
DB2 Server for VSE & VM

Database Administration

 Version 7 Release 5

SC09-2888-03

IBM

DB2 Server for VSE & VM

Database Administration

 Version 7 Release 5

SC09-2888-03

IBM

Before using this information and the product it supports, be sure to read the general information under “Notices” on page 285.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling

1-800-879-2755 in the United States or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1987, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About This Manual vii

Some Terminology vii

Components of the Relational Database

Management System vii

Organization x

Prerequisite IBM Publications xi

Highlighting Conventions xi

Syntax Notation Conventions xiii

SQL Reserved Words xvii

Summary of Changes xix

Summary of Changes for DB2 Version 7 Release 5 xix

Enhancements, New Functions, and New

Capabilities xix

Chapter 1. Designing a Database 1

Sample Tables 1

Entities, Properties, and Occurrences 1

Step 1: Select the Data to Record in the Database . . 1

Step 2: Define Tables for Each Type of Relationship . 2

One-to-One Relationships 2

One-to-Many and Many-to-One Relationships . . 3

Many-to-Many Relationships 3

Step 3: Provide Column Definitions for Tables . . . 4

Step 4: Identify One or More Columns as a Primary

Key 4

Step 5: Ensure that Equal Values Represent the Same

Entity 5

Step 6: Plan for Referential Integrity 6

Elements of Referential Integrity 6

DELETE, INSERT, and UPDATE Considerations . 7

Step 7: Normalize Your Tables 9

First Normal Form 9

Second Normal Form 9

Third Normal Form 10

Fourth Normal Form 11

Step 8: Considerations for Distributed Data 11

Definitions 13

Application Programming 14

System Operations 15

Distributing Existing Data 16

Chapter 2. Implementing Your Design 17

Storage Concepts 17

How Information is Stored in Dbspaces 19

Database Generation 20

Defining Dbspaces 20

Identifying Dbspace Requirements 21

Adding Dbspaces to the Database 21

Acquiring Dbspaces 22

Retrieving Information about Dbspace

Parameters 26

Restrictions on the ACQUIRE DBSPACE

Statement 27

Creating Tables 27

Controlling Who Creates Tables 27

How to Create Tables 28

Naming Tables 28

Choosing Columns 29

Specifying Columns 30

Specifying Data Types 32

Specifying a PRIMARY KEY 38

Specifying a UNIQUE Constraint 38

Considerations for Referential Integrity when

Creating Tables 39

Placing Tables in Dbspaces 41

Creating Views 42

Reasons for Using Views 42

Creating a View on a Table 43

Creating a View from Several Tables 43

Things You Cannot Do with a View 44

Materializing a View 46

Creating Indexes 47

Index Key 47

UNIQUE Indexes 48

The PCTFREE Clause 48

Clustering Rows of a Table on an Index 48

Some Things to Remember When Defining Keys 51

General Performance Considerations on the Use

of Indexes 52

Migration Considerations for Indexes 53

Using the Catalog in Database Design 53

Retrieving Catalog Information about a Table . . 53

Retrieving Catalog Information about Columns 54

Retrieving Catalog Information about Indexes . . 54

Retrieving Catalog Information about Views . . 55

Retrieving Catalog Information about

Authorization 55

The COMMENT ON Statement 55

Chapter 3. Maintaining Your Database 57

Maintaining Tables 59

Loading Data into Tables 59

Copying Tables 62

Moving Tables from One Dbspace to Another . . 62

Merging Data from Multiple Tables 63

Altering the Design of a Table 64

Altering Referential and Unique Constraints . . 65

Enforcing Referential Constraints 68

Moving Data from One Application Server to

Another 71

Removing Tables 72

Maintaining Dbspaces 73

Altering the Design of a Dbspace 73

Reorganizing a Dbspace to Free Storage Pool

Pages 74

Releasing Empty Pages 75

© Copyright IBM Corp. 1987, 2007 iii

|

||

Removing Dbspaces 77

VSAM Restrictions 77

Reorganizing Indexes on the Catalog Tables . . . 77

Moving Your Database 79

Chapter 4. Supporting Your Users . . . 81

Adding a New User 81

Setting Up New ISQL Users 82

Authorizing Access 84

Specifying a Default Application Server in VM 84

Loading Initial Tables 85

Training New Users 85

Removing Users from an Application Server . . . 85

Example 85

Chapter 5. Providing Security 89

Authorities 89

Types of Authorities 89

Granting Authorities 92

Revoking Authorities 94

Privileges 94

Privileges of Ownership 95

Granting Privileges to Other Users 95

Revoking Privileges 96

Monitoring Privileges 96

Privileges on Application Programs 96

Connecting to an Application Server in VM . . . 97

Establishing a Default Application Server . . . 97

Connecting to the Application Server Implicitly 97

Connecting to the Application Server Explicitly 99

Connecting to an Application Server in VSE . . . 100

Establishing a Default Application Server . . . 101

Connecting to the Application Server in

Different VSE Environments 101

User IDs for Remote CICS/VSE Transactions 104

Connecting to an Application Server in Special

Circumstances 105

Resolving Remote Server Name to Target Database

(CICS) 106

Resolving Remote Server Name to Target Database

(VSE Batch) 107

Restricting Access Using Views 108

Example 108

Changing User Passwords 109

Example 109

Securing the Database Catalog Tables 109

Example 1 110

Example 2 110

Example 3 110

Security Auditing 110

Auditing Security Using the Catalog Tables . . 111

Auditing Security Using Tracing 111

Chapter 6. Recovering from Failures 121

Overview of Recovery Concepts 121

Logical Units of Work 121

CMS Work Units 122

Atomic Operations 122

Dynamic Application Backout 122

Restart Processing 123

Recovery from Application Failures 123

Application Program Recovery in VM 126

Dropping the DB2 Server for VM Resource

Adapter Code 126

Batch and VSE/ICCF Application Recovery . . 126

Online Application Recovery 127

ISQL Sessions 128

DBS Utility Processing 128

Preprocessor 129

Recovery from User Logic Errors 129

Dynamic Recovery from User Errors 130

Selective Recovery from User Data Errors . . . 133

Database Recovery from User Logic Errors . . 135

Chapter 7. Customizing the HELP Text

and Messages Text 139

The SYSLANGUAGE Table 139

The SYSTEXT1 and SYSTEXT2 Tables 141

Adding Topics to HELP Text Tables 143

Adding a HELP Topic to the HELP Text

Supplied by IBM 143

Creating Your Own HELP Text Tables 144

Making the HELPTEXT Dbspace Larger 145

Moving the HELP Text to Another Dbspace . . . 147

Printing the HELP Text Using the DBS Utility . . 147

Printing the HELP Text Using ISQL 148

Chapter 8. Application Design

Considerations 149

Application Implementation Capabilities 149

Batch/Interactive Capabilities 149

Online (CICS) Transaction Processing

Capabilities 150

Query Capabilities 151

Report Writing Capabilities 156

Programmed Application Capabilities 158

EXECs that Use DB2 Server for VM Facilities 158

Application Development Capabilities 162

Application Database Considerations 165

Database Support for Application Development 165

Database Support for Query/Report Writing 166

Application Implementation Considerations . . . 169

VSE Batch/Interactive Application

Considerations 169

Online CICS/VSE Transaction Considerations 171

Application Development Considerations 172

Loading Data into Test Dbspaces 172

Use of Synonyms in Application Development 173

Testing SQL Statements 173

Checking Application Code 174

Query/Report Writing Considerations 175

User Identifiers (Userids) for Query Users . . . 175

Application Independence with CMS Work Units 175

Application Maintenance Considerations 176

Data Administration Support 176

Data Independence Support 176

Arithmetic Operations 179

Data Access Changes 188

Hypothetical Change Support 191

iv Database Administration

Chapter 9. DB2 Server for VM

Database Configurations 193

DB2 Server for VM Concepts 193

Operating Modes for the Database Machine . . 194

Example Configurations 194

One Database Machine with One Database . . 194

One Database Machine with Two Databases . . 195

Several Database Machines with Many

Databases 196

Multiple Database Machines on Different

Processors 197

Accessing a Database from a Processor that

Does Not Have One 199

Performance Considerations with Multiple

Databases 200

VSE Guest Sharing (On VM/ESA Systems Only) 201

Chapter 10. Usage Environments in

VSE 203

Batch/Interactive Application Processing 203

Online (CICS) Transaction Processing 204

Application Development 206

Query/Report Writing 207

Chapter 11. Stored Procedures 209

Stored Procedure Concepts 209

Stored Procedure Servers 209

The Stored Procedure Server 209

The Stored Procedure Handler 210

Stored Procedure Server Groups 210

Setting up a Stored Procedure Server 210

Managing Stored Procedure Servers 213

Stored Procedure Server Allocation 213

States of a Stored Procedure Server 216

Altering or Dropping a Stored Procedure Server

Definition 217

Stored Procedures 217

Preparing a Stored Procedure to Run 217

Dropping or Altering a Stored Procedure . . . 218

Setting Up Schema Stored Procedures for

CLI/ODBC/JDBC/OLE DB Client Applications . 218

Initialization Parameters Affecting Stored

Procedure Execution 218

PTIMEOUT Parameter 218

PROCMXAB Parameter 219

Summary of Environment Interactions 219

Appendix A. Estimating Your Dbspace

Requirements 223

Estimating Dbspace Size 223

General Guidelines 223

Estimating Storage for a Table 224

Estimating the Number of Header Pages . . . 226

Estimating the Number of Data Pages 227

Estimating the Number of Index Pages 235

Estimating Internal Dbspace Size and DASD Needs

for Sort Operations 238

When Do We Sort? 239

Internal Dbspace Characteristics 239

Calculating Internal Dbspace Size Requirements 240

Calculating Total Internal Dbspace and DASD

Needs 242

Appendix B. CMS EXECs 243

SQLINIT EXEC 243

Initializing a User Machine 243

SQLGLOB EXEC 252

SQLCIREO EXEC 257

SQLRELEP EXEC 259

SQLDBID EXEC 261

SQLRMEND EXEC 261

Example 263

ARISDBHD EXEC 264

ARISDBLD EXEC 265

SQLLEVEL EXEC 266

Appendix C. Querying the Status of

an Application (VM Only) 267

Example 268

Appendix D. Maximums 271

ISQL Maximums 271

Appendix E. SQLGLOB Parameters

(VSE Only) 273

Transactions for Updating SQLGLOB Parameters 275

DSQG - Update global SQLGLOB Parm

Transaction 275

DSQU - Update user SQLGLOB Parm

Transaction 276

DSQQ - Query SQLGLOB Parm Transaction . . 277

DSQD - Delete user SQLGLOB Parm

Transaction 277

Batch Program to Update/Query the SQLGLOB

File 278

Using Online and Batch Resource Adapter Tracing 279

Online Trace File JCL 280

Batch Trace File JCL 280

Formatting the Online or Batch Trace File . . . 280

Appendix F. Preparing the Schema

Stored Procedures for

CLI/ODBC/JDBC/OLE DB Client

Applications 281

Setting up Schema Stored Procedures for

CLI/ODBC/JDBC/OLE DB Client Applications . . 281

Notices 285

Trademarks 287

Bibliography 289

Index 293

Contacting IBM 303

Product information 303

Contents v

vi Database Administration

About This Manual

This book describes the tasks for planning and administering an application server

in the following environments:

1. Virtual Storage Extended (VSE/ESA), 2.3.1 or above.

2. Virtual Machine/Enterprise Systems Architecture (VM/ESA), 2.3.0 or above

3. VM/ESA with Virtual Storage Extended (VSE) running as a guest under VM

and accessing a VM application server.

The planning and administration of a DB2 Server for VSE & VM application server

consists of designing, implementing, securing, and maintaining a database. To

accomplish these tasks, you must know about:

v Database design

v Table design

v Index creation

v Structured Query Language (SQL)

v Relational concepts.

The first three areas are described in this book. For a description of the other

topics, refer to the DB2 Server for VSE & VM SQL Reference manual, SC09-2989, and

the DB2 Server for VSE & VM Database Services Utility manual, SC09-2983.

Note: The DB2 Server for VSE & VM Performance Tuning Handbook, GC09-2987,

contains information on database design techniques that you must know

before you start to design your database. This information was previously in

this manual under the chapter describing advanced database design and

performance techniques.

Some Terminology

Throughout this book, the Customer Information Control System (CICS) refers to

CICS/VSE Version 2 Release 3 or CICS Transaction Server Version 1 Release 1 or

later for online support and for ISQL. DB2 Server for VSE & VM refers to

DATABASE 2 Server for IBM VSE & VM Systems Version 7 Release 5, unless

otherwise noted.

Components of the Relational Database Management System

Figure 1 on page viii depicts a typical configuration with one database and two

users.

Figure 2 on page ix depicts a typical configuration with one database, one batch

partition user, and a CICS
®

partition with several interactive users.

© Copyright IBM Corp. 1987, 2007 vii

Storage
Pool

Database

Application Server

Communication Link (IUCV, APPC/VM or TCP/IP)

MDISK LINK

Database Manager

Database
Machine

User
Machine

Applications

Application Requester

Interactive SQL

Resource Adapter
Data System Control

Relational Data System

Database Storage
Subsystem

Preprocessors

DBS Utility

User
Machine

Applications

Application Requester

Interactive SQL

Preprocessors

DBS Utility

Resource Adapter

Figure 1. Basic Components of the RDBMS in VM/ESA

viii Database Administration

The database is composed of :

v A collection of data contained in one or more storage pools, each of which in turn

is composed of one or more database extents (dbextents). A dbextent is a VM

minidisk or a VSE VSAM cluster.

v A directory that identifies data locations in the storage pools. There is only one

directory per database.

v A log that contains a record of operations performed on the database. A database

can have either one or two logs.

The database manager is the program that provides access to the data in the

database. In VM it is loaded into the database virtual machine from the production

disk. In VSE it is loaded into the database partition from the DB2 Server for VSE

library.

The application server is the facility that responds to requests for information from

and updates to the database. It is composed of the database and the database

manager.

The application requester is the facility that transforms a request from an

application into a form suitable for communication with an application server.

 Note: General references to the database management system are assumed to

apply to the database under discussion, any unique or specific references to

other database systems will be explicitly made.

Online Resource Adapter

Interactive SQL

CICS Application

Batch Resource Adapter

Data System Control

Relational Data System

Database Storage
Subsystem

Application Requester

Application Server

Application Requester

Database Manager

Applications
Storage

Pool

ent

ent

Dbextent

Log

Database

DB2
for VSE
Library

Directory
Application
Program

VSE Batch
Partition

VSE

VSAM

Database
Partition

CICS Partition

Figure 2. Basic Components of the RDBMS in VSE/ESA

About This Manual ix

Organization

Summary of Changes.

This section summarizes the technical and library changes made to the DB2 Server

for VSE & VM product for Version 7 Release 5.

Chapter 1, “Designing a Database.”

To store information in a database, you must first convert it into tables while

maintaining any relationships that exist within it. This chapter outlines the steps

for effective design of a database.

Chapter 2, “Implementing Your Design.”

This chapter describes how to estimate your storage requirements, use SQL

commands to create objects (dbspaces, tables, views, and indexes) that support

your design, and query the catalog tables.

Chapter 3, “Maintaining Your Database.”

After a database is implemented, it must be maintained. This chapter describes

how to load data into tables, alter tables, and alter the design of dbspaces.

Chapter 4, “Supporting Your Users.”

This chapter describes activities that database administrators must consider to

support users. The tasks described include adding, deleting, authorizing, and

training users.

Chapter 5, “Providing Security.”

This chapter describes several security mechanisms that can help you protect your

data from unauthorized access.

Chapter 6, “Recovering from Failures.”

This chapter describes facilities you can use to recover from failures and maintain

the integrity of your data.

Chapter 7, “Customizing the HELP Text and Messages Text.”

This chapter discusses national languages used with the database manager.

Chapter 8, “Application Design Considerations.”

This chapter provides an overview of the ways that your data can be accessed, and

discusses topics that you should consider when developing your applications.

Chapter 9, “DB2 Server for VM Database Configurations.”

Information can be stored in one or more DB2 Server for VM application server,

and these application servers may be on one CPU or distributed among many.

Furthermore, users can access an application server on the VM/ESA system from a

VSE guest (this is called VSE Guest Sharing). This chapter describes these various

types of configurations.

x Database Administration

Chapter 10, “Usage Environments in VSE.”

This chapter provides an overview of five possible usage environments for which

you can set up your DB2 Server for VSE system.

Chapter 11, “Stored Procedures.”

This chapter provides an overview of what stored procedures are, and how to use

them.

Appendix A, “Estimating Your Dbspace Requirements.”

Dbspaces, which hold tables, must have sufficient storage capacities to meet the

storage requirements of their tables. This appendix describes how to estimate the

amount of storage the tables require, so that you acquire dbspaces with sufficient

capacity.

Appendix B, “CMS EXECs.”

This appendix describes the EXECs provided for use in user VM/ESA virtual

machines.

Appendix C, “Querying the Status of an Application (VM Only).”

This appendix describes the CMS SQLQRY command available in your VM/ESA

system.

Appendix D, “Maximums.”

This appendix describes the logical data and ISQL maximums.

Appendix E, “SQLGLOB Parameters (VSE Only).”

This appendix describes the SQLGLOB VSAM file available in your VSE/ESA

system.

Prerequisite IBM Publications

All readers of this book should be familiar with the content of the following

manuals:

v DB2 Server for VSE & VM Overview, GC09-2995

v DB2 Server for VSE & VM SQL Reference, SC09-2989

v DB2 Server for VSE & VM Performance Tuning Handbook, GC09-2987.

Highlighting Conventions

This manual uses the following text highlighting conventions:

Italics Italic type is used for command variables, parameter values and their

symbolic equivalents, titles of standalone manuals, strings of characters to

be used exactly as they appear, and important terms that are being

defined.

Boldface

Bold type is used for emphasis.

About This Manual xi

Monospace

Monospace type indicates material that is entered at a display station, or

displayed, coded, or printed on a computer printing device.

xii Database Administration

Syntax Notation Conventions

Throughout this manual, syntax is described using the structure defined below.

v Read the syntax diagrams from left to right and from top to bottom, following

the path of the line.

The ►►─── symbol indicates the beginning of a statement or command.

The ───► symbol indicates that the statement syntax is continued on the next

line.

The ►─── symbol indicates that a statement is continued from the previous line.

The ───►◄ symbol indicates the end of a statement.

Diagrams of syntactical units that are not complete statements start with the

►─── symbol and end with the ───► symbol.

v Some SQL statements, Interactive SQL (ISQL) commands, or database services

utility (DBS Utility) commands can stand alone. For example:

Others must be followed by one or more keywords or variables. For example:

v Keywords may have parameters associated with them which represent

user-supplied names or values. These names or values can be specified as either

constants or as user-defined variables called host_variables (host_variables can only

be used in programs).

v Keywords appear in either uppercase (for example, SAVE) or mixed case (for

example, CHARacter). All uppercase characters in keywords must be present;

you can omit those in lowercase.

v Parameters appear in lowercase and in italics (for example, synonym).

v If such symbols as punctuation marks, parentheses, or arithmetic operators are

shown, you must use them as indicated by the syntax diagram.

v All items (parameters and keywords) must be separated by one or more blanks.

v Required items appear on the same horizontal line (the main path). For example,

the parameter integer is a required item in the following command:

►► SAVE ►◄

►► SET AUTOCOMMIT OFF ►◄

►► DROP SYNONYM synonym ►◄

© Copyright IBM Corp. 1987, 2007 xiii

This command might appear as:

 SHOW DBSPACE 1

v Optional items appear below the main path. For example:

This statement could appear as either:

 CREATE INDEX

or

 CREATE UNIQUE INDEX

v If you can choose from two or more items, they appear vertically in a stack.

If you must choose one of the items, one item appears on the main path. For

example:

Here, the command could be either:

 SHOW LOCK DBSPACE ALL

or

 SHOW LOCK DBSPACE 1

If choosing one of the items is optional, the entire stack appears below the main

path. For example:

Here, the command could be:

 BACKWARD

or

 BACKWARD 2

or

 BACKWARD MAX

►► SHOW DBSPACE integer ►◄

►► CREATE

UNIQUE
 INDEX ►◄

►► SHOW LOCK DBSPACE ALL

integer

 ►◄

►► BACKWARD

integer

MAX

 ►◄

xiv Database Administration

v The repeat symbol indicates that an item can be repeated. For example:

This statement could appear as:

 ERASE NAME1

or

 ERASE NAME1 NAME2

A repeat symbol above a stack indicates that you can make more than one

choice from the stacked items, or repeat a choice. For example:

v If an item is above the main line, it represents a default, which means that it will

be used if no other item is specified. In the following example, the ASC keyword

appears above the line in a stack with DESC. If neither of these values is

specified, the command would be processed with option ASC.

v When an optional keyword is followed on the same path by an optional default

parameter, the default parameter is assumed if the keyword is not entered.

However, if this keyword is entered, one of its associated optional parameters

must also be specified.

In the following example, if you enter the optional keyword PCTFREE =, you

also have to specify one of its associated optional parameters. If you do not

enter PCTFREE =, the database manager will set it to the default value of 10.

v Words that are only used for readability and have no effect on the execution of

the statement are shown as a single uppercase default. For example:

►►

ERASE

▼

name

►◄

►►

VALUES

(

▼

 ,

constant

host_variable_list

NULL

special_register

)

►◄

►►
 ASC

DESC

►◄

►►
 PCTFREE = 10

PCTFREE = integer

►◄

Syntax Notation Conventions xv

Here, specifying either REVOKE ALL or REVOKE ALL PRIVILEGES means the

same thing.

v Sometimes a single parameter represents a fragment of syntax that is expanded

below. In the following example, fieldproc_block is such a fragment and it is

expanded following the syntax diagram containing it.

►►

REVOKE ALL
 PRIVILEGES

►◄

►►

NOT NULL

UNIQUE

PRIMARY KEY

 fieldproc_block ►◄

fieldproc_block:

 FIELDPROC program_name

▼

,

(

constant

)

xvi Database Administration

SQL Reserved Words

The following words are reserved in the SQL language. They cannot be used in

SQL statements except for their defined meaning in the SQL syntax or as host

variables, preceded by a colon.

In particular, they cannot be used as names for tables, indexes, columns, views, or

dbspaces unless they are enclosed in double quotation marks (").

 ACQUIRE

ADD

ALL

ALTER

AND

ANY

AS

ASC

AVG

BETWEEN

BY

CALL

CHAR

CHARACTER

COLUMN

COMMENT

COMMIT

CONCAT

CONNECT

COUNT

CREATE

CURRENT

DBA

DBSPACE

DELETE

DESC

DISTINCT

DOUBLE

DROP

EXCLUSIVE

EXECUTE

EXISTS

EXPLAIN

FIELDPROC

FOR

FROM

GRANT

GRAPHIC

GROUP

HAVING

IDENTIFIED

IN

INDEX

INSERT

INTO

IS

LIKE

LOCK

LONG

MAX

MIN

MODE

NAMED

NHEADER

NOT

NULL

OF

ON

OPTION

OR

ORDER

PACKAGE

PAGE

PAGES

PCTFREE

PCTINDEX

PRIVATE

PRIVILEGES

PROGRAM

PUBLIC

RESOURCE

REVOKE

ROLLBACK

ROW

RUN

SCHEDULE

SELECT

SET

SHARE

SOME

STATISTICS

STORPOOL

SUM

SYNONYM

TABLE

TO

UNION

UNIQUE

UPDATE

USER

VALUES

VIEW

WHERE

WITH

WORK

© Copyright IBM Corp. 1987, 2007 xvii

xviii Database Administration

Summary of Changes

This is a summary of the technical changes to the DB2 Server for VSE & VM

database management system for this edition of the book. Several manuals are

affected by some or all of the changes discussed here. For your convenience, the

changes made in this edition are identified in the text by a vertical bar (|) in the

left margin. This edition may also include minor corrections and editorial changes

that are not identified.

This summary does not list incompatibilities between releases of the DB2 Server

for VSE & VM product; see either the DB2 Server for VSE & VM SQL Reference, DB2

Server for VM System Administration, or the DB2 Server for VSE System

Administration manuals for a discussion of incompatibilities.

Summary of Changes for DB2 Version 7 Release 5

Version 7 Release 5 of the DB2 Server for VSE & VM database management

system is intended to run on the Z/VM Version 5 Release 2 or later environment

and on the Z/VSE(®) Version 3 Release 1 or later environment.

Enhancements, New Functions, and New Capabilities

The following have been added to DB2 Version 7 Release 5:

Explain Option on DBSU REBIND PACKAGE Command

This new functionality allows the EXPLAIN(YES/NO) option on REBIND

PACKAGE command. If EXPLAIN(YES) is issued, then all four update tables

(structure, plan, cost, reference) will be updated. If EXPLAIN(NO) is issued, then

none of the four update tables will be updated.

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 Server for VSE & VM Database Services Utility

v DB2 Server for VSE & VM Performance Tuning Handbook

v DB2 Server for VSE & VM Quick Reference

v DB2 Server for VSE & VM SQL Reference

For Fetch only

This new functionality accepts the ″FOR FETCH ONLY″ clause after a cursor select

statement. It causes a cursor to become read-only (no UPDATEs or DELETEs are

permitted using this cursor). If a read-only cursor is referenced in an UPDATE or

DELETE statement, SQLCODE -510 will be issued and the statement is not

processed. In addition, under the SBLOCK preprocessor option, ″FOR FETCH

ONLY″ forces blocking to be used on the read-only cursor regardless of whether

there is a COMMIT. If there is no ″FOR FETCH ONLY″ clause, under SBLOCK,

blocking would only be done if a COMMIT was absent.

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 Server for VM Messages and Codes

v DB2 Server for VSE & VM Application Programming

v DB2 Server for VSE & VM Performance Tuning Handbook

v DB2 Server for VSE & VM Quick Reference

© Copyright IBM Corp. 1987, 2007 xix

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

v DB2 Server for VSE & VM SQL Reference

Application Message Formatter

This functionality provides an Application Programming Interface (API) that

retrieves the descriptive text for an SQLCODE, given an SQLCA input parameter.

The API will be available for Assembly, COBOL, C, PL/I and FORTRAN.

In DB2 for VM and DB2 for VSE Online, the user may specify the language of the

returned text. The languages supported by DB2 for VSE/VM are American English

(AMENG), uppercase English (UCENG), German (GER), French (FRANC) and

Japanese (KANJI). VSE Batch does not support switching to another language.

Therefore the default will be used regardless of the user’s specification. The values

of SQLCODE, SQLSTATE, SQLERRD1 and SQLERRD2 will be automatically

appended to the returned text. The user may also specify to have the entire

SQLCA included. If the SQLCODE could not be found in the repository, the entire

SQLCA will be returned in the buffer.

If the SQLCA was set by another product (such as DB2 UBD), the descriptive text

is retrieved if the SQLCODE exists in the DB2 for VM/VSE repositories. However,

the token substitutions may not be correct.

For more information, see DB2 Server for VSE & VM Application Programming.

Convert buffer read/write to compiler macro

The DRDA code has over 100 small modules. Each call to an external module has a

certain amount of overhead associated with it. Certain modules are called very

frequently and this can add up to a significant amount of time. This functionality

improves the performance by converting few modules to macros or internal

procedures, to reduce this overhead.

Modify Build Tree Creation

This functionality modifies Build Tree creation used by DRDA parsing and

generation. It is built in such a way that every code point that is used to search

through the tree must be converted to a different format before the search can be

done. If modified build tree was created with the converted point, then the code

point would not have to be converted every time the tree must be searched. This

improves the performance of the DRDA code path length with the minimal search.

Split code point search routines

When parsing a data stream within each parser action routine, a binary search is

done to find the specific code point. Some action specific routines are quite large,

so the binary search can be long. Splitting and spreading the code point evenly

among other modules would reduce the overheads and improves the performance

of the DRDA code path length.

DRDA Multi-Row Insert

Multi Row insert is a means of caching homogenous insert statements and sending

them as a block to the server for processing. This reduces the overhead of sending

a large number of singular inserts and receiving as many responses.

Buffering of homogenous inserts eliminates the need to send an SQL statement to

the DB2 server every time an insert is made, thereby improving performance over

DRDA.

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 Server for VSE & VM Application Programming

xx Database Administration

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

v DB2 Server for VSE & VM Database Administration

v DB2 Server for VM System Administration

v DB2 Server for VSE & VM Performance Tuning Handbook

v DB2 Server for VSE & VM Quick Reference

v DB2 Server for VSE & VM SQL Reference

Connection Pooling for DRDA TCP/IP in Online Resource

Adapter

Connection pooling is a technique that allows multiple users to share a cached set

of pre-established connections that provide access to a database. Establishing a

connection between a user and a server takes a sizeable time. Users who have

validated their entry to a database once need not establish a connection every time

a request is submitted. Instead, they can use a pre-established connection from a

pool of such connections and get their results much faster.

From the user’s point of view, there is a considerable improvement in response

time after this line item is implemented.

For more information, see the following documentation on DB2 Server for VSE &

VM:

v DB2 Server for VSE System Administration

v DB2 Server for VSE & VM Application Programming

v DB2 Server for VSE & VM Operation

v DB2 Server for VSE & VM Performance Tuning Handbook

IBM DB2 Server for VSE, Client Edition

This feature allows the customer the flexibility to install and use only the client

(run-time support) component of DB2 Server for VSE without the requirement to

buy and install the server component during the installation process of DB2 server

for VSE product. The client-only installation enables customers to reduce the total

cost of ownership when they have their databases residing on a non-local platform

(like VM, z/OS, LUW) and have a large number of their DB2 applications on VSE

(like ISQL on CICS, DBSU on VSE, other online/batch applications on VSE).

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 Server for VSE System Administration

v DB2 Server for VSE Program Directory

IBM DB2 Server for VM, Client Edition

This feature allows the customer the flexibility to install and use only the client

(run-time support) component of DB2 Server for VM without the requirement to

buy and install the server component during the installation process of DB2 server

for VM product. The client-only installation enables our customers to reduce the

total cost of ownership when they have their databases residing on a non-local

platform (like VM, z/OS, LUW) and have a large number of their DB2 applications

on VM (like ISQL, DBSU, other user applications on VM).

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 Server for VM System Administration

v DB2 Server for VM Program Directory

Summary of Changes xxi

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

Handling Commit Responses from DB2 UDB Stored Procedures

This feature will allow DB2 Resource Manager on VSE/VM to accept and process

results of a stored procedure running in a UDB server with a COMMIT statement

in the stored procedure.

Currently, DB2 for VM/VSE client does not handle responses from ’COMMIT’

statements coded in DB2 UDB stored procedures. Implementation of this feature

will enable handling responses of COMMIT statements in DB2 UDB stored

procedures and thus allow users to have COMMIT statements in their stored

procedures, while using DB2 for VM/VSE client.

COMMIT statements, however, are not allowed in stored procedures on the DB2

Server for VM/VSE.

For more information, see DB2 Server for VSE & VM Application Programming.

Make on-line programs AMODE 31 RMODE ANY

This feature converts DB2 server for VSE online program which presently operate

under 24 bit addressing mode from AMODE 24, to AMODE 31 RMODE ANY.

Presently, all the online programs are loaded below 16M line. Implementation of

this line item ensures that all the online program will be loaded above the 16M

line, which results in more virtual storage below the line, which can be utilized by

other applications.

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 Server for VSE System Administration

v DB2 Server for VSE Program Directory

Provide BIND File Support in VM and in VSE Batch Environments

This feature provides the facility of binding packages across servers. The process of

binding is achieved by dividing the program preparation method into two steps.

The first step does the precompilation of the embedded SQL programs with the

prep parameter ’BIND’. Invocation of VSE/VM preprocessor creates a ’bindfile’.

The bindfile can be bound against any DB2 server using VSE/VM binder. During

this process, the access path is generated, SQL statements are verified,

authorization checks are performed, and package on the target server is created.

This line item eliminates the need of re-prepping the source code or porting of

packages across DB2 servers.

For more information, see the following DB2 Server for VSE & VM documentation:

v DB2 REXX SQL for VM/ESA Installation and Reference

v DB2 Server for VM Messages and Codes

v DB2 Server for VSE & VM Application Programming

v DB2 Server for VSE & VM Database Administration

v DB2 Server for VM Program Directory

v DB2 Server for VSE Program Directory

Convert TCP/IP LE/C interface to EZASMI API

The feature of converting TCP/IP LE/C interface to EZASMI API intends to

replace the current LE/C interface and implement the EZA Assembler Interface

(EZASMI)to enhance performance in DB2 Client/Server for VSE over DRDA.

Currently, either LE/C interface or CSI Assembler Interface is used for TCP/IP

functions. The EZASMI interface makes the code all Assembler.

xxii Database Administration

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

For more information, see DB2 Server for VSE Program Directory

Summary of Changes xxiii

|

xxiv Database Administration

Chapter 1. Designing a Database

This chapter describes the conceptual process of database design. The

implementation of the design, that is, the actual creation of a set of objects, is

discussed in Chapter 2, “Implementing Your Design,” on page 17.

Sample Tables

The DB2 Server for VSE & VM database contains sample tables that are referenced

throughout this book and are used to demonstrate various concepts and

procedures.

Entities, Properties, and Occurrences

Some basic terms for database design are defined below. There is no universally

accepted terminology for database design; these terms may be used differently

elsewhere.

v An entity is anything about which information can be stored. In the sample

database, some of the entities are employees, departments, and projects.

v Properties are types of information categories associated with an entity. In the

sample table EMPLOYEE, the entity employee has properties, such as, employee

number, job held, birth date, and salary amount, which appear as columns

EMPNO, JOB, BIRTHDATE, and SALARY.

v The occurrence of an entity consists of the values in all the columns for that

entity. In the sample table EMPLOYEE, each employee has a unique employee

number; therefore, each value in the EMPNO column is unique and can be used

to identify a particular occurrence.

Entities and properties are represented as columns, and occurrences are

represented as values in the columns, as shown in Table 1.

 Table 1. Occurrences and Properties of an Entity

ENTITY PROPERTIES

Employee EMPNO JOB BIRTHDATE SALARY

Sally Kwan 000030 Manager 1941-05-11 38250

William Jones 000210 Designer 1953-02-23 18270

Step 1: Select the Data to Record in the Database

To be effective, your database must be designed specifically to meet the data

storage and retrieval needs of your organization.

The first step in designing an effective database is to identify the collection of

information that it will contain. You must then organize this information into

tables, with each column of a row related in some way to all other columns of that

row. This approach will enable you to identify the relationships that exist between

the different entities.

For example, the following data relationships are expressed in the sample tables:

v Employees are assigned to departments, for example:

© Copyright IBM Corp. 1987, 2007 1

Dolores Quintana is assigned to Department C01.

 Heather Nicholls is assigned to Department C01.

v Employees earn money, for example:

 Dolores earns $23,800 per year.

 Heather earns $28,420 per year.

v Departments report to other departments, for example:

 Department C01 reports to Department A00.

 Department D01 reports to Department A00.

v Employees work on projects, for example:

 Dolores works on project IF1000.

 Heather works on projects IF1000 and IF2000.

v Employees manage departments, for example:

 Sally Kwan manages Department C01.

Before you design your tables, you must understand entities and their

relationships. Table 2 shows an example.

 Table 2. Relationships in the Sample Database

ENTITY RELATIONSHIP ENTITY

Employees are assigned to departments

Employees earn money

Departments report to departments

Employees work on projects

Employees manage departments

The relationship between the columns in a table is the same in each row of the

table. For example, in Table 1 on page 1, the relationship between each entry in the

Employee column and its corresponding entry in the Salary column is the same,

because the Salary column describes the amount the employee earns.

Step 2: Define Tables for Each Type of Relationship

In a relational database, you can express several types of entity relationships.

Consider the relationship between employees and departments. A given employee

can work in only one department, so this relationship is single-valued for

employees. On the other hand, one department can have many employees, so this

relationship is multivalued for departments. Accordingly, this constitutes a

one-to-many relationship. Relationships can be:

v One-to-one

v One-to-many

v Many-to-one

v Many-to-many.

If each employee can belong to several departments, the employees/departments

relationship would be many-to-many.

You must define separate tables for different types of relationships.

One-to-One Relationships

One-to-one relationships are single-valued in both directions. A manager manages

one department; a department has only one manager. The questions “Who is the

manager of Department C01?” and “What department does Sally Kwan manage?”

2 Database Administration

both have single answers. The relationship could be assigned to either the

department table or the employee table. Because all departments have managers,

but not all employees are managers, it would be logical to add the manager to the

department table, as shown in Figure 3.

One-to-Many and Many-to-One Relationships

To define tables for each one-to-many and many-to-one relationship, you must:

v Group all the relationships for which the “many” side of the relationship is the

same entity.

v Define a separate table for each group.

In Table 3, the “many” side of the first and second relationships is “employees”, so

we defined an employee table (EMPLOYEE). In Figure 4, “departments” is the

“many” side, so we defined a department table (DEPARTMENT).

 Table 3. Many-to-One Relationships

ENTITY RELATIONSHIP ENTITY

1. Employees are assigned to departments

2. Employees earn money

3. Departments report to (administrative) departments

Many-to-Many Relationships

A relationship that is multivalued in both directions is many-to-many. An

employee might work on more than one project, and a project might have more

than one employee assigned to it. The questions “What does Dolores Quintana

work on?” and “Who works on project IF1000?” both yield multiple answers. A

many-to-many relationship can be expressed in a table with a column for each

entity (“employees” and “projects”), as shown in Figure 5 on page 4.

Employee
one

manages
to

department
one

DEPARTMENT Table

DEPTNO ADMRDEPT MGRNO

Figure 3. Assigning One-to-One Facts to a Table

Employees
many

assigned to
to

departments
one

Employees
many

earn
to

money
one

EMPNO WORKDEPT SALARY

DEPARTMENT Table

Departments
many

report
to

departments
one

DEPARTMENT Table

DEPTNO ADMRDEPT

Figure 4. Assigning Many-to-One Facts to Tables

Chapter 1. Designing a Database 3

Step 3: Provide Column Definitions for Tables

Defining a column in a table consists of:

v Choosing a name for the column

 Each column in a table must have a name that is unique within the table. For

detailed information, see “Column Names” on page 31.
v Specifying the data type that is valid for the column

 The data type of a column indicates the length of the values in the column

and the kind of data that is valid for it. For detailed information, see

“Specifying Data Types” on page 32.
v Specifying the columns that can contain null values

 Some columns cannot contain meaningful values in all rows because some

values may not be known at a particular time. For example, you may know a

new employee’s name but not his or her birth date. For detailed information,

see “Specifying Data Types” on page 32.

Step 4: Identify One or More Columns as a Primary Key

If every row in a table represents relationships for a unique entity, the table should

have a primary key: one column (or a set of columns) that provides a unique

identifier for the rows of the table. A unique index of the columns of the primary

key is created when the primary key is created. You can create the primary key

when you create the table using the CREATE TABLE statement (see “Creating

Tables” on page 27) or, if the table already exists, by using the ALTER TABLE

statement (see “Altering the Design of a Table” on page 64). A primary key must

not contain a nullable column or a long field.

Note: Long fields include the following data types: VARCHAR(n) with n>254,

VARGRAPHIC(n) with n>127, LONG VARCHAR, or LONG VARGRAPHIC.

The primary keys of some of the sample tables are:

Table Key Column

EMPLOYEE table EMPNO

DEPARTMENT table DEPTNO

PROJECT table PROJNO

Figure 6 shows part of the PROJECT table with the primary key column indicated.

Employees
many

work on
to

projects
many EMPNO PROJNO

EMP_ACT Table

Figure 5. Assigning Many-to-Many Facts to a Table

4 Database Administration

Figure 7 shows a primary key consisting of more than one column; it is a

multicolumn key.

If you have more than one candidate for a primary key, you can define a UNIQUE

constraint on the column (or set of columns) that you do not select as the primary

key. A column with a UNIQUE constraint is similar to a primary key in that a

unique index on the column is created. It differs in that you can create more than

one UNIQUE constraint on a table, and no foreign keys can reference a UNIQUE

constraint (see “Foreign Key” on page 7).

Step 5: Ensure that Equal Values Represent the Same Entity

You can have more than one table describing properties of the same set of entities.

For example, one table could give employees’ job and salary information, as in the

EMPLOYEE table, and another each employee’s home address. To retrieve both

sets of properties at once, you can join the tables on any set of matching columns,

as shown in Figure 8 on page 6. If there are two employees named Sally Kwan, a

join on employee name may not match the correct rows. Similarly, if one person has

more than one authorization ID, a join on ID may not produce the correct match.

Thus, for the purpose of retrieving information about an entity from more than one

table, an equal value in each of those tables should represent that entity. This type

of join is an equijoin.

Figure 8 shows a join between the DEPARTMENT and EMPLOYEE tables on

columns of department numbers.

PRIMARY KEY COLUMN

PROJECT Table

MA2100 WELD LINE AUTOMATION D01

MA2110 W L PROGRAMMING D11

PROJNO PROJNAME DEPTNO

Figure 6. A Primary Key on a Table

PRIMARY KEY COLUMNS
PROJ_ACT Table

PROJNO

MA2100

MA2100

MA2110

ACTNO

10

20

10

ACSTAFF

0.5

1.0

1.0

ACSTDATE

82-01-01

82-01-01

82-01-01

Figure 7. A Multicolumn Primary Key. The three columns PROJNO, ACTNO, and ACSTDATE are all parts of the

primary key.

Chapter 1. Designing a Database 5

The connecting columns must be of the same data type. They can have different

names (such as WORKDEPT and DEPTNO in Figure 8), or the same name (such as

the two columns called DEPTNO in the DEPARTMENT and PROJECT tables). The

latter case is illustrated in Figure 9.

Step 6: Plan for Referential Integrity

A table can serve as a complete list of all occurrences of a single entity. In the

sample database, the EMPLOYEE table serves that purpose for employees: only the

numbers that appear in this table are valid employee numbers. Similarly, the

DEPARTMENT table provides a master list of all valid department numbers, and

the PROJECT table provides a master list of valid projects. When a table refers to

an entity for which there is a master list, it should identify an occurrence of the

entity that appears in the master list; otherwise, either the reference is incorrect or

the master list is incomplete.

When all references from one table to another are valid, this condition is called

referential integrity. Having referential integrity does not necessarily mean the data

is correct. That the EMPLOYEE table shows every employee assigned to a valid

department number is one thing; whether it shows every employee in the correct

department is quite another.

Elements of Referential Integrity

You must consider many different elements to ensure referential integrity. The

concepts of a primary key and a unique constraint were described in “Step 4: Identify

One or More Columns as a Primary Key” on page 4. Other elements to consider

when dealing with referential integrity are described in the following sections.

DEPARTMENT Table

DEPTNO DEPTNAME MGRNO ADMRDEPT

EMPNO FIRSTNME LASTNAME WORKDEPT SALARY

E21 SOFTWARE SUPPORT 000100 E01

(join path)

000090 EILEEN HENDERSON E11 29750.00

EMPLOYEE Table

Figure 8. A Join Path between Two Tables

PROJECT Table

MA2100 WELD LINE AUTOMATION D01

MA2110 W L PROGRAMMING D11

MA2111 W L PROGRAM DESIGN D11

PROJNO PROJNAME DEPTNO

DEPARTMENT Table

D11 MANUFACTURING SYSTEMS

D21 ADMINISTRATION SYSTEMS

E21 SOFTWARE SUPPORT

DEPTNO DEPTNAME

(join path)

Figure 9. A Join Path on Columns with the Same Name

6 Database Administration

Foreign Key

A column or set of columns that refers to the primary key of another table is a

foreign key. For example, the column Work Department (WORKDEPT) of the

EMPLOYEE table is a foreign key; it refers to DEPTNO, the primary key of the

DEPARTMENT table. The combination of the project number (PROJNO), activity

number (ACTNO), and activity starting date (EMSTDATE) columns in the

EMP_ACT table is a foreign key; it refers to the primary key of the PROJ_ACT

table.

Referential Constraint

A referential constraint is a relationship between a primary key and a foreign key

with certain deletion and update rules that define how the relationship is

maintained. Refer to “DELETE, INSERT, and UPDATE Considerations” for

information on deletion and update rules.

Parent and Dependent Tables

Establishing a referential constraint defines a relationship between two tables. The

table containing the primary key is the parent table, and the one containing the

foreign key is the dependent table. In a multilevel, hierarchical chain of dependent

tables, a descendent table is any table below the top level. Such a table is a

descendent of all the tables above it in the hierarchy.

A referential cycle is a set of referential constraints in which each table in the set is a

descendent of itself. A table can be a parent of many tables, and it can also be a

dependent or descendent of many parents.

Self-Referencing Table

A self-referencing table is one that contains both the primary key and the foreign

key of a referential constraint. Conceptually, a self-referencing table is both the

parent and the dependent table in a relationship. DB2 Server for VSE & VM does

not support self-referencing.

DELETE, INSERT, and UPDATE Considerations

DELETE Rules

For Parent Tables: When an employee retires, you remove that person’s

EMPLOYEE record. The deletion affects the information in the PROJECT,

DEPARTMENT, and EMP_ACT tables. For any particular relationship, one of the

following deletion rules is enforced:

v RESTRICT

You cannot delete any rows of the parent table that have dependent rows. In the

DEPARTMENT-PROJECT relationship, using RESTRICT means that you cannot

remove a department if any of its employees are assigned to a project.

v SET NULL

When you delete a row of the parent table, the corresponding values of the

foreign key in any dependent rows are set to NULL. This rule is used in the

DEPARTMENT-EMPLOYEE relationship: when you delete a department record,

the WORKDEPT column of dependent rows in the employee table is set to

NULL, indicating that the employee is not assigned to a department.

v CASCADE

When you delete a row of the parent table, any dependent rows in the

dependent table are also deleted. This rule is useful when a row in the

Chapter 1. Designing a Database 7

dependent table is useless without a row in the parent table. For example, if you

delete an employee there is no reason to maintain the associated EMP_ACT

record.

Multiple levels of CASCADE are supported; that is, a delete operation on a

parent table deletes all dependent rows in its dependent tables if the dependent

tables are enforced by the CASCADE delete rule of referential constraint. If any

of these dependent tables are also parent tables, the delete rule of referential

constraint in turn applies between them and their dependent tables. All

applicable delete rules are used to determine the result of a delete operation. A

delete operation is subject to rollback, if the parent row has a dependent row in a

referential constraint with a delete rule of RESTRICT, or if the deletion cascades

to any descendent that has a dependent row in a referential constraint with a

delete rule of RESTRICT.

For Dependent Tables: You may, at any time, delete rows from a dependent table

without taking any action on the parent table. For example, you may no longer

need EMP_ACT records after the project is completed. You can delete the record

without affecting the EMPLOYEE or PROJ_ACT tables.

Restrictions When Using the DELETE Statement: To ensure referential integrity,

the table specified in the subquery must not be affected by the delete on the object

table of the DELETE statement.

For example, if B is the object table of a DELETE statement, and A is a table that is

referenced in the FROM clause of a subquery of that statement, then the following

rules apply:

v Table A cannot also be an object table of the deletion.

v Table A cannot be a dependent of table B in a relationship with a delete rule of

CASCADE or SET NULL.

v Table A cannot be a dependent of any other table (for example, table C) in a

relationship with a delete rule of CASCADE or SET NULL, if deletions from

table B cascade to table C.

For more information on delete-connected tables, refer to “Restrictions on Keys and

Referential Constraints:” on page 40.

INSERT Rules

For Parent Tables: You can insert a row at any time into a parent table without

taking any action in the dependent table. For example, you can create a new

department in the DEPARTMENT table without making any change to the

EMPLOYEE table. For the insertion to be successful, the new primary key or

unique key values must be unique.

For Dependent Tables: You cannot insert a row into a dependent table unless a

row in the parent table contains a primary key value equal to the foreign key value

you want to insert. If a foreign key has a null value, it can be inserted into a

dependent table, but no logical connection exists.

UPDATE Rules

For Parent Tables: You cannot change a value in a primary key column if the

associated row has a dependent row. For example, if a department number

changes, the DEPTNO value in the DEPARTMENT table cannot be changed if

there are employees in the EMPLOYEE table who are members of that department.

8 Database Administration

For Dependent Tables: You cannot change a value in a foreign key column of a

dependent table unless the new foreign key value already exists in the primary key

of the parent table. For example, when an employee transfers from one department

to another, the department number must change. The new value must be the

number of an existing department, or null.

Step 7: Normalize Your Tables

Normalization is the method of reducing data stored in tables so that the tables

contain unique keys, each identifying a single entity. Each of these keys has an

associated row of values that describes each entity. Complete normalization is not

required for using the database manager.

The topic of normalizing tables draws much attention in database design. This

section briefly reviews the rules for first, second, third, and fourth normal forms of

tables, and describes some reasons why they should or should not be followed.

First Normal Form

Any relational table satisfies the requirement of first normal form: at each

row-and-column position in the table, there exists only one value, never a set of

values.

Second Normal Form

A table is in second normal form if each column not in the key provides a fact that

depends on the entire key.

Second normal form is violated when a non-key column is a fact about a subset of

a composite key, as in Figure 10. An inventory table records quantities of specific

parts stored at particular warehouses; its columns are shown below.

 The key here consists of the PART and the WAREHOUSE columns together.

Because the column WAREHOUSE-ADDRESS depends only on the value of

WAREHOUSE, the table violates the rule for second normal form. The problems

with this design are:

v The warehouse address is repeated in every record for a part stored in that

warehouse.

v If the address of the warehouse changes, every row referring to a part stored in

that warehouse must be updated.

v Because of the redundancy, the data could become inconsistent, with different

records showing different addresses for the same warehouse.

v If at some time there are no parts stored in the warehouse, there may be no row

in which to record the warehouse address.

KEY

PART WAREHOUSE QUANTITY WAREHOUSE-ADDRESS

Figure 10. Key Violates Second Normal Form

Chapter 1. Designing a Database 9

To satisfy second normal form, the information shown in Figure 10 on page 9 must

be in two tables, as in Figure 11.

 There is a performance disadvantage in having the two tables in second normal

form, because programs that produce reports on the location of parts have to join

both tables to retrieve the relevant information.

For further information on performance considerations, refer to “Considerations for

Normalization” on page 29.

Third Normal Form

A table is in third normal form if each non-key column provides a fact that

depends only on the key.

Third normal form is violated when a non-key column is a fact about another

non-key column. For example, the first table in Figure 12 contains the columns

EMPNO and WORKDEPT. Suppose a column DEPTNAME is added. The new

column depends on WORKDEPT, whereas the primary key is the column EMPNO;

thus, the table now violates third normal form.

Changing DEPTNAME for a single employee, John Parker, does not change the

department name for other employees in that department. The inconsistency that

results is shown in the updated version of the table in Figure 12.

KEY

PART WAREHOUSE QUANTITY

KEY

WAREHOUSE WAREHOUSE-ADDRESS

Figure 11. Two Tables Satisfy Second Normal Form

EMPLOYEE-DEPARTMENT Table (EMPDEPT) Before Update

EMPNO

000290

000320

000310

FIRSTNME

JOHN

RAMLAL

MAUDE

LASTNAME

PARKER

MEHTA

SETRIGHT

WORKDEPT

E11

E21

E11

DEPTNAME

OPERATIONS

SOFTWARE SERVICES

OPERATIONS

EMPLOYEE-DEPARTMENT Table (EMPDEPT) Before Update

EMPNO

000290

000320

000310

FIRSTNME

JOHN

RAMLAL

MAUDE

LASTNAME

PARKER

MEHTA

SETRIGHT

WORKDEPT

E11

E21

E11

DEPTNAME

OPERATIONS

SOFTWARE SERVICES

OPERATIONS

EMPLOYEE-DEPARTMENT Table (EMPDEPT) After Update

EMPNO

000290

000320

000310

FIRSTNME

JOHN

RAMLAL

MAUDE

LASTNAME

PARKER

MEHTA

SETRIGHT

WORKDEPT

E11

E21

E11

DEPTNAME

INSTALLATION MGMT

SOFTWARE SERVICES

OPERATIONS

Figure 12. Update of an Unnormalized Table. Information in the table has become inconsistent.

10 Database Administration

The table can be normalized by providing a new table, with columns for

WORKDEPT and DEPTNAME. In that situation, updating a department name is

much easier as it only has to be made to the new table. But an SQL query that

shows the department name with the employee name is more complex to write: it

requires joining the two tables. It also takes longer to run than the query of a

single table. As well, the entire arrangement takes more storage space, because the

WORKDEPT column must appear in both tables.

Fourth Normal Form

A table is in fourth normal form if no row contains two or more independent

multivalued facts about an entity.

Consider facts about employees, skills, and languages, where an employee may

have several skills and know several languages. There are two relationships, one

between employees and skills, and one between employees and languages. A table

is not in fourth normal form if it represents both relationships, as in Figure 13.

 Instead, the relationships should be represented in two tables, as in Figure 14.

 If, however, the facts are interdependent (that is, the employee applies certain

languages only to certain skills), then the table should not be split.

Any data can be put into fourth normal form. A good rule when designing a

database is to arrange all data in tables in fourth normal form, and then decide

whether the result will give you an acceptable level of performance. If it will not,

you are at liberty to undo the normalization of your design.

Step 8: Considerations for Distributed Data

Two types of access to DB2 Server for VSE & VM data are available. They are

remote unit of work and distributed unit of work.

Remote unit of work, implemented in SQL/DS V3.3, for VM, and SQL/DS V3.4,

for VSE, lets a user or application program on a Distributed Relational Database

Architecture (DRDA) application requester to read or update data stored in a DB2

Server for VSE & VM DRDA application server. With remote unit of work, a user

KEY

EMPLOYEE SKILL LANGUAGE

Figure 13. A Table That Violates Fourth Normal Form

EMPLOYEE SKILL EMPLOYEE LANGUAGE

KEYKEY

Figure 14. Tables in Fourth Normal Form

Chapter 1. Designing a Database 11

or application program can have many SQL statements within a unit of work;

accessing one database management system with each SQL statement; and

accessing one database management system within a unit of work.

Distributed unit of work, implemented in DB2 Server for VSE & VM Version 5

Release 1 lets a user or application program on a Distributed Relational Database

Architecture (DRDA) application requester to read or update data stored in

multiple locations, where the DB2 Server for VSE & VM DRDA application server

is one of the multiple sites where data is read or updated within a single unit of

work. With distributed unit of work, a user or application program can have many

SQL statements within a unit of work; accessing one database management system

with each SQL statement; and accessing many database management systems

within a unit of work. Commit and rollback are coordinated at all locations so that

if a failure occurs anywhere in the system, data integrity is preserved. This type of

coordinated approach is called two phase commit processing and is done by a

Sync Point Manager. In phase one, the coordinating RDBMS (generally the

requesting RDBMS) polls each participating RDBMS to vote to commit or rollback

the transaction. In phase two, the coordinator directs the RDBMSs to commit or

rollback based on the preceding vote.

Access to DB2 Server for VSE & VM DRDA application servers by DRDA

application requesters is possible only if the DRDA facility is installed on the DB2

Server for VSE & VM application server.

DB2 Server for VM implements the application server and application requester

support for DRDA remote unit of work, and the application server support for

DRDA distributed unit of work. VM application requesters can participate in

remote unit of work activity but cannot participate in distributed unit of work

activity.

Access to non-DB2 Server for VM application servers by DB2 Server for VM

application requester is possible only if the DRDA facility has been installed on the

DB2 Server for VM application requester and if the non-DB2 Server for VM

application servers support IBM’s implementation of the DRDA protocol.

DB2 Server for VSE implements the application requester support for DRDA

remote and distributed unit of work for CICS/VSE online applications. VSE online

application requesters can participate in remote and distributed unit of work

activity. With distributed unit of work, a CICS/VSE online application is limited to

accessing a single DRDA application server within one LUW. However, it can

update another CICS resource, in addition to the remote DRDA application server

it is accessing, within one LUW, provided both the DRDA application server and

the CICS resource participates in two-phase commits.

DB2 Server for VSE implements the application requester support for DRDA

remote unit of work for Batch applications. VSE batch application requesters can

participate in remote unit of work activity, but cannot participate in distributed

unit of work activity.

Access to remote application servers by a DB2 Server for VSE application requester

is possible only if the DRDA facility has been installed on the DB2 Server for VSE

application requester and if the remote application server supports IBM’s

implementation of the DRDA protocol.

12 Database Administration

Designing a distributed database management system involves making decisions

about where to put the data, how to manage security and accounting, and how to

handle problems, backup, recovery, and change control.

For general guidance on making these decisions, refer to the following manuals:

v Planning for Distributed Relational Database,

v DB2 Connectivity Supplement,

v Connect Enterprise Edition Quick Beginnings,

v DB2 UDB Quick Beginnings, and

v DB2 Server for VM System Administration or DB2 Server for VSE System

Administration.

The decision to access distributed data has implications for many activities:

application programming, data recovery, and authorization. This section introduces

some of these considerations. Refer to the appropriate manual for information on

particular tasks.

Definitions

The application requester is the component that accepts a request from an application

and passes it to an application server. The application server is the component that

receives and processes requests issued by the application requester.

In VSE an application server is local if it resides in the same VSE machine as the

DB2 Server for VSE application requester. This can also be a DB2 Server for VM

application server accessed through VSE guest sharing. This DB2 Server for VM

server can be either on the same VM machine as the VSE guest, or on another VM

machine accessed remotely through AVS or TSAF. A remote application server can

be a DB2 Server for VSE application server not residing in the same VSE machine

as the application program connecting to it, or a non-DB2 Server for VSE

application server.

In VM, a system is local if the application requester and the application server

reside on the same processor, and is remote if they reside on different processors.

Remote does not necessarily mean at a distance; the application server and

application requester may be at the same user site.

Two relational database systems are like if both the application requester and the

application server are the same product (for example, both are DB2 Server for VSE

or both are DB2 Server for VM). They are unlike if different products are involved

(for example, a DB2 Server for VM application requester and a DB2 Server for VSE

application server).

A DB2 Server for VM application requester can communicate with a like system,

either local or remote, through the SQLDS protocol or the DRDA protocol. It can

communicate with an unlike system through the DRDA protocol, if the Relational

Database Management System (RDBMS) of the unlike system supports the

protocol.

A DB2 Server for VSE application requester can communicate with a local DB2

Server for VSE application server through the SQLDS protocol or a DB2 Server for

VM application server which is accessed using Guest Sharing through the SQLDS

protocol. A DB2 Server for VSE application requester can communicate with a

Chapter 1. Designing a Database 13

remote application server through the DRDA protocol, if the Relational Database

Management System (RDMS) of the remote application server supports the

protocol.

Application Programming

Several categories of application programming considerations are:

v Character conversion

Data and statements are converted if the connected systems are using different

coded character set identifiers (CCSIDs). For example, an SQL statement

originating in an ASCII environment that is sent to an EBCDIC environment

must be converted for the DB2 Server for VSE & VM application server to

process it. This conversion ensures that the application server correctly interprets

the statement and the data, and displays the results using the appropriate

character sets. For more information on character conversion, refer to either the

DB2 Server for VM System Administration or the DB2 Server for VSE System

Administration manual.

It is important that the application server and application requester have the

same CCSID value, unless there is a specific reason for them to be different.

When the application server and application requester have different CCSID

values, character conversion cannot be avoided. This conversion has an

associated performance overhead, and causes performance degradation. For

more information on performance, see the DB2 Server for VSE & VM Performance

Tuning Handbook manual.

v Access limitations

The limitations that exist for local multiple database applications apply to

remote database applications with remote unit of work support. You cannot:

– Access more than one application server in a single logical unit of work

(LUW).

– Join tables from multiple application servers.

– Define referential constraints across application servers.

These limitations also apply to remote database applications with distributed

unit of work support. One exception though, is that with DUOW you can access

more than one application server in a single logical unit of work (LUW).

For the DRDA protocol restrictions, see the DB2 Server for VSE & VM SQL

Reference manual.

v Performance considerations

An obvious consideration for an SQL query that is transmitted to a remote

application server is that the query and its reply must both be transmitted over

an SNA or TCP/IP network, in VSE, or in VM, over a TSAF collection, VTAM

network or TCP/IP network, conceivably as far as halfway around the world.

This can increase the amount of processing and degrade the performance of the

application in comparison with the same query run on your local application

server. If the DRDA protocol is used, the DB2 Server for VSE & VM application

requester has the option of increasing the block size used to return data. This

can improve the performance of some applications. For more information in VM,

see “SQLINIT EXEC” on page 243, in VSE, see Appendix E, “SQLGLOB

Parameters (VSE Only),” on page 273.

If the connected systems use different CCSIDs, performance can also be

adversely affected, because additional processing is required to convert the data

and statements.

v Cross-system differences.

14 Database Administration

Different relational database management systems use the SQL language, and

strive to provide a consistent interface for applications. There are, however, some

inconsistencies between systems. For example, the database manager does not

support self-referencing constraints (a referential constraint in which both the

primary key and the foreign key of the constraint are in the same table). On the

other hand, it provides an EXPLAIN function, useful in tuning SQL statement

performance, which is not provided by some RDBMS. These differences affect

the portability of database designs and applications from system to system.

System Operations

Several commands for monitoring the operations of the DB2 Server for VSE & VM

application server provide detailed information to the database administrator about

users and their systems. For more information on these commands, see the DB2

Server for VSE & VM Operation manual.

You cannot effectively administer a remote application server from your local

system, and sometimes must coordinate operations by means external to your local

system. Both the application requester and application server must be defined in

an SNA or TCP/IP network.

In VSE using SNA networks, Transaction Program Names (TPNs) can be used by

remote application requesters to identify local DB2 Server for VSE application

servers to which they want to connect on the local VSE system. These TPNs must

be identified in the local DBNAME Directory and mapped to the appropriate

server APPLID. Likewise, Remote Transaction Program Names (REMTPNs) can be

used by the local system to identify the remote DRDA application server to which

the local DB2 Server for VSE online (CICS) application requester wants to connect

(Batch applications must use TCP/IP). These REMTPNs must be identified in the

local VSE DBNAME Directory and mapped to the appropriate remote server SNA

System ID (SYSID).

In VSE using TCP/IP networks, remote DRDA application requesters must know

the local VSE TCP/IP Server’s IP Address (or Host Name) and the local DB2

application server’s Listener Port Number to access the local DB2 Server for VSE

DRDA application server. Likewise, local VSE DRDA application requesters must

know the remote DRDA application server’s IP address (or Host Name) and

Listener Port Number, which are identified in the local VSE DBNAME Directory.

For additional information on the VSE DBNAME Directory, refer to the DB2 Server

for VSE System Administration manual.

In VM, all access to remote application servers through VTAM or TCP/IP require a

CMS Communication Directory for the application requester. You must plan for

creating and maintaining this directory on each VM system where the application

requester resides. See the VM/ESA: Connectivity Planning, Administration, and

Operation manual.

Similar considerations apply to users accessing other (non-DB2 Server for VSE &

VM) application servers. Because each application server controls access to its own

data, you must arrange to have valid user IDs on the other systems. As well, you

must arrange for users to have proper authority and privileges on those

application servers. Traces (used for problem determination) must also be

coordinated with administrators at other sites, because traces must come from the

system on which the data resides.

Chapter 1. Designing a Database 15

Distributing Existing Data

Although you can use the approaches previously described to distribute existing

data, it is not a task to be undertaken lightly. Existing applications should only be

distributed as part of an application redesign.

The best way to distribute data is the way used when the database was designed.

However, the extent to which the preferred distribution method will affect existing

applications must be considered in determining whether the preferred distribution

should be implemented fully, partially, or at all.

16 Database Administration

Chapter 2. Implementing Your Design

After determining the design of your database, you can create objects to implement

your design. These objects include dbspaces, tables, views, and indexes.

This chapter discusses the following topics:

1. Database Storage Concepts

This section provides an overview of the physical database and explains the

relationships between objects, dbspaces, and storage pools.

2. Database Generation

When you create a database, its potential storage capacity is defined. You must

do some planning to ensure that the database satisfies your data storage

requirements.

3. Defining Dbspaces

The task of defining dbspaces, which contain tables, views, and indexes,

involves reserving logical space in the database, assigning the dbspace to a

storage pool, and setting usage parameters. You must understand what these

parameters are and how to select them so that the dbspace will best

accommodate the data to be stored in it.

4. Creating Tables

Information is stored in a database by placing it in tables. You must know how

to create tables and how to define referential constraints.

5. Creating Views

After you create tables, you can create views. A view is a logical, or virtual,

table that is derived from one or more tables or other views. Using views can

be advantageous in applications that have specific requirements for data tables.

6. Creating Indexes

Indexes are optional: they improve the speed with which table rows are

accessed.

7. Using the Catalog in Database Design

The catalog tables contain information about the existing structure of the

database, which can be helpful in database design.

Storage Concepts

A DB2 Server for VSE & VM database is a collection of user data objects (tables

and indexes) and supporting information maintained by the database manager for

that data. The supporting information includes control information (such as how

each data table is formatted and where each is located), and data recovery

information (restoring data to an earlier state). The database is composed of:

v A Directory: In VM this is a minidisk that contains database control information.

In VSE it is a VSAM data set. It includes mappings of the dbspaces to their

addresses on the DASD (that is, it relates the logical database image to the

physical storage used).

v One, two, or four Logs: In VM, these are minidisks and in VSE, these are VSAM

data sets. These contain information about the changes made to the data. If any

changes must be “undone” or “redone”, logs can be used to restore the data to

its proper state.

© Copyright IBM Corp. 1987, 2007 17

v One or more Storage Pools: In VSE these are collections of VSAM data sets, and

in VM these are collections of minidisks. Each is called a database extent or

dbextent.

A dbextent is an allocation of actual DASD space. Storage pools are composed of

one or more dbextents. The size of the storage pool can be increased or reduced

by:

v adding more dbextents

v deleting existing dbextents

v In VM/ESA, moving dbextents to other devices.

Note: In VSE, each dbextent is the primary allocation of a VSAM data set

(CLUSTER).

Storage pools can be defined to be either recoverable or nonrecoverable. The default is

for them to be recoverable, whereby every change made to the pool is logged. For

nonrecoverable storage pools, there is limited recovery; the database manager does

not log updates, but takes a checkpoint for each logical unit of work (LUW) to

ensure that the LUW’s changes are written to DASD.

To maintain referential integrity, both tables in any referential constraint must be in

either recoverable or in nonrecoverable storage pools: they cannot be spread across

both types. This restriction is necessary because the portion of the relationship in

the nonrecoverable pool might be lost, possibly invalidating the information

remaining in the recoverable one. For more information about storage pools, refer

to either the DB2 Server for VM System Administration or DB2 Server for VSE System

Administration manual.

When a table is created, it must be assigned to a logical allocation of storage called

a dbspace. The table creator can either do this assignment explicitly, or let the

database manager use a default assignment. Any indexes created on that table will

be stored in the same dbspace.

Figure 15 on page 19 shows how tables are stored in the database. It includes two

tables and their indexes in dbspace A, two tables and their indexes in dbspace B,

and one table with three indexes in dbspace C.

18 Database Administration

How Information is Stored in Dbspaces

A dbspace is not a real allocation of DASD space: it is a logical allocation of page

map tables in the directory that relates logical dbspace pages to DASD locations. It

holds data in 4096-byte blocks called pages, and can hold up to 255 tables, and

their indexes. As dbspaces are assigned to the storage pool and their pages are

filled, the physical DASD pages used are taken from the dbextents of the storage

pool.

The database manager dynamically allocates real DASD storage space to support

dbspace pages on a demand basis. Unused pages of a dbspace do not occupy

DASD space. The potential capacity of a dbspace is fixed when it is defined.

The dbspace used to hold a table is determined when the table is created. A table

cannot span (reside in) multiple dbspaces. However, two or more tables in a

referential relationship may reside in separate dbspaces.

Figure 16 shows how information is stored in a dbspace.

I1 I4 I7

TAB 1 I2 TAB 4 I5 I8

TAB 2 I3 TAB 5 I6 TAB 6 I9

Tables (TAB) and
Idexes (I) are
stored in
DBSPACEs

DBSPACE A DBSPACE B DBSPACE C

Each DBSPACE is
assigned to a
STORAGE Pool

STORAGE POOL 5 . . . STORAGE POOL 7 . . .

STORAGE pools are
comprised of one
or more DBEXTENTs

DBEXTENT 5 DBEXTENT 9 DBEXTENT 7

Figure 15. Table Storage in a Database

Chapter 2. Implementing Your Design 19

At the front of every dbspace are one to eight header pages, which contain control

information about the tables and indexes stored in it. After the header pages are

the data pages, which is where the rows of a table are stored. Index entries are

stored in index pages at the back.

When you store multiple tables in the same dbspace, the database manager might

store rows from different tables on the same data pages; however, it never puts

index entries from different indexes on the same page.

Database Generation

This book does not describe how to create a database. That is the task of the

system administrator, and is discussed in the DB2 Server for VM System

Administration and DB2 Server for VSE System Administration manuals. Because

initial DASD allocations are assigned and the potential capacity for the database is

established during that process, it is important that you analyze your storage

requirements and inform the person responsible for generating the database. The

information you provide should include the:

v Number of tables and views (objects) you intend to create

v Structure of those objects (such as number of columns, data type)

v Storage required for your objects.

Note: If you are creating a copy of a database, the SHOW SQLDBGEN command

will help you determine your storage requirements. For more information

about the SHOW SQLDBGEN command, refer to the DB2 Server for VSE &

VM Operation. For more information about estimating database storage, refer

to the DB2 Server for VM System Administration, Appendix B, or the DB2

Server for VSE System Administration, Appendix B.

Defining Dbspaces

Before defining a new dbspace, check to see if there are any already available

having the properties that you require; if there are, you do not need to define a

new one.

If you need to define one or more dbspaces, do the following:

1. Identify your requirements.

Identify the data that the dbspace will contain and the way that it will be used.

2. Add the dbspace to the database.

Add the dbspace to the database directory (if this has not already been done),

using either the SQLADBSP EXEC in VM, or the ADD DBSPACE statement in

VSE.

3. Acquire the dbspace.

After a dbspace is established, enter the ACQUIRE DBSPACE statement to

acquire it for your use.

Header Data Index
Pages Pages (tables) Pages

Figure 16. Table and Index Storage in a Dbspace

20 Database Administration

Identifying Dbspace Requirements

To identify dbspace requirements, consider the tables that are to be stored and the

way they will be used. If performance is a requirement, you can define a dbspace

to support only one table and its indexes; often, however, dbspaces are defined to

support several tables. Tables that have common requirements can be stored in the

same dbspace.

Mapping Tables to Dbspaces

Table 4 shows the approach you should use for determining the way to map tables

to dbspaces.

 Table 4. General Approach to Mapping Tables to Dbspaces

Table Access Type of Dbspace Type of Data

Private tables PRIVATE dbspaces (one per user,

or user-application area)

End user data

Application development data

Data prototyping tables

Shared tables PUBLIC dbspaces (one per user

group, or table group)

Common end user data

Application testing data

Production application data

Dbspaces come in two types: PRIVATE and PUBLIC.

For private data, reserve one PRIVATE dbspace for each user. Private data is

always locked at the dbspace level to eliminate unnecessary locking overhead

when users are accessing their own private data.

Data kept in a PRIVATE dbspace can be shared, and concurrent read-only access to

the data is possible.

For most users, one PRIVATE dbspace is sufficient; however, people doing

application or data design for different application areas might want one for each

area. Others might request additional storage as their data requirements grow. For

these users, you can reserve additional PRIVATE dbspaces as needed.

For data that is to be shared, use PUBLIC dbspaces. These can be locked either at

the row, page, or dbspace level. Thus, several users can access data at the same

time. (See “Determining the Lock Size (LOCK)” on page 26.)

PUBLIC dbspaces support tables shared by a group of users. For example, a group

of query users may have to share data. Rather than having each user keep a copy

of the data, the extracted data could be directed to tables in a PUBLIC dbspace,

where it could be accessed by all users.

For production application data, you should define one or more PUBLIC dbspaces,

depending on logical groupings of tables. For further information on placing tables

into dbspaces, refer to the DB2 Server for VSE & VM Performance Tuning Handbook

manual.

Adding Dbspaces to the Database

To add a dbspace to a database you must reserve page tables in the directory,

assign the dbspace to a storage pool, and specify the dbspace’s type. These

functions are described in the DB2 Server for VSE System Administration and DB2

Server for VM System Administration manuals.

Chapter 2. Implementing Your Design 21

Do not use SYS as the first three characters of a dbspace name; SYS denotes a

dbspace reserved for database manager use.

Note: When you add dbspaces, you must be in single user mode.

Acquiring Dbspaces

After you have identified the mapping of tables to dbspaces, and the dbspaces

have been added to the database, you can acquire them for use. Begin this process

by identifying the parameters to be established for each dbspace. Table 5

summarizes these parameters; they are discussed in detail below.

 Table 5. Derivation of Dbspace Parameters

Parameter Derivation

Type PUBLIC or PRIVATE, based on expected usage of tables.

SIZE (PAGES) Sum of the potential sizes of each of the tables, plus the sum of the index

size requirements, plus free space considerations.

STORPOOL Consider device utilization of other dbspaces in the same pool and the

availability of space in the pool. Also consider using nonrecoverable

storage pools for read-only data.

NHEADER Set based on the number of tables and indexes to be put in the dbspace.

PCTFREE Set based on growth potential of the tables to be put in the dbspace.

PCTINDEX Set based on the potential indexes to be created and their estimated sizes.

LOCK Set based on the size of tables and the extent of their use.

Use the ACQUIRE DBSPACE statement to specify the parameters in Table 5. When

acquiring a dbspace, you must specify whether it is to be PUBLIC or PRIVATE,

and you can optionally set the number of pages in it, the level of recovery, the

percentage of space to be reserved for updates and indexes, and the amount to be

locked when accessed by users. See the DB2 Server for VSE & VM SQL Reference

manual for more information on the ACQUIRE DBSPACE statement.

Determining Dbspace Type (PUBLIC or PRIVATE)

If any table is to be accessed by multiple users at the same time, and any one of

the users will be doing UPDATEs, INSERTs, or DELETEs, then it should be placed

in a PUBLIC dbspace. You need Database Administrator (DBA) authority to

acquire a PUBLIC dbspace.

Only users with DBA or RESOURCE authority can create objects in PUBLIC

dbspaces.

To acquire a PUBLIC dbspace, enter the ACQUIRE DBSPACE statement specifying

your requirements. For example, to acquire a PUBLIC dbspace named payroll and

using the defaults, enter:

 ACQUIRE PUBLIC DBSPACE NAMED PAYROLL

You need DBA or RESOURCE authority to acquire a PRIVATE dbspace.

Only the owner of the PRIVATE dbspace, or a user with DBA authority, can create

objects in the dbspace.

Every PRIVATE dbspace has an owner. To acquire the PRIVATE dbspace

PERSONAL for user JOHN, enter the following:

22 Database Administration

ACQUIRE PRIVATE DBSPACE NAMED JOHN.PERSONAL

You cannot use the ALTER DBSPACE statement to change the type of a dbspace

after you acquire it.

Determining the Size of the Dbspace (PAGES)

You need to ensure that the dbspace contains enough pages to hold the tables and

associated indexes to be stored there.

The size of the dbspace should be based on the estimated current size of the tables

and their indexes, plus an allowance for their expected growth. A dbspace cannot

contain less than 128 pages. You must allocate pages in multiples of 128, otherwise

the number is rounded up to the next highest multiple of 128. Algorithms for

determining the number of pages needed are described in Appendix A,

“Estimating Your Dbspace Requirements,” on page 223.

Because you cannot extend a dbspace after it is defined, you should overestimate

the required number of pages. Unused pages are not stored, so the cost of

overestimating is nominal. In contrast, the cost of underestimating pages can be

quite expensive because of the reorganization activities required to re-establish the

data in a larger dbspace later.

Note: Two directory blocks of 512 bytes each are used for every 128 data pages

defined.

Determining the Storage Pool (STORPOOL)

Storage pools come in two types: recoverable and nonrecoverable.

Consider assigning a dbspace to a nonrecoverable storage pool if the data in it will

be read-only. Changes made to data in a nonrecoverable storage pool are not

logged, which offers the advantages of requiring less log space, elapsed time, and

CPU time. (There should be an alternative method of recovery available, such as

reloading the storage pool.) The disadvantage is that data cannot be recovered

when media failures occur (which may be acceptable for read-only data).

If you are using referential integrity, you must use recoverable storage pools. For

nonrecoverable storage pools, ROLLBACK is not performed and no logging is in

effect, so that some operations can be neither completed successfully nor rolled

back. Each operation containing a referential constraint is verified when it occurs.

If a row of a multi-row operation violates the referential constraint, the operation

terminates. The rows that were affected prior to the termination cannot be rolled

back.

For example, in a multi-row delete of a parent table, if 15 rows are candidates for

deletion and the ninth row violates the DELETE RESTRICT rule, then the first

eight rows would be deleted and the operation would cease with the ninth row.

The integrity of the table would be maintained but the operation would be only

partially completed.

Because a unit of work modifying both recoverable and nonrecoverable pools can

only ROLLBACK the recoverable pool, referential constraints cannot be created

between the two types of pools.

You cannot use the ALTER DBSPACE statement to change the storage pool of a

dbspace after you acquire it.

Chapter 2. Implementing Your Design 23

If you do not specify the STORPOOL parameter, a dbspace of the correct size and

type will be acquired from any recoverable storage pool.

Storage Device Considerations: The storage pool you select should be chosen to:

v Balance device utilization

v Exploit device characteristics for data in the dbspace.

A table resides on the devices used to support the storage pool to which the table’s

dbspace is assigned. Consider storing different tables on different devices based on

device characteristics and table usage. To do this, you need multiple storage pools

and multiple dbspaces.

For example, if you have two tables that are highly active, you can reduce

potential device contention by storing them in different dbspaces that are assigned

to different storage pools. The dbextents defined for the two storage pools would

be on different devices.

You could use a similar technique for storing selected tables on higher or lower

speed devices as appropriate.

For more information about storage pools, refer to either the DB2 Server for VM

System Administration or the DB2 Server for VSE System Administration manual.

Determining the Number of Header Pages (NHEADER)

Header pages contain control information on the tables and indexes stored in the

dbspace.

The number of header pages required depends on the number of objects to be

stored in the dbspace. Generally, taking the default (8 pages) is recommended, as

this gives you the most flexibility at nominal cost. However, if you plan to have

few tables or indexes in the dbspace, you may allocate fewer. You must allocate at

least one.

To estimate your needs, see Appendix A, “Estimating Your Dbspace

Requirements,” on page 223.

You cannot change the NHEADER parameter with the ALTER DBSPACE

statement; after you set it, the only way to change it is to move all the data in the

current dbspace to another dbspace having the required NHEADER value (see

“Altering the Design of a Dbspace” on page 73).

Determining the Percent Free Space Desired (PCTFREE)

The PCTFREE parameter refers to the percentage of each page that is to be

reserved for updates that make the changed row longer than it was before. This

free space is not used for inserts. You can reclaim the free space by reducing the

PCTFREE value through an ALTER DBSPACE statement.

The PCTFREE value you choose will depend on the type of activity being carried

out on the data in the dbspace:

v High Insert/Low Update Activity

This is the situation where there will be few updates, or all columns are fixed

and non-nullable in the tables. Here, you would set PCTFREE to a high value

before loading the data; then lower it to a low value. The difference between the

original value and the final value can then be used by insert activity.

v Low Insert/High Update Activity

24 Database Administration

In this situation, PCTFREE should be set to a high value. The space saved by

PCTFREE will be used by the update activity only if the update increases the

size of the row and the free space will accommodate the new row.

v Low Insert/Low Update Activity Or Read-Only Data

Read-only data is data that is loaded into a dbspace and then never modified or

updated, only retrieved using query statements. In this situation, set PCTFREE

to a low value or zero.

v High Insert/High Update Activity

In this situation, set PCTFREE to a high value and then lower it. This would

allow space for use by both update and insert activities.

Note: Updating refers to the replacement of a row of data into the same location

in a page of a dbspace, unless the row can no longer fit because of an

increase in the size of one or more columns. The replacement row is placed

on the same page of the dbspace if there is still sufficient space available in

the area set aside using PCTFREE.

In situations where there is high insert activity, consider using a clustering index.

The first index created on a table is always considered the clustering index. A

clustering index determines the placement of rows in pages of a dbspace to

minimize DASD I/Os when the table rows are accessed in the index sequence. For

more information, see “Clustering Rows of a Table on an Index” on page 48.

Note: Clustering refers to the grouping or gathering of items; in the above case,

the grouping of table rows is done according to the indexes.

If an updated row no longer fits on its original page, its contents are moved to the

next available page with enough room to accommodate it. Continual movement of

row contents to new pages as a result of this overflow may lead to a decrease in

performance as the database manager must make one additional page reference

before locating a row’s contents.

The database manager typically reserves more space than you specify. For an

explanation of free space management design, see the DB2 Server for VSE & VM

Diagnosis Guide and Reference manual. Calculate PCTFREE using the following

formula:

 PCTFREE = (FREEBYTES - AVGROWLEN) / 40

where FREEBYTES is the number of bytes you want reserved on each page, and

AVGROWLEN is the average row length for tables in the dbspace. If you have

modeled the tables to be stored in the dbspace, you can obtain a value for

AVGROWLEN for each of the tables from SYSTEM.SYSCATALOG.

For normal processing, set PCTFREE somewhere between:

 [AVGROWLEN / 40] and [50 - (AVGROWLEN / 40)].

Setting it below the lower limit would mean the unused bytes could not be used

(the average row would not fit) and the space set aside for updates would be

wasted, while setting it greater than the upper limit may restrict you unnecessarily

to one row per page.

For more information on how the PCTFREE parameter determines actual reserved

bytes, see Appendix A, “Estimating Your Dbspace Requirements,” on page 223.

Chapter 2. Implementing Your Design 25

Determining the Percentage for Index Pages (PCTINDEX)

When you acquire a dbspace, you must reserve some portion of it for holding

indexes on the tables in the dbspace. PCTINDEX reserves the amount of space in

the directory to be formatted for this purpose. Under most circumstances, you

should let this value default to 33 percent. With this default, there are

approximately twice as many data pages for holding table rows as there are index

pages for holding indexes on the tables. You can create or drop indexes at any time

(these functions can be performed online); so do not constrain the potential

indexing you might want to do by specifying a lower value for PCTINDEX. There

are two cases when you might want to consider overriding the default:

v Read-only data

Some data is used exclusively, or primarily, for read-only (SELECT) access. You

can create a more than one index on such data to improve the performance of a

wide variety of user queries. The indexes are created after the data is loaded and

are referenced as required by a query. Because the data is not subject to update

operations, you do not have to worry about the performance implications of

index maintenance. Thus, you should consider specifying a high value for

PCTINDEX. To do this, estimate the number of index pages that would be

required for various indexes that might be created on these tables in the

dbspace. See “Estimating the Number of Index Pages” on page 235.

v Highly tuned operational data

This is data that is subject to frequent updates, and the performance

requirements limit the amount of indexing you want to do on the tables.

Determine the set of indexes you require for the data and set the PCTINDEX

parameter accordingly.

You establish the PCTINDEX parameter with the ACQUIRE DBSPACE statement.

You cannot change the PCTINDEX parameter with the ALTER DBSPACE

statement; after you set it, the only way to change it is to move all the data in the

current dbspace to another dbspace having the required PCTINDEX value (see

“Altering the Design of a Dbspace” on page 73).

Determining the Lock Size (LOCK)

When you acquire a PUBLIC dbspace you can specify three levels of locking:

DBSPACE, PAGE, or ROW. You can change the lock size later with the ALTER

DBSPACE statement.

The lock size can be set for PUBLIC dbspaces only. (PRIVATE dbspaces are always

locked at the DBSPACE level.)

The default lock size is PAGE. Select ROW if the dbspace is to contain a small

table that will fit on a small number of pages, and it is expected that this table will

be frequently updated by multiple users.

Locking the dbspace at the row level also causes indexes in it to be locked at the

key level. (Usually indexes are locked at the page level.) Key-level locking for

indexes, like row-level locking for tables, reduces contention but adds overhead.

Retrieving Information about Dbspace Parameters

Information about the dbspace parameters is maintained in the

SYSTEM.SYSDBSPACES catalog table.

Example

Use the following query to retrieve information about dbspace MYDB:

26 Database Administration

SELECT DBSPACENO, DBSPACETYPE, POOL, NPAGES,

 NRHEADER, PCTINDX, FREEPCT, LOCKMODE

 FROM SYSTEM.SYSDBSPACES

 WHERE DBSPACENAME = ’MYDB’

To see how many header, data, and index pages are being used in a given dbspace,

issue the SHOW DBSPACE operator statement from either the database console or

from ISQL. (Its format is described in the DB2 Server for VSE & VM Operation

manual.) This information may be helpful, especially before attempting to load

large amounts of data into a dbspace.

Restrictions on the ACQUIRE DBSPACE Statement

To acquire a dbspace, it must have already been added to the database. When you

issue the ACQUIRE DBSPACE statement, the database manager searches for a

dbspace with the appropriate size (number of PAGES), storage pool assignment,

and type (PUBLIC or PRIVATE). If one of the requested size cannot be found, the

next largest suitable one will be used. (This could result in a very large dbspace

being used to contain a small amount of data.) If no existing dbspace satisfies the

requirements, then the ACQUIRE DBSPACE statement will fail, and you will have

to add additional dbspaces to the database.

The SYSDBSPACES system catalog table contains information about dbspaces. You

can issue an ISQL query to retrieve this information.

The following query yields information on the type and size of all available

dbspaces (those that have been added but not yet acquired):

 SELECT DBSPACETYPE, NPAGES

 FROM SYSTEM.SYSDBSPACES

 WHERE DBSPACENAME=’’

The value of DBSPACETYPE is 1 for PUBLIC dbspaces and 2 for PRIVATE ones.

Creating Tables

Relational databases use tables to store information. This section explains how to

create tables and how to define referential and unique constraints in the DB2

Server for VSE & VM environment.

Controlling Who Creates Tables

Designing tables to be used by many applications is a critical task. Although you

can add columns and use views to mask certain changes, generally you cannot

change the design of a table after it has been implemented without disrupting

applications. Table design is difficult because there are many ways to represent the

same information, and often you have to decide between the conflicting objectives

of logical design and physical design. (One example of such a conflict is

normalization, discussed in “Step 7: Normalize Your Tables” on page 9.)

If you have DBA authority, you will probably want to keep the responsibility for

creating tables, and then pass the authorization for their use on to the application

developers. However, you can grant authority for creating tables to others; or, if

some users want to use the application server with minimum assistance or control,

you can acquire PRIVATE dbspaces for them and authorize them to create

whatever data objects they need, including tables.

Chapter 2. Implementing Your Design 27

How to Create Tables

After designing a table, issue the CREATE TABLE statement. Creating a table

involves:

v Naming it

v Naming the columns within it

v Defining the appropriate data type for each column

v Defining primary keys

v Defining the relationships between tables

v Defining unique constraints.

To create a table, the connected user must have the proper authority (see

Chapter 5, “Providing Security,” on page 89). Whoever issues the CREATE TABLE

statement has complete authority over the table.

When you create a table, a definition of it is recorded in the catalog; no application

data is stored. (For a description of how to put data into the table, see “Loading

Data into Tables” on page 59.)

Figure 17 shows the statement used to create the sample EMPLOYEE table.

 This example creates a table called EMPLOYEE, which has 14 columns, by a

creator with the ID JOHN. The table uses the column EMPNO as the primary key,

and the column WORKDEPT as a foreign key called EMPFKEY, which references

WORKDEPT in the DEPARTMENT table. The delete rule is SET NULL, and the

table resides in the “PUBLIC”.SAMPLE dbspace.

Naming Tables

A table name can be up to 18 characters long (18 bytes). Table names that are not

explicitly qualified by the creator name in the CREATE TABLE statement are

qualified by the database manager. For example, assume that a user with an ID of

SMITH is entering SQL statements interactively. If SMITH creates a table named

ABC, with no qualifier, the table name becomes SMITH.ABC. SMITH can own only

one table, view, or synonym called ABC. A different user ID, JONES, can create

another table, view, or synonym called ABC, which will become JONES.ABC.

 CREATE TABLE JOHN.EMPLOYEE

 (EMPNO CHAR(6) NOT NULL,

 FIRSTNME VARCHAR(12) NOT NULL,

 MIDINIT CHAR(1) NOT NULL

 LASTNAME VARCHAR(15) NOT NULL,

 WORKDEPT CHAR(3),

 PHONENO CHAR(4),

 HIREDATE DATE,

 JOB CHAR(8),

 EDLEVEL SMALLINT NOT NULL,

 SEX CHAR(2),

 BIRTHDATE DATE,

 SALARY DECIMAL(9,2),

 BONUS DECIMAL(9,2),

 COMM DECIMAL(9,2),

 PRIMARY KEY (EMPNO),

 FOREIGN KEY EMPFKEY (WORKDEPT)

 REFERENCES DEPARTMENT ON DELETE SET NULL)

 IN PUBLIC.SAMPLE

Figure 17. Example of CREATE TABLE. A foreign key cannot be defined unless the

corresponding primary key already exists.

28 Database Administration

If the DBCS option is enabled, you can use DBCS characters in table names (the

18-byte length restriction still applies). Enabling the DBCS option is discussed in

the DB2 Server for VM System Administration and DB2 Server for VSE System

Administration manuals.

Choosing Columns

You implement your database design primarily by choosing the columns that make

up each table. Almost inevitably, there is some conflict between the theoretical

design and the most practical implementation, as described in the following

sections.

Considerations for Normalization

In “Step 7: Normalize Your Tables” on page 9 normalization was discussed only

from the viewpoint of logical database design, without considering performance.

Consider the example there of the column that contains the addresses of

warehouses. The column is first shown as part of a table that contains information

about parts and warehouses; then, to further normalize the design, it is removed

from that table and defined as part of a table that contains information only about

warehouses. The other possible design (in which the column is part of both tables)

was not considered.

Some applications might require information about both parts and warehouses,

including the addresses of warehouses. With normalization, information can be

retrieved by joining tables. The problem is that a join operation can be very

time-consuming, even for only two tables, and as the number of tables increases

the access costs can increase enormously, depending on the size of the tables and

the available indexes. If indexes are not available, the join of many large tables can

take hours. Furthermore, the number of tables that can be joined is at most 15 and,

depending on the complexity of the statement, can be significantly less. Thus, an

unnormalized design may be absolutely necessary.

Consider making both tables have a column that contains the addresses of

warehouses. If this design makes join operations unnecessary, it could be a

worthwhile redundancy. Warehouse addresses do not change often, and if one does

change, DB2 Server for VSE & VM makes it easy to update all occurrences.

Considerations for Row Size

Rows are stored within pages. A single row cannot occupy more than one page,

and you cannot create a table with a maximum row size that is greater than the

page size. One exception is that columns of type LONG VARCHAR or LONG

VARGRAPHIC can be longer than one page; therefore, the rows that contain them

can occupy more than one page. There is no other absolute limit, but if you ignore

row size in favor of implementing a good theoretical design, you may waste

storage.

Row Length—Fixed or Varying: Table rows may be of fixed or varying lengths.

Two considerations apply:

v The presence of any columns with varying-length data types will result in a

varying-length row.

v If the rightmost columns of the row are defined as allowing nulls, and if no

values for those columns are supplied when a row is inserted, storage is not

allocated for those columns. If those columns in the inserted row are

subsequently updated, the row length will be increased to accommodate the

non-null column values.

Chapter 2. Implementing Your Design 29

The disadvantage of varying-length rows is that if the row length is increased, the

row may have to be repositioned. If the row is repositioned and there is not

enough free space on the current page to accommodate the row, then the row will

be moved to another page. In this case, whenever that moved row is accessed, an

additional page reference is required.

Row Lengths and Pages: Along with the bytes of actual data, each row has:

v A 6-byte prefix

v A 2-byte slot for each row stored in the page

v 1 additional byte for each column that may contain null values

v 1 additional byte for each varying-length column.

In addition, every data page has a 16-byte header.

This overhead affects the amount of data that can be stored on each page in your

dbspace. In designing your table, consider your design needs while looking for

ways to store your data as efficiently as possible.

Some Space-Wasting Designs: Space is wasted in a dbspace if all its rows are

slightly longer than half a page, because then only one row can fit in each page. If

you can reduce the row lengths to just under half a page, you will need only half

as many pages. Similar considerations apply to rows that are just over a third of a

page, a quarter of a page, and so on.

It is particularly important to minimize the number of pages in a dbspace because

if an index is not used, the database manager will read every active page of the

dbspace.

For example, suppose you design a table to hold a large array of floating-point

numbers. If you define each column as FLOAT and use the maximum number of

columns (255), the row length is 2048 and only one row fits on each page. If you

use 240 columns, two rows could fit on each page, and a page would contain 480

floating-point numbers, rather than only 255.

Specifying Columns

A column contains all occurrences of one of the entities in a table. (You can think

of it as a field in a row.) In Figure 17 on page 28, the lines immediately following

the table name contain the names of the columns within the table. In the sample

EMPLOYEE table, the HIREDATE column contains all the hire dates for all

employees represented by EMPNO. You cannot redefine or overlap columns and,

after you have implemented the design of your database, you usually cannot

change a column definition without disrupting applications. Therefore, consider

carefully the decisions you make about column definitions. (However, you can add

columns to an existing table. See “Altering the Design of a Table” on page 64.)

For each column, you must specify a name and a data type.

For each column, you may specify:

v A length (of values in the column, not the number of values) and whether null

values are permitted. For a column containing character data, you can also

specify the subtype. For further information, refer to “Specifying SBCS, Mixed,

or Bit Subtypes” on page 34.

v A CCSID for a column with character or graphic data, if you want to override

the default CCSID. For further information, refer to “Specifying a CCSID” on

page 35.

30 Database Administration

v Whether you plan to run a user-written exit routine whenever a program enters

or retrieves data in the column. This type of routine, called a field procedure, can

be used, for example, to alter the sorting sequence of values entered in the

column. Field procedures are assigned to specific columns when the table is

created or altered. For further information on field procedures, see “Specifying a

FIELDPROC” on page 35.

Column Names

Column names must be unique within a table, but you can use the same name in

different tables. The maximum length is 18 bytes.

If the DBCS option is enabled, you can use DBCS characters in the column names.

See the DB2 Server for VM System Administration or DB2 Server for VSE System

Administration manual.

Nulls

As mentioned under “Step 3: Provide Column Definitions for Tables” on page 4,

some columns cannot have a meaningful value in every row.

A special value indicator, called the null value, represents an unknown or missing

value. It should not be confused with a zero value, a blank, or an empty string: it

is a special value interpreted by the database manager to mean that no data has

been supplied.

Unless you specify otherwise, any column you define can contain null values, and

rows can be created in the table without providing a value for the column. Avoid

using nulls for columns that will be used as indexes. To disallow null values, use

the NOT NULL clause, and provide a non-null value for that column whenever

you store data. Columns that will be referenced in a primary key or unique

constraint must be defined as NOT NULL.

If you add a column to an existing table, it contains no data and so cannot be

defined as NOT NULL.

In the example in Figure 17 on page 28, nulls are acceptable for certain columns

and prohibited for others.

Before you decide whether to allow nulls for unknown values in a column, be

aware of how nulls can affect the result of a query.

v Nulls in predicates

Nulls do not satisfy any condition in an SQL statement other than the special

NULL predicate. Null values do not act like other values. For instance, if you try

to determine whether a null value is larger or smaller than a given known value,

you get an answer of UNKNOWN.

v Nulls in quantified predicates

If either the left side or the subselect list of a quantified predicate is null, the

quantified predicate is residual. Residual predicates require more processing

because of the communication between the Relational Data System (RDS) and

the Database Storage Subsystem (DBSS). Predicate processing is described in the

DB2 Server for VSE & VM Performance Tuning Handbook manual.

v Nulls with Field Procedures

If you allow nulls in a column with a field procedure, that field procedure is not

invoked when you access a null value: the database manager returns the null

value.

Chapter 2. Implementing Your Design 31

Specifying Data Types

You must give a data type for each column of a table, to specify the type of data

the column will contain and the length of the data field.

The first thing you must decide when defining a column is what kind of data the

column will contain—string, numeric, or date/time. The decision is often obvious

because only a string column can contain letters or special characters. If the data

consists solely of digits, however, you have to decide whether to specify it as string

or numeric data. And if the values represent dates, times, or timestamps, you will

want to consider the data types DATE, TIME, and TIMESTAMP.

Numeric Data Types

The data types for numbers are shown in Table 6.

 Table 6. Numeric Data Types

Data Type Denotes a column of...

SMALLINT Small integers. A small integer is an IBM

System/370* halfword signed binary

integer of 16 bits; the range is -32,768 to

+32,767.

INTEGER or INT Large integers. A large integer is an IBM

System/370 fullword signed binary

integer of 32 bits; the range is

-2,147,483,648 to +2,147,483,647.

REAL or FLOAT(n) Single precision floating-point numbers.

n must be in the range 1 through 21.

There is no default; if you omit n when

declaring a data type of FLOAT, the

column has double precision. A single

precision floating-point number is an

IBM System/370 short floating-point

number of 32 bits.

FLOAT, FLOAT(n), or DOUBLE PRECISION Double precision floating-point

numbers. n must be in the range 22

through 53; its default is 53. A double

precision floating-point number is an

IBM System/370 long floating-point

number of 64 bits. The range of

magnitudes for floating-point numbers

of either type is approximately ±5.4E-79

to ±7.2E+75.

DECIMAL(p,s), DEC(p,s) or NUMERIC (p,s) IBM System/370 packed decimal

numbers with precision p and scale s.

The precision p, which is the total

number of digits, must be greater than 0

and less than 32. The scale s, which is

the number of digits in the fractional

part of the number, must be greater than

or equal to 0 and less than or equal to

the precision. s may be omitted; its

default is 0. And if s is omitted, p may

also be omitted; its default is 5. The

range of decimal values is 31 digits, and

these values can be positive or negative.

NUMERIC and DEC are synonymous

with DECIMAL.

32 Database Administration

For integer values, SMALLINT or INTEGER (depending on the range of the

values) are preferable to DECIMAL or FLOAT.

For real numbers with a small precision and scale, DECIMAL is preferable to

FLOAT.

For numeric data, use numeric rather than string columns for the following

reasons:

v They require less space.

v They permit arithmetic operations.

v They are accessed more efficiently. For example, if numbers are represented as

strings, when the database manager calculates a range, the optimizer takes into

consideration all possible bit patterns and cannot calculate an appropriate filter

factor. Because of this, a much higher number of rows is returned. For further

information on filter factors, refer to the DB2 Server for VSE & VM Performance

Tuning Handbook manual.

String Data Types

The data types for strings are shown in Table 7.

 Table 7. String Data Types

Data Type Denotes a column of...

CHAR(n) or CHARACTER(n) Fixed-length character strings with a

length of n bytes. n must be greater than

0 and less than 255.

VARCHAR(n) Varying-length character strings with a

maximum length of n bytes. n must be

greater than 0. If n is greater than 254,

certain restrictions apply to the use of

the columns in SQL statements. The

upper limit on the value of n is 16,383.

LONG VARCHAR Varying-length character strings with a

maximum length of 32,767 bytes. The

restrictions that apply to VARCHAR

columns where n>254 also apply to

LONG VARCHAR columns.

GRAPHIC(n) Fixed-length graphic strings containing

n double-byte characters. n must be

greater than 0 and less than 128.

VARGRAPHIC(n) Varying-length graphic strings. The

maximum length, n, must be greater

than 0. If n is greater than 127, certain

restrictions apply to the use of the

column in SQL statements. The upper

limit on the value of n is 16,383.

LONG VARGRAPHIC Varying length graphic strings with a

maximum length of 16,383 bytes. The

restrictions that apply to the use of a

VARGRAPHIC column where n>127

also apply to a LONG VARGRAPHIC

column.

Chapter 2. Implementing Your Design 33

If you want to use a field procedure with a column, the column must have a short

string data type. You can also use string columns to specify binary (bit) data or

character data for exchange with other application servers.

Choosing Fixed-Length or Varying-Length Data Types: VARCHAR saves DASD

space. The saving is at the cost of a 1-byte overhead for each value and the

additional processing required for varying-length rows. Thus, CHAR is preferable

to VARCHAR, unless the space saved by the use of VARCHAR is significant. The

saving is not significant if the maximum length is small or the lengths of the

values do not have a significant variation.

If you use VARCHAR, do not specify a maximum length greater than necessary. In

particular, note the restrictions on columns of strings longer than 254 bytes; for

example, they cannot be indexed.

The database manager will not use index-only access to retrieve the data if the

index is created on a VARCHAR column. For information on index-only access,

refer to the DB2 Server for VSE & VM Performance Tuning Handbook manual.

Do not use LONG VARCHAR unless you really want the maximum row length to

be as large as possible, because there is a higher cost associated with accessing

long fields.

In most cases, the content of the data intended for a column dictates the data type

you choose. For example, the data type selected for the department name

(DEPTNAME) of the DEPARTMENT table is VARCHAR(36). Because department

names normally vary considerably in length, the choice of a varying-length data

type seems appropriate. Choosing a data type of CHAR(36), for example, would

result in much wasted space, because all department names, regardless of their

length, would be assigned the same amount of space (36 bytes).

The foregoing considerations about CHAR, VARCHAR, and LONG VARCHAR

columns apply in the same way to GRAPHIC, VARGRAPHIC, and LONG

VARGRAPHIC columns. The one exception is that the length (n) of a GRAPHIC or

VARGRAPHIC column is given as a number of double-byte characters; hence, the

length in bytes is twice n.

Specifying SBCS, Mixed, or Bit Subtypes: The use of subtypes applies only to

character data such as CHAR, VARCHAR, and LONG VARCHAR. A default

subtype for character columns is set at installation time. You can override this

default for any column in a table when the table is created (or when a column is

added to an existing table).

Choose the SBCS subtype when the data in the column is single-byte character

data and the default is not.

Choosing FOR MIXED DATA lets you store (and to have the column flagged as

storing) both single- and double-byte characters. The database manager ensures the

integrity of valid mixed data during truncation.

For columns that contain binary data that should not be modified when moved

between different environments (such as from ASCII to EBCDIC), specify FOR BIT

DATA.

Note: When specifying a subtype, you are also implicitly specifying the CCSID for

the subtype.

34 Database Administration

Specifying a CCSID: Default CCSID values for character and graphic data are

specified during installation. To override the CCSID used for a column containing

any of these data types, specify one of your own.

Each CCSID is associated with either graphic data or a specific subtype of

character data. Query the SYSTEM.SYSCCSIDS system catalog table to determine

the CCSID values for each of these.

If you compare data from two columns or move data between two columns having

different CCSIDs, and if a conversion selection table exists, the data in one of the

columns is converted to ensure a consistent comparison. Query the

SYSTEM.SYSSTRINGS catalog table for a list of valid conversion selection tables.

(In VM you can also look at the ARISSTR MACRO on the production minidisk for

a list of valid conversion selection tables.) Consider your users’ environments and

needs when specifying a CCSID for a particular column. When you override the

default CCSID for a column of data, you can minimize the amount of converting

done on tables that are accessed primarily by users requiring different CCSIDs.

Note: Converting from one CCSID to another, then another, and then returning to

the original CCSID, can result in the misinterpretation of data if there is not

a one-to-one correspondence between the two sets of characters.

See the DB2 Server for VM System Administration or DB2 Server for VSE System

Administration manual for more information about specifying CCSIDs.

Specifying a FIELDPROC: A field procedure (FIELDPROC) is a user-written exit

routine used to encode and decode values in a character string. Field procedures

can only be used on short character strings (CHAR, VARCHAR, GRAPHIC, and

VARGRAPHIC).

A field procedure can be used to alter the sorting sequences of a short character

string column. It is assigned to a column during execution of the CREATE TABLE

or ALTER TABLE statement, and is called whenever values in the column are

changed, inserted, or retrieved. To specify that a column use a field procedure, use

the FIELDPROC option followed by the program name of the procedure and,

optionally, a list of parameters.

For example, to specify a field procedure for the column LASTNAME of the

EMPLOYEE sample table, change one line of Figure 17 on page 28 to look like this:

 LASTNAME VARCHAR(15) NOT NULL FIELDPROC MYPROG (4, 3, 7),

In the example, the name of the field procedure is chosen as MYPROG. The

parameters 4, 3, and 7 are passed to the procedure when it is invoked by the

CREATE TABLE or ALTER TABLE statement.

For more information about field procedures, see the DB2 Server for VM System

Administration or DB2 Server for VSE System Administration manual.

Data Types for Dates, Times, and Timestamps

The data types for dates, times, and timestamps are shown in Table 8.

 Table 8. Date, Time, and Timestamp Data Types

Data Type Denotes a column of...

DATE Dates. A date is a three-part value representing a year, month, and

day in the range 0001-01-01 to 9999-12-31.

Chapter 2. Implementing Your Design 35

Table 8. Date, Time, and Timestamp Data Types (continued)

Data Type Denotes a column of...

TIME Times. A time is a three-part value representing a time of day in

hours, minutes, and seconds, in the range 00.00.00 to 24.00.00.

TIMESTAMP Timestamps. A timestamp is a seven-part value representing a date

and time by year, month, day, hour, minute, second, and

microsecond, in the range 0001-01-01-00.00.00.000000 to

9999-12-31-24.00.00.000000.

For a detailed description of Date/Time characteristics, see the DB2 Server for VSE

& VM SQL Reference manual.

Advantages of Date/Time Data Types

Numbers representing dates and times can, of course, be stored in columns with

numeric data types; if they include special characters as separators, they can be

stored in string columns. But neither of these options provides the advantages of

the DATE, TIME, and TIMESTAMP data types, as described below.

Variable Input and Output Format: Date/time values are stored in a special

internal format, which is freely convertible on output or input to or from any of

the formats in Table 9.

 Table 9. Date Formats

Format Name Abbreviation Typical Date Typical Time

International Standards Organization ISO 1992-12-25 13.30.05

IBM USA standard USA 12/25/1992 1:30 PM

IBM European standard EUR 25.12.1992 13.30.05

Japanese Industrial Standard (Christian

Era)

JIS 1992-12-25 13:30:05

You also have the option of supplying an exit routine to make conversions to and

from any local standard. For instructions about writing and using a date or time

exit routine, see the DB2 Server for VM System Administration or DB2 Server for VSE

System Administration manual.

When loading date or time values from an outside source, the database manager

accepts any of these formats, and convert valid input values to the internal format.

For retrieval, there is a default format that you select at the time of installation.

You can change the default at any time by updating the SYSOPTIONS catalog; you

can override it for every statement in a program by a precompiler option, or for

particular instances by the CHAR scalar function. For example, whatever your

local default, the following statement displays employees’ birth dates in IBM USA

standard form:

 SELECT EMPNO, CHAR(BIRTHDATE, USA) FROM EMPLOYEE

Date/Time Arithmetic and Durations

Date/time arithmetic involves intervals of time that are represented by numbers

called durations. A duration is an interpretation of a number, not a data type.

A labeled duration is any number of years, months, days, hours, minutes, seconds,

or microseconds. A date duration is a number of years, months, and days. A time

duration is a number of hours, minutes, or seconds. A timestamp duration is a

36 Database Administration

number of years, months, days, hours, minutes, seconds, and microseconds. For a

further discussion of durations, see “Date/Time Arithmetic” on page 180, or the

DB2 Server for VSE & VM SQL Reference manual.

The only arithmetic operators that can be applied to date/time values are addition

and subtraction. If a date/time value is the operand of addition, the other operand

must be a duration.

For example, the following statement lists employees who have been hired after

the age of 40:

 SELECT * FROM EMPLOYEE

 WHERE HIREDATE > BIRTHDATE + 40 YEARS

This statement lists employees who have been hired in the last 3 months:

 SELECT * FROM EMPLOYEE

 WHERE HIREDATE > CURRENT DATE - 3 MONTHS

Date/Time Functions: There are functions to extract the years, months, days,

hours, minutes, seconds, and microseconds of dates, times, and timestamps. For

example, this statement lists all employees who have a service anniversary on June

21:

 SELECT * FROM EMPLOYEE

 WHERE MONTH(HIREDATE) = 6 AND DAY(HIREDATE) = 21

There are also functions to convert dates, times, and timestamps to character or

integer representations.

String Representations of Date/Time Values: In the following example,

07/28/1971 is interpreted as a date because it is compared to a date; in other

contexts (a SELECT list, for example) 07/28/1971 is merely a character string.

 SELECT * FROM EMPLOYEE

 WHERE HIREDATE = ’07/28/1971’

Date/Time Comparisons: All comparison operators are allowed. The statement

below lists all employees hired after October 31, 1979. To show another of the

recognized date formats, we have arbitrarily chosen to write the date in the IBM

European standard.

 SELECT * FROM EMPLOYEE

 WHERE HIREDATE > ’31.10.1979’

Comparing Data Types

You can compare values of different types and lengths provided that both values

are numeric, both are character strings, or both are graphic strings.

Date and time comparisons cannot be made with values of different types: a date

can be compared only with a date, a time with a time, and a timestamp with a

timestamp (or, in each case, with a valid string representation of a date, time, or

timestamp).

If a column uses a field procedure, values to be compared to it are first encoded by

the field procedure. If a column with a field procedure is compared to another

column, both columns must have the same field procedure and data type.

Columns do not have to have the same CCSID to be compared. When two

columns with differing CCSIDs are compared, and a conversion selection table

Chapter 2. Implementing Your Design 37

exists, the data in one of the columns is converted to ensure a consistent

comparison. For further information, refer to the DB2 Server for VSE & VM SQL

Reference manual.

Specifying a PRIMARY KEY

The primary key of a table, if one has been created, consists of one or more

columns that uniquely identify each row in the table. In the example in Figure 17

on page 28, the employee number is the primary key of the employee table, and

the PRIMARY KEY clause identifies the column of employee numbers (EMPNO).

A table that is to be a parent of dependent tables must have a primary key—the

foreign keys of the dependent tables refer to it. Otherwise, a primary key is

optional. If you are defining referential constraints, read “Considerations for

Referential Integrity when Creating Tables” on page 39 before creating or altering

any of the tables involved.

If you specify a primary key, a unique index is automatically defined on the same

set of columns, in the same order as those columns. The primary key values must

then be unique and cannot be null. Their uniqueness cannot depend upon trailing

blanks in columns containing VARCHAR or VARGRAPHIC data. Automatic

enforcement of these restrictions can be useful even if the table is not involved in

referential constraints. If each row of your table does relate to a unique occurrence

of some entity, then consider creating a primary key.

If the primary key is created on a VARCHAR or VARGRAPHIC column,

index-only access is not used to retrieve the data. For information on index-only

access, refer to the DB2 Server for VSE & VM Performance Tuning Handbook manual.

Specifying a UNIQUE Constraint

The unique constraints on a table ensure the uniqueness of values in columns

making up each constraint. Although functionally similar to a unique index, a

unique constraint can be defined when the table is created, deactivated, and then

reactivated to enforce the uniqueness of values in its key. This simplifies

administration when you load data or perform operations that could temporarily

violate the unique constraint. For this reason, unique constraints are preferable to

unique indexes, which must be individually and explicitly dropped and recreated

to suspend or enforce uniqueness.

A unique constraint is also similar to a primary key in that:

v It consists of one or more columns

v The columns are not nullable

v The database manager enforces uniqueness by creating a unique index.

It differs from a primary key in that:

v It cannot be referenced by a foreign key

v You can define more than one on any table

v It can be given a name.

Considerations in Defining Unique Constraints

v The columns in a unique constraint cannot allow null values.

v You cannot duplicate a unique constraint on a table.

v The columns of a unique constraint should not be the same as columns in a

primary key. The converse is also true.

38 Database Administration

v A unique constraint can be added after the table is created through the ALTER

TABLE statement.

v Like primary keys and unique indexes, the uniqueness of values in a unique

constraint cannot depend upon trailing blanks in columns with VARCHAR or

VARGRAPHIC data.

Considerations for Referential Integrity when Creating Tables

For any table, you can define one primary key using the primary key clause, and

any number of foreign keys using the referential constraint clauses. In a referential

constraint, the table that has the foreign key definition is the dependent table and

the table that is referenced by the foreign key is the parent.

The constraint-name identifies the key being specified. It is optional. The database

manager generates a constraint-name if one is not provided; however, you should

create your own for foreign keys. Constraint-names should be symbolic and

indicate the parent and foreign key names, which will make working with the keys

much easier. Working with keys is discussed in “Altering Referential and Unique

Constraints” on page 65.

A referential constraint is defined by creating or altering tables to have a

parent/dependent relationship between them. A referential constraint can span

dbspaces. A referential structure is a set of tables that are related to each other by

referential constraints. A dbspace may have more than one referential structure but

that is generally not desirable.

Primary Key Index

When a primary key is defined, a unique index is created automatically to enforce

its uniqueness. If you have not specified information such as index order and

percent free space on the key definition, the index is created using default values.

When a primary key is defined by the CREATE TABLE statement, the

CLUSTERING index is the one associated with the primary key. If you want to

have this index on columns other than those comprising the primary key, create

the table without a primary key, then create an index on the desired columns, and

then use the ALTER TABLE statement to add the primary key.

If the primary key is dropped, either implicitly (when the table or dbspace is

dropped) or explicitly (with the ALTER TABLE statement), the system-generated

index is automatically dropped. You cannot use the DROP INDEX statement to

explicitly drop an index that was created to support a primary key.

Use the ALTER TABLE ACTIVATE PRIMARY KEY statement to reorganize the

primary key index if the primary key is active, or to recreate the index if the

primary key is inactive. For more information about this statement, see “Altering

the Design of a Table” on page 64.

Usage Notes:

v The primary key columns must not allow null values, and the primary key

clause must not be used more than once.

v Corresponding columns in primary and foreign keys of the same referential

constraint must have the same data type.

v The columns in a key must exist in the table, and may not be used more than

once.

Chapter 2. Implementing Your Design 39

v If the same referential constraint is defined more than once, a warning is issued,

and a new foreign key is added.

v The parent table referenced by a foreign key must already exist. It must not be a

view, and it must have an active primary key.

v The delete rule, if specified, must be one of RESTRICT, SET NULL, or

CASCADE.

v IF SET NULL is used, at least one foreign key column must be nullable.

v When defining foreign keys, you must have REFERENCES privilege on the

parent table and ALTER privilege on the dependent table.

v When defining referential constraints, if a primary key has a field procedure,

then the foreign key must have the same field procedure.

Restrictions on Keys and Referential Constraints::

v Keys cannot be added to or dropped from the system catalog tables, and a

system catalog cannot be referenced in any referential constraint.

v No table in a referential cycle with two or more tables may be delete-connected

to itself. This ensures that the result of a delete from a table does not depend

upon the sequence when the database manager accesses the table. In a

referential cycle of two tables, neither delete rule can be CASCADE. For a

referential cycle of more than two tables, two or more delete rules must not be

CASCADE.

A table is delete-connected to another table if deletion of rows from one table

affects the other table. The implications are:

– A dependent table is always delete-connected to its parents, whatever the

delete rule is.

– A descendent table is delete-connected to a table higher than it in the

hierarchy if a delete of rows in the higher-level table can cause a delete of

rows in the descendent’s parent table.

v For a descendent table to be delete-connected to the same higher-level table

through more than one path, all delete rules on each path must be CASCADE,

except possibly the delete rule between the descendent and its immediate parent

on each path. The delete rules of the descendent with its parent table on each

path must be the same and must not be SET NULL. This ensures that the order

in which the delete rules are applied has no effect on the result of an operation.

For further information on tables that are delete-connected through multiple

paths, refer to the DB2 Server for VSE & VM SQL Reference manual.

v Self-referencing tables are not supported.

For further information on referential integrity, refer to “Elements of Referential

Integrity” on page 6.

Integrity Rules for DELETE: There are no rules for the deletion of rows from

dependent tables. The deletion rule specified in the referential constraint clause

defines what action should be taken by the database manager when a row in the

parent table is to be deleted. See “DELETE Rules” on page 7.

Integrity Rules for INSERT: Insert rules always apply when primary and foreign

keys are defined. See “INSERT Rules” on page 8.

Integrity Rules for UPDATE: Update rules always apply when primary and

foreign keys are defined. See “UPDATE Rules” on page 8.

40 Database Administration

Note: If a table is a parent in one relationship and a dependent in another,

integrity rules for DELETE, INSERT, or UPDATE must be satisfied for both

relationships.

To determine the delete rule of an existing foreign key, access the SYSKEYS catalog

table as follows:

 SELECT KEYTYPE, KEYNAME, DELETERULE FROM SYSTEM.SYSKEYS

 WHERE TNAME=’table-name’

Placing Tables in Dbspaces

When creating a table, you can specify the dbspace in which it is to reside. If you

do not, it is put in the creator’s PRIVATE dbspace. If the creator does not have a

PRIVATE dbspace, then the CREATE TABLE statement fails.

If you specify the name of the dbspace but not the name of the owner, the

database manager searches for a PRIVATE dbspace of the specified name that is

owned by the creator of the table. If this does not exist, the database manager then

looks for a PUBLIC dbspace with the specified name. If that does not exist, then

the CREATE TABLE statement fails. Refer to the DB2 Server for VSE & VM SQL

Reference manual for more information about the CREATE TABLE statement.

Table placement under the various possible default conditions is illustrated in

Figure 18.

 Notes for Figure 18:

v A user with DBA authority can create tables for any user in any dbspace.

v Users with RESOURCE authority can create tables for themselves only, and then

only in their own dbspaces or in any PUBLIC dbspaces.

Connected Table Dbspace Result of the

User Is Specified Specified Create Table

DBA named DD CC.TT BB.XX CC.TT in BB.XX

CC.TT PUBLIC.XX CC.TT in PUBLIC.XX

CC.TT XX CC.TT in CC.XX

or PUBLIC.XX

CC.TT none CC.TT in CC.ZZ

TT BB.XX DD.TT in BB.XX

TT PUBLIC.XX DD.TT in PUBLIC.XX

TT XX DD.TT in DD.XX

or PUBLIC.XX

TT none DD.TT in DD.YY

RR with RESOURCE CC.TT BB.XX ERROR

AUTHORITY CC.TT PUBLIC.XX ERROR

CC.TT XX ERROR

CC.TT none ERROR

TT BB.XX ERROR

TT PUBLIC.XX RR.TT in PUBLIC.XX

TT XX RR.TT in RR.XX

or PUBLIC.XX

TT none RR.TT in RR.SS

Figure 18. Default Placement of Tables in Dbspaces

Chapter 2. Implementing Your Design 41

v If the dbspace name is specified but not qualified (just XX), the database

manager first looks for a PRIVATE dbspace owned by the creator. If this is not

found, then the database manager looks for PUBLIC.XX.

v If the dbspace is defaulted, the required default PRIVATE DBSPACE (CC.ZZ,

DD.YY, or RR.SS) must exist.

v If you omit the dbspace name, the database manager will not select a dbspace

that resides in a nonrecoverable storage pool. If you want to create a table in a

nonrecoverable dbspace, you must specify the dbspace name.

You can easily avoid confusion by fully qualifying both the table name and the

dbspace name.

Creating Views

Some of your users may find that no single table contains all the data they need;

rather, the data might be scattered among several tables. Or one table might

contain more data than they want to see or are authorized to see. For those

situations, you can create views. A view is an alternative way of describing data

that exists in one or more tables.

You can create a view any time after creating the underlying tables. The owner of a

set of tables implicitly has the authority to create a view on them, and someone

with DBA authority can create a view for any owner on any set of tables.

Use the CREATE VIEW statement to define a view and give it a name. Unless you

specifically list different column names after the view name, the column names of

the view will be the same as those of the underlying table. (Table 11 on page 44

shows an example of this.) When creating different column names for your view,

remember the naming conventions you established when designing the database.

As Table 11 on page 44 illustrates, the information in the view is described by a

SELECT statement. This statement can name other views as well as tables, and can

use WHERE, WITH CHECK OPTION, GROUP BY, and HAVING clauses. It cannot

use ORDER BY, name a host variable, or contain the UNION operator.

By specifying a WHERE clause in the subquery of a view definition, you can limit

the rows addressed through a view. If an application (or user) deals with a specific

set of rows in a table, you can create a view to limit the rows addressed to only

those required. If a view is created using the WHERE and WITH CHECK OPTION

clauses, all subsequent UPDATEs and INSERTs will prevent changes to rows that

fall outside the set of rows defined by the view. Refer to the DB2 Server for VSE &

VM SQL Reference manual for more information about creating views.

Reasons for Using Views

Some reasons you might want to use views are:

v To provide a customized table for a specific user

Some tables may have a large number of columns, not all of which are of

interest to all users or are named or ordered appropriately. You can, in effect,

create a smaller table for certain users by defining a view that contains only the

columns of interest. You can rename columns and reorder the column sequence

to tailor the view to the user’s needs.

v To limit access to certain kinds of data

You can create a view containing only selected columns and rows from a table

or tables. Users with the SELECT privilege on the view see only the information

42 Database Administration

you describe. For example, a view could be defined that showed only the

FIRSTNME, LASTNAME, WORKDEPT, and EDLEVEL columns for employees

in Department D11.

v To alter tables without affecting application programs

For example, a program that uses an INSERT into T1 without a specified list of

column names will cause an error after you add a column to table T1. The error

is generated because the number of values being inserted into the table is

different than the number of columns in the table. If T1 is a view, you will be

protected from that error because adding a column to the table does not affect

the view definition and, therefore, does not affect the program.

Creating a View on a Table

The example below illustrates creating a view on a single table, the DEPARTMENT

table. Of the four columns in the table, only three are required for the view:

DEPTNO, DEPTNAME, and MGRNO. The order of the columns in the SELECT

clause is the order in which they appear in the view.

 CREATE VIEW VDEPT3 AS

 SELECT DEPTNO,DEPTNAME,MGRNO

 FROM DEPARTMENT

In this example, no column list follows the view name, VDEPT3. Hence, the

columns of the view have the same names as those of the table on which it is

based (DEPTNO, DEPTNAME, MGRNO). Table 10 shows the result of executing

the following SQL statement:

 SELECT * FROM VDEPT3

 Table 10. View of a Table

DEPTNO DEPTNAME MGRNO

A00 SPIFFY COMPUTER SERVICE DIV. 000010

B01 PLANNING 000020

C01 INFORMATION CENTER 000030

D01 DEVELOPMENT CENTER ?

D11 MANUFACTURING SYSTEMS 000060

D21 ADMINISTRATION SYSTEMS 000070

E01 SUPPORT SERVICES 000050

E11 OPERATIONS 000090

E21 SOFTWARE SUPPORT 000100

Creating a View from Several Tables

Name more than one table in the FROM clause to create a view that combines

information from two or more tables. This operation is called a join, and is shown

in the following example, which includes the manager’s name (from the

EMPLOYEE table) and information from the DEPARTMENT table.

 CREATE VIEW SMITH.VDEPTM AS

 SELECT DEPTNO, MGRNO, LASTNAME, ADMRDEPT

 FROM DEPARTMENT, EMPLOYEE

 WHERE EMPLOYEE.EMPNO = DEPARTMENT.MGRNO

Table 11 on page 44 shows the result of executing the following SQL statement:

 SELECT * FROM SMITH.VDEPTM

Chapter 2. Implementing Your Design 43

Table 11. View of Two Tables

DEPTNO MGRNO LASTNAME ADMRDEPT

A00 000010 HAAS A00

B01 000020 THOMPSON A00

C01 000030 KWAN A00

D11 000060 STERN D01

D21 000070 PULASKI D01

E01 000050 GEYER A00

E11 000090 HENDERSON E01

E21 000100 SPENSER E01

Now, suppose you want to create a similar view that includes only the

departments that report administratively to Department A00. Suppose also that

you want a different set of column names. The appropriate CREATE statement is

as follows:

 CREATE VIEW SMITH.VDEPTMA00

 (DEPT, MGR, NAME, REPORTTO)

 AS

 SELECT DEPTNO, MGRNO, LASTNAME, ADMRDEPT

 FROM EMPLOYEE, DEPARTMENT

 WHERE EMPLOYEE.EMPNO = DEPARTMENT.MGRNO

 AND ADMRDEPT = ’A00’

Table 12 shows the result of executing the following SQL statement:

 SELECT * FROM SMITH.VDEPTMA00

 Table 12. View Created with New Column Names

DEPT MGR NAME REPORTTO

A00 000010 HAAS A00

B01 000020 THOMPSON A00

C01 000030 KWAN A00

E01 000050 GEYER A00

Things You Cannot Do with a View

When designing views, consider the following restrictions:

v You cannot update, insert, or delete through a view if it involves any of the

following:

– SQL column functions (SUM, MAX, MIN, AVG, COUNT)

– Elimination of duplicate rows (DISTINCT)

– Grouping (GROUP BY), or HAVING clause

– A FROM clause that uses more than one table (that is, a join).

In the above cases, you can retrieve data from the views by means of the SQL

SELECT statement, but you cannot use INSERT, UPDATE, or DELETE

statements.

v You cannot insert a row through a view if the view has a column derived from

an arithmetic or string expression, a scalar function, or a constant.

v You cannot update a column of a view that is derived from an arithmetic or

string expression, a scalar function, or a constant (for example, a column that is

defined as 1.6 x SALARY).

44 Database Administration

For more detailed information about view restrictions, see the DB2 Server for VSE

& VM SQL Reference manual.

You can make changes to a table through a view when the view does not contain

the same number of columns or the same number of rows as the table on which it

is based. Table 13 summarizes the restrictions on accessing views.

 Table 13. Restrictions on View Access

STATEMENT RESTRICTIONS

UPDATE You cannot update a view defined as the join of multiple

tables. This includes views defined on views defined as

the join of multiple tables.

You cannot update a view that is defined using

DISTINCT, GROUP BY, or column functions.

You cannot update rows of a view that is defined using

WITH CHECK OPTION, if the updated rows fall outside

the set of rows defined by the view.

You cannot update virtual columns. (A virtual column is

a column on a view that is not derived directly from a

column of a stored table. For example, view columns

defined by expressions such as MAX(SALARY),

SALARY+BONUS, or AVG(PRSTAFF) are all virtual

columns).

INSERT You cannot insert into a view defined as the join of

multiple tables. This includes views defined on views

defined as the join of multiple tables.

You cannot insert into a view that contains a column of

the underlying table which allows nulls.

You cannot insert into a view that is defined using

DISTINCT, GROUP BY, or column functions.

You cannot insert into a view that is defined using WITH

CHECK OPTION, if the inserted rows fall outside the set

of rows defined by the view.

You cannot insert into the virtual columns of a view.

DELETE You cannot delete from a view defined as the join of

multiple tables. This includes views defined on views

defined as the join of multiple tables.

You cannot delete from a view that is defined using

DISTINCT, GROUP BY, column functions.

INDEX You cannot create an index on a view.

ALTER You cannot alter a view (for example, add columns, or

keys).

DBS UNLOAD Unloading a view will sequence the unloaded rows in an

arbitrary order chosen by the database manager. Rows

may not be in sequence of any index on an underlying

table.

Chapter 2. Implementing Your Design 45

Table 13. Restrictions on View Access (continued)

STATEMENT RESTRICTIONS

DBS RELOAD RELOADing through a view will not drop and recreate

indexes on the underlying table. You must do this

yourself using SQL statements that precede and follow

the RELOAD statement.

The INSERT restrictions shown above also apply.

DBS DATALOAD, ISQL INPUT, SQL PUT The INSERT restrictions shown above also apply.

Materializing a View

When designing views, you should be aware of the view-processing techniques

used by the database manager and the circumstances in which each is used. Two

view-processing techniques are used: view merge and view materialization. This

section describes the circumstances in which a view is materialized.

When a view is referenced in an SQL statement, the view definition is merged with

the SQL statement and a new statement is created that references only base tables

and columns and that contains only added or modified WHERE predicates, and an

added or modified GROUP BY clause. The new statement is then processed. This

process is view merge. Some view-referencing statements cannot be processed using

the view merge technique. The database manager uses the view materialization

technique to process these statements.

With view materialization, a temporary table is created internally and a view (that

could not otherwise be accessed) is materialized into the table at run time. The

database manager then performs the statement on the materialized view. A

materialized view is read-only, because queries on the view are on a temporary

table. Each view that is materialized in an SQL statement is materialized in a

temporary dbspace.

Because view merge is more efficient than view materialization, view

materialization is used only if view merge cannot be used.

A view is materialized if it is created with:

v A GROUP BY or HAVING clause, and is accessed by a statement that requires

the view to be joined or that specifies column functions on the view

v Column functions, and is accessed by a statement that requires the view to be

joined

v One or more DISTINCT columns, and is accessed by a statement that requires

the view to be joined

v Multiple DISTINCT columns, and is accessed by a statement that specifies

column functions on the view

v One DISTINCT column, and is accessed by a statement that specifies multiple

column functions on the view

v A column defined with column functions, and that column is accessed by a

statement that specifies column functions

v One or more DISTINCT columns, and a DISTINCT column is accessed by a

statement that includes arithmetic expressions with column functions

v Multiple DISTINCT columns, and is accessed by a statement that does not

specify all columns in the select-list of the SELECT statement

46 Database Administration

v A column defined with built-in functions, expressions, or literals, and that

column is referenced in the GROUP BY or HAVING clause of a SELECT

statement accessing the view

v A column function with a DISTINCT specification, and is accessed by a SELECT

statement with a DISTINCT specification

v A column defined with a column function, and that column is referenced in the

WHERE clause of a statement accessing the view

v A column derived from an expression, function or constant, and that column is

accessed by a statement containing a WHERE clause with a LIKE predicate

v A virtual column, and that column is referenced in a DISTINCT column function

of statement accessing the view.

Note: If the SELECT list of the view definition statement contains a long field, the

view cannot be materialized because of long-field restrictions.

For information on determining if view materialization occurs, refer to the DB2

Server for VSE & VM Performance Tuning Handbook manual.

Creating Indexes

The purpose of nonunique indexes is to provide efficient access to data. Unique

indexes have the additional purpose of ensuring that key values are unique.

Even when present, the index is not always used: the database manager selects an

access path to the data based on a combination of factors. To see whether an index

is used in processing a particular SQL statement, use the EXPLAIN statement. For

information on using the EXPLAIN statement and on explanation tables, refer to

the DB2 Server for VSE & VM Performance Tuning Handbook manual.

Indexes can improve performance of table access; however, this is at the expense of

the DASD storage required for them, and the performance of INSERT, UPDATE,

and DELETE operations. Thus, while you will want to create indexes on your

tables, some judgement is advised. For information about the storage required by

an index, see “Estimating the Number of Index Pages” on page 235.

To create an index on a table, use the SQL CREATE INDEX statement. You must

have DBA authority or the INDEX privilege on the table. An index may be defined

on 1 to 16 columns.

Index Key

The columns identified in the CREATE INDEX statement build a key. An index key

is a column or an ordered collection of columns on which an index is defined. A

multicolumn key is a key built on two or more columns.

The usefulness of an index depends on its key. Columns that you use frequently in

performing selection, join, projection, grouping, and ordering operations are good

candidates for use as keys. See “Estimating the Number of Index Pages” on page

235 for information on calculating the size of index keys. For columns with a field

procedure, use the number of bytes in the encoded field, not the number in the

decoded column.

For information about restrictions on key length, see the description of the

CREATE INDEX statement in the DB2 Server for VSE & VM SQL Reference manual.

Chapter 2. Implementing Your Design 47

The ordering of the columns specified in the CREATE INDEX statement is

important to the definition of the key sequence. The major order determinant

columns must be specified first. For example, an index on the PROJ_ACT table,

defined over the PROJNO, ACTNO, and ACSTDATE columns sequences activity

numbers within project numbers, and estimated activity start date within activity

numbers, if the columns are specified in this order for the index.

For each column participating in the key, you can specify whether its order in the

key sequence is ascending or descending. The default is ascending. When creating

a unique index, the uniqueness of each value in the index key cannot depend upon

trailing blanks. The database manager also ignores trailing blanks when

sequencing indexes made up of VARCHAR or VARGRAPHIC values.

UNIQUE Indexes

You can enter duplicate values in a key. If you do not want duplicate values, use

CREATE UNIQUE INDEX.

For example, in the sample database, it is important that there be no duplicate

activity keywords in the ACTIVITY table. Creating a unique index, as in the

following example, prevents duplicates.

 CREATE UNIQUE INDEX XACT1

 ON ACTIVITY (ACTKWD)

The index name is XACT1 and the indexed column is ACTKWD.

If you are planning to use referential integrity or unique constraints, described in

“Creating Tables” on page 27, it may be unnecessary to explicitly create unique

indexes. When using the primary key or unique constraint clause, the database

manager automatically creates a unique index on the table. However, you may

want additional indexes for other columns and foreign keys.

The PCTFREE Clause

The PCTFREE clause specifies how much space is to be reserved for future index

entries, which allows index maintenance to take place without splitting of index

pages. Its default is 10 percent, which is a good value for most purposes. If you

expect much insert or update activity after the creation of the index, you might

want to override the default by setting PCTFREE to a higher value. If you expect

no insert or update activity after the creation of the index, you might want to

override the default by setting PCTFREE to zero.

Usually, a low PCTFREE value, 5–10 percent, is a good choice when creating an

index, as it provides enough room to accommodate a low level of maintenance. It

also provides extra room at localized key ranges where high update activity is

taking place by splitting a full index page into two half-empty pages when an

insertion or update must go into that page.

Clustering Rows of a Table on an Index

A CLUSTERING index is used by the database manager to determine placement of

rows in pages of a dbspace. The first index created on a table is, by default, the

CLUSTERING index. The database manager tries to place rows with the same or

similar keys on the same dbspace page.

A CLUSTERED index is an index whose sequence of key values corresponds closely

to the sequence in which the table rows are actually stored in the database. It can

48 Database Administration

be effectively used to minimize DASD input/output whenever the table rows are

accessed in the index sequence of a CLUSTERED index. A CLUSTERING index

should always be made a CLUSTERED index. This is done by loading the table

rows in the key sequence of the CLUSTERING index.

To establish a CLUSTERING index that also has the property of being a

CLUSTERED index, do the following:

1. Load the table in the index sequence (key sequence) of the CLUSTERING

index.

This establishes the initial clustering of rows with similar keys. For the load

operation, set PCTFREE for the dbspace to a high enough value to allow space

on pages for future clustered insertion of rows.

2. Create the indexes on the table.

After loading the table, create the indexes on the table. The first index you

create will be the CLUSTERING index. Any index having an order that matches

the load sequence of the rows will be marked as a CLUSTERED index.

The CLUSTERING index will be a CLUSTERED index because you have

loaded the table rows in the sequence of this index. In the SYSINDEXES catalog

table, the CLUSTER column value for this index is F, indicating that it is the

first index created by the table, and that it is currently a CLUSTERED index. If,

after many INSERTs of new rows into the table, the order in which the rows

are stored in the database no longer closely match the index key sequence, the

CLUSTER column value is changed to W (the next time UPDATE STATISTICS

is performed). This indicates that the index is the first index created on the

table, and it is currently not a CLUSTERED index. You can reorganize the table.

Refer to the DB2 Server for VSE & VM Performance Tuning Handbook manual for

information on reorganizing tables. The database manager will continue to use

this index to decide where new rows should be stored, because it is still the

CLUSTERING index for the table.

One or more of the other indexes created on the table may also happen to have

an index sequence that closely matches the sequence in which the table rows

are stored. Although this is fortuitous and cannot be directly controlled by the

user, the database manager will record these indexes as CLUSTERED by setting

their CLUSTER column in SYSINDEXES to C. Such indexes can be exploited as

efficient access paths by the database manager. When one of these indexes is no

longer CLUSTERED, its CLUSTER column is changed to N the next time

UPDATE STATISTICS is performed.

3. Reduce the PCTFREE value for the dbspace.

This is necessary to make the free space reserved during the load operation

available for use on normal INSERT activity. On an INSERT or ISQL INPUT,

the database manager attempts to place the inserted row on the same page as a

row with the same or similar key.

You can define the key ordering of the CLUSTERING index to be any you wish.

However, the primary considerations would be frequently used table orderings

(that is, frequently used ORDER BYs) and joins.

If you cluster a table on an index that has a key ordering that matches the most

common ORDER BY clauses for queries against the table, you can avoid internal

sorting of the query results. A related consideration is the size of an ordered query

result. Internal sorting of a small query result is not expensive. However, if you

have a large, ordered query result (for a batch job or a comprehensive report), the

internal sort could be quite time-consuming. You should consider clustering a table

to support your most frequent, large sequential access orderings.

Chapter 2. Implementing Your Design 49

If you have a table that is frequently referenced by a join on a particular column

(or set of columns), you may want to consider clustering it on an index on the join

column(s). For example, between the DEPARTMENT and EMPLOYEE tables there

are two likely join candidates (referential constraints are defined): one between the

EMPNO column in EMPLOYEE and the MGRNO column in DEPARTMENT, and

the other between the DEPTNO column in DEPARTMENT and the WORKDEPT

column in EMPLOYEE. In this case you could choose to cluster both tables on

either employee numbers or department numbers, depending on which join is

expected more frequently.

Note: You can change the clustering that you initially define for a table. Refer to

the DB2 Server for VSE & VM Performance Tuning Handbook manual for

information on reorganizing tables.

Figure 19 on page 51 illustrates both clustered and nonclustered indexes.

50 Database Administration

Some Things to Remember When Defining Keys

Column updates require index updates. Define as few indexes as possible on a

column that is updated frequently, because every change must be reflected in each

Figure 19. Clustered and Nonclustered Indexes

Chapter 2. Implementing Your Design 51

index. For more information about potential problems with indexes and

performance, refer to the DB2 Server for VSE & VM Performance Tuning Handbook

manual.

A multicolumn key may be more useful than a key on a single column when the

comparison is for equality. A single multicolumn index is more efficient when the

comparison is for equality and the initial columns are provided. For example, if an

index is composed of columns A, B, and C, a SELECT statement with a WHERE

clause of the form WHERE A = value AND B = value may be processed more

efficiently than if there are separate indexes on A and on B. Additional columns

may also improve performance by allowing index-only access scanning. Refer to

the DB2 Server for VSE & VM Performance Tuning Handbook manual for information

on index-only access scanning.

Indexes are important tools for improving performance. Suggestions for using

indexes effectively are in the DB2 Server for VSE & VM Performance Tuning

Handbook manual.

An index cannot be defined over multiple tables. Furthermore, an index key

cannot include any columns defined as long fields. Avoid using VARCHAR or

VARGRAPHIC columns in an index. Fixed-length indexes perform better than

variable-length indexes. Data pages as well as index pages must be read when

VARCHAR or VARGRAPHIC columns are included in an index. The

variable-length fields have trailing blanks removed before being put into the index.

This may result in the data page values differing from the index page values, and

necessitates that both index and data pages be read when using the index as an

access path for data retrieved.

Note: Long fields include the following data types: VARCHAR(n) with n>254,

VARGRAPHIC(n) with n>127, LONG VARCHAR, or LONG VARGRAPHIC.

General Performance Considerations on the Use of Indexes

It is good practice to create a unique index on the column or set of columns that

uniquely define each record in the table (its key). A unique index can easily be

created by specifying a primary key or a unique constraint when you create the

table. A primary key can be used as an index even if automatic referential integrity

is not being used. Using a unique constraint or primary key helps data integrity

because the database manager enforces this uniqueness.

Consider creating additional indexes on other columns based on how often you

expect the column to be used in search criteria. Once you have identified all the

desired indexes, decide which column is apt to be used most often in search

criteria. Then load the table in that column’s sequence, thus making the column’s

corresponding index a CLUSTERED index.

If the table is to have a CLUSTERING index, be sure to create that index first after

initial table loading. You should do this because the database manager tries to

place inserted records so that the physical sequence of the table’s records is the

same as the sequence defined by the first index created on that table.

It is more efficient to first load a table and then create the indexes on it, rather than

the other way around.

Usually, each table should have at least one index. Part of the decision of whether

to create an index on a specific column should be based on the trade-off between

52 Database Administration

the faster access achieved, versus the index maintenance processing that the

database manager must do whenever that column is modified. A column is an

ideal candidate for being indexed if it is likely to be a frequent search argument on

SQL statements, but not likely to be changed. Avoid creating indexes on frequently

updated columns.

Indexes can be created and dropped. If high query activity is anticipated,

temporarily create indexes on the columns that are likely access paths for those

queries.

Migration Considerations for Indexes

The SQL/DS Version 2 Release 2 product introduced a new index structure for

nonunique indexes. This format requires more space than in earlier releases, but it

allows nonunique indexes to perform almost as well as unique ones.

The new format requires more space. The number of additional bytes required for

each nonunique index in the new format is:

 4 x (number of index pages) - 4

If you are migrating from Version 2 Release 1 or earlier, some of your dbspaces

may not have room for indexes in the new format. Before deleting the old indexes,

determine if there are sufficient index pages available to create the index in the

new format. Nonunique indexes created before Version 2 Release 2 can coexist with

the new type of nonunique index, so you do not have to drop and re-create

indexes.

Note: You cannot migrate from Version 2 directly to Version 7. You must migrate

to Version 3 first and then migrate from Version 3 to Version 7.

Using the Catalog in Database Design

The catalog tables contain information that can be helpful in designing your

database. The DB2 Server for VSE & VM SQL Reference manual lists these tables and

what is stored in them.

You can also use the catalog to verify the accuracy of your database definition

process. After you have created the objects in your database, display selected

information from the catalog to check that there were no errors in your CREATE

statements, and to verify that you have the correct tables in each dbspace.

The information in the catalog is vital to normal database system operation. As the

following examples show, you can retrieve catalog information, but changing it

could have serious consequences. Thus, you cannot process INSERT or DELETE

statements against the catalog, and you can update only a few of the columns in

selected catalog tables.

To run the following examples, you need at least the SELECT privilege on the

appropriate catalog tables. Be careful with your own examples: querying the

catalog can result in a long dbspace scan.

Retrieving Catalog Information about a Table

The SYSTEM.SYSCATALOG table contains a row for each table and view in your

database. For each, it tells you whether the object is a table or view, its name, who

created it, what dbspace contains it, and other information. It also has a REMARKS

Chapter 2. Implementing Your Design 53

column in which you can store your own information about the table in question.

See “The COMMENT ON Statement” on page 55 for information about how to do

this.

Enter the following statement to display all the information for the project activity

sample table:

 SELECT *

 FROM SYSTEM.SYSCATALOG

 WHERE TNAME = ’PROJ_ACT’

 AND CREATOR = ’SQLDBA’

Retrieving Catalog Information about Columns

The SYSTEM.SYSCOLUMNS table has one row for each column of each table and

view. You can query it, for example, if you cannot remember a particular column

name.

The following statement retrieves information about columns in the sample

department table:

 SELECT CNAME, TNAME, COLTYPE, LENGTH, NULLS

 FROM SYSTEM.SYSCOLUMNS

 WHERE TNAME=’DEPARTMENT’

 AND CREATOR = ’SQLDBA’

As shown in Table 14, for each column it displays:

v The column name

v The name of the table that contains it

v Its data type

v Its length attribute

v Whether or not it allows nulls.

 Table 14. Retrieving Information about Columns from SYSCOLUMNS

CNAME TNAME COLTYPE LENGTH NULLS

DEPTNO DEPARTMENT CHAR 3 N

DEPTNAME DEPARTMENT VARCHAR 36 N

MGRNO DEPARTMENT CHAR 6 Y

ADMRDEPT DEPARTMENT CHAR 3 N

Retrieving Catalog Information about Indexes

The SYSTEM.SYSINDEXES table contains a row for each index, including indexes

on catalog tables.

The following query retrieves information about the index XEMPL2:

 SELECT *

 FROM SYSTEM.SYSINDEXES

 WHERE INAME = ’XEMPL2’

 AND ICREATOR = ’SQLDBA’

A table can have more than one index. The following query retrieves information

about all the indexes of a table:

 SELECT *

 FROM SYSTEM.SYSINDEXES

 WHERE TNAME = ’EMPLOYEE’

 AND CREATOR = ’SQLDBA’

54 Database Administration

Retrieving Catalog Information about Views

The SYSTEM.SYSVIEWS table contains a row for each view.

The following query retrieves information about the view SYSUSERLIST:

 SELECT *

 FROM SYSTEM.SYSVIEWS

 WHERE VIEWNAME = ’SYSUSERLIST’

 AND VCREATOR = ’SQLDBA’

Retrieving Catalog Information about Authorization

The following 4 tables contain information about the privileges held over tables

and views:

v SYSCOLAUTH

Contains information regarding grants of the UPDATE privilege on columns of

tables or views.

v SYSPROGAUTH

Details privileges regarding who can run packages.

v SYSTABAUTH

Contains information about the privileges held by authorization IDs and

packages on tables and views.

v SYSUSERAUTH

Records special privileges held by authorization IDs (for example, DBA,

CONNECT authority).

Only users with DBA authority can access SYSUSERAUTH. Other users can access

this information using a view called SYSUSERLIST, which contains all the columns

of SYSUSERAUTH except the PASSWORD column.

Query these tables to learn who can access data in your application server. For

example, the following query retrieves the names of all users who have been

granted access to the SQLDBA.DEPARTMENT table, as well as any views on that

table:

 SELECT GRANTEE

 FROM SYSTEM.SYSTABAUTH

 WHERE TTNAME = ’DEPARTMENT’ AND GRANTEETYPE = ’ ’

 AND TCREATOR = ’SQLDBA’

GRANTEE is the name of the column that contains authorization IDs and package

names for users of tables. TTNAME and TCREATOR specify the

SQLDBA.DEPARTMENT table. The clause GRANTEETYPE = ’ ’ ensures that you

retrieve the names only of users (not packages) that have authority to access the

table.

The COMMENT ON Statement

After you create a table or view, you can provide explanatory information about it

for future reference—for example, the purpose of the table, who uses it, and

anything unusual about it. To do this, use the COMMENT ON statement. You can

both store comments about the table or view as a whole, and include one for each

column. A comment must not exceed 254 bytes.

Comments are especially useful if your names do not clearly indicate the contents

of columns or tables.

Chapter 2. Implementing Your Design 55

Below are two examples of COMMENT ON:

 COMMENT ON TABLE SQLDBA.EMPLOYEE IS

 ’Employee table. Each row in this table represents one

 employee of the company.’

 COMMENT ON COLUMN SQLDBA.PROJECT.PRSTDATE IS

 ’Estimated project start date. The format is DATE.’

Retrieving Comments

When you process a COMMENT ON statement, your comments are stored in the

REMARKS column of SYSTEM.SYSCATALOG or SYSTEM.SYSCOLUMNS. Any

comment already present in the row is replaced by the new one. The following

queries retrieve the comments added by the two COMMENT ON statements

above:

 SELECT REMARKS

 FROM SYSTEM.SYSCATALOG

 WHERE TNAME = ’EMPLOYEE’

 AND CREATOR = ’SQLDBA’

 SELECT REMARKS

 FROM SYSTEM.SYSCOLUMNS

 WHERE CNAME = ’PRSTDATE’ AND TNAME = ’PROJECT’

 AND CREATOR = ’SQLDBA’

56 Database Administration

Chapter 3. Maintaining Your Database

The previous chapter described how to implement your database design. This

chapter deals with the various maintenance tasks you may need to perform to

maintain tables and dbspaces. The following tasks are discussed:

Maintaining Tables

v Loading information into tables

There is considerable flexibility in how data can be entered.

v Copying a table

When information is being shared, the owner of a table may choose to have

other users copy it, so that they can make changes to their own copy of the table

without affecting the original.

v Moving tables from one dbspace to another

You may want to move tables to another dbspace to:

– Improve concurrent access to tables

If a table resides in a PRIVATE dbspace and many users need to update that

table at the same time, you should move it into a PUBLIC dbspace, which

allows concurrent access.

– Recover dbspaces

You may want to move a table from a nonrecoverable dbspace to a

recoverable one, or a recoverable dbspace to a nonrecoverable one.

– Get more space for a table

The amount of information that you can store in a table depends on the size

of the dbspace it is in, and the storage requirements of the other tables there.

If a table requires more space for data or indexes, you should consider

moving it to a larger dbspace.

v Merging data from multiple tables

It may be necessary to combine all the columns or a subset of the columns from

different tables into a new table.

v Altering the design of a table

You may want to change the design of a table after it has been created: for

example, add or delete columns, change the data type of a column, or change

the name of the table.

v Altering referential constraints on a table

You may wish to add referential integrity to tables that do not have it.

v Enforcing referential constraints

You may want to enforce the referential constraints when your tables are

created, or defer enforcement until you have performed other activities.

v Moving data from one application server to another

The second application server can be a DB2 Server for VSE & VM application

server, or another application server supporting IBM’s implementation of the

Distributed Relational Database Architecture (DRDA) protocol.

v Removing tables

If tables are no longer required, you can remove them.

© Copyright IBM Corp. 1987, 2007 57

Maintaining Dbspaces

v Altering the design of a dbspace

When you created a dbspace, you specified the following parameters for it: its

potential size (in pages), its type (PUBLIC or PRIVATE), its storage pool

assignment (STORPOOL), the number of pages for its header (NHEADER), the

percentage of each page reserved for updates that cannot be placed in the

original location (PCTFREE), the number of pages reserved for indexes

(PCTINDEX), and the size of the locks (LOCK).

As requirements change, you may need to change some of these settings. You

can change the PCTFREE and LOCK parameters with the ALTER DBSPACE

statement. If any of the other parameters need to be changed, you will have to

acquire a new dbspace (which satisfies your new requirements), and move all

the tables from the old dbspace to the new one.

v Reorganizing a dbspace to free storage pool pages

As part of maintaining your dbspaces, you may have to reorganize it to release

pages back to a storage pool.

v Removing dbspaces

If a dbspace is no longer required, you can remove it and its contents by using

the DROP DBSPACE statement.

v Using VSAM (VSE only)

There are VSAM restrictions when managing storage.

Reorganizing Catalog Table Indexes

The catalog tables have indexes to improve the speed of access. Occasionally, you

should reorganize these indexes. See “Reorganizing Indexes on the Catalog Tables”

on page 77.

58 Database Administration

Maintaining Tables

After designing and creating a table, you may have to load data into it, copy it,

move it from one dbspace to another, move data in it from one application server

to another, change an aspect of its design, or remove it from the database.

Loading Data into Tables

This section reviews the possible ways to load data into tables. Many of these

methods use the Database Services Utility commands: for more information on

these commands, refer to the DB2 Server for VSE & VM Database Services Utility

manual.

Loading Data in VM Using the DBS Utility

Interactively: You can load data into tables interactively through the DBS Utility.

To do this, invoke the utility so the terminal controls file input (SYSIN). You can

then either enter multiple INSERT statements, or execute the DBS Utility

DATALOAD TABLE command using the INFILE (*) subcommand.

From a CMS File: The DBS Utility DATALOAD TABLE command will accept

input data records in a user-created CMS file. One or more tables can be loaded

during a single pass of the data records. The existing data in the tables loaded with

this method are not affected. Rows are added to a table through the PREPARE,

OPEN, PUT, and CLOSE facilities of SQL.

From a Virtual Reader File: The DBS Utility DATALOAD TABLE command will

also accept input data records in a CMS virtual reader file with no header. One or

more tables can be loaded during a single pass of the data records. The existing

data in the tables loaded with this method are not affected. Rows are added to a

table through INSERT statements executed using the PREPARE and EXECUTE

facilities of SQL.

Refer to the DB2 Server for VSE & VM Database Services Utility manual for more

information.

Loading Data Using the DBS Utility in VSE/ICCF

To load data into a table from data records entered from a terminal, as an

alternative to entering multiple INSERT statements, users can use the DBS Utility

under VSE/ICCF in conversational mode. To initiate this, enter the following

VSE/ICCF control statements:

 /LOAD ARIDBS

 /OPTION GETVIS=AUTO

 /DATA INCON

In response to the prompt to ENTER DATA, the appropriate series of SQL

statements or DBS Utility DATALOAD TABLE commands must be entered. After a

DATALOAD TABLE command the user must enter the INFILE (*) subcommand to

initiate input data record processing and the ENDDATA subcommand to end it. An

outline of the interactive terminal input is:

 CONNECT userid IDENTIFIED BY password;

 DATALOAD TABLE (table-name)

 column-name1 1-5

 column-name2 6-7

 ...
 INFILE (*)

 data record

Chapter 3. Maintaining Your Database 59

data record

 ...
 ENDDATA

These commands are described in the DB2 Server for VSE & VM Database Services

Utility manual.

Each record (row) is entered in a fixed format as defined by the column

specifications in your DATALOAD command. In this example, the user enters

column 1 data into typing positions 1–5 of the command line, column 2 data into

positions 6–7, and so on.

Do not put quotation marks around character data, and do not use commas to

separate data values. Such punctuation can be used outside the data positions of

the command line defined by the column specifications of the DATALOAD

command.

As an alternative to entering each input data record interactively, the user can

embed DBS Utility commands and data records in the VSE/ICCF control

statements. An outline of loading a table under VSE/ICCF in a nonconversational

manner is:

 /LOAD ARIDBS

 /OPTION GETVIS=AUTO

 /DATA

 CONNECT userid IDENTIFIED BY password;

 DATALOAD TABLE (table-name)

 column-name1 1-5

 column-name2 6-7

 ...
 INFILE (*)

 data record

 ...
 ENDDATA

Loading Data from a Terminal Using ISQL INPUT

The ISQL INPUT statement enables a user to enter multiple rows of data into a

table. The table name and (optionally) the column names need to be entered only

once. The column names, along with their data types, are then displayed in the

order that the data must be entered, and the user can then enter data one row at a

time.

For data that is similar, the user can use the PF12 RETRIEVE function. That is, the

user can retrieve the previous data row entered, and then type over the fields that

are different. This can save keystrokes.

Data entered with an INPUT statement is not stored in the table until the INPUT

statement is ended by an END statement. ISQL will issue an INSERT statement for

every row entered, using the PREPARE and EXECUTE facilities of SQL. However,

before the INPUT statement is ended, the data can be committed or backed out by

the statement:

 SAVE — Stores all data entered since the last SAVE statement. If no SAVE

statement has been issued, it commits all the data since the start of the INPUT

statement.

60 Database Administration

BACKOUT — Deletes all data entered since the last SAVE statement. If no

SAVE statement has been issued, it deletes all the data since the start of the

INPUT statement.

 CANCEL — Performs a BACKOUT and also ends the INPUT statement.

Remember that the AUTOCOMMIT mode affects the processing of the SAVE,

BACKOUT, and CANCEL statements. For additional information on the ISQL

INPUT, SAVE, and BACKOUT statements, refer to the DB2 Server for VSE & VM

Interactive SQL Guide and Reference manual.

Loading Data from Sequential Files in VSE

The DBS Utility DATALOAD TABLE command accepts SYSIPT data records or

data records contained in a user-created sequential file. One or more tables can be

loaded during a single pass of the data records. The existing data in the tables

loaded with this method is not affected. The DATALOAD TABLE processing adds

rows to a table through the PREPARE, OPEN, PUT, and CLOSE facilities of SQL.

Loading Data from VSAM Files

A VSAM file can be converted to either of the following:

v a sequential (SAM) file using the VSE/VSAM Access Methods Services REPRO

command

v a CMS or tape file through the VM VSE/VSAM Access Methods Services

(AMSERV command) using the REPRO control statement.

This sequential file can then be identified as the input data file to DBS Utility

DATALOAD TABLE processing.

Note: The VSAM REPRO command should never be used to copy the DB2

database itself.

Loading Data from Other Tables

Data can be copied into a table from other tables by using the following methods:

v An INSERT with Subselect statement executed through ISQL, the DBS Utility, or

a user program. An INSERT with Subselect copies one or more rows which are

selected or computed from other tables into a table.

v The execution of a DBS UNLOAD and RELOAD command series. This

technique allows data to be copied from tables in the same or different databases

but only a complete replacement of the data in the target table is possible.

v The execution of a DBS DATAUNLOAD and DATALOAD command series. This

technique allows data to be copied from tables in the same or different

application servers, and allows more selectivity than the UNLOAD/RELOAD

sequence. This is useful when you want to copy only parts of tables.

All of these techniques allow the source of the data to be copied to be identified by

a view that is defined on one or more tables. A view can be used to identify the

target table if the view definition meets the requirements defined for inserting

rows into a view.

If referential constraints are in place on tables in which you wish to load data, you

should consider whether you would like to enforce constraints while the data is

loading or after it is loaded. See “Enforcing Referential Constraints” on page 68 for

more information.

Chapter 3. Maintaining Your Database 61

Copying Tables

To make a copy of an existing table, use the DBS Utility UNLOAD and RELOAD

commands.

Example

A user with the user ID SMITH has the SELECT privilege on the

SQLDBA.EMPLOYEE table. To make a copy of this table, to be called

SMITH.EMPLOYEE, in the PRIVATE dbspace SMITHDB, enter the following

commands either in a CMS file called CONTROL DBSINPUT A or in the

appropriate job control:

 CONNECT SMITH IDENTIFIED BY SMITHPW;

 UNLOAD TABLE (SQLDBA.EMPLOYEE) OUTFILE(TEMPFIL);

 RELOAD TABLE (EMPLOYEE) NEW (SMITHDB)

 INTABLE (SQLDBA.EMPLOYEE) INFILE(TEMPFIL);

To execute these commands in VM, invoke the DBS Utility, as follows:

 FILEDEF TEMPFIL DISK MYDATA MYFILE A4 (RECFM VBS BLOCK 800

 SQLDBSU SYSIN(CONTROL DBSINPUT A) SYSPRINT(LIST DBSLIST A)

The RELOAD statement creates tables without constraints, losing all referential

constraints on the table you are copying. You must reinstate referential constraints

later with the ALTER TABLE statement. See “Altering Referential and Unique

Constraints” on page 65.

The RELOAD statement with the ’NEW’ parameter recreates the table without field

procedures. Instead of reloading the table using the ’NEW’ parameter, recreate the

table to include field procedures and reload the table using the ’PURGE’

parameter.

Moving Tables from One Dbspace to Another

To move a table from one dbspace to another, you must first unload it using the

DBS UNLOAD command, drop it from the database, then reload it into the new

dbspace. When a table is dropped, all indexes, privileges, views, primary and

foreign keys, and unique constraints for it are removed, and must be

re-established.

As well, if a table has field procedures associated with it, the table should be

dropped and recreated to include the field procedures and reloaded using the

’PURGE’ parameter.

Example

User SMITH has a table (called SMITH.MYTABLE) that he wishes to move from

the SMITH.PERSONAL dbspace to the SMITH.SECRET dbspace.

Enter the following commands in either a CMS file called CONTROL DBSINPUT

A, or inside the appropriate job control:

 CONNECT SMITH IDENTIFIED BY SMITHPW;

 UNLOAD TABLE (SMITH.MYTABLE) OUTFILE(TEMPFIL);

 DROP TABLE SMITH.MYTABLE;

 RELOAD TABLE (SMITH.MYTABLE)

 NEW (SMITH.SECRET) INFILE(TEMPFIL);

In VM you run these commands by invoking the DBS Utility, as follows:

 FILEDEF TEMPFIL DISK MYDATA MYFILE A4 (RECFM VBS BLOCK 800

 SQLDBSU SYSIN(CONTROL DBSINPUT A) SYSPRINT(LIST DBSLIST A)

62 Database Administration

Merging Data from Multiple Tables

It may be necessary to combine all columns or a subset of the columns from

different tables into a new table. You can do this through ISQL or the DBS Utility

using the following procedure:

1. Create the new table with a CREATE TABLE statement.

2. Insert rows into the new table by selecting columns from the source tables with

an INSERT with Subselect statement.

3. Execute an UPDATE STATISTICS statement against the new table.

4. Create the required indexes for the new table with CREATE INDEX statements.

5. Create the required views on the new table.

6. Grant the required authorizations on the new table and views.

7. If necessary, redefine the views on the old tables to eliminate access to the

columns merged into the new table.

To identify authorizations and views on the old tables, you can query the system

catalog with a SELECT statement entered through ISQL or the DBS Utility. The

following tables contain information pertinent to this task:

v SYSTEM.SYSUSAGE identifies the base table on which a view is defined

v SYSTEM.SYSVIEWS identifies the view definitions

v SYSTEM.SYSTABAUTH identifies the users who have privileges to access tables

and views.

Example

To identify the base tables for the view ORGANIZATION, enter the following

query:

 SELECT BNAME FROM SYSTEM.SYSUSAGE

 WHERE DNAME = ’ORGANIZATION’

To identify the view definitions, enter the following query:

 SELECT VIEWTEXT FROM SYSTEM.SYSVIEWS

 WHERE VIEWNAME = ’ORGANIZATION’

To identify the users who have privileges to access the view or its base tables,

enter the following query:

 SELECT GRANTEE, STNAME FROM SYSTEM.SYSTABAUTH

 WHERE TTNAME = ’ORGANIZATION’

If a view is defined for all the columns required in the new table, steps 1, 2, and 3

(needed to merge data from multiple tables) can be replaced by the following:

1. Enter the DBS Utility UNLOAD command to unload the view.

2. Enter the DBS Utility RELOAD command to create and load the new table.

3. Process an UPDATE STATISTICS statement for the new table, if necessary. By

default, this statement is performed for each table loaded during RELOAD

TABLE command processing. For more information, see the DB2 Server for VSE

& VM Database Services Utility manual.

Examples

In VM: Include the following SQL statements and DBS Utility commands within

your DBS Utility control file to perform the above task:

 CONNECT userid IDENTIFIED BY userpw;

 UNLOAD TABLE creator.viewname OUTFILE(DUMPFIL);

 RELOAD TABLE creator.newtablename NEW INFILE(DUMPFIL);

Chapter 3. Maintaining Your Database 63

Invoke the DBS Utility, as usual, to process the above statements and commands.

In VSE: Use the following job control commands, SQL statements, and DBS Utility

commands to perform the above task:

 // JOB MERGE DATA

 // EXEC PROC=DBNAME01

 // ASSGN SYS005,...

 // ASSGN SYS004,...

 // TLBL DUMPFIL,...

 ...
 CONNECT userid IDENTIFIED BY userpw;

 UNLOAD TABLE creator.viewname OUTFILE(DUMPFIL)

 RELOAD TABLE creator.newtablename NEW INFILE(DUMPFIL)

 /&

See the DB2 Server for VSE & VM Database Services Utility manual for details.

Altering the Design of a Table

If you want to change the design of a table after it has been created, use the SQL

ALTER TABLE statement. This will not change the data in the table; only its

specifications. You can:

v Add a column to a table

v Add or drop a primary key, a foreign key, or a unique constraint.

When you alter a table, information in the system catalog about it is also changed.

For example, when you add a new column to a table, SYSTEM.SYSCOLUMNS is

changed to record it, and the field in there that records the number of columns is

increased by one.

Authorization

To alter a table, you must have the ALTER privilege on it, and if the operation

involves a primary key you must have the ALTER privilege on all dependent

tables as well. If the operation involves a foreign key, you must have the

REFERENCES privilege on the parent table.

You can alter any table if you have DBA authority.

You cannot delete a column, change the name of a column, change the data type of

a column, or add or change a field procedure for a column for existing tables using

the ALTER TABLE statement. To do these operations, you must drop the existing

table and re-create it.

Example

There are two ways to change the data type of the DEPTNAME column of the

DEPARTMENT table from VARCHAR(36) to VARCHAR(40):

v Create a new table (DEPT) with the required column definitions, and copy data

to it.

 CREATE TABLE DEPT

 (DEPTNO CHAR(3) NOT NULL,

 DEPTNAME VARCHAR(40) NOT NULL,

 MGRNO CHAR(6) ,

 ADMRDEPT CHAR(3) NOT NULL,

 PRIMARY KEY (DEPTNO))

 INSERT INTO DEPT SELECT * FROM DEPARTMENT

64 Database Administration

Indexes, views, and privileges have to be reestablished for the new table DEPT;

only the data is copied from the DEPARTMENT table. Also, all applications that

used the original table must be changed to reflect the new table name, then

re-preprocessed.

v DATAUNLOAD the contents of the DEPARTMENT table to a flat file, drop the

table, re-create it with the new data type definition of the DEPTNAME column,

then DATALOAD the contents of the flat file back into the DEPARTMENT table.

For details on DATAUNLOAD and DATALOAD, see the DB2 Server for VSE &

VM Database Services Utility manual.

Adding a New Column

When you add a column to an existing table, it is placed on the far right.

The physical records are not actually changed until users insert values in the new

column, so access time to the table is not affected immediately. After values are

inserted, however, this could impact performance by forcing rows onto another

physical page. To avoid that situation, define enough free space on each page

ahead of time.

You cannot define the new column as NOT NULL; it must allow NULL values.

Example

Add a new column to the table DEPARTMENT, containing a location code for the

department. The column name is LOCNCODE, and its data type is CHAR (4).

 ALTER TABLE DEPARTMENT

 ADD LOCNCODE CHAR (4)

Table 15 shows part of the original table.

 Table 15. Before Adding a New Column to a Table

DEPTNO DEPTNAME MGRNO ADMRDEPT

A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00

B01 PLANNING 000020 A00

C01 INFORMATION CENTER 000030 A00

Table 16 shows the table after adding the new column and updating a location

code in the third row.

 Table 16. After Adding a New Column to a Table and Updating a Row

DEPTNO DEPTNAME MGRNO ADMRDEPT LOCNCODE

A00 SPIFFY COMPUTER SERVICE

DIV.

000010 A00 ?

B01 PLANNING 000020 A00 ?

C01 INFORMATION CENTER 000030 A00 B126

Altering Referential and Unique Constraints

If you plan to let the database manager enforce referential integrity in a set of

tables, see “Considerations for Referential Integrity when Creating Tables” on page

39 and “Specifying a UNIQUE Constraint” on page 38.

The following terms are used in the discussion of the ALTER TABLE statement:

Chapter 3. Maintaining Your Database 65

Inactive Key or Constraint A primary key, a foreign key, or a unique

constraint that has been made inoperable by the

ALTER TABLE ... DEACTIVATE statement. Neither

referential nor unique constraints are enforced until

the related keys are activated.

Implicitly Inactive Key A foreign key that is not explicitly inactive, but

references a table with an inactive primary key. A

referential constraint is not enforced until the

related primary key is activated.

Inactive Table A table that contains an inactive or implicitly

inactive key, or contains an active primary key

referenced by an inactive foreign key. This limits

access to the table to the creator or a DBA, and

allows deferred constraint enforcement.

Dependently Inactive Table A dependent table or foreign key that has been

flagged as inactive because the primary key of its

parent table has been deactivated.

Table 17 is a summary of the authorization required to alter referential constraints.

 Table 17. Authorization Required when Altering Referential Constraints

Statement Parent Table Dependent Table

ADD

 Primary Key

 Foreign Key

 A

 R

 A

DROP

 Primary Key

 Foreign Key

 A, R(1)

 R

 A

 A

ACTIVATE

 Primary Key

 Foreign Key

 All

 A, R(1)

 R

 A, R(1)

 A

 A

 A

DEACTIVATE

 Primary Key

 Foreign Key

 All

 A, R(1)

 R

 A, R(1)

 A

 A

 A

Note: ALTER privilege is required when A appears. REFERENCES privilege is required

when R appears, and (1) applies when a dependent table exists.

Considerations When Adding Keys or Constraints

The following restrictions apply when you add a primary key, a foreign key, or a

unique constraint to an existing table:

v The columns named for the key being added must exist.

v If adding a primary key, there should be no existing primary key on the table.

v If adding a primary key or a unique constraint there must not be duplicate

values in the specified columns.

v When adding a foreign key:

– The constraint name must not already exist.

– If the key columns are identical to those of another foreign key that references

the same parent table, a warning is issued and the foreign key is created.

66 Database Administration

v You can use only one FOREIGN KEY clause in each ALTER TABLE statement; if

you want to add two foreign keys to a table, you must execute two statements.

v If you add a foreign key, the primary key of the parent table must already exist.

v To add a foreign key, you must have REFERENCES privilege on the parent table

and ALTER privilege on the dependent table.

v If adding a foreign key, the foreign key must not cause a table to be

delete-connected to another table through multiple paths with different delete

rules or with a delete rule of SET NULL.

v A referential cycle with two or more tables must not cause a table to be

delete-connected to itself. For further information on delete-connected tables,

refer to “Restrictions on Keys and Referential Constraints:” on page 40.

For further information on referential integrity, refer to “Elements of Referential

Integrity” on page 6.

Considerations When Dropping a Primary or Foreign Key

The following restrictions apply when you drop a primary key or a foreign key

from an existing table:

v When you drop a foreign key, the corresponding referential relationship is also

dropped.

v To drop a foreign key, you must have REFERENCES privilege on the parent

table and ALTER privilege on the dependent table.

v When you drop a primary key, all the referential relationships in which the table

is a parent are also dropped.

v You must have ALTER privilege on any dependent tables.

v The dependent tables no longer have foreign keys.

v The unique index (created to enforce uniqueness in the primary key) is dropped.

In both situations, you should consider carefully the effects on your application

programs of dropping keys. The primary key of a table is intended to serve as a

permanent, unique identifier of the occurrences of the entities it describes, and

quite likely some of your programs depend on that. The foreign key defines a

referential relationship and a delete rule, and without it your programs must

enforce the constraints.

Considerations When Activating Keys and Constraints

Primary Key: To activate a primary key you must have ALTER privilege on the

parent and dependent tables and REFERENCES privilege on all dependent tables.

If any dependent foreign keys were deactivated implicitly when the primary key

was made inactive, they will be verified against the primary key. If the primary

key index can be created successfully and the dependent foreign key values are

found in the parent table’s primary key, then the primary key and the dependent

foreign keys will be activated. If any of these processes fail, none of the keys will

be activated.

Activating the primary key will neither verify nor affect the status of any

dependent foreign keys that were deactivated explicitly with the ALTER TABLE

table-name DEACTIVATE FOREIGN KEY statement.

Foreign Key: To activate a foreign key you must have ALTER privilege on the

dependent table and REFERENCES privilege on the parent table.

Chapter 3. Maintaining Your Database 67

If a foreign key is already active, attempts to activate it are ignored. If the primary

key of the parent table referenced by this foreign key is inactive, the foreign key

cannot be activated. Otherwise, the inactive foreign key will have its values

verified against its parent table. If all values can be found in the parent’s primary

key, the foreign key will be activated.

Unique Constraint: To activate a unique constraint you must have ALTER

privilege on the table. The unique constraint will be activated only if all values in

its key are unique. If there are duplicate values you must change them to be

unique before the constraint can be activated.

All: To activate the primary key, each unique constraint, and each explicitly

inactive foreign key in a table, use the ACTIVATE ALL option. You must have the

required ALTER and REFERENCES privileges.

Implications of Activating a Primary Key or Unique Constraint: Activating a

primary key or unique constraint that is already active causes the unique index

associated with the key or constraint to be reorganized. This is more efficient than

deactivating the key or constraint (which would drop the underlying index), and

then activating the key or constraint (which would re-create the underlying index).

For more information on the benefits of reorganizing an index, see the DB2 Server

for VSE & VM Diagnosis Guide and Reference manual.

Considerations When Deactivating Keys and Constraints

Primary Key: Deactivating a primary key drops the primary key index from the

parent table and implicitly deactivates all active dependent foreign keys. This

limits the access to all inactive dependent tables to the creator or a DBA, and allow

deferred constraint enforcement. For information on deferred constraint

enforcement see “Enforcing Referential Constraints.”

To deactivate a primary key you must have ALTER and REFERENCES privileges

on the parent table, and ALTER privilege on all dependent tables.

Foreign Key: To deactivate a referential constraint that is active, you must have

ALTER privilege on the dependent table and REFERENCES privilege on the parent

table.

If a foreign key has been explicitly deactivated already, attempts to deactivate it

again are ignored.

Deactivating a foreign key will make the two tables in the relationship inactive.

Access to the inactive table is limited to the creator or a DBA. For information on

the effects of deactivating a foreign key, see “Advantages and Disadvantages of

Deferred Constraint Enforcement” on page 69.

Unique Constraints: Deactivating a unique constraint drops the unique index

associated with the constraint, causing the table to become inactive. This will limit

access to the table to its creator or a DBA.

Enforcing Referential Constraints

Two forms of enforcement are possible:

v Immediate Constraint Enforcement.

After the referential constraints have been defined, the enforcement of the

referential constraint is immediate. That is, the insert, update, and delete rules

68 Database Administration

are enforced when the INSERT, UPDATE, and DELETE statements are issued.

During immediate constraint enforcement, keys and tables are in the active state.

v Deferred Constraint Enforcement.

A table can be made inactive by deactivating its primary key, any of its foreign

keys, any of its unique constraints, or a dependent foreign key, by using the

ALTER TABLE statement. A referential relationship is between two keys in

different tables. If either a primary or foreign key is deactivated, both tables

become inactive.

When a table is in an inactive state, only the owner or someone with DBA

authority can issue Data Manipulation Language (DML) statements against it.

No one can issue DML statements (for example, SELECT or UPDATE

statements) against any table that would result in implicit access of an inactive

table to enforce referential constraints.

When the keys are activated, the constraints will be verified automatically and

the tables become active again.

Advantages and Disadvantages of Deferred Constraint

Enforcement

You may want to deactivate the enforcement of referential integrity among tables

to improve performance when you are loading data into a table.

When referential integrity is active between two tables, each INSERT statement on

a dependent table causes a check to be issued against the parent table. This check

verifies that the foreign key value being inserted has a matching primary key value

in the parent table. When data is being loaded into a dependent table, each

inserted row causes a check of the parent table; if many rows are being loaded, the

overhead of this checking becomes significant. In this case, you may improve your

overall performance of the load by deactivating any referential constraints. When

the load completes, you then reactivate them to validate the data.

If referential integrity is in effect at the beginning of an LUW, and the constraints

are deactivated, the data loaded and the constraints re-activated all within the

same LUW, then referential integrity exists at the end of the LUW as well.

However, within that LUW, referential constraints are not enforced. You could load

rows into the dependent table that had no parents when loaded. Since the database

can be in an inconsistent state during an LUW, but not at its completion, you can

use a more flexible sequence of statements within an LUW. At some point you

must load parent rows for the dependent rows into the parent table. Otherwise,

you would be unable to reactivate the referential constraint. There are some

disadvantages to deactivating a referential constraint between tables:

v Only users with DBA authority and the owner of a table can use DML

statements on that table, or tables referenced by it through an inactive referential

constraint. This is to prevent people from inserting, deleting, or updating data in

a table that they may believe to have an active referential constraint.

v When referential constraints are deactivated, any indexes created to enforce the

constraints are dropped. Dropping these indexes will invalidate any packages

that require the use of the indexes. Three major costs will be incurred on

reactivating the referential constraints:

– The underlying indexes are re-created

– Any dependent rows are checked against the referential constraints

– All invalidated packages are automatically re-preprocessed when they are first

used.

Chapter 3. Maintaining Your Database 69

If a relatively small number of rows are added to the table by the load process,

then the costs of reactivating the referential constraints may exceed the savings

realized by deferring referential constraint enforcement on each row loaded.

You should deactivate the referential constraints between tables only when large

amounts of data are to be loaded, or when a significant amount of data is to be

loaded in an order that violates the referential constraint at some point during

the data-loading operation. For example, you can load new rows into a

dependent table before loading matching rows into the parent table only while

the referential constraint is inactive.

Repairing Rows that Violate Referential Constraints

If you deactivate a referential constraint in order to load data, then receive an error

when you try to reactivate it, it could be for one of the following reasons:

v You activated a foreign key that references an inactive primary key. You must

first activate the inactive primary key.

v One or more rows in one of the tables violates the referential constraint, and you

must fix these rows. This error condition may also arise when you are creating a

referential constraint.

Note: When the above error occurs, SQLCODE -667 (SQLSTATE 22519) and the

name of the constraint in error are returned as a message token in SQLCA.

Isolating Duplicate Primary Key Values: To find duplicate primary key values,

use the statement shown below. In the example, the name of the table is P1, and

the primary key is represented by the columns PKCOL1, PKCOL2, and so on, for

all columns that form the primary key:

 SELECT PKCOL1, PKCOL2, ... FROM P1

 GROUP BY PKCOL1, PKCOL2, ...

 HAVING COUNT(*) > 1

You could then eliminate the duplicate values with UPDATE and DELETE

statements, or move them to a special table if you do not want to eliminate them

immediately.

To move the rows to a special table (called an EXCEPTION table in this

explanation), create a table with the same column definitions as the original table

(but with no key definitions). If there are many duplicate values, you may want to

create a nonunique index for the duplicate primary key columns in the

EXCEPTION table to improve performance.

Use the statements shown below to copy the rows with duplicate primary key

values into the EXCEPTION table (called E1 in this example):

 INSERT INTO E1

 SELECT * FROM P1 A WHERE EXISTS

 (SELECT PKCOL1, PKCOL2, ... FROM P1 B

 GROUP BY PKCOL1, PKCOL2, ...

 HAVING COUNT(*) > 1

 AND B.PKCOL1 = A.PKCOL1

 AND B.PKCOL2 = A.PKCOL2

 ...)

To remove these rows from P1, use this statement:

 DELETE FROM P1 A WHERE EXISTS

 (SELECT 1 FROM E1

 WHERE E1.PKCOL1 = A.PKCOL1

 AND E1.PKCOL2 = A.PKCOL2

 ...)

70 Database Administration

Isolating Nonmatching Foreign Key Values: Foreign key values may not match

primary key values because either of them may be wrong. This example shows

you how to move the nonmatching foreign keys to a separate table. Then, you can

determine whether the foreign or the primary keys are wrong, and fix them with

INSERT, UPDATE, or DELETE statements.

This statement retrieves nonmatching foreign key values. In the example, P1 is the

parent table; C1 is the dependent table; PKCOL1, PKCOL2, and so on form the

primary key; and FKCOL1, FKCOL2, and so on form the foreign key.

 SELECT FKCOL1, FKCOL2, ... FROM C1 A

 WHERE (FKCOL1 IS NOT NULL AND

 FKCOL2 IS NOT NULL AND

 ...)

 AND NOT EXISTS

 (SELECT 1 FROM P1 B

 WHERE B.PKCOL1 = A.FKCOL1 AND

 B.PKCOL2 = A.FKCOL2 AND

 ...)

To move the rows to a special table (called an EXCEPTION table in this

explanation), create a table with the same column definitions as the dependent

table (but with no key definitions). If there are many duplicate values, you may

want to create a nonunique index for the foreign key columns in the EXCEPTION

table to improve performance. To copy the rows with nonmatching foreign keys to

the EXCEPTION table (E1 in this example), use the following statement:

 INSERT INTO E1

 SELECT * FROM C1 A

 WHERE (FKCOL1 IS NOT NULL AND

 FKCOL2 IS NOT NULL AND

 ...)

 AND NOT EXISTS

 (SELECT 1 FROM P1 B

 WHERE B.PKCOL1 = A.FKCOL1 AND

 B.PKCOL2 = A.FKCOL2 AND

 ...)

To remove the rows from C1, use the following statement:

 DELETE FROM C1 A WHERE EXISTS

 (SELECT 1 FROM E1

 WHERE E1.FKCOL1 = A.FKCOL1

 AND E1.FKCOL2 = A.FKCOL2

 ...)

Moving Data from One Application Server to Another

You can use the DBS Utility to move data from one application server to another.

Moving data from a DB2 Server for VSE & VM application server to a remote

DRDA application server requires unloading the data from the DB2 Server for VSE

& VM application server using the DBS Utility DATAUNLOAD command and

reloading the data into the other application server using the DBS Utility

DATALOAD command. Moving data from one DB2 Server for VSE & VM

application server to another local DB2 Server for VSE & VM application server

can be done as above, or by using the DBS Utility UNLOAD and RELOAD

commands.

For more information about DBS Utility commands, refer to the DB2 Server for VSE

& VM Database Services Utility manual.

Chapter 3. Maintaining Your Database 71

Notes:

1. When moving data between two application servers, ensure that the

appropriate coded character set identifier (CCSID) conversion is done to

maintain the correct interpretation of the data.

For example, an application server uses a CHARNAME value of ENGLISH (or

the CCSID equivalent), and another application server uses a CHARNAME

value of GERMAN (or the CCSID equivalent). Issue the SQLINIT EXEC (in

VM), the transaction DSQU (in CICS), or the VSE batch program ARIRBGUD

(JCL: ARISBGUD.Z) and specify a CHARNAME for the application requester

corresponding to the CHARNAME of one of the application servers (either

ENGLISH or GERMAN). Then, to ensure the integrity of the data when

moving it between these two application servers, specify the same

CHARNAME value for the application requester for both the DATAUNLOAD

(or UNLOAD) and DATALOAD (or RELOAD) operations. If ENGLISH is the

CHARNAME value specified for the application requester for the data unload

operation, then it must also be set to ENGLISH for the data load operation. You

can then perform the data unloading and reloading operations.

For more information on CCSID conversion, see the DB2 Server for VSE System

Administration manual.

2. If you want to move data from one DB2 Server for VSE application server to a

DB2 Server for VM application server (not using Guest Sharing), or vice versa,

using the DBS Utility UNLOAD command, you can only do so when using a

tape.

Removing Tables

To remove tables from the database, use the DROP TABLE statement. For example,

to remove a table called PROJECT, enter:

 DROP TABLE PROJECT

Only the table’s creator or a user with DBA authority can remove the table. If you

have DBA authority, include the user ID of the owner to remove a table. For

example, to remove SMITH’s table called PROJECT, enter:

 DROP TABLE SMITH.PROJECT

When a table is dropped, the row in the SYSTEM.SYSCATALOG catalog table that

contains information about it is deleted. Any other objects that depend on that

table are also dropped. As a result:

v The column names of the table are dropped from SYSTEM.SYSCOLUMNS.

v Any views based on the table are dropped.

v Application plans using the table are invalidated.

v Synonyms for the table are dropped from SYSTEM.SYSSYNONYMS.

v Indexes created on any columns of the table are dropped.

v Unique constraints on any columns of the table are dropped.

v Referential constraints that involve the table are dropped. In the case of the

PROJECT table, it is no longer a dependent of the DEPARTMENT and

EMPLOYEE tables, nor a parent of the PROJ_ACT table.

v Authorization information kept in the authorization tables is updated to reflect

the dropping of the table. Users who were previously authorized to use the

table, or views on it, no longer have those privileges.

72 Database Administration

You must commit the DROP statement on a table before you can re-create a table

of the same name, or before you can create any new indexes with the same name

as an index on the table being dropped.

Maintaining Dbspaces

Altering the Design of a Dbspace

You may need to change the parameters of a dbspace for any of the following

reasons:

v Storage capacity (PAGES).

You may have underestimated the storage required by the tables in the dbspace,

and need to increase its potential size (in pages).

v Storage pool assignment (STORPOOL).

You may want to change the storage pool assignment, which determines

whether a dbspace is recoverable or nonrecoverable.

v Type (PUBLIC or PRIVATE).

If the tables in a PRIVATE dbspace are to be shared by many users, then you

should consider making it PUBLIC.

v Header Space (NHEADER).

At the front of every dbspace are one to eight header pages, which contain

control information on the tables and indexes stored there. You may need to

increase the number of these pages.

v Index Space (PCTINDEX).

If your dbspace contains more indexes than expected, you may need to increase

the index space to accommodate them.

v Free Space (PCTFREE).

You may want to change the percentage of each data page reserved for updates

of rows resulting in larger rows that cannot be placed in the original locations in

the page.

v Lock Size (LOCK).

For PUBLIC dbspaces, you may change the locking level. A lower lock level

allows more users to access the same table at the same time; however, there is a

cost because of lock acquisitions, an increased possibility of lock escalations. If

lock escalation occurs frequently, you may want to increase the locking level.

Refer to the DB2 Server for VSE & VM Diagnosis Guide and Reference manual. for

more information about lock escalations.

For a review of these parameters, see “Acquiring Dbspaces” on page 22.

Changing the PAGES, STORPOOL, DBSPACE Type, NHEADER,

or PCTINDEX

There is no statement to change these five parameters of a dbspace. If you need to

change any of them, you must move all the data in the current dbspace to another

dbspace that has the required characteristics. To do this:

1. UNLOAD the current dbspace.

2. DROP the current dbspace.

3. ACQUIRE a new dbspace with the required characteristics.

4. RELOAD the new dbspace.

5. Drop the table with field procedures, recreate it to include the field procedures,

and reload the table using the ’PURGE’ parameter.

6. CREATE all indexes for the tables involved.

Chapter 3. Maintaining Your Database 73

7. Recreate all referential constraints.

8. GRANT all authorizations for the tables involved.

9. CREATE all views relating to the tables involved.

To identify the tables, views, authorizations, and referential constraints related to

the dbspace, query the system catalog.

To identify the tables with field procedures, query the SYSFIELDS and

SYSFPARMS tables.

Example: To increase the storage capacity of a PRIVATE dbspace called

SMITH.SAMPLE to 2 048 pages with defaults for the other dbspace parameters,

use the following SQL statements and DBS Utility commands:

 CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;

 UNLOAD DBSPACE (SMITH.SAMPLE) OUTFILE (TEMPFIL);

 DROP DBSPACE SMITH.SAMPLE;

 ACQUIRE PRIVATE DBSPACE NAMED (SMITH.SAMPLE) (PAGES=2048);

 RELOAD DBSPACE (SMITH.SAMPLE) NEW INFILE(TEMPFIL);

Invoke the DBS Utility, as usual, to process the above statements and commands

(see the DB2 Server for VSE & VM Database Services Utility manual for details).

Indexes, views, authorizations, and referential constraints must be recreated for all

the tables in the dbspace.

Changing the PCTFREE and LOCK Parameters

To change these parameters, use the ALTER DBSPACE statement. You must have

DBA authority or (in the case of a PRIVATE dbspace) be the owner of the dbspace.

Example: Change the PCTFREE parameter to 10 for the dbspace called

MYDBSPACE. type:

 ALTER DBSPACE MYDBSPACE (PCTFREE = 10)

To change both the PCTFREE and the LOCK parameters at the same time, type:

 ALTER DBSPACE MYDBSPACE (PCTFREE = 10, LOCK = PAGE)

Reorganizing a Dbspace to Free Storage Pool Pages

Reorganizing a dbspace releases pages in it back to its storage pool. There are two

reasons why you might want to do this:

v You are unable to drop a table in a dbspace when you issue a DROP TABLE

statement and you receive a message that the storage pool is full. This occurs

because there are not enough shadow pages in the storage pool to allow the

database manager to remove all the rows for that table from the dbspace. For

information on shadow pages, see the DB2 Server for VSE & VM Diagnosis Guide

and Reference manual.

After the database has been restarted (with STARTUP=W), there will be a row in

the catalog table SYSDROP for the dropped table. Any subsequent DROP TABLE

statements will cause SYSDROP to be processed. When the database manager

processes the row for the dropped table, it will end and issue a message

indicating that the storage pool is full unless you take other steps to provide

sufficient pages in the storage pool for shadow pages. You can provide sufficient

pages in the storage pool by adding dbextents to the storage pool, or by

reorganizing the dbspace where the table resides.

If reorganizing the dbspace does not provide sufficient shadow pages to allow

you to drop the table, then you must add dbextents to the storage pool. For

74 Database Administration

information on adding dbextents, see the DB2 Server for VM System

Administration or DB2 Server for VSE System Administration manual.

v You want to release unused pages back to the storage pool.

Once a page is allocated to a dbspace, it remains allocated, even when the pages

are empty, until you drop the dbspace or the empty pages are released. Empty

pages can be released back to the storage pool either by running the SQLRELEP

EXEC in VM or by bringing up the server using STARTUP=P in VSE. For more

information, see “Releasing Empty Pages.” Empty pages can cause the storage

pool that contains the dbspace to become short on storage. For example, if a

large table occupied a dbspace, and has been dropped, all pages used to store

the rows for that table are still allocated to the dbspace. To determine whether

many empty pages are allocated to a dbspace, enter the SHOW DBSPACE

operator command.

To reorganize a dbspace, follow these steps:

1. Unload all tables in the dbspace, except those that should be dropped.

2. Drop the dbspace (see note 1 below).

3. Reacquire the dbspace.

4. Reload the tables (see note 2 and 4 below).

5. Re-create all indexes and unique constraints for all tables.

6. Grant all authorizations for the tables again.

7. Re-create all referential constraints for tables (see note 3 below).

8. Re-create all views that reference the tables.

Notes:

1. Before dropping the dbspace, obtain the information necessary to perform steps

5, 6, 7, 8, and note 4 below from the catalog tables.

2. The RELOAD TABLE commands create all tables by default with the user ID of

the person who enters the commands, usually the DBA. If you want a table to

retain the user ID of its original owner, specify this user ID in the table

parameter of the RELOAD TABLE command. When performing this procedure,

use the NEW option on the RELOAD TABLE and RELOAD DBSPACE

commands. See the DB2 Server for VSE & VM Database Services Utility manual

for more details.

3. If a table has referential constraints, these will be lost when the table is

unloaded and reloaded. To re-create any foreign keys, primary keys, unique

constraints, or primary keys that have dependent foreign keys in tables that

reside in other dbspaces, use the ALTER TABLE statement.

4. If a table has field procedures, they will be lost when the table is reloaded

using the ’NEW’ option. To include the field procedures, drop the table,

recreate it, and reload the table using the ’PURGE’ option.

Releasing Empty Pages

Rather than reorganizing the dbspace to release the empty pages, you can run the

VM utility SQLRELEP or start the database in VSE with STARTUP=P and

DBSPNUM=dbspnum, where dbspnum is an acquired dbspace number or *. In

both VM and VSE, the database must be brought up in single user mode.

The changes made to the directory while pages are being released are not logged.

If an abend occurs during release empty pages processing, a database archive must

be restored to ensure inconsistencies do not exist between the directory and

dbextents. A database archive should be taken after the release empty pages utility

completes to ensure unexpected storage pool full situations do not occur during

restore. Consider the following example:

Chapter 3. Maintaining Your Database 75

1. You take a database archive with LOGMODE=L

2. You release empty pages on dbspace A, preventing a potential short on storage

situation for storage pool X where it resides.

3. Inserts are made to tables in dbspace B, which is also in storage pool X.

4. A restore of the archive taken in step 1 is done. This forces a log archive.

After the database restore completes, the directory is at the same state as before

empty page processing was run. The log archive created in step 4 is applied but it

does not contain information about release empty pages processing. Therefore,

storage pool X is near a short on storage condition. When the insert statements are

applied from the log archive, the database manager needs to use free pages in

storage pool X. This could lead to a storage pool full condition that did not occur

earlier.

To run the release empty pages utility in a VSE environment, start the database in

single user mode with STARTUP=P and DBSPNUM=dbspnum, where dbspnum is

an acquired dbspace number to release empty pages from or * to release empty

pages for all dbspaces. The default value for DBSPNUM is 1. Figure 20 shows an

example of the job control statements.

Notes:

1. For ARIS75SL, substitute your procedure or job control that identifies the DB2

Server for VSE service libraries.

2. For DBNAME01, substitute your procedure or job control that identifies the

database whose dbspace(s) you wish to reorganize.

3. The initialization parameters SYSMODE=S, STARTUP=P, and DBSPNUM are

required. You can also supply any of the following initialization parameters

(PARMID is included in the example in Figure 20.):

PARMID=name

DBPSWD=password

NPAGBUF=n

NDIRBUF=n

NCSCANS=n

LOGMODE=Y|A|L|N

CHKINTVL=n

SLOGCUSH=n

ARCHPCT=n

SOSLEVEL=n

CHARNAME=name

DSPLYDEV=L|C|B

DUMPTYPE=P|F|N

TRACDBSS=nnnnnnnnnnn

TRACRDS=nnnnnn

TRACCONV=n

TRACDSC=nn

TRACBUF=n

TRACSTG=n

LTIMEOUT=n

SYNCPNT=Y|N

// JOB REORG

// EXEC PROC=ARIS75SL

// EXEC PROC=DBNAME01

// EXEC PGM=ARISQLDS,SIZE=AUTO,PARM=’SYSMODE=S,STARTUP=P,DBSPNUM=*,PARMID=name’

Figure 20. Example Job Control to Release Empty Pages in a Dbspace

76 Database Administration

See the DB2 Server for VSE System Administration manual for a description of

initialization parameters.

To avoid the processing involved in switching log modes, use the same

LOGMODE that you normally use.

To run the release empty pages utility in a VM environment:

1. Log on to the virtual machine that owns the database.

2. Get read access to the service minidisk (ACCESS 193 V).

3. Invoke the SQLRELEP EXEC. This EXEC resides on the service minidisk. It

invokes the DB2 Server for VM application server in single-user mode with

STARTUP=P. See “SQLRELEP EXEC” on page 259 for its syntax.

Because the release empty pages utility runs in single user mode, the only way to

trace it is with the TRACRDS, TRACDBSS, TRACDSC, and TRACCONV

initialization parameters. The TRACE operator command cannot be used in single

user mode.

Removing Dbspaces

To drop the contents of a dbspace and return it to the available state, issue the

DROP DBSPACE statement. Dbspaces that are available can then be reacquired,

using the ACQUIRE DBSPACE statement.

When a dbspace is dropped, all tables in it are also dropped. When a table is

dropped, all authorizations, views, referential constraints, unique constraints, and

field procedures relating to it are dropped.

If a dbspace contains only one table, it is more efficient to drop and then reacquire

the entire dbspace later, than to drop the table.

The DROP DBSPACE statement may be carried out on both PUBLIC and PRIVATE

dbspaces. You must have DBA authority to delete a dbspace or (in the case of a

PRIVATE dbspace) be the owner. No user, not even one with DBA authority, can

delete the dbspace that contains the system catalog.

Example

To remove your own PRIVATE dbspace named MYDBSPACE, type:

 DROP DBSPACE MYDBSPACE

VSAM Restrictions

VSAM defines storage for DB2 Server for VSE databases but it does not manage

this storage. VSAM commands such as EXPORT, IMPORT, REPRO, and VERIFY

should never be used on the DB2 Server for VSE database. If you receive an error

message indicating an OPEN error (RC=74), ignore it and do not run VERIFY.

Reorganizing Indexes on the Catalog Tables

The catalog indexes need to be reorganized when indexes on the catalog tables

become fragmented, and the database manager can no longer insert entries into the

catalog dbspace.

Index fragmentation often happens in an application development environment.

Application development requires frequent preprocessing; and each time a

Chapter 3. Maintaining Your Database 77

program is preprocessed, many entries are added to the catalog tables. It may not

be possible to plan properly for the range of index keys that might be created.

Index fragmentation can lead to the inefficient use of the index pages of the catalog

dbspace (SYS0001). If most of the index pages in your catalog dbspace are

occupied, fragmentation is a likely cause. To determine the number of index pages

occupied in the catalog dbspace, enter the SHOW DBSPACE command. (The

number of this catalog dbspace is 1; so you type SHOW DBSPACE 1.) If there is a

high percentage of occupied pages, consider running the catalog index

reorganization utility, which optimizes the indexes as they exist on the catalog

tables.

To run the catalog index reorganization utility in a VSE environment, start the

database in single user mode with STARTUP=I specified. Figure 21 shows an

example of the job control statements.

Notes:

1. For ARIS71SL, substitute your procedure or job control that identifies the DB2

Server for VSE service libraries. The catalog index reorganization utility uses

the ARISCAT source member.

2. For DBNAME01, substitute your procedure or job control that identifies the

database whose catalog indexes you wish to reorganize.

3. The initialization parameters SYSMODE=S and STARTUP=I are required. You

can also supply any of the following initialization parameters (PARMID is

included in the example in Figure 21.):
 PARMID=name

 DBPSWD=password

 NPAGBUF=n

 NDIRBUF=n

 NCSCANS=n

 LOGMODE=Y|A|L|N

 CHKINTVL=n

 SLOGCUSH=n

 ARCHPCT=n

 SOSLEVEL=n

 CHARNAME=name

 DSPLYDEV=L|C|B

 DUMPTYPE=P|F|N

 TRACDBSS=nnnnnnnnnnn

 TRACRDS=nnnnnn

 TRACCONV=n

 TRACDSC=nn

 TRACBUF=n

 TRACSTG=n

 LTIMEOUT=n

 SYNCPNT=Y|N

// JOB REORG

// EXEC PROC=ARIS71SL

// EXEC PROC=DBNAME01

// EXEC PGM=ARISQLDS,SIZE=AUTO,PARM=’SYSMODE=S,STARTUP=I,PARMID=name’

/*

/&

Figure 21. Example Job Control to Reorganize the Catalog Indexes

78 Database Administration

See the DB2 Server for VSE System Administration manual for a description of

initialization parameters.

To avoid the processing involved in switching log modes, use the same

LOGMODE that you normally use.

To run the catalog index reorganization utility in a VM environment:

1. Log on to the virtual machine that owns the database.

2. Get read access to the service minidisk (ACCESS 193 V).

3. Invoke the SQLCIREO EXEC. This EXEC resides on the service minidisk. It

invokes the DB2 Server for VM application server in single-user mode with

STARTUP=I. See “SQLCIREO EXEC” on page 257 for its syntax.

Because the catalog index reorganization utility runs in single user mode, the only

way to trace it is with the TRACRDS, TRACDBSS, TRACDSC, and TRACCONV

initialization parameters. The TRACE operator command cannot be used in single

user mode.

Moving Your Database

If you are moving your database, use the SQLDBDEF utility to extract the

definition of database objects from a DB2 Server for VSE & VM database, and

generate a DBSU job. This job can be used to create the same objects on another

DB2 database. The target database can be any DB2 database, such as DB2 Server

for VSE & VM, DB2 UDB for OS/390, or DB2 UDB for Linux. The SQL statements

in the DBSU job can be grouped by dbspace or by object type. Once the objects

have been created on the target platform, the load utilities of the target database

can be used to load the data. Packages can be unloaded from the source database

and reloaded to the target database so that existing client applications can continue

to be used.

For more information about the SQLDBDEF utility, refer to the DB2 Server for VM

System Administration manual, Appendix G, Service and Maintenance Utilities or the

DB2 Server for VSE System Administration manual, Appendix G, Service and

Maintenance Utilities.

Chapter 3. Maintaining Your Database 79

80 Database Administration

Chapter 4. Supporting Your Users

As the database administrator, you provide the support that users need to gain

access to your DB2 Server for VSE & VM application server and the data it

manages.

This chapter describes the tasks involved in supporting new users, and removing

the data and access of those who have left.

Adding a New User

To a DB2 Server for VSE & VM Application Server:

The following are the steps involved in adding new users to DB2 Server for VSE &

VM application servers.

New users need CONNECT authority on the application server (alternatively, this

may be granted to ALLUSERS). To add a new user to the system, perform the

following tasks:

1. In VM, define the user’s virtual machine as a DB2 Server for VM user machine.

This involves making VM directory changes and is discussed in the DB2 Server

for VM System Administration manual.

2. Setup the user as a new ISQL user.

3. Grant the user an appropriate level of authority to access data and use

resources.

4. Specify the default application server.

5. If required, load initial tables.

6. Ensure that the new user obtains adequate system training.

To a Non-DB2 Server for VSE & VM Application Server:

To enable a user to access a non-DB2 Server for VSE & VM application server

perform the following tasks:

Notes:

1. In VM, if the user is not already a DB2 Server for VM user, define the user’s

virtual machine as a DB2 Server for VM user machine. This involves making

VM directory changes and is discussed in the DB2 Server for VM System

Administration manual.

2. Arrange system-level sign-on authority with the system administrator of each

remote application server.

Note: A new user ID and password may be required at some of the remote

application servers, depending on the LU 6.2 security level that is required for

the connection. See the Distributed Relational Database Connectivity Guide manual.

3. In VM, setup a new entry in the CMS Communication Directory (COMDIR) for

the remote application server (if it has not already been done), and make the

COMDIR accessible to the user.

In VSE, set up a new entry in the DBNAME Directory for the remote

application server (if it has not already been done).

© Copyright IBM Corp. 1987, 2007 81

4. If the user will be accessing an application server through ISQL, then setup the

user as a new ISQL user. Make sure that ISQL has been installed on the remote

application server.

5. Grant the user (or arrange to have granted) the appropriate level of authority

to access data and use resources at each of the remote application servers.

6. Specify the default application server.

7. If required, load initial tables.

8. Ensure that the new user obtains adequate training on the remote application

server and on how to access it from the local DB2 Server for VSE & VM

application requester.

Setting Up New ISQL Users

To set up a new ISQL user to access the resources of an application server, run the

SQLDBA.ARINEWUS routine supplied by IBM and previously loaded into the

SQLDBA.ROUTINE table during database generation.

Note: The ARINEWUS routine is intended for DB2 Server for VSE & VM

application servers only. If you need to add a new ISQL user to a non-DB2

Server for VSE & VM application server create your own routine using

ARINEWUS as a sample. This routine uses a CONNECT statement

containing an IDENTIFIED BY clause, as well as a GRANT CONNECT

statement. These statements are unique to DB2 Server for VSE & VM

application servers and may not be supported by non-DB2 Server for VSE &

VM application servers.

Start ISQL and connect as SQLDBA (or some other user ID with DBA authority),

then type:

 RUN SQLDBA.ARINEWUS (newuser newuserpw)

For newuser, specify:

v In VM, the CP LOGON user ID (the name of the user’s virtual machine) or,

v In VSE, the user’s CICS sign-on ID.

For newuserpw, specify a password for the new user.

The ARINEWUS routine does the following:

v Issues an ISQL SET RUNMODE CANCEL command.

v Issues an ISQL SET AUTOCOMMIT OFF command.

v Grants CONNECT authority to the new user. The routine parameters newuser

and newuserpw are used on the CONNECT statement.

v Creates a copy of a set of sample tables for the user, and grants him or her full

authority on them. These tables are named:

 newuser.DEPARTMENT

 newuser.EMPLOYEE

 newuser.PROJECT

 newuser.ACTIVITY

 newuser.PROJ_ACT

 newuser.EMP_ACT

 newuser.CL_SCHED

 newuser.IN_TRAY

82 Database Administration

v Copies data from the sample tables owned by user ID SQLDBA into the new

user’s sample tables. (Only the rows needed to duplicate the examples shown in

the DB2 Server for VSE & VM Interactive SQL Guide and Reference manual are

copied.)

v Creates indexes on the sample tables.

v Creates and loads an ISQL routine table (newuser.ROUTINE), which includes an

ISQL PROFILE routine, as follows:

 NAME SEQNO COMMAND REMARKS

 ------- ----- -------------- -------

 PROFILE 10 SET VARCHAR 35 NULL

 PROFILE 20 SET CASE UPPER NULL

v Creates an index on the routine table.

v Issues an ISQL SET AUTOCOMMIT ON command.

When you run ARINEWUS, you will be prompted to enter either COMMIT or

ROLLBACK. If no errors occurred, enter COMMIT; otherwise, enter ROLLBACK.

The ARINEWUS routine sets up the new user only in the application server that

you are connected to when you invoke the routine. If a user is to have access to

more than one application server, connect to these other application servers and

run ARINEWUS again for each one.

Example

A new user with a user ID of ALEX and a password of ALEXPW is defined. Alex

does application development work and needs access to two application servers:

PROD and TEST.

Do the following in a VM system:

1. Log on to your own user machine, and IPL CMS.

2. Issue SQLINIT DBNAME(PROD). (Assume that the PROD application server is

currently being accessed by some database machine in multiple user mode.)

3. Start the ISQL program.

4. Connect to the PROD application server under a user ID with DBA authority.

In the example below, the user ID is SQLDBA. The step is optional if you

already have DBA authority. Enter:

CONNECT SQLDBA IDENTIFIED BY sqldbapw

Assume you know the password of the SQLDBA user ID for both application

servers

5. Start the ARINEWUS routine:

RUN SQLDBA.ARINEWUS (ALEX ALEXPW)

6. Connect to the TEST application server under a user ID with DBA authority:

CONNECT SQLDBA IDENTIFIED BY sqldbapw TO TEST

7. Start the ARINEWUS routine:

RUN SQLDBA.ARINEWUS (ALEX ALEXPW)

8. Exit from the ISQL program.

Do the following in a VSE system:

1. Ensure that the application servers PROD and TEST have been started with the

DLBL and LIBDEF statements required for accessing the application servers.

Also ensure that the CICS system has been started and initialized for DB2

Server for VSE on-line access to both PROD and TEST.

Chapter 4. Supporting Your Users 83

2. Start the ISQL program.

3. Connect to the PROD application server under a user ID with DBA authority.

In the example below, the user ID is SQLDBA. The step is optional if you

already have DBA authority. Enter:

CONNECT SQLDBA IDENTIFIED BY sqldbapw TO PROD

Assume you know the password of the SQLDBA user ID for both application

servers

4. Start the ARINEWUS routine:

RUN SQLDBA.ARINEWUS (ALEX ALEXPW)

5. Connect to the TEST application server as SQLDBA (or with any ID that has

DBA authority).

CONNECT SQLDBA IDENTIFIED BY sqldbapw TO TEST

6. Start the ARINEWUS routine:

RUN SQLDBA.ARINEWUS (ALEX ALEXPW)

7. Exit from the ISQL program.

Alex is now set up to use both application servers.

If you want to review the contents of the ARINEWUS routine before you invoke it,

issue the following SELECT statement on either application server:

 SELECT COMMAND FROM SQLDBA.ROUTINE WHERE NAME = ’ARINEWUS’

Authorizing Access

Once you have run ARINEWUS, your new user has CONNECT authority to the

application server. This is the lowest level of authority. To decide if this is the

appropriate level for this user, and to change it if not, see Chapter 5, “Providing

Security,” on page 89.

After providing new users with CONNECT authority, you can do any of the

following:

v Acquire PRIVATE dbspaces for them so that they can create their own tables

v Grant them RESOURCE authority

v Grant them DBA authority

v Ensure that they are granted privileges on other users’ tables and views

v Create new views on tables to restrict their access to data that is appropriate for

them to see.

Specifying a Default Application Server in VM

Before VM users can access an application server, a default application server

needs to be established. Users must process the SQLINIT EXEC to specify the

application server they intend to access. For example, if the user intends to access

the TEST application server, he or she must enter:

 SQLINIT DBNAME(TEST)

Users only need to re-process the SQLINIT EXEC if they want to explicitly change

the current SQLINIT options. The most current SQLINIT information is stored on

each user’s A-disk. For more information, see “SQLINIT EXEC” on page 243.

84 Database Administration

Loading Initial Tables

New users likely have existing files of data that they want to store in the database.

If the files are short, the data they contain can be typed in at the terminal using

ISQL statements. This method, however, is not suitable for large files. Here, you

can use the DBS Utility to transfer data into a database. For information on how to

use the DBS Utility, see “Loading Data into Tables” on page 59.

Training New Users

It is your responsibility to assist new users with the DB2 Server for VSE & VM

database manager, and to deal with their questions and problems. Ensuring new

users are adequately trained will reduce your problem-solving duties.

Removing Users from an Application Server

When users leave your area, both their access to the application server and any

unwanted data should be removed. You should try to get people to remove their

own data before they leave; however, you will often have to do so yourself.

The following steps describe how to remove a user’s access to an application

server. If a user was using multiple application servers, you must perform this

process for each server. You must have DBA authority to perform these steps.

If you have DBA authority, you can revoke a user’s authority to access the

application server at any time by issuing the REVOKE CONNECT statement listing

the user(s) affected. For example:

 REVOKE CONNECT FROM JOHN,KAREN,ALICE

Revoking a user’s CONNECT authority prevents that user ID from accessing the

application server. This action only removes the user IDs from the

SYSTEM.SYSUSERAUTH catalog table; it does not affect any objects (for example,

tables) in the database which those users may have created, nor does it affect any

privileges that may have been granted to them.

Example

An employee whose user ID was SMITH has left the company. To remove

SMITH’s database objects, do the following:

 1. Determine the names of PRIVATE dbspaces owned by SMITH. Type:

 SELECT DBSPACENAME FROM SYSTEM.SYSDBSPACES

 WHERE OWNER=’SMITH’

 2. Determine the names of tables owned by SMITH. Type:

 SELECT TNAME,DBSPACENAME FROM SYSTEM.SYSCATALOG

 WHERE CREATOR=’SMITH’

 AND TABLETYPE=’R’

This command displays the names of the tables that SMITH created, and the

dbspaces where they were created. The TABLETYPE=‘R’ (R stands for real

table) indicates that you want to see only the tables at this point; you do not

yet want to see any views that SMITH defined. Record those tables that are in

PUBLIC dbspaces for later use in step 8.

 3. Determine whether any of SMITH’s tables participate in a referential structure

that is not wholly owned by SMITH.

 SELECT TNAME, TCREATOR, REFTNAME, REFTCREATOR FROM SYSTEM.SYSKEYS

 WHERE (TCREATOR ¬= ’SMITH’ AND REFTCREATOR = ’SMITH’)

 OR (TCREATOR = ’SMITH’ AND REFTCREATOR ¬= ’SMITH’)

Chapter 4. Supporting Your Users 85

This command displays tables created by others that reference tables created

by SMITH, as well as tables created by SMITH that reference tables created by

others. Make note of the tables you want to save.

 4. Determine if the PRIVATE dbspace owned by SMITH contains any tables that

were created by other users. Remember that when you drop a dbspace, you

drop all tables that exist in it, whether they were created by the owner or by

other users.

For each PRIVATE dbspace owned by SMITH, type:

 SELECT TNAME,CREATOR FROM SYSTEM.SYSCATALOG

 WHERE CREATOR¬=’SMITH’

 AND DBSPACENAME=’dbspacename’

 AND TABLETYPE=’R’

This command lists the names of all tables in dbspacename that SMITH did not

create, along with the names of who created them. The TABLETYPE=‘R’ (R

stands for real table) indicates that you want to see only the tables at this

point, not views.

 5. Based on the information you acquired in the last three steps, transfer any

tables that you want to save. If any of these tables participate in referential

structures, the referential constraints must be rebuilt to reflect the changed

ownership of the tables.

There are many ways to transfer (copy) tables to another dbspace. One way is

to first create a new table with the same format in a different dbspace; then

use an INSERT with Subselect statement to retrieve data from the original

table and insert it into the new table.

There are more sophisticated techniques available using the DBS Utility. For

information, refer to “Maintaining Tables” on page 59 or to the DB2 Server for

VSE & VM Database Services Utility manual.

 6. Copy any programs that you want to save that currently reside in SMITH’s

PRIVATE dbspaces into another dbspace.

 7. Drop the PRIVATE dbspaces owned by SMITH, which you determined in step

1, by issuing the DROP statement:

 DROP DBSPACE SMITH.dbspacename

 8. Drop any of SMITH’s tables you no longer need, as determined in step 2. All

associated indexes and views are also dropped.

 DROP TABLE SMITH.tablename

 9. Drop any of SMITH’s views that were defined on other users’ objects in

PUBLIC dbspaces or in other users’ PRIVATE dbspaces. To get the names of

those views from the catalog tables, type:

 SELECT VIEWNAME FROM SYSTEM.SYSVIEWS

 WHERE VCREATOR=’SMITH’

 DROP VIEW SMITH.viewname

10. Drop any of SMITH’s indexes that were defined on other users’ objects in

PUBLIC dbspaces or in other users’ PRIVATE dbspaces. To get the names of

those indexes from the catalog tables, type:

 SELECT INAME FROM SYSTEM.SYSINDEXES

 WHERE ICREATOR=’SMITH’

 DROP INDEX SMITH.indexname

11. Drop any of the packages created by SMITH. To display the names of those

packages from the catalog tables, type:

86 Database Administration

SELECT TNAME FROM SYSTEM.SYSACCESS

 WHERE CREATOR=’SMITH’

 DROP PACKAGE SMITH.packagename

12. Delete any synonyms created by SMITH:

 DELETE FROM SYSTEM.SYSSYNONYMS

 WHERE USERID=’SMITH’

13. Delete any ISQL stored queries created by SMITH.

To determine these queries, type:

 SELECT STMTNAME FROM SQLDBA."STORED QUERIES"

 WHERE CREATOR=’SMITH’

Then issue a single DELETE statement:

 DELETE FROM SQLDBA."STORED QUERIES"

 WHERE CREATOR=’SMITH’

It is helpful if departing employees remove their own data from the database.

Only someone with DBA authority can delete stored queries in the above

manner; others use the ISQL ERASE command. For example, to delete a

stored query called MYQUERY, SMITH would start ISQL and type:

 ERASE MYQUERY

14. Revoke any privileges granted to SMITH. To get the names of all users who

granted privileges to SMITH, type:

 SELECT * FROM SYSTEM.SYSTABAUTH

 WHERE GRANTEE=’SMITH’

 SELECT * FROM SYSTEM.SYSPROGAUTH

 WHERE GRANTEE=’SMITH’

Contact these users and have them revoke all of SMITH’s privileges. Or, if a

user is not available, you can explicitly connect with his or her password to

revoke them yourself.

15. In VM, remove any IUCV links.

If SMITH’s VM directory contains IUCV entries or the MAXCONN OPTION

for the database resources, these entries should be removed, as well as access

to the 195 production disk.

16. Remove Access from VSE guests.

If SMITH accessed a DB2 Server for VM application server from a VSE guest,

and used the CICS system, you should remove the transaction IDs used by

SMITH in the CICS system. For more information on transaction IDs, see the

DB2 Server for VM System Administration manual.

Chapter 4. Supporting Your Users 87

88 Database Administration

Chapter 5. Providing Security

The database manager controls security with authorities and privileges granted to

users (identified by their user IDs). Authorities limit people’s use of DB2 resources

(for example, whether they can create tables in PUBLIC dbspaces or acquire

PRIVATE dbspaces), while privileges provide security for existing objects in the

database (tables, views, indexes, and packages).

All privileges and authorities held within an application server are recorded in the

catalog tables.

To access and perform SQL requests for an application server, users (ISQL users,

DBS Utility users, and application programs) must be allowed to CONNECT to the

application server implicitly (without a user ID or password), or explicitly (with a

user ID and its password). With either type of connecting, the user can work with

utilities, programs, and the data in the database based on pre-established

authorities. Connecting is much the same as logging on to the VM or VSE system.

This chapter discusses the following topics:

1. Authorities.

This section discusses the four types of authorities and how they can be given

(granted) to or taken away (revoked) from users.

2. User Privileges.

This section describes how privileges can be used to share or restrict access to

the data in tables or views.

3. Connecting to an Application Server

This section discusses how a user can connect to an application server. Users

must connect to an application server before they can use it.

4. Restricting Access Using Views.

This section discusses the use of views to restrict access to tables.

5. Changing User Passwords.

This section describes how you can change the password of your DB2 Server

for VSE & VM users.

6. Securing the Database Catalog Tables.

This section discusses how you can limit access to the catalog tables.

7. Security Audit Trace.

This section describes the two ways that you can audit security: by querying

the catalog tables or by having the database manager do a security audit trace.

Authorities

When a database is initially generated, there is only one user ID defined for it:

SQLDBA. This user ID belongs to the database administrator (DBA). Only a DBA

can grant or revoke authorities to other users.

Types of Authorities

There are four types of authority: CONNECT, RESOURCE, SCHEDULE, and DBA.

© Copyright IBM Corp. 1987, 2007 89

Authorities are hierarchical, with DBA the highest, RESOURCE and SCHEDULE

the next, and finally CONNECT. If you have a higher authority, then you also have

the authority below it. For example, if you are given DBA authority, you have

RESOURCE, SCHEDULE, and CONNECT authority as well. If you are given

RESOURCE authority, you also have CONNECT authority but not SCHEDULE or

DBA authority.

CONNECT Authority

This authority enables a user to access a particular application server, and to

exercise all privileges that have been granted to PUBLIC. These privileges are

discussed in detail in “Privileges” on page 94.

A user with CONNECT authority can access data in one of two ways:

v By owning a PRIVATE dbspace, in which he or she can create tables and load

and access them. A user with DBA authority must acquire the dbspace for this

user.

v By receiving access privileges (such as SELECT, INSERT, and UPDATE) for

tables created by other users. See “Privileges” on page 94.

RESOURCE Authority

Users with this authority can acquire PRIVATE dbspaces for themselves, and create

tables both there and in PUBLIC dbspaces.

A DBA automatically possesses RESOURCE authority and the ability to grant it to

users. You can give it to just a few users to exercise tight control, or you can

extend it to any number. If you want to allow someone to create tables and you

must also control how much resources are used, acquire a PRIVATE dbspace for

that user rather than granting him or her RESOURCE authority. Because you

acquire this dbspace yourself, you control its size and the amount of resources

used. This technique is sometimes called “CREATE TABLE authority”, but this

term is misleading because there is no GRANT CREATE TABLE statement.

SCHEDULE Authority

The function associated with SCHEDULE authority is not available in the SQL

statement set. Therefore, DB2 Server for VSE & VM users cannot use it and

SCHEDULE authority is of no direct benefit to DB2 Server for VSE & VM users.

SCHEDULE authority is useful only to online resource managers that manage

subsystems of multiple second-level users. The only current example is the DB2

Server for VSE online resource adapter that manages secondary users through the

CICS subsystem. The CICS subsystem is a first-level user of the database manager.

The use of SCHEDULE authority in a CICS subsystem is discussed here.

The online resource adapter resides in each CICS partition. It initializes the

communication links between the CICS partition and the local DB2 Server for VSE

database manager, or the DB2 Server for VM database manager accessed through

guest sharing, when the operator executes the CICS CIRB transaction or the CICS

CIRA transaction. It also does a CONNECT on each link, specifying DBDCCICS as

the user ID and SQLDBAPW as the password. This user ID and password can be

overridden. Refer to “CICS Transaction Environment” on page 103 for details.

The online resource adapter in each CICS partition can connect to many

application servers. The DBNAME parameter of the CIRB or CIRA transaction

specifies the application server to which you want to connect. If DBNAME is not

specified on the CIRB transaction, the default application server is used. Refer to

“Establishing a Default Application Server” on page 101 for information on

90 Database Administration

DBNAME default rules. All online applications in a CICS partition can access the

application servers connected with the online resource adapter.

The schedule function comes into play when a CICS transaction uses SQL

statements without preceding them with a CONNECT statement1 on a local

application server or on a VM application server accessed through guest sharing.

When this occurs, the resource adapter sends a schedule request to the database

manager. This request travels on the link being used by the transaction. A schedule

request is similar to a CONNECT, but it has no password. The resource adapter

determines the user ID as described in “CICS Transaction Environment” on page

103.

The schedule function allows dynamic changing of the current user ID on a link to

the database manager without requiring a password. For this to occur, the initial

user of the link must have SCHEDULE authority. For a CICS session, the initial

user of the link is the unique application name (APPLID) assigned to the CICS

partition in the DFHSIT table. The default APPLID name is DBDCCICS. This user

ID represents the entire CICS subsystem. The database administrator must grant

each APPLID SCHEDULE authority on the application server so that the links to

the database manager can be shared implicitly by multiple transactions. If a CICS

partition is to connect to more than one local application server, the APPLID for

the partition must be granted SCHEDULE authority on each application server.

Transactions that do not issue CONNECT statements1 receive their connection to

the database manager implicitly through the CICS subsystem. The assumption is

made that the CICS subsystem checked the user’s identification and password

when the user began the CICS session, so the database manager does not need to

do further checking. On the other hand, each transaction is subject to all the other

security controls. The user ID received by the database manager with the schedule

request is the basis for this transaction user’s authorization.

Because CONNECT authority is not needed for CICS transactions, the user IDs

that they use need not appear in the SYSTEM.SYSUSERAUTH catalog table. This

catalog table does not necessarily have an entry for every user. Second-level users

can access all PUBLIC data and may be granted access to PRIVATE data as well.

Although a user may not be given CONNECT authority explicitly, that user can be

granted RESOURCE authority or SCHEDULE authority and will receive

CONNECT authority as a result.

Note: This discussion applies only to transactions that do not issue a CONNECT

statement. When a transaction does issue a CONNECT statement1, it

appears as an ordinary user, and the schedule function is not used.

A user possessing DBA authority possesses SCHEDULE authority and the ability

to grant SCHEDULE authority to other users.

To grant SCHEDULE authority, use a statement such as:

 GRANT SCHEDULE TO dbdccics IDENTIFIED BY password

If the user’s password has been entered previously and is not to be changed, you

can omit the “IDENTIFIED BY password” portion of the GRANT statement. Refer

to “CICS Transaction Environment” on page 103 for details.

1. The CONNECT statement with the following format: CONNECT userid IDENTIFIED BY password.

Chapter 5. Providing Security 91

DBA Authority

Authorization mechanisms do not apply to users with this authority. They can

perform all operations on all tables, can run all programs, and are the only ones

who have the following privileges:

v Grant and revoke SCHEDULE, CONNECT, RESOURCE, and DBA authority

to/from other users. All DBAs at a site have equal authority, and can grant and

revoke DBA authorities to each other. Because no user may revoke his or her

own authority, there will always be at least one DBA (not necessarily the original

one).

v Acquire a PUBLIC dbspace.

v Alter or drop any PUBLIC dbspace except for system dbspaces (those whose

names begin with “SYS”).

v Acquire, alter, or drop a PRIVATE dbspace or create, alter, or drop a table, index,

synonym or view, in the name of another user.

v Drop a package belonging to another user.

v Lock another user’s PRIVATE dbspace or any PUBLIC dbspace (except system

dbspaces).

v Lock another user’s table (except the catalog tables).

v Issue a COMMENT statement on a table or field owned by another user.

v Create a table in a system dbspace.

v Issue Data Manipulation Language statements directly against an inactive table.

See “Altering Referential and Unique Constraints” on page 65.

v Modify the contents of a catalog table with a regular UPDATE statement. Rows

cannot be INSERTed or DELETEd. Because all access to the data in the database

depends on the correctness of the catalog tables, manual updating of catalog

tables should be done only under extraordinary circumstances. Only a small set

of catalog table columns can be updated. These are listed in the DB2 Server for

VSE & VM SQL Reference manual.

v For Extended Dynamic Statements:

– Drop another user’s program (package) or drop a statement from that

package.

– Use PREPARE, DESCRIBE, EXECUTE, or DECLARE CURSOR for a statement

residing in another user’s package.

No user, including those with DBA authority, can drop a catalog table.

As DBA, you may perform certain operations that are otherwise unauthorized, but

may not grant or revoke these operations. For example, you may update a

particular table that you do not own explicitly, but you may not grant or revoke

this privilege to others.

The functions enabled by DBA authority are potentially quite dangerous to the

integrity of the database if applied by an untrained user. Therefore, you should

carefully control who receives this authority, as well as being very cautious in the

use of this special authority yourself.

Granting Authorities

To grant any authority (SCHEDULE, CONNECT, RESOURCE, or DBA) to other

users of an application server, issue the GRANT statement. You must have DBA

authority on that application server. For information on the syntax of this

statement, see the DB2 Server for VSE & VM SQL Reference manual.

92 Database Administration

Granting someone a higher authority automatically gives them the lower authority

as well, regardless of whether these are specified on the GRANT statement. Thus, a

user who is granted RESOURCE authority will also have CONNECT authority;

one who has DBA authority also has CONNECT, RESOURCE, and SCHEDULE

authority.

If you are granting authority to a user at a remote system, the authorization-name

specified in the GRANT statement must be the authorized user ID of the user on

the system where the authority is being granted, not that on the system where the

request originates.

Examples

Granting authority to a single user: To give the user ID MIKE CONNECT

authority to the application server, enter:

 GRANT CONNECT TO MIKE IDENTIFIED BY mikespwd

If the user MIKE intends to connect to the application server implicitly, you can

omit his password:

 GRANT CONNECT TO MIKE

Granting authority to many users: To give the user IDs MIKE and JOHN

RESOURCE authority to the application server, enter:

 GRANT RESOURCE TO MIKE,JOHN IDENTIFIED BY mikespwd,johnspwd

If MIKE intends to connect to the application server implicitly, you may omit his

password and just enter:

 GRANT RESOURCE TO JOHN IDENTIFIED BY johnspwd

 GRANT RESOURCE TO MIKE

Granting CONNECT authority to all users: The following statement enables all

users to connect to the application server implicitly:

 GRANT CONNECT TO ALLUSERS

Users who wish to connect explicitly to the application server must be given

CONNECT authority with a password. In VM, the ability to communicate with a

DB2 Server for VM database manager depends on VM directory statements and is

discussed in the DB2 Server for VM System Administration manual.

Granting Access to VSE Guests

When VSE/AF runs as a guest operating system under the VM/ESA operating

systems, VSE users and programs can optionally access a DB2 Server for VM

application server. A VSE guest who wishes to do this must obtain authorization.

On the GRANT statement, specify a VM user ID that is authorized to run the VSE

subsystem.

The subsystemid follows the same general rules for naming data objects as the user

ID, and cannot contain lowercase characters, special characters, or DBCS

characters.

Example: To give the CICS subsystem MYCICS SCHEDULE authority, enter:

 GRANT SCHEDULE TO MYCICS IDENTIFIED BY cicspw

where cicspw is the current password set for the subsystem.

Chapter 5. Providing Security 93

Revoking Authorities

To revoke authorities previously granted to users, issue the REVOKE statement.

You must have DBA authority. For information on the syntax of this statement, see

the DB2 Server for VSE & VM SQL Reference manual.

Revoking a user’s CONNECT authority does not automatically cause any objects

owned by that user to be dropped, nor does it revoke any privileges the user has

on those objects. For information on how to drop objects, see “Removing Users

from an Application Server” on page 85.

If a user’s CONNECT authority is revoked, all other authorities are lost. For

example, if you are a DBA and another DBA revokes your CONNECT authority,

then you will lose your RESOURCE, SCHEDULE, and DBA authorities as well.

A user who loses RESOURCE authority will still have CONNECT authority. You

cannot revoke RESOURCE authority from a user with DBA authority.

A user who loses SCHEDULE authority will still have CONNECT authority. You

cannot revoke SCHEDULE authority from a user with DBA authority.

A user who loses DBA authority will also lose RESOURCE and SCHEDULE

authority, but will retain CONNECT authority.

When revoking remote users, the authorization-name specified in the REVOKE

statement must be the authorized user ID of the user on the remote system where

the authority is being revoked, not that on the system where the request originates.

Examples

To revoke JOHN’s CONNECT authority, enter:

 REVOKE CONNECT FROM JOHN

To revoke JOHN and ALICE’s DBA authority, enter:

 REVOKE DBA FROM JOHN,ALICE

To revoke JOHN and ALICE’s SCHEDULE authority, enter:

 REVOKE SCHEDULE FROM JOHN,ALICE

Revoking Access from VSE Guests

Use the REVOKE SCHEDULE statement to revoke remote access by a VSE

subsystem.

To revoke the SCHEDULE authority of the CICS subsystem called MYCICS, enter:

 REVOKE SCHEDULE FROM MYCICS

Privileges

The DBA grants authorities to the users of the application server. Within the

framework set up by the DBA, individual users can grant to each other the

privileges they need to access specific data. To grant or revoke privileges on an

object, a user must hold GRANT authority on those privileges, and be connected to

the application server where the object resides.

The following are the privileges that can be held on a table (or view) in the

database:

SELECT To read from a table

94 Database Administration

INSERT To add rows to a table

DELETE To delete rows from a table

UPDATE Can apply to individual columns

ALTER To add new columns, primary keys or foreign keys to a table, or to

activate or deactivate existing keys

INDEX To create or manipulate indexes on a table

REFERENCES To add, drop, activate, or deactivate a foreign key relationship

The first four privileges in this list apply to views as well as to tables.

The holder of a privilege may exercise it directly through a user mechanism such

as ISQL, or by compiling and running programs that entail using it.

Privileges of Ownership

When an object is created, its ownership is established. If the object name is not

qualified (for example, EMPLOYEE), the owner is the connected user. If the object

is qualified (for example, JESSICA.EMPLOYEE), the owner is the individual whose

user ID is specified. The owner of an object automatically has full privileges on it.

Once the ownership of a table or view is established, there is no way to change it

or to revoke the privileges that accompany ownership. If either of these is

necessary, you must drop the object, which deletes all privileges on it, and then

re-create it with a new owner.

Granting Privileges to Other Users

The owner of an object possesses the GRANT option on each privilege, meaning

the ability to grant individual privileges, or any combination of them, to other

users. When a privilege is granted, the GRANT option (the ability for the recipient

to in turn make further grants) may or may not be included.

Privileges can be granted to other users using the GRANT statement described in

the DB2 Server for VSE & VM SQL Reference manual.

v Issuing GRANT ALL or GRANT ALL PRIVILEGES grants the recipient all the

privileges possessed by the grantor on that object (which may of course not

include all possible ones). If GRANT ALL is issued on a view, only the

privileges on the view, not those on the base tables, are granted.

v Issuing GRANT REFERENCES enables the recipient to reference the parent table

when a foreign key is added, dropped, activated, or deactivated through the

CREATE TABLE or ALTER TABLE statements.

v Issuing GRANT ALTER enables the recipient to add a new column or to add,

drop, activate, or deactivate a primary or foreign key. To alter a primary key, the

ALTER privilege is required on the parent table and all dependent tables. To

alter a foreign key, the ALTER privilege is required on the dependent table, and

the REFERENCES privilege is required on the parent.

Withholding these privileges restricts the ability of the recipient to change the

state of referential constraints. If the owner of a parent table grants the

REFERENCES privilege on it to another user, and the recipient then creates a

foreign key relationship with the parent’s primary key but does not grant

ALTER privilege on the dependent table back to the owner of the parent table,

the owner cannot drop the primary key. (He or she may, of course, drop the

entire table.)

v The UPDATE privilege can apply to specific columns. For example, the

following statement will allow CINDY to update the address (ADDR) and phone

number columns (PHONE) of the EMPDATA table:

Chapter 5. Providing Security 95

GRANT UPDATE (ADDR,PHONE) ON EMPDATA TO CINDY

If you are granting a user privileges at a remote system, the authorization-name

specified in the GRANT statement must be the same as the name that the grantee

uses to access the database manager system on the remote system.

Revoking Privileges

A user who grants another user a privilege may later revoke it, by issuing the

REVOKE statement described in the DB2 Server for VSE & VM SQL Reference

manual. If a user loses a privilege, all other users to whom that user granted it

automatically lose it too by the cascading effect, unless they have another

independent source for it. Issuing REVOKE ALL or REVOKE ALL PRIVILEGES

takes away all privileges that were granted.

If you are revoking a user’s privileges at a remote system, the authorization-name

specified in the REVOKE statement must be the name that the user specifies to

access the database manager system on the remote system.

Monitoring Privileges

All the privileges held by users on tables and views are listed in the catalog tables

SYSTEM.SYSTABAUTH and SYSTEM.SYSCOLAUTH. Users can check which

privileges they hold and which they have granted to others, by querying these

tables.

Examples

To determine the privileges that you hold, enter:

 SELECT * FROM SYSTEM.SYSTABAUTH

 WHERE GRANTEE = user

To determine the privileges that you have granted to other users, enter:

 SELECT * FROM SYSTEM.SYSTABAUTH

 WHERE GRANTOR = user

 AND GRANTEE <> user

 AND GRANTEETYPE = ’ ’

For descriptions of the catalog tables, see the DB2 Server for VSE & VM SQL

Reference manual.

Privileges on Application Programs

DB2 Server for VSE & VM application programs must be preprocessed before they

are compiled or assembled. In VM and VSE batch environments, successful

preprocessing of an application program results in the creation or replacement of a

package in the database. In VSE, in addition to successful preprocessing, binding

(Batch Binding/CBND) of an application program also results in the creation or

replacement of a package in the database. The contents of the package are

instructions used to satisfy database requests at run time.

When a package is created, a level of EXECUTE privilege is granted to its creator.

This level is dependent on several factors, such as the preprocessed SQL

statements, the existence and ownership of the referenced objects (tables, indexes,

and dbspaces), and the creator’s authorization level (DBA, RESOURCE, or

CONNECT). The creator’s EXECUTE privilege follows rules and conditions that

are discussed in the DB2 Server for VSE & VM Application Programming manual.

96 Database Administration

|

|

|

|

|

|

|

Connecting to an Application Server in VM

A VM user must have CONNECT authority and be connected to an application

server in order to perform SQL requests on it.

All VM users must connect to an application server explicitly or implicitly

regardless of whether they are accessing it in multiple user mode or single user

mode. If a user does not have a DB2 Server for VM authorization ID and

password, the user must connect implicitly. A user with a DB2 Server for VM

authorization ID and password can connect either implicitly or explicitly.

Establishing a Default Application Server

In order to run a preprocessor, the DBS Utility, any application program, or ISQL,

VM users must establish a default application server. This is done by invoking the

SQLINIT EXEC, and needs to be done only once.

Example

To establish the SQLDBA application server as the default, enter:

 SQLINIT DBNAME(SQLDBA)

Information about the default application server chosen is stored on the VM user’s

minidisk (A-disk) in the ARISRMBT module and the LASTING GLOBALV file. If

the VM user wants to establish another application server as the default or to

change any of the options, he or she would have to re-run the SQLINIT EXEC. For

more information see “SQLINIT EXEC” on page 243.

Connecting to the Application Server Implicitly

Connecting to the application server implicitly means to connect to it without

providing an authorization ID and password explicitly. If a VM user does not

provide a CONNECT statement, then the first time that he or she tries to run an

SQL statement, the VM application requester connects to the application server

implicitly. The database manager checks its catalog tables to see whether that

user’s ID, the VM logon ID (established in the CP LOGON procedure), has been

granted CONNECT authority. (It does not compare the user’s CP LOGON

password with the DB2 Server for VM application server password, as it can be

assumed that a password that has been verified by the CP LOGON procedure is

valid.)

Most VM users will want to connect to the application server implicitly, so when

you grant them CONNECT authority, use their CP LOGON user IDs.

The implicit connect support works the same for VM application programs, for

ISQL, for the DBS Utility, and for remote application servers; however, each has its

own considerations, as discussed below.

Note: When working in an environment that includes several application servers

that can be accessed from several different application requesters, there is

the need for unique authorization IDs. The database manager does not

recognize the same authorization ID from two (or more) different

application requesters as being different. It is the administrator’s

responsibility to ensure that the authorization IDs in this situation are

unique.

Chapter 5. Providing Security 97

How Implicit CONNECT Applies to VM Programs

For application programs that contain SQL statements, a distinction is made

between the creator and the runner of the program.

v The creator is the VM user who submits the program to one of the language

preprocessors. This individual’s authorization ID, which is specified in the

USERID parameter passed to the preprocessor, is used to perform all

authorization checking for the functions performed against data managed by

DB2 Server for VSE & VM, and is the default owner of all objects (tables or

views) created by the program. This authorization ID automatically has the

EXECUTE privilege for the program.

When not coded explicitly, the authorization ID is derived from the CP LOGON.

v The runner is the VM user who runs (executes) the program. This individual’s

authorization ID is either that specified in the CONNECT statement run by the

program, or is the authorization ID that is connected implicitly. The runner may

be the creator, or may be someone to whom the creator has granted the

EXECUTE privilege.

When coded explicitly, the authorization ID and password for the CONNECT

statement are derived from host variables in the program. The values for these

variables should be acquired at run time from control cards by the executing

program. If they are constants fixed in the program, anyone can run the

program.

When not coded explicitly, the authorization ID is derived from the CP LOGON.

Refer to the DB2 Server for VSE & VM Application Programming manual for more

information about how implicit CONNECT applies to application programs.

How Implicit CONNECT Applies to ISQL (VM)

To start ISQL, a VM user invokes the ISQL EXEC. The database manager always

initially does an implicit connect for ISQL users, so this EXEC does not accept an

authorization ID. The authorization ID is derived from the ID of the user’s virtual

machine, as described on page 97.

The user can issue explicit CONNECT statements to override any previous explicit

or implicit connection established for the ISQL session.

Refer to the DB2 Server for VSE & VM Interactive SQL Guide and Reference manual

for more information.

How Implicit CONNECT Applies to the DBS Utility (VM)

When the DBS Utility begins processing an input control file, it expects a

CONNECT statement before any other DBS Utility or SQL statements. If none is

supplied, the database manager will use the ID of the user’s virtual machine.

If the utility is invoked from an application that has already issued a CONNECT

statement (implicitly or explicitly), then another one is not expected. Here, the

authorization ID that was in effect when the program first invoked the utility is

used.

The user can issue explicit CONNECT statements to override any previous explicit

or implicit connection.

Refer to the DB2 Server for VSE & VM Database Services Utility manual for more

information.

98 Database Administration

How Implicit CONNECT Applies to Remote Application Servers

When a VM user implicitly connects to a remote application server, the

authorization ID passed by the requester or received by the server may be different

than the VM logon user ID. It will depend on how the CMS Communication

Directory has been set up for the requester, and whether the server performs user

ID translation. Refer to the Distributed Relational Database Connectivity Guide manual

for more information about security levels specified in the CMS Communication

Directory when implicitly connecting to a remote application server.

How Implicit CONNECT Applies to TCP/IP

When a VM user implicitly connects to an application server using TCP/IP as the

communications protocol, an explicit connect is performed by the resource adapter

using the authorization ID and password found in the CMS Communications

Directory. There is no implicit connect when TCP/IP is being used.

Connecting to the Application Server Explicitly

VM users may want to connect to an application server other than the default one,

switch to another application server, or connect to an application server as a

different authorization ID. These situations entail making an explicit connection.

Switching to Another Application Server

After connecting to an application server, a VM user may want to switch to a

different one. The user issues an SQL CONNECT statement to switch to this

second application server.

Example - Without Specifying an Authorization ID and Password: To switch to

the DB01 application server, enter:

 CONNECT TO DB01

Since the authorization ID and password are not specified on the CONNECT

statement, they will be taken from the VM communications directory file if it is

used and if it contains an entry for the DB01 application server. If the file is not

used, if it does not exist, or if it does not contain an entry for the DB01 application

server, the VM logon user ID will be used in an implicit connect.

If this statement fails, the VM user will not remain connected to the original

application server and no other SQL statements will be accepted. The VM user will

have to issue a new CONNECT statement.

When the VM user issues the first SQL statement to be processed on the second

application server, the database manager will try to implicitly connect him or her

to that application server, using the VM logon user ID as the authorization ID. VM

users can avoid the implicit connect by connecting as another user (discussed next)

while switching application servers.

Example - Specifying an Authorization ID and Password: To switch to the DB01

application server under an authorization ID JOHN with a password of johnpw,

enter:

 CONNECT JOHN IDENTIFIED BY johnpw TO DB01

If this statement fails, the VM user will not remain connected to the original

application server and no other SQL statements will be accepted. The user will

have to issue a new CONNECT statement.

Chapter 5. Providing Security 99

Connecting under Another Authorization ID

A VM user connects under another authorization ID to the currently established

application server by issuing an SQL CONNECT statement. If the user is not

currently connected to an application server, if the previous connection has been

released, or if the user switched to a new CMS Work Unit in VM/ESA, then the

default application server, established by the SQLINIT EXEC, will be used.

Example: To connect to the currently established application server under the

authorization ID JOHN with a password of johnpw, enter:

 CONNECT JOHN IDENTIFIED BY johnpw

If this statement fails, the VM user will remain connected to the application server

as the original authorization ID.

A previous connection could be released for the following reasons:

v A COMMIT RELEASE or ROLLBACK RELEASE statement was issued.

v The previous logical unit of work (LUW) was canceled by the user (using

SQLHX or ISQL CANCEL) or by the operator (using the FORCE statement). The

cancellation releases the connection.

v The previous connection was disabled by the operator (using FORCE DISABLE)

or by other errors such as the database machine not being ready or

communications problems.

v In the VM environment, the previous connection was disabled by the operator

using a FORCE without the DISABLE option.

Determining the Currently Established Application Server

If a user issues an SQL CONNECT statement without any parameters, the database

manager will return the following information:

v The currently connected user ID

v The application server name

v The product ID which can be ’ARI ’ or ’ARI7010’ depending on when the

CONNECT was issued.

Refer to the DB2 Server for VSE & VM SQL Reference manual for more information

about the CONNECT statement.

Connecting to an Application Server in VSE

To control access to the data managed by the database manager, it is necessary to:

v Tell the database manager the users that are authorized to use the DB2 Server

for VSE database and protect their access by means of passwords.

v Inform the database manager when a particular user wants to begin accessing

the DB2 Server for VSE database.

The authority to use a DB2 Server for VSE database is established by granting a

user CONNECT authority. The CONNECT authority carries with it a DB2 Server

for VSE password, which is that user’s key to the application server. After a user

has received CONNECT authority (been assigned an authorization ID and

password), the user can begin to use an application server through the CONNECT

function. After users have received their authorization IDs and passwords, they

can change their own passwords at any time.

All VSE users must connect to an application server explicitly or implicitly:

100 Database Administration

v Batch users must have a DB2 Server for VSE authorization ID and password,

and must connect explicitly.

v Online users who do not have a DB2 Server for VSE authorization ID and

password must connect implicitly. Other online users can use either method.

The CONNECT function can also be used either directly (through the CONNECT

statement with the “userid IDENTIFIED BY password” clause) or indirectly (through

a subsystem logon procedure). The procedure for connecting to an application

server is slightly different for each user environment. The following sections

describe these situations.

Establishing a Default Application Server

You may identify the desired application server by specifying the DBNAME

parameter at system startup, on the CICS CIRB or CICS CIRC transaction, on the

CONNECT statement, when preprocessing, or when binding (Batch

Binding/CBND). If you do not specify a server name, these DBNAME default

rules apply:

v The partition default DBNAME is used if it is specified in the PARTDEF field of

the DBNAME Directory.

v If a partition default is not specified, the system default DBNAME is used if it is

specified in the SYSDEF field of the DBNAME Directory.

v If neither a partition nor a system default is specified, the default DBNAME is

SQLDS and the default APPLID is SYSARI00.

Note: SQLDS must still be identified in the DBNAME Directory.

For further information on the DBNAME Directory, refer to the DB2 Server for VSE

System Administration manual.

Connecting to the Application Server in Different VSE

Environments

DB2 Server for VSE users can connect to the application server in the following

environments:

CICS/VSE Online Environment

In a CICS/VSE online environment, online users can connect to the application

server implicitly and explicitly. If online users do not explicitly issue a CONNECT

statement specifying the authorization ID and the password, then the first time

they try to process an SQL statement, the CICS/VSE user is connected to the

application server implicitly.

A CONNECT...TO statement is supported in this environment and can be used to

switch to a different application server between logical units of work. For further

information on switching, refer to “Switching to Another Application Server” on

page 105.

If the first SQL statement in a CICS/VSE application is not a CONNECT statement

with the TO clause, the default application server is connected. On subsequent

CONNECTs performed by that application, if the TO parameter is not specified,

then the connection to the previously connected server will be maintained. For

further information on default application servers, refer to “Establishing a Default

Application Server.”

Chapter 5. Providing Security 101

|

|

|

|

|

|

|

|

|

|

|

|

|

Batch/Interactive Environment

In a VSE batch or VSE/ICCF environment, an explicit CONNECT must be the first

statement entered by the batch user to access the application server. This statement

is described in the DB2 Server for VSE & VM Application Programming manual.

Explicit connection is required for all user programs. This connection identifies the

authorization ID, and optionally the name of the application server on which the

program will run.

A CONNECT..TO statement is supported in this environment and can be used to

switch to a different application server between logical units of work. For further

information on switching, refer to “Switching to Another Application Server” on

page 105.

If the first SQL statement in an application is a CONNECT statement in which the

TO server_name clause is not specified, or if this clause is not specified as part of

the CONNECT statement following a COMMIT RELEASE or ROLLBACK

RELEASE statement, the default application server is connected. If the TO

server_name clause is not specified as part of the CONNECT statement following a

COMMIT or ROLLBACK statement, the connection to the previously connected

server will be maintained. For further information on default application servers,

refer to “Establishing a Default Application Server” on page 101.

In this environment, there is a distinction between the user who preprocesses a

program that contains SQL statements, and the user who later runs that program.

v The creator of a program is the VSE user who submits the program to one of the

language preprocessors. The user ID specified in the USERID= parameter passed

to the preprocessor is the basis for all authorization checking for the functions

performed against data managed by the system as well as the default owner of

all objects (tables or views) created by the program. This user ID receives RUN

authority when the program is successfully preprocessed.

v The runner of a program is the VSE user who runs (executes) a program that

contains SQL statements. The user ID specified in the CONNECT statement run

by the program must be either the creator or a user ID to whom the creator has

granted the RUN privilege for this program.

The user ID and password for the CONNECT statement are derived from host

variables in the program. Their values should be acquired at run time from

control cards by the executing program. If they are constants fixed in the

program, anyone can run the program.

The runner of a program gets the privilege of accessing the application server

from the creator of the program.

ISQL Environment

When CICS users start ISQL, they are prompted for a user ID, password, and

target database. If the user enters the user ID and password only, ISQL does an

explicit CONNECT to the default target database for the user. If the user does not

enter a user ID, password or target database, ISQL does a CONNECT to the

default target database as a default user ID for the user; this defaulting is called an

implicit CONNECT. If the ISQL user enters a target database only, a CONNECT

would be made to that target database using a default user ID. If the user enters

the user ID, password and target database, ISQL does an explicit CONNECT to the

target database.

In the ISQL environment, you can access any of the application servers connected

with the online resource adapter. If the online resource adapter is not connected to

an application server, you cannot access the ISQL environment.

102 Database Administration

Note: The ISQL environment is a specific case of the CICS transaction

environment, which is discussed in the next section. An ISQL user can enter

explicit CONNECT statements to change the connection and override any

previous explicit or implicit connection established for the ISQL terminal

session.

Refer to the DB2 Server for VSE & VM Interactive SQL Guide and Reference or the

DB2 Server for VSE & VM SQL Reference manual for additional details.

CICS Transaction Environment

Online transactions need not enter a CONNECT command to establish the user ID

within the database manager. If a CONNECT command2 is not entered, the online

support establishes the authorization ID for the transaction. The implicit

CONNECT is carried out by a SCHEDULE call in the case where the online

transaction is connecting to a local application server.

This implicit CONNECT capability is useful if your installation requires terminal

users to sign on CICS. For many transactions, your installation might consider the

sign-on verification sufficient. It may also be useful if your installation has just

installed the database manager, and finds it convenient to have all users identified

by one name (for example, TESTUSER).

The online support establishes a user ID for CICS transactions connecting to a local

DB2 Server for VSE application server as follows:

1. If the local transaction issues a CONNECT command2 the user ID is established

explicitly for the application.

2. If the transaction does not issue a CONNECT command,2 the online support

establishes the user ID as follows:

a. If the transaction had a user ID established from a previous local logical

unit of work (LUW) and that LUW did not specify the RELEASE option for

COMMIT WORK or ROLLBACK WORK, that user ID is used. The CICS

communication link to the application server is freed every time an LUW

ends, and a new link is established for each LUW in the transaction.

b. If the transaction has a valid CICS sign on userid and is associated with a

terminal, the CICS signon userid is used for the user ID.

c. If a user ID was specified as an input parameter to the CIRB or CIRA

transaction that established connections to the application server, that user

ID is used. The person who invoked CIRB or CIRA will know what the user

ID is.

d. If a user ID was not specified in the CIRB or CIRA transaction that

established connections to the application server, the default user ID

CICSUSER is established for your transaction.

After the user ID is determined as described above for cases b, c, and d, one more

requirement must be met to successfully complete the connection to the application

server: CONNECT authority must be granted to either the specific authorization ID

or “ALLUSERS”. ALLUSERS is a special authorization ID that permits any user ID

to be implicitly connected without having been specifically granted CONNECT

authority, and can be used by the database administrator to turn on or turn off the

implicit CONNECT capability. During database generation, ALLUSERS is granted

CONNECT authority by default.

2. The CONNECT statement with the following format: CONNECT userid IDENTIFIED BY password.

Chapter 5. Providing Security 103

At many installations, the CICS user need not be aware of DB2 Server for VSE

authorization ID or authorization capabilities. Here, the CICS implicit connect

support can be very useful.

Suppose you code a transaction called STAT that displays the inventory status of a

given part. Banes and Smith are to be the users of the application.

You define Banes and Smith to the CICS signon process.

You must then authorize BANES and SMITH to run your program. Of course, you

must have the RUN privilege with the GRANT option on your program. For this

example, assume that the program was preprocessed with the name INVSTAT:

 GRANT RUN ON INVSTAT TO BANES, SMITH

Note: BANES and SMITH do not need CONNECT authority. It is connected

through internal mechanisms of the DB2 Server for VSE online support.

You must also establish the security key when you define the inventory program

to CICS.

To use the STAT transaction, Banes and Smith merely sign on to the CICS

subsystem by entering, for example:

 CESN BANES, XXXX

After signed on, they need only enter the transaction identifier STAT, which causes

the INVSTAT program to be loaded and invoked. Since there is no CONNECT

statement in the program, the user ID established is the signed-on user ID

(BANES). Because BANES was granted RUN authority on INVSTAT, the database

manager allows the program to process.

Online applications can access any of the application servers connected with the

online resource adapter. The online resource adapter can connect to many

application servers using the CIRA or CIRB transactions.

Refer to the DB2 Server for VSE & VM Application Programming manual for

additional information on this environment.

User IDs for Remote CICS/VSE Transactions

For online DB2 Server for VSE transactions which are accessing a remote server

and which issued an SQL CONNECT statement with the “userid IDENTIFIED BY

password” clause to establish the user ID within the database manager, the user ID

is established explicitly for the transaction.

For online DB2 Server for VSE transactions which are accessing a remote server

and which did not issue an SQL CONNECT statement with the “userid

IDENTIFIED BY password” clause to establish the user ID within the database

manager, the Online Resource Adapter will attempt to establish the user ID for the

transaction implicitly as follows:

1. If the transaction had a user ID established for a previous remote logical unit of

work, and the previous logical unit of work did not specify the RELEASE

option for COMMIT WORK or ROLLBACK WORK, and the transaction did not

switch to another application server, that user ID and its corresponding

password are used. (Remember that every time a logical unit of work ends

with RELEASE or the transaction switched to another application server, and

you enter another SQL statement, you are implicitly connected as the CICS

104 Database Administration

signon userid. Therefore, the user ID has to be re-established if the transaction

has more than one logical unit of work ending with RELEASE or if the

transaction is switching application servers.)

2. The user ID returned by the CICS ASSIGN command is used for the user ID.

Connecting to an Application Server in Special Circumstances

VSE users can connect to an application server other than the default one, or

connect to an application server as a different authorization ID. VSE batch users

can switch from an application server to another. These situations require making

an explicit connection. VSE online users can also switch from an application server

to another, by issuing an SQL CONNECT statement with the TO parameter,

provided that the online resource adapter has established connections to the

application server.

Switching to Another Application Server

After connecting to an application server, a VSE user can switch to another one by

issuing an SQL CONNECT statement. The switch occurs between logical units of

work.

Example - Without Specifying an Authorization ID and Password

To switch to the DB01 application server, enter:

 CONNECT TO DB01

Because the user ID and password are not specified on the CONNECT statement,

the user ID and password used is determined according to the rules described in

“CICS Transaction Environment” on page 103 and “User IDs for Remote

CICS/VSE Transactions” on page 104. For VSE batch users, the user ID and

password used in the previous LUW are used if the LUW ends with a COMMIT

WORK or ROLLBACK WORK statement. However, if the LUW ends with a

COMMIT RELEASE or ROLLBACK RELEASE statement, the next SQL statement

after the CONNECT statement is unsuccessful.

If the CONNECT statement is not successful, the VSE batch user does not remain

connected to the original application server, and no other SQL statements are

accepted. The batch user has to enter a new CONNECT statement.

When the VSE user enters the first SQL statement to be processed on the second

application server, the batch resource adapter or the online resource adapter

connects the user to that application server using user ID and password previously

established. A VSE user can switch to another application server as different ID by

connecting as another user, as discussed in the next section.

Example - Specifying an Authorization ID and Password

To switch to the DB01 application server under an authorization ID JOHN with a

password of johnpw, enter:

 CONNECT JOHN IDENTIFIED BY johnpw TO DB01

If this statement is not successful, the VSE batch user does not remain connected to

the original application server and no other SQL statements are accepted. The

batch user will have to enter a new CONNECT statement.

Connecting under Another Authorization ID

A VSE user connects under another authorization ID to the established application

server by issuing an SQL CONNECT statement. If the user is not connected to an

Chapter 5. Providing Security 105

application server, the default application server is accessed. For batch users, if the

previous connection has been released, the default application server is accessed.

Example

To connect to the currently established application server under the authorization

ID JOHN with a password of johnpw, enter:

 CONNECT JOHN IDENTIFIED BY johnpw

If this statement fails, the VSE user will remain connected to the application server

as the original authorization ID.

A previous connection could be released for the following reasons:

v A COMMIT RELEASE or ROLLBACK RELEASE statement is entered.

v The previous LUW is canceled by a local user entering the FORCE DISABLE

statement, or a remote user entering the FORCE statement. Canceling an LUW

in this manner releases the connection.

v The previous connection is ended by the operator (using FORCE DISABLE) or

by other errors, for example, communications problems.

v The CICS transaction switched from a local to a remote server, from a remote to

a local server, from one remote server to another remote server.

Determining the Current User ID and Application Server

If a user enters an SQL CONNECT statement without any parameters, or after the

successful execution of a CONNECT statement, the database manager returns the

following information in the SQLCA:

v Currently connected user ID

v Application server name

v Product ID, which can be ‘ARI ’ or ‘ARI7010’ depending on when the

CONNECT was issued.

Refer to the DB2 Server for VSE & VM SQL Reference manual for more information

about the CONNECT statement.

Resolving Remote Server Name to Target Database (CICS)

1. If the CICS/VSE transaction issues an SQL CONNECT statement with the “TO

server name” clause, the server name is established explicitly for the transaction

and the Online Resource Adapter will use the DBNAME Directory to resolve

the server name to the target database.

If the specified application server is remote and the Communication Protocol

specified by the connected user is not TCP/IP, the AR will issue a GDS

ALLOCATE command to acquire a session to the remote system where the

server runs. The SYSID used in this ALLOCATE command will be the SYSID

value from the matching DBNAME Directory entry (and must match a CEDA

DEF CONNECTION definition). The AR will then issue a GDS CONNECT

PROCESS command to initiate an APPC basic conversation with the remote

server. The PROCNAME used in this CONNECT PROCESS command will be

the REMTPN value from the matching DBNAME Directory entry.

If the specified application server is remote and the Communication Protocol

specified by the user is TCP/IP, the AR will acquire a TCP/IP socket. Then the

AR will use this socket to originate a connection request to initiate a TCP/IP

communication with the remote server. In this case, the TCPPORT and the

TCPHOST or the IPADDR from the matching DBNAME Directory entry are

required for issuing the connect request.

106 Database Administration

2. If the CICS/VSE transaction did not issue an SQL CONNECT statement with

the “TO server name” clause, the Online Resource Adapter will attempt to

connect to the default application server.

If the default application server is remote and the Communication Protocol

specified by the connected user is not TCP/IP, the AR will issue a GDS

ALLOCATE command to acquire a session to the remote system where the

default application server runs. The SYSID used in this ALLOCATE command

will be the SYSID value of the default server (and must match a CEDA DEF

CONNECTION definition). The AR will then issue a GDS CONNECT

PROCESS command to initiate an APPC basic conversation with the remote

server. The PROCNAME used in this CONNECT PROCESS command will be

the REMTPN value of the default server.

If the default application server is a remote server and the Communication

Protocol specified by the user is TCP/IP, the AR will acquire a TCP/IP socket.

Then the AR will use this socket to originate a connection request to initiate a

TCP/IP communication with the remote server. In this case, the TCPPORT and

the TCPHOST or the IPADDR from the default server’s DBNAME Directory

entry are required for issuing the connect request.

The default application server is determined when the CIRB transaction was

invoked and can be changed subsequently by a CIRC transaction. For more

information on establishing a default application server, see Establishing a

Default Application Server.

Resolving Remote Server Name to Target Database (VSE Batch)

If the Batch application issues an SQL CONNECT statement with the ″TO server

name″ clause, the server name is established explicitly for the transaction and the

Batch Resource Adapter uses the DBNAME Directory to resolve the server name to

the target database.

If the specified application server is a local or host VM (Guest Sharing) server,

communications is done using XPCC as it is currently done. If the application

server is remote and TCP/IP information is present in the matching DBNAME

Directory entry, communications is done using TCP/IP. If TCP/IP information is

not present, an error is returned in the SQLCA: SQLCODE -841, SQLSTATE 57040,

with a reason code in SQLERRD2.

If the Batch Application issues an SQL CONNECT statement without the ″TO

server name″ clause, the actions taken by the Batch Resource Adapter depend on

the previous connection state. If the previous state was established with a

COMMIT or ROLLBACK, then the Batch Resource Adapter connects back to the

previous Server name. If the previous state was established with a COMMIT or

ROLLBACK with the RELEASE option, then the Batch Resource Adapter attempts

to connect to the default application server.

If the default application server is a local or host VM (Guest Sharing) server,

communications is done using XPCC as it is currently done. If the application

server is remote and TCP/IP information is present in the matching DBNAME

Directory entry, communications is done using TCP/IP. If TCP/IP information is

not present, an error is returned in the SQLCA: SQLCODE -841, SQLSTATE 57040,

with a reason code in SQLERRD2.

The default application server is determined from the DBNAME Directory as is

currently done. For more information on establishing a default application server,

Chapter 5. Providing Security 107

see “Establishing a Default Application Server” on page 101. Note that Batch

applications cannot access a Remote server via SNA, only via TCP/IP.

Restricting Access Using Views

Views control who has access to what data. They can be set up to allow access to a

subset of the columns or the rows of a table.

Example

To show how a view can be used to restrict access to information, consider the

information presented in Table 18.

 Table 18. Employee Information (EMP_INFO) Table

NAME DEPT SALARY PHONENO

SMITH 100 25750 3978

BANES 200 15051 3476

ADAMSON 105 33075 4738

PARKER 200 26250 6789

KWAN 100 22260 7831

WALKER 105 23840 5498

Many different people may require access to information in this table for different

reasons.

Examples

1. The personnel department needs to be able to update and look at the entire

table.

This requirement is met by granting users in the personnel department SELECT

and UPDATE privileges on this table, as follows:

 GRANT SELECT,UPDATE ON EMP_INFO TO PERSONNL

2. Individual department managers need to look at the salary information for

their employees.

This requirement is met by creating a view for each manager. For example, the

following view (called EMP100) can be created for JANE, the manager of

department 100:

 CREATE VIEW EMP100

 AS SELECT NAME,SALARY,PHONENO

 FROM EMP_INFO

 WHERE DEPT=100

 GRANT SELECT ON EMP100 TO JANE

JANE (and any others who have SELECT privilege on this view) would query

it as they would an ordinary table. It would appear as the following:

 Table 19. EMP100 View

NAME SALARY PHONENO

SMITH 25750 3978

KWAN 22260 7831

3. All users require access to telephone number information.

108 Database Administration

This requirement is met by creating a view (called PHONE) on the NAME and

PHONENO columns:

 CREATE VIEW PHONE

 AS SELECT NAME,PHONENO

 FROM EMP_INFO

 GRANT SELECT ON PHONE TO PUBLIC

The keyword PUBLIC grants the privileges on the PHONE view to all users.

Users who access it will see the following table:

 Table 20. PHONE View

NAME PHONENO

SMITH 3978

BANES 3476

ADAMSON 4738

PARKER 6789

KWAN 7831

WALKER 5498

Changing User Passwords

All users’ passwords are recorded in the SYSTEM.SYSUSERAUTH catalog table. As

a DBA, you can change any user’s password at any time. To do this, use a GRANT

CONNECT statement.

Example

 GRANT CONNECT TO JOHN IDENTIFIED BY xyzabc

Users can also change their own passwords at any time, by issuing a GRANT

CONNECT statement to themselves. To change a user’s password verified by the

CICS subsystem, or some other subsystem, follow the procedure for that

subsystem.

You should change all passwords on a periodic basis; for example, every four

months.

Securing the Database Catalog Tables

During database generation, the SELECT privilege is granted to PUBLIC on the

catalog tables. In most cases this presents no security problem, but for very

sensitive data it may be undesirable. These tables describe every object in the

database, thus, while users would not know what specific items of data are stored,

they would be able to tell what kind of data existed. Conceivably, a malicious

individual could make destructive use of this knowledge.

Before revoking general access to the tables, however, you must weigh the

advantages of securing the information in them against the disadvantages of users

being unable to retrieve the information they require. The catalog tables are an

active dictionary facility, and help to maintain definitions, control information, and

general information on data. For example, users can query them to find out what

tables they have created, the names and data types of the columns in each of those

tables, and any synonyms they have defined.

Chapter 5. Providing Security 109

You might consider revoking PUBLIC access to only the SYSCOLSTATS table,

which records the first- and second-most frequent values in the first column used

by every index on every table in the database.

If you do decide to secure all the catalog tables, the easiest way to do this is to

revoke the SELECT privilege from PUBLIC on them. You must be connected as

user ID SQLDBA and have DBA authority. You can then grant authority on specific

tables to specific users.

Example 1

To revoke the SELECT privilege from PUBLIC on SYSTEM.SYSCATALOG, enter:

 REVOKE SELECT ON SYSTEM.SYSCATALOG FROM PUBLIC

Before you revoke SELECT privileges from PUBLIC, you should also consider

what impact there might be on existing applications. In particular, some

applications may need to read a catalog table, so will fail if this authority is

revoked. Naturally, in these cases you must grant the SELECT privilege to the

creator of the program.

Note also that if the creator (the person who preprocessed the program) is not its

sole runner, you must also specify the WITH GRANT OPTION clause for this

person, in order to enable him or her to grant authority to other users to run the

program.

Example 2

User JULIE has created a program that accesses SYSTEM.SYSCATALOG, and she

grants RUN authority to KATHY and BILL. If you revoke the SELECT privilege

from PUBLIC, you can preserve KATHY’s and BILL’s authority to run JULIE’s

program by issuing:

 GRANT SELECT ON SYSTEM.SYSCATALOG TO JULIE WITH GRANT OPTION

If you revoke the SELECT privilege from PUBLIC on a catalog table, and later

wish to completely restore it, you should also specify the WITH GRANT OPTION

clause.

Example 3

To restore authority to PUBLIC on SYSTEM.SYSACCESS, enter:

 GRANT SELECT ON SYSTEM.SYSACCESS TO PUBLIC WITH GRANT OPTION

Refer to the DB2 Server for VSE & VM SQL Reference manual for a description of

the catalog tables.

Security Auditing

There are two ways to audit security: by querying the catalog tables, or by having

the database manager do a security audit trace.

If you simply want to know what security structures exist, the first method is

sufficient. The catalog tables maintain a record of authorization privileges: who has

what authority and from whom they received it. But they do not record

information about the use of these privileges: for example, the number of

unsuccessful attempts to access a resource, the number of accesses based strictly on

DBA authority, or similar authorization use information. For this type of

information, you must use a security audit trace.

110 Database Administration

Both ways of auditing security are discussed below.

Auditing Security Using the Catalog Tables

The following are examples of queries you might enter against the catalog tables in

security auditing:

1. What users are permitted to connect directly to the DB2 Server for VSE & VM

application server? (DBA authority is required for this query.)

 SELECT NAME FROM SYSTEM.SYSUSERAUTH

 WHERE AUTHOR=’ ’

The WHERE clause serves to eliminate any entries in SYSTEM.SYSUSERAUTH

for program dependencies from the query result.

2. How many users have been granted RUN authority on WALTERS.PAYROLL by

user BENNETT? (User WALTERS is the creator of the program; the creator is

determined by the USERID parameter when the program is preprocessed.)

 SELECT COUNT(*) FROM SYSTEM.SYSPROGAUTH

 WHERE CREATOR = ’WALTERS’

 AND PROGNAME = ’PAYROLL’

 AND GRANTOR = ’BENNETT’

This query only counts user BENNETT’s first-level grantees (those who

received their authority directly from user BENNETT).

3. Who are all the users who have received RUN authority on PAYROLL from

someone other than WALTERS?

 SELECT COUNT(*) FROM SYSTEM.SYSPROGAUTH

 WHERE CREATOR = ’WALTERS’

 AND PROGNAME = ’PAYROLL’

 AND GRANTOR <> ’WALTERS’

4. How many users have RESOURCE authority but not DBA authority?

 SELECT COUNT(*) FROM SQLDBA.SYSUSERLIST

 WHERE RESOURCEAUTH = ’Y’

 AND DBAAUTH <> ’Y’

 AND AUTHOR = ’ ’

5. How many secondary authorizations (those that originated from other than the

creator) exist for the JOHNSON.EMPLOYEE table created by user JOHNSON?

 SELECT COUNT(*) FROM SYSTEM.SYSTABAUTH

 WHERE TCREATOR = ’JOHNSON’

 AND TTNAME = ’EMPLOYEE’

 AND GRANTOR <> ’JONES’

 AND GRANTEETYPE = ’ ’

Here, the GRANTEETYPE = ’ ’ portion of the WHERE clause eliminates

entries for programs.

6. Which users have been granted SELECT authority on the

PERSONNL.EMPLOYEE table by user LAPIS?

 SELECT * FROM SYSTEM.SYSTABAUTH

 WHERE TCREATOR = ’PERSONNL’

 AND TTNAME = ’EMPLOYEE’

 AND SELECTAUTH = ’Y’

 AND GRANTEETYPE = ’ ’

 AND GRANTOR = ’LAPIS’

 ORDER BY TIMESTAMP

Auditing Security Using Tracing

Security audit tracing is one of the functions that can be performed using the trace

facility. A security audit trace is unique in that it is not necessarily done for

problem determination. Start a trace of the security audit function of the RDS

Chapter 5. Providing Security 111

component by using the TRACRDS initialization parameter. Alternatively, you can

start it by issuing the TRACE command from the operator’s console after the

application server has been started.

For descriptions of the TRACRDS parameter, the TRACE operator command, the

trace output records, and the utility that formats these records into readable

output, see the DB2 Server for VSE & VM Operation manual.

In VM, you can direct the trace output to tape, to a CMS file, or to a memory area

known as a trace buffer. However, if your installation uses the security audit trace

frequently, you may want to direct the output to a CMS file. To do this, you must

enter a CMS FILEDEF command before starting the application server, and supply

particular responses to the prompts that come up when tracing is started. For

descriptions of the FILEDEF command and the appropriate message responses, see

the DB2 Server for VSE & VM Operation manual.

As with other traces, you can get two levels of information. Level 1 traces and

records the following information:

v All unsuccessful attempts to obtain access to a resource

v Access that is based strictly on DBA authority

v All CONNECTs to the application server

v All grants of special privileges (DBA, CONNECT, SCHEDULE, or RESOURCE

authorities)

v All grants of RUN authority.

Level 2 keeps track of all DB2 Server for VSE & VM authorization checks.

Table 21 shows each type of authorization verification that the database manager

does, and which results are traced.

 Table 21. Information Recorded by a Security Audit Trace

Type of Authorization Check

Result Traced at

Level 2

Result Traced at

Level 1

CONNECT Y,I,N Y,I,N

RUN G,Y,D,N,P D,N

SELECT, INSERT, UPDATE,

 DELETE, ALTER, and INDEX

G,Y,D,N,P D,N

RESOURCE Y,N N

REFERENCES Y,N D,N

DBA D,N D,N

Grants of Special Privileges

 (DBA, CONNECT,

 RESOURCE, and SCHEDULE)

D,N G,N

Grants of RUN Authority G,N

Y Yes, the user is authorized.

N No, the user is not authorized.

G Yes, the user is authorized to use and grant this privilege.

P The resource is PUBLIC, and thus all users are authorized.

D The user is authorized based only on DBA authority (that is, does not have

specific privileges).

I CONNECT on special link without password verification (scheduled).

112 Database Administration

For each result of an authorization check that is traced, the database manager

creates a trace record in the same format as other kinds of trace records. These

records are identical in format for all levels and types of authorization, and are

written to the same (VSE) trace output file, or (VM) trace tape (or CMS file).

If a value does not apply for a specific occurrence, the database manager sets it to

blanks. For example, a trace record for CONNECT does not contain the name of a

resource (that is, a table name).

Each trace record contains (where applicable):

v Date and time of verification.

v The user ID for which the verification is being done.

v Resource 1 (for example, the name of a table to be accessed or the name of a

program to be run).

v Resource 2 (for example, the name of a particular column to be updated).

v The creator of the resource.

v The type of authorization requested (as listed in Table 21 on page 112).

v The result of the authorization check (Y, N, G, P, D, I).

v The external logical unit of work identifier (EXTLUWID) of the connection,

which uniquely identifies an LU6.2 conversation. Its value is

netid.luname.instance_number.sequence_number, where netid and luname are up to 8

characters long, instance_number is 12 characters long, and sequence_number is 4

characters long. The EXTLUWID is only used for conversations that use the

DRDA protocol.

The Resource 2 field shows the column (where applicable) on checks of UPDATE

authority. It can also contain a description of the reason that the database manager

is checking a certain authority. For example, it might contain “ALTER PUB

DBSPACE” on a check for the DBA authority needed to alter a PUBLIC dbspace. In

this case, DBA would be the type of authorization being checked, while the

Resource 2 field provides more information about why this authority is required.

When analyzing trace records, remember that many operations on views are

restricted. These restrictions are reflected in the trace records generated during

CREATE VIEW processing. When the database manager creates a view, it checks

the user’s authority on the base tables to determine what authority to give that

user on the view. It also checks the view itself to see what operations cannot be

performed on it. For example, because deletions are not allowed in views that

involve a join, the authorization check for DELETE would return an N. The N

shows that deletions are not allowed against the view; it does not necessarily

imply that the creator is not authorized to delete from the base table.

Authorization checks during CREATE VIEW processing are traced, but only at

level 2. The result field of the trace record indicates whether an authorization check

is a result of CREATE VIEW processing. The CREATE VIEW indicator is the letter

V following the usual result indicator. For example, a successful verification of

SELECT authority on a base table produces a result value of YV — yes during

view creation. You can use this indicator to distinguish between normal

authorization checks and those done during view creation.

Note: Tracing occurs during preprocessing and execution of programs, and during

the dynamic execution of statements in ISQL or DBS Utility.

Chapter 5. Providing Security 113

Authorization traces for data manipulation operations in programs occur

during preprocessing, not during execution.

Loading Security Audit Information into Tables

You can use the DBS Utility to load security audit trace records into a table. When

the trace information is in a table, you can use SQL statements to answer questions

such as:

v Who was denied access to a resource?

v Who used DBA authority to access a resource?

v When was RUN authority on a particular program granted to additional users?

Figure 22 on page 115 shows a DB2 Server for VSE example DBS Utility job to

create a security table and load trace records into it. In the example, the trace

output file is on tape.

114 Database Administration

Figure 23 on page 116 shows a DB2 Server for VM example of running the DBS

Utility. The utility reads a CMS file (SECTAB DATA A), which contains statements

to create a security audit table and load trace records into it. Before invoking the

utility, ensure that the appropriate trace tape is mounted on virtual device 182.

// JOB DATALOAD SECURITY AUDIT TRACE

// EXEC=PROC=DBNAME01

// EXEC=PROC=ARIS71PL

// TLBL ARITRAC

// EXEC ARISQLDS,SIZE=AUTO,PARM=’SYSMODE=S,LOGMODE=Y,PROGNAME=ARIDBS’

COMMENT ’ ’

COMMENT ’ ********************************* ’

COMMENT ’ * DATALOAD SECURITY AUDIT TRACE * ’

COMMENT ’ ********************************* ’

COMMENT ’ ’

COMMENT ’ ACQUIRE A DBSPACE(PRIVATE) ’

COMMENT ’ NAMED SECURITY ’

COMMENT ’ ’

ACQUIRE PRIVATE DBSPACE NAMED SECURITY;

COMMENT ’ ’

COMMENT ’ CREATE A TABLE IN THE PRIVATE DBSPACE ’

COMMENT ’ ’

CREATE TABLE AUDIT_TAB(TRPOINT SMALLINT,

 YEAR CHAR(2),

 MONTH CHAR(2),

 DAY CHAR(2),

 TIME CHAR(8),

 USERID CHAR(8),

 GRANTEE CHAR(8),

 RESOURCE1 CHAR(18),

 RESOURCE2 CHAR(18),

 OWNER CHAR(8),

 AUTHTYPE CHAR(8),

 RESULT CHAR(2),

 EXTLUWID CHAR(35))

 IN SECURITY;

COMMENT ’ ’

COMMENT ’ LOAD DATA - (NOTE _ YOU MAY ’

COMMENT ’ WISH TO INTERCHANGE DAY/MONTH) ’

COMMENT ’ ’

DATALOAD TABLE (AUDIT_TAB) IF POS (11-14)=-220659706

 TRPOINT 7-8 FIXED

 EXTLUWID 41-75 CHAR

 YEAR 124-125 CHAR

 MONTH 118-119 CHAR

 DAY 121-122 CHAR

 TIME 143-150 CHAR

 USERID 168-175 CHAR

 GRANTEE 193-200 CHAR

 RESOURCE1 218-235 CHAR

 RESOURCE2 253-270 CHAR

 OWNER 288-295 CHAR

 AUTHTYPE 313-320 CHAR

 RESULT 338-339 CHAR

 INFILE(ARITRAC PDEV(TAPE) BLKSZ(4096) RECFM(VB) RECSZ(384))

Figure 22. Loading Security Audit Records into a Table - DB2 Server for VSE

Chapter 5. Providing Security 115

Note: The external logical unit of work identifier (EXTLUWID) is only used for

conversations that use the DRDA protocol.

If you have other trace functions active while you are tracing a security audit,

include an input-record-id clause (IF POS (11-14) = -220659706) on the

DATALOAD command to identify that only security audit trace records are to be

loaded. This is necessary because the trace records from other functions are

interspersed with those of the security audit trace.

Command to Invoke the DBS Utility:

FILEDEF TRACE1 TAP2 SL (RECFM VB BLOCK 4096 LRECL 384

EXEC SQLDBSU ID(SQLDBA) IN(SECTAB DATA A) PR(TERMINAL)

SECTAB DATA A Contains:

 CONNECT user IDENTIFIED BY password;

 COMMENT ’ ’

 COMMENT ’ ********************************* ’

 COMMENT ’ * DATALOAD SECURITY AUDIT TRACE * ’

 COMMENT ’ ********************************* ’

 COMMENT ’ ’

 COMMENT ’ ACQUIRE A DBSPACE(PRIVATE) ’

 COMMENT ’ NAMED SECURITY ’

 COMMENT ’ ’

 ACQUIRE PRIVATE DBSPACE NAMED SECURITY;

 COMMENT ’ ’

 COMMENT ’ CREATE A TABLE IN THE PRIVATE DBSPACE ’

 COMMENT ’ ’

 CREATE TABLE AUDIT_TAB(TRPOINT SMALLINT,

 YEAR CHAR(2),

 MONTH CHAR(2),

 DAY CHAR(2),

 TIME CHAR(8),

 USERID CHAR(8),

 GRANTEE CHAR(8),

 RESOURCE1 CHAR(18),

 RESOURCE2 CHAR(18),

 OWNER CHAR(8),

 AUTHTYPE CHAR(8),

 RESULT CHAR(2),

 EXTLUWID CHAR(35))

 IN SECURITY;

 COMMENT ’ ’

 COMMENT ’ LOAD DATA - (NOTE _ YOU MAY ’

 COMMENT ’ WISH TO INTERCHANGE DAY/MONTH) ’

 COMMENT ’ ’

 DATALOAD TABLE (AUDIT_TAB) IF POS (11-14) = -220659706

 TRPOINT 7-8 FIXED

 EXTLUWID 41-75 CHAR

 YEAR 124-125 CHAR

 MONTH 118-119 CHAR

 DAY 121-122 CHAR

 TIME 143-150 CHAR

 USERID 168-175 CHAR

 GRANTEE 193-200 CHAR

 RESOURCE1 218-235 CHAR

 RESOURCE2 253-270 CHAR

 OWNER 288-295 CHAR

 AUTHTYPE 313-320 CHAR

 RESULT 338-339 CHAR

 INFILE(TRACE1)

Figure 23. Loading Security Audit Records into a Table - DB2 Server for VM

116 Database Administration

When doing a security audit trace, it is usually to your advantage to trace the

parser component at the same time. When you trace this component at level 1, the

resultant trace records describe the SQL statement entered into the database

manager. By using the timestamp in the trace records, you can correlate the input

to the security audit trace records produced.

If you plan to load the security audit trace records into a table, you may want to

print the parser trace records by using the trace formatter. If you are printing the

security audit records, you may want to also print the parser records by specifying

both the parser and security audit components for the trace formatter. An example

producing such a listing is shown in Table 22 on page 119 and Table 23 on page

119.

In VM, if you directed the trace output to a CMS file (by issuing a CMS FILEDEF

command), you can still use the DBS Utility to load the trace data into tables. To

do this, enter the following CMS FILEDEF command before invoking the

SQLDBSU EXEC:

 FILEDEF ddname DISK filename filetype filemode (RECFM VB LRECL 384 BLOCK 4096

Notes:

1. The ddname on the FILEDEF command must match that used in the DBS

Utility INFILE parameter of the DATALOAD command.

2. You must enter the RECFM, LRECL, and BLOCK values shown.

In VSE, if, when starting the application server, you directed the trace output to

disk, you must change the INFILE statement to:

 INFILE(ARITRAC PDEV(DASD) BLKSZ(4088) RECFM(VB) RECSZ(384))

In addition, you must change the job control to identify the DASD SAM trace

output file. For example:

v For a DASD file that is not managed by the VSE/VSAM Space Management for

SAM Feature, you might specify:

 // DLBL ARITRAC,’TRACE.FILE1’

 // EXTENT ,VSER01,1,0,301,120

 // ASSGN SYS006,195

v For one that is, you might specify:

 // DLBL ARITRAC,’TRACE.FILE1’,0,VSAM,DISP=(,DELETE)

When DISP=(,DELETE), the VSAM file is deleted after it is read. If you do not

want the file to be deleted, specify DISP=(,KEEP) or omit the DISP parameter.

The above examples would replace the TLBL statement in Figure 22 on page 115.

Once you have loaded the security audit trace records into a table, you can enter

SQL statements against them. This method may make viewing the records easier,

but has a disadvantage in that any user who has DBA authority can change the

table, and any tampering may make the data incorrect. You should always print

the trace records and protect the trace tape to ensure that there is always a valid

copy.

Figure 24 on page 118 shows examples of typical security audit queries. Some of

the records traced appear only at level 2; level 2 can generate a significant number

of trace records. These queries are shown as they might appear as input to the DBS

Utility.

Chapter 5. Providing Security 117

Printing Security Audit Information from the Trace File

A security audit trace, especially a level 2 one, can generate a large amount of

information, and even more information is generated if you are tracing other

components or functions at the same time. All of these records are placed in a

single trace file. To print them selectively, you need to use the trace formatting

utility.

 COMMENT ’**’

 COMMENT ’ SELECT ALL RECORDS FROM AUDIT TABLE ’

 COMMENT ’ WHERE AUTHORIZATION WAS DENIED ’

 COMMENT ’**’

 SELECT * FROM AUDIT_TAB WHERE RESULT=’N’;

 COMMENT ’**’

 COMMENT ’ SELECT RECORDS FROM AUDIT TABLE ’

 COMMENT ’ RECORDED BETWEEN 8 A.M. AND 12:30 P.M. ’

 COMMENT ’ ON JUNE 29 ’

 COMMENT ’**’

 SELECT * FROM AUDIT_TAB WHERE MONTH = ’06’

 AND DAY = ’29’ AND TIME BETWEEN ’08:00:00’ AND ’12:30:00’;

 COMMENT ’**’

 COMMENT ’ SELECT RECORDS FROM AUDIT TABLE ’

 COMMENT ’ RECORDED BETWEEN 12:30 P.M. AND 4:00 P.M.’

 COMMENT ’ ON JUNE 29 AND AUTHORIZED DUE TO DBAAUTH.’

 COMMENT ’**’

 SELECT * FROM AUDIT_TAB WHERE MONTH = ’06’

 AND DAY = ’29’ AND TIME BETWEEN ’12:30:00’

 AND ’16:00:00’ AND RESULT = ’D’;

 COMMENT ’**’

 COMMENT ’ SELECT CHECKS OF UPDATE AUTHORITY ’

 COMMENT ’ AGAINST TABLE USER1.TAB1 ’

 COMMENT ’ RECORDED BETWEEN 08:00 P.M. AND 4:00 P.M.’

 COMMENT ’ ON JUNE 29 NOT DUE TO VIEW CREATION. ’

 COMMENT ’ (update checks traced at level 2) ’

 COMMENT ’**’

 SELECT * FROM AUDIT_TAB WHERE MONTH = ’06’

 AND DAY = ’29’ AND TIME BETWEEN ’08:00:00’

 AND ’16:00:00’ AND OWNER = ’USER1’

 AND RESOURCE1 = ’TAB1’ AND AUTHTYPE = ’UPDATE’

 AND RESULT NOT LIKE ’%V’;

 COMMENT ’**’

 COMMENT ’ SELECT CHECKS OF UPDATE AUTHORITY ’

 COMMENT ’ AGAINST TABLE USER1.TAB1 ’

 COMMENT ’ RECORDED BETWEEN 08:00 P.M. AND 4:00 P.M.’

 COMMENT ’ ON JUNE 29 DUE TO DBAAUTH ’

 COMMENT ’ (DBA activity traced at level 1 or 2) ’

 COMMENT ’**’

 SELECT * FROM AUDIT_TAB WHERE MONTH = ’06’ AND

 DAY = ’29’ AND TIME BETWEEN ’08:00:00’

 AND ’16:00:00’ AND OWNER = ’USER1’

 AND RESOURCE1 = ’TAB1’ AND AUTHTYPE = ’UPDATE’

 AND RESULT = ’D’;

 COMMENT ’**’

 COMMENT ’ SELECT ALL GRANTS OF RUN AUTH ON ’

 COMMENT ’ PROGRAMS USER1.DBD1 AND USER1.DBD3. ’

 COMMENT ’**’

 SELECT * FROM AUDIT_TAB WHERE AUTHTYPE = ’RUN’ AND

 OWNER = ’USER1’ AND RESOURCE1 = ’DBD1’ OR

 RESOURCE1 = ’DBD3’;

Figure 24. Example Security Audit Queries

118 Database Administration

This utility accepts control statements, which in VM, it reads from a CMS file. As it

does not access the database manager, the latter does not have to be running for

the trace formatter to work.

Table 22 shows an example of invoking the DB2 Server for VSE trace formatter.

The control statements print out all security audit trace records and all parser trace

records. The example also restricts the output by date and time and is only for

USER1.

 Table 22. Printing Security Audit Records from the Trace File

// JOB RUN TRACE FORMATTER

// TLBL ARITRAC,file-id <-- File-id of trace tape (optional)

// ASSGN SYS004,cuu <-- Address of tape unit

// EXEC ARIMTRA,SIZE=AUTO

SUBCOMP AU PA

USERID USER1

DATE 06/29/85

TIME 12:00:00 23:00:00

/*

/&

Notes:

1. The tape should be mounted on the physical device specified by cuu before

running the job.

2. The tape file-id must be the same file-id as was specified on the TLBL

statement when the tape was created.

3. The DB2 Server for VSE & VM Operation manual contains examples of running

the trace formatter to process a trace file that resides on DASD.

Table 23 shows an example of invoking the DB2 Server for VM trace formatter. The

interactive SQLTRFMT EXEC supplied by IBM resides on the production minidisk

(Q-disk) and invokes XEDIT to edit a CMS file called SQLTRFMT TRACE A. Use

this exec to type in the control statements. When you file SQLTRFMT SQLTRACE

A, the SQLTRFMT EXEC then asks where you want its output directed.

The control statements shown in Table 23 print all security audit (AU) trace records

and all parser (PA) trace records. They also restrict the output to those records

generated for a specific date (06/29/85), time (12:00:00 to 23:00:00), and user

(USER1).

 Table 23. Printing Security Audit Records from the Trace File

Invoking the Trace Formatter:

SQLTRFMT

Example Control Statements

SUBCOMP AU PA

USERID USER1

DATE 06/29/85

TIME 12:00:00 23:00:00

If you are directing your trace output to tape, then before invoking the trace

formatter, ensure that the appropriate tape is mounted on virtual device 182. If you

are directing it to a CMS file, you must enter a CMS FILEDEF command for the

file before invoking SQLTRFMT. Use the same FILEDEF that you issued before you

Chapter 5. Providing Security 119

invoked SQLSTART (and initiated the trace). See the DB2 Server for VSE & VM

Operation manual for the command format.

Complete instructions for using the utility are in the DB2 Server for VSE & VM

Operation manual.

120 Database Administration

Chapter 6. Recovering from Failures

A variety of problems can occur in a relational database management system,

leading to inaccuracies or loss of data. A power failure can bring the computer to a

halt; the disk used to store information could become damaged; users can make

errors such as dropping the wrong table or dbspace. Database recovery refers to

the processing needed to correct the data when something goes wrong.

The problems that can occur fall into the following categories. This chapter

explains how to recover from those that fall into the first two categories. For

information on how to recover from the other types, see the DB2 Server for VM

System Administration or DB2 Server for VSE System Administration manual.

v Application Failure

A single application (for example, an ISQL command or routine, or a DBS Utility

command) fails to complete successfully.

v User Logic Errors

The system or application does the requested function, but the request itself was

in error: that is, the user (or application program) did not specify the correct

function.

v System Failure

The operating system, CICS subsystem, or the database manager can end

abnormally because of error conditions or a power failure.

v DASD Failure

The system may be unable to read data from or write it to the DASD device on

which it is stored because the storage medium is unreadable or damaged. Such

an error could occur on the log or the storage pool.

v Subsystem Failures (VM Only)

With VSE Guest Sharing, whereby users on VSE are accessing a DB2 Server for

VM application server, any of the subsystems involved (the database manager,

VM/ESA operating system, VSE, or the CICS subsystem) may end abnormally.

Overview of Recovery Concepts

Logical Units of Work

When a user or an application program has made a change or a group of related

changes to the database, and if the application in question completed successfully,

the user or program issues an SQL COMMIT WORK statement to the application

server, to commit these changes to the database. If the application did not complete

successfully, the user instead issues an SQL ROLLBACK WORK statement, which

undoes all the changes made up to the point of the error since the last COMMIT

WORK statement, or since the start of the program or session.

A group of SQL statements is called a logical unit of work (LUW). An LUW can be

as small as one statement, or as large as an entire application execution (or ISQL

session). All SQL statements are processed within an LUW. If no LUW exists when

a statement is issued, then the database manager creates one.

© Copyright IBM Corp. 1987, 2007 121

CMS Work Units

VM users can take advantage of CMS work units which allow them to maintain

more than one logical unit of work (LUW) at a time. With separate CMS work

units, application programs can be independent of one another. For example, a

user can run a program, and in the middle of an LUW, have that program call a

second program which runs in a separate CMS work unit. When work is

committed in the second program, it does not affect the active LUW in the first

program.

Note: CMS work units require extra processing overhead, so should only be used

when necessary. If an application does not need this support, set the

WORKUNIT option of the SQLINIT command to NO.

Atomic Operations

An operation is atomic if within a logical unit of work (LUW), it can succeed or

fail on its own; that is, it does not affect other operations as long as they do not

depend on it. The DB2 Server for VSE & VM database manager considers all

operations are atomic except those that occur in dbspaces residing in

nonrecoverable storage pools, and those that occur when LOGMODE=N (running

with the no-log option).

Example:

Suppose you have an application program that performs the following operations

within one LUW: a DELETE, an UPDATE, and an INSERT statement. Assume the

DELETE statement will process successfully; then, the UPDATE statement will

change the values in the table as specified. If, at the end of statement processing,

any duplicates exist in the primary key, the UPDATE operation is rolled back.

Because the failure of the UPDATE statement does not affect the DELETE

statement (both operations are atomic), you can let the program proceed and

perform the INSERT. Alternatively, you could COMMIT the successful DELETE or

ROLLBACK the LUW.

For a further discussion of atomic operations, see “Backouts Initiated by

Application Programs” on page 131.

Dynamic Application Backout

This process reverses the changes made by a logical unit of work (LUW) that ends

abnormally. It is performed while the system is online and processing other

applications. It is supported for the following:

v DB2 Server for VM

v DB2 Server for VSE

v ISQL

v DBS Utility

v preprocessor operations

v Batch

v VSE/ICCF, and

v the CICS subsystem

The DB2 Server for VSE dynamic application backout facilities are also coordinated

with the Dynamic Transaction Backout facilities of the CICS subsystem. A backout

initiated by the DB2 Server for VSE database manager initiates a CICS transaction

122 Database Administration

backout for the affected transaction. Similarly, a transaction backout initiated by the

CICS subsystem initiates a DB2 Server for VSE backout, if the transaction was

doing any SQL processing.

Restart Processing

If the system or the database manager ends abnormally, this process reverses any

database changes made by applications that were in progress within an LUW at

the time of the failure. It also ensures commitment of all changes made by those

applications that completed successfully.

Recovery from Application Failures

To take advantage of the DB2 Server for VSE & VM recovery support, applications

should be designed so that all SQL requests that constitute one logical change to

the database are properly grouped into logical units of work (LUWs). For example,

if an application transfers funds from one account to another, which entails an

update to two different rows in the database, the updates should be done in the

same LUW. Thus, if the application should fail, the database would be left in one

of two consistent states: either the transfer was done completely (both rows

updated), or it was not done at all (neither row updated). If the updates were in

different LUWs, an application failure could result in only half of the transfer

being performed (only one row updated).

Designing an application properly requires an understanding of when an LUW

begins and ends. When it ends, the changes made within the LUW are either

committed to the database, or backed out. Figure 25 on page 124 shows the general

rules for DB2 Server for VSE LUWs. Table 24 shows the general rules for VM users

and Table 25 on page 125 shows the general rules for VSE guest users accessing an

application server on a VM/ESA system. There are, however, variations and

special considerations that depend on the application environment and application

implementation techniques. These variations are discussed in the following

sections.

Chapter 6. Recovering from Failures 123

Notes to Figure 25:

v Note that DBS ERRORMODE processing may change the DBS AUTOCOMMIT

mode. Refer to the DB2 Server for VSE & VM Database Services Utility manual for

details.

v When AUTOCOMMIT is on, ISQL issues a COMMIT WORK when the statement

completes successfully. The exception is for UPDATE, DELETE, and INSERT

statements that affect more than one row. For that case, you are prompted before

ISQL issues a COMMIT WORK.

 Table 24. General Rules for DB2 Server for VM Logical Units of Work

LOGICAL

UNIT OF

WORK

All

Programs

Under CMS

ISQL Sessions DBS Utility

Pre-

processors

AUTOCOMMIT

ON

AUTOCOMMIT

OFF

AUTOCOMMIT

ON

AUTOCOMMIT

OFF

BEGINS First SQL

statement

Each SQL

statement entry

First SQL

statement

Command

entry

First command Start of CMS

command

ENDS

COMMITTED

COMMIT

WORK

Normal end

of CMS

command

After successful

SQL statement

processing,

COMMIT

WORK for

multi-row

updates

COMMIT

WORK

After successful

command

processing

COMMIT

WORK

Normal end

of CMS

command

Normal end

of CMS

command

Implicit

rollback

SQLHX

WHEN A LOGICAL
UNIT OF WORK
BEGINS

First SQL
statement

First SQL
statement

Command
entry

First Command

Command entry

First Command

Start of job
setp

COMMITTED

-COMMIT WORK

-Normal end

-COMMIT WORK
-SYNCPOINT

-Normal end

-After successful
command process-
ing

-COMMIT WORK for
multiple row
update
-COMMIT WORK

-After successful
command process-
ing

-COMMIT WORK
-Normal end of
program

-Normal end of
job step

BACKED OUT

-ROLLBACK WORK

-Abnormal end
-Implicit rollback
-Statement error

-ROLLBACK WORK
-SYNCPOINT ROLLBACK

-Abnormal end
-Implicit rollback

-CANCEL
-Command Error
-ROLLBACK WORK
-Implicit rollback

-ROLLBACK WORK
-Abnormal end
-CANCEL
-Command Error
-Implicit rollback

-Command error
-Abnormal end

-Command error
-ROLLBACK WORK
-Abnormal end
of program

-Abnormal end of
job step

Programs

-Batch/ICCF

-CICS

ISQL Sessions

-AUTOCOMMIT ON

-AUTOCOMMIT
OFF

DBS Jobs

-AUTOCOMMIT ON

-AUTOCOMMIT
OFF

Preprocessor
Jobs

WHEN A LOGICAL UNIT OF WORK ENDS

Figure 25. General Rules for DB2 Server for VSE Logical Units of Work

124 Database Administration

Table 24. General Rules for DB2 Server for VM Logical Units of Work (continued)

LOGICAL

UNIT OF

WORK

All

Programs

Under CMS

ISQL Sessions DBS Utility

Pre-

processors

AUTOCOMMIT

ON

AUTOCOMMIT

OFF

AUTOCOMMIT

ON

AUTOCOMMIT

OFF

ENDS

BACKED OUT

ROLLBACK

WORK

Abnormal

end of CMS

command

Implicit

rollback

SQLHX

Statement

error

CANCEL

Statement

error

ROLLBACK

WORK

Implicit

rollback

ROLLBACK

WORK

Abnormal

end

CANCEL

Implicit

rollback

Abnormal

end

Command

error

SQLHX

Implicit

rollback

Command

error

ROLLBACK

WORK

Abnormal

end of CMS

command

Implicit

rollback

SQLHX

Abnormal end

of CMS

command

Notes to Table 24 on page 124:

1. If a DB2 application program (including preprocessors and utilities) is not

invoked from an EXEC, it is considered to be a command, and the COMMIT

and ROLLBACK rules apply. If the program is issued from an EXEC (as is

almost always the case), then it is considered to be a subcommand. For EXECs,

end-of-command COMMIT and ROLLBACK processing does not occur until

the EXEC completes.

2. DBS ERRORMODE processing may change the DBS AUTOCOMMIT mode.

Refer to the DB2 Server for VSE & VM Database Services Utility manual for

details.

3. When AUTOCOMMIT is on, ISQL issues a COMMIT WORK when the

statement completes successfully (as shown in Table 24 on page 124). The

exception is for UPDATE, DELETE, and INSERT statements that affect more

than one row. For that case, you are prompted before ISQL issues a COMMIT

WORK.

4. For the normal end situation, the database manager will attempt to commit

LUWs. The commit may fail if a deadlock occurs, a log full condition is

encountered, or some other system condition occurs that causes the program to

end.

 Table 25. General Rules for DB2 Server for VM Logical Units of Work from VSE Guests

LOGICAL UNIT OF

WORK

PROGRAMS

Preprocessor Jobs CICS Batch/ICCF

BEGINS First SQL Statement First SQL Statement Start of job step

ENDS COMMITTED COMMIT WORK

Normal end

COMMIT WORK

SYNCPOINT

Normal end

Normal end of job step

Chapter 6. Recovering from Failures 125

Table 25. General Rules for DB2 Server for VM Logical Units of Work from VSE Guests (continued)

LOGICAL UNIT OF

WORK

PROGRAMS

Preprocessor Jobs CICS Batch/ICCF

ENDS BACKED OUT ROLLBACK WORK

Abnormal end

Implicit rollback

Statement error

ROLLBACK WORK

SYNCPOINT ROLLBACK

Abnormal end

Implicit rollback

Abnormal end of job

step

Application Program Recovery in VM

An application is considered to have ended normally when it returns to CMS. In

single user mode, an application ends normally when it returns to the DB2 Server

for VM calling routine. All other types of termination (such as HX, CMS abend,

program check, or any user machine termination) are considered abnormal.

Note: In single user mode, an application’s Register 15 return code protocol is not

part of the definition of termination, and is not used by the application

server to determine whether it should proceed with normal or abnormal

termination processing. The application server establishes a CMS ABNEXIT

exit in the database machine. The exit attempts recovery and dumps

important diagnostic information when the recovery attempt is not

successful. If a single user mode application establishes an abnormal end

exit (for example, by way of ABNEXIT, STAE, SPIE, STXIT), the DB2 Server

for VM abend exit is overridden.

Some compilers provide a mechanism that handles program interrupts during the

execution of a program and before control returns to CMS. Consequently, the

application server may not be aware that the program termination is abnormal,

and will perform an implicit COMMIT rather than an implicit ROLLBACK. See the

DB2 Server for VSE & VM Application Programming manual for more information

about program interrupts.

Users should be aware of how CMS handles multiple abnormal end exits, and

should clear any that have been set by the application program before returning to

the DB2 Server for VM application server, or else unpredictable results may occur

when later CMS commands are issued. Also, the user should reset the abnormal

exit before returning to the CMS abnormal termination routine after handling an

abnormal end condition.

Dropping the DB2 Server for VM Resource Adapter Code

When users switch from one program to another, the SQLRMEND EXEC enables

application programs to free the storage used by the resource adapter code. This

EXEC can also be used to perform COMMIT/ROLLBACK processing on

outstanding work before running the next program.

For more information, see “SQLRMEND EXEC” on page 261.

Batch and VSE/ICCF Application Recovery

If a batch application executing in multiple user mode ends without freeing its link

to the DB2 Server for VSE & VM application server, the operating system informs

the application server whether the application ended normally or abnormally. The

126 Database Administration

indication is normal if the application ends with the EOJ macro and the high-order

bit of general purpose register 15 is set to 0. Other conditions indicate an abnormal

end. The database manager automatically commits updates if the termination is

normal, or does a rollback if it is abnormal.

The DB2 Server for VSE application server establishes an STXIT AB exit in the

database partition. The exit attempts recovery and dumps important diagnostic

information if the recovery attempt is not successful. If an application is running

with the TRAP(ON) run-time option of LE/VSE and it did not issue an STXIT AB

MACRO, LE/VSE and DB2 Server for VSE will keep track of calls to and returns

from DB2 Server for VSE. If an abend occurs while the application is running, the

LE/VSE condition manager is informed whether the problem occurred in the

application or in DB2 Server for VSE. If the abend occurs in DB2 Server for VSE,

the LE/VSE condition handler passes the condition back to DB2 Server for VSE.

For information on condition handling with LE/VSE see the DB2 Server for VSE &

VM Application Programming manual. Furthermore, if a single user mode

application issues an STXIT AB macro, the DB2 Server for VSE abend exit is

overridden. Similarly, if the application issues an STXIT PC, then the DB2 Server

for VSE abend exit is overridden for program check conditions. Other abend

conditions are still processed by the application server.

Online Application Recovery

DB2 Server for VSE & VM recovery from failures of online (CICS) transaction is

coordinated with CICS recovery processing.

Consistency among multiple application servers is ensured at CICS synchronization

points, when related data across multiple application servers is kept in a consistent

state. Synchronization points (syncpoints) are points, during the processing of a

transaction, at which updates or modifications to the transaction’s resources are

logically complete and error-free. To take advantage of the CICS syncpoints, the

database manager online support runs as a CICS resource adapter, using the CICS

Application Program interface and User Exit interface. For more information, refer

to the CICS/VSE Customization Guide.

Syncpoints occur during the execution of an application under any of the following

circumstances:

v An application explicitly issues a request for a syncpoint: either the statement

EXEC CICS SYNCPOINT to request a COMMIT of all updates, or EXEC CICS

SYNCPOINT ROLLBACK to request a ROLLBACK. For further information,

refer to the CICS/VSE Application Programming Reference.

v Any termination of a CICS transaction calls the CICS syncpoint manager.

Normal termination results in COMMIT. Abnormal termination results in

ROLLBACK.

v The SQL COMMIT WORK statement causes the DB2 Server for VSE online

support to issue a CICS SYNCPOINT (COMMIT). The SQL ROLLBACK WORK

statement causes a CICS SYNCPOINT (ROLLBACK).

Additionally, when the DB2 Server for VSE online support detects an internal

ROLLBACK of a unit of work, it issues CICS SYNCPOINT (ROLLBACK). (Such

an internal rollback could happen, for example, if the system operator entered

the FORCE command to ROLLBACK an LUW).

As a performance note, it is more efficient for applications to use a CICS syncpoint.

The SQL COMMIT or ROLLBACK calls are less efficient, because they result in a

Chapter 6. Recovering from Failures 127

longer path. A CICS syncpoint is also easier to understand : when it is time to

commit, the application program calls the global synchronization function (CICS

SYNCPOINT [ROLLBACK]).

The assumptions are that individual application programs do not plan to do their

own recovery, and that updates are not to be committed unless normal termination

occurs or the application program explicitly requests a commit.

Notes:

An installation must explicitly request the CICS subsystem to start the syncpoint

protocol by:

1. Generating CICS System Initialization Table (DFHSIT) with DBP=YES. If this is

not done, the CICS process at synchronization points attempts to commit all

updates. Alternatively, DBP=xx may be specified if a suffixed version of the

CICS Dynamic Transaction Backout Program is being used.

2. Ensuring that each online application program that accesses an application

server has Dynamic Transaction Backout set to YES. Do this by specifying

INDOUBT=BACKOUT when defining the transaction.

ISQL Sessions

If an ISQL session ends abnormally, the database manager attempts to notify the

user about the abnormal condition, and leaves the database in a consistent state. In

VM, the database manager issues a ROLLBACK WORK and the session ends.

Control returns to CMS. In VSE or in a VSE Guest Sharing environment, the CICS

syncpoint manager issues a ROLLBACK WORK. All CICS temporary storage for

routines is deleted, and both the ISQL transaction and the CISQ transaction are

terminated, if possible. If the CICS syncpoint manager is in control when the CISQ

transaction abnormal termination occurs, the ISQL transaction abends with the

abend code GCBE. For more information on GCBE, see the DB2 Server for VSE

Messages and Codes manual.

DBS Utility Processing

If the DBS Utility fails to complete the processing of all commands supplied in the

command input, or if it terminates with a return code equal to or greater than 8,

then before the Utility can be restarted the DBS message file listing must be

analyzed to determine the commands that were processed and the error that

occurred. If there are no error messages here that describe the reason for the

failure, then the database machine console messages must be analyzed. After the

error has been corrected, restart the Utility as described below:

v If the DBS command input that failed was processing without any of the

following commands:

 SET AUTOCOMMIT ON

 SET ERRORMODE OFF

 SET ERRORMODE CONTINUE

 COMMITCOUNT parameter on an INFILE subcommand

 COMMITCOUNT parameter on an INMOD subcommand (VSE Only)

 SQL COMMIT WORK statements,

just restart the Utility.

v If it was processing with any of the above commands:

1. Correct any command syntax errors.

2. Remove all commands that were successfully processed and committed.

3. Restart the Utility.

128 Database Administration

If the Utility ends with a return code of 4, this means that all the commands

supplied in the command input were processed successfully but a DBS program

termination error occurred. The Utility does not need to be rerun.

For full descriptions of DBS Utility return codes and error processing, see the DB2

Server for VSE & VM Database Services Utility manual.

Preprocessor

If the preprocessor fails to complete the processing of all source statements

supplied as input, or if it terminates with a return code equal to or greater than 8,

then before running it again you must analyze the source statement listing

produced to determine the errors that occurred. If there are no error messages

there that describe the error condition(s), look at the console messages. After all

source statements and any other errors are corrected, rerun the preprocessor from

the beginning.

If the preprocessor ends with a return code of 1 while the program is being

preprocessed with the BLOCK option, this means that one or more SQL statements

are disqualified for blocking. For further information on blocking, refer to the DB2

Server for VSE & VM Performance Tuning Handbook manual.

If it ends with a return code of 4, then one or more preprocessor warning messages

are contained in the source statement listing. The preprocessor does not have to be

rerun; however, the source statement listing should be checked to insure that the

warning conditions involve objects known to be nonexistent at the time the

preprocessor was run.

If it ends with a return code of 0 and no package was created, then the source

statements read by the preprocessor contained no SQL statements. Here, the

preprocessor must be rerun if the incorrect input source statements were supplied

as input.

Recovery from User Logic Errors

User logic errors are those where the application server carries out the functions as

requested, but the user (or program) determines that the change(s) requested

should not have been made — for example, the wrong table or dbspace may have

been dropped.

Recovery from a user logic error depends on when the error is detected. If it is

detected before the changes have been committed, the application server supports

user (or program) invoked dynamic application backout. A user or program can

take certain actions to back out these changes, depending on the way in which the

application server is being used. ISQL users accomplish this by issuing either the

SQL ROLLBACK WORK statement or the ISQL CANCEL command, or by

responding to ISQL prompts for CANCEL or ROLLBACK. The error handling logic

in application programs can accomplish this by issuing a ROLLBACK WORK

statement. In addition, in VM the invoker of the program can enter either the HX

or SQLHX immediate command (HX causes a rollback and ends the CMS

command; SQLHX causes a rollback, but does not end the CMS command.) If you

have coded your own interactive program to process SQL statements dynamically,

you can also code a cancel exit. This would allow a user of your program to

perform a function similar to the ISQL CANCEL command.

Chapter 6. Recovering from Failures 129

For more information on cancel exits, refer to the DB2 Server for VM System

Administration or DB2 Server for VSE System Administration manual. For user errors

that are detected after changes have been committed, the user has three choices:

1. Manually reverse the effects of the changes.

This involves issuing the INSERTs, PUTs, UPDATEs, and DELETEs necessary to

cancel all changes. If the committed changes involved definitional change

statements (CREATE, DROP, or ALTER), these too must be manually backed

out, which can be quite a chore since definitional statements do not always

have straightforward cancellation operations. For example, a DROP TABLE

statement would have dropped views and authorizations along with the table;

thus, to reverse its effects would include re-creating the views and regranting

the authorizations.

2. Reset the data and reenter valid changes.

If a back-up copy of the data exists, it may be simplest to just revert to this

version and then reenter any valid changes made to the data since the copy

was made. Reentering the valid changes can, of course, be as involved as the

effort to back out invalid ones; however, it has the advantage in that it can be

done by reexecuting applications.

The DBS Utility UNLOAD facilities can be used to create back-up copies of

data, and the RELOAD facilities can be used to reset data to a previous state.

The DB2 Server for VSE & VM database archiving support can also be used to

create back-up copies of the entire database and reset it.

3. Use filtered log recovery to bypass the changes.

Filtered log recovery lets you rollback a committed logical unit of work (LUW).

It sounds like an easy solution, but it must be exercised with extreme care.

When you undo past errors, other database changes may be altered as well:

rows that users thought they had deleted may unexpectedly reappear; the

values in updated rows may change.

If you are using referential integrity, then on completion of the filtered log

recovery you should deactivate and activate your primary and foreign keys to

have the database manager automatically recheck the referential constraints. See

“Altering Referential and Unique Constraints” on page 65.

Filtered log recovery can be used to bypass the operations recorded in the log.

The smallest set of operations you can bypass is all the work done in a single

LUW. You tell the application server which logical units of work to bypass by

supplying EXTEND input file commands. Because you want to bypass work

that has already been committed, you would use the ROLLBACK

COMMITTED WORK command. All the EXTEND input file commands are

described in the DB2 Server for VSE & VM Diagnosis Guide and Reference

manual.

Dynamic Recovery from User Errors

To dynamically recover from user errors, users should take advantage of the

facilities that are provided for detecting error situations and for backing out

changes that should not have been committed.

Backing Out Data During an ISQL Session

When using ISQL, there will be times when you will want to backout an invalid

action: for example, if AUTOCOMMIT is OFF and you entered an SQL statement

that resulted in a negative SQLCODE, or changes to a table that proved to be

incorrect.

Note: You cannot backout changes in a nonrecoverable storage pool.

130 Database Administration

If you detect an error before a change is committed, you can backout the change.

How many changes you can backout depends on whether AUTOCOMMIT is ON

or OFF.

If it is ON, every statement is its own logical unit of work (LUW), and ISQL will

immediately issue a COMMIT WORK after processing the statement. The only

exception is for INSERT, UPDATE, and DELETE statements that affect more than

one row: in that case, ISQL displays a message that gives you the option of

backing out. For all other statements, you can backout the changes before the

statement completes its processing, by:

v Answering CANCEL, ROLLBACK, or NO (based on the reply prompt) to an

ISQL message requesting a reply

v Entering the ISQL CANCEL command when you are informed that the terminal

is free (VSE Only)

v Entering CANCEL if you are prompted to clear the screen or enter CANCEL.

(VSE Only)

v Entering CANCEL or SQLHX if you are prompted to clear the screen (clear the

screen after entering CANCEL). (VM Only)

When using the INPUT command, you can enter the BACKOUT command after an

invalid data row is entered. This deletes all data rows entered since INPUT was

issued, or since the last SAVE command was entered.

If AUTOCOMMIT is OFF, you have control over what is an LUW and when

changes are to be made. When you backout a change, this undoes all changes

made since the beginning of the LUW. You can backout a change by any of these

methods:

v Entering a CANCEL or an SQL ROLLBACK WORK statement

v Answering CANCEL to any ISQL message requesting a reply (and then

answering YES to message ARI7041D)

v Entering the ISQL CANCEL command when you are informed that the terminal

is free (VSE Only)

v Entering CANCEL if you are prompted to clear the screen or enter CANCEL.

(VSE Only)

v Entering CANCEL or SQLHX if you are prompted to clear the screen (clear the

screen after entering CANCEL). (VM Only)

Note: In VM, when you enter a CANCEL command, ISQL does ROLLBACK

WORK RELEASE processing. Any explicit connection you have made will

be released. You should reissue the CONNECT statement if you want to

explicitly connect to ISQL again.

Backouts Initiated by Application Programs

An application program may begin a backout if the application server shows that

there is an error, or if the program detects something wrong internally. To detect

and handle errors, the program should have the WHENEVER statement coded into

it. It can then determine whether to continue or to stop execution when an error

occurs.

All operations against recoverable storage pools are atomic, except in SUM

NOLOG mode. That is, either the operation will be completed successfully, or any

changes made by the operation will be reversed automatically. Changes made by

previous operations in the same LUW are not affected. The application is free to

either continue working within the same LUW, to COMMIT the changes made so

Chapter 6. Recovering from Failures 131

far, or to ROLLBACK the LUW. Some errors, such as deadlock, still require the

entire LUW to be rolled back. The status of the LUW is indicated in SQLWARN6 in

the SQLCA.

When running with LOGMODE=N, atomicity of operations is enforced by rolling

back the current LUW to avoid partial completion of an operation. For operations

on data in nonrecoverable storage pools, there is no support for atomicity of

operations.

Note: When blocking, the database manager does not insert rows into the database

until the block is full and it does not notify your program of an insert error

until the PUT that fills a block is run. To determine when (or if) rows are

actually inserted into the database, your program should examine

SQLERRD(3) in the SQLCA when doing PUTs.

To rollback work when an SQL error is encountered, code a ROLLBACK WORK

statement in the program, and use a WHENEVER SQLERROR GO TO statement to

cause a branch to the ROLLBACK statement when there is an SQL error. After the

program issues a ROLLBACK WORK, it may continue processing more SQL

statements without the previous error affecting their outcome.

If the application programmers do not wish to worry about setting up

error-recovery logic in their programs, they can enable them to stop executing

when an SQL error is detected. This is done by coding WHENEVER SQLERROR

STOP (COBOL, COBOL II, PL/I) or WHENEVER SQLERROR GOTO. When this is

coded, the database manager will issue either a CANCEL (in VSE) or a CMS

DMSABN macro (in VM) for the application when any command results in a

negative SQLCODE, which results in a ROLLBACK WORK for any outstanding

LUW within the application program. Alternatively, the application programmer

could code a WHENEVER SQLERROR GOTO and branch to a label or routine to

perform the ROLLBACK WORK and end the program.

If the program detects an internal error and wishes to discontinue processing, it is

probably best to issue a ROLLBACK WORK (if possible) before terminating it. This

can be done by coding a ROLLBACK WORK statement in the application and

branching to it when an internal program error is detected. After the ROLLBACK

WORK statement is run, the program can stop, or continue if desired.

In VM, once a program is running, you can stop it by using the immediate

commands HX or SQLHX, both of which cause a ROLLBACK WORK for the

current LUW. You might want to do this if, for example, you start the program and

then realize you have provided the wrong inputs. The difference between the two

commands is that HX causes an end to the CMS command, while SQLHX does

not. Thus, the choice of command is a matter of convenience. For example, issuing

HX from ISQL both rolls back the current LUW and ends the ISQL session, so the

user must reinitialize ISQL to continue processing; issuing SQLHX causes the LUW

to be rolled back but the ISQL session continues.

Note: The ISQL CANCEL command and the more general SQLHX command have

equivalent functions. The CANCEL command, however, does not work for

user programs. In addition, CANCEL, SQLHX, and HX do not work if you

have processed the SQLINIT command with the SYNCHRONOUS(YES)

option.

132 Database Administration

Selective Recovery from User Data Errors

It is a good idea to maintain backup copies of specific tables or dbspaces, so that

they can be reset in case of major errors.

Periodic Backup of Critical Data

Individual tables or entire dbspaces should be periodically unloaded to either a

SAM tape or DASD file (in VSE), or to a tape or CMS minidisk file (in VM) with

the DBS Utility UNLOAD command.

Multiple UNLOAD commands can be put in a single DBS SYSIPT (VSE), or SYSIN

(VM), input file. You might establish one such job stream for periodic back-up of

users’ PRIVATE dbspaces, and others for periodic back-up of selected application

production data. Different types of data would typically have different back-up

schedules. For example, production data would probably be backed up more

frequently than query user data. Some DB2 Server for VSE data, such as certain

data extracted from DL/I, would not require back-up; that is, the DL/I copy of the

data is sufficient back-up.

Note: You cannot use the DBS Utility UNLOAD facilities to back up data in the

system dbspaces (SYS000n). The catalog tables and packages cannot be reset

by DBS RELOAD processing.

Resetting Data Using DBS RELOAD Processing

When data is backed up, you can recall the backup copy if necessary. Data that

was backed up with the UNLOAD TABLE command is recalled with the RELOAD

TABLE command; data that was backed up with the UNLOAD DBSPACE

command can be recalled with either RELOAD DBSPACE (to reset the entire

dbspace) or with RELOAD TABLE (to recall selected tables in the dbspace). Often,

user data errors that have been introduced into the database are isolated to just a

few tables; thus, even if the data had been unloaded with an UNLOAD DBSPACE

command, you would use RELOAD TABLE to reset it.

When a table is RELOADed with the NEW option, a new table is created and data

reloaded. None of the primary keys, indexes, unique constraints, referential

constraints or field procedures are reproduced in the new table.

When you use the RELOAD command with the PURGE option to replace the

contents of a table, the DBS Utility does the following to the table being replaced:

 1. Drops the CLUSTERING index (if one exists).

 2. Deactivates the active primary key (if one exists).

 3. Deactivates all active foreign keys.

 4. Deactivates all unique constraints.

 5. Drops all other indexes.

 6. Deletes all rows from the table.

 7. Reloads data.

 8. Recreates the CLUSTERING index previously dropped.

 9. Activates the primary key previously deactivated.

10. Activates the unique constraints previously deactivated.

11. Recreates any remaining indexes previously dropped.

As a result, the CLUSTERING index will be preserved, as well as the primary key,

foreign keys, unique constraints, and indexes existing on the table at the time of

the RELOAD/PURGE command. If no CLUSTERING index exists, then the

primary key becomes the CLUSTERING index. There is no requirement to order

the reloading of tables, because all referential constraints are inactive while the

data is inserted.

Chapter 6. Recovering from Failures 133

Consider running the DBS Utility in single user mode with LOGMODE=N when

resetting data through RELOAD DBSPACE or RELOAD TABLE processing. This

will eliminate any log overflow conditions that result from the table row deletes

and inserts performed by RELOAD processing with the PURGE option. If you use

log archiving, however, remember that switching the log mode disrupts the

continuity of the log.

Running the DBS Utility with LOGMODE=N is shown in Figure 26 and Figure 27.

If the data resides in a nonrecoverable storage pool, there is no need to use

LOGMODE=N, because logging is automatically suppressed for nonrecoverable

data.

Notes:

1. The job control here assumes that the DB2 Server for VSE database was last

shut down with the ARCHIVE, UARCHIVE, or LARCHIVE option (depending

on whether you use LOGMODE=A or LOGMODE=L).

2. The first execution of the ARISQLDS exec starts the DB2 Server for VSE system

in single user mode (SYSMODE=S), and does a COLDLOG (STARTUP=L) to

redefine the log data sets. This step switches from LOGMODE=A or

LOGMODE=L to LOGMODE=N, and is not needed unless you run with

LOGMODE A or L. Omit the parameters DUALLOG=Y and ALTLOG=Y if you

are not using dual logging or alternate logging.

3. The second execution of the ARISQLDS exec runs the DBS Utility with the

input shown. This step RELOADs all the table data into the DBSPACE named

SQLDBA.EXAMPLE from a tape file (filename=DUMPTAP) created by the DBS

Utility UNLOAD DBSPACE command.

For further information about switching log modes, see the DB2 Server for VSE

System Administration manual.

Notes:

1. The CMS commands here assume that the application server was last shut

down with the ARCHIVE, UARCHIVE, or LARCHIVE option (depending on

// JOB RESTORE DBSPACE

// EXEC PROC=DBNAME01

// EXEC PROC=ARIS71PL

// TLBL DUMPTAP,.........

// ASSGN SYS004,.........

// EXEC ARISQLDS,SIZE=AUTO,PARM=’STARTUP=L,SYSMODE=S,LOGMODE=N,DUALLOG=Y’,

 ALTLOG=Y’

// EXEC ARISQLDS,SIZE=AUTO,PARM=’SYSMODE=S,LOGMODE=N,PROGNAME=ARIDBS’

CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;

RELOAD DBSPACE (SQLDBA.EXAMPLE) PURGE INFILE(DUMPTAP PDEV(TAPE)

/&

Figure 26. Resetting a DB2 Server for VSE DBSPACE from a Back-up Copy

 EXEC SQLLOG DB(dbname)

 FILEDEF DUMPTAP TAPn (RECFM VBS BLOCK 800

 EXEC SQLDBSU DB(dbname) IN(TERM) LOGMODE(N)

 CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;

 RELOAD DBSPACE (SQLDBA.EXAMPLE) PURGE INFILE(DUMPTAP)

 COMMIT WORK RELEASE;

Figure 27. Resetting a DB2 Server for VM Dbspace from a Back-up Copy

134 Database Administration

whether you use LOGMODE=A or LOGMODE=L). This ensures that you will

be able to restore the database if a DASD fails.

2. The first run of the DB2 Server for VM program (by way of the SQLLOG

EXEC) does a COLDLOG, which is necessary to switch from LOGMODE=A or

L to LOGMODE=N. If you do not run with LOGMODE=A or L, you do not

need to run SQLLOG to do a COLDLOG.

3. Respond N for NO to message ARI0688D, which asks whether you want to

FORMAT and RESERVE the log minidisk(s).

4. The second run processes the DBS Utility with the input shown, to RELOAD

all the table data in the dbspace named SQLDBA.EXAMPLE from a tape file

(ddname=DUMPTAP) created by DBS Utility UNLOAD DBSPACE command

processing. CMS FILEDEF commands direct the DBS input to the terminal and

DUMPTAP to the tape.

5. After reloading the table, switch back to LOGMODE=A or L and create another

database archive.

Database Recovery from User Logic Errors

To protect the entire database from user logic errors, use the archiving and

COLDLOG facilities of the database manager. These facilities are required to

protect the system catalog tables and the package dbspaces. Backup copies of the

system dbspaces (SYS000n) made by DBS Utility UNLOAD command cannot be

used to reset catalog tables or packages to a previous state.

Creating a Proper Back-up Copy of the Database

The back-up copy of the database can be either a database archive or a database

archive and subsequent log archives.

You can create the database archive by using a variety of facilities. You must,

however, create the archive when no user is accessing the database. Create the

archive by using either the SQLEND ARCHIVE or SQLEND UARCHIVE

command. Because no user is accessing the database when the database archive is

taken, no incomplete changes are recorded in the database archive.

If you use log archiving, you can think of the last back-up copy as being the last

database archive plus all subsequent log archives. Log archives do not record

changes by incomplete logical units of work.

Note: If you are using the CICS subsystem and it ends abnormally, or the

connections from the online resource adapter to the application server are

ended by a CIRR QUICK, or the online adapter is ended by a CIRT QUICK

or CIRR QUICK command, an exception can occur: that is, incomplete

changes can be in the archive copy of the database if there are CICS

transactions that are left in-doubt when the SQLEND archive is taken. To

avoid this condition, enter a SHOW ACTIVE command to see if there are

any LUWs that are marked as being in-doubt. If there are, enter the

necessary FORCE commands to complete them before you enter the

SQLEND ARCHIVE command.

You can create a proper back-up copy even if you have been running the database

manager with LOGMODE=Y. However, if you create a database archive by using

SQLEND parameters when LOGMODE=Y, you must follow the steps outlined in

the DB2 Server for VM System Administration or DB2 Server for VSE System

Administration manual to restart the database manager with LOGMODE=Y, because

the log mode will automatically change to A when taking the database archive.

Chapter 6. Recovering from Failures 135

Resetting the Database to a Previous Copy

If you are restoring from a database archive without using subsequent log archives,

you can reset the database to any previous database archive copy, not just the

latest one.

To reset a DB2 Server for VSE database to a previous copy generated by an

SQLEND command, run COLDLOG before restoring the database from the archive

copy. This reformats the log so that changes since the archive was taken are not

applied again.

To reset a DB2 Server for VM database, run the SQLLOG EXEC (omitting the

LOG1, LOG2, ALTLOG1, and ALTLOG2 parameters) to reformat the log with a

COLDLOG. Respond “NO” to message ARI0688D (for single logging) or ARI6129D

(for dual or alternate logging). When you respond NO, the database manager

reformats the log such that changes since the archive was taken are not applied

again.

If you are restoring from a database archive and subsequent log archives, no

COLDLOG is required. When the database is restored, the logs are restored in

sequence. You are prompted to continue the log restore before processing each log

archive. You can end the restore process at any log archive by responding “END

RESTORE” to the appropriate prompt.

When resetting the database to a back-level copy, even if you are using subsequent

log archives, you should be aware of the following:

v The database archive copy includes a copy of the database directory, but the

database manager does not recognize any ADD DBSPACE and ADD DBEXTENT

operations which were done after the database archive. To reestablish these

dbspaces and dbextents in a VSE system, you must rerun the appropriate ADD

DBSPACE and ADD DBEXTENT operations. You can determine how many

dbextents exist in the restored back-level database by using the SHOW

DBEXTENT operator command. (Add the values in the NO._OF_EXTENTS

column.) You can determine the numbers of public and private dbspaces in the

restored database by querying the SYSTEM.SYSDBSPACES catalog table. For

more information on the catalog tables, see the DB2 Server for VSE System

Administration manual or the DB2 Server for VM System Administration manual. In

VM, if you want to reestablish the dbspaces added after the database archive

was created, you must rerun the SQLADBSP EXEC. For more information, see

the DB2 Server for VM System Administration manual.

Any dbextents added to the database (by an ADD DBEXTENT operation) after

the database archive was created do not exist in the archive copy of the

database. In VM, the CP LINK and CMS FILEDEF commands for these

dbextents are present in the resid SQLFDEF file (on the DB2 Server for VM

production minidisk) for the database. To redefine these dbextents in the DB2

Server for VM database, perform the following procedure:

1. Create an ADD DBEXTENT card image input CMS file with a line entry for

each added dbextent. Each entry should contain the dbextent number and

the storage pool number for the dbextent.

Note: The SHOW DBEXTENT operator command tells you how many

dbextents are defined in the database.

2. Enter a CMS FILEDEF command with ddname SYSIN for the CMS input file:

 FILEDEF SYSIN DISK fn ft fm

136 Database Administration

3. Run the SQLSTART EXEC with PARM(SYSMODE=S,STARTUP=E...) to

redefine the dbextents in the database.

v The database archive of the directory shows the DUALLOG or ALTLOG value in

effect when the database archive was created. The database archive also shows

the size of the logs when the archive was taken. You can reset the DUALLOG or

the ALTLOG value and the size of the logs by doing a COLDLOG operation to

reformat the logs after the database is restored.

In VSE, do a COLDLOG by specifying STARTUP=L and the DUALLOG or

ALTLOG value that you want. For more information about DUALLOG, see the

DB2 Server for VSE System Administration manual.

In VM, do a COLDLOG by running the SQLLOG EXEC without the LOG1,

LOG2, ALTLOG1, and ALTLOG2 parameters. In this situation, the log minidisk

is already reserved and formatted; only the directory needs to be updated.

Respond “NO” to message ARI0688D (for single logging) or ARI6129D (for dual

or alternate logging), which prompts you to FORMAT and RESERVE the log

minidisk (or minidisks).

This final consideration applies when you restore a database archive without

applying subsequent log archives:

v All data (including the catalog table information) is reset to the database archive

copy. Any preprocessing, data definitions, grants, revokes, and stored queries or

routines established after the database archive was created are lost. The database

may not be consistent with other facilities on your system. In particular, it may

not be consistent with your CICS or DL/I data, and the packages may not reflect

the SQL application programs you installed on your system after the database

archive was created.

Resetting the Database without Reformatting the DB2 Server for

VSE Data Sets

A database restore (STARTUP=R) reformats the VSAM database data sets before

the data is reloaded. Reformatting the data sets is necessary after a data set is

replaced (for example, when restoring because of a media failure or database

reconfiguration). Reformatting the data sets is not necessary when none of the

database data sets is being replaced.

When restoring the database to a previous level to recover from a user logic error,

you usually do not change the data sets. To save processing time, use STARTUP=F

(fast restore) when you have not replaced any of the database data sets. The

STARTUP=F processing does not format the VSAM data sets: it loads the data.

Eliminating the formatting of the data sets significantly reduces the restore time.

Chapter 6. Recovering from Failures 137

138 Database Administration

Chapter 7. Customizing the HELP Text and Messages Text

The DB2 Server for VSE & VM messages and HELP texts are stored in tables,

meaning that they can be retrieved and manipulated just like any other data. You

can modify the information to suit local needs in the following ways:

v Adding or deleting topics

v Changing the information in existing topics

v Adding HELP text supplied by IBM in supported languages

v Adding your own HELP text in supported languages.

Note: A HELP command causes ISQL to issue a SELECT statement on the tables.

Figure 28 shows the relationships between the tables used by the application server

for HELP text support.

 The relationships between the tables are maintained through the following sets of

matching columns:

v LANGKEY in both SYSLANGUAGE and SYSTEXT2

v ITEM in both SYSTEXT1 and SYSTEXT2.

These tables are explained in more detail below.

The SYSLANGUAGE Table

HELP and messages texts are provided in several national languages. During

installation, one language is established as the default; it can be changed after

installation. In addition, you can make more than one language available to ISQL

users.

The SYSLANGUAGE table is created as part of the installation process. It lists all

national languages that are currently supported on the application server, meaning

that both HELP text and messages text are available in these languages. Its primary

purpose is for use with the message repository, which is a mandatory part of the

product installation. Installing the HELP text is optional.

Each entry in this table has the following fields:

1. LANGUAGE — the name of the language. There can be more than one entry to

describe the same language: for example, FRANCAIS, FRENCH, and FR can all

be LANGUAGE field values for French.

SYSTEXT1 SYSLANGUAGE

ITEM TOPIC LANGUAGE LANGKEY REMARKS LANGID

ITEM SEQNO SQL/DS HELP LANGKEY

SYSTEXT 2

Figure 28. Relationships between SYSLANGUAGE, SYSTEXT1, and SYSTEXT2

© Copyright IBM Corp. 1987, 2007 139

2. LANGKEY — the language key. This is a four-character code that uniquely

identifies each language, regardless of what name labels it in the LANGUAGE

field.

3. REMARKS — a description of the entry.

4. LANGID — the language identifier.

To view all the columns of the SYSLANGUAGE table, enter the following query:

 SELECT * FROM SQLDBA.SYSLANGUAGE

Figure 29 shows a sample SYSLANGUAGE table.

 The language key (LANGKEY) can be one of those listed in Table 26.

 Table 26. Language Keys

Language Key Description Language ID

S001 American mixed case AMENG

S002 English upper case UCENG

S003 French FRANC

S004 German GER

D001 Japanese KANJI

D003 Simplified Chinese HANZI

Note: IBM has reserved the following language key ranges for use by future

languages supplied by IBM:

v S000 to S500 for single-byte character set (SBCS) or EBCDIC languages

v D000 to D500 for double-byte character set (DBCS) languages.

In VM, the default language is established by the language currently set in CMS. If

this language is not supported by the application server, then the default language

defined during installation is used.

In VSE, the default language is established by the following:

v ISQL — from either a parameter in the CIRB transaction (LANGID), or a

language supplied by IBM.

v DBSU — link-edited with the default language (messages only)

v PREP — link-edited with the default language (messages only).

v DSQG, DSQU, DSQQ and DSQD — from a parameter in the CIRB transaction

(LANGID).

v CBND — from a parameter in the CIRB transaction (LANGID).

v Batch Binding — link-edited with the default language (messages only).

v SQLGLOB File Batch Update/Query Program — link-edited with the default

language (messages only).

LANGUAGE LANGKEY REMARKS LANGID

-------------- ------- --------------------------------------- --------

ENGLISH S001 AMERICAN ENGLISH VERSION OF HELP TEXT AMENG

ENGLISH S002 ENGLISH UPPER CASE VERSION OF HELP TEXT UCENG

FRENCH S003 FRENCH VERSION OF HELP TEXT FRANC

FRANCAIS S003 TEXTE D’AIDE FRANCAIS FRANC

Figure 29. Sample SQLDBA.SYSLANGUAGE Table

140 Database Administration

|

The SYSTEXT1 and SYSTEXT2 Tables

The HELP text tables are normally loaded during the installation process. The DBS

Utility accomplishes this task by creating the HELP text tables SYSTEXT1 and

SYSTEXT2 for the user SQLDBA, loading data into both tables (through

DATALOAD), and creating an index on each.

Figure 30 shows the formats of these tables, but not the actual tables.

 The following SQL statements are used during the loading process to create

SYSTEXT1 and SYSTEXT2:

 CREATE TABLE SQLDBA.SYSTEXT1 (TOPIC CHAR(20) FOR BIT DATA NOT NULL,

 ITEM SMALLINT NOT NULL)

 IN "PUBLIC"."HELPTEXT"

 CREATE TABLE SQLDBA.SYSTEXT2 (ITEM SMALLINT NOT NULL,

 SEQNO SMALLINT NOT NULL,

 "SQL/DS HELP" CHAR(60) FOR BIT DATA NOT NULL,

 LANGKEY CHAR(4) NOT NULL)

 IN "PUBLIC"."HELPTEXT"

When a user enters a HELP command, a query like this is processed:

 SELECT "SQL/DS HELP"

 FROM SQLDBA.SYSTEXT1, SQLDBA.SYSTEXT2

 WHERE TOPIC = ’topicname’

 AND SQLDBA.SYSTEXT1.ITEM = SQLDBA.SYSTEXT2.ITEM

 AND LANGKEY = ’XXXX’

SYSTEXT1 SYSTEXT2

TOPIC ITEM ITEM SEQNO "SQL/DS HELP" LANGKEY

----------- ---- ---- ----- ----------------------- -------

VIEW 5260 5260 10 TOPIC NAME: CREATE VIEW S001

VIEW 5330 • • • •

VIEW 5920 5260 110 CREATE VIEW is an SQL ... S001

VIEWS 5260 5260 120 more tables. You can ... S001

VIEWS 5330 • • • •

VIEWS 5920 • • • •

 • • 5260 1070 DELIVERY_TIME was less ... S001

CREATE VIEW 5260 5260 1080 S001

 • 5260 10 RUBRIQUE : CREATE VIEW S003

DROP VIEW 5330 • • • •

 • • • • • •

 • • 5260 100 CREATE VIEW est une ... S003

 • • 5260 110 d’une ou plusieurs ... S003

 • • • •

 • • • •

 5260 1110 FAB, ART et JOURS) ... S003

 5260 1120 S003

 5330 10 TOPIC NAME: DROP VIEW S001

 • • • •

 • • • •

 5330 90 DROP VIEW is an SQL ... S001

 5330 100 SQL/DS also automatically ... S001

 • • • •

 • • • •

Figure 30. Formats of the Tables SYSTEXT1 and SYSTEXT2

Chapter 7. Customizing the HELP Text and Messages Text 141

where XXXX is the four-character language key that indicates a specific HELP text

language from among those currently installed on the DB2 Server for VSE & VM

application server.

When the support for languages is installed, HELP text may or may not be

available depending on your site’s requirements. Each ISQL user can select from

among the languages currently installed on the application server. To view which

languages are currently installed, a user enters the following query:

 SELECT LANGUAGE FROM SQLDBA.SYSLANGUAGE

The user can then change the default language with the ISQL SET LANGUAGE

command.

The topic that the user supplies is substituted in topicname. An ORDER BY clause is

not used in the query because these indexes are defined on the tables:

 CREATE INDEX SQLDBA.SYSTEXT1INDEX

 ON SQLDBA.SYSTEXT1(TOPIC,ITEM)

 CREATE INDEX SQLDBA.SYSTEXT2INDEX

 ON SQLDBA.SYSTEXT2(ITEM,SEQNO,LANGKEY)

 CREATE INDEX SQLDBA.SYSLANGINDEX

 ON SQLDBA.SYSLANGUAGE(LANGUAGE)

 CREATE INDEX SQLDBA.SYSLANGINDEX

 ON SQLDBA.SYSLANGUAGE(LANGID)

A HELP command uses SYSTEXT1 as a pointer to SYSTEXT2. Suppose an ISQL

user enters:

 help ’view’

The parameter ‘view’ is converted to uppercase. The database manager finds all

occurrences of the character string ‘VIEW’ in the TOPIC column of SYSTEXT1 for

the HELP text of the current language. See Figure 31.

 Figure 31 shows three occurrences of the string VIEW. Each has an item number

associated with it (5260, 5330, 5920). These numbers and the language key are used

as pointers (through the query join) to the ITEM numbers and language key in

table SYSTEXT2. The rows in SYSTEXT2 having those ITEM numbers and

 SYSTEXT1

 TOPIC ITEM

 ----------- ----

-------> VIEW 5260

-------> VIEW 5330

-------> VIEW 5920

 CREATE VIEW 5260

 CREATE V 5260

 DROP VIEW 5330

 VIEW QUERY 5030

 VIEW MODS 5040

 • •

 • •

 • •

Figure 31. Use of the SYSTEXT1 Table

142 Database Administration

language key are retrieved in order, primarily by ITEM number and the language

key, and secondarily by sequence number (SEQNO). Thus, three unique topics are

returned when HELP ‘VIEW’ is entered.

Note that other rows in SYSTEXT1 have identical ITEM numbers but different

names (TOPIC). These rows enable retrieval of each of the four topics separately.

For example, the command HELP ‘CREATE VIEW’ retrieves only the topic having

ITEM number 5260. Similarly, the ‘CREATE V’ entry in table SYSTEXT1 is an alias

for ‘CREATE VIEW’; it also points to ITEM 5260.

This cross-referencing scheme has three forms:

v Duplicate topic names pointing to more than one actual topic (for example,

HELP ‘VIEW’).

v Multiple topic names pointing to the same topic (for example, HELP ‘CREATE

VIEW’ and HELP ‘CREATE V’).

v A unique topic name pointing to one topic (for example, HELP ‘VIEW MODS’).

Adding Topics to HELP Text Tables

You can add new topics to the HELP text tables supplied by IBM, or create your

own HELP text table. As modifying the HELP text supplied by IBM greatly

increases the amount of administrative work required if you must later reinstall the

HELP text, a much better method is to set up your own independent HELP text

tables in some other PUBLIC dbspace. This method is described in “Creating Your

Own HELP Text Tables” on page 144.

Adding a HELP Topic to the HELP Text Supplied by IBM

Parts of this task require DBA authority (or at least INSERT authority on the

SYSTEXT1 and SYSTEXT2 tables). If you plan to add much new material to the

HELP text, see “Making the HELPTEXT Dbspace Larger” on page 145 and

“Moving the HELP Text to Another Dbspace” on page 147.

To add your own topic to the tables, follow these steps:

1. Pick a TOPIC name, up to a maximum of 20 characters. This name must be

unique among all TOPIC names in table SYSTEXT1. An easy way to check this

is to enter the query:

 SELECT * FROM SQLDBA.SYSTEXT1 WHERE TOPIC = ’candidate name’

If rows are returned, that TOPIC name already exists, and you must choose and

test another.

2. Choose an ITEM number less than 5 000 for the new topic. Numbers of 5 000

and above are reserved for topics supplied by IBM.

3. Insert a row into SYSTEXT1 for the new TOPIC name and its ITEM number.

For example:

 INSERT INTO SQLDBA.SYSTEXT1 VALUES (’HOURS’,1000)

4. Insert rows into SYSTEXT2 for the information to be displayed when a user

requests HELP on this new topic. This information must include the values to

be used in the four columns of table SYSTEXT2. For example:

 INSERT INTO SQLDBA.SYSTEXT2

 VALUES(1000,10,’HOURS OF USE:’,’S001’)

 INSERT INTO SQLDBA.SYSTEXT2

 VALUES(1000,20,’8 AM TO 6 PM’,’S001’)

Chapter 7. Customizing the HELP Text and Messages Text 143

where “S001” is the English language key. You can repeat this type of INSERT

for every other language.

Note: The “SQL/DS HELP” column has a length of 60 characters.

When adding HELP text to the SYSTEXT2 table, a language key must be specified.

A list of valid language keys is found in Table 26 on page 140. You should use

installation procedures supplied by IBM.

Creating Your Own HELP Text Tables

You should consider using the SYSTEXT1 and SYSTEXT2 tables as the basis for

creating your own HELP text tables. SYSLANGUAGE must still exist for the HELP

command to work, unless you establish HELP text tables and query those tables as

shown in Figure 32.

Figure 32 shows example SQL commands to set up your own local HELP text.

 XXXX in the LANGKEY column represents the language key.

In this example, two tables, SQLDBA.LTEXT1 and SQLDBA.LTEXT2, are created in

a PUBLIC dbspace called LOCAL. Appropriate indexes are also defined. Once the

tables are created, you can add topics in a way similar to that described previously

for the tables of HELP text supplied by IBM. Replace the names supplied by IBM

for the HELP text tables, dbspace, and column names with your own names.

Users can then access the new HELP text with an ISQL routine that contains a

SELECT statement (see the example in Figure 32). The ISQL stored routines

supplied by IBM for accessing the original HELP text may not work for the new

tables, so it may be necessary to set up new ones. The SELECT authority must be

granted to all users on the table containing the routine and on the HELP text

tables.

 CREATE TABLE SQLDBA.LTEXT1 (TOPIC CHAR(20) FOR BIT DATA NOT NULL,

 ITEM SMALLINT NOT NULL)

 IN "PUBLIC".LOCAL

 CREATE TABLE SQLDBA.LTEXT2 (ITEM SMALLINT NOT NULL,

 SEQNO SMALLINT NOT NULL,

 "LOCAL HELP" CHAR(60) FOR BIT DATA NOT NULL,

 LANGKEY CHAR(4) NOT NULL)

 IN "PUBLIC".LOCAL

 CREATE INDEX SQLDBA.LTEXT1INDEX

 ON SQLDBA.LTEXT1(TOPIC,ITEM)

 CREATE INDEX SQLDBA.LTEXT2INDEX

 ON SQLDBA.LTEXT2(ITEM,SEQNO,LANGKEY)

 ...

 SELECT "LOCAL HELP"

 FROM SQLDBA.LTEXT1, SQLDBA.LTEXT2

 WHERE TOPIC = ’topicname’

 AND SQLDBA.LTEXT1.ITEM = SQLDBA.LTEXT2.ITEM

 AND LANGKEY=’XXXX’

Figure 32. Implementing Your Own HELP Text Tables

144 Database Administration

Making the HELPTEXT Dbspace Larger

The size of the original HELPTEXT dbspace is 8192 pages, which is sufficient to

hold the HELP text supplied by IBM and four or five languages. If you plan to add

extensively to the text or to add more than five languages, it may be necessary to

increase the size of this dbspace.

To see how many pages are currently active in the HELPTEXT dbspace, issue the

following query through ISQL or the DBS Utility:

 SELECT DBSPACENAME,NACTIVE

 FROM SYSTEM.SYSDBSPACES

 WHERE DBSPACENAME=’HELPTEXT’

If the NACTIVE (number of active data pages) value is close to 4646 (8192 minus

the index pages allowance), consider making the HELPTEXT dbspace larger. To

estimate how many pages are needed in the dbspace for the modified HELP text,

see Appendix A, “Estimating Your Dbspace Requirements,” on page 223.

If the estimated number of pages (for both current and future estimated usage) is

greater than or close to 8192, increase the size of the dbspace. To do this, you must

drop and re-create the dbspace, as follows:

1. UNLOAD the “PUBLIC”.“HELPTEXT” dbspace using the DBS Utility.

2. DROP the “PUBLIC”.“HELPTEXT” dbspace.

3. ACQUIRE a new “PUBLIC”.“HELPTEXT” dbspace with the new required

number of pages.

4. RELOAD the dbspace using the DBS Utility.

5. Reinstate the required indexes and authorities.

6. Reinstate any user-defined indexes, views, or authorities.

7. Proceed with the updates to the HELP text.

Figure 33 and Figure 34 show examples of increasing the size of the

“PUBLIC”.“HELPTEXT” dbspace to 8448 pages. A tape is used in this example to

temporarily hold the HELP information that is on your database.

Chapter 7. Customizing the HELP Text and Messages Text 145

// JOB UNLOAD HELP TEXT

// EXEC PROC=DBNAME01

// EXEC PROC=ARIS71PL

// TLBL HELPTAP,.......

// ASSGN SYS005,.......

// EXEC ARISQLDS,SIZE=AUTO,PARM=’SYSMODE=S,LOGMODE=N,PROGNAME=ARIDBS’

CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;

UNLOAD DBSPACE ("PUBLIC"."HELPTEXT") OUTFILE(HELPTAP);

DROP DBSPACE "PUBLIC"."HELPTEXT";

ACQUIRE PUBLIC DBSPACE NAMED "HELPTEXT" (PAGES=8448);

RELOAD DBSPACE ("PUBLIC"."HELPTEXT") NEW INFILE(HELPTAP);

CREATE INDEX SQLDBA.SYSTEXT1INDEX ON SQLDBA.SYSTEXT1 (TOPIC,ITEM);

CREATE INDEX SQLDBA.SYSTEXT2INDEX ON SQLDBA.SYSTEXT2 (ITEM,SEQNO,LANGKEY);

GRANT SELECT ON SQLDBA.SYSTEXT1 TO PUBLIC;

GRANT SELECT ON SQLDBA.SYSTEXT2 TO PUBLIC;

COMMENT ’ ** OPTIONALLY ADD SQL STATEMENTS TO GRANT AUTHORIZATIONS **

 ** OR CREATE ANY VIEWS REQUIRED FOR THE NEW DATA BASE. **’;

CREATE VIEW;

 ...
GRANT;

 ...

/&

Figure 33. Unloading and Reloading the HELP Text in VSE

FILEDEF HELPTAP TAPn...

SQLDBSU DB(DBNAME01) IN(TERM)

CONNECT SQLDBA IDENTIFIED BY SQLDBAPW;

UNLOAD DBSPACE ("PUBLIC"."HELPTEXT") OUTFILE(HELPTAP);

DROP DBSPACE "PUBLIC"."HELPTEXT";

ACQUIRE PUBLIC DBSPACE NAMED "HELPTEXT" (PAGES=8448);

RELOAD DBSPACE ("PUBLIC"."HELPTEXT") NEW INFILE(HELPTAP);

CREATE INDEX SQLDBA.SYSTEXT1INDEX ON SQLDBA.SYSTEXT1 (TOPIC,ITEM);

CREATE INDEX SQLDBA.SYSTEXT2INDEX ON SQLDBA.SYSTEXT2 (ITEM,SEQNO,LANGKEY);

GRANT SELECT ON SQLDBA.SYSTEXT1 TO PUBLIC;

GRANT SELECT ON SQLDBA.SYSTEXT2 TO PUBLIC;

COMMENT ’ ** OPTIONALLY ADD SQL STATEMENTS TO GRANT AUTHORIZATIONS **

 ** OR CREATE ANY VIEWS REQUIRED FOR THE NEW DATA BASE. **’;

CREATE VIEW;

 ...
GRANT;

 ...
COMMIT WORK RELEASE;

Figure 34. Unloading and Reloading the HELP Text in VM

146 Database Administration

Moving the HELP Text to Another Dbspace

The HELP text can also be moved to another dbspace if more space is needed for

additional user documentation or if it needs to be moved for other administrative

reasons. The current size of the HELPTEXT dbspace is 8192 pages. The dbspace to

which the HELP text is being moved must be at least that size. To accomplish the

move:

1. UNLOAD the “PUBLIC”.“ HELPTEXT” dbspace using the DBS Utility.

2. DROP the “PUBLIC”.“HELPTEXT” dbspace.

3. ACQUIRE a new dbspace with the desired number of pages.

4. RELOAD the new dbspace using the DBS Utility.

5. Reinstate any user-defined indexes, views, or authorities.

6. Proceed with updates to the HELP text (if updates are being done).

Note: The names of the tables, columns, and indexes cannot be changed. In

addition, the owner name cannot change. Future reinstallations of the HELP

text will assume that the original names exist in the database.

Printing the HELP Text Using the DBS Utility

Use the DBS Utility to produce hardcopy output of the HELP topics. Because the

softcopy is stored in tables, you need only code a SELECT statement that retrieves

the desired topics, and execute this statement through the DBS Utility control file

input. The DBS Utility formats the output of the SELECT statement for you.

The broad categories of HELP topics and their ranges of ITEM numbers are as

follows:

Text for Appears in ITEMs

Commands (SQL and ISQL) 5000 - 9999

Messages 10000 - 19999

SQLCODES 20000 - 29999

Copyright Notice 30000

By using these ranges, you can code queries to retrieve various subsets of the

HELP topics. For example, the following query retrieves all the SQL statements

and ISQL commands (which were extracted from the DB2 Server for VSE & VM

Interactive SQL Guide and Reference manual):

 SELECT * FROM SQLDBA.SYSTEXT2

 WHERE ITEM BETWEEN 5000 AND 9999 OR ITEM = 30000

 AND LANGKEY=’S001’

 ORDER BY 1, 2;

Item 30,000 (the copyright notice) must be retrieved and printed whenever you

print IBM machine-readable information.

To print a copy of all messages and codes for a language, you can use a query like:

 SELECT * FROM SQLDBA.SYSTEXT2

 WHERE ITEM BETWEEN 10000 AND 30000

 AND LANGKEY=’XXXX’

 ORDER BY 1, 2;

where “XXXX” represents a selected language key.

Chapter 7. Customizing the HELP Text and Messages Text 147

Printing the HELP Text Using ISQL

You can also enter the SQL statement described above through an ISQL terminal.

When the desired HELP topics are displayed on the screen, enter a PRINT

command to obtain a hardcopy. Perform the desired formatting before entering the

PRINT command.

The class and number of copies desired can be specified on the PRINT command;

otherwise, the defaults are used. See the DB2 Server for VSE & VM Interactive SQL

Guide and Reference manual for detailed information.

Because the HELP topics contain both upper- and lowercase characters, a print

class that prints both characters should be specified. This depends on which HELP

text language you select: in the case of English, for example, the HELP text

contains both upper- and lowercase characters, so you should specify an

appropriate print class.

148 Database Administration

Chapter 8. Application Design Considerations

This chapter describes the facilities that are available for designing and

implementing applications, and discusses some considerations that application

developers and the database administrator (DBA) should take into account.

Application Implementation Capabilities

This section discusses the application implementation alternatives that developers

can consider. For each environment, several different ways of implementing

application functions are identified and discussed.

The following broad categories of applications are also discussed:

v Query Capabilities

v Report Writing Capabilities

v Programmed Application Capabilities

v Execs that use DB2 Server for VM Facilities

Batch/Interactive Capabilities

For batch/interactive DB2 Server for VSE usage environments, there are two

alternatives for application implementations:

v Assembler and High-Level-Language Programs

These are programs written in Fortran, PL/I, COBOL, or assembler that would

run as VSE batch jobs or interactive (VSE/ICCF) applications.

In addition, you can use SQL Extended Dynamic Statements to code your own

preprocessor in assembler language. Although the data requests must be made

in SQL, you can code your preprocessor to translate some other data

manipulation language to SQL statements. General concepts for coding a

preprocessor are in the DB2 Server for VSE & VM Application Programming

manual.

v DBS File Maintenance and Reporting

These are executions of the Database Services (DBS) Utility, which supports

execution of SQL statements and DBS commands.

High-Level-Language Programs

The primary vehicle for implementing application functions would be

high-level-language programs written for execution as batch jobs in either VSE

partitions or interactive partitions.

VSE Batch Partitions: VSE batch jobs support unit record devices or

VSE/POWER spool files and VSE files for input and output processing. The DB2

Server for VSE system can be used to support data sharing, data recovery, and

data function requirements of the applications.

VSE/ICCF Applications: Application programs written for execution under

VSE/ICCF can support some level of interaction with a terminal user. The

VSE/ICCF environment supports invocation of an application from a user

terminal, and can be effectively used to manage user input (SYSIPT) and output

(SYSLST) files as VSE/ICCF files.

© Copyright IBM Corp. 1987, 2007 149

DBS File Maintenance and Reporting

On batch/interactive systems with sufficient real storage available for dynamic

SQL processing, the DBS Utility can be effectively used for file maintenance and

reporting operations. For detailed information on maintenance, see Chapter 3,

“Maintaining Your Database,” on page 57.

Briefly, the DBS Utility can be used to:

v Load DB2 Server for VSE database tables from sequential files on DASD,

magnetic tape, or SYSIPT

v Unload DB2 Server for VSE database tables to sequential files on DASD,

magnetic tape, or SYSIPT

v Load DB2 Server for VSE tables from terminal users from bulk input files

developed using the VSE/ICCF editor

v Unload data from DB2 Server for VSE tables to VSE/ICCF Files

v Implement SQL procedures

Application functions that do not require procedural logic or variable

information can be carried out as a sequence of DBS SQL statements in a SYSIPT

(or VSE/ICCF) input file.

v Produce DBS reports, which may contain formatted listings of the selected data

from an SQL SELECT statement

v Reorganize data in the database

You can unload the data from the database using a DBS UNLOAD command,

and reload it with a different structure using the DBS RELOAD command.

v Convert data for interchange with non-DB2 Server for VSE products

For example, the utility can be used to load and unload data in a zoned-decimal

format. Zoned-decimal is not a DB2 Server for VSE data type, so the DBS Utility

converts the data as needed.

v Support interactive DBS processing from a VSE/ICCF terminal.

If you include the VSE/ICCF /DATA INCON job control statement in the DBS job

control, the utility takes its input (SYSIPT records) from the terminal input, and

displays its output (SYSLST) at the terminal. You can tailor the DBS output to

your terminal, by using the DBS SET LINEWIDTH command to specify the number

of characters to be displayed on an output line.

Online (CICS) Transaction Processing Capabilities

The basic capabilities available in the batch/interactive environment are extended

with the addition of the CICS subsystem and the online support. The following

sections describe these additional capabilities.

The main method for implementing online transactions is through CICS

high-level-language transaction processing programs. These programs can access

the DB2 Server for VSE system and exploit the unique facilities of the CICS

subsystem. Your transactions must be coded in COBOL, assembler, PL/I, or some

other language that the CICS subsystem supports and for which you have coded a

preprocessor. The CICS subsystem does not support Fortran.

The CICS transaction processing environment supports terminal-driven,

fast-response-time application processing. It also provides facilities for

interconnecting systems and distributing application processing in a network of

systems.

150 Database Administration

In addition to supporting CICS transaction access to the DB2 Server for VSE

system, data stored by the DB2 Server for VSE system can be shared with batch

and VSE/ICCF application programs.

Query Capabilities

Data can be queried through either application programs, the DBS Utility, or ISQL.

Which facility should be used depends on the complexity of the query and

whether it will be used repeatedly.

One-Time Queries

Query functions can be coded as application programs or processed through ISQL.

ISQL enables end users to formulate SQL queries on data and view and format the

results.

You can satisfy many of your end users’ data retrieval requirements by making the

ISQL facilities available to them.

Periodic Queries

There are several ways to design queries that will be used repeatedly:

Stored Queries: Queries can be developed under ISQL and stored for future,

repetitive use. End users can develop and store their own, or as DBA, you may

choose to create a specific set for distribution. When you develop a stored query

you can also save information about how its display should be formatted, so that

when users invoke the query, the display will be automatically formatted for them.

In addition, if you must later change a stored query, you can also change the

formatting information. When possible, ISQL saves existing formatting information

so that you do not have to re-enter it when there is a minor change to a stored

query.

Stored queries cannot be shared among users, so a separate copy must be stored

for each of them. The developer of a set of queries could use an ISQL routine (see

“ISQL Routines”) to enter and store them; then, any user who needed access to

those queries would simply run the routine to obtain a copy of them. The user

must have SELECT authority on the developer’s ROUTINE table.

One of the advantages of stored queries is that users simply START them; they

need not be familiar with SQL. With parameters, stored queries can be developed

that are general in nature—that is, they can support variable input for the same

basic function.

Note: If you develop stored queries and routines for use by multiple users, you

may want to consider devising your own HELP tables to provide

information on them. See “Creating Your Own HELP Text Tables” on page

144.

ISQL Routines: For more complex application functions that involve multiple

SQL functions, consider using ISQL routines. Routines have the following

advantages over stored queries:

v They can hold multiple SQL statements

v They support ISQL statements

v They can be shared.

Like stored queries, routines can be parameterized to provide variability in the

function provided, and users need not understand the details of the underlying

statements.

Chapter 8. Application Design Considerations 151

Because stored routines may support complex functions, you may want to account

for possible error conditions, by using the ISQL SET RUNMODE and SET

AUTOCOMMIT commands to provide for error handling in routines.

Figure 35 illustrates a routine that updates the SALARY value in the sample

EMPLOYEE table. It also displays a report showing the old and new values, and

prints the report of the transaction.

 To execute the ISQL routine in Figure 35, a user would enter (during an ISQL

session):

 RUN SALUPD (empno job change)

The routine is designed to update one row of the EMPLOYEE table based on

parameter input specified on the RUN command, and run a query that displays

the results of the update. All salaries for the job are displayed, not just the updated

salary. After reviewing the display, the user enters an END command to have three

copies of the display printed; then, the routine commits the transaction to the

database. If the displayed results are not correct, the user can cancel the update by

issuing the CANCEL command in place of the END command.

ISQL EXECs: In VM, ISQL and SQL statements can be stacked by an EXEC for

execution by ISQL. Such EXECs can be created using either EXEC 2 or the System

Product Interpreter, and can be written for execution either during or outside of an

ISQL session. (You cannot write one that will run both ways.)

To process an ISQL EXEC that is designed to run during an ISQL session, the user

enters “CMS” to get into Subset mode, and then types in the name of the EXEC.

The EXEC must place a RETURN CMS command as the first entry on the stack, in

order to cause control to be returned to ISQL for processing of the rest of the

statements on the stack.

CAUTION: EXECs that are processed from CMS Subset should not run ISQL, the

DBS Utility, or SQL applications, as the results will be unpredictable.

 SALUPD 0010 COMMIT WORK

 SALUPD 0020 SET AUTOCOMMIT OFF

 SALUPD 0030 SET RUNMODE CANCEL

 SALUPD 0040 UPDATE SQLDBA.EMPLOYEE -

 SALUPD 0050 SET SALARY = SALARY + &3 -

 SALUPD 0060 WHERE EMPNO = &1 AND JOB = &2;

 SALUPD 0070 SELECT EMPNO,JOB,SALARY-&3,SALARY -

 SALUPD 0080 FROM SQLDBA.EMPLOYEE -

 SALUPD 0090 WHERE EMPNO = &1 AND JOB = &2 -

 SALUPD 0100 UNION -

 SALUPD 0110 SELECT EMPNO,JOB,SALARY -

 SALUPD 0120 FROM SQLDBA.EMPLOYEE -

 SALUPD 0130 WHERE EMPNO ¬= &1 AND JOB = &2 -

 SALUPD 0140 ORDER BY 1

 SALUPD 0150 FORMAT COL 3 NAME ’OLD SALARY’

 SALUPD 0160 FORMAT COL 4 NAME ’NEW SALARY’

 SALUPD 0170 FORMAT TOTAL (3 4)

 SALUPD 0180 FORMAT TTITLE ’UPDATED THE SALARY OF EMPLOYEE &1 BY $ &3’

 SALUPD 0190 DISPLAY

 SALUPD 0200 PRINT COPIES 3

 SALUPD 0210 END

 SALUPD 0220 COMMIT WORK

Figure 35. Example ISQL Routine for the EMPLOYEE Table Update

152 Database Administration

Figure 36 shows an example of an EXEC called UPDSAL.

 Here, an ISQL EXEC stacks SQL UPDATE statements that are defined based on the

user’s responses to prompts for information. The prompts and stacking of updates

are done in a loop, so that multiple EMPLOYEE rows can be updated with one

execution of the EXEC.

After the user has entered all the updates, the EXEC stacks a query that will

display and print the results of the updates.

 /* UPDSAL EXEC 6/10/90 */

 /* THIS EXEC PROGRAM ALLOWS A USER TO PERFORM UPDATES ON */

 /* THE SALARY COLUMN OF THE EMPLOYEE TABLE. IT IS DESIGNED */

 /* TO BE STARTED WHILE IN A CMS SUBSET, AND IT AUTOMATICALLY */

 /* RETURNS TO ISQL TO EXECUTE THE UPDATE COMMANDS WHICH HAVE BEEN */

 /* PLACED ON THE PROGRAM STACK; THEN THE TABLE IS DISPLAYED AND */

 /* PRINTED TO SHOW THE CHANGES MADE. */

 PARTLIST = "" /* WILL CONTAIN LIST OF EMPNO’S WHOSE */

 /* TOTAL SALARY HAS CHANGED */

 DO COUNT = 1

 DO FOREVER

 SAY "ENTER EMPNO (ENTER ’END’ WHEN DONE)"

 PULL E

 IF E = ’END’ THEN LEAVE COUNT

 SAY ENTER JOB /* USER ENTERS UPDATE INFORMATION */

 PULL J /* (DATA IS CHECKED FOR VALID */

 SAY ENTER CHANGE TO SALARY /* TYPES) */

 PULL CTS

 IF DATATYPE(E,W) & DATATYPE(J,A) & DATATYPE(CTS,N) THEN LEAVE

 ELSE SAY "DATA ENTERED INCORRECTLY--TRY AGAIN"

 END

 UPD.COUNT = "UPDATE EMPLOYEE SET SALARY = SALARY + "CTS,

 " WHERE EMPNO = "E" AND JOB = "J /* UPDATE COMMANDS ARE */

 EMPLIST = EMPLIST", "E /* HELD IN AN ARRAY */

 END

 QUEUE RETURN /* TO ISQL */

 IF COUNT = 1 THEN EXIT /* NO UPDATES? */

 ELSE EMPLIST = SUBSTR(EMPLIST,3) /* REMOVE FIRST COMMA */

 QUEUE COMMIT WORK

 QUEUE SET AUTOCOMMIT OFF

 DO N = 1 TO COUNT-1 /* PLACE UPDATE COMMANDS */

 QUEUE UPD.N /* ON PROGRAM STACK */

 END

 QUEUE "SELECT JOB, EMPNO, SALARY FROM EMPLOYEE -"

 IF COUNT > 2

 THEN QUEUE "WHERE EMPNO IN ("EMPLIST") -"

 ELSE QUEUE "WHERE EMPNO = "EMPLIST" -" /* QUERY, FORMATTING, */

 QUEUE "ORDER BY JOB, EMPNO" /* AND PRINT COMMANDS */

 QUEUE FORMAT GROUP JOB

 QUEUE FORMAT SUBTOTAL SALARY

 QUEUE "FORMAT TTITLE ’SUMMARY OF CHANGES IN SALARY TOTALS’"

 QUEUE DISPLAY

 QUEUE PRINT COPIES 3

 QUEUE END

 QUEUE COMMIT WORK

Figure 36. ISQL EXEC for Updating the EMPLOYEE Table During an ISQL Session

Chapter 8. Application Design Considerations 153

To process an ISQL EXEC that is designed to run outside of an ISQL session, the

user simply enters the name of the EXEC—that is, the user initiates the EXEC

while using CMS, without having to start or even know about ISQL.

This type of EXEC would not include a RETURN command, because there is no

ISQL session to return to. Instead, it must include an ISQL EXIT command as the

last entry on the stack, and must start ISQL (EXEC ISQL) after the stack entries

have been completed.

Figure 37 on page 155 illustrates an ISQL EXEC designed to be run outside of an

ISQL session, which carries out the same function as the one shown in Figure 36

on page 153.

154 Database Administration

Avoid using commands that would result in ISQL issuing a message that requires

a response. For example, SET AUTOCOMMIT OFF will cause message ARI7602D

to be issued when the EXIT command is entered, and this message requires a

response of either COMMIT or ROLLBACK. Because of the interactive design of

ISQL, the response must be entered by the user, and will not be accepted from the

command stack.

Programmed Query Functions: If neither stored queries nor ISQL routines are

appropriate, you can program query functions. Their primary advantage is

application tailoring of the end user interface—that is, the application controls the

 /* XUPDSAL EXEC */

 /* THIS EXEC PROGRAM ALLOWS A USER TO PERFORM UPDATES ON */

 /* THE SALARY COLUMN OF THE EMPLOYEE TABLE. IT IS DESIGNED */

 /* TO BE STARTED WHILE IN CMS (WITHOUT AN ISQL SESSION). IT */

 /* AUTOMATICALLY EXECUTES ISQL AFTER QUEUING UPDATE COMMANDS AND */

 /* AN ISQL EXIT COMMAND ON THE PROGRAM STACK. COMMANDS ARE ALSO */

 /* STACKED TO DISPLAY AND PRINT THE CHANGES MADE. */

 EMPLIST = "" /* WILL CONTAIN LIST OF EMPNO’S WHOSE */

 /* TOTAL SALARY HAS CHANGED */

 DO COUNT = 1

 DO FOREVER

 SAY "ENTER EMPNO (ENTER ’END’ WHEN DONE)"

 PULL E

 IF E = ’END’ THEN LEAVE COUNT

 SAY ENTER JOB /* USER ENTERS UPDATE INFORMATION*/

 PULL J /* (DATA IS CHECKED FOR VALID */

 SAY ENTER CHANGE TO SALARY /* NUMBERS) */

 PULL CTS

 IF DATATYPE(E,W) & DATATYPE(J,A) & DATATYPE(CTS,N) THEN LEAVE

 ELSE SAY "DATA ENTERED INCORRECTLY--TRY AGAIN"

 END

 UPD.COUNT = "UPDATE EMPLOYEE SET SALARY = SALARY + "CTS,

 " WHERE EMPNO = "E" AND JOB = "J /* UPDATE COMMANDS ARE */

 EMPLIST = EMPLIST", "E /* HELD IN AN ARRAY */

 END

 IF COUNT = 1 THEN EXIT /* NO UPDATES? */

 ELSE EMPLIST = SUBSTR(EMPLIST,3) /* REMOVE FIRST COMMA */

 QUEUE COMMIT WORK

 QUEUE SET AUTOCOMMIT OFF

 DO N = 1 TO COUNT-1 /* PLACE UPDATE COMMANDS */

 QUEUE UPD.N /* ON PROGRAM STACK */

 END

 QUEUE "SELECT EMPNO, JOB, SALARY FROM EMPLOYEE -"

 IF COUNT > 2

 THEN QUEUE "WHERE EMPNO IN ("EMPLIST") -"

 ELSE QUEUE "WHERE EMPNO = "EMPLIST" -" /* QUERY, FORMATTING, */

 QUEUE "ORDER BY JOB, EMPNO" /* AND PRINT COMMANDS */

 QUEUE FORMAT GROUP JOB

 QUEUE FORMAT SUBTOTAL SALARY

 QUEUE "FORMAT TTITLE ’SUMMARY OF CHANGES IN SALARY TOTALS’"

 QUEUE DISPLAY

 QUEUE PRINT COPIES 3

 QUEUE END

 QUEUE COMMIT WORK

 QUEUE EXIT /* THE ISQL EXECUTION */

 EXEC ISQL /* TO EXECUTE THE COMMANDS THAT WERE STACKED */

Figure 37. ISQL EXEC for Updating the EMPLOYEE Table Outside of an ISQL Session

Chapter 8. Application Design Considerations 155

user syntax for requesting data and the output format for displaying results.

Program a query function if an application-specific interface must be provided to

end users.

Another advantage is their ability to apply procedural logic. Unlike stored queries

which support only a single SQL statement, or ISQL routines which support a

fixed sequence of statements, programmed query functions can run different

statements or statement sequences based on the results of previous statements or

function input.

When designing a programmed query function, you may want to consider using

the SQL Dynamic Statement support. With this, the program can translate queries

in an application-specific syntax to SQL statements, which are then dynamically

compiled and processed. Such a program can provide many query functions with

minimal coding.

For even more sophisticated applications, you can use extended dynamic

statements to code preprocessors for programming languages that are not

supported by the application server. See the DB2 Server for VSE & VM Application

Programming manual for information.

Report Writing Capabilities

Reports can be produced through ISQL, the DBS Utility, or an application program.

Report Writing Using ISQL

When ISQL terminal users obtain query results through a SELECT statement, they

can create reports from them using the FORMAT command. This command

provides the following:

v Titles

Both top and bottom titles can be created. If no top title is specified, a default is

provided that consists of the first 100 characters of the SELECT statement that

provided the query results. The bottom title defaults to blanks.

v Totals

Both subtotals and totals can be provided for desired columns.

v Column Separation

The characters to be used to separate columns can be specified.

v Outlining

If outlining is specified, successive duplicate values for a desired column are not

repeated unless they start a new screen (or a new page for printed reports).

v Column Characteristics

Users can control such things as:

– The number of decimal places for numeric columns

– The width of a column

– Whether leading zeros are displayed

– The column heading

– The inclusion and exclusion of columns.

For more information on formatting reports, see the DB2 Server for VSE & VM

Interactive SQL Guide and Reference manual.

To obtain copies of a report, a user enters an ISQL PRINT command. This

command allows you to specify the number of copies desired and the output

printer class to be used. The printed reports are dated and the pages numbered.

156 Database Administration

In VSE, if you enter a PRINT command, but the printer is busy, ISQL will send

you a message. Along with this message, ISQL will give you the option of:

v Retrying

v Ending the attempt to print

v Queueing your request until the printer is available.

When the printer is free, ISQL displays the message “THE PRINT IS IN

PROGRESS”.

Note: Some terminals support a copy key that, when pressed, causes a screen

image to be printed on the CICS local printer. Such support does not follow

any queue protocol and, if you use it while ISQL PRINT is in progress, the

screen image may be interspersed with the ISQL PRINT output.

In VM, the results of an ISQL PRINT command are sent to the user’s virtual

printer. The default print location will be wherever the user normally has his or

her output printed. However, the user can change the destination of the files by

going into CMS Subset mode, entering the SPOOL and TAG commands to route

the output elsewhere, then returning to ISQL (by entering the RETURN command)

and entering the PRINT command.

Example: The following command, entered in CMS, will cause the printer output

to be sent to the user’s virtual reader:

 CP SP PRT TO *

A reader file can read into a CMS file for inclusion in the text report.

Routines can be used to generate reports automatically. This is especially helpful

for daily or weekly reports. A routine could issue a SELECT statement, format the

output into the desired report, and print the report.

For more information on ISQL report writing, see the DB2 Server for VSE & VM

Interactive SQL Guide and Reference manual.

Report Writing Using the DBS Utility

The DBS Utility provides a limited report-writing capability through its support for

SQL SELECT statement processing. The DBS SELECT processing writes the results

of a query to the DBS Utility message file (SYSLST print file), with a default of 120

print positions per print line and 60 print lines per print page. These defaults can

be changed through the DBS SET command. Refer to the DB2 Server for VSE & VM

Database Services Utility manual for more information.

Programmed Reports

If an application requires special handling that is not supported by ISQL or the

DBS Utility, it may be necessary to write a program to generate a report. For

example, an application may need to generate output on special forms in a special

format.

You can vary the contents of a programmed report with program variables. Using

the Dynamic Statement support in SQL, you could even vary the tables being

reported. When using the Dynamic Statement support, you would use the SQL

DESCRIBE statement to obtain information on the data being accessed (for

example, column names and column data types).

Chapter 8. Application Design Considerations 157

Programmed Application Capabilities

For complex application requirements that cannot be met by ISQL or DBS Utility

facilities, you must code a program using DB2 Server for VSE & VM facilities.

In addition, you can use DB2 Server for VSE & VM extended dynamic statements

to code your own preprocessor in assembler language to support other languages

that can be mapped to SQL. Extended dynamic statements are explained in the

DB2 Server for VSE & VM Application Programming manual.

EXECs that Use DB2 Server for VM Facilities

Some application functions can be implemented using a combination of VM EXEC

and DB2 Server for VM EXEC facilities. Several useful examples are discussed in

the following sections.

Note: If you are using EXECs to invoke applications or to invoke other EXECs that

access the application server, refer to “SQLRMEND EXEC” on page 261.

Editing Private Tables

The DBS Utility provides facilities for unloading tables to and loading them from

CMS files. While in a CMS file, data can be manipulated by an editor (for example,

XEDIT). Users can take advantage of the combination of these capabilities for

editing data in their tables.

CAUTION: The following technique is not recommended for tables for which

multiple users have UPDATE, INSERT, or DELETE privileges. It

assumes that only the user doing the editing has update capabilities.

Figure 38 on page 159 shows an EXEC that can be used to edit private tables.

158 Database Administration

Here, the EDITTAB EXEC prompts the user for the name of the table to be edited

(only simple names are accepted), then uses that name to verify the existence of

DBS command files needed to support editing of the table. The work file used for

the CMS file version of the table is then defined (in the FILEDEF WORKFILE

command). The DBS Utility (SQLDBSU) is then initiated to unload the table to the

work file. Once the table has been unloaded, XEDIT is initiated to edit the work

file.

On completion of the XEDIT session, the user is asked if the table is to be replaced

in the database by its edited version. If the answer is yes, the DBS Utility is

initiated to perform the REPLACE operation.

Finally, the EXEC asks the user if the new version of the table should be displayed.

If the answer is yes, the table is displayed using ISQL.

 /* EDITTAB EXEC */

 /* THIS EXEC PROGRAM USES THE SQLDBSU EXEC TO UNLOAD A USER’S TABLE*/

 /* INTO A CMS FILE FOR EDITING WITH XEDIT. AFTER EDITING, THE USER*/

 /* HAS THE OPTION OF REPLACING THE TABLE WITH THE EDITED CMS FILE, */

 /* AND THEN MAY HAVE THE TABLE DISPLAYED BY ISQL. TWO CMS FILES */

 /* MUST PREVIOUSLY HAVE BEEN CREATED WHICH CONTAIN COMMANDS TO */

 /* SQLDBSU; THEIR FILENAMES MUST BE THE SAME AS THE NAME OF THE */

 /* TABLE, TRUNCATED TO 8 CHARACTERS, AND THE FILETYPES MUST BE */

 /* ’UNLD’ AND ’REPL’ (EXAMINE CLOSELY THE EXAMPLE GIVEN FOR THE */

 /* EMPLOYEE TABLE.) */

 SIGNAL ON ERROR

 SAY WHICH TABLE WOULD YOU LIKE TO EDIT?

 PULL TNAME

 FN = STRIP(LEFT(TNAME,8))

 "STATE" FN "UNLD" /* VERIFIES EXISTENCE OF */

 "STATE" FN "REPL" /* DBSU CONTROL FILES */

 "FILEDEF WORKFILE DISK" FN "TABLE (LRECL 80 RECFM FBA"

 "EXEC SQLDBSU IN("FN "UNLD) PR(PRINTER)" /* UNLOAD TABLE */

 "XEDIT" FN "TABLE" /* FOR EDITING */

 SAY "DO YOU WANT TO REPLACE THE" TNAME "TABLE? (Y OR N)"

 PULL ANSWER1

 IF ABBREV(NO,ANSWER1,1) THEN EXIT

 "EXEC SQLDBSU IN("FN "REPL) PR(PRINTER)" /* TABLE IS REPLACED */

 SAY WOULD YOU LIKE TO DISPLAY THE NEW TABLE? (Y OR N)

 PULL ANSWER2

 IF ABBREV(NO,ANSWER2,1) THEN EXIT

 QUEUE "SELECT * FROM" TNAME /* MOVE ISQL COMMANDS INTO THE */

 QUEUE DISPLAY /* PROGRAM STACK */

 QUEUE END

 QUEUE EXIT

 EXEC ISQL

 EXIT /* END OF PROGRAM */

 ERROR: /* ERROR HANDLING */

 SAY "UNEXPECTED EDITTAB TERMINATION RETURN CODE:" RC,

 " LINE:" SIGL

Figure 38. Example EXEC for Editing a Private Table

Chapter 8. Application Design Considerations 159

For the EDITTAB EXEC to work, two DBS command files must be established for

each table that is to be supported. Figure 39 and Figure 40 show the DBS command

files needed to edit a user’s version of the EMPLOYEE sample table.

Note: These examples assume that the user’s version of the EMPLOYEE table,

userid.EMPLOYEE, has already been created.

The command file in Figure 39 unloads the EMPLOYEE table to a file that has been

defined as WORKFILE. (This is the file defined in EDITTAB as a CMS file with a

file name using the first eight characters of the table name, and a file mode of

TABLE.) The information following the SELECT statement identifies the location in

the output file (WORKFILE) where the data for the columns in the select-list

should be placed.

 COMMENT ’EMPLYEE UNLD A’

 COMMENT ’DATAUNLOAD JOB FOR EDITING A USERS EMPLOYEE TABLE’

 DATAUNLOAD

 SELECT * FROM EMPLOYEE ORDER BY EMPNO;

 EMPNO 5-10 CHAR

 FIRSTNME 12-23 CHAR

 MIDINIT 25 CHAR

 LASTNAME 27-41 CHAR

 WORKDEPT 43-45 CHAR

 PHONENO 47-50 CHAR

 HIREDATE 52-61 CHAR

 JOB 63-70 CHAR

 EDLEVEL 72-73 CHAR

 SEX 75 CHAR

 BIRTHDATE 77-86 CHAR

 SALARY 88-96 CHAR

 BONUS 98-106 CHAR

 COMM 108-116 CHAR

 OUTFILE (WORKFILE)

Figure 39. DBS Unload Command File for Editing EMPLOYEE Table

 COMMENT ’EMPLYEE REPL A’

 COMMENT ’DATALOAD JOB FOR REPLACING AN EDITED EMPLOYEE TABLE’

 DELETE FROM EMPLOYEE;

 DATALOAD TABLE (EMPLOYEE)

 EMPNO 5-10 CHAR

 FIRSTNME 12-23 CHAR

 MIDINIT 25 CHAR

 LASTNAME 27-41 CHAR

 WORKDEPT 43-45 CHAR

 PHONENO 47-50 CHAR

 HIREDATE 52-61 CHAR

 JOB 63-70 CHAR

 EDLEVEL 72-73 CHAR

 SEX 75 CHAR

 BIRTHDATE 77-86 CHAR

 SALARY 88-96 CHAR

 BONUS 98-106 CHAR

 COMM 108-116 CHAR

 INFILE (WORKFILE)

 COMMIT WORK;

Figure 40. DBS Command File for Replacing Edited EMPLOYEE Table

160 Database Administration

The command file in Figure 40 deletes the existing rows of the user’s EMPLOYEE

table, and loads the edited WORKFILE version of the table into it. The information

between the DATALOAD table statement and the INFILE statement identifies the

columns in the table to be loaded with the data from the input file at the specified

locations. All the EMPLOYEE table columns here will be loaded with data from the

WORKFILE input file. For example, data in positions 5 to 10 of the file will be

loaded into the EMPNO column.

Editing Routines

Another variation of the EDITTAB EXEC would be an EXEC that edited only a

portion of the user’s table. To do this, the DATAUNLOAD and DATALOAD

command files must be selective about which rows are unloaded and replaced.

This can be done using a subquery on the DATAUNLOAD, and a WHERE clause

on the DELETE statement.

Figure 41 shows an example where the EXEC unloads an ISQL routine from the

user’s ROUTINE table, invokes XEDIT on the unloaded rows, and gives the user

the option of reloading the edited routine back into the ROUTINE table.

 /* EDITROUT EXEC */

 SIGNAL ON ERROR

 SAY WHICH ROUTINE WOULD YOU LIKE TO EDIT?

 PULL RNAME

 "STATE" RNAME "UNLD"

 "STATE" RNAME "REPL"

 "FILEDEF WORKFILE DISK" RNAME "TABLE (LRECL 100 RECFM FBA"

 "EXEC SQLDBSU IN("RNAME "UNLD) PR(PRINTER)

 "XEDIT" RNAME "TABLE"

 SAY "DO YOU WANT TO REPLACE THE" RNAME "ROUTINE? (Y OR N)"

 PULL ANSWER1

 IF ABBREV(NO,ANSWER1,1) THEN EXIT

 "EXEC SQLDBSU IN("RNAME "REPL) PR(PRINTER)"

 SAY WOULD YOU LIKE TO DISPLAY THE ROUTINE? (Y OR N)

 PULL ANSWER2

 IF ABBREV(NO,ANSWER2,1) THEN EXIT

 QUEUE "SELECT * FROM ROUTINES WHERE NAME=’"RNAME"’ -"

 QUEUE "ORDER BY SEQNO"

 QUEUE DISPLAY

 QUEUE END

 QUEUE EXIT

 EXEC ISQL

 EXIT

 ERROR:

 SAY "UNEXPECTED TERMINATION OF ROUTINE EDIT RETURN CODE:" RC,

 " LINE:" SIGL

Figure 41. Example EXEC for Editing Routines

 COMMENT ’XMPLROUT UNLD A’

 DATAUNLOAD

 SELECT NAME, SEQNO, COMMAND FROM ROUTINE

 WHERE NAME = ’XMPLROUT’;

 NAME 1-8 CHAR

 SEQNO 10-15 CHAR

 COMMAND 17-95 CHAR

 OUTFILE (WORKFILE)

Figure 42. Example DBS DATAUNLOAD Command File for Editing Routine XMPLROUT

Chapter 8. Application Design Considerations 161

Application Development Capabilities

Complex applications that are coded as programs (as opposed to DBS Utility input

files or ISQL sessions) could involve many programs that operate on many tables.

This section discusses how to make large-scale application development easier.

Data Prototyping

The DB2 Server for VSE & VM system can be used by application developers to

prototype data designs and implement them during the application development

process. In particular, in DB2 Server for VSE, the ability to dynamically CREATE,

ALTER, and DROP tables from an online, interactive environment allows a

developer to experiment with different design alternatives. A developer can then

exploit the DB2 Server for VSE & VM catalog tables and explanation tables for

documentation and analysis of data designs.

The DB2 Server for VSE & VM facilities that should be considered for data

prototyping activities are identified in the following sections.

Modeling Data Designs: ISQL or the DBS Utility can be used to enter table, view

and index definitions for validating and testing data design. The interactive

definition through ISQL gives the developer direct feedback on definitional errors.

This feedback not only addresses syntax errors, but also addresses data mapping

errors in view definitions.

Furthermore, if SQL definitional commands are entered through ISQL, these

commands may be saved as stored queries. By saving the definitional commands,

they can be recalled, modified and rerun as needed.

If you are developing your system under VSE/ICCF, you can save definitional

statements by storing them in VSE/ICCF files that are used as input (SYSIPT) to

the DBS Utility.

If you are developing your system under CMS, you can save definitional

statements by storing them in CMS files that are used as input (SYSIN) to the DBS

Utility.

Generation/Loading of Test Data: Tables created for data design purposes can be

loaded with test data using any one of several facilities, depending on the source

of test data and the availability of machine readable versions of the data.

If data exists on a sequential file, or can be put into a sequential file, test data can

be loaded using the DBS DATALOAD command.

If the data does not exist in machine readable form, or cannot be readily converted

to a sequential format, it may be necessary to enter the data by hand. This could

 COMMENT ’XMPLROUT REPL A’

 DELETE FROM ROUTINE

 WHERE NAME = ’XMPLROUT’;

 DATALOAD TABLE (ROUTINE)

 NAME 1-8 CHAR

 SEQNO 10-15 CHAR

 COMMAND 17-95 CHAR

 INFILE (WORKFILE)

 COMMIT WORK;

Figure 43. Example DBS Command File for Replacing Routine XMPLROUT

162 Database Administration

be done using the ISQL INPUT command or by building a file for input to the

DBS Utility. In DB2 Server for VM the input file to the DBS Utility is a CMS file. In

DB2 Server for VSE the input file to the DBS Utility is a VSE/ICCF file.

If the data can be found in existing DB2 Server for VSE & VM tables in the

application development database, then data can be copied using the SQL INSERT

statement.

If the data can be found in existing tables in another database, the data can be

moved using either DBS UNLOAD and RELOAD or DBS DATAUNLOAD and

DATALOAD commands. The UNLOAD/RELOAD commands allow easy

movement of data on a table or dbspace level. DATAUNLOAD/DATALOAD lets

you be more selective in what you want to unload, and where you want to load it.

That is, rather than move an entire table, you can use DATAUNLOAD/
DATALOAD to move only certain columns of certain rows of a table.

Design Documentation and Analysis: The catalog tables form a base for design

documentation in as much as the catalog tables can be queried and used to

generate reports. In addition to containing the base information from the SQL

definitional commands, the catalog tables contain useful statistical information and

dependency information.

You can analyze how a given design will perform by using the explanation tables

and the SQL EXPLAIN statement. The EXPLAIN statement can be issued in a

program, from an ISQL terminal, by way of the DBS Utility, or through an

application program. It lets you get information about the structure and execution

performance of other SQL statements (especially the SELECT statement). Naturally,

execution performance is affected by the data design.

In addition to the EXPLAIN statement, you can get an idea of how well a given

SELECT statement performs by using the ISQL query cost estimate. The query cost

estimate is displayed before the result of a SELECT statement is displayed. It is

also displayed at the end of every SELECT result in ISQL.

The query cost estimate is a relative number (not expressed in real units) that

represents an estimate of the resources used to process the statement. The query

cost estimate displayed in ISQL is not the same number that can be obtained by

using EXPLAIN. The cost estimate displayed by EXPLAIN is the number that is

used internally, while the number displayed by ISQL is the internal number

divided by 1000. This makes the query cost estimate more significant to a terminal

user.

Prototyping Application Function

Application function can be prototyped using ISQL or DBS facilities for testing and

debugging SQL statements to be used by the application.

Using Stored Queries to Test SQL Statements: The stored queries support can be

effectively used to develop SQL statements to be used in an application. The stored

queries could be developed for a test database. By using parameterized stored

queries, you can simulate the use of program variables and test the results of your

SQL statement against various input cases.

Using ISQL Routines to Test SQL Functions: You can develop logical sequences

of SQL statements by using the ISQL routine support. Different routines would be

developed for different paths through the application logic. Again, parameterized

Chapter 8. Application Design Considerations 163

stored routines can be effectively used to simulate program variables and test the

functional results of the application path against various input cases.

You can use the ISQL SET RUNMODE command to aid in testing (and, perhaps,

correcting) the application logic in routines. SET RUNMODE can be coded in the

routine or issued from the terminal. It lets you stop or continue the processing of

an ISQL routine when an error is encountered.

Using the DBS Utility to Test SQL Functions: You can use the DBS Utility to try

out SQL statements or sequences of SQL statements. Note however, you cannot use

it to process parameterized SQL statements or SQL statements having host

variables.

Using the DBS Utility to test SQL statements in VSE has the advantage of keeping

the SQL statements in a VSE/ICCF file that can be modified. When testing is

complete, you can include the VSE/ICCF file in a source code file. If you are using

the DBS Utility under VSE/ICCF, use the VSE/ICCF editor to modify the

command sequence for each test run.

Using the DBS Utility to test SQL statements in VM has the advantage of keeping

the SQL statements in a CMS file that can be modified. When testing is complete,

the CMS file can be included in a source code file. Using the DBS Utility under

CMS, you would have to modify the command sequence using a CMS editor

(XEDIT, for example) for each test run.

As in ISQL, the DBS Utility also provides error handling. Issue the command SET

ERRORMODE to tell the utility how (or if) it is to process SQL and DBS

commands after an error has occurred.

Code Development

For development of application code, VSE/ICCF and CMS provides an interactive

environment in which to build source code files, to run the DB2 Server for VSE &

VM preprocessors, to run the high-level-language compilers, and to test batch (or

VSE/ICCF) applications. In VSE, tests of CICS transactions must be run under the

CICS subsystem.

Building Source Code Files: Using either the VSE/ICCF editor or a CMS editor,

developers can interactively build and edit source statements for their programs.

Developers can use the DBS Utility to test SQL statements. They can copy tested

statements into the source file, and modify them for the appropriate programming

language syntax.

If many applications are to use the same host variables or the same SQL

statements, the developers should consider using the SQL INCLUDE statement,

which causes the preprocessors to include source lines from other source members

(VSE) or CMS files (VM). For example, a developer can place a lengthy SELECT

statement here and use that query in many programs by coding SQL INCLUDE

statements.

Preprocessing Programs under Development: The DB2 Server for VSE

preprocessors can be run under VSE/ICCF, using VSE/ICCF files for source code

input, or under CMS, using CMS files for source code input. The printed output

from the preprocessors, SYSLST for VSE and SYSPRINT for VM, can be directed

under VSE/ICCF to VSE/ICCF files, or under CMS, to CMS files for developer

review from the terminal. Similarly, the punch output, SYSPCH for VSE and

SYSPUNCH for VM, from the preprocessors can be directed under VSE/ICCF to

164 Database Administration

VSE/ICCF files or under CMS, to CMS files, for input to the appropriate compiler.

The preprocessors integrate any external source lines from INCLUDE statements.

Use of the INCLUDE statement does not cause more compilation steps.

When developing a program with embedded SQL statements, run the

preprocessors with a CHECK option. Under this option the preprocessor produces

diagnostics on the SQL in the program, but does not create a package or compiler

input. Therefore initial code development and debugging can be done on just a

skeleton of the final program.

When preprocessing programs under development, application developers can

back up packages that they create with the DBS Utility UNLOAD PROGRAM

command. For information on this command, see the DB2 Server for VSE & VM

Database Services Utility manual.

Testing Application Code under VSE/ICCF: To test user SQL programs the

developer must preprocess, compile, and link-edit the program as a multiple user

mode batch application program. This can either be done under VSE/ICCF, or as a

normal VSE batch job.

Once an application has been preprocessed, compiled, and link-edited, normal

VSE/ICCF procedures for application execution can be used. The only DB2 Server

for VSE requirement for program execution is that the VSE/ICCF control statement

“/OPTION GETVIS=AUTO” must follow the “/LOAD” statement. The program

only needs to be re-preprocessed if the SQL statements that the program runs are

modified.

Testing Application Code Under CMS: To test user SQL programs under CMS,

the application developer would preprocess, compile, and link-edit the program as

a multiple user mode application program, using the usual CMS commands.

Following this, CMS commands for application execution can be entered (for

example, START and RUN).

CMS Subset Considerations

If you develop a DB2 Server for VM application that invokes CMS Subset, be sure

to tell users not to invoke any commands, programs, or EXECs that access the

application server while in CMS Subset mode. (The results would be unpredictable

and error conditions could be generated.) This also applies if they invoke CMS

Subset from ISQL.

Application Database Considerations

The following sections discuss the implications that the various types of

application implementations have on database design.

Database Support for Application Development

When applications are being developed, not all of the data is already predefined.

You will therefore need to set up your database to support both data that exists in

a predefined state, and data that is still under development. For the latter, you

should consider establishing both PUBLIC and PRIVATE dbspaces specifically

defined for application development purposes.

PRIVATE Dbspaces in Application Development

Application developers and database designers will need their own PRIVATE

dbspaces for prototyping data designs and functions on various data designs.

Chapter 8. Application Design Considerations 165

These are better than PUBLIC dbspaces for this activity, because they provide an

environment of less concurrency and no deadlocks. They also have the advantage

of being user-controlled, so application developers need not worry about others

altering the data in their test tables.

Such dbspaces must only be large enough to support sample data in the tables.

Because they are used primarily for functional feasibility testing, they do not have

to support large versions of the tables.

PUBLIC Dbspaces in Application Development

PUBLIC dbspaces are required to model the final database implementation: the

final testing stages and performance testing of applications and data organizations.

They would probably represent the actual production environment, as they allow a

greater concurrency and are DBA-controlled. Tables stored here would hold a

larger, more representative sampling of the data.

Database Support for Query/Report Writing

Queries and report writing also have unique database design requirements. In

particular, the needs of query users for private storage of their data, queries, and

routines must be considered.

Private Query User Data

Many query users will want to be able to store their own private data. To support

this, you need to set up space in the database: how you do so will depend on how

you want to control space usage and table creation. Some variations on this are

described below.

User Control of Own Data: You can enable query users to define and control

their own data by giving them RESOURCE authority, which lets them create tables

in the database. For more information see “Granting Authorities” on page 92. They

will also need PRIVATE dbspaces to hold their tables. Users with RESOURCE

authority can issue their own ACQUIRE DBSPACE statements; however, you will

probably prefer to do this for them. (See “Identifying Dbspace Requirements” on

page 21.)

Having One User Control Data for a Group: If you do not want to give all query

users RESOURCE authority, you could set up a PUBLIC dbspace that would

support the data requirements of a whole group, and give just one user

RESOURCE authority to handle the data requirements of the group.

Having the DBA Control All Data: If you need to tightly control or centralize

control of database usage, you (or someone with DBA authority) can establish

PRIVATE dbspaces for individual users and PUBLIC dbspaces for common data

requirements, but create all tables yourself and restrict access to those tables to

certain users only.

Giving Users Their Own Dbspaces: Users who do not have RESOURCE

authority can still create tables in PRIVATE dbspaces that the DBA has acquired for

them. This still allows the DBA to control how much space each user has in the

database, but gives users the freedom to create whatever tables they choose within

that space. This technique is sometimes called “create table authority.”

166 Database Administration

Storage of ISQL Routines

Query users who want to develop their own ISQL routines will need to have a

ROUTINE table somewhere in the database. Creating this table is typically done by

the DBA when enrolling a new query user on the system. (See “Adding a New

User” on page 81.)

Users who have their own PRIVATE dbspaces can create their own ROUTINE

tables there. If a user’s routines are to be shared by others, then this table should

be created in a PUBLIC dbspace instead, and access to it established through views

(rather than duplicating the table or having the other users qualify the name of the

routine by a user ID).

If users are invoking ISQL to access a non-DB2 Server for VSE & VM application

server and you require a master ISQL profile routine, then you must create a table

called SQLDBA.ROUTINE and store the master routine in this table. See the DB2

Server for VM System Administration and DB2 Server for VSE System Administration

manuals for details on setting up a routine table.

Note: Access to an application server using the DRDA protocol is only possible if

the Distributed Relational Database Architecture (DRDA) facility has been

installed on the application requester and if the application server supports

IBM’s implementation of the DRDA protocol.

System Dbspace Considerations

A final requirement for supporting a query/report writing environment is to define

data for three dbspaces: “PUBLIC”.ISQL, “PUBLIC”.HELPTEXT, and

“PUBLIC”.SAMPLE.

“PUBLIC”.ISQL Dbspace: This dbspace contains the SQLDBA.“STORED

QUERIES” table, which holds the queries stored by ISQL users. Because stored

queries cannot be shared, users must have their own copy of any stored query

they need to run. One or more standard stored queries may be established for each

new user; in addition, some users may also have application programmer-
developed stored queries established for them. Thus, this table may contain

redundancy.

If an installation has many stored queries, the “PUBLIC”.ISQL dbspace may run

out of space. If this happens:

1. Unload the dbspace using the DBS Utility, thus saving its stored queries and

routines in an external file.

2. Drop the dbspace and acquire a bigger one with the same name.

3. Reload the new dbspace with the data that was unloaded from the previous

version.

“PUBLIC”.“HELPTEXT” Dbspace: If the HELP text has been installed, this

dbspace contains the SQLDBA.SYSTEXT1, SQLDBA.SYSTEXT2, and

SQLDBA.SYSLANGUAGE tables, which hold the information displayed in

response to an ISQL HELP command. If you plan to expand the text or topics

covered in the HELP tables, you will need to increase the size of this dbspace. See

“Making the HELPTEXT Dbspace Larger” on page 145.

“PUBLIC”.“SAMPLE” Dbspace: This dbspace contains the sample tables

provided with the DB2 Server for VSE & VM product: SQLDBA.EMPLOYEE,

SQLDBA.DEPARTMENT, SQLDBA.PROJECT, SQLDBA.ACTIVITY,

SQLDBA.EMP_ACT, SQLDBA.PROJ_ACT, SQLDBA.CL_SCHED and

Chapter 8. Application Design Considerations 167

SQLDBA.IN_TRAY.

168 Database Administration

Application Implementation Considerations

The considerations regarding the implementation of applications are discussed

here.

VSE Batch/Interactive Application Considerations

The considerations pertinent to user-written application programs for the

batch/ICCF environment and to DBS Utility applications are security, recovery and

error handling.

Batch/ICCF Application Security

DB2 Server for VSE data protection applies to programs written for batch and

VSE/ICCF execution (and to the data itself). In particular, when a user

preprocesses a program, the database manager checks the authority and privilege

of that user on tables and views used in the program. When a user runs a

preprocessed program, the database manager checks only for RUN privilege of that

user on the program.

When a program is preprocessed, users with the appropriate data authority for the

program functions must supply a user ID and password. Users are verified by the

supplied password, and their authority is checked for each SQL request embedded

in the program. On successful completion of the preprocessor job, a user becomes

the owner of the application program, and can control who else can run it by

issuing a GRANT RUN statement.

Note: In a batch/interactive environment, a GRANT statement is typically entered

through a DBS Utility execution. For program execution, the batch and

VSE/ICCF applications must be written to establish a user connection to the

DB2 Server for VSE application server through the SQL CONNECT

statement. This statement establishes the user of the program and checks

that user’s authority to run the program and to perform any interpretive

SQL functions in the program.

For example, security-sensitive applications can be written to require that the user

ID and password of the program runner be supplied through control statements or

terminal input at execution time. The programs should be written to read this

information into the host program variables referenced in a DB2 Server for VSE

CONNECT statement.

You can bypass this security facility by writing the application so that it supplies

the user ID and password independent of the actual user of the application. If you

do so, you must code the CONNECT statement in the application and grant RUN

authority to the user IDs to be generated.

In general, you can use program authorization as a means of controlling access to

data. If the end user of the application has access to the data only through specific

application programs, the user can do only what the application is programmed to

do.

Batch/ICCF Recovery

All batch/ICCF programs should explicitly issue COMMIT WORK and

ROLLBACK WORK statements as required, rather than relying on the implicit

COMMIT and ROLLBACK functions of the database manager. The rules

determining whether to do an implicit COMMIT WORK or an implicit ROLLBACK

Chapter 8. Application Design Considerations 169

WORK are rather complex. By coding explicit COMMIT WORK and ROLLBACK

WORK statements, you can determine what work is done by a batch application

from the last statement completed.

Batch/ICCF Error Handling

In general, if a batch/ICCF application is terminated abnormally, the database

manager backs out all uncommitted changes. If it terminates normally, the

database manager commits changes not explicitly committed by the application.

An application program can be coded to handle negative SQLCODEs by using

SQL WHENEVER statements, as described in the DB2 Server for VSE & VM

Application Programming manual.

DBS Utility Application Security

The DBS Utility input must include an SQL CONNECT statement before any other

SQL statement or UNLOAD, RELOAD or DATALOAD commands are issued. The

only exception to this rule is when the DBS Utility is called by a user application

that has already issued an SQL CONNECT statement.

A DBS input (SYSIPT) file can contain multiple SQL CONNECT statements. This

capability can be used to write one DBS input file that performs operations for

multiple users. The operations to be performed for any one user are preceded by

an SQL CONNECT statement.

DBS Utility Application Recovery

The DBS Utility applications can control commit processing through the

appropriate use of the DBS SET AUTOCOMMIT command and SQL COMMIT

WORK and ROLLBACK WORK statements. By setting AUTOCOMMIT ON, DBS

will automatically issue an SQL COMMIT WORK after each SQL or DBS command

(except for certain statements that imply commit processing is not appropriate, like

ROLLBACK WORK). By setting AUTOCOMMIT OFF, no commit processing will

be done unless explicitly requested by an SQL COMMIT WORK statement or

when the input command file is exhausted.

For batch processing, you typically run with AUTOCOMMIT set OFF, so commit

points are explicitly identified by SQL COMMIT WORK statements. This is the

default for DBS processing.

When running DBS in an interactive fashion (under VSE/ICCF with /DATA

INCON specified), you should run with AUTOCOMMIT set ON. If you run with

AUTOCOMMIT set OFF, shared data is not available to other users while you are

thinking about command responses or entering commands, unless the other users

are using isolation level UR.

DBS Utility Application Error Handling

DBS terminates execution of commands in the input (SYSIPT) file and performs a

ROLLBACK WORK if it encounters an error on any of the commands. However,

DBS will read all the input records and provide diagnostics for the remaining

commands. In addition, you can include SET ERRORMODE OFF commands to

cause DBS to stop processing the input in error mode (that is, resume execution of

commands in the input file).

The SET ERRORMODE OFF capability is useful for execution of independent

command sequences in the same input file. Each independent sequence of

commands would be preceded by a SET ERRORMODE OFF command.

170 Database Administration

Another use of the SET ERRORMODE command is when running DBS under

VSE/ICCF in conversational mode (/DATA INCON). In this case, you should use

the SET ERRORMODE CONTINUE command. If a normal SQL error is

encountered on any command entered, the DBS utility processes subsequent

commands from the terminal user. It goes into error mode processing only if the

error is fatal. This saves the terminal user from having to enter SET ERRORMODE

OFF every time a minor mistake is made.

Online CICS/VSE Transaction Considerations

Online Application Security

Security design in an online (CICS) transaction processing environment should

consider the facilities of the CICS subsystem as well as those offered by the DB2

Server for VSE application server. In particular, the CICS subsystem provides

facilities for performing user verification (signon), and for controlling user

authority to run CICS transactions. SQL programs written for execution in the

CICS programming environment can be designed to take advantage of these

facilities.

User Identification and Verification: User identification and verification for CICS

SQL transactions can be handled in one of the following ways:

v CICS Signon

The CICS SQL transactions do not have to contain SQL CONNECT statements. If

a CONNECT statement is not present in the transaction, the DB2 Server for VSE

online support attempts to obtain the CICS signon userid using the EXEC CICS

ASSIGN command. The user ID of the program user is assumed to be this

signon ID.

v DB2 Server for VSE CONNECT

If your CICS users do not go through a signon process for access to CICS

transactions, user identification and verification can still be accomplished

through the SQL CONNECT statement in the individual transaction programs.

However, the transaction would have to obtain a user ID and password in order

to issue a CONNECT statement.

Note: This does not apply in a DRDA environment.

v No user identification/verification

For the online (CICS) environment, you can choose to run without requiring any

user identification or verification, by treating all CICS users as though they had

the same user ID and authority. To do this, you would identify the default CICS

user ID when starting the DB2 online support (see “CICS Transaction

Environment” on page 103).

Note: This does not apply in a DRDA environment.

You can design each CICS transaction to handle user verification and identification

differently. Some may require the user to sign on to the CICS subsystem, others

may issue SQL CONNECT statement, and yet others may assume the default user

ID for CICS users.

Note: In cases where the CICS subsystem does user verification or the user runs

under the default user ID, it is not necessary to have the user defined to the

DB2 Server for VSE application server through the GRANT statement

(CONNECT authority).

Chapter 8. Application Design Considerations 171

Online Application Recovery

Application recovery processing for CICS SQL transactions is coordinated between

the CICS subsystem and the DB2 Server for VSE database manager. In particular, a

CICS SYNCPOINT request causes an SQL COMMIT WORK to be issued to commit

table information as well as CICS information. Similarly, a CICS SYNCPOINT

ROLLBACK request causes an SQL ROLLBACK WORK to be issued. The reverse

is also true: a COMMIT WORK causes a CICS SYNCPOINT to be issued and an

SQL ROLLBACK WORK causes a CICS SYNCPOINT ROLLBACK to be issued.

In addition, CICS end-of-task processing is coordinated with the DB2 Server for

VSE database manager to assure that transaction processing is properly committed

or rolled back, depending on the conditions under which the transaction ended.

For supporting recovery processing for CICS SQL transactions, the CICS subsystem

must be generated with the Dynamic Transaction Backout Program (DBP

parameter), and individual transactions must be installed with the CICS DTB=YES

option.

Pseudoconversational Transactions

Pseudoconversational transactions must not be run on the same terminal with

ISQL while ISQL has “timed out”.

Application Development Considerations

Loading Data into Test Dbspaces

You can load test data in any of these ways:

v DBS Utility UNLOAD/RELOAD

Live data can be unloaded and then reloaded back into the system, but directed

at the test dbspace. The tables can be created new (using the NEW option of the

RELOAD command); or, if the tables already exist, then all rows can be deleted

and the unloaded data inserted using the PURGE option of the RELOAD

command. If an application development environment exists where the test data

is on a separate test database, then DBS UNLOAD/RELOAD can be used to

load data from one database to another.

v INSERT with subselect

Live data can also be loaded into a table by using the INSERT with subselect:

 INSERT INTO TESTTABLE

 SELECT * FROM USERID.LIVETABLE

 WHERE ...

This approach to loading test data has the advantage of using a WHERE clause

for defining a sample from the live data rather than the entire table. An INSERT

with subselect can be entered through ISQL, the DBS Utility, or an application

program. An INSERT with subselect can be used to convert data from one data

type to another; the specific limits on data type conversion depend on the

number of conversions and the data types involved. Refer to the DB2 Server for

VSE & VM Application Programming manual for the general restrictions on data

type conversions.

v DBS Utility DATAUNLOAD/DATALOAD

The DBS Utility DATALOAD command may be used to input test data for new

tables. The input to the DATALOAD command is from SYSIPT or sequential

(SAM) files in VSE, from SYSIN or sequential (CMS) files in VM. A subset of all

the data on the input sequential file can be loaded by using the “IF POS” clause

of the DATALOAD command. For example, suppose that on an input sequential

172 Database Administration

file containing customer information, the telephone number data is in positions

28-39 and positions 28-30 contain the area code. You could then load just the 555

area codes into the table TESTCUST by specifying the following DATALOAD

command format:

 DATALOAD TABLE (TESTCUST) IF POS (28-30)=’555’

 ...

The test table would contain a subset of the actual data that the application will

use.

You can get even more selectivity by using the DATAUNLOAD command to

create the sequential file. This is especially useful if the data exists in tables, but

not input files.

As the DATAUNLOAD command incorporates an SQL SELECT statement, you

can be highly selective about what data you wish to unload. Furthermore,

because the DATALOAD command can be used to reload the data, you can

significantly restructure the data when you load it. That is, DATAUNLOAD/
DATALOAD is not restricted to a table-to-table or dbspace-to-dbspace data

movement. For example, you can unload data generated from a subquery, and

then load only a portion of the result into a completely different table. This

facility is useful for rapidly getting data into a new design prototype.

Use of Synonyms in Application Development

To simplify coding and testing of SQL statements that will eventually reference the

live data, a developer may use the SYNONYM capability. Under the user ID

established for a developer, synonyms would be defined so table references would

translate to test tables when preprocessed under the developer’s user ID.

For example, an application needs to be written that will access the PAYROLL

table. The fully qualified table name is LOCALDBA.PAYROLL, having been

created for the user ID LOCALDBA. A developer, with userid = DEV, has a

temporary version of the payroll table called DEV.TESTPAY. Because the SQL

statements refer to the table name PAYROLL, the developer creates the name

PAYROLL as the synonym for TESTPAY:

 CREATE SYNONYM PAYROLL FOR TESTPAY

Now all references to PAYROLL made from userid DEV translate to TESTPAY.

When it comes time to switch to the live data, the program will be preprocessed

under the userid of the creator of the PAYROLL table (LOCALDBA in this case), so

that the program will access the PAYROLL table no matter who runs it.

Note: An exception to the above commands are applications that require Dynamic

Statement Support (including Extended Dynamic Statements). For those

dynamic statements, table references are translated based on the userid of

the user that runs the program (the userid specified in the CONNECT

statement). Execution of any test program against live data can be prevented

by not granting run authority to anyone who does not have the appropriate

synonyms defined.

Testing SQL Statements

Using ISQL and Stored Queries

Before actually coding an application, the programmer may test/develop SQL

statements to be embedded in the program by using ISQL against test data. The

programmer would develop a set of SQL statements using the stored query

Chapter 8. Application Design Considerations 173

facilities of ISQL. As each statement is formed, it would be run against the test

data to verify expected results. Syntax and execution errors will be caught and

error messages returned. The HELP facility of ISQL could be used to obtain

detailed error descriptions and SQL statement descriptive information. For user

logic errors on non-query statements (such as INSERT or UPDATE), the

programmer can issue SELECT statements to inspect the effects of the tested

statements.

Maintaining Database Consistency Under ISQL

To maintain a consistent state of the test database when using non-query

statements, the programmer will want to issue SET AUTOCOMMIT OFF from the

ISQL terminal, so that any changes that the test statements may make to the test

database can be undone with a ROLLBACK WORK.

Using ISQL Stored Queries for Testing SQL Statements

To place an SQL command in the stored queries table without executing it first, the

programmer should use the ISQL HOLD and STORE commands under

AUTOCOMMIT ON mode. For example:

 HOLD DELETE FROM PAYROLL WHERE NAME = ’SMITH’

 STORE DELETE1

The HOLD command will place the command in the SQL command buffer of

ISQL, but will not run it. Then the STORE command will place the contents of the

SQL command buffer into the “STORED QUERIES” table. Once the command is in

the “STORED QUERIES” table, the programmer can run it while controlling his

own logical unit of work (under SET AUTOCOMMIT OFF), so that the changes

done by the command can be rolled back.

Using ISQL Routines to Test SQL Statements

As each command is corrected and verified, it can be stored away as

parameterized stored SQL command in a ROUTINE table. The programmer would

use stored command parameters where the program will have program variables.

The commands can be placed in the ROUTINE table in the same logical order that

they will be run in the application program. In this manner a prototype will be

created that will demonstrate sample application usage. End users can then see the

proposed system in operation before it is coded. Design flaws can be more easily

corrected at this early phase.

Note: Stored queries and synonyms cannot be shared, but routines can be shared.

You can run another user’s routine if you have obtained the SELECT

privilege (through a GRANT command) on that user’s ROUTINE table. Care

must be taken in running another user’s routines however, because any

stored SQL commands or synonyms used in a routine will not be recognized

unless you have also defined them yourself.

Checking Application Code

Using the Preprocessor CHECK Option

After debugging and testing the SQL commands on ISQL, the application

programmer would then code the application. Having developed the source

program with embedded SQL commands, the next step is to run the program

through the appropriate DB2 Server for VSE & VM preprocessor. If the

programmer is unsure of the SQL commands embedded in the program, he can

run the preprocessor with the CHECK option. The SQL commands will be

preprocessed and error messages will be output to SYSLST in VSE and SYSPRINT

in VM, but a package is not created and no modified source will be produced.

174 Database Administration

Running the preprocessor without the CHECK option will generate a package and

the modified source to be used as input to the desired compiler.

Use of ROLLBACK WORK During Application Execution

After the program has been preprocessed and compiled, the final step in the

testing cycle would be execution against the test data. To ensure a consistent test

database the application programmer should place a ROLLBACK WORK statement

in his application that will undo any changes that the program may make during

execution before the program terminates. This ROLLBACK WORK statement may

be left in the application for the first few runs on the live data. Once the program

is operating correctly on the live data, the ROLLBACK WORK statement can be

removed (or replaced with a COMMIT WORK statement).

Query/Report Writing Considerations

User Identifiers (Userids) for Query Users

Each query user should be given a unique user identifier and CONNECT authority

on the DB2 Server for VSE & VM application server using GRANT statements, as

described under “Adding a New User” on page 81. Multiple users can use the

same DB2 Server for VSE & VM userid, but this can result in conflicts between the

users’ access to the system and to data.

ISQL users should be careful if there is more than one user using the same userid.

In particular:

v Stored queries should be stored with names that identify the owner. This can be

done by using the owner’s initials as a prefix to the name.

v Multiple users with the same userid will experience severe contention if they try

to update (insert or delete) data in a PRIVATE dbspace owned by their common

userid. In such cases, PRIVATE dbspaces should not be used unless the access to

the data is read only.

v When multiple users use the same userid, the DB2 Server for VSE & VM

security facilities cannot distinguish the individual users. All users using a

common userid will share the same access privileges to the database.

v Only one PROFILE ROUTINE can exist for each unique userid. If multiple users

(using the same userid) require different profile routines, they can create unique

routines (again, perhaps appending their initials to the routine name). This

unique routine can then be run either as part of ISQL signon or at any time after

signon.

Application Independence with CMS Work Units

Applications that use multiple CMS Work Units can:

v Start a logical unit of work.

v Invoke other application programs in new CMS Work Units.

v Run these application programs independently of one another. When one

program commits or rolls back work, it does not affect the work in other CMS

Work Units.

v Access a different application server in each CMS work unit. The logical unit of

work can be on the same application server or on different application servers.

The application server can be a DB2 Server for VM or non-DB2 Server for VM.

For more information on CMS Work Units, see the DB2 Server for VSE & VM

Application Programming manual.

Chapter 8. Application Design Considerations 175

Note: Access to an application server that is not DB2 Server for VM is only

possible if the Distributed Relational Database Architecture (DRDA) facility

has been installed on the application requester and if the non-DB2 Server for

VM application server supports IBM’s implementation of the DRDA

protocol.

Application Maintenance Considerations

DB2 Server for VSE & VM users and programs are independent of the physical

storage of data. This means that procedures and programs need not be changed

when their information is updated or reorganized, and logical changes can be

made to the data without requiring expensive rewrites, retraining, or

reorganization of the supporting application system.

This data independence improves productivity, by enabling users and programs to

concentrate on the application instead of on details such as how data is stored,

which users share it, or what changes have been made to it. It also means that new

applications may be written with little initial regard for performance

considerations: much of the optimization is handled automatically, and

user-directed optimization can be done later without significant effect on the

applications using the data. In addition, one user may change the format or

organization of some data with minimal effect on other users who share it.

Data Administration Support

The DB2 Server for VSE & VM product supports a powerful query capability, as

well as an easy-to-learn interactive support system (ISQL). The DBA can use these

functions to scan stored data to determine when reorganization of data is

appropriate, decide how to logically organize the data, audit its consistency and

accuracy, and assess the impact of changes.

Another way to examine data is through the catalog tables, which are internally

updated as a result of many SQL statements. For example, a CREATE TABLE

statement causes a new entry in the SYSTEM.SYSCATALOG table; each column in

the new table results in an entry in SYSTEM.SYSCOLUMNS. Because the catalog

tables are regular tables (with appropriate security protection), the SQL language

examines them. DBAs can look at these tables to determine table sizes and

statistics, what programs use particular tables or columns, the current data types of

columns in a particular table, various security information, and many other things

required for understanding the status and dependencies of the database.

Refer to the DB2 Server for VSE & VM SQL Reference manual for more information

about the catalog tables along with examples of their use.

To see if a data design is meeting performance requirements, the DBA can use the

EXPLAIN statement to analyze the structure and performance of frequently used

SQL statements, and to determine whether any statements or the data they access

should be redesigned. See the DB2 Server for VSE & VM Application Programming

manual for a description of the EXPLAIN statement.

Data Independence Support

Data Type Changes

A wide range of conversions from one data type to another is supported. This

means that, within reason, the data type or the size of a column may be changed

without requiring changes to the accessing programs. Data is converted on input

176 Database Administration

and output if the data types used in program variables do not match those defined

for the stored data. Data conversions and their restrictions are shown below;

explanatory notes follow.

 Source Data Type

Target Data Type

CHAR DATE DECIMAL

FLOAT-

DOUBLE

FLOAT-

SINGLE GRAPHIC INTEGER

CHAR YES3 YES6 NO NO NO NO NO

DATE YES7 YES NO NO NO NO NO

DECIMAL NO NO YES1,4 YES13 YES12,13 NO YES1,2

FLOAT-DOUBLE NO NO YES1,4,5 YES YES11 NO YES1,2

FLOAT-SINGLE NO NO YES1,4,5 YES10 YES NO YES1,2

GRAPHIC NO NO NO NO NO YES3 NO

INTEGER NO NO YES1 YES YES12 NO YES

LONG VARCHAR YES3 NO NO NO NO NO NO

LONG VARGRAPHIC NO NO NO NO NO YES3 NO

SMALLINT NO NO YES1 YES YES12 NO YES

TIME YES7 NO NO NO NO NO NO

TIMESTAMP YES7 NO NO NO NO NO NO

VARCHAR8 YES3 YES6 NO NO NO NO NO

VARGRAPHIC9 NO NO NO NO NO YES3 NO

Figure 44. Data Conversion Chart (Part 1 of 2)

Chapter 8. Application Design Considerations 177

Notes to Figure 44:

 1. An overflow error may result.

 2. The fractional part of the value is dropped.

 3. On output, if the length of the target is smaller than the length of the source,

truncation occurs. On input, an error occurs.

 4. The database manager automatically aligns the decimal point. Overflow of the

integer part may result. The fractional part may be truncated.

 5. The database manager attempts to create the best possible result in converting

from System/370 floating point to scaled fixed point decimal.

 6. The character string must contain a valid representation of a date, time, or

timestamp value. However, you cannot transfer data from a CHAR or

VARCHAR column into a host variable defined as a date, time, or timestamp

type.

 7. On output, when the source is a datetime data type and the corresponding

target is a character data type, certain truncation occurs for time and

timestamp. On input, an error occurs.

 8. This applies to VARCHAR fields less than or equal to 254. VARCHAR fields

greater than 254 are treated like LONG VARCHAR in data conversion.

 9. This applies to VARGRAPHIC fields less than or equal to 127. VARGRAPHIC

fields greater than 127 are treated like LONG VARGRAPHIC in data

conversion.

10. The single-precision data is padded with eight hex zeros.

11. The double-precision data is converted and rounded up on the seventh hex

digit.

12. Conversion is first done in double precision and then rounded to single

precision.

 Source Data Type

Target Data Type

LONG

VARCHAR

LONG

VAR-

GRAPHIC

SMALL-
INT TIME

TIME-

STAMP

VAR-

CHAR8

VAR-

GRAPHIC9

CHAR YES NO NO YES6 YES6 YES3 NO

DATE NO NO NO NO NO YES NO

DECIMAL NO NO YES1,2 NO NO NO NO

FLOAT-DOUBLE NO NO YES1,2 NO NO NO NO

FLOAT-SINGLE NO NO YES1,2 NO NO NO NO

GRAPHIC NO YES NO NO NO NO YES3

INTEGER NO NO YES1 NO NO NO NO

LONG VARCHAR YES NO NO NO NO YES3 NO

LONG VARGRAPHIC NO YES NO NO NO NO YES3

SMALLINT NO NO YES NO NO NO NO

TIME NO NO NO YES NO YES7 NO

TIMESTAMP NO NO NO NO YES YES7 NO

VARCHAR8 YES NO NO YES6 YES6 YES3 NO

VARGRAPHIC9 NO YES NO NO NO NO YES3

Figure 44. Data Conversion Chart (Part 2 of 2)

178 Database Administration

13. Some accuracy may be lost when converting DECIMAL data type numbers to

single- or double-precision floating point numbers.

Arithmetic Operations

The following sections define the rules for arithmetic operations with the data

types that are supported. Note the conditions under which overflow errors can

occur.

Decimal Arithmetic Operations

A decimal number has a fixed number of places in total, and a fixed number of

places in its fractional part (to the right of the decimal point). The total number of

places is often called the precision, and the number of places in the fractional part

scale. A decimal column is defined in a CREATE TABLE or ALTER TABLE

statement as: DECIMAL (precision,scale).

The precision and scale of the decimal number resulting from an arithmetic

operation on two numbers (operands) are determined by the following rules:

v If one operand is a binary integer and the other is a decimal number, the

operation is performed in decimal. A temporary copy of the binary integer that

has been converted to decimal is used. Binary integers defined as SMALLINT

will be converted to DECIMAL(5,0), while those defined as INTEGER will be

converted to DECIMAL(11,0). Integer constants will always be converted to

DECIMAL (11,0). The result is a decimal number as specified below.

v If both operands are decimal numbers, the result is a decimal number.

v The precision and scale of the result depend on the arithmetic operation, and on

the precision and scale of the operands.

v Precision and scale can be influenced by decimal constants with leading or

trailing zeros. See the DB2 Server for VSE & VM Application Programming manual

for more information.

v If the operation is addition or subtraction, and the operands do not have the

same scale, the operation is performed with a temporary copy of one of the

operands. The copy is extended with trailing zeros so that its fractional part has

the same number of places as the fractional part of the other operand.

v The result of an addition, subtraction, or multiplication operation is derived

from a temporary result that has a maximum precision of 31. If the precision of

the temporary result is not greater than 31, the final result is the same as the

temporary result.

v When the scale of the temporary result is greater than that of the result (see

Table 27), then the fractional part of the temporary result will be truncated so

that the scales are the same.

v For an integer literal, the precision will be the number of digits, and the scale

will be 0. For example, 100 will be set to precision 3 and scale 0.

v The precision and scale of a result are determined as shown in Table 27.

Chapter 8. Application Design Considerations 179

Table 27. Precision and Scale of Decimal Results

Assume the following notation:

 PA = Precision of the first operand.

 SA = Scale of the first operand.

 PB = Precision of the second operand.

 SB = Scale of the second operand.

Operation Characteristics of the Result

Addition and

Subtraction

Precision: MIN(31,MAX(PA-SA,PB-SB)+MAX(SA,SB))

Scale: MAX(SA,SB)

Multiplication Precision: MIN(31,PA+PB)

Scale: MIN(31,SA+SB)

Division Precision: 31

Scale: 31-PA+SA-SB (Scale must not be negative)

Binary Arithmetic Operations

If both operands are binary integers, the operation is performed in fixed binary.

The result is in the INTEGER data type.

The result of a division operation is truncated. The result of a fixed binary

operation must be within the range of the INTEGER data type. See “Specifying

Columns” on page 30 for the ranges of data types.

Floating Point Arithmetic Operations

If either operand is a floating point number, both operands are converted to

double-precision floating point numbers. The result depends on the data type of

the target column or host variable. In the case of decimals, some accuracy may be

lost.

If the target data type or host variable is single-precision floating point, the result

is converted to single-precision floating point; otherwise, it is converted to

double-precision floating point.

The result of a floating point operation must be within the range of the FLOAT

data type. See “Specifying Columns” on page 30 for the ranges of data types.

Date/Time Arithmetic

Durations: Date/time arithmetic involves intervals of time that are represented by

numbers called durations. A duration is an interpretation of a number, not a new

data type. The number may be a constant, a column name, a host variable, a

function, or an expression. Numbers are interpreted as durations, only in certain

contexts as defined below.

The duration types are:

1. Labeled Durations

A labeled duration is any number of years, months, days, hours, minutes,

seconds, or microseconds. It is used in an expression that involves a date/time

value, and consists of a numeric expression followed by one of YEAR(S),

MONTH(S), DAY(S), HOUR(S), MINUTE(S), SECOND(S), or

MICROSECOND(S). For example, in the expression START_DATE + 120 DAYS,

180 Database Administration

the labeled duration is 120 DAYS. Fractional durations will be truncated to

whole numbers (for example, 2.9 DAYS = 2 DAYS).

2. Date Durations

A date duration represents a number of years, months, and days, expressed as

a DEC(8,0) number. It has the format yyyymmdd, where yyyy is the number of

years, mm the number of months, and dd the number of days. An example of a

date duration is the result of D1-D2, where D1 and D2 are dates.

3. Time Durations

A time duration represents a number of hours, minutes, and seconds, expressed

as a DEC(6,0) number. It has the format hhmmss, where hh is the number of

hours, mm the number of minutes, and ss the number of seconds. An example

of a time duration is the result of T1-T2, where T1 and T2 are times.

4. Timestamp Durations

A timestamp duration represents a number of years, months, days, hours,

minutes, seconds, and microseconds, expressed as a DEC(20,6) number. It has

the format yyyy-xx-dd-hh.mm.ss.zzzzzz, where yyyy, xx, dd, hh, mm, ss, and

zzzzzz represent, respectively, the number of years, months, days, hours,

minutes, seconds, and microseconds. An example of a timestamp duration is

the result of TS1-TS2, where TS1 and TS2 are timestamps.

Rules for Date/Time Arithmetic: The only arithmetic operators that can be

applied to date/time values are addition and subtraction. If a date/time value is

the operand of addition, the other operand must be a duration.

A labeled duration can only be used as the operand of an arithmetic operator such

that the other operand is a date/time value. For example, if D is a date and N and

M are numbers, D + N DAYS + M MONTHS is a valid expression, but D + (N

DAYS + M MONTHS) is not.

No automatic data conversion is provided among date/time data types. If an

arithmetic operation is to be performed among different date/time values, the

scalar functions should be used to convert them into the same data type. For

example, if A is a TIMESTAMP column and B is a DATE column, the difference

between the two in date duration can be obtained by DATE(A) - B. If you specify

just A - B, an error will occur indicating incompatible types.

The specific rules for the use of the addition operator on date/time values are as

follows:

1. If one operand is a date, the other must be a date duration or a labeled

duration of years, months, or days.

2. If one operand is a time, the other must be a time duration or a labeled

duration of hours, minutes, or seconds.

3. If one operand is a timestamp, the other may be any kind of duration.

4. Neither operand can be a parameter marker “?”.

The rules for the use of the subtraction operator on date/time values are not the

same as for addition: first, because a date/time value cannot be subtracted from a

duration, and second, because the operation of subtracting two date/time values is

not the same as that of subtracting a duration from a date/time value. The rules

are as follows:

1. If the first operand is a date, the second one must be either a DATE, date

duration, string representation of a date, or labeled duration of years, months,

or days.

Chapter 8. Application Design Considerations 181

2. If the second operand is a date, the first one must be a date or string

representation of a date.

3. If the first operand is a time, the second one must be either a time, time

duration, string representation of a time, or labeled duration of hours, minutes,

or seconds.

4. If the second operand is a time, the first one must be a time or string

representation of a time.

5. If the first operand is a timestamp, the second one must be either a timestamp,

a string representation of a timestamp, or a duration.

6. If the second operand is a timestamp, the first one must be a timestamp or a

string representation of a timestamp.

7. Neither operand can be a parameter marker “?”.

The semantic rules for date, time, and timestamp arithmetic are discussed below.

Since there is no established standard for date/time arithmetic, some of the

operations are defined procedurally. These procedural definitions use some of the

scalar functions.

Date Arithmetic: Dates can be incremented, decremented, and subtracted. The

operation of incrementing or decrementing a date by some number of days is well

defined and can be verified by a calendar. The other operations are subject to

peculiarities because not all months have the same number of days.

Subtracting Dates: When two dates are subtracted, the result is a date duration

that gives the number of years, months, and days between those dates. The data

type of the result is DECIMAL(8,0).

In the following procedural description of the operation, the term “subtrahend”

refers to the number to be subtracted, and “minuend” is the number that the

subtrahend is subtracted from.

If DAY(subtrahend) is not greater than DAY(minuend), the day part of the result is

equal to DAY(minuend) - DAY(subtrahend).

If DAY(subtrahend) is greater than DAY(minuend), the day part of the result is

equal to N + DAY(minuend) - DAY(subtrahend), where N is the last day of

MONTH(subtrahend). (For example, if MONTH(subtrahend) is 1, N is 31.)

MONTH(subtrahend) is incremented by one.

If MONTH(subtrahend) is not greater than MONTH(minuend), the month part of

the result is equal to MONTH(minuend) - MONTH(subtrahend).

If MONTH(subtrahend) is greater than MONTH(minuend), the month part of the

result is equal to 12 + MONTH(minuend) - MONTH(subtrahend).

YEAR(subtrahend) is incremented by one.

The year part of the result is equal to YEAR(minuend) - YEAR(subtrahend).

For example, the result of DATE(’3/15/2000’) - ’12/31/1999’ is 00000215 (a

duration of 0 years, 2 months, and 15 days).

Incrementing and Decrementing Dates: The result of adding a duration or

subtracting it from a date is a date. The result must be within the range of dates.

182 Database Administration

When a labeled duration of years is added to or subtracted from a date, the result

is a date (that is, the specified number of years before or after the date in the

operation). Only years are counted. The month of the result is always the same as

the month of the date in the operation. The day of the result is also the same as

the day of the date in the operation, unless the result would be February 29 of a

non-leap year, in which case the day part of the result is 28 and SQLWARN7 is set

to W.

When a labeled duration of months is added to or subtracted from a date, the

result is a date (that is, the specified number of months before or after the date in

the operation). Only months (calendar pages) and years (if necessary) are counted.

The day of the result is the same as the day of the date in the operation, unless the

result would be an incorrect date, in which case the day part of the result is the

last day of the month and SQLWARN7 is set to W.

When a labeled duration of days is added to or subtracted from a date, the result

is a date (that is, the specified number of days before or after the date in the

operation).

When a positive date duration is added to a date or a negative duration subtracted

from it, the result is a date (that is, y years, m months, and d days after the date in

the operation, where y, m, and d are the year, month, and day parts of the date

duration). When a positive date duration is subtracted from a date or a negative

duration added to it, the result is a date (that is, y years, m months, and d days

before the date in the operation). The arithmetic is performed using the rules

defined above, including the setting of SQLWARN7 whenever an end-of-month

adjustment is performed. The date duration must be DEC(8,0).

 Peculiarities of Date Arithmetic: What does it mean to add a month to a given

date? The rules defined above are based on the assumption that the result should

be the same day of the next month. Thus, one month after January 1 is February 1,

and one month after February 1 is March 1. But what is one month after January

Let D1 be the DATE 1984-02-29, a leap year.

 SQLWARN7

 D1 + 1 DAY = 1984-03-01 ’ ’

 D1 + 2 MONTHS = 1984-04-29 ’ ’

 D1 + 1 YEAR = 1985-02-28 ’W’

 D1 + 4 YEARS = 1988-02-29 ’ ’

Let N be DEC(8,0) and set to 00010203.

 D1 + N

 = 1984-02-29 + 1 YEAR + 2 MONTHS + 3 DAYS

 = 1985-02-28 + 2 MONTHS + 3 DAYS ’W’

 = 1985-04-28 + 3 DAYS

 = 1985-05-01

Let D2 be the DATE 1985-03-31.

 SQLWARN7

 D2 + 1 MONTH = 1985-04-30 ’W’

 D2 + 2 MONTHS = 1985-05-31 ’ ’

Figure 45. Setting SQLWARN7 During Date Arithmetic. When incrementing or decrementing

dates, SQLWARN7 is set when the resulting date is an incorrect date because of leap year

or month difference, and a valid date is derived.

Chapter 8. Application Design Considerations 183

31? This difficulty, which is the reason why certain contracts are always dated the

first of the month, is resolved by the further assumption that the result should be

the last day of February.

Thus, adding a month to a given date gives the same day of the next month unless

the next month does not have such a day, in which case the result is the last day of

that month. Similarly, one month from the last day of a month is not necessarily

the last day of the next month. For example, one month from the last day of

February is not the last day of March. In sum, “a date + a labeled duration of

months - a labeled duration of months” is not necessarily equal to the original

date.

The definition of the month does not permit a consistent system of date arithmetic.

If this is a problem, you can avoid it by using days rather than months. For

example, to increment the date “DATE3” by the difference between the dates

“DATE1” and “DATE2”, the expression “DATE (DAYS(DATE1) - DAYS(DATE2) +

DAYS(DATE3))” will give an accurate result, whereas “DATE1 - DATE2 + DATE3”

may not.

Time Arithmetic: Times can be incremented, decremented, and subtracted. The

only peculiarity is the modules of 24 hours. For example, adding any multiple of

24 hours to a time gives the same time. The exception is 00:00:00, where adding

24:00:00 becomes 24:00:00.

Subtracting Times: When two times are subtracted, the result is a time duration

that gives the number of hours, minutes, and seconds between the two times. The

data type of the result is DECIMAL(6,0).

In the following procedural description of the operation, the term “subtrahend”

refers to the number to be subtracted, and “minuend” is the number that the

subtrahend is subtracted from.

If SECOND(subtrahend) is not greater than SECOND(minuend), the seconds part

of the result is equal to SECOND(minuend) - SECOND(subtrahend).

If SECOND(subtrahend) is greater than SECOND(minuend), the seconds part of

the result is equal to 60 + SECOND(minuend) - SECOND(subtrahend).

MINUTE(subtrahend) is incremented by one.

If MINUTE(subtrahend) is not greater than MINUTE(minuend), the minute part of

the result is equal to MINUTE(minuend) - MINUTE(subtrahend).

If MINUTE(subtrahend) is greater than MINUTE(minuend), the minute part of the

result is equal to 60 + MINUTE(minuend) - MINUTE(subtrahend).

HOUR(subtrahend) is incremented by one.

The hour part of the result is equal to HOUR(minuend) - HOUR(subtrahend).

Incrementing and Decrementing Times: The result of adding a duration to a

time or subtracting a duration from it is a time. In each of the following cases, any

overflow or underflow of hours is discarded. Thus, the result is always within the

range of a time.

When a labeled duration of hours is added to or subtracted from a time, the result

is a time (that is, the specified number of hours before or after the time in the

184 Database Administration

operation). Only hours are counted. Thus, the minute and second of the result are

the same as the minute and second of the time in the operation.

When a labeled duration of minutes is added to or subtracted from a time, the

result is a time (that is, the specified number of minutes before or after the time in

the operation). Only minutes and hours (if necessary) are counted. Thus, the

second of the result is the same as the second of the time in the operation.

When a labeled duration of seconds is added to or subtracted from a time, the

result is a time (that is, the specified number of seconds before or after the time in

the operation).

When a time duration is added to or subtracted from a time, the result is a time

(that is h hours, m minutes, and s seconds before or after the time in the operation,

where h, m, and s are the hour, minute, and second parts of the time duration). The

time duration must be a DEC(6,0) value.

Timestamp Arithmetic: Timestamps can be incremented, decremented, and

subtracted. The operations are a combination of the date arithmetic and time

arithmetic defined above, except that any overflow or underflow of hours is

reflected in the date part of the result.

Subtracting Timestamps: When two timestamps are subtracted, the result is a

timestamp duration that gives the number of years, months, days, hours, minutes,

and seconds between the two timestamps. The data type of the result is

DECIMAL(20,6).

In the following procedural description of the operation, the term “subtrahend”

refers to the number to be subtracted, and “minuend” is the number that the

subtrahend is subtracted from.

If MICROSECOND(subtrahend) is not greater than MICROSECOND(minuend), the

microseconds part of the result is equal to MICROSECOND(minuend) -

MICROSECOND(subtrahend).

If MICROSECOND(subtrahend) is greater than MICROSECOND(minuend), the

seconds part of the result is equal to 1000000 + MICROSECOND(minuend) -

MICROSECOND(subtrahend). SECOND(subtrahend) is incremented by one.

Second and minute are subtracted as specified in the rules for “Subtracting Times”

on page 184.

If HOUR(subtrahend) is not greater than HOUR(minuend), the hour part of the

result is equal to HOUR(minuend) - HOUR(subtrahend).

If HOUR(subtrahend) is greater than HOUR(minuend), the hour part of the result

is equal to 24 + HOUR(minuend) - HOUR(subtrahend). DAY(subtrahend) is

incremented by one.

Day, month, and year are subtracted as specified in the rules for “Subtracting

Dates” on page 182.

Incrementing and Decrementing Timestamps: The result of adding a duration to

or subtracting it from a timestamp is a timestamp. In each of the following cases,

Chapter 8. Application Design Considerations 185

date and time arithmetic are performed as defined above, except that an overflow

or underflow of hours is carried into the date part of the result, which must be

within the range of dates.

When a labeled duration of years is added to or subtracted from a timestamp, the

result is a timestamp (that is, the specified number of years from the timestamp).

When a labeled duration of months is added to or subtracted from a timestamp,

the result is a timestamp (that is, the specified number of months from the

timestamp).

When a labeled duration of days is added to or subtracted from a timestamp, the

result is a timestamp (that is, the specified number of days from the timestamp).

When a labeled duration of hours is added to or subtracted from a timestamp, the

result is a timestamp (that is, the specified number of hours from the timestamp).

When a labeled duration of minutes is added to or subtracted from a timestamp,

the result is a timestamp (that is, the specified number of minutes from the

timestamp).

When a labeled duration of seconds is added to or subtracted from a timestamp,

the result is a timestamp (that is, the specified number of seconds from the

timestamp).

When a labeled duration of microseconds is added to or subtracted from a

timestamp, the result is a timestamp (that is, the specified number of microseconds

from the timestamp).

When a date duration is added to or subtracted from a timestamp, the result is a

timestamp. The year, month, and day parts are the result of the arithmetic

operation performed using the rules defined for incrementing or decrementing a

date by a date duration. The hour, minute, second, and microsecond parts are the

same as those of the timestamp in the operation.

When a time duration is added to or subtracted from a timestamp, the result is a

timestamp. The time part is the result of the arithmetic operation performed using

the rules defined above for incrementing or decrementing a time by a time

duration, except that any overflow or underflow of hours is carried into the date

part of the result. The microsecond part of the result is the same as the

microsecond part of the timestamp in the operation.

When a timestamp duration is added to or subtracted from a timestamp, the result

is a timestamp (that is, y years, x months, d days, h hours, m minutes, s seconds,

and z microseconds before or after the time in the operation, where these values

are the year, month, date, hour, minute, second and microsecond parts of the

timestamp duration). Date and time arithmetic are performed as previously

defined, except that an overflow or underflow of hours is carried into the date part

of the result. Microseconds overflow into seconds. The timestamp duration must be

DEC(20,6).

Figure 46 on page 187 and Figure 47 on page 188 summarize date/time addition

and subtraction, respectively. The STRING column in both tables mean a character

string in a valid date/time format.

186 Database Administration

An X denotes a valid date/time addition operation.

DATE/TIME ADDITION = OPERAND + OPERAND

LEFT OR RIGHT OPERAND

DURATIONS

SIMPLE

DATE X X X X DATE

TIME X X X X

TIME

TIME

TIME
STAMP X X X X X X X X X X STAMP

LEFT OR
RIGHT

OPERAND

RESULT
DATA
TYPE

D
A
T
E

T
I

M
E

T
I

M
E
S
T
A
M
P

T
I

M
E
S
T
A
M
P

S
T
R
I
N
G

D
A
T
E

T
I

M
E

Y
E
A
R

M
O
N
T
H

D
A
Y

H
O
U
R

M
I
N
U
T
E

S
E
C
O
N
D

M
I
C
R
O

S
E
C
O
N
D
S

Figure 46. Date/Time Addition

Chapter 8. Application Design Considerations 187

Both 1 and 2 denote a valid date/time subtraction operation. 1 means a result data

type of DECIMAL(8,0), DECIMAL(6,0), or DECIMAL(20,6) that is deemed as a

date duration, time duration, or timestamp duration, respectively. 2 means a result

data type of date, time, or timestamp.

Data Access Changes

Users do not have to specify how data is to be accessed; only what data is to be

accessed. Access path selection is done by the database manager, which determines

which strategy will minimize the cost of processing a query. Cost is based on

estimates of processor and I/O requirements. Users are not only free of such

matters, they are not allowed to use any knowledge of such details. This allows the

program to continue to operate when the underlying storage structures are

changed.

Data Structure Changes

Both logical and physical structural changes can be made to data without

significant effect on users or their programs. The database manager permits

flexibility in the binding of programs’ data references to the data objects in the

database. This significantly reduces the impact of changes.

The following sections note a few important considerations to reduce the effect of

data restructuring.

DATE/TIME SUBTRACTION = MINUEND - SUBTRAHEND

S U B T R A H E N D

DURATIONS

SIMPLE

DATE 1 1 2 2 2 2 1=(8,0)

2=DATE

TIME 1 1 2 2 2 2 1=(6,0)

2=TIME

2=TIME

1=(20,6)

TIME
STAMP 1 1 2 2 2 2 2 2 2 2 2 2 STAMP

MINUEND

RESULT
DATA
TYPE

D
A
T
E

T
I
M
E

T
I
M
E
S
T
A
M
P

T
I
M
E
S
T
A
M
P

S
T
R
I
N
G

D
A
T
E

T
I
M
E

Y
E
A
R

M
O
N
T
H

D
A
Y

H
O
U
R

M
I
N
U
T
E

S
E
C
O
N
D

M
I
C
R
O

S
E
C
O
N
D
S

Figure 47. Date/Time Subtraction

188 Database Administration

Program Reference Flexibility: When a program is preprocessed, references to

nonexistent tables, views, or columns, or the use of statements that require a level

of authority that has not yet been granted, do not prevent a package from being

created; these conditions only cause warning messages. If the required authority or

object exists when the referencing statement is processed, execution will proceed

normally.

Although this design is very useful, it exacts a performance penalty. Preprocessing

of such a program should be done again before the program is used extensively.

By repeating the preprocessing step after acquiring the authority or having the

required objects created, you avoid implicit, dynamic preprocessing of those

statements that had unresolved objects or authority at the time of the original

preprocessing.

Adding New Columns to Existing Tables (ALTER TABLE): When you add new

columns to existing tables, referencing programs are normally not affected.

With SELECT statements, when selected columns are specifically named (rather

than specifying SELECT *) or when a view is used, there is no effect on the

program.

With INSERT statements, the effect of added columns on existing programs can be

eliminated by specifically naming the target fields or by using a view, when the

new columns permit NULL values. If the fields are not named, and if affected or

new columns do not permit NULLS, the program must be changed and

preprocessed again.

With the UPDATE statement, there is no effect because of changes, because

individual fields are always specifically named.

With DELETE statements, the action applies to the row as a whole, so adding

fields has no direct effect on existing programs.

When you add new fields, you may have to rewrite old programs to pick up the

new function associated with those fields. However, with the above described

restrictions, there need be no effect on old programs for existing function.

Programs can continue to work normally through such changes until it is really

necessary to update them.

Dropping Columns and Tables (DROP TABLE): To drop a column from a table,

drop the table (DROP TABLE) and recreate it (CREATE TABLE) without that

column. If the column dropped is not used by an existing program, dropping it in

this manner does not functionally affect that program. The program is

automatically re-preprocessed when it is next used.

Note: If the table has data in it, before dropping it, save the data. Either use the

DBS Utility to unload the table to a tape or DASD SAM file; or create a new

temporary table, and use an INSERT with Subselect statement to copy the

data into it. Later, you can either use the DBS Utility to reload the data into

the newly created table; or use an INSERT with Subselect statement to copy

the data from the temporary table to the newly created table, then drop the

temporary table.

When you drop a table, all keys, indexes, and privileges are lost.

Chapter 8. Application Design Considerations 189

When a program is preprocessed, all of its dependencies (such as tables needed)

are recorded in the SYSTEM.SYSUSAGE table. Then, whenever one of these objects

is dropped, the SYSTEM.SYSUSAGE table is searched to check for dependencies; if

the program depends on the object just dropped, it marks the entry invalid in the

SYSTEM.SYSACCESS table against the package for that program, and marks any

loaded copies of the package (in the cache) unusable.

The next time the package is invoked, it will automatically be re-preprocessed. If

referenced objects have been reestablished properly, the preprocessing will succeed.

The user will not be aware of the activity, except for a longer than usual time delay

when the package is first invoked after the change.

Of course, when a program requires a field that is dropped, it can no longer

function properly until it is brought current with the change. Because the program

references the dropped field, if it is submitted for execution without being

changed, the automatic re-preprocessing will fail and the submitter will be notified.

Adding Indexes to Tables: Adding an index to a table has no effect on users or

programs that use the table. However, to make it possible to take advantage of

potential performance improvements offered by the index, programs using it

should be preprocessed again. (You should apply the UPDATE STATISTICS

statement for the table after adding the index and before preprocessing the

program again.) The preprocessing step enables the database manager to

re-examine the possible access strategies, and possibly take advantage of the new

index.

Dropping an Index for a Table: Indexes for tables used in programs are recorded

in SYSTEM.SYSUSAGE in the same manner described above for tables. When an

index is dropped, the same automatic re-preprocessing occurs for dependent

programs, allowing adjustment of the access strategy to reflect the lost index. For a

dropped index, there is no need for further action by the programmers who create

the using programs, because the automatic re-preprocess activity handles required

adjustments.

Changing Data Relationships: Data relationships are handled by keeping the

data structures simple (see “Step 7: Normalize Your Tables” on page 9) and

expressing the relationships in the accessing statements. If this is done properly,

new relationships can be accomplished without changing existing programs or

users. For example, new tables may be associated with old ones by way of joins;

predicates may use fields from many tables, and new views may be added.

Changing Referential Integrity Relationships: There is considerable flexibility

allowed in adding or dropping referential constraints. If the structure of your data

changes, you can drop the primary key of a table, and create a new primary key

for it. For information on primary keys, see “Step 4: Identify One or More

Columns as a Primary Key” on page 4. You can also add new foreign keys to

accommodate changes in the structure of your data, and drop old ones when they

are no longer used. For more information, see “Step 6: Plan for Referential

Integrity” on page 6.

When referential constraints are changed or if keys are inactivated, application

programs that access the affected tables will automatically be re-preprocessed and

compiled.

Changing Unique Constraints: Unique constraints are similar to primary keys,

and are useful when uniqueness on more than one column is desired. You can

190 Database Administration

drop the unique constraint of a table and create a new one, or add additional ones.

For information on unique constraints, see “Step 4: Identify One or More Columns

as a Primary Key” on page 4.

When unique constraints are dropped or inactivated, application programs that

access the affected tables will automatically be re-preprocessed and compiled.

Data Authorization Changes

When new authorization is added, old programs are completely unaware of the

change.

When the preprocessor encounters program dependencies on specific

authorizations, these dependencies are recorded in the SYSTEM.SYSTABAUTH

table as described above for dependent objects. When a program-dependent

authorization is removed, the package associated with the program is marked

invalid, and the automatic re-preprocessing occurs as described before. If proper

authorization is re-acquired before the automatic re-preprocessing, the package is

re-preprocessed successfully; otherwise, the invoker is notified of the problem and

the re-preprocessing fails.

The Preprocessor KEEP Option for RUN Authority

The preprocessor has an option called KEEP|REVOKE, which allows for either

keeping or revoking previously granted RUN authority. It pertains to the version

of the package that is produced by the new preprocessing step.

This design simplifies the effect of changes that require repeating the preprocessing

step, by not having to repeat the associated authorization procedures. When an

automatic re-preprocessing occurs, the KEEP option is implicitly in effect.

Changing the Users of Data

Because users are not affected by data sharing, new users can be added, data can

be employed by different people in different ways, and previous uses can be

discontinued without effect on current users or their programs.

Hypothetical Change Support

The recovery facilities also offer a significant benefit for managing changes to

applications. With these facilities, changes can be applied, examined, tested and

then everything can be backed out with a ROLLBACK statement, and it will

appear as if nothing happened. With ISQL, you must run with AUTOCOMMIT off.

The DBA may ask hypothetical questions without disrupting live data. Answers for

questions such as: “What if I change the supplier of part ZT33592 to improve the

delivery time?” or “What is the effect on overall product cost?” may be very

valuable and, because they impose no permanent changes on the database, may be

made safely.

Chapter 8. Application Design Considerations 191

192 Database Administration

Chapter 9. DB2 Server for VM Database Configurations

This chapter provides an overview of some of the many possible configurations.

(For detailed information on how to establish any particular configuration, see the

DB2 Server for VM System Administration manual.) It also contains information on

VSE Guest Sharing, and on the VM/ESA operating environment.

DB2 Server for VM Concepts

The following terms are used in the descriptions of the DB2 Server for VM

configurations that follow:

Database

A collection of CMS minidisks that store both user and system information.

The latter includes data used to secure and manage the database, such as a

list of valid users.

Database Manager

A program that provides database management services. This program

executes in its own virtual machine, referred to as the database machine.

 The database manager controls any updates or deletes made to the

database, and maintains its security and integrity.

 To protect the integrity of the database, users do not have direct access to

it. Rather, their requests are sent to the database manager, which processes

them and returns the results to the users.

Service Machine

A virtual machine required by any processor that does not have its own

DB2 Server for VM database machine, and has users who want to access a

DB2 Server for VM database in a collection.

Notes:

1. A collection is a group of VM processors that are connected together

using channel-to-channel, binary synchronous lines, or local area

networks.

2. The term local applies to either resources or users. The service machine

provides essential DB2 Server for VM support to users by allowing

access to the production minidisk.

User Machine

A virtual machine that runs either ISQL, DBS Utility, or a user-written

application program that uses SQL.

 User machines cannot make changes directly to the database. They must

send SQL statements to the database manager.

Resource Adapter

The DB2 Server for VM code used by ISQL, the DBS Utility, and

application programs to communicate with the database machine. It

enables users to communicate with the database manager. Users need not

be aware of it.

© Copyright IBM Corp. 1987, 2007 193

Operating Modes for the Database Machine

The database machine can run in two modes of operation: multiple user or single

user. The DB2 Server for VM operator (the person logged onto the database

machine) selects the mode when he or she starts up the database machine.

In multiple user mode, the most common mode of operation, one or more users or

applications concurrently access the same database. The database manager runs in

its own virtual machine, while one or more DB2 Server for VM applications run in

other virtual machines.

In single user mode, the database manager and an application program run in a

single VM machine, and no other users are allowed access. Some maintenance

tasks, such as adding auxiliary storage to the database, require this mode.

It is also possible to operate more than one DB2 Server for VM database machine

in multiple user mode: that is, multiple databases are being accessed by many

users concurrently. This is called “multiple database mode”.

Example Configurations

The following configurations all assume that the database machines are operating

in multiple user mode.

One Database Machine with One Database

In the simplest configuration, there is one database machine and one database.

(This environment is created by the installation process.)

Figure 48 shows an example. Here, all virtual machines reside on the same

processor.

MARYLOU STEVE CINDY
User vitual machines access
the database through the
SQLMACH database machine.

The SQLMACH database machine
accepts and services the SQL
requests from the users. It
is a virtual machine that
executes the database manager
code.

The DB01 database is
comprised of CMS minidisks
that are owned by the SQLMACH
database machine.

SQLMACH

DB01 minidisks

(1)

(2)

Figure 48. Example of One Database Machine Running One Database

194 Database Administration

Points (1) and (2) in the figure are as follows:

1. The SQLMACH database machine was set up to use the DB01 database.

The operator selects a database when the database machine is started.

2. Three user virtual machines (MARYLOU, STEVE, and CINDY) communicate

with the SQLMACH database machine to access the DB01 database. They must

enter:

 SQLINIT DBNAME(DB01)

to specify DB01 as the default database. Then, when they invoke ISQL, the DBS

Utility, or an application program, this default database will be accessed. See

“SQLINIT EXEC” on page 243 for information on the SQLINIT EXEC.

One Database Machine with Two Databases

In Figure 49, all virtual machines reside on the same processor.

 Points (1) and (2) in the figure are as follows:

1. The database machine was set up to use the DB01 database.

The operator selects a database when the database machine is started. In this

example, the operator had the choice of selecting the DB01 or DB02 database.

The DB01 database was chosen.

Note that a database machine can only access one database at a time. To access

the DB02 database, the operator must restart the SQLMACH database machine,

specifying the DB02 database.

2. Three user virtual machines (MARYLOU, STEVE, and CINDY) communicate

with the database machine to access the DB01 database. They must enter:

 SQLINIT DBNAME(DB01)

MARYLOU STEVE CINDY
User vitual machines access
the database through the
SQLMACH database machine.

The SQLMACH database machine
services the SQL requests
from users. It can own
more than one database but
can only manage one database
at a time.

The database, comprised of
CMS minidisks are owned
by the SQLMACH machine.

SQLMACH

DB01 DB02

(1)

(2)

Figure 49. One Database Machine that Owns More than One Database

Chapter 9. DB2 Server for VM Database Configurations 195

to specify DB01 as the default database. Then, when they invoke ISQL, the DBS

Utility, or an application program, this default database will be accessed. (See

“SQLINIT EXEC” on page 243 for information on the SQLINIT EXEC.)

Here, users cannot access the DB02 database. If they entered “SQLINIT

DBNAME(DB02)” and then tried to access DB02 (using ISQL, the DBS Utility,

or an application program), an SQL error would occur.

If users need to access DB02, the operator will have to restart the SQLMACH

database machine, specifying that DB02 is to be accessed. DB01 must be

stopped before DB02 can be restarted.

Several Database Machines with Many Databases

In Figure 50, all virtual machines reside on the same processor.

 Points (1), (2), and (3) of the figure are as follows:

1. The SQLMACH database machine was set up to use the DB01 database.

The SQLMACH operator selects a database when the database machine is

started. In this example, the operator had the choice of selecting the DB01 or

DB02 database. The DB01 database was chosen.

Note that a database machine can only access one database at a time. To access

the DB02 database, the operator must restart the SQLMACH database machine,

specifying the DB02 database.

2. The SQLMFB database machine was set up to use the DB03 database.

Note that it is possible for one database machine to access a database “owned”

by another database machine, as long as the virtual machines reside on the

same processor. For example, the SQLMFB database machine could access the

DB02 database, provided that the SQLMFB operator knows the minidisk

passwords for the DB02 database minidisks.

MARYLOU STEVE CINDY

SQLMACH

DB01 DB02

(1)

(3)

MIKE MARY

SQLMFB

DB03

SQLMFB owns
the DB03
database

SQLMACH owns
the DB01
and DB02
databases

(2)

Figure 50. Two Database Machines with Three Databases

196 Database Administration

Note: A database machine “owns” a database if its virtual machine directory

contains the MDISK statements for the database minidisks.

3. Five user virtual machines (MARYLOU, STEVE, CINDY, MIKE and MARY)

communicate with the database machines. MARYLOU, STEVE, and CINDY

must enter:

 SQLINIT DBNAME(DB01)

to specify DB01 as their default database, while MIKE and MARY must enter:

 SQLINIT DBNAME(DB03)

to specify DB03 as their default database. (See “SQLINIT EXEC” on page 243

for information on the SQLINIT EXEC.)

Here, users cannot access the DB02 database. If they entered “SQLINIT

DBNAME(DB02)” and then tried to access DB02 (using ISQL, the DBS Utility,

or an application program), an SQL error would occur.

If users need to access DB02, the SQLMACH database machine operator will

have to restart the SQLMACH database machine, specifying that DB02 is to be

accessed. Restarting the SQLMACH database machine to access DB02 will stop

users from accessing DB01.

Users can change the database they are accessing in two ways:

a. Using the SQLINIT EXEC to specify a new default.

b. Using the CONNECT statement to switch databases. This can be done from

within an application (ISQL, the DBS Utility, or an application program).

For example, suppose MARYLOU is accessing DB01 using ISQL. She can

switch to DB03 by entering the following SQL statement:

 CONNECT TO DB03

See “Connecting to an Application Server in VM” on page 97 for more

information.

Multiple Database Machines on Different Processors

Users can access a database that resides on another processor, provided both

processors are running on VM/ESA systems, and are connected in TSAF, SNA or

TCP/IP network. (Refer to the DB2 Server for VM System Administration manual for

information about network configurations.)

Figure 51 shows an example of accessing a database located on another processor.

Chapter 9. DB2 Server for VM Database Configurations 197

Points (1), (2), and (3) of the figure are as follows:

1. The SQLMACH database machine was set up to use the DB01 database.

The SQLMACH operator selects a database when the database machine is

started. In this example, the operator had the choice of selecting the DB01 or

DB02 database. The DB01 database was chosen.

Note that a database machine can only access one database at a time. To access

the DB02 database, the operator must restart the SQLMACH database machine,

specifying the DB02 database.

2. The SQLREM database machine was set up to use the DB04 database.

The database is established as a global resource.

Note: Databases can be classified as either local or global. A local database can

only be accessed by users located on the same processor as itself, while a

global one can also be accessed by users located on other processors

within the collection.

The SQLREM operator specified the DB04 database at startup.

It is possible for a database machine to access a database “owned” by another

database machine, provided the virtual machines reside on the same processor.

The SQLREM database machine cannot access the DB01 database (owned by

SQLMACH), because SQLMACH and DB01 are on a different processor.

3. Four user virtual machines (MARYLOU, STEVE, CINDY and RALPH)

communicate with the database machines.

MARYLOU and STEVE enter:

 SQLINIT DBNAME(DB01)

MARYLOU STEVE CINDY

SQLMACH

DB01 DB02

(1)

(3)

Processor 1 Processor 2

RALPH

SQLMFB

DB04

A User Virtual
Machine can
access a data
base on another
system

DB01, DB02
are owned by
SQLMACH.

DB04 is
owned by
SQLREM

(2)

Figure 51. User Accessing a Database on Another Processor

198 Database Administration

to specify DB01 as their default database, while CINDY and RALPH enter:

 SQLINIT DBNAME(DB04)

to specify DB04 as their default database.

Note that although CINDY is on a different processor from RALPH, both access

the DB04 database in the same way, and CINDY is able to specify DB04 as her

default database.

Users can change the database they are accessing in two ways:

a. Using the SQLINIT EXEC to specify a new default database.

After establishing a new default database, the user could then access the

database using ISQL, the DBS Utility, or application programs.

b. Using the SQL CONNECT statement.

This can be done from within an application (ISQL, the DBS Utility or

application program).

For example, suppose MARYLOU is accessing DB01 using ISQL. She can

switch DB04 by entering the following SQL statement:

 CONNECT TO DB04

Refer to “Connecting to an Application Server in VM” on page 97 for more

information.

Accessing a Database from a Processor that Does Not Have

One

Users on processors that do not have a database machine or a database can access

a database on another processor. (The processors must be running on VM/ESA

systems, and all user IDs must be unique between processors.) Figure 52 shows an

example.

 Points (1), (2), and (3) of the figure are as follows:

Processor 1
Processor 2

JOHNCINDYSTEVEMARYLOU

SQLMACH

DB01

(1)

(2) (3)

Figure 52. Accessing a Database from Another Processor

Chapter 9. DB2 Server for VM Database Configurations 199

1. The SQLMACH database machine was set up to use the DB01 database.

The SQLMACH operator selects a database when the database machine is

started. This database is established as a global resource.

2. Four user virtual machines (MARYLOU, STEVE, CINDY, and JOHN)

communicate with the database machine (SQLMACH) to access DB01.

MARYLOU, STEVE, CINDY, and JOHN enter:

 SQLINIT DBNAME(DB01)

to specify DB01 as their default database.

When MARYLOU, STEVE, CINDY, or JOHN invoke ISQL, the DBS Utility, or

an application program, DB01 will be accessed.

3. JOHN is on Processor 2 which does not have a database machine or database.

JOHN must have a link to the service machine disk in order to access the

database on Processor 1. This service machine must be installed on Processor 2.

Performance Considerations with Multiple Databases

Most of the processing time for any transaction is spent in the database machine

and not in an application program. It is possible to have users on one processor

accessing data stored on another processor if the operating systems are VM/ESA

systems. However, because of the processor overhead of inter-processor

communication, a database should be placed on a processor that is closest to its

greatest number of users, preferably on the same one.

If you plan to have users on one processor accessing a database on another

processor, you should consider the overhead of inter-processor communication.

Most message traffic between the user and the database machine should flow

within a single processor. Only a small percentage of messages should flow

between processors, as happens when users infrequently access data located on

other processors.

Although the end user does not need to know the physical location of a database,

you must have a good understanding of user-group requirements in a particular

business environment. Users should first be grouped according to the business

tasks they perform. Databases and tables can then be arranged so that they are

always accessed by most users in a particular group. A good understanding of the

business environment and the needs of various user groups can aid in determining

whether users on one processor are allowed to access databases on other

processors.

When planning your database configuration, you should generally avoid:

v Database configurations with central databases

v Databases with randomly distributed tables.

Database configurations should be designed so that:

v Groups of tables are situated in the database closest to their greatest number of

users

v Tables in databases on other processors are only occasionally accessed.

For more information on performance considerations, see the DB2 Server for VM

System Administration manual.

200 Database Administration

VSE Guest Sharing (On VM/ESA Systems Only)

If you have VSE/AF 4.1.0 or higher running as a guest under a VM/ESA system,

VSE users can access DB2 Server for VM databases through VSE Guest Sharing.

The database accessed can be on the same VM/ESA system as the one that

supports the VSE guest, or on another VM/ESA system in the same TSAF

collection, SNA or TCP/IP network. A VSE guest user can use database switching

to target another database. An example of a DB2 Server for VM database with VSE

Guest Sharing support is shown in Figure 53.

 In a VSE Guest Sharing environment, VM/ESA users and applications can use the

same functions they use in a VM/ESA environment without being aware of guest

sharing.

For more information on VSE Guest Sharing, and on the DB2 Server for VM

configurations that you can implement, see the DB2 Server for VM System

Administration manual.

BATCH

BATCH

CICS

ISQL
CICS

VSE/AF

APPC

ISQL
CMS

CMS

CP

DB2
Server
for VM

DSC

RDS

DBSS

CMS

DBSU

PREPROCESSORS

CICS/ICCF

SQL
TRANS-
ACTION

VSE/AF

APPC

database
(logs,
directories,
data)

Figure 53. VSE Guest Sharing Configuration

Chapter 9. DB2 Server for VM Database Configurations 201

202 Database Administration

Chapter 10. Usage Environments in VSE

The hardware and software needed to run the DB2 Server for VSE system varies

depending on the usage of the DB2 Server for VSE system.

Depending on your requirements, your DB2 Server for VSE environment may be

set-up in different ways. The purpose of this chapter is to give you an idea of the

various different usage environments that can be set up. Further information about

how to set up various DB2 Server for VSE environments can be found in the DB2

Server for VSE System Administration manual.

This chapter describes five different DB2 Server for VSE usage environments. You

will need to consider each of these environments and choose the one appropriate

for your processing requirements. It also describes the recommended and required

options of the associated program products.

Batch/Interactive Application Processing

 Batch/interactive processing (Figure 54) is mostly execution of compiled PL/I,

COBOL, C, Fortran or assembler programs which are batch (or VSE/ICCF) SQL

applications. Some dynamic SQL processing may occur in the form of application

preprocessing and compilation, and DBS Utility executions.

VSE/ICCF
MONITOR

VSE/ICCF
TRANSACTION

TERMINALS
TTF

PREPROCESSOR

PREPROCESSOR

DBS UTILITY

DBS UTILITY

DB2 Server
for VSE

APPLICATION

DB2 Server
for VSE

APPLICATION

DB2 Server
for VSE

DATABASE

VSE/ICCF INTERACTIVE
PARTITIONS

VSE/ADVANCED FUNCTIONS

BATCH PARTITION(S)

DB2 Server for VSE PARTITION

DB2 Server
for VSE
DBMS

(VSAM)

/

/

/

Figure 54. Batch/Interactive Configuration

© Copyright IBM Corp. 1987, 2007 203

Operation of this type of system places minimal demands on system resources

(real storage and processor power). However, there is a corresponding loss of

function, because such a system cannot support the query/report writing facilities

(ISQL) of the DB2 Server for VSE or online (CICS) transaction processing with DB2

Server for VSE.

There are no special prerequisites beyond the base DB2 Server for VSE

prerequisites for VSE/Advanced Functions and VSE/VSAM except that one of the

supported programming languages (PL/I, COBOL, C, Fortran, or assembler) is

required. VSE/ICCF is not required, but it can be used for terminal access and

invocation of the SQL applications, and for data administration activities.

A batch/interactive system should be considered for automation of fixed business

applications that do not require end user access to the system. Such a system is

typically developed on a larger system that is configured to support application

development.

Online (CICS) Transaction Processing

 Online transaction processing usage of the DB2 Server for VSE system (Figure 55)

is mostly preplanned CICS SQL transactions. Some dynamic SQL processing may

occur in the form of SQL/DS preprocessor and DBS Utility jobs, which do not run

under the CICS subsystem.

Like the batch/interactive application processing usage, the online transaction

processing usage demands fewer real storage and processor resources than

dynamic SQL usage demands.

SQL
TR

SQL
TRANSACTION

CICS

DB2 Server
for VSE

DBMS (VSAM)

DB2 Server for VSE PARTITION

PREPROCESSOR

DBS UTITILY

DB2 Server
for VSE

APPLICATION

BATCH PARTITION(S)

VSE/ADVANCED FUNCTIONS

DB2 Server
for VSE
DATABASE

/
/ TERMINALS

/

Figure 55. Online Transaction Processing Configuration

204 Database Administration

Online transaction processing with the DB2 Server for VSE system requires

installation of CICS Release 2.3, or an equivalent transaction processing product.

The DB2 Server for VSE online support must also be installed. The CICS

subsystem provides the terminal management and transaction processing

environment. Programs may be written in PL/I, COBOL, C, or assembler, but not

Fortran as the CICS subsystem does not support Fortran. You can, however, use

Fortran for batch programs.

An online transaction processing system should be considered for preplanned

business applications where end user access to the system is managed through

CICS transactions programmed for specific end user tasks.

ISQL might be installed, but its use would be limited to data administration

functions.

For the online transaction processing environment, the system should be

configured as follows:

v CICS Options:

– The Dynamic Transaction Backout Program (DBP) is required for proper

coordination and recovery with the DB2 Server for VSE database manager.

– The Exec Interface Program (EIP) is required to support transaction access to

the DB2 Server for VSE application server.

– The CICS User Exit Interface is also required for transaction access to the DB2

Server for VSE application server.

– The CICS Monitoring Facility is optional, but should be used so that the DB2

Server for VSE database manager participates in the monitoring by providing

performance class information.

– The CICS Restart Resynchronization facility is required to support task-related

user exit resynchronization and to use the SQL/DS accounting facility in an

online environment.

v The VSE/POWER program is required for the system printer or remote

workstation printer report-writing support in ISQL. It is not required for report

writing to CICS terminal printers. Only the VSE/POWER program provides

multiple copy capability.

Chapter 10. Usage Environments in VSE 205

Application Development

 Application development usage of the DB2 Server for VSE system (Figure 56)

includes a large amount of data design, application coding, and testing. Such

activities typically involve a modest level of dynamic SQL activity in the form of

data definition, catalog queries, and program preprocessing. Correspondingly, there

is more demand for real storage and processor resources, than that demanded by

application or transaction processing.

The program products required to support application development on the DB2

Server for VSE system vary depending on the type of application being developed

and the DB2 Server for VSE facilities to be used. The optional program products

and their options are discussed below in terms of their value to application

development usage of the DB2 Server for VSE system.

1. Programming Languages

For development of programmed applications you would need one or more of

the PL/I, COBOL, C, Fortran, or Assembler language products.

2. VSE/ICCF

You can install VSE/ICCF (or an equivalent) to support an interactive

application development capability.

3. The CICS subsystem

VSE/ICCF
MONITOR

SQL
TRANS

ISQL
TRANS.

CICS VSE/ICCF
INTERACTIVE TRANS.
PARTITION

PREPROCESSOR

DBS UTITLITY

DB2 Server for
VSE

APPLICATION

VSE/ICCF INTERACTIVE
PARTITIONS

DB2 Server
for VSE
DBMS

(VSAM)

DB2 Server for VSE PARTITION

PREPROCESSOR

DBS UTILITY

DB2 Server for
VSE

APPLICATION

BATCH PARTITION(S)

VSE/ADVANCED FUNCTIONS

/
/ TERMINALS

/

DB2 Server
for VSE
DATABASE

Figure 56. Application Development Configuration

206 Database Administration

The CICS subsystem is required to support development of CICS transactions

or use of the ISQL facilities for application development. It should be generated

with the dynamic transaction backout program (DBP), the EXEC interface

program (EIP), and the CICS user exit interface. Optionally, you can generate it

with the Monitoring Facility and Restart Resynchronization. Restart

resynchronization is required if you want to (1) use the SQL/DS accounting

facility in an online environment, and (2) support task-related user exits.

4. VSE/POWER

The VSE/POWER program is required for the system printer or remote

workstation printer report-writing support in ISQL. It is not required for report

writing to CICS terminal printers. Only the VSE/POWER program provides

multiple copy capability.

Query/Report Writing

 The query/report-writing usage environment supports dynamic SQL query and

report writing by end users. Due to the dynamic interpretation of user requests

and the fact that data requests are unconstrained, this usage environment places a

relatively high demand on system resources. The internal sort capability of the DB2

Server for VSE database manager is likely to be used frequently.

The program products and options required to support this environment are as

follows:

1. The CICS subsystem

SQL
TRANS.

ISQL
TRANS.

CICS
PARTITION

TERMINAL
PRINTER

TERMINALS

SYSTEM
PRINTER

DB2 Server
for VSE

DATABASE

DB2 Server
for VSE

APPLICATION

DB2 Server for VSE PARTITION

PREPROCESSOR

DBS UTILITY

DB2 Server
for VSE
DBMS

(VSAM)

VSE/POWER

VSE/POWER PARTITION

BATCH PARTITION

VSE/ADVANCED FUNCTIONS

Figure 57. Query/Report Writing Configuration

Chapter 10. Usage Environments in VSE 207

ISQL operates as a set of CICS transactions. The CICS subsystem should be

generated with the following options:

v Dynamic Backout Program (DBP)

v Exec Interface Program (EIP)

v CICS User Exit Interface

v CICS Monitoring Facility (optional)

v CICS Restart Resynchronization, if you want to use either the SQL/DS

accounting facility in an online environment or support task-related user

exits.

2. VSE/POWER

The VSE/POWER program is required for the system printer or remote

workstation printer report-writing support in ISQL. It is not required for report

writing to CICS terminal printers. Only the VSE/POWER program provides

multiple copy capability.

208 Database Administration

Chapter 11. Stored Procedures

Stored Procedure Concepts

A stored procedure is a user-written application program that is compiled and

stored at the server. When the database manager is running in multiple user mode,

local applications or remote DRDA applications can invoke the stored procedure.

Since the SQL statements issued by a stored procedure are local to the server, they

do not incur the high network costs of distributed statements. Instead, a single

network send and receive operation is used to invoke a series of SQL statements

contained in the stored procedure.

There are several other benefits that can be gained through the use of stored

procedures, including:

v In many applications, the integrity of the host variables used in SQL statements

is critical to the business function provided by the application. For example, a

debit/credit application might need to guarantee that the host variable values do

not change between debit and credit operations. In these applications, the

application designer would like to guarantee that sophisticated users cannot

employ online debugging tools to manipulate the content of SQL statements or

host variables used by the SQL application. By using stored procedures, the

application designer can encapsulate the application’s SQL statements into a

single message to the server, which moves the sensitive processing beyond the

reach of even the most sophisticated workstation user.

v Stored procedures can be used to hide the details of the database design from

client applications. In addition to simplifying the writing of client applications,

this means that if the database design is changed, only the stored procedure

needs to be modified. The more client applications that use the stored procedure,

the greater the benefit.

v Stored procedures can be used to hide sensitive data from application programs.

v Business logic can be encapsulated at the server, rather than being included in

numerous application programs.

v It is easier to maintain an environment in which applications are kept at the

server rather than spread across a number of requesters.

Stored Procedure Servers

The Stored Procedure Server

In DB2 Server for VSE & VM, all stored procedures are fenced, which means that

they are separated from the database manager with respect to execution and

memory usage. This is necessary to ensure that a stored procedure does not

v inadvertently use storage that is allocated to the database manager

v monopolize processing in the database machine or partition, which would

effectively hang the database

A fenced implementation is achieved through the use of stored procedure servers.

An stored procedure server is an application requester that is local to the database

manager and is used to execute the stored procedure. A fenced implementation is

achieved as follows:

© Copyright IBM Corp. 1987, 2007 209

v In VM, the stored procedure server is a separate virtual machine that is local to

the DB2 Server for VSE & VM server, and uses the ’private resource’ facility of

VM.

v In VSE, the stored procedure server is a separate static or dynamic partition.

Note that a stored procedure server must be dedicated to a single database server.

The Stored Procedure Handler

The stored procedure handler is a DB2 Server for VSE & VM supplied utility,

called ARISPRC, that interfaces between the database manager and the stored

procedure. It runs in the stored procedure server and does the following:

v Initializes the runtime environment. This is done when the stored procedure

server is started. For the steps involved, see ″The START PSERVER Command″

in the DB2 Server for VSE & VM Operation manual.

v Waits to receive an SQL CALL request from the database manager.

v Invokes the specified stored procedure, which will send requests and receive

replies directly to and from the database manager.

v Returns the output parameters and result set information to the database after

the stored procedure has terminated.

v Waits for another SQL CALL request from the database manager.

Stored Procedure Server Groups

The group clause of the CREATE PSERVER statement makes it possible to define

groups of stored procedure servers. This is useful if

v certain stored procedures must always have a server available. In this case, a

stored procedure server group could be dedicated to the procedure, and other

procedures could share other groups.

v certain procedures have special requirements, for example, the need for

unusually large amounts of virtual storage.

v certain procedures must access resources that are note required by most

procedures.

The group option gives the database administrator flexibility in defining the

environment and is useful for system tuning.

Setting up a Stored Procedure Server

The SERVGROUP column in SYSTEM.SYSROUTINES is cross-referenced with the

SERVGROUP column in SYSTEM.SYSPSERVERS to establish the server that is to

be used for a stored procedure.

In DB2 Server for VM, the following requirements exist:

v The PSERVER column in SYSTEM.SYSPSERVERS specifies the name of the

stored procedure server.

v The VM machine name (user ID) of the stored procedure server must equal the

value in the PSERVER column in SYSTEM.SYSPSERVERS. The CP directory of

the database machine must contain the following statement:

– IUCV userid

where userid is the VM ID of the stored procedure server virtual machine. This

enables the database manager to request the services of the stored procedure

server. Note that this can also be enabled by putting an IUCV ALLOW statement

in the CP directory of the stored procedure server virtual machine. However, the

first method requires the database machine to have explicit access to the stored

procedure server machine, and the second method allows any machine to

210 Database Administration

connect to the stored procedure server machine. Since the stored procedure

server must be dedicated to a single database machine, the first method is

preferred.

v The CP directory of the stored procedure server VM machine must contain the

following statements:

1. IPL CMS

This directory control statement causes CP to start CMS in the stored

procedure server virtual machine.

2. OPTION MAXCONN nnnn

This directory control statement indicates the number of IUCV and

APPC/VM connections allowed for the virtual machine. Unless a stored

procedure that runs on the server does work that requires additional

connections, setting nnnn to 1 is sufficient.

v The PROFILE EXEC for the stored procedure server VM machine must have the

following CMS commands:

– SET SERVER ON

– SET FULLSCREEN OFF

– SET AUTOREAD OFF

The following is a sample profile:

Note: the PROFILE EXEC should not contain any commands that require

console input, or put the ID into VM READ.

v A $SERVER$ NAMES file, which controls who can connect to the VM machine

and what module to invoke when the machine is started, must exist. An

example of a $SERVER$ NAMES file entry is:

’GLOBALV INIT’ /* The following three lines have to be in PSERVER’s PROFILE EXEC

’SET SERVER ON’

’SET FULLSCREEN OFF’

’SET AUTOREAD OFF’

’SET CMSTYPE HT’

’SET IMSG OFF’

’SET LANGUAGE AMENG (ADD ARI USER’

’CP SET RUN ON’ /* This prevents CP READ upon */

 /* RECONNECTing to userid. */

’CP TERM MODE VM’ /* Accept CMS commands. */

’GLOBAL LOADLIB SCEERUN’ /* LAODLIB FOR LE PROGRAMS */

’CP LINK SQLMACH 195 195 RR’ /*Link to database product disk */

’ACCESS 195 Q’ /*Access as Q disk */

’EXEC SQLINIT DB(SQLMACH)’ /*Initialize as normal AR */

IF RC <> 0 THEN DO

 SAY ’SQLINIT FAILED WITH RETURN CODE = ’ RC

 ’TELL SQLMACH SQLINIT FAILED IN PSERVER’

 ’#CP LOGOFF’

END

ELSE

 SAY ’PSERVER INITIALIZATION COMPLETED.’

Chapter 11. Stored Procedures 211

The fields in the $SERVER$ NAMES files represent the following:

– nick

The name of the private resource. This is VM machine name of the stored

procedure server virtual machine.

– list

The user IDs of the users that are authorized to access the private resource.

This is the VM machine name of the database server virtual machine. Since

stored procedure servers must be dedicated to a single database, only one

name can be specified here. The stored procedure handler will not start if

more than one name is specified.

– module

The name of the stored procedure handler, ARISPRC.

For complete details on setting up the machine, see ″Managing Private

Resources: in the VM/ESA Connectivity Planning, Administration, and Operation

manual″.

v Ensure that the Stored Procedure handler module (ARISPRC) can be accessed by

the stored procedure server. The DB2 Server for VSE & VM installation process

creates this module on the database machine’s production disk.

v Ensure that the Stored Procedure Server has been defined to the database by

using the CREATE PSERVER command. See DB2 for VSE & VM SQL Reference

for more information on this command.

v All stored procedures must be LE-compliant and their load modules must reside

in a disk accessible to the stored procedure servers that will invoke them.

In DB2 Server for VSE, the following requirements exist:

v The JCL used to start the database must contain a statement that defines logical

device 097 (for example, ’ASSGN SYS097,cuu’),to enable POWER to find and

execute the JCL that starts the stored procedure handler. An example is

illustrated below:

The following is a sample JCL to start up the DB2 Server for VSE 7.5.0 database:

Note: You will need to customize ARIS75PL, ARIS75DB to work with your local

VSE/ESA environment.

v The PSERVER column in SYSTEM.SYSPSERVERS specifies the name of the

stored procedure server. This name must be of datatype CHAR(8).

:nick.SQLSVR01 :module.ARISPRC

 :list.SQLMACH

 // ASSGN SYS097,SYSPCH

 // ASSGN SYS098,SYSLST

// JOB Start DB2 for VSE in multiple user mode with Stored Procedure Support

// EXEC PROC=ARIS75PL

// EXEC PROC=ARIS75DB

// ASSGN SYS097,SYSPCH

// ASSGN SYS098,SYSLST

// EXEC PGM=ARISQLDS,SIZE=AUTO, PARM=DBNAME=SAMPLE_DB

212 Database Administration

v The name in the PSERVER column is also the name by which the stored

procedure handler identifies itself to VSE for XPCC communications.

v There must be a JCL for each stored procedure server you define. The JCL is

used to start up the server’s partition. The file name of the JCL and the jobname

in the JOB card should both be the stored procedure server’s name (as defined

in the PSERVER column of SYSTEM.SYSPSERVERS). The JCL must be

catalogued into a library, in the search path defined in your database startup

JCL, as an A-TYPE member. The following is a sample JCL for stored procedure

server SQLSVR01:

Note: For the PUNCH card, you must use . $$ PUN instead of * $$ PUN. Also,

you must make sure that all your stored procedure phases are in the search path

defined in this JCL so that stored procedure server handler phase, ARISPRC, to

be able to find and load the stored procedure.

v Stored procedure server support is currently treated as an optional feature.

Hence, you will need to build the stored procedure server handler phase

manually. The name of the phase is ARISPRC. The following is a sample JCL

used to linkedit the ARISPRC phase. The phase should reside in your

production library together with other DB2 for VSE phases.

Note: ARISLKHZ is a the linkbook used to linkedit the stored procedure server

phase, and it is a member of your production library.

v All stored procedure will have to be compiled using LE enabled compiler. The

phases of these stored procedures have to be in the search path defined in stored

procedure server’s startup JCL.

Managing Stored Procedure Servers

Stored Procedure Server Allocation

When a stored procedure is running, the stored procedure server in which it is

executing is dedicated to it. Since no other stored procedure can execute in that

server until the current one finishes, it is not possible to execute multiple stored

. $$ PUN CLASS=6,DISP=I,JNM=SQLSVR01

* $$ LST CLASS=V,DISP=D,DEST=(,SYSID01)

// JOB SQLSVR01

// OPTION NODUMP,NOSYSDUMP

// ASSGN SYS098,SYSPCH

// LIBDEF *,SEARCH=(CMPLR22.SCEEBASE,CMPLR22.LEVSEBC,

 CMPLR22.SCEECICS,PRD2.DB2710)

 ON $RC > 0 GOTO END

// EXEC PGM=ARISPRC,SIZE=1M

/.END

/*

/&

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* L I N K PSERVER component *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

// OPTION CATAL

 INCLUDE ARISLKHZ

// EXEC LNKEDT,PARM=’MSHP’

/*

Chapter 11. Stored Procedures 213

procedures concurrently with a single stored procedure server. However, multiple

stored procedures can execute concurrently if multiple stored procedure servers are

defined.

The CREATE PROCEDURE statement must be used to define a stored procedure

before it can be used. The CREATE PROCEDURE puts the definition of the

procedure into the catalog tables SYSTEM.SYSROUTINES and

SYSTEM.SYSPARMS. See DB2 Server for VSE & VM SQL Reference for the

definitions of these tables as well as more details on the CREATE PROCEDURE

statement. A third catalog table, SYSTEM.SYSPSERVERS, is used to identify the

stored procedure servers. See DB2 for VSE & VM SQL Reference for the definition

of this table. When the database manager is started, DB2 Server for VSE & VM

loads the contents of these tables into cached structures. The cached structures

contain the information from the catalog tables, as well as information about the

run time status of stored procedures and stored procedure servers. When the

database manager is started, the status of a stored procedure defaults to STARTED,

and the status of a stored procedure server defaults to STOPPED. The database

manager then issues a START PSERVER command for any stored procedure server

for which the AUTOSTART value of the corresponding row in

SYSTEM.SYSPSERVERS is Y. When the START PSERVER command completes, the

status of that stored procedure server is STARTING. When an SQL CALL

statement is issued, the database manager uses the cached information to

determine the server at which this stored procedure will run. To determine the

server, DB2 Server for VSE & VM does the following. Note that when these steps

make reference to the catalog tables, it is the cached information from the tables

that they are referring to.

1. Gets the value of the SERVGROUP column from the row in

SYSTEM.SYSROUTINES for the procedure

2. Looks for the first row in SYSTEM.SYSPSERVERS in which the value of the

column SERVGROUP matches the SERVGROUP value retrieved from

SYSTEM.SYSROUTINES, and which is not currently running a stored

procedure. If one is found, the action taken by the database manager depends

on the status of the procedure server:

v If its status is STARTED, the database manager sends a command to that

server, to cause it to invoke the stored procedure.

v If its status is STARTING, the database manager completes the START

PSERVER processing, by establishing a connection to the stored procedure

server and invoking the stored procedure handler. It then changes the status

of the stored procedure server to STARTED and sends a command to the

server, to cause it to invoke the stored procedure.

v If its status is STOPPING, the database manager ignores that server.

v If its status is STOPPED, the database manager checks whether that server

can be started implicitly. If it can be started implicitly, DB2 Server for VSE &

VM issues the START PSERVER command, and when the command

completes, that server is used to run the stored procedure. For more

information on starting a stored procedure server implicitly, refer to the

description of the IMPLICIT/NOIMPLICIT option of the STOP PSERVER

command in the DB2 Server for VSE & VM Operation manual.

If none of the servers in the group can be used, and the group checked was not the

default group, DB2 Server for VSE & VM checks whether the stored procedure can

run in the default group. Servers in the default group are indicated by a value of

NULL for the SERVGROUP column in SYSTEM.SYSPSERVERS. If the DEFSERV

column in SYSTEM.SYSROUTINES contains a ’Y’ or is NULL, then that procedure

214 Database Administration

can run in a server in the default group. If no servers are available in

SERVGROUP, or if SERVGROUP in SYSTEM.SYSROUTINES is blank, and the

procedure can run in the default group, DB2 Server for VSE & VM will attempt to

run the stored procedure in one of the default servers. The process it uses to find a

server in the default group is the same as the one it used to look for a server in a

specific group, as described earlier.

If none of the servers at which it can run are available, the stored procedure waits

for a free server. If more than one stored procedure is waiting for the same server,

the one that has been waiting the longest will be invoked when the server is

available.

Figure 58 shows how DB2 Server for VSE & VM resolves the server name. Note

that in order to illustrate the process used, the figure shows cached data. Not all of

the columns shown are in the corresponding catalog table.

 The following steps are involved in Figure 58:

1. SQL CALL PROC1 is issued. The database manager retrieves the SERVGROUP

value from the row for PROC1 in the cached information from

SYSTEM.SYSROUTINES.

2. The database manager looks for the first row in the cached information from

SYSTEM.SYSPSERVERS in which the SERVGROUP column matches the

SERVGROUP value retrieved from the cached information for

SYSTEM.SYSROUTINES and the PROC information is blank.

3. The row for PSERVER SRV5 is found, but it is stopped and cannot be started

implicitly.

4. Since there are no other servers in GROUP1 that are not already running a

stored procedure, the database manager checks the column DEFSERV to see if

PROC1 can run in the default server group. A value of ’Y’ or NULL in this

column indicates that it can run in the default group.

5. The SYSTEM.SYSPSERVERS data contains a value of NULL in the

SERVGROUP column for any server in the default group. In this case, SRV1

and SRV2 are in the default server group and both are available. The database

manager will use SRV1 since it is the first one found. It will update the cached

information from SYSTEM.SYSPSERVERS to indicate that SRV1 is being used

for PROC1, and send a command to SRV1 to cause it to invoke the stored

procedure PROC1.

PROCEDURE

PROC1

PSERVER

SRV1

SRV2

SRV3

SRV4

SRV5

LOADMOD

........

DESCRIPTION

DEFAULT

DEFAULT

SERVGROUP

GROUP1

PROC

PROCX

PROCY

DEFSERV

Y

STATUS

STARTED

STRATED

STRATED

STRATED

STOPPED

AUTHID

MOD1

AUTOSTART

Y

Y

Y

N

SERVGROUP

GROUP1

GROUP1

GROUP1

EXEC SQL CALL PROC1
1

5

3

2 4

Figure 58. How DB2 Server for VSE & VM Determines the Stored Procedure Server to Use

Chapter 11. Stored Procedures 215

States of a Stored Procedure Server

A stored procedure server can be in several different states: STARTED, STARTING,

STOPPING or STOPPED. Each state reflects/indicates the availability of the server

and whether or not its definition can be altered or dropped. The START and STOP

PSERVER operator commands can be used to change the state of a stored

procedure server. An incoming SQL CALL request can also change the state of a

stored procedure server, but only in certain situations, as will be described later.

Following is a description of how each state is achieved and the functions that can

be performed on the server for each of these states.

STOPPED

This is the default state for all stored procedure servers when the database

manager is started. It is also achieved when a procedure server is stopped using

the STOP PSERVER operator command. This state has two conditions that

determine whether certain functions, such as an SQL CALL implicitly starting the

server, are allowed. These two conditions are IMPLICIT and NOIMPLICIT. At

startup, all stored procedure servers are STOPPED with IMPLICIT. Here is a

summary of the differences between the two:

v STOPPED with IMPLICT: in this state, the stored procedure server is considered

to be available as it can be implicitly started by the database manager if an SQL

CALL request requires it to execute. When the IMPLICIT condition is true, the

stored procedure server definition cannot be altered or dropped. A stored

procedure server achieves this state when the STOP PSERVER IMPLICIT

operator command is issued.

v STOPPED with NOIMPLICIT: in this state the stored procedure server is not

available to execute any SQL CALL requests, and the database manager cannot

implicitly start the stored procedure server. Since the server is not available, its

definition can be altered or dropped. This is the only state that allows changes

to the server’s definition. To achieve this status issue the STOP PSERVER

NOIMPLICIT operator command on the desired server. Also, if the database

manager’s attempt to start the server (i.e. establish a physical connection) times

out, the stored procedure server will be STOPPED NOIMPLICIT by the database

manager. This is done as a time-out might indicate a problem with the stored

procedure server handler. See the DB2 Server for VSE & VM Diagnosis Guide and

Reference manual for more information.

A stored procedure server will always be stopped if a severe error is encountered

during the execution of a stored procedure. The IMPLICIT/NOIMPLICIT condition

is not changed, unless a connection time-out has occurred, as mentioned above.

STOPPING

A server can only achieve this state if it was executing a stored procedure at the

time the STOP PSERVER command was issued. When the state is ″stopping″, the

database manager know that once the current SQL CALL requests concludes, the

stored procedure server must be stopped. The stored procedure server will remain

available as long as the IMPLICIT condition is true.

STARTING

In this state, the server is ready to start executing an SQL CALL request. It has

been allocated a communication block but it is not yet connected. The database

manager will establish the connection once an SQL CALL statement requests to use

the server. If the connection is successful, the status will be changed to started. If it

fails, the server will be stopped. The IMPLICIT/NOIMPLICIT condition will

remain unchanged. If the connection times out, as mentioned earlier, the server

216 Database Administration

will be stopped with the NOIMPLICIT condition true. A server in this state can

also be stopped by issuing the STOP PSERVER operator command.

STARTED

In this state, the stored procedure server is connected to the database server and is

either executing an SQL CALL statement, or is ready to execute an SQL CALL.

This state can only be reached if an SQL CALL statement requested to use the

server. The START PSERVER operator command will not promote a stored

procedure server to this state as it does not establish the physical connection with

the database server. The STOP PSERVER command demotes the server to a status

of STOPPED and severs its connection if it is not currently executing an SQL CALL

request. If the server is in use, the STOP PSERVER command will demote it to a

status of STOPPING. The database server will complete the ″stopping″ sequence

once the SQL CALL request concludes, by severing the stored procedure server’s

connection, freeing its communication block and changing the status to STOPPED.

The IMPLICIT/NOIMPLICIT conditions will be dictated by the last STOP

PSERVER operator command issued against the server.

For more information on the STOP and START PSERVER commands see the DB2

Server for VSE & VM Operation manual. For more information on the SQL CALL

statement see the following manuals:

v DB2 Server for VSE & VM Application Programming

v DB2 Server for VSE & VM SQL Reference.

Altering or Dropping a Stored Procedure Server Definition

The following describes how to remove or alter a stored procedure server:

v Issue the STOP PSERVER command for that stored procedure server, specifying

the NOIMPLICIT option.

v Use the SQL DROP or ALTER PSERVER statement to delete or alter the row for

that server from SYSTEM.SYSPSERVERS. Note that the row can not be deleted

from SYSTEM.SYSPSERVERS if it is the only server in its group, and procedures

exist that must run in that group.

v Optionally take the steps necessary to remove the stored procedure virtual

machine (in VM) or redefine the partition (in VSE).

To remove a stored procedure server group, follow the steps above for each stored

procedure server in the group. It is possible to remove all the servers in a group

only if as there are no stored procedures defined that can use that server group. If

this is the case, it is not be possible to remove the last procedure server in the

group. Any stored procedures that run in the group must be moved to another

group (by using the ALTER PROCEDURE statement and specifying the SERVER

GROUP clause) or dropped before the last stored procedure server in the group

can be dropped.

Stored Procedures

Preparing a Stored Procedure to Run

Before a stored procedure can be invoked, it must be

v Preprocessed by the DB2 Server for VSE & VM precompiler to create a package

in the database.

v Compiled by the appropriate high level, LE compliant, language compiler, or

assembled.

v In VM, Linkedited and GENMODed to create a load module, which must be

placed on a disk that can be accessed by the stored procedure server. In VSE,

Chapter 11. Stored Procedures 217

linkedited to create a phase, which must be catalogued into a library identified

in the LIBDEF statement of the JCL that starts the stored procedure server.

v Defined to the SYSTEM.SYSROUTINES catalog table by the database

administrator, by issuing the SQL CREATE PROCEDURE statement.

v Started, by issuing the START PROC command

If a stored procedure load module or phase is modified, a STOP PROC command

must be issued, followed by a START PROC command, so that the database

manager will cause the stored procedure server to load the new copy of the stored

procedure load module or phase into memory.

After these steps are complete, the user that created the package associated with

the stored procedure is able to GRANT RUN authority on the package to other

users, allowing them to issue the SQL CALL statement to run the stored procedure.

Dropping or Altering a Stored Procedure

The following describes how to remove or alter a stored procedure:

v Issue the STOP PROC command for that procedure, specifying the REJECT

option.

v Use the SQL DROP PROCEDURE statement to delete the rows for the procedure

from SYSTEM.SYSROUTINES and SYSTEM.SYSPARMS, or the SQL ALTER

PROCEDURE statement to change the definition in SYSTEM.SYSROUTINES.

v Optionally delete the load module or phase

Note: There is a special case where issuing the STOP PROC ACTION REJECT

command will not suffice to allow altering or dropping a stored procedure

definition. If the procedure is still running in a stored procedure server, you will

not be allowed to alter or drop its definition, even if the status is STOP-REJ. The

execution of an SQL ALTER or DROP PROCEDURE command will return with

SQLCODE -15000. You can use the SHOW PSERVER and SHOW PROC operator

commands to monitor the procedure’s progress before you try to alter or drop its

definition.

Setting Up Schema Stored Procedures for CLI/ODBC/JDBC/
OLE DB Client Applications

If you plan to use VSE or VM databases as servers that can be accessed by CLI,

ODBC, JDBC, or OLE DB client applications using DB2 UDB Version 8 or later, you

need to prepare the schema stored procedures to run and load the corresponding

packages into the database. See 281.

Initialization Parameters Affecting Stored Procedure Execution

PTIMEOUT Parameter

This parameter serves two purposes:

1. The number of seconds before DB2 Server for VSE & VM ceases to wait for an

SQL CALL to be assigned to a stored procedure server. If the PTIMEOUT

interval expires, the SQL statement fails, and SQLCODE -913 is returned with

SQLSTATE 40001.

2. The number of seconds before DB2 Server for VSE & VM ceases to wait for the

stored procedure server connection request to be established. If the PTIMEOUT

interval expires, message ARI4168I is displayed and the connection attempt

terminates. DB2 Server for VSE & VM will then try to use the next available

stored procedure server, thus the SQL CALL request will not be terminated.

218 Database Administration

A value of 0 means that no PTIMEOUT is in effect. The default for PTIMEOUT is

180.

PROCMXAB Parameter

Specify the number of times a stored procedure is allowed to terminate abnormally,

after which a STOP PROC ACTION REJECT is performed against the procedure

and all subsequent SQL CALL statements are rejected. Note that a time-out that

occurs while waiting for a stored procedure server to be assigned for an SQL

CALL statement is not included in this count. The default, 0, means that the first

abend of a stored procedure causes SQL CALLs to that procedure to be rejected.

For production systems, you should accept the default.

Summary of Environment Interactions

Figure 59 shows the interactions between the database manager, the stored

procedure server, the stored procedure handler, and the stored procedure itself. The

figure does not show the definition of the stored procedure server or of the stored

procedure itself; it is assumed that this has already been done.

1. If the AUTOSTART value in the cached information from

SYSTEM.SYSPSERVERS is Y, the database manager starts the stored procedure

server during SQLSTART processing. If the AUTOSTART value is N, then the

operator issues the START PSERVER command to start the stored procedure

server. The START PSERVER command changes the status of the stored

procedure server to STARTING. In VM, it also allocates a pseudoagent, and in

VSE, it allocates a new XPCC block, both to be used for the connection between

the database manager and the stored procedure server. See ″The START

PSERVER Command″ in the DB2 Server for VSE & VM SQL Reference for more

details.

2. The user application at the application requester executes an EXEC SQL CALL

statement.

Database Machine/
Parition

DB2 Server
Application
Requester

EXEC SQL
CALL

procedure

Start PSERVER

CALL procedure

Return to requester

Stored Procedure Server

Procedure

Complete START
PSERVER
processing

ARISPRC

Receive CALL and
Invoke procedure

Procedure done,
return results to DB2
Server and clean up

LE/370
Run Time

Resource
Adapter

Stored Procedure Server

1

32

8

5

7 6

4

5

Figure 59. Stored Procedure Environment

Chapter 11. Stored Procedures 219

3. An SQL application can contain one or more SQL CALL statements. The SQL

CALL statement is stored in a package in the DB2 Server for VSE & VM

database using the DB2 Server for VSE & VM preprocessor. When the SQL

CALL statement is received, the database manager consults the cached

information from SYSTEM.SYSROUTINES and SYSTEM.SYSPARMS to:

v Determine the load module or phase associated with the stored procedure.

v Determine the programming language used to implement the stored

procedure.

v Determine the run time options for the procedure.

v Validate the parameter list supplied.

v Perform any necessary data conversion between the parameters provided by

the requester and the arguments required by the stored procedure.

v Determine the stored procedure server to use. See ″Stored Procedure Server

Allocation″ on page 213 for more information on how DB2 Server for VSE &

VM resolves this. If the stored procedure server that is found has a status of

STARTING, the database manager must complete the START PSERVER

processing before sending the SQL CALL statement to the stored procedure

server. In this case, the database manager establishes a connection with the

stored procedure server, invokes the stored procedure server, and sets the

status of the stored procedure server to STARTED. When the stored

procedure handler starts, it initializes the communications and run-time

environments and waits for instructions from the database manager

concerning which procedure to run.

The database manager hooks the agent used by the requester that issued the

SQL CALL to the selected stored procedure server. The database manager must

maintain the CONNECT information for the original requester as well, in order

to return the result of the SQL CALL statement.

The database manager saves its environment in preparation for receiving and

processing requests from the stored procedure. Finally it sends a request to the

stored procedure handler to invoke the stored procedure.

4. The stored procedure handler (ARISPRC) receives the request, and does the

following:

v Sets up the parameters the stored procedure expects, using the parameters

sent by the database manager.

v Loads the procedure that is to run, if it is not already loaded from a previous

execution.

v Initializes the resource adapter environment, to ensure that no residual data

is inherited from a prior execution.

v Passes control to the stored procedure.

5. The stored procedure server effectively becomes a local requester and uses the

connection that exists to communicate directly with the database manager. It

uses private flows to execute the stored procedure. The database manager

receives and processes the requests, and sends replies to the resource adapter.

This continues until the stored procedure finishes. Note that the resource

adapter is responsible for ensuring that disallowed statements are detected. For

more details on the disallowed statements see ″The SQL CALL″ in the DB2

Server for VSE & VM SQL Reference.

6. When the stored procedure terminates, control returns to ARISPRC.

7. ARISPRC packages any output parameters and sends them to the database

manager. Any cursors that were declared with the WITH RETURN option, and

are left open when the stored procedure terminates, define result sets that can

be fetched by the requester that issued the SQL CALL. Result sets are returned

by the database server in the order the cursors were opened in the stored

220 Database Administration

procedure. After sending the results to the database manager, ARISPRC cleans

up the resource adapter environment and waits for the next request to invoke a

stored procedure.

8. When the database manager receives the stored procedure results from

ARISPRC, it hooks the agent structure back to the original requester, and passes

the stored procedure results back, using DRDA flows if necessary.

Chapter 11. Stored Procedures 221

222 Database Administration

Appendix A. Estimating Your Dbspace Requirements

This appendix describes procedures and calculations you can follow to determine

the amount of storage to allocate to your dbspaces. You must determine:

1. The required size of each permanent dbspace, described in “Estimating

Dbspace Size”

2. The storage required to hold a working set of the data, described “Estimating

Internal Dbspace Size and DASD Needs for Sort Operations” on page 238.

Estimating Dbspace Size

You need to estimate data storage requirements to establish dbspace sizes. The

required size of a dbspace depends on:

v The total number of tables and indexes to be stored in the dbspace

v The size of tables

v The size of indexes

v The amount of free space

v The allowance made for unused pages.

Using the above estimated values, you can calculate the required size of the

dbspace by determining and adding the number of pages required for:

v The sum of the storage requirements of each table

Refer to “Estimating Storage for a Table” on page 224. For each table the storage

requirement is further described in:

– “Estimating the Number of Header Pages” on page 226

– “Estimating the Number of Data Pages” on page 227

– “Estimating the Number of Index Pages” on page 235.

v An allowance for unused pages and free space.

Setting allowances and using defaults rather than estimating the number of

header and index pages is discussed in “General Guidelines” on page 223.

The following formula shows how these values are used to calculate the number of

dbspace pages needed for a set of tables:

 General Guidelines

For most dbspaces, it is sufficient to use the default value of 8 for the number of

HEADER PAGES. You should also use the default of 33 percent for PCTINDEX,

rather than estimate the number of index pages needed, unless you anticipate

doing extensive indexing. This default reserves approximately one third of the total

space for indexes. If you assume both defaults, 8 HEADER PAGES and 33 percent

for PCINDEX, the above formula becomes:

 DBSPACE PAGES = 8 + 1.50 x (DATA PAGES + ALLOWANCE)

The DBSPACE PAGES number derived must be rounded up to a multiple of 128.

That is,

 REQUIRED DBSPACE PAGES = TRUNC [(DBSPACE PAGES + 127) / 128] x 128

 DBSPACE PAGES = HEADER PAGES + DATA PAGES + INDEX PAGES + ALLOWANCE

© Copyright IBM Corp. 1987, 2007 223

The TRUNC function, for truncate operation, indicated here means to compute the

value between the brackets [] and then use only the integer part of that value. For

example, if the value calculated is 27.8, use 27.

You should allow from 50 to 200 percent for ALLOWANCE, depending on the

nature of the tables to be stored. If the number of rows are relatively stable and

you do not anticipate adding columns to tables (or even adding tables), adding an

ALLOWANCE of 50 percent is safe. To allow all forms of growth (inserting rows,

adding columns, and adding tables), you should consider an ALLOWANCE of 200

percent (2 x data pages).

Notes:

1. The ALLOWANCE in the above formulas correspond to reserved unused

pages. As such, they will not use real space in the storage pool. Dbspace

allocations should be substantially greater than what appears to be necessary

by the above algorithm. Because dbspace pages do not occupy storage pool

slots until they are loaded, there is little to be gained in making a table a tight

fit in a dbspace.

2. When a dbspace can no longer contain a table, you can change the parameters

of the dbspace. See “Altering the Design of a Dbspace” on page 73 for more

information.

Estimating Storage for a Table

To estimate the amount of storage required for a table, consider:

v Amount (or average amount) of storage required for a row of the table

v Storage for long-field columns (average for each column)

v Number of rows the table is likely to have.

Note: For tables with variable length rows, data page requirements will depend

upon the placement of the rows of different length on the pages. Some

orderings will require more data pages than others. When estimating

storage for these tables, refer to “Estimating Data Pages for a Table with

Variable Length Rows” on page 232.

There are no guidelines for estimating the number of rows your table will have.

However, for the purpose of determining the dbspace requirements, it is wise to

look ahead to potential growth of the table in the foreseeable future. Consider the

estimated size of the table 2 or 3 years from now, rather than its current size.

The length of a stored row can be estimated using Table 28. To complete the

calculations of Table 28, you must know the type and length of all columns in your

tables. If long-field columns are involved, you should first calculate the average

length of long-field columns using Table 29 on page 226.

 Table 28. Form for Calculating the Average Row Length of a Stored Row

COLUMN OVERHEAD

 The number of columns supporting nulls

 The number of VARCHAR(n) columns with n≤254

 The number of VARGRAPHIC(n) columns with n≤127

 The number (N) of LONG FIELDS1 N x 6

 SUM OF COLUMN OVERHEAD FACTORS

224 Database Administration

Table 28. Form for Calculating the Average Row Length of a Stored Row (continued)

 COLUMN DATA STORAGE FACTORS2

 INTEGER: 4

 SMALLINT: 2

 DECIMAL: TRUNC [PRECISION/2 + 1]

 FLOAT: 8

3

 FLOAT: 4

3

 CHAR(n): n

 GRAPHIC(n): n x 2

4

 DATE: 4

 TIME: 3

 TIMESTAMP: 10

 VARCHAR(n) n≤254: average length

 VARGRAPHIC(n) n≤127: average length x 2

4

 LONG FIELDS : calculated separately (See Table 29 on page 226.)

 SUM OF COLUMN DATA STORAGE FACTORS

ROW OVERHEAD FACTOR 8

AVERAGE LENGTH OF EACH STORED ROW (AVGROWLEN) ___

Notes:

1. The following data types are long fields: VARCHAR(n) with n>254, VARGRAPHIC(n) with n>127, LONG

VARCHAR, and LONG VARGRAPHIC.

2. The factors indicated in the COLUMN DATA STORAGE FACTORS area are to be used for each column of the

type specified. The sum of those factors goes on the line at the right. For example, if a table consists of 4

columns of DECIMAL data, calculate the factor for each DECIMAL column, add up those factors, and enter the

sum on the line opposite DECIMAL.

3. The value 8 for FLOAT is for double-precision floating point columns (FLOAT(n) where 22≤n≤53, or n is not

specified). The value 4 for FLOAT is for single-precision floating point columns (FLOAT(n) where 1≤n≤21).

4. Each graphic character occupies 2 bytes of storage. When you determine the average length of a GRAPHIC or

VARGRAPHIC column in characters, multiply that number by 2 to get the number of bytes.

Column Overhead refers to descriptive information stored with an instance of the

column. The overhead depends upon the characteristics of the column, as follows:

v If it is allowed to be NULL, each value has a 1-byte prefix for indication of a

null entry.

v If it is a varying length character string (that is VARCHAR(n) with n≤254), each

value has a 1-byte length indicator.

v If it is a varying length graphic string (VARGRAPHIC(n) with n≤127), each value

has a 1-byte length indicator.

Pointers to the long-field values are stored in a special internal format that

involves 6 bytes of control information in the stored row (2-byte length value and

4-byte tuple identifier (TID)).

Column Data Storage refers to the storage space occupied by the actual column

values. The numbers shown are number of bytes.

v For DECIMAL data, the data is stored in a packed decimal format. Each digit

(precision) occupies half a byte and the sign occupies half a byte. As the data is

stored in whole bytes, you must round up to the next whole byte. If the number

of digits is n, the field occupies TRUNC [(n + 2) / 2] bytes.

v For varying-length data columns, estimate the average length. If there is a wide

variation in the individual lengths, estimate a higher number for the average. If

Appendix A. Estimating Your Dbspace Requirements 225

the rows are long, the DB2 database manager may move to new, empty, pages

sooner in the loading process than otherwise is necessary.

Row Overhead is a fixed overhead for each row in the table. It consists of a 6-byte

row header and a 2-byte offset into the page, for a total of 8 bytes.

 Table 29. Formula for Calculating the Average Length of a Long-Field Column

LONG-FIELD VALUE OVERHEAD = (TRUNC [(average length + 3999) / 4000] x 20)

LONG-FIELD VALUE STORAGE = (TRUNC [(average length + 249) / 250] x 250)

AVERAGE LENGTH OF EACH STORED LONG FIELD (AVGCOLLEN) =

 LONG-FIELD VALUE OVERHEAD + LONG-FIELD VALUE STORAGE

Note: The above formula should be used to calculate the average length of a stored long field. The calculation

needs to be done for each column of a table that is a long field. The following data types are long fields:

VARCHAR(n) with n>254, VARGRAPHIC(n) with n>127, LONG VARCHAR, and LONG VARGRAPHIC.

Graphic characters occupy 2 bytes of storage. When you determine the average length of a GRAPHIC or

VARGRAPHIC column in characters, multiply that number by 2 to get the number of bytes.

LONG-FIELD Value Overhead

The value of a LONG FIELD is stored separately from the rest of the stored row.

The value is stored as a chain of entries in an internal table. Each entry of the

internal table is composed of 16 columns of 250 bytes each (some potentially null).

Each record has 20 bytes of overhead (a 2-byte offset, a 6-byte row header, and a

12-byte unary link pointer chain). Thus, the overhead for a LONG-FIELD value

depends on the actual length of the data and includes 20 bytes for each 4000-byte

(16 columns of 250 bytes) entry required to store the value.

Long-Field Value Storage

Long-field values are stored in increments of 250 bytes. Each increment is one

fixed-length 250-byte column value in the internal table. For example a 10-byte

long-field value occupies 250 bytes of storage, plus the long-field-value overhead

of 20 bytes. A 248-byte long-field value occupies 250 bytes, a 260-byte long-field

value occupies 500 bytes storage, and so on.

Estimating the Number of Header Pages

The number of header pages for a dbspace can be established on the SQL

ACQUIRE DBSPACE statement. In general, you should use the default value of 8

for this option.

A more precise estimate of the number of header pages follows. It is more complex

than the general guidelines above, but will assist you in your calculations if you

require a better estimation.

The header pages contain information of the objects defined in a dbspace. Each

object defined in the dbspace, such as a table or an index, is recorded in the header

pages via a control row. For more information on the types of objects that can be

defined in a dbspace and the types of control rows that are inserted in the header

pages, see the DB2 Server for VSE & VM Diagnosis Guide and Reference manual.

To estimate the number of header pages required:

1. Calculate the number of bytes required by the objects defined in the dbspace as

follows:

v Dbspace control information occupies 24 bytes.

226 Database Administration

v For each table created in the dbspace, add 32 + 2c bytes where c equals the

number of columns in the table.

v For each index created on a table in the dbspace, add 20 + 2d bytes where d

equals the number of indexed columns.

v For each table in the dbspace containing one or more long-field columns

(LONG VARCHAR, LONG VARGRAPHIC, VARCHAR(n) where n > 254, or

VARGRAPHIC(n) where n > 127), add 84 bytes.

2. Divide the total number of bytes required by 4080.

3. Round the result to the next highest integer.

4. The result is the number of header pages required for the dbspace.

For example, assume you are planning to acquire a dbspace that will contain 3

tables. Table A has 10 columns, 2 indexes each defined on a single column, and no

long-field columns. Table B has 14 columns; 1 index containing 3 columns, and no

long-field columns. Table C contains 3 columns, 1 index containing 1 column, and

2 long-field columns. The estimated number of header pages for this dbspace is as

follows:

DBSPACE: 24

Table A: 32 + (2 x 10) ← table

 20 + (2 x 1) ← index 1

 20 + (2 x 1) ← index 2

Table B: 32 + (2 x 14) ← table

 20 + (2 x 3) ← index

Table C: 32 + (2 x 3) ← table

 20 + (2 x 1) ← index

 84 ← long-field columns

 =============

Total: 350 bytes

Divide by 4080 1 header page required.

Estimating the Number of Data Pages

The number of data pages required to store a table depends on whether the rows

in the table are of fixed or variable length. The next section describes a method for

calculating the pages required for storing tables with fixed length rows. For tables

with variable length rows (rows with VARCHAR or VARGRAPHIC data), refer to

“Estimating Data Pages for a Table with Variable Length Rows” on page 232.

Note: Long-field columns do not produce variable length rows because the

long-field values are stored separately.

Pages Required for Storing Tables with Fixed Length Rows

The number of data pages required to hold the tables can be estimated after

determining the average row lengths (AVGROWLEN) for each table and the

effective page size (EPS) based on PCTFREE setting at the time the pages are to be

loaded.

The number of data pages required is estimated as follows:

1. Determine the average row length (AVGROWLEN) as in Table 28 on page 224.

2. Determine the free space requirement (PCTFREE). Use a whole number for

PCTFREE. That is, if the percent free is 10, use 10 for PCTFREE, not 0.10.

3. Calculate:

Appendix A. Estimating Your Dbspace Requirements 227

40 x PCTFREE + AVGROWLEN

4. Use the number calculated in step 3 to find the corresponding EPS in the

following table:

 Table 30. Effective Page Size Based on Free Space Requirement

40 x PCTFREE + AVGROWLEN EPS (Effective Page Size)

8–17 4065 + AVGROWLEN

18–32 4050 + AVGROWLEN

33–52 4030 + AVGROWLEN

53–102 3980 + AVGROWLEN

103–252 3830 + AVGROWLEN

253–502 3580 + AVGROWLEN

503–1002 3080 + AVGROWLEN

1003–2002 2080 + AVGROWLEN

2003–4020 62 + AVGROWLEN

4021–4080 2 + AVGROWLEN

4081– See note below.

Note: For the case where (40 x PCTFREE + AVGROWLEN) >= 4081:

 If AVGROWLEN <= 4080, number of rows per page = 1 and EPS = AVGROWLEN.

 If AVGROWLEN > 4080, row size exceeds DB2 limits. Reduce your row size and

recalculate.

5. Calculate the number of rows per page:

 Rows per Page = MINIMUM (256, TRUNC [EPS/AVGROWLEN])

6. Calculate the number of data pages required as follows:

If the average long-field length is <= 4020, then:

 REQUIRED Number of Rows Number of Rows x Number of Long Fields

 DATA = -------------- + --------------------------------------

 PAGES Rows per Page 4020 / Average Long-Field Length

Note: When evaluating the expression, truncate the denominator 4020/average

long-field length to the nearest integer and round up the results of both

division expressions to the nearest integer before adding them.

If the average long-field length is >4020:

 REQUIRED Number of Rows

 DATA = -------------- + Number of Rows x Number of Long Fields

 PAGES Rows per Page

 Average Long-Field Length

 x -------------------------

 4020

Note: Round the results of both division terms up to the nearest integer before

evaluating the expression.

If you are loading tables separately, calculate the number of pages required for

each table separately. If you are loading the tables in an interleaved fashion, use

the longest AVGROWLEN of all the tables in determining the Effective Page Size.

Notes:

1. Storage for long fields (LONG VARCHAR, LONG VARGRAPHIC,

VARCHAR(n) with n>254, VARGRAPHIC(n) with n>127) columns must be

228 Database Administration

calculated apart from the rest of the row. AVGROWLEN will include six bytes

for each long-field value. However, storage for the actual long field will be

calculated separately.

2. If you have already established a database and are defining a new dbspace,

you can get an estimate of the data pages required by modeling the dbspace.

That is, create the tables in a test dbspace and load a sample of the data. Then

you can issue queries against SYSTEM.SYSDBSPACES and

SYSTEM.SYSCATALOG to find out how many pages were required for the data

sample. The data for the real tables will be proportionately higher. When

modeling data, avoid using nulls in the sample. Nulls tend to produce low

results.

Examples of Estimating the Number of Data Pages

Example 1: The example work sheet shown in Table 31 is for a table that has just

one CHAR(100) column supporting nulls.

 Table 31. Example 1 — Calculating the Average Row Length

COLUMN OVERHEAD

 The number of columns supporting nulls

 The number of VARCHAR(n) columns with n≤254

 The number of VARGRAPHIC(n) columns with n≤127

 The number (N) of Long Fields

 v N x 6

 SUM OF COLUMN OVERHEAD FACTORS

1

0

0

0

1

COLUMN DATA STORAGE FACTORS

 v INTEGER: 4

 v SMALLINT: 2

 v DECIMAL: TRUNC [PRECISION/2 + 1]

 v FLOAT: 8 (for double-precision)

 v FLOAT: 4 (for single-precision)

 v CHAR(n): n

 v GRAPHIC(n): n x 2

 v DATE: 4

 v TIME: 3

 v TIMESTAMP: 10

 v VARCHAR(n): average length

 v VARGRAPHIC(n): average length x 2

 v Long Fields: calculated separately (See

Table 29.)

 SUM OF COLUMN DATA STORAGE FACTORS

0

0

0

0

0

100

0

0

0

10

0

0

0

100

ROW OVERHEAD FACTOR 8

AVERAGE LENGTH OF EACH STORED ROW 109

The number of DATA PAGES required to load 25000 rows into this table in a

dbspace defined to have 10 % free space is:

1. Determine the Average Row Length.

 AVGROWLEN = 109

2. Determine the Free Space Requirement.

 PCTFREE = 10

3. Calculate 40 x PCTFREE + AVGROWLEN.

 40 x 10 + 109 = 509

Appendix A. Estimating Your Dbspace Requirements 229

4. From Table 30 on page 228, determine the Effective Page Size (EPS), using the

number calculated in step 3 to find the corresponding EPS.

 503 - 1002 3080 + AVGROWLEN

 EPS = 3080 + 109 = 3189

5. Calculate the number of rows per page.

 Rows per Page = MINIMUM (256, TRUNC [3189/109]) = 29

6. The number of data pages required is:

 Number of Rows Number of Rows x Number of Long Fields

 -------------- + -------------------------------------- = 863

 Rows per Page 4020 / Average Long-Field Length

Example 2: The example work sheet shown in Table 32 is for a table that has:

v 2 DECIMAL(6,0) columns supporting nulls (4 bytes each)

v 1 DECIMAL(9,0) column defined as NOT NULL (5 bytes)

v 1 INTEGER column defined as NOT NULL (4 bytes)

v 1 SMALLINT column supporting nulls (2 bytes)

v 1 CHAR(3) column supporting nulls (3 bytes)

v 1 CHAR(4) column supporting nulls (4 bytes)

v 1 GRAPHIC(10) column defined as NOT NULL (20 bytes)

v 1 DATE column supporting nulls (4 bytes)

v 1 TIME column defined as NOT NULL (3 bytes)

v 2 VARCHAR(10) columns supporting nulls (average 8 bytes each)

v 1 VARCHAR(15) column supporting nulls (average 12 bytes)

v 1 VARCHAR(250) column supporting nulls (average 32 bytes)

v 1 VARGRAPHIC(15) column supporting nulls (average 12 characters or 24 bytes)

 Table 32. Example 2 — Calculating the Average Row Length of a Stored Row

COLUMN OVERHEAD

 The number of columns supporting nulls

 The number of VARCHAR(n) columns with n≤254

 The number of VARGRAPHIC(n) columns with n≤127

 The number (N) of Long Fields

 v N x 6

 SUM OF COLUMN OVERHEAD FACTORS

11

4

1

0

16

COLUMN DATA STORAGE FACTORS

 v INTEGER: 4

 v SMALLINT: 2

 v DECIMAL: TRUNC [PRECISION/2 + 1]

 v FLOAT: 8 (for double-precision)

 v FLOAT: 4 (for single-precision)

 v CHAR(n): n

 v GRAPHIC(n): n x 2

 v DATE: 4

 v TIME: 3

 v TIMESTAMP: 10

 v VARCHAR(n): average length

 v VARGRAPHIC(n): average length x 2

 v Long Fields: calculated separately

 SUM OF COLUMN DATA STORAGE FACTORS

4

2

13

0

0

7

20

4

3

0

60

24

137

ROW OVERHEAD FACTOR 8

AVERAGE LENGTH OF EACH STORED ROW 161

230 Database Administration

The number of DATA PAGES required to load 600 rows into this table in a dbspace

defined to have 15 percent free space is:

1. Determine the Average Row Length.

 AVGROWLEN = 161

2. Determine the Free Space Requirement.

 PCTFREE = 15

3. Calculate 40 x PCTFREE + AVGROWLEN.

 40 x 15 + 161 = 761

4. From Table 30 on page 228, determine the Effective Page Size (EPS), using the

number calculated in step 3 to find the corresponding EPS.

 503 - 1002 3080 + AVGROWLEN

 EPS = 3080 + 161 = 3241

5. Calculate the number of rows per page.

 Rows per Page = MINIMUM (256, TRUNC [3241/161]) = 20

6. The number of data pages required is:

 Number of Rows Number of Rows x Number of Long Fields

 -------------- + -------------------------------------- = 30

 Rows per Page 4020 / Average Long-Field Length

Usually, you store a table this small in a dbspace with other tables. If a dbspace

has more than one table, the total number of DATA PAGES required for the

dbspace is the sum of the data page requirements of all the tables in the dbspace.

Example 3: The example work sheets shown in Table 33 and Table 34 on page 232

are for a table that has:

v 2 DECIMAL(6,0) columns supporting nulls (4 bytes each)

v 1 DECIMAL(9,0) column defined as NOT NULL (5 bytes)

v 1 INTEGER column defined as NOT NULL (4 bytes)

v 1 SMALLINT column supporting nulls (2 bytes)

v 1 CHAR(3) column supporting nulls (3 bytes)

v 1 CHAR(4) column supporting nulls (4 bytes)

v 1 GRAPHIC(10) column defined as NOT NULL (20 bytes)

v 2 DATE columns supporting nulls (4 bytes each)

v 1 TIMESTAMP column defined as NOT NULL (10 bytes)

v 2 VARCHAR(10) columns supporting nulls (average 8 bytes each)

v 1 VARCHAR(15) column supporting nulls (average 12 bytes)

v 1 VARGRAPHIC(15) column supporting nulls (average 12 characters or 24 bytes)

v 1 LONG VARCHAR column supporting nulls (average 32 bytes)

 Table 33. Example 3 — Calculating the Average Row Length of a Stored Row

COLUMN OVERHEAD

 The number of columns supporting nulls

 The number of VARCHAR(n) columns with n≤254

 The number of VARGRAPHIC(n) columns with n≤127

 The number (N) of Long Fields

 v N x 6

 SUM OF COLUMN OVERHEAD FACTORS

12

3

1

6

22

Appendix A. Estimating Your Dbspace Requirements 231

Table 33. Example 3 — Calculating the Average Row Length of a Stored Row (continued)

COLUMN DATA STORAGE FACTORS

 v INTEGER: 4

 v SMALLINT: 2

 v DECIMAL: TRUNC [PRECISION/2 + 1]

 v FLOAT: 8 (for double-precision)

 v FLOAT: 4 (for single-precision)

 v CHAR(n): n

 v GRAPHIC(n): n x 2

 v DATE: 4

 v TIME: 3

 v TIMESTAMP: 10

 v VARCHAR(n): average length

 v VARGRAPHIC(n): average length x 2

 v Long Fields: calculated separately (See

Table 34.)

 SUM OF COLUMN DATA STORAGE FACTORS

4

2

13

0

0

7

20

8

0

10

28

24

116

ROW OVERHEAD FACTOR 8

AVERAGE LENGTH OF EACH STORED ROW 146

 Table 34. Example 3 — Calculating the Average LONG VARCHAR Stored Length

 LONG VARCHAR VALUE OVERHEAD

 The number(N) of LONG VARCHAR columns

 • N x (TRUNC [(average length + 3999) / 4000] x 20)

20

 LONG VARCHAR VALUE STORAGE

 TRUNC [(average length + 249) / 250] x 250

250

 AVERAGE LENGTH OF EACH STORED LONG VARCHAR 270

The number of DATA PAGES required to load 25000 rows into this table in a

dbspace defined to have 10 percent free space is:

1. Determine the Average Row Length.

 AVGROWLEN = 146

2. Determine the Free Space Requirement.

 PCTFREE = 10

3. Calculate 40 x PCTFREE + AVGROWLEN.

 40 x 10 + 146 = 546

4. From Table 30 on page 228, determine the Effective Page Size (EPS), using the

number calculated in step 3 to find the corresponding EPS.

 503 - 1002 3080 + AVGROWLEN

 EPS = 3080 + 146 = 3226

5. Calculate the number of rows per page.

 Rows per Page = MINIMUM (256, TRUNC [3226/146]) = 22

6. The number of data pages required is:

 Number of Rows Number of Rows x Number of Long Fields

 -------------- + -------------------------------------- = 2923

 Rows per Page 4020 / Average Long-Field Length

Estimating Data Pages for a Table with Variable Length Rows

The following methods provide estimates for tables containing variable length data

with data types VARCHAR and VARGRAPHIC. Tables with columns containing

variable length data types result in rows of differing lengths that can be distributed

232 Database Administration

throughout a dbspace in different ways depending upon the order in which data is

loaded. The distribution of the variable length rows in the dbspace can

significantly affect the number of data pages occupied by a table.

There are three different methods you can use to more accurately estimate the data

page requirements for tables with variable length rows:

Modeling An approach using a test dbspace containing a test table that

contains a representative sample of the data. The accuracy of this

estimates depends solely on the representativeness of the test table.

Worst case An approach that provides an estimate of the number of data

pages that will accommodate the table regardless of the order of

the rows. This approach will overestimate the number of pages in

many cases, but will always ensure that you have allocated enough

pages.

Splitting An approach requiring an approximation of the number of rows

that fall within a range of row lengths. This may produce a more

realistic number of pages than the worst case method but does not

ensure that the table will fit.

Estimating Data Pages with Modeling: Establish a database before you begin

modeling your data page requirements. Then, do the following:

1. Acquire a test dbspace.

2. Create the table in the dbspace and load a sampling of the data into it.

3. Ensure that the statistics for the table are up-to-date. If the statistics are not

current, this can be done by performing a load (with statistics set on), or by

performing an explicit UPDATE STATISTICS on the table.

4. Get the NACTIVE value for this dbspace from the SYSDBSPACES catalog table.

Since there is only one table (and its companion table, if there is one or more

long fields) in the dbspace, then the NACTIVE value indicates the number of

data pages this table is currently using.

5. Multiply the NACTIVE value by a factor representing the relationship between

the actual table size and this test table size. The result is an estimate of the

number of data pages the actual table requires.

Consider the following when modeling your data page requirements in this way:

v Design a test table large enough to cover at least several data pages.

v Before creating the test table in the test dbspace, drop the dbspace and acquire it

again. This ensures that previous use of the dbspace does not affect your

modeling results.

v Try to arrange the various lengths of the rows in a sequence as close as possible

to what you expect from your real table.

Estimating Using the Worst Case Method: This method is the safest method to

use; it will ensure that you have enough pages regardless of the distribution of the

rows in the table. However, it may overestimate your requirements.

To use this method you need to know the:

v Length of the longest row in the table

v Average length of a row in the table

v Number of rows in the table.

Then do the following:

Appendix A. Estimating Your Dbspace Requirements 233

1. Calculate the maximum row length (MAXROWLEN) by using the maximum

length of the VARCHAR and VARGRAPHIC columns instead of the average

length as shown in Table 28 on page 224.

2. Substituting MAXROWLEN for AVGROWLEN, perform steps 1 to 4 of the

formula for estimating the number of pages as shown in “Estimating the

Number of Data Pages” on page 227. This produces the Effective Page Size for

the MAXROWLEN (denoted EPSmax).

3. Estimate the average lengths of columns in your table and calculate the average

row length (AVGROWLEN) as described in Table 28 on page 224.

4. Calculate the worst case estimate using the following formula:

 AVGROWLEN x Number of Rows

 Worst Case = MINIMUM (Number of rows, --------------------------)

 EPSmax - MAXROWLEN + 1

Example using the Worst Case Method:

Consider a 500,000 row table being loaded into a dbspace with PCTFREE=10.

Assume the overall AVGROWLEN value is 50 bytes. Assume the calculated

MAXROWLEN value is 110 bytes for this table.

Calculate the EPSmax value as follows:

 40 x PCTFREE + MAXROWLEN = 40 x 10 + 110 = 510

The corresponding EPSmax is 3190.

Substitute the values in the worst case formula:

 50 x 500000

 MINIMUM (500000, --------------) = MINIMUM (500000, 8114.2)

 3190 - 110 + 1

To store this table you need at most 8115 data pages.

Estimating Using the Splitting Method: This method assumes that you can

approximate the frequency of different ROWLENGTHs in the table to be stored.

This method is as follows:

1. Split the set of all rows into several ROWLENGTH groups and calculate page

requirements for each group as if it were a separate table using the formula

described in “Estimating the Number of Data Pages” on page 227.

2. Add the page requirements for the groups to estimate the total table page

requirements.

Try several different groupings of rows, making sure that each group is large

enough to cover several data pages. If groups of rows do not cover several data

pages, the estimate could be too high.

Different groupings will give different results. Select the highest overall page

estimate to ensure that your estimate includes a contingency.

Example Using the Splitting Method:

Consider a 2000 row table to be loaded into a dbspace with PCTFREE=0. Assume

the overall AVGROWLEN value to be 1000 bytes. Assume, also, that 25 percent of

the rows in the table are longer than 800 bytes, with an AVGROWLEN value =

2500 bytes. The remaining 75 percent of the rows are less than 800 bytes long, with

an AVGROWLEN value = 500 bytes.

234 Database Administration

We consider two groups of rows for this calculation:

Group 1

with 1500 rows and AVGROWLEN = 500

Group 2

with 500 rows and AVGROWLEN = 2500.

Perform the calculations described in “Estimating the Number of Data Pages” on

page 227 treating each group as a table.

 For Group 1 with AVGROWLEN = 500 and PCTFREE = 0, the EPS is 4080.

Therefore we can fit 8 rows per page (4080/500 = 8.16) and we need 188 pages

(1500/8 = 187.5) to store the 1500 rows.

 For Group 2 with AVGROWLEN = 2500 and PCTFREE = 0, the EPS is 2562.

Therefore we can fit 1 row per page (2562/2500 = 1.02) and we need 500 pages

(500/1 = 500) to store the 500 rows.

Adding these two page requirements together gives an overall estimate of 688 data

pages (188 + 500) to store the whole 2000 row table.

Compare this to the result if you used the formula for fixed length rows. Using

only the formula described in “Pages Required for Storing Tables with Fixed

Length Rows” on page 227 and the overall AVGROWLEN of 1000, the EPS is 4080.

Therefore we can fit 4 rows per page (4080/1000 = 4.08) and we need 500 pages

(2000/4 = 500) to store all 2000 rows. This is considerably less than the 688 pages

estimated. The real number of data pages required is likely between 500 and 688

depending on the order in which the rows are being stored in the dbspace.

Estimating the Number of Index Pages

Generally speaking, you should take the default allocation for index pages in the

dbspace (PCTINDEX=33). This is means that the number of index pages is

approximately DATA PAGES / 2. This leaves you considerable freedom to vary the

indexing you do on the tables in the dbspace. Another way of looking at this is

that if the number of index pages is more than half the number of data pages, you

may be trying to support too many indexes on the tables in the dbspace. As a

result, you may experience performance problems on INSERT, UPDATE, and

DELETE operations.

However, if the data in the dbspace is largely used for read only operations, you

may want to create a lot of different indexes. If this is the case, you may need

more index pages than is provided for by the default PCTINDEX value of 33

percent. For such read only (or read mostly) cases, you may want to do the

detailed analysis of index page requirements to determine the appropriate

PCTINDEX value based on the size of indexes you plan on supporting.

If the data in the dbspace is to have very few indexes with rather small key

lengths, then you may want to do the detailed analysis of index page requirements

to determine an appropriate PCTINDEX value that is smaller than the default.

The formula for calculating the appropriate PCTINDEX value is:

 TOTAL INDEX PAGES

 PCTINDEX = ---

 HEADER PAGES + DATA PAGES + TOTAL INDEX PAGES

In this formula, TOTAL INDEX PAGES is the sum of the number of index pages

required for each planned index.

Appendix A. Estimating Your Dbspace Requirements 235

The next section provides the guidelines for estimating the number of index pages

required for an index.

Estimating the Size of an Index

Index storage is allocated in pages. Each page contains data for only one index.

The minimum storage required for any index is one page.

To estimate the amount of storage required for an index, you must consider the

type of information in the index key and the amount of information in the table

being indexed. The following table information must be considered for calculating

the size of an index:

v The number of rows in the table

v The length of a key value

v Whether the key is variable or fixed in length

v The number of distinct keys in the table

For indexes that are not unique, this result may be less than the total number of

rows in the table. Each entry in a leaf page of the index consists of a key value

and one or more row pointers, called Tuple Identifiers or TIDs, for the row

having this key value.

For unique indexes, each entry contains just one TID.

These entries are called clusters.

v The amount of free space (PCTFREE) defined for the index. The PCTFREE value

is the percentage of free space to be left on index pages during index creation.

For fixed length unique key indexes, the following calculations for index size will

be accurate. For variable length or non-unique indexes, the calculations may either

overestimate or underestimate the size of an index.

Generally, the size may be overestimated if:

v A large variable length column is the last column in the index or

v There are a large number of duplicates in the index.

The size may be underestimated if the varying length keys are not evenly

distributed. For example, if the ordering of the keys in the index is from shortest to

longest, then the lengths are not evenly distributed and space will be

underestimated.

To calculate the size of the index perform the following steps:

 1. Calculate the Effective Index Page Size

The Effective Index Page Size (EIPS) is similar to the effective page size

calculated for data pages. The formula for index pages differs for fixed length

and variable length index keys.

For fixed length index keys:

 EIPSmax = 4056 - (41 x PCTFREE)

For variable length index keys:

a. Calculate the maximum encoded length of each variable length column in

the index (in bytes).

For a short VARCHAR column, if it is the last column in the key,

 VARCOL(n) = maximum length of column

Otherwise,

 VARCOL(n) = (INTEGER((max length of column - 1) / 4) + 1) * 5

For a short VARGRAPHIC column, if it is the last column in the key,

236 Database Administration

VARCOL(n) = 2*(maximum length of column)

Otherwise,

 VARCOL(n) = (INTEGER((2*max length of column-1)/4)+1) * 5

b. Calculate the maximum length of a key

 KEYLENmax = the sum of the lengths of fixed columns (in bytes)

 + VARCOL(1) + ... + VARCOL(n)

 + 1 for the length of the key

 + 1 for each column that allows nulls

c. Use this KEYLENmax value to calculate the maximum length of a cluster

with 1 TID.

 CLUSTERmax = KEYLENmax

 + 1 for number of TIDs

 + 4 for the TID

d. Use this CLUSTERmax value to calculate the minimum effective index

page size for leaf pages.

 EIPSminleaf = 4056 - (41 x PCTFREE) - CLUSTERmax + 1

e. Use the KEYLENmax value again to calculate the maximum length of a

nonleaf pair.

 PAIRLENmax = KEYLENmax

 + 3 for the page number

 + 4 (if index is not unique)

f. Use this PAIRLENmax value to calculate the minimum effective index page

size for nonleaf pages.

 EIPSmin-nonleaf = 4056 - (41 x PCTFREE) - PAIRLENmax + 1

 2. Calculate the average number of rows per key value.

The average number of rows identified in one cluster is:

 NUMBER_KEYS = Number of distinct keys

 ROWSPERCLUSTER = Number of rows in table

 NUMBER_KEYS

If ROWSPERCLUSTER is greater than 255, then the key must be duplicated.

In this case, the following calculations must be done:

 NUMBER_KEYS = (TRUNC [1 + (ROWSPERCLUSTER/255)]) x NUMBER_KEYS

 Number of rows in table

 ROWSPERCLUSTER = -----------------------

 NUMBER_KEYS

 3. Calculate the average length of a key value.

a. Calculate the average encoded length of each variable length column in

the index, if any, in bytes.

 VARCOLavg(n) = (1.25 x average length of column) + 3

These numbers must be rounded up to integer values.

Once again, when determining the length of graphic data, allow 2 bytes

for each character.

b. Calculate the average length of a key in the index.

KEYLEN = the sum of the lengths of fixed columns (in bytes)

 + VARCOLavg(1) + ... + VARCOLavg(n)

 + 1 if there are any variable-length columns

 + 1 for each column that allows nulls

 4. Calculate the cluster size for the index, using the value of ROWPERCLUSTER

from step 2.

 CLUSTERSIZE = 1 + KEYLEN + (4 x ROWSPERCLUSTER)

Appendix A. Estimating Your Dbspace Requirements 237

5. Calculate the number of keys that can be put on a leaf page, using the value

of CLUSTERSIZE from step 4 on page 237.

 #KEYSleaf = TRUNC [EIPS/CLUSTERSIZE]

where EIPS is EIPSmax for an index with fixed length keys or EIPSminleaf for

an index with variable length keys.

 6. Calculate the number of leaf pages, using the the values of NUMBER_KEYS

from step 2 on page 237 and #KEYSleaf from step 5:

 LEAF PAGES = TRUNC [1 + (NUMBER_KEYS/#KEYSleaf)]

 7. Calculate the length of a nonleaf page entry with the value of KEYLEN from

step 3b on page 237.

 PAIRLEN = KEYLEN + 3

 + 4 (if index is not unique)

 8. Use the value of PAIRLEN from step 7 to calculate the number of keys that

can be put on a nonleaf page.

 #KEYSnonleaf = TRUNC [EIPS/PAIRLEN]

where EIPS is EIPSmax for an index with fixed length keys or

EIPSmin-nonleaf for an index with variable length keys.

 9. Calculate the number of nonleaf pages required at each level, using the value

of LEAF PAGES from step 6.

 level = 1

 NONLEAF PAGES(level)=

 TRUNC [1 + (LEAF PAGES/KEYSnonleaf)]

While the number of nonleaf pages at the current level is greater than 1, do

the following:

 level = level + 1

 NONLEAF PAGES(level) =

 TRUNC [1 + (NONLEAF PAGES(level-1)/KEYSnonleaf)]

10. Calculate the total number of index pages by adding the LEAF PAGES value

from step 6 and the nonleaf pages for every level as calculated in step 9.

 INDEX PAGES = LEAF PAGES + NONLEAF PAGES(1) + ... + NONLEAF PAGES(n)

Estimating Internal Dbspace Size and DASD Needs for Sort Operations

Internal dbspaces are most commonly used as work areas for sorting data. It is

helpful to predict the amount of space needed to perform a sort, in order to

estimate how big your internal dbspaces should be.

This section will discuss how much space is required to perform a particular sort.

Since multiple users can be performing a sort concurrently, it is more difficult to

determine the maximum internal dbspace requirements for your database than for

a given sort. This maximum depends both on the expected size of a sort, as well as

how many sorts are expected to be occurring concurrently. You must also consider

non-sort usage of internal dbspaces, such as to contain materialized views or

intermediate query results. Refer to the DB2 Server for VM System Administration or

DB2 Server for VSE System Administration manual for more information about

internal dbspace usage, including guidelines for determining the number and size

of internal dbspaces for your database.

The size of internal dbspaces in a database is often dictated by the largest sort

operation possible in that database, such as the sort needed to create an index on

the largest table in the database.

238 Database Administration

When Do We Sort?

Sorting is performed whenever an operation requires that data be ordered or that

duplicate values be eliminated, and no appropriate index exists that provides the

necessary ordering. Even if an appropriate index exists, the Optimizer may decide

not to use it.

In most cases, it is readily apparent where a sort can occur. The following is a list

of all cases:

v Index creation, such as a result of the CREATE INDEX statement, the adding or

activating of a PRIMARY KEY or UNIQUE CONSTRAINT, or the reorganizing

of an invalid index. We sort on the index or key/constraint columns.

v UNION statement. We sort on the columns listed in the SELECT list of the

queries being unioned. The sort eliminates duplicate values. (No duplicate

elimination occurs for UNION ALL.)

v ORDER BY and GROUP BY clauses. Both these clauses request that data be

ordered. We sort on the columns or expressions (ORDER BY can sort on the

result of an expression in the SELECT list) listed in the clause.

v DISTINCT clause. This is another case of sorting to eliminate duplicate values.

We sort on the columns listed in the clause.

v Merge/scan (type 2) join. This type of join requires that the columns on which

we are joining be ordered. We sort on the join columns.

You can use the EXPLAIN command if you are unsure whether or not a particular

query performs a sort. If you query performs more than one of the above, then it

may perform multiple sorts. If you UNION or join more than two tables, another

sort may be performed for each additional table, since we UNION and join tables

two at a time.

For further information on sorting, refer to the DB2 Server for VSE & VM Diagnosis

Guide and Reference manual.

Internal Dbspace Characteristics

The characteristics of an internal dbspace are different from those of a permanent

dbspace:

v Each page is 4096 bytes.

v No free space is reserved on pages.

v There is no space at the end of a page reserved for pointers to each row on the

page, and the limit of 256 rows per page is removed.

v There is always exactly one header page.

v Pages of internal dbspaces are never shadowed when they are modified.

There are no free space classes for internal dbspace pages, since data is always

added at the end, and hence there is never a need to search for free space in which

to store a row. This avoids the space wastage which can occur due to the

granularity of free space classes (a row will be stored on a page in an internal

dbspace whenever the page has enough free bytes to hold the row).

You can see that internal dbspaces are much simpler than permanent dbspaces.

Calculating the number of pages needed to hold a certain amount of data is also

simpler.

Appendix A. Estimating Your Dbspace Requirements 239

Calculating Internal Dbspace Size Requirements

We will calculate the amount of space required to hold a copy of the working set

of data during a sort. Specifically, we will calculate the size of the initial working

set, since the working set can only get smaller due to the elimination of duplicate

values. In building the initial working set, we retrieve a portion of the input data

(enough to fill an internal sort buffer), sort it, and write the sorted portion to an

internal dbspace. Duplicates may be eliminated during the sort. We will not

consider the effects of duplicate elimination in these calculations, since these effects

are dependent on the order in which data is encountered.

The following steps calculate the size of a sort row. The sort row is made up

mostly of the columns by which we are ordering, that is the sort key, plus any

other columns which must appear in the result.

1. Calculate the average length of a sort key.

a. Calculate the average encoded length of each variable length ordering

column (in bytes). The average length should not include trailing blanks (if

any) since these blanks are not stored in the sort key.

 VARCOLavg(n) = (1.25 x average length of varying-length

 ordering column n) + 3

These numbers must be rounded up to integer values.

The encoding of varying-length values incurs an overhead of approximately

25 percent.

b. Calculate the average length of a sort key.

 SORTKEYLEN = the sum of the lengths of fixed-length ordering columns

 (in bytes)

 + VARCOLavg(1) + ... + VARCOLavg(n)

 + 1 for each ordering column that allows nulls

For index creation, the TID of the data row is part of the sort key/row. If

the sort is for index creation:

 SORTKEYLEN = SORTKEYLEN + 4

2. Calculate the average length of a sort row. We add overhead for the sort row

header, plus add any non-ordering columns which must appear in the result.

There are no non-ordering columns for index creation. Non-ordering columns

are not encoded.

 SORTROWLEN = SORTKEYLEN

 + 3 bytes (sort row header)

 + the sum of the lengths of fixed-length non-ordering columns

 (in bytes)

 + the sum of the average lengths of varying-length non-ordering

 columns (in bytes)

 + 1 for each non-ordering column which allows nulls

For cases other than index creation, where the sort key contains at least one

varying-length column, there will be the following additional overhead:

v A one-byte counter will indicate the number of varying-length key columns

containing trailing blanks. This counter is used even if none of the columns

contain trailing blanks. In this case it is set to zero.

 SORTROWLEN = SORTROWLEN + 1

v In addition to the column counter, the number of trailing blanks that each

column originally had is recorded. If at least one column had trailing blanks,

then a one-byte counter is allocated for each varying-length column.

 SORTROWLEN = SORTROWLEN + number of varying-length sort key columns

If the data does not contain trailing blanks, then this overhead is not

incurred.

240 Database Administration

3. Adjust for varying-length data.

For varying length sort rows, the order in which rows are encountered and

stored can affect the number of pages required. To account for this possibility,

we can use a method similar to the Effective Index Page Size used in

calculating the size of an index. Briefly, this method models the worst case

where the last sort row we try to insert into a page is the largest possible sort

row, and the page has one fewer bytes of free space available. This gives us our

maximum space wastage per page, and will yield the upper bound on the

number of pages we will use. To determine the Effective Internal Dbspace Page

Size (EIDPS), do the following:

a. For fixed-length data

 EIDPS = 4080

b. For varying-length data, repeat the previous calculations to determine

SORTROWLEN, substituting the maximum length of varying-length

columns for the average length. This gives us MAX SORTROWLEN.

 EIDPS = 4080 - (MAX_SORTROWLEN + 1)

The following steps will calculate the number of pages required to hold a copy of

all sort rows. This is the minimum size of internal dbspace that is required to

perform the sort.

1. First calculate how many rows will fit on a page.

 ROWS_PER_PAGE = TRUNC [EIDPS/SORTROWLEN]

2. Determine the number of sort rows.

For index creation, the number of sort rows is the same as the number of rows

in the table. For cases where only a subset of the rows in a table participates in

a sort, then the number of participating rows must be estimated based on your

knowledge of the query and the contents of the table.

 NROWS = number of rows expected to participate in the sort

3. Compensate for effect of sort buffering

A block of input rows is encoded and stored in a sort buffer. The contents of

this buffer are then sorted and written out to pages of an internal dbspace.

Since the buffer is large enough to fill several internal dbspace pages, and the

space in the buffer is contiguous while each internal dbspace page has a

header, then we must account for this in determining the number of pages

required.

a. Calculate how many rows are in the block of rows that would fill the sort

buffer.

 ROWS_PER_BLOCK = TRUNC [40948 / SORTROWLEN]

b. Calculate how many internal dbspace pages would be filled by a block of

rows.

 PAGES_PER_BLOCK = ROWS_PER_BLOCK / ROWS_PER_PAGE

This number must be rounded up to an integer value.

c. Calculate how many full blocks the expected number of sort rows would

generate.

 FULL_BLOCKS = TRUNC [NROWS / ROWS_PER_BLOCK]

d. Calculate how many rows would be in the last (not full) block.

 ROWS_LAST_BLOCK = NROWS - (ROWS_PER_BLOCK x FULL_BLOCKS)

4. Finally, using all the information we have derived so far, calculate the number

of pages required. We add one more page to account for the header page of the

internal dbspace.

Appendix A. Estimating Your Dbspace Requirements 241

NPAGES = (FULL_BLOCKS x PAGES_PER_BLOCK)

 + (ROWS_LAST_BLOCK / ROWS_PER_PAGE) ← round up

 + 1

For a sort to be successful, the internal dbspace must be defined to have at

least NPAGES pages.

Calculating Total Internal Dbspace and DASD Needs

So far we have calculated the size of the sort working set. After the initial working

set has been created, we then merge all the sorted portions to yield a final sorted

result. Multiple merge passes may occur before the final result is created. During

this process, two copies of the working set exist, in two internal dbspaces. For

successful completion of a sort, more than one internal dbspace must be available.

The final result may be smaller than intermediate results, due to such things as the

elimination of the three byte sort row header, and the decoding of varying-length

values in cases other than index creation. The amount of DASD required is

reduced only in the case where a single merge pass is performed; that is, when one

pass is made through the data from the initial working set to the final result. This

only occurs on sorts which are sufficiently small, or where the data is already

almost completely sorted.

When sorting for duplicate elimination, the merge process will remove duplicates.

As with the duplicate elimination which occurred during sorting, it is difficult to

predict the effect this will have. Note that, for calculating DASD requirements, we

are only interested in the duplicate elimination which would occur during the first

merge pass, since the second copy of the working set is created by this pass. The

completion of the first merge pass is the point at which our peak DASD usage

occurs.

We will not consider these cases, and calculate the amount of DASD required to

perform the sort as:

 number of DASD pages = NPAGES x 2

For the sort to complete successfully, the storage pool to which the internal

dbspaces are assigned must have sufficient DASD pages available.

242 Database Administration

Appendix B. CMS EXECs

SQLINIT EXEC

The SQLINIT EXEC initializes a user machine for application server access. With

this EXEC, users specify the application server they wish to access and any special

options. Each user must run the SQLINIT EXEC.

Note: The user machine must be initialized regardless of whether you are

operating in single user mode or multiple user mode.

Initializing a User Machine

Before a user can run any DB2 Server for VM application program, use the DBS

Utility, run the preprocessors, or use ISQL:

1. The user machine must have read access to a database machine’s production

minidisk (Q-disk), read/write access to its own work minidisk (A-disk), and be

able to communicate with the database machine (by IUCV or APPC/VM).

For Information about providing minidisk access to user machines and

allowing user machines to communicate with the database machine, see the

DB2 Server for VM System Administration manual.

2. The user must log on and enter IPL CMS (if this was not done during the

logon procedure).

3. The user must initialize the user machine for application server access using

the SQLINIT EXEC. The syntax and options of the SQLINIT EXEC are

discussed below.

Note: Because the SQLINIT EXEC may issue the CMS NUCXLOAD and CMS

NUCXDROP commands, it should not be run in the CMS/DOS

environment.

Figure 60 on page 244 shows the format of the SQLINIT EXEC.

© Copyright IBM Corp. 1987, 2007 243

The parameters of the SQLINIT EXEC are as follows:

Dbname

specifies the application server to be accessed. For the DBNAME keyword, you

can use any initial substring (for example, D, DB, DBN, DBNA, or DBNAM). If

DBNAME is omitted, the name of the last application server specified is used

as a default. If SQLINIT cannot determine the last application server accessed,

you are prompted to reissue the SQLINIT EXEC with the DBNAME parameter

specified. The application server can be either:

v A DB2 Server for VM application server

v Any application server that supports IBM’s implementation of the

Distributed Relational Database Architecture (DRDA) protocol.

dcssID

specifies the name of the bootstrap package that contains the saved segment ID

of the RA and ISQL components. This parameter should be specified only if

►► SQLINIT

▼

Dbname

(

server_name

)

dcssID

(

dcss_id

)

No

SYNChronous

(

Yes

)

SQLDS

Protocol

(

AUTO

)

DRDA

8

QryBlksize

(

integer

)

No

DBCS

(

Yes

)

CHARNAME

(

charname

)

ISO

DATEformat

(

USA

)

EUR

JIS

LOCal

ISO

TIMEformat

(

USA

)

EUR

JIS

LOCal

Yes

WorkUnit

(

No

)

00

TraceRA

(

nn

)

0000

TraceDRRM

(

nnnn

)

0

TraceCONV

(

n

)

SSSNAME

(

string

)

STack

QueRY

RESET

 ►◄

Figure 60. SQLINIT EXEC

244 Database Administration

you want to use a specific saved segment for the database manager code;

otherwise, it should be omitted. If you specify DCSSID, you must specify

DBNAME.

 You can specify ID instead of DCSSID for the keyword. No other abbreviation

is valid. For more information about using saved segments for the database

manager code, refer to the DB2 Server for VM System Administration manual.

 DCSSID identifies a bootstrap package that invokes RA or ISQL code that

resides in a discontiguous saved segment. If DCSSID is not specified, the

dcss_id value from the resid SQLDBN file on the production disk is used. If the

resid SQLDBN file is not available, and you are in a VM/ESA environment, the

dcss_id value from the SQLDCSID DEFAULT file (if available) is used. If

neither value is available, SQLDBA SQLRMBT and SQLDBA SQLISBT are

used. See “SQLINIT, SQLSTART, Bootstrap Modules and SQLDBN files” on

page 250 for more information on this topic.

Note: In a VM/ESA environment, resid may or may not be the same as

server_name.

SYNChronous

determines whether synchronous or asynchronous communication is used

between the user and database machines. Synchronous communication

performs better than asynchronous communication but has the following

restriction: you cannot use SQLHX or CANCEL to cancel SQL statements. The

only way to end an LUW is to use the DB2 Server for VM FORCE operator

command, or to re-IPL CMS.

 Use synchronous communication primarily when running a well tested

production application against local application servers. The default value for

SYNCHRONOUS is NO.

Protocol

indicates the application requester access protocol to be used for

communicating with the application server.

 If you specify the SQLDS option, the SQLDS protocol is used for

communication between a DB2 Server for VM application requester and a DB2

Server for VM application server. If this option is specified, the application

requester cannot connect to a non-DB2 Server for VM application server. Use

this option if both the application server and the application requester are part

of DB2 Server for VM system and both use the same default CCSIDs. SQLDS is

the default value.

Note: If PROTOCOL(SQLDS) is specified, the CCSID defaults set for the

application requester with the SQLINIT EXEC are not used; the CCSIDs

set for the application server are used.

If you specify the AUTO option, the application requester uses the SQLDS

protocol when communicating with a DB2 Server for VM application server

and the DRDA protocol when communicating with other application servers. If

both the application requester and the application server use AUTO protocol

but have different default CCSIDs, CCSID conversion is done correctly for

requests and replies. The AUTO option lets you access both like and unlike

systems without changing the PROTOCOL option and reissuing SQLINIT. You

should use this option in the following cases:

v The user needs access to both like and unlike systems.

Appendix B. CMS EXECs 245

v The CCSID defaults are not the same on the application server and the

application requester. For correct CCSID conversion the application server

must also use AUTO protocol.

v You need an LUWID associated with each task so that you can easily trace a

task back to its originating site.

 If you specify the DRDA option, the application requester will use the DRDA

protocol when communicating with a like or unlike application server. If the

database machine is running code prior to Version 3 Release 3, the SQLDS

protocol is forced for that connection. Of the three options, DRDA has the

greatest performance overhead and storage requirements.

Notes:

1. The PROTOCOL value is ignored in single user mode and the SQLDS

protocol is used for the connection.

2. The DRDA and AUTO options can only be specified if:

v The DRDA facility is installed on the DB2 Server for VM application

requester

v The other application server to which you want to connect supports

IBM’s implementation of the DRDA protocol.

QryBlksize

specifies the block size of the returned rows of data when blocking performs

FETCHes or the block size of the buffer that will carry Inserts to the database

server. The number is specified in denominations of 1K and can range

anywhere from 1K to 32K. The default value is 8K.

Note: The QRYBLKSIZE parameter is ignored when the SQLDS protocol is

used for the connection.

DBCS

specifies whether DBCS character handling of SO/SI pairs is done or not. This

value is used by ISQL, the DBS Utility, and the preprocessors instead of the

value currently found in the SYSTEM.SYSOPTIONS table. If NO is specified,

keywords are converted from lowercase to uppercase by ISQL and the DBS

Utility. If YES is specified, error checking is done on DBCS data by ISQL, the

DBS Utility, and the preprocessors. The default value for DBCS is NO.

CHARNAME

specifies the CCSID values (CCSIDSBCS, CCSIDMIXED, and CCSIDGRAPHIC)

used by the application requester, and is used to determine how to fold

characters from lowercase to uppercase. Its value must be a valid character

name, such as those found in the CHARNAME column of the

SYSTEM.SYSCCSIDS table. CHARNAME is supported for the DRDA and

AUTO PROTOCOL options. The DB2 Server for VM product is shipped with

CHARNAME of the user machine initially set to INTERNATIONAL.

 The SQLPREP EXEC, the DBS Utility, and the Resource Adapter use the

CHARNAME value for folding support in both single user mode and multiple

user mode. See the DB2 Server for VSE & VM Application Programming manual

for information on the SQLPREP EXEC.

DATEformat

specifies the date format. The default is ISO. This parameter is for information

only. It represents the date format in which the user wants to see date values

returned.

246 Database Administration

|

|

|

|

|

|

|

TIMEformat

specifies the time format. The default is ISO. This parameter is for information

only. It represents the time format in which the user wants to see time values

returned.

WorkUnit

specifies whether CMS Work Unit support is to be used for an application. The

default is Yes.

TraceRA

specifies the parts of the Resource Adapter (RA) that are to be traced and the

level of the trace. The positional digits correspond to the following Resource

Adapter subcomponents and functions:

v RA control flow

v Communications.

When 0 is specified, tracing is turned off. When 1 is specified, tracing is done

in limited detail. When 2 is specified, tracing is done in greater detail. The

default value for TRACERA is 00.

Note: A data stream trace is obtained by tracing the communications

subcomponent.

The following CMS FILEDEF command was entered to define the default trace

output file:

 FILEDEF ARITRAC TAP2 SL (BLKSIZE 4096 NOCHANGE PERM

You can enter a different CMS FILEDEF command to override the default. The

options you specify on your CMS FILEDEF command will not be overridden

unless you reenter a CMS FILEDEF command to change them.

Note: The trace output, requested using the TRACERA, TRACEDRRM, and

TRACECONV parameters, is stored in a single file.

TraceDRRM

specifies the parts of the DRRM component that are to be traced and the level

of the trace. The positional digits correspond to the following DRRM

subcomponents and functions:

v Parser

v Generator

v Dictionary

v RDIIN Manager.

When 0 is specified, tracing is turned off. When 1 is specified, tracing is done

in limited detail. When 2 is specified, tracing is done in greater detail. The

default value for TRACEDRRM is 0000.

 The following CMS FILEDEF command was entered to define the default trace

output file:

 FILEDEF ARITRAC TAP2 SL (BLKSIZE 4096 NOCHANGE PERM

You can enter a different CMS FILEDEF command to override the default. The

options you specify on your CMS FILEDEF command will not be overridden

unless you reenter a CMS FILEDEF command to change them.

Notes:

1. The TRACEDRRM parameter is ignored when the SQLDS protocol is used

for the connection.

Appendix B. CMS EXECs 247

2. The trace output, requested using the TRACERA, TRACEDRRM, and

TRACECONV parameters is stored in a single file.

TraceCONV

specifies that the data conversion component is to be traced and the level of

the trace.

 When 0 is specified, tracing is turned off. When 1 is specified, tracing is done

in limited detail. When 2 is specified, tracing is done in greater detail. The

default value for TRACECONV is 0.

 The following CMS FILEDEF command was entered to define the default trace

output file:

 FILEDEF ARITRAC TAP2 SL (BLKSIZE 4096 NOCHANGE PERM

You can enter a different CMS FILEDEF command to override the default. The

options you specify on your CMS FILEDEF command will not be overridden

unless you reenter a CMS FILEDEF command to change them.

Note: The trace output, requested using the TRACERA, TRACEDRRM, and

TRACECONV parameters, is stored in a single file.

SSSNAME

specifies the name of the status shared segment. This parameter is optional.

For more information on defining the status shared segment for the DB2 Server

for VM system, refer to the DB2 Server for VM System Administration manual.

STack

places all values currently set for the parameters of the SQLINIT EXEC, except

DCSSID, onto the CMS stack in the same sequence as shown for QUERY.

QueRY

displays all values currently set for the parameters of the SQLINIT EXEC,

except DCSSID. It also displays the resource adapter code release level, CCSID

values, LDATELEN value, and LTIMELEN value. (See “SQLGLOB EXEC” on

page 252 for information about LDATELEN and LTIMELEN.)

Note: The value returned for CHARNAME is valid only if the value specified

for the PROTOCOL parameter is not SQLDS. If the PROTOCOL

parameter value is SQLDS, the CHARNAME value returned for the

application requester is the same as the CHARNAME value of the

application server to which it is connected (even if they are not the

same).

The following is sample output from an SQLINIT QUERY.

248 Database Administration

ARI0717I Start SQLINIT EXEC: 05/29/92 14:52:40 EDT.

SELECTED TABLE IS: SQL/DS

 DBNAME=SQLDBA

 DBCS=NO

 SYNCHRONOUS=NO

 DATEFORMAT=ISO

 TIMEFORMAT=ISO

 TRACERA=00

 LDATELEN=0

 LTIMELEN=0

 RELEASE=3.3.0

 WORKUNIT=NO

 QRYBLKSIZE=8

 PROTOCOL=SQLDS

 CHARNAME=INTERNATIONAL

 CCSIDSBCS=500

 CCSIDMIXED=0

 CCSIDGRAPHIC=0

 TRACEDRRM=0000

 TRACECONV=0

 SSSNAME=

ARI0796I End SQLINIT EXEC: 05/29/92 14:52:40 EDT

RESET

resets all values currently set for the parameters of the SQLINIT EXEC, except

DCSSID. The next time the SQLINIT EXEC is invoked, the defaults are used.

The SQLINIT EXEC parameter values are stored in the CMS LASTING GLOBALV

file. Each time the SQLINIT EXEC is run, the parameter values are appended to

the LASTING GLOBALV file. To maintain the LASTING GLOBALV file size,

duplicate entries can be removed. Subsequently, when the user reenters the

SQLINIT EXEC, the parameter value is established as follows:

1. If the user specifies a parameter on the SQLINIT EXEC, that parameter value is

used.

2. If a parameter is not specified on the SQLINIT EXEC, the value stored in the

LASTING GLOBALV file is used. That is, the default is the value used on the

most recent SQLINIT EXEC.

3. If there are no values in the LASTING GLOBALV file (no values were specified

on a previous SQLINIT EXEC, or SQLINIT RESET has reset the entries to

blanks in the LASTING GLOBALV file), the application server-wide defaults

established by the SQLGLOB EXEC are used.

4. If nothing is available, that is, if no application server-wide defaults established

by the SQLGLOB EXEC exist, the SQLINIT EXEC will supply hardcoded

defaults, except for the DBNAME parameter.

The parameter values remain in the LASTING GLOBALV file until explicitly

changed through a subsequent SQLINIT EXEC with new parameters. SQLINIT

RESET resets the entries to blanks, for any SQLINIT EXEC parameter values

currently stored in the LASTING GLOBALV file.

The LASTING GLOBALV file is left on the user’s A-disk. This means that users do

not have to run the SQLINIT EXEC every time they log on. (This also means that

users do not need to run the SQLINIT EXEC from their PROFILE EXECs.) The

only times the user needs to rerun the SQLINIT EXEC are:

v When the user wants to change the default application server

v When the user wants to change any of the SQLINIT EXEC parameter values.

Appendix B. CMS EXECs 249

SQLINIT, SQLSTART, Bootstrap Modules and SQLDBN files

The SQLINIT EXEC provides for a user’s program to communicate with the

database machine by copying to the user’s A-disk the following bootstraps:

 dcss-id SQLRMBT Q ---> ARISRMBT MODULE A

 dcss-id SQLISBT Q ---> ARISISBT MODULE A

The bootstrap modules reside on the production minidisk (Q-disk).

Prior to Version 3 Release 1, the SQLINIT EXEC used the ARISRMBT module to

obtain default SQLINIT EXEC values. The SQLINIT EXEC now uses the LASTING

GLOBALV file instead of this bootstrap module to obtain default values. The

bootstrap module is still produced to maintain compatibility with load modules

generated prior to Version 3 Release 1.

The ARISRMBT module is for the resource adapter, but it is incomplete. The

resource adapter needs to know the name of the database machine with which it is

to communicate.

Note: In a VM/ESA environment, the resource adapter only needs to know the

database (resource) name.

The resource adapter also needs to know the default DCSSID. At this time

ARISRMBT does not contain this information. The SQLINIT EXEC uses a CMS file

called a SQLDBN file to locate information about a database. The SQLDBN file is

created by the SQLSTART EXEC. When the SQLSTART EXEC is invoked, it starts

the database manager code in a particular machine to access a particular

application server. The SQLSTART EXEC creates a CMS file on the production

minidisk to record this information (if the CMS file does not already exist). The

name of the file is taken from the DBNAME parameter if the resid is the same as

the server-name; otherwise, the resid will be resolved using the RESID NAMES file.

The filetype is SQLDBN. So, suppose you log on the SQLDBA database machine

and enter:

 SQLSTART DBNAME(DB01) DCSSID(MYBOOT)

The SQLSTART EXEC accesses or creates the DB01 SQLDBN Q file. DB01 contains

the following information:

1. The server-name of the application server being accessed (DB01)

2. The name of the database machine that is accessing the application server

(SQLDBA)

Note: The name of the database machine is not needed to complete the

bootstrap in a VM environment.

3. The name of the bootstrap or DCSSID being used (MYBOOT).

When the database machine is shut down, the resid SQLDBN file remains on the

production minidisk. (The name of the file is taken from the DBNAME parameter

if the resid is the same as the server-name; otherwise, the resid will be resolved using

the RESID NAMES file.) It is updated whenever a database machine is started to

access the application server and one of the following is true:

v The DCSSID specified on the SQLSTART EXEC is different from the one stored

in the SQLDBN file

v The AMODE specified on the SQLSTART EXEC is different from the one stored

in the SQLDBN file

250 Database Administration

v The DBNAME specified on the SQLSTART EXEC is different from the one stored

in the SQLDBN file

v The database machine trying to access the application server is different from

the one that last created the SQLDBN file.

The SQLINIT EXEC uses these SQLDBN files to complete the resource adapter

bootstrap module. That is, the SQLINIT EXEC looks for the SQLDBN file having

the resid that corresponds to the DBNAME parameter. If the DBNAME is greater

than 8 bytes, it uses the SQLDCSID DEFAULTS file. Otherwise, the SQLINIT EXEC

reads the information in the SQLDBN file and then generates the complete

resource adapter bootstrap on the work minidisk:

 ARISRMBT MODULE A resid SQLDBN Q ARISRMKC TEXT Q

 |

 V

 ARISRMBT MODULE A

The new module is called ARISRMBT. It will replace any existing ARISRMBT

MODULE on the user’s A-disk. ARISRMBT serves two purposes:

v It identifies where the resource adapter code is to be loaded

v It tells the resource adapter where to direct its communications.

Note the resid SQLDBN files will not be available to user machines that:

v Access an application server that resides on a different processor

v Access an application server that does not own the Production (Q) minidisk to

which the user has a link.

If the SQLDBN file is not available, the SQLINIT EXEC looks for the SQLDCSID

DEFAULT file for a default saved segment (DCSSID). If the SQLDBN file or

SQLDCSID DEFAULT file is not found on the Production (Q) disk, the default

SQLDBA SQLRMBT and SQLDBA SQLISBT bootstrap modules are used. If the

dcss-id from the default SQLDBN file is not the one desired, specify the dcss-id on

the SQLINIT EXEC to override it.

Note: The SQLDCSID DEFAULT file is only used in a VM environment. The

SQLDCSID DEFAULT file is created by the SQLGENLD EXEC. See the DB2

Server for VM System Administration manual for more information on saved

segments.

The ISQL bootstrap module, on the other hand, only identifies where the ISQL

code is to be loaded. Because ISQL uses the resource adapter also, there is no need

to identify the database machine in the ISQL bootstrap.

When an application initially calls the database manager, the bootstraps are

executed to load the resource adapter and to help establish communication with

the database machine. The database name is used for APPC/VM communication in

VM environments.

Note that the bootstrap modules are left on the user’s A-disk. This means that a

user does not have to run the SQLINIT EXEC every time he or she logs on. (This

also means that users do not need to run the SQLINIT EXEC from their PROFILE

EXECs.) The only times the user needs to rerun SQLINIT are:

v When the user wants to change the default application server. If for any reason

the bootstraps are not valid, it is detected and a message is issued to the user.

Appendix B. CMS EXECs 251

v When the user wishes to use bootstraps that have been defined after running the

SQLINIT EXEC.

For example, if bootstrap modules are defined, the user runs the SQLINIT EXEC,

and then new bootstrap modules are defined, the user will have to run the

SQLINIT EXEC again to take advantage of the new bootstrap modules.

When the DBNAME parameter is not specified on the SQLINIT EXEC, the name of

the application server last accessed will be obtained from the ARISRMBT module

residing on the user’s A-disk. New versions of the ARISRMBT and ARISISBT

modules will then be generated to reflect the information stored in the SQLDBN

file for that application server.

You can run the SQLINIT EXEC any number of times from within another EXEC.

SQLGLOB EXEC

Use the SQLGLOB EXEC to set the default parameter values for the SQLINIT

EXEC, except DCSSID, for your local DB2 Server for VM application server. The

default values will only be used for application requests that have linked to the

production disk of the local application server. The syntax of the SQLGLOB EXEC

is similar to that of the SQLINIT EXEC.

The SQLGLOB EXEC creates a file on the production disk, called SQLGLOB

DEFAULTS, containing all the default values for the SQLINIT EXEC, except

DCSSID. If a user runs the SQLINIT EXEC without specifying some of the

parameter values and these values are not stored in the LASTING GLOBALV file,

then the missing parameter values are taken from the SQLGLOB DEFAULTS file

that was created with the SQLGLOB EXEC. The syntax of the SQLGLOB EXEC is

shown in Figure 61 on page 253.

252 Database Administration

The parameters of the SQLGLOB EXEC are as follows:

Dbname

specifies the application server to be accessed. For the DBNAME keyword, you

can use any initial substring (for example, D, DB, DBN, DBNA, or DBNAM). If

DBNAME is omitted, the name of the last application server specified is used

as a default. The application server can be either:

v A DB2 Server for VM application server

v Any application server that supports IBM’s implementation of the

Distributed Relational Database Architecture (DRDA) protocol.

►► SQLGLOB

▼

Dbname

(

server_name

)

No

SYNChronous

(

Yes

)

SQLDS

Protocol

(

AUTO

)

DRDA

8

QryBlksize

(

integer

)

No

DBCS

(

Yes

)

CHARNAME

(

charname

)

ISO

DATEformat

(

USA

)

EUR

JIS

LOCal

ISO

TIMEformat

(

USA

)

EUR

JIS

LOCal

0

LDATELEN

(

integer

)

0

LTIMELEN

(

integer

)

Yes

WorkUnit

(

No

)

00

TraceRA

(

nn

)

0000

TraceDRRM

(

nnnn

)

0

TraceCONV

(

n

)

SSSNAME

(

string

)

STack

QueRY

RESET

 ►◄

Figure 61. SQLGLOB EXEC

Appendix B. CMS EXECs 253

Note: Access to non-DB2 Server for VM application servers is only possible

if the DRDA facility is installed on the DB2 Server for VM application

requester.

SYNChronous

determines whether synchronous or asynchronous communication is used

between the user and database machines. Synchronous communication

performs better than asynchronous communication but has the following

restriction: you cannot use SQLHX or CANCEL to cancel SQL statements. The

only ways to end an unwanted LUW is to use the FORCE command, or to

re-IPL CMS.

 Use synchronous communication primarily when running a well tested

production application against local application servers. The default value for

SYNCHRONOUS is NO.

Protocol

indicates the application requester access protocol to be used for

communicating with the application server.

 If you specify the SQLDS option, the SQLDS protocol is used for

communication between a DB2 Server for VM application requester and a DB2

Server for VM application server. If this option is specified, the application

requester cannot connect to a non-DB2 Server for VM application server. Use

this option if both the application server and the application requester are part

of DB2 Server for VM system and both use the same default CCSIDs. SQLDS is

the default value.

Note: If PROTOCOL(SQLDS) is specified, the CCSID defaults set for the

application requester with the SQLINIT EXEC are not used; the CCSIDs

set for the application server are used.

If you specify the AUTO option, the application requester uses the SQLDS

protocol when communicating with DB2 Server for VM application servers and

the DRDA protocol when communicating with other application servers. If

both the application requester and the application server use AUTO protocol

but have different default CCSIDs, CCSID conversion is done for requests and

replies. The AUTO option lets you access both like and unlike systems without

changing the PROTOCOL option and reissuing SQLINIT. You should use this

option in the following cases:

v The user needs access to both like and unlike systems.

v The CCSID defaults are not the same on the application server and the

application requester. For correct CCSID conversion the application server

must also use AUTO protocol.

v You need an LUWID associated with each task so that you can easily trace a

task back to its originating site.

 If you specify the DRDA option, the application requester will use the DRDA

protocol when communicating with a like or unlike application server. If the

database machine is running code prior to Version 3 Release 3, the SQLDS

protocol is forced for that connection. Of the three options, DRDA has the

greatest performance overhead and storage requirements.

Notes:

1. The PROTOCOL value is ignored in single user mode and the SQLDS

protocol is used for the connection.

2. The DRDA and AUTO options can only be specified if:

254 Database Administration

v The DRDA facility is installed on the DB2 Server for VM application

requester

v The other application server to which you want to connect supports

IBM’s implementation of the DRDA protocol.

QryBlksize

specifies the block size of the returned rows of data when blocking performs

FETCHes or the block size of the buffer that will carry Inserts to the database

server. The number is specified in denominations of 1K and can range

anywhere from 1K to 32K. The default value is 8K.

Note: The QRYBLKSIZE parameter is ignored when the SQLDS protocol is

used for the connection.

DBCS

specifies whether DBCS character handling of SO/SI pairs is done or not. This

value is used by ISQL, the DBS Utility, and the preprocessors instead of the

value currently found in the SYSTEM.SYSOPTIONS table. If NO is specified,

keywords are converted from lowercase to uppercase by ISQL and the DBS

Utility. If YES is specified, error checking is done on DBCS data by ISQL, the

DBS Utility, and the preprocessors. The default value for DBCS is NO.

CHARNAME

specifies the CCSID values (CCSIDSBCS, CCSIDMIXED, and CCSIDGRAPHIC)

used by the application requester, and determines how to fold characters from

lowercase to uppercase. Its value must be a valid character name, such as those

found in the CHARNAME column of the SYSTEM.SYSCCSIDS table.

CHARNAME is supported for the DRDA and AUTO PROTOCOL options. The

DB2 Server for VM product is shipped with CHARNAME of the user machine

initially set to INTERNATIONAL.

 The SQLPREP EXEC, the DBS Utility, and the Resource Adapter use the

CHARNAME value for folding support in both single user mode and multiple

user mode. See the DB2 Server for VSE & VM Application Programming manual

for information on the SQLPREP EXEC.

DATEformat

specifies the date format. The default is ISO. This parameter is for information

only. It represents the date format in which the user wants to see date values

returned.

TIMEformat

specifies the time format. The default is ISO. This parameter is for information

only. It represents the time format in which the user wants to see time values

returned.

LDATELEN

gives the length of the local date format. The values may range from 10 to 254,

and 0. The default is 0, which indicates that LOCAL format is not available.

LTIMELEN

gives the length of the local time format. The values may range from 8 to 254,

and 0. The default is 0, which indicates that LOCAL format is not available.

WorkUnit

specifies whether CMS Work Unit support is to be used for an application. The

default is Yes. CMS Work Units are supported in VM environments only.

Appendix B. CMS EXECs 255

|

|

|

|

|

|

|

TraceRA

specifies the parts of the Resource Adapter (RA) that are to be traced and the

level of the trace. The positional digits correspond to the following Resource

Adapter subcomponents and functions:

v RA control flow

v Communications.

When 0 is specified, tracing is turned off. When 1 is specified, tracing is done

in limited detail. When 2 is specified, tracing is done in greater detail. The

default value for TRACERA is 00.

 The following CMS FILEDEF command was entered to define the default trace

output file:

 FILEDEF ARITRAC TAP2 SL (BLKSIZE 4096 NOCHANGE PERM

You can enter a different CMS FILEDEF command to override the default. The

options you specify on your CMS FILEDEF command will not be overridden

unless you reenter a CMS FILEDEF command to change them.

Note: The trace output, requested using the TRACERA, TRACEDRRM, and

TRACECONV parameters is stored in a single file.

TraceDRRM

specifies the parts of the DRRM component that are to be traced and the level

of the trace. The positional digits correspond to the following DRRM

subcomponents and functions:

v Parser

v Generator

v Dictionary

v RDIIN Manager.

When 0 is specified, tracing is turned off. When 1 is specified, tracing is done

in limited detail. When 2 is specified, tracing is done in greater detail. The

default value for TRACEDRRM is 0000.

 The following CMS FILEDEF command was entered to define the default trace

output file:

 FILEDEF ARITRAC TAP2 SL (BLKSIZE 4096 NOCHANGE PERM

You can enter a different CMS FILEDEF command to override the default. The

options you specify on your CMS FILEDEF command will not be overridden

unless you reenter a CMS FILEDEF command to change them.

Notes:

1. The TRACEDRRM parameter is ignored when the SQLDS protocol is used

for the connection.

2. The trace output, requested using the TRACERA, TRACEDRRM, and

TRACECONV parameters is stored in a single file.

TraceCONV

specifies that the data conversion component is to be traced and the level of

the trace.

 When 0 is specified, tracing is turned off. When 1 is specified, tracing is done

in limited detail. When 2 is specified, tracing is done in greater detail. The

default value for TRACECONV is 0.

 The following CMS FILEDEF command was entered to define the default trace

output file:

256 Database Administration

FILEDEF ARITRAC TAP2 SL (BLKSIZE 4096 NOCHANGE PERM

You can enter a different CMS FILEDEF command to override the default. The

options you specify on your CMS FILEDEF command will not be overridden

unless you reenter a CMS FILEDEF command to change them.

Note: The trace output, requested using the TRACERA, TRACEDRRM, and

TRACECONV parameters is stored in a single file.

SSSNAME

specifies the name of the status shared segment. This parameter is optional,

and is intended for use with products such as the IBM SystemView

Information Warehouse DataHub Support/VM software. For more information

on defining the status shared segment for the DB2 Server for VM system, refer

to the DB2 Server for VM System Administration manual.

STack

places all values currently set for the parameters of the SQLGLOB EXEC onto

the CMS stack in the same sequence as shown for QUERY.

QueRY

displays all values currently set for the parameters of the SQLGLOB EXEC. It

also displays the resource adapter code release level and CCSID values. The

following is sample output from an SQLGLOB QUERY.

ARI0717I Start SQLGLOB EXEC: 05/29/92 10:27:36 EDT.

DBNAME=SQLDBA

DBCS=NO

SYNCHRONOUS=NO

DATEFORMAT=ISO

TIMEFORMAT=ISO

TRACERA=00

LDATELEN=0

LTIMELEN=0

RELEASE=3.3.0

WORKUNIT=NO

QRYBLKSIZE=8

PROTOCOL=SQLDS

CHARNAME=INTERNATIONAL

CCSIDSBCS=500

CCSIDMIXED=0

CCSIDGRAPHIC=0

TRACEDRRM=0000

TRACECONV=0

SSSNAME=

ARI0796I End SQLGLOB EXEC: 05/29/92 10:27:36 EDT

RESET

resets all values currently set for the parameters of the SQLGLOB EXEC. The

next time the SQLGLOB EXEC is run, the defaults are used.

SQLCIREO EXEC

This EXEC reorganizes the indexes on the catalog tables. The following diagram

shows the format of the SQLCIREO EXEC.

►► SQLCIREO Dbname (dbname)

dcssID

(

ssid

)

PARM

(

parameter

)
 ►◄

Figure 62. SQLCIREO EXEC

Appendix B. CMS EXECs 257

Dbname

specifies the name of the database for which you want to reorganize the

catalog indexes. Any initial substring for DBNAME can be used as the

keyword (for example DB or D).

dcssID

specifies the name of a bootstrap package that identifies a saved segment. You

can use DCSSID or ID for the keyword. If not specified, DCSSID defaults to

SQLDBA. The SQLDBA bootstrap package causes the database manager code

to be loaded into the DMSFREE area.

PARM

specifies additional DB2 Server for VM initialization parameters. If you specify

the PARM parameter, it must follow the other SQLCIREO parameters.

 The valid initialization parameters are:

 ARCHPCT=n

 CHARNAME=name

 CHKINTVL=n

 DUMPTYPE=F|N|P

 LOGMODE=A|L|N|Y

 NCSCANS=n

 NDIRBUF=n

 NPAGBUF=n

 PARMID=name

 SLOGCUSH=n

 SOSLEVEL=n

 TRACCONV=n

 TRACDBSS=nnnnnnnnnnn

 TRACDRRM=nnnn

 TRACDSC=nn

 TRACEBUF=n

 TRACRDS=nnnnnnn

 TRACWUM=n

 TRACSTG=n

 Initialization parameters are described in the DB2 Server for VM System

Administration manual and the DB2 Server for VSE & VM Operation manual.

 SQLCIREO automatically supplies the initialization parameters DBNAME

(based on what you supply in the EXEC parameter DBNAME), SYSMODE=S,

and STARTUP=I.

 To avoid the processing involved in switching log modes, use the same

LOGMODE that you normally use.

 Because the catalog index reorganization utility runs in single user mode, the

only way to trace it is with the TRACDBSS, TRACDSC, and TRACWUM

initialization parameters. (The TRACE operator command cannot be used in

single user mode.)

 If you are using tracing, you may want to enter your own CMS FILEDEF and

LABELDEF commands before invoking SQLCIREO. These optional CMS

FILEDEF and LABELDEF commands are described in the VM/ESA: CMS

Application Development Reference for your VM system.

 For example, to reorganize the indexes for the PRODX database, you might enter:

258 Database Administration

SQLCIREO D(PRODX) PARM(LOGMODE=A)

The catalog index reorganization utility directs messages to SYSPRINT. If you do

not supply a FILEDEF command for SYSPRINT, SQLCIREO assigns SYSPRINT to

the terminal. This FILEDEF command directs the utility’s messages to the CMS file

REORG PRT A:

 FILEDEF SYSPRINT DISK REORG PRT A (RECFM FBA LRECL 121 BLOCK 1210

The utility prints informational messages that describe what actions it has taken.

Packages are not invalidated if they use an index reorganized by the SQLCIREO

utility.

If the catalog index reorganization utility abnormally ends, all changes it has made

to the database are rolled back. You should rerun the utility after correcting the

problem.

SQLRELEP EXEC

This EXEC releases empty pages in dbspaces. The following diagram shows the

format of the SQLRELEP EXEC.

Dbname

specifies the name of the database for which you want to release empty pages.

Any initial substring for DBNAME can be used as the keyword (for example

DB or D).

dbspaceNUM

specifies the acquired dbspace for which you want to release the empty pages.

It can be a public, private, or system dbspace. By entering *, every dbspace will

be processed.

dcssID

specifies the name of a bootstrap package that identifies a saved segment. You

can use DCSSID or ID for the keyword. If not specified, DCSSID defaults to

SQLDBA. The SQLDBA bootstrap package causes the database manager code

to be loaded into the DMSFREE area.

PARM

specifies additional DB2 Server for VM initialization parameters. If you specify

the PARM parameter, it must follow the other SQLRELEP parameters.

 The valid initialization parameters are:

ARCHPCT=n

CHARNAME=name

CHKINTVL=n

DUMPTYPE=F|N|P

LOGMODE=A|L|N|Y

NCSCANS=n

►► SQLRELEP Dbname (dbname) dbspaceNUM (

*

dbspacenum

)

 ►

► dcssID () PARM () ►◄

Figure 63. SQLRELEP EXEC

Appendix B. CMS EXECs 259

NDIRBUF=n

NPAGBUF=n

PARMID=name

SLOGCUSH=n

SOSLEVEL=n

TRACCONV=n

TRACDBSS=nnnnnnnnnnn

TRACDRRM=nnnn

TRACDSC=nn

TRACEBUF=n

TRACRDS=nnnnnnn

TRACWUM=n

TRACSTG=n

 Initialization parameters are described in the DB2 Server for VM System

Administration and the DB2 Server for VSE & VM Operation manuals.

SQLRELEP automatically supplies the initialization parameters DBNAME (based

on what you supply in the EXEC parameter DBNAME), SYSMODE=S, and

STARTUP=P.

To avoid the processing involved in switching log modes, use the same

LOGMODE that you normally use.

Because the release empty pages utility runs in single user mode, the only way to

trace it is with the TRACDBSS, TRACDSC, and TRACWUM initialization

parameters. (The TRACE operator command cannot be used in single user mode.)

If you are using tracing, you may want to enter your own CMS FILEDEF and

LABELDEF commands before invoking SQLRELEP. These optional CMS FILEDEF

and LABELDEF commands are described in the VM/ESA: CMS Application

Development Reference for your VM system.

For example, to release the empty pages on dbspace 1 for the PRODX database,

you might enter:

SQLRELEP D(PRODX) NUM(1) PARM(LOGMODE=A)

The release empty pages utility directs messages to SYSPRINT. If you do not

supply a FILEDEF command for SYSPRINT, SQLRELEP assigns SYSPRINT to the

terminal. This FILEDEF command directs the utility’s messages to the CMS file

REORG PRT A:

FILEDEF SYSPRINT DISK REORG PRT A (RECFM FBA LRECL 121 BLOCK 121)

The utility prints informational messages that describe what actions

it has taken.

If the release empty pages utility abnormally ends, the changes made to the

directory cannot be rolled back because directory changes are never logged. To

ensure the consistency of the database, a restore should be done if a failure occurs

in SQLRELEP.

A database archive should be taken after the release empty pages utility completes

to ensure unexpected storage pool full situations do not occur during restore.

Consider the following example:

1. You take a database archive with LOGMODE=L

2. You release empty pages on dbspace A, preventing a potential short on storage

situation for storage pool X where it resides.

3. Inserts are made to tables in dbspace B, which is also in storage pool X.

260 Database Administration

4. A restore of the archive taken in step 1 is done. This forces a log archive.

After the database restore completes, the directory is at the same state as before

empty page processing was run. The log archive created in step 4 is applied but it

does not contain information about release empty pages processing. Therefore,

storage pool X is near a short on storage condition. When the insert statements are

applied from the log archive, the database manager needs to use free pages in

storage pool X. This could lead to a storage pool full condition that did not occur

earlier.

SQLDBID EXEC

The SQLDBID EXEC displays the name of the default application server that has

been established by the SQLINIT EXEC.

Figure 64 shows the format of the SQLDBID EXEC.

 The SQLDBID EXEC resides on the production minidisk. The SQLDBID EXEC

displays the name of the default application server that will be accessed if the

resource adapter bootstrap on the A-disk is used.

The SQLDBID EXEC does no more than display information. If the name of the

application server displayed is not the one you want to access, you must rerun the

SQLINIT EXEC.

If you specify the LIFO or FIFO parameters, the information provided by the

SQLDBID EXEC is stacked onto the most recently created buffer of the program

stack (system provided data queue). If you specify the FIFO parameter, the

information is stacked on a first in, first out basis. If you specify the LIFO

parameter, the information is stacked on a last in, first out basis. If neither

parameter is specified, message ARI0320I, specifying the application server name,

is issued.

SQLRMEND EXEC

The SQLRMEND EXEC manages the communication links between an application

program and an application server. It does this in two ways:

v If you have more than one program called from an EXEC, SQLRMEND can

ensure the integrity of each program by dropping the link used by the current

program, or dropping the resource adapter code which drops all links between

all programs and all application servers they access

v If you have one program, SQLRMEND can drop the resource adapter code to

free storage from your virtual machine.

v If your program runs the CMS subset, a ROLLBACK or COMMIT of all LUWs is

prevented. This is to ensure that any LUWs in the native CMS MODE are not

affected.

►► SQLDBID

LIFO

FIFO

 ►◄

Figure 64. SQLDBID EXEC

Appendix B. CMS EXECs 261

Usually the resource adapter code and control blocks are not dropped and

outstanding work is not committed until the end of the VM command. When

programs are invoked from within EXECs, the “end of command” is at the end of

the EXEC, not the end of the program. If you want to drop the resource adapter

code or perform COMMIT/ROLLBACK processing at the end of a program (not at

the end of the EXEC), you must run the SQLRMEND EXEC. Figure 65 shows the

format of the SQLRMEND EXEC.

 The SQLRMEND EXEC resides on the production minidisk.

The SQLRMEND EXEC can be used to drop the DB2 Server for VM resource

adapter code and its control blocks from within the DMSFREE (user free storage)

area of a user’s virtual machine. It allows users who invoke more than one

program from within an EXEC to free the storage used by the resource adapter.

The storage can then be used by other programs.

The SQLRMEND EXEC can also be used to perform COMMIT/ROLLBACK

processing on all outstanding work. It allows users who invoke more than one

program from within an EXEC to COMMIT or ROLLBACK all outstanding work

before the next program is executed.

You may have separate logical units of work active at one time. You could do this

by having one or more programs running in separate CMS Work Units. When you

use SQLRMEND in this situation, the second option (RELEASE, KEEP, or ALL)

determines which CMS Work Units are affected.

Note: You cannot use COMMIT ALL or ROLLBACK ALL in CMS subset mode to

prevent the user from affecting any work done previously in a normal CMS

mode. The SQLRMEND EXEC will not allow these parameters in CMS

subset mode.

COMMIT RELEASE

is the default. Specifies the currently active LUW within the active work unit is

to be committed, the communication link to be released. Resource adapter code

is dropped only if there is just one CMS Work Unit.

 If you have more than one CMS Work Unit, only the current LUW is

committed, and the link between the program and the database it is accessing

is dropped.

COMMIT KEEP

specifies the active LUW within the active work unit is to be committed and

the communication link and the resource adapter code are to be kept.

COMMIT ALL

specifies all active LUWs for all suspended and active work units are to be

committed, the communication link(s) to be released, and the resource adapter

code is to be dropped.

►►

SQLRMEND
 COMMIT

ROLLBACK
 RELEASE

KEEP

ALL

►◄

Figure 65. SQLRMEND EXEC

262 Database Administration

ROLLBACK RELEASE

specifies the active LUW in the active work unit is to be rolled back and the

communication link is to be released. Resource adapter code is dropped only if

there is just one CMS Work Unit.

 If you have more than one CMS Work Unit, the current link between the

program and the application server it is accessing is dropped, and the current

logical unit of work is rolled back.

ROLLBACK KEEP

specifies the currently active LUW in the active work unit is to be rolled back

and that the communication link and the resource adapter code are to be kept.

ROLLBACK ALL

specifies all active LUWs for all suspended and active work units are to be

rolled back, the communication link(s) to be released, and the resource adapter

code is to be dropped.

COMMIT

is equivalent to COMMIT RELEASE.

RELEASE

is equivalent to COMMIT RELEASE.

ROLLBACK

is equivalent to ROLLBACK RELEASE.

KEEP

is equivalent to COMMIT KEEP.

ALL

is equivalent to COMMIT ALL.

 The KEEP option will keep the communication link. Therefore if you want to

access an application server again from within the EXEC, your next program will

be able to use the same SQL connection (user ID and application server) without

issuing an explicit CONNECT.

Unless you are maintaining more than one CMS Work Unit, the RELEASE option

will drop the communication link and the resource adapter code. Only the storage

used for the resource adapter control blocks will be freed. If you want to access the

DB2 application server again from within the EXEC, you do not need to enter

anything to get the resource adapter code back into storage. Just invoke the DB2

Server for VM application. The resource adapter code will automatically be

reloaded.

If you can have more than one CMS Work Unit, the RELEASE option drops the

current link. Logical units of work in other CMS Work Units are still active.

Example

The following example is a portion of an EXEC that runs in a VM system, and

invokes two programs. The second program runs in a separate CMS Work Unit.

After it has completed, the SQLRMEND EXEC is invoked with the COMMIT ALL

option, which commits the logical units of work active in each program, drops

both links, and frees the storage used by the resource adapter.

 •

 •

 •

EXEC SQLINIT DB(DB01) ←Set up access to DB01 in first work unit

SQLPROG1 ←Run program that accesses DB01

Appendix B. CMS EXECs 263

EXEC SQLINIT DB(DB02) ←Set up access to DB02 in second work unit

SQLPROG2 ←Run program that accesses DB02

EXEC SQLRMEND COMMIT ALL ←commits both logical units of work, drops

 both links, and drops resource adapter

The SQLINIT EXEC is invoked to switch application servers for the second

program.

ARISDBHD EXEC

The ARISDBHD EXEC deletes SQL/DS HELP text, including administrator

supplied topics, for one or more languages. It does not delete the message

repository.

To run the ARISDBHD EXEC, you must have:

v Read access to the SQL/DS service minidisk or SFS directory

v Read access to the SQL/DS production minidisk or SFS directory

v The connect password for SQLDBA.

 The parameters of the ARISDBHD EXEC are as follows:

Dbname(dbname)

Replace dbname with the name of the database in which the HELP text is to

be deleted.

When you run the ARISDBHD EXEC:

1. Specify which HELP text languages to delete.

2. Confirm that you want to delete the HELP text for the specified languages.

3. Execute the delete procedure.

Step 1 When you invoke the ARISDBHD EXEC, you will be prompted for the

connect password for SQLDBA. After entering the password, the contents

of the SYSLANGUAGE table are reformatted and displayed. Specify the

language key for each language whose HELP text you wish to delete

(separated by commas or blanks) or ALL to specify all HELP text for all

languages in the database.

 If you decide to stop the procedure at this point, enter QUIT.

 Each time you select a language, it is flagged on the screen; a null entry

will process your selections.

Step 2 The languages that you indicated for deletion are displayed on the next

screen. Confirm that you want to delete all these languages by entering

YES. To exit from the procedure without deleting any HELP text languages,

enter NO.

Step 3 When prompted, enter the owner ID and virtual address of the CMS HELP

text for the language specified.

 If you know that there is no CMS HELP text for the language specified,

enter SKIP to bypass the language.

►► ARISDBHD Dbname(dbname) ►◄

264 Database Administration

If you accidentally delete the CMS HELP text for a different language by

entering the wrong virtual address, you can restore the environment by

executing the ARISDBMA EXEC for the deleted language and rerunning

this EXEC with the correct address.

If you wish to delete an entire language (both the messages and the HELP text),

use the ARISDBLD EXEC instead. The ARISDBHD EXEC deletes both ISQL help

and CMS help. This EXEC displays a list of currently installed languages, which

may contain languages that have already had their help deleted but are still active

(that is, are listed in the SYSLANGUAGE table and have the appropriate message

repository available). You will be prompted to select the HELP text languages for

deletion. You should not specify languages whose HELP text has already been

deleted. Since this EXEC cannot be used to delete a message repository, the

SYSLANGUAGE table and the ARISNLSC MACRO will not be updated in any

way. This EXEC will not affect the default language setting.

ARISDBLD EXEC

The ARISDBLD EXEC deletes the SQL/DS messages and HELP text, including

administrator supplied topics, for one or more languages.

To run the ARISDBLD EXEC, you must have:

v Read access to the SQL/DS service minidisk or SFS directory

v Read access to the SQL/DS production minidisk or SFS directory

v The connect password for SQLDBA.

 The parameters of the ARISDBLD EXEC are as follows:

Dbname(dbname)

Replace dbname with the name of the database in which the messages and

HELP text are to be deleted.

When you run the ARISDBLD EXEC it prompts you to:

1. Specify which languages to delete

2. Determine which is to become the new default language, if the current default

language is to be deleted, and two or more languages will remain on the

system

3. Confirm that you want to delete the messages and HELP text for the specified

languages.

Step 1 When you invoke the ARISDBLD EXEC, you will be prompted for the

connect password for SQLDBA. After entering the password, the contents

of the SYSLANGUAGE table are reformatted and displayed. Specify the

language key for each language whose HELP text you wish to delete

(separated by commas or blanks).

 If you decide to stop the procedure at this point, enter QUIT.

 Each time you select a language, it is flagged on the screen; a null entry

will process your selections.

Step 2 To delete the current default language with two or more languages

►► ARISDBLD Dbname(dbname) ►◄

Appendix B. CMS EXECs 265

remaining on the system, you must specify which of the remaining

languages will be the new default language. When the current default

language is flagged for deletion, a list of the remaining languages and keys

is displayed. Specify the key for the new default language.

 If only one language remains on the system, it will automatically become

the new default language.

Step 3 The languages that you flagged for deletion are displayed on the next

screen. Confirm that you want to delete all these languages by entering

YES. To exit from the procedure without deleting any HELP text languages,

enter NO.

Step 4 When prompted, enter the owner ID and virtual address of the CMS HELP

text for the language specified.

 If you know that there is no CMS HELP text for the language specified,

enter SKIP to bypass the language.

 If you accidentally delete the CMS HELP text for a different language by

entering the wrong virtual address, you can restore the environment by

executing the ARISDBMA EXEC for the deleted language and rerunning

this EXEC with the correct address.

A minimum of one language must be left on the ARISNLSC macro and the

SQLDBA.SYSLANGUAGE table; it is not possible to delete all the languages.

For each language being deactivated, the following occurs:

v The ARISNLSC MACRO is updated. If the current default language has been

marked for deletion, you must specify a new default language.

v The message repository for this language is deleted from the production

minidisk or directory.

v The ISQL HELP text is deleted by updating the SYSTEXT2 table.

v The ARISDBMC EXEC is invoked to delete CMS help.

SQLLEVEL EXEC

The SQLLEVEL EXEC displays the SQL/DS release level that is installed. For

example:

 To run the SQLLEVEL EXEC, you must have:

v Read access to the SQL/DS service minidisk or SFS directory

v Read access to the SQL/DS production minidisk or SFS directory.

 The parameters for the SQLLEVEL EXEC are as follows:

RELMOD

If you include this parameter, the EXEC places the version, release, and

modification levels in the CMS stack. (These values are all integers.)

 *** SQL/DS VERSION 7 RELEASE 1 MODIFICATION 0 ***

►► SQLLEVEL

RELMOD
 ►◄

266 Database Administration

Appendix C. Querying the Status of an Application (VM Only)

SQLQRY is implemented as a CMS immediate command and enables you to query

the status of the application that you are currently running on the user machine. It

is initialized by the DB2 Server for VM resource adapter when the first database

statement is processed, and can be issued while your application is running. Since

it is implemented as a CMS immediate command, it can be used even when your

application is not accepting other input. See the VM/ESA: CMS User’s Guide

manual for more information about CMS immediate commands.

The SQLQRY command is particularly useful if problems arise while you are

switching between application servers. In these cases, use SQLQRY to determine

the application server to which you are currently connected.

Notes:

1. You can only enter the SQLQRY command from the user machine after the

resource manager has been loaded and while an application is running.

2. You cannot use the SQLQRY command if you are using the SYNChronous(YES)

option with the SQLINIT EXEC, if you are not receiving CP messages (for

example, if you specified CP SET MSG OFF), or if your application has locked

the keyboard. See “SQLINIT EXEC” on page 243 for information on the

SYNChronous(YES) option.

The following information is displayed at the terminal when you enter the

SQLQRY command:

EXTNAME

displays the user ID of the application requester to which you are currently

connected. It also displays the CMS Work Unit number, if CMS Work Units

are in use.

RDBMS

displays the name, class, and release level (version, release, and

modification level) of the application server being accessed. If the

Protocol(DRDA) or Protocol(AUTO) option is specified with the SQLINIT

EXEC and the SQLQRY command is issued before handshaking (the

process of establishing a connection) is completed, “n/a” will be displayed

for both the class and release level of the application server. If the

Protocol(SQLDS) option is specified with the SQLINIT EXEC and the

SQLQRY command is issued, “SQLDS/VM” will be displayed for the

application server class and “n/a” will be displayed for the application

server release level, because handshaking does not take place. See

“SQLINIT EXEC” on page 243 for information on the Protocol parameter.

STATUS

displays the communication state. COMM indicates that the Work Unit

sent an SQL statement to the database machine and has been waiting for a

reply since the time shown. APPL indicates that the Work Unit returned

control to the application at the time shown. VRA indicates that the VM

Resource Adapter is processing your request.

LUWID

displays the logical unit of work identifier, which uniquely identifies an

LU6.2 conversation. Its value is

netid.luname.instance_number.sequence_number, where netid and luname are up

© Copyright IBM Corp. 1987, 2007 267

to 8 characters long, instance_number is 12 characters long, and

sequence_number is 4 characters long. LUWID is only used for conversations

that use the AUTO and DRDA Protocol options. If the middle portion of

the LUWID contains *IDENT, then the application server is a local one or

is in a TSAF collection; in these cases, no LU name and TPN are displayed.

If TCP/IP is being used, the LUWID has the format

IPADDRESS.PORT.INSTANCE_NUMBER, where IPADDRESS is 8

characters long, PORT is 4 characters long, and INSTANCE_NUMBER is 12

characters long.

LU displays the logical unit name, if the access is through VTAM.

TPN displays the transaction program name. Its character and hexadecimal

versions are both displayed. For a DB2 application server, this is the same

as the resource ID.

TCPIP displays the IP address of the target host system. It is only displayed when

TCP/IP is being used.

PORT displays the port number of the target application server. It is only

displayed when TCP/IP is being used.

Example

Figure 66 displays sample output from an SQLQRY command issued in a VM/ESA

environment with Protocol(AUTO) and two active CMS Work Units.

 You can have multiple active CMS Work Units in a user machine, each accessing

an application server. In this example, information is displayed for two CMS Work

Units.

EXTNAME contains the user ID of the application requester, concatenated with the

CMS Work Unit number.

Because Protocol(AUTO) is used, a unique LUWID is assigned to each

conversation.

v Work Unit #1:

11:09:51 * MSG FROM SQLUSR6 : Status of Server Conversations on 2000-09-20.

11:09:51 * MSG FROM SQLUSR6 : EXTNAME = SQLUSR6.1

11:09:51 * MSG FROM SQLUSR6 : RDBMS = SQLRDB1 SQLDS/VM V6.1.0

11:09:51 * MSG FROM SQLUSR6 : STATUS = COMM TIME = 2000-09-20.11:09:43

11:09:51 * MSG FROM SQLUSR6 : LUWID = IBMNET01.*IDENT.45F2ABCD236D42.0001

11:09:51 * MSG FROM SQLUSR6 :

11:09:51 * MSG FROM SQLUSR6 : EXTNAME = SQLUSR6.2

11:09:51 * MSG FROM SQLUSR6 : RDBMS = IBMSTLDB2 DB2 V2.3.0

11:09:51 * MSG FROM SQLUSR6 : STATUS = APPL TIME = 2000-09-20.11:07:32

11:09:51 * MSG FROM SQLUSR6 : LU = STLMVS04 TPN = "6DB (X’07F6C4C2’)

11:09:51 * MSG FROM SQLUSR6 : LUWID = IBMNET01.TORLU001.45F2ABCD236DFE.0001

11:09:51 * MSG FROM SQLUSR6 :

11:09:51 * MSG FROM SQLUSR6 : EXTNAME = SQLUSR6.3

11:09:51 * MSG FROM SQLUSR6 : RDBMS = SQLMACGM SQLDS/VM V7.1.0

11:09:51 * MSG FROM SQLUSR6 : STATUS = COMM TIME = 2000-09-20.11:07:32

11:09:51 * MSG FROM SQLUSR6 : TCPIP = 9.21.23.32 PORT = 8030

11:09:51 * MSG FROM SQLUSR6 : LUWID = G9151720.L372.B1622DADEF8A

Figure 66. Sample Output from SQLQRY in a VM Environment with Protocol(AUTO) and

CMS Work Units

268 Database Administration

– Accesses a SQL/DS V3.3.0 application server called SQLRDB1. Since no LU

name or TPN are displayed, the application server must be a local one or is in

a TSAF collection. For the same reason, the middle portion of the LUWID is

*IDENT.

– Has a STATUS of COMM, indicating that it must have sent an SQL statement

to the application server and has been waiting for a reply (since 11:09:43, as

indicated by TIME).

v Work Unit #2:

– Accesses a DB2* V2.3.0 application server called IBMSTLDB2. The LU name

and TPN are displayed because the application server is in a VTAM network.

The DB2 application server uses the default DRDA TPN of X'07F6C4C2'.

– Has a STATUS of APPL, indicating that it has already returned control to the

application (at 11:07:32, as indicated by TIME).

v Work Unit #3:

– Accesses a DB2 Server for VM Version 7 Release 1 application server called

SQLMACGM. The HOST name and SERVICE port connection are displayed

because the application server is in a TCP/IP network.

Appendix C. Querying the Status of an Application (VM Only) 269

270 Database Administration

Appendix D. Maximums

The following tables describe logical data maximums and ISQL maximums.

Information about database maximums and system maximums can be found in the

DB2 Server for VM System Administration or DB2 Server for VSE System

Administration manual.

 Table 35. Logical Data Maximums

Restricted Parameter Maximum

Number of Tables per Database

Number of Indexes per Database

Number of Views per Database1

Number of Programs per Database1

Number of Tables per DBSPACE4

Number of Indexes per Table

Number of Columns per Table

Number of unique CCSID combinations per Table

Number of Columns per View3

Number of Columns in a SELECT-list

Length of a Row in a Table (Bytes)2

Number of Columns in an Index

Length of an Index Key (Bytes)

Number of Foreign Keys per Table

8,000,000

8,000,000

2,549,490

2,549,490

255

255

255

80

≈ 140

255

4,080

16

255

32,767

Notes:

1. The number of views plus the number of programs cannot exceed 2,549,490. This limit

assumes that you create the maximum number of dbspaces possible (9998) for

packages. Each dbspace can contain 255 packages. If you only create 10 dbspaces for

packages, you only have room for 2,550 packages.

2. Not including long field columns.

3. There is no specific limit on the number of columns in a view, because it depends on

many factors which affect this limit. A view of up to 140 columns should work in most

situations.

4. This maximum includes tables implicitly created as well as user-defined tables. Each

table with one or more long fields requires a table created implicitly to hold the long

fields. Long fields are LONG VARCHAR, LONG VARGRAPHIC, VARCHAR(n) where

n > 254, and VARGRAPHIC(n) where n > 127.

ISQL Maximums

 Table 36. ISQL Maximums

Restricted Parameter Maximum

Maximum number of columns in a query

Maximum length of a command (bytes)

45

2,048

The maximum number of columns in a query may be further reduced by the

width of the columns selected.

© Copyright IBM Corp. 1987, 2007 271

272 Database Administration

Appendix E. SQLGLOB Parameters (VSE Only)

DB2 Server for VSE stores certain environmental parameters in a VSAM file called

“SQLGLOB.” ISQL, DBSU and the preprocessors retrieve the CHARNAME and

DBCS values from this SQLGLOB file. The online and batch Resource Adapters

also access this file to determine certain environmental parameters as they

communicate with a remote application server.

The SQLGLOB VSAM file will hold both GLOBAL and USER parameters. There is

one set of global SQLGLOB parameters, which is the system-wide default values.

These global parameters are initially set with the IBM-supplied default values

during installation using the ARISGDEF procedure and subsequently updated

using the DSQG transaction. A CICS user can choose to override the global

SQLGLOB parameters by setting up his or her own user SQLGLOB parameters.

This is done by executing the DSQU transaction. There is one set of user

SQLGLOB parameters for every CICS user who executed the DSQU transaction. A

batch user can choose to override the global SQLGLOB parameters by setting up

their own user SQLGLOB parameters. This is done by executing the program

ARIRBGUD (JCL: ARISBGUD.Z) and specifying the Update (U) command and a

user ID. The ARIRBGUD program can also be used to update the global SQLGLOB

parameters, to query one of the user’s parameters or all of the user’s parameters,

or to delete a user’s set of parameters.

The SQLGLOB VSAM file is defined to the system and initially updated with the

IBM-supplied default global SQLGLOB parameter values during product

installation.

The SQLGLOB parameters and their initial IBM-supplied global default values are

described below:

QryBlksize

Specifies the block size used to return rows of data when DRDA blocking is

used to perform FETCHes or the block size of the buffer that will carry Inserts

to the database server. The number is specified in denominations of 1K and

can range anywhere between 1K and 32K.

 This option is only used when the application requester is communicating with

a remote application server.

 The IBM-supplied global default QryBlksize is 8K.

CHARNAME

Specifies the character set name, which determines the CCSID values for

CCSIDSBCS, CCSIDMIXED and CCSIDGRAPHIC used by the application

requester, and determines how ISQL and the preprocessors fold characters

from lowercase to uppercase. Its value must be a valid character set name,

such as those found in the CHARNAME column of the SYSTEM.SYSCCSIDS

table.

 This value is used by ISQL, DBSU, and the preprocessors instead of the value

currently found in the SYSTEM.SYSOPTIONS table.

 The IBM-supplied global default CHARNAME is INTERNATIONAL.

DBCS

Specifies whether DBCS character handling of SO/SI pairs is done or not. This

© Copyright IBM Corp. 1987, 2007 273

value is used by ISQL, DBSU, and the preprocessors instead of the value

currently found in the SYSTEM.SYSOPTIONS table.

YES

Specifies that error checking is done on DBCS data by the preprocessors,

DBSU and ISQL. If double byte characters are to be used, DBCS must be

set to YES.

NO

Specifies that error checking is not done on DBCS data by the

preprocessors, DBSU and ISQL.

 The IBM-supplied global default DBCS is NO.

SYNCPOINT

Specifies how commits or rollbacks are to be coordinated by the CICS/VSE

syncpoint manager.

1 Specifies a one-phase commit is to be done. In this case, the CICS/VSE

sync point manager is not involved and unprotected APPC conversations

are used.

2 Specifies a two-phase commit is to be done. In this case, protected APPC

conversations will be used to connect to the DRDA server and the

CICS/VSE sync point manager will be used to coordinate two-phase

commits. If a user is updating a remote server and other CICS resources

which participate in two-phase commit within a logical unit of work,

SYNCPOINT must be set to 2.

 This option is only used when the online CICS application requester is

communicating with a remote application server through SNA.

 The IBM-supplied global default SYNCPOINT is 1.

TRACERA

Specifies a two digit number (nn) which specifies the parts of the Batch and

Online Resource Adapter that are to be traced and the level of the trace. Trace

data is collected only when the application is connected to a remote server. The

positional digits correspond to the following Resource Adapter subcomponents

and functions:

v Resource Adapter control flow

v Communications.

0 Tracing is turned off.

1 Tracing is done in limited detail.

2 Tracing is done in greater detail.

 TRACERA is ignored on local connections.

 The IBM-supplied global default TRACERA is 00.

TRACEDRRM

Specifies a four digit number (nnnn) which specifies the parts of the DRRM

component that are to be traced and the level of the trace. Trace data is

collected only when the application is connected to a remote server. The

positional digits correspond to the following DRRM subcomponents and

functions:

v Parser

274 Database Administration

v Generator

v Dictionary

v RDIIN Manager.

0 Tracing is turned off.

1 Tracing is done in limited detail.

2 Tracing is done in greater detail.

 TRACEDRRM is ignored on local connections.

 The IBM-supplied global default TRACEDRRM is 0000.

TRACECONV

Specifies a 1 digit number (n) which specifies that the data conversion

component is to be traced and the level of the trace. Trace data is collected

only when the application is connected to a remote server.

0 Tracing is turned off.

1 Tracing is done in limited detail.

2 Tracing is done in greater detail.

 TRACECONV is ignored on local connections.

 The IBM-supplied global default TRACECONV is 0.

Communications Protocol

Specifies which network access method (SNA or TCP/IP) to use for remote

connections.

S Specifies that SNA is used for the connection to the remote application

server. In this case, the remote application server entry in the DBNAME

Directory should contain SNA routing information (SYSID and REMTPN).

S is the default for this field.

T Specifies that TCP/IP is used for the connection to the remote application

server. In this case, the remote application server entry in the DBNAME

Directory should contain TCP/IP routing information (TCPPORT and

TCPHOST, or TCPPORT and IPADDR).

 This option is only used when the online CICS application requester is

communicating with a remote application server. Note that Batch Applications

must always use TCP/IP to communicate with a remote server.

 The IBM-supplied global default COMMUNICATIONS PROTOCOL is SNA.

Transactions for Updating SQLGLOB Parameters

This section describes the various CICS transactions that a user can use to manage

parameters stored in the SQLGLOB VSAM file.

DSQG - Update global SQLGLOB Parm Transaction

The DSQG transaction is a CICS transaction which updates a subset of the global

SQLGLOB parameters.

Appendix E. SQLGLOB Parameters (VSE Only) 275

This must be defined as a secured transaction. That is, this transaction must be

defined with a TRANSEC value greater than 1, so that it cannot be initiated by any

user on the CICS system. Only authorized CICS users should be allowed to invoke

this transaction.

This transaction has five parameters as shown in the following syntax diagram. See

Appendix E, “SQLGLOB Parameters (VSE Only),” on page 273 for more

information on these DSQG parameters.

►► DSQG ,

CHARNAME,

 ,

QryBlksize,

 ,

DBCS,

 ,

SYNCPOINT,

 ►

►
Communications Protocol

 ►◄

Each time the DSQG transaction is executed, the global SQLGLOB parameters are

replaced as follows:

1. If the user specifies a parameter on the DSQG transaction, that parameter value

is used.

2. If a parameter is not specified on the DSQG transaction, the current global

SQLGLOB parameter is used.

The global SQLGLOB parameters remain in effect until they are explicitly changed.

The global SQLGLOB parameters can be changed by invoking the DSQG

transaction and specifying the new parameters, or by invoking program

ARIRBGUD (the SQLGLOB File Batch Update/Query Program) and specifying the

Update (U) command with the user ID *SYSDEF*.

DSQU - Update user SQLGLOB Parm Transaction

The DSQU transaction is a CICS transaction which initializes the SQLGLOB

parameters for the signed-on user ID. The user SQLGLOB parameters, like the

global SQLGLOB parameters, are stored in the SQLGLOB VSAM file.

This transaction has eight parameters, as shown in the following syntax diagram.

See Appendix E, “SQLGLOB Parameters (VSE Only),” on page 273 for more

information on these DSQU parameters.

►► DSQU ,

CHARNAME,

 ,

QryBlksize,

 ,

DBCS,

 ,

SYNCPOINT,

 ►

► ,

TRACERA,

 ,

TRACEDRRM,

 ,

TRACECONV,

Communications Protocol

 ►◄

Each time the DSQU transaction is executed, the user SQLGLOB parameters are

replaced. When a user reissues the DSQU transaction, the parameter value is

established as follows:

1. If the user specifies a parameter on the DSQU transaction, that parameter value

is used.

2. If a parameter is not specified on the DSQU transaction, the current user

SQLGLOB parameter is used. That is, the default is the value used on the most

recent DSQU transaction. However, if the user SQLGLOB parameter does not

exist, the global SQLGLOB parameter is used.

276 Database Administration

The user SQLGLOB parameters remain in effect until they are explicitly changed or

until they are explicitly deleted through a subsequent DSQD transaction. The user

SQLGLOB parameters can be changed by invoking the DSQU transaction and

specifying the new parameters or by invoking the program ARIRBGUD (SQLGLOB

File Batch Update/Query Program) and specifying the Update (U) command with

the appropriate user ID and new parameters. The user SQLGLOB parameters can

be deleted by invoking the DSQD transaction or by invoking the program

ARIRBGUD and specifying the Delete (D) command with the appropriate user ID.

All DRDA connections initiated by online CICS transactions, except those initiated

by ISQL, CBND, or any task that was started by the EXEC CICS START command,

will use the signed-on user’s SQLGLOB parameters, if they exist. If they do not

exist, these DRDA connections will use the global SQLGLOB parameters.

ISQL, CBND, and any task that was started by the EXEC CICS START command

will use the global SQLGLOB parameters for DRDA connections regardless of who

is signed on, with the following exceptions:

1. ISQL uses the user DBCS parameter to determine whether DBCS character

handling is required or not.

2. ISQL uses the user CHARNAME parameter to get the folding table to fold

input from the terminal from lowercase to uppercase, but it uses the global

CHARNAME for CCSID data conversion.

All DRDA connections initiated by VSE batch application programs will use the

SQLGLOB parameters (if they exist) of the user ID specified on the SQL

CONNECT statement. If they do not exist, these DRDA connections will use the

global SQLGLOB parameters.

DSQQ - Query SQLGLOB Parm Transaction

The DSQQ transaction is a CICS transaction which displays all the SQLGLOB

parameters. Which version of the SQLGLOB parameters (user or global) is

displayed depends on whether or not the userid parameter is specified on the

DSQQ command.

This transaction has one parameter, as shown in the following syntax diagram:

►► DSQQ

userid

 ►◄

userid

Specifies the user ID whose user SQLGLOB parameters are to be displayed.

 If the userid parameter is specified and the user SQLGLOB parameters of the

specified userid exist, DSQQ will display the user SQLGLOB parameters.

If the userid parameter is omitted, DSQQ will display the global SQLGLOB

parameters.

DSQD - Delete user SQLGLOB Parm Transaction

The DSQD transaction is a CICS transaction which deletes a signed-on user ID’s

user SQLGLOB parameters.

This transaction has no parameters, as shown in the following syntax diagram:

Appendix E. SQLGLOB Parameters (VSE Only) 277

►► DSQD ►◄

After the signed-on user’s user SQLGLOB parameters are deleted, any subsequent

DRDA connections done on behalf of this signed-on user ID will use the global

SQLGLOB parameters.

Batch Program to Update/Query the SQLGLOB File

If a “CONNECT user ID” is needed for a remote server, but the user ID does not

exist as a CICS user ID, then a batch program and JCL are supplied to allow the

SQLGLOB file to be updated for any user ID. This stand-alone program,

ARIRBGUD, allows a new user ID to be inserted or an existing user ID to be

updated, deleted or queried based on the input given to the program. Input for

this program is provided from SYSIPT “cards” (80 byte records).

Table 37 describes the layout of the input for ARIRBGUD:

 Table 37. ARIRBGUD Input Layout. Description

Start —

End

Column

#s

Field Name Usage

1 - 1 COMMAND ’Q’ = query, ’D’ = delete, or ’U’ = update. This field is

mandatory.

3 - 10 USERID This is the user ID in the SQLGLOB file that is to be operated

upon. This can be ’*’ if COMMAND is ’Query’. This field is

mandatory with an 8 byte maximum length.

12 - 29 CHARNAME Character Set Name; it determines CCSID values and folding (18

bytes maximum).

31 - 32 QRYBLKSIZE Block size used for Blocked Fetches, in integral ’K’ bytes, from 1

to 32.

34 - 34 DBCS ’Y’ if DBCS is allowed. ’N’ if DBCS is not allowed.

36 - 36 SYNCPOINT ’1’ or ’2’, for one- or two-phase COMMIT (DRDA 1 or DRDA 2).

This field is only used by the CICS Application Requester for

remote DRDA connections.

38 - 39 TRACERA Resource Adapter Trace flags, two digits, each either ’0’, ’1’ or ’2’.

41 - 44 TRACEDRRM DRRM Trace flags, four digits, each either ’0’, ’1’ or ’2’.

46 - 46 TRACECONV CONV Trace Flags, 1 digit, either ’0’, ’1’ or ’2’.

48 - 48 COMMPROTO Communications Protocol to be used for Remote database access:

’S’=SNA or ’T’=TCP/IP. Only used by CICS , not Batch.

Notes:

1. The COMMAND and USERID are always required.

2. For the Query COMMAND only, the user ID can be specified as ’*’, which

means display all user IDs in the SQLGLOB file.

3. For a Query or Delete COMMAND, all other fields are ignored.

4. For an Update COMMAND, fields that are left blank remain unchanged in an

existing record for the user ID. If the user ID does not already have an existing

record in SQLGLOB, then the System Default record values are used.

5. The System Default record (user ID = X'FF's) CANNOT be deleted by this

program. It CAN be updated or queried. Considering this user ID cannot be

278 Database Administration

displayed, it is displayed as the string ″*SYSDEF*″, and this string must be

used for the Update or Query COMMAND as the ″CONNECT User ID″.

6. Global SQLGLOB record parameters TRACERA, TRACEDRRM, TRACECONV

cannot be updated using this program, even if string ″*SYSDEF*″ is used as the

″CONNECT User ID″.

The following is an example of the SYSLST output from the program ARIRBGUD,

with a default of 120 print positions per print line. Input records are shown in bold

italics. Note that the first byte of the listing is a printer carriage control character.

The following is an example of the SYSLST output from ARIRBGUD, because of a

JCL error or because the file has never been created:

The JCL to execute the program ARIRBGUD (SQLGLOB File Batch Update/Query

Program) can be found in the IBM-supplied job ARISBGUD.Z.

Using Online and Batch Resource Adapter Tracing

The online (CICS) and batch Resource Adapter tracing is used for problem

analysis. You would normally not turn tracing on unless requested to do so by

IBM Support. The Online Resource Adapter trace output can be directed to a tape

or a disk file, which must be defined in the CICS start up JCL and predefined in

the CICS Destination Control Table. See the DB2 Server for VSE Program Directory

1ARIRBGUD - Batch Query/Update of DB2 for VSE SQLGLOB File 1999/12/31 23:59:59

0 CCSID CCSID CCSID QRYBLK SYNC ----TRACE--- COMM

 COMMAND USER CHARNAME SBCS MIXED DBCS SIZE DBCS POINT RA DRRM CONV PROTO

0---—> Q UUUUUUUU

 QUERY uuuuuuuu cccccccccccccccccc sssss sssss sssss 12K Y 1 00 0000 0 TCPIP

0---—> U UUUUUUUU 32 N 2 11 2222 S

 UPDATE UUUUUUUU cccccccccccccccccc sssss sssss sssss 32K N 2 11 2222 0 SNA

0---—> D UUUUUUUU

 DELETE UUUUUUUU

0---—> Q UUUUUUUU

 ARI0485I The user SQLGLOB parameters for user UUUUUUUU do not exist.

0---—> U BADPARM 99

 ARI0494E Invalid input parameter entered. Parameter = QRYBLKSIZE.

0---—> X JUNK STUFF

 ARI4599E Invalid COMMAND given, must be ’Q’(Query), ’U’(Update) or ’D’(Delete).

0---—> D *SYSDEF*

 ARI4598E You can not DELETE the system default record from the SQLGLOB file.

0---—> Q *

 ---—> List of all Users in the SQLGLOB file:

 QUERY uuuuuuuu cccccccccccccccccc sssss sssss sssss bbbbb d s tt tttt t ppppp

 QUERY uuuuuuuu cccccccccccccccccc sssss sssss sssss bbbbb d s tt tttt t ppppp

 ...

 ...

 ...

 QUERY *SYSDEF* cccccccccccccccccc sssss sssss sssss bbbbb d s tt tttt t ppppp

1ARIRBGUD - Batch Query/Update of DB2 for VSE SQLGLOB File 1999/12/31 23:59:59

0ARI0487E The SQLGLOB file does not exist.

Appendix E. SQLGLOB Parameters (VSE Only) 279

|

|

|

for details about setting up the Destination Control Table. The batch Resource

Adapter trace can only be directed to a tape file, which must be defined in the

batch job JCL. Tracing is only performed for application statements that access

remote DRDA servers.

Tracing is activated by updating the SQLGLOB file record for the SQL CONNECT

statement user IDs (or the default Online user IDs). A ’1’ or ’2’ character placed in

the TRACERA, TRACEDRRM or TRACECONV component field activates tracing

for the respective subcomponents. A ’0’ character in this field deactivates tracing.

You can use the DSQU CICS transaction or the ARIRBGUD program (described in

“Batch Program to Update/Query the SQLGLOB File” on page 278) to update the

SQLGLOB file records.

Online Trace File JCL

The following is JCL that must be placed in the CICS start up JCL to define the

trace output file:

v For a tape file:

// ASSGN SYS018,181

// TLBL ARITRAC,’name of trace file’

v For a disk file:

// ASSGN SYS018,DISK,VOL=volxxx,SHR

// DLBL ARITRAC,’name of trace file’,0,SD

// EXTENT SYS018,volxxx,n,n,nnn,nn

Batch Trace File JCL

The following is JCL that must be placed in the batch job JCL to define the trace

output file:

// ASSGN SYS005,181

// TLBL ARITRAC,’name of trace file’

Formatting the Online or Batch Trace File

After the trace is finished, you can invoke the trace formatting utility that comes

with the DB2 Server for VSE system. The above JCL must also be used when the

trace file is used as input to the trace formatter utility, except ’SYS004’ must be

used instead of ’SYS005’ or ’SYS018’ when your trace file is on tape. ’SYS018’ must

be used when your Online trace file is on disk. Note that the Batch trace file

cannot be on disk. See ″Formatting DB2 Server for VSE Trace Output″ in DB2

Server for VSE & VM Operation.

Before the Online Resource Adapter trace file can be formatted, it must be closed

using the following CICS command:

CEMT SET QUEUE(ARIT) DISABLED CLOSED

Before the batch Resource Adapter trace file can be formatted, it must be closed

using the following JCL statement ″after″ the batch job step being traced:

// MTC WTM,SYS005,2

280 Database Administration

|

|

|

|

|

|

|

Appendix F. Preparing the Schema Stored Procedures for

CLI/ODBC/JDBC/OLE DB Client Applications

The schema stored procedures are invoked internally by CLI/JDBC drivers. You

need to prepare the schema stored procedures before the database can be accessed

by CLI, ODBC, JDBC, or OLE DB client applications using DB2 UDB Version 8 or

later.

The following files are provided for the schema stored procedures:

 Table 38. Schema Stored Procedures Files

Schema Stored Procedure

Name TEXT/OBJECT File Name Package File Name

SQLCOLPRIVILEGES ARIXU01A ARIXU01B

SQLCOLUMNS ARIXU02A ARIXU02B

SQLFOREIGNKEYS ARIXU03A ARIXU03B

SQLPRIMARYKEYS ARIXU04A ARIXU04B

SQLPROCEDURECOLS ARIXU05A ARIXU05B

SQLPROCEDURES ARIXU06A ARIXU06B

SQLSPECIALCOLUMNS ARIXU07A ARIXU07B

SQLSTATISTICS ARIXU08A ARIXU08B

SQLTABLEPRIVILEGES ARIXU09A ARIXU09B

SQLTABLES ARIXU10A ARIXU10B

SQLGETTYPEINFO ARIXU11A ARIXU11B

SQLUDTS ARIXU12A ARIXU12B

Setting up Schema Stored Procedures for CLI/ODBC/JDBC/OLE DB

Client Applications

You must have at least one stored procedure server defined before running this

process. For information about setting up a stored procedure server, see “Setting

up a Stored Procedure Server” on page 210. For information about defining a

stored procedure server, refer to the ″CREATE PSERVER″ section of the DB2 Server

for VSE & VM SQL Reference manual.

For DB2 VM Server:

Run the IBM-supplied DBSUs, ARISPDEF MACRO and ARISPRLD MACRO. You

need to run the DBSUs when you are setting up the schema stored procedures for

the first time, unless instructions in the PTF state otherwise.

To run this DBSUs, you must:

1. Ensure that the connect ID has DBA authority.

2. Make appropriate changes to these DBSUs for your specific environment.

ARISPDEF:

© Copyright IBM Corp. 1987, 2007 281

v Defines tables needed (in addition to the system catalog tables) for the schema

stored procedures.

v Defines each of the schema stored procedures to the SYSTEM.SYSROUTINES

catalog table.

Once the DBSU runs successfully, you need to bind stored procedure bindfile(s)

against the target server to create the package. After successful binding, grant RUN

authority on the packages of the schema stored procedures to PUBLIC.

For DB2 VSE Server:

Run the IBM-supplied JCLs, ARISPGPH.Z, ARISPCTB.Z, and ARISPSET.Z. You

need to run the two jobs when you are setting up the schema stored procedures

for the first time. You only need to run ARISPGPH after applying service to the

schema stored procedure(s), unless instructions in the PTF state otherwise.

To run these jobs, you must:

1. Ensure that the connect ID has DBA authority.

2. Make appropriate changes to these JCLs for your specific environment.

ARISPGPH creates phase for each of the schema stored procedures.

ARISPCTB:

v Defines tables needed (in addition to the system catalog tables) for the schema

stored procedures.

v Defines each of the schema stored procedures to the SYSTEM.SYSROUTINES

catalog table.

After completion of above steps, you need to bind stored procedure

bindfile(bind-records) against the target server to create the required packages.

After successful binding, grant RUN authority on the packages of the schema

stored procedures to PUBLIC. In VSE, you must load stored procedure bindfiles

provided as A-member to VSAM bindfile. For more information on storing the

bind files in the VSAM bind file, see DB2 Server for VSE Program Directory.

For both DB2 VSE and VM servers, if you are using a LOCAL date or time format

with a different length than ISO, USA, EUR, and so on, you need to run the

IBM-supplied program ARIXUPTB before running the schema stored procedures

for the first time. You do not need to run this program again, as long as the length

of the date or the time format remains unchanged.

Notes:

1. DB2 Server for VSE and VM does not provide casting between types; for

example, there is no casting between integer and double, char and varchar,

smallint and integer, varchar(18) and varchar(128), and so on.

2. Because the concepts of catalogname to table and schemaname to stored

procedure do not apply to DB2 VSE and VM servers, NULLs are always

returned in these columns of the result sets. If catalogname (for all functions) or

schemaname (for SQLPROCEDURECOL and SQLProcedures) is passed from

the calling program with a value that is not NULL, empty, or ″%″ (for JDBC

only), the stored procedure on a DB2 VSE or VM server will return an empty

result set.

3. SQL procedures always return zeros in the NUM_INPUT_PARM and the

NUM_OUTPUT_PARM column.

282 Database Administration

4. SQL UDTs always return an empty result set, because user-defined types are

not currently supported by DB2 Server for VSE and VM.

5. If the wildcard character % (percent) is used when specifying the input value

for schemaname, procname, and paramname, it should be used at either the

beginning or the end of the string; otherwise, an unexpected result set may be

returned, because the referenced system catalog columns are not defined as

variable length. For more information, refer to the ″LIKE Predicate″ section of

the DB2 Server for VSE & VM SQL Reference manual.

6. The schema stored procedures for CLI/JDBC clients are written in C. C stored

procedures on DB2 Server for VSE and VM cannot handle input parameters

that are more than 254 characters long. For more information, refer to ″Stored

Procedure Parameters″ or ″Using SQL in C″ in the DB2 Server for VSE & VM

Application Programming manual. The input will be truncated. A message is

displayed on the stored procedure server to indicate the last keyword that is

accepted by the stored procedure.

Appendix F. Preparing the Schema Stored Procedures for CLI/ODBC/JDBC/OLE DB Client Applications 283

284 Database Administration

Notices

IBM may not offer the products, services, or features discussed in this document in

all countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10594-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1987, 2007 285

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Mail Station P300

522 South Road

Poughkeepsie, NY 12601-5400

U.S.A

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language,

which illustrates programming techniques on various operating platforms. You

may copy, modify, and distribute these sample programs in any form without

payment to IBM, for the purposes of developing, using, marketing, or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

286 Database Administration

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, or other countries, or both:

 AIX

 APL2

 AS/400

 C/370

 CICS

 CICS/VSE

 DATABASE 2

 DataHub

 DataPropagator

 DB2

 DFSMS/VM

 DRDA

 Distributed Relational Database Architecture

 Extended Services

 IBM

 Information Warehouse

 IBMLink

 MVS

 OS/2

 OS/400

 QMF

 RACF

 System/370

 SystemView

 VM/ESA

 VSE/ESA

 VTAM

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 287

288 Database Administration

Bibliography

This bibliography lists publications that are

referenced in this manual or that may be helpful.

DB2 Server for VM Publications

v DB2 Server for VSE & VM Application

Programming, SC09-2889

v DB2 Server for VSE & VM Database

Administration, SC09-2888

v DB2 Server for VSE & VM Database Services

Utility, SC09-2983

v DB2 Server for VSE & VM Diagnosis Guide and

Reference, LC09-2907

v DB2 Server for VSE & VM Overivew, GC09-2995

v DB2 Server for VSE & VM Interactive SQL Guide

and Reference, SC09-2990

v DB2 Server for VSE & VM Master Index and

Glossary, SC09-2890

v DB2 Server for VM Messages and Codes,

GC09-2984

v DB2 Server for VSE & VM Operation, SC09-2986

v DB2 Server for VSE & VM Quick Reference,

SC09-2988

v DB2 Server for VM System Administration,

SC09-2980

v DB2 Server for VSE & VM Performance Tuning

Handbook, GC09-2987

v DB2 Server for VSE & VM SQL Reference,

SC09-2989

DB2 Server for VSE Publications

v DB2 Server for VSE & VM Application

Programming, SC09-2889

v DB2 Server for VSE & VM Database

Administration, SC09-2888

v DB2 Server for VSE & VM Database Services

Utility, SC09-2983

v DB2 Server for VSE & VM Diagnosis Guide and

Reference, LC09-2907

v DB2 Server for VSE & VM Overivew, GC09-2995

v DB2 Server for VSE & VM Interactive SQL Guide

and Reference, SC09-2990

v DB2 Server for VSE & VM Master Index and

Glossary, SC09-2890

v DB2 Server for VSE Messages and Codes,

GC09-2985

v DB2 Server for VSE & VM Operation, SC09-2986

v DB2 Server for VSE System Administration,

SC09-2981

v DB2 Server for VSE & VM Performance Tuning

Handbook, GC09-2987

v DB2 Server for VSE & VM SQL Reference,

SC09-2989

Related Publications

v DB2 Server for VSE & VM Data Restore,

SC09-2991

v DRDA: Every Manager's Guide, GC26-3195

v IBM SQL Reference, Version 2, Volume 1,

SC26-8416

v IBM SQL Reference, SC26-8415

VM/ESA Publications

v VM/ESA: General Information, GC24-5745

v VM/ESA: VMSES/E Introduction and Reference,

GC24-5837

v VM/ESA: Installation Guide, GC24-5836

v VM/ESA: Service Guide, GC24-5838

v VM/ESA: Planning and Administration,

SC24-5750

v VM/ESA: CMS File Pool Planning,

Administration, and Operation, SC24-5751

v VM/ESA: REXX/EXEC Migration Tool for

VM/ESA, GC24-5752

v VM/ESA: Conversion Guide and Notebook,

GC24-5839

v VM/ESA: Running Guest Operating Systems,

SC24-5755

v VM/ESA: Connectivity Planning, Administration,

and Operation, SC24-5756

v VM/ESA: Group Control System, SC24-5757

v VM/ESA: System Operation, SC24-5758

v VM/ESA: Virtual Machine Operation, SC24-5759

v VM/ESA: CP Programming Services, SC24-5760

v VM/ESA: CMS Application Development Guide,

SC24-5761

v VM/ESA: CMS Application Development

Reference, SC24-5762

v VM/ESA: CMS Application Development Guide for

Assembler, SC24-5763

v VM/ESA: CMS Application Development Reference

for Assembler, SC24-5764

© Copyright IBM Corp. 1987, 2007 289

v VM/ESA: CMS Application Multitasking,

SC24-5766

v VM/ESA: CP Command and Utility Reference,

SC24-5773

v VM/ESA: CMS Primer, SC24-5458

v VM/ESA: CMS User’s Guide, SC24-5775

v VM/ESA: CMS Command Reference, SC24-5776

v VM/ESA: CMS Pipelines User’s Guide, SC24-5777

v VM/ESA: CMS Pipelines Reference, SC24-5778

v VM/ESA: XEDIT User’s Guide, SC24-5779

v VM/ESA: XEDIT Command and Macro Reference,

SC24-5780

v VM/ESA: Quick Reference, SX24-5290

v VM/ESA: Performance, SC24-5782

v VM/ESA: Dump Viewing Facility, GC24-5853

v VM/ESA: System Messages and Codes, GC24-5841

v VM/ESA: Diagnosis Guide, GC24-5854

v VM/ESA: CP Diagnosis Reference, SC24-5855

v VM/ESA: CP Diagnosis Reference Summary,

SX24-5292

v VM/ESA: CMS Diagnosis Reference, SC24-5857

v CP and CMS control block information is not

provided in book form. This information is

available on the IBM VM/ESA operating

system home page (http://www.ibm.com/
s390/vm).

v IBM VM/ESA: CP Exit Customization, SC24-5672

v VM/ESA REXX/VM User’s Guide, SC24-5465

v VM/ESA REXX/VM Reference, SC24-5770

C for VM/ESA Publications

v IBM C for VM/ESA Diagnosis Guide, SC09-2149

v IBM C for VM/ESA Language Reference,

SC09-2153

v IBM C for VM/ESA Compiler and Run-Time

Migration Guide, SC09-2147

v IBM C for VM/ESA Programming Guide,

SC09-2151

v IBM C for VM/ESA User’s Guide, SC09-2152

Virtual Storage Extended/Enterprise Systems

Architecture (VSE/ESA) Publications

v IBM VSE/ESA Administration, SC33-6505

v IBM VSE/ESA Diagnosis Tools, SC33-6514

v IBM VSE/ESA General Information, GC33-6501

v IBM VSE/ESA Guide for Solving Problems,

SC33-6510

v IBM VSE/ESA Guide to System Functions,

SC33-6511

v IBM VSE/ESA Installation, SC33-6504

v IBM VSE/ESA Messages & Codes, SC33-6507

v IBM VSE/ESA Networking Support, SC33-6508

v IBM VSE/ESA Operation, SC33-6506

v IBM VSE/ESA Planning, SC33-6503

v IBM VSE/ESA System Control Statements,

SC33-6513

v IBM VSE/ESA System Macros User’s Guide,

SC33-6515

v IBM VSE/ESA System Macros Reference,

SC33-6516

v IBM VSE/ESA System Utilities, SC33-6517

v IBM VSE/ESA Unattended Node Support,

SC33-6512

v IBM VSE/ESA Using IBM Workstations,

SC33-6509

CICS/VSE Publications

v CICS/VSE Application Programming Reference,

SC33-0713

v CICS/VSE Application Programming Guide,

SC33-0712

v CICS Application Programming Primer (VS

COBOL II), SC33-0674

v CICS/VSE CICS-Supplied Transactions, SC33-0710

v CICS/VSE Customization Guide, SC33-0707

v CICS/VSE Facilities and Planning Guide,

SC33-0718

v CICS/VSE Intercommunication Guide, SC33-0701

v CICS/VSE Performance Guide, SC33-0703

v CICS/VSE Problem Determination Guide,

SC33-0716

v CICS/VSE Recovery and Restart Guide, SC33-0702

v CICS/VSE Release Guide, GC33-1645

v CICS/VSE Report Controller User’s Guide,

SC33-0705

v CICS Transaction Server for VSE/ESA V1R1.0

Resource Definition Guide, SC33-0709

v CICS/VSE Resource Definition (Online),

SC33-0708

v CICS/VSE System Definition and Operations

Guide, SC33-0706

v CICS/VSE System Programming Reference,

SC33-0711

v CICS/VSE User’s Handbook, SX33-6079

v CICS/VSE XRF Guide, SC33-0704

290 Database Administration

CICS/ESA Publications

v CICS/ESA General Information, GC33-0803

VSE/Virtual Storage Access Method (VSE/VSAM)

Publications

v VSE/VSAM Commands and Macros, SC33-6532

v VSE/VSAM Introduction, GC33-6531

v VSE/VSAM Messages and Codes, SC24-5146

v VSE/VSAM Programmer’s Reference, SC33-6535

VSE/Interactive Computing and Control Facility

(VSE/ICCF) Publications

v VSE/ICCF Administration and Operation,

SC33-6562

v VSE/ICCF Primer, SC33-6561

v VSE/ICCF User’s Guide, SC33-6563

VSE/POWER Publications

v VSE/POWER Administration and Operation,

SC33-6571

v VSE/POWER Application Programming,

SC33-6574

v VSE/POWER Networking, SC33-6573

v VSE/POWER Remote Job Entry, SC33-6572

Distributed Relational Database Architecture

(DRDA) Library

v Application Programming Guide, SC26-4773

v Architecture Reference, SC26-4651

v Connectivity Guide, SC26-4783

v DRDA: Every Manager's Guide, GC26-3195

v Planning for Distributed Relational Database,

SC26-4650

v Problem Determination Guide, SC26-4782

C/370 for VSE Publications

v IBM C/370 General Information, GC09-1386

v IBM C/370 Programming Guide for VSE,

SC09-1399

v IBM C/370 Installation and Customization Guide

for VSE, GC09-1417

v IBM C/370 Reference Summary for VSE,

SX09-1246

v IBM C/370 Diagnosis Guide and Reference for

VSE, LY09-1805

VSE/REXX Publication

v VSE/REXX Reference, SC33-6642

Other Distributed Data Publications

v IBM Distributed Data Management (DDM)

Architecture, Architecture Reference, Level 4,

SC21-9526

v IBM Distributed Data Management (DDM)

Architecture, Implementation Programmer’s Guide,

SC21-9529

v VM/Directory Maintenance Licensed Program

Specification, GC20-1836

v IBM Distributed Relational Database Architecture

Reference, SC26-4651

v IBM Systems Network Architecture, Format and

Protocol Reference, SC30-3112

v SNA LU 6.2 Reference: Peer Protocols, SC31-6808

v Reference Manual: Architecture Logic for LU Type

6.2, SC30-3269

v IBM Systems Network Architecture, Logical Unit

6.2 Reference: Peer Protocols, SC31-6808

v Distributed Data Management (DDM) General

Information, GC21-9527

CCSID Publications

v Character Data Representation Architecture,

Executive Overview, GC09-2207

v Character Data Representation Architecture

Reference and Registry, SC09-2190

DB2 Server RXSQL Publications

v DB2 REXX SQL for VM/ESA Installation and

Reference, SC09-2891

C/370 Publications

v IBM C/370 Installation and Customization Guide,

GC09-1387

v IBM C/370 Programming Guide, SC09-1384

Communication Server for OS/2 Publications

v Up and Running!, GC31-8189

v Network Administration and Subsystem

Management Guide, SC31-8181

v Command Reference, SC31-8183

v Message Reference, SC31-8185

v Problem Determination Guide, SC31-8186

Distributed Database Connection Services

(DDCS) Publications

v DDCS User’s Guide for Common Servers,

S20H-4793

v DDCS for OS/2 Installation and Configuration

Guide, S20H-4795

VTAM Publications

Bibliography 291

v VTAM Messages and Codes, SC31-6493

v VTAM Network Implementation Guide, SC31-6494

v VTAM Operation, SC31-6495

v VTAM Programming, SC31-6496

v VTAM Programming for LU 6.2, SC31-6497

v VTAM Resource Definition Reference, SC31-6498

v VTAM Resource Definition Samples, SC31-6499

CSP/AD and CSP/AE Publications

v Developing Applications, SH20-6435

v CSP/AD and CSP/AE Installation Planning Guide,

GH20-6764

v Administering CSP/AD and CSP/AE on VM,

SH20-6766

v Administering CSP/AD and CSP/AE on VSE,

SH20-6767

v CSP/AD and CSP/AE Planning, SH20-6770

v Cross System Product General Information,

GH23-0500

Query Management Facility (QMF) Publications

v Introducing QMF, GC27-0714

v Installing and Managing QMF for VSE,

GC27-0721

v QMF Reference, SC27-0715

v Installing and Managing QMF for VM,

GC27-0720

v Developing QMF Applications, SC27-0718

v QMF Messages and Codes, GC27-0717

v Using QMF, SC27-0716

Query Management Facility (QMF) for Windows

Publications

v Getting Started with QMF for Windows,

SC27-0723

v Installing and Managing QMF for Windows,

GC27-0722

DL/I DOS/VS Publications

v DL/I DOS/VS Application Programming,

SH24-5009

COBOL Publications

v VS COBOL II Migration Guide for VSE,

GC26-3150

v VS COBOL II Migration Guide for MVS and

CMS, GC26-3151

v VS COBOL II General Information, GC26-4042

v VS COBOL II Language Reference, GC26-4047

v VS COBOL II Application Programming Guide,

SC26-4045

v VS COBOL II Application Programming

Debugging, SC26-4049

v VS COBOL II Installation and Customization for

CMS, SC26-4213

v VS COBOL II Installation and Customization for

VSE, SC26-4696

v VS COBOL II Application Programming Guide for

VSE, SC26-4697

Data Facility Storage Management

Subsystem/VM (DFSMS/VM) Publications

v DFSMS/VM RMS User’s Guide and Reference,

SC35-0141

Systems Network Architecture (SNA)

Publications

v SNA Transaction Programmer’s Reference Manual

for LU Type 6.2, GC30-3084

v SNA Format and Protocol Reference: Architecture

Logic for LU Type 6.2, SC30-3269

v SNA LU 6.2 Reference: Peer Protocols, SC31-6808

v SNA Synch Point Services Architecture Reference,

SC31-8134

Miscellaneous Publications

v IBM 3990 Storage Control Planning, Installation,

and Storage Administration Guide, GA32-0100

v Dictionary of Computing, ZC20-1699

v APL2 Programming: Using Structured Query

Language, SH21-1056

v ESA/390 Principles of Operation, SA22-7201

Related Feature Publications

v DB2 for VM Control Center Operations Guide,

GC09-2993

v DB2 for VSE Control Center Operations Guide,

GC09-2992

v DB2 Replication Guide and Reference, SC26-9920

292 Database Administration

Index

A
ABNEXIT macroinstructions 126

abnormal end 126, 127

accessing
checking which application

server 261

accounting facility 208

ACQUIRE DBSPACE 26

acquiring dbspace
for use 20

PRIVATE dbspace 22

PUBLIC dbspace 22

activate
all keys and constraints on a table 68

primary key 68

unique constraint 68

adding
a new DB2 user

to DB2 Server for VSE & VM

application server 81

to non-DB2 Server for VSE & VM

application server 81

alternate HELP text languages 139

column to a table 65, 189

dbspace 20

HELP text topic 143

index to a table 190

ALLUSERS 103

authorization ID 103

ALTER
restriction for view 45

ALTER TABLE
activating keys and constraints 67

adding column to a table 189

inactive key, table, constraint 66

altering
table

activating keys and constraints 68

authorization 64

deactivate primary/foreign

key 68

design 64

inactive key, table, constraint 66

application considerations
database 165

development
database support 165

PRIVATE dbspace 165

PUBLIC dbspace 166

maintenance 176

application development
support in DB2 Server for VSE 206

use of synonyms 173

application program
backing out data 131

building source code files 164

capability 162

checking code 174

code development 164

database consideration 165

application program (continued)
DB2 Server for VSE & VM

implementation 149

design
implementation alternatives 149

implementation

considerations 169

prototyping 162

development capability 162

development consideration 172

function prototyping 163

maintenance consideration 176

privilege 96

recovery from failure 123

report writing 157

runner 110

application requester
description 13

application server
access protocols 245, 254

connecting implicitly 97

connecting to 97, 100

controlling access to 90

default 84, 97

description 13

switching 99, 105

ARINEWUS 82

ARISISBT MODULE 250

ARISPRC utility 210

ARISRMBT MODULE 250, 251

ARISRMKC TEXT Q 251

arithmetic operation
binary 180

date/time arithmetic
performing operations 181

rules 181

using labeled duration expressions

in 181

decimal 179

floating point 180

arithmetic operator
in syntax diagrams xiii

atomic operation 122, 131

auditing security
loading information into a table 114

printing information 118

through the catalog tables 111

tracing 111

authority
changing 191

CREATE TABLE 90

granting 92

revoking 94

type
CONNECT 90

DBA 41, 89, 92, 166

RESOURCE 41, 90, 166

SCHEDULE 90

authorization
change 191

check 112

authorization (continued)
retrieving catalog information

about 55

authorization ID
ALLUSERS 103

AUTOCOMMIT 131

AVGCOLLEN 226

AVGROWLEN 225

B
back-up copy of a database 135

backing out data during an ISQL

session 130

batch job 149

batch partition 149

batch/interactive
application consideration 169

application processing 203

application security 169

capability 149

error handling 170

recovery 169

binary arithmetic operation 180

BIT data
choosing subtype 34

blocking
backouts initiated by application

programs 132

preprocessor BLOCK option 129

bootstrap module 251

building source code files 164

C
CANCEL 129, 131

CASCADE
DELETE considerations 7

cascading REVOKE 96

catalog
used in database design 17, 53

catalog table
authorities and privileges 89, 91

information about privileges 55

reorganizing the indexes on 77

securing 109

support 176

SYSCATALOG 53

used in database design 53, 163

view 55

CCSID (coded character set identifier)
application programming for

distributed data 14

moving data between application

servers 71

performance overhead 14

specifying for a column 30, 35

changing
data relationships 190

referential integrity relationships 190

© Copyright IBM Corp. 1987, 2007 293

changing (continued)
table design 64, 65

unique constraints 190

user passwords 109

users of data 191

CHAR
choosing rather than VARCHAR 34

character data
choosing between VARCHAR and

CHAR 34

character subtype
choosing BIT 34

choosing MIXED 34

choosing SBCS 34

specifying for a column 30

CHARNAME parameter of exec 246,

255

CHECK option of preprocessor 174

checking
application code 174

choose
in syntax diagrams xiv

CICS (Customer Information Control

System)
CISQ transaction 128

CONNECT considerations 103

CSSN transaction 103

DFHPCT macroinstruction 128

DFHSIT macroinstruction 128

dynamic transaction backout

program 122, 172

GCBE abend code 128

implicit CONNECT support 103

interactive application support 206

ISQL support 207

multiple application servers 127

option 205

pseudoconversational transaction 172

recovery processing 172

sign on 171

synchronization points 127

SYNCPOINT 172

transaction processing 150, 204

transaction program 150

user identification and

verification 171

CICS macroinstruction
DFHPCT 128

DFHSIT 128

CICSUSER default user ID 103

CISQ transaction 128

CLUSTERED index
See clustering index

clustering index
description 25, 48

when to create 52

CMS (Conversational Monitor System)
subset mode 152

work unit 122

code development 164

collection 193

column
adding 189

changing name in a view 44

data storage 225

data types for 32

dropping 189

column (continued)
maximum number in a query 271

more than 254 bytes 52

multicolumn key 5

naming 4

naming convention 31

null value 4

overhead 225

primary key 4

retrieving catalog information 54

specifying
CCSID 30, 35

character subtype 30

data type 30

field procedure 31

name 30

valid data type 4

command
AUTOCOMMIT 131

CANCEL 129, 131

DBS SET LINEWIDTH 150

FORCE 135

FORMAT 156

INPUT 46, 60

length maximum in ISQL 271

PRINT 156

REPRO (VSAM) 61

SET ERRORMODE 170

SHOW DBSPACE 78

comment
retrieving from catalog tables 56

storing 55

COMMENT ON statement 56

COMMIT WORK 121

in application programs 172

configurations of the DB2 Server for VM

system 193, 201

CONNECT 99, 171

explicit 89

implicit 89

to switch databases 197

CONNECT authority 90

connecting
to an application server 97, 100

to application server
CICS transactions 103

explicitly 99

implicitly 97, 99

connecting to the DB2 Server for VSE &

VM system 171

considerations for
application database 165

creating a table 39

creating indexes 51

deferred constraint enforcement 69

DELETE, INSERT, UPDATE 7

normalization 29

referential integrity 39

row size 29

unique constraints 38

constraint
unique 5

comparison to unique index 38

considerations in defining 38

description 38

instead of unique index 48

controlling access to
application server 90

data 166

conventions
highlighting xi

syntax diagram notation xiii

Conversational Monitor System
See CMS (Conversational Monitor

System)

converting
data types 177

converting data types 172

copying
a table 62

data from one table to another 61

copyright notice in HELP text 147

CREATE INDEX
PCTFREE clause 48

using the statement 47

CREATE TABLE 28, 90, 176

CREATE VIEW
using the statement 42

WITH CHECK OPTION 42

creating
back-up copy of a database 135

HELP text table 144

indexes
considerations 51

free space considerations 48

general information 47

key 51

ordering columns in key 48

to implement design 17

unique 48

primary key 38

restrictions in creating 44

restrictions on using 44

table
description 27

foreign key 39

primary key 39

referential constraints 39

referential integrity 39

to implement design 17

view
description 42

for multiple tables 43

for one table 43

new column names 44

restrictions on 44

to implement design 17

using several tables 43

CSSN transaction 103

D
data

access change 188

administration 176

authorization change 191

independence 176

moving 71

object 17

prototyping 162

recovery 17

structure change 188

supported conversions 176

294 Database Administration

data stream trace 247

Data System Control (DSC) 17

data type
choosing between CHAR and

VARCHAR 34

choosing between VARGRAPHIC and

GRAPHIC 34

conversion supported by the DB2

Server for VSE & VM system 172

DATE 35

DECIMAL 179

default 179

OVERFLOW error 179

precision and scale of result 180

defining, for columns 32

numeric data 32

specified when defining a column 30

supported conversions 176

TIME 35

TIMESTAMP 35

database
back-up copy creation 135

column 4

configurations
one machine, one database 194

one machine, two databases 195

several machines, different

processors 197

several machines, many

databases 196

defining 4

definition 193

design
analysis 163

documentation 163

generating test data 162

loading test data 162

modeling 162

normalizing a table 9

planning for distributed data 13

relationship 2

table 2

terminology 1

designing using DB2 Server for VSE &

VM catalog 53

entity 1

example configuration 194

example configurations
accessing from another

processor 199

one machine, one database 194

one machine, two databases 195

several machines, different

processors 197

several machines, many

databases 196

extent
See DBEXTENT

generation 17, 20

implementing the design 17

logical design 180

machine 193

maintaining consistency under

ISQL 174

maintenance
altering the design 57

procedure 77

database (continued)
maintenance (continued)

removing 58

removing tables 73

manager 193

moving 79

multiple 193

operating mode 194

physical
concept 19

recovery considerations 121, 137

recovery from user logic error 135

relationship 1

resetting data 136

resource adapter 193

service machine 193

support
for application development 165

for query/report writing 166

user machine 193

database administrator (DBA)
authority 166

Database Services utility (DBS utility)
application

error handling 170

recovery 170

security 170

connecting implicitly 98

copying a table 62

DATALOAD 172

DATAUNLOAD 172

failure 128

interactive processing 150

loading test data 172

maintenance of a database 77

message file 128

overview of uses 150

printing the HELP text 147

report writing 157

restriction for view 46

termination 128

testing SQL functions 164

to load data 59

under VSE/ICCF 59

UNLOAD/RELOAD
reorganizing data 150

resetting data 133

DATE data type 35

date duration
description 181

DATE parameter of exec 255

date/time arithmetic
See also arithmetic operation

performing date/time arithmetic

operations 37

rules for date/time arithmetic 37

using labeled duration expressions in

arithmetic operations 37

DATEFORMAT parameter of exec 246

DB2 Server for VM facility, used by

EXEC 158

DBA authority
description 92

introduction 89

to ALTER DBSPACE 74

DBCS parameter of exec 246, 255

DBEXTENT
description 18

DBNAME parameter of exec 244, 253,

258

dbspace
acquiring

identifying characteristics 22

identifying requirements 21

restricted 27

adding 20, 21

altering the design 73

application development 165

back-up 133

consideration for query user 167

defining 17, 20

description 19

estimating sizes of 223

free space, estimating 24

indexes 19, 235

mapping table to 21

pages 223

PRIVATE 21, 90, 166

PUBLIC 21, 166

referential integrity 19

releasing empty pages 75

removing 77

reorganizing to free storage pool

pages 74

requirement 20

resetting data 133

size estimating 23, 223

special
HELPTEXT 145, 167

ISQL 167

SAMPLE 167

SYS000n 133, 135

system 167

table in 19, 41

tables in 21

type 22

usage parameter 20, 22

use in testing 172

DCSSID parameter of exec 244, 258

DECIMAL
in column definition 32

storage 225

decimal arithmetic operation 179

default
in syntax diagrams xv

default application server 97

delete rule
CASCADE 7

dependent table 8

parent table 7

RESTRICT 7

SET NULL 7

deleting
a user 85

restriction for view 45

stored query 87

table 72

dependent table
description 7

dependently inactive table 66

designing DB2 databases
documentation and analysis 163

terminology 1

Index 295

developing application program 164

DFHPCT CICS macroinstruction 128

DFHSIT CICS macroinstruction 128

directory
description 17

distributed data
application programming 14

description 13

implications 15

limitations and restrictions 14

planning 13

DRDA protocol
access to application server 13

DATALOAD, DATAUNLOAD 72

EXTLUWID 113, 116

logical unit of work identifier 113

DROP DBSPACE 58, 86

DROP INDEX 86

DROP PACKAGE 87

DROP TABLE 57, 86, 189

DROP VIEW 86

dropping
column 189

dbspace 77

index for a table 190

resource adapter code 262

table 72, 189

DSC (Data System Control) 17

DUALLOG initialization parameter 137

dynamic
application backout 122

recovery from user errors 130

dynamic statement
extended 156, 158

support 156, 157

dynamic transaction backout program of

the CICS subsystem 122

E
editing

PRIVATE table 158

routine 161

entity 1

equijoin 5

error handling
batch and VSE/ICCF

applications 170

DBS Utility application 170

estimating
calculating PCTINDEX 235

dbspace size 23, 223

index size 236

length of a stored row 224

number of data pages in a

dbspace 227

number of header pages for

dbspace 226

storage for a table 224

storage pool size 23

example
accessing a database on another

processor 198

adding a column to a table 65

altering design of a table 64

changing parameters of a dbspace 74

changing user passwords 109

example (continued)
connecting to default application

server 97

connecting under authorization

ID 105

copying tables 62

establishing a default application

server 97

estimating the number of data pages

for a table 229

granting access to VSE guests 93

granting authorities 93

merging data from multiple tables 63

monitoring privileges 96

moving data between dbspaces 62

printing the HELP text 147

reloading the HELP Text 147

removing a dbspace 77

removing user from application

server 85

restricting access using views 106,

108

revoking authorities 94

running the DBS Utility 114

set up a new ISQL user 83

switching application server 99, 105

synonym usage in application

program development 173

typical security audit queries 117

unloading the

“PUBLIC”.“HELPTEXT”

dbspace 147

EXEC
ARISDBHD 264

ARISDBLD 265

authorization 266

SQLCIREO 258

SQLDBID 261

SQLGLOB 253

SQLINIT 97, 243

SQLLEVEL 266

SQLRMEND 126, 262

SQLSTART 250

syntax 243, 264, 265, 266

using DB2 Server for VM facility 158

using ISQL 152

EXPLAIN 163

explanation table 163

explicit
connect 99

CONNECT 89

extended dynamic statement 156, 158

EXTLUWID
DRDA protocol 113, 116

F
failure

See also recovery

application 121

DASD 121

DBS Utility processing 128

ISQL session 128

online application 127

preprocessor 129

subsystem 121

system 121

failure (continued)
user logic error 121

fast restore 137

field procedure
in comparisons 37

specified by FIELDPROC clause 35

specified when defining a column 31

using null values 31

when creating a table 35

FIELDPROC
clause of ALTER TABLE

statement 35

clause of CREATE TABLE

statement 35

parameters 35

file maintenance and reporting 150

filtered log recovery 130

fixed-length
rows 29

FLOAT data type of column 32

floating point arithmetic operation 180

FORCE 100, 135

foreign key
CREATE TABLE 39

description 7

planning for 7

FORMAT 156

fragment of syntax
in syntax diagrams xvi

free space
for index entries 48

in a dbspace 24

function
RETRIEVE 60

G
GCBE abend code 128

generation/loading of test data 162

GRANT 92, 95

GRANT SCHEDULE 91

granting
authority 92, 93

privilege 95

remote user 93

GRAPHIC
choosing rather than

VARGRAPHIC 34

in column definition 33

guest sharing, VSE 201

H
hardcopy output of HELP text

using DBS Utility 147

using ISQL 148

header page in a dbspace 24, 226

HELP text
adding a topic 143

copyright notice 147

creating your own tables 144

dbspace 167

enlarging the HELPTEXT

dbspace 145

in alternate languages 139

modification 139

296 Database Administration

HELP text (continued)
moving to another dbspace 147

printing the text 147

table 141

high-level-language program 149

highlighting
conventions xi

host variable
in syntax diagrams xiii

hypothetical change to data 191

I
implicit

connect 97

CONNECT 89

CONNECT support 103

inactive key
description 66

implicit 66

inactive table
description 66

INCLUDE 165

index
adding 190

avoiding on frequently updated

columns 53

CLUSTERED 48

CLUSTERING 48, 49, 52

creating 17, 47

description 47

dropping 190

duplicate key value 53

estimating size of 236

key
column order 47, 48

considerations 47, 51

location in dbspaces 20

maintenance 48

migration considerations 53

nonunique 53

pages in a dbspace 26, 235

PCTFREE consideration 48

performance considerations 52

primary key 39

reorganizing on catalog tables 77

restriction for view 45

retrieving catalog information

about 54

unique
creating 47

general description 48

when to use 52

index key
description 47

initializing a user machine
setting system defaults 252

INPUT 60

insert
restriction for view 45

rule
dependent table 8

for foreign key 40

for primary key 40

parent table 8

INSERT
with subselect 172, 189

INSERT with subselect 189

INTEGER data type of column 32

interactive application 149

Interactive Structured Query Language

(ISQL)
affected by implicit CONNECT 98

backing out 130

CONNECT considerations 102

database consistency 174

dbspace 167

EXEC using 152

FORMAT 156

INPUT 60

INPUT restrictions for views 46

maximums 271

PRINT 156

report writing 156

routine 151

testing SQL statements 163, 174

routines 167

session termination 128

setting up a new user 82

stored query 173

stored query to test SQL

statement 174

testing SQL statements 173

training new users 85

internal dbspaces
DASD needs for sorting 238

estimating size 238

ISQL EXEC 152

J
join

equijoin 5

path 5

K
kanji

language key 140

KEEP option
of preprocessor 191

key
language 139

multicolumn 5, 52

primary 4, 38

unique 4, 5

key-level locking 26

keyword
ALLUSERS 103

in syntax diagrams xiii

L
labeled duration

description 180

LANGKEY 140

language key 139

reserved ranges 140

when adding HELP text 144

LASTING GLOBALV file 250

LDATELEN parameter of exec 255

like
description 13

loading data
for new users 85

from a terminal 60

from CMS file 59

from other table 61

from sequential file 61

from virtual reader file 59

from VSAM file 61

into tables 59

using a test dbspace 172

using DBS Utility 162

using the DBS Utility 59

loading security audit information into a

table 114

local
definition 13

LOCK 74

LOCK parameter 26

locking
key-level 26

log
database information 17

description 17

recovery (filtered) 130

logical data design
index 47

logical data maximum 271

logical unit of work (LUW)
CICS considerations 103

description 121

general rules 123

recovery 121

logical unit of work identifier (LUWID)
DRDA protocol 113, 116

logical unit type 6.2 (LU 6.2)
security 81

LOGON procedure for implicit

connect 97

long field 52

LONG VARCHAR
in column definition 33

LONG VARGRAPHIC
in column definition 33

long-field value
overhead 226

storage 226

LTIMELEN parameter of exec 255

LUW
See logical unit of work (LUW)

M
macroinstruction, CICS

DFHPCT 128

DFHSIT 128

maintenance
application program 176

database 57, 77

database consistency 174

dbspace 73

procedure for a database 77

table 59

making the HELPTEXT dbspace

larger 145

managing stored procedure servers 213

many-to-many relationship 3

many-to-one relationship 3

Index 297

maximum
column

index 271

ISQL query 271

SELECT-list 271

table 271

view 271

foreign keys per table 271

indexes per database 271

indexes per table 271

length
index key 271

ISQL command (bytes) 271

row 271

logical data limits 271

programs per database 271

tables per database 271

tables per dbspace 271

values for ISQL 271

views per database 271

merging data from multiple tables 63

migration
index considerations 53

MIXED data subtype 34

modeling data designs 162

modifying
the online HELP in the database 139

moving the HELP text to another

dbspace 147

multicolumn key 5, 47

considerations 52

multiple
database 193

tables in a view 43

user mode 194

Multiple Language HELP Text

Support 139

N
NACTIVE column

of SYSDBSPACES 145

naming a table 28

new user support 81

NHEADER
changing 73

determining 24

nonrecoverable storage pool 23

normal form
first 9

fourth 11

second 9

third 10

normalization guidelines 29

normalizing a table 9

NOT NULL option
of CREATE TABLE 31

null
foreign key 8

value 4, 31

numeric data types 32

O
object

in a database 17

object (continued)
security 89

occurrence of an entity 1

one-time query 151

one-to-many relationship 3

one-to-one relationship 2

online
application recovery 127, 172

application security 171

HELP 139

transaction consideration 171

transaction processing 150, 204

operating mode 194

operator ID 103

optional
default parameter

in syntax diagrams xv

item
in syntax diagrams xiv

keyword
in syntax diagrams xv

overflow 178

OVERFLOW error in decimal arithmetic

operation 179

owner
description 95

P
package

performance of 188

page
DASD space 19

header, in a dbspace 24

parameter
CHARNAME 246, 255

DATE 255

DATEFORMAT 246

DBCS 246, 255

DBNAME 244, 253, 258

DCSSID 244, 258

LDATELEN 255

list for a field procedure 35

LOCK 26, 74

LTIMELEN 255

NHEADER 24, 73

PARM 258

PCTFREE 24, 74

PCTINDEX 26, 73

PROTOCOL 245, 254

QRYBLKSIZE 246, 255

QUERY 248, 257

RESET 249, 257

SSSNAME 248, 257

STACK 248, 257

STORPOOL 23, 73

SYNCHRONOUS 245, 254

TIME 255

TIMEFORMAT 247

TRACECONV 248, 256

TRACEDRRM 247, 256

TRACERA 247, 256

WORKUNIT 247, 255

parent table
description 7

parentheses
in syntax diagrams xiii

PARM parameter of exec 258

password
changing user’s 109

PCTFREE
changing 74

clause of CREATE INDEX

statement 48

creating an index 48

default for index 48

determining 24

reserved for an index 48

PCTINDEX 26, 73, 235

performance management
application programs 14

CLUSTERED index 49

multiple database considerations 200

periodic
back-up of critical data 133

query 151

physical database concept 19

placing table in dbspace 41

planning
distributing data 13

DRDA protocol 13

precision of decimal result 180

preparing a stored procedure to run 217

preprocessing programs
re-preprocessing 191

under development 164

with unauthorized statement 189

preprocessor
CHECK option 174

coding your own 149

KEEP option 191

termination 129

primary key
clause of CREATE TABLE

statement 38

CREATE TABLE 39

description 38

identifying 4

index 39

multicolumn 5

planning for 6

reorganizing index 68

PRINT 156

printing
report writing support 205

security audit information 118

the HELP text
using ISQL 148

using the DBS utility 147

PRIVATE dbspace
description 21

in application development 165

private query user data 166

PRIVATE table, editing 158

privilege
application program 96

GRANT option 95

granting 95

monitoring 96

remote user 96

revoking 85, 96, 109

table 94

user 94

view 94

298 Database Administration

PROCMXAB parameter 219

program
affected by implicit CONNECT 98

creator 98

privilege 96

runner 98, 110

programmed query 155

programmed report 157

PROTOCOL parameter of exec
AUTO 245, 254

DRDA 245, 254

SQLDS 245, 254

prototyping
application function 163

of data 162

pseudo-conversational transactions 172

PTIMEOUT parameter 218

PUBLIC dbspace 166

description 21

punctuation mark
in syntax diagrams xiii

Q
QRYBLKSIZE parameter of exec 246,

255

query
cost estimate 163

one-time 151

periodic 151

programmed 155

stored 151, 163, 174

to test 173

user data control 166

user identification 175

QUERY parameter of exec 248, 257

query/report writing 207

database support 166

implementation considerations 175

query/report writing capability 151

querying the status of an application
SQLQRY command 267

R
recoverable storage pool 23

recovery
application design 123

application failure 123

multiple user mode 126

single user mode 127

batch and VSE/ICCF application 169

concept 121

considerations 121, 137

DBS Utility application 170

DBS Utility failure 128

dynamic application backout 122

filtered log 130

ISQL failure 128

online application 127, 172

user error 129, 130, 133

within application program 131

referential constraint
description 39

referential integrity
activate foreign key 67

referential integrity (continued)
activate primary key 67

CREATE TABLE 39

dbspace 19

deactivate foreign key 68

deactivate primary key 68

deferred constraint enforcement 69

delete rule 40

dependently inactive table 66

description 7

explicitly inactive key 66

explicitly inactive table 66

foreign key 7

immediate constraint enforcement 68

implicitly inactive key 66

insert rule 40

performance considerations 69

planning for 6

primary key 6

primary key index 39

repairing violations 70

storage pool 18, 23

unique constraint 6

update rule 40

referential structure
description 39

relationship
many-to-many 3

many-to-one 3

multivalued 2

one-to-many 3

one-to-one 2

single-valued 2

table definition 2

REMARKS
column of SYSCATALOG 53

remote
access to DB2 Server for VSE &

VM 11

application server
administration 15

connecting implicitly 99

definition 13

distributed database 11

Remote Server Name
resolving to target database 106

removing
a user 85, 87

a user from a VSE guest 87

table 72

user machines 87

reorganize
dbspace 74, 224

index, primary key 68

indexes on the catalog tables 77

repeat symbol
in syntax diagrams xv

report writing
capability 156

printer support 205

through application program 157

through ISQL 156

through the DBS Utility 157

REPRO (VSAM) 61

request
SYNCPOINT 172

required item
in syntax diagrams xiii

reserved words
SQL xvii

RESET parameter of exec 249, 257

resetting
a database 136

a dbspace from a backup copy 135

data using DBS RELOAD

processing 133

database 137

resource adapter
ARISRMBT module 250

bootstrap module 251

dropping code 126, 262

for communication 193

keeping code 262, 263

RESOURCE authority 90, 166

RESTRICT 7

restriction
ACQUIRE DBSPACE 27

creating a view 44

using a view 44

retrieving
catalog information

authorization 55

on columns 54

on indexes 54

on tables 53

on views 55

comments in catalog tables 56

REVOKE 94, 96

REVOKE option
of preprocessor 191

revoking
a user’s password 85

CONNECT authority 85

privilege 85, 109

remote user 94

ROLLBACK
Batch/ICCF recovery 169

hypothetical question support 191

work in application programs 172,

175

ROLLBACK WORK 121, 131

See ROLLBACK

routine
ARINEWUS 82

editing 161

ISQL 151, 163, 167

ROUTINE table 151, 167

row
overhead 226

pointer 225, 236

rules
See delete/insert/update rule

RUN authority 191

S
SBCS data

subtype 34

scale of decimal result 180

SCHEDULE authority 90

securing the database catalog table 109

Index 299

security
auditing

loading information into a

table 114

printing information 118

through the catalog table 111

tracing 111

authority 89

batch and VSE/ICCF

applications 169

database catalog table 109

DBS Utility application 170

online application 171

privilege 89

providing 89

self-referencing table 7

service machine 193

SET ERRORMODE 170

SET NULL 7

SET RUNMODE 164

setting up
a new DB2 Server for VSE & VM user

See new user support

new ISQL user 82

setting up a stored procedure server 210

sharing, VSE guest 201

SHOW DBSPACE 27, 78

size of dbspace, estimating 23, 223

size parameter 23

SMALLINT data type of column 32

SQL dynamic statement support 157

SQLCIREO EXEC 79

SQLDBA.ARINEWUS 82

SQLDBDEF utility 79

SQLDBID EXEC 261

SQLDBN file
content 250

SQLDBN files
definition of 250

updating DCSSID 250

used by SQLINIT 251

SQLDS protocol 13

SQLEND ARCHIVE 135

SQLGLOB EXEC 252

SQLGLOB Parameters (VSE Only) 273

SQLHX 100

SQLINIT EXEC 197, 200

default application server 97

default database 195

description 243

parameters 244

reasons to reissue 249, 251

resource adapter bootstrap

module 251

syntax 243

SQLQRY command
querying the status of an

application 267

SQLRELEP EXEC 259

SQLRMEND 126

SQLRMEND EXEC 261, 262

SQLSTART EXEC
accessing SQLDBN file 250

description 250

SSSNAME parameter of exec 248, 257

STACK parameter of exec 248, 257

statement
ACQUIRE DBSPACE 26

ALTER DBSPACE 74

ALTER TABLE 64, 189

COMMIT WORK 121

CONNECT 89, 99, 171, 197

CREATE INDEX 47

CREATE TABLE 28, 90, 176

DBS job control 150

DROP DBSPACE 77

DROP TABLE 57, 72, 189

EXPLAIN 163

extended dynamic 156

GRANT 92, 95

GRANT SCHEDULE 91

INCLUDE 165

INSERT with subselect 172, 189

REVOKE 85, 94, 96

ROLLBACK 191

ROLLBACK WORK 121, 131, 172,

175

SHOW DBSPACE 27

WHENEVER 131

status shared segment, name 248, 257

storage concept 17

storage of ISQL routine 167

storage pool
description 18

nonrecoverable 23

recoverable 23

referential integrity 18, 23

reorganizing a dbspace to free

pages 74

stored procedure
altering 218

ARISPRC 210

concepts 209

dropping 218

handler 210

JDBC/CLI clients 218, 281

managing servers 213

parameters affecting execution 218

preparing to run 217

server 209

server groups 210

setting up a server 210

stored query
deleting 87

description 151

testing SQL statements 163

testing SQL statements using

ISQL 173

storing information in dbspaces 19

STORPOOL 73

See storage pool

string data types 32

Structured Query Language (SQL)
configuration 193

dynamic statement support 156

STXIT macroinstructions 127

subset mode of CMS 152

subtype
BIT 34

character 34

supporting your users
authorizing access 84

loading initial table 85

supporting your users (continued)
new user support 81

removing a user 85

specifying a default application

server 84

training 85

switching between application

servers 99

synchronization point
request in CICS 127

SYNCHRONOUS parameter of

exec 245, 254

SYNCPOINT
See also synchronization point

requests in the CICS subsystem 172

synonym
used in application development 173

syntax diagram
notation conventions xiii

SYS0001, reorganizing indexes within 78

SYS000n dbspace 133, 135

SYSLANGUAGE table 139

system
dbspace considerations for query

users 167

SYSTEM tables
SYSCATALOG 56

SYSCOLAUTH 55

SYSCOLUMNS 54, 56

SYSINDEXES 54

SYSPROGAUTH 55

SYSUSERAUTH 55

SYSVIEWS 55

SYSTEXT1 141

SYSTEXT2 141

T
table

altering 64, 189

backing up 133

clustering rows on an index 49

copying 62

copying data 61

creating 17, 28

creator 41

customized for specific user 42

defining a relationship 2

deleting 72

dependent 7

design
normalizing 29

dropping 72, 189

editing 158

estimating storage for 224

in dbspace 21

limiting access to 42

loading 150

loading data 59

location in dbspaces 20

maintaining 59

maintenance
altering 57

copying 57

loading data 57

merging data 57

moving 57

300 Database Administration

table (continued)
maintenance (continued)

referential integrity 57

removing 57

merging data from multiple tables 63

moving 62

naming 28

normalizing 9

owner 41

parent 7

placement in dbspace 41

primary key 4

privilege 94

removing 72

retrieving catalog information 53

ROUTINE 151

self-referencing 7

space-wasting table designs 30

storing comments on 55

SYSTEXT1 and SYSTEXT2 141

unloading 150

terminal
operator id 103

printer 205, 207, 208

used to load data into a database 60

termination
CICS transaction 127

multiple user mode batch

application 126

single user mode applications 127

terminology for database design 1

test data
loading 162

testing
application code under

VSE/ICCF 165

testing SQL functions
SET RUNMODE 164

using ISQL 173

using ISQL routines 163

using stored queries 163

using the DBS Utility 164

TID (row pointers) 225, 236

TIME data type 35

time duration
description 181

TIME parameter of exec 255

TIMEFORMAT parameter of exec 247

TIMESTAMP date type 35

timestamp duration
description 181

TRACECONV parameter of exec 248,

256, 275

TRACEDRRM parameter of exec 247,

256, 274

TRACERA parameter of exec 247, 256,

274

tracing, CICS and Batch Resource

Adapter 279

tracing, security audit 111

training new ISQL users 85

transaction processing 150, 204

transaction program 150

truncation
on output 178

TSAF 197

U
unique constraint

activating 68

considerations in defining 38

description 5, 38

implicit 48

instead of unique index 48

referential integrity 6

reorganizing index 68

when creating a table 38

unique index
creating 47

general description 48

when to use 52

unlike
description 13

UPDATE
restriction for view 45

update rule
dependent table 9

parent table 8

UPDATE STATISTICS 63

usage environment
application development 162, 172,

206

batch/interactive 102, 149, 169, 203

cics/vse online 101

description 203, 209

online transaction processing 103,

150, 171, 204

query/report writing 151, 175, 207

user assistance
See supporting your users

user error 129, 133, 135

user ID 175

CICS default rules for 103

special
CICSUSER 103

DBDCCICS 90

user identification and verification 171

user machine 81, 83, 194

user privilege 94

using indexing in logical data design 47

V
VARCHAR

choosing rather than CHAR 34

in column definition 33

VARGRAPHIC
choosing rather than GRAPHIC 34

varying-length rows 29

view
addressing selected columns 108

addressing selected rows 108

catalog information about 55

creating 17, 42

for multiple tables 43

materializing 46

new column names 44

on a single table 43

privilege 94

reasons for using 42

restriction on access 108

restrictions on
ALTER 45

view (continued)
restrictions on (continued)

DBS DATALOAD 46

DBS RELOAD 46

DBS UNLOAD 45

DELETE 45

INDEX 45

INSERT 45

ISQL INPUT 46

UPDATE 45

storing comments on 55

using several tables 43

VSAM
file used to load database 61

REPRO 61

restriction 77

VSE batch partition 149

VSE guest sharing
configuration 201

granting access 93

removing access 87

revoking access 94

VSE/ICCF
application 149

application program 169

DBS Utility usage 59

testing application code 165

VSE/POWER 205, 207, 208

W
WHENEVER 131

WORKUNIT parameter of exec 247, 255

X
XEDIT, as used with DB2 Server for

VM 159

Index 301

302 Database Administration

Contacting IBM

Before you contact DB2 customer support, check the product manuals for help

with your specific technical problem.

For information or to order any of the DB2 Server for VSE & VM products, contact

an IBM representative at a local branch office or contact any authorized IBM

software remarketer.

If you live in the U.S.A., then you can call one of the following numbers:

v 1-800-237-5511 for customer support

v 1-888-426-4343 to learn about available service options

Product information

DB2 Server for VSE & VM product information is available by telephone or by the

World Wide Web at http://www.ibm.com/software/data/db2/vse-vm

This site contains the latest information on the technical library, product manuals,

newsgroups, APARs, news, and links to web resources.

If you live in the U.S.A., then you can call one of the following numbers:

v 1-800-IBM-CALL (1-800-426-2255) to order products or to obtain general

information.

v 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the United States, go to the IBM

Worldwide page at http://www.ibm.com/planetwide

In some countries, IBM-authorized dealers should contact their dealer support

structure for information.

© Copyright IBM Corp. 1987, 2007 303

304 Database Administration

IBMR

File Number: S370/4300-50

Program Number: 5697-F42

Printed in USA

SC09-2888-03

Spine information:

 IBM DB2 Server for VSE & VM Database Administration Version 7 Release 5

	Contents
	About This Manual
	Some Terminology
	Components of the Relational Database Management System

	Organization
	Prerequisite IBM Publications
	Highlighting Conventions

	Syntax Notation Conventions
	SQL Reserved Words
	Summary of Changes
	Summary of Changes for DB2 Version 7 Release 5
	Enhancements, New Functions, and New Capabilities
	Explain Option on DBSU REBIND PACKAGE Command
	For Fetch only
	Application Message Formatter
	Convert buffer read/write to compiler macro
	Modify Build Tree Creation
	Split code point search routines
	DRDA Multi-Row Insert
	Connection Pooling for DRDA TCP/IP in Online Resource Adapter
	IBM DB2 Server for VSE, Client Edition
	IBM DB2 Server for VM, Client Edition
	Handling Commit Responses from DB2 UDB Stored Procedures
	Make on-line programs AMODE 31 RMODE ANY
	Provide BIND File Support in VM and in VSE Batch Environments
	Convert TCP/IP LE/C interface to EZASMI API

	Chapter 1. Designing a Database
	Sample Tables
	Entities, Properties, and Occurrences

	Step 1: Select the Data to Record in the Database
	Step 2: Define Tables for Each Type of Relationship
	One-to-One Relationships
	One-to-Many and Many-to-One Relationships
	Many-to-Many Relationships

	Step 3: Provide Column Definitions for Tables
	Step 4: Identify One or More Columns as a Primary Key
	Step 5: Ensure that Equal Values Represent the Same Entity
	Step 6: Plan for Referential Integrity
	Elements of Referential Integrity
	Foreign Key
	Referential Constraint
	Parent and Dependent Tables
	Self-Referencing Table

	DELETE, INSERT, and UPDATE Considerations
	DELETE Rules
	INSERT Rules
	UPDATE Rules

	Step 7: Normalize Your Tables
	First Normal Form
	Second Normal Form
	Third Normal Form
	Fourth Normal Form

	Step 8: Considerations for Distributed Data
	Definitions
	Application Programming
	System Operations
	Distributing Existing Data

	Chapter 2. Implementing Your Design
	Storage Concepts
	How Information is Stored in Dbspaces

	Database Generation
	Defining Dbspaces
	Identifying Dbspace Requirements
	Mapping Tables to Dbspaces

	Adding Dbspaces to the Database
	Acquiring Dbspaces
	Determining Dbspace Type (PUBLIC or PRIVATE)
	Determining the Size of the Dbspace (PAGES)
	Determining the Storage Pool (STORPOOL)
	Determining the Number of Header Pages (NHEADER)
	Determining the Percent Free Space Desired (PCTFREE)
	Determining the Percentage for Index Pages (PCTINDEX)
	Determining the Lock Size (LOCK)

	Retrieving Information about Dbspace Parameters
	Example

	Restrictions on the ACQUIRE DBSPACE Statement

	Creating Tables
	Controlling Who Creates Tables
	How to Create Tables
	Naming Tables
	Choosing Columns
	Considerations for Normalization
	Considerations for Row Size

	Specifying Columns
	Column Names
	Nulls

	Specifying Data Types
	Numeric Data Types
	String Data Types
	Data Types for Dates, Times, and Timestamps
	Advantages of Date/Time Data Types
	Date/Time Arithmetic and Durations
	Comparing Data Types

	Specifying a PRIMARY KEY
	Specifying a UNIQUE Constraint
	Considerations in Defining Unique Constraints

	Considerations for Referential Integrity when Creating Tables
	Primary Key Index

	Placing Tables in Dbspaces

	Creating Views
	Reasons for Using Views
	Creating a View on a Table
	Creating a View from Several Tables
	Things You Cannot Do with a View
	Materializing a View

	Creating Indexes
	Index Key
	UNIQUE Indexes
	The PCTFREE Clause
	Clustering Rows of a Table on an Index
	Some Things to Remember When Defining Keys
	General Performance Considerations on the Use of Indexes
	Migration Considerations for Indexes

	Using the Catalog in Database Design
	Retrieving Catalog Information about a Table
	Retrieving Catalog Information about Columns
	Retrieving Catalog Information about Indexes
	Retrieving Catalog Information about Views
	Retrieving Catalog Information about Authorization
	The COMMENT ON Statement
	Retrieving Comments

	Chapter 3. Maintaining Your Database
	Maintaining Tables
	Loading Data into Tables
	Loading Data in VM Using the DBS Utility
	Loading Data Using the DBS Utility in VSE/ICCF
	Loading Data from a Terminal Using ISQL INPUT
	Loading Data from Sequential Files in VSE
	Loading Data from VSAM Files
	Loading Data from Other Tables

	Copying Tables
	Example

	Moving Tables from One Dbspace to Another
	Example

	Merging Data from Multiple Tables
	Example
	Examples

	Altering the Design of a Table
	Authorization
	Example
	Adding a New Column
	Example

	Altering Referential and Unique Constraints
	Considerations When Adding Keys or Constraints
	Considerations When Dropping a Primary or Foreign Key
	Considerations When Activating Keys and Constraints
	Considerations When Deactivating Keys and Constraints

	Enforcing Referential Constraints
	Advantages and Disadvantages of Deferred Constraint Enforcement
	Repairing Rows that Violate Referential Constraints

	Moving Data from One Application Server to Another
	Removing Tables

	Maintaining Dbspaces
	Altering the Design of a Dbspace
	Changing the PAGES, STORPOOL, DBSPACE Type, NHEADER, or PCTINDEX
	Changing the PCTFREE and LOCK Parameters

	Reorganizing a Dbspace to Free Storage Pool Pages
	Releasing Empty Pages
	Removing Dbspaces
	Example

	VSAM Restrictions

	Reorganizing Indexes on the Catalog Tables
	Moving Your Database

	Chapter 4. Supporting Your Users
	Adding a New User
	Setting Up New ISQL Users
	Example

	Authorizing Access
	Specifying a Default Application Server in VM
	Loading Initial Tables
	Training New Users

	Removing Users from an Application Server
	Example

	Chapter 5. Providing Security
	Authorities
	Types of Authorities
	CONNECT Authority
	RESOURCE Authority
	SCHEDULE Authority
	DBA Authority

	Granting Authorities
	Examples
	Granting Access to VSE Guests

	Revoking Authorities
	Examples
	Revoking Access from VSE Guests

	Privileges
	Privileges of Ownership
	Granting Privileges to Other Users
	Revoking Privileges
	Monitoring Privileges
	Examples

	Privileges on Application Programs

	Connecting to an Application Server in VM
	Establishing a Default Application Server
	Example

	Connecting to the Application Server Implicitly
	How Implicit CONNECT Applies to VM Programs
	How Implicit CONNECT Applies to ISQL (VM)
	How Implicit CONNECT Applies to the DBS Utility (VM)
	How Implicit CONNECT Applies to Remote Application Servers
	How Implicit CONNECT Applies to TCP/IP

	Connecting to the Application Server Explicitly
	Switching to Another Application Server
	Connecting under Another Authorization ID
	Determining the Currently Established Application Server

	Connecting to an Application Server in VSE
	Establishing a Default Application Server
	Connecting to the Application Server in Different VSE Environments
	CICS/VSE Online Environment
	Batch/Interactive Environment
	ISQL Environment
	CICS Transaction Environment

	User IDs for Remote CICS/VSE Transactions
	Connecting to an Application Server in Special Circumstances
	Switching to Another Application Server
	Example - Without Specifying an Authorization ID and Password
	Example - Specifying an Authorization ID and Password
	Connecting under Another Authorization ID
	Example
	Determining the Current User ID and Application Server

	Resolving Remote Server Name to Target Database (CICS)
	Resolving Remote Server Name to Target Database (VSE Batch)
	Restricting Access Using Views
	Example
	Examples

	Changing User Passwords
	Example

	Securing the Database Catalog Tables
	Example 1
	Example 2
	Example 3

	Security Auditing
	Auditing Security Using the Catalog Tables
	Auditing Security Using Tracing
	Loading Security Audit Information into Tables
	Printing Security Audit Information from the Trace File

	Chapter 6. Recovering from Failures
	Overview of Recovery Concepts
	Logical Units of Work
	CMS Work Units
	Atomic Operations
	Example:

	Dynamic Application Backout
	Restart Processing

	Recovery from Application Failures
	Application Program Recovery in VM
	Dropping the DB2 Server for VM Resource Adapter Code
	Batch and VSE/ICCF Application Recovery
	Online Application Recovery
	ISQL Sessions
	DBS Utility Processing
	Preprocessor

	Recovery from User Logic Errors
	Dynamic Recovery from User Errors
	Backing Out Data During an ISQL Session
	Backouts Initiated by Application Programs

	Selective Recovery from User Data Errors
	Periodic Backup of Critical Data
	Resetting Data Using DBS RELOAD Processing

	Database Recovery from User Logic Errors
	Creating a Proper Back-up Copy of the Database
	Resetting the Database to a Previous Copy
	Resetting the Database without Reformatting the DB2 Server for VSE Data Sets

	Chapter 7. Customizing the HELP Text and Messages Text
	The SYSLANGUAGE Table
	The SYSTEXT1 and SYSTEXT2 Tables
	Adding Topics to HELP Text Tables
	Adding a HELP Topic to the HELP Text Supplied by IBM
	Creating Your Own HELP Text Tables

	Making the HELPTEXT Dbspace Larger
	Moving the HELP Text to Another Dbspace
	Printing the HELP Text Using the DBS Utility
	Printing the HELP Text Using ISQL

	Chapter 8. Application Design Considerations
	Application Implementation Capabilities
	Batch/Interactive Capabilities
	High-Level-Language Programs
	DBS File Maintenance and Reporting

	Online (CICS) Transaction Processing Capabilities
	Query Capabilities
	One-Time Queries
	Periodic Queries

	Report Writing Capabilities
	Report Writing Using ISQL
	Report Writing Using the DBS Utility
	Programmed Reports

	Programmed Application Capabilities
	EXECs that Use DB2 Server for VM Facilities
	Editing Private Tables
	Editing Routines

	Application Development Capabilities
	Data Prototyping
	Prototyping Application Function
	Code Development
	CMS Subset Considerations

	Application Database Considerations
	Database Support for Application Development
	PRIVATE Dbspaces in Application Development
	PUBLIC Dbspaces in Application Development

	Database Support for Query/Report Writing
	Private Query User Data
	Storage of ISQL Routines
	System Dbspace Considerations

	Application Implementation Considerations
	VSE Batch/Interactive Application Considerations
	Batch/ICCF Application Security
	Batch/ICCF Recovery
	Batch/ICCF Error Handling
	DBS Utility Application Security
	DBS Utility Application Recovery
	DBS Utility Application Error Handling

	Online CICS/VSE Transaction Considerations
	Online Application Security
	Online Application Recovery
	Pseudoconversational Transactions

	Application Development Considerations
	Loading Data into Test Dbspaces
	Use of Synonyms in Application Development
	Testing SQL Statements
	Using ISQL and Stored Queries
	Maintaining Database Consistency Under ISQL
	Using ISQL Stored Queries for Testing SQL Statements
	Using ISQL Routines to Test SQL Statements

	Checking Application Code
	Using the Preprocessor CHECK Option
	Use of ROLLBACK WORK During Application Execution

	Query/Report Writing Considerations
	User Identifiers (Userids) for Query Users

	Application Independence with CMS Work Units
	Application Maintenance Considerations
	Data Administration Support
	Data Independence Support
	Data Type Changes

	Arithmetic Operations
	Decimal Arithmetic Operations
	Binary Arithmetic Operations
	Floating Point Arithmetic Operations
	Date/Time Arithmetic

	Data Access Changes
	Data Structure Changes
	Data Authorization Changes
	The Preprocessor KEEP Option for RUN Authority
	Changing the Users of Data

	Hypothetical Change Support

	Chapter 9. DB2 Server for VM Database Configurations
	DB2 Server for VM Concepts
	Operating Modes for the Database Machine

	Example Configurations
	One Database Machine with One Database
	One Database Machine with Two Databases
	Several Database Machines with Many Databases
	Multiple Database Machines on Different Processors
	Accessing a Database from a Processor that Does Not Have One

	Performance Considerations with Multiple Databases
	VSE Guest Sharing (On VM/ESA Systems Only)

	Chapter 10. Usage Environments in VSE
	Batch/Interactive Application Processing
	Online (CICS) Transaction Processing
	Application Development
	Query/Report Writing

	Chapter 11. Stored Procedures
	Stored Procedure Concepts
	Stored Procedure Servers
	The Stored Procedure Server
	The Stored Procedure Handler
	Stored Procedure Server Groups
	Setting up a Stored Procedure Server

	Managing Stored Procedure Servers
	Stored Procedure Server Allocation
	States of a Stored Procedure Server
	STOPPED
	STOPPING
	STARTING
	STARTED

	Altering or Dropping a Stored Procedure Server Definition

	Stored Procedures
	Preparing a Stored Procedure to Run
	Dropping or Altering a Stored Procedure
	Setting Up Schema Stored Procedures for CLI/ODBC/JDBC/OLE DB Client Applications

	Initialization Parameters Affecting Stored Procedure Execution
	PTIMEOUT Parameter
	PROCMXAB Parameter

	Summary of Environment Interactions

	Appendix A. Estimating Your Dbspace Requirements
	Estimating Dbspace Size
	General Guidelines
	Estimating Storage for a Table
	LONG-FIELD Value Overhead
	Long-Field Value Storage

	Estimating the Number of Header Pages
	Estimating the Number of Data Pages
	Pages Required for Storing Tables with Fixed Length Rows
	Examples of Estimating the Number of Data Pages
	Estimating Data Pages for a Table with Variable Length Rows

	Estimating the Number of Index Pages
	Estimating the Size of an Index

	Estimating Internal Dbspace Size and DASD Needs for Sort Operations
	When Do We Sort?
	Internal Dbspace Characteristics
	Calculating Internal Dbspace Size Requirements
	Calculating Total Internal Dbspace and DASD Needs

	Appendix B. CMS EXECs
	SQLINIT EXEC
	Initializing a User Machine
	SQLINIT, SQLSTART, Bootstrap Modules and SQLDBN files

	SQLGLOB EXEC
	SQLCIREO EXEC
	SQLRELEP EXEC
	SQLDBID EXEC
	SQLRMEND EXEC
	Example

	ARISDBHD EXEC
	ARISDBLD EXEC
	SQLLEVEL EXEC

	Appendix C. Querying the Status of an Application (VM Only)
	Example

	Appendix D. Maximums
	ISQL Maximums

	Appendix E. SQLGLOB Parameters (VSE Only)
	Transactions for Updating SQLGLOB Parameters
	DSQG - Update global SQLGLOB Parm Transaction
	DSQU - Update user SQLGLOB Parm Transaction
	DSQQ - Query SQLGLOB Parm Transaction
	DSQD - Delete user SQLGLOB Parm Transaction

	Batch Program to Update/Query the SQLGLOB File
	Using Online and Batch Resource Adapter Tracing
	Online Trace File JCL
	Batch Trace File JCL
	Formatting the Online or Batch Trace File

	Appendix F. Preparing the Schema Stored Procedures for CLI/ODBC/JDBC/OLE DB Client Applications
	Setting up Schema Stored Procedures for CLI/ODBC/JDBC/OLE DB Client Applications

	Notices
	Trademarks

	Bibliography
	Index
	Contacting IBM
	Product information

