST◄───────────────┴────▌4▐

Figure 7. Messages Displayed during Processing

16 Database Services Utility

▌4▐ Indicates that the Database Services Utility is finished processing.

 You may receive the following message instead of the message displayed at ▌3▐:

ARI0807E ...Error(s) occurred during command processing.

This message indicates that an error occurred when the Database Services Utility

was processing the commands in the control file. Error types are listed and

discussed in Chapter 9, “Error Handling and Debugging,” on page 223.

Working with a Message File

The Database Services Utility automatically creates a message file with the name

you supplied in the SQLDBSU EXEC parameter. If a file already exists with the

same name, it is overwritten.

After the utility is run and finishes its processing, view the message file to see the

results of processing the control file commands. Figure 8 on page 18 shows the

contents of message file COMMANDS RESULT A.

Chapter 1. Getting Started 17

Notes for Figure 8:

▌1▐ The Database Services Utility start message.

▌2▐ The Database Services Utility default values. See Set-Item Commands in

Chapter 8, “Command Reference” for details on changing these defaults.

▌3▐ The first SELECT statement that the Database Services Utility processes.

▌4▐ Results of the Database Services Utility processing the SELECT statement

show the rows retrieved from the table, a message indicating that the

SELECT statement was successful, and the number of rows retrieved.

1ARI0801I DBS Utility started: 07/18/89 16:10:31. ◄────────────▌1▐

 AUTOCOMMIT = OFF ERRORMODE = OFF ◄────┬────▌2▐

 ISOLATION LEVEL = REPEATABLE READ ◄────┘

0──────► SELECT * FROM SQLDBA.DEPARTMENT; ◄────────────▌3▐

1SELECT * FROM SQLDBA.DEPARTMENT PAGE 1

0DEPTNO DEPTNAME MGRNO ADMRDEPT ───┐

 ────── ───────────────────────────── ────── ──────── │

 A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00 │

 B01 PLANNING 000020 A00 │

 C01 INFORMATION CENTER 000030 A00 │

 D01 DEVELOPMENT CENTER A00 ├─────▌4▐

 D11 MANUFACTURING SYSTEMS 000060 D01 │

 D21 ADMINISTRATION SYSTEMS 000070 D01 │

 E01 SUPPORT SERVICES 000050 A00 │

 E11 OPERATIONS 000090 E01 │

 E21 SOFTWARE SUPPORT 000100 E01 │

0ARI0850I SQL SELECT processing successful: Rowcount = 9 ───┘

1──────► SELECT * FROM SQLDBA.PROJECT; ◄────────────▌5▐

1SELECT * FROM SQLDBA.PROJECT PAGE 2

0PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE ──┐

 ────── ─────────────────── ────── ─────── ─────── ────────── ────────── │

 AD3100 ADMIN SERVICES A00 000010 6.50 1982─01─01 1983─02─01 │

 MA2100 WELD LINE AUTOMATIO D01 000010 12.00 1982─01─01 1983─02─01 │

 AD3111 PAYROLL PROGRAMMING B01 000020 2.00 1982─01─01 1983─02─01 │

 PL2100 WELD LINE PLANNING B01 000020 1.00 1982─01─01 1982─09─15 │

 IF1000 QUERY SERVICES C01 000030 2.00 1982─01─01 1983─02─01 │

 IF2000 USER EDUCATION C01 000030 1.00 1982─01─01 1983─02─01 │

 OP1000 OPERATION SUPPORT E01 000050 6.00 1982─01─01 1983─02─01 │

 OP2000 GEN SYSTEMS SERVICE E01 000050 5.00 1982─01─01 1983─02─01 │

 MA2110 W L PROGRAMMING D11 000060 9.00 1982─01─01 1983─02─01 │

 AD3110 GENERAL AD SYSTEMS E11 000090 6.00 1982─01─01 1983─02─01 │

 OP1010 OPERATION E11 000090 5.00 1982─01─01 1983─02─01 ├──▌6▐

 OP2010 SYSTEMS SUPPORT E21 000100 4.00 1982─01─01 1983─02─01 │

 MA2112 W L ROBOT DESIGN D11 000150 3.00 1982─01─01 1982─12─01 │

 MA2113 W L PROD CONT PROGS D11 000160 3.00 1982─02─15 1982─12─01 │

 MA2111 W L PROGRAM DESIGN D11 000220 2.00 1982─01─01 1982─12─01 │

 AD3112 PERSONNEL PROGRAMMG D21 000250 1.00 1982─01─01 1983─02─01 │

 AD3113 ACCOUNT.PROGRAMMING D21 000270 2.00 1982─01─01 1983─02─01 │

 OP2011 SCP SYSTEMS SUPPORT E21 000320 1.00 1982─01─01 1983─02─01 │

 OP2012 APPLICATIONS SUPPOR E21 000330 1.00 1982─01─01 1983─02─01 │

 OP2013 DB/DC SUPPORT E21 000340 1.00 1982─01─01 1983─02─01 │

0ARI0850I SQL SELECT processing successful: Rowcount = 20 ──┘

1ARI0802I End of command file input. ◄────────────▌7▐

 ARI8997I ...Begin COMMIT processing. ──────┐

 ARI0811I ...COMMIT of any database changes successful. │

 ARI0809I ...No error(s) occurred during command processing. ├──────▌8▐

 ARI0808I DBS processing completed: 07/18/89 16:10:33. ──────┘

Figure 8. Database Services Utility: Sample Message File Output

18 Database Services Utility

▌5▐ The next SELECT statement that the Database Services Utility processes.

▌6▐ Results of the Database Services Utility processing the SELECT statement

show the rows retrieved from the table, a message indicating that the

SELECT statement was successful, and the number of rows retrieved.

▌7▐ Database Services Utility has processed all commands in the control file.

▌8▐ Database Services Utility completion messages.

Using the Database Services Utility on Remote Application Servers

Which Support DRDA Flow

With the implementation of the Distributed Relational Database Architecture

(DRDA), you can use the Database Services Utility on remote application servers

which support the DRDA flow. Before you can use the Database Services Utility on

an unlike application server, the Utility must be preprocessed on the application

server using the ERROR preprocessing option, and the table

SQLDBA.DBSOPTIONS must also exist on the unlike application server. Refer to

the DB2 Server for VM System Administration or the DB2 Server for VSE System

Administration manual for more information on using the Database Services Utility

on an unlike application server using DRDA flow.

To access a non-DB2 Server for VM application server, a VM DBSU user can use

the SQLINIT EXEC with the PROTOCOL options set to AUTO or DRDA. (You can

also access a DB2 Server for VM application server with the protocol option set to

DRDA). In VSE, the Database Services Utility can only access a remote DRDA

application server if the remote DRDA application server is specified in the

DBNAME directory as a remote server.

Only the following Database Services Utility commands are supported when

DRDA flow is used:

v DATAUNLOAD

v DATALOAD

v RELOAD PACKAGE

v SET commands except SET ISOLATION and SET UPDATE STATISTICS.

The ISOLATION level is always assumed to be CS when DRDA flow is used. If an

ISOLATION level other than CS is requested, the command will have no effect and

the following message will be displayed:

ARI2906I - The only valid isolation level is CS when the DRDA

protocol is used. Isolation level CS is now in effect.

Using SQL Statements within the Database Services Utility

Figure 9 on page 20 is a sample Database Services Utility file that executes SQL

statements. It illustrates some of the principles described so far.

Note: You must always end SQL statements with a semicolon.

Chapter 1. Getting Started 19

CONNECT

The Database Services Utility supports the SQL CONNECT statement so that you

can:

v Identify yourself as an SQL user

v Identify and switch to another application server

Identifying Yourself as a Particular SQL User

You can use the CONNECT statement to identify yourself as a particular DB2

Server for VSE & VM user for the current application server. To identify yourself to

the database manager, enter the following:

CONNECT authorization-id IDENTIFIED BY password;

where authorization-id is either your SQL identifier (if you have one) or your user

ID, and password is your database-access password.

The ID specified in the last CONNECT statement processed by the database

manager is the user ID on which the database manager bases its authorization

checking for all subsequent Database Services Utility processing.

You can use the CONNECT statement to identify yourself as a user of another

application server. To do so, use:

CONNECT authorization-id IDENTIFIED BY password TO server-name;

where authorization-id is your SQL identifier, password is your database-access

password, and server-name is the name of the target application server.

┌──┐

│ 1 ┌───────────────┐ col 72 80 │

│ │───────────────────── │ INPUT RECORDS │ ──────────────────────────│ │ │

│ │ └───────────────┘ │ │ │

│ ø ø ø │

│ CONNECT MICHAEL IDENTIFIED BY MFB2901; MFB001 │

│ SELECT * FROM PROJECT ORDER BY PROJNO; MFB002 │

│ INSERT INTO PROJECT (PROJNO, PROJNAME, MFB003 │

│ DEPTNO) VALUES MFB004 │

│ (’AD3101’,’PERSONNEL SERVICES’,’D01’); MFB005 │

│ INSERT INTO PROJECT (PROJNO, PROJNAME, MFB006 │

│ DEPTNO) VALUES (’OP3000’,’USER SUPPORT’, MFB007 │

│ ’E01’); MFB008 │

│ SELECT EMPNO,WORKDEPT,EDLEVEL MFB009 │

│ FROM EMPLOYEE MFB010 │

│ WHERE EDLEVEL ► 12 MFB011 │

│ ORDER BY WORKDEPT; MFB012 │

└──┘

Figure 9. Database Services Utility Example File

20 Database Services Utility

CONNECT Information Shown in Message Files

The authorization ID specified in the last CONNECT statement processed by

the database manager is the authorization ID on which the database manager

bases its authorization checking for subsequent Database Services Utility

processing. When the Database Services Utility displays the CONNECT

statement in the message file, the password is suppressed. The authorization

ID is shown in double quotation marks ("); for example:

CONNECT "ANNETTE" IDENTIFIED BY ********

If the Database Services Utility detects an error in the CONNECT statement,

the original input line is not displayed. Instead, the Database Services Utility

displays the following in the message file:

CONNECT ? IDENTIFIED BY ?

 Note that you must supply an SQL CONNECT statement in the DB2 Server for

VSE input control card file before any other SQL or Database Services Utility

command, unless you invoke the Database Services Utility from an application

program that has already executed an SQL CONNECT. (“Using the Database

Services Utility from Programming Languages” on page 112 describes how to

invoke the Database Services Utility from an application program.) Refer to the

DB2 Server for VSE & VM Database Administration manual for additional

information on SQL CONNECT processing.

Suppose you have ACTIVITY tables in two databases, RDB1 and RDB2. To query

both of them, type in your control file:

CONNECT TO RDB1;

SELECT * FROM ACTIVITY;

COMMIT;

CONNECT authorization-id IDENTIFIED BY

password TO RDB2;

SELECT * FROM ACTIVITY;

You would replace authorization-id with your SQL identifier and replace password

with your database-access password.

Identifying and Switching to Another Application Server

To use the SQL CONNECT statement to switch to another application server, type:

CONNECT TO server-name;

where server-name is the name of the application server to which you want to

connect.

DB2 Server for VSE

If the CONNECT statement is issued without the identify clause (for example,

CONNECT TO RDB1), and the previous LUW ends with a COMMIT or

ROLLBACK statement, you are connected to the application server with the

same user ID and password that was used in the previous LUW.

Chapter 1. Getting Started 21

DB2 Server for VM

If a CONNECT is not explicitly issued, or is issued without the identify

clause (for example, CONNECT TO RDB1), the DB2 Server for VM

application requester does an implicit connection when you execute your first

SQL statement. The database manager uses the entry in the CMS

communications directory file (COMDIR) to give you connect authorization to

the application server. If the authorization ID is not resolved from the CMS

COMDIR, the database manager uses the VM user ID. In some situations, the

user ID received at the target application server is different from your VM

user ID. For example, an entry in the CMS COMDIR might change the user

ID, or the target system might change it. Refer to the DB2 Server for VSE &

VM Database Administration for additional information on SQL CONNECT

processing.

 Identifying the Current User ID and Application Server

When you do not specify options with the CONNECT statement, the system

displays the current SQL user ID and application server name. This is a null

CONNECT. To enter a null CONNECT, use:

CONNECT;

If a null CONNECT is issued before a server connection is established by a

previous CONNECT statement, a blank user ID and a blank application

server-name is returned. If a null CONNECT is issued before a valid user ID is

established by a previous CONNECT statement, a blank user ID and the connected

server-name is returned.

For further information on the CONNECT statement, refer to the DB2 Server for

VSE & VM SQL Reference.

SELECT

Output of Query Results

The Database Services Utility writes the results of an SQL SELECT statement (an

SQL query) to the DB2 Server for VSE report (SYSLST) or the DB2 Server for VM

message file (SYSPRINT).

Specifying a Multiple-Row Query

The use of the SQL SELECT statement is often called a query because SELECT

statements are the means of extracting information from a database.

The Database Services Utility automatically handles multiple-row query results;

you do not have to declare a cursor. Figure 10 on page 23 is an example of

pseudocode showing how a query is coded in an application program to return

many rows using a cursor. Figure 11 on page 23 shows how the Database Services

Utility handles the same multiple-row query.

22 Database Services Utility

Specifying a Single Value Query

The Database Services Utility does not support INTO clauses. Figure 12 shows how

an application program uses the INTO clause to return a single value. Figure 13

shows how to specify the same single value query in the Database Services Utility.

SELECT Output Is Identified by Column Name

Column data appearing in SELECT output produced by Database Services

Utility processing is identified by column name. Column labels are ignored

by Database Services Utility processing.

EXEC SQL DECLARE C1 CURSOR FOR

 SELECT PROJNO,PROJNAME

 FROM PROJECT WHERE DEPTNO = ’E21’

 ORDER BY PROJNO

EXEC SQL OPEN C1

EXEC SQL FETCH C1 INTO :NUMBER, :NAME

DO WHILE (SQLCODE=0)

 DISPLAY (NUMBER, NAME)

 EXEC SQL FETCH C1 INTO :NUMBER, :NAME

END-DO

EXEC SQL CLOSE C1

Figure 10. Sample Multiple-Row Query in an Application Program

SELECT PROJNO,PROJNAME

FROM PROJECT WHERE PROJNO = ’E21’

ORDER BY PROJNO;

 õ

 │

 ├───────────────────────────────┐

 │Required delimiter for │

 │the Database Services Utility │

 └───────────────────────────────┘

Figure 11. Multiple-Row Query

SELECT AVG(BONUS)

INTO :EXTRA

FROM EMPLOYEE

WHERE JOB = ’MANAGER’

Figure 12. Sample Single Value Query in an Application Program

SELECT AVG(BONUS)

FROM EMPLOYEE

WHERE JOB = ’MANAGER’;

Figure 13. Single Value Query

Chapter 1. Getting Started 23

COMMIT

The Database Services Utility handles logical units of work in almost the same way

as application programs. Most Database Services Utility commands or SQL

statements implicitly begin a logical unit of work. The following commands and

statements, however, do not:

 Database Services Utility Commands SQL Statements

 COMMENT CONNECT

 SET AUTOCOMMIT COMMIT [RELEASE]

 SET ERRORMODE ROLLBACK [RELEASE]

 SET FORMAT

 SET ISOLATION

 SET LINECOUNT

 SET LINEWIDTH

 SET UPDATE STATISTICS

A logical unit of work continues until you issue an SQL COMMIT statement or a

ROLLBACK statement. After the COMMIT or ROLLBACK is processed, another

Database Services Utility command or SQL statement begins a new logical unit of

work.

If you do not include a COMMIT statement or a ROLLBACK statement, the

Database Services Utility treats all the control commands as a single logical unit of

work. If all processing is error-free during this single logical unit of work, the

changes are committed to the database; if errors occurred, no changes are

committed to the database.

Committing Logical Units of Work

The Database Services Utility provides the command SET AUTOCOMMIT ON or

OFF. When AUTOCOMMIT is on, the utility performs a COMMIT operation after

the successful execution of each command that accesses the database. When

AUTOCOMMIT is off (the default mode of processing) or is not specified in your

(input) control file, logical units of work are processed as described previously in

“COMMIT”.

If you want the utility to commit logical units of work, include the following in

your (input) control file:

SET AUTOCOMMIT ON;

Using SQL Comments

SQL comments can be included within SQL statements used in the Database

Services Utility and within Database Services Utility commands wherever a

separator is valid, as long as the existing Database Services Utility syntax rules are

followed. SQL comments are identified by two consecutive hyphens (--) on the

same line. The hyphens must not be separated by a space. SQL comments must not

be part of a literal, double-byte character set (DBCS) string or quoted identifier.

Each SQL comment must be contained on a single line. In the Database Services

Utility, an SQL statement must be terminated by a semicolon (;). If a semicolon

appears in an SQL comment, however, it does not end the SQL statement. For

example,

SELECT * FROM T1 --this does not end the SQL statement;

SELECT * FROM T1; -- this ends the SQL statement

The following restrictions apply when using SQL comments within Database

Services Utility commands:

24 Database Services Utility

v SQL comments are not supported in the data portion of a Database Services

Utility command. SQL comments that are used improperly are treated as part of

the data.

v SQL comments are not allowed in the Database Services Utility COMMENT

command or in the ENDDATA subcommand of the DATALOAD command.

Note: The ENDDATA subcommand of the DATALOAD command should not

contain any other information.

Querying the Current Status in DB2 Server for VM

To query the current status of a job that is running, use the CMS immediate

command SQLQRY by typing #SQLQRY directly from the terminal. The SQLQRY

command cannot be used from a Database Services Utility control file.

You can use SQLQRY to determine the application server you are currently

connected to. The output you receive from SQLQRY will be similar to that shown

in Figure 14. For more information on the SQLQRY command, see the DB2 Server

for VSE & VM Database Administration manual.

Note: The output from SQLQRY varies depending on the operating environment.

Canceling a DB2 Server for VM Command

In interactive mode, you can cancel a command before it is completed by typing:

SQLHX

For example, you can cancel a query that is running and has not returned a query

result. The SQLHX command drops the connection to the application server, thus

canceling the current command and rolling back the current logical unit of work. If

you issued an explicit CONNECT before the SQLHX command, the authorization

ID and the name of the application server revert back to those defined by an

implicit CONNECT: your VM ID and default application server.

Note: If you are using synchronous APPC/VM communications with the

application server (by specifying the SYNCHRONOUS (YES) option when

invoking the SQLINIT EXEC), the SQLHX command does not cancel the

Database Services Utility command that is running.

15:54:48 * MSG FROM SQLUSER6: Status of Database Conversations on 1999-06-30

15:54:48 * MSG FROM SQLUSER6: EXTNAME = SQLUSER6.1

15:54:48 * MSG FROM SQLUSER6: RDBMS = SQLRDB1 SQLDS/VM V3.3.0

15:54:48 * MSG FROM SQLUSER6: STATUS = COMM TIME = 1999-06-30.15:54:38

15:54:48 * MSG FROM SQLUSER6: LUWID = IBMNET01.*IDENT.45F2ABCD236D42

15:54:48 * MSG FROM SQLUSER6:

15:54:48 * MSG FROM SQLUSER6: EXTNAME = SQLUSER6.2

15:54:48 * MSG FROM SQLUSER6: RDBMS = IBMSTLDB2 DB2 V2.3.0

15:54:48 * MSG FROM SQLUSER6: STATUS = APPL TIME = 1999-06-30.15:30:25

15:54:48 * MSG FROM SQLUSER6: LUWID = IBMNET01.TORLU001.45F2ABCD236DFE

15:54:48 * MSG FROM SQLUSER6: LU = STLMVS04

15:54:48 * MSG FROM SQLUSER6: TPN = "6DB (X’07F6C4C2’)

15:54:48 * MSG FROM SQLUSER6:

15:54:48 * MSG FROM SQLUSER6: EXTNAME = SQLUSER6.2

15:54:48 * MSG FROM SQLUSER6: RDBMS = SQLMACGM DB2/VM n/a

15:54:48 * MSG FROM SQLUSER6: STATUS = VRA TIME = 1999-06-30.15:30:25

15:54:48 * MSG FROM SQLUSER6: TCP/IP = 9.21.4.194 PORT 6100

Figure 14. Sample Output from SQLQRY

Chapter 1. Getting Started 25

Exiting from the Database Services Utility

In DB2 Server for VSE, you exit from the utility automatically after all the

commands in the input control card file have been processed.

In DB2 Server for VM, if you use the Database Services Utility and supply a

control file with the SYSIN option, you exit from the utility automatically after all

the commands in the control file have been processed. If you use the utility by

typing SQLDBSU and do not supply a control file, you are using the utility

interactively. To exit, type the command EXIT. Any uncommitted work is

committed, and you exit from the utility. You then return to CMS.

26 Database Services Utility

Chapter 2. Loading Data with the Database Services Utility

This chapter explains how to load data into a DB2 Server for VSE & VM table with

the DATALOAD command. The data you are loading can be separate from the

DATALOAD command or embedded in the command. You can also load data of

different formats, such as DECIMAL, GRAPHIC, or CHARACTER.

This chapter also describes general loading procedures, such as how to load null

values or special register values. Moreover, you can work more efficiently by

loading data into multiple tables, combining records to load several table rows, or

committing work while loading data. If an error stops the DATALOAD processing,

you can restart the loading process. Finally, this chapter describes how statistics are

collected during or after the utility has loaded the data.

DATALOAD Command Components

The DATALOAD command allows you to load rows into existing DB2 Server for

VSE & VM tables from data contained in a sequential input file that was created

by processing external to the database manager or by the Database Services

Utility’s DATAUNLOAD processing. You can load data into DB2 Server for VSE &

VM application servers, as well as into other application servers that support

DRDA flow.

In general, each input data record used for DATALOAD processing contains data

for a row of a table. Input data records can reside in a sequential file or can be

embedded within the (input) control file. The DB2 Server for VM input data file is

typically a CMS file, but it can be a virtual reader file or any tape or DASD file

supported by CMS OS/QSAM.

Note: You should not use a sequential access method (SAM) file produced by

Database Services Utility UNLOAD processing as input to DATALOAD

processing. An error condition can result. Use the RELOAD command

instead to load a file produced by the UNLOAD command.

The DATALOAD command and its subcommands can:

v Identify the tables to be loaded

v Describe the data fields in the input records

v Relate table column names to the input record data fields

v Identify the source of the input records.

You must complete the DATALOAD command on a single record; do not continue

it on a second input record. The record immediately following a DATALOAD

command must contain a Table Column Identification (TCI) subcommand. If, for

example, you want to load data into 10 columns of a table, the first input record

would contain the DATALOAD command, and the next 10 input records would

contain TCI subcommands.

The other subcommands used with the DATALOAD command are INFILE and

ENDDATA. The INFILE subcommand identifies the input data file or, when

followed by an asterisk (*), identifies that the data is in the (input) control file and

immediately follows the subcommand. You use the ENDDATA command to signal

the end of user-supplied data; you do not need it if the input data is in a separate

file.

© Copyright IBM Corp. 1987, 2007 27

Figure 15 illustrates a DATALOAD command followed by three TCI subcommands

and an INFILE subcommand. Because the input data is contained in the file

NEWACT, the ENDDATA command is not used in this example.

 The DATALOAD command identifies the table that you want to load the data into

(ACTIVITY). This table is sometimes referred to as the target table.

The next three records identify the names of the columns in the ACTIVITY table

into which you want to insert data. These records are TCI subcommands. The

numbers in the subcommands represent the positions where the data exists on the

input records (that is, they identify the input data fields).

Note: If you are not loading data into the column to the extreme right of the table,

add a TCI subcommand for that column and set it to null. By identifying the

last table column, you avoid space problems in the future when you update

the rows loaded into the table. Enough space is allocated in the table to

include the column farthest to the right that you specified with the TCI

subcommands.

INFILE identifies the file where the input data is located (NEWACT). Figure 16 on

page 29 and Figure 17 on page 30 illustrate how the above DATALOAD command

sequence relates to the target table and the input file.

 ┌──────────────────┐

DATALOAD TABLE (ACTIVITY) <─────┤ DATALOAD Command |

 ACTNO 1-3 └──────────────────┘┌───────────────┐

 ACTKWD 7-12 ◄─────────────────────────┤ TCI Subcommand |

 ACTDESC 18-37 ┌───────────────────┐ └───────────────┘

INFILE (NEWACT) ◄───────────────┤ INFILE Subcommand │

 └───────────────────┘

Figure 15. DATALOAD Command with Subcommands

28 Database Services Utility

Table to be loaded

Input file of data to load

Record Position:

Notes:

Identifies the input file

DATALOAD command

identifies the table to be loaded

DATALOAD subcommands

identify the names of the table

columns to be loaded

DATALOAD subcommands

identify the location of the data

on the records of the input file

INFILE subcommand
specifies the input file

DATALOAD TABLE (SMITH.ACTIVITY)

ACTNO

ACTKWD

ACTDESC

ACTIVITY

ACTDESCACTKWDACTNO

1-3

7-12

18-37

190

200

25

55

MARKET

CUSTOM

RSRCH

TRAIN

MARKETING

CUSTOMER SUPPORT

RESEARCH

TRAINING

INFILE (NEWACT)

1 3 7 12 18 37

ACTIVITY.DATA

1
1

2

2

3

3

4

4

5

5

// TLBL NEWACT, 'ACTIVITY.DATA', 0

Input Control Card File

Figure 16. Schematic Representation of the DB2 Server for VSE DATALOAD Command

Chapter 2. Loading Data with the Database Services Utility 29

As with SQL INSERT statements, all columns of a table do not have to be specified

for DATALOAD processing. Specifying the last column of a table is recommended

to avoid problems when updating the rows in the future. If a table column is

omitted, however, the column must be defined to permit nulls. If this rule is

violated, SQL and Database Services Utility error messages are generated, and

DATALOAD processing is not performed.

DB2 Server for VSE

NEWACT is a tape file, because that is the default device type. You must

specify INFILE (NEWACT PDEV(DASD) BLKSZ(2048)) if NEWACT is located

on a direct access storage device (DASD).

Table to be loaded

Control File

CONTROL DBSINPUT A1

CMS FILEDEF Command

Input file of data to load

Record Position:

Notes:

DATALOAD command

identifies the table to be loaded

DATALOAD subcommands

identify the names of the table

columns to be loaded

DATALOAD subcommands

identify the location of the data

on the records of the input file

INFILE subcommand

specifies the input file

CMS FILEDEF

fully identifies the input file

ACTNO

ACTKWD

ACTDESC

ACTIVITY

ACTDESCACTKWDACTNO

FILEDEF NEWACT DISK ACTIVITY DATA A (RECFM F LRECL 80

ACTIVITY DATA A1

1-3

7-12

18-37

190

200

25

55

MARKET

CUSTOM

RSRCH

TRAIN

MARKETING

CUSTOMER SUPPORT

RESEARCH

TRAINING

1 3 7 12 18 37

INFILE (NEWACT)

DATALOAD TABLE (SMITH.ACTIVITY)

1
1

2

2

3

5

4

4

5

3

Figure 17. Schematic Representation of the DB2 Server for VM DATALOAD Command

30 Database Services Utility

DATALOAD Procedures

You cannot mix other Database Services Utility commands or SQL statements

within the DATALOAD command and its subcommands. The input data file for

this utility is a general-use programming interface. See “Programming Interface

Information” on page 257 for a definition of general-use programming interfaces.

Authorization

DB2 Server for VSE & VM authorization checking prevents you from loading

a table if you do not have proper authority. You must have INSERT and

SELECT privileges on the tables affected by the DATALOAD command.

 Using the DATALOAD Command with a Separate Data Input

File

(Input) Control File and Separate Data File

Use the following procedure as a standard method of constructing and

implementing the DATALOAD command. Variations on this procedure appear

throughout this chapter.

Assume that you have a separate (input) control file and data file. Your sequential

access method (SAM) data file exists already, but you want to issue a DATALOAD

command to insert rows into a certain table.

Proceed as follows for DB2 Server for VSE:

1. Provide the following Database Services Utility command:

DATALOAD TABLE (table-name)

where table-name is the name of the table that you want to load with data.

2. Put a TCI subcommand on the next record:

column-name startpos-endpos data-type

where column-name is the name of the table column, startpos is the first

character position in the input record, endpos is the last position in the input

record, and data-type is the data format of the input values. The default data

type is character (CHAR).

3. Repeat the preceding step for each table column into which data is to be

inserted. Any table column that you are not loading data into must allow null

values.

4. On the next record, put:

INFILE (ddname)

where ddname identifies the input file. Use the same ddname in a TLBL or DLBL

statement, depending on whether the data is stored on tape or in a DASD file.

5. Submit the job to run.

Proceed as follows for DB2 Server for VM:

1. Issue the SQLINIT command to initialize the user machine. If you have already

done this, proceed to Step 2.

Chapter 2. Loading Data with the Database Services Utility 31

2. Create a control file to contain the DATALOAD command, which you construct

in the following steps. See “Working with a Control File in DB2 Server for VM”

on page 13 for detailed information on creating a control file.

3. Type the command name:

DATALOAD TABLE (table-name)

where table-name is the name of the table.

4. Enter the first TCI subcommand. On a new line, type:

column-name startpos-endpos data-type

where column-name is the name of the table column, startpos is the first

character position in the input record, endpos is the last position in the input

record, and data-type is the data format of the input values. The default data

type is character (CHAR).

5. Repeat the preceding step for each table column into which data is to be

inserted. Any table column that you are not loading data into must allow null

values.

6. On a new line, type:

INFILE (ddname)

where ddname identifies the input file.

7. Store the control file.

8. In CMS, specify the necessary FILEDEF statements. When you specify the

FILEDEF statement for the input data file, use the same ddname that you assign

to the INFILE in this procedure. For general information about FILEDEFs, see

“Using File Definitions” on page 14. For command-specific information, see

“Using File Definitions with the DB2 Server for VM DATALOAD Command”

on page 35.

9. Issue the SQLDBSU EXEC command to run the Database Services Utility. If you

did not specify FILEDEFs for the control and message files, use the default

values in the SQLDBSU EXEC. For more information on the SQLDBSU EXEC,

see “Using the SQLDBSU EXEC” on page 15.

Using a Workstation as a DB2 Server for VM Control File: You can also insert

rows into a table by using your workstation as a control file. To do so, follow the

standard procedure given in “(Input) Control File and Separate Data File” on page

31 for constructing a DATALOAD command, but enter the information in the

following order:

1. In CMS, specify the necessary FILEDEFs.

2. Specify an SQLDBSU EXEC statement that defines SYSIN as T.

3. When the DB2 Server for VSE & VM command entry panel appears, enter the

DATALOAD command, TCI subcommands, and INFILE subcommand.

Using the DATALOAD Command with Embedded Data

(Input) Control File with Embedded Data

The data to load need not be in a separate file; you can include it with the

Database Services Utility commands in the (input) control file. Figure 18 on page

33 shows a DATALOAD command with data following the INFILE subcommand.

32 Database Services Utility

The asterisk parameter (*) of the INFILE subcommand indicates that input data

immediately follows. When such input data is included with a DATALOAD

command, mark the end of it with an ENDDATA subcommand.

The ENDDATA subcommand is valid only when the previous Database Services

Utility command statement processed is INFILE (*).

Match TCI and Data Positions

Enter records following an INFILE(*) subcommand so that the character

positions of the data correspond to the startpos and endpos parameter

specifications of the applicable TCI subcommand.

The following example shows that data inserted in the ACTNO column is

specified as occupying positions 1 through 3 of the input data records.

Because INFILE begins at position 1, you can align position 1 of each data

record under the I of INFILE. The INFILE does not have to begin in position

1, but because it does in this example, you can use it as a guide to position

your data records.

┌───────────┐ DATALOAD TABLE (ACTIVITY) ┌───────────────────────┐

│ TCI │ │ ACTNO 1-3 │ │ STARTPOS and ENDPOS │

│Subcommands├─────►│ ACTKWD 5-10 │◄────┤ parameters show where │

└───────────┘ │ ACTDESC 12-31 │ │ ACTIVITY data is │

 INFILE (*) │ located in the input │

 õ │ records. │

 │ └───────────────────────┘

 ┌┴──────────────────────────────┐

 │This character marks position 1│

 │of the following input records:│

 └┬──────────────────────────────┘

 │

 ø

 190 MARKET MARKETING

 200 CUSTOM CUSTOMER SUPPORT

 25 RSRCH RESEARCH

 55 TRAIN TRAINING ┌──────────────────────────────┐

 ENDDATA ◄───────────┤The ENDDATA subcommand follows|

 |the last embedded data record.|

 └──────────────────────────────┘

Use a column scale or ruler when entering DB2 Server for VM embedded

data to align data fields.

DATALOAD TABLE (ACTIVITY)

 ACTNO 1-3

 ACTKWD 5-10

 ACTDESC 12-31

INFILE (*)

190 MARKET MARKETING

200 CUSTOM CUSTOMER SUPPORT

25 RSRCH RESEARCH

55 TRAIN TRAINING

ENDDATA

Figure 18. DATALOAD Command with Embedded Data

Chapter 2. Loading Data with the Database Services Utility 33

To load embedded data, follow the standard procedure in “(Input) Control File and

Separate Data File” on page 31, but construct the INFILE subcommand as follows:

1. On a new (VSE) record or (VM) line, type:

INFILE (*)

where (*) indicates that data follows immediately.

2. On the next record or line, enter the first data record. Align the character

positions to match the positions of the startpos-endpos values. Repeat this step

for each succeeding data record.

3. When you have finished providing data records, type the following on a new

record or line:

ENDDATA

Data Format Support

You can store data in sequential files in different data formats. A file created using

a file editor is usually stored in CHARACTER data format. When a file is

produced by a program, it is possible for the program to store data in one or more

of the following data formats: DECIMAL, FIXED, FLOAT, ZONED, CHARACTER,

DATE, TIME, TIMESTAMP, or GRAPHIC data formats.

The Database Services Utility supports data stored in any of the previously

mentioned data formats. When loading data, the utility automatically converts the

input data to the data type of the particular column of the target table.

Sometimes, rather than using character data, an application program generates

fixed-point binary, floating-point binary, or packed decimal data. You still use the

utility to load the data into a table, but you need to specify that the input data is

no longer CHAR data type. The TCI subcommand has the optional data type

parameter for this purpose. The following example illustrates the use of the TCI

subcommand’s data type parameter FIXED, which indicates that the input data

type is fixed-point binary.

DATALOAD TABLE (ACTIVITY)

 ACTNO 1-3 FIXED

 ACTKWD 4-9

 ACTDESC 10-29

INFILE (NEWACT PDEV(DASD) BLKSZ) <------DB2 Server for VSE

INFILE (NEWACT) <------DB2 Server for VM

DATALOAD converts the fixed-point binary data in columns 1-3 to SMALLINT

data type in the table because the corresponding column is defined as SMALLINT.

The data you are loading can be only one or 2 bytes; DATALOAD cannot convert

4-byte fixed data to SMALLINT. If you have 4-byte data, the table column you

load has to be defined as INTEGER.

For further qualifying information, see “DATALOAD Data Conversion Summary”

on page 165.

JCL for the DB2 Server for VSE DATALOAD Command

When you use a separate data input file with the DATALOAD command, you

need to define that file through JCL statements. Use the information in this section

when you construct a job for a Database Services Utility command that requires a

data definition name (ddname). See Figure 19 on page 35 for an example of JCL

statements that define an input data file.

34 Database Services Utility

The DATALOAD command uses the ddname NEWACT, which refers to the input

data file ACT.DATA in the DLBL statement.

Using File Definitions with the DB2 Server for VM DATALOAD

Command

When you use a separate data input file with the DATALOAD command, you

need to define that file with a FILEDEF statement. Even if you want to type in a

few rows of data from your terminal, you must use the FILEDEF statement to

specify that the input is coming from your terminal. If the data is in a virtual

reader file, you can use the FILEDEF to specify the spooled reader. The only

situation where you do not need a supplementary FILEDEF statement is if the

input data is in the control file.

Use the information in the following section when you construct the FILEDEF

statement for the input data file.

FILEDEFs Supporting DATALOAD Command Processing

In the CMS FILEDEF command that defines the Database Services Utility’s

DATALOAD command input data file, all record format specifications are

supported except for carriage-control characters and undefined format. (Do not use

A, M, or U in your RECFM specification.) If you define CMS input files as VS or

VBS, DATALOAD processing changes the record format to VB.

If you define CMS input files with variable-length spanned records (RECFM=VS or

VBS), you must use the file mode number 4. For example:

FILEDEF ddname DISK filename filetype A4 (options

If the DATALOAD input data file contains records with more than 32 760 positions

of data, you can do one of the following:

1. Use VS or VBS records. Specify as options only the RECFM and Block size

(BLOCK or BLKSIZE) parameters in the FILEDEF command defining the data

file. (The LRECL specification does not apply and would not be overridden if

specified.)

2. Use F or V records if you are running under CMS 15 or later and the

DATALOAD input data file contains records with less than 65 536 positions of

data.

A sample FILEDEF command defining a CMS file for DATALOAD command

processing is:

FILEDEF DBSFILE DISK DBSFILE DATA A (RECFM F LRECL 80

// JOB DBS Utility Dataload Example

// EXEC PROC=ARIS75PL

// DLBL NEWACT, ’ACT.DATA’,0

// EXTENT SYS006,SQLWK1,1,0,57,76

// ASSGN SYS006,150

// EXEC PGM=ARIDBS,SIZE=AUTO

DATALOAD TABLE (ACTIVITY)

 ACTNO 1-3 FIXED

 ACTKWD 4-9

 ACTDESC 10-29

INFILE (NEWACT PDEV(DASD) BLKSZ)

/*

/&

Figure 19. Example of JCL Statements to Define an Input Data File

Chapter 2. Loading Data with the Database Services Utility 35

where DBSFILE is the name of the data input file as it is referred to in your

program. For more information on FILEDEF parameters and options, see

Appendix B, “FILEDEF Command Syntax and Notes,” on page 249.

Use the Same File Definition for DATALOAD as for DATAUNLOAD

If the input data file was created by DATAUNLOAD processing, then the

CMS FILEDEF command that defines the DATALOAD input data file should

be identical to the information in the FILEDEF command used when the file

was created by DATAUNLOAD processing.

General Loading Procedures

Comparison Operators

In the procedures that follow, you specify a comparison operator. The following

comparison operators are supported by the Database Services Utility:

Comparison Operators

 = Equal to

 ¬= Not equal to

 <> Not equal to

 > Greater than

 >= Greater than or equal to

 < Less than

 <= Less than or equal to

Loading Null Values

Suppose that you are loading data to a table named DEPARTMENT in columns

DEPTNO, DEPTNAME, MGRNO, and ADMRDEPT, but you do not have a

manager for every department. You still want to insert the DEPTNO, DEPTNAME,

and ADMRDEPT into the database. For those departments that do not have a

manager, you want to insert a null value. Use the TCI subcommand’s

null-current-clause. Figure 20 illustrates one way to code the MGRNO TCI to load

null values.

 A translation of this clause is: make the corresponding table field null if

input-record positions 42 through 47 are blank.

To specify a null condition in the TCI subcommand, do the following:

1. Leave one or more spaces after the TCI subcommand’s endpos (or data type)

parameter, and include:

NULL IF POS (startpos-endpos) operator constant

where startpos is the first character position in the input record that contains the

comparison string, endpos is the last position of the string, constant is the value

DATALOAD TABLE (DEPARTMENT)

 DEPTNO 1-3

 DEPTNAME 5-40

 MGRNO 42-47 NULL IF POS (42-47)=’ ’ <——6 blanks.

 ADMRDEPT 49-51

INFILE (NEWDEPT)

Figure 20. TCI Subcommand with a Null Clause

36 Database Services Utility

against which the string at position startpos-endpos is to be compared, and

operator is a comparison operator. (See “Comparison Operators” on page 36 for

a list of comparison operators.) Do not put spaces within the brackets.

2. Proceed to the next DATALOAD subcommand.

Note: The positions checked for the null value need not be in the same positions

occupied by the data field for the column. You can assign the null value to a

column depending on any convention you choose. For example, to set the

MGRNO column to NULL whenever a blank exists in position 11 of the

DEPTNAME column, code the MGRNO TCI as follows:

MGRNO 42-47 NULL IF POS (11) = ' '

However, if the positions of the data fields and the positions specified by the

startpos and endpos in the subcommand’s null-current-clause overlap, your data

may be overlaid. For more information on the null-current-clause, see page 155.

Alternative Method

Another way to insert null values into the database for new rows is by

omitting a TCI subcommand for that column:

DATALOAD TABLE (DEPARTMENT)

 DEPTNO 1-3

 DEPTNAME 5-40

 ADMRDEPT 49-51

INFILE (NEWDEPT)

In the above example, there is no TCI subcommand for the MGRNO column

of the DEPARTMENT table. For each new row inserted, the MGRNO field is

null. The columns that the utility loads null values into must permit nulls.

 Loading CURRENT DATE, CURRENT TIME, and CURRENT

TIMESTAMP Values

The database manager supports the following date and time formats: International

Standards Organization (ISO) form, IBM Standard for Europe form (EUR), IBM

Standard for the U.S. form (USA), Japanese Industrial Standard Christian Era form

(JIS), and an installation-defined form (LOCAL).

Suppose that someone created the following table with the SQL CREATE TABLE

statement and you want to load data into the table.

CREATE TABLE PAYABLE

 (COMPANY CHAR(20),

 PAYMENT_DUE DATE,

 AMOUNT DEC(9,2));

Some of the companies in the PAYABLE table are in arrears with their payments.

For these organizations, you want the payment due date to be today’s date. Use

the TCI subcommand’s null-current-clause. Figure 21 on page 38 shows one way to

code the TCI subcommand PAYMENT_DUE to load the current date. (This

example does not use the sample tables; therefore, do not attempt to process it.)

Chapter 2. Loading Data with the Database Services Utility 37

A translation of the current date clause is: load the corresponding table field with

the current date if input-record positions 22 through 30 contain the string

IMMEDIATE.

To specify a current date in the TCI subcommand, proceed as follows:

1. Leave one or more spaces after the TCI subcommand’s ENDPOS (or

DATATYPE) parameter, and include:

CURRENT DATE IF POS (startpos-endpos) operator constant

where startpos is the first character position in the input record that contains the

comparison string, endpos is the last position of that string, constant is the value

against which the string startpos-endpos is to be compared, and operator is a

comparison operator. See “Comparison Operators” on page 36 for a list of

comparison operators.

2. Proceed to the next DATALOAD subcommand.

To load current times and timestamps, replace CURRENT DATE with CURRENT

TIME or CURRENT TIMESTAMP in Step 1 of this procedure. For example, in

Figure 21 on page 38, you could replace CURRENT DATE with CURRENT TIME if

the PAYMENT_DUE column were TIME data type.

Note: The current date, current time, and current timestamp value is acquired by

Database Services Utility at the start of the DATALOAD command

processing, and will not change throughout the DATALOAD command

processing.

Loading Data into Multiple Tables

You can load the same data records into more than one table, or load different data

records in the same input file into their respective tables. When you are loading

data into more than one table, the Database Services Utility automatically performs

an UPDATE STATISTICS (unless a SET UPDATE STATISTICS OFF command has

been issued) after the DATALOAD command processing is completed successfully.

Loading Mixed INFILE Records into the Correct Tables

If you had to load data into two tables, you would probably prepare two

DATALOAD commands that could be run either separately or consecutively in the

same (input) control file. This is shown in Figure 22 on page 39.

DATALOAD TABLE (PAYABLE)

 COMPANY 1-20

 PAYMENT_DUE 22-31 CURRENT DATE IF POS(22-30) = ’IMMEDIATE’

 AMOUNT 35-45

INFILE(*)

VESUVIUS, INC. 2000-05-01 5000.00

ATLANTIS CO. 28.05.1999 3820.00

TITANIC LTD. IMMEDIATE 7250.00

SKY INC. 05/22/1999 300.00

ENDDATA

Figure 21. TCI Subcommand with a Current-Date Clause

38 Database Services Utility

If, for some reason, the input data records for two tables were mixed in one data

group, you could run the single data group against multiple DATALOAD

commands. This is possible with the use of the DATALOAD statement’s

input-record-id clause. Figure 23 shows two DATALOAD commands that share one

INFILE(*) subcommand. Both DATALOAD commands have input-record-id clauses

that specify the records that belong to each table.

 Translations of the input-record-id clauses are:

v ACTIVITY Table. If position 54 of an input data record contains a 1, load the

ACTIVITY table with that record.

DATALOAD TABLE (ACTIVITY)

 ACTNO 1-3

 ACTKWD 5-10

 ACTDESC 12-31

INFILE (*)

190 MARKET MARKETING

200 CUSTOM CUSTOMER SUPPORT

25 RSRCH RESEARCH

55 TRAIN TRAINING

ENDDATA

DATALOAD TABLE (DEPARTMENT)

 DEPTNO 1-3

 DEPTNAME 5-23

 MGRNO 25-30

 ADMRDEPT 32-34

INFILE (*)

F01 PERSONNEL 000110 A00

G01 MARKETING AND SALES 000120 A00

ENDDATA

Figure 22. Separate DATALOAD Commands Run Successively

DATALOAD TABLE (ACTIVITY) IF POS (54)=’1’

 ACTNO 1-3 ───────┬───────

 ACTKWD 5-10 │

 ACTDESC 12-31 └────────────────────┐

DATALOAD TABLE (DEPARTMENT) IF POS (54)=’2’ │

 DEPTNO 1-3 ───────┬─────── ┌───────┴───────┐

 DEPTNAME 5-23 └──────────┤INPUT-RECORD-ID│

 MGRNO 25-30 │ Clauses │

 ADMRDEPT 32-34 └───────────────┘

INFILE (*)

190 MARKET MARKETING 1

F01 PERSONNEL 000110 A00 2

200 CUSTOM CUSTOMER SUPPORT 1

G01 MARKETING AND SALES 000120 A00 2

25 RSRCH RESEARCH 1

55 TRAIN TRAINING 1

ENDDATA

 õ

 │

 ┌─────────────┐ │

 │Column 54, ├────┘

 │Control Field│

 └─────────────┘

Figure 23. DATALOAD Commands Sharing a Data File

Chapter 2. Loading Data with the Database Services Utility 39

v DEPARTMENT Table. If position 54 of an input data record contains a 2, load

the DEPARTMENT table with that record.

To load separate tables with mixed input data from a single file, proceed as

follows:

1. Leave one or more spaces after the DATALOAD command’s table-name

parameter, and include:

IF POS (startpos-endpos) operator constant

where startpos is the first character position in the control field, endpos is the last

position in that field, constant is the value against which the string

startpos-endpos is to be compared, and operator is a comparison operator. See

“Comparison Operators” on page 36 for a list of comparison operators.

2. Enter each TCI subcommand on a new line by including:

column-name startpos-endpos data-type

where column-name is the name of the table column; startpos is the starting

position of the input record; endpos is the last position in the input record; and

data-type is the data format of the column values. If the data type is character

(CHAR), you can omit it.

3. Repeat the previous two steps for each table to be loaded (that is, for each

DATALOAD command).

4. Continue with command and data entry.

Note: Ensure that the control field occupies the same position or positions in each

of the data records of the input file.

Loading a Single Record into Several Tables

When the Database Services Utility loads records from a mixed input file into

multiple tables, each data record is inserted into a particular table only. You can

also write DATALOAD commands so that a single input data record can be a

source of rows in more than one table. For example, suppose that you want to

expand your activities for each project. Each activity number added to the

ACTIVITY table has a corresponding activity number added to the PROJ_ACT

table. To use a single input data record to make entries in these two tables, you

could code utility commands as shown in Figure 24.

 In Figure 24, each DATALOAD command has its own set of TCI subcommands

that point to unique positions on the same input record.

DATALOAD TABLE(ACTIVITY)

 ACTNO 1-3

 ACTKWD 5-10

 ACTDESC 12-27

DATALOAD TABLE(PROJ_ACT)

 PROJNO 29-34

 ACTNO 36-38

 ACSTAFF 40-43

 ACSTDATE 45-54

 ACENDATE 56-65

INFILE (*)

190 MARKET MARKETING AD3100 190 0.50 1999-01-02 1999-04-30

200 CUSTOM CUSTOMER SUPPORT OP2000 200 1.50 1998-03-01 1999-12-31

55 TRAIN TRAINING IF2000 55 1.00 1999-02-01 1999-09-05

ENDDATA

Figure 24. Individual Records Supplying the Same Activity Number to Two Tables

40 Database Services Utility

Sixteen DATALOADs Sharing One INFILE

When more than one DATALOAD command (without input-record-id

clauses) precedes an INFILE subcommand, the input data identified by the

INFILE subcommand is used for all tables identified in the DATALOAD

commands. A maximum of 16 DATALOAD commands can precede an

INFILE subcommand. You can load 16 tables at the same time.

 In Figure 24, the activity number is repeated twice (once for the ACTIVITY table

and once for the PROJ_ACT table) in each input data record. Eliminate the need

for duplicate fields by using TCI subcommands for each of the tables that point to

the same physical location in the input record, as shown in Figure 25.

 To use similar TCI subcommands in multiple DATALOAD TABLE commands,

proceed as follows:

1. Find the correct startpos-endpos value for each TCI subcommand that is common

to more than one table.

2. Include the TCI statement in each affected DATALOAD command, and give the

same startpos-endpos value for each.

Combining Records to Load Multiple Table Rows

Usually, one input data record provides information for one table row. This is

illustrated in Figure 26 on page 42.

DATALOAD TABLE(ACTIVITY) ┌────────────────────────┐

 ACTNO 1-3 ◄────────│ │

 ACTKWD 5-10 │ These two subcommands │

 ACTDESC 12-27 │ point to the same │

DATALOAD TABLE(PROJ_ACT) │ physical location in │

 PROJNO 29-34 │ the input data records.│

 ACTNO 1-3 ◄────────│ │

 ACSTAFF 40-43 └────────────────────────┘

 ACSTDATE 45-54

 ACENDATE 56-65

INFILE (*)

190 MARKET MARKETING AD3100 0.50 1989-01-02 1989-04-30

200 CUSTOM CUSTOMER SUPPORT OP2000 1.50 1989-03-01 1995-12-31

55 TRAIN TRAINING IF2000 1.00 1989-02-01 1989-09-05

ENDDATA

Figure 25. TCIs in Individual DATALOADs That Point to the Same Location

Chapter 2. Loading Data with the Database Services Utility 41

Using multiple DATALOAD commands, however, you can load more than one

table row with each input data record. Figure 27 presents a way of using multiple

DATALOAD statements to load combined records into the same table.

 In the above example, two rows are inserted into the ACTIVITY table for each data

record that is read.

To load combined records into the same table, proceed as follows:

1. Decide how many simple data records the combined record should contain; this

is the number of DATALOAD statements needed. Provide the required number

of DATALOAD TABLE commands, each with the same table name.

2. Provide each DATALOAD TABLE command with a set of identical TCI

subcommands.

3. Determine the correct startpos-endpos values for each DATALOAD command

set; provide the appropriate value to each TCI statement.

4. In VSE, provide the INFILE(*) data as combined records. In VM, enter the

INFILE(*) data as combined records—with each record on a separate line.

Ensure that this data is positioned to correspond to the startpos-endpos values in

the TCI subcommands.

Processing Data That Spans More Than One Input Record

You can load data that is continued onto the next physical record. Figure 28 on

page 43 illustrates the command sequence necessary to load data from 80-byte

input data records into the columns ACTNO and ACTDESC in the table named

SQLDBA.ACTIONS where:

v The column ACTNO is defined with the data type CHAR(10).

v The column ACTDESC is defined with the data type VARCHAR(100).

DATALOAD TABLE(ACTIVITY)

 ACTNO 1-3

 ACTKWD 5-10

 ACTDESC 12-27

INFILE (*)

190 MARKET MARKETING

200 CUSTOM CUSTOMER SUPPORT

25 RSRCH RESEARCH

55 TRAIN TRAINING

ENDDATA

Figure 26. Normal Relationship: One Record for One Row

DATALOAD TABLE(ACTIVITY)

 ACTNO 1-3

 ACTKWD 5-10

 ACTDESC 12-27

DATALOAD TABLE(ACTIVITY)

 ACTNO 29-31

 ACTKWD 33-38

 ACTDESC 40-55

INFILE(*)

190 MARKET MARKETING 200 CUSTOM CUSTOMER SUPPORT

25 RSRCH RESEARCH 55 TRAIN TRAINING

ENDDATA

Figure 27. Combined Records: Each for Two Rows

42 Database Services Utility

The CONTINUED parameter of the INFILE subcommand indicates that continued

records are in the input data. If position 1 of an input data record contains a

character, the input data is continued onto the next physical input data record. The

above example uses a C as a continuation character, but you can use any character.

The first position of each input file data record is not included in the actual input

data, so character positions begin numbering from the second position. Therefore,

the physical position 2 of an input data record is referred to as position 1 in the

TCI subcommand.

If position 1 of the input data record is blank, the input data is contained on a

single logical input record, or it is the terminating row of a continued record. All

actual input data records must be at least as long as the highest end-position value

specified in a TCI subcommand. In this situation, the ACTDESC field must be 100

characters in length. Therefore, a second physical input line containing all blanks is

necessary to extend the ACTDESC field of the second logical input record

(beginning with ACTNO=1234567891) to the maximum length value of 100.

If the highest TCI endpos value exceeds the input record length, you need to use

continued input records. To construct a Database Services Utility command to load

continued physical input records into a table, proceed as follows:

For DB2 Server for VSE

1. Define the DATALOAD TABLE and TCI statements in the usual way.

2. Put the INFILE statement with the CONTINUED parameter on the next record:

INFILE (* CONTINUED(YES))

The CONTINUED parameter must be on the same record as INFILE.

3. Provide the data records:

C ...data...

where C can be the character C or any other character, and ...data... is the actual

input-record data to a maximum of 79 characters.

 ┌─────────────────────────┐

 │Activity description that│

DATALOAD TABLE(SQLDBA.ACTIONS) │is 77 positions long and │

 ACTNO 1─10 │cannot fit on one record.│

 ACTDESC 11─110 └─────────────────────┬───┘

INFILE(* CONTINUED(YES)) │

C1234567890THIS ACTIVITY DESCRIPTION FILLS IN THE ENTIRE LOGICAL RECORD LENGTH│◄──────┘

 AND MORE │

C1234567891THIS DESCRIPTION DOES NOT USE THE WHOLE RECORD│◄───────────────────────────┐

 │ │

õ . │

│ ┌─────────────────────┴───┐

│ . │Activity description that│

│ │is 46 positions long. │

│ . ┌────────────────────────┐ │The next record is blank │

│ │ Position 1 of the input│ │to fill in the rest of │

└─────────────────────┤ data record contains a │ │the 100 positions. │

 │ continuation character.│ └─────────────────────────┘

 └────────────────────────┘

ENDDATA

Figure 28. Specifying Continued Input Records

Chapter 2. Loading Data with the Database Services Utility 43

4. Depending on the length of the physical input record, do one of the following:

v If the physical record length exceeds the logical record length (LRECL=80),

continue entering the data, beginning in position 2 of the following input

record. Do not put a continuation character on the second record.

v If the physical record length is less than the logical record length

(LRECL=80), leave the following input record blank.

If you have to enter more than two records for a physical input record, put a

continuation character at the beginning of each record except the last one. The

blank in position 1 terminates that input record.

5. For each data record, repeat the preceding two steps.

6. Indicate the end of input data. On a new record, put:

ENDDATA

For DB2 Server for VM

1. Define the DATALOAD TABLE and TCI statements in the usual way.

2. Type the INFILE statement as far as the asterisk:

INFILE (*

3. Enter the CONTINUED parameter. On the same line, leave one space; then

type:

CONTINUED(YES))

4. Enter the data records. Type:

C ...data...

where C can be the character C or any other character, and ...data... is the actual

input-record data to a maximum of 79 characters.

5. Depending on the length of the physical input record, do one of the following:

v If the physical record length exceeds the logical record length (LRECL=80),

continue entering the data, beginning in position 2 of the following input

line. Do not put a continuation character on the second line.

v If the physical record length is less than the logical record length

(LRECL=80), leave the following input line blank.

If you have to enter more than two lines for a physical input record, put a

continuation character at the beginning of each line except the last one. The

blank in position 1 terminates that input record.

6. For each data record, repeat the preceding two steps.

7. Indicate the end of input data. On a new line, type:

ENDDATA

Committing Work While Loading Data

If the SET AUTOCOMMIT ON command has been issued, the DATALOAD

command can specify that the utility issue SQL COMMIT statements periodically

during processing. The interval is specified in terms of a specific number of input

records processed by DATALOAD. A record is considered to be processed by

DATALOAD when it is read and appropriate action is taken. The action is one of

the following:

v Skip the record because input record selection criteria are not met

v Insert data from the record into one or more tables.

You indicate the number of records by specifying the COMMITCOUNT(ccount)

parameter on the INFILE subcommand. Each time that COMMIT processing is to

begin, a message (ARI0800I) is written to the message file containing the number

44 Database Services Utility

of input records processed up to this point. The message is written as a result of

COMMITCOUNT processing. You also receive a message (ARI0811I) to inform you

that the changes were committed successfully.

When to Use the COMMITCOUNT Parameter

You can use COMMITCOUNT to minimize lock interface with other users of a

dbspace or a table. If you set the value of ccount low enough, escalation is avoided.

The COMMITCOUNT parameter also helps reduce log space requirements during

execution with multiple user mode.

To cause the Database Services Utility to commit work during processing, proceed

as follows:

1. On the same record as the INFILE subcommand, leave one or more spaces,

then include:

COMMITCOUNT(ccount)

where ccount is a number from 1 to 2,147,483,647.

2. Specify the rest of the DATALOAD TABLE command set.

Specifying a COMMITCOUNT value commits that number of input records to the

database as soon as the Database Services Utility has processed them.

Error-Processing Example

Assume that an error occurs in a job for which a COMMITCOUNT value of

1000 has been specified. If the error occurs during the processing of record

99 501 in a 100 000-record file, a ROLLBACK (implicit) command is processed

only for the database row inserts performed for the last 500 records (records

99 001 to 99 500).

If any INSERT commands are processed during DATALOAD processing of

the first 99 000 records, they have already been committed to the database.

Specifying a COMMITCOUNT of 1000 causes COMMIT processing to be

done after every 1000 input data records are processed. The last messages in

the (VSE) report or (VM) message file are:

ARI0800I ...Begin COMMIT. Input Record Count = 99000

ARI0811I ...COMMIT of any database changes was successful.

 Determining the Number of Records Processed

During DATALOAD processing of files containing more than 15,000 data records, a

message (ARI8995I) is written to either the VSE operator console or your VM

terminal after every 15,000 records to let you know that the job is running

normally and that n input records have been processed. These messages appear

unless:

v You used the INFILE subcommand’s COMMITCOUNT parameter and assigned

the report or message file to your terminal.

v The number of records is fewer than 15,000.

Skipping Bad Records

A bad data record is one that:

v Contains a data field that cannot be converted to the data type of its target

column

Chapter 2. Loading Data with the Database Services Utility 45

v Contains a data value that causes an SQL INSERT data-conversion or a

nonunique-column-value error.

If the COMMITCOUNT parameter is specified with AUTOCOMMIT ON, and

ERRORMODE CONTINUE processing is in effect, DATALOAD processing skips

bad data records. Processing continues under the following circumstances:

v An error identified by ARI0866E occurs.

v An SQL INSERT error identified by SQLCODE -405, -424, -530, -802, or -803

occurs followed by message ARI0862E, and insert blocking is not in effect.

Insert blocking is not in effect under the following conditions:

v Database Services Utility is running with single user mode.

v Database Services Utility is running with multiple user mode but was

preprocessed with the NOBLOCK option.

v Insert blocking is suppressed by the database manager.

A bad data record is not skipped, and DATALOAD processing is terminated under

the following conditions:

v The first 256 records of data are bad.

v Multiple DATALOAD commands are used preceding an INFILE subcommand

when an insert error occurs, and the record or a portion of the record has

already been used for a successful insert by any of the DATALOAD commands.

v An error, other than an SQL INSERT error identified by SQLCODE -405, -424,

-530, -802, or -803, occurs.

Tables in Nonrecoverable Storage Pools

A nonrecoverable storage pool is a pooled storage area for which there is no

automatic recovery action to restore data to the condition it was in before a

system failure or a failed operation. The message:

ARI8990I The table tablename is in a

 nonrecoverable storage pool.

is written before DATALOAD table insert processing begins if one of the

tables you are loading resides in a nonrecoverable storage pool. This message

indicates that changes made to this table by the DATALOAD command are

not deleted by a ROLLBACK statement if an error occurs.

Restarting the Loading Process

The Database Services Utility is designed to run despite minor errors. If, however,

an error is serious enough to halt the utility, you must rerun your particular

Database Services Utility command and reprocess all your files; you cannot simply

restart the Database Services Utility from the point of failure.

The COMMITCOUNT parameter, introduced in the preceding section, saves

processed data at intervals that you specify. This saves you processing time

because, although you must rerun jobs from the beginning, you do not have to

reprocess data that has already been committed to the database. The part of the

DATALOAD TABLE command that lets you bypass records is the

RESTARTCOUNT parameter.

46 Database Services Utility

In general, you want to skip any records that have been successfully processed and

also any bad input records. To run a job that has errors, proceed as follows:

1. Prepare the DB2 Server for VSE job and commands for the Database Services

Utility and submit the job to run; or prepare the necessary DB2 Server for VM

files and invoke the Database Services Utility.

2. When the job cancels (in VSE) or halts (in VM) with an error, determine (from

the messages sent) the number of records, if any, committed and the number of

records processed up to the start of the error condition.

Note: If you were running the Database Services Utility without SET

AUTOCOMMIT protection, or with too high a COMMITCOUNT value,

you could rerun the job with SET AUTOCOMMIT ON and an

appropriately low COMMITCOUNT value to save the successfully

processed records. If you choose this course of action, return to step 1.

3. Before rerunning the job, add the following parameter to the DATALOAD

TABLE command:

RESTARTCOUNT(rcount)

where rcount specifies the number of input records to be skipped. In general,

start processing from the last COMMIT action.

4. Remove the error condition, if possible.

5. Rerun the job.

If a DATALOAD job is canceled or halted repeatedly by errors, or if bad records

are causing the errors, consider using the following:

1. Specify as the RESTARTCOUNT value the input record count of the last

ARI0800I message. A sample ARI0800I message looks like this:

ARI0800I ...Begin COMMIT. Input Record Count = 100

2. Specify the COMMITCOUNT value again to equal the number of records

between the value found in the preceding step and the bad record.

3. Rerun DATALOAD up to the point of failure. This skips the previously

committed records and commits the remainder up to the bad record.

4. Specify as a new RESTARTCOUNT value the input record count of the latest

ARI0800I message plus n, where n is the number of bad records. (You can also

specify the COMMITCOUNT parameter again to its original value.)

5. Rerun the job. DATALOAD processing begins at a point beyond the bad

records and the previously committed work.

If you were running a DATALOAD job with the COMMITCOUNT set to 100, but

the job was unsuccessful at record 151, you could run DATALOAD again with a

new COMMITCOUNT value and restart after the number of records that were

committed:

DATALOAD TABLE(SMITH.DEPARTMENT)

IF POS (50) = ’X’

INFILE(SOMEDEPT) COMMITCOUNT(50) RESTARTCOUNT(100)

Now you have committed all the records up to the bad record. To skip the bad

record, change the RESTARTCOUNT value, and restore the COMMITCOUNT

parameter to its original value:

DATALOAD TABLE(SMITH.DEPARTMENT)

IF POS (50) = ’X’

INFILE(SOMEDEPT) COMMITCOUNT(100) RESTARTCOUNT(151)

Chapter 2. Loading Data with the Database Services Utility 47

Alternative Method

You can specify that the Database Services Utility ignore certain error

conditions and continue processing records:

1. Immediately before the DATALOAD command set in the (input) control

file, include:

SET ERRORMODE CONTINUE

2. On the same line as INFILE, add:

COMMITCOUNT(ccount)

where ccount is the number of input records to be processed before a

COMMIT action is taken.

3. Run the job.

Although this procedure skips bad records, it does not pinpoint them. After a

job is finished, compare the loaded table with source input documents to

locate missing table rows.

For more information on Database Services Utility’s error handling, see

Chapter 9, “Error Handling and Debugging,” on page 223.

Statistics Collection

The database manager generates table statistics while loading the data and

calculates index statistics while creating an index. This method of creating statistics

avoids doing a dbspace scan and a separate scan of the index pages, which are

done when you issue an UPDATE STATISTICS statement.

The database manager generates table statistics while the Database Services Utility

DATALOAD, RELOAD TABLE, and RELOAD DBSPACE commands are loading

data only if the SET UPDATE STATISTICS command is set to ON. Other rules that

must be met if statistics are to be collected for DATALOAD processing are:

v The DATALOAD command is loading data into only one table.

v No indexes exist on the table. If indexes do exist, the Database Services Utility

issues an UPDATE STATISTICS after the load is complete to generate index and

table statistics.

v The table being loaded currently contains no data; statistics are accumulated

only for rows that are being loaded. If the table already contains data and

statistics are generated when more rows are loaded, the statistics would not

accurately describe the entire table. For example, to load 5000 rows into a

500000-row table, and have the table’s statistics describe only the 5000 rows that

were loaded, would not be accurate. For this reason, statistics are not generated

when you specify the RESTARTCOUNT option. The use of RESTARTCOUNT

implies that a DATALOAD with the COMMITCOUNT option had already

loaded rows into the table, a failure occurred, and the DATALOAD is being

restarted at the point of the most recent COMMIT. Clearly, there are already

rows in the table.

The database manager determines that rows are already in the table when the

ROWCOUNT column of the SYSCATALOG table is a positive number for the

table you are loading. Generally, a positive number in the ROWCOUNT column

indicates that the table contains rows, but if you delete all the data from the

48 Database Services Utility

table without updating the statistics, ROWCOUNT still contains a positive

number. You must update the statistics to set the ROWCOUNT to zero before

loading data into that table.

If, for any of the above reasons, table statistics were not generated while data was

being loaded, the Database Services Utility executes an SQL UPDATE STATISTICS

statement for each table loaded after DATALOAD or RELOAD command

processing successfully ends. Statistics are neither updated automatically nor is an

UPDATE STATISTICS statement executed under either one of the following

conditions:

v A SET UPDATE STATISTICS OFF command was issued before the DATALOAD

or RELOAD command.

v A view name was specified instead of a table name.

Chapter 2. Loading Data with the Database Services Utility 49

50 Database Services Utility

Chapter 3. Unloading Data with the Database Services Utility

This chapter describes the DATAUNLOAD command first, and then describes the

UNLOAD commands, beginning with “UNLOAD Procedures” on page 63.

To selectively unload data from tables and views, use the DATAUNLOAD

command. The DATAUNLOAD command creates a sequential file of data that you

can modify and reload into a table with the DATALOAD command.

If you want to create a backup for specific dbspaces or tables, use the UNLOAD

command. The UNLOAD command also allows you to move data in units of

tables (one table or all the tables in a dbspace) to another database manager. If you

want to reclaim fragmented disk space or reorder data records to match indexes,

use the UNLOAD command followed by the RELOAD command.

Refer to the appropriate sections of the earlier chapters for details about invoking

the Database Services Utility and defining files.

DATAUNLOAD Procedures

Database Services Utility DATAUNLOAD processing enables you to unload data

from tables and views to a user-defined sequential access method (SAM) file record

format. You can also unload data from remote application servers that support the

DRDA flow. The data to be unloaded is selected from the database with an SQL

SELECT statement that you supply. The output data file for this utility is a

general-use programming interface. See “Programming Interface Information” on

page 257 for a definition of general-use programming interfaces.

In general, each output record resulting from DATAUNLOAD processing contains

data for a row of a table. These output data records reside in a sequential file. In a

VM system, you must define this file using the CMS FILEDEF command.

The sequential output file can contain fixed, variable-length, or

variable-length-spanned records. The records can be blocked or unblocked. A

standard SELECT statement in its SQL syntax is used in the DATAUNLOAD

command set as a mandatory subcommand. The DATAUNLOAD command and

its subcommands can:

v Identify the tables to be unloaded

v Describe the data fields in the output records

v Relate table column names to output record data fields

v Identify the source of the output records.

A DATAUNLOAD command contains four elements, as shown in Figure 29 on

page 52.

© Copyright IBM Corp. 1987, 2007 51

The DATAUNLOAD command statement consists of a single word and occupies

the first record of the command set in the Database Services Utility (input) control

file.

The SQL statement, the second element in the command set, occupies one or more

control file input records. Its syntax and sequence of keywords are the same as

they would be if used outside the Database Services Utility.

Entering Commands from a Workstation

Most Database Services Utility commands and all SQL statements must end

with a semicolon (;) when the control file is assigned to TERMINAL. In

general, use a semicolon to terminate all commands entered through your

workstation.

 Data Field Identification (DFI) subcommands, element three of DATAUNLOAD

commands, identify the location in the output records for the data of columns

specified in the select-list parameter. DFI subcommands are optional; if they are

omitted, the resulting output data fields are sequenced according to system

defaults. See “Unloading Data in System-Defined Format” for more information. If

DFI subcommands are included, each must occupy a single record of the DB2

Server for VSE input control card file or DB2 Server for VM command-file input

record.

The OUTFILE subcommand, the final element in the DATAUNLOAD command

set, identifies the sequential output file that is to contain the data unloaded by the

preceding DATAUNLOAD command sequence. It tells the Database Services

Utility to start unloading data to the file identified by the corresponding ddname

parameter. In a VM system, this parameter is defined in the FILEDEF command.

Unloading Data in System-Defined Format

The DATAUNLOAD command and subcommands are contained on more than one

input record. If you want to unload all the data from a table in a

┌─────────────────┐

│The DATAUNLOAD │

│command statement├─────────► DATAUNLOAD

└─────────────────┘ │ SELECT EMPNO,PROJNO,ACTNO,EMPTIME

┌─────────────┐ │ FROM EMP-ACT

│An SQL SELECT├────────────►│ WHERE EMPTIME>0.5

│statement │ │ ORDER BY ACTNO;

└─────────────┘

┌──────────────┐ │ EMPNO 1-6

│DATA FIELD │ │ PROJNO 8-14 CHAR

│IDENTIFICATION├───────────►│ ACTNO 16-18 INTEGER

│subcommands │ │ EMPTIME 20-25 DECIMAL

└──────────────┘

┌──────────────────┐

│OUTFILE subcommand├────────► OUTFILE(INVOUT)

└──────────────────┘

Figure 29. DATAUNLOAD Command Sequence

52 Database Services Utility

system-determined sequence and with the default output data field format, the

three parts of the Database Services Utility command are:

v The DATAUNLOAD command

v An SQL SELECT statement ended with a semicolon

v An OUTFILE subcommand.

Default Output Data Field Formats

If you do not supply DFI subcommands in a DATAUNLOAD command set

and if the source table column contains double-byte character set (DBCS)

data, the default data type for the output data fields is CHARACTER or

GRAPHIC data type. The overall format of the output data depends on the

data type and length (actual or maximum) of the column from which the data

is taken. Figure 30 and Figure 31 show the default output data field sequence.

 If you do not supply DFI subcommands, the data fields appear in the output

records in the order of occurrence of columns in the SELECT statement’s select-list

parameter. Each field is separated from the next by a blank position (hex 40).

For fixed-length output records, the data field associated with the first select-list

column starts in position 1 of the record, as shown in Figure 30.

 For variable-length output records, the data field associated with the select-list

column starts in position 5 of the record because the first 4 bytes are the record

length control field. Figure 31 on page 54 shows the data fields for variable-length

output records.

┌─────────────┬───────┬──────────────┬───────┬───────┬──────────────┐

│ data from │ blank │ data from │ blank │ ... │ data from │

│ select-list │ │ select-list │ │ ... │ select-list │

│ column 1 │ │ column 2 │ │ ... │ column n │

└─────────────┴───────┴──────────────┴───────┴───────┴──────────────┘

 .

 .

 .

 Position 1

Figure 30. Default Data Field Sequence—Fixed-Length Output Records

Chapter 3. Unloading Data with the Database Services Utility 53

In DB2 Server for VSE, proceed as follows to unload data in the default

output-field format.

1. Provide the following Database Services Utility command:

DATAUNLOAD

2. Put an SQL SELECT statement on the next record. (SQL statement syntax is

beyond the scope of this manual. See the DB2 Server for VSE & VM SQL

Reference for information about SQL statement syntax.) Figure 33 shows a

sample DATAUNLOAD command that uses system formatting defaults.

3. To cause default formatting of data fields, do not supply DFI subcommands.

4. On the next record, put:

OUTFILE (ddname)

where ddname identifies the output file. Use the same ddname in a TLBL or

DLBL statement, depending on whether you want to store the data on tape or

in a DASD file.

5. Submit the job for processing.

In DB2 Server for VM, proceed as follows to unload data in the default

output-field format.

1. Issue the SQLINIT command to initialize the user machine. If you have already

done this, proceed to Step 2.

2. Create a control file to contain the command you construct in the following

steps. See “Working with a Control File in DB2 Server for VM” on page 13 for

detailed information on creating a control file.

3. Enter the command name. Type:

DATAUNLOAD

┌──────────┬─────────────┬───────┬─────────────┬────────┬─────┬───────┬─────────────┐

│ Record │ data from │ blank │ data from │ blank │ ... │ blank │ data from │

│ Length │ select-list │ │ select-list │ │ ... │ │ select-list │

│ Control │ column 1 │ │ column 2 │ │ ... │ │ column n │

│ Field │ │ │ │ │ │ │ │

└──────────┴─────────────┴───────┴─────────────┴────────┴─────┴───────┴─────────────┘

 . .

 . .

 . .

 . Position 5

 .

 Position 1

Figure 31. Default Data Field Sequence—Variable-Length Output Records

DATAUNLOAD

SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME

FROM EMP_ACT,EMPLOYEE

WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO

ORDER BY EMP_ACT.EMPNO;

OUTFILE(OUTPUT1)

Figure 32. DATAUNLOAD Command without DFI Subcommands

54 Database Services Utility

4. On a new line, enter the SQL SELECT statement. (SQL statement syntax is

beyond the scope of this manual. See the DB2 Server for VSE & VM SQL

Reference for information about SQL statement syntax.) Figure 33 shows a

sample DATAUNLOAD command that uses system formatting defaults.

5. To cause default formatting of data fields, do not supply DFI subcommands.

6. Enter the OUTFILE subcommand. On a new line, type:

OUTFILE(ddname)

where ddname identifies the output data file. You need to use the same ddname

when you specify the FILEDEF statement for the output file.

7. Store the control file.

8. In CMS, specify the necessary FILEDEF statements. For general information

about FILEDEF statements, see “Using File Definitions” on page 14. For

command-specific information, see “Using File Definitions with the DB2 Server

for VM DATAUNLOAD Command” on page 62.

9. Issue the SQLDBSU command to run the Database Services Utility. If you did

not specify FILEDEFs for the control and message files, use the default values

in the SQLDBSU EXEC. For more information on the SQLDBSU EXEC, see

“Using the SQLDBSU EXEC” on page 15.

As the DATAUNLOAD command is executed, the actual command sequence, the

default data-field sequence, and messages are written to the report or message file.

Figure 34 on page 56 and Figure 35 on page 56 show output that results from

running the DATAUNLOAD command shown in Figure 33.

DATAUNLOAD

SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME

FROM EMP_ACT,EMPLOYEE

WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO

ORDER BY EMP_ACT.EMPNO;

OUTFILE(OUTPUT1)

Figure 33. DATAUNLOAD Command without DFI Subcommands

Chapter 3. Unloading Data with the Database Services Utility 55

Note: The RECFM, RECSZ, and BLKSIZE information displayed in the message

ARI0868I depends on either the JCL data definition statement or the CMS

FILEDEF command specifications for the output file with

ddname=OUTPUT1.

ARI0801I DBS Utility started: 07/24/89 10:26:44.

 AUTOCOMMIT = OFF ERRORMODE = OFF

 ISOLATION LEVEL = REPEATABLE READ

-------> CONNECT "SQLDBA " IDENTIFIED BY ********;

ARI8004I User SQLDBA connected to database SQLDBA.

ARI0500I SQL processing was successful.

ARI0505I SQLCODE = 0 SQLSTATE = 00000 ROWCOUNT = 0

------->

-------> DATAUNLOAD

-------> SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME

-------> FROM EMP_ACT,EMPLOYEE

-------> WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO

-------> ORDER BY EMP_ACT.EMPNO;

-------> OUTFILE(OUTPUT1)

ARI0852I DATAUNLOAD processing started.

ARI0868I DNAME=OUTPUT1 RECFM=F RECSZ=80 BLKSIZE=80 <— See Note

ARI0836I Default output record data field positions:

ARI0837I EMPNO 1-6

ARI0837I PROJNO 8-13

ARI0837I EMPTIME 15-21

ARI0835I 74 record(s) written to the output data file.

ARI0855I DATAUNLOAD processing successful.

ARI0802I End of command file input.

ARI8997I ...Begin COMMIT processing.

ARI0811I ...COMMIT of any database changes successful.

ARI0809I ...No error(s) occurred during command processing.

ARI0808I DBS processing completed: 07/24/89 10:26:45.

Figure 34. Database Services Utility DB2 Server for VSE Report Output: Default Data Fields

1ARI0801I DBS Utility started: 07/24/89 10:26:44.

 AUTOCOMMIT = OFF ERRORMODE = OFF

 ISOLATION LEVEL = REPEATABLE READ

0------> DATAUNLOAD

-------> SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME

-------> FROM EMP_ACT,EMPLOYEE

-------> WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO

-------> ORDER BY EMP_ACT.EMPNO;

-------> OUTFILE(OUTPUT1)

ARI0852I DATAUNLOAD processing started.

ARI0868I DNAME=OUTPUT1 RECFM=F RECSZ=80 BLKSIZE=80 <— See Note

ARI0836I Default output record data field positions:

ARI0837I EMPNO 1-6

ARI0837I PROJNO 8-13

ARI0837I EMPTIME 15-21

ARI0835I 74 record(s) written to the output data file.

ARI0855I DATAUNLOAD processing successful.

ARI0802I End of command file input.

ARI8997I ...Begin COMMIT processing.

ARI0811I ...COMMIT of any database changes successful.

ARI0809I ...No error(s) occurred during command processing.

ARI0808I DBS processing completed: 07/24/89 10:26:45.

Figure 35. Database Services Utility DB2 Server for VM Message File Output: Default Data

Fields

56 Database Services Utility

The records in the output data file are formatted according to system-determined

(default) criteria. Table 1 shows the data field format resulting from the

DATAUNLOAD command specification given in Figure 33 on page 55.

 Table 1. Output Record Format That is System Determined

Record Position

Data Value Source (Column or

Other) Output Record Field Data Type

1-6 EMPNO CHAR

7 (blank) CHAR

8-13 PROJNO CHAR

14 (blank) CHAR

15-21 EMPTIME CHAR

Unloading Data in User-Specified Format

If you want to unload all the data from a table in a specific sequence and with

user-specified output data record field formats, the four parts of the Database

Services Utility command are:

v The DATAUNLOAD command

v An SQL SELECT statement ended with a semicolon

v DFI subcommands for each column to be unloaded

v The OUTFILE subcommand.

The data for a DFI-referenced column is in the same positions in all the output

data records.

Provide DFIs for All Table Columns—or None

A DFI subcommand identifies the location in the output record where you

want to place the unloaded data. For example, suppose TABLE1 has five

columns and you enter the following SELECT statement:

SELECT * FROM TABLE1

 or

SELECT colname1,colname2,colname3,colname4,colname5 FROM TABLE1

If you supply only three DFI subcommands, the Database Services Utility

only unloads the three table columns identified in the subcommands. If you

want to unload data for all five columns and you want to specify your own

output record format for any of the columns, you must supply five DFI

subcommands.

 The difference between unloading data in system-defined and user-defined format

is the presence of DFI subcommands. A DFI subcommand identifies the location in

the output records where the data for a column specified in the select-list

parameter should be placed. The DFI also identifies the data type of its data field

in the output record.

Whereas the DATAUNLOAD default output field sequence uses the order of

presentation in the select-list parameter, you choose the order of fields in the

output records when you supply DFI subcommands. In choosing positions for the

output data-record fields, you should leave a blank position between each field for

Chapter 3. Unloading Data with the Database Services Utility 57

clarity, but this is not mandatory. Do not, however, use character positions 1

through 4 for output data if you have specified variable-length output records for

the output file. Record positions 1–4 are reserved for the record length control

field.

Figure 36 shows a DATAUNLOAD command sequence using DFI subcommands.

The EMPNO field is to occupy positions 1 through 6 in the output records. The

PROJNO field goes in positions 8 through 13. The EMPTIME field is to take

positions 15 through 21 as data type DECIMAL.

 To unload data in user-specified output-file format, supply DFI subcommands. Use

the standard method for unloading data in “Unloading Data in System-Defined

Format” on page 63, but supply a DFI subcommand for each column that you

want to unload. To construct a DFI subcommand, use the following format:

column-reference startpos-endpos data-type set-null-clause

v column-reference is usually the name of the table column in the select-list

parameter, but it might be an integer. For more information, see “Data_Field_Id

Subcommand” on page 170.

v startpos-endpos gives the first and last positions of the named table-column data

in the output record. You can omit endpos if the output data is one character

long.

v data-type is the data format to be used in the data field of the output record. For

more information, refer to the sections starting on page 171 in Chapter 8,

“Command Reference,” on page 135.

v set-null-clause is a conditional expression that tells the Database Services Utility

to provide a particular flag, control character, or string in the output record if

the value of the output data is null. The set-null-clause also specifies the start and

end positions in the output record for the flag or string.

Unloading NULL Values

You can use the set-null-clause to instruct the utility to insert a particular value

whenever a null value occurs in a table that you are unloading. In the following

example, you instruct the Database Services Utility to write a question mark in

position 22 of the output record whenever a null field occurs in the table that is

being unloaded.

DATAUNLOAD

SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME,JOB

FROM EMP_ACT,EMPLOYEE

WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO

ORDER BY EMP_ACT.EMPNO;

EMPNO 1-6

PROJNO 8-13

EMPTIME 15-21 DECIMAL

OUTFILE(OUTPUT1)

Figure 36. DATAUNLOAD Command with DFI Subcommands

58 Database Services Utility

As is shown in Figure 37 on page 59, if the value of an EMPTIME column is null,

the utility puts a ? value in output record position 22. For more information about

using the set-null-clause, see page 175 under “Data_Field_Id Subcommand” on

page 170 in Chapter 8, “Command Reference,” on page 135.

Periodic Reports during the Processing of Long Jobs

During DATAUNLOAD processing of a file containing more than 15,000 data

records, the message ARI8995I is written every 15,000 records to inform you

that the job is running normally and that n records have been unloaded. In a

VM system, these messages are written to your workstation, and in a VSE

system, they are written to the system operator’s console. If the number of

records being read from the database is less than 15,000, you do not receive

message ARI8995I.

 As the DATAUNLOAD command is executed, the actual command sequence and

messages are written to the report or message file. Figure 38 on page 60 and

Figure 39 on page 60 show report results from running the DATAUNLOAD

command as shown in Figure 36 on page 58.

DATAUNLOAD

SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME,JOB

FROM EMP_ACT,EMPLOYEE

WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO

ORDER BY EMP_ACT.EMPNO;

EMPNO 1-6

PROJNO 8-13

EMPTIME 15-21 DECIMAL IF NULL SET POS(22) = ’?’

OUTFILE(OUTPUT1)

Figure 37. Unloading NULL Values with DATAUNLOAD Command

Chapter 3. Unloading Data with the Database Services Utility 59

Note: The RECFM, RECSZ, and BLKSIZE information displayed in the message

ARI0868I depends on the CMS FILEDEF command specifications for the

output file OUTPUT1.

1ARI0801I DBS Utility started: 10/05/89 14:54:41.

 AUTOCOMMIT = OFF ERRORMODE = OFF

 ISOLATION LEVEL = REPEATABLE READ

1ARI0803I ...Extended DBCS (DBCS=YES) processing now in effect.

0-------> DATAUNLOAD

 -------> SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME,JOB

 -------> FROM EMP_ACT,EMPLOYEE

 -------> WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO

 -------> ORDER BY EMP_ACT.EMPNO;

 -------> EMPNO 1-6

 -------> PROJNO 8-13

 -------> EMPTIME 15-21 DECIMAL IF NULL SET POS(22) = ’?’

 -------> OUTFILE(OUTPUT1)

 ARI0852I DATAUNLOAD processing started.

 ARI0831I Column JOB data will not be unloaded.

 ARI0868I DNAME=OUTPUT1 RECFM=F RECSZ=80 BLKSIZE=80 <— See Note

 ARI0835I 74 record(s) written to the output data file.

 ARI0855I DATAUNLOAD processing successful.

 ARI0802I End of command file input.

 ARI8997I ...Begin COMMIT processing.

 ARI0811I ...COMMIT of any database changes successful.

 ARI0809I ...No error(s) occurred during command processing.

 ARI0808I DBS processing completed: 10/05/89 10:54:44.

Figure 38. Database Services Utility Report Output with User-Specified Data Fields

ARI0801I DBS Utility started: 10/05/89 14:54:41.

 AUTOCOMMIT = OFF ERRORMODE = OFF

 ISOLATION LEVEL = REPEATABLE READ

-------> CONNECT "SQLDBA " IDENTIFIED BY ********;

ARI8004I User SQLDBA connected to database SQLDBA.

ARI0500I SQL processing was successful.

ARI0505I SQLCODE = 0 SQLSTATE = 00000 ROWCOUNT = 0

------->

ARI8003I ...Extended DBCS (DBCS=YES) processing now in effect.

-------> DATAUNLOAD

-------> SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME,JOB

-------> FROM EMP_ACT,EMPLOYEE

-------> WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO

-------> ORDER BY EMP_ACT.EMPNO;

-------> EMPNO 1-6

-------> PROJNO 8-13

-------> EMPTIME 15-21 DECIMAL IF NULL SET POS(22) = ’?’

-------> OUTFILE(OUTPUT1)

ARI0831I Column JOB data will not be unloaded.

ARI0868I DNAME=OUTPUT1 RECFM=F RECSZ=80 BLKSIZE=80

ARI0835I 74 record(s) written to the output data file.

ARI0855I DATAUNLOAD processing successful.

ARI0802I End of command file input.

ARI8997I ...Begin COMMIT processing.

ARI0811I ...COMMIT of any database changes successful.

ARI0809I ...No error(s) occurred during command processing.

ARI0808I DBS processing completed: 10/05/89 14:54:44.

Figure 39. Database Services Utility Message File Output with User-Specified Data Fields

60 Database Services Utility

The Database Services Utility does not unload data for which no DFI subcommand

exists (unless all DFIs are omitted), but the report or message file does show you

the columns that are not unloaded.

The records in the output data file are formatted according to your specifications.

Table 2 shows the data field format resulting from the DATAUNLOAD command

specification shown in Figure 36 on page 58.

 Table 2. Output Record Format That is User Determined

Record Position

Data Value Source (Column or

Other) Output Record Field Data Type

1-6 EMPNO CHAR

7 (blank) CHAR

8-13 PROJNO CHAR

14 (blank) CHAR

15-21 EMPTIME DECIMAL

22 EMPTIME

(null indicator)

CHAR

Unloading a View

A view is a virtual table that is derived from one or more tables, from other views,

or from combinations of views and tables. When views are processed and

displayed or printed, they are indistinguishable from tables; they have rows and

columns and, like tables, views have no inherent order of rows.

You can use the DATAUNLOAD command to unload views as if they were tables.

Once unloaded, the output data of a view is the same as the data from a table.

To use the DATAUNLOAD command to unload a view, use the same procedure

that you use to unload a table, but specify a view name instead of a table name in

the SQL SELECT statement. You can select all the columns of the view (SELECT *),

or use the select-list parameter. If you use this parameter, specify the names of

view columns.

Suppose you create a view such as this:

CREATE VIEW TOSPIFFY (NUMBER,NAME,MANAGER)

AS SELECT DEPTNO,DEPTNAME,MGRNO

FROM DEPARTMENT

WHERE ADMRDEPT = ’A00’

To unload the view, construct a DATAUNLOAD command like this:

DATAUNLOAD

SELECT * FROM TOSPIFFY;

NUMBER 1-3

NAME 6-42

MANAGER 45-50 IF NULL SET POS (45-50) = ’ ’

OUTFILE(SUBSPIF)

The DATAUNLOAD command uses the view column names, not the column

names of the founding table, and null entries in the MANAGER column are

represented by 6 blanks in the output data file.

Chapter 3. Unloading Data with the Database Services Utility 61

Using File Definitions with the DB2 Server for VM

DATAUNLOAD Command

The DATAUNLOAD command uses three files: the control file, the message file,

and the data output file. You must define all three files, either with the SQLDBSU

EXEC or a FILEDEF command. Figure 40 on page 62 shows the relationship of the

three files and the appropriate definition facility (FILEDEF or SQLDBSU) for each.

 For more information on FILEDEF parameters and options, see Appendix B,

“FILEDEF Command Syntax and Notes,” on page 249.

FILEDEFs Supporting DATAUNLOAD Command Processing

In the FILEDEF command defining the Database Services Utility DATAUNLOAD

command output data file, all record format (RECFM) values are supported except

for undefined (U) or carriage controls (A or M). If you define CMS output files

with variable-length spanned records (RECFM=VS or VBS), you must use the

file-mode number 4. In this case, DATAUNLOAD processing changes the record

format to U. See Appendix B, “FILEDEF Command Syntax and Notes,” on page

249 for more information about undefined (U) record format usage.

Note: If the message ARI0868I, generated using DATAUNLOAD command

processing, identified RECFM=U for an output file defined with

RECFM=VBS or VS, the CMS FILEDEF command that defines the

DATALOAD input data files must still specify RECFM=VBS or VS

accordingly. CMS FILEDEF command information for DATALOAD

command processing must be identical to the information in the FILEDEF

command that was used when DATAUNLOAD command processing

created the file.

A sample CMS FILEDEF command defining a CMS file for DATAUNLOAD

command processing is:

FILEDEF DBSFILE DISK DBSFILE DATA A (RECFM FB LRECL 800 BLOCK 1600

where DBSFILE is the ddname used in the DATAUNLOAD command, and it refers

to the output file DBSFILE DATA A.

If you want to print some of the data in a table, use the FILEDEF statement to

specify the printer as the output device:

FILEDEF PRINTOUT PRINTER

Control File
Input (Use the
SQLDBSU EXEC)

DATAUNLOAD

Processing

Message
File Output
(Use the SQLDBSU
EXEC)

Data File Output
(Use a CMS
FILEDEF Command)

Figure 40. DATAUNLOAD Files

62 Database Services Utility

where PRINTOUT is the ddname that you use in the DATAUNLOAD command.

UNLOAD Procedures

This section describes the UNLOAD commands provided by the Database Services

Utility.

Unloading Data in System-Defined Format

Database Services Utility UNLOAD TABLE and UNLOAD DBSPACE processing

allows you to unload tables and views to a sequential file. You can later use this

file as input to Database Services Utility RELOAD TABLE and RELOAD DBSPACE

processing (described in Chapter 4, “Reloading Data with the Database Services

Utility,” on page 71). With the UNLOAD commands, you cannot unload data in a

user-defined format.

Note: You cannot use the UNLOAD DBSPACE and UNLOAD TABLE commands

if you are using DRDA flow.

The following is a brief description of the two UNLOAD commands:

v UNLOAD DBSPACE unloads all tables in a particular dbspace to an output file.

v UNLOAD TABLE is more specific than UNLOAD DBSPACE; it unloads a

specific table into an output file.

Unloading a Dbspace or Table That You Do Not Own

To unload dbspaces and tables that you do not own, concatenate the owner’s

user ID to the dbspace name (for example, SMITH.PERSONNEL). You must

have the SELECT privilege on all tables in the dbspace you want to unload.

 Figure 41 on page 64 shows how the parts of an UNLOAD DBSPACE command

relate to the dbspace and output file. In the figure, the command:

UNLOAD DBSPACE (SMITH.PERSONNEL) OUTFILE (SAVE)

unloads the dbspace called SMITH.PERSONNEL to the file SAVE.

Chapter 3. Unloading Data with the Database Services Utility 63

The format of the UNLOAD TABLE command is the same as UNLOAD DBSPACE,

but instead of a dbspace, specify a table name. In Figure 42, the UNLOAD TABLE

command unloads a single table called SMITH.DEPARTMENT to the output file

SAVE.

 The Database Services Utility UNLOAD processing writes all rows from a table or

all rows from all tables in a dbspace as individual records to the sequential output

file. Before producing these records, the utility writes records that contain

information supporting the RELOAD function. The Database Services Utility

RELOAD processing with the NEW parameter uses this information for creating

the table(s).

UNLOAD DBSPACE (SMITH.PERSONNEL) OUTFILE (SAVE)

SMITH.PERSONNEL

EMPLOYEE DEPARTMENT

SAVE

(DBSPACE)

PROJECT

Figure 41. Diagram of the UNLOAD DBSPACE Command

OUTFILE (SAVE)

SAVE

(DBSPACE)

UNLOAD TABLE

SMITH.PERSONNEL

EMPLOYEE DEPARTMENT

PROJECT

(SMITH.DEPARTMENT)

Figure 42. Diagram of the UNLOAD TABLE Command

64 Database Services Utility

Attention:

In RELOAD processing with the parameter NEW, the Database Services Utility

must create the table. The table is not created if the CREATE TABLE statement

used by the Database Services Utility is greater than 8192 bytes. If the statement is

greater than 8192 bytes, you can use the RELOAD command only with the PURGE

parameter and only if the table already exists.

The CREATE TABLE statement used by the Database Services Utility will be longer

than the statement that you initially issue if:

v You do not specify the column clauses in the column definition of the table.

v You use the ALTER TABLE statement to add columns to the table.

UNLOAD Processing Uses Indexes

The Database Services Utility unloads table data in the sequence identified by

the first index created for the table. This first index is also known as the

clustering index. The CLUSTER column of the SYSINDEXES catalog table

indicates the index for a given table that is the first, or clustering, index. (The

CLUSTER column contains an F or W value. See DB2 Server for VSE & VM

Database Administration for more information on SYSINDEX and clustering

indexes.) The data is ordered by the clustering index before it is selected for

unloading.

If a table has no indexes, the data is not put in order before it is unloaded;

table rows are unloaded in a system-determined order.

The UNLOAD command does not unload any indexes, primary or foreign keys, or

constraint definitions. Additionally, a package (preprocessed program) that depends

on the unique constraint indexes is invalidated when unique constraints are

dropped. All packages dependent on the table are invalidated when a unique

constraint is added to the table because they might have UPDATE statements that

cause multiple-row updates. Packages are also invalidated when unique constraints

are activated or deactivated. When using the Database Services Utility RELOAD

command with PURGE OPTION, however, you should ACTIVATE the unique

constraints (in the ALTER TABLE statement) rather than re-create them because it

is more efficient.

Furthermore, the Database Services Utility is sensitive to the tagging of character

and graphic data (single byte, double byte, and mixed), which identify the format

of the data, such as US or Kanji. The tags are maintained when you use the

UNLOAD and RELOAD commands.

 Attention:

Operate under isolation level repeatable read (the default Database Services Utility

processing mode) when you use the UNLOAD command to ensure a consistent

state of the database during backup or migration.

Chapter 3. Unloading Data with the Database Services Utility 65

Using the UNLOAD DBSPACE Command

The command statements UNLOAD DBSPACE and UNLOAD TABLE are much

simpler than the DATAUNLOAD statement because the UNLOAD commands do

not specify the output fields. The lack of specifications leads to very long output

records.

Such long output records make it difficult to locate specific data or to edit the

output file. The UNLOAD commands are designed to provide output files for

backup or subsequent reloading at remote sites (or locally, for purposes of

reorganizing DB2 Server for VSE & VM data structures). Consequently, unloaded

data should be used only for reloading purposes. The following UNLOAD

DBSPACE command unloads all tables in a dbspace named PERSONNEL. The

tables are placed in an output file called SAVE:

UNLOAD DBSPACE (PERSONNEL) OUTFILE (SAVE)

The syntax is simple, requiring only:

v The command name

v The name of the dbspace to be unloaded

v The name of the output file. (In VM this is specified in the FILEDEF command.)

To unload an entire dbspace for backup or subsequent reloading, follow the

procedure in “Unloading Data in System-Defined Format” on page 52, but use the

UNLOAD DBSPACE command instead of the DATAUNLOAD command. The

UNLOAD DBSPACE command uses the following structure:

UNLOAD DBSPACE (dbspace-name)

where dbspace-name is the name of the dbspace.

Using the UNLOAD TABLE Command

You can use UNLOAD TABLE to specify the table you want to unload. UNLOAD

DBSPACE unloads all the tables in a dbspace.

For example, if you make regular backups of the inventory table of a small

company, you unload the table frequently. The table is in a dbspace with other

tables that you do not need to backup as often. Use the UNLOAD TABLE

command to backup only the inventory table. If your system fails, you can reload

the table by using the RELOAD TABLE command, which is discussed in the next

chapter.

The syntax of the UNLOAD TABLE command is similar to that of the UNLOAD

DBSPACE command, requiring only:

v The command name

v The name of the table to be unloaded

v The name of the output file. (Specified in the FILEDEF command in VM.)

To unload a table for backup or subsequent reloading, use the same procedure

given in “Unloading Data in System-Defined Format” on page 52, but use the

UNLOAD TABLE command instead of the DATAUNLOAD command. The

UNLOAD TABLE command has the following structure:

UNLOAD TABLE (table-name)

where table-name is the name of the table.

66 Database Services Utility

Unloading Views

You can unload a view (virtual table) with UNLOAD TABLE processing. The

Database Services Utility processes views in the same manner as a table

without indexes.

 In DB2 Server for VSE

Each file of a multiple-file tape volume must be identified with the correct file

name and file sequence number of the TLBL statement for each tape file. Tape

rewind processing is controlled by the VSE job control statements.

In DB2 Server for VM

If you want to do a simple Database Services Utility command, such as unload one

table to a DASD file, and you are not going to repeat this command regularly, use

the utility interactively to avoid creating a control file and specifying a message

file.

If you have to execute several UNLOAD TABLE commands or use the same

command again, use message and control files. For example, to unload the

organization tables that are in the same dbspace as personnel tables, you need

several UNLOAD TABLE commands to specify each organization table. To unload

project activity tables for managers who have different dbspaces, you again need

several UNLOAD TABLE commands. Putting the Database Services Utility

commands in a control file enables you to use the commands again. Also, if any

command fails, you can refer to the message file repeatedly to deal with each error

message and correct the mistake in the control file without retyping all of the

UNLOAD commands.

Using File Definitions with the DB2 Server for VM UNLOAD

DBSPACE and UNLOAD TABLE Commands

The UNLOAD DBSPACE and UNLOAD TABLE commands use at least three files:

the control file, the message file, and one or more data output files.

Multiple Output-File Possibilities

You can have more than one UNLOAD TABLE or UNLOAD DBSPACE

command within a single invocation of the utility; each command must

unload data to a separate file, or the data is lost.

You can unload data to a multiple-volume tape file. You can also unload data

to multiple files on a single tape volume in one execution of the Database

Services Utility. Each UNLOAD operation must unload to a separate file. The

Database Services Utility does not rewind the tape when each file is opened

for output.

 Figure 43 on page 68 shows the relationship between the UNLOAD files and the

appropriate definition facility (FILEDEF or SQLDBSU) for each.

Chapter 3. Unloading Data with the Database Services Utility 67

Each file of a multiple-file tape volume must be identified with the correct ddname

and label specification in the CMS FILEDEF command issued for it. Tape rewind

processing is controlled by FILEDEF command specifications and performed by

CMS OS/QSAM.

Specify VBS Record Format in the UNLOAD FILEDEFs

Always specify a record format (RECFM) of VBS for UNLOAD processing.

UNLOAD processing changes the record format to U if the system required

logical record length is greater than the specified block size (BLOCK) value

minus 4. Otherwise, UNLOAD processing changes the record format to VB.

See Appendix B, “FILEDEF Command Syntax and Notes,” on page 249 for

more information about undefined (U) record format usage.

 A block size (BLOCK) greater than 8 244 is recommended for tape output files

created by UNLOAD processing.

An example of a FILEDEF statement defining a tape output file is:

FILEDEF SAVE2 TAP1 (RECFM VBS BLOCK 8244

where SAVE2 is the ddname that you used in the UNLOAD command.

FILEDEFs Supporting UNLOAD Command Processing

The FILEDEF command defining the UNLOAD output data file can identify a

CMS file with 4 appended to the file mode letter (for example, A4) or a sequential

tape file supported by CMS OS/OSAM. Always specify a record format of VBS or

a block size value (or both) in the FILEDEF command defining the data file.

UNLOAD processing changes the record format to U if the system-required logical

record length is greater than the specified block size (BLOCK) value minus 4.

Otherwise, UNLOAD processing changes the record format to VB. See Appendix B,

“FILEDEF Command Syntax and Notes,” on page 249 for more information about

undefined (U) record format usage.

Note: The message ARI0868I identifies the file characteristics used in the Database

Services Utility’s processing. If message ARI0868I, generated during

UNLOAD command processing, identified RECFM=U or VB for the

UNLOAD output file, the CMS FILEDEF command that defines the

Control File
Input (Use the
SQLDBSU EXEC)

UNLOAD

Processing

Message
File Output
(Use the SQLDBSU
EXEC)

Data File Output
(Use a CMS
FILEDEF Command)

Figure 43. UNLOAD Files

68 Database Services Utility

RELOAD input data file must still specify RECFM=VBS. CMS FILEDEF

command information for RELOAD command processing must be identical

to the information in the FILEDEF command used when UNLOAD

command processing created the file. If message ARI0868I indicates

RECFM=U for a tape output file, you can obtain significant performance

improvements by increasing the block size value specified in the FILEDEF

command that defines the ddname.

An example of a FILEDEF command defining a CMS file for UNLOAD processing

is:

FILEDEF DBSFILE DISK DBSFILE DATA A4 (RECFM VBS BLOCK 2048

where DBSFILE is the ddname used in your UNLOAD command, and DBSFILE

refers to the output file DBSFILE DATA A4.

For more information on FILEDEF parameters and options, see Appendix B,

“FILEDEF Command Syntax and Notes,” on page 249.

Release Coexistence Considerations for DB2 Server for VM

Changes were required in Version 7 Release 1 to handle file I/O correctly when

using CMS 15 and later. These changes affect the format of data that is unloaded

and reloaded by the UNLOAD and RELOAD commands of the DBS Utility. If you

use the DBS Utility’s UNLOAD and RELOAD commands with databases at

different release levels, you must ensure that the code changes have been applied

at all release levels. For releases prior to Version 7 Release 1, you must apply the

following APARs:

 Release APAR

3.5 PQ28584

5.1 PQ28583

6.1 PQ27957

Chapter 3. Unloading Data with the Database Services Utility 69

70 Database Services Utility

Chapter 4. Reloading Data with the Database Services Utility

The Database Services Utility RELOAD commands work in conjunction with the

UNLOAD commands. You can reload a dbspace or a table, and you can reload the

data into tables that already exist or create new tables as you reload. This chapter

explains how to use RELOAD DBSPACE and RELOAD TABLE and describes the

table information that is preserved after the data is reloaded.

Refer to the appropriate sections of the earlier chapters for details about invoking

the Database Services Utility and defining files.

RELOAD Procedures

Reloading Data in System-Defined Format

The RELOAD commands, like their UNLOAD counterparts, do not support

user-defined data formats. System-defined format is the only option. You must use

the OUTFILE output of the UNLOAD DBSPACE or UNLOAD TABLE commands

as input to the RELOAD DBSPACE and RELOAD TABLE commands.

Note: For a VM application requestor, the RELOAD DBSPACE and RELOAD

TABLE commands can only be used if a DB2 Server for VM application

server is used and the protocol is either SQLDS or AUTO. For a VSE

application requestor, the RELOAD DBSPACE and RELOAD TABLE

commands can only be used if a DB2 Server is running on the same VSE

system as the Database Services Utility or if the DB2 Server for VM is on

VM and is accessed through Guest Sharing.

Assuming that you have output from UNLOAD processing, and you want to use it

as input to a DB2 Server for VSE & VM database, you must now decide whether

to use the RELOAD DBSPACE or the RELOAD TABLE command.

Note: Use the UNLOAD command, not the DATAUNLOAD command. The unit

of output of the DATAUNLOAD command is the table row whereas the

UNLOAD commands have the table as their unit of output.

RELOAD DBSPACE is usually associated with UNLOAD DBSPACE, and RELOAD

TABLE is associated with UNLOAD TABLE. In practice, this is the most frequent

pairing, but all four commands use identical data formatting. Sometimes changing

the object when you go from UNLOAD to RELOAD is appropriate. Briefly, the

objects that each command manipulates are:

v UNLOAD DBSPACE unloads an entire dbspace.

v UNLOAD TABLE unloads just one table.

v RELOAD DBSPACE reloads an entire dbspace.

v RELOAD TABLE reloads just one table.

You might want to use RELOAD DBSPACE with UNLOAD TABLE if you unload a

single table and want to reload it into a dbspace. If you do not want to specify

where the table goes in the dbspace, the RELOAD DBSPACE command achieves

the same result as the RELOAD TABLE command. RELOAD DBSPACE is even

more convenient because it has fewer parameters to specify.

© Copyright IBM Corp. 1987, 2007 71

You might want to use RELOAD TABLE with UNLOAD DBSPACE if you unload

an entire dbspace and want to reload just one of its tables into another dbspace.

Using the RELOAD DBSPACE command reloads the entire UNLOAD output file,

not just the desired table.

Processing Multiple Tables or Multiple Files

The Database Services Utility’s RELOAD processing does not support the

concurrent loading of multiple tables. Sequential loading, however, is

supported, as long as the tables are in the same file.

During one invocation of the Database Services Utility, you can reload data

from a multiple-volume tape file or from a multiple-file tape volume.

In DB2 Server for VSE, to reload data from a multiple-file tape volume, you

must specify the correct file name and file sequence number on the TLBL

statement for each tape file. Because the Database Services Utility rewinds the

tape when each file is opened for input, this information is necessary to locate

the correct file on the tape.

 RELOAD DBSPACE processing loads tables serially in the order that they appear

in the input file. Use the RELOAD DBSPACE command to supply four pieces of

information to the Database Services Utility:

v The name of the command

v The identity of the dbspace to be loaded

v The replacement method (NEW or PURGE) to use

v The identity of the data input file.

Figure 44 shows the command flow.

 This figure shows a RELOAD DBSPACE operation on the RESOURCES dbspace,

and the creation of new tables from the input file called HISTORY.

The RELOAD TABLE command is more precise than the RELOAD DBSPACE

command. RELOAD TABLE specifies that you want to reload only one table no

RELOAD DBSPACE NEW INFILE (HISTORY)

HISTORY

(DBSPACE)

(RESOURCES)

RESOURCES

EMPLOYEE ACTIVITY

EMP_ACT

Figure 44. Diagram of the RELOAD DBSPACE Command

72 Database Services Utility

matter how many exist in the input file. In the RELOAD TABLE command, you

give the following five pieces of information to the Database Services Utility:

v The name of the command

v The identity of the target table to be loaded

v The replacement method (NEW or PURGE) to use

– If NEW, the identity of the dbspace in which the table is to be created.
v Optionally, the identity of the source table being loaded

v The identity of the data input file.

Figure 45 shows the command flow.

 This figure shows a RELOAD TABLE operation on Smith’s DEPARTMENT table,

which must be purged first. The SAVE file is used as input.

If the UPDATE STATISTICS setting is ON, the RELOAD command automatically

causes table statistics to be generated while the data is being reloaded.

(DBSPACE)

RELOAD TABLE (SMITH.DEPARTMENT)

SMITH.PERSONNEL

EMPLOYEE DEPARTMENT

PROJECT

SAVE

PURGE INTABLE (DEPARTMENT) INFILE (SAVE)

Figure 45. Diagram of the RELOAD TABLE Command

Chapter 4. Reloading Data with the Database Services Utility 73

Indexing Notes

With the PURGE Parameter:

When a table is purged, the default clustering rules are used because all

indexes for the purged table are dropped.

With the NEW Parameter:

When a new table is created, the column definitions are identical to the

definitions of the table contained in the input file, except the keys and unique

constraints are not reproduced. The new table also does not have any indexes

defined for it. You must construct them yourself by issuing subsequent SQL

CREATE INDEX statements.

Using the NEW Parameter with Field Procedures:

When a new table is created, the field procedures are not reproduced. Thus,

using the reload ’NEW’ parameter is not recommended for tables with field

procedures. To reload tables with field procedures, use the ’PURGE’

parameter.

 When reloading a dbspace or a table, you must either create new tables for the

RELOAD input or purge old tables before reloading them. A particular table in the

input file replaces the like-named table in the target dbspace if the PURGE

parameter is specified, but it remains unloaded if the NEW parameter is in effect.

Similarly, under the NEW option, a particular table in the input file remains

unloaded when a like-named table with that name exists in any dbspace of the

entire database; if no table with that name exists, however, the Database Services

Utility creates a table into which the given input is loaded.

Referential Integrity and the RELOAD Commands

Referential integrity might affect the RELOAD commands. Specifically, if you

create an unloaded file when there is no primary key, and there is a primary

key on the target table at the time of RELOAD PURGE, the primary key

becomes active after the RELOAD PURGE operation. If you do not want the

primary key active, you must drop the primary key manually by using the

ALTER TABLE statement.

 If the table being reloaded has an active primary key, the Database Services Utility

records this fact and issues an ALTER TABLE table-name DEACTIVATE PRIMARY

KEY command. The Database Services Utility also saves the active foreign key

names, unique constraints, and their owner’s name, before issuing an ALTER

TABLE table-name DEACTIVATE FOREIGN KEY or DEACTIVATE UNIQUE KEY

command. After the data has been loaded, the Database Services Utility reactivates

the keys.

For more information about referential integrity, see the DB2 Server for VSE & VM

Database Administration manual.

74 Database Services Utility

The Database Services Utility also preserves the tags for character and graphic data

(single byte, double byte, and mixed) that identify the data format, such as US or

Kanji. The tags are reloaded with the data when you use the RELOAD command.

A user is allowed to use a DBSU module from one release to connect to a database

server containing a DBSU package at a different release. Specifically, in an

UNLOAD TABLE/DBSPACE and RELOAD TABLE/DBSPACE scenario, there are 4

objects being used that may all be at different releases. For Data Capture, it is only

necessary to consider whether the R750 release of the object is being used or a

pre-R510 release is being used. In the chart below, ″Unload Module″ refers to the

release of the DBSU module which the user is accessing when performing the

unload operation. This may not be the same as the release of the database server

which the user is connecting to. Similarly, ″Reload Module″ refers to the release of

the DBSU module which the user is accessing when performing the reload

operation. This may not be the same as the release of the database server which

the user is connecting to. ″Unload P/S″ refers to the release of the database server

and the release of the DBSU package contained in the database server in which the

table is being unloaded. Similarly, ″Reload P/S″ refers to the release of the

database server and the release of the DBSU package contained in the database

server in which the table is being reloaded. The release of the DBSU package must

be equal to the release of the database server where it is contained. Mixed releases

are not supported.

In the most general case, a user can use a DBSU module at release A to unload a

table from a database server which is at release B. Then, the user can use a DBSU

module at release C to reload the table to another database server at release D. The

chart below can be used to determine whether the DATA CAPTURE setting for the

table will be restored.

 Table 3. DATA CAPTURE settings and DBSU RELOAD and UNLOAD

Unload P/S

Unload

Module Reload P/S

Reload

Module Comments

pre-R510 n/a n/a n/a Tables in a pre-R510 server do not

contain a Data Capture setting.

R730 pre-R510 n/a n/a The pre-R510 unload module

does not save the Data Capture

setting so the setting will not be

restored on the reload.

R730 R730 pre-R510 n/a Data Capture setting will be

saved in the unload file but

pre-R510 servers do not allow a

Data Capture setting for tables so

the setting will not be restored on

the reload.

R730 R730 R730 pre-R510 Data Capture setting will be

saved in the unload file but the

pre-R510 reload module does not

restore the Data Capture setting

so the setting will not be restored

on the reload.

R730 R730 R730 R730 Data Capture setting will be

saved in the unload file and will

be restored by the reload module.

Chapter 4. Reloading Data with the Database Services Utility 75

Using the PURGE Parameter

The PURGE keyword tells the Database Services Utility that the target table exists,

and that all rows must be deleted from it before RELOAD TABLE processing

begins. (If the target table does not exist, you receive an error message.) Of course,

the column definitions of the target table must be identical to those of the source

table.

The Database Services Utility, as part of PURGE processing, drops the clustering

index, deactivates any active primary keys, active foreign keys, and active unique

keys, and deletes all indexes on the target table before deleting and reloading the

data. Therefore, you must have DBA authority to do a RELOAD with the PURGE

option if the target table or any of its indexes are not yours. After all tables have

been reloaded, the Database Services Utility reactivates the clustering index,

primary key and unique keys, and re-creates the remaining indexes. It ensures that

the first index that was created for the table (as recorded at PURGE time) is also

the first index re-created. After all the tables are processed, the Database Services

Utility reactivates all the foreign keys that it deactivated. DB2 Server for VSE &

VM packages are invalidated because of table index deletions, but are

automatically preprocessed the next time someone attempts to execute the package.

The following example illustrates the PURGE parameter:

RELOAD DBSPACE (RESOURCES) PURGE INFILE(HISTORY)

PURGE tells the Database Services Utility to delete all the rows of the table before

loading the data. The table must, however, exist in the specified dbspace. Note also

that fully qualified table names are always used internally for RELOAD DBSPACE.

That is, if you unload JONES.EMP_ACT and use RELOAD DBSPACE with a

PURGE option, JONES.EMP_ACT is the only table affected by the reload.

Using the NEW Parameter

The specified dbspace must already exist before you can reload tables into it. The

NEW parameter causes the utility to create tables, not dbspaces. If you are using

UNLOAD and RELOAD processing to duplicate an existing dbspace (as for testing

application programs), first acquire an appropriate dbspace. The SQL ACQUIRE

DBSPACE statement is described in the DB2 Server for VSE & VM SQL Reference. If

the table you are reloading does not replace a table already in the dbspace, the

Database Services Utility can create the target table for you. In the following

example, the source table EMPTABLE is not in the target dbspace:

RELOAD TABLE(EMPTABLE) NEW(PRODUCTION)

 INTABLE(EMPLOYEE)

 INFILE(SAVE)

The NEW parameter in the above command tells the Database Services Utility that

the table (EMPTABLE) to be loaded does not exist and must be created. It also

identifies the dbspace (PRODUCTION) where you want the table created. The

Database Services Utility creates the EMPTABLE, finds the EMPLOYEE table on

the input file (SAVE), and loads the data. The new table is created in a private

dbspace, PRODUCTION, that the current user owns. If the current user does not

own a private dbspace with the specified name, the table is created in a public

dbspace with this name. If you want to have the new table created in a particular

dbspace, specify:

NEW (dbspace-name)

where dbspace-name is the name of the dbspace.

76 Database Services Utility

In another example, suppose that user ID BOB is the current Database Services

Utility user. BOB issues this command:

RELOAD DBSPACE (RESOURCES) NEW INFILE(HISTORY)

Suppose, also, that one of the tables in the HISTORY file is called

BOB.EMPLOYEE. If BOB already owns a table called BOB.EMPLOYEE in any

other dbspace, the table cannot be created and loaded in the RESOURCES dbspace.

The user ID concatenated to the table name uniquely identifies a table within the

database. Thus, if BOB.EMPLOYEE already exists, it is impossible for the utility to

create another BOB.EMPLOYEE anywhere else in the database.

Using the RELOAD DBSPACE Command

Percent Free Space

During RELOAD processing, the current percent free value for the dbspace being

loaded, or for the dbspace where the table being loaded resides, can be critical.

Before RELOAD processing begins, increase the percent free space value to reserve

free space for additional rows inserted after the RELOAD process is completed.

Immediately after RELOAD processing is completed, reduce the percent free value

to allow the reserved free space to be used for the new rows. Refer to the DB2

Server for VSE & VM Database Administration for more information on the dbspace

percent free specification.

Reloading Several Tables into a Dbspace Where They Are

Already Defined

To reload multiple tables into a dbspace where they already exist, proceed as

follows:

In VSE

1. Provide the following Database Services Utility command:

RELOAD DBSPACE (dbspace-name)

where dbspace-name is the name of the dbspace.

2. On the same record as the RELOAD DBSPACE command, leave one space and

put the replacement method for existing tables:

PURGE

3. Also on the same record, leave one space and put:

INFILE(ddname)

where ddname identifies the input file. Use the same ddname in a TLBL or DLBL

statement, depending on whether the data is stored on tape or in a DASD file.

4. Submit the job to run.

In VM

1. Issue the SQLINIT command to initialize the user machine. If you have already

done this, proceed to Step 2.

2. Create a control file to contain the command you construct in the following

steps. See “Working with a Control File in DB2 Server for VM” on page 13 for

detailed information on creating a control file.

3. Enter the command and dbspace name. Type:

RELOAD DBSPACE (dbspace-name)

where dbspace-name is the name of the dbspace.

Chapter 4. Reloading Data with the Database Services Utility 77

4. On the same line as the RELOAD DBSPACE command, enter the replacement

method for existing tables. Leave one space; then type:

PURGE

5. On the same line, leave one space; then type:

INFILE(ddname)

where ddname identifies the input data file. You need to use the same ddname

when you specify the FILEDEF statement for the input file.

6. Store the control file.

7. In CMS, specify the necessary FILEDEF statements. For general information

about FILEDEF statements, see “Using File Definitions” on page 14. For

command specific information, see “Using File Definitions with DB2 Server for

VM RELOAD DBSPACE and RELOAD TABLE Commands” on page 81.

8. Specify an SQLDBSU EXEC statement; if you did not specify FILEDEFs for the

control and message files, use the default values in the SQLDBSU EXEC. For

more information on the SQLDBSU EXEC, see “Using the SQLDBSU EXEC” on

page 15.

Reloading Several Tables into a Dbspace Where They Do Not

Exist

To reload multiple tables into a database where they do not exist, follow the

procedure given in “Reloading Several Tables into a Dbspace Where They Are

Already Defined” on page 77, but substitute NEW for PURGE. NEW indicates the

replacement method for new tables.

Loading a Single Table with the RELOAD DBSPACE Command

If you have just one table to load into a dbspace (that was unloaded with an

UNLOAD TABLE command), use the RELOAD DBSPACE command. Follow the

procedure in “Reloading Several Tables into a Dbspace Where They Are Already

Defined” on page 77, and use the appropriate replacement method (PURGE or

NEW) for the table to be loaded.

Note: If your input file contains multiple tables but you do not want to reload all

of them, use the RELOAD TABLE command.

Using the RELOAD TABLE Command

The reason for using the RELOAD TABLE command rather than the RELOAD

DBSPACE command is to reload one particular table into a dbspace. The RELOAD

DBSPACE command loads an entire input file of table data into a dbspace (subject

to the constraints imposed by the NEW or PURGE parameters). Although

RELOAD processing follows the input order of the data, UNLOAD output is

unpredictable: you have no way of knowing the sequence of tables in the

UNLOAD DBSPACE output file. In general, if you use output from an UNLOAD

DBSPACE as input to RELOAD TABLE processing (meaning that you want to

reload a specific table), use the INTABLE parameter with the RELOAD TABLE

command.

Reloading a Single Table into a Dbspace Where It Is Already

Defined

To reload a single table into a dbspace where it already exists, proceed as follows:

In VSE

1. Provide the following Database Services Utility command:

RELOAD TABLE (table-name)

78 Database Services Utility

where table-name is the name of the table.

2. On the same record as the RELOAD TABLE command, leave one space and

put:

PURGE

3. Also on the same record, leave one space and put:

INFILE (ddname)

where ddname identifies the input file. Use the same ddname in a TLBL or DLBL

statement, depending on whether the data is stored on tape or in a DASD file.

4. Submit the job to run.

In VM

1. Issue the SQLINIT command to initialize the user machine to the application

server where the data is to be reloaded. If you have already done this, proceed

to Step 2.

2. Create a control file to contain the command you construct in the following

steps. See “Working with a Control File in DB2 Server for VM” on page 13 for

detailed information on creating a control file.

3. Enter the command and table name. Type:

RELOAD TABLE (table-name)

where table-name is the name of the table.

4. On the same line as the RELOAD TABLE command, enter the replacement

method for existing tables. Leave one space; then type:

PURGE

5. On the same line, leave one space; then type:

INFILE(ddname)

where ddname identifies the input data file. You need to use the same ddname

when you specify the FILEDEF statement for the input file.

6. Store the control file.

7. In CMS, specify the necessary FILEDEF statements. When you specify the

FILEDEF statement for the input data file, use the same ddname you assigned to

the INFILE in this procedure. For general information about FILEDEF

statements, see “Using File Definitions” on page 14. For command specific

information, see “Using File Definitions with DB2 Server for VM RELOAD

DBSPACE and RELOAD TABLE Commands” on page 81.

8. Specify an SQLDBSU EXEC statement; if you did not specify FILEDEFs for the

control and message files, use the default values in the SQLDBSU EXEC. For

more information on the SQLDBSU EXEC, see “Using the SQLDBSU EXEC” on

page 15.

Nonrecoverable Storage Pools

Before RELOAD PURGE table insert processing begins, the message:

ARI8990I The table table-name is in a

 nonrecoverable storage pool.

is written if one of the tables you are reloading is found in a nonrecoverable

storage pool. This message indicates that changes made to this table by the

RELOAD command are not deleted by a ROLLBACK statement if an error

occurs.

Chapter 4. Reloading Data with the Database Services Utility 79

Reloading Views

You can also reload views if the view meets the restrictions defined under the

RELOAD TABLE command description (see “RELOAD TABLE” on page 196). Use

the PURGE parameter to reload a view that was previously unloaded. Using

PURGE makes use of an existing view definition and does not violate the rule that

a view is a virtual table. The only difference between reloading a table and

reloading a view is that statistics are not collected for a view.

Reloading a Single Table into a Dbspace Where It Does Not Exist

To reload a single table into a dbspace where it is not defined, follow the

procedure in “Reloading a Single Table into a Dbspace Where It Is Already

Defined” on page 78, but use the following replacement method instead of

PURGE:

NEW (dbspace)

where dbspace is the name of the dbspace where you want to create a new table.

Reloading a Specific Table from a Multitable Input Source

The multitable input source referred to in this section is the output file from an

UNLOAD DBSPACE command. If you do regular backups of a dbspace, and the

data in one table is lost or modified incorrectly, reload the one table with the

RELOAD TABLE command. Use the procedure in “Reloading a Single Table into a

Dbspace Where It Is Already Defined” on page 78, but with the following

differences:

v Use the appropriate replacement method, NEW or PURGE.

v After providing the replacement method, leave one space, and then put:

INTABLE(table)

where table is the name of the source table.

v Leave one space and put:

INFILE (ddname)

where ddname identifies the input data file.

If you are reloading DB2 Server for VSE data from magnetic tape, identify each file

of a multiple-file tape volume with the correct file name and file sequence number

on the TLBL statement for each tape file. Because the Database Services Utility

rewinds the tape when each file is opened for input, this information is necessary

to locate the correct file on the tape.

Notification of Records Reloaded

If you are reloading more than 15,000 data records, messages (ARI8995I) are

written to your terminal after every 15,000 records to inform you that a

multiple of 15,000 records has been loaded.

 Suppose that a dbspace was unloaded and the dbspace contained two tables

named EMPLOYEE. One of these EMPLOYEE tables was originally created by

SCOTT, the other by MIKE. If you want to reload the EMPLOYEE table that was

created by SCOTT, you should identify the table by prefixing the table name

EMPLOYEE with the owner SCOTT in the INTABLE parameter:

80 Database Services Utility

RELOAD TABLE(EMPTABLE) NEW(PRODUCTION)

 INTABLE(SCOTT.EMPLOYEE)

 INFILE(SAVE)

If you do not, the Database Services Utility reloads the data of the first table it

finds in the input file that has the same name. If you omit the INTABLE parameter

completely, the utility uses the data of the first table it finds in the input file,

regardless of the table name and owner.

Using File Definitions with DB2 Server for VM RELOAD

DBSPACE and RELOAD TABLE Commands

RELOAD processing requires a control file and a data file for input, and a message

file for output.

Use the Same File Definition for RELOAD As for UNLOAD

CMS FILEDEF command information for RELOAD command processing

should be identical to the information in the FILEDEF command you used

when UNLOAD command processing created the file.

 Figure 46 shows the relationship of the RELOAD files and the appropriate

definition facility (FILEDEF or SQLDBSU) for each.

 The default record format for RELOAD processing is variable-length blocked

spanned (VBS). If you specify a RECFM value other than VBS or a LRECL value

with the CMS FILEDEF command, it is ignored and overridden. RELOAD

processing changes the record format from VBS to VB. The message ARI0868I

identifies the file characteristics used by Database Services Utility processing.

Isolation Level for RELOAD Operations

Set the isolation level to repeatable read when you reload data to ensure a

consistent state of the database during backup or migration.

Control File
Input
(Use the SQLDBSU
EXEC)

Input
Data File
(Use a FILEDEF
Command)

Output
Message File
(Use the SQLDBSU
EXEC)

RELOAD
Processing

Figure 46. RELOAD DBSPACE and RELOAD TABLE Files

Chapter 4. Reloading Data with the Database Services Utility 81

Identify each file of a multiple-file tape volume with the ddname and label

specifications in the CMS FILEDEF command that you issue for each tape file. The

Database Services Utility does not perform any tape rewind processing. Tape

rewind processing is controlled by FILEDEF command specifications and

performed by CMS OS/QSAM.

Use the UNLOAD and RELOAD commands (RELOAD with the PURGE option) to

reorder the data records to match the indexes. Use the FILEDEF to specify a DISK

file for quick and easy unloading and reloading. This reordering improves the

efficiency of queries performed on your tables.

FILEDEFs Supporting RELOAD Command Processing

The FILEDEF command defining the Database Services Utility RELOAD output

data file identifies a CMS file with 4 appended to the file mode letter (for example,

A4) or a sequential tape file supported by CMS OS/QSAM. Always specify a

record format of VBS or a block size value (or both) in the FILEDEF command

defining the data file. RELOAD processing changes the record format from VBS to

VB.

A sample of a FILEDEF command defining a CMS file for RELOAD processing is:

FILEDEF DBSFILE DISK DBSFILE DATA A4 (RECFM VBS BLOCK 2048

where DBSFILE is the ddname used in your RELOAD command and DBSFILE

DATA A4 is the name of the input file.

For more information on FILEDEF parameters and options, see Appendix B,

“FILEDEF Command Syntax and Notes,” on page 249.

Release Coexistence Considerations for DB2 Server for VM

Changes were required in Version 7 Release 1 to handle file I/O correctly when

using CMS 15 and later. These changes affect the format of data that is unloaded

and reloaded by the UNLOAD and RELOAD commands of the DBS Utility. If you

use the DBS Utility’s UNLOAD and RELOAD commands with databases at

different release levels, you must ensure that the code changes have been applied

at all release levels. For releases prior to Version 7 Release 1, you must apply the

following APARs:

 Release APAR

3.5 PQ28584

5.1 PQ28583

6.1 PQ27957

Statistics Collection

If SET UPDATE STATISTICS is on, table statistics are automatically generated

while the data is reloading. This method of creating statistics avoids a dbspace

scan and a separate scan of the index pages, which occurs when an UPDATE

STATISTICS statement is issued. If SET UPDATE STATISTICS is off, the statistics

are not updated.

Note: Consider using SET UPDATE STATISTICS ON for all RELOAD processing

to update the table statistics while the data is reloading.

82 Database Services Utility

Chapter 5. Unloading and Reloading Packages with the

Database Services Utility

This chapter explains how to use the UNLOAD and RELOAD PACKAGE

commands to distribute packages to connected application servers that use the

Database Services Utility. The two commands work together to transport a package

from one application server to another. When the package is reloaded, you have a

choice of purging the old package or creating a new one in the database. Finally,

the owner of the package has to authorize the people who will use the package.

Refer to the appropriate sections of the earlier chapters for details about invoking

the Database Services Utility and defining files.

Package Procedures

This section describes SQL preprocessing the PACKAGE commands.

Preprocessing

SQL statements in an application program are preprocessed (that is, analyzed and

converted) by the system before the program is compiled (or assembled).

DB2 Server for VSE & VM preprocessors do the following:

v Generate a modified version of the source code

v Convert SQL statements into a package and save the package in the application

server

v Verify that the current user has authority to access the data and, if so, grant the

user the privilege to use the package generated

v Update the database catalogs.

The preprocessor action is shown graphically below.

© Copyright IBM Corp. 1987, 2007 83

A package contains code for the SQL statements used in the program. The access

path is based on available data statistics and applicable table indexes.

A package is available when its program needs it; moreover, because it is stored in

a database, a package is monitored by database manager security mechanisms and

change-management facilities.

You must preprocess an application program that switches between application

servers on every application server that it accesses. To avoid distributing the

program source code and preprocessing it on multiple systems, distribute packages

to the connected (local or remote) application servers using the Database Services

Utility.

To prevent you from unintentionally running an updated program against an old

package, when you preprocess the package, a consistency token is generated and

stored in both the program and the package. If the SQL request is to succeed when

you run the program, the consistency token, which is based on a timestamp, must

match the one in the package.

Each time that you preprocess a program, a consistency token is generated. You

can choose to generate a blank consistency token. If you are running the program

against multiple application servers, the package for that program, which is stored

in all the application servers, must have the same consistency token as the

program. If the consistency tokens do not match, the program cannot be run on the

application server, or an error may occur. To ensure that the consistency tokens

match, preprocess the program once in a DB2 Server for VSE & VM environment

and distribute the package to other application servers using the UNLOAD

PACKAGE command and the RELOAD PACKAGE command.

The PROGRAM command is a synonym for PACKAGE. The RELOAD or

UNLOAD PROGRAM, and RELOAD or UNLOAD PACKAGE are therefore

equivalent commands.

Host language
source code
with embedded
SQL statements

Host language
source code
with package calls
(in place of the
embedded SQL)

Updates to the
catalog in the SQL
application server

Preprocessor
routine for the host
language

Package in the
database manager
application server

Executable code
of the application

Normal compilation
(or assembly) for the
host language

Figure 47. Preprocessing

84 Database Services Utility

The UNLOAD PACKAGE and RELOAD PACKAGE commands are

complementary: UNLOAD PACKAGE copies a package to a sequential file and

RELOAD PACKAGE reads the package back into an application server.

To ensure that only authorized users manipulate packages in the database, only

owners of programs and database administrators are entitled to unload or reload

packages.

Keep Interconnected Databases at the Same Level

If you move a package between application servers at different release levels,

and a facility of the database manager used by the reloaded package is not

available on the new application server, an error occurs. The error occurs

when the unloaded package is dynamically preprocessed again during the

RELOAD.

When RELOAD processing is completed, the system updates the TIMESTAMP

column of the SYSACCESS catalog table to the date and time of the RELOAD.

Using the UNLOAD PACKAGE Command

The UNLOAD PACKAGE command generates output records that contain:

v Preprocessing information

v Each SQL statement used in the associated program

v Information about its corresponding host variables.

In using the UNLOAD PACKAGE command, you must be either the owner of the

program whose package you are unloading or a database administrator. Supply the

following information to the Database Services Utility:

v Name of the command

v Identity of the package to be unloaded

v Optionally, the name of the application server containing the package

v Identity of the output file.

Note: The UNLOAD PACKAGE command is not supported if you are using

DRDA flow.

Unloading a Package

Your system must have database switching capability to access other application

servers.

To unload a package for backup or to transfer to another application server,

proceed as follows:

In VSE

1. Provide the following Database Services Utility command:

UNLOAD PACKAGE (owner.package-name)

where owner is the name of the owner of the associated package, and

package-name is the name of the package. If you omit owner, the database

manager uses your user ID but still checks to ensure that you have the RUN

privilege for the named package.

2. If the package resides in an application server other than the one you are

accessing, leave one space and type:

FROM (server-name)

Chapter 5. Unloading and Reloading Packages with the Database Services Utility 85

where server-name is the name of the other application server.

3. On the same record, leave one space and type:

OUTFILE (ddname)

where ddname identifies the sequential output file on tape. Use the same ddname

in a TLBL statement. If the output file is on DASD, specify PDEV(DASD) after

the ddname and use the same ddname in a DLBL statement. Do not use SYSPCH

as the ddname, because the output file content may be invalid and may cause

the RELOAD PACKAGE command to fail.

4. Submit the job for processing.

An example of the UNLOAD PACKAGE command is:

UNLOAD PACKAGE(MARCY.PROG3) OUTFILE(PROGOUT3) FROM(server-name)

where PROG3 is the name of the package, MARCY is the owner, PROGOUT3 is

the output data file, and server-name is the name of the other application server.

In VM

1. Issue the SQLINIT command to initialize the user machine to the application

server where the package to be unloaded resides. If you have already done this,

proceed to Step 2.

2. Create a control file to contain the command you construct in the following

steps. See “Working with a Control File in DB2 Server for VM” on page 13 for

detailed information on creating a control file.

3. Enter the command and the package name. Type:

UNLOAD PACKAGE (owner.package-name)

where owner is the name of the owner of the associated package, and

package-name is the name of the package. If you omit owner, the system uses

your user ID but still checks to ensure that you have the RUN privilege for the

named package.

4. If the package resides in an application server other than the one you are

logged on to, leave one space and type:

FROM(server-name)

where server-name is the name of the other application server.

Note: The use of FROM always ignores any preceding CONNECT operations

and uses the VM user ID as a default. In some situations, the user ID

received at the target application server is different from your VM user

ID. For example, an entry in the COMDIR might change the user ID, or

the target system might change it. If you find this procedure

unacceptable, issue the explicit CONNECTs as required, and use the

UNLOAD command without the FROM parameter.

5. On the same line, leave one space and type:

OUTFILE(ddname)

where ddname identifies the output data file.

6. Store the control file.

7. In CMS, specify the necessary FILEDEF statements. When you specify the

FILEDEF statement for the output data file, use the same ddname you assigned

to the OUTFILE in this procedure. For general information about FILEDEF

statements, see “Using File Definitions” on page 14. For command specific

information, see “Using File Definitions with DB2 Server for VM UNLOAD and

RELOAD PACKAGE Commands” on page 92.

86 Database Services Utility

8. Specify an SQLDBSU EXEC statement; if you did not specify FILEDEFs for the

control and message files, use the default values in the SQLDBSU EXEC. For

more information on the SQLDBSU EXEC, see “Using the SQLDBSU EXEC” on

page 15.

An example of the UNLOAD PACKAGE command is:

UNLOAD PACKAGE(MARCY.PROG3) FROM(PAYROLL) OUTFILE(PROGOUT3)

where PROG3 is the name of the package, MARCY is the owner, the package is in

the PAYROLL database, and the output data file is PROGOUT3.

Using the RELOAD PACKAGE Command

For a VM application requestor, the RELOAD PACKAGE can be used against a

DB2 Server for VM application server or any non-DB2 Server for VM application

server that uses DRDA flow. For a VSE application requestor, the RELOAD

PACKAGE can be used against a DB2 Server for VSE running on the same VSE

system as the Database Services Utility, a VM Database via Guest Sharing, or any

non-DB2 Server for VSE application server that uses DRDA flow.

The following tables show the different package migration scenarios:

 Table 4. Different Reload Package Scenarios in DB2 Server for VM

Unloaded From

Application

Server Release

Unloaded Using

DBSU Release

Reloading Using

DBSU Release

Reloading To

Result

Application

Server Release Using Protocol

2.2 2.2, 3.1 or later 2.2, 3.1 or later 2.2, 3.1 or later SQLDS No Error

3.1 or later 2.2, 3.1 or later 2.2, 3.1 or later 2.2 SQLDS Error

3.1 or later 2.2 2.2 3.1 or later SQLDS No Error

3.1 or later 2.2 3.1 or later 3.1 or later SQLDS Error

3.1 or later 3.1 or later 2.2,3.1 or later 3.1 or later SQLDS No Error

3.1 or later 3.1 or later 3.1 or later 3.1 or later SQLDS No Error

2.2 2.2,3.1 or later 3.3 or later 3.3 or later DRDA Error

2.2 2.2,3.1 or later 3.3 or later Non DB2 for VM DRDA Error

3.1 or later 2.2 3.3 or later 3.3 or later DRDA Error

3.1 or later 2.2 3.3 or later Non DB2 for VM DRDA Error

3.1 or later 3.1 or later 3.3 or later 3.3 or later DRDA No Error

3.1 or later 3.1 or later 3.3 or later Non DB2 for VM DRDA No Error

2.2, 3.1 or later 2.2, 3.1 or later 3.3 or later 2.2, 3.1 or 3.2 DRDA Error

 Table 5. Different Reload Package Scenarios in DB2 Server for VSE

Unloaded From

Application

Server Release

Unloaded Using

DBSU Release

Reloading Using

DBSU Release

Reloading To

Result

Application

Server Release Using Protocol

2.2 2.2, 3.1 or later 2.2, 3.1 or later 2.2, 3.1 or later SQLDS No Error

3.1 or later 2.2, 3.1 or later 2.2, 3.1 or later 2.2 SQLDS Error

3.1 or later 2.2 2.2 3.1 or later SQLDS No Error

3.1 or later 2.2 3.1 or later 3.1 or later SQLDS Error

3.1 or later 3.1 or later 2.2,3.1 or later 3.1 or later SQLDS No Error

Chapter 5. Unloading and Reloading Packages with the Database Services Utility 87

Table 5. Different Reload Package Scenarios in DB2 Server for VSE (continued)

Unloaded From

Application

Server Release

Unloaded Using

DBSU Release

Reloading Using

DBSU Release

Reloading To

Result

Application

Server Release Using Protocol

3.1 or later 3.1 or later 3.1 or later 3.1 or later SQLDS No Error

2.2 2.2,3.1 or later 7.1 7.1 DRDA Error

2.2 2.2,3.1 or later 7.1 Non DB2 for VSE DRDA Error

3.1 or later 2.2 7.1 7.1 DRDA Error

3.1 or later 2.2 7.1 Non DB2 for VSE DRDA Error

3.1 or later 3.1 or later 7.1 7.1 DRDA No Error

3.1 or later 3.1 or later 7.1 Non DB2 for VSE DRDA No Error

2.2, 3.1 or later 2.2, 3.1 or later 7.1 7.1 DRDA Error

Notes:

1. You cannot reload a portable package created under SQL/DS Version 2 Release

2 using the DRDA flow because it does not have the necessary information

required for RELOAD PACKAGE command processing using DRDA flow.

2. Backward migration is also not possible; that is, you cannot reload DB2 Server

for VSE & VM Version 7 Release 5 or later portable package with SQL/DS

Version 2 Release 2.

3. Modifiable packages created using Extended dynamic statements cannot be

reloaded using DRDA flow.

4. Fortran, and any other packages created using Extended dynamic statements

that were originally preprocessed using SQLDS protocol, cannot be reloaded

using DRDA flow.

5. Fortran, and any other packages created using Extended dynamic statements

that were originally preprocessed using DRDA flow, cannot be reloaded using

SQLDS protocol.

In using the RELOAD PACKAGE command, you must be either the owner of the

program whose package you are trying to reload or a database administrator. DB2

Server for VSE & VM authorization checking grants the owner the RUN privilege

after the following information is supplied to the Database Services Utility:

v The name of the command

v The identity of the package to be reloaded

v The replacement method (NEW or REPLACE) to use

– If REPLACE, the disposition of previous package user privileges (KEEP or

REVOKE)

v Optionally, in VSE only, the identity of additional application servers where the

package is to be reloaded

v The identity of the input file.

Reloading a Package into an Application Server in Which Its

Application Does Not Exist

To reload a package ported from another application server or from backup,

proceed as follows:

In VSE

1. Provide the following Database Services Utility command:

88 Database Services Utility

RELOAD PACKAGE (ownerpackage-name)

where owner is the name of the owner of the associated package, and

package-name is the name of the package. If you omit owner, the database

manager uses your user ID but still checks to ensure that you have the RUN

privilege for the named package.

2. Specify the replacement method. Because the application associated with the

package to be loaded does not exist for the application server (or application

servers) being loaded, leave one space, and type:

NEW

3. On the same record, enter the names of any additional application servers onto

which the package is to be reloaded. Leave one space and put:

TO (server-name)

where server-name is the name of the other application server. If the package is

to be reloaded onto several application servers, leave one space, then type:

TO (application server1,application server2,application server3...)

4. On the same record, identify the input file. Leave one space, and type:

INFILE (ddname)

where ddname identifies the sequential input file on tape. Use the same ddname

in a TLBL statement. If the input file is on DASD, specify PDEV(DASD) after

the ddname and use the same ddname in a DLBL statement.

5. Submit the job to run.

An example of the RELOAD PACKAGE command is:

RELOAD PACKAGE(MARCY.PROG3) NEW INFILE(PROGOUT3) TO(server-name)

where PROG3 is the name of the package, MARCY is the owner, and server-name

is the name of the other application server. The input data file PROGOUT3 is on

tape.

In VM

1. Issue the SQLINIT command to initialize the user machine to the application

server where the package is to be reloaded. If you have already done this,

proceed to Step 2.

2. Create a control file to contain the command you construct in the following

steps. See “Working with a Control File in DB2 Server for VM” on page 13 for

detailed information on creating a control file.

3. Enter the command and package name. Type:

RELOAD PACKAGE (owner.package-name)

where owner is the name of the owner of the associated package, and

package-name is the name of the package. If you omit owner, the database

manager uses your user ID as the owner.

4. Indicate that you are loading a new package since the application associated

with the package does not exist on the application server (or application

servers) being loaded, by leaving one space and typing:

NEW

5. On the same line, enter the names of any additional application servers to be

reloaded. Leave one space; then type:

TO(server-name)

where server-name is the name of the other application server. If several

application servers are to be reloaded, leave one space; then type:

TO(application server1,application server2,application server3...)

Chapter 5. Unloading and Reloading Packages with the Database Services Utility 89

Notes:

a. Your system must have database switching capability to access other

application servers.

b. The use of TO means that any preceding CONNECT operations are not

used, and TO uses the VM user ID as a default. In some situations, the user

ID received at the target database is different from your VM user ID. For

example, an entry in the COMDIR may change the user ID, or the target

system may change it. If you do not want to use the TO clause procedure,

issue the explicit CONNECT command as required, and use the RELOAD

command without a TO clause. If the TO clause is not specified, the

package is reloaded onto the currently connected application server only.

6. On the same line, enter the identity of the input file. Leave one space; then

type:

INFILE(ddname)

where ddname identifies the input data file.

7. Store the control file.

8. In CMS, specify the necessary FILEDEF statements. When you specify the

FILEDEF statement for the input data file, use the same ddname you assigned to

the INFILE in this procedure. For general information about FILEDEF

statements, see “Using File Definitions” on page 14. For command specific

information, see “Using File Definitions with DB2 Server for VM UNLOAD and

RELOAD PACKAGE Commands” on page 92.

9. Specify an SQLDBSU EXEC statement; if you did not specify FILEDEFs for the

control and message files, use the default values in the SQLDBSU EXEC. For

more information on the SQLDBSU EXEC, see “Using the SQLDBSU EXEC” on

page 15.

An example of the RELOAD PACKAGE command is:

RELOAD PACKAGE(MARCY.PROG3) NEW TO(HOLIDAY) INFILE(PROGOUT3)

where PROG3 is the name of the package, and MARCY is the owner. The package

is created in the HOLIDAY database and the input data file is PROGOUT3.

Reloading a Package into an Application Server to Update an Existing

Application: Your system must have the capability to switch to other application

servers.

To reload a package into an application server where a package with the same

name already exists, proceed as in “Reloading a Package into an Application

Server in Which Its Application Does Not Exist” on page 88, but type:

REPLACE

or

REPLACE REVOKE

where REPLACE indicates that the existing package is to be replaced by the input

package with previous user privileges intact, and REPLACE REVOKE indicates

that the existing package is to be replaced by the input package with previous user

privileges revoked. An example of the RELOAD PACKAGE command is:

RELOAD PACKAGE(MARCY.PROG3) REPLACE REVOKE TO(PAYROLL) INFILE(PROGOUT3)

90 Database Services Utility

where PROG3 is the name of the package, and MARCY is the owner. The package

exists in the PAYROLL database; therefore, you use REPLACE to replace it and

REVOKE to revoke user privileges on the package. The input data file is

PROGOUT3.

Authorizing the Use of Packages

When a package is reloaded, the owner of the package is assigned the appropriate

run privilege. If NEW or REPLACE REVOKE is one of the RELOAD parameters,

the only privilege for the package is the owner’s run privilege. The user ID for the

owner of the reloaded package must exist so that the necessary privileges can be

granted. A user with DBA authority can reload a package without being the owner

and can grant the RUN privileges to other users. For more information on package

privileges, see the DB2 Server for VSE & VM Application Programming manual.

Errors with RELOAD

The Database Services Utility SET ERRORMODE CONTINUE command can

be used with the RELOAD PACKAGE command. If an error occurs during

reloading of the package on an application server, RELOAD processing ends

on that application server. RELOAD processing then continues on subsequent

application servers listed in the TO clause if ERRORMODE CONTINUE

processing is in effect and the error is not severe.

Example of Authorizing the Use of Packages

Gene writes an application program GENE.TTIME to display each employee’s

working hours to date. The table containing this information is

HOURS.TOTAL. This program is to be distributed to all the offices and

installed by a user with DBA authority at each site.

When the DBA reloads this new package, only the owner (GENE) possesses

the RUN privilege. This privilege is granted during the RELOAD. The user

ID GENE must exist for the DBA to be able to grant the RUN privilege for

the package GENE.TTIME. GENE must also have the necessary table

privileges to run the package successfully.

 Preprocessing and Distributing an Application

To preprocess and distribute the SQL application created by Gene in the above

example, the company proceeds as follows:

1. The person with the user ID HOURS grants the SELECT privilege on

HOURS.TOTAL to user ID GENE.

2. Gene creates the application program TTIME.

3. Gene unloads the package TTIME.

Setting Up to Run an Application

To set up and run the application described in “Preprocessing and Distributing an

Application,” the company proceeds as follows:

1. Tom, a DBA, grants the CONNECT privilege to user ID GENE.

2. Tom connects as HOURS.

Chapter 5. Unloading and Reloading Packages with the Database Services Utility 91

3. Tom (connected as HOURS) grants the SELECT privilege on HOURS.TOTAL to

user ID GENE.

4. Tom connects as GENE.

5. Tom (connected as GENE) reloads the package GENE.TTIME.

6. Tom (connected as GENE) grants the RUN privilege on GENE.TTIME to

USERA, USERB, and USERC.

7. USERA, USERB, and USERC can now run the package GENE.TTIME to display

each employee’s total working hours to date.

Using File Definitions with DB2 Server for VM UNLOAD and RELOAD

PACKAGE Commands

Use the Same File Definition for RELOAD as for UNLOAD

CMS FILEDEF command information for package RELOAD processing

should be identical to the information in the FILEDEF command used when

the file was created by the package’s UNLOAD command processing.

 Figure 48 shows the relationship of the load-program files and the appropriate

definition facility (FILEDEF or SQLDBSU) for each.

Control File Input
(Use the SQLDBSU
EXEC)

Control File Inout
(Use the SQLDBSU
EXEC)

Output “Data” File
(Use a FILEDEF
Command)

UNLOAD
Processing

RELOAD
Processing

Message File Output
(Use the SQLDBSU
EXEC)

Message File Output
(Use the SQLDBSU
EXEC)

Input “Data” File
(Use a FILEDEF
Command)

Figure 48. File Definition Diagram—UNLOAD PACKAGE and RELOAD PACKAGE

92 Database Services Utility

FILEDEFs Supporting UNLOAD and RELOAD PACKAGE

CMS FILEDEF commands must be used to define the input or output data files

processed by these commands.

Except for the ddname, CMS FILEDEF command information for RELOAD

command processing should be identical to the information in the FILEDEF

command used when the file was created by the UNLOAD command processing.

If either a RECFM value other than FB or an LRECL value is specified by the CMS

FILEDEF command, the value is ignored and overridden.

A sample CMS FILEDEF command defining a CMS file for UNLOAD or RELOAD

command processing is:

FILEDEF DBSFILE DISK DBSFILE DATA A

For more information on FILEDEF parameters and options, see Appendix B,

“FILEDEF Command Syntax and Notes,” on page 249.

Chapter 5. Unloading and Reloading Packages with the Database Services Utility 93

94 Database Services Utility

Chapter 6. Interpreting the Output of the Database Services

Utility

You can encounter two types of Database Services Utility output: the information

that the Database Services Utility feeds back to the report or message file, and the

data and control information that you unload for backup or eventual reloading.

Most often, you must understand the report output because it shows you what

happened during the Database Services Utility processing. This chapter describes

report and message file output.

This chapter builds on material presented in the foregoing chapters. Refer to the

appropriate sections of the earlier chapters for basic concepts and procedures.

Understanding the Report and Message File Output

The report is a log of Database Services Utility processing activity on DB2 Server

for VSE. You can use JCL to assign the output to a variety of output devices:

printer, tape, or disk.

The message file is a log of Database Services Utility processing activity on DB2

Server for VM. The SQLDBSU EXEC or the CMS FILEDEF command can direct the

message file to a variety of output devices; you can display or print its contents in

three distinct forms.

Everything in a report or message file belongs in one of three categories:

v Command input

v System output

v Data.

Command Input (DB2 Server for VSE & VM)

All parts of a set of commands, SQL or Database Services Utility, are considered

command input. Even the data embedded in a DATALOAD TABLE statement is

command input. Record for record or line for line, this type of output matches the

format of the (input) control file. A command-input record in the report starts with

an arrow (------>).

System Output (DB2 Server for VSE & VM)

Except when suppressed by a Database Services Utility control parameter in a

calling application program, all system messages, SQL and Database Services

Utility, are sent to either the report or message file. A system-output record or line

starts with a message identifier beginning with ARI.

Inclusion of Data in a Report (DB2 Server for VSE)

To include data in a report, use the LIST (YES) parameter in DATALOAD’s INFILE

subcommand. You can identify data in the report by the absence of arrows

(------>) or message identifiers (ARI...). Figure 49 on page 96 shows a simulated

report printout.

© Copyright IBM Corp. 1987, 2007 95

Inclusion of Data in a Message File (DB2 Server for VM)

To include data in a message file, use the LIST (YES) parameter in DATALOAD’s

INFILE subcommand. Through the SELECT statement, the Database Services

Utility allows a limited amount of system-user interaction. Do not use the utility as

an alternative to ISQL, but if you are in a Database Services Utility session, you

can enter SQL commands to query the database from your workstation (assigned

as control file) without leaving the utility. You can identify data in the message file

by the absence of arrows (------>) or message identifiers (ARI...). Figure 49 shows

a simulated message-file printout.

 In Figure 49, note that the arrows show command input. Each arrow corresponds

to either a record in the input control card file or a line in the control file. Note

also that the rest of the records or lines start with ARI, denoting messages.

 ARI0801I DBS Utility started: 07/24/89 17:38:53.

 AUTOCOMMIT = OFF ERRORMODE = OFF

 ISOLATION LEVEL = REPEATABLE READ

 ------> CONNECT "TARA " IDENTIFIED BY ********;

 ARI8004I User TARA connected to database SQLDBA.

 ARI0500I SQL processing was successful.

 ARI0505I SQLCODE = 0 SQLSTATE = 00000 ROWCOUNT = 0

 ------> ACQUIRE PRIVATE DBSPACE NAMED TARASPACE;

 ARI0500I SQL processing was successful.

 ARI0505I SQLCODE = 0 SQLSTATE = 00000 ROWCOUNT = 0

 ------> CREATE TABLE DEPARTMENT (DEPTNO CHAR(3) NOT NULL,

 ------> DEPTNAME VARCHAR(36) NOT NULL,

 ------> MGRNO CHAR(6) ,

 ------> ADMRDEPT CHAR(3) NOT NULL,

 ------> PRIMARY KEY (DEPTNO)) IN TARASPACE;

 ARI0500I SQL processing was successful.

 ARI0505I SQLCODE = 0 SQLSTATE = 00000 ROWCOUNT = 0

 ------> DATALOAD TABLE (DEPARTMENT)

 ------> DEPTNO 1-3

 ------> DEPTNAME 5-32

 ------> MGRNO 34-39 NULL IF POS (34-39)=’ ’

 ------> ADMRDEPT 41-43

 ------> INFILE(*)

 ARI0852I DATALOAD TABLE processing started.

 ARI8981I Dynamic statistic accumulation was disallowed

 for table ’TARA’.’DEPARTMENT’,

 reason code = 01.

 ------> A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00

 ------> B01 PLANNING 000020 A00

 ------> C01 INFORMATION CENTER 000030 A00

 ------> D01 DEVELOPMENT CENTER A00

 ------> E01 SUPPORT SERVICES 000050 A00

 ------> D11 MANUFACTURING SYSTEMS 000060 D01

 ------> D21 ADMINISTRATION SYSTEMS 000070 D01

 ------> E11 OPERATIONS 000090 E00

 ------> E21 SOFTWARE SUPPORT 000100 E00

 ------> ENDDATA

 ARI0875I 9 row(s) loaded into table TARA.DEPARTMENT.

 ARI8996I ...Begin UPDATE STATISTICS for TARA.DEPARTMENT.

 ARI0855I DATALOAD processing successful.

 ------> SELECT * FROM DEPARTMENT;

Figure 49. Sample Output

96 Database Services Utility

Figure 50 illustrates the next part of the simulated report or message file printout.

 The output is formatted such that the data in columns and rows as a normal table.

Figure 50 is an example of the column (or tabular) form of output. No message- or

command-input designations appear at the start of data records. Figure 51 shows

the end of the simulated report printout.

 Every Database Services Utility job ends with messages from the Database Services

Utility that summarize the errors, if any, that occurred and give the completion

timestamp, the system status, and a return code. For a complete listing of

messages, see the DB2 Server for VM Messages and Codes manual.

If either command-file input or query results data has record or line lengths too

wide for the page or screen, the Database Services Utility automatically switches to

a block-form presentation. Figure 52 on page 98 shows a simulated printout in

block form.

 SELECT * FROM DEPARTMENT PAGE 1

 DEPTNO DEPTNAME MGRNO ADMRDEPT

 ------ ------------------------------------ ------ --------

 A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00

 B01 PLANNING 000020 A00

 C01 INFORMATION CENTER 000030 A00

 D01 DEVELOPMENT CENTER A00

 E01 SUPPORT SERVICES 000050 A00

 D11 MANUFACTURING SYSTEMS 000060 D01

 D21 ADMINISTRATION SYSTEMS 000070 D01

 E11 OPERATIONS 000090 E00

 E21 SOFTWARE SUPPORT 000100 E00

 ARI0850I SQL SELECT processing successful: Rowcount = 9

Figure 50. Sample Output Containing Data

 ARI0802I End of command file input

 ARI8997I ...Begin COMMIT processing.

 ARI0811I ...COMMIT of any database changes successful.

 ARI0809I ...No error(s) occurred during command processing.

 ARI0808I DBS processing completed: 07/24/89/17:38:55.

Figure 51. Concluding Messages

Chapter 6. Interpreting the Output of the Database Services Utility 97

As in a tabular format query result, the block format has a heading and page

number; from there on, however, differences appear. Each row of the query result

is presented in a separate block of lines preceded by a subheading that identifies

the number of the row in the answer set. Individual fields of a row are preceded

by their column names and are to be read from left to right, and top to bottom.

The list form of output is similar to block form. Figure 53 on page 99 shows an

example of the list output format.

 ARI0801I DBS Utility started: 11/13/89 17:42:51

 AUTOCOMMIT = OFF ERRORMODE = OFF

 ISOLATION LEVEL = REPEATABLE READ

 -----—> COMMENT ’***

 -----—> *** BLOCK FORMAT PRINTOUT EXAMPLE ***

 -----—> ***’

 -----—> CONNECT "MIKE " IDENTIFIED BY ********;

 ARI8004I User MIKE connected to database SQLDBA.

 ARI0500I SQL processing was successful.

 ARI0505I SQLCODE= 0 SQLSTATE = 00000 ROWCOUNT = 0

 -----—> ALTER TABLE ACTIVITY ADD

 -----—> "FULL DESCRIPTION" VARCHAR(250);

 ARI0500I SQL PROCESSING WAS SUCCESSFUL.

 ARI0505I SQLCODE= 0 SQLSTATE = 00000 ROWCOUNT = 0

 -----—> UPDATE ACTIVITY SET "FULL DESCRIPTION" = ’A FULL DESCRIPTION

 -----—> OF ACTIVITIES WOULD BE DISPLAYED HERE. THE DESCRIPTION COU

 -----—> LD OVERFLOW TO THE NEXT DISPLAY LINE FOR THE COLUMN BECAUSE

 -----—> THE COLUMN CAN CONTAIN UP TO 250 DATA POSITIONS’;

 ARI0500I SQL processing was successful.

 ARI0505I SQLCODE= 0 SQLSTATE = 00000 ROWCOUNT = 0

 -----—> SELECT * FROM ACTIVITY WHERE ACTNO < 30

 SELECT * FROM ACTIVITY WHERE ACTNO < 30 PAGE 1

 ***** 1 *****

 ACTNO: 10 ACTKWD: MANAGE ACTDESC: MANAGE/ADVISE

 FULL DESCRIPTION: A FULL DESCRIPTION OF ACTIVITIES WOULD BE DISPLAY

 ED HERE. THE DESCRIPTION COULD OVERFLOW TO THE N

 EXT DISPLAY LINE FOR THE COLUMN BECAUSE THE COLUM

 N CAN CONTAIN UP TO 250 DATA POSITIONS

 ***** 2 *****

 ACTNO: 20 ACTKWD: ECOST ACTDESC: ESTIMATE COST

 FULL DESCRIPTION: A FULL DESCRIPTION OF ACTIVITIES WOULD BE DISPLAY

 ED HERE. THE DESCRIPTION COULD OVERFLOW TO THE N

 EXT DISPLAY LINE FOR THE COLUMN BECAUSE THE COLUM

 N CAN CONTAIN UP TO 250 DATA POSITIONS

 ARI0850I SQL SELECT processing successful: Rowcount = 2

Figure 52. Sample Printout of Block Output Format

98 Database Services Utility

The list output format resembles the block output format in that there is a heading

and page number. Each row of the query result is presented in a separate list of

records or lines preceded by a subheading that identifies the number of the row in

the answer set. Individual fields of a row are preceded by their column names and

are presented in separate records. The difference, however, is that with list output

format, the output for each selected row begins on a new page, and the column

name and data for each select-list column begins on a new output record or

display line.

You can specify the format used by the Database Services Utility for SQL SELECT

statement output by using either the SET FORMAT command or the FORMAT

control parameter. If you do not specify the format to be used, the Database

Services Utility uses column or block format as appropriate. For more information

on the SET FORMAT command, refer to “SET FORMAT” on page 217. For a

description of the control parameter FORMAT, see “Database Services Utility

Control Parameters” on page 115.

Using the LIST Parameter on a DATALOAD Command

The example in Figure 54 shows the output from a DATALOAD command that

was processed with the LIST(YES) option of the INFILE subcommand in effect.

 With continued record processing, each field of the records must contain the

maximum number of characters. The second and third records’ ACTDESC fields

 SELECT * FROM DEPARTMENT PAGE 1

 ***ROW: 1

 DEPTNO: A00

 DEPTNAME: SPIFFY COMPUTER SERVICES DIV.

 MGRNO: 000010

 ADMRDEPT: A00

 FULL DESCRIPTION: A FULL DESCRIPTION OF THE DEPARTMENT WOULD BE

 DISPLAYED HERE. THE DESCRIPTION COULD OVERFLOW TO

 THE NEXT DISPLAY LINE FOR THE COLUMN.

Figure 53. Sample Printout of List Output Format

 ———————> DATALOAD TABLE (SQLDBA.ACTIVITY) IF POS(1)=’Y’

 ———————> ACTNO 2—11

 ———————> ACTDESC 12—111 ┌─────────┐

 ———————> INFILE (* LIST(YES) CONTINUED(YES)) │Record 1.│

 ARI0852I DATALOAD PROCESSING STARTED. └──┬──────┘

 N2345678901THE DATA IN THIS RECORD IS NOT LOADED INTO THE TABLE. ◄───────────────┘

 XY2345678902THIS DESCRIPTION OF AN ACTIVITY FILLS UP A WHOLE PHYSICAL INPUT ┌─────────┐

 RECORD AND CONTINUES. ◄─────┤Record 2.│

 XY2345678903THIS ACTIVITY DESCRIPTION DOES NOT FILL THE RECORD. ◄────────────┐ └─────────┘

 ◄────────────────────────┐ |

 ——————> ENDDATA ┌──┴───────────────┐ ┌─┴───────┐

 ARI0875I 2 row(s) loaded into table SQLDBA.ACTIVITY. │This blank line │ │Record 3.│

 ARI0855I DATALOAD processing successful. │contains positions│ └─────────┘

 │80-111 of data │

 │record 3. │

 └──────────────────┘

Figure 54. Using YES in the LIST Parameter

Chapter 6. Interpreting the Output of the Database Services Utility 99

are 100 characters in length because they are to be loaded (position 1 is Y). The

system does not check the length of the first record’s ACTDESC field because this

record is not to be loaded (position 1 is N).

The example in Figure 55 shows output for a DATALOAD command that was

processed using the LIST(NO) option of the INFILE subcommand:

 Reading Report and Message-File Output in Error Recovery

Reading messages, command input, and data in output reports and message files

is an important task performed frequently by users of the Database Services Utility.

To read DB2 Server for VSE report output to recover from an error, proceed as

follows:

1. Check the messages at the end of the report to determine whether the utility

job ended without error. Message records begin with ARI.

2. If the job ran with errors, read all the messages, working backward from the

end until you reach the point of the (initial) error message. Note this spot in

the report so that you can easily return to it.

3. If data is included in the report, scan the query result to see how serious the

error is.

4. If you find the cause of the error, take corrective action and run the job again; if

you do not find the cause, inspect the command input for syntax errors.

Command-input lines begin with arrows (-----—>).

5. If the cause of the error is still unknown, determine whether it is a DB2 Server

for VSE error or a Database Services Utility error. Look up the error message in

the DB2 Server for VSE Messages and Codes manual and follow the

recommended recovery procedure, as applicable.

6. If the cause of the error appears to be related to the Database Services Utility,

review information in Chapter 9, “Error Handling and Debugging,” on page

223, and apply appropriate corrective action.

7. If the error persists, see your database administrator.

To read DB2 Server for VM message file output to recover from an error, proceed

as follows:

1. Print or display the message file to be read.

2. Check the messages at the end of the file to determine whether the utility job

ended without error. Message lines begin with ARI.

3. If the job did not run without errors, read all the message lines, working

backward from the end until you reach the point of the (initial) error message.

Note this spot in the message file so that you can easily return to it.

4. If data is included in the message file, scan the query result to see how serious

the error is.

 ------> DATALOAD TABLE (SQLDBA.ACTIVITY) IF POS(1)=’Y’

 ------> ACTNO 2-11

 ------> ACTDESC 12-111

 ------> INFILE (* LIST(NO) CONTINUED(YES))

 ARI0852I DATALOAD PROCESSING STARTED.

 ------> ENDDATA

 ARI0875I 2 row(s) loaded into table SQLDBA.ACTIVITY.

 ARI0855I DATALOAD processing successful.

Figure 55. Using NO in the LIST Parameter

100 Database Services Utility

5. If you find the cause of the error, take corrective action and run the job again; if

you do not find the cause, inspect the command input for syntax errors.

Command-input lines begin with arrows (-----—>).

6. If the cause of the error is still unknown, determine whether it is a DB2 Server

for VM error or a Database Services Utility error. Look up the error message in

the DB2 Server for VM Messages and Codes, and follow the recommended

recovery procedure, as applicable.

7. If the cause of the error appears to be related to the Database Services Utility,

review information in Chapter 9, “Error Handling and Debugging,” on page

223, and apply appropriate corrective action.

8. If the error persists, see your database administrator.

Chapter 6. Interpreting the Output of the Database Services Utility 101

102 Database Services Utility

Part 2. Reference

This part of the manual presents additional information on the calling and running

of the Database Services Utility. The material in this section is of primary interest

to database application programmers and system programmers; it includes the

following topics:

v Database Services Utility use from application programs

v Database Services Utility commands: reference

v Database Services Utility error handling and debugging

v Database Services Utility performance considerations.

For further reference material in the form of sample tables, see Appendix A,

“Sample Tables.” Refer to Appendix B, “FILEDEF Command Syntax and Notes,”

on page 249, for a syntax diagram and usage notes about the CMS FILEDEF

command.

© Copyright IBM Corp. 1987, 2007 103

104 Database Services Utility

Chapter 7. Using the Database Services Utility from

Application Programs

This chapter describes the procedures required to initiate Database Services Utility

processing from application programs and how to use the Database Services Utility

application program interface. Rules for naming objects and lists of reserved words

are also provided.

In DB2 Server for VSE

The Database Services Utility is an application program; like any other program, it

must be preprocessed before you can run it. Usually, the utility is preprocessed

during database installation. At that time, the RUN privilege to use the utility is

granted to prospective users; you must possess the RUN privilege to use the

utility. Your system programmer can tell whether the Database Services Utility is

properly installed and whether you are authorized to use it.

The ddname parameter of a Database Services Utility command identifies an

EBCDIC, standard-label sequential data file needed by that command for input or

output. Magnetic tape with a fixed, unblocked record format and a logical record

length and block size of 2 048 bytes is used as a default for these sequential files.

(The record format required varies for each command.)

As indicated in the command descriptions, you can override the defaults and

assign files to a direct access storage device (DASD). A sequential file allocated to

magnetic tape can reside on any device supported by the VSE DTFMT macro; files

allocated to direct access storage can reside on any device supported by the VSE

DTFSD macro. An exception to this is VSAM managed SAM files, which do not

support spanned records. Spanned records are used by UNLOAD

TABLE/DBSPACE and RELOAD TABLE/DBSPACE processing and, in some cases,

by DATALOAD and DATAUNLOAD.

You can invoke the Database Services Utility in a VSE batch partition or in a

VSE/ICCF interactive partition. The Database Services Utility does not use VSE

dynamic device assignment. Logical units SYS004 and SYS005, respectively, must

be used for input and output files allocated to magnetic tape: SYS006 and SYS007,

respectively, must be used for input and output files allocated to direct access

storage. Under VSE, all magnetic tape files processed by the Database Services

Utility must be EBCDIC standard-label files, and only magnetic tape input files are

rewound.

Special consideration should be given to the database log when using the Database

Services Utility to load large amounts of data. The log must be large enough to

contain all the log data generated during Database Services Utility RELOAD

DBSPACE, RELOAD TABLE, or DATALOAD command processing. Log space used

as a result of Database Services Utility processing is not freed until an SQL

COMMIT or ROLLBACK is executed. If the log space is filled by Database Services

Utility processing, a Database Services Utility processing error occurs. Your system

programmer can tell whether there is enough log space to contain all the log data

generated during Database Services Utility command processing.

© Copyright IBM Corp. 1987, 2007 105

Single User Mode Job Control

A minimum 2000K byte virtual partition is recommended to execute the Database

Services Utility with single user mode for VSE archive mode on. The sample VSE

job control statements in Figure 56 invoke the Database Services Utility in single

user mode with DB2 Server for VSE archive mode on:

 Each job control statement is described below:

▌1▐JOB Statement

 Identifies and initiates the job control.

▌2▐EXEC PROC=ARIS75PL and EXEC PROC=ARIS75DB

 When the database manager is installed, your installations have the option

of generating a starter database as described in the DB2 Server for VSE

Program Directory. The procedure ARIS75PL contains the job control

statements that identify the DB2 Server for VSE & VM library. Procedure

ARIS75DB contains the job control statements that are required to access

the starter database. You must execute a different procedure to access a

different database. Alternatively, you can code the actual DB2 Server for

VSE database and library definition job control statements in place of the

EXECUTE PROCEDURE statements.

 To determine the database and library definition statements required,

contact the person who installed the database or refer to the DB2 Server for

VSE Program Directory, which contains a description of the starter database

and library definition job control statements and procedures.

▌3▐TLBL Statement

 This job control statement is optional. It identifies a sequential (SAM)

magnetic tape file used for Database Services Utility input and/or output

data. The file can reside on any type of volume supported by the VSE

DTFMT macro.

Note: Tape files processed by the Database Services Utility under VSE

must be EBCDIC, standard-label files.

 Any number of these commands (each having a unique file name) can be

included in the job control. Each file name defined is normally referenced

by a ddname parameter in a Database Services Utility command that is

contained in the SYSIPT control command input. Input magnetic tapes are

rewound by Database Services Utility OPEN processing, but output

▌1▐ // JOB DBSUTIL

▌2▐ // EXEC PROC=ARIS75PL

 // EXEC PROC=ARIS75DB

▌3▐ // TLBL file name,.......

▌4▐ // DLBL file name,.......

▌5▐ // ASSGN SYS004,.........

▌6▐ // ASSGN SYS005,.........

▌7▐ // ASSGN SYS006,.........

▌8▐ // ASSGN SYS007,.........

▌9▐ // EXEC ARISQLDS,SIZE=AUTO,PARM=’SYSMODE=S,LOGMODE=A,PROGNAME=ARIDBS’

▌10▐....Database Services Utility control commands and optional user data

▌11▐ /*

▌12▐ /&

Figure 56. Single User Mode Job Control

106 Database Services Utility

magnetic tapes are not rewound. For input files other than the first file on

a tape volume, a file sequence number must be specified, corresponding to

the original position of that file on the tape.

▌4▐DLBL Statement

 This job control statement is optional. It identifies a sequential (SAM)

DASD file used for Database Services Utility input or output data. The file

can reside on any type of volume supported by the VSE DTFSD macro.

 Any number of these statements (each having a unique file name) can be

included in the job control. Each file name defined is normally referenced

by a ddname parameter in a Database Services Utility command contained

in the SYSIPT control command input. Job control EXTENT statements are

required to complete the description of the file identified by the DLBL

statement.

▌5▐ASSGN SYS004 (Tape Input File)

 This job control statement is required if a Database Services Utility

sequential (SAM) input data file is allocated to a magnetic tape device. It

defines the logical unit SYS004 for a tape input file.

▌6▐ASSGN SYS005 (Tape Output File)

 This job control statement is needed if a Database Services Utility

sequential (SAM) output data file is allocated to a magnetic tape device. It

defines the logical unit SYS005 for a tape output file. A large block size is

recommended for a tape output file to improve performance.

▌7▐ASSGN SYS006 (DASD Input File)

 This job control statement is needed if a Database Services Utility

sequential (SAM) input data file is allocated to a direct access device. It

defines the logical unit SYS006 for a DASD input file.

▌8▐ASSGN SYS007 (DASD Output File)

 This job control statement is needed if a Database Services Utility

sequential (SAM) output data file is allocated to a direct access device. It

defines the logical unit SYS007 for a DASD output file.

▌9▐EXEC Statement for Single User Mode

 This statement identifies the database entry point (ARISQLDS), and

contains the required SIZE=AUTO specification and the job control

parameters to execute the Database Services Utility program with single

user mode.

 The job control parameters that you must specify are:

v SYSMODE=S

v PROGNAME=ARIDBS

SYSMODE=S indicates that you want single user execution mode.

PROGNAME=ARIDBS identifies the Database Services Utility program

entry point. LOGMODE=A identifies that the database manager should

operate with archive and logging on.

 All single user mode startup parameters and log mode considerations are

described in the DB2 Server for VSE System Administration manual. Consult

a system programmer about the startup parameters; your installation

might specify additional parameters for performance reasons.

Chapter 7. Using the Database Services Utility from Application Programs 107

▌10▐SYSIPT Control Statement and User Data Input

 Database Services Utility control commands and user data input.

▌11▐End SYSIPT Control Statement Input Indicator

 Indicates the end of Database Services Utility SYSIPT input when SYSIPT

is assigned to the reader file.

▌12▐End of Job Indicator

 Indicates the end of the job.

Single User Mode Job Control Example

The sample job control and commands shown in Figure 57 run the Database

Services Utility with single user mode to perform the following functions:

v Unload the table SQLDBA.DEPARTMENT to the first file on a scratch tape.

v Unload the table SQLDBA.ACTIVITY to the second file on the tape.

 Multiple User Mode Job Control

The VSE job control statements in Figure 58 invokes the Database Services Utility

in multiple user mode:

 The job control statements in Figure 58 do the same things as the corresponding

statements in Figure 56 on page 106. The database manager must already be

running when you invoke the Database Services Utility (or any other application

program) with multiple user mode. To execute the Database Services Utility with

multiple user mode, at least a 200K byte virtual partition is recommended.

// JOB DBS UTILITY EXAMPLE VSE SINGLE USER MODE JOB CONTROL

// EXEC PROC=ARIS75PL <--DB2 Server for VSE Production Library Definition

// EXEC PROC=ARIS75DB <--DB2 Server for VSE Starter Database Definition

// TLBL TAPE1,’DBSU-FILE1’,0,SQLDAT,1,1 <--Tape File#1

// TLBL TAPE2,’DBSU-FILE2’,0,SQLDAT,1,2 <--Tape File#2

// ASSGN SYS005,280 <--Tape output

// MTC REW,SYS005 <--Rewind tape

// EXEC ARISQLDS,SIZE=AUTO,PARM=’SYSMODE=S,LOGMODE=Y,PROGNAME=ARIDBS’

CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;

UNLOAD TABLE(DEPARTMENT) OUTFILE(TAPE1)

UNLOAD TABLE(ACTIVITY) OUTFILE(TAPE2)

/*

/&

Figure 57. Single User Mode Job Control Example

// JOB DBSUTIL

// EXEC PROC=ARIS75PL <--DB2 Server for VSE Production Library Definition

// TLBL file name,.......

// DLBL file name,.......

// ASSGN SYS004,.........

// ASSGN SYS005,.........

// ASSGN SYS006,.........

// ASSGN SYS007,.........

// EXEC PGM=ARIDBS,SIZE=AUTO,PARM=’DBNAME(SQLDB1_TOR_INV)’

DBS control commands and optional user data

/*

/&

Figure 58. Multiple User Mode Job Control

108 Database Services Utility

DBNAME=SQLDB1_TOR_INV identifies the application server on which to process

the Database Services Utility job. If the DBNAME parameter is not specified, the

default application server is accessed.

Multiple User Mode Job Control Example

The example job control and commands shown in Figure 59 run the Database

Services Utility with multiple user mode to perform the following functions:

v Unload the dbspace PUBLIC.SAMPLE to a DASD file.

v Reload the dbspace PUBLIC.SAMPLE from the same DASD file to reorganize

the data for all tables in the dbspace.

In DB2 Server for VM

The Database Services Utility operates in the user’s virtual machine with the

application server in either single user mode or multiple user mode.

The IBM-supplied SQLDBSU EXEC invokes the utility. This EXEC accepts optional

parameters identifying the Database Services Utility input control file

(ddname=SYSIN) and the Database Services Utility output message file

(ddname=SYSPRINT). It also accepts other parameters necessary to run the database

system in single or multiple user mode.

If the optional parameters identifying the Database Services Utility SYSIN and

SYSPRINT files are not specified during startup of the SQLDBSU EXEC, the user

can either define these files by using the CMS FILEDEF commands or run the

utility with the SQLDBSU EXEC defaults, which assign the SYSIN and SYSPRINT

file to the terminal.

Other DASD or tape input or output data files referenced by the Database Services

Utility commands in the control file must be defined by the user with CMS

FILEDEF commands before the SQLDBSU EXEC command is issued. Tape file

processing and file definition restrictions apply to Database Services Utility input

and output data files. Refer to the DB2 Server for VM System Administration manual

for a description of tape file processing support. The VM/ESA: CMS Command

Reference manual describes the CMS FILEDEF command.

// JOB DBS UTILITY EXAMPLE VSE MULTIPLE USER MODE JOB CONTROL

// EXEC PROC=ARIS75PL <--DB2 Server for VSE Production Library Definition

// DLBL DASDI,’DBSU-FILE’,0 <--DASD input file

// EXTENT SYS006,sqlwkl,1,0,57,76 <--DASD input file

// ASSGN SYS006,150 <--DASD input

// DLBL DASD0,’DBSU-FILE’,0 <--DASD output file

// EXTENT SYS007,sqlwkl,1,0,57,76 <--DASD output file

// ASSGN SYS007,150 <--DASD output

// EXEC PGM=ARIDBS,SIZE=AUTO,PARM=’DBNAME(SQLDB1_TOR_INV)’

CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;

UNLOAD DBSPACE(PUBLIC.SAMPLE) OUTFILE(DASD0 PDEV(DASD))

RELOAD DBSPACE(PUBLIC.SAMPLE) PURGE INFILE(DASDI PDEV(DASD) BLKSZ(2048))

/*

/&

Figure 59. Multiple User Mode Job Control Example

Chapter 7. Using the Database Services Utility from Application Programs 109

Notes:

1. VM/ESA system in ESA mode is supported in the Database Services Utility

only in XA-toleration mode. In this mode, the utility is always loaded and run

below 16MB.

2. CMS subset mode is not supported by the Database Services Utility.

Names and Identifiers

General Rules for Naming Data Objects

The DB2 Server for VSE & VM Application Programming manual contain the formal

definition of the SQL language and naming conventions. Briefly, the names of data

objects (such as tables, columns, indexes, synonyms, or dbspaces) must be a

particular kind of character string called an identifier. SQL identifiers must begin

with a letter or number. They can contain up to 18 uppercase and lowercase letters,

numbers, and underscores.

Note: If you need national language character translation for lowercase terminal

input, the CMS SET INPUT xx yy command can be used. Refer to the

VM/ESA: CMS Command Reference manual for more information.

The preprocessor used by the Database Services Utility for dynamic SQL statement

processing converts DB2 Server for VSE & VM identifiers to uppercase if they are

not in double quotation marks. For example, these two identifiers are identical to

the system:

department DEPARTMENT

If you want the system to recognize the lowercase letters in the identifier, enclose

the identifier in double quotation marks. For example:

"department"

Qualifying Object Names

If a data object (such as a table, dbspace, or view) is owned by another user, you

need to qualify references to the object by concatenating the owner’s user identifier

as in the following figure:

 The period (.) is the concatenation symbol.

You can access another user’s table only if you know that person’s user identifier

and have the appropriate authorization to access that table.

 SMITH.DEPARTMENT

 ──┬── ────┬─────

 │ │ ┌───────────┐

 │ └───────► │table name │

 │ └───────────┘

 │

 │ ┌───────────────────┐

 └───────────────► │owner of the table |

 └───────────────────┘

Figure 60. Object Names

110 Database Services Utility

When you concatenate a user ID to a table name, you fully qualify the table. That

is, owner.table-name uniquely identifies a table in the database. For example, there

can never be two SMITH.DEPARTMENT tables in the database at the same time.

Use fully qualified object names until you are an experienced DB2 Server for VSE

& VM user. By fully qualifying database object names, you avoid confusion and

errors.

Using Special Characters and Blanks within Identifiers

An identifier can contain blanks (but must not begin or end with blanks) or special

symbols if you enclose them in double quotation marks. For example:

"RESEARCH EMPLOYEES"

You should not, however, use double quotation marks within an SQL identifier.

The following is not a valid identifier:

"EMP"13"TABLE"

Reserved Words

SQL Reserved Words

A list of SQL reserved keywords can be found on “SQL Reserved Words” on page

xvii. Do not use these words in SQL statements except:

v With their defined meaning in the SQL syntax

v As host variables (preceded by a colon).

In particular, do not use them as names for tables, indexes, columns, views, or

dbspaces unless they are enclosed in double quotation marks (").

Database Services Utility Reserved Words

In addition to the SQL reserved keywords, do not use the following keywords in

Database Services Utility commands as the name for a table, view, column, or

dbspace unless you enclose the name in double quotation marks ("):

 Table 6. Names to Avoid Using

DATALOAD INMOD RELOAD SCHEMA

DATAUNLOAD OUTFILE REORGANIZE UNLOAD

INFILE REBIND

Using Reserved Words as Identifiers

If an identifier is the same as one of the SQL keywords listed in this chapter, you

must enclose the name in quotation marks. For example, you can use

"SELECT"

as a name, but if it is not delimited with quotation marks,

SELECT

is interpreted as a keyword.

Chapter 7. Using the Database Services Utility from Application Programs 111

Using the Database Services Utility from Programming Languages

You can invoke the Database Services Utility program from an assembler language,

PL/I, C, or COBOL program by using the Database Services Utility entry point

ARIDBS. (You cannot invoke the Database Services Utility from a Fortran

program.)

DB2 Server for VSE

If the Database Services Utility program is link-edited with a user program, you

must link-edit these modules in addition to those required for a normal DB2 Server

for VSE application program:

ARISYSDD

ARIDSQLA

ARIDDFP

If you use an assembler language CDLOAD instruction in the calling program, you

need not link-edit the above modules. (See the following section “Using the

Database Services Utility from an Assembler Program” on page 113.)

You need not have an SQL CONNECT statement in the input control card file if

the application that invokes the utility has already executed one. All authorization

checking is based on the user ID supplied in the last CONNECT statement that

was executed by the database manager.

ASSGN, TLBL, and DLBL commands required by the Database Services Utility

must be present in the job control, and SIZE=AUTO must be specified on the

EXEC command for the main program. The Database Services Utility processes all

input control card file records from SYSIPT before returning control to the routine

that invoked it.

DB2 Server for VM

The application program must be link-edited with ARIDBS, a member in the

ARISQLLD LOADLIB, along with any other modules required for a normal DB2

Server for VM application program.

The application program can execute a CONNECT statement, supply a CONNECT

statement in the Database Services Utility control file input, or take advantage of

the implicit CONNECT support. All authorization checking is based on the

connected user ID.

The FILEDEF commands for the Database Services Utility input control file, the

output message file, and any input/output data files referenced by Database

Services Utility commands must be executed before the utility is invoked. The

utility processes all control file records from SYSIN before returning control to the

program that invoked it.

Addressing Mode

Although the database manager can be run in 24-bit or 31-bit addressing mode,

you must run the Database Services Utility in 24-bit mode.

In single user mode, if the database manager is being run in 31-bit mode, the

addressing mode is switched to 24-bit mode before the Database Services Utility is

started. When you call the Database Services Utility from an application program,

the addressing mode is switched to 24-bit mode and the addressing mode of the

112 Database Services Utility

application program is restored upon return. You must, however, ensure that any

parameters passed by the application program to the Database Services Utility do

not reside above the 16MB (MB equals 1,048,576 bytes) line.

See the DB2 Server for VSE System Administration or the DB2 Server for VM System

Administration manuals for more information on addressing modes.

Register Contents for Database Services Utility Dynamic

Startup

The Database Services Utility uses the following register content on entry:

v Register 0 is not used in DB2 Server for VSE; in DB2 Server for VM, it can

contain the same content as Register 1.

v Register 1 can contain the address of a standard parameter address list to pass

control parameters to the Database Services Utility program.

v Registers 2–12 are ignored.

v Register 13 contains the address of an area of 18 full-words to be used as a

register-save area by the Database Services Utility program.

v Register 14 contains the return address for the Database Services Utility

program.

v Register 15 contains the Database Services Utility entry point address.

When dynamically invoked, all registers except register 15 are restored by the

Database Services Utility before to returning by way of register 14 to the invoking

program. Register 15 contains the final return code from Database Services Utility

processing.

Using the Database Services Utility from an Assembler

Program

DB2 Server for VM

You can invoke the Database Services Utility program from an assembler language

program. You must include the Database Services Utility program in the load

module with the invoking program and follow the register conventions described

above. The format of the CALL to invoke the utility is:

CALL ARIDBS

DB2 Server for VSE

You can invoke the Database Services Utility program from an assembler program

in either of the ways described in the CALL macro description contained in the

VSE/Advanced Functions Macro Reference. If you include the Database Services

Utility program in the load module with the invoking program, the format of the

CALL statement is the same as in DB2 Server for VM.

If you do not include the Database Services Utility program in the load module

with the invoking program, use the following sequence of instructions to invoke

the Database Services Utility program:

CDLOAD ARIDBS

LR 15,1

CALL (15)

When using the above sequence of instructions, do not specify SIZE=AUTO on the

EXEC command for the main program.

Chapter 7. Using the Database Services Utility from Application Programs 113

Using the Database Services Utility from a C Program

You can invoke the Database Services Utility program from a C program. ARIDBS

must be declared to the compiler as an external entry point. ARIDBS must also be

defined as having OS linkage using #pragma linkage (ARIDBS, OS);. The format of

the C CALL command is:

ARIDBS(CLTYPEID,PARMSTR);

where CLTYPEID and PARMSTR can be declared as:

static char CLTYPEID[7]="DBSU01 ";

struct{short int PARMLEN;

 char PARMDATA [80];

 }PARMSTR;

Using the Database Services Utility from a COBOL Program

A main program written in COBOL can invoke the Database Services Utility

program by using the linkage conventions described for calling assembler

programs in the DOS Full American National Standard COBOL Compiler and Library,

Version 3, Programmer’s Guide. The Database Services Utility entry point name

ARIDBS must be used in the COBOL CALL command used to invoke the Database

Services Utility program. The format of the COBOL CALL command varies

depending on whether the COBOL compiler was generated with single (') or

double (") quotes as delineators:

CALL ’ARIDBS’ USING CALLTYPEID PARMSTRING.

or

CALL "ARIDBS" USING CALLTYPEID PARMSTRING.

where CALLTYPEID and PARMSTRING can be declared as:

01 CALLTYPEID PIC X(6) VALUE’DBSU01’.

01 PARMSTRING.

 49 PARMLEN PIC S9(4) COMP.

 49 PARMDATA PIC X(80).

Using the Database Services Utility from a PL/I Program

You can invoke the Database Services Utility program from a PL/I program by

using the facilities of the IBM PL/I Optimizing Compiler Program Product.

ARIDBS must be declared to the compiler as an external entry point with the

ASSEMBLER and INTER options. The format of the PL/I CALL command is:

CALL ARIDBS(CLTYPEID,PARMSTR);

where CLTYPEID and PARMSTR can be declared as:

DCL 1 CLTYPEID CHAR(6) INIT(’DBSU01’);

DCL 1 PARMSTR,

 2 PARMLEN BINARY FIXED(15),

 2 PARMDATA CHAR(80);

Using the Database Services Utility Application Program

Interface

The interface described in this section allows a calling program or EXEC (in VM)

to pass Database Services Utility control parameters or a single SQL statement or

both. These utility control parameters provide the caller with the means to:

114 Database Services Utility

v Suppress all or portions of the messages written by Database Services Utility

processing

v Identify the SQL SELECT statement output format

v Suppress SQL COMMIT and SQL ROLLBACK processing

v Determine the location where print data begins in the message file record

v Control the isolation level under which the Database Services Utility operates.

The calling program or EXEC can also pass a single SQL statement to the Database

Services Utility for immediate processing by means of the call parameter list. Only

SQL statements currently supported by Database Services Utility processing can be

supplied. If an invalid parameter or Database Services Utility command is passed

in the parameter list, it is processed as an SQL statement, and an error occurs.

Figure 61 shows the control parameters that can be used when invoking the

Database Services Utility.

 Control Parameters

Database Services Utility Control Parameters: This section lists and describes the

Database Services Utility control parameters.

LINEWIDTH(www) or LW(www)

specifies the maximum number of print data positions used in a message file

record containing SQL SELECT statement output. The default value for www is

120. In DB2 Server for VM, if the Database Services Utility message file

(ddname=SYSPRINT) is assigned to the terminal, the number of print data

positions used for the SQL SELECT statement defaults to 80. The value www

can range from 60 to 256 but must be less than the logical record length of the

report or message file. For example, if the logical record length is 100, the

widest line you can set is LINEWIDTH(99).

Notes:

1. The utility always supplies an American Standards Association (ASA)

control character in the first position of the print record. The second

through nth positions of the print record are the print data positions. If the

value www+1 is less than the print record length, all unused print data

positions in the print record contain a blank (hex 40).

2. The Database Services Utility report record length is always 121.

3. The minimum message file record length is 81. If the control parameter

PAGECTL(NO) is specified, the minimum message file record length is 80.

4. If the value www is equal to or greater than the print record length, an

error occurs.

LINEWIDTH(www) or LW(www)PROMPTS(NO)

MESSAGES(SQLONLY)

MESSAGES(NONE)

FORMAT(CL)

FORMAT(LO)

PAGECTL(NO)

ENDLUW(NO)

ISOL(CS)

ISOL(UR)

Figure 61. Control Parameters

Chapter 7. Using the Database Services Utility from Application Programs 115

PROMPTS(NO)

suppresses Database Services Utility write-to-operator (WTO) messages. The

WTO messages appear on the user’s terminal or, in VSE, on the operator

console display.

MESSAGES(SQLONLY)

suppresses the messages normally generated by Database Services Utility

processing except for:

v SQL messages (ARI0500 through ARI0519)

v Message ARI0803E identifies an invalid command

v Message ARI0838E identifies an invalid CONNECT statement

v Message ARI0850I is generated after an SQL SELECT statement is

successfully processed

v Message ARI0856E is generated when an error occurs during the execution

of an SQL statement initiated by Database Services Utility processing

v Message ARI0884I indicates a command was processed

v Message ARI8999E: indicates an invalid control parameter or command was

passed by means of the Database Services Utility parameter list

v Other Database Services Utility messages normally written to the terminal,

or in VSE, to the operator console display device.

MESSAGES(NONE)

suppresses all Database Services Utility messages. Only the Database Services

Utility return codes indicate the status of the processing performed.

 FORMAT(CB)

is not supported.

FORMAT(CL)

formats the output of an SQL SELECT statement in either column format or

list format.

FORMAT(LO)

formats the output of an SQL SELECT statement using only the list format.

PAGECTL(NO)

causes the Database Services Utility to:

v Use a default of 32767 lines per page for Database Services Utility report or

message file output instead of 60 lines per page

v Write display lines to the Database Services Utility report or message file

without a printer control character in position 1

v Suppress page number heading line(s) in SQL SELECT statement output.

The SET LINECOUNT command can override the default lines per page used

by Database Services Utility processing.

116 Database Services Utility

DB2 Server for VM Only

 A user-supplied FILEDEF command defining SYSPRINT to the terminal

should specify RECFM F or RECFM FB. If RECFM F or RECFM FB is not

specified, the first character of each Database Services Utility message file

display line is truncated.

 The default FILEDEF SYSPRINT command issued by the SQLDBSU

EXEC defines the Database Services Utility message file record without a

printer control character. This default command is:

FILEDEF SYSPRINT TERMINAL (RECFM F LRECL 120

ENDLUW(NO)

indicates that the Database Services Utility should not end the logical unit of

work before returning to the calling program or, in VM, EXEC. The Database

Services Utility does not issue an SQL COMMIT statement at the end of

Database Services Utility processing if this parameter is specified.

 Only the end of Database Services Utility COMMIT processing is suppressed

by this control parameter. Other Database Services Utility COMMIT and

ROLLBACK processing is not suppressed. However, when the ENDLUW(NO)

control parameter is specified, and ERRORMODE CONTINUE is in effect, all

Database Services Utility COMMIT and ROLLBACK processing is suppressed.

In a VM system note that the SET ERRORMODE CONTINUE command is in

effect when the Database Services Utility input control file is assigned to a

terminal or a SET ERRORMODE CONTINUE command is processed. And, in a

VSE system, the SET ERRORMODE CONTINUE command is in effect when a

SET ERRORMODE CONTINUE command is processed.

Note: System-initiated COMMIT or ROLLBACK processing cannot be

suppressed by any means.

ISOL(CS), ISOL(UR)

indicates that the Database Services Utility should operate under cursor

stability or uncommitted read isolation level. The default mode of utility

processing is repeatable read isolation level; however, if you are accessing a

remote application server, the isolation level for the Database Services Utility is

always set to CS and the SET ISOLATION command has no effect.

SQL Statement Parameter: If an SQL statement is supplied by means of the call

parameter list, the Database Services Utility does not read the (input) control file

SYSIPT. Any SQL statement currently supported by Database Services Utility

processing can be supplied. This includes all SQL statements except those restricted

to use in SQL application programs. One or more of the utility control parameters

may precede the SQL statement. Utility commands are not supported in the call

parameter list.

If an invalid parameter or a Database Services Utility command is passed in the

parameter list, it is processed as an SQL statement, causing an error.

When an SQL statement is supplied in the Database Services Utility parameter list

and it is not preceded by the ENDLUW(NO) control parameter, Database Services

Utility processing ends the logical unit of work after the command is processed.

Chapter 7. Using the Database Services Utility from Application Programs 117

An SQL COMMIT statement is issued if the command is processed without errors.

An SQL ROLLBACK statement is issued if a command error occurs.

If the ENDLUW(NO) control parameter precedes the SQL statement, the Database

Services Utility issues neither an SQL COMMIT statement nor an SQL ROLLBACK

statement after the SQL statement is processed.

Using Control Parameters with DB2 Server for VM: Use control parameters in a

calling program or an EXEC when you want to set up the Database Services Utility

environment and execute all the commands from one file. Figure 62 shows a REXX

EXEC that directs the output messages to the terminal, executes the Database

Services Utility, and passes control parameters and an SQL statement to the utility.

You do not need to define the input requirements because the SQL statement is in

the EXEC.

Using the Database Services Utility Interface Conventions

Database Services Utility control parameters or an SQL statement or both can be

supplied using standard program (or in VM, EXEC interface) conventions.

Note: All system parameter string restrictions apply to Database Services Utility

processing. These restrictions are not overridden by Database Services

Utility parameter processing.

DB2 Server for VM Convention Formats: There are two format conventions; they

are:

Format 1 - EXEC Program Interface Conventions: Your EXEC or program must

follow these register conventions:

Register 0 The address of the parameter address list

Register 13 The address of the invoking program’s 18 full-word save area

Register 14 The Database Services Utility return address

Register 15 The Database Services Utility entry point address on entry; the

Database Services Utility processing return code on exit.

Your EXEC or program Database Services Utility parameter address list is to follow

these conventions:

 Position (per Byte) Contents

1–4 Address of command identifier (not

checked)

5–8 Address of PARAMETERSTRING

9–12 Address of PARAMETERSTRINGEND+1

/* Example DBS Utility Control Parameters in REXX EXEC */

ADDRESS CMS

’FILEDEF ARISQLLD DISK ARISQLLD LOADLIB Q (NOCHANGE’

’FILEDEF SYSPRINT TERMINAL (NOCHANGE RECFM F LRECL 120’

’NUCXLOAD ARIDBS ARIDBS ARISQLLD’

’ARIDBS PROMPTS(NO) FORMAT(LO) ENDLUW(NO) SELECT * FROM DEPARTMENT’

ADDRESS

EXIT RC

Figure 62. Using the Database Services Utility Control Parameters in DB2 Server for VM

118 Database Services Utility

Register 0 Parameter List Considerations:

Database Services Utility processing determines whether startup parameters are

identified by register 0 by interrogating the contents of register 0 on entry to the

Database Services Utility. Register 0 parameter processing is not performed if any

of the following conditions occurs:

v Register 0 contains the address of the ARIDBS module.

v Content of register 0 equals 0.

v Length of the parameter string is less than 1.

v Length of the parameter string is greater than 8192.

Note: EXEC parameter string restrictions must also be considered.

PARAMETERSTRING

identifies the start of the Database Services Utility parameter string. The

parameter string can contain Database Services Utility control parameters or an

SQL statement, or both. Blanks or commas can be used to separate Database

Services Utility control parameters from each other or from an SQL statement.

The first entry in the parameter can be the command name ARIDBS.

 The parameter string format is:

 <optional control parameters> <optional SQL statement>

PARAMETERSTRINGEND+1

identifies the position following the Database Services Utility parameter string.

Format 2 - Program Interface Conventions: Your program must follow these register

conventions:

Register 1 The address of the Database Services Utility parameter address list

Register 13 The address of the invoking program’s 18 full-word save area

Register 14 The Database Services Utility return address

Register 15 The Database Services Utility entry point address on entry; the

Database Services Utility processing return code on exit.

Your program Database Services Utility parameter address list must follow these

conventions:

 Position (per Byte) Contents

1–4 Address of CALLTYPEID

5–8 Address of PARAMETERSTRING

where:

CALLTYPEID

is the address of an area defined as CHAR(6) that contains the Database

Services Utility call type identifier. This area must contain the character string

value DBSU01.

PARAMETERSTRING

identifies the start of the Database Services Utility parameter string. The

parameter string can contain Database Services Utility control parameters or an

SQL statement, or both. Blanks or commas can be used to separate Database

Services Utility control parameters from each other or from an SQL statement.

The first entry in the parameter can be the command name ARIDBS.

Chapter 7. Using the Database Services Utility from Application Programs 119

The parameter string format is:

 LL <optional control parameters> <optional SQL

statement>

where:

LL is defined as a FIXED(15) value representing the length of the following

parameter string. The maximum length of the parameter string passed to

the Database Services Utility is 8192 not including the length field.

Register 1 Parameter List Considerations:

Database Services Utility processing determines if startup parameters are identified

by register 1 by interrogating the contents of register 1 on entry to the Database

Services Utility. Register 1 parameter processing is not performed if any of the

following conditions occur:

v Register 1 contains the address of the ARIDBS module.

v Content of register 1 equals 0.

v A valid parameter list is passed by means of register 0.

v Content of register 1 addresses the character string value ARIDBS.

v First address in the Database Services Utility parameter address list equals 0.

v First address in the Database Services Utility parameter address list does not

address the character string value DBSU01.

v Length of the parameter string is less than 1 or greater than 8192.

DB2 Server for VSE Program Interface Conventions: Your program must follow

these register conventions:

Register 1 The address of the Database Services Utility parameter address list

Register 13 The address of the invoking program’s 18 full-word save area

Register 14 The Database Services Utility return address

Register 15 The Database Services Utility entry point address on entry; the

Database Services Utility processing return code on exit.

Your program Database Services Utility parameter address list must follow these

conventions:

 Position (per Byte) Contents

1–4 Address of CALLTYPEID

5–8 Address of PARAMETERSTRING

where:

CALLTYPEID

is the address of an area defined as CHAR(6) that contains the Database

Services Utility call type identifier. This area must contain the character string

value DBSU01.

PARAMETERSTRING

identifies the start of the Database Services Utility parameter string. The

parameter string can contain Database Services Utility control parameters or an

SQL statement, or both. Blanks or commas can be used to separate Database

Services Utility control parameters from each other or from an SQL statement.

120 Database Services Utility

The parameter string format is:

 LL <optional control parameters> <optional SQL

statement>

 where:

LL is defined as a FIXED(15) value representing the length of the following

parameter string. The maximum length of the parameter string passed to

the Database Services Utility is 8192 not including the length field but you

must also consider VSE job control restrictions.

Register 1 Parameter List Considerations: Database Services Utility processing

determines if startup parameters are identified by register 1 by interrogating the

contents of register 1 on entry to the Database Services Utility. Register 1

parameter processing is not performed if any of the following conditions occur:

v Register 1 contains the address of the ARIDBS module.

v Content of register 1 equals 0.

v Content of register 1 addresses the character string value ARIDBS.

v First address in the Database Services Utility parameter address list equals 0.

v First address in the Database Services Utility parameter address list does not

address the character string value DBSU01.

v Length of the parameter string is less than 1 or greater than 8192.

Sample Programs

Sample DB2 Server for VM EXEC Procedure: Invoke the Database Services

Utility: The sample EXEC in Figure 63 invokes the Database Services Utility

against the application server in multiple user mode. The example is written in the

REXX language.

 The EXEC performs the following functions:

v Unconditionally invokes the utility with the control parameters

MESSAGES(SQLONLY) and FORMAT(CL). These can be overridden by control

parameters specified as EXEC command parameters.

– If MESSAGES(NONE) is specified as an EXEC command parameter, it

overrides the MESSAGES(SQLONLY) parameter.

– If the FORMAT(LO) control parameter is specified as an EXEC command

parameter, it overrides the FORMAT(CL) parameter.

v Accepts optional Database Services Utility control parameters as EXEC

command parameters and passes them to the utility for processing. Database

/* EXAMPLE DBS UTILITY REXX EXEC */

ARG PARMS

ADDRESS CMS

’FILEDEF ARISQLLD DISK ARISQLLD LOADLIB Q (NOCHANGE’

’FILEDEF SYSPRINT TERMINAL (NOCHANGE RECFM F LRECL 120’

’FILEDEF SYSIN TERMINAL (NOCHANGE’

’NUCXLOAD ARIDBS ARIDBS ARISQLLD’

’ARIDBS MESSAGES(SQLONLY) FORMAT(CL)’ PARMS

ADDRESS

EXIT RC

Figure 63. Sample REXX EXEC to Invoke the Database Services Utility

Chapter 7. Using the Database Services Utility from Application Programs 121

Services Utility control parameters must be specified as EXEC command

parameters before any SQL statement is issued.

v Accepts an optional SQL statement as the last EXEC command parameter string

and passes it to the Database Services Utility for processing. Any Database

Services Utility parameters must be specified as EXEC command parameters

before the SQL statement.

– If no SQL statement is specified as an EXEC command parameter, the

Database Services Utility processing invoked by the example EXEC allows

you to enter one or more SQL or Database Services Utility commands from

the CMS command line. You are prompted to enter the first or next

command.

v Displays the results of Database Services Utility processing to the terminal.

If you create the CMS file SQL EXEC fm (where fm is the file mode) containing the

sample EXEC in Figure 63 on page 121, SQL statements can then be run from the

CMS command line. Some examples of running one sample EXEC are in Figure 64

on page 122.

Note: DB2 Server for VM user machine must identify the database to be accessed

by running the SQLINIT EXEC before running the sample EXEC or a similar

EXEC. Also, the VM terminal logical line-editing symbols (character delete,

line delete, line end, and escape) must not conflict with the SQL language

operators used in the SQL statements entered in the CMS command line.

DB2 Server for VM Sample User Program: Link-Edit User Programs and the

Database Services Utility: The following is a general example of the way to

link-edit and run a user-written program (VMUCALL) that invokes the Database

Services Utility. In Figure 65 on page 123 the example program is written in

COBOL. The user program is run from a user library (USERLOAD LOADLIB A).

This example assumes that the user program VMUCALL needs to be compiled first

and that the VMUCALL TEXT A file does not exist.

A sample link-edit REXX EXEC is shown in Figure 66 on page 123. The contents of

the user link-edit control file (VMULINK TEXT A) are shown in Figure 67 on page

123. Note that for the COBOL program, you must also link edit the TEXT file

ARIPADR4. Figure 68 on page 123 shows a sample REXX EXEC for running the

user program with multiple user mode.

Enter--> sql select creator,tname from system.sysaccess

 (SELECT output will be displayed in column format)

Enter--> sql format(lo) select creator,tname from system.sysaccess

 (SELECT output will be displayed in list format)

Enter--> sql

 When prompted:

 Enter--> select creator,tname from system.sysaccess

 (SELECT output will be displayed in column format)

 When prompted:

 Enter--> exit or another SQL statement

Figure 64. CMS Command Line Entries to Run a Sample EXEC

122 Database Services Utility

* Example COBOL Program Calling the Database Services Utility *

IDENTIFICATION DIVISION.

PROGRAM-ID. VMUCALL

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 CALLTYPEID PIC X(6) VALUE ’DBSU01’.

01 PARMSTRING.

 49 PARMLEN PIC S9(4) COMP VALUE 42.

 49 PARMDATA PIC X(42) VALUE

 ’FORMAT(LO) SELECT * FROM SYSTEM.SYSOPTIONS’.

PROCEDURE DIVISION.

 CALL ’ARIDBS’ USING CALLTYPEID PARMSTRING.

FINIS.

 STOP RUN.

Figure 65. Sample COBOL Program Calling the Database Services Utility

/* Example REXX EXEC to Link-Edit a COBOL program with DBS Utility */

ADDRESS ’COMMAND’

’COBOL2 VMUCALL (APOST’

’FILEDEF SYSLIB DISK VSC2LTXT TXTLIB Y’

’FILEDEF ARISQLLD DISK ARISQLLD LOADLIB Q (RECFM U’

’FILEDEF VMUCALL DISK VMUCALL TEXT A (RECFM F LRECL 80’

’FILEDEF ARIRVSTC DISK ARIRVSTC TEXT Q (RECFM F LRECL 80’

’FILEDEF ARIPADR4 DISK ARIPADR4 TEXT Q (RECFM F LRECL 80’

’FILEDEF SYSLMOD DISK USERLOAD LOADLIB A (RECFM U’

’LKED VMULINK (LET RENT NAME VMUMOD LIST TERM PRINT’

EXIT

Figure 66. Sample EXEC to Link-Edit a User Program with the Database Services Utility

INCLUDE VMUCALL

INCLUDE ARIRVSTC

INCLUDE ARIPADR4 <---- For user COBOL program only

INCLUDE ARISSQLD(ARIDBS)

ENTRY VMUCALL

Note: Position 1 of each record must be blank.

Figure 67. Sample User Link-Edit Control File

/* Example REXX EXEC to Run a User Program Calling DBS Utility */

ADDRESS ’COMMAND’

’FILEDEF USERLOAD DISK USERLOAD LOADLIB A’

’FILEDEF SYSIN TERMINAL (RECFM F LRECL 120’

’FILEDEF SYSPRINT TERMINAL (RECFM F LRECL 120’

’NUCXLOAD VMUMOD VMUMOD USERLOAD’

’VMUMOD’

’NUCXDROP VMUMOD’

EXIT

Figure 68. Sample EXEC to Run a User Program Link-Edited with the Database Services

Utility

Chapter 7. Using the Database Services Utility from Application Programs 123

DB2 Server for VSE Sample COBOL Program: Call the Database Services

Utility: The following is a basic example of a user-written COBOL program and

the job control statements that call Database Services Utility to run SQL statements:

Sample Assembler Program: Load and Invoke the Database Services Utility:

 The following are basic examples of user-written assembler language programs

and the job control statements that invoke the Database Services Utility to run SQL

statements. In DB2 Server for VSE these statements run with single user mode.

// JOB CONTROL TO RUN A USER PROGRAM THAT CALLS THE DBS UTILITY

// OPTION CATAL

 PHASE COBDBSU,S

// EXEC IGYCRCTL

 CBL TRUNC(BIN) APOST

 * Example COBOL program calling Database Services Utility *

 IDENTIFICATION DIVISION.

 PROGRAM-ID. COBDBSU

 ENVIRONMENT DIVISION.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 CALLTYPEID PIC X(6) VALUE ’DBSU01’.

 01 PARMSTRING.

 02 PARMLEN PIC S9(4) COMP.

 02 PARMDATA PIC X(80).

 PROCEDURE DIVISION.

 MOVE 49 TO PARMLEN.

 MOVE ’ENDLUW(NO) CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;’

 TO PARMDATA.

 CALL ’ARIDBS’ USING CALLTYPEID PARMSTRING.

 MOVE 32 TO PARMLEN.

 MOVE ’SELECT * FROM SYSTEM.SYSOPTIONS;’

 TO PARMDATA.

 CALL ’ARIDBS’ USING CALLTYPEID PARMSTRING.

 FINIS.

 STOP RUN.

/*

 INCLUDE ARIPRDID

 INCLUDE ARIPADR4

 INCLUDE ARISYSDD

 INCLUDE ARIDSQLA

 INCLUDE ARIDDFP

 INCLUDE ARITDSSD

// EXEC LNKEDT

// EXEC PGM=COBDBSU

/*

/&

Figure 69. Sample COBOL Program to Call the Database Services Utility

124 Database Services Utility

// JOB CONTROL FOR USER PROGRAM THAT CDLOADS AND RUNS THE DBS UTILITY

// OPTION CATAL

 PHASE VSELOAD,S

// EXEC ASSEMBLY

VSELOAD CSECT

R0 EQU 0

R1 EQU 1

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

 STM R14,R12,12(R13) STORE THE CALLER’S REGISTERS

 BALR R12,0 ESTABLISH ADDRESSABILITY

 USING *,R12 REGISTER 12 WILL BE BASE REGISTER

 LA R15,SAVE GET ADDRESS OF MY SAVE AREA

 ST R15,8(R13) STORE FORWARD SAVE AREA POINTER

 ST R13,4(R15) STORE BACKWARD SAVE AREA POINTER

 LR R13,R15 MAKE MY SAVE AREA CURRENT

 CDLOAD ARIDBS DBS ADDRESS RETURNED IN R1

 ST R1,DBSADDR SAVE DBS UTILITY ADDRESS

Figure 70. DB2 Server for VSE Sample Load-and-Invoke Assembler Program for the

Database Services Utility (Part 1 of 2)

 MVI PSTRINGT,C’ ’ CLEAR PARAMETER AREA

 MVC PSTRINGT+1(L’PSTRINGT-1),PSTRINGT CLEAR PARAMETER AREA

 MVC PSTRINGT(L’PARMDAT1),PARMDAT1 MOVE FIRST COMMAND

 LA R0,L’PSTRINGT LOAD PARAMETER STRING LENGTH

 STH R0,PSTRINGL SET PARAMETER STRING LENGTH

 LA R1,PARMLIST LOAD PARAMETER LIST ADDRESS

 L R15,DBSADDR LOAD DBS ADDRESS

 BALR R14,R15 CALL THE DBS UTILITY

 MVI PSTRINGT,C’ ’ CLEAR PARAMETER AREA

 MVC PSTRINGT+1(L’PSTRINGT-1),PSTRINGT CLEAR PARAMETER AREA

 MVC PSTRINGT(L’PARMDAT2),PARMDAT2 MOVE SECOND COMMAND

 LA R1,PARMLIST LOAD PARAMETER LIST ADDRESS

 L R15,DBSADDR LOAD DBS ADDRESS

 BALR R14,R15 CALL THE DBS UTILITY

 L R13,4(R13) GET ADDRESS OF CALLER’S SAVE AREA

 L R14,12(R13) RESTORE CALLER’S R14

 LM R0,R12,20(R13) RESTORE CALLER’S R0-R12

 BR R14 RETURN. R15=DBS RETURN CODE

SAVE DS 18F

DBSADDR DS F DBS ADDRESS SAVE AREA

PARMLIST DS 0F PARAMETER LIST

 DC A(CTYPEID) **ADDRESS OF CALL TYPE IDENTIFIER

 DC A(PSTRING) **ADDRESS OF PARAMETER STRING

CTYPEID DC CL6’DBSU01’

PSTRING DS 0H PARAMETER LIST

PSTRINGL DS H ** PARAMETER AREA LENGTH

PSTRINGT DS CL250 ** PARAMETER AREA

PARMDAT1 DC C’CONNECT SQLDBS IDENTIFIED BY SQLDBAPW’

PARMDAT2 DC C’FORMAT(LO) SELECT * FROM SYSTEM.SYSOPTIONS’

 END VSELOAD

/*

// EXEC LNKEDT

// EXEC ARISQLDS,SIZE=AUTO,PARM=’SYSMODE=S,LOGMODE=N,PROGNAME=VSELOAD’

/*

/&

Figure 70. DB2 Server for VSE Sample Load-and-Invoke Assembler Program for the

Database Services Utility (Part 2 of 2)

Chapter 7. Using the Database Services Utility from Application Programs 125

Assuming that the DB2 Server for VM sample program is contained in the CMS

file VMULOAD ASSEMBLE A, you can run the program with multiple user mode

by entering the commands in Figure 72:

VMULOAD CSECT

R0 EQU 0

R1 EQU 1

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

 STM R14,R12,12(R13) STORE THE CALLER’S REGISTERS

 BALR R12,0 ESTABLISH ADDRESSABILITY

 USING *,R12 REGISTER 12 WILL BE BASE REGISTER

 LA R15,SAVE GET ADDRESS OF MY SAVE AREA

 ST R15,8(R13) STORE FORWARD SAVE AREA POINTER

 ST R13,4(R15) STORE BACKWARD SAVE AREA POINTER

 LR R13,R15 MAKE MY SAVE AREA CURRENT

 LOAD EP=ARIDBS DBS ADDRESS RETURNED IN R0

 ST R0,DBSADDR SAVE DBS ADDRESS

 MVI PSTRINGT,C’ ’ CLEAR PARAMETER AREA

 MVC PSTRINGT+1(L’PSTRINGT-1),PSTRINGT CLEAR PARAMETER AREA

 MVC PSTRINGT(L’PARMDATA),PARMDATA SET PARAMETER

 LA R0,L’PSTRINGT LOAD PARAMETER STRING LENGTH

 STH R0,PSTRINGL SET PARAMETER STRING LENGTH

 SR R0,R0 CLEAR REGISTER 0 (R1=PARM ADDRESS)

 LA R1,PARMLIST LOAD PARAMETER LIST ADDRESS

 L R15,DBSADDR LOAD DBS ADDRESS

 BALR R14,R15 CALL THE DBS UTILITY

 L R13,4(R13) GET ADDRESS OF CALLER’S SAVE AREA

 L R14,12(R13) RESTORE CALLER’S R14

 LM R0,R12,20(R13) RESTORE CALLER’S R0-R12

 BR R14 RETURN. R15=DBS RETURN CODE

SAVE DS 18F

DBSADDR DS F DBS ADDRESS SAVE AREA

PARMLIST DS 0F PARAMETER LIST

 DC A(CTYPEID) **ADDRESS OF CALL TYPE IDENTIFIER

 DC A(PSTRING) **ADDRESS OF PARAMETER STRING

CTYPEID DC CL6’DBSU01’

PSTRING DS 0H PARAMETER LIST

PSTRINGL DS H ** PARAMETER AREA LENGTH

PSTRINGT DS CL250 ** PARAMETER AREA

PARMDATA DC C’FORMAT(LO) SELECT * FROM SYSTEM.SYSOPTIONS’

 END VMULOAD

Figure 71. DB2 Server for VM Sample Load-and-Invoke Assembler Program for the Database

Services Utility

/* Example Database Services Utility to Run an ASSEMBLER Program Calling */

/* DBS Utility */

ADDRESS ’COMMAND’

’GLOBAL MACLIB OSMACRO’

’GLOBAL LOADLIB ARISQLLD’ <---- Identifies DB2 Server for VM load library

’ASSEMBLE VMULOAD’

’LOAD VMULOAD’

’FILEDEF SYSPRINT TERMINAL (RECFM F LRECL 120’

’START’

EXIT

Figure 72. REXX EXEC to Run an Assembler Program That Loads the DBS Utility

126 Database Services Utility

Note: Before attempting to run the user program, identify the application server to

be accessed by using the SQLINIT EXEC.

Sample Assembler Program: Call the Database Services Utility: The following

are examples of user-written assembler language programs that invokes the

Database Services Utility. In DB2 Server for VSE, the Utility is invoked by means of

a CALL macro to process commands in a file defined as SYSIPT. The VSE job

control statements to assemble, link-edit, and run the user program with single

user mode are shown in the example. In DB2 Server for VM, the Utility in

invoked, by means of a CALL macro to process commands in a file defined as

SYSIN. All necessary CMS FILEDEF commands must be entered before this

program is executed.

// JOB CONTROL TO RUN A USER PROGRAM THAT CALLS THE DBS UTILITY

// OPTION CATAL

 PHASE VSECALL,S

// EXEC ASSEMBLY

VSECALL CSECT

R0 EQU 0

R1 EQU 1

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

 STM R14,R12,12(R13) STORE THE CALLER’S REGISTERS

 BALR R12,0 ESTABLISH ADDRESSABILITY

 USING *,R12 REGISTER 12 WILL BE BASE REGISTER

 LA R15,SAVE GET ADDRESS OF MY SAVE AREA

 ST R15,8(R13) STORE FORWARD SAVE AREA POINTER

 ST R13,4(R15) STORE BACKWARD SAVE AREA POINTER

 LR R13,R15 MAKE MY SAVE AREA CURRENT

 LA R0,0 CLEAR REGISTER 0

 LA R1,0 INDICATE NO PARAMETER LIST PASSED

 CALL ARIDBS

 L R13,4(R13) GET ADDRESS OF CALLER’S SAVE AREA

 L R14,12(R13) RESTORE CALLER’S R14

 LM R0,R12,20(R13) RESTORE CALLER’S R0-R12

 BR R14 RETURN. R15=DBS RETURN CODE

SAVE DS 18F

 END VSECALL

/*

 INCLUDE ARISYSDD

 INCLUDE ARIDSQLA

 INCLUDE ARIDDFP

 INCLUDE ARIPRDID

 INCLUDE ARITDSSD

// EXEC LNKEDT

// EXEC ARISQLDS,SIZE=AUTO,PARM=’SYSMODE=S,LOGMODE=N,PROGNAME=VSECALL’

/*

/&

Figure 73. DB2 Server for VSE Sample Assembler Program to Call the Database Services

Utility

Chapter 7. Using the Database Services Utility from Application Programs 127

Running the DB2 Server for VM Database Services Utility with

Multiple User Mode

With multiple user mode, the Database Services Utility runs as an application

program in the user’s virtual machine. It cannot run either in the CMS/DOS

environment or in CMS subset with multiple user mode.

Use the SQLINIT EXEC to specify the default database that you want to access. For

additional information on the SQLINIT EXEC, refer to the DB2 Server for VSE &

VM Database Administration manual.

Running the Database Services Utility with Single User Mode

When the Database Services Utility is run with single user mode, the database

manager is started by means of the SQLSTART EXEC, which is invoked by the

SQLDBSU EXEC. The database manager then loads the Database Services Utility

program and transfers control to the program ARIDBS. All startup and

initialization parameters cannot be directly supplied by means of the SQLDBSU

EXEC. The SQLDBSU EXEC parameters that can be supplied, however, and that

are applicable only to running the utility with single user mode are: DBNAME,

DCSSID, LOGMODE, and PARMID. These parameters are supplied to the

SQLSTART EXEC by the SQLDBSU EXEC when the database manager is started.

The SQLDBSU EXEC also supplies the initialization parameter,

PROGNAME(ARIDBS), to direct the database manager to execute the Database

Services Utility program ARIDBS. The IBM-supplied SQLSTART EXEC and the

startup and initialization parameters are described in the DB2 Server for VM System

Administration manual.

Single or Multiple User Mode: The sample commands shown below run the

Database Services Utility with single user mode and with multiple user mode to

perform the following functions:

v Unload all tables in the SQLDBA database dbspace PUBLIC.SAMPLE to a DASD

file

VMUCALL CSECT

R0 EQU 0

R1 EQU 1

R12 EQU 12

R13 EQU 13

R14 EQU 14

R15 EQU 15

 STM R14,R12,12(R13) STORE THE CALLER’S REGISTERS

 BALR R12,0 ESTABLISH ADDRESSABILITY

 USING *,R12 REGISTER 12 WILL BE BASE REGISTER

 LA R15,SAVE GET ADDRESS OF MY SAVE AREA

 ST R15,8(R13) STORE FORWARD SAVE AREA POINTER

 ST R13,4(R15) STORE BACKWARD SAVE AREA POINTER

 LR R13,R15 MAKE MY SAVE AREA CURRENT

 LA R0,0 CLEAR REGISTER 0

 LA R1,0 INDICATE NO PARAMETER LIST PASSED

 CALL ARIDBS

 L R13,4(R13) GET ADDRESS OF CALLER’S SAVE AREA

 L R14,12(R13) RESTORE CALLER’S R14

 LM R0,R12,20(R13) RESTORE CALLER’S R0-R12

 BR R14 RETURN. R15=DBS RETURN CODE

SAVE DS 18F

 END VMUCALL

Figure 74. DB2 Server for VM Sample Assembler Program to Call the Database Services

Utility

128 Database Services Utility

v Reload the dbspace PUBLIC.SAMPLE from the DASD file to reorganize the data

for all tables in the dbspace.

The CMS file DBSU COMMANDS A contains the following Database Services

Utility command input:

 To run the utility with single user mode, enter the following commands:

 To run the utility with multiple user mode, enter the following commands:

 Using the SQLDBSU EXEC

SQLDBSU EXEC Format: The following syntax diagrams show the format for

invoking the Database Services Utility with single or multiple user mode.

 Format:

Multiple User Mode Parameters

►► SQLDBSU

sysIN

(

Reader

)

Terminal

file_name

file_type

file_mode

 ►

►
sysPRint

(

Printer

)

Terminal

file_name

file_type

file_mode

 ►◄

Multiple User Mode Examples:

 SQLDBSU SYSIN(T) SYSPRINT(PR)

 SQLDBSU

Notes:

1. When running the Database Services Utility in multiple user mode, you must

issue the SQLINIT EXEC before using the SQLDBSU EXEC. The SQLINIT

EXEC initializes the LASTING GLOBALV file and the database manager

 CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;

 UNLOAD DBSPACE(PUBLIC.SAMPLE) OUTFILE(DASD1)

 RELOAD DBSPACE(PUBLIC.SAMPLE) PURGE INFILE(DASD1)

 FILEDEF DASD1 DISK DBSUFILE DATA A4 (RECFM VBS BLOCK 2048

 SQLDBSU DBNAME(SQLDBA) SYSIN(DBSU COMMANDS A) SYSPRINT(TERMINAL)

 SQLINIT DBNAME(SQLDBA)

 FILEDEF DASD1 DISK DBSUFILE DATA A4 (RECFM VBS BLOCK 2048

 SQLDBSU SYSIN(DBSU COMMANDS A) SYSPRINT(TERMINAL)

Chapter 7. Using the Database Services Utility from Application Programs 129

bootstrap routines on your A-disk. These routines identify the application

server that you want to access and the method for loading the multiple user

mode support system routines.

The SQLINIT EXEC does not need to be run prior to each SQLDBSU command.

You need only to run the SQLINIT EXEC when you want to establish access to

a different application server, to vary the method of loading the multiple user

mode support system routines, or to change other characteristics of the

application requester.

An alternative method for connecting to another application server is to issue

the CONNECT command. See “CONNECT” on page 20, for more information

about using this command.

2. When the Database Services Utility (program ARIDBS) is run with multiple

user mode, it is loaded from load library ARISQLLD LOADLIB Q by using a

CMS NUCXLOAD command. Consequently, the SQLDBSU EXEC cannot be

run in the CMS/DOS environment with multiple user mode.

 Format:

Single User Mode Parameters

►► SQLDBSU

sysIN

(

Reader

)

Terminal

file_name

file_type

file_mode

 ►

►
sysPRint

(

Printer

)

Terminal

file_name

file_type

file_mode

 ►◄

►► Dbname (server_name)

dcssID

(dcss_id)

LOGmode

(

A

)

L

N

Y

PARMID

(file_name)
 ►◄

Single User Mode Example: SQLDBSU IN(T) PR(DBSU LIST A) D(SQLDBA) ID(SUF1) LOG(Y) PARMID(SQL1)

Notes:

1. In single user mode, the console and program stack buffers are purged by the

SQLSTART EXEC. If you use multiple-volume tape files for Database Services

Utility processing with multiple user mode, the console and program stack

buffers should not contain any information. Empty buffers ensure that any

prompts issued by the multiple tape volume tape support can be properly

processed.

The following is a description of the parameters for the Database Services Utility

SQLDBSU EXEC.

sysIN (file_name file_type file_mode)

identifies the file name and optionally the file type and file mode of the CMS

file containing the Database Services Utility input commands. The file type

defaults to DBSINPUT and the file mode defaults to A.

130 Database Services Utility

If you supply this form of the SYSIN parameter, the SQLDBSU EXEC issues

the following CMS FILEDEF command for the Database Services Utility control

file:

FILEDEF SYSIN DISK file_name file_type file_mode . . .

 (RECFM FB LRECL 80 BLOCK 800

sysIN (Reader)

specifies that the Database Services Utility input control file is a virtual reader

file. If you specify SYSIN(Reader), the SQLDBSU EXEC issues the following

CMS FILEDEF command for the Database Services Utility control file:

FILEDEF SYSIN READER (RECFM F LRECL 80

sysIN (Terminal)

specifies that the Database Services Utility input control file is the terminal. If

you specify SYSIN(Terminal), the SQLDBSU EXEC issues the following CMS

FILEDEF command for the Database Services Utility control file:

FILEDEF SYSIN TERMINAL (RECFM F LRECL 80

Notes:

1. The Database Services Utility control file is also assigned to the terminal if

you did not specify the SYSIN parameter, and you did not issue a CMS

FILEDEF command for the ddname=SYSIN before issuing the SQLDBSU

command.

2. If the Database Services Utility control file is assigned to the terminal:

a. Most Database Services Utility commands and all SQL statements must

be terminated by a semicolon. Database Services Utility commands

restricted to a single control file record (command line) do not require a

terminating semicolon. As a general rule, use a semicolon to terminate

all commands entered through the terminal.

b. The end of Database Services Utility input is indicated by entering a

null line. Prompts are issued to you after you use the ENTER key to

enter a null line. Your response depends on whether or not a command

has been partially entered and on the type of command entered. This

way, you cannot end Database Services Utility processing by mistakenly

using the ENTER key. If prompted to quit and you want to do so, enter

QUIT or HX.

c. Positions 1–80 of the input record are checked for command

information. Therefore, command records contained in files identified by

READ FILE commands entered through the terminal cannot contain

sequence numbers in positions 73–80. The READ FILE command has

the format:

READ FILE file_name file_type file_mode

If you use the READ FILE command, it must be the first command after

you issued the EXEC SQLDBSU command. It must not be preceded by

any other commands.

d. If Database Services Utility input entered from the terminal must

contain lowercase values, you must issue the following FILEDEF before

issuing the SQLDBSU EXEC without the SYSIN parameter specification:

FILEDEF SYSIN TERMINAL (RECFM F LRECL 80 LOWCASE

If you issue this FILEDEF command, all the Database Services Utility

command and SQL statement keywords must be entered in uppercase.

sysPRint (file_name file_type file_mode)

identifies the file name and optionally the file type and file mode of the CMS

Chapter 7. Using the Database Services Utility from Application Programs 131

file to be used for the Database Services Utility messages. The file type

specification defaults to DBSLIST and the file mode specification defaults to A.

 If you specify this form of the SYSPRINT parameter, the SQLDBSU EXEC

issues the following CMS FILEDEF command for the Database Services Utility

message file:

FILEDEF SYSPRINT DISK file-name file-type file-mode . . .

 (RECFM FBA LRECL 121 BLOCK 1210

Note: Position 1 of the Database Services Utility message file

(ddname=SYSPRINT) print records contains American Standards

Association (ASA) control characters. If the message file is a CMS file

and is printed with the CMS PRINT command, the option CC should be

specified in the CMS PRINT command. Refer to the VM/ESA: CMS

Command Reference manual for a description of the CMS PRINT

command.

sysPRint (Printer)

specifies that the Database Services Utility message file should be assigned to

the virtual printer.

 If you specify SYSPRINT (Printer), the SQLDBSU EXEC issues the following

CMS FILEDEF command for the Database Services Utility message file:

FILEDEF SYSPRINT PRINTER (RECFM FA LRECL 121

sysPRint (Terminal)

specifies that the Database Services Utility message file should be assigned to

the terminal.

 If your specify SYSPRINT (Terminal), the SQLDBSU EXEC issues the following

CMS FILEDEF command for the Database Services Utility message file:

FILEDEF SYSPRINT TERMINAL (RECFM F LRECL 120

Note: The Database Services Utility message file is also assigned to the

terminal if the SYSPRINT parameter is not specified, and you did not

issue a CMS FILEDEF command for the ddname=SYSPRINT before

issuing the SQLDBSU EXEC.

Dbname(server_name)

indicates that the Database Services Utility should be run with single user

mode. It also identifies the name of the database to be accessed by the

commands contained in the Database Services Utility control file.

 If you specify this parameter, the SQLSTART EXEC parameters

DBNAME(server_name) are specified. The initialization parameters

SYSMODE=S, and PROGNAME=ARIDBS are also supplied in the SQLSTART

EXEC PARM parameter.

 If you omit the DBNAME parameter, the Database Services Utility is run with

multiple user mode.

dcssID (dcss_id)

applies to running the Database Services Utility with single user mode. It

identifies the method by which all database manager modules are to be loaded

for execution. If you specify this parameter, you must also specify the

DBNAME parameter.

 If you specify this parameter, it is supplied to the SQLSTART EXEC. The

SQLSTART EXEC then uses the database manager bootstrap routines with the

specified dcss-id to load the database manager code.

132 Database Services Utility

If you omit this parameter, it is not supplied as an SQLSTART EXEC

parameter.

LOGmode (A|L|N|Y)

applies only to running the Database Services Utility with single user mode.

This one-character field indicates how the logs are to be maintained:

 A means maintain the logs and automatically archive the database.

 L means maintain the logs and automatically archive the log when the

specified level has been reached.

 N means do not maintain the logs for recovery.

 Y means maintain the logs.

 If you specify this parameter, you must also specify the DBNAME parameter.

It identifies the value to be used for the database initialization LOGMODE

parameter when the database manager is started in single user mode.

 If you omit this parameter and you specify the DBNAME parameter, the

LOGMODE parameter is not supplied as an initialization parameter in the

SQLSTART EXEC.

PARMID (file_name)

applies only to running the Database Services Utility with single user mode. If

you specify this parameter, you must also specify the DBNAME parameter. It

identifies the file name of the CMS file that contains the database initialization

override parameters. The file type must be SQLPARM.

 If you omit this parameter and you specify the DBNAME parameter, the

PARMID parameter is not supplied as an initialization parameter in the

SQLSTART EXEC.

 For more information on the PARMID parameter, see the description of

SQLSTART in the DB2 Server for VM System Administration manual.

Notes:

 1. If virtual console spooling is started and either SYSIN or SYSPRINT is

assigned to the terminal, the virtual console is spooled HOLD.

 2. If the virtual printer is spooled NOHOLD, it is spooled HOLD, closed, and

then spooled NOHOLD.

 3. When running the Database Services Utility, set the CP SET command EMSG

option to ON. The SQLDBSU EXEC checks the current EMSG option setting

and, if necessary, resets it to ON. If the EMSG option is reset, the original

setting is restored during the SQLDBSU EXEC termination processing. The

original EMSG setting is not restored if SQLDBSU EXEC execution is

abnormally terminated. Refer to the VM/ESA: CP Command and Utility

Reference for a description of the SET command’s EMSG option.

 4. When running the Database Services Utility, the VM terminal logical

line-editing symbols (character delete, line delete, line end, and escape) must

be defined as follows:

LINEND # LINEDEL OFF CHARDEL OFF ESCAPE 1/2

The SQLDBSU EXEC checks the current settings for these symbols and, if

necessary, resets the symbols as described previously. If the symbols are reset,

the original symbols are restored during the SQLDBSU EXEC termination

processing. The symbols are not reset if SQLDBSU EXEC execution is

Chapter 7. Using the Database Services Utility from Application Programs 133

abnormally terminated. Refer to the VM/ESA: CP Command and Utility

Reference for a description of the TERMINAL command and the logical

line-editing symbols.

 5. The Database Services Utility control file (ddname=SYSIN) logical record length

(LRECL) must be 80. The record format (RECFM) should be fixed or fixed

blocked.

 6. The Database Services Utility message file (ddname=SYSPRINT) logical record

length (LRECL) must be at least 81. The record format (RECFM) should be

fixed or fixed blocked with ASA print control characters (F or FB).

If the Database Services Utility control parameter PAGECTL(NO) is specified,

the minimum message file record length is 80. The record format should be

fixed or fixed blocked (F or FB).

 7. Database Services Utility and SQL statement information must be in positions

1-72 of the control file (ddname=SYSIN) records except when SYSIN defines the

input control file as the terminal. If the terminal is the control file, you can put

Database Services Utility and SQL statement information in positions 1-80 of a

command line that you enter from the terminal. If you enter a DB2 Server for

VM READ FILE file_name file_type file_mode command from the terminal, the

CMS file containing SQL statements or Database Services Utility commands

cannot have sequence numbers in positions 73-80 because the Database

Services Utility searches positions 1-80 for command information. For more

information on the READ FILE command, see the DB2 Server for VM Program

Directory.

You can always reference all 80 positions of data records contained in the

Database Services Utility control file as data field positions.

 8. You must define all input or output data file ddnames referenced in the

Database Services Utility commands supplied in the Database Services Utility

control file through the CMS FILEDEF commands before issuing the

SQLDBSU command.

If you define DASD CMS files with variable-length spanned records for

Database Services Utility command input/output, you must use the file mode

number 4.

 9. If you do not specify the SYSIN information in the EXEC parameters, and you

do not define the Database Services Utility control file (ddname=SYSIN) with

the CMS FILEDEF command before issuing the SQLDBSU command, the

SQLDBSU EXEC issues the following default FILEDEF command:

FILEDEF SYSIN TERMINAL (RECFM F LRECL 80

If you do not specify the SYSIN information in the EXEC parameters, but you

define the Database Services Utility control file (ddname=SYSIN) with a CMS

FILEDEF command before issuing the SQLDBSU command, the SQLDBSU

EXEC uses the user-defined Database Services Utility control file. Specify a

logical record length (LRECL) of 80 for a user-defined Database Services

Utility control file.

10. If you do not specify SYSPRINT information, and you do not define the

Database Services Utility message file (ddname=SYSPRINT) with a CMS

FILEDEF command before issuing the SQLDBSU command, the SQLDBSU

EXEC issues this FILEDEF command:

FILEDEF SYSPRINT TERMINAL (RECFM F LRECL 120

If you define the Database Services Utility message file with a CMS FILEDEF

command, the minimum logical record length (LRECL) is 81. If you specify

the Database Services Utility control parameter as PAGECTL(NO), the

minimum message file record length is 80.

134 Database Services Utility

Chapter 8. Command Reference

The Database Services Utility can process commands that are unique to the

Database Services Utility and SQL statements that are not restricted to use in

user-written programs. This chapter provides descriptions of the Database Services

Utility commands and general rules governing how you type the commands. (SQL

statements are described in the DB2 Server for VSE & VM SQL Reference.)

Command Processing

Two kinds of commands that you can specify in the Database Services Utility are

Database Services Utility commands and SQL statements.

The difference between an SQL statement and a Database Services Utility

command is that a Database Services Utility command can only be issued within

the Database Services Utility. If you try to issue a Database Services Utility

command outside of the utility itself, it fails. On the other hand, an SQL statement

can be issued in both ISQL and the Database Services Utility.

Here is a summary of the Database Services Utility commands:

 DATALOAD

 DATAUNLOAD

 RELOAD

 UNLOAD

 SET

 COMMENT

 REORGANIZE INDEX

 SCHEMA

 REBIND PACKAGE

Control commands are entered by means of one or more 80-byte input records in

the (input) control file. The utility usually reads only the first 72 positions of these

command records; you can use positions 73 through 80 for sequence numbers.

When control command input is being read directly from a DB2 Server for VM

terminal, all 80 positions of the command record can contain command

information. Some Database Services Utility commands allow you to place data

within the (input) control file; these data records are not restricted to the first 72

positions and can have information in all 80 positions.

In DB2 Server for VSE, lowercase information supplied in an input control card file

and read by the Database Services Utility is not converted to uppercase by

Database Services Utility processing. ISQL, on the other hand, converts lowercase

information to uppercase. Use uppercase in the input control card file to avoid a

case mismatch, especially for a table or dbspace name. In DB2 Server for VM,

lowercase information supplied in commands read by the utility is converted to

uppercase only when the control file (SYSIN) is assigned to the terminal. If you

require lowercase information and the utility reads commands from the terminal,

specify LOWCASE when you issue a CMS FILEDEF command to define the

control file (SYSIN). Alternatively, you can use the CMS SET INPUT xx yy

command to reset the hexadecimal code xx to the hexadecimal code yy. Refer to

the VM/ESA: CMS Command Reference manual for more information.

© Copyright IBM Corp. 1987, 2007 135

Except where noted, the control commands can span multiple 80-byte input

records. Individual keywords or parameter values must never span input records,

or a Database Services Utility processing error results. For example, these records

are correct:

 MFB001 and MFB002 are sequence numbers that the Database Services Utility

ignores. Note that SELECT ends in position 72 in the above example. Conceptually,

the Database Services Utility inserts a single blank character between input records;

the above records are interpreted as:

SELECT EMPNO, LASTNAME FROM SQLDBA.EMPLOYEE;

The following input records are incorrect:

 The Database Services Utility inserts a blank after column 72, and thus interprets

the input records as:

SELE CT EMPNO, LASTNAME FROM SQLDBA.EMPLOYEE;

The Database Services Utility does not recognize SELE as a Database Services

Utility command, and an error results.

There is an exception to the rule that individual keywords or parameter values

must not span input records. This exception occurs when a parameter is enclosed

in either single (') or double (") quotation marks. For these parameters, the

Database Services Utility does not insert a blank after position 72. Consider the

following example in which a character string constant spans multiple input

records. The character constant is delimited by a single quotation mark ('):

┌──┐

│ 1 ┌───────────────┐ col 72 80 |

│ │──────────────────── | INPUT RECORDS | ─────────────────────────| | |

│ │ └───────────────┘ | │ │

│ ø ø ø |

│ SELECT MFB001 |

│ EMPNO, LASTNAME FROM SQLDBA.EMPLOYEE; MFB002 |

│ ┌───────────┐ |

│ │ Correct. │ |

│ └───────────┘ |

│ |

└──┘

Figure 75. Example of Correct Records

┌──┐

│ 1 ┌───────────────┐ col 72 80 |

│ │──────────────────── | INPUT RECORDS | ─────────────────────────┤ │ |

│ │ └───────────────┘ | │ │

│ ø ø ø |

│ SELE MFB001 |

│ CT EMPNO, LASTNAME FROM SQLDBA.EMPLOYEE; MFB002 |

│ ┌──────────────────────┐ |

│ | Incorrect! | |

│ | Don’t split keywords | |

│ └──────────────────────┘ |

│ |

└──┘

Figure 76. Example of Incorrect Records

136 Database Services Utility

The Database Services Utility interprets the above records as:

SELECT ’AVERAGE’, AVG(BONUS) FROM SQLDBA.EMPLOYEE;

Each Database Services Utility command or SQL statement must begin on a new

(input) control file input record.

DB2 Server for VM

Database Services Utility commands are terminated by a semicolon, by the

start of the next command, or by the end of the input control records.

Terminate Database Services Utility commands with a semicolon when

Database Services Utility control command input is being read directly from a

terminal.

In the Database Services Utility environment, SQL statements must be

terminated with a semicolon. Do not use the SQL continuation character

(required by ISQL) in an SQL statement that spans record boundaries in

either a batch or an interactive environment.

 Database Services Utility processing ends when all the input records are processed.

You cannot reorganize a catalog index by using the REORGANIZE INDEX

command. To reorganize the catalog index in VM, use the SQLCIREO utility. In

VSE, set the STARTUP initialization parameter to one to reorganize the catalog

index.

Note: You can only reorganize a primary key index or a unique index by using the

ALTER TABLE ACTIVATE PRIMARY KEY and ALTER TABLE ACTIVATE

UNIQUE statements.

COMMENT

With the COMMENT command, you can document input by supplying Database

Services Utility COMMENT commands at appropriate points within the Database

Services Utility control command input stream. The utility displays the comments

in the report or message file listing. You cannot use SQL comments within

Database Services Utility COMMENT commands.

┌──┐

│ 1 ┌───────────────┐ col 72 80 |

│ │──────────────────── | INPUT RECORDS | ─────────────────────────| │ |

│ │ └───────────────┘ | │ │

│ ø ø ø |

│ SELECT ’AVERA MFB001 |

│ GE’, AVG(BONUS) FROM SQLDBA.EMPLOYEE; MFB002 |

│ ┌──────────────────────┐ |

│ | Correct. | |

│ | You can split | |

│ | quoted strings. | |

│ └──────────────────────┘ |

│ |

└──┘

Figure 77. Example of a Character String Constant Spanning Multiple Input Records

Chapter 8. Command Reference 137

COMMENT Format

 Format:

►► COMMENT ’string_constant’ ►◄

COMMENT

identifies a Database Services Utility COMMENT command. At least one blank

must appear after the command identifier.

'string-constant'

is the comment text delimited by single quotation marks. The string-constant

can span control command input records, but must begin in the same record

that contains the command identifier. All positions of a control command

record containing comment text are displayed. A COMMENT command is

terminated when a control command input record containing comment text

ends with a single quotation mark or a single quotation mark immediately

followed by a semicolon. All control command input record positions

(normally positions 1-72) after the terminating single quotation mark or single

quotation mark and semicolon must be blank. Positions 73-80 of comment text

records can still contain sequence numbers (except in DB2 Server for VM when

Database Services Utility control command input is being read directly from a

terminal).

REORGANIZE INDEX

The REORGANIZE INDEX command allows you to correct index fragmentation,

and correct the skewing of index key values without having to drop the index and

then recreate it using the DROP INDEX and CREATE INDEX SQL statements.

REORGANIZE INDEX also revalidates an invalid index.

As with other Database Services Utility commands, you can use the REORGANIZE

INDEX command with both single user mode and multiple user mode.

Note: The REORGANIZE INDEX command is not supported if you are using

DRDA flow.

REORGANIZE INDEX Format

 Format:

►► REORGANIZE INDEX (index_name)

PCTFREE =

integer
 ►◄

Example:

REORGANIZE INDEX(SMITH.INDEXINV) PCTFREE = 50

Authorization: You must own the index or have DBA authority.

Note: In DB2 Server for VSE, to reorganize a catalog index, you must start the database manager in single user

mode and specify STARTUP=I.

INDEX (index-name)

identifies the index to be reorganized. You can further identify the index by

specifying the owner and server-name of the index. For more information about

identifying the index, see “Qualifying Object Names” on page 110 for details.

138 Database Services Utility

When reorganizing an invalid index, the database manager uses a sort similar

to the one used for a CREATE INDEX statement.

PCTFREE = integer

allows you to control the amount of free space that REORGANIZE reserves in

the index for later insertions and updates.

integer

is a number from 0 to 99 representing a percentage of the total index space.

For practical purposes, it should not exceed 50.

 If you do not specify PCTFREE, the amount of free space remains unchanged from

the previous PCTFREE value.

The REORGANIZE INDEX command consists of several separate internal steps.

Some steps might be completed even though the whole REORGANIZE INDEX

command is not completed successfully.

The following unusual situations can occur when rolling back or recovering from a

REORGANIZE INDEX command:

v Although a REORGANIZE INDEX command is successfully completed during

forward processing, it might not be completed during rollback or recovery

because the system has run out of physical or logical pages (or both).

Checkpoints for sufficient storage can interrupt only during forward processing.

As a result, the recovered index is marked invalid.

v If an index reorganization is rolled back or undone, the recovered index is

nevertheless reorganized. In REORGANIZE INDEX processing, the index is

effectively dropped and re-created, resulting in a reorganized index. If you

changed the PCTFREE value, however, that value is set back to the original

value defined before the REORGANIZE INDEX command.

v If the system ends abnormally after an index reorganization is interrupted by a

checkpoint and an attempt is made to restart the database manager without the

current log (because of a loss of the log or log reconfiguration), the reorganized

index will be marked as invalid. It must be recovered by dropping the dbspace

and re-creating it, or by restoring a previous database archive.

v The updating of index statistics is not supported during rollback or recovery.

The previous index statistics are recovered, but the recovered index (which is

nevertheless reorganized) may not match them.

DBSS prevents a REORGANIZE INDEX or CREATE INDEX command from

proceeding if the command can overflow the invalid index limit. During rollback

or recovery, if the maximum number of invalid indexes (30) is reached, the system

ends abnormally. When the system is brought up again for recovery, it is very

likely to end again for the same reason. If the large number of invalid indexes

exists because of a lack of physical pages, add a dbextent to the system before

attempting to recover again. If the large number of invalid indexes exists because

of a lack of logical index pages, use filtered log recovery to skip over the index

reorganizations that are causing the invalid indexes. For information about adding

a dbextent, see the DB2 Server for VM System Administration and DB2 Server for VSE

System Administration manuals. To find out more about using filtered log recovery,

see the DB2 Server for VSE & VM Diagnosis Guide and Reference manual. Additional

information on the REORGANIZE INDEX command is in the DB2 Server for VSE &

VM Database Administration manual.

Chapter 8. Command Reference 139

You cannot reorganize a catalog index by using the REORGANIZE INDEX

command. To reorganize the catalog index in VM, use the SQLCIREO utility. In

VSE, set the STARTUP initialization parameter to I to reorganize the catalog index.

Note: You can only reorganize a primary key index or a unique index by using the

ALTER TABLE ACTIVATE PRIMARY KEY and ALTER TABLE ACTIVATE

UNIQUE statements.

SCHEMA

A schema file specifies an authorization ID and a list of table, view, and privilege

definitions using the syntax of the CREATE TABLE, CREATE VIEW, and GRANT

statements. The SCHEMA command reads and processes the statements from a

schema file.

SCHEMA Format

 Table 7. SCHEMA Command Syntax

Format:

►►
 (1)

SCHEMA INFILE

(

ddname

option-c

)

IN

(dbspace_name)

►◄

Notes:

1 Option C is valid in DB2 Server for VSE only.

option-c:

2000

REWIND

BLKSZ

(

size

)

(TAPE)

NOREWIND

PDEV

(DASD)

Example:

SCHEMA INFILE(IN1 BLKSZ(800))

Authorization:

You must be connected as the AUTHORIZATION ID specified in the CREATE SCHEMA statement.

INFILE (ddname)

identifies the sequential input file containing the schema.

ddname

in DB2 Server for VSE: this is the TLBL or DLBL job control statement file

name for the sequential input file. The file must have a record format of

fixed-length blocked and a record length of 80.

 Alternatively, SCHEMA can read its input from SYSIPT by using a READ

MEMBER. You use the READ MEMBER NOCONT option to properly close

the SYSIPT file. An example of using READ MEMBER with NOCONT is:

SCHEMA INFILE(SYSIPT)

READ MEMBER schema-member (NOCONT

140 Database Services Utility

If you do not specify the NOCONT option, the database manager reads in

the SYSIPT records following the READ MEMBER statement as part of the

SCHEMA file; then SYSIPT can provide additional input after the READ

MEMBER statement.

 in DB2 Server for VM: this is the name of the sequential input file. It must

have records with a fixed length of 80 characters. The file characteristics

specified in the FILEDEF command or the default FILEDEF options are the

source of the input record definition information for the Database Services

Utility. Do not specify SYSIN or SYSPRINT as the ddname.

dbspace-name

specifies the name of the dbspace where the table is to be placed if no

dbspace-name is given in the CREATE TABLE statement. If the CREATE

TABLE statement in the SCHEMA input file specifies a dbspace-name then

this overrides the name of the dbspace given in the SCHEMA command.

BLKSZ (size) (DB2 Server for VSE Only)

is a parameter that specifies the block size of the sequential input file. The

default block size is 2 000 bytes per block.

PDEV (TAPE or DASD) (DB2 Server for VSE Only)

is an optional parameter that specifies the device type (DASD or TAPE) of the

sequential (SAM) input file. If PDEV(DASD) is specified, the file resides on any

device supported by the VSE DTFSD macro. VSAM-managed SAM does not

support spanned records. If PDEV(TAPE) is specified, the file resides on any

device supported by the VSE DTFMT macro. The default is PDEV(TAPE).

NOREWIND or REWIND

controls tape file rewind processing performed during OPEN processing.

This parameter is valid only if you specify TAPE for PDEV. The default

processing is REWIND.

 NOREWIND

specifies that the tape file is not to be rewound by OPEN processing. If

NOREWIND is specified for input tape files referenced by a series of

SCHEMA commands, you must ensure that the tape files being

referenced are in ascending sequence. For example, if NOREWIND is

specified in a sequence of two SCHEMA commands and the first

command reads tape file 2, then the second command must reference

tape file 3 or a higher number. If it references tape file 1, an OPEN

error occurs.

REWIND

specifies OPEN processing to rewind the tape file.

Chapter 8. Command Reference 141

Table 8. Contents of the Schema (in a Sequential Input File)

Format:

►►

;

CREATE SCHEMA AUTHORIZATION

authorization_id

▼

;

schema_statement

►◄

Example:

-- create table TAB1 and give Jones SELECT privilege

CREATE SCHEMA AUTHORIZATION SMITH

CREATE TABLE SMITH.TAB1 (COL1 CHAR(4))

GRANT SELECT ON TAB1 TO JONES

The first line of the above example is a comment line. To insert comments within

the schema file:

v Mark the beginning of a comment with two consecutive hyphens (--)

v Begin the comment anywhere on a record or line

v End the comment with the end of the record or line.

The sequential input file must contain only one CREATE SCHEMA statement,

which must be the first statement in the file (unless the preceding lines are

comments); otherwise, the Database Services Utility issues an error message and

stops processing the SCHEMA command.

AUTHORIZATION authorization id

You must be connected as the authorization id in the AUTHORIZATION clause.

If a schema statement does not specify an owner, the statement is processed for

the authorization ID. For example, in Table 8 the SELECT privilege in the

GRANT statement is granted on SMITH.TAB1.

schema-statement

refers to every statement following the CREATE SCHEMA statement. Valid

schema statements are:

v CREATE TABLE

v CREATE VIEW

v GRANT (INSERT, SELECT, UPDATE, REFERENCES, ALL and DELETE

privileges).

The schema statements must be entered in uppercase. See the DB2 Server for

VSE & VM SQL Reference for the correct syntax of valid schema statements.

Successful statements are committed if the Database Services Utility

AUTOCOMMIT indicator is ON.

 The Database Services Utility issues an error message if any invalid statement

is in the schema, and might or might not continue processing on the next

statement, depending on the setting of ERRORMODE.

142 Database Services Utility

You can change the setting of the ERRORMODE and AUTOCOMMIT indicators before the SCHEMA

command by issuing the Database Services Utility SET ERRORMODE and SET AUTOCOMMIT

commands. If ERRORMODE is set to CONTINUE, processing continues on the next statement

following a minor error on any sequential input file statement other than the CREATE SCHEMA

statement. If AUTOCOMMIT is ON, the work is committed after each successful statement. For a

complete description of these commands, see “SET ERRORMODE” on page 215 and “SET

AUTOCOMMIT” on page 214.

Using File Definitions with the DB2 Server for VM SCHEMA

Command

The schema file must have a fixed length of 80 characters. This format is used if

you do not specify any FILEDEF options when you define a schema file. For

example, you can create a FILEDEF such as this:

FILEDEF DBSFILE DISK DBSFILE SCHEMIN A

where DBSFILE is the name of the schema file as you refer to it in the SCHEMA

command.

For a procedure to construct a FILEDEF command, see “Using File Definitions” on

page 14. For more information about FILEDEF parameters and options, see

Appendix B, “FILEDEF Command Syntax and Notes,” on page 249.

SQL Statement Processing

The SQL statements that you can enter from the (input) control file are:

v SELECT statements (without an INTO clause or host variables)

v Data manipulation statements

v Data control statements

v Data definition statements

v Authorization statements.

You cannot enter some SQL statements in the Database Services Utility (input)

control file. You receive an error message if you attempt to use these statements:

v SELECT statements with an INTO clause or host variables

v Cursor management statements (DECLARE, OPEN, FETCH, CLOSE)

v Commands that support dynamic SQL statement execution (PREPARE,

DESCRIBE, EXECUTE, EXECUTE IMMEDIATE)

v Exception handling statements (WHENEVER statements)

v INCLUDE statements (INCLUDE SQLCA or INCLUDE SQLDA).

SQL statements entered from a Database Services Utility (input) control file must

not be prefixed by EXEC SQL (as they are when embedded within application

programs). In DB2 Server for VM, no information should be placed in the input

record after the semicolon. This restriction does not apply to positions 73 through

80 of a control-file record when the Database Services Utility control file is

assigned as a CMS file. In DB2 Server for VSE, use a semicolon to indicate the end

of each SQL statement. Do not use the continuation character required by ISQL for

SQL statements that span record boundaries. Except for positions 73 through 80, no

information should be placed in the input record after the semicolon.

SELECT and Arithmetic Exceptions

Database Services Utility flags arithmetic exceptions in outer select-lists by filling

the corresponding fields with number (or pound) signs (#). When one or more of

these exceptions occur, (for example, when a number is divided by zero) a

Chapter 8. Command Reference 143

Database Services Utility and an SQLCODE message are issued after the results are

retrieved. If more than one arithmetic exception occurs, only one

message—referring to the first exception—is issued. This is to alert you to any

warnings occurring during Database Services Utility (input) control file processing.

Processing Summary

Figure 78 summarizes the Database Services Utility processing that you can

perform on tables and views.

Notes:

1. See Database Services Utility UNLOAD record format description in

“UNLOAD DBSPACE” on page 201 and “UNLOAD TABLE” on page 204.

2. View definitions must not violate any of the rules related to SQL INSERT

processing. In general, the view must be:

v Defined only on one table

v Defined to include all the NOT NULL columns of the underlying table

v Defined without using virtual column definitions.

3. If SAM files created by Database Services Utility UNLOAD processing are used

as input to Database Services Utility DATALOAD processing, the rules below

must be followed. (This description assumes that you are thoroughly familiar

with the Database Services Utility UNLOAD record formats and the contents of

each Database Services Utility UNLOAD record type.)

v All input data records selected for DATALOAD processing must contain data

fields in the same position in each data record up to the last position of a

data record type referenced by DATALOAD commands.

Table View Multiple

Tables

DATAUNLOAD
UNLOAD

TABLE

UNLOAD

DBSPACE

SAM File
1

SAM File
1

RELOAD TABLE NEW

RELOAD TABLE PURGE

DATALOAD TABLE

RELOAD DBSPACE

NEW OR PURGE

User Program

Table

View

One or

More

Tables

2

3

(Note that the SAM

files could also be

on magnetic tape.)

Figure 78. Database Services Utility Processing

144 Database Services Utility

This rule implies that all input data record varying-length fields must have

the same length. Any fields that permit nulls must all be null or must all

contain data.

v The DATALOAD input-record-id-clause must be employed to select at least

the UNLOAD record type 60 for DATALOAD processing.

v The position of the column data in the input data record must be computed

from the following information:

– Order of column definition in source table or view

– Actual length of column data at time of UNLOAD

– Fixed “overhead” in data records created by Database Services Utility

UNLOAD processing.

Load-Data Commands

DATALOAD TABLE

The DATALOAD command and subcommands are contained on more than one

input record. If, for example, you want to load data into 10 columns of a table, the

first input record contains the DATALOAD command, and the next 10 input

records contain the Table Column Identification (TCI) subcommands.

The DATALOAD command cannot be continued onto a second input record; it

must be completed on a single record. The record immediately following the

DATALOAD command must contain a TCI subcommand.

DATALOAD TABLE Format

 Example:

 DATALOAD TABLE(SMITH.ACTIVITY)

 ACTNO 1-3

 ACTKWD 5-10

 ACTDESC 12-21

 INFILE(NEWACT) <-------in DB2 Server for VM

 INFILE(NEWACT BLKSZ (2048) PDEV (TAPE) NOREWIND RECFM(FB)) <-in DB2 Server for VSE

Format:

►► DATALOAD TABLE (table_name)

input_record_id_clause
 ►◄

►► table_column_id_subcommand ►◄

►►

▼

 infile_subcommand

.

user_data_record

ENDDATA

 ►◄

Note: Detailed syntax is shown in the following pages.

Chapter 8. Command Reference 145

Authorization: You must have the INSERT and SELECT privilege on the tables

affected by the command.

TABLE (table_name)

identifies the table (called table_name) to be loaded. (The table must already

exist.) You can further identify the table by specifying the owner of the table.

For more information about identifying tables see “Qualifying Object Names”

on page 110. A synonym cannot be used as table_name. You can specify a view

name instead of a table name if the view meets the following requirements:

v The view is defined on a single table.

v The view definition includes all NOT NULL columns in the table. That is, all

columns outside of the view definition must permit the insertion of nulls.

v The view does not contain a column that is a virtual column.

A virtual column is a column of a view that is not derived directly from a

column of a table. For example, view columns defined with expressions such

as BONUS+COMM, PRSTAFF*1.5, or AVG(BONUS) are virtual columns.

 When loading data into a view that was created using the WITH CHECK

OPTION clause, the database manager checks all inserts and updates to the

view against the view definition and rejects them if the row to be inserted or

updated does not conform to the view definition.

table_name

identifies the table to be loaded.

input_record_id_clause

is optional; it allows you to selectively load records into the table. Records are

used for DATALOAD processing only if they contain the value specified in the

input_record_id_clause. All input data records are loaded into the table if you

omit this parameter.

 If multiple DATALOAD commands are supplied before an INFILE command

and an input_record_id_clause appears on one of them, all the DATALOAD

commands must have the clause. Database Services Utility error messages are

generated and no DATALOAD processing is performed if you break this rule.

 The parameters of input_record_id_clause are:

startpos

identifies the starting position in the input record of the identification value.

Position 1 of the input record is the first position of the logical record. If

variable-length input records are used, startpos 1 to 4 refers to the record length

control field. As a result, startpos 5 refers to the first data position.

endpos

identifies the last position of the identification value. If the value occupies only

one position, you need only specify startpos. Blanks are not allowed between

the starting position, hyphen, or ending position values.

constant

identifies the identification value. If an input record contains this value in the

specified location, it is used for loading the specified table.

 The value cannot be continued onto a second input record. It can be one of the

following:

v A character-string constant that satisfies both of these requirements:

– Must be enclosed in single quotation marks (')

– Has a value of maximum length equal to endpos−startpos+1.

v A one-position unsigned integer constant (range is 0 to 255)

146 Database Services Utility

v A two-position optionally signed integer constant (default is a positive

value)

v A four-position optionally signed integer constant (default is a positive

value).

Notice that one-, two-, or four-position refers to the length the value occupies

in the input record, not the length it occupies in the clause itself. See Figure 79

through Figure 82 for examples to clarify this definition.

Examples of Input-Record-Id-Clause

 IF POS (20-22) = ’RT1’ ▌1▐

 IF POS (20-21) ¬= ’01’

▌1▐

To be used for DATALOAD, positions 20 to 22 of the input data record

must contain the character string RT1.

Figure 79. Character-String Constant Value Used in the Input-Record-Id-Clause

 IF POS (20) = 255 ▌1▐

 IF POS (16) ¬= 25

 IF POS (35) > 3

▌1▐

To be used for DATALOAD, positions 20 of the input data record

must contain a hex FF value.

Figure 80. One-Position Integer Constant Value Used in the Input_Record_Id_Clause

 IF POS (20-21) = 1 ▌1▐

 IF POS (35-36) <> 50

 IF POS (5-6) >= +32767

 IF POS (3-4) <= 32767

▌1▐

To be used for DATALOAD, positions 20 through 21 of the input

record must contain a hex 0001 value.

Figure 81. Two-Position Integer Constant Value Used in the Input_Record_Id_Clause

 IF POS (20-23) = 15 ▌1▐

 IF POS (16-19) ¬= 50

 IF POS (21-24) >= +2000123563

 IF POS (20-23) < 1839107489

▌1▐

To be used for DATALOAD, positions 20 through 23 of the input

record must contain a hex 0000000F value.

Figure 82. Four-Position Integer Constant Value Used in the Input_Record_Id_Clause

Chapter 8. Command Reference 147

Table_Column_Id Subcommand

 The next record following the DATALOAD command must contain a Table

Column Identification (TCI) subcommand. If it does not, the Database Services

Utility issues an error message. TCI subcommands identify the location in the

input records of the data for a table column. Only one TCI subcommand can

appear in an input record. The command parameters must not span input records,

and the column_name, startpos, and endpos parameters must be specified first in the

command and in that order.

The data must be in the same record positions in all records that relate to the table.

column_name

specifies the name of the table column where the input data is to be stored.

startpos

identifies the starting position of the data in each input data record. Position 1

of the input record corresponds to the first position of the logical input record.

If variable-length input records are used, startpos 1 to 4 will refer to the record

length control information. As a result, startpos 5 refers to the first data

position.

endpos

identifies the end position of the data in each input data record. You can omit

this parameter if the data occupies only one position in the input record. If you

specify this parameter, do not place blanks between the starting position and

the hyphen, or between the hyphen and the ending position.

data-type

identifies whether character, fixed-binary, floating-point, zoned, packed

decimal, or graphic data values are contained in the record positions specified.

The data type specification can appear either before or after null or current if

both parameters are entered. The data type parameter is optional, and the

default data type is character. The valid data type identifiers that you can

specify are:

CHAR or CHARACTER

If the column-type is CHAR, an all-blank input record data field results in

a sequence of blanks being inserted in the table.

 If the table column is defined with a column-type of VARCHAR, trailing

blanks are removed from the input record data field before the length of

the field is established. An all-blank input record data field targeted for a

Format:

►► column_name startpos options null_current_clause ►◄

options

▼

 .

CHARacter

-endpos

data_type

148 Database Services Utility

varying-length character column results in a length of 0. (A sequence of

blanks is not inserted in the database.)

 If extended DBCS is in effect for a database, character input data can

contain DBCS characters with shift-in and shift-out delimiters, but the

Database Services Utility does not ensure that shift-in and shift-out

delimiters are balanced.

 If the table column is defined as numeric (SMALLINT, INTEGER,

DECIMAL, or FLOAT), character (EBCDIC) input data must be in the form

of an SQL INTEGER, DECIMAL, or FLOAT constant. The character input

data is then converted by Database Services Utility processing.

Note: If a data field contains an EBCDIC numeric value that is not in the

form of an SQL INTEGER, DECIMAL, or FLOAT constant, (or if it

contains an implied decimal point), the data field can meet the

requirements of a DATALOAD ZONED input data field.

 The type of representation allowed for numeric values in character (CHAR

or CHARACTER) input data fields depends on the data type of the target

numeric column:

v A value in an SQL INTEGER constant format is valid for a SMALLINT

or INTEGER column.

v A value in an SQL INTEGER or DECIMAL constant format is valid for a

DECIMAL column.

v A value in an SQL INTEGER, DECIMAL, or FLOAT constant format is

valid for a FLOAT column.

 The number is converted regardless of its position in the field, but leading

and trailing blanks are ignored. If you specify a data field in positions 1 to

5 and type a 2-character number in positions 4 and 5, the number is

recognized. In the example below, the TCI subcommand says that data for

ACTNO (which has a SMALLINT data type) is in record positions 1

through 5. Additionally, it identifies that the data within those record

positions is character. Thus, the Database Services Utility must convert the

character data on the input record to a SMALLINT value before it can

insert it into the ACTNO column shown in Figure 83.

DATALOAD TABLE(ACTIVITY)
ACTNO 1-5 CHAR

Input Record:

1 5

V V

45

45

In both of these cases, the utility
recognizes 45 and ignores the leading
or trailing blanks when performing
data conversion.

Figure 83. Character Input Data Used in Data type-n

Chapter 8. Command Reference 149

The precision and scale represented in the CHAR field targeted for a table

column with a data type of DECIMAL must be less than or equal to the

precision and scale defined for the column. Leading zeros after the

optional sign are ignored; thus, you can code:

+000000011.1

on an input data record, and it fits into a column with a data type of

DECIMAL(3,1).

 Character is the default data type for input records.

DATE

If the table column is defined with a column type of DATE, input data can

be in one of the following formats:

yyyy-mm-dd (ISO, JIS format)

dd.mm.yyyy (EUR format)

mm/dd/yyyy (USA format)

installation defined (Local format)

where:

 yyyy is the year

 mm is the month

 dd is the day

Local Date Format

A database administrator can change the date default format, which is

defined in the SYSTEM.SYSOPTIONS table, from ISO (which is the

system-supplied database default form) to any installation-defined

format. See the DB2 Server for VSE System Administration, or DB2 Server

for VM System Administration manuals for information about

installation-defined formats and their interface.

Note: You can omit leading zeros from months and days, but do not

replace them with blanks. For example, 2000-1-1 is valid while

2000-�1-�1 is not.

TIME

If the table column is defined with a column type of TIME, input data can

be in one of the following formats:

hh:mm AM or hh:mm PM (USA format)

hh.mm[.ss] (ISO, EUR format)

hh:mm[:ss] (JIS format)

installation defined (Local format)

where:

 hh is the hour

 0 <= hh <= 12 for USA format

 0 <= hh <= 24 for ISO, EUR, JIS format

 mm is the minutes

 ss is the seconds

In the USA time format, you can specify zero in the hh field only for 00:00

a.m.

Local Time Format

A database administrator can change the time default format, which is

defined in the SYSTEM.SYSOPTIONS table, from ISO (which is the

system-supplied database default form) to any installation-defined

format. See the DB2 Server for VSE System Administration or the DB2

150 Database Services Utility

Server for VM System Administration manual for information about

installation-defined formats and their interface.

Note: Leading zeros can be omitted from hours. The specification of

seconds is optional.

TIMESTAMP

If the table column is defined with a column type of TIMESTAMP, input

data must be in the following format:

yyyy-mm-dd-hh.mm.ss[.[nnnnnn]]

where

 yyyy-mm-dd is the date (see ISO DATE format)

 hh.mm.ss is the time (see ISO TIME format)

 nnnnnn is the microseconds

Notes:

1. Leading zeros can be omitted from the month, day, and hour.

2. The microsecond format is optional.

FIXED or INT or INTEGER

If the table column is defined with a data type of SMALLINT, the input

can be in a 1-byte or 2-byte binary data field. Table columns defined with a

data type of INTEGER can be loaded from a 1-byte, 2-byte, or 4-byte

binary input data field.

 The value ranges for binary input data fields are:

v A 1-byte binary data field can contain an 8-bit binary integer with a

value range of 0 to 255.

v A 2-byte binary data field can contain a 15-bit binary integer with the

value range described for a table column defined with the data type

SMALLINT.

v A 4-byte binary data field can contain a 31-bit binary integer with the

value range described for a table column defined with the data type

INTEGER.

FLOAT or REAL

If FLOAT is specified for 4-byte floating-point binary input data, set

startpos and endpos so that (endpos−startpos+1) = 4. The table column

identified must be defined with a data type of REAL or FLOAT(n) where n

is from 1 to 21.

FLOAT or DOUBLE PRECISION

If FLOAT is specified for 8-byte floating-point binary input data, set

startpos and endpos so that (endpos−startpos+1) = 8. The table column

identified must be defined with a data type of FLOAT, DOUBLE

PRECISION, or FLOAT(n) where n is from 22 to 53.

Note: If 8-byte floating-point binary data is loaded into a 4-byte

floating-point table column, a number of digits of precision are lost.

DECIMAL or DEC (scalevalue)

If you have packed decimal input data, the table column must be defined

with a DECIMAL data type. The precision of the input decimal data field

value must be equal to or less than the precision of the target decimal

column. The Database Services Utility takes the scale (number of positions

to the right of the implied decimal point) of an input record decimal data

value from the scale of the target column unless you specify the optional

DECIMAL(scalevalue) form of the command parameter.

Chapter 8. Command Reference 151

The optional scalevalue is an integer value (0 through 31) identifying the

number of scale positions in the input record decimal data value. A

scalevalue equal to or less than the scale of the target DECIMAL column is

allowed. A Database Services Utility processing error occurs if the scalevalue

is greater than the scale of the target DECIMAL column.

 If the DECIMAL(scalevalue) form of the parameter is used, no blanks are

allowed within the parameter specification.

 Columns defined as NUMERIC are treated as DECIMAL data types.

ZONED (scalevalue)

If the input record data field has a zoned value, the target table column

must be defined as numeric (SMALLINT, INTEGER, DECIMAL, FLOAT).

See Figure 84 on page 154 for examples.

 Three variations or types of zoned data input are supported (see

description below). The type of zoned data is identified by Database

Services Utility processing. Database Services Utility processing converts

the zoned data to the data type of the target numeric column.

Note: If a data field contains an EBCDIC numeric value with an explicit

decimal point, or otherwise does not meet the requirements of a

zoned input data field, the data field can meet the requirements of a

DATALOAD character (CHAR) input data field. DATALOAD

character input data is described in this section.

If the zoned field is for a DECIMAL column, it must contain a value with a

precision less than or equal to the precision of the target DECIMAL

column. The Database Services Utility uses the scale (number of positions

to the right of the implied decimal point) of the target DECIMAL column

for the scale of a zoned value in the input record unless the optional

ZONED(scalevalue) form of the command parameter is specified.

 The optional scalevalue is an integer value (0 through 31) identifying the

number of scale positions in each input record zoned data field value. A

scalevalue equal to or less than the scale of the target DECIMAL column is

allowed. A Database Services Utility processing error occurs if scalevalue is

greater than the scale of the target DECIMAL column.

 If the ZONED(scalevalue) form of the parameter is used, no blanks are

allowed within the parameter specification. Also, scalevalue is ignored if the

target column is defined as a SMALLINT, INTEGER, or FLOAT column.

 The Database Services Utility zoned data support is based on the definition

of a zoned field that is described in the publication IBM System/370

Principles of Operation manual. It includes support for standard and

extended decimal items (zoned decimal items).

 The following three variations of a zoned input data field are supported:

1. A standard zoned data field.

A numeric value within a standard zoned data field has the following

format:

v Each digit of a number is represented by a single byte.

v The 4 high-order bits of each byte are zone bits except for the 4

high-order bits of the low-order byte, which represent the sign of the

number.

v The 4 low-order bits of each byte contain the value of the digit.

The valid zone bit configuration for a standard zoned data field is:

152 Database Services Utility

1111 (hex F)

The valid plus-sign bit configurations for a standard zoned data field

are:

 1010 (hex A)

 1100 (hex C)

 1110 (hex E)

 1111 (hex F)

The valid minus-sign bit configurations for a standard zoned data field

are:

 1011 (hex B)

 1101 (hex D)

2. A zoned field with a leading sign.

A zoned data field value with a leading sign has a format identical to

the zoned data format described above except that the 4 high-order bits

of the high-order byte represent the sign of the number. The 4

high-order bits of the low-order bytes contain zone bits.

The valid plus-sign bit configuration for a zoned data field with a

leading sign is:

 1100 (hex C)

The valid minus-sign bit configuration for a zoned data field with a

leading sign is:

 1101 (hex D)

The valid zone bit configurations for a zoned data field with a leading

sign is:

 1111 (hex F)

3. A zoned field with a trailing sign in a separate position.

A numeric value within a zoned data field with a trailing sign in a

separate position has a format similar to the zoned data format

described above except that the high-order 4 bits of the high-order and

low-order numeric value bytes contain zone bits. The sign of the

numeric data value is contained in a separate low-order data value

byte.

The valid zone bit configuration for the numeric value bytes in a zoned

data field with a trailing sign in a separate position is:

 1111 (hex F)

A plus-sign is represented in the separate low-order data field position

by an EBCDIC plus (+) sign (hex 4E) or by a blank (hex 40). A

minus-sign is represented in the low-order data field position by an

EBCDIC minus (−) sign (hex 60).

Chapter 8. Command Reference 153

GRAPHIC or GR or G

If the input field contains double-byte character set (DBCS) data, the table

columns must be defined with a data type of GRAPHIC, VARGRAPHIC,

or long fields.

 One DBCS character is contained in 2 data-field bytes. The input data field

must be an even number (2, 4, 6...100, and so forth) of positions (bytes) in

length, or a Database Services Utility processing error occurs.

 The shift-out and shift-in delimiters are optional in the input data field.

 If the first position of the input data field contains a shift-out delimiter

(hex 0E), the last position of the data field must contain a shift-in delimiter

(hex 0F); if it does not, a Database Services Utility processing error occurs.

 If the first position of the input data field does not contain a shift-out

delimiter, no shift-in delimiter is expected.

 See Table 9 on page 165 for a summary of data type conversions.

┌────────────────┬───┐

│ HEXADECIMAL │ DESCRIPTION OF VALUE LOADED INTO NUMERIC COLUMN │

│ CONTENTS OF ├───┤

│FIVE(5) POSITION├───────────┬───────────┬────────────────┬────────────┤

│ZONED DATA FIELD│ SMALLINT │ INTEGER │ DECIMAL(5,2) │ FLOAT │

├────────────────┼───────────┼───────────┼────────────────┼────────────┤

│ │ │ │ │ │

│ (...System/370* Zoned Data Formats...) │ │ │

│ F1F1F1F1A1 │ 11111 │ 11111 │ 111.11 │ 1.1111E+04 │

│ F1F1F1F1B1 │ ─11111 │ ─11111 │ ─111.11 │─1.1111E+04 │

│ F1F1F1F1C1 │ 11111 │ 11111 │ 111.11 │ 1.1111E+04 │

│ F1F1F1F1D1 │ ─11111 │ ─11111 │ ─111.11 │─1.1111E+04 │

│ F1F1F1F1E1 │ 11111 │ 11111 │ 111.11 │ 1.1111E+04 │

│ F1F1F1F1F1 │ 11111 │ 11111 │ 111.11 │ 1.1111E+04 │

│ │ │ │ │ │

│ (...COBOL Standard Zoned Data...) │ │ │

│ F1F1F1F1F1 │ 11111 │ 11111 │ 111.11 │ 1.1111E+04 │

│ F1F1F1F1C1 │ 11111 │ 11111 │ 111.11 │ 1.1111E+04 │

│ F1F1F1F1D1 │ ─11111 │ ─11111 │ ─111.11 │─1.1111E+04 │

│ │ │ │ │ │

│ (...COBOL Zoned Data with Leading Sign...) │ │

│ F1F1F1F1F1 │ 11111 │ 11111 │ 111.11 │ 1.1111E+04 │

│ C1F1F1F1F1 │ 11111 │ 11111 │ 111.11 │ 1.1111E+04 │

│ D1F1F1F1F1 │ ─11111 │ ─11111 │ ─111.11 │─1.1111E+04 │

│ │ │ │ │ │

│ (...COBOL Zoned Data with Trailing Sign in Separate Position...) │

│ F1F1F1F140 │ 1111 │ 1111 │ 11.11 │ 1.111E+03 │

│ F1F1F1F14E │ 1111 │ 1111 │ 11.11 │ 1.111E+03 │

│ F1F1F1F160 │ ─1111 │ ─1111 │ ─11.11 │ ─1.111E+03 │

│ │ │ │ │ │

│ (...Miscellaneous Other Formats Accepted...) │ │

│ 4040404040 │ 0 │ 0 │ 0 │ 0.0E0 │

│ 404040F0F2 │ 2 │ 2 │ .02 │ 2.0E+00 │

│ 4040F24040 │ 2 │ 2 │ .02 │ 2.0E+00 │

│ 40C1F1F1F1 │ 1111 │ 1111 │ 11.11 │ 1.111E+03 │

│ 40D1F1F1F1 │ ─1111 │ ─1111 │ ─11.11 │ ─1.111E+03 │

│ 404040F24E │ 2 │ 2 │ .02 │ 2.0E+00 │

│ F24E404040 │ 2 │ 2 │ .02 │ 2.0E+00 │

│ 404040F260 │ ─2 │ ─2 │ ─.02 │ ─2.0E+00 │

│ F260404040 │ ─2 │ ─2 │ ─.02 │ ─2.0E+00 │

└────────────────┴───────────┴───────────┴────────────────┴────────────┘

Figure 84. Examples of Valid Zoned Data Input

154 Database Services Utility

null-current-clause

allows you to specify that a NULL, CURRENT DATE, CURRENT TIME, or

CURRENT TIMESTAMP is to be loaded in place of the input record data for a

table column. To determine when a null or current value is to be loaded, a

comparison is done between two values. The first value is taken from the input

record; you specify the positions of the input record that contain this value.

The second value is specified in the null or current clause.

 No embedded blanks are allowed in the null or current clause within the left

and right parentheses enclosing the startpos and endpos values. The format of

the null or current clause is:

 where the following is true, as appropriate:

v NULL IF POS is for null columns.

v CURRENT DATE IF POS is for date columns.

v CURRENT TIME IF POS is for time columns.

v CURRENT TIMESTAMP IF POS is for timestamp columns.

 These special registers identify the start of a null or current clause. Note that IF

is optional; for example, you can specify the keyword phrase NULL IF POS or

NULL POS.

Note: CURRENT TIMEZONE is not supported.

 When CURRENT DATE, CURRENT TIME, or CURRENT TIMESTAMP is to be

loaded, you must provide a value for the endpos parameter of the TCI

subcommand so that the correct length of the data field can be loaded. You

need a minimum of 10 bytes for CURRENT DATE, a minimum of 5 bytes for

CURRENT TIME, and a minimum of 19 bytes for CURRENT TIMESTAMP.

These values follow the rules for ISO formats. To ensure that each data field is

sufficiently large to accommodate the maximum value that can be entered for

the field, you should define 10 bytes for CURRENT DATE, 8 bytes for

CURRENT TIME, and 26 bytes for CURRENT TIMESTAMP. Refer to the input

data formats required for date, time, and timestamp.

startpos

identifies the starting position in the input data record of the value that

identifies a null or current table-column value. Position 1 of the input data

record is the first position of the logical record. If variable-length input records

are used, startpos 1 to 4 will refer to the record length control information. As a

null-current-clause

►► NULL

CURRENT DATE

CURRENT TIME

CURRENT TIMESTAMP

IF

POS

(

startpos

)

=

constant

-endpos

<>

^=

<

>

<=

>=

 ►◄

Chapter 8. Command Reference 155

result, startpos 5 refers to the first data position. The null or current identifier

value positions can be the same as, or different from, those specified for the

associated data field.

endpos

identifies the last input data record position of the null or current table column

identification value. If the value occupies only one input data record position,

this parameter is not required.

constant

specifies the null or current table column identification value. The value cannot

be continued to a second input record but can be one of the following:

v A character-string constant that:

– Must be enclosed in single quotation marks (')

– Has a value of maximum length equal to endpos−startpos+1.

See Figure 85 on page 158 for examples.

v A one-position unsigned integer constant (range 0 to 255). See Figure 86 on

page 158 for examples.

v A two-position optionally signed integer constant (default is a positive

value). See Figure 87 on page 158 for examples.

v A four-position optionally signed integer constant (default is a positive

value). See Figure 88 on page 158 for examples.

156 Database Services Utility

Overlapping Column Position Specifications

The startpos and endpos in the null-current-clause need not depend on the

positions occupied by data fields in the sequential input file specified in the

INFILE subcommand; however, if the positions of the data fields and the

positions specified by startpos and endpos in the null-current-clause overlap,

data can be overlaid.

During DATALOAD processing, the database manager generates an input

buffer to hold one row of data for the table. When a TCI subcommand is

encountered, one row of the data, either embedded or in the specified input

file, is written to the input buffer. The TCI subcommand then writes the

CURRENT DATE, CURRENT TIME or NULL characters to the buffer as

required. The data from the specified positions in the input buffer is then

written to the table. This process is performed for every row in the table. If

the positions of the data fields and the positions specified by startpos and

endpos in the null-current-clause overlap, the data in the buffer may be overlaid

and cause unexpected results or errors. The following example illustrates how

data may be overlaid.

CREATE TABLE TIMING

 (START_DATE DATE,

 START_TIME TIME);

DATALOAD TABLE(TIMING)

 START_DATE 3-12 CURRENT DATE IF POS(1-10) = ’ ’

 START_TIME 5-12 CURRENT TIME IF POS(4-11) = ’ ’

INFILE(*)

 -- FIRST 12 COLUMNS ARE BLANK

ENDDATA;

In this example, the START_DATE, START_TIME and the startpos and endpos

of the IF POS clause overlap. The first row of the embedded data is loaded

into the input buffer. The first TCI subcommand in the DATALOAD

command checks column 1 to 10 in the buffer and determines that POS(1-10)

= ' ' is true. The CURRENT DATE is then written into positions 3

to 12 in the input buffer. The second TCI subcommand checks positions 4 to

11 of the input buffer; however, positions 3 to 12 contain part of CURRENT

DATE; therefore the IF POS(4-11) ' ' clause is not true. The data for

START_TIME is then taken from column 5 to 12 in the input buffer when the

START_TIME column is written to the TIMING table. Because positions 5 to

12 in the input buffer were already overwritten by the first TCI command,

those positions now contain part of CURRENT DATE and the data for

START_TIME is not in the correct time format. A syntax error therefore

occurs.

Chapter 8. Command Reference 157

Examples of Null-Current-Clause

NULL IF POS(20-23) = ’SKIP’

CURRENT DATE IF POS(20-21) ¬= ’ ’

CURRENT TIME IF POS(20-21) >= ’01’

CURRENT TIMESTAMP IF POS(20-21) <> ’XX’

Figure 85. Character-String Constant Value Used in the Null-Current-Clause

NULL IF POS(20) = 255

CURRENT DATE IF POS(16) ¬= 25

CURRENT TIME IF POS(35) < 3

CURRENT TIMESTAMP IF POS(50) > 16

Figure 86. One-Position Integer Constant Value Used in the Null-Current-Clause

NULL IF POS (20-21) = 1

CURRENT DATE IF POS (35-36) ¬= 50

CURRENT TIME IF POS (5-6) <= +32767

CURRENT TIMESTAMP IF POS(9-10) >= 116

NULL IF POS (3-4) > -32768

Figure 87. Two-Position Integer Constant Value Used in the Null-Current-Clause

NULL IF POS (20-23) = 1

CURRENT DATE IF POS (16-19) ¬= 50

CURRENT TIME IF POS (21-24) <= +2000123563

CURRENT TIMESTAMP IF POS (20-23) >= -1839107489

Figure 88. Four-Position Integer Constant Value Used in the Null-Current-Clause

158 Database Services Utility

INFILE Subcommand

 The INFILE subcommand identifies the sequential input file containing the data

referenced by the preceding DATALOAD and Table Column Identification

subcommands.

This INFILE subcommand not only tells the utility the file the data is in, but also

tells it to read that file and load the data into the table(s) identified by the previous

DATALOAD TABLE command(s).

The sequential input file can contain fixed, variable, or variable-length spanned

records. The records can be blocked or unblocked.

* identifies that input data is embedded within the control statements

immediately following this control statement. Subsequent records are processed

as user data records until an ENDDATA statement is encountered. If the

(input) control file is exhausted before an ENDDATA statement is encountered,

a Database Services Utility processing error occurs, and the current logical unit

of work is rolled back.

Note: The CONTINUED and LIST parameters are applicable only if the *

parameter has been specified.

CONTINUED (No or Yes)

indicates whether or not the input data that is embedded within the

control statements can span more than one (input) control file record.

►►
 (1)

INFILE

►

► (*)

No

Yes

CONTINUED

(

)

LIST

(

)

Yes

No

(

ddname

option_b

)

 ►

►
COMMITCOUNT

(ccount)

RESTARTCOUNT

(rcount)
 ►◄

Notes:

1 Option B is valid in DB2 Server for VSE only.

option-b:

tape/disk options for DB2 Server for VSE:

2048

BLKSZ

(

size

)

REWIND

(TAPE)

NOREWIND

PDEV

(DASD)

 ►

►
RECFM

(format)

RECSZ

(size)

Chapter 8. Command Reference 159

Continued record processing is supported only for data records embedded

within the (input) control file because data records in sequential tape or

DASD are not restricted to a maximum length of 80 positions. No blanks

are allowed between or within this parameter keyword and value

specification.

No

indicates that the input data does not span (input) control file records.

Specify either NO or N. This is the default.

Yes

indicates that the input data can span (input) control file records.

Specify either YES or Y.

 If you specify CONTINUED(YES), the actual input data is constructed from

one or more (input) control file data records. An input data record with a

nonblank value in position 1 indicates that the input data is continued in the

next (input) control file data record. An input data record with a blank (hex 40)

in position 1 indicates that the input data is not continued in the next (input)

control file data record. The first position (position 1) of each (input) control

file data record is not included in the actual input data. Data for a column can

then be contained in more than one (input) control file data record.

 For example, if 10 input control card file data records are required to contain

the data for each row of a table, DATALOAD processing constructs a single

input data record from 10 consecutive input control card file data records. The

relationship between the positions of each of the 10 input control card file data

records and the positions of the actual input data record is:

 The maximum possible length of the input data is calculated from the highest

endpos value specified in any DATALOAD command or TCI subcommand

comprising the DATALOAD command set. The endpos value specified for an

input record data field or the endpos value specified in an input-record-id-clause

or null or current clause is included in this consideration. The maximum

length of the actual input data (rounded to the next multiple of 80) is

computed by the following formula:

 Control File Actual Input

 Data Data Record Data Record

 Record Positions Positions

 1 2-80 1-79

 2 2-80 80-158

 3 2-80 159-237

 4 2-80 238-316

 5 2-80 317-395

 6 2-80 396-474

 7 2-80 475-553

 8 2-80 554-632

 9 2-80 633-711

 10 2-80 712-790

Figure 89. Relationship of Data Records

160 Database Services Utility

Notes:

1. Any continuation records that would cause the actual input data record

length to exceed the length computed by this formula are read and ignored

by DATALOAD processing.

2. Actual input data records containing data to be loaded into a table must be

at least as long as the highest endpos value specified in a TCI subcommand.

LIST (Yes or No)

indicates whether or not the input data that is embedded within the

control statements should be displayed in the report or message file. The

LIST parameter is applicable only if the data records are embedded within

the (input) control file. No blanks are allowed between or within this

parameter keyword and value specification.

Yes

indicates that the embedded data records should be displayed in the

report or message file. Specify either YES or Y as the parameter value.

The default is LIST(YES).

No

indicates that the embedded data records should not be displayed in

the report or message file. Specify either NO or N as the parameter

value.

 If a data field error is detected in an input data record while the LIST(NO)

and CONTINUED(NO) are in effect, the input data record is displayed in

the report or message file before the message describing the error.

 If LIST(NO) and CONTINUED(YES) are in effect, no input data is

displayed in the report or message file if a data field error occurs. A

meaningful display of the input data record might not be possible because

the data for a record might span multiple 80-byte data records or the data

field in error might span input data records. Also, it is likely that

continued records contain unprintable data. The commands and input data

can be rerun with LIST(YES) specified if the problem cannot be identified.

ddname

in DB2 Server for VM is the name of the sequential input file defined with

a CMS FILEDEF command. The file characteristics specified in the

FILEDEF command or the default FILEDEF specifications are the source of

the input record definition information for the Database Services Utility.

Input files with RECFM U, A, or M are not supported.

 If you define DATALOAD CMS input files with variable-length spanned

records (RECFM=VS or RECFM=VBS), you must use the file-mode number

4. DATALOAD processing changes the record format from VS or VBS to

VB.

Note: The RECFM, RECSZ and BLKSIZE information displayed in the

message ARI0868I depends on the CMS FILEDEF command

specifications for the DATALOAD input file. If you define

DATALOAD input files as VS or VBS, DATALOAD processing

Maximum Length highest endpos value + 80

Actual Input = -------------------------------- X 80

Data Record 80

Figure 90. Formula

Chapter 8. Command Reference 161

changes the record format to VB and the RECFM, RECSZ and

BLKSIZE information displayed in the message ARI0868I will

indicate this change.

 If variable-length input records are used, the data fields referenced by the

TCI subcommands must be in the same position for each occurrence of the

data record type.

 Do not specify SYSIN or SYSPRINT as the ddname.

 in DB2 Server for VSE: is the TLBL or DLBL job control statement file

name for the sequential (SAM) input file or for SYSIPT if you are using the

READ member statement. For more information, refer to the DB2 Server for

VSE Program Directory manual.

 You must specify the ddname parameter first; that is, you cannot specify

BLKSZ, PDEV, RECFM, and RECSZ before the ddname. You can specify the

other keyword parameters in any order.

BLKSZ (size) (DB2 Server for VSE Only)

is a parameter that specifies the block size of the sequential input file. The

default block size is 2048 bytes per block.

PDEV (TAPE or DASD) (DB2 Server for VSE Only)

is an optional parameter that specifies the device type (DASD or TAPE) of

the sequential (SAM) input file. If PDEV(DASD) is specified, the file

resides on any device supported by the VSE DTFSD macro. Managed SAM

does not support spanned records. If PDEV(TAPE) is specified, the file

resides on any device supported by the VSE DTFMT macro. The default is

PDEV(TAPE).

NOREWIND or REWIND (DB2 Server for VSE Only)

controls tape file rewind processing performed during OPEN

processing. This parameter is valid only if you specify TAPE for PDEV.

The default processing is REWIND.

 NOREWIND (DB2 Server for VSE Only)

specifies that the tape file will not be rewound by OPEN

processing. If NOREWIND is specified for input tape files

referenced by a series of DATALOAD commands, you must ensure

that the tape files being referenced are in ascending sequence. For

example, if NOREWIND is specified in a sequence of two

DATALOAD commands and the first command reads tape file 2,

then the second command must reference tape file 3 or a higher

number. If it references tape file 1, an OPEN error occurs.

REWIND (DB2 Server for VSE Only)

specifies OPEN processing to rewind the tape file.

RECFM (format) (DB2 Server for VSE Only)

is an optional parameter that specifies the format of the records in the

input data file. For format, substitute one of the following values:

162 Database Services Utility

The default is RECFM(F).

 If variable-length input records are used, the data fields referenced by the

TCI subcommands must be in the same position for each occurrence of the

data record type.

RECSZ(size) (DB2 Server for VSE Only)

is a parameter that specifies the length of a logical record for the input

data file.

 Default record size values are specified as follows:

v If RECFM = F or FB, the default record size is the block size.

v If RECFM = V or VB, the default record size is the block size minus four.

v If RECFM = S or SB, the default record size is the block size minus four

or the highest input record position referenced, whichever is greater.

COMMITCOUNT (ccount)

identifies the frequency of COMMIT action during DATALOAD

processing.

ccount

is a number from 1 to 2,147,483,647 indicating that a COMMIT

statement should be executed after the number of input data records

equal to ccount are processed by DATALOAD.

 Database Services Utility AUTOCOMMIT ON processing must be in effect

when you use DATALOAD COMMITCOUNT processing. If

AUTOCOMMIT is OFF and the COMMITCOUNT parameter is used, an

error message is written. DATALOAD command processing is not

performed.

 If a SET ERRORMODE CONTINUE command is in effect during

DATALOAD COMMITCOUNT processing, input data records with

incorrect data fields might not be used. The incorrect input records are

skipped if:

v Multiple DATALOAD commands were used preceding an INFILE

subcommand and the records were not used for successful inserts by

any other DATALOAD commands.

v An SQL insert error occurs identified by SQLCODE -405, -424, -530, -802,

or -803, followed by message ARI0862E, and insert blocking is not in

effect.

 Insert blocking is not in effect under the following conditions:

v Database Services Utility is running with single user mode.

v Database Services Utility is running with multiple user mode, but was

preprocessed with the NOBLOCK option.

v Insert blocking is suppressed by the database manager.

 Value Meaning

 F fixed, unblocked

 FB fixed, blocked

 V variable, unblocked

 VB variable, blocked

 S variable spanned, unblocked

 SB variable spanned, blocked

Chapter 8. Command Reference 163

Note: For more information, refer to “Skipping Bad Records” on page 45.

 If an invalid ccount value is specified, an error message is written, and

DATALOAD command processing is not performed.

 For DATALOAD CONTINUED record processing, the ccount value refers to

the number of physical input data records, not the number of logical

records constructed from input records. A COMMIT statement is

performed when the number of physical input data records processed

equals or exceeds the ccount value.

RESTARTCOUNT (rcount)

identifies the restart point for DATALOAD processing.

rcount

is a number from 1 to 2147483647 that indicates the number of input

data records to be skipped before DATALOAD record processing

begins.

 If this parameter is omitted, no records are skipped and DATALOAD

processing begins with the first input data record.

 If an invalid rcount value is specified, an error message is written and

DATALOAD processing is not performed.

 If an end-of-file condition occurs before the number of records specified by

the rcount value are read, an error condition exists. Error message

ARI0844E is written to the message file before DATALOAD processing

ends.

 For DATALOAD CONTINUED processing, the rcount value refers to the

number of physical input data records, not the number of logical records

constructed from input records. If the rcount+1 input record is not the first

physical record of a set of physical records comprising a logical record,

error message ARI0887E is issued.

ENDDATA Subcommand

 The ENDDATA subcommand identifies the end of user data embedded within the

(input) control file. This command is valid only if the previous Database Services

Utility command processed was an INFILE(*) subcommand.

No other information is allowed in this subcommand. If ENDDATA is not alone on

the input record, the utility reads it as data. If ENDDATA is terminated by a

semicolon (;), no blanks are permitted between the keyword and the semicolon.

SQL comments are not allowed on the ENDDATA subcommand.

During CONTINUED(YES) processing, an ENDDATA command is recognized only

if the previous (input) control file data record contains a blank (hex 40) in position

Format:

►► ENDDATA ►◄

164 Database Services Utility

1. If the previous (input) control file data record contains a nonblank in position 1,

the ENDDATA command is processed as a continuation data record.

DATALOAD Data Conversion Summary

Table 9 summarizes the data conversion performed by DATALOAD processing.

YES means that the utility performs the conversion; NO means that the utility

cannot convert the input data into the data type of the target column. The numbers

in the chart refer to the notes below.

 Table 9. DATALOAD Data Conversion Table

Input Field Data

Type

Target Column Data Type

CHAR,

VAR-

CHAR, or

LONG

VAR-

CHAR DECIMAL

SMALL-

INT INTEGER REAL11

DOUBLE

PRECI-

SION12

DATE,

TIME or

TIME-

STAMP13

DBCS

GRAPHIC,

VAR-

GRAPHIC,

or LONG

VAR-

GRAPHIC

CHAR Yes1,4 Yes2 Yes2 Yes2 Yes2 Yes2 Yes No

1-Byte FIXED No No Yes Yes No No No No

2-Byte FIXED No No Yes Yes No No No No

4-Byte FIXED No No No Yes No No No No

4-Byte FLOAT No No No No Yes Yes10 No No

8-Byte FLOAT No No No No Yes9 Yes No No

DECIMAL No Yes3 No No No No No No

ZONED No Yes5,6 Yes5 Yes5 Yes5 Yes5 No No

GRAPHIC (G) No No No No No No No Yes7

DATE, TIME, or

TIME-STAMP

No No No No No No Yes8 No

Chapter 8. Command Reference 165

Notes for Table 9:

 1. Character (CHAR) input data fields for VARCHAR or long field columns have

trailing (low-order) blanks truncated before the length of the varying column

is established. All-blank CHAR input data fields result in a length of 0.

 2. The first trailing blank after the number within a character (CHAR) input data

field terminates the character string used for character-to-numeric data

conversion. An all-blank CHAR field or a CHAR field with only a sign (+ or

–) results in a numeric value of 0. The data can be in the form of an integer,

decimal, or float constant.

 3. Decimal (DECIMAL) input data fields should contain data with a precision

less than or equal to the precision of the target DECIMAL column. The

Database Services Utility uses the scale defined for the target column for the

input data unless a scale value equal to or less than that defined for the target

column is specified. A Database Services Utility processing error occurs if the

scale specified for the input data field is greater than that of the target

column.

 4. Character (CHAR) input data fields for CHAR columns are padded with

trailing blanks if they are less than the length of the target column. CHAR

input data fields with a length greater than the length of the target CHAR,

VARCHAR, or long field columns are not allowed.

 5. Leading and trailing blank positions within a zoned input data field are

ignored. An all-blank zoned input data field results in a numeric (SMALLINT,

INTEGER, DECIMAL, or FLOAT) column value of 0. A zoned data input field

containing only an EBCDIC plus (+) sign or minus (–) sign is not valid.

 6. A zoned (ZONED) data input field should contain a value with a precision

less than or equal to the precision of the target DECIMAL column. The

Database Services Utility uses the scale defined for the target column as the

scale for the zoned data value unless a scale value equal to or less than the

scale of the target column is specified. A Database Services Utility processing

error occurs if the scale specified for the input data field is greater than that of

the target column.

 7. A DBCS input data field must be an even number (2, 4, 6,...100, and so forth)

of positions (bytes) in length. The shift-out (hex 0E) and shift-in (hex 0F)

delimiters can be in the first position (startpos) and last position (endpos) of

the data field. A two-position DBCS data field containing only the shift-out

and shift-in delimiter values is treated as a blank input data field.

If the shift-out and shift-in delimiters are present in the data field, the

Database Services Utility treats data field positions startpos+1 to endpos−1 as

DBCS data. The hex value 4040 is treated as a blank DBCS character.

A DBCS input data field for VARGRAPHIC or a long field has trailing

(low-order) DBCS blank characters truncated before the length of the varying

column is established. An all-blank DBCS input data field results in a column

value with a length = 0 for columns defined with the data type

VARGRAPHIC or long field.

 8. The datetime data type input and target type must match; for example, the

input data type of TIME is valid only for the target column data type of

TIME.

 9. When 8-byte floating-point data is loaded into a 4-byte floating-point table

column, a number of digits of precision are lost. The fraction (mantissa) is

reduced from 14 to 6 digits of precision. If an error occurs during the

conversion process, the message ARI0864E is generated, and processing of the

DATALOAD command stops.

10. 4-byte floating-point data is padded with hex 0000 0000.

166 Database Services Utility

11. The REAL input data field represents single-precision floating-point data and

is synonymous with FLOAT(N), where 1 is less than or equal to N, and N is

less than or equal to 21.

12. DOUBLE PRECISION represents double-precision floating-point data and is

synonymous with FLOAT or FLOAT(N), where 22 is less than or equal to N,

and N is less than or equal to 53.

13. When a current date, current time, or current timestamp value is to be loaded,

you must provide a value for the endpos parameter of the TCI subcommand so

that the correct length of the data field can be loaded. You need a minimum of

10 bytes for current date, a minimum of 5 bytes for current time, and a

minimum of 19 bytes for current timestamp. These values follow the rules for

ISO formats. To ensure that each data field is sufficiently large to

accommodate the maximum value that can be entered for the field, you

should define 10 bytes for current date, 8 bytes for current time, and 26 bytes

for current timestamp. Refer to the input data formats required for date, time,

and timestamp.

Chapter 8. Command Reference 167

DATAUNLOAD

DATAUNLOAD Format

Format:

►► DATAUNLOAD ►◄

►► select_statement ; ►◄

►►

▼

,

data_field_id

Subcommand

 ►◄

►► OUTFILE (ddname option_a) ►◄

data_field_id subcommand (DFI)

►►

column_reference

integer

startpos

-endpos

 CHARacter

data_type

►

►
set_null_clause

 ►◄

set_null_clause

►►
 IF SET

NULL

POS

(

startpos

) =

value

-endpos

►◄

option_a valid in DB2 Server for VSE only:

BLKSZ

(size)

NOREWIND

(TAPE)

REWIND

PDEV

(DASD)

 ►

►
RECFM

(format)

RECSZ

(size)

168 Database Services Utility

DATAUNLOAD

identifies the start of the DATAUNLOAD command sequence. A Database

Services Utility processing error occurs if other information is present in the

(input) control file record after the command identifier DATAUNLOAD.

select-statement

is any valid SQL SELECT statement without host variables. The SQL SELECT

statement must begin in the next (input) control file record following the one

containing the DATAUNLOAD command. A semicolon must be used to

terminate the SQL SELECT statement.

 The results of the SQL SELECT statement supplied after a DATAUNLOAD

command are not written to the Database Services Utility report or message

file. An output file data record is written for each row (except those containing

data values that exceed the capacity of numeric output record data fields)

returned as a result of executing the SQL SELECT statement.

 If the user-supplied SQL SELECT statement is not valid, or is not terminated

by a semicolon, a Database Services Utility processing error occurs.

If an arithmetic exception occurs, the DATAUNLOAD command handles it in a

way similar to arithmetic exceptions under the SELECT statement. (See “SELECT

and Arithmetic Exceptions” on page 143 for a description of the way arithmetic

exceptions are handled under the SELECT statement.) If an arithmetic exception

occurs when the data is to be placed into an output numeric data type field

(FIXED, FLOAT, DECIMAL, or ZONED), an error message is issued and

processing is terminated because the DB2 Server for VSE & VM system incorrectly

reads the number (or pound) symbols (#) used under SELECT as real data.

Stopping the processing prevents the arithmetic exception from generating

incorrect output.

 Example 1:

 DATAUNLOAD

 SELECT AVG(BONUS) FROM EMPLOYEE;

 OUTFILE(EXTRA)

 Example 2:

 DATAUNLOAD

 SELECT SALARY FROM EMPLOYEE;

 SALARY 1-10 CHAR

 OUTFILE(REGULAR)

Authorization:

 All normal SELECT privilege ground rules apply.

Chapter 8. Command Reference 169

Data_Field_Id Subcommand

 The next record following the end of the SQL SELECT statement can contain one

or more Data Field Identification (DFI) subcommands or an OUTFILE

subcommand. If the OUTFILE subcommand is missing, a Database Services Utility

processing error occurs. If DFI subcommands are omitted, the default output

record format described in the section “DATAUNLOAD Output Data Field

Defaults” on page 179 is used.

A DFI subcommand identifies the location in the output record where the data for

a column in the select-list should be placed. The subcommand also identifies the

output record data-field data type. If the output record data-field data type is

different from the select-list column data type, the Database Services Utility

converts the column data. The data conversions performed by DATAUNLOAD

processing are described in Table 13 on page 187.

Only one DFI subcommand can appear in an input record. The command

parameters must not span input records, and the column_reference, startpos, and

endpos parameters must be specified first in the command and in that order.

If DFI subcommands are specified, only the data for the select-list columns

referenced by these subcommands is unloaded to the output data record. The data

for a column in the select-list (explicitly specified, or implicitly specified by the *

specification in the SQL SELECT) not referenced by a DFI subcommand is not

unloaded. A Database Services Utility warning message identifies each select-list

column that is ignored by DATAUNLOAD processing.

The data for the same column in the select-list can be unloaded to more than one

output record data field by specifying two or more DFI subcommands that

reference the column.

column_reference

identifies the select-list column to be used as the source of the output data

field value. Column_reference can be any valid form of a table column name or

integer that refers to a select-list column. For example, the integer value 1 (hex

F1) refers to the first item in the select-list; the integer value 10 (hex F1F0)

refers to the 10th item in the select-list.

 A Database Services Utility processing error occurs if:

v The column name specified in the DFI subcommand is not in the select-list.

v The integer value identifying the column name exceeds the number of

columns in the select-list.

 Use the integer notation for column_reference to identify the column if:

v The select-list contains columns from different tables with the same column

name. For example:

Format:

►►

column_reference

integer

startpos

-endpos

 CHARacter

data_type

set_null_clause

►◄

170 Database Services Utility

SELECT...,EMPLOYEE.EMPNO,EMP_ACT.EMPNO,

 ...FROM EMPLOYEE,EMPLOYEE.ACTIVITY...;

v The select-list contains a column that is a constant or is derived from an

expression or function:

SELECT...,’SALARY(+6%)=’,SALARY*1.06,MAX(SALARY)...

 ...FROM EMPLOYEE...;

startpos

identifies the starting position (byte) of the data in each output data record.

Position 1 of the output record corresponds to the first position of the logical

output record. If variable-length input records are used, startpos 1 to 4 refers to

the record length control field. As a result, startpos 5 refers to the first data

position.

endpos

identifies the end position (byte) of the data in each output data record. You

can omit this parameter if the data occupies only one position in the output

record. If you specify this parameter, do not place blanks between the starting

position and the hyphen, or between the hyphen and the ending position.

 To unload a column defined with a double-byte character set (DBCS) data

type, the length of the output data field must be an even number (4, 6, ..., 100,

...) of positions (bytes) other than 2. A Database Services Utility processing

error occurs if DBCS data is identified for an output record data field with an

odd number of positions, or with only two positions.

data-type

identifies whether character, graphic, fixed-binary, floating-point, packed

decimal, or zoned data values should be placed in the output data record

positions specified. The data type specification must appear after the

startpos-endpos values in the subcommand. The default data type is character.

The valid data type identifiers that you can specify are:

CHAR or CHARACTER

If the table column data type is anything but GRAPHIC, you can create a

CHAR output data field.

 CHAR output data derived from a CHAR, VARCHAR, DATE, TIME,

TIMESTAMP, or long field select-list column is left-justified and padded on

the right with blanks (hex 40). Trailing (low-order) data is truncated if the

output data field length is less than the length of the column data except

for TIME, DATE, and TIMESTAMP. For TIME and DATE, an error occurs if

the output data field length is less than the length of the column data. For

TIMESTAMP, if the output data field length is less than 19 bytes, an error

occurs; if the output data field length is less than 26 but greater than or

equal to 19 bytes, trailing digits of the MICROSECONDS part of the

timestamp are truncated.

 The CHAR output data can also be derived from select-list columns with

data type SMALLINT, INTEGER, DECIMAL, and FLOAT. See the section,

“DATAUNLOAD Data Conversion Summary” on page 187, for a

description of the content of CHAR output data fields derived from

numeric column data types.

 If extended DBCS processing is in effect, character data can contain

DBCS/EBCDIC mixed data. See page 231 for a discussion of extended

DBCS support.

 When an arithmetic exception occurs and the data is to be placed into an

output data type field, no error message is issued and processing

Chapter 8. Command Reference 171

continues. Number (or pound) symbols (#) are used, as under SELECT, to

fill the data type field and to indicate that an exception occurred during

processing.

 CHAR is the default data type specification.

GRAPHIC or GR or G

If the table column is defined with the data type GRAPHIC,

VARGRAPHIC, or long field, you can create a DBCS output data field.

 The startpos and endpos for a DBCS output record data field reflect the

number of bytes the data field occupies in the data record; they do not

reflect the number of DBCS characters that the data field contains.

 The startpos of the output data field contains a shift-out (hex 0E) delimiter.

The endpos of the output data field contains a shift-in (hex 0F) delimiter.

Two intervening positions are required for each DBCS character.

 The DBCS output record data field must occupy an even number of bytes

in the data record, or a Database Services Utility processing error occurs.

DBCS column data is truncated if the length of the output record data field

is less than the column data length plus 2. For a DBCS column, the column

data length equals the number of DBCS characters times 2.

 A blank DBCS output data field contains the hex 40 value in all positions

except for the first and the last. A null source column value also results in

a blank output record data field.

DATE

If the table column is defined with a column type of DATE, output data is

in one of the following formats:

yyyy-mm-dd (ISO, JIS format)

dd.mm.yyyy (EUR format)

mm/dd/yyyy (USA format)

installation defined (Local format)

where:

yyyy is the year

mm is the month

dd is the day

The format is dependent on the SYSOPTIONS default format value or is

specified by the CHAR function in the SELECT statement.

 Local Date Format

A database administrator can change the date default format, which is

defined in the SYSTEM.SYSOPTIONS table, from ISO (which is the

system-supplied database default form) to any installation-defined

format. See the DB2 Server for VM System Administration and DB2

Server for VSE System Administration manuals for information about

installation-defined formats and their interface.

Note: See page 169 for information on arithmetic error handling.

TIME

If the table column is defined with a column type of TIME, output data is

in one of the following formats:

hh:mm AM or hh:mm PM (USA format)

hh.mm[.ss] (ISO, EUR format)

hh:mm[:ss] (JIS format)

installation defined (Local format)

172 Database Services Utility

where:

hh is the hour

0 <= hh <= 12 for USA format

0 <= hh <= 24 for ISO, EUR, JIS format

mm is the minutes

ss is the seconds

The format is dependent on the SYSOPTIONS default format value or is

specified by the CHAR function in the SELECT statement.

Local Time Format

A database administrator can change the time default format, which is

defined in the SYSTEM.SYSOPTIONS table, from ISO (which is the

system-supplied database default form) to any installation-defined

format. See the DB2 Server for VSE System Administration, or DB2 Server

for VM System Administration manual for information about

installation-defined formats and their interface.

Note: See page 169 for information on arithmetic error handling.

TIMESTAMP

If the table column is defined with a column type of TIMESTAMP, output

data is in the following format:

yyyy-mm-dd-hh.mm.ss[.[nnnnnn]]

where

yyyy-mm-dd is the date (see ISO DATE format)

hh.mm.ss is the time (see ISO TIME format)

nnnnnn is microseconds

If the output data field length is less than 19 bytes long, an error occurs. If

the output data field is less than 26 bytes, but greater than or equal to 19

bytes, trailing digits of the microseconds part of the timestamp are

truncated.

FIXED or INT or INTEGER

If the table column is defined with a data type of SMALLINT or INTEGER,

you can define a fixed-point binary-output data field. If a row selected

from the database by the SQL SELECT statement supplied for

DATAUNLOAD processing contains a column value that exceeds the

capacity of a 1-byte or 2-byte FIXED output data field, an error message is

issued, and no output data file record is written for the row.

 The value ranges for binary-output data fields are:

v A 1-byte binary data field can contain an 8-bit binary integer with a

value range of 0 to 255.

v A 2-byte binary data field can contain a 15-bit binary integer with the

value range described for a table column defined with the data type

SMALLINT.

v A 4-byte binary data field can contain a 31-bit binary integer with the

value range described for a table column defined with the data type

INTEGER.

 Note: See page 169 for information on arithmetic error handling.

 FLOAT or REAL

If the table column is defined with a data type of REAL or FLOAT(n),

Chapter 8. Command Reference 173

where n is from 1 to 21, you can define 4-byte floating-point binary-output

data, where (endpos−startpos+1) = 4. If a row selected from the database

by the SQL SELECT statement supplied for DATAUNLOAD processing

contains a column value that exceeds the capacity of the FLOAT output

data field, an error message is issued, and no output data file record is

written for the row.

Note: See page 169 for information on arithmetic error handling.

FLOAT or DOUBLE PRECISION

If the table column is defined with a data type of FLOAT, DOUBLE

PRECISION, or FLOAT(n), where n is from 22 to 53, you can define 8-byte

floating-point binary-output data, where (endpos−startpos+1) = 8.

Note: If 8-byte floating-point binary data is unloaded into a 4-byte

floating-point output data field, a number of digits of precision is

lost. If a row selected from the database by the SQL SELECT

statement supplied for DATAUNLOAD processing contains a

column value that exceeds the capacity of the FLOAT output data

field, an error message is issued, and no output data file record is

written for the row.

See page 169 for information on arithmetic error handling.

DECIMAL or DEC

If the table column is defined with a DECIMAL data type, you can specify

DECIMAL or DEC for packed decimal output data.

 The length of the output data field must be large enough to accommodate

all significant digits of the column data value. The minimum length of an

output field derived from DECIMAL column data is (column scale/2)+1.

The implied scale of the output data field value is the same as that defined

for column.

 If a row selected from the database by the SQL SELECT statement supplied

for DATAUNLOAD processing contains a column value that exceeds the

capacity of a decimal output data field, an error message is issued, and no

output data file record is written for the row.

 Columns defined as NUMERIC are treated as DECIMAL data types.

Note: See page 169 for information on arithmetic error handling.

ZONED

If the table column is defined with a data type of SMALLINT, INTEGER,

or DECIMAL, you can specify ZONED for zoned output data. The length

of a zoned output record data field derived from a DECIMAL column

must be equal to or greater than the column scale.

 Each digit of the table column value is represented by a single byte in the

zoned output data field. The 4 high-order bits of each byte are the zone

bits. The 4 high-order bits of the low-order byte are the sign of the value.

The 4 low-order bits of each byte contain the value of the digit.

 The zone bits are 1111 (hex F). A plus-sign is represented by the bits 1100

(hex C), and a minus-sign is represented by the bits 1101 (hex D).

 The output data field value is right-justified. Leading (high-order) zeros are

either added to, or truncated from, the column value depending on the

length of the output data field.

174 Database Services Utility

If a row selected from the database by the SQL SELECT statement supplied

for DATAUNLOAD processing contains a column value that exceeds the

capacity of a zoned output data field, an error message is issued, and no

output data file record is written for the row.

 Examples of zoned output data fields:

 The hexadecimal content of a 5-position zoned data field containing the

value +00011 is:

 Hexadecimal Value F0 F0 F0 F1 C1

Field Position 1 2 3 4 5

Note: See page 169 for information on arithmetic error handling.

 The hexadecimal content of a 5-position zoned data field containing the

value -00011 is:

 Hexadecimal Value F0 F0 F0 F1 D1

Field Position 1 2 3 4 5

See Table 13 on page 187 for a table summarizing the data conversion performed

by Database Services Utility DATAUNLOAD processing.

set_null_clause

specifies the output data record position and value that identifies a null table

column value. The null identifier value can be a character or an integer value

(see below); it does not assume the data type specified for the output record

data field.

 The set_null_clause must appear after the startpos-endpos values in the

subcommand. No embedded blanks are allowed in the set_null_clause within

the left and right parentheses enclosing the startpos and endpos values.

set_null_clause:

►►
 IF SET

NULL

POS

(

startpos

)

= value

-endpos

►◄

The parameters are:

IF NULL SET POS

identifies the start of the set_null_clause. You can use either the keyword phrase

IF NULL SET POS or NULL POS.

startpos

identifies the starting position (byte) in the output data record of the value that

identifies a null table column value. The null identifier value positions can

overlap the positions assigned to an output record data field.

 Position 1 of the output data record is the first position of the logical record. If

variable-length output records are used, startpos 1 to 4 refer to the record

length control information and the data begins at startpos 5.

Chapter 8. Command Reference 175

endpos

identifies the last output data record position (byte) of the null table column

identification value. If the value occupies only one output data record position,

this parameter is not required.

value

specifies the null table column identification value. If an occurrence of the

column value is null, the value specified is placed in the output data record

positions specified after the data field value for the default output record is set.

 If an occurrence of the column value is not null, no value is placed in the

output data record positions specified in the set_null_clause. These positions

contain blanks (hex 40) if they do not contain a default output record data field

value for null column data.

 The set_null_clause value cannot be continued to a second output record. It can

be one of the following:

v A character-string constant that:

– Must be enclosed in single quotation marks (')

– Has a maximum length equal to endpos −startpos+1.

v A one-position unsigned integer constant (0 to 255)

v A two-position optionally signed integer constant (default is a positive

value)

v A four-position optionally signed integer constant (default is a positive

value).

 Examples of Set-Null-Clause:

v Character-string constant:

IF NULL SET POS(20-23) = ’NULL’

IF NULL SET POS(20-22) = ’ ? ’

v One-position integer constant:

IF NULL SET POS(20) = 255

v Two-position integer constant:

IF NULL SET POS(20-21) = 32767

v Four-position integer constant:

IF NULL SET POS(20-23) = -1839107489

176 Database Services Utility

OUTFILE Subcommand

 The OUTFILE subcommand identifies the sequential output file that contains the

data referenced by the preceding DATAUNLOAD commands and subcommands. It

tells the utility the file in which to put the data and to begin to unload the data.

The sequential output file can contain fixed, variable-length, or variable-length

spanned records. The records can be blocked or unblocked. If you want variable

length records to be generated, variable-length spanned records must be used if the

total length of the column values to be unloaded exceeds 32752 bytes.

A blank (hex 40) is placed in all positions (bytes) of the output data record before

the data record field values are inserted.

ddname

in DB2 Server for VM: this is the name of the sequential output file defined

with a CMS FILEDEF command. If you define DATAUNLOAD CMS output

files with variable-length spanned records (RECFM=VS or RECFM=VBS), you

must use file-mode number 4. DATAUNLOAD processing changes the record

format from VS or VBS to U. See Appendix B, “FILEDEF Command Syntax

and Notes,” on page 249 for more information about undefined (U) record

format usage. If a tape output file is used, performance can be improved by

using a large block size value (greater than 8244) on the FILEDEF.

 The file characteristics specified in the FILEDEF command or the default

FILEDEF specifications are the source of the output record definition

information for the Database Services Utility. Output files with RECFM U, A,

or M are not supported.

Note: The RECFM, RECSZ and BLKSIZE information displayed in the message

ARI0868I depends on the CMS FILEDEF command specifications for the

DATAUNLOAD output file. If you define DATAUNLOAD output files

on CMS as VS or VBS, DATAUNLOAD processing changes the record

format to U and the RECFM, RECSZ and BLKSIZE information

displayed in message ARI0868I will reflect this change. However, the

CMS FILEDEF command that defines the DATALOAD input data file

must still specify RECFM=VBS or VS accordingly. Except for the

VSE Format:

►► OUTFILE (ddname ►

►
BLKSZ

(size)

NOREWIND

(TAPE)

REWIND

PDEV

(DASD)

 ►

►
RECFM

(format)

RECSZ

(size)
) ►◄

VM Format:

►► OUTFILE (ddname) ►◄

Chapter 8. Command Reference 177

ddname, CMS FILEDEF command information for DATALOAD

command processing must be identical to the information in the

FILEDEF command used when DATAUNLOAD command processing

created the file. See Appendix B, “FILEDEF Command Syntax and

Notes,” on page 249 for more information about undefined (U) record

format usage.

The length of the output record supplied by the FILEDEF must be long enough

to contain column data selected for unload (including intervening data field

blanks if the default format is used). If it is not, a Database Services Utility

processing error occurs. If the length of the output record is greater than the

length required to unload the data, the remaining positions of the output

record are set to blanks (hex 40).

 If variable length output records are used, the data fields referenced by DFI

subcommands appear in the same positions on each output data record.

 Do not specify SYSIN or SYSPRINT as the ddname.

in DB2 Server for VSE: this is the TLBL or DLBL job control statement file name

for the sequential (SAM) output file. This parameter must be the first parameter

specified; you cannot specify BLKSZ before the ddname. The other keyword

parameters can be specified in any order.

BLKSZ (size)

is an optional parameter that specifies the block size of the sequential output

file.

 If a tape output file is used, performance can be improved by using a large

block size value (greater than 8244).

 The default block size values depend upon the output file record format:

v If RECFM = F or FB, the default block size is equal to the highest data field

end-position value

v If RECFM = V or VB, the default block size is equal to the highest data field

end-position value plus four

v If RECFM = S or SB, the default block size is 2048 bytes.

PDEV (TAPE or DASD)

is an optional parameter that specifies the device type (DASD or TAPE) of the

sequential (SAM) output file. If PDEV(DASD) is specified, the file resides on

any device supported by the VSE DTFSD macro. An exception to this is

VSAM-managed SAM files. VSAM-managed SAM does not support spanned

records. If PDEV(TAPE) is specified, the file resides on any device supported

by the VSE DTFMT macro. The default is PDEV(TAPE).

NOREWIND or REWIND

controls tape file rewind processing performed during CLOSE processing.

This parameter is valid only if you specify TAPE for PDEV. The default is

NOREWIND.

 NOREWIND

specifies that the tape file will not be rewound by CLOSE processing.

REWIND

specifies that the tape file is rewound by CLOSE processing.

RECFM (format)

is an optional parameter that specifies the format of the records in the output

data file. For format, substitute one of the following values:

178 Database Services Utility

If the length of the logical record (RECSZ) is equal to or less than 32760, the

default is RECFM(F). Otherwise, the default is RECFM(SB). The output record

format is identified in a Database Services Utility informational message.

Note: If variable-length output records are used, the data fields referenced by

the DFI subcommands will be in the same position for each occurrence

of a data record. Positions 1-4 of each variable-length record contain

record length control information.

RECSZ (size)

is an optional parameter that specifies the length of a logical record for the

output data file. The length of the output record must be long enough to

contain column data selected for DATAUNLOAD processing (including

intervening data field blanks if the default format is used). If it is not, a

Database Services Utility processing error occurs.

 The default record size values depend upon the output file record format:

v If RECFM = F or FB, the default record size is the block size.

v If RECFM = V or VB, the default record size is the block size minus four.

v If RECFM = S or SB, the default record size is equal to the highest data field

end-position value.

 DATAUNLOAD Output Data Field Defaults

If no DFI commands are supplied, the output data fields appear in the output

record in the same order as the associated columns in the select-list. The output

data field associated with the first select-list column starts in position 1 of the fixed

length output records or position 5 of variable length (or variable length spanned)

output records. Positions 1-4 of variable length or variable length spanned records

are reserved for the record length control field. In DB2 Server for VSE, if the record

format (RECFM) is not supplied by the OUTFILE subcommand, DATAUNLOAD

processing writes either fixed length or variable length spanned output records.

Fixed length records are written if the required logical record length is less than

32760 positions; otherwise, variable length spanned records (RECFM=S) are

written.

In DB2 Server for VM, the DFI subcommand will refer to the first data position as

startpos 5. The FILEDEF command that defines the output file always supplies the

record format information.

One blank (hex 40) position separates each output record data field. The output

data field associated with the next select-list column starts two positions after the

trailing (low-order) position of the data field derived from the preceding select-list

column.

 Value Meaning

 F fixed, unblocked

 FB fixed, blocked

 V variable length, unblocked

 VB variable length, blocked

 S variable spanned, unblocked

 SB variable spanned, blocked

Chapter 8. Command Reference 179

Default Output Data Field Formats: Table 10 on page 181 summarizes the default

output field formats generated by the DATAUNLOAD processing if no DFI

subcommands are supplied. The default data type of the output data field is

CHAR (or GRAPHIC if the source column contains DBCS data). The format of the

data in the output data field depends on the data type, length, or maximum length

of the select-list column from which the data is derived.

data from
select-list
column 1

blank data from
select-list
column 2

blank . . .
. . .
. . .

data from
select-list
column n

.

.

.
Position 1

Figure 91. Default Fixed-Length Output Logical Record Content

data from
select-list
column 1

blank data from
select-list
column 2

blank blank. . .
. . .
. . .

data from
select-list
column n

.

.

.

.

.
Position 1

record
length
control
field

.

.

.
Position 5

Figure 92. Default Variable-Length Spanned Logical Output Record Content

180 Database Services Utility

Table 10. Default Output Formats

Source Column Data Type

Default Database Services Utility DATAUNLOAD Output Data Fields

Default Data Type = CHAR

CHAR Length: Defined length of source column.

VARCHAR length <= 254 Length: Defined maximum length of column.

Note: If the actual length of an occurrence of the column data is less than

the defined maximum length of the column, the data is left-justified in the

output data field and padded with trailing (low-order) blanks.

VARCHAR length > 254 or LONG

VARCHAR

Length: 512 positions (bytes).

Notes: If the actual length of an occurrence of the column data is greater

than 512, the column data is truncated.

If the actual length of an occurrence of the column data is less than 512, the

column data is left-justified and padded with trailing (low-order) blanks.

SMALLINT Length: 6 Format: snnnnn

INTEGER Length: 11 Format: snnnnnnnnnn

DECIMAL Length: Precision of source column + 2.

 Format: Examples:

Column Precision=7, Scale=2: snnnnn.nn

Column Precision=5, Scale=5: s.nnnnn

Note: NUMERIC is a synonym for DECIMAL.

REAL or FLOAT (N) 1 <= N <= 21 Length: 12 (single precision float).

Format: sn.nEsnbbbbb (minimum value) sn.nnnnnEsnn (maximum value)

Note: The value is left-justified and, if necessary, padded with trailing

(low-order) blanks in the output data field.

FLOAT or DOUBLE PRECISION or

FLOAT (N) 22 <= N <= 53

Length: 20 (double precision float).

Format: sn.nEsnbbbbbbbbbbbbb (minimum value) sn.nnnnnnnnnnnnnEsnn

(maximum value)

Note: The value is left-justified and, if necessary, padded with trailing

(low-order) blanks in the output data field.

 Legend For FLOAT:

 s = EBCDIC SIGN: Plus (+) sign (hex 4E)

 Minus (-) sign (hex 60)

 Blank (hex 40) if null value.

 n = EBCDIC numeric character (hex F0–F9)

 . = EBCDIC decimal point (hex 4B)

 b = Blank (hex 40)

Chapter 8. Command Reference 181

Source Column Data Type

Default Database Services Utility DATAUNLOAD Output Data

Fields Default Data Type = CHAR

DATE Default

DATE length format

 ISO 10 yyyy-mm-dd

 JIS 10 yyyy-mm-dd

 EUR 10 dd.mm.yyyy

 USA 10 mm/dd/yyyy

 LOCAL installation defined

 yyyy is the year

 mm is the month

 dd is the day

Note: The length and format of the output data field depends on

the default DATE for the database. You can query the

SYSTEM.SYSOPTIONS catalog to determine the output format for

DATE.

TIME Default

TIME length format

ISO 8 hh.mm.ss

JIS 8 hh:mm:ss

EUR 8 hh.mm.ss

USA 8 hh.mm AM (or hh.mm PM)

LOCAL Installation defined

 hh is the hour

 0 <= hh <= 24 for ISO, JIS, EUR formats

 0 <= hh <= 12 for USA format

 mm is the minute

 ss is the second

Note: The length and format of the output data field depends on

the default TIME for the database. You can query the

SYSTEM.SYSOPTIONS catalog to determine the output format for

TIME.

TIMESTAMP Length: 26 Format: yyyy-mm-dd-hh.mm.ss.nnnnnn

 yyyy-mm-dd is the date (ISO format)

 hh.mm.ss is the time (ISO format)

 nnnnnn is the microsecond

GRAPHIC Length: (Defined length of column * 2) + 2.

Note: The first position of the output record DBCS data field

contains an SO delimiter and the last position contains an SI

delimiter.

182 Database Services Utility

Source Column Data Type

Default Database Services Utility DATAUNLOAD

Output Data Fields Default Data Type = CHAR

VARGRAPHIC with defined length <= 127 Length: (Defined maximum length of column * 2) + 2.

Notes: The first position of the output record DBCS data

field contains an SO delimiter and the last position

contains an SI delimiter.

If the actual length of an occurrence of the DBCS column

data is less than the defined maximum length of the

column, the data is left-justified and padded with trailing

blanks in the second through n-1 positions of the output

record field.

VARGRAPHIC with defined length >127 or LONG

VARGRAPHIC

Length: 512 positions.

Notes: The first position of the output record DBCS field

contains an SO delimiter and the last position contains

an SI delimiter.

If the actual length of an occurrence of the DBCS column

data is greater than 510 (255 DBCS characters), the

column data is truncated.

If the actual length of an occurrence of the DBCS column

data is less than 510 (255 DBCS characters), the data is

left-justified and padded with trailing blanks in the

second through n-1 positions of the output record field.

DATAUNLOAD Default Output Record Format Example: This example unloads

data for the columns EMPNO, PROJNO, and EMPTIME in the tables EMP_ACT

and EMPLOYEE, based on the selection criteria specified in the WHERE clause.

The output records are generated in EMPNO value ascending sequence. Because

no DFI subcommands are present, the default DATAUNLOAD output record data

field format is used.

The DATAUNLOAD command sequence is:

 The Database Services Utility message file output that results is shown in the

following examples.

DATAUNLOAD

SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME

FROM EMP_ACT,EMPLOYEE

WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO

ORDER BY EMP_ACT.EMPNO;

OUTFILE(OUTPUT1)

Figure 93. DATAUNLOAD Command without DFI Subcommands

Chapter 8. Command Reference 183

Note: The RECFM, RECSZ, and BLKSIZE information displayed in the message

ARI0868I depends on the CMS FILEDEF command specifications for the

output file with ddname=OUTPUT1.

 ARI0801I DBS Utility started: 11/13/89 16:48:16.

 AUTOCOMMIT = OFF ERRORMODE = OFF

 ISOLATION LEVEL = REPEATABLE READ

 ——————>

 ——————> DATAUNLOAD

 ——————> SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME

 ——————> FROM EMP_ACT,EMPLOYEE

 ——————> WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO

 ——————> ORDER BY EMP_ACT.EMPNO;

 ——————> OUTFILE(OUTPUT1)

 ARI0852I DATAUNLOAD processing started. ┌────────┐

 ARI0868I DNAME=OUTPUT1 RECFM=F RECSZ=80 BLKSIZE=80 ◄──────┤See Note│

 ARI0836I Default output record data field positions: └────────┘

 ARI0837I EMPNO 1-6

 ARI0837I PROJNO 8-13

 ARI0837I EMPTIME 15-21

 ARI0835I 74 record(s) written to the output data file.

 ARI0855I DATAUNLOAD processing successful.

 ARI0802I End of command file input.

 ARI8997I ...Begin COMMIT processing.

 ARI0811I ...COMMIT of any database changes sucessful.

 ARI0809I ...No error(s) occurred during command processing.

 ARI0808I DBS processing completed: 11/13/89 16:48:20.

Figure 94. DB2 Server for VM Database Services Utility Message File Output

 ARI0801I DBS Utility started: 11/13/89 16:48:16.

 AUTOCOMMIT = OFF ERRORMODE = OFF

 ISOLATION LEVEL = REPEATABLE READ

 -----—> CONNECT "SQLDBA " IDENTIFIED BY ********;

 ARI8004I User SQLDBA connected to database SQLDBA.

 ARI0500I SQL processing was successful.

 ARI0505I SQLCODE = 0 SQLSTATE = 00000 ROWCOUNT = 0

 -----—>

 -----—> DATAUNLOAD

 -----—> SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME

 -----—> FROM EMP_ACT,EMPLOYEE

 -----—> WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO

 -----—> ORDER BY EMP_ACT.EMPNO;

 -----—> OUTFILE(OUTPUT1)

 ARI0852I DATAUNLOAD processing started.

 ARI0868I DNAME=OUTPUT1 RECFM=F RECSZ=80 BLKSIZE=80

 ARI0836I Default output record data field positions:

 ARI0837I EMPNO 1-6

 ARI0837I PROJNO 8-13

 ARI0837I EMPTIME 15-21

 ARI0835I 74 record(s) written to the output data file.

 ARI0855I DATAUNLOAD processing successful.

 ARI0802I End of command file input.

 ARI8997I ...Begin COMMIT processing.

 ARI0811I ...COMMIT of any database changes sucessful.

 ARI0809I ...No error(s) occurred during command processing.

 ARI0808I DBS processing completed: 11/13/89 16:48:20.

Figure 95. DB2 Server for VSE Database Services Utility Report Output

184 Database Services Utility

The format of the records in the output file identified by the ddname OUTPUT1 is

shown in Table 11:

 Table 11. Default Output Record Format

Record Position

Data Value Source (Column or

Other) Output Record Field Data Type

1-6 EMPNO CHAR

7 blank CHAR

8-13 PROJNO CHAR

14 blank CHAR

15-21 EMPTIME CHAR

DATAUNLOAD User-Specified Output Record Format Example: Figure 96

selects data for the columns EMPNO, PROJNO, and EMPTIME in the table

EMP_ACT, and data for the column JOB in the EMPLOYEE table based on the

selection criteria specified in the WHERE clause. Only data for the columns

EMPNO, PROJNO, and EMPTIME is unloaded because JOB does not have a DFI

subcommand. The output records are generated in EMPNO sequence.

The Database Services Utility DATAUNLOAD command sequence is:

 The Database Services Utility report or message file output generated as a result of

these commands is shown in the following:

DATAUNLOAD

SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME,JOB

FROM EMP_ACT,EMPLOYEE

WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO

ORDER BY EMP_ACT.EMPNO;

EMPNO 1-6

PROJNO 8-13

EMPTIME 15-21 DECIMAL IF NULL SET POS(22) = ’?’

OUTFILE(OUTPUT1)

Figure 96. DATAUNLOAD Command with DFI Subcommands

Chapter 8. Command Reference 185

Note: The RECFM, RECSZ, and BLKSIZE information displayed in the message

ARI0868I depends on the CMS FILEDEF command specifications for the

output file with ddname=OUTPUT1.

 ARI0801I DBS Utility started: 10/05/89 14:54:41.

 AUTOCOMMIT = OFF ERRORMODE = OFF

 ISOLATION LEVEL = REPEATABLE READ

 -----—> CONNECT "SQLDBA " IDENTIFIED BY ********;

 ARI8004I User SQLDBA connected to database SQLDBA.

 ARI0500I SQL processing was successful.

 ARI0505I SQLCODE = 0 SQLSTATE = 00000 ROWCOUNT = 0

 -----—>

 ARI8003I ...Extended DBCS (DBCS=YES) processing was in effect.

 -----—> DATAUNLOAD

 -----—> SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME

 -----—> FROM EMP_ACT,EMPLOYEE

 -----—> WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO

 -----—> ORDER BY EMP_ACT.EMPNO;

 -----—> EMPNO 1-6

 -----—> PROJNO 8-13

 -----—> EMPTIME 15-21 DECIMAL IF NULL SET POS(22) = ’?’

 -----—> OUTFILE(OUTPUT1)

 ARI0831I Column JOB data will not be unloaded.

 ARI0868I DNAME=OUTPUT1 RECFM=F RECSZ=80 BLKSIZE=80

 ARI0835I 74 record(s) written to the output data file.

 ARI0855I DATAUNLOAD processing successful.

 ARI0802I End of command file input.

 ARI8997I ...Begin COMMIT processing.

 ARI0811I ...COMMIT of any database changes sucessful.

 ARI0809I ...No error(s) occurred during command processing.

 ARI0808I DBS processing completed: 10/05/89 14:54:44.

Figure 97. DB2 Server for VSE Database Services Utility Report Output

1ARI0801I DBS Utility started: 10/05/89 14:54:41.

 AUTOCOMMIT = OFF ERRORMODE = OFF

 ISOLATION LEVEL = REPEATABLE READ

 ARI8003I ...Extended DBCS (DBCS=YES) processing was in effect.

0——————> DATAUNLOAD

 ——————> SELECT EMP_ACT.EMPNO,PROJNO,EMPTIME,JOB

 ——————> FROM EMP_ACT,EMPLOYEE

 ——————> WHERE EMP_ACT.EMPNO=EMPLOYEE.EMPNO

 ——————> ORDER BY EMP_ACT.EMPNO;

 ——————> EMPNO 1-6

 ——————> PROJNO 8-13

 ——————> EMPTIME 15-21 DECIMAL IF NULL SET POS(22) = ’?’

 ——————> OUTFILE(OUTPUT1)

 ARI0852I DATAUNLOAD processing started.

 ARI0831I Column JOB data will not be unloaded. ┌───────────┐

 ARI0868I DNAME=OUTPUT1 RECFM=F RECSZ=80 BLKSIZE=80 ◄────┤ See Note │

 ARI0835I 74 record(s) written to the output data file. └───────────┘

 ARI0855I DATAUNLOAD processing successful.

 ARI0802I End of command file input.

 ARI8997I ...Begin COMMIT processing.

 ARI0811I ...COMMIT of any database changes sucessful.

 ARI0809I ...No error(s) occurred during command processing.

 ARI0808I DBS processing completed: 10/05/89 14:54:44.

Figure 98. DB2 Server for VM Database Services Utility Message File Output

186 Database Services Utility

The format of the records in the output file identified by the ddname OUTPUT1 is

shown in Table 12.

 Table 12. User-Defined Output Record Format

Record Position Data Value Source (Column or Other) Output Record Field Data Type

1-6 EMPNO CHAR

7 blank CHAR

8-13 PROJNO CHAR

14 blank CHAR

15-21 EMPTIME DECIMAL

22 EMPTIME

null indicator

CHAR

DATAUNLOAD Data Conversion Summary

Table 13 summarizes the data conversion performed by Database Services Utility

DATAUNLOAD processing. Yes means that the utility performs the conversion. No

means that the utility cannot convert the source column data type into the data

type specified for the output record data field and that any attempt to do so results

in a Database Services Utility processing error. The numbers in the chart refer to

the notes below the figure.

 Table 13. DATAUNLOAD Data Conversion Table

Output Field

Data Type

Source Column Data Type

CHAR,

VAR-
CHAR,

or

LONG

VAR-
CHAR DECIMAL8

SMALL-
INT INTEGER REAL12

Double

Precision13

DATE, TIME,

or

TIMESTAMP

DBCS,

GRAPHIC,

VAR-
GRAPHIC,

or LONG

VAR-
GRAPHIC

CHAR Yes1 Yes2,3 Yes2,4 Yes2,4 Yes2,5 Yes2,5 Yes1 Yes

GRAPHIC (G) No No No No No No No Yes9

1-Byte FIXED No No Yes6 Yes6 No No No No

2-Byte FIXED No No Yes6 Yes6 No No No No

4-Byte FIXED No No Yes6 Yes6 No No No No

4-Byte FLOAT No No No No Yes Yes7 No No

8-Byte FLOAT No No No No Yes11 Yes No No

DECIMAL No Yes14 No No No No No No

ZONED No Yes Yes6 Yes6 No No No No

DATE, TIME,

or TIMESTAMP

No No No No No No Yes10 No

Notes for Table 13:

 1. The CHAR, VARCHAR, and long field column data may be truncated if the

length of the source data is greater than the length of an output CHAR data

field. For TIME and DATE, an error occurs if the length of the source data is

greater than the length of an output CHAR data field. For TIMESTAMP, if the

output data field length is less than 19 bytes, an error occurs; if the output

data field length is less than 26 bytes but greater than or equal to 19 bytes,

Chapter 8. Command Reference 187

trailing digits of the microseconds part of the timestamp is truncated. If the

length of the output record data field is greater than the length of the source

column data, all trailing (low-order) positions of the data field are padded

with a blank (hex 40) value. Occurrences of null character column data result

in an all blank output record data field.

 2. If a CHAR output record data field is potentially too small to contain all

significant digits, the sign, and the decimal point for a value derived from a

column defined with a numeric (SMALLINT, INTEGER, DECIMAL, or

FLOAT) data type, then:

v An error message is written to the Database Services Utility message file

identifying the column name.

v The output record CHAR data field associated with a numeric column

contains asterisks (*) if a data overflow condition actually occurs.

 3. A CHAR output data field derived from a column with a DECIMAL data type

contains an EBCDIC plus sign (hex 4E) or minus sign (hex 60) in the leading

(high-order) position. The data value is right-justified in the low-order

positions of the output data field and represented using the values hex F0

through hex F9 in each position except for the decimal point position. A

decimal point (hex 4B) precedes the low-order scale value positions in the

output data field. The leading (high-order) positions of the output data field

(except for the first position) contain zeros (hex F0) if the number of

significant positions of the data value is less than the length of the output

data field minus 2.

Occurrences of null column data result in an unsigned output data field value

of 0. The leading position of the field contains a blank (hex 40) and the

remainder of the data field contains the value hex F0 (except for the decimal

point position).

For example, the hexadecimal values in each position of an eight-position

CHAR output record data field derived from a DECIMAL (5,2) column

containing the value +11.11 are:

 Hexadecimal Value 4E F0 F0 F1 F1 4B F1 F1

EBCDIC Character + 0 0 1 1 . 1 1

Field Position 1 2 3 4 5 6 7 8

Note: The minimum length of a CHAR output data field derived from a

DECIMAL select-list column is the column scale length plus 2.

 4. A CHAR output data field derived from a column with a SMALLINT or

INTEGER data type contains a minus sign (hex 60) in the leading (high-order)

position for negative column values. If the column value is positive, the

leading (high-order) position of the data field contains a blank (hex 40). The

data value is right-justified in the low-order positions of the output data field

and represented using the values hex F0 through hex F9 in each position. The

leading (high-order) positions of the output data field (except for the first

position) contain zeros (hex F0) if the number of significant positions of the

data value is less than the length of the output data field minus 1.

Occurrences of null column data result in an unsigned output data field value

of 0. The leading position of the field contains a blank (hex 40) and the

remainder of the data field positions contains the value hex F0.

For example, the hexadecimal values contained in each position of an

eight-position CHAR output record data field derived from a SMALLINT

column containing the value +32767 are:

188 Database Services Utility

Hexadecimal Value 40 F0 F0 F3 F2 F7 F6 F7

EBCDIC Character 0 0 3 2 7 6 7

Field Position 1 2 3 4 5 6 7 8

Note: The minimum length of a CHAR output data field derived from a

SMALLINT or INTEGER column is 2.

 5. A CHAR output data field derived from a column with a FLOAT data type is

left-justified in the leading (high-order) positions of the output data field. The

format of the output data field value ranges from:

sn.nEsn to sn.nnnnnnnnnnnnnEsnn (for 8-byte float)

or

sn.nEsn to sn.nnnnnEsnn (for 4-byte float)

where:

s = EBCDIC sign: Plus (+) sign (hex 4E)

 Minus (-) sign (hex 60)

n = EBCDIC numeric character (hex F0–F9)

. = EBCDIC decimal point (hex 4B)

E = EBCDIC character E (hex C5)

The trailing (low-order) positions of the output data field contain blanks

(hex 40) if the length of the field is greater than the EBCDIC representation of

the column value.

Occurrences of null column data result in an unsigned output data field value

(�0.0E+0). The leading position of the data field contains a blank (hex 40).

For example, the hexadecimal values contained in each position of a

10-position CHAR output record data field derived from an 8-byte FLOAT

column containing the value +1.11E+02 are:

 Hexadecimal Value 4E F1 4B F1 F1 C5 4E F0 F2 40

EBCDIC Character + 1 . 1 1 E + 0 2

Field Position 1 2 3 4 5 6 7 8 9 10

Note: The minimum length of a CHAR output data field derived from a

column with FLOAT data type is 7.

 6. Leading (high-order) zero-value positions of column data are truncated if the

length of a numeric (FIXED, DECIMAL, or ZONED) output data field is less

than the length of the numeric (SMALLINT, INTEGER, or DECIMAL) column

value. A null column value results in a numeric output record data field value

of 0.

If a numeric output record data field is too small to contain all significant

digits of the data value from a numeric column:

v The message ARI0833E is written to the Database Services Utility message

file identifying the column name and the SQL SELECT row count.

v No data for the row is written to the output data file.

 7. A null column value results in a numeric output record data field value of 0.

An 8-byte float column unloaded into a 4-byte output record FLOAT data

field results in the loss of a number of digits of precision. The fraction

(mantissa) is reduced from 14 to 6 digits of precision. During the conversion

process, if the exponent value exceeds a value of +63, the message ARI0833E

is generated and no data for the row is unloaded.

Chapter 8. Command Reference 189

8. The minimum length of an output data field derived from a DECIMAL

column is the (scale value/2+1). The scale of output data derived from a

DECIMAL column is the same as that for the source column.

If the length of the output data field is greater than the value of (column

precision/2)+1, the column value is extended with high-order zeros in the

output data field.

If the length of the output data field is less than the value of (column

precision/2)+1, nonsignificant high-order zeros to the left of the implied

decimal point are not reflected in the data field value.

 9. Only fixed-length DBCS (data type of GRAPHIC) output data fields are

produced by DATAUNLOAD processing. The startpos of the output data field

contains a shift-out delimiter (hex 0E). The endpos of the output data field

contains a shift-in delimiter (hex 0F).

DBCS column data is truncated if the length of the column data plus 2 is

greater than the length of the output GRAPHIC data field. The length of the

column data is the number of DBCS characters times 2.

If the length of the output data field minus 2 is greater than the column data

length, the output data field is padded with trailing (low-order) DBCS blank

(hex 4040) characters in the unused low-order data field positions. The last

position of the data field always contains a shift-in delimiter (hex 0F).

If the column data value is all blanks or null, startpos+1 to endpos−1 of the

output DBCS data field contains DBCS blank characters (hex 4040).

10. The datetime data type input and target type must match; for example, the

input data type of TIME is valid only for the target column data type of

TIME.

11. A 4-byte float column unloaded into an 8-byte float data field is padded with

hex 0000 0000.

12. REAL represents single precision floating point data and is synonymous with

FLOAT(n) where 1 is less than or equal to n is less than or equal to 21.

13. DOUBLE PRECISION represents double precision floating point data and is

synonymous with FLOAT or FLOAT(n) where 22 is less than or equal to n is

less than or equal to 53.

14. If the length of the output record data field is greater than the length of the

source column data, all leading (high-order) positions of the data field are

padded with hex zeros.

190 Database Services Utility

RELOAD DBSPACE

RELOAD DBSPACE Format

 Before you reload tables into a dbspace, it must already exist.

VM Format:

►► RELOAD DBSPACE (dbspace_name) NEW

PURGE
 INFILE (ddname) ►

►
COMMITCOUNT

(

ccount

)

RESTARTTABLE

(

table_name

)
 ►

►
RESTARTCOUNT

(

rcount

)
 ►◄

VSE Format:

►► RELOAD DBSPACE (dbspace_name) NEW

PURGE
 ►

► INFILE (ddname

2048

BLKSZ

(

size

)

 ►

►
REWIND

(TAPE)

NOREWIND

PDEV

(DASD)

)

COMMITCOUNT

(

ccount

)
 ►

►
RESTARTTABLE

(

table_name

)

RESTARTCOUNT

(

rcount

)
 ►◄

Examples:

RELOAD DBSPACE(JOHNS.SPACE1) PURGE INFILE(TEMP)

RELOAD DBSPACE(PUBLIC.SPACE2) NEW INFILE(TEMP)

RELOAD DBSPACE(DBS1) PURGE INFILE(IFILE) COMMITCOUNT(300)

 RESTARTTABLE(EMPLOYEE) RESTARTCOUNT(600)

Authorization:

You must have the INSERT privilege on the tables affected by the command. Additional

authority is required depending on the keywords specified:

 RESOURCE–if NEW is specified.

 SELECT, DELETE, and INSERT– if PURGE is specified.

 DBA–if PURGE is specified, and if any indexes defined on an affected table are

owned by someone else. DBA authority is also required if NEW is specified, and any

tables are to be created for another user.

Chapter 8. Command Reference 191

Note: The RELOAD DBSPACE command is not supported if you are using DRDA

flow.

DBSPACE (dbspace-name)

identifies a RELOAD DBSPACE request and identifies the dbspace to be

loaded. The Database Services Utility loads the tables into the dbspace in the

order that they occur in the input data. If you do not own a private dbspace

with the dbspace-name identified, the data is loaded into a public dbspace (if

one having that name exists). The owner of a public dbspace is PUBLIC.

NEW

instructs the Database Services Utility to create each table contained in the

input file before loading the data. Tables represented in the input data file that

already exist in the database are not processed. The tables are created for the

current Database Services Utility user. You must have RESOURCE

authorization to use this keyword.

 If either the RESTARTCOUNT or RESTARTTABLE parameters appear on the

RELOAD DBSPACE command, the NEW parameter will not cause the restart

table to be created. The RESTARTCOUNT and RESTARTTABLE parameters

indicate that the RELOAD DBSPACE operation is being restarted, therefore,

NEW processing must have already occurred, so it is not required to create the

restart table again. Note that NEW processing is performed on all tables to be

reloaded before any rows are reloaded to any table. This means that NEW

processing will have already occurred for all tables to be reloaded.

PURGE

instructs the Database Services Utility that existing tables within the dbspace

are to be loaded. The rows for all dbspace tables to be processed are deleted

before the first table is loaded. The tables that are processed are those that are

in the input file; that is, if table JONES.PROJECT exists in the dbspace, but the

input file contains only JONES.EMPLOYEE and JONES.DEPARTMENT, then

JONES.PROJECT is unaffected by RELOAD processing. Even if the input file

contains SMITH.PROJECT, JONES.PROJECT is unaffected. The Database

Services Utility uses fully qualified table names when determining the tables to

reload. You must have the DELETE privilege to use this keyword if you do not

own the affected tables. You must also have DBA authority if any indexes

defined on an affected table are owned by someone else.

 If either the RESTARTCOUNT or RESTARTTABLE parameters appear on the

RELOAD DBSPACE command, the PURGE parameter will not cause all rows

of the restart table to be deleted. The RESTARTCOUNT and RESTARTTABLE

parameters indicate that the RELOAD DBSPACE operation is being restarted,

therefore, PURGE processing must have already occurred, so it is not required

to delete all rows from the restart table again. Note that PURGE processing is

performed on all tables to be reloaded before any rows are reloaded to any

table. This means that PURGE processing will have already occurred for all

tables to be reloaded.

Note: You must specify either NEW or PURGE in the RELOAD DBSPACE

statement. Because existing tables might be greatly affected by the choice

of these parameters, there is no default specification.

INFILE (ddname)

in DB2 Server for VSE, this identifies and describes the sequential (SAM) file

containing the input dbspace data. The default record format in a DB2 Server

for VSE system is variable-length blocked, spanned (SB), with

LRECL=(BLKSIZE−4) for variable and spanned records or LRECL=BLKSIZE

for fixed and undefined records.

192 Database Services Utility

The default record format in a DB2 Server for VM system is variable-length

blocked, spanned (VBS). Block size and record format information is specified

using a CMS FILEDEF command; the LRECL parameter is not applicable.

Note: The RECFM, RECSZ, and BLKSIZE information displayed in the

message ARI0868I depends on the CMS FILEDEF command

specifications for the RELOAD input file. However, RELOAD processing

in a DB2 Server for VM environment always opens the input data file as

a VB file. The RECFM, RECSZ, and BLKSIZE information displayed in

the message ARI0868I indicates this change.

ddname

In DB2 Server for VSE: this is the TLBL or DLBL job control statement file

name for the sequential input file.

 In DB2 Server for VM: this is the name of the sequential input file defined

with a CMS FILEDEF command. Except for the ddname, use the same CMS

FILEDEF command information for RELOAD command processing that

you used when UNLOAD command processing created the file. Define the

CMS file used for RELOAD command input with the file-mode number 4.

Do not specify SYSIN or SYSPRINT as the ddname.

COMMITCOUNT (ccount)

identifies the frequency of COMMIT action during RELOAD processing.

ccount is a number from 1 to 2,147,483,647 indicating that a COMMIT

statement should be executed after the number of input table rows equal to

ccount are processed by RELOAD for each table. A COMMIT statement will

also be executed after the last row of each table has been reloaded.

Note: Database Services Utility AUTOCOMMIT ON processing must be in

effect when you use RELOAD COMMITCOUNT processing. If

AUTOCOMMIT is OFF and the COMMITCOUNT parameter is

used, an error message is written and RELOAD command

processing is not performed.

RESTARTTABLE (table_name)

identifies at which table the RELOAD DBSPACE processing will be

restarted. If a RELOAD DBSPACE operation ended normally, and the

RELOAD DBSPACE statement included the COMMITCOUNT parameter,

the RELOAD DBSPACE operation can be restarted by using the

RESTARTTABLE and RESTARTCOUNT parameters. table_name identifies

the table where RELOAD processing should begin. If RESTARTTABLE is

omitted, RELOAD DBSPACE processing will begin reloading the first table,

and the RESTARTCOUNT parameter, if specified, will apply to the first

table.

Note: If the table does not exist in the database when RELOAD DBSPACE

with RESTARTCOUNT or RESTARTTABLE is issued, an error

message is displayed.

RESTARTCOUNT (rcount)

identifies the restart point for RELOAD processing. rcount is a number

from 1 to 2,147,483,647 that identifies the number of input table rows in the

restart table to be skipped before RELOAD command processing begins. If

RESTARTCOUNT is omitted, no table rows are skipped and RELOAD

processing begins with the first table row of the restart table.

Chapter 8. Command Reference 193

Note: If an end-of-table condition occurs before rcount rows of the restart

table are read, an error message is written before RELOAD

processing ends.

BLKSZ (size) (DB2 Server for VSE Only)

is an optional parameter that specifies the block size of the sequential

output file. The default block size is 2048 bytes per block.

PDEV (TAPE or DASD)

is an optional parameter that specifies the device type (DASD or TAPE) of

the sequential (SAM) input file. Specify PDEV(DASD) if the input file

resides on any device supported by the VSE DTFSD macro. An exception

to this is VSAM-managed SAM files. VSAM-managed SAM does not

support spanned records. Specify PDEV(TAPE) if the input file resides on a

device supported by the VSE DTFMT macro. The default is PDEV(TAPE).

 BLKSZ and PDEV can be specified in any order but must occur after the

ddname parameter.

REWIND or NOREWIND

controls tape file rewind processing performed during OPEN

processing. This parameter is valid only if you specify TAPE for PDEV.

The default processing is REWIND.

 REWIND

specifies that the tape file is rewound by OPEN processing.

NOREWIND

specifies that the tape file is not rewound by OPEN processing. If

NOREWIND is specified for input tape files referenced by a series

of RELOAD commands, you must ensure that the tape files being

referenced are in ascending sequence. For example, if NOREWIND

is specified in a sequence of two RELOAD commands and the first

command reads tape file 2, then the second command must

reference tape file 3 or higher number. If it references tape file 1, an

OPEN error occurs.

Selective dbspace file reloads may be performed by specifying the file sequence

number in the TLBL statement. The following JCL is an example of how this can

be accomplished:

// JOB RELOAD DBSPACE

// ASSGN SYS005,181

// MTC REW,SYS005

* RELOAD 1 DBSPACE FROM TAPE FILE SEQ# 1

// TLBL DBSP,’PUBLIC.CRP01’,,,1

// EXEC ARIDBS,SIZE=AUTO

RELOAD DBSPACE (PUBLIC.CRP01)

INFILE (DBSP BLKSZ(24720) PDEV(TAPE));

/*

* RELOAD 2 DBSPACES FROM TAPE FILE SEQ# 2

// TLBL DBSP,’PUBLIC.CRPXX’,,,2

// EXEC ARIDBS,SIZE=AUTO

RELOAD DBSPACE (PUBLIC.CRP02)

INFILE (DBSP BLKSZ(24720) PDEV(TAPE));

RELOAD DBSPACE (PUBLIC.CRP03)

INFILE (DBSP BLKSZ(24720) PDEV(TAPE));

/*

/&

194 Database Services Utility

Release Coexistence Considerations for DB2 Server for VM

Changes were required in Version 7 Release 1 to handle file I/O correctly when

using CMS 15 and later. These changes affect the format of data that is unloaded

and reloaded by the UNLOAD and RELOAD commands of the DBS Utility. If you

use the DBS Utility’s UNLOAD and RELOAD commands with databases at

different release levels, you must ensure that the code changes have been applied

at all release levels. For releases prior to Version 7 Release 1, you must apply the

following APARs:

 Release APAR

3.5 PQ28584

5.1 PQ28583

6.1 PQ27957

Chapter 8. Command Reference 195

RELOAD TABLE

RELOAD TABLE Format

VSE Format:

►► RELOAD TABLE (table_name) PURGE

NEW

(dbspace_name)
 ►

►
INTABLE

(table_name)
 ►

► INFILE (ddname

2048

BLKSZ

(

)

size

 ►

►
REWIND

(TAPE)

NOREWIND

PDEV

(DASD)

)

COMMITCOUNT

(

ccount

)
 ►

►
RESTARTCOUNT

(

rcount

)
 ►◄

VM Format:

►► RELOAD TABLE (table_name) PURGE

NEW

(dbspace_name)
 ►

►
INTABLE

(table_name)
 INFILE (ddname) ►

►
COMMITCOUNT

(

ccount

)

RESTARTCOUNT

(

rcount

)
 ►◄

VSE Examples:

 RELOAD TABLE(SALARY)

 NEW(DBSPACE1)

 INTABLE(SMITH.SALARY)

 INFILE(CIPHER3 PDEV(TAPE))

 RELOAD TABLE(SALARY)

 NEW(DBSPACE1)

 INTABLE(SMITH.SALARY)

 INFILE(CIPHER3)

 COMMITCOUNT(300)

 RESTARTCOUNT(600)

196 Database Services Utility

Note: The RELOAD TABLE command is not supported if you are using DRDA

flow.

TABLE (table_name)

identifies a RELOAD TABLE request and the table to be loaded. You can

further identify the table by specifying the owner of the table (see “Qualifying

Object Names” on page 110 for details). You cannot use a synonym for a

table_name. If you specify the NEW option, a table called table_name is created

for that user. If you specify the PURGE option, you can specify a view name

instead of a table name if the view meets the following requirements:

v The view is defined on a single table.

v The view definition includes all the NOT NULL columns in the table. That

is, all columns outside of the view definition must permit the insertion of

nulls.

v The view has no column definitions based on functions (virtual data

columns).

When reloading data into a view that was created using the WITH CHECK

OPTION clause, the database manager checks all inserts and updates to the

view against the view definition and rejects them if the row to be inserted or

updated does not conform to the view definition.

NEW (dbspace_name)

instructs the Database Services Utility that the table to be loaded does not exist

and must first be created. You can identify the dbspace by the owner. If you do

not specify the owner of the dbspace (see “Qualifying Object Names” on page

110 for information about owner), a private dbspace that you own with

dbspace_name specified is loaded. If no such private dbspace exists, a public

dbspace with dbspace_name is loaded. The owner of a public dbspace is

PUBLIC, for example, NEW (PUBLIC.PRODUCTION). If owner is specified for

the table name and owner is not specified for the dbspace name, the Database

Services Utility does not use the owner specified for the table name to identify

the private dbspace.

 If the RESTARTCOUNT parameter appears on the RELOAD TABLE command,

the NEW parameter will not cause the table to be created. The

RESTARTCOUNT parameter indicates that the RELOAD TABLE operation is

being restarted, therefore, NEW processing must have already occurred, so it is

not required to create the table again.

VM Example:

 RELOAD TABLE(SALARY)

 NEW(DBSPACE1)

 INTABLE(SMITH.SALARY)

 INFILE(CIPHER3)

 COMMITCOUNT(300)

 RESTARTCOUNT(600)

Authorization:

 You must have the INSERT privilege on the "target" table.

 Additional authority is required depending on the keywords specified.

 RESOURCE–if NEW is specified.

 DELETE and INSERT–if PURGE is specified and the table is owned by another

 user.

 DBA–if PURGE is specified, and if any indexes defined on an affected table

 are owned by someone else.

Chapter 8. Command Reference 197

PURGE

identifies that the output table (table to be loaded) exists and that all existing

table rows should be deleted by RELOAD TABLE processing before loading.

You must have the DELETE privilege on the output table. If you are not the

owner of the output table, you require DELETE and INSERT authority for the

table. If any indexes for the table are owned by another user, you require DBA

authority.

If the RESTARTCOUNT parameter appears on the RELOAD TABLE command, the

PURGE parameter will not cause all row to be deleted. The RESTARTCOUNT

parameter indicates that the RELOAD TABLE operation is being restarted,

therefore, PURGE processing must have already occurred, so it is not required to

delete all rows from the table again.

Note: You must specify either NEW or PURGE in the RELOAD TABLE statement.

Because existing tables might be greatly affected by the choice of these

parameters, there is no default specification.

INTABLE (table_name)

is optional. If omitted, the Database Services Utility loads data from the first

table it finds in the input file. INTABLE identifies data in the input file to be

used for RELOAD TABLE processing. Because the input file must be created

by UNLOAD processing, the data is organized by the tables from which it was

unloaded. Thus, the table_name that you specify here is the name of a table that

was unloaded at an earlier time. This parameter is useful if your input file was

created by an UNLOAD DBSPACE command. The UNLOAD DBSPACE

command can unload many tables into a sequential file. The INTABLE

parameter merely identifies which of those tables you now want to reload.

 You can use owner to specify the user ID of the person who created the table in

the input file. If you omit the owner (see “Qualifying Object Names” on page

110 for more information about owner), the utility uses the data of the first

table encountered in the input file with the table_name specified. In this

instance, owner does not default to the user ID of the current Database Services

Utility user.

INFILE (ddname)

identifies and describes the sequential (SAM) input file containing the data to

be loaded into the table. The file must be created with UNLOAD processing.

 The default record format in a DB2 Server for VSE system is variable-length

blocked, spanned (SB), with LRECL=(BLKSIZE−4) for variable and spanned

records or LRECL=BLKSIZE for fixed and undefined records.

 The default record format in a DB2 Server for VM system is variable-length

blocked, spanned (VBS), with block size and record format information

specified by a CMS FILEDEF command; the LRECL parameter is not

applicable.

Note: The RECFM, RECSZ and BLKSIZE information displayed in the message

ARI0868I depends on the CMS FILEDEF command specifications for the

RELOAD input file. However, RELOAD processing in a DB2 Server for

VM environment always opens the input data file as a VB file. The

RECFM, RECSZ and BLKSIZE information displayed in the message

ARI0868I indicates this change.

COMMITCOUNT (ccount)

identifies the frequency of COMMIT action during RELOAD processing. ccount

198 Database Services Utility

is a number from 1 to 2,147,483,647 indicating that a COMMIT statement

should be executed after the number of input table rows equal to ccount are

processed by RELOAD TABLE.

Note: Database Services Utility AUTOCOMMIT ON processing must be in

effect when you use RELOAD COMMITCOUNT processing. If

AUTOCOMMIT is OFF and the COMMITCOUNT parameter is used, an

error message is written and RELOAD command processing is not

performed.

RESTARTCOUNT (rcount)

identifies the restart point for RELOAD processing. rcount is a number from 1

to 2,147,483,647 that identifies the number of input table rows to be skipped

before RELOAD command processing begins. Row rcount + 1 will be the first

row to be reloaded. If RESTARTCOUNT is omitted, no rows are skipped and

RELOAD processing begins with the first input row.

Note: If an end-of-table condition occurs before rcount rows are read from the

input UNLOAD file, an error message is written before RELOAD

processing ends.

ddname

in DB2 Server for VSE: this is the TLBL or DLBL job control statement file

name for the sequential input file.

 In DB2 Server for VM: this is the name of the sequential input file defined

with a CMS FILEDEF command. Except for the ddname, CMS FILEDEF

command information for RELOAD command processing should be

identical to the information in the FILEDEF command used when the file

was created by UNLOAD command processing. You must define a CMS

file used for RELOAD command input with the file-mode number 4. Do

not specify SYSIN or SYSPRINT as the ddname.

BLKSZ (size)

is an optional parameter that specifies the block size of the sequential

output file. The default block size is 2048 bytes per block.

PDEV (TAPE or DASD)

is an optional parameter that specifies the device type (DASD or TAPE) of

the sequential (SAM) input file. Specify PDEV(DASD) if the input file

resides on any device supported by the VSE DTFSD macro. An exception

to this is VSAM-managed SAM files. VSAM-managed SAM does not

support spanned records. Specify PDEV(TAPE) if the input file resides on a

device supported by the VSE DTFMT macro. The default is PDEV(TAPE).

 BLKSZ and PDEV can be specified in any order but must occur after the

ddname parameter.

REWIND or NOREWIND

controls tape file rewind processing performed during OPEN processing.

This parameter is valid only if you specify TAPE for PDEV. The default

processing is REWIND.

 REWIND

specifies that the tape file is rewound by OPEN processing.

NOREWIND

specifies that the tape file is not rewound by OPEN processing. If

NOREWIND is specified for input tape files referenced by a series of

RELOAD commands, you must ensure that the tape files being

Chapter 8. Command Reference 199

referenced are in ascending sequence. For example, if NOREWIND is

specified in a sequence of two RELOAD commands and the first

command reads tape file 2, then the second command must reference

tape file 3 or higher. If it references tape file 1, an OPEN error occurs.

Release Coexistence Considerations for DB2 Server for VM

Changes were required in Version 7 Release 1 to handle file I/O correctly when

using CMS 15 and later. These changes affect the format of data that is unloaded

and reloaded by the UNLOAD and RELOAD commands of the DBS Utility. If you

use the DBS Utility’s UNLOAD and RELOAD commands with databases at

different release levels, you must ensure that the code changes have been applied

at all release levels. For releases prior to Version 7 Release 1, you must apply the

following APARs:

 Release APAR

3.5 PQ28584

5.1 PQ28583

6.1 PQ27957

200 Database Services Utility

UNLOAD DBSPACE

UNLOAD DBSPACE Format

Note: The UNLOAD DBSPACE command is not supported if you are using DRDA

flow.

Following are the descriptions for each portion of the command:

DBSPACE (dbspace_name)

identifies an UNLOAD DBSPACE request and the dbspace to be unloaded. The

utility unloads the tables of the dbspace in an unpredictable order. The

dbspace_name is the name of the dbspace to be unloaded. If you do not specify

owner, the utility unloads one of your dbspaces. See “Names and Identifiers”

on page 110 for more information about naming conventions for data objects. If

you do not own a dbspace called dbspace_name, the utility unloads a public

dbspace having that name. If there is no public dbspace having that name,

UNLOAD processing is unsuccessful, and an error message is written to the

Database Services Utility message file.

 For example, suppose your user ID is GENE and you specify:

UNLOAD DBSPACE(SPACE1) ...

VM Format:

►► UNLOAD DBSPACE (dbspace_name) OUTFILE (ddname) ►◄

VSE Format:

►► UNLOAD DBSPACE (dbspace_name) ►

► OUTFILE (ddname

2048

BLKSZ

(

size

)

 ►

►
NOREWIND

(TAPE)

REWIND

PDEV

(DASD)

) ►◄

VM Example:

 UNLOAD DBSPACE(THOMPSON.SPACE1) OUTFILE(HISTORY)

VSE Example:

 UNLOAD DBSPACE(MIKE.SP2) OUTFILE(SAVE BLKSZ(2048))

Authorization:

You must have the SELECT privilege on the table(s) being unloaded.

UNLOAD DBSPACE unloads all tables of the specified dbspace to a sequential output

file.

Chapter 8. Command Reference 201

The Database Services Utility unloads the private dbspace named

GENE.SPACE1. If there is no such dbspace, the utility unloads the public

dbspace named PUBLIC.SPACE1. If there is no PUBLIC.SPACE1, no dbspace is

unloaded, and you receive an error message in the message file.

 If you own a private dbspace with the same name as a public dbspace, and

you want to unload the public dbspace, you must specify

PUBLIC.dbspace_name. If owner is omitted, the private dbspace is unloaded.

OUTFILE|OUTFILE (ddname)

identifies and describes the sequential (SAM) output file that is to contain the

data unloaded from the dbspace. The default record format is variable-length

blocked, spanned (VBS). A minimum logical record length (LRECL) of 8240

bytes is the default in DB2 Server for VSE. A block size greater than 8244 is

recommended for tape output files to improve performance.

ddname

DB2 Server for VSE

 This is the TLBL or DLBL job control statement file name for the sequential

output file.

Note: If the message ARI0868I generated during Database Services Utility

UNLOAD command processing identifies RECFM=VS for an output

file defined with RECFM VBS, the file can be read by Database

Services Utility RELOAD command processing using RECFM VBS.

DB2 Server for VM

 This is the name of the sequential output file defined with a CMS FILEDEF

command. The FILEDEF command should contain the record format

specification RECFM VBS or a block size (BLOCK or BLKSIZE) value or

both. You must define a CMS file used for UNLOAD command output

with the file mode number 4.

 If the row length (sum of defined column lengths) for any table in the

dbspace being unloaded exceeds 8 240 bytes, the largest row length value

is used as the minimum logical record length.

Notes:

1. Always specify a record format (RECFM) of VBS for UNLOAD

processing. UNLOAD processing changes the record format to U if the

system-required logical record length is greater than the specified block

size (BLOCK) value minus 4. Otherwise, UNLOAD processing changes

the record format to VB. This change will be indicated in the ARI0868I

message, generated by the UNLOAD processing. See Appendix B,

“FILEDEF Command Syntax and Notes,” on page 249 for more

information about undefined (U) record format usage.

2. If the message ARI0868I, generated using DBS UNLOAD processing,

identifies RECFM=U or RECFM=VB for an output file defined with

RECFM=VBS, the CMS FILEDEF command that defines the RELOAD

input data files must still specify RECFM=VBS. Except for the ddname,

CMS FILEDEF information for RELOAD command processing must be

identical to the information in the FILEDEF command used when

UNLOAD command processing created the file. See Appendix B,

“FILEDEF Command Syntax and Notes,” on page 249 for more

information about undefined (U) record format usage.

3. If the message ARI0868I indicates RECFM=U for a tape output file,

significant performance improvements can be obtained by increasing

202 Database Services Utility

the block size (BLOCK) value for the file. A block size greater than 8244

bytes is recommended for tape output files created by UNLOAD

processing.

 Do not specify SYSIN or SYSPRINT as the ddname.

BLKSZ (size) (DB2 Server for VSE Only)

is an optional parameter that specifies the block size of the sequential output

file. The default block size is 2048 bytes per block.

PDEV (TAPE or DASD) (DB2 Server for VSE Only)

is an optional parameter that specifies the device type (DASD or TAPE) for the

sequential output file. Specify PDEV(DASD) for files that reside on any device

supported by the VSE DTFSD macro. An exception to this is VSAM-managed

SAM files. VSAM-managed SAM does not support spanned records. Specify

PDEV(TAPE) for files that reside on any device supported by the VSE DTFMT

macro. The default is PDEV(TAPE).

 BLKSZ and PDEV can be specified in any order but must occur after the

ddname parameter.

NOREWIND or REWIND (DB2 Server for VSE Only)

controls tape file rewind processing performed during CLOSE processing. This

parameter is valid only if you specified TAPE for PDEV. The default is

NOREWIND.

NOREWIND

specifies that the tape file will not be rewound by CLOSE processing.

REWIND

specifies that the tape file is rewound by CLOSE processing.

 Selective dbspace file unloads may be performed by specifying the file sequence

number in the TLBL statement. The following JCL is an example of how this can

be accomplished:

// JOB UNLOAD DBSPACE

* UNLOAD 1 DBSPACE INTO TAPE FILE SEQ# 1

// TLBL DBSP,’PUBLIC.CRP01’,,,,1

// ASSGN SYS005,181

// MTC REW,SYS005

// EXEC ARIDBS,SIZE=AUTO

UNLOAD DBSPACE (PUBLIC.CRP01)

OUTFILE (DBSP BLKSZ(24720) PDEV(TAPE));

/*

* UNLOAD 2 DBSPACES INTO TAPE FILE SEQ# 2

// TLBL DBSP,’PUBLIC.CRPXX’,,,,2

// EXEC ARIDBS,SIZE=AUTO

UNLOAD DBSPACE (PUBLIC.CRP02)

OUTFILE (DBSP BLKSZ(24720) PDEV(TAPE));

UNLOAD DBSPACE (PUBLIC.CRP03)

OUTFILE (DBSP BLKSZ(24720) PDEV(TAPE));

/*

/&

Release Coexistence Considerations for DB2 Server for VM

Changes were required in Version 7 Release 1 to handle file I/O correctly when

using CMS 15 and later. These changes affect the format of data that is unloaded

and reloaded by the UNLOAD and RELOAD commands of the DBS Utility. If you

use the DBS Utility’s UNLOAD and RELOAD commands with databases at

different release levels, you must ensure that the code changes have been applied

at all release levels. For releases prior to Version 7 Release 1, you must apply the

Chapter 8. Command Reference 203

following APARs:

 Release APAR

3.5 PQ28584

5.1 PQ28583

6.1 PQ27957

UNLOAD TABLE

UNLOAD TABLE Format

Note: The UNLOAD TABLE command is not supported if you are using DRDA

flow.

Following are descriptions of each portion of the command:

TABLE (table_name)

identifies an UNLOAD TABLE request and the table to be processed. You can

UNLOAD a view merely by specifying a view name instead of a table name.

You can further identify the table or view by specifying the owner of the table

or view (see “Qualifying Object Names” on page 110 for details). A synonym

cannot be used for table_name.

VSE Format:

►► UNLOAD TABLE (table_name) ►

► OUTFILE (ddname

2048

BLKSZ

(

size

)

 ►

►
NOREWIND

(TAPE)

REWIND

PDEV

(DASD)

) ►◄

VM Format:

►► UNLOAD TABLE (table_name) OUTFILE (ddname) ►◄

VSE Example:

 UNLOAD TABLE (EMPLOYEE) OUTFILE(SAVE13 PDEV(DASD))

VM Example:

 UNLOAD TABLE (EMPLOYEE) OUTFILE(SAVE13)

Authorization:

 You must have the SELECT privilege on the table being unloaded.

The UNLOAD TABLE command unloads a specific table or view to an output file.

204 Database Services Utility

OUTFILE|OUTFILE (ddname)

identifies and describes the sequential (SAM) output file that is to contain the

data unloaded from the table. The default record format is variable-length

blocked, spanned (VBS). A minimum logical record length (LRECL) of 8 240

bytes is the default in a VSE system. To improve performance, a block size

greater than 8 244 bytes is recommended for tape output files.

 ddname

in DB2 Server for VSE: this is the TLBL or DLBL job control statement file

name for the sequential output file.

Note: If the message ARI0868I generated during Database Services Utility

UNLOAD command processing identifies RECFM=VB for an output file

defined with RECFM VBS, the file can be read by Database Services

Utility RELOAD command processing using RECFM VBS.

In DB2 Server for VM: this is the name of the sequential output file defined

with a CMS FILEDEF command. The FILEDEF command should contain the

record format specification RECFM VBS or a block size (BLOCK or BLKSIZE)

value or both. You must define a CMS file used for UNLOAD command

output with the file mode number 4. UNLOAD processing writes

variable-length spanned records with a minimum logical record length

(LRECL) of 8 240 bytes.

Notes:

1. Always specify a record format (RECFM) of VBS for UNLOAD processing.

UNLOAD processing changes the record format to U if the system-required

logical record length is greater than the specified block size (BLOCK) value

minus 4. Otherwise, UNLOAD processing changes the record format to VB.

This change will be indicated in the ARI0868I message generated by the

UNLOAD processing. See Appendix B, “FILEDEF Command Syntax and

Notes,” on page 249 for more information about undefined (U) record

format usage.

2. If the message ARI0868I, generated using DBS UNLOAD processing,

identifies RECFM=U or RECFM=VB for an output file defined with

RECFM=VBS, the CMS FILEDEF command that defines the RELOAD input

data files must still specify RECFM=VBS. Except for the ddname, CMS

FILEDEF information for RELOAD command processing must be identical

to the information in the FILEDEF command used when UNLOAD

command processing created the file. See Appendix B, “FILEDEF Command

Syntax and Notes,” on page 249 for more information about undefined (U)

record format usage.

3. If the message ARI0868I indicates RECFM=U for a tape output file,

significant performance improvements can be obtained by increasing the

block size (BLOCK) value for the file. A block size greater than 8244 is

recommended for tape output files created by UNLOAD processing.

Do not specify SYSIN or SYSPRINT as the ddname.

BLKSZ (size)

is an optional parameter that specifies the block size of the sequential output

file. The default block size is 2048 bytes per block.

PDEV (TAPE or DASD)

is an optional parameter that specifies the device type (DASD or TAPE) for the

sequential output file. Specify PDEV(DASD) for files that reside on any device

supported by the VSE DTFSD macro. An exception to this is VSAM-managed

Chapter 8. Command Reference 205

SAM files. VSAM-managed SAM does not support spanned records. Specify

PDEV(TAPE) for files that reside on any device supported by the VSE DTFMT

macro. The default is PDEV(TAPE).

 BLKSZ and PDEV can be specified in any order but must occur after the

ddname parameter.

NOREWIND or REWIND

controls tape file rewind processing performed during CLOSE processing.

This parameter is valid only if you specify TAPE for PDEV. The default is

NOREWIND.

 NOREWIND

specifies that the tape file is not rewound by CLOSE processing.

REWIND

specifies that the tape file is rewound by CLOSE processing.

Release Coexistence Considerations for DB2 Server for VM

Changes were required in Version 7 Release 1 to handle file I/O correctly when

using CMS 15 and later. These changes affect the format of data that is unloaded

and reloaded by the UNLOAD and RELOAD commands of the DBS Utility. If you

use the DBS Utility’s UNLOAD and RELOAD commands with databases at

different release levels, you must ensure that the code changes have been applied

at all release levels. For releases prior to Version 7 Release 1, you must apply the

following APARs:

 Release APAR

3.5 PQ28584

5.1 PQ28583

6.1 PQ27957

206 Database Services Utility

Load-Package Commands

Processing for the Load-Package Commands

Figure 99 indicates the data flow for the UNLOAD PACKAGE and RELOAD

PACKAGE commands.

Note: PROGRAM is a synonym for PACKAGE. Therefore, UNLOAD and

RELOAD PROGRAM are equivalent to UNLOAD and RELOAD PACKAGE.

File

File
Package

#1

Package

#2

RELOAD

PACKAGE
UNLOAD

PACKAGE

Figure 99. Database Services Utility Processing Diagram for UNLOAD and RELOAD

PACKAGE

Chapter 8. Command Reference 207

RELOAD PACKAGE

RELOAD PACKAGE Format

PACKAGE (package_name)

identifies a RELOAD PACKAGE request and the package to be loaded.

 You can further qualify the package_name with the owner, separating the two

names with a period. The name of the package is package_name. If you do not

specify the owner, owner defaults to the connected authorization ID. (See

VM Format:

►► RELOAD PACKAGE (package_name) NEW

KEEP

REPLACE

REVOKE

 ►

►

▼

,

TO

(

server_name

)

 INFILE (ddname) ►◄

VSE Format:

►► RELOAD PACKAGE (package_name) NEW

KEEP

REPLACE

REVOKE

 ►

►

▼

,

TO

(

server_name

)

 ►

► INFILE (ddname

2000

BLKSZ

(

size

)

 ►

►
REWIND

(TAPE)

NOREWIND

PDEV

(DASD)

) ►◄

VM Example:

 RELOAD PACKAGE(JONES.PROG4) REPLACE KEEP TO(RDB2,RDB3)

 INFILE(IN1)

VSE Example:

 RELOAD PACKAGE(JONES.PROG4) REPLACE KEEP INFILE(IN1)

Authorization: You must be the owner of the package that you want to reload. To

reload another user’s package, you must have DBA authority. In VM, you must also have

CONNECT authority to all named databases.

208 Database Services Utility

“Qualifying Object Names” on page 110 for details on accessing data objects

that are owned by other users.) The authorization ID is either:

v The authorization ID specified in a previous explicit connect (when TO is

not used)

v The VM user ID (when TO is used) because it is the user ID used to connect

to server_name.

 REPLACE

is specified if an existing package is to be replaced by the reload. If the

package does not exist, a new package is created without an error or warning

message.

NEW

instructs the Database Services Utility that the package to be loaded does not

exist and is to be created. If a package with the same name and owner already

exists in the database, the reload fails.

KEEP

causes the grants of RUN privilege to remain in effect when the package is

reloaded. The KEEP and REVOKE parameters apply if the package has

previously been created and the owner of the package has granted the RUN

privilege on the resulting package to other users. The KEEP and REVOKE

parameters are allowed only with REPLACE; KEEP is the default.

REVOKE

if the REVOKE parameter is specified, or if the owner of the package is not

entitled to grant all privileges embodied in the package, all existing grants of

the RUN privilege are revoked. The KEEP and REVOKE parameters are

allowed only with REPLACE; KEEP is the default.

TO (server-name)

in DB2 Server for VSE, this identifies the application server or servers onto

which the package is to be reloaded. The Database Services Utility connects to

each application server in turn, and if the connection is successful, the package

is reloaded. If an LUW is active when the RELOAD command begins,

processing is unsuccessful and an error occurs.

 In DB2 Server for VM, this can be specified when you must load the package

onto more than one database. To reload the package, the Database Services

Utility connects to each specified server-name in turn (using database switching,

which requires APPC/VM in multiple user mode). If an LUW is active when

the RELOAD command begins, processing is unsuccessful and an error occurs.

 When the TO clause is specified, the CONNECT statement is processed with

no user ID or password. The attempted connection fails if implicit connections

are not allowed on server-name. After the RELOAD is performed on each

database, a COMMIT RELEASE (or ROLLBACK RELEASE) is done, releasing

the connection to that server-name. The default user ID (the VM user ID) and

the default database (as specified to SQLINIT) are reestablished for a new

LUW. Any explicit connections done before the RELOAD are therefore lost and

must be reissued if required.

 If owner was not specified, the VM user ID is assumed, because it is the ID

used to connect to each server-name.

 When you use TO, the Database Services Utility ignores preceding CONNECT

statements and uses the VM user ID as a default. If you do not want to use

your VM user ID, issue the explicit CONNECT statements as required, and use

Chapter 8. Command Reference 209

the RELOAD command without a TO clause. If you do not specify the TO

clause, the Database Services Utility reloads the package onto only the

currently connected database.

 There is no specific limit on the number of database names typed; however,

there is an implied limit in that the maximum length of a Database Services

Utility command is 8192 characters.

INFILE (ddname)

identifies and describes the sequential (SAM) tape or disk input file containing

the package to be loaded into the database. The file must be created by

UNLOAD PACKAGE processing, and its contents must not be changed in

any way. RELOAD package processing uses a record format of fixed-length

blocked (FB) and a record length of 80. The block size should be identical to

that used for UNLOAD processing; that is, it must be a multiple of 80.

ddname

in DB2 Server for VSE: this is the TLBL or DLBL job control statement file

name for the sequential input file.

 Alternatively, RELOAD PACKAGE can read its input from SYSIPT by using a

READ MEMBER. You use the READ MEMBER NOCONT option to properly

close the SYSIPT file. An example of using READ MEMBER with NOCONT is:

RELOAD PACKAGE (package_name) REPLACE INFILE(SYSIPT);

READ MEMBER package_member (NOCONT

In DB2 Server for VM: this is the name of the sequential input file defined

with a CMS FILEDEF command. Do not specify SYSIN or SYSPRINT as the

ddname.

BLKSZ (size) (DB2 Server for VSE Only)

is an optional parameter that specifies the block size of the sequential output

file. It should be identical to that used for UNLOAD processing; that is, it must

be a multiple of 80. The default block size is 2000 bytes per block.

PDEV (TAPE or DASD)

is an optional parameter that specifies the device type (DASD or TAPE) of the

sequential (SAM) input file. Specify PDEV(DASD) if the input file resides on

any device supported by the VSE DTFSD macro. Specify PDEV(TAPE) if the

input file resides on a device supported by the VSE DTFMT macro. The default

is PDEV(TAPE).

REWIND or NOREWIND

controls tape file rewind processing performed during OPEN processing. This

parameter is valid only if you specify TAPE for PDEV. The default processing

is REWIND.

REWIND

specifies that the tape file is rewound by OPEN processing.

NOREWIND

specifies that the tape file is not rewound by OPEN processing. If NOREWIND

is specified for input tape files referenced by a series of RELOAD commands,

you must ensure that the tape files being referenced are in ascending sequence.

For example, if NOREWIND is specified in a sequence of two RELOAD

commands and the first command reads tape file 2, then the second command

must reference tape file 3 or higher. If it references tape file 1, an OPEN error

occurs.

210 Database Services Utility

UNLOAD PACKAGE

UNLOAD PACKAGE Format

 The UNLOAD PACKAGE command unloads a specific package to a file. You can

unload packages flagged as invalid in the database because RELOAD command

processing automatically preprocesses the package again, thus revalidating it. Any

unresolved dependencies in the package are then flagged when the RELOAD

command preprocesses it again.

Note: The UNLOAD PACKAGE command is not supported if you are using

DRDA flow.

Following are descriptions of each part of the command:

PACKAGE (package_name)

identifies an UNLOAD PACKAGE request and the package to be processed.

 In DB2 Server for VSE, you can further qualify the package_name with the

owner, separating the two names with a period.

 The name of the package is package_name. If you do not specify the owner (see

“Qualifying Object Names” on page 110 for details), owner defaults to the

currently connected authorization ID.

 The DB2 Server for VM authorization ID is either:

Format:

►► UNLOAD PACKAGE (package_name)

FROM

(server_name)
 ►

► OUTFILE (ddname

2000

BLKSZ

(

size

)

 ►

►
NOREWIND

(TAPE)

REWIND

PDEV

(DASD)

) ►◄

VM Example:

 UNLOAD PACKAGE(PROG1) FROM(DB1) OUTFILE(OUT1)

VSE Example:

 UNLOAD PACKAGE(PROG1) OUTFILE(OUT1)

Authorization:

You must be the owner of the package you want to unload. To unload another user’s

package, you must have DBA authority.

In VM, you must also have CONNECT authority to a specified database.

Chapter 8. Command Reference 211

v The authorization ID specified in a previous explicit CONNECT (when

FROM is not used)

v The VM user ID (when FROM is used) because it is the user ID used to

connect to server_name.

FROM (server-name)

in DB2 Server for VSE, this identifies the application server against which the

UNLOAD PACKAGE command should be issued. If an LUW is active, the

UNLOAD command is unsuccessful and an error occurs.

 In DB2 Server for VM, this identifies the application server containing the

package. To unload the package, the Database Services Utility connects to the

specified server_name (using application server switching, which requires

APPC/VM in multiple user mode). If an LUW is active, the UNLOAD

command fails with an error. When FROM is specified, the CONNECT is

attempted with no user ID or password. The attempted connection fails if

implicit connects are not allowed on server_name.

 After the package is unloaded, a COMMIT (or ROLLBACK) RELEASE is done,

releasing the connection to server_name. The default user ID (the VM user ID),

and the default database (as specified to SQLINIT) are reestablished for a new

LUW. Any explicit CONNECT statements that you issued before the UNLOAD

command are therefore lost and must be reissued, if required. When you use

FROM, the Database Services Utility ignores any preceding CONNECT

statements and uses the VM user ID as a default. If you do not want to use

your VM user ID, issue the explicit CONNECT statements as needed, and use

the UNLOAD command without a FROM clause.

OUTFILE (ddname)

identifies and describes the sequential (SAM) tape or disk output file that is to

contain the unloaded package. UNLOAD program processing uses a record

format of fixed-length blocked (FB) and a record length of 80. The block size,

in a VM environment, must be a multiple of 80 and defaults to 80 if not

specified. This file contains only one unloaded package. If the file already

exists, its contents are replaced; otherwise, the file is created.

 ddname

in DB2 Server for VM, this is the name of the sequential output file defined

with a CMS FILEDEF command. Do not specify SYSIN or SYSPRINT as

the ddname.

 In DB2 Server for VSE, this is the TLBL or DLBL job control statement file

name for the sequential output file.

BLKSZ (size) (DB2 Server for VSE only)

is an optional parameter that specifies the block size of the sequential output

file. It must be a multiple of 80. The default block size is 2000 bytes per block.

PDEV (TAPE or DASD)

is an optional parameter that specifies the device type (DASD or TAPE) for the

sequential output file. Specify PDEV(DASD) for files that reside on any device

supported by the VSE DTFSD macro. Specify PDEV(TAPE) for files that reside

on any device supported by the VSE DTFMT macro. The default is

PDEV(TAPE).

 BLKSZ and PDEV can be specified in any order but must occur after the

ddname parameter.

212 Database Services Utility

NOREWIND or REWIND

controls tape file rewind processing performed during CLOSE processing. This

parameter is valid only if you specify TAPE for PDEV. The default is

NOREWIND.

 NOREWIND

specifies that the tape file is not rewound by CLOSE processing.

REWIND

specifies that the tape file is rewound by CLOSE processing.

REBIND PACKAGE

REBIND PACKAGE Format

 The REBIND PACKAGE command allows you to repreprocess an existing package

immediately without unloading and reloading the package. You can use the

REBIND PACKAGE command with single or multiple user mode.

Note: The REBIND PACKAGE command is not supported if you are using the

DRDA protocol.

Following is the description of the command:

PACKAGE (package_name)

identifies the package that you want to rebind.

 You can qualify the name of the package by specifying the owner of the

package; you must, however, have DBA authority to repreprocess a package

belonging to another user. If you do not specify the owner, owner defaults to

the connected authorization ID. See “Qualifying Object Names” on page 110

for details on accessing data objects that are owned by other users.

EXPLAIN(YES or NO)

determines if explain processing should be performed.

 If EXPLAIN(YES) is specified, then EXPLAIN ALL processing will be done and

the explain tables will be updated. See EXPLAIN in the DB2 Server for VSE &

VM SQL Reference for details on EXPLAIN processing.

 If EXPLAIN is not specified, the default is NO.

Format:

►►

REBIND PACKAGE

(package_name)
 EXPLAIN (NO)

EXPLAIN (YES)

►◄

Example:

 REBIND PACKAGE(SMITH.PROG)

Authorization:

You must be the owner of the package you want to rebind. To rebind another user’s

package, you must have DBA authority.

Chapter 8. Command Reference 213

|

|

|

|

|

|

|

Set-Item Commands

SET AUTOCOMMIT

SET AUTOCOMMIT Format

 The SET AUTOCOMMIT command allows you to activate or suppress the

execution of SQL COMMIT statements by the Database Services Utility. This

command cannot span input records.

OFF

identifies that you do not want the utility to commit database changes after

control commands are successfully processed. You must supply SQL COMMIT

statements in the Database Services Utility input stream at the points at which

you commit the changes.

 In this mode of operation, the only execution of an SQL COMMIT by the

utility is at the end-of-program after all control commands have been

successfully processed.

 ON or OFF must be specified in this command. If you do not supply a SET

AUTOCOMMIT command in the input records, the utility operates as if you

had issued SET AUTOCOMMIT OFF.

ON

identifies that you want the utility to run an SQL COMMIT command after the

successful processing of any control command (that is, Database Services

Utility commands or SQL statements) except those noted below. The utility

ensures that any database changes made before the receipt of the

AUTOCOMMIT ON command are committed before processing continues.

 In AUTOCOMMIT ON mode, the Database Services Utility does not run an

SQL COMMIT command after the successful processing of these commands:

 SQL Statements Database Services Utility Commands

 COMMIT COMMENT

 CONNECT SET AUTOCOMMIT OFF

 LOCK SET ERRORMODE

 ROLLBACK SET FORMAT

 SET ISOLATION

 SET LINECOUNT

 SET LINEWIDTH

 SET UPDATE STATISTICS

Format:

►►
 (

SET AUTOCOMMIT
 OFF

ON
)

►◄

214 Database Services Utility

SET ERRORMODE

SET ERRORMODE Format

 The SET ERRORMODE command allows you to:

v Suspend the normal Database Services Utility actions taken after a command

processing error is detected and cause the utility to continue processing

commands after an error has occurred.

v Force the Database Services Utility to enter error mode processing.

v Resume normal Database Services Utility command processing.

This command cannot span input records. If you do not supply a SET

ERRORMODE command in the input records, the utility operates as if you had

issued SET ERRORMODE OFF.

OFF

causes the utility to resume execution of Database Services Utility commands

and SQL statements after a command processing error has occurred or to

terminate error mode CONTINUE processing.

 Any subsequent command processing errors cause the utility to execute an

SQL ROLLBACK statement and enter Database Services Utility error mode

processing.

Notes:

1. The SET ERRORMODE OFF command also terminates the processing mode

established by the Database Services Utility SET AUTOCOMMIT ON

command.

2. A SET ERRORMODE OFF command is not used:

a. If the error mode is already off.

b. If a serious database error has previously occurred. A serious error, by

definition, causes all subsequent SQL statements to terminate. Thus, a

SET ERRORMODE OFF command in this case has no effect.

 ON

causes the utility to suspend execution of following Database Services Utility

commands and SQL statements. A SET ERRORMODE ON command

terminates:

v The normal command processing mode that was established by default

when the utility was run or by a previous SET ERRORMODE OFF command

v The processing mode established by a SET ERRORMODE CONTINUE

command.

When a SET ERRORMODE ON command is processed, the utility initiates

error mode processing. While in error mode, the Database Services Utility

displays commands in the report or message file listing and performs syntax

Format:

►►
 (

SET ERRORmode
 OFF

ON

CONTINUE

)

►◄

Chapter 8. Command Reference 215

checking on Database Services Utility commands. No SQL statements or

Database Services Utility commands (except SET ERRORMODE OFF or SET

ERRORMODE CONTINUE) are executed during error mode processing.

Therefore, any errors that result from command execution (for example, SQL

syntax errors and data file errors) are not detected.

 Database Services Utility error mode processing is also entered when the utility

detects a command processing error, and the utility is operating in normal

command processing mode. If the processing mode established by a SET

ERRORMODE CONTINUE command is in effect, and a command processing

error is detected, Database Services Utility error mode processing is entered

only when the error is a serious database error.

Notes:

1. A SET ERRORMODE ON command also terminates the processing mode

established by the SET AUTOCOMMIT ON command.

2. A SET ERRORMODE ON command is not used if Database Services Utility

error mode processing is already in effect.

CONTINUE

suppresses the normal Database Services Utility error processing after an error

is detected; that is, Database Services Utility error mode processing is not

performed. An SQL ROLLBACK statement is not executed, and the utility

continues to process Database Services Utility commands and SQL statements

after a command processing error occurs. If any errors occur, and they occur

only while SET ERRORMODE CONTINUE is in effect, the Database Services

Utility issues error message ARI8007I when the Database Services Utility

command processing ends.

Notes:

1. If a serious database error occurs while the processing mode established by

a SET ERRORMODE CONTINUE command is in effect, an SQL

ROLLBACK is executed, and the utility enters error mode processing. A

serious database error, by definition, causes all subsequent SQL statements

to terminate.

2. After a SET ERRORMODE CONTINUE command is processed, because the

Database Services Utility does not execute an SQL ROLLBACK command

does not mean that the logical unit of work is always in progress. Certain

SQL statement errors cause the logical unit of work to be terminated by the

database manager. If one of these errors occurs, all database changes made

during the logical unit of work or since the last SQL COMMIT statement

are lost.

To control the logical unit of work after a SET ERRORMODE CONTINUE

command is processed, you can use SQL COMMIT statements or the

Database Services Utility SET AUTOCOMMIT ON command.

3. The SET ERRORMODE CONTINUE command is not used:

a. If the processing mode established by a previous SET ERRORMODE

CONTINUE command is still in effect

b. If a serious database error has previously occurred.

4. If the Database Services Utility is not in error mode when a SET

ERRORMODE CONTINUE command is encountered, the Database Services

Utility AUTOCOMMIT processing status is not changed.

If the Database Services Utility is in error mode when a SET ERRORMODE

CONTINUE command is encountered, the Database Services Utility

AUTOCOMMIT processing status is set to off.

216 Database Services Utility

5. Database Services Utility end-of-program COMMIT processing is based on

the current status of the command processing. That is, if Database Services

Utility error mode processing and the SET AUTOCOMMIT ON command

processing mode are not in effect, Database Services Utility end-of-program

COMMIT processing is performed.

6. All SQL statements are treated as one LUW when running the database

with LOGMODE=N and Database Services Utility with

AUTOCOMMIT=OFF and ERRORMODE=CONTINUE. If an error occurs,

ALL statements are rolled back.

Note: The ERRORMODE setting has an effect on the final Database Services Utility

return code. For more information, see Chapter 9, “Error Handling and

Debugging,” on page 223.

SET FORMAT

SET FORMAT Format

 This command allows you to identify whether the Database Services Utility should

use column or block format, column or list format, or only list format for SQL

SELECT statement results. If the format is not specified, Database Services Utility

processing uses column or block format for SQL SELECT statement output. This

command cannot span input records.

The SET FORMAT command overrides the formats specified by either a parameter

list format control parameter or the default column or block format. This command

specification remains in effect until another SET FORMAT command is

encountered and successfully processed, or when Database Services Utility

processing ends.

CB

identifies that either column or block format should be used. The column

format is used when a report or message file record can contain all column

names or column data for a selected row. The block format is used when a

report or message file record cannot contain all column names or column data

for a selected row. Column or block format is the default if you do not

override it by supplying either a format control parameter—FORMAT(CL) or

FORMAT(LO)—or a SET FORMAT command.

CL

identifies that either column or list format should be used. The column format

is used when a report or message file record can contain all column names or

column data for a selected row. The list format is used when a report or

message file record cannot contain all column names or column data for a

selected row.

Format:

►►
 (

SET FORMAT
 CB

CL

LO

)

►◄

Chapter 8. Command Reference 217

LO

identifies that only list format is to be used. The list format is used even when

the report or message file record can contain all column names or column data

for a selected row.

SET ISOLATION

SET ISOLATION Format

 This command allows you to control the isolation level used for Database Services

Utility processing. Every time the utility is run, the isolation level is initialized to

repeatable read (RR). SQL processing through the utility is performed at this

isolation level until a SET ISOLATION command is encountered. The utility sets

the isolation level to the value specified in the command and processes at this level

until another SET ISOLATION command is executed or Database Services Utility

processing ends. The other isolation level settings are cursor stability (CS) and

uncommitted read (UR). This command cannot span input records.

If you are accessing a non-DB2 Server for VM application server, or if you are

using DRDA flow, the isolation level for the Database Services Utility is always set

to CS and the SET ISOLATION command has no effect.

RR

is used to protect a logical unit of work from uncommitted updates of another

logical unit of work. Also, no other logical unit of work can modify any row

that has been read by this logical unit of work.

CS

is used to protect a logical unit of work from uncommitted updates of another

logical unit of work. After data is read, the data is freed for others to update

before the end of the logical unit of work.

 Use this setting only when the data is read or when you are the only user

authorized to update the data.

UR

is used when protection from other logical units of work is not required. Data

can be read without waiting for other logical units of work that are updating

the data. Reading data will not prevent other application processes from

updating it.

 Note that data integrity may be compromised because read-only access to

uncommitted data is allowed.

 This setting applies only to read-only operations (SELECTs, DATAUNLOAD

and UNLOAD) against data in public dbspaces with ROW or PAGE level

locking. For other operations (UPDATE, DELETE, INSERT, DATALOAD, and

LOAD), the rules of CS apply.

Format:

►►
 (

SET ISOLation
 RR

CS

UR

)

►◄

218 Database Services Utility

For dbspaces with DBSPACE level of locking, the rules of RR apply.

Recommended settings for Database Services Utility processing:

v Repeatable Read (RR)

– To ensure that the database is in a consistent state when using UNLOAD and

RELOAD TABLE/DBSPACE commands for database backup or migration.

The isolation level used to perform DATALOAD commands or perform

RELOAD DBSPACE/TABLE commands with the NEW option is not important.

Regardless of your isolation level setting, all UNLOAD/RELOAD PACKAGE

functions are performed with isolation level repeatable read. This does not affect

your setting of isolation level when you are performing other functions.

v Cursor Stability (CS)

– To reduce the contention on the database when running the Database Services

Utility with multiple user mode

– To perform RELOAD DBSPACE/TABLE commands with the PURGE option

– To use the Database Services Utility in the terminal input mode with

AUTOCOMMIT OFF in DB2 Server for VM

– To perform UNLOAD DBSPACE/TABLE or DATAUNLOAD processing for

read only data

– To update data for which you are the only person with update authorization.

v Uncommitted Read (UR)

– To reduce the contention on the database when running the Database Services

Utility with multiple user mode

Note that data integrity may be compromised when using UR. UR should only

be used when it is not necessary that the data be committed.

SET LINECOUNT, SET LINEWIDTH

SET LINECOUNT (LINEWIDTH) Format

 The SET LINECOUNT/LINEWIDTH command allows you to:

v Define the number of lines per page for Database Services Utility report output

or message file output.

v Define the number of print data positions used in each Database Services Utility

report or message file record containing SQL SELECT statement output.

This command cannot span input records.

Format:

►► SET LineCount (ccc)

80

120

LineWidth

(

www

)

LineWidth

(www)

60

LineCount

(

ccc

)

 ►◄

Note: 80 is valid in DB2 Server for VM only.

Chapter 8. Command Reference 219

LINECOUNT(ccc) or LC(ccc)

If LINECOUNT(ccc) or LC(ccc) is specified, the value ccc is the number of lines

per page of printed output written to the Database Services Utility report or

message file. The value ccc can range from 10 to 32767; the default value is 60.

LINEWIDTH(www) or LW(www)

If LINEWIDTH(www) or LW(www) is specified, the value www is the maximum

number of print data positions used in a Database Services Utility report or

message file record containing SQL SELECT statement output. The default

value for www is 120. In DB2 Server for VM, if the Database Services Utility

message file (ddname=SYSPRINT) is assigned to the terminal, the number of

print data positions used for the SQL SELECT statement defaults to 80.

 The value www can range from 60 to 256, but cannot be equal to or greater

than the logical record length of the Database Services Utility message file.

Notes:

1. The Database Services Utility always supplies an American Standards

Association (ASA) control character in the first position of the print record.

The second through nth positions of the print record are the print data

positions. If the value www+1 is less than the print record length, all

unused print data positions in the print record contain a blank (hex 40).

2. The DB2 Server for VSE Database Services Utility report record length is

always 121.

3. The minimum DB2 Server for VM Database Services Utility message file

record length is 81. If the Database Services Utility control parameter

PAGECTL(NO) is specified, the minimum message file record length is 80.

4. If the value www is equal to or greater than the print record length, an

error occurs.

SET UPDATE STATISTICS

SET UPDATE STATISTICS Format

 The SET UPDATE STATISTICS command allows you to control the automatic

statistics collection performed during Database Services Utility RELOAD TABLE,

RELOAD DBSPACE, and DATALOAD TABLE command processing. This

command cannot span input records. If you do not supply a SET UPDATE

STATISTICS command in the input records, the utility operates as if you had

issued SET UPDATE STATISTICS ON.

The SET UPDATE STATISTICS command is not supported on a non-DB2 Server for

VM application server or if you are using DRDA flow.

ON

causes the utility to automatically collect statistics for each table loaded during

Format:

►►
 UPDATE (

SET

STATISTICS
 ON

OFF
)

►◄

220 Database Services Utility

Database Services Utility RELOAD TABLE, RELOAD DBSPACE, and

DATALOAD TABLE command processing. This is the default mode of

processing.

 The Database Services Utility writes message ARI8980I for each table or

dbspace loaded by a RELOAD TABLE, RELOAD DBSPACE, or DATALOAD

TABLE command. The message informs you that the statistics were collected

while the data was loading.

 The Database Services Utility writes message ARI8996I and issues an SQL

UPDATE STATISTICS statement for each table loaded if you are using the

DATALOAD command and when any one of the following is true:

v You are loading data into more than one table.

v Indexes exist on the table.

v The table that you are loading data into already contains rows.

 The SQL UPDATE STATISTICS FOR TABLE statement issued by the Database

Services Utility must read the whole table to update the internal DB2 Server

for VSE & VM statistics for the table. The statistics are updated based on the

current contents of the table and dbspace to which the table is assigned. Refer

to the DB2 Server for VSE & VM Application Programming manual and the DB2

Server for VSE & VM Database Administration manual for a description of the

SQL UPDATE STATISTICS statement processing.

OFF

suppresses the Database Services Utility statistics collection performed during

RELOAD TABLE, RELOAD DBSPACE, and DATALOAD TABLE command

processing.

 A SET UPDATE STATISTICS OFF remains in effect until a SET UPDATE

STATISTICS ON command is processed or until the Database Services Utility is

restarted.

Note: If tables are loaded by the Database Services Utility RELOAD TABLE,

RELOAD DBSPACE, and DATALOAD TABLE commands while SET

UPDATE STATISTICS OFF is in effect, you must issue an SQL UPDATE

STATISTICS statement for the table or dbspace to update the internal

statistics.

To avoid the processing overhead associated with an SQL UPDATE STATISTICS

statement processing, you can suppress the normal Database Services Utility

UPDATE STATISTICS when you are using the DATALOAD TABLE command to

load a few records into a table that currently contains a larger number of records.

See “Update Statistics Considerations” on page 229 for details.

Chapter 8. Command Reference 221

222 Database Services Utility

Chapter 9. Error Handling and Debugging

This chapter describes the types of errors you can encounter, return codes, and

storage dumps. The action you take depends on the message that you receive. The

Database Services Utility generates its own messages as well as displaying DB2

Server for VSE & VM messages. All messages are explained in the DB2 Server for

VSE Messages and Codes and DB2 Server for VM Messages and Codes manuals.

Except for a report or message file processing error, all Database Services Utility

messages are written to the report or message file. If a report or message file error

occurs, a Database Services Utility message is generated on the operator console

describing the condition. In the report or message file, messages follow the

commands that caused them to be generated.

Types of Errors

The Database Services Utility takes different actions depending on the cause of the

error. The various kinds of errors are:

v Database Manager or Operating System Failure

If the database manager (or the operating system) is terminated abnormally

while the Database Services Utility is running, any database updates that

occurred during the in-process Database Services Utility logical unit of work are

rolled back by recovery processing when the database manager is restarted. No

rollback occurs if the tables reside in nonrecoverable storage pools.

v Database Services Utility Abnormal Termination Error Handling

If the Database Services Utility is terminated abnormally, database manager

processing restores any database updates that occurred during the in-process

logical unit of work unless updates are made to tables residing in

nonrecoverable storage pools.

v Database Services Utility Processing Errors

Database Services Utility processing errors are those errors that do not cause

abnormal terminations. If a processing error occurs, and SET ERRORMODE is

not reset to OFF, or SET ERRORMODE CONTINUE is not in effect, the Database

Services Utility performs these actions:

1. Writes SQL or Database Services Utility error messages to the report or

message file except when message output is suppressed by either of the

Database Services Utility control parameters MESSAGES(NONE) or

MESSAGES(SQLONLY).

2. Restores any database updates made during the in-process logical unit of

work by executing an SQL ROLLBACK command, unless the updates were

made to tables residing in nonrecoverable storage pools.

3. Performs all possible Database Services Utility syntax checking on the

remainder of the (input) control file. The utility does no further database

manager processing.

4. Writes a Database Services Utility message identifying the unsuccessful

termination of Database Services Utility processing.

5. Updates register 15 with a nonzero return code.

6. Returns control to the invoking program with register linkage processing.

© Copyright IBM Corp. 1987, 2007 223

v Report Errors

In DB2 Server for VSE, if the Database Services Utility encounters problems

when it tries to open the report, it generates a message to the operator console

and terminates processing after performing steps 5 and 6 above. If the utility

encounters problems when it tries to write to the report, it generates a message

and terminates processing after performing steps 2, 5, and 6 above.

v Input Control Card File Errors

If the Database Services Utility encounters problems when it tries to open the

input control card file, it terminates processing after performing steps 4, 5, and 6

described above. If the utility encounters problems when it tries to read from the

input control card file, it terminates processing after performing steps 2, 4, 5,

and 6 as described above.

v Message File Errors

In DB2 Server for VM, if the Database Services Utility encounters problems

when it tries to open the message file, it generates a WTO (write-to-operator)

message and terminates processing after performing steps 5 and 6 above. If the

utility encounters problems when it tries to write to the message file, it generates

a WTO message and terminates processing after performing steps 2, 5, and 6

above.

v Command File Errors

If the Database Services Utility encounters problems when it tries to open the

command file, it terminates processing after performing steps 4, 5, and 6

described above. If the utility encounters problems when it tries to read from the

command file, it terminates processing after performing steps 2, 4, 5, and 6 as

described above.

v Tape or DASD Data File Errors

If an incorrect ddname is specified in a Database Services Utility command, or

incorrect data file job control or CMS FILEDEF statements are supplied,

Database Services Utility processing is terminated. Database manager processing

restores any database changes when the Database Services Utility job abnormally

terminates because of a data-file-open error.

Return Codes

Although one or more of the following return codes may be encountered during

Database Services Utility processing, one final return code is provided at the end

of processing (the highest return code found). The following is a list of the return

codes:

0 All commands processed successfully.

4 All requested processing completed successfully, and all changes were

committed to the database. This return code indicates that an error

occurred during Database Services Utility termination; no SQL or Database

Services Utility commands need to be reprocessed.

6 One or more errors have occurred in command processing while SET

ERRORMODE CONTINUE was in effect.

8 Database Services Utility processing error encountered. From the point of

error, no further commands were executed, but subsequent Database

Services Utility commands were checked for syntax errors.

 If a Database Services Utility SET ERRORMODE OFF command is

encountered before the end of the (input) control file is reached, normal

Database Services Utility command processing is resumed.

224 Database Services Utility

12 Input control card or Control command file-open-error. No commands are

processed.

16 Report or Message file-open-error. No commands are processed.

20 Initialization error. Sufficient processor storage was not available for

Database Services Utility working storage areas. No commands are

processed.

The type of ERRORMODE processing in effect at the time of a command

processing error determines the final return code. If both ERRORMODE OFF and

ERRORMODE CONTINUE processing are used within one (input) control file

(either by default or through a SET ERRORMODE command), one of the following

scenarios can exist:

v If an error occurs during ERRORMODE CONTINUE, the final return code is 6.

v If an error occurs during ERRORMODE OFF, the final return code is 8.

v If an error occurs during both ERRORMODE CONTINUE and ERRORMODE

OFF, the final return code is 8.

Storage Dumps

Dumps Initiated by the Database Services Utility

The Database Services Utility initiates a storage dump if an illogical condition or

critical error arises during its execution. Before a Database Services Utility storage

dump of the partition or virtual machine is initiated, the message ARI804E is

normally generated, and register 15 is set to a hexadecimal dump identification

(DUMP ID) value. After a storage dump is generated, Database Services Utility

processing continues.

The message ARI0804E identifies:

v The Database Services Utility module initiating the dump

v The reason code for the dump.

In two instances, Database Services Utility storage dumps are not preceded by the

usual ARI0804E message. These are:

v The storage dump (DUMP ID = hex 811) is initiated as a result of the .DEBUG

command.

v The storage dump (DUMP ID = hex 803) is initiated by the module ARIDBS

before Database Services Utility processing is terminated, and the final Database

Services Utility return code (register 15) value is 4 or is greater than 8.

The Database Services Utility modules initiating storage dumps, the reasons for the

dumps, and the hexadecimal dump identification values are explained in the DB2

Server for VSE Messages and Codes and DB2 Server for VM Messages and Codes

manuals.

Debugging

Processing for Debug Mode

In debug mode, if the sequence of commands described below is supplied in the

DB2 Server for VSE Database Services Utility input control card file, a storage

dump of a partition is taken following the next SQL error that occurs. And in DB2

Server for VM, if this sequence of commands is supplied in the Database Services

Utility command file, a virtual machine dump is taken following the next SQL

Chapter 9. Error Handling and Debugging 225

error that occurs. An SQL error is identified by an SQLCODE less than 0 or greater

than +100 received after the execution of an SQL statement. The resulting storage

dump reflects a register 15 value of hex 811 and is generated by a Database

Services Utility call to entry point ARISYSDA.

The command sequence necessary to initiate the storage dump is:

 .DEBUG

 SET ERRORMODE OFF;

Note:

v .DEBUG must begin in command record column 1.

v An error condition occurs when the .DEBUG command is processed.

v A SET ERRORMODE OFF command must follow the .DEBUG command.

The storage dump is then taken after the next SQL error returned by the database

manager (in the SQLCA) after the execution of an SQL statement. Database

Services Utility processing continues after the dump is generated. If you want

subsequent storage dumps during the same execution of the Database Services

Utility, repeat the special command sequence described above.

Guidelines for DEBUG Storage Dump Analysis

Register 15 = X'811' Register 13 + 4 = ARIDSQLA register save area address for

last ARIPRDI CALL

ARIDSQLA save area address:

 + 12 = ARISYSDA (storage dump routine) return address within ARIDSQLA

 + 16 = ARISYSDA entry point

 + 32 = Address of SQLTIE (Register 3 contents at time of dump)

 + 36 = Contents of register 4 at time of dump.

Common processing area (CPA) address + X'0C' = the address of the special save

area containing the register 0 through register 15 contents saved by the Database

Services Utility before executing the dump request call to ARISYSDA.

226 Database Services Utility

Chapter 10. Improving Performance

This chapter adds to the information in previous chapters by raising issues you

should consider to get the best performance from the Database Services Utility.

Refer to the appropriate sections of earlier chapters if you want more basic

information.

Note: All of the following UNLOAD and RELOAD command references apply to

TABLE and DBSPACE unless PACKAGE is specified.

Nonrecoverable Storage Pool

With the database manager, you can define nonrecoverable storage pools. It

provides limited recovery functions for dbspaces that are assigned to

nonrecoverable storage pools. A problem may arise when you are inserting or

updating tables stored in nonrecoverable storage pools, especially when you use

the DATALOAD and RELOAD commands. See the DB2 Server for VSE System

Administration or DB2 Server for VM System Administration manual for information

about nonrecoverable storage pools.

Tape-File Support in DB2 Server for VM

Tape File Support Considerations

You use the CMS FILEDEF command and an optional CMS LABELDEF command

to define input or output tape files processed by the Database Services Utility.

Refer to the DB2 Server for VM System Administration manual for a complete

description of the tape file support.

Locking Considerations

When running the Database Services Utility with multiple user mode to load

(INSERT) or unload (SELECT) rows from a DB2 Server for VSE & VM database,

you may encounter lock escalation, particularly when using isolation level CS or

RR. Lock escalation reduces the ability to access the database and increases the

likelihood of deadlock conditions, which terminate processing. SQL LOCK

DBSPACE or LOCK TABLE statements override the database manager automatic

locking mechanism; they can be used to reduce deadlock conditions during

Database Services Utility processing. Using isolation level UR to unload rows from

a DB2 Server for VSE & VM database may also reduce lock escalation and

deadlock conditions; however, it is not recommended because it can cause data

integrity problems.

A user-issued SQL LOCK statement is useful only during multiple user mode

processing for table data in a public dbspace that is not defined with locking at the

dbspace level. A user-acquired database lock remains in effect until the end of the

logical unit of work in which it was issued. You cannot lock any database manager

catalog tables—regardless of the database authority you have. To lock an eligible

dbspace or table, you (the user connected to the database) must meet the

requirements in Table 14 on page 228:

© Copyright IBM Corp. 1987, 2007 227

Table 14. Requirements to Lock a Dbspace or Table

To Lock: You Must

 DBSPACE v Be the owner of the dbspace

 or
v Have DBA authority

 Table v Be the owner of the TABLE

 or
v Have DBA authority

 or
v Have SELECT privilege on the table

DATALOAD and RELOAD Locking Considerations

If you insert many rows into the database with a RELOAD command or a

DATALOAD command without the COMMITCOUNT option specified, consider

using the SQL LOCK DBSPACE statement to eliminate or reduce lock escalation.

An exclusive lock on the dbspace where the tables being loaded are defined does

not appreciably increase lock contention and reduces the likelihood of deadlock

with another user.

Note: An exclusive lock on a table being loaded does not prevent lock escalation

and is not recommended.

To exclusively lock a dbspace, issue the following command before the

DATALOAD or RELOAD command:

 Format:

►► LOCK DBSPACE dbspace_name IN EXCLUSIVE MODE; ►◄

You can also avoid lock escalation during multiple user mode DATALOAD

processing by issuing a SET AUTOCOMMIT ON command before the DATALOAD

command and specifying a sufficiently low COMMITCOUNT value in the

DATALOAD INFILE subcommand. Use of DATALOAD COMMITCOUNT

processing reduces the likelihood of the locking required by DATALOAD

processing delaying other users accessing the table being loaded or other tables in

the same dbspace where the table being defined resides. If the target table is in a

dbspace defined with ROW level locking, a COMMITCOUNT value of

approximately 200 should be sufficiently low. If the dbspace is defined with PAGE

locking, the COMMITCOUNT value can be higher (1000, for example) and lock

escalation is still avoided. Do not arbitrarily set the COMMITCOUNT value too

low because frequent commit points increase DATALOAD run time.

SELECT, DATAUNLOAD, and UNLOAD Locking Considerations

If you are running the Database Services Utility with the isolation level setting of

repeatable read (the default Database Services Utility processing mode) and you

know that a particular SELECT, DATAUNLOAD, or UNLOAD operation is going

to access many rows from one or more tables in the database, lock escalation then

normally occurs. You should consider acquiring a SHARE lock on the table(s)

being accessed. If all the tables being accessed reside in the same dbspace, you

should consider acquiring a SHARE lock on the dbspace being accessed. This

action can reduce lock contention and the likelihood that a SELECT,

228 Database Services Utility

DATAUNLOAD, or UNLOAD causes a deadlock with another user. Other users

can modify other tables in the same dbspace where the table being accessed

resides.

To acquire a SHARE lock on a table or dbspace being accessed, issue the following

command before the SELECT, DATAUNLOAD, or UNLOAD statement:

 Format:

►► LOCK TABLE table_name IN SHARE MODE; ►◄

or

►► LOCK DBSPACE dbspace_name IN SHARE MODE; ►◄

UNLOAD and RELOAD PACKAGE Considerations

To obtain the best performance when using the UNLOAD PACKAGE command

and the RELOAD PACKAGE command, consider doing the following:

v Unload or reload large numbers of packages in your system’s off-peak usage

time or with single user mode.

v If you are unloading or reloading packages with multiple user mode, use

blocking (by ensuring that the Database Services Utility was initialized with the

BLOCK option).

These actions improve performance by preventing interruptions by other users.

PROGRAM is a synonym for PACKAGE. Therefore, UNLOAD or RELOAD

PROGRAM, and UNLOAD or RELOAD PACKAGE are equivalent commands.

When unloading or reloading a modifiable package, an exclusive lock is held on

the catalog table SYSACCESS. This may cause a performance deterioration for

other users wanting to run the exclusively locked package.

See the DB2 Server for VSE & VM Database Administration manual for further

information on locking.

Update Statistics Considerations

If you suppress automatic statistics collection by specifying SET UPDATE

STATISTICS OFF in the (input) control file before issuing the DATALOAD

command, you must issue an UPDATE STATISTICS statement to collect statistics.

The UPDATE STATISTICS statement performs a dbspace scan, so it can be

time-consuming if the number of active data pages in that dbspace is large.

Consider suppressing statistics collection only if you know the statistics are not

going to change significantly (for example, a small amount of data is being added

to a large table). In this situation, you can postpone updating the statistics until

more substantial changes have occurred.

Reorganizing Indexes

The REORGANIZE INDEX command corrects index fragmentation and corrects the

skewing of index key values. REORGANIZE INDEX also revalidates an invalid

index.

Chapter 10. Improving Performance 229

REORGANIZE INDEX automatically updates statistics while the index is being

rebuilt. To calculate index statistics, the Database Services Utility has to have an

exact count of the pages in the dbspace which contain rows from the indexed table.

When the table is the only table in the dbspace, the database manager can find out

how many pages contain rows from the dbspace directory. In other words, the

number of used pages is the number of pages containing rows. If there is more

than one table in the dbspace, the database manager has to scan each page to

determine which ones are occupied by the indexed table. Hence, you get better

performance for the REORGANIZE INDEX command when the indexed table is

the only table in the dbspace. The DB2 Server for VSE & VM manuals recommend

allocating one table per dbspace if the tables are large.

To reorganize a valid index, the database manager uses an internal dbspace as

temporary storage to hold the keys of the index. The internal dbspace requirements

to perform a REORGANIZE INDEX operation are one third of that required to

perform the equivalent CREATE INDEX. If you do not have enough space, see the

DB2 Server for VSE System Administration or DB2 Server for VM System

Administration manual.

Packages that depend on an index are not invalidated when the index is

reorganized. Therefore, using the REORGANIZE INDEX command instead of

dropping and re-creating the index explicitly avoids the cost of the automatic

preprocessing that reoccurs the next time an invalidated package is run. This

benefit is realized whether the index you reorganize is valid or invalid.

Double-Byte Character Set

The database manager provides support for basic DBCS, while the Database

Services Utility provides support for extended DBCS.

Basic Support

The Database Services Utility supports the use of all DB2 Server for VSE & VM

data types, including the GRAPHIC data type for double-byte character set (DBCS)

data. The following general rules apply to DBCS data in Database Services Utility

input or output:

v DBCS data in SQL statements processed by the Database Services Utility can be

supplied as a constant with the format:

G’SOxx-xxSI’

where:

 G' is the required constant prefix.

 SO is a shift-out delimiter (hex 0E).

 xx is a DBCS character in paired bytes.

 SI is a shift-in delimiter (hex 0F).

 ' is the character terminating the constant.

Note: N' can be used as a synonym for G'

v DBCS data appearing in input data records is read into a graphic data type

column by the Database Services Utility DATALOAD command processing. The

DBCS data must be represented in paired bytes; the SO and SI delimiters are

optional.

v The paired bytes of a DBCS character cannot be split across Database Services

Utility (input) control file records, except for data records read by Database

Services Utility DATALOAD command processing. A DBCS data string, as well

230 Database Services Utility

as the paired bytes representing a DBCS character, can be split across (input)

control file data records processed using the DATALOAD continued record

support.

v GRAPHIC data appearing in Database Services Utility DATAUNLOAD

command output and GRAPHIC data in SELECT

command print records has the format:

SOxx-xxSI

where:

 SO is a shift-out delimiter (hex 0E).

 xx is a DBCS character in paired bytes.

 SI is a shift-in delimiter (hex 0F).

The SO and SI delimiters result in blank print positions.

v A DBCS data string appearing in a Database Services Utility COMMENT

command must include shift-out and shift-in delimiters and cannot be continued

across (input) control file records.

Extended Support

In DB2 Server for VSE, if the SQLOPTION column value is DBCS and the VALUE

column value is no in the SYSOPTIONS catalog table, you can use the extended

DBCS support of the Database Services Utility. The DBCS option value will be

retrieved from the SQLGLOB file. The User DBCS SQLGLOB value, if it exists, will

be the default setting for DBCS.

The DB2 Server for VM Database Services Utility retrieves information about the

DBCS setting from the LASTING GLOBALV file on the database user machine.

Extended DBCS supports the following characteristics:

v Any SQL identifier or character string constant in a command can contain

DBCS/EBCDIC mixed data if the DBCS string and the shift-in or shift-out

delimiters reside on the same line.

v The SQL SELECT statement ensures that the data printed for CHAR,

VARCHAR, or long field columns contain matched pairs of shift-out and shift-in

delimiters for each data line. A long field is a field that is either a LONG

VARCHAR field, a LONG VARGRAPHIC field, a VARCHAR(n) field where n is

greater than 254 but less than or equal to 32767, or a VARGRAPHIC(n) field

where n is greater than 127 but less than or equal to 16383.

v The Database Services Utility assumes, when a command data record contains a

shift-out delimiter without a shift-in delimiter, that all trailing command data

positions within the command record contain DBCS data. The Database Services

Utility inserts a shift-in delimiter after the last assumed nonblank DBCS

character position before the record is written to the report or message file.

Omitting a shift-in or shift-out delimiter causes unreadable (input) control file

records in the report or message file. To suppress this display of unreadable

DBCS data, set the LIST parameter of the INFILE subcommand to no.

If an error occurs, in DB2 Server for VSE, during access of the SYSOPTIONS

catalog, or if an invalid DBCS option value is found, the Database Services Utility

continues processing the input control card file as if the extended DBCS feature

were not in effect.

Chapter 10. Improving Performance 231

232 Database Services Utility

Part 3. Appendixes

© Copyright IBM Corp. 1987, 2007 233

234 Database Services Utility

Appendix A. Sample Tables

The sample tables illustrated in this appendix are used in examples throughout the

library. These tables simulate a database created for use in organization or project

management applications. As a group, the tables include information that describes

employees, departments, projects, and activities. Figure 100 shows the relationships

among the tables. These relationships are established by referential constraints,

where a foreign key in the dependent table references a primary key in the parent

table. In the figure, the referential constraint is symbolized by lines joining the

keys; the arrowheads point from the primary key to the foreign key. Only those

columns named as foreign or primary keys are listed in the figure. All tables have

additional columns. You can easily review the contents of any table by executing

an SQL statement, such as SELECT * FROM SQLDBA.DEPARTMENT.

DEPARTMENT Table

The DEPARTMENT table describes each department in the business and identifies

its manager and the department to which it reports. The table contents are shown

in Figure 101 on page 236; a description of the columns is shown in Figure 102.

DEPARTMENT

DEPTNO
MGRNO

...
RESTRICT

RESTRICT

RESTRICT

RESTRICT

CASCADE

SET
NULL

SET
NULL

SET NULL

ACTNO

...

PROJNO
DEPTNO
RESPEMP

...

EMPNO
WORKDEPT

...

EMPNO
PROJNO
ACTNO
EMSTDATE

...

PROJNO
ACTNO
ACTSTDATE

...

PROJECT

ACTIVITY

PROJ_ACTEMP_ACT

EMPLOYEE

Figure 100. Relationships among Tables in the Sample Application

© Copyright IBM Corp. 1987, 2007 235

The DEPARTMENT table is created with:

 CREATE TABLE DEPARTMENT

 (DEPTNO CHAR(3) NOT NULL,

 DEPTNAME VARCHAR(36) NOT NULL,

 MGRNO CHAR(6) ,

 ADMRDEPT CHAR(3) NOT NULL,

 PRIMARY KEY (DEPTNO))

After the EMPLOYEE table has been created, a foreign key is added to the

DEPARTMENT table with this statement:

 ALTER TABLE DEPARTMENT ADD

 FOREIGN KEY R_EMPLY1 (MGRNO) REFERENCES EMPLOYEE

 ON DELETE SET NULL

Relationship to Other Tables

DEPARTMENT is a parent of the EMPLOYEE and PROJECT tables.

The DEPARTMENT table is a dependent of the EMPLOYEE table; the MGRNO

column is the foreign key in the DEPARTMENT table and references EMPNO, the

primary key in the EMPLOYEE table.

 DEPTNO DEPTNAME MGRNO ADMRDEPT

A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00

B01 PLANNING 000020 A00

C01 INFORMATION CENTER 000030 A00

D01 DEVELOPMENT CENTER ? A00

E01 SUPPORT SERVICES 000050 A00

D11 MANUFACTURING SYSTEMS 000060 D01

D21 ADMINISTRATION SYSTEMS 000070 D01

E11 OPERATIONS 000090 E01

E21 SOFTWARE SUPPORT 000100 E01

Figure 101. DEPARTMENT Table Contents

 Column Name Description

DEPTNO Department number, the primary key

DEPTNAME A name describing the general activities of

the department

MGRNO Employee number (EMPNO) of the

department manager

ADMRDEPT Number of the department to which this

department reports; the department at the

highest level reports to itself

Figure 102. Columns of the DEPARTMENT Table

236 Database Services Utility

EMPLOYEE Table

The EMPLOYEE table identifies all employees by an employee number and lists

basic personnel information. The table in Table 15 on page 238 shows the contents

of the EMPLOYEE table; Table 16 on page 240 shows a description of the columns.

Appendix A. Sample Tables 237

Table 15. EMPLOYEE Table Contents

EMPNO FIRSTNME

MID

INIT LASTNAME

WORK

DEPT

PHONE

NO

HIREDATE JOB

ED

LEVEL SEX

BIRTHDATE

SALARY

BONUS

COMM

char(6)

not null

varchar(12)

not null

char(1)

not

null

varchar(15)

not null

char(3) char(4) date char(8) smallint

not null

char(1) date dec(9,2) dec(9,2) dec(9,2)

000010 CHRISTINE I HAAS A00 3978 1965-01-01 PRES 18 F 1933-08-24 52750 1000 4220

000020 MICHAEL L THOMPSON B01 3476 1973-10-10 MANAGER 18 M 1948-02-02 41250 800 3300

000030 SALLY A KWAN C01 4738 1975-04-05 MANAGER 20 F 1941-05-11 38250 800 3060

000050 JOHN B GEYER E01 6789 1949-08-17 MANAGER 16 M 1925-09-15 40175 800 3214

000060 IRVING F STERN D11 6423 1973-09-14 MANAGER 16 M 1945-07-07 32250 500 2580

000070 EVA D PULASKI D21 7831 1980-09-30 MANAGER 16 F 1953-05-26 36170 700 2893

000090 EILEEN W HENDERSON E11 5498 1970-08-15 MANAGER 16 F 1941-05-15 29750 600 2380

000100 THEODORE Q SPENSER E21 0972 1980-06-19 MANAGER 14 M 1956-12-18 26150 500 2092

000110 VINCENZO G LUCCHESSI A00 3490 1958-05-16 SALESREP 19 M 1929-11-05 46500 900 3720

000120 SEAN O’CONNELL A00 2167 1963-12-05 CLERK 14 M 1942-10-18 29250 600 2340

000130 DOLORES M QUINTANA C01 4578 1971-07-28 ANALYST 16 F 1925-09-15 23800 500 1904

000140 HEATHER A NICHOLLS C01 1793 1976-12-15 ANALYST 18 F 1946-01-19 28420 600 2274

000150 BRUCE ADAMSON D11 4510 1972-02-12 DESIGNER 16 M 1947-05-17 25280 500 2022

000160 ELIZABETH R PIANKA D11 3782 1977-10-11 DESIGNER 17 F 1955-04-12 22250 400 1780

000170 MASATOSHI J YOSHIMURA D11 2890 1978-09-15 DESIGNER 16 M 1951-01-05 24680 500 1974

000180 MARILYN S SCOUTTEN D11 1682 1973-07-07 DESIGNER 17 F 1949-02-21 21340 500 1707

000190 JAMES H WALKER D11 2986 1974-07-26 DESIGNER 16 M 1952-06-25 20450 400 1636

000200 DAVID BROWN D11 4501 1966-03-03 DESIGNER 16 M 1941-05-29 27740 600 2217

000210 WILLIAM T JONES D11 0942 1979-04-11 DESIGNER 17 M 1953-02-23 18270 400 1462

000220 JENNIFER K LUTZ D11 0672 1968-08-29 DESIGNER 18 F 1948-03-19 29840 600 2387

000230 JAMES J JEFFERSON D21 2094 1966-11-21 CLERK 14 M 1935-05-30 22180 400 1774

000240 SALVATORE M MARINO D21 3780 1979-12-05 CLERK 17 M 1954-03-31 28760 600 2301

000250 DANIEL S SMITH D21 0961 1969-10-30 CLERK 15 M 1939-11-12 19180 400 1534

000260 SYBIL P JOHNSON D21 8953 1975-09-11 CLERK 16 F 1936-10-05 17250 300 1380

000270 MARIA L PEREZ D21 9001 1980-09-30 CLERK 15 F 1953-05-26 27380 500 2190

2
3
8

D

atab
ase

 S
erv

ices
 U

tility

Table 15. EMPLOYEE Table Contents (continued)

EMPNO FIRSTNME

MID

INIT LASTNAME

WORK

DEPT

PHONE

NO

HIREDATE JOB

ED

LEVEL SEX

BIRTHDATE

SALARY

BONUS

COMM

000280 ETHEL R SCHNEIDER E11 8997 1967-03-24 OPERATOR 17 F 1936-03-28 26250 500 2100

000290 JOHN R PARKER E11 4502 1980-05-30 OPERATOR 12 M 1946-07-09 15340 300 1227

000300 PHILIP X SMITH E11 2095 1972-06-19 OPERATOR 14 M 1936-10-27 17750 400 1420

000310 MAUDE F SETRIGHT E11 3332 1964-09-12 OPERATOR 12 F 1931-04-21 15900 300 1272

000320 RAMLAL V MEHTA E21 9990 1965-07-07 FIELDREP 16 M 1932-08-11 19950 400 1596

000330 WING LEE E21 2103 1976-02-23 FIELDREP 14 M 1941-07-18 25370 500 2030

000340 JASON R GOUNOT E21 5698 1947-05-05 FIELDREP 16 M 1926-05-17 23840 500 1907

A
p

p
en

d
ix

 A
.

 S
am

p
le

 T
ab

les

2
3
9

Table 16. Columns of the EMPLOYEE Table

Column Name Description

EMPNO Employee number (the primary key)

FIRSTNME First name of the employee

MIDINIT Middle initial of the employee

LASTNAME Last name of the employee

WORKDEPT Number of department in which the

employee works

PHONENO Employee telephone number

HIREDATE Date of hire

JOB Job held by the employee

EDLEVEL Number of years of formal education

SEX Sex of the employee (M or F)

BIRTHDATE Date of birth

SALARY Yearly salary

BONUS Yearly bonus

COMM Yearly commission

The EMPLOYEE table has a foreign key referencing the primary key in the

DEPARTMENT table. The DEPARTMENT table must, therefore, be created first.

The EMPLOYEE table is then created with:

 CREATE TABLE EMPLOYEE

 (EMPNO CHAR(6) NOT NULL,

 FIRSTNME VARCHAR(12) NOT NULL,

 MIDINIT CHAR(1) NOT NULL,

 LASTNAME VARCHAR(15) NOT NULL,

 WORKDEPT CHAR(3) ,

 PHONENO CHAR(4) ,

 HIREDATE DATE ,

 JOB CHAR(8) ,

 EDLEVEL SMALLINT NOT NULL,

 SEX CHAR(1) ,

 BIRTHDATE DATE ,

 SALARY DECIMAL(9,2) ,

 BONUS DECIMAL(9,2) ,

 COMM DECIMAL(9,2) ,

 PRIMARY KEY (EMPNO) ,

 FOREIGN KEY R_DEPT1 (WORKDEPT) REFERENCES DEPARTMENT

 ON DELETE SET NULL)

Relationship to Other Tables

The EMPLOYEE table is a parent of the DEPARTMENT table, the PROJECT table,

and the EMP_ACT table.

The EMPLOYEE table is a dependent of the DEPARTMENT table; the foreign key

on the WORKDEPT column in the EMPLOYEE table references the primary key on

the DEPTNO column in the DEPARTMENT table.

240 Database Services Utility

PROJECT Table

The PROJECT table describes each project that the business is currently

undertaking. Data contained in each row includes the project number, name,

person responsible, and schedule dates as shown in Table 17; Table 18 describes the

columns.

 Table 17. PROJECT Table Contents

PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ

AD3100 ADMIN SERVICES D01 000010 6.5 1982-01-01 1983-02-01 ?

AD3110 GENERAL ADMIN

SYSTEMS

D21 000070 6 1982-01-01 1983-02-01 AD3100

AD3111 PAYROLL

PROGRAMMING

D21 000230 2 1982-01-01 1983-02-01 AD3110

AD3112 PERSONNEL

PROGRAMMING

D21 000250 1 1982-01-01 1983-02-01 AD3110

AD3113 ACCOUNT

PROGRAMMING

D21 000270 2 1982-01-01 1983-02-01 AD3110

IF1000 QUERY SERVICES C01 000030 2 1982-01-01 1983-02-01 ?

IF2000 USER EDUCATION C01 000030 1 1982-01-01 1983-02-01 ?

MA2100 WELD LINE

AUTOMATION

D01 000010 12 1982-01-01 1983-02-01 ?

MA2110 W L

PROGRAMMING

D11 000060 9 1982-01-01 1983-02-01 MA2100

MA2111 W L PROGRAM

DESIGN

D11 000220 2 1982-01-01 1982-12-01 MA2110

MA2112 W L ROBOT

DESIGN

D11 000150 3 1982-01-01 1982-12-01 MA2110

MA2113 W L PROD CONT

PROGS

D11 000160 3 1982-02-15 1982-12-01 MA2110

OP1000 OPERATION

SUPPORT

E01 000050 6 1982-01-01 1983-02-01 ?

OP1010 OPERATION E11 000090 5 1982-01-01 1983-02-01 OP1000

OP2000 GEN SYSTEMS

SERVICES

E01 000050 5 1982-01-01 1983-02-01 ?

OP2010 SYSTEMS SUPPORT E21 000100 4 1982-01-01 1983-02-01 OP2000

OP2011 SCP SYSTEMS

SUPPORT

E21 000320 1 1982-01-01 1983-02-01 OP2010

OP2012 APPLICATIONS

SUPPORT

E21 000330 1 1982-01-01 1983-02-01 OP2010

OP2013 DB/DC SUPPORT E21 000340 1 1982-01-01 1983-02-01 OP2010

PL2100 WELD LINE

PLANNING

B01 000020 1 1982-01-01 1982-09-15 MA2100

 Table 18. Columns of the PROJECT Table

Column Name Description

PROJNO Project number (the primary key)

PROJNAME Project name

Appendix A. Sample Tables 241

Table 18. Columns of the PROJECT Table (continued)

Column Name Description

DEPTNO Number of department responsible for the

project

RESPEMP Number of employee responsible for the

project

PRSTAFF Estimated mean project staffing (mean

number of persons) needed between

PRSTDATE and PRENDATE to achieve the

whole project, including any subprojects

PRSTDATE Estimated project start date

PRENDATE Estimated project end date

MAJPROJ Number of any major project of which the

subject project may be a part

The PROJECT table has foreign keys referencing DEPARTMENT and EMPLOYEE.

The EMPLOYEE and DEPARTMENT tables must be created before the PROJECT

table. Once EMPLOYEE and DEPARTMENT are created, the following statement

creates the PROJECT table:

 CREATE TABLE PROJECT

 (PROJNO CHAR(6) NOT NULL,

 PROJNAME VARCHAR(24) NOT NULL,

 DEPTNO CHAR(3) NOT NULL,

 RESPEMP CHAR(6) ,

 PRSTAFF DECIMAL(5,2) ,

 PRSTDATE DATE ,

 PRENDATE DATE ,

 MAJPROJ CHAR(6) ,

 PRIMARY KEY (PROJNO) ,

 FOREIGN KEY R_DEPT2 (DEPTNO) REFERENCES DEPARTMENT

 ON DELETE RESTRICT ,

 FOREIGN KEY R_EMPLY2 (RESPEMP) REFERENCES EMPLOYEE

 ON DELETE SET NULL)

Relationship to Other Tables

PROJECT is a parent of the PROJ_ACT table.

PROJECT is a dependent of:

v The DEPARTMENT table; the foreign key on the DEPTNO column in PROJECT

references the primary key in the DEPARTMENT table.

v The EMPLOYEE table; the foreign key on the RESPEMP column in PROJECT

references the primary key in the EMPLOYEE table.

ACTIVITY Table

The ACTIVITY tables describes the activities that can be performed during a

project. The table acts as a master list of possible activities, identifying the activity

number, and providing a description of the activity. Figure 103 on page 243 shows

table contents; Figure 104 on page 243 shows a description of the columns.

242 Database Services Utility

The ACTIVITY table is created with:

 CREATE TABLE ACTIVITY

 (ACTNO SMALLINT NOT NULL,

 ACTKWD CHAR(6) NOT NULL,

 ACTDESC VARCHAR(20) NOT NULL,

 PRIMARY KEY (ACTNO))

Relationship to Other Tables

ACTIVITY is a parent of the PROJ_ACT table.

PROJ_ACT Table

The PROJ_ACT table lists the activities performed for each project. The table

contains information on the start and completion dates of the project activity as

well as staffing requirements as shown in Figure 105 on page 244. Figure 106 on

page 245 shows a description of the columns.

 ACTNO ACTKWD ACTDESC

160 ADMDB Adm databases

170 ADMDC Adm data comm

90 ADMQS Adm query system

150 ADMSYS Adm operating sys

70 CODE Code programs

110 COURSE Develop courses

30 DEFINE Define specs

180 DOC Document

20 ECOST Estimate cost

40 LEADPR Lead program/design

60 LOGIC Describe logic

140 MAINT Maint software sys

10 MANAGE Manage/advise

130 OPERAT Oper computer sys

50 SPECS Write specs

120 STAFF Pers and staffing

100 TEACH Teach classes

80 TEST Test programs

Figure 103. ACTIVITY Table Contents

 Column Name Description

ACTNO Activity number (the primary key)

ACTKWD Activity keyword (up to six characters)

ACTDESC Activity description

Figure 104. Columns of the ACTIVITY Table

Appendix A. Sample Tables 243

PROJNO ACTNO ACSTAFF ACSTDATE ACENDATE

AD3100 10 0.50 1982-01-01 1982-07-01

AD3110 10 1.00 1982-01-01 1983-01-01

AD3111 60 0.80 1982-01-01 1982-04-15

AD3111 70 1.50 1982-02-15 1982-10-15

AD3111 80 1.25 1982-04-15 1983-01-15

AD3111 180 1.00 1982-10-15 1983-01-15

AD3112 60 0.75 1982-01-01 1982-05-15

AD3112 60 0.75 1982-12-01 1983-01-01

AD3112 70 0.75 1982-01-01 1982-10-15

AD3112 80 0.35 1982-08-15 1982-12-01

AD3112 180 0.50 1982-08-15 1983-01-01

AD3113 60 0.75 1982-03-01 1982-10-15

AD3113 70 1.25 1982-06-01 1982-12-15

AD3113 80 1.75 1982-01-01 1982-04-15

AD3113 180 0.75 1982-03-01 1982-07-01

IF1000 10 0.50 1982-01-01 1983-01-01

IF1000 90 1.00 1982-01-01 1983-01-01

IF1000 100 0.50 1982-01-01 1983-01-01

IF2000 10 0.50 1982-01-01 1983-01-01

IF2000 100 0.75 1982-01-01 1982-07-01

IF2000 110 0.50 1982-03-01 1982-07-01

IF2000 110 0.50 1982-10-01 1983-01-01

MA2100 10 0.50 1982-01-01 1982-11-01

MA2100 20 1.00 1982-01-01 1982-03-01

MA2110 10 1.00 1982-01-01 1983-02-01

MA2111 40 1.00 1982-01-01 1983-02-01

MA2111 50 1.00 1982-01-01 1092-06-01

MA2111 60 1.00 1982-06-01 1983-02-01

MA2112 60 2.00 1982-01-01 1982-07-01

MA2112 70 1.50 1983-02-01 1983-02-01

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Figure 105. Partial Contents of PROJ_ACT Table

244 Database Services Utility

The table has a composite primary key and was created with:

 CREATE TABLE PROJ_ACT

 (PROJNO CHAR(6) NOT NULL,

 ACTNO SMALLINT NOT NULL,

 ACSTAFF DECIMAL(5,2) ,

 ACSTDATE DATE NOT NULL,

 ACENDATE DATE ,

 PRIMARY KEY (PROJNO, ACTNO, ACTSTDATE),

 FOREIGN KEY R_PROJ2 (PROJNO) REFERENCES PROJECT

 ON DELETE RESTRICT,

 FOREIGN KEY R_ACTIV (ACTNO) REFERENCE ACTIVITY

 ON DELETE RESTRICT)

Relationship to Other Tables

PROJ_ACT is a parent of the EMP_ACT table.

It is a dependent of:

v The ACTIVITY table; the foreign key on ACTNO in the PROJ_ACT table

references the primary key, ACTNO, in the ACTIVITY table.

v The PROJECT table; the foreign key on PROJNO in the PROJ_ACT table

references the primary key, PROJNO, in the PROJECT table.

EMP_ACT Table

The EMP_ACT table identifies the employee performing each activity listed for

each project. The table in Figure 107 on page 246 shows some of the rows in this

table. Figure 108 on page 246 shows a description of the columns.

 Column Name Description

PROJNO Project number

ACTNO Activity number

ACSTAFF Estimated mean number of employees

needed to staff the activity

ACSTDATE Estimated activity start date

ACENDATE Estimated activity completion date

Figure 106. Columns of the PROJ_ACT Table

Appendix A. Sample Tables 245

Since the table has foreign keys referencing EMPLOYEE and PROJ_ACT, those

tables must be created first.

This table was created with:

CREATE TABLE EMP_ACT

 (EMPNO CHAR(6) NOT NULL,

 PROJNO CHAR(6) NOT NULL,

 ACTNO SMALLINT NOT NULL,

 EMPTIME DECIMAL(5,2) ,

 EMSTDATE DATE ,

 EMENDATE DATE ,

 FOREIGN KEY R_PROACT (PROJNO,ACTNO,EMSTDATE)

 EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

000130 IF1000 90 1.00 1982-01-01 1982-10-01

000130 IF1000 100 .50 1982-10-01 1983-01-01

000140 IF1000 90 .50 1982-10-01 1983-01-01

000030 IF1000 10 .50 1982-06-01 1983-01-01

000030 IF2000 10 .50 1982-01-01 1983-01-01

000140 IF2000 100 1.00 1982-01-01 1982-03-01

000140 IF2000 100 .50 1982-03-01 1982-07-01

000140 IF2000 110 .50 1982-03-01 1982-07-01

000140 IF2000 110 .50 1982-10-01 1983-01-01

000010 MA2100 10 .50 1982-01-01 1982-11-01

000110 MA2100 20 1.00 1982-01-01 1982-03-01

000020 PL2100 30 1.00 1982-01-01 1982-09-15

000010 MA2110 10 1.00 1982-01-01 1983-02-01

000220 MA2111 40 1.00 1982-01-01 1983-02-01

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Figure 107. Partial Contents of EMP_ACT Table

 Column Name Description

EMPNO Employee number

PROJNO Project number of the project to which the

employee is assigned

ACTNO Activity number within a project to which

an employee is assigned

EMPTIME A proportion of the employee’s full time

(between 0.00 and 1.00) to be spent on the

project from EMSTDATE to EMENDATE

EMSTDATE Date the activity starts

EMENDATE Completion date of the activity

Figure 108. Columns of the EMP_ACT Table

246 Database Services Utility

REFERENCES PROJ_ACT ON DELETE RESTRICT,

 FOREIGN KEY R_EMPLY3 (EMPNO) REFERENCES EMPLOYEE

 ON DELETE CASCADE)

Relationship to Other Tables

The EMP_ACT table is a dependent of:

v The EMPLOYEE table; the foreign key on EMPNO in the EMP_ACT table

references the primary key, EMPNO, in the EMPLOYEE table.

v The PROJ_ACT table; the foreign key on the set of PROJNO, ACTNO,

EMSTDATE in the EMP_ACT table references the primary key, PROJNO,

ACTNO, ACSTDATE, in the PROJ_ACT table.

IN_TRAY Table

The IN_TRAY table contains a person’s note log. The table contents are shown in

Figure 109; a description of the columns is shown in Figure 110.

 This table was created with:

CREATE TABLE IN_TRAY

 (RECEIVED TIMESTAMP NOT NULL,

 SOURCE CHAR(8) NOT NULL,

 SUBJECT CHAR(64) ,

 NOTE_TEXT VARCHAR(4000))

CL_SCHED Table

The CL_SCHED table describes a classroom schedule. The table contents are

shown in Figure 111; a description of the columns is shown in Figure 112 on page

248.

 RECEIVED SOURCE SUBJECT NOTE_TEXT

1965-01-01-07.00.00 SQLDBA English Here is a note from

your DBA.

Figure 109. IN_TRAY Table Contents

 Column Name Description

RECEIVED Date and time note was received

SOURCE User id of person sending note

SUBJECT Brief description

NOTE_TEXT The text of the note

Figure 110. Columns of the IN_TRAY Table

 CLASS_CODE DAY STARTING ENDING

101:KAR 2 14.10.00 16.10.00

202:LMM 3 14.40.00 16.40.00

303:RAR 4 09.00.00 09.40.00

Figure 111. CL_SCHED Table Contents

Appendix A. Sample Tables 247

This table was created with:

CREATE TABLE CL_SCHED

 (CLASS_CODE CHAR(7) NOT NULL,

 DAY SMALLINT NOT NULL,

 STARTING TIME NOT NULL,

 ENDING TIME NOT NULL)

Note: For more information about data types, refer to the DB2 Server for VSE &

VM Application Programming manual.

 Column Name Description

CLASS_CODE Class Code (room:teacher)

DAY Day number of four day schedule

STARTING Class start time

ENDING Class end time

Figure 112. Columns of the CL_SCHED Table

CL_SCHED Table

248 Database Services Utility

Appendix B. FILEDEF Command Syntax and Notes

Whenever you run the Database Services Utility under CMS, first identify the files

to CMS with the FILEDEF command.

Note: Use the SQLDBSU EXEC, which generates standard FILEDEF statements, to

define the control and message files. Create a FILEDEF statement for all

additional input and output files.

The FILEDEF command in CMS performs the same functions as the data definition

(DD) record in OS job control language (JCL). When you enter a FILEDEF

command, specify:

v A ddname

v The device type

v A file identification if the device type is DISK

v Options (as required).

The format of the FILEDEF command is:

 Format:

►► FIledef ddname Terminal

PRinter

Reader

DISK

fn_ft_fm

TAPn

(

Options

)

 ►◄

ddname (data definition name)

identifies the name used in your Database Services Utility command that refers

to the input or output file.

Terminal

your workstation

PRinter

the spooled printer available to you

Reader

the spooled reader available to you

DISK fn ft fm

virtual direct access storage device (DASD) CMS file

TAPn

magnetic tape drive, where n can be 1, 2, 3, or 4, representing virtual units 181,

182, 183, and 184, respectively.

Options

to avoid error messages, specify only those options that are valid for a

particular device. Table 19 on page 251 shows valid options for each device

type.

 The following diagram illustrates the FILEDEF options available when the device

is a workstation or a tape drive:

© Copyright IBM Corp. 1987, 2007 249

Format:

►► (

PERM

CHANGE

RECFM

LRECL

nnnn

NOCHANGE

F

FB

V

VB

FBS

VBS

 ►

► BLOCK nnnn

(1)

(2)

UPCASE

7TRACK

(1)

(2)

LOWCASE

9TRACK

)
 ►◄

Notes:

1 Terminal only.

2 Tape only.

The following diagram illustrates the FILEDEF options available when the device

specified is DISK:

 Format:

►► (

PERM

CHANGE

NOCHANGE

RECFM

F

FB

V

VB

FBS

VBS

LRECL

nnnn

*

BLOCK

nnnn

 ►

►
XTENT50

XTENT

nnnn

DISP MOD

MEMBER

mbrname

CONCAT

DSORG

PS

PO

DA

)
 ►◄

250 Database Services Utility

Table 19. FILEDEF Options and Parameters

OPTION NAME DISK READER/PRINTER TAPn TERMINAL

BLOCK, BLOCKSIZE X X X X

CHANGE,

NOCHANGE

X X X X

CONCAT X

DEN X

DISP MOD X X

DSORG X

LOWERCASE/

UPCASE

 X

LRECL X X X X

MEMBER X

PERM X X X X

RECFM X X X X

7TRACK/9TRACK X

Some guidelines for entering FILEDEF specifications are given below.

Specifying ddname

If the FILEDEF command is issued for a program input or output file, the ddname

must be the same as the ddname or file name specified for the file in the source

program. For example, you have an Assembler language source program that

contains the line:

INFILE DCB ddname=INPUTDD,MACRF=GL,DSORG=PS,RECFM=F,LRECL=80

For a particular execution of this program, you want to use as your input file a

CMS file on your A-disk that is named MYINPUT FILE. You must issue a FILEDEF

like this before executing the program:

FILEDEF INPUTDD DISK MYINPUT FILE A1

CMS FILEDEF command information for RELOAD processing should be identical

to the information in the FILEDEF command used when the file was created by the

package’s UNLOAD command processing.

If the input data file was created by DATAUNLOAD processing, then the CMS

FILEDEF command that defines the DATALOAD input data file should be

identical to the information in the FILEDEF command used when the file was

created by DATAUNLOAD processing.

Specifying Device Type

For input files, the device type you enter on the FILEDEF command indicates the

device from which you want records read. It can be DISK, TERMINAL, READER

(for input from real cards or virtual cards), or TAPn (for tape). Using the above

example, if your input file is to be read from your virtual card reader, the FILEDEF

command might be as follows:

FILEDEF INPUTDD READER

Appendix B. FILEDEF Command Syntax and Notes 251

Or, if you were reading from a tape attached to your virtual machine at virtual

address 181 (TAP1):

FILEDEF INPUTDD TAP1

For output files, the device you specify can be DISK, PRINTER, TAPn (tape), or

TERMINAL.

Entering File Identifiers

If you are using a CMS disk file for your input or output, specify:

FILEDEF ddname DISK filename filetype filemode

Note: If an asterisk (*) is used for the file mode of an output file, the results are

unpredictable. The file mode field is optional; your A-disk is the default

assumed.

If you want an output file to be constructed in OS simulated data set format, you

must specify the file mode number as 4. For example, a program contains a

dbspace for an output file with the ddname OUTPUTDD, and you are using it to

create a CMS file named DTABSE OUTPUT on your B-disk:

FILEDEF OUTPUTDD DISK DTABSE OUTPUT B4

If you enter only the ddname and device type on the FILEDEF command, such as:

FILEDEF ddname DISK

where ddname is the name of the output file you assigned as the parameter of the

FILEDEF command, you have then created a file on your A-disk. For example, if

you assign a ddname of OSCAR to an output file and do not issue a FILEDEF

command before you execute the program, the CMS file FILE OSCAR A1 is created

when you execute the program.

Specifying CMS Tape Label Processing

You can use the label operands on the FILEDEF command to indicate that CMS

tape label processing is not desired. (This is the default.) If CMS tape label

processing is desired, you can use the label operands on the FILEDEF command to

indicate the types of labels on your tape.

Specifying Options

The FILEDEF command has many options; those mentioned below are a sampling

only. For complete descriptions of all the options of the FILEDEF command, see

the VM/ESA: CMS Command Reference.

Note: If a SET ERRORMODE CONTINUE command is in effect during Database

Services Utility command processing, which requires tape file operation

involving multifile volume, the use of the LEAVE option in the FILEDEF

may cause a tape positioning error. If a Database Services Utility command

processing involving tape file operation fails, the subsequent command

processing requiring access to the same tape will get a tape file open error.

This error results from the wrong tape positioning caused by the use of the

LEAVE option in the FILEDEF.

BLOCK, LRECL, RECFM, DSORG

If you are using the FILEDEF command to relate a data control block (DCB) in a

program to an input or output file, you need to supply some of the file format

information, such as the record length and block size, on the FILEDEF command

line. For example, you have coded a DCB macro for an output file as follows:

252 Database Services Utility

OUTFILE DCB ddname=OUT,MACRF=PM,DSORG=PS

When you are issuing a FILEDEF for this ddname, you must specify the format of

the file. To create an output file on disk, blocked in OS-simulated data set format,

you could issue:

FILEDEF OUT DISK fn ft A (RECFM FB LRECL 80 BLOCK 1600

Note the following command-specific information for the RECFM, BLOCK, and

LRECL parameters:

v DATALOAD

If the DATALOAD input data file contains records with more than 32 760

positions of data, you can do one of the following:

1. Use VS or VBS records. Specify (as options) only the RECFM and block size

(BLOCK or BLKSIZE) parameters in the FILEDEF command defining the

data file. (The LRECL specification does not apply and will be overridden if

specified.)

2. Use F or V records if you are using CMS 15 or later, and the DATALOAD

input data file contains records with less than 65 536 positions of data.

v UNLOAD DBSPACE and UNLOAD TABLE

You should always specify a record format (RECFM) of VBS for UNLOAD

processing. UNLOAD processing changes the record format to U if the

system-required logical record length is greater than the specified block size

(BLOCK) value minus 4. Otherwise, UNLOAD processing changes the record

format to VB. See below for more information about undefined (U) record

format usage.

A block size greater than 8 244 is recommended for tape output files created by

UNLOAD processing.

v UNDEFINED RECORD FORMAT and UNLOAD DBSPACE / UNLOAD TABLE

/ DATAUNLOAD

UNLOAD processing changes the RECFM=VBS, specified on the FILEDEF

command, to either VB or U. It changes the RECFM to VB if the record length

required to unload the data will fit within the specified or default block size

(minus 4), so that there are no spanned records. However, when the record

length exceeds the block size (minus 4), UNLOAD processing produces spanned

records (records that span more than one block). Likewise, DATAUNLOAD

processing changes the RECFM=VS or RECFM=VBS, specified on the FILEDEF

command, to U, producing spanned records. Note, however, that this VBS-like

or VS-like file may NOT be acceptable to other programs that use the OS VBS

access method (CMS OS simulation on OS/390 and VSE/ESA), because the

logical record length may exceed the OS-defined maximum of 65 535. Each table

row is written out as a single spanned record, and tables with very long rows

(especially containing long fields) can produce a record exceeding 65 535

positions. This is why UNLOAD / DATAUNLOAD changes VBS or VS to U,

since CMS OS simulation cannot handle records longer than 65 535. In that case,

the spanning of records is done by the DBS Utility and not by CMS OS

simulation.

v RELOAD DBSPACE and RELOAD TABLE

You should always specify a record format (RECFM) of VBS for RELOAD

processing. If a RECFM value other than VBS, or an LRECL value, is specified it

is ignored. RELOAD processing changes the record format to VB. Always use

the same RECFM and BLKSIZE values on the FILEDEF for a RELOAD as were

used on the FILEDEF for the corresponding UNLOAD.

v UNLOAD and RELOAD PROGRAM

Appendix B. FILEDEF Command Syntax and Notes 253

If you specify a RECFM other than FB, or specify an LRECL value, the value is

ignored.

v SCHEMA

If you specify a RECFM other than FB, or specify an LRECL value, the value is

ignored.

PERM

Usually, when you execute one of the language processors, all existing file

definitions are cleared. If the development of a program requires you to recompile

and reexecute it frequently, you might want to use the PERM option when you

issue file definitions for your input and output files. For example:

CP SPOOL PUNCH TO *

FILEDEF INDD DISK TEST FILE A1 (LRECL 80 PERM

FILEDEF OUTDD PUNCH (LRECL 80 PERM

In this example, because you spooled your virtual punch to your own virtual card

reader, output files are placed in your virtual reader. You can either read or delete

them.

All file definitions issued with the PERM option stay in effect until you log off;

therefore, specifically clear those definitions or redefine them:

FILEDEF INDD CLEAR

FILEDEF OUTDD TAP1 (LRECL 80

In the above example, the definition for INDD is cleared; OUTDD is redefined as a

tape file.

When you issue the command:

FILEDEF * CLEAR

all file definitions are cleared, except those you enter with the PERM option.

Note: When a program ends abnormally, or when you issue the HX immediate

command, all file definitions are cleared, including those entered with the

PERM option.

DISP MOD

Suppose you issue a FILEDEF command for an output file and assign it a CMS file

identifier that is identical to that of an existing CMS file; then, when anything is

written to that ddname, the existing file is replaced by the new output file. If you

want, instead, to have new records added to the end of the existing file, you can

use the DISP MOD option as follows:

FILEDEF ddname DISK fn ft fm (DISP MOD

Note: To see the file characteristics used in the Database Services Utility’s

processing, look at message ARI08681 in the message file.

254 Database Services Utility

Notices

IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10594-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1987, 2007 255

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Mail Station P300

522 South Road

Poughkeepsie, NY 12601-5400

U.S.A

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language,

which illustrates programming techniques on various operating platforms. You

may copy, modify, and distribute these sample programs in any form without

payment to IBM, for the purposes of developing, using, marketing, or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

256 Database Services Utility

Programming Interface Information

This book documents intended Programming Interfaces that allow the customer to

write programs to obtain services of DB2 Server for VSE & VM.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, or other countries, or both:

 APL2

 C/370

 CICS

 CICS/ESA

 CICS/VSE

 DATABASE 2

 DataPropagator

 DB2

 DFSMS/VM

 Distributed Relational Database Architecture

 DRDA

 IBM

 MVS

 OS/2

 QMF

 SQL/DS

 System/370

 VM/ESA

 VSE/ESA

 VTAM

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 257

258 Database Services Utility

Bibliography

This bibliography lists publications that are

referenced in this manual or that may be helpful.

DB2 Server for VM Publications

v DB2 Server for VSE & VM Application

Programming, SC09-2889

v DB2 Server for VSE & VM Database

Administration, SC09-2888

v DB2 Server for VSE & VM Database Services

Utility, SC09-2983

v DB2 Server for VSE & VM Diagnosis Guide and

Reference, LC09-2907

v DB2 Server for VSE & VM Overivew, GC09-2995

v DB2 Server for VSE & VM Interactive SQL Guide

and Reference, SC09-2990

v DB2 Server for VSE & VM Master Index and

Glossary, SC09-2890

v DB2 Server for VM Messages and Codes,

GC09-2984

v DB2 Server for VSE & VM Operation, SC09-2986

v DB2 Server for VSE & VM Quick Reference,

SC09-2988

v DB2 Server for VM System Administration,

SC09-2980

v DB2 Server for VSE & VM Performance Tuning

Handbook, GC09-2987

v DB2 Server for VSE & VM SQL Reference,

SC09-2989

DB2 Server for VSE Publications

v DB2 Server for VSE & VM Application

Programming, SC09-2889

v DB2 Server for VSE & VM Database

Administration, SC09-2888

v DB2 Server for VSE & VM Database Services

Utility, SC09-2983

v DB2 Server for VSE & VM Diagnosis Guide and

Reference, LC09-2907

v DB2 Server for VSE & VM Overivew, GC09-2995

v DB2 Server for VSE & VM Interactive SQL Guide

and Reference, SC09-2990

v DB2 Server for VSE & VM Master Index and

Glossary, SC09-2890

v DB2 Server for VSE Messages and Codes,

GC09-2985

v DB2 Server for VSE & VM Operation, SC09-2986

v DB2 Server for VSE System Administration,

SC09-2981

v DB2 Server for VSE & VM Performance Tuning

Handbook, GC09-2987

v DB2 Server for VSE & VM SQL Reference,

SC09-2989

Related Publications

v DB2 Server for VSE & VM Data Restore,

SC09-2991

v DRDA: Every Manager's Guide, GC26-3195

v IBM SQL Reference, Version 2, Volume 1,

SC26-8416

v IBM SQL Reference, SC26-8415

VM/ESA Publications

v VM/ESA: General Information, GC24-5745

v VM/ESA: VMSES/E Introduction and Reference,

GC24-5837

v VM/ESA: Installation Guide, GC24-5836

v VM/ESA: Service Guide, GC24-5838

v VM/ESA: Planning and Administration,

SC24-5750

v VM/ESA: CMS File Pool Planning,

Administration, and Operation, SC24-5751

v VM/ESA: REXX/EXEC Migration Tool for

VM/ESA, GC24-5752

v VM/ESA: Conversion Guide and Notebook,

GC24-5839

v VM/ESA: Running Guest Operating Systems,

SC24-5755

v VM/ESA: Connectivity Planning, Administration,

and Operation, SC24-5756

v VM/ESA: Group Control System, SC24-5757

v VM/ESA: System Operation, SC24-5758

v VM/ESA: Virtual Machine Operation, SC24-5759

v VM/ESA: CP Programming Services, SC24-5760

v VM/ESA: CMS Application Development Guide,

SC24-5761

v VM/ESA: CMS Application Development

Reference, SC24-5762

v VM/ESA: CMS Application Development Guide for

Assembler, SC24-5763

v VM/ESA: CMS Application Development Reference

for Assembler, SC24-5764

© Copyright IBM Corp. 1987, 2007 259

v VM/ESA: CMS Application Multitasking,

SC24-5766

v VM/ESA: CP Command and Utility Reference,

SC24-5773

v VM/ESA: CMS Primer, SC24-5458

v VM/ESA: CMS User’s Guide, SC24-5775

v VM/ESA: CMS Command Reference, SC24-5776

v VM/ESA: CMS Pipelines User’s Guide, SC24-5777

v VM/ESA: CMS Pipelines Reference, SC24-5778

v VM/ESA: XEDIT User’s Guide, SC24-5779

v VM/ESA: XEDIT Command and Macro Reference,

SC24-5780

v VM/ESA: Quick Reference, SX24-5290

v VM/ESA: Performance, SC24-5782

v VM/ESA: Dump Viewing Facility, GC24-5853

v VM/ESA: System Messages and Codes, GC24-5841

v VM/ESA: Diagnosis Guide, GC24-5854

v VM/ESA: CP Diagnosis Reference, SC24-5855

v VM/ESA: CP Diagnosis Reference Summary,

SX24-5292

v VM/ESA: CMS Diagnosis Reference, SC24-5857

v CP and CMS control block information is not

provided in book form. This information is

available on the IBM VM/ESA operating

system home page (http://www.ibm.com/
s390/vm).

v IBM VM/ESA: CP Exit Customization, SC24-5672

v VM/ESA REXX/VM User’s Guide, SC24-5465

v VM/ESA REXX/VM Reference, SC24-5770

C for VM/ESA Publications

v IBM C for VM/ESA Diagnosis Guide, SC09-2149

v IBM C for VM/ESA Language Reference,

SC09-2153

v IBM C for VM/ESA Compiler and Run-Time

Migration Guide, SC09-2147

v IBM C for VM/ESA Programming Guide,

SC09-2151

v IBM C for VM/ESA User’s Guide, SC09-2152

Virtual Storage Extended/Enterprise Systems

Architecture (VSE/ESA) Publications

v IBM VSE/ESA Administration, SC33-6505

v IBM VSE/ESA Diagnosis Tools, SC33-6514

v IBM VSE/ESA General Information, GC33-6501

v IBM VSE/ESA Guide for Solving Problems,

SC33-6510

v IBM VSE/ESA Guide to System Functions,

SC33-6511

v IBM VSE/ESA Installation, SC33-6504

v IBM VSE/ESA Messages & Codes, SC33-6507

v IBM VSE/ESA Networking Support, SC33-6508

v IBM VSE/ESA Operation, SC33-6506

v IBM VSE/ESA Planning, SC33-6503

v IBM VSE/ESA System Control Statements,

SC33-6513

v IBM VSE/ESA System Macros User’s Guide,

SC33-6515

v IBM VSE/ESA System Macros Reference,

SC33-6516

v IBM VSE/ESA System Utilities, SC33-6517

v IBM VSE/ESA Unattended Node Support,

SC33-6512

v IBM VSE/ESA Using IBM Workstations,

SC33-6509

CICS/VSE Publications

v CICS/VSE Application Programming Reference,

SC33-0713

v CICS/VSE Application Programming Guide,

SC33-0712

v CICS Application Programming Primer (VS

COBOL II), SC33-0674

v CICS/VSE CICS-Supplied Transactions, SC33-0710

v CICS/VSE Customization Guide, SC33-0707

v CICS/VSE Facilities and Planning Guide,

SC33-0718

v CICS/VSE Intercommunication Guide, SC33-0701

v CICS/VSE Performance Guide, SC33-0703

v CICS/VSE Problem Determination Guide,

SC33-0716

v CICS/VSE Recovery and Restart Guide, SC33-0702

v CICS/VSE Release Guide, GC33-1645

v CICS/VSE Report Controller User’s Guide,

SC33-0705

v CICS Transaction Server for VSE/ESA V1R1.0

Resource Definition Guide, SC33-0709

v CICS/VSE Resource Definition (Online),

SC33-0708

v CICS/VSE System Definition and Operations

Guide, SC33-0706

v CICS/VSE System Programming Reference,

SC33-0711

v CICS/VSE User’s Handbook, SX33-6079

v CICS/VSE XRF Guide, SC33-0704

260 Database Services Utility

CICS/ESA Publications

v CICS/ESA General Information, GC33-0803

VSE/Virtual Storage Access Method (VSE/VSAM)

Publications

v VSE/VSAM Commands and Macros, SC33-6532

v VSE/VSAM Introduction, GC33-6531

v VSE/VSAM Messages and Codes, SC24-5146

v VSE/VSAM Programmer’s Reference, SC33-6535

VSE/Interactive Computing and Control Facility

(VSE/ICCF) Publications

v VSE/ICCF Administration and Operation,

SC33-6562

v VSE/ICCF Primer, SC33-6561

v VSE/ICCF User’s Guide, SC33-6563

VSE/POWER Publications

v VSE/POWER Administration and Operation,

SC33-6571

v VSE/POWER Application Programming,

SC33-6574

v VSE/POWER Networking, SC33-6573

v VSE/POWER Remote Job Entry, SC33-6572

Distributed Relational Database Architecture

(DRDA) Library

v Application Programming Guide, SC26-4773

v Architecture Reference, SC26-4651

v Connectivity Guide, SC26-4783

v DRDA: Every Manager's Guide, GC26-3195

v Planning for Distributed Relational Database,

SC26-4650

v Problem Determination Guide, SC26-4782

C/370 for VSE Publications

v IBM C/370 General Information, GC09-1386

v IBM C/370 Programming Guide for VSE,

SC09-1399

v IBM C/370 Installation and Customization Guide

for VSE, GC09-1417

v IBM C/370 Reference Summary for VSE,

SX09-1246

v IBM C/370 Diagnosis Guide and Reference for

VSE, LY09-1805

VSE/REXX Publication

v VSE/REXX Reference, SC33-6642

Other Distributed Data Publications

v IBM Distributed Data Management (DDM)

Architecture, Architecture Reference, Level 4,

SC21-9526

v IBM Distributed Data Management (DDM)

Architecture, Implementation Programmer’s Guide,

SC21-9529

v VM/Directory Maintenance Licensed Program

Specification, GC20-1836

v IBM Distributed Relational Database Architecture

Reference, SC26-4651

v IBM Systems Network Architecture, Format and

Protocol Reference, SC30-3112

v SNA LU 6.2 Reference: Peer Protocols, SC31-6808

v Reference Manual: Architecture Logic for LU Type

6.2, SC30-3269

v IBM Systems Network Architecture, Logical Unit

6.2 Reference: Peer Protocols, SC31-6808

v Distributed Data Management (DDM) General

Information, GC21-9527

CCSID Publications

v Character Data Representation Architecture,

Executive Overview, GC09-2207

v Character Data Representation Architecture

Reference and Registry, SC09-2190

DB2 Server RXSQL Publications

v DB2 REXX SQL for VM/ESA Installation and

Reference, SC09-2891

C/370 Publications

v IBM C/370 Installation and Customization Guide,

GC09-1387

v IBM C/370 Programming Guide, SC09-1384

Communication Server for OS/2 Publications

v Up and Running!, GC31-8189

v Network Administration and Subsystem

Management Guide, SC31-8181

v Command Reference, SC31-8183

v Message Reference, SC31-8185

v Problem Determination Guide, SC31-8186

Distributed Database Connection Services

(DDCS) Publications

v DDCS User’s Guide for Common Servers,

S20H-4793

v DDCS for OS/2 Installation and Configuration

Guide, S20H-4795

VTAM Publications

Bibliography 261

v VTAM Messages and Codes, SC31-6493

v VTAM Network Implementation Guide, SC31-6494

v VTAM Operation, SC31-6495

v VTAM Programming, SC31-6496

v VTAM Programming for LU 6.2, SC31-6497

v VTAM Resource Definition Reference, SC31-6498

v VTAM Resource Definition Samples, SC31-6499

CSP/AD and CSP/AE Publications

v Developing Applications, SH20-6435

v CSP/AD and CSP/AE Installation Planning Guide,

GH20-6764

v Administering CSP/AD and CSP/AE on VM,

SH20-6766

v Administering CSP/AD and CSP/AE on VSE,

SH20-6767

v CSP/AD and CSP/AE Planning, SH20-6770

v Cross System Product General Information,

GH23-0500

Query Management Facility (QMF) Publications

v Introducing QMF, GC27-0714

v Installing and Managing QMF for VSE,

GC27-0721

v QMF Reference, SC27-0715

v Installing and Managing QMF for VM,

GC27-0720

v Developing QMF Applications, SC27-0718

v QMF Messages and Codes, GC27-0717

v Using QMF, SC27-0716

Query Management Facility (QMF) for Windows

Publications

v Getting Started with QMF for Windows,

SC27-0723

v Installing and Managing QMF for Windows,

GC27-0722

DL/I DOS/VS Publications

v DL/I DOS/VS Application Programming,

SH24-5009

COBOL Publications

v VS COBOL II Migration Guide for VSE,

GC26-3150

v VS COBOL II Migration Guide for MVS and

CMS, GC26-3151

v VS COBOL II General Information, GC26-4042

v VS COBOL II Language Reference, GC26-4047

v VS COBOL II Application Programming Guide,

SC26-4045

v VS COBOL II Application Programming

Debugging, SC26-4049

v VS COBOL II Installation and Customization for

CMS, SC26-4213

v VS COBOL II Installation and Customization for

VSE, SC26-4696

v VS COBOL II Application Programming Guide for

VSE, SC26-4697

Data Facility Storage Management

Subsystem/VM (DFSMS/VM) Publications

v DFSMS/VM RMS User’s Guide and Reference,

SC35-0141

Systems Network Architecture (SNA)

Publications

v SNA Transaction Programmer’s Reference Manual

for LU Type 6.2, GC30-3084

v SNA Format and Protocol Reference: Architecture

Logic for LU Type 6.2, SC30-3269

v SNA LU 6.2 Reference: Peer Protocols, SC31-6808

v SNA Synch Point Services Architecture Reference,

SC31-8134

Miscellaneous Publications

v IBM 3990 Storage Control Planning, Installation,

and Storage Administration Guide, GA32-0100

v Dictionary of Computing, ZC20-1699

v APL2 Programming: Using Structured Query

Language, SH21-1056

v ESA/390 Principles of Operation, SA22-7201

Related Feature Publications

v DB2 for VM Control Center Operations Guide,

GC09-2993

v DB2 for VSE Control Center Operations Guide,

GC09-2992

v DB2 Replication Guide and Reference, SC26-9920

262 Database Services Utility

Index

A
ACTIVITY sample table 242

API (see Application Programming

Interface) 114, 115

apostrophe
parameter value 136

Application Programming Interface (API)
calling program to DBSU 114

control parameters 115

Application server
identifying 21

switching 21

ARIDDFP 112

ARIDSQLA 112

ARIS75PL 106

ARISYSDD 112

arithmetic
exception 143, 169

arithmetic operator
in syntax diagrams xiii

assembler calling program
example 127

assembler load program
example 124

authorization, checking 20, 21

AUTOCOMMIT
DATALOAD COMMITCOUNT

processing 163

automatic
locking override 227

B
bad records skipping 45

basic DBCS support 230

binary-output data 173

blanks
within identifiers 111

building
control file 13

building an input control card file 9

C
C programming language

invoking the Database Services

Utility 114

CALL assembler macro 113

CDLOAD instruction 112

CHAR data type 148

character subtype 65, 75

choose
in syntax diagrams xiv

CL_SCHED sample table 247

clustering index 65

COBOL program example 124

COBOL, invoking the Database Services

Utility 114

column
label 23

column (continued)
UNIQUE attribute 65

combining records to load multiple

rows 41

command
processing

description 135

SQL 143

summary 144

specifications 135

command file
errors 224

command reference topics
blanks within identifiers 111

COMMENT reference 137

data object 110

Database Services Utility reserved

words 111

DATALOAD TABLE reference 145

DATAUNLOAD reference 168

load-data commands 145

load-program command

processing 207

loading data 145

loading programs 207

names and identifiers 110

naming data objects 110

object name 110

processing 135

program-load commands 207

qualifying object names 110

REBIND PACKAGE reference 213

RELOAD DBSPACE reference 191

RELOAD PACKAGE reference 208

RELOAD TABLE reference 196

REORGANIZE reference 138

reserved words 111

reserved words as identifiers 111

SCHEMA reference 140

SET AUTOCOMMIT reference 214

SET ERRORMODE reference 215

SET FORMAT reference 217

SET ISOLATION reference 218

SET LINECOUNT, SET LINEWIDTH

reference 219

SET UPDATE STATISTICS

reference 220

set-item commands 214

setting items 214

special character within identifier 111

SQL reserved words 111

UNLOAD DBSPACE reference 201

UNLOAD PACKAGE reference 211

UNLOAD TABLE reference 204

command-set sequence 52

commands and syntax, Database Services

Utility 135

commands, control 135

comment
Database Services Utility COMMENT

command 137

comment (continued)
in SQL statements 24

COMMENT command 137

COMMIT operation
command processing 24

LUW determination by Database

Services Utility 24

message example 45

COMMITCOUNT parameter
description 44

example 45

reference 163

RELOAD DBSPACE command 193

RELOAD TABLE command 199

committing
records while loading 44

committing changes
SET AUTOCOMMIT 24

components of the DB2 Server for VSE &

VM RDBMS, definitions viii

concatenation
symbol for DB2 Server for VSE &

VM 110

CONNECT
connecting to Database Services

Utility 20

processing 20

user identification 20

connecting
another application server 21

database manager 21

connecting DB2 Server for VSE &

VM 20

continuation of Database Services Utility

records 136

CONTINUED parameter
DATALOAD’s INFILE

subcommand 159

specifying input records 42

control commands, description 8, 135

control file
building task 13

SQL statements 143

control parameters
API (Application Programming

Interface) 115

example 118

task 118

conventions
highlighting xi

syntax diagram notation xiii

conversational monitor system (CMS)
files 8

conversion
data type 34, 166

DATAUNLOAD table 187

unloading 170

values on unloading 188

CREATE VIEW
WITH CHECK OPTION 146, 197

CS isolation level 219

© Copyright IBM Corp. 1987, 2007 263

cursor stability
isolation level 218

SET ISOLATION command 218

cursor stability (CS)
isolation level 219

D
data

embedded in control file 32

standard zoned 152

data conversion 34

data format support 34

data object
naming 110

data records in Database Services Utility

control files 136

data records in Database Services Utility

input control card files 136

data type
DATE 150

DECIMAL 151, 174

FIXED 151, 173

FLOAT or DOUBLE PRECISION 151

FLOAT or REAL 151, 174

GRAPHIC 154

parameter 148

SMALLINT 151

TIME 150

TIMESTAMP 151

ZONED 152, 174

data unloading tasks 51

Data_Field_Id subcommand 170

Database Services Utility
reserved words 111

starting 3, 7

Database Services Utility command
definition 135

database, starter 106

DATALOAD and RELOAD locking

considerations 228

DATALOAD command
COMMITCOUNT processing 163

description 145

embedded data 32

file definition 35

procedures 31

separate input file 31

DATAUNLOAD command
conversion table 187

description 168

procedures 51

user-determined format 57

DATE
local 150, 172

date value in CHAR input data

field 150

datetime
loading values 37

DBCS considerations
basic support 230

double-byte character data 230

extended support 231

rules 230

DBCS shift in/out delimiters 230

DBCS/EBCDIC mixed data 171

dbspace
unload 66, 67

debug mode processing 225

DEBUG storage dump analysis 226

debugging 223, 225

DECIMAL data type 151, 152, 174

default
in syntax diagrams xv

defining
files 35

definitions, terms viii

DEPARTMENT sample table 235

determining
record count 45

DFI subcommand 170

displaying
comments 137

DOUBLE PRECISION data type 151,

174

double quotation marks
identifier 110

parameter value 136

double-byte character set (DBCS)
considerations

basic support 230

extended support 231

description 166

GRAPHIC data type 154

double-precision float 181

DRDA flow
DATAUNLOAD command 51

DRDA protocol
CONNECT statement 20, 21

DATALOAD command 27

introduction 6

PACKAGE
reloading 87

preprocessing 19

dump, storage 225

E
embedded data

DATALOAD 32

ending 164

maximum length 160

embedded input data 159

EMP_ACT sample table 245

EMPLOYEE sample table 237

ENDDATA subcommand 164

ending embedded data 164

ENDLUW control parameter 117

error reference information
codes 224

types 223

errors
Database Services Utility error

handling 223

debugging 223

exceptions, arithmetic 169

EXEC
examples 121

procedures 121

EXEC SQL
restriction 143

extended DBCS support 231

F
field defaults, output data 179

field procedure 49

FIELDPROC
See field procedure

file definition
See FILEDEF command

FILEDEF command
DATALOAD 35

DATAUNLOAD 62

RELOAD DBSPACE 81

RELOAD PACKAGE 92

RELOAD TABLE 81

syntax and notes 249

UNLOAD DBSPACE 67

UNLOAD PACKAGE 92

UNLOAD TABLE 67

files
CMS 8

FIXED data type 151, 173

FLOAT or DOUBLE PRECISION data

type 151, 174

FLOAT or REAL data type 151, 174

floating point
unloaded data 189

format
&dbsu list output 99

default output data field 180

local date 150, 172

local time 150, 173

FORMAT control parameter 116

fragment of syntax
in syntax diagrams xvi

full qualification 111

G
GRAPHIC data type 154, 172

H
highlighting

text xi

host variable
in syntax diagrams xiii

I
identifier

blank 111

lowercase letter 110

reserved words 111

special character 111

identifying
self 20

improving performance 227

IN_TRAY sample table 247

index
invalid 138, 229

reorganization 138

INFILE parameter
RELOAD DBSPACE command 192

RELOAD TABLE command 198

INFILE subcommand 159

264 Database Services Utility

INFILE, RELOAD DBSPACE

command 194

INFILE’s LIST parameter 161

input control card file
building task 9

embedded data 32

errors 224

SQL statements 143

input data for DATALOAD 166

input record
limitations 148

skipping 47

input_record_id_clauses, example 147

INTABLE parameter
RELOAD TABLE command 198

interface conventions 118

introduction to Database Services

Utility 3

invalid index 138, 229

invoking task
SQLDBSU 15

invoking the Database Services Utility

from application programs 112

ISOL control parameter 117

isolation level
setting 219

UNLOAD 65

J
job control example

multiple user mode 108, 109

single user mode 106, 108

job control example, invoking Database

Services Utility with single user

mode 108

job control example, multiple user

mode 109

K
keyword

in syntax diagrams xiii

spanning input records 136

knowledge prerequisites xi

L
labels for columns 23

leading sign, zoned field 153

length of field
output 174

limitations on input records 145, 148

lines per page 219

LINEWIDTH control parameter 115

link-edit EXEC
example 122

list format Database Services Utility

output 99

LIST parameter
description 161

unreadable DBCS data in message

file 231

load-data
commands 145

committing while loading 44

load-data (continued)
into multiple tables 38

record-count determination 45

skipping bad records 45

spanning multiple records 42

loading
multiple table 38

multiple table rows 41

null values 36

procedures 36

record into several tables 40

user-specified format 32

loading commands
DATALOAD TABLE 145

program-load 207

RELOAD DBSPACE 191

RELOAD PACKAGE 208

RELOAD TABLE 196

local date 150, 172

local time 150, 173

lock escalation 227

locking
automatic override 227

catalog tables 227

considerations
DATALOAD and RELOAD 228

description 227

reducing lock escalation 228

SHARE lock 228

UNLOAD PACKAGE and

RELOAD PACKAGE 228

data 227

dbspace 227

escalation 227

log considerations 105

log space
requirements 45

logical unit of work (LUW)
determination 24

lowercase characters
identifiers 110

M
maximum number of DATALOAD

commands per INFILE 41

message file
errors 224

example 96

working with 17

message file display
embedded data 161

MESSAGES control parameter 116

mixed data
DBCS and EBCDIC 171

mixed INFILE records to separate

tables 38

multiple tables 40

multiple user job control 108

multiple user mode
running 7

multiple-row query 22

N
names and identifiers

command 110

NEW parameter
RELOAD DBSPACE command 192

RELOAD TABLE 197

nonrecoverable storage pool
DATALOAD 46

dbspace recovery 227

processing errors 223

RELOAD PURGE 79

NOREWIND parameter 141, 162

NOREWIND parameter,

DATAUNLOAD 178

notification of records reloaded 80

null
DATALOAD 36

in omitted columns during

DATALOAD 30

representation in unloaded data 188

null-clause
examples 176

null/current clause
example 158

TCI subcommand 155

numeric
representation in unloaded data 188

values in CHAR input data

fields 149

NUMERIC data type
See DECIMAL data type

O
object name

qualification 110

operator console messages 223

optional
default parameter

in syntax diagrams xv

item
in syntax diagrams xiv

keyword
in syntax diagrams xv

order
input records 145

OUTFILE subcommand 177

output format 217

output record format example 183

overview of Database Services Utility 3

P
package

considerations 229

invalidation 65

performance considerations 229

preprocessing 83

tasks 83

PACKAGE
description 85

portable package migration 87

RELOAD 87

UNLOAD 85

packed decimal
input data 151

Index 265

packed decimal (continued)
output data 174

page width 219

PAGECTL control parameter 116

parameter values
spanning input records 136

parentheses
in syntax diagrams xiii

percent free space 77

performance
considerations

package 229

reorganizing indexes 229

period
concatenation 110

PL/I, invoking the Database Services

Utility 114

placement of SQL statements 135

precision
decimal input data 152

zoned data 152

procedure
DATALOAD 31

DATAUNLOAD 51

general loading 36

UNLOAD
unloading dbspaces 63

unloading tables 63

processing
debug mode 225

load-program commands 207

processing summary for the Database

Services Utility 144

program-load commands, reference 207

programming interfaces provided by the

Database Services Utility 257

PROJ_ACT sample table 243

PROJECT sample table 241

PROMPTS control parameter 116

punctuation mark
in syntax diagrams xiii

PURGE parameter
description 76

RELOAD DBSPACE command 76,

192

RELOAD TABLE command 198

Q
qualifying

object names 110

table name 111

query
multiple-row 22

quotation mark
double, in identifier 110

parameter value 136

single, in comment 138

R
READ FILE 131

REAL data type 151, 174

REBIND PACKAGE command
reference 213

RECFM V input 35

records reloaded 80

reducing
lock escalation 228

log space requirements 45

reference
command specification 135

Database Services Utility

commands 135

reference material 225

Database Services Utility 105

DBCS considerations 230

debugging 225

double-byte character set 230

entering File Identifiers 252

FILEDEF command 249

ideographic character 230

improving performance 227

locking considerations 227

nonrecoverable storage pool 227

sample tables 235

specifying
CMS tape label processing 252

ddname 251

device type 251

options 252

storage dump, Database Services

Utility-initiated 225

storage pool, nonrecoverable 227

tables, example, DB2 Server for VSE &

VM 235

usage considerations 229

referential integrity
RELOAD commands 74

register contents for dynamic

startup 113

RELOAD command
description 81

errors 91

NEW parameter 192

PURGE parameter 76

RELOAD DBSPACE command
description 71, 191

RELOAD PACKAGE command
description 208

locking conditions 228

synonym 85

syntax diagram 208

task 87

TIMESTAMP 85

usage considerations 229

RELOAD TABLE command 196

reload-data tasks
nonrecoverable storage pools affecting

reloading 79

receiving reload-notification 80

updating statistics 82

remote unit of work
PACKAGE

description 85

unloading 85

unsupported commands
SET ISOLATION command 218

SET UPDATE STATISTICS

command 220

REORGANIZE INDEX command 138

reorganizing indexes 138, 229

repeat symbol
in syntax diagrams xv

repeatable read (RR)
isolation level 218

report
errors 224

example 95

working with 9

required item
in syntax diagrams xiii

reserved words
DBSU 111

SQL xvii, 111

using as identifiers 111

RESTARTCOUNT option 164

RESTARTCOUNT parameter
RELOAD TABLE command 199

restarting
data load processing 46, 164

RESTARTTABLE parameter
RELOAD DBSPACE command 193

restriction
EXEC SQL 143

return code reference information
error codes 224

return codes 224

return codes from the Database Services

Utility 113

REWIND parameter 141, 162

REWIND parameter,

DATAUNLOAD 178

RR isolation level 219

rules
naming data objects 110

running
Database Services Utility

multiple user mode 7

single user mode 7

S
sample table

ACTIVITY 242

CL_SCHED 247

DEPARTMENT 235

EMP_ACT 245

EMPLOYEE 237

IN_TRAY 247

PROJ_ACT 243

PROJECT 241

SCHEMA
command 140

input file 142

Select statement
terminating 169

SELECT statement
arithmetic exception 143

command processing 22

multiple-row query 22

using with DATAUNLOAD 169

sequence numbers in input control card

file records 135

sequential file output 177

set_null_clause
reference 175

set-item commands 218

SET AUTOCOMMIT 214

266 Database Services Utility

set-item commands (continued)
SET ERRORMODE 215

SET FORMAT 217

SET ISOLATION 218

SET LINECOUNT, SET

LINEWIDTH 219

SET UPDATE STATISTICS 220

setting
lines per page 219

output format 217

page width 219

SHARE lock 228

shift in/out delimiters, DBCS 230

single quotation mark
COMMENT command 138

option values 136

single record into several tables 40

single user mode
job control example 106

running 7

starting the Database Services

Utility 106

single value queries 23

single-precision float 181

skipping bad records 45

SMALLINT data type 151

spanning records
control file records 159

input control card file records 159

multiple input records 42

special characters
identifiers 111

SQL
reserved words 111

statement processing 143

SQL comment
in Database Services Utility

commands 24

SQL statements
COMMIT 19

CONNECT 19

SELECT 19

using 19

within Database Services Utility 19

SQL system
user identification 20

SQLDBSU EXEC
description 109

invocation task 15

multiple user mode 129

single user mode 130

syntax diagram 129

SQLHX
canceling the Database Services

Utility 25

SQLQRY
querying the current status 25

starter database 106

starting
Database Services Utility 7

DATALOAD after an error 46

starting the Database Services Utility with

single user mode 106

statistics
generating 48

suppressing 221

statistics update tasks
receiving reload notification 80

storage dump analysis
DEBUG 226

guidelines 226

storage pool
nonrecoverable 227

strategy-of-reload tasks
nonrecoverable storage-pool

effects 79

subcommands
DFI (Data Field Identification) 170

ENDDATA 164

INFILE 159

OUTFILE 177

TCI (Table Column

Identification) 148

summary
Database Services Utility

processing 144

suppressing statistics 221

syntax diagram
COMMENT 138

DATALOAD 145

DATAUNLOAD 168

notation conventions xiii

REBIND PACKAGE 213

RELOAD DBSPACE 191

RELOAD PACKAGE 208

RELOAD TABLE 196

REORGANIZE INDEX 138

SCHEMA 140

schema file 142

SET AUTOCOMMIT 214

SET ERRORMODE 215

SET FORMAT 217

SET ISOLATION 218

SET LINECOUNT 219

SET LINEWIDTH 219

SET UPDATE STATISTICS 220

SQLDBSU EXEC
multiple user mode 129

single user mode 130

UNLOAD DBSPACE 201

UNLOAD PACKAGE 211

system-determined format,

DATAUNLOAD 52

T
table

name 111

target 28

table unload 67

TABLE unload 66

tape
DASD data file errors 224

tape-file support 227

target table 28

tasks
command input 95

DB2 Server for VSE & VM

preprocessing 83

FILEDEF
DATALOAD 35

DATAUNLOAD 62

RELOAD DBSPACE 81

tasks (continued)
FILEDEF (continued)

RELOAD TABLE 81

UNLOAD DBSPACE 67

UNLOAD TABLE 67

including data in message file 96

including data in report 95

interpreting the output of the

Database Services Utility 95

loading data 27

message file output
error recovery 100

RELOAD PACKAGE command 87

file definition 92

reloading
data 71

package 83

report output 100

understanding 95

SQLDBSU EXEC 15

system output 95

understanding report output 95

UNLOAD PACKAGE command 85

file definition 92

unloading
data 51

package 83, 85

TCI (Table Column Identification)

subcommand 148

terminal input mode 131

terminology viii

text highlighting conventions xi

TIME 150, 172

TIMESTAMP 151, 173

trailing sign, zoned field 153

truncation
DBCS data 172

during data unloading 189

type of error 223

U
uncommitted read (UR)

isolation level 219

unique constraints 65

UNLOAD data used as input 27

UNLOAD DBSPACE command
description 201

example 63

procedures 63

syntax diagram 201

task 66

UNLOAD PACKAGE command
locking conditions 228

performance considerations 229

reference 211

task 85

UNLOAD TABLE command
description 204

example 64

procedures 66

syntax diagram 204

task 66

unload-data tasks
using FILEDEFs

DATAUNLOAD 62

UNLOAD DBSPACE 67

Index 267

unload-data tasks (continued)
using FILEDEFs (continued)

UNLOAD TABLE 67

unloading
column to more than one output

record 170

data
system-determined format 52

user-specified format 57

package 85

procedure
dbspace 63

table 63

program 85

view 61

unreadable data cause 231

UPDATE STATISTICS
REORGANIZE INDEX 229

statistics collection 82

usage considerations 229

updating statistics 82

UR isolation level 219

user-specified
data unloading 57

format, loading data 32

output record format example 185

using the Database Services Utility
application program 105

C program 114

COBOL program 114

PL/I program 114

V
value conversion on unloading 188

view
UNLOAD command 67

unloading 61

W
words, reserved

DBSU 111

SQL 111

write-to-operator (WTO) messages 223

Z
ZONED data type 152, 174

zoned input data
precision 152

scale 152

zoned output 174

268 Database Services Utility

Contacting IBM

Before you contact DB2 customer support, check the product manuals for help

with your specific technical problem.

For information or to order any of the DB2 Server for VSE & VM products, contact

an IBM representative at a local branch office or contact any authorized IBM

software remarketer.

If you live in the U.S.A., then you can call one of the following numbers:

v 1-800-237-5511 for customer support

v 1-888-426-4343 to learn about available service options

Product information

DB2 Server for VSE & VM product information is available by telephone or by the

World Wide Web at http://www.ibm.com/software/data/db2/vse-vm

This site contains the latest information on the technical library, product manuals,

newsgroups, APARs, news, and links to web resources.

If you live in the U.S.A., then you can call one of the following numbers:

v 1-800-IBM-CALL (1-800-426-2255) to order products or to obtain general

information.

v 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the United States, go to the IBM

Worldwide page at http://www.ibm.com/planetwide

In some countries, IBM-authorized dealers should contact their dealer support

structure for information.

© Copyright IBM Corp. 1987, 2007 269

270 Database Services Utility

IBMR

File Number: S370/4300-50

Program Number: 5697-F42

Printed in USA

SC09-2983-03

Spine information:

 IBM DB2 Server for VSE & VM Database Services Utility Version 7 Release 5

	Contents
	About This Manual
	Who Should Use This Manual
	How to Use This Manual
	Utilization
	Organization

	Components of the Relational Database Management System
	Prerequisites
	Knowledge
	Publications

	Highlighting Conventions

	Syntax Notation Conventions
	SQL Reserved Words
	Summary of Changes
	Summary of Changes for DB2 Version 7 Release 5
	Enhancements, New Functions, and New Capabilities
	Explain Option on DBSU REBIND PACKAGE Command
	For Fetch only
	Application Message Formatter
	Convert buffer read/write to compiler macro
	Modify Build Tree Creation
	Split code point search routines
	DRDA Multi-Row Insert
	Connection Pooling for DRDA TCP/IP in Online Resource Adapter
	IBM DB2 Server for VSE, Client Edition
	IBM DB2 Server for VM, Client Edition
	Handling Commit Responses from DB2 UDB Stored Procedures
	Make on-line programs AMODE 31 RMODE ANY
	Provide BIND File Support in VM and in VSE Batch Environments
	Convert TCP/IP LE/C interface to EZASMI API

	Part 1. User's Guide
	Chapter 1. Getting Started
	Introducing the Database Services Utility
	Loading Data into a Database
	Unloading Data from a Database
	Reloading Data into a Database
	Unloading Packages from a Database
	Reloading Packages into a Database
	Processing SQL Statements with the Database Services Utility
	A Database Services Utility Job
	DB2 Server for VM Components
	DB2 Server for VSE Files

	Starting and Using the Database Services Utility
	Multiple User Mode
	Single User Mode
	Overview of Database Services Utility Files

	Working with an Input Control Card File in DB2 Server for VSE
	Creating a Control Card File
	Working with a Report

	Working with a Control File in DB2 Server for VM
	Using a Control File
	Creating a Control File

	Defining Input and Output Requirements
	Using File Definitions
	ddname (data definition name)

	Using the SQLDBSU EXEC
	Sample Startup

	Working with a Message File
	Using the Database Services Utility on Remote Application Servers Which Support DRDA Flow
	Using SQL Statements within the Database Services Utility
	CONNECT
	Identifying Yourself as a Particular SQL User
	Identifying and Switching to Another Application Server
	Identifying the Current User ID and Application Server

	SELECT
	Output of Query Results
	Specifying a Multiple-Row Query
	Specifying a Single Value Query

	COMMIT
	Committing Logical Units of Work

	Using SQL Comments

	Querying the Current Status in DB2 Server for VM
	Canceling a DB2 Server for VM Command
	Exiting from the Database Services Utility

	Chapter 2. Loading Data with the Database Services Utility
	DATALOAD Command Components
	DATALOAD Procedures
	Using the DATALOAD Command with a Separate Data Input File
	(Input) Control File and Separate Data File

	Using the DATALOAD Command with Embedded Data
	(Input) Control File with Embedded Data

	Data Format Support
	JCL for the DB2 Server for VSE DATALOAD Command
	Using File Definitions with the DB2 Server for VM DATALOAD Command
	FILEDEFs Supporting DATALOAD Command Processing

	General Loading Procedures
	Comparison Operators
	Loading Null Values
	Loading CURRENT DATE, CURRENT TIME, and CURRENT TIMESTAMP Values
	Loading Data into Multiple Tables
	Loading Mixed INFILE Records into the Correct Tables
	Loading a Single Record into Several Tables

	Combining Records to Load Multiple Table Rows
	Processing Data That Spans More Than One Input Record

	Committing Work While Loading Data
	When to Use the COMMITCOUNT Parameter
	Determining the Number of Records Processed
	Skipping Bad Records

	Restarting the Loading Process
	Statistics Collection

	Chapter 3. Unloading Data with the Database Services Utility
	DATAUNLOAD Procedures
	Unloading Data in System-Defined Format
	Unloading Data in User-Specified Format
	Unloading NULL Values
	Unloading a View
	Using File Definitions with the DB2 Server for VM DATAUNLOAD Command
	FILEDEFs Supporting DATAUNLOAD Command Processing

	UNLOAD Procedures
	Unloading Data in System-Defined Format
	Using the UNLOAD DBSPACE Command
	Using the UNLOAD TABLE Command
	Using File Definitions with the DB2 Server for VM UNLOAD DBSPACE and UNLOAD TABLE Commands
	FILEDEFs Supporting UNLOAD Command Processing
	Release Coexistence Considerations for DB2 Server for VM

	Chapter 4. Reloading Data with the Database Services Utility
	RELOAD Procedures
	Reloading Data in System-Defined Format
	Using the PURGE Parameter
	Using the NEW Parameter
	Using the RELOAD DBSPACE Command
	Percent Free Space
	Reloading Several Tables into a Dbspace Where They Are Already Defined
	Reloading Several Tables into a Dbspace Where They Do Not Exist
	Loading a Single Table with the RELOAD DBSPACE Command

	Using the RELOAD TABLE Command
	Reloading a Single Table into a Dbspace Where It Is Already Defined
	Reloading Views
	Reloading a Single Table into a Dbspace Where It Does Not Exist
	Reloading a Specific Table from a Multitable Input Source

	Using File Definitions with DB2 Server for VM RELOAD DBSPACE and RELOAD TABLE Commands
	FILEDEFs Supporting RELOAD Command Processing

	Release Coexistence Considerations for DB2 Server for VM
	Statistics Collection

	Chapter 5. Unloading and Reloading Packages with the Database Services Utility
	Package Procedures
	Preprocessing
	Using the UNLOAD PACKAGE Command
	Unloading a Package

	Using the RELOAD PACKAGE Command
	Reloading a Package into an Application Server in Which Its Application Does Not Exist

	Authorizing the Use of Packages
	Preprocessing and Distributing an Application
	Setting Up to Run an Application

	Using File Definitions with DB2 Server for VM UNLOAD and RELOAD PACKAGE Commands
	FILEDEFs Supporting UNLOAD and RELOAD PACKAGE

	Chapter 6. Interpreting the Output of the Database Services Utility
	Understanding the Report and Message File Output
	Command Input (DB2 Server for VSE & VM)
	System Output (DB2 Server for VSE & VM)
	Inclusion of Data in a Report (DB2 Server for VSE)
	Inclusion of Data in a Message File (DB2 Server for VM)
	Using the LIST Parameter on a DATALOAD Command
	Reading Report and Message-File Output in Error Recovery

	Part 2. Reference
	Chapter 7. Using the Database Services Utility from Application Programs
	In DB2 Server for VSE
	Single User Mode Job Control
	Single User Mode Job Control Example

	Multiple User Mode Job Control
	Multiple User Mode Job Control Example

	In DB2 Server for VM
	Names and Identifiers
	General Rules for Naming Data Objects
	Qualifying Object Names
	Using Special Characters and Blanks within Identifiers

	Reserved Words
	SQL Reserved Words
	Database Services Utility Reserved Words
	Using Reserved Words as Identifiers

	Using the Database Services Utility from Programming Languages
	Addressing Mode
	Register Contents for Database Services Utility Dynamic Startup
	Using the Database Services Utility from an Assembler Program
	Using the Database Services Utility from a C Program
	Using the Database Services Utility from a COBOL Program
	Using the Database Services Utility from a PL/I Program
	Using the Database Services Utility Application Program Interface
	Control Parameters
	Using the Database Services Utility Interface Conventions
	Sample Programs
	Running the DB2 Server for VM Database Services Utility with Multiple User Mode
	Running the Database Services Utility with Single User Mode
	Using the SQLDBSU EXEC

	Chapter 8. Command Reference
	Command Processing
	COMMENT
	COMMENT Format

	REORGANIZE INDEX
	REORGANIZE INDEX Format

	SCHEMA
	SCHEMA Format
	Using File Definitions with the DB2 Server for VM SCHEMA Command

	SQL Statement Processing
	SELECT and Arithmetic Exceptions
	Processing Summary

	Load-Data Commands
	DATALOAD TABLE
	DATALOAD TABLE Format
	Examples of Input-Record-Id-Clause

	Table_Column_Id Subcommand
	Examples of Null-Current-Clause

	INFILE Subcommand
	ENDDATA Subcommand
	DATALOAD Data Conversion Summary

	DATAUNLOAD
	DATAUNLOAD Format
	Data_Field_Id Subcommand
	OUTFILE Subcommand
	DATAUNLOAD Output Data Field Defaults
	DATAUNLOAD Data Conversion Summary

	RELOAD DBSPACE
	RELOAD DBSPACE Format
	Release Coexistence Considerations for DB2 Server for VM
	RELOAD TABLE
	RELOAD TABLE Format
	Release Coexistence Considerations for DB2 Server for VM
	UNLOAD DBSPACE
	UNLOAD DBSPACE Format
	Release Coexistence Considerations for DB2 Server for VM
	UNLOAD TABLE
	UNLOAD TABLE Format
	Release Coexistence Considerations for DB2 Server for VM

	Load-Package Commands
	Processing for the Load-Package Commands
	RELOAD PACKAGE
	RELOAD PACKAGE Format
	UNLOAD PACKAGE
	UNLOAD PACKAGE Format
	REBIND PACKAGE
	REBIND PACKAGE Format

	Set-Item Commands
	SET AUTOCOMMIT
	SET AUTOCOMMIT Format
	SET ERRORMODE
	SET ERRORMODE Format
	SET FORMAT
	SET FORMAT Format
	SET ISOLATION
	SET ISOLATION Format
	SET LINECOUNT, SET LINEWIDTH
	SET LINECOUNT (LINEWIDTH) Format
	SET UPDATE STATISTICS
	SET UPDATE STATISTICS Format

	Chapter 9. Error Handling and Debugging
	Types of Errors
	Return Codes
	Storage Dumps
	Dumps Initiated by the Database Services Utility
	Debugging
	Processing for Debug Mode
	Guidelines for DEBUG Storage Dump Analysis

	Chapter 10. Improving Performance
	Nonrecoverable Storage Pool
	Tape-File Support in DB2 Server for VM
	Tape File Support Considerations

	Locking Considerations
	DATALOAD and RELOAD Locking Considerations
	SELECT, DATAUNLOAD, and UNLOAD Locking Considerations

	UNLOAD and RELOAD PACKAGE Considerations
	Update Statistics Considerations
	Reorganizing Indexes
	Double-Byte Character Set
	Basic Support
	Extended Support

	Part 3. Appendixes
	Appendix A. Sample Tables
	DEPARTMENT Table
	Relationship to Other Tables

	EMPLOYEE Table
	Relationship to Other Tables

	PROJECT Table
	Relationship to Other Tables

	ACTIVITY Table
	Relationship to Other Tables

	PROJ_ACT Table
	Relationship to Other Tables

	EMP_ACT Table
	Relationship to Other Tables

	IN_TRAY Table
	CL_SCHED Table

	Appendix B. FILEDEF Command Syntax and Notes
	Specifying ddname
	Specifying Device Type
	Entering File Identifiers
	Specifying CMS Tape Label Processing
	Specifying Options
	BLOCK, LRECL, RECFM, DSORG
	PERM
	DISP MOD

	Notices
	Programming Interface Information
	Trademarks

	Bibliography
	Index
	Contacting IBM
	Product information

