IBM DB2 Universal Database
Administration Guide
Version 5

Document Number S10J-8157-00

Authors:

IBM Toronto Lab

IBM DB2 Universal Database

Administration Guide

Version 5

S10J-8157-00

IBM DB2 Universal Database

Administration Guide

Version 5

S10J-8157-00

Before using this information and the product it supports, be sure to read the general information under Appendix R,
“Notices” on page 873.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in U.S. or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

About This Book XXi
Who Should Use thisbook XXi
How This Book is Structured XXii
Introduction to Parallelism in DB2 Universal Database XXV
Overview of DB2 Concepts« . . o o i XXV
Overview of DB2 Parallelism Concepts XXVii
Nodegroups and Data Partitioning XXVii
Types of Parallelism XXViii
/0 Parallelism XXiX
Query Parallelism XXiX
Utility Parallelism XXXii
Hardware Environments Lo XXXiii
Single Partition on a Single Processor XXXiii
Single Partition with Multiple Processors XXXV
Multiple Partition Configurations XXXVi
Summary of Parallelism Best Suited To Each Hardware Environment xl
Enabling Parallelism for Querieso xli
Enabling Intra-Partition Query Parallelism xli
Enabling Inter-Partition Query Parallelism xlii
Enabling Utility Parallelism xlii
Load e xlii
Create Index xlii
Backup Database / Table Space xlii
Restore Database / Table Space xlii
Part 1. Database Design and Implementation 1
Chapter 1. Designing Your Logical Database 3
Decide What Data to Record in the Database 3
Define Tables for Each Type of Relationship 5
One-to-Many and Many-to-One Relationships 5
Many-to-Many Relationships Lo 6
One-to-One Relationships oo 7
Provide Column Definitions for All Tables 7
Identify One or More Columns as a Primary Key 9
Identifying Candidate Key Columns 10
Be Sure Equal Values Represent the Same Entity 11
Consider Normalizing Your Tables 11
First Normal Form 12
Second Normal Form 12
Third Normal Form 14
Fourth Normal Form 15
Planning for Constraint Enforcement 16

© Copyright IBM Corp. 1993, 1997 iii

Unique Constraints e 17

Referential Integrity 17
Table Check Constraints 22
TRQQers 22
Other Database Design Considerations 23
Chapter 2. Designing Your Physical Database 25
Database Physical Directories 25
Database Physical Fileso 26
Estimating Space Requirements for Tables 27
System Catalog Tables 27
User Table Data 28
Long Field Data 28
Large Object (LOB) Data 29
Index Space 30
Additional Space Requirements Lo 31
Log File Space 31
Temporary Work Space 32
Designing Nodegroups 32
Nodegroup Design Considerations 33
Designing and Choosing Table Spaces 38
System Managed Space Table Space 41
Database Managed Space Table Space 44
Adding Containers to DMS Table Spaces 46
Table Space Design Considerations 46
Chapter 3. Implementing Your Design 55
Introductory Concepts for Database Implementation 55
Starting and Stopping DB2 56
Using Multiple Instances of the Database Manager 56
Organizing and Grouping Objects by Schema 57
Enabling Intra-Partition Parallelism 57
Enabling Data Partitioning 58
Before Creating a Database, 59
Design Logical and Physical Database Characteristics 59
Create an Instance 59
Establish Environment Variables and the Profile Registry 60
DB2 Administration Server (DAS) 65
Create a Node Configuration File 67
Create a Database Configuration File 69
Enable FCM Communications 70
Creatinga Database 71
Definition of Initial Nodegroups 72
Definition of Initial Table Spaces 72
Definition of System Catalog Tables 73
Definition of Database Directories 74
Definition of Database Recovery Log 75
Binding Utilities to the Database 75

iv Administration Guide

Cataloginga Database 76

Creating Nodegroups e 77
Creatinga Table Space 77
Creatinga Schema 79
Creatinga Table 80
Creating a Trigger o o e 89
Creating a User-Defined Function (UDF) 90
Creating a User-Defined Type (UDT) 92
Creatinga View e 93
Creating an Alias L 94
Creatingan Index 95
Before Altering a Database 98
Changing Logical and Physical Design Characteristics 98
Changing Environment Variables and the Profile Registry Variables 98
Changing the Node Configuration File 98
Changing the Database Configuration File 98
Altering a Database 99
Altering a Nodegroup L 99
Dropping a Database 99
Altering a Table Spaceo 99
Dropping a Schema 101
Alteringa Table 101
Dropping a Trigger 106
Dropping a User-Defined Function (UDF) 106
Dropping a User-Defined Type 107
Dropping a View 107
Droppingan Index 108
Statement Dependencies When Changing Objects 108
Chapter 4. Controlling Database Access 111
An Overview of DB2 Security 111
Authentication 111
Authorization 112
Selecting an Authentication Method for Your Server 113
Authentication Considerations for Remote Clients 116
Partitioned Database Considerations 116
Using DCE Security Services to Authenticate Users 117
How to Setupa DB2 Userfor DCE 117
How to Setup a DB2 ServertoUse DCE 119
How to Setup a DB2 Client InstancetoUse DCE 120
DB2 Restrictions Using DCE Security 120
Privileges, Authorities, and Authorization 121
System Administration Authority (SYSADM) 123
System Control Authority (SYSCTRL) 124
System Maintenance Authority (SYSMAINT) 124
Database Administration Authority (DBADM) 125
Database Privileges 126
Schema Privileges 127

Contents V

Vi

Table and View Privileges 127

Package Privileges 128
Index Privileges 129
Controlling Access to Database Objects 129
Granting Privileges 129
Revoking Privileges 130
Managing Implicit Authorizations by Creating and Dropping Objects 131
Allowing Indirect Privileges through a Package 132
Controlling Access to Data with Views 132
Tasks and Required Authorizations L. 135
Using the System Catalog 136
Retrieving Authorization Names with Granted Privileges 136
Retrieving All Names with DBADM Authority 137
Retrieving Names Authorized to Accessa Table 137
Retrieving All Privileges Granted to Users 137
Securing the System Catalog Views 138
Chapter 5. Utilities for Moving Data 141
Using the LOAD Utility 141
Overview of the LOAD Process 142
Details About LOAD 144
LOAD Performance Considerations 148
LOAD Temporary Space Limitations 150
Restarting LOAD and Database Recovery 150
LOAD Exception Table 151
Checking For Constraint Violations 152
Using the AutoLoader Utility 153
Planning to Use the AutoLoader Utility 154
Running the AutoLoader Utility 154
Some Considerations with AutoLoader 155
Sample AutoLoader Configuration File 155
Loading into Multiple Database Partitions 158
Using the IMPORT Utility 159
Using IMPORT with Buffered Inserts 161
Import in a Client/Server Environment 161
Differences Between the IMPORT and LOAD Utilites 162
Using the EXPORT Utility 163
LOAD, IMPORT, and EXPORT File Formats 164
Delimited ASCII (DEL) File Format 165
Nondelimited ASCII (ASC) File Format 167
WSF File Format 168
PC/IXF File Format 168
Moving Data Between Systems 170
Moving Data Between DB2 Databases 170
Moving Data Using the db2move Tool 171
Moving Data With DB2 Connect 175
Using Replication to Move YourData 177

Administration Guide

Chapter 6. Recovering a Database 179

Overview of Recovery e 179
Factors Affecting Recovery 184
Recoverable and Non-Recoverable Databases 185
Database LOogsS 185
Reducing Logging on Work Tables 187
Point of Recovery e 188
Frequency of Backups and Time Required 188
Recovery Time Required 190
Storage Considerations 190
Keeping Related Data Together 191
Recovery Performance Considerations 191
Disaster Recovery Considerations 192
Reducing the Impact of Media Failure 193
Protecting Against Disk Failure 193
Reducing the Impact of Transaction Failure 195
System Clock Synchronization in a Partitioned Database System 195
Recovery Method: Crash Recovery 197
Getting to a Consistent Database L. 197
Transaction Failure Recovery in a Partitioned Database Environment 197
Identifying the Failed Database Partition Server 200
Recovery Method: Restore Recovery 201
Backing Up a Database 201
Restoring a Database 207
Recovery History File Information 214
Recovery Method: Roll-Forward Recovery 215
Rolling Forward Changes in a Database 216
ADSTAR Distributed Storage Manager 230
Setting up an ADSTAR Distributed Storage Manager Client for UNIX-Based
Platforms 231
Setting up an ADSTAR Distributed Storage Manager Client for Other Platforms 232
Considerations for Using ADSTAR Distributed Storage Manager 232
Part 2. Distributed Transaction Processing 237
Chapter 7. Distributed Databases 239
Using a Single Database in a Transaction 240
Using Multiple Databases in a Single Transaction 241
Updating a Single Database 241
Updating Multiple Databases 242
Configuration Considerations 245
Understanding the Two-Phase Commit Process 246
Recovering from Problems During Two-Phase Commit 249
Manual Recovery of Indoubt Transactions 250
Resynchronizing Indoubt Transactions if AUTORESTART=0OFF 251
Recovery of Indoubt DRDA Transactions 252
Recovery Using SNA Communications 252
Recovery Using TCP/IP Communications 253

Contents Vii

Chapter 8. Using DB2 with an XA-Compliant Transaction Manager 255

Setting Up a Database as a Resource Manager 255
Database Connection Considerations 256
Making a Heuristic Decision 257
Security Considerations 259
Configuration Considerations 260
XA Interface Problem Determination 261
Using Encina for Transaction Processing Through TM-XA Interface 262
Part 3. Tuning Application Performance 263
Chapter 9. Application Considerations 265
CONCUITENCY . . . o o o o i e e e e e e e e e e e e e 265
Repeatable Read 266
Read Stability 267
Cursor Stability 268
Uncommitted Read 268
Choosing the Isolation Level 268
Specifying the Isolation Level 269
Locking e 270
Attributes of Lockso 271
Locks and Application Performance 273
Factors Affecting Locking 278
LOCK TABLE Statement 281
CLOSE CURSOR WITH RELEASE 282
Summary of Locking Considerations 282
Adjusting the Optimization Class 283
How Do You Set the Optimization Class? 286
How Much Optimization is Necessary? 287
Quickly Retrieving the First Few Rows Using OPTIMIZE FOR n ROWS 289
Row Blocking 291
Tuning QUeries 292
Using a select-statement 292
Compound SQL L 294
Performance Considerations and Character Conversion 295
Extended UNIX Code (EUC) Code Page Support 296
Stored Procedures 296
Activating a Database 297
Parallel Processing of Applications 298
Chapter 10. Environmental Considerations 301
Configuration Parameters Affecting Query Optimization 301
Nodegroup Impact on Query Optimization 303
Table Space Impact on Query Optimization 304
Index Management 305
Indexing versus No Indexing 306
Guidelines for Indexing 306
Performance Tips for Administering Indexes 308

viii Administration Guide

Chapter 11. System Catalog Statistics 311

Collecting Statistics using the RUNSTATS Utility 312
The Database Partition Where RUNSTATS is Executed 313
Analyzing Statistics 313

Collecting and Using Distribution Statistics 318
Understanding Distribution Statistics 319
When Should You Use Distribution Statistics? 321
How Many Statistics Should You Keep? 322
How Does the Optimizer Use Distribution Statistics? 323

Collecting and Using Detailed Index Statistics 327
Understanding Detailed Index Statistics 328
When Should You Use Detailed Index Statistics? 330

User Update-Capable Catalog Statistics 330
Rules for Updating Catalog Statistics 331
Rules for Updating Table Statistics 332
Rules for Updating Column Statistics 332
Rules for Updating Distribution Statistics for Columns 333
Rules for Updating Index Statistics 334
Updating Statistics for User-Defined Functions 335
Modelling Production Databases 337

Chapter 12. Understanding the SQL Compiler 339

Overview of the SQL Compiler 339

Query Rewrite by the SQL Compiler 342

Operation Merging 342
Example - View Merges 343
Example - Subquery to Join Transformations 344
Example - Redundant Join Elimination 344
Example - Shared Aggregation 344

Operation Movement L 345
Example - DISTINCT Elimination 345
Example - General Predicate Pushdown 346
Example - Decorrelation L 346

Predicate Translation 347
Example - Addition of Implied Predicates 348
Example - OR to IN Transformations 348

Data Access Concepts and Optimization 349
Index Scan Concepts 349
Relation Scan versus Index Scan 356
Predicate Terminology 357
Join Concepts 359
Join Strategies in a Partitioned Database 365
Influence of Sorting on the Optimizer 372

Optimization Strategies for Intra-partition Parallelism 373
Parallel Scan Strategies 374
Parallel Sort Strategies 374
Parallel Temporary Tables, 375
Parallel Join Strategies L 375

Contents IX

Chapter 13. SQL Explain Facility 377

Choosing an Explain Tool 377
Using the SQL Explain Facility 379
Introductory Concepts for Explain 380
Explain Information for Data Objects 382
Explain Information for Data Operators 383
How Explain Information is Organized 383
Explain Instance Information 384
Explain Snapshot Informationo 386
Explain Table Information 386
Obtaining Explain Data 388
Capturing Explain Table Information 388
Capturing Explain Snapshot Information 389
Guidelines on Using Explain Output 390
Visual Explain 392
Part 4. Tuning and Configuring Your System 393
Chapter 14. Operational Performance 395
How DB2 Uses Memory 395
Setting Parameters That Affect Memory Usage 400
FCM Requirements e 400
Managing the Database Buffer Pool 401
Managing Multiple Database Buffer Pools 404
Choosing One or Many Buffer Pools 405
Prefetching Data into the Buffer Pool 405
Understanding Sequential Prefetching 406
Prefetching and Intra-Partition Parallelism 408
Configuring 1/0 Servers for Prefetching and Parallel /O 408
Enabling Parallel I/O 410
Allocating Multiple Pages ata Time 412
Sorting . . . L e 412
Different Types of Sorting 412
Tuning the Parameters that Affect Sorting 413
Looking for Indicators of Sorting Performance Problems 413
Techniques for Managing Sorting Performance 414
Reorganizing Table Data 415
Performance Considerations for DMS Devices 416
Managing Initialization Overhead 417
Database Agents 417
Using the Database System Monitor 420
Extending Memory 421
Chapter 15. Using the Governor 423
Starting and Stopping the Governor 423
The Governor Daemon e 425
Creating the Governor Configuration File 426
Governor Log Files 432

X

Administration Guide

Querying Governor Log Files 433

Running the Governor and Database Manager Performance 434
Chapter 16. Redistributing Data Across Database Partitons 435
How to Partition Data 435
Adding and Dropping Database Partitons 436
Specifying a Target PartitoningMap 436
How Data Is Redistributed Across Database Partitons 436
How Data Is Redistributed in Tables 437
Recovering From Redistribution Errorso 438
Data Redistribution and Other Operations 438
Following Data Redistribution 439
Chapter 17. Scaling Your Configuration 441
Adding Processors to a Machine 0. 442
Adding Database Partitions to a System L. 442
Adding Database Partitions to a Running System 443
Adding Database Partitions to a Stopped System 444
Dropping a Database Partition from a System 446
Chapter 18. Benchmark Testing 447
Benchmark Testing Methodology 447
Preparing for Benchmark Testing 448
Creating a Benchmark Program 450
Executing the Benchmark Tests 455
Chapter 19. Configuring DB2 459
Tuning Configuration Parameters 459
Database Manager Parameters Lo 460
Database Manager Configuration Parameter Summary 461
Database Parameters 464
Database Configuration Parameter Summary 466
Parameter Details by Function 0L 469
Capacity Management 469
Database Shared Memory 470
Application Shared Memory L 480
Agent Private Memory 481
Agent/Application Communication Memory 491
Database Manager Instance Memory L. 495
Locks . . . 499
I/Oand Storage 502
AQENES . . L L e e 508
Database Application Remote Interface (DARI) 517
Logging and Recovery 519
Database Log Files 519
Database Log Activity 524
Recovery 528
Distributed Unit of Work Recovery 533

Contents Xi

Database Management 536

Attributes . . . L 536
Status . . . 539
Compiler Settings 541
Communications L 546
Communication Protocol Setup 546
Distributed Services 549
DB2 DIiSCOVErYy o 553
Parallel 555
Connection Elapse Time (conn_elapse) 556
Number of FCM Message Anchors (fcm_num_anchors) 556
Number of FCM Buffers (fcm_num_buffers) 557
Number of FCM Connection Entries (fcm_num_connect) 558
Number of FCM Request Blocks (fcm_num_rgb) 558
Node Connection Retries (max_connretries) 559
Maximum Query Degree of Parallelism (max_querydegree) 559
Maximum Time Difference Among Nodes (max_time_diff)y 560
Enable Intra-Partition Parallelism (intra_parallel) 560
Start and Stop Timeout (start_stop_time) 561
Instance Management L 562
Diagnostic L 562
Database System Monitor Parameters 563
System Management Lo 564
Instance Administrationo 570
Part 5. Appendixes, 577
Appendix A. Planning Database Migration 579
Migration Considerations 579
Migration Restrictions L 580
Security and Authorizationo 580
Storage Requirements 581
Release-to-Release Incompatibilites L. 581
Migrating a Database 582
Appendix B. Incompatibilities Between Releases 585
System Catalog Tables/Views 586
System Catalog Views 586
System Catalog Tables 586
Unique Table Identification 588
Application Programming L 588
NS and NX Lock Modes 588
CREATE TABLE NOT LOGGED INITIALLY 589
DB2 Call Level Interface (DB2 CLI) Defaults 589
Obsolete DB2 CLI Keywords 590
DB2 CLI SQLSTATES e 590
DB2 CLI Mixing Embedded SQL, Without CONNECT RESET 591
DB2 CLI Use of VARCHAR FOR BIT DATA 591

Xii Administration Guide

DB2 CLI Data Conversion Values for SQLGetinfo
DB2 CLI/ODBC Configuration Keyword Defaults
Obsolete DB2 CLI/ODBC Configuration Keywords
DB2 CLI SQLSTATES o e e e e
Stored Procedure Catalog Table
PREP Command - LANGLEVEL
Change to SMALLINT Constants
Error Handling
Maximum Number of Sections in a Package
Bind Warnings
Bind Options
PREP with BINDFILE
Varchar Structures in COBOL
Incompatible APIs
Supported Level of IDBC
Calling Convention for Java Stored Procedures and UDFs
Java Runtime Environment
Obsolete System Monitor Requests for DB2 PE Version 1.2
SQL . e
Updating Partitioning Key Columns
Column NGNAME
Node Number Temporary Space Usage
Authorities for Create and Drop Nodegroups
Target Map in REDISTRIBUTE NODEGROUP
Node Group for Create Table
Revoking CONTROL on Tables or Views
High Level Qualifiers for Objects in DB2 Version5
Inoperative VIEWS L
Unusable VIEWs
SQLCODE Changes it
WITH CHECK OPTION on CREATE VIEW
SQLSTATE Changes e e
FOR BIT DATA Comparisons o v v ittt
Code Page Conversion
Isolation Levels and Blocking All
ORDER BY Temporary Space Usage
Using Quotes in SQL Statements
Database Security and Tuning
GROUP Authorizations
Authentication Type
SYSADM Groups
Security Enhancementso
Utilities and Tools o
Executable Name Changes
Backup and Restore - BUFF_SIZE Parameter
Backup and Restore - Changes Only Option
Backup and Restore - User Exits
Backup and Restore - Authority

Contents

Import - IMPORT REPLACE Option 613

REORG - Alternate Path Option 613
Connectivity and Coexistence oo 614
Distributed Transaction Processing - Connect Type 614
Distributed Transaction Processing - SQLERRD Changes 614
DDCS - SQLISETP e 615
DDCS - DDCSSETP e 615
DDCS - SQLIJTRC.CMD e 616
DDCS - SQLJIBIND.CMD e 616
APPC and APPN Nodes 616
Configuration Parameters Lo 617
ADSM_PASSWORD e 617
MAXDARI and MAXCAGENTS 618
LOGFILSIZ e 618
PCKCACHEFILSIZ e 619
APPLHEAPSZ and APP_CTL HEAP_SZ 619
BUFFPAGE and Multiple Buffer Pools 620
NEWLOGPATH e 620
MULTIPAGE_ALLOC e e e 621
EXTENTSIZE vs SEGPAGES 621
LOCKLIST e 622
BUFFPAGE and SORTHEAP 622
Numeric Values for Database Manager Configuration Tokens 623
Numeric Values for Database Manager Configuration Tokens 623
New Generic Out-of-Range Return Codes 624
Segments versus 4KB Pages oo 625
Obsolete Database Configuration Parameters 625
Obsolete Database Manager Configuration Parameters 625
Appendix C. Memory Usage for DB2 Universal Database Version5 627
Appendix D. Naming Rules 629
Database Names 629
Database and Database Alias Names 629
User IDs and Passwords 630
Schema Names 630
Group and User Names 631
Object Names e 631
Appendix E. DB2 Registry Values and Environment Variables 633

Appendix F. Using Distributed Computing Environment (DCE) Directory

SEIVICES . . . 647
Creating Directory Objects 647
Database Objects 647
Database Locator Objects 649
Routing Information Objects 650
Attributes of Each Object Class 651

Xiv Administration Guide

Details About Each Attribute 652

Directory Services Security e 655
Configuration Parameters and Environment Variables 657
CATALOG, CONNECT, and ATTACH Commands 658
CATALOG GLOBAL DATABASE Command 659
CONNECT Command e e 659
ATTACH Command e 659
How a Client Connects to a Database 660
Connecting to Databases in the Same Cell 661
Connecting to a Database in a DifferentCell 662
How Directories are Searched 663
ATTACH Command 663
CONNECT Command e 664
Temporarily Overriding DCE Directory Information 665
Directory Services Tasks 666
DCE Administrator Tasks 666
Database Administrator Tasks L. 667
Database User Tasks 668
Directory Services Restrictions oL 668
Appendix G. X/Open Distributed Transaction Processing Model 671
Application Program (AP) 671
Transaction Manager (TM) 673
Resource Managers (RM) 673
XA Function Supported 674
XA SwitchUsage 675
XA Open and Close Strings Usage 675
Making the Transacation Manager Known to the Resource Manager 676
Appendix H. Sample Tables 677
The Sample Database 677
To Install the Sample Database 677
To Erase the Sample Database 678
CL_SCHED Table 678
DEPARTMENT Table 678
EMPLOYEE Table 679
EMP_ACT Table 683
EMP_PHOTO Table 685
EMP_RESUME Table 685
IN_TRAY Table 686
ORG Table 686
PROJECT Table 686
SALES Table 687
STAFF Table 688
STAFFG Table 689
Sample Files with BLOB and CLOB Data Type 690
Quintana Photo 691
Quintana Resume 691

Contents XV

Nicholls Photo e 692

Nicholls Resume 692
Adamson Photo L 693
Adamson Resume 694
Walker Photo 695
Walker Resume 695
Appendix I. Catalog Views 697
Updatable Catalog Views 698
“Roadmap” to Catalog Views 698
“Roadmap” to Updatable Catalog Views 699
SYSCAT.BUFFERPOOLS e 700
SYSCAT.BUFFERPOOLNODES 701
SYSCAT.CHECKS 702
SYSCAT.COLAUTH e 703
SYSCAT.COLCHECKS e 704
SYSCAT.COLDIST o e e s 705
SYSCAT.COLUMNS 706
SYSCAT.CONSTDEP 708
SYSCAT.DATATYPES e 709
SYSCAT.DBAUTH e 710
SYSCAT.EVENTMONITORS e 711
SYSCAT.EVENTS 712
SYSCAT.FUNCPARMS e 713
SYSCAT.FUNCTIONS e 714
SYSCAT.INDEXAUTH 717
SYSCAT.INDEXES e 718
SYSCAT.KEYCOLUSE e 720
SYSCAT.NODEGROUPDEF 721
SYSCAT.NODEGROUPS e 722
SYSCAT.PACKAGEAUTH e 723
SYSCAT.PACKAGEDEP 724
SYSCAT.PACKAGES 725
SYSCAT.PARTITIONMAPS 728
SYSCAT.PROCEDURES 729
SYSCAT.PROCPARMS 730
SYSCAT.REFERENCES 731
SYSCAT.SCHEMAAUTH 732
SYSCAT.SCHEMATA e e 733
SYSCAT.STATEMENTS 734
SYSCAT.TABAUTH 735
SYSCAT.TABCONST e e 737
SYSCAT.TABLES 738
SYSCAT.TABLESPACES 740
SYSCAT.TRIGDEP 741
SYSCAT.TRIGGERS 742
SYSCAT.VIEWDEP 743
SYSCAT.VIEWS 744

XVi Administration Guide

SYSSTAT.COLDIST
SYSSTAT.COLUMNS
SYSSTAT.FUNCTIONS e
SYSSTAT.INDEXES
SYSSTAT.TABLES

Appendix J. User Exit for Database Recovery
Overview for OS/2 L
Overview for UNIX-Based Operating Systems
Invoking a User Exit Program
Sample User Exit Programs Lo
Sample User Exit Programs for OS/2
Sample User Exit Programs for UNIX-Based Operating Systems
Calling Format
Calling Format for OS/2
Calling Format for UNIX-Based or Windows NT Operating Systems
Archive and Retrieve Considerations
Backup and Restore Considerations (DB2 for OS/2 only)
Error Handling

Appendix K. Explain Tables and Definitons
EXPLAIN_ARGUMENT Table
EXPLAIN_INSTANCE Table
EXPLAIN_OBJECT Table
EXPLAIN_OPERATOR Table
EXPLAIN_PREDICATE Table
EXPLAIN_STATEMENT Table
EXPLAIN_STREAM Table
Table Definitions for Explain Tables
EXPLAIN_ARGUMENT Table Definiton
EXPLAIN_INSTANCE Table Definiton
EXPLAIN_OBJECT Table Definiton
EXPLAIN_OPERATOR Table Definiton
EXPLAIN_PREDICATE Table Definiton
EXPLAIN_STATEMENT Table Definiton
EXPLAIN_STREAM Table Definition

Appendix L. SQL Explain Tools (db2expin and dynexplin)
Running db2expln and dynexpin L
Syntax for db2expln
Usage Notes fordb2expln
Syntax for dynexpln
Usage Notes fordynexpln
Description of db2expIn and dynexpin Output
Table Access
Temporary Tables
JOINS . . L
Data Streams

Contents

Insert, Update, and Delete 799

Row ldentifier (RID) Preparation 799
Aggregation 800
Parallel Processing 801
Miscellaneous Statementso 803
Examples of db2expln and dynxpln Output 804
Example One: "No Parallelism" Plan 805
Example Two: Non-Partitioned Parallel Plan 807
Example Three: Partitioned Database Plan 809
Appendix M. National Language Support (NLS) 813
Deriving Code Page Valueso 813
Deriving Locales in Application Programs 814
How DB2 Derives Locales 814
Country Code and Code Page Support 814
Character Sets 827
DBCS Character Sets 827
Character Set for Identifiers 828
Coding of SQL Statements 829
Collating Sequences 829
OVervIEW e 829
Specifying a Collating Sequence 832
Datetime Values 833
Date e 833
Time . . . e 834
Timestamp 834
String Representations of Datetime Values 834
Date Strings 834
Time Strings 835
Timestamp Strings 836
MBCS Considerations 836
Appendix N. Splitting Data with db2split 839
Using db2split 839
Populating a Table in a New Table Space 840
Populating a Table in an Existing Table Space 840
db2split Parameters 841
Example Data File for db2split 846
Getting a Partitioning Map with db2gpmap 848
Running db2split 848
db2split Header Information 849
Appendix O. Supplemental AutoLoader Information 851
Introduction L 851
Files . . o 852
Setup for AutoLoader 852
usage 853
Hints and Tips 853

XViii Administration Guide

Troubleshooting 854

Appendix P. Issuing Commands to Multiple Database Partitons 855
Commands e 855
Defining synonyms 855
Specifying the Commandtobe Run, 856
Running Commands in Parallel 856
Monitoring rah Processeso 857
Prefix Sequences L 858
Specifying the List of Hosts oo 859
Eliminating Duplicate Entries from the Host List 860
Controlling the Shell Script 860
$RAHDOTFILES 861
Determining problems with rah: o000 862

Appendix Q. Supporting High Availability Cluster Multi-Processing

Configurations L 865
Hot Standby 866
Examples 866
Mutual Takeover L 869
Examples 869
Additional HACMP Resources o 872
Appendix R. Notices 873
Trademarks 873
Trademarks of Other Companies 874
Index . . . 875
Contacting IBM 877

Contents XiX

XX Administration Guide

About This Book

This book provides information necessary to use and administer the DB2* relational
database management system (RDBMS) products, including:

¢ Information required for designing, implementing and managing databases

¢ Information regarding the configuring and tuning of your database environment to
improve performance.

Many of the tasks described in this book can be performed using different interfaces:

¢ The Command Processor , which allows you to access and manipulate databases
from a graphical interface. From this interface, you can also execute SQL
statements and DB2 utility functions. Most examples in this book illustrate the use
of this interface. For more information about using the command processor, see
the Command Reference manual.

¢ The application programming interface , which allows you to execute DB2 utility
functions within an application program. For more information about using the
application programming interface, see the APl Reference manual.

¢ The Control Center , which allows you to graphically perform administrative tasks
such as configuring the system, managing directories, backing up and recovering
the system, scheduling jobs, and managing media. The Control Center also
contains Replication Administration to graphically setup the replication of data
between systems. execute DB2 utility functions through a graphical user interface.
To invoke the Control Center, use the db2cc command, or (for OS/2) select the
Control Center icon from the DB2 folder. For introductory help, select Getting
started from the Help pull-down of the Control Center window. The Visual Explain
and Performance Monitor tools are invoked from the Control Center.

There are other tools available that you can use to perform administration tasks. They
include:

e The Script Center to store small applications called scripts. These scripts may
contain DB2 commands as well as operating system commands.

e The Alert Center to monitor the messages that result from other DB2 operations.

e The Tool Settings to change the settings for the Control Center, Alert Center, and
Replication.

e The Journal to schedule jobs to run unattended.

Who Should Use this book

This book is intended primarily for database administrators, system administrators,
security administrators and system operators who need to design, implement and
maintain a database to be accessed by local or remote clients. It can also be used by
programmers and other users who require an understanding of the administration and
operation of the DB2 relational database management system.

© Copyright IBM Corp. 1993, 1997 XXi

How This Book is Structured

XXil

The Administration Guide contains information about the following major topics:

Introduction to Parallelism in DB2 Universal Database, presents an overview of
DB2 Universal Database and the types of parallelism provided by DB2.

Database Design and Implementation

Chapter 1, Designing Your Logical Database, discusses the concepts and
guidelines for designing a logical database.

Chapter 2, Designing Your Physical Database, discusses the guidelines for
designing a physical database, including considerations related to physical data
storage.

Chapter 3, Implementing Your Design, discusses the concepts and guidelines for
creating a database and the objects within a database.

Chapter 4, Controlling Database Access, describes how you can control access to
your database's resources.

Chapter 5, Utilities for Moving Data, discusses the LOAD, AutoLoader, IMPORT
and EXPORT utilities. db2move and replication are also discussed.

Chapter 6, Recovering a Database, discusses factors to consider when choosing
database and table space recovery methods, including backing up and restoring a
database or table space, and using the roll-forward recovery method.

Distributed Transaction Processing

Chapter 7, Distributed Databases, discusses how you can access multiple
databases in a single transaction.

Chapter 8, Using DB2 with an XA-Compliant Transaction Manager, discusses how
you can use your databases in a distributed transaction processing environment
such as CICS.

Tuning Application Performance

Chapter 9, Application Considerations, describes some techniques for improving
database performance when designing your applications.

Chapter 10, Environmental Considerations, describes some techniques for
improving database performance when setting up your database environment.

Chapter 11, System Catalog Statistics, describes how statistics about your data
can be collected and used to ensure optimal performance.

Chapter 12, Understanding the SQL Compiler, describes what happens to an SQL
statement when it is compiled using the SQL compiler.

Chapter 13, SQL Explain Facility, describes the Explain facility, which allows you
to examine the choices the SQL compiler has made to access your data.

Tuning and Configuring Your System

Administration Guide

Chapter 14, Operational Performance, provides an overview of how the database
manager uses memory and other considerations that affect run-time performance.

Chapter 15, Using the Governor, provides an introduction to the use of a governor
to control some aspects of database management.

Chapter 16, Redistributing Data Across Database Partitions, discusses the tasks
required in a partitioned database environment to redistribute data across
partitions.

Chapter 17, Scaling Your Configuration, introduces some considerations and tasks
associated with increasing the size of your database systems.

Chapter 18, Benchmark Testing, provides an overview of benchmark testing and
how to perform benchmark testing.

Chapter 19, Configuring DB2, discusses the database manager and database
configuration files and the values for the configuration parameters.

Appendixes

Appendix A, Planning Database Migration, provides information about migrating
databases to Version 5.

Appendix B, Incompatibilities Between Releases, presents the incompatibilities
introduced with Version 5.

Appendix C, Memory Usage for DB2 Universal Database Version 5, presents
memory requirements for each DB2 feature.

Appendix D, Naming Rules, provides the rules to follow when naming databases
and objects.

Appendix E, DB2 Registry Values and Environment Variables, presents profile
registry values and environment variables.

Appendix F, Using Distributed Computing Environment (DCE) Directory Services,
provides information about how you can use DCE Directory Services.

Appendix G, X/Open Distributed Transaction Processing Model, provides an
overview of the X/Open Distributed Transaction Processing model and the DB2
database support provided.

Appendix H, Sample Tables, contains a description of the sample tables provided
with the database manager.

Appendix |, Catalog Views, contains a description of each system catalog view,
including column names and data types.

Appendix J, User Exit for Database Recovery, discusses how user exit programs
can be used with database log files and describes some sample user exit
programs.

Appendix K, Explain Tables and Definitions, provides information about the tables
used by the DB2 Explain facility and how to create those tables.

Appendix L, SQL Explain Tools (db2expln and dynexpln), provides information on
using the DB2 explain tools: db2expln and dynexpln.

About This Book XXiii

XXiV

Appendix M, National Language Support (NLS), introduces DB2 National
Language Support (NLS) including information about countries, languages, and
code pages.

Appendix N, Splitting Data with db2split, discusses how to use the db2split tool in
a partitioned database environment.

Appendix O, Supplemental AutoLoader Information, presents supplmental
AutoLoader information. AutoLoader is only for use in a partitioned database
environment.

Appendix P, Issuing Commands to Multiple Database Partitions, discusses the use
of the db2_all and rah shell scripts to send commands to all partitions in a
partitioned database environment.

Appendix Q, Supporting High Availability Cluster Multi-Processing Configurations,
discusses the support of IBM High Availability Cluster Multi-Processing (HACMP)
for AIX by DB2.

Administration Guide

Introduction to Parallelism in DB2 Universal Database

This chapter provides an introduction to DB2 Universal Database and to the types of
parallelism provided by DB2. This chapter describes the following:

¢ Overview of basic DB2 concepts and DB2 parallelism concepts
e Types of parallelism

¢ Hardware environments

e Summary of parallelism possible for each hardware environment
¢ Enabling parallelism

DB2 provides the flexibility for you to run a wide range of hardware configurations. It
allows you to choose how to best match your hardware and application requirements
with a specific DB2 product configuration.

The remaining chapters in this part of the book assist you in the design and
implementation of your database. With the different levels of complexity in database
environments that DB2 supports, there are considerations and tasks specific to one or
more of these environments. These considerations and tasks are presented toward the
end of each section or chapter and introduced as being for a specific environment. In
some cases, entire sections or chapters are appropriate for only a specific environment.
After reading this chapter, you should be able to discern which chapters are appropriate
for your business needs and your environment.

Overview of DB2 Concepts

A database manager (sometimes called an instance) is DB2 code that manages data. It
controls what can be done to the data, and manages system resources assigned to it.
Each instance is a complete environment. It contains all the database partitions defined
for a given parallel database system. An instance has its own databases (which other
instances cannot access), and all its database partitions share the same system
directories. It also has separate security from other instances on the same machine.

A table consists of data logically arranged in columns and rows. The data in the table
is logically related, and relationships can be defined between tables. Data can be
viewed and manipulated based on mathematical principles and operations called
relations. Table data is accessed via SQL, a standardized language for defining and
manipulating data in a relational database. All database and table data is assigned to
table spaces.

A database is organized into parts called table spaces. A table space's definition and
attributes are recorded in the database system catalog. Once a table space is created,
you can then create tables within this table space. A container is assigned to a table
space. A container is an allocation of physical storage (such as a file or device). Table
spaces reside in nodegroups.

A nodegroup is a set of one or more database partitions. When you want to create
tables for the database, you first create the nodegroup where the table spaces will be

© Copyright IBM Corp. 1993, 1997 XXV

stored, then you create the table space where the tables will be stored. See
“Nodegroups and Data Partitioning” on page xxvii for more information about
nodegroups. See “Overview of DB2 Parallelism Concepts” on page xxvii for the
definition of a database partition.

Figure 1 illustrates the relationship among the objects just described. It also illustrates
that tables, indexes, and long data are stored in table spaces.

System

=

Instance(s)

Database(s)

Nodegroup(s)

:Ll

Table space

tables

index(es;
*()

EE

long data

_

Figure 1. Relationship Among Some Database Objects

XXVi Administration Guide

Overview of DB2 Parallelism Concepts

DB2 extends the database manager to the parallel, multi-node environment. A
database patrtition is a part of a database that consists of its own data, indexes,
configuration files, and transaction logs. (See the Administration Getting Started for an
overview of indexes, configuration files, and transaction logs.) A database partition is
sometimes called a node or database node. (Node was the term used in the DB2
Parallel Edition for AIX Version 1 product.)

A single-partition database is a database having only one database partition. All data in
the database is stored in that partition. In this case nodegroups, while present, provide
no additional capability.

A partitioned database is a database with two or more database partitions. Tables can
be located in one or more database partitions. When a table is in a nodegroup
consisting of multiple partitions, some of its rows are stored in one partition and others
are stored in other partitions.

Usually, a single database partition exists on each physical node and the processors on
each system are used by the database manager at each database partition to manage
its part of the database's total data.

Because data is divided across database partitions, you can use the power of multiple
processors on multiple physical nodes to satisfy requests for information. Data retrieval
and update requests are decomposed automatically into sub-requests and executed in
parallel among the applicable database partitions. The fact that databases are split
across database partitions is transparent to users of SQL statements.

User interaction is through one database partition. It is known as the coordinator node
for that user. The coordinator runs on the same database partition as the application, or
in the case of a remote application, the database partition to which that application is
connected. Any database partition can be used as a coordinator node.

Nodegroups and Data Partitioning
You can define named subsets of one or more database partitions in a database. Each
subset you define is known as a nodegroup. Each subset that contains more than one
database partition is known as a multi-partition nodegroup. Multi-partition nodegroups
can only be defined with database partitions that belong to the same instance.

Figure 2 on page xxviii shows an example of a database with five partitions in which:

¢ A nodegroup spans all but one of the database partitions (Nodegroup 1)

¢ A nodegroup contains one database partition (Nodegroup 2)

¢ A nodegroup contains one database partition which acts as the coordinator node
(Nodegroup 3)

Introduction to Parallelism in DB2 Universal Database XXVii

Database
Partition

Nodegroup 2

Nodegroup 1

Database
Partition

Database
Partition

Database
Partition

Database

Database

Nodegroup 3 Partition

Figure 2. Nodegroups in a Database

You create a new nodegroup using the CREATE NODEGROUP statement. See the
SQL Reference for more information. Data is divided across all the partitions in a
nodegroup. If you are using a multi-partition nodegroup, you must look at several
nodegroup design considerations. For more information in both of these areas, see
“Designing Nodegroups” on page 32.

Types of Parallelism

XXVili

Parts of a database-related task (such as a database query) can be executed in
parallel in order to speed up the task, often dramatically so. There are different ways a
task is performed in parallel. The nature of the task, the database configuration, and the
hardware environment determine how DB2 will perform a task in parallel. These
considerations are interrelated. You should consider them together when first deciding
on the physical and logical design of a database. This section describes the types of
parallelism.

DB2 supports the following types of parallelism:

e 1/O

e Query
e Utility

Administration Guide

I/O Parallelism
For situations in which multiple containers exist for a table space, the database
manager can initiate parallel I/0O. Parallel 1/0O refers to the process of reading from or
writing to two or more I/O devices at the same time to reduce elapsed time. Performing
1/0 in parallel can result in significant improvements to I/O throughput.

I/O parallelism is a component of each hardware environment described in “Hardware
Environments” on page xxxiii. Table 1 on page xli lists the hardware environments
best suited for 1/O parallelism.

Query Parallelism
There are two types of query parallelism: inter-query parallelism and intra-query
parallelism.

Inter-query parallelism refers to the ability of multiple applications to query a database
at the same time. Each query will execute independently of the others, but DB2 will
execute all of them at the same time. DB2 has always supported this type of
parallelism.

Intra-query parallelism refers to the processing of parts of a single query at the same
time using either intra-partition parallelism or inter-partition parallelism or both.

The term query parallelism is used throughout this book.

Intra-Partition Parallelism

Intra-partition parallelism refers to the ability to break up a query into multiple parts.
(Some of the utilities also perform this type of parallelism. See “Utility Parallelism” on
page Xxxxii.)

Intra-partition parallelism subdivides what is usually considered a single database

operation such as index creation, database load, or SQL queries into multiple parts,
many or all of which can be executed in parallel within a single database partition.

Introduction to Parallelism in DB2 Universal Database XXIX

XXX

Query

A query is divided
into parts, each being
executed in parallel.

Data

Database Partition

Figure 3. Intra-Partition Parallelism

Figure 3 shows a query that is broken into four pieces that can be executed in parallel,
with the results returned more quickly than if the query was run in a serial fashion. The
pieces are copies of each other. To utilize intra-partition parallelism, you need to
configure the database appropriately.

You can choose the degree of parallelism or let the system do it for you. The degree
of parallelism is the number of pieces of a query that execute in parallel.

Table 1 on page xli lists the hardware environments best suited for intra-partition
parallelism.

Inter-Partition Parallelism

Inter-partition parallelism refers to the ability to break up a query into multiple parts
across multiple partitions of a partitioned database, on one machine or multiple
machines. The query is performed in parallel. (Some of the utilities also perform this
type of parallelism. See “Utility Parallelism” on page xxxii.)

Inter-partition parallelism subdivides what is usually considered a single database
operation such as index creation, database load, or SQL queries into multiple parts,
many or all of which can be executed in parallel across multiple partitions of a
partitioned database in one machine or multiple machines.

Administration Guide

Query

A query is divided
into parts, each being
executed in parallel.

Data Data Data Data

Database Partition Database Partition | | Database Partition | | Database Partition

Figure 4. Inter-Partition Parallelism

Figure 4 shows a query that is broken into four pieces that can be executed in parallel,
with the results returned more quickly than if the query was run in a serial fashion in a
single partition.

The degree of parallelism is largely determined by the number of
partitions you create and how you define your nodegroups.

Table 1 on page Xxli lists the hardware environments best suited for inter-partition
parallelism.

Using Both Intra-Partition and Inter-Partition Parallelism

You can use intra-partition parallelism and inter-partition parallelism at the same time.
This combination provides, in effect, two dimensions of parallelism. This results in an
even more dramatic increase in the speed at which queries are processed. Figure 5 on
page xxxii illustrates this.

Introduction to Parallelism in DB2 Universal Database XXXi

Query

T T

Query Query
A query is divided
into parts, each being
executed in parallel.
Data ‘ ’ Data
Database Partition Database Partition

Figure 5. Both Inter-Partition and Intra-Partition Parallelism

Utility Parallelism

XXXil

DB2's utilities can take advantage of intra-partition parallelism. They can also take
advantage of inter-partition parallelism; where multiple database partitions exist, the
utilities execute in each of the partitions in parallel. The following paragraphs describe
how some utilities take advantage of parallelism.

The LOAD utility can take advantage of intra-partition parallelism and I/O parallelism.
Loading data is a heavily CPU-intensive task. The LOAD utility takes advantage of
multiple processors for tasks such as parsing and formatting data. Also, the LOAD
utility can use parallel 1/0O servers to write the data to the containers in parallel. See
“LOAD Performance Considerations” on page 148 and the LOAD command in the
Command Reference for information on how to enable parallelism for the LOAD utility.

During index creation, the scanning and subsequent sorting of the data occurs in
parallel. DB2 exploits both I/O parallelism and intra-partition parallelism when creating
an index. This helps to speed up index creation when a CREATE INDEX command is
issued, during restart (if an index is marked invalid), and during the reorganization of
data.

Backing up and restoring data are heavily 1/0O bound tasks. DB2 exploits both I/O
parallelism and intra-partition parallelism when performing backups and restores.
Backup exploits 1/0 parallelism by reading from multiple table space containers in
parallel, and asynchronously writing to multiple backup media in parallel. See the
BACKUP DATABASE command and the RESTORE DATABASE command in the
Command Reference for information on how to enable parallelism for these two
commands.

Administration Guide

Hardware Environments
This section provides an overview of the following hardware environments:

¢ Single partition on a single processor (uniprocessor)
¢ Single partition with multiple processors (SMP)
e Multiple partition configurations
— Partitions with one processor (MPP)
— Partitions with multiple processors (cluster of SMPs)
— Logical database partitions (also known as Multiple Logical Nodes (MLN) in
DB2 Parallel Edition for AlIX Version 1)

In each hardware environment section, considerations for capacity and scalability are
described. Capacity refers to the number of users and applications able to access the
database in large part determined by memory, agents, locks, 1/0, and storage
management. Scalability refers to the ability for a database to grow and continue to
exhibit the same operating characteristics and response times.

Single Partition on a Single Processor
This environment is made up of memory and disk, but contains only a single CPU.
This environment has been given many names such as: standalone database,
client/server database, serial database, uniprocessor system, and single
node/non-parallel environment. Figure 6 on page xxxiv illustrates this environment.

Introduction to Parallelism in DB2 Universal Database XXXiii

XXXIV

Uniprocessor machine

Database Partition

Figure 6. Single Partition On a Single Processor

The database in this environment serves the needs of a department or small office
where the data and system resources (including only a single processor or CPU) are
managed by a single database manager.

Table 1 on page Xxli lists the types of parallelism best suited to take advantage of this
hardware configuration.

Capacity and Scalability

In this environment you can add more disks. Having one or more 1/O servers for each
disk allows for more than one I/O operation to be taking place at the same time. You
can also add more hard disk space to this environment.

A single-processor system is restricted by the amount of disk space the processor can
handle. However, as workload increases a single CPU may become insufficient in
processing user requests any faster, regardless of other additional components, such
as memory or disk, that you may add.

If you have reached maximum capacity or scalability, you can consider moving to a
single partition system with multiple processors. This configuration is described in the
next section.

Administration Guide

Single Partition with Multiple Processors
This environment is typically made up of several equally powerful processors within the
same machine and is called a symmetric multi-processor (SMP) system. Resources
such as disk space and memory are shared. More disks and memory are found in this
machine compared to the single-partition database, single processor environment. This
environment is easy to manage since physically everything is together in one machine
and the sharing of memory and disks is expected.

With multiple processors available, different database operations can be completed
significantly more quickly than with databases assigned to only a single processor. DB2
can also divide the work of a single query among available processors to improve
processing speed. Other database operations such as the LOAD utility, the backup and
restore of table spaces, and index creation on existing data can take advantage of the
multiple processors. Figure 7 illustrates this environment.

SMP machine

Memory

Database Partition

Figure 7. Single Partition Database Symmetric Multiprocessor System

Table 1 on page xli lists the types of parallelism best suited to take advantage of this
hardware configuration.

Capacity and Scalability

In this environment you can add more processors. However, since it is possible for the
different processors to attempt to access the same data, limitations with this
environment can appear as your business operations grow. With shared memory and
shared disks, you are effectively sharing all of the database data. One application on
one processor may be accessing the same data as another application on another
processor, possibly causing the second application to wait for access to the data.

Introduction to Parallelism in DB2 Universal Database = XXXV

You can increase the 1/0O capacity of the database partition associated with your
processor, such as the number of disks. You can establish I/O servers to specifically
deal with I/O requests. Having one or more I/O servers for each disk allows for more
than one 1/O operation to take place at the same time.

If you have reached maximum capacity or scalablity, you can consider moving to a
system with multiple partitions. These configurations are described in the next section.

Multiple Partition Configurations

XXXVi

You can divide a database into multiple partitions, each on its own machine. Multiple
machines with multiple database partitions can be grouped together. This section
describes the following partition configurations:

e Partitions on systems each with one processor
e Partitions on systems each with multiple processors
e Logical database partitions

Partitions with One Processor

In this environment there are many database partitions with each partition on its own
machine and having its own processor, memory, and disks. Figure 8 on page Xxxvii
illustrates this. A machine consists of a CPU, memory, and disk with all machines
connected by a communications facility. Other names that have been given to this
environment include: a cluster, a cluster of uniprocessors, a massively parallel
processing (MPP) environment, or a shared-nothing configuration. The latter name
accurately reflects the arrangement of resources in this environment. Unlike an SMP
environment, an MPP environment has no shared memory or disks. The MPP
environment removes the limitations introduced through the sharing of memory and
disks.

Administration Guide

Communications Facility

Uniprocessor machine Uniprocessor machine Uniprocessor machine Uniprocessor machine

| ==

Database Partition Database Partition Database Partition Database Partition

Disks

Figure 8. Massively Parallel Processing System

A partitioned database environment allows a database to remain a logical whole while
being physically divided across more than one partition. To applications or users, the
database can be used as a whole and the fact that data is partitioned remains
transparent to most users. The work to be done with the data can be divided out to
each of the database managers. Each database manager in each partition works
against its own part of the database.

Table 1 on page Xxli lists the types of parallelism best suited to take advantage of this
hardware configuration.

Capacity and Scalability: In this environment you can add more database partitions
(nodes) to your configuration. On some platforms, for example the RS/6000 SP, the
maximum is 512 nodes. However, there may be practical limits for managing a high
number of machines and instances.

If you have reached maximum capacity or scalability, you can consider moving to a
system where each partition has multiple processors. This configuration is described in
the next section.

Partitions with Multiple Processors

As an alternative to a configuration in which each partition has a single processor is a
configuration in which a partition has multiple processors. This is known as an SMP
cluster.

Introduction to Parallelism in DB2 Universal Database ~ XXXVii

This configuration combines the advantages of SMP and MPP parallelism. This means
a query can be performed in a single partition across multiple processors. It also means
that a query can be performed in parallel across multiple partitions.

Communications Facility
|

SMP machine SMP machine
’ Memory ‘ ’ Memory ‘
Database Partition Database Partition

f J;

=

(i

| |
\w ,+

Disks
L

Figure 9. Cluster of SMPs

Table 1 on page Xxli lists the types of parallelism best suited to take advantage of this
hardware configuration.

Capacity and Scalability: ~ In this environment you can add more database partitions,
as in the previous section. You can also add more processors to existing database
partitions.

Logical Database Partitions

A logical database partition differs from a physical partition in that it is not given control
of an entire machine. Although the machine has shared resources, the database
partitions do not share the resources. Processors are shared but disk and memory are
not.

One reason for using logical database partitions is to provide scalability. Multiple
database managers running in multiple logical partitions may be able to make fuller use
of available resources than a single database manager could. This will become more
true as machines with even more more processors are manufactured. Figure 10 on

Administration Guide

page xxxix illustrates the fact that you may gain more scalability on an SMP machine
by adding more partitions, particularly for machines with many processors. By
partitioning the database, you can administer and recover each partition separately.

Big SMP machine

Communications Facility

Memory Memory

Database Partition 1 Database Partition 2

Figure 10. Partitioned Database, Symmetric Multiprocessor System

Figure 11 on page xl illustrates the fact that you can multiply the configuration shown
in Figure 10 to increase processing power.

Introduction to Parallelism in DB2 Universal Database XXXIiX

Communications Facility

Big SMP machine

Communications Facility

Big SMP machine

Communications Facility

Memory Memory Memory Memory
Database Database Database Database
Partition 1 Partition 2 Partition 1 Partition 2

= =3 = =
e | =l = e |
b & b b b »
Disks Disks Disks Disks

Figure 11. Partitioned Database, Symmetric Multiprocessor Systems Clustered Together

Note also that the ability to have two or more partitions coexist on the same machine
(regardless of the number of processors) allows greater flexibility in designing high
availability configurations and fallover strategies. See Appendix Q, “Supporting High
Availability Cluster Multi-Processing Configurations” on page 865 for a description of
how, upon machine failure, a database partition can be automatically moved and
restarted on another machine already containing another partition of the same
database.

Table 1 on page xli lists the types of parallelism best suited to take advantage of this
hardware environment.

Summary of Parallelism Best Suited To Each Hardware Environment

xl

The following table summarizes the types of parallelism best suited to the various
hardware environments.

Table 1. Types of Parallelism Possible for Each Hardware Environment

Hardware Environment lfe} Intra-Query Parallelism
Parallelism Intra-Partition Inter-Partition
Parallelism Parallelism
Single Partition, Yes No(1) No

Single Processor

Administration Guide

Table 1. Types of Parallelism Possible for Each Hardware Environment
Hardware Environment /10 Intra-Query Parallelism
Parallelism Intra-Partition Inter-Partition
Parallelism Parallelism

Single Partition, Yes Yes No

Multiple Processors (SMP)

Multiple Partitions, Yes No(1) Yes

One Processor (MPP)

Multiple Partitions, Yes Yes Yes

Multiple Processors

(cluster of SMPs)

Logical Database Partitions Yes Yes Yes

Note: (1) There may be an advantage to setting the degree of parallelism (using one of the
configuration parameters) to greater than one even on a single CPU system, especially
if the queries you execute are not fully utilizing the CPU (for example if they are 1/0
bound).

Enabling Parallelism for Queries

There are two types of query parallelism: intra-partition parallelism and inter-partition
parallelism. Either type, or both types, can be used depending on whether the
environment is a single-partition or multi-partition environment.

Enabling Intra-Partition Query Parallelism

In order for intra-partition query parallelism to occur, you must modify database
configuration parameters and database manager configuration parameters.

INTRA_PARALLEL
Database manager configuration parameter. See “Enable Intra-Partition
Parallelism (intra_parallel)’ on page 560 for more information.

DFT_DEGREE
Database configuration parameter. Provides the default for the DEGREE
bind option and the CURRENT DEGREE special register. See “Default
Degree (dft_degree)” on page 542 for more information.

DEGREE
Precompile or bind option for static SQL. See the Command Reference for
more information.

CURRENT DEGREE
Special register for dynamic SQL. See the SQL Reference for more
information.

For more information on the configuration parameter settings, and how to enable

applications to process in parallel, see “Parallel Processing of Applications” on
page 298.

Introduction to Parallelism in DB2 Universal Database Xli

Enabling Inter-Partition Query Parallelism
Inter-partition parallelism occurs automatically based on the number of database
partitions and the distribution of data across these partitions.

Enabling Utility Parallelism

This section provides an overview of how to enable intra-partition parallelism for the
following utilities:

e Load

e Create index

e Backup database / table space
¢ Restore database / table space

Inter-partition parallelism for utilities occurs automatically based on the number of
database partitions.

Load
To enable parallelism while loading data, use the following parameters on the LOAD
command:

e CPU_PARALLELISM
e DISK_PARALLELISM

See the Command Reference for information on the LOAD command.

Create Index
To enable parallelism when creating an index:

¢ The INTRA_PARALLEL database manager configuration parameter must be ON
¢ The table must be large enough to benefit from parallelism

See the SQL Reference for information on the CREATE INDEX statement.

Backup Database / Table Space
To enable parallelism when backing up a database or table space:

e The INTRA_PARALLEL database manager configuration parameter must be ON

To enable 1/O parallelism when backing up a database or table space:

¢ Use more than one target media
e Configure table spaces for parallel 1/0

See the Command Reference for information on the BACKUP DATABASE command.

Restore Database / Table Space
To enable parallelism when restoring a database or table space:

e The INTRA_PARALLEL parameter must be ON

xlii Administration Guide

To enable I/O parallelism when restoring a database or table space:

¢ Use more than one source media
¢ Configure table spaces for parallel /O

See the Command Reference for information on the RESTORE DATABASE command.

Introduction to Parallelism in DB2 Universal Database Xliii

xliv Administration Guide

Part 1. Database Design and Implementation

© Copyright IBM Corp. 1993, 1997

2 Administration Guide

Chapter 1. Designing Your Logical Database

This section describes the following steps in database design:

¢ “Decide What Data to Record in the Database”

¢ “Define Tables for Each Type of Relationship” on page 5

¢ “Provide Column Definitions for All Tables” on page 7

¢ “Identify One or More Columns as a Primary Key” on page 9

e “Be Sure Equal Values Represent the Same Entity” on page 11
e “Consider Normalizing Your Tables” on page 11

¢ “Planning for Constraint Enforcement” on page 16

e “Other Database Design Considerations” on page 23.

Your goal in designing a database is to produce a representation of your environment
that is easy to understand and will serve as a basis for expansion. In addition, you want
a database design that will help you maintain consistency and integrity in your data.
You can do this by producing a design that will reduce redundancy and eliminate
anomalies that can occur during the updating of your database.

These steps are part of logical database design. Database design is not a linear
process; you will probably have to redo steps as you work out the design.

The physical implementation of the database design is described in Chapter 2,
“Designing Your Physical Database” on page 25 and Chapter 3, “Implementing Your
Design” on page 55.

Decide What Data to Record in the Database

The first step in developing a database design is to identify the types of data to be
stored in database tables. A database includes information about the entities in an
organization or business and their relationships to each other. In a relational database,
entities are defined as tables.

An entity is a person, object, or concept about which you wish to store information.
Some of the entities described in the sample tables are employees, departments, and
projects. (See Appendix H, “Sample Tables” on page 677, for a description of the
sample database.)

In the sample employee table, the entity “employee” has attributes, or properties, such
as employee number, name, work department, and salary amount. Those properties
appear as the columns EMPNO, FIRSTNME, LASTNAME, WORKDEPT, and SALARY.

An occurrence of the entity “employee” consists of the values in all of the columns for
one employee. Each employee has a unique employee number (EMPNO) that can be
used to identify an occurrence of the entity “employee.”

Each row in a table represents an occurrence of an entity or relationship. For example,
in the following table the values in the first row describe an employee named Haas.

© Copyright IBM Corp. 1993, 1997 3

Table 2. Occurrences of Employee Entities and their Attributes

EMPNO FIRSTNME LASTNAME WORKDEPT JOB
000010 Christine Haas A0O President
000020 Michael Thompson BO1 Manager
000120 Sean O'Connell A0O Clerk
000130 Dolores Quintana co1 Analyst
000030 Sally Kwan Co1 Manager
000140 Heather Nicholls Cco1 Analyst
000170 Masatoshi Yoshimura D11 Designer

There is a growing need to support non-traditional database applications such as
multimedia. Within your design, you may want to consider attributes to support
multimedia objects such as documents, video or mixed media, image, and voice.

In a table, each column of a row is related in some way to all the other columns of that
row. Some of the relationships expressed in the sample tables are:
e Employees are assigned to departments
Dolores Quintana is assigned to Department C0O1
¢ Employees perform a job
Dolores works as an Analyst
e Departments report to other departments

Department CO1 reports to Department AOO
Department BO1 reports to Department AOO

e Employees work on projects
Dolores and Heather both work on project IF1000
e Employees manage departments
Sally manages department CO1.
Before you design your tables, you must understand entities and their relationships.

“Employee” and “department” are entities; Sally Kwan is part of an occurrence of
“employee,” and CO1 is part of an occurrence of “department.”

The same relationship applies to the same columns in every row of a table. For
example, one row of a table expresses the relationship that Sally Kwan manages
Department CO1; another, the relationship that Sean O'Connell is a clerk in Department
A00.

The information contained within a table depends on the relationships to be expressed,
the amount of flexibility needed, and the data retrieval speed desired.

4 Administration Guide

In addition to identifying data within your design, you should also identify other types of
information such as the business rules which apply to that data.

Define Tables

for Each Type of Relationship

In a database, you can express several types of relationships. Consider the possible
relationships between employees and departments. An employee can work in only one
department; this relationship is single-valued for employees. On the other hand, one
department can have many employees; the relationship is multi-valued for departments.
The relationship between employees (single-valued) and departments (multi-valued) is
a one-to-many relationship. Relationships can be one-to-many, many-to-one,
one-to-one, or many-to-many.

The type of a given relationship can vary, depending on the specific environment. If
employees of a company belong to several departments, the relationship between
employees and departments is many-to-many.

You will want to define separate tables for different types of relationships.

The following topics are discussed within this section:
¢ “One-to-Many and Many-to-One Relationships”
¢ “Many-to-Many Relationships” on page 6
¢ “One-to-One Relationships” on page 7

One-to-Many and Many-to-One Relationships

To define tables for each one-to-many and many-to-one relationship:

e Group all the relationships for which the “many” side of the relationship is the same
entity.
¢ Define a single table for all the relationships in a group.

In the following example, the “many” side of the first and second relationships is
“employees” so we define an employee table, EMPLOYEE.

Table 3. Many-to-One Relationships

Entity Relationship Entity

Employees are assigned to departments

Employees work at jobs

Departments report to (administrative) departments

In the third relationship, “departments” is the “many” side, so we define a department
table, DEPARTMENT.

The following tables illustrate how these examples are represented:

Chapter 1. Designing Your Logical Database 5

The EMPLOYEE table:

EMPNO WORKDEPT JOB
000010 A00 President
000020 BO1 Manager
000120 A0O0 Clerk
000130 co1 Analyst
000030 Cco1 Manager
000140 co1 Analyst
000170 D11 Designer

The DEPARTMENT table:

DEPTNO ADMRDEPT
co1 A00
D01 A00
D11 D01

Figure 12. Assigning Many-to-One Facts to Tables

Many-to-Many Relationships
A relationship that is multi-valued in both directions is a many-to-many relationship. An
employee can work on more than one project, and a project can have more than one
employee. The questions “What does Dolores Quintana work on?” and “Who works on
project IF1000?” both yield multiple answers. A many-to-many relationship can be
expressed in a table with a column for each entity (“employees” and “projects”), as
shown in the following example.

The following table illustrates how a many-to-many relationship (an employee can work

on many projects and a project can have many employees working on it) can be
represented:

6 Administration Guide

The employee activity (EMP_ACT) table:

EMPNO PROJNO
000030 IF1000
000030 IF2000
000130 IF1000
000140 IF2000
000250 AD3112

Figure 13. Assigning Many-to-Many Facts to Tables

One-to-One Relationships

One-to-one relationships are single-valued in both directions. A manager manages one

department; a department has only one manager. The questions, “Who is the manager
of Department C01?” and “What department does Sally Kwan manage?” both have

single answers. The relationship can be assigned to either the department table or the
employee table. Because all departments have managers, but not all employees are
managers, it is most logical to add the manager to the department table as shown in

the following example.

The following tables illustrates how a one-to-one relationship can be represented:

The DEPARTMENT table:

DEPTNO MGRNO
A0O 000010
BO1 000020
D11 000060

Figure 14. Assigning One-to-One Facts to a Table

Provide Column Definitions for All Tables
To define a column in a relational table:

1. Choose a name for the column

Each column in a table must have a name that is unique within the table.

Selecting column names is described in detail in Appendix D, “Naming Rules” on

page 629.

Chapter 1. Designing Your Logical Database

7

2. State what kind of data is valid for the column

The data type and length specify maximum length and the type of data that is valid
for the column. Data types may be chosen from those provided by the database
manager or you may choose to create your own user-defined types. For
information about the data types provided by DB2 and about user-defined types,
see the SQL Reference manual.

Examples of data type categories are: numeric, character string, double-byte (or
graphic) character string, date-time, and binary string.

Large object (LOB) data types support multi-media objects such as documents,
video, image and voice. These large objects are implemented using the following
data types:

e A binary large object (BLOB) string. Examples of BLOBs are photographs of
employees, voice, and video.

* A character large object (CLOB) string, where the sequence of characters can
be either single- or multi-byte characters, or a combination of both. An
example of a CLOB is a resume of an employee.

e A double-byte character for large object (DBCLOB) string, where the sequence
of characters are double-byte characters. An example of a DBCLOB is a
Japanese resume.

For a better understanding of large object support, refer to the SQL Reference
manual.

A user-defined type (UDT), is a type that is derived from an existing type. You may
need to define types that are derived from existing types that share similar
characteristics, but are considered to be separate and incompatible types.

A User-defined function (UDF) may be used for a number of reasons, including
invoking routines that allow comparison or conversion between user-defined types.
UDFs extend and add to the support provided by built-in functions of SQL and can
be used wherever a built-in function can be used. There are two types of UDFs:

e An external function, which is written in a programming language
¢ A sourced function, which will be used to invoke other UDFs

For example, two numeric data types are European Shoe Size and American Shoe
Size. Both types share the same representations of shoe size, but they are
incompatible because the measurement base is different and cannot be compared.
When this occurs, a user-defined function can be invoked to convert from one shoe
size to another.

During your design, you may have to consider functions for your UDTs. For a
better understanding of user-defined types and user-defined functions, refer to the
SQL Reference manual.

3. State which columns might need default values
Some columns cannot have meaningful values in all rows because:

e A value of the column is not applicable to the row.

8 Administration Guide

For example, a column containing an employee's middle initial is not applicable
to an employee who has no middle initial.

¢ A value is applicable, but the value is not known at this time.

As an example, the MGRNO column might not contain a valid manager
number because the previous manager of the department has been
transferred and a new manager has not been appointed yet.

In both situations, you can choose between allowing a null value (a special value
indicating that the column value is unknown or inapplicable) or allowing a non-null
default value to be assigned by the database manager or by the application.

Null values and default values are described in detail in the SQL Reference
manual.

Identify One or More Columns as a Primary Key

The unique key of a table is a column or an ordered collection of columns for which
each value identifies (functionally determines) a unique row. For example, an employee
number column can be defined as a unique key, because each value in the column
identifies only one employee. No two employees can have the same employee number.

The primary key of a table is one of the unique keys defined on a table but is selected
to be the key of first importance on the table. There can only be one primary key on a
table.

A primary index is automatically created for the primary key. The primary index is used
by the database manager for efficient access to table rows and allows the database
manager to enforce the uniqueness of the primary key. At other times the database
manager may use other columns with indexes defined, and not only the primary key
and index, to access data when processing queries.

Several columns could qualify as a candidate to be the primary key for a table. Each of
the candidate columns could be considered unique. You could have all of the columns
as part of the primary key but this would create an overly complex primary key. You
should consider having just one of the columns as the primary key and then creating
unique constraints or unique indexes on one or more of the other columns.

In some cases, using a timestamp as part of the key can be helpful, for example when
a table does not have a “natural” unique key or if arrival sequence is the method used
to distinguish unique rows.

Primary keys for some of the sample tables are:

Table Key Column
Employee table EMPNO
Department table DEPTNO
Project table PROJNO

The following example shows part of the project table with the primary key column
indicated.

Chapter 1. Designing Your Logical Database 9

Table 4. A Primary Key on the PROJECT Table

PROJNO (Primary Key) PROJNAME DEPTNO
MA2100 Weld Line Automation D01
MA2110 Weld Line Programming D11

If every column in a table contains duplicate values, you cannot define a primary key
with only one column. In this case, you can list two or more columns for the primary
key. A key with more than one column is a composite key. The combination of column
values should define a unique entity. If a composite key cannot be easily assigned, you
may consider defining a new column that has unique values.

The following example shows a primary key containing more than one column; it is a
composite key.

Table 5. A Composite Primary Key on the EMP_ACT Table

EMPNO (Primary PROJNO (Primary ACTNO EMSTDATE
Key) Key) (Primary Key) EMPTIME (Primary Key)
000250 AD3112 60 1.0 1982-01-01
000250 AD3112 60 5 1982-02-01
000250 AD3112 70 5 1982-02-01

Identifying Candidate Key Columns
To identify candidate keys, select the smallest number of columns that define a unique
entity. There may be more than one candidate key. In Table 19 on page 18, there
appear to be many candidate keys. The EMPNO column, the PHONENO, and the
LASTNAME each uniquely identify the employee.

The criteria for selecting a primary key from a pool of candidate keys should be
persistence, uniqueness, and stability of the key.

¢ Persistence means that the primary key is always present for the row.
¢ Uniqueness means that each key value is and always will be different for each row.

e Stability means that the primary key should not be changed to another value.

Of the three candidate keys in the example, only the employee number meets the
above criteria. An employee may not have a phone number when joining a company.
Last names can change, and, although they are unique at one point, are not always
guaranteed to be so. Therefore, the employee number column is the better choice for
the primary key. An employee is assigned a unique number only once, and that number
is generally not updated as long as the employee remains with the company. Since
each employee must have a number, the employee number column is persistent.

10 Administration Guide

Be Sure Equal Values Represent the Same Entity

You can have more than one table describing properties of the same set of entities. For
example, the Employee Table shows the number of the department to which an
employee is assigned, and the Department Table shows which manager is assigned to
each department number. To retrieve both sets of properties simultaneously, you can
join the two tables on the matching columns, as shown in the following example. The
value in WORKDEPT and DEPTNO represent the same entity and represent a join path
between the DEPARTMENT and EMPLOYEE tables.

The DEPARTMENT table:

DEPTNO DEPTNAME MGRNO ADMRDEPT
D21 Administration 000070 D01
Support

The EMPLOYEE table:

EMPNO FIRSTNAME LASTNAME WORKDEPT JOB
000250 Daniel Smith D21 Clerk

Figure 15. A Join Path between Two Tables

When you retrieve information about an entity from more than one table, make sure
equal values represent the same entity. The connecting columns can have different
names (like WORKDEPT and DEPTNO in the previous example), or they can have the
same name (like the columns called DEPTNO in the department and project tables).

Consider Normalizing Your Tables

The topic of normalizing tables draws much attention in database design.

Normalization helps you avoid redundancies and inconsistencies in your data. The
main idea in normalization is to reduce tables to a set of columns where all the non-key
columns depend on the entire primary key of the table. If this is not the case, the data
can become inconsistent during updating.

This section briefly reviews the rules for first, second, third, and fourth normal forms of
tables, and describes some reasons why they should or should not be followed. The
fifth normal form of a table, which is covered in many books on database design, is not
described here.

Here are brief descriptions of the normal forms presented later:

Form Description

First At each row and column position in the table there exists one value, never a
set of values. (See “First Normal Form” on page 12)

Chapter 1. Designing Your Logical Database 11

Second Each column that is not in the key provides a fact that depends on the entire
key. (See “Second Normal Form” on page 12)

Third Each non-key column provides a fact that is independent of other non-key
columns and depends only on the key. (See “Third Normal Form” on
page 14)

Fourth No row contains two or more independent multi-valued facts about an entity.
(See “Fourth Normal Form” on page 15)

First Normal Form
A table satisfies the requirement of first normal form if for each row-and-column position
in the table there exists one value, never a set of values. A table that is in first normal
form does not necessarily meet the test for higher normal forms.

For example, the following table violates first normal form because the WAREHOUSE
column contains several values for each occurrence of PART.

Table 6. Table Violating First Normal Form

PART (Primary Key) WAREHOUSE
P0010 Warehouse A, Warehouse B, Warehouse C
P0020 Warehouse B, Warehouse D

The following example shows the table in first normal form.

Table 7. Table Conforms to First Normal Form

PART (Primary Key) WAREHOUSE (Primary Key) QUANTITY
P0010 Warehouse A 400
P0010 Warehouse B 543
P0010 Warehouse C 329
P0020 Warehouse B 200
P0020 Warehouse D 278

Second Normal Form
A table is in second normal form if each column that is not in the key provides a fact
that depends on the entire key.

This means that all data that is not part of the primary key must depend on all of the
columns in the key. This reduces repetition among database tables.

Second normal form is violated when a non-key column is a fact about a subset of a
composite key, as in the following example. An inventory table records quantities of
specific parts stored at particular warehouses; its columns are shown in the following
example.

12 Administration Guide

Table 8. Table Violates Second Normal Form

PART (Primary

WAREHOUSE

Key) (Primary Key) QUANTITY WAREHOUSE_ADDRESS
P0010 Warehouse A 400 1608 New Field Road
P0010 Warehouse B 543 4141 Greenway Drive
P0010 Warehouse C 329 171 Pine Lane

P0020 Warehouse B 200 4141 Greenway Drive
P0020 Warehouse D 278 800 Massey Street

Here, the key consists of the PART and the WAREHOUSE columns together. Because
the column WAREHOUSE_ADDRESS depends only on the value of WAREHOUSE, the
table violates the rule for second normal form.

The problems with this design are:

The warehouse address is repeated in every record for a part stored in that

warehouse.

If the address of the warehouse changes, every row referring to a part stored in

that warehouse must be updated.

Because of the redundancy, the data might become inconsistent, with different
records showing different addresses for the same warehouse.

If at some time there are no parts stored in the warehouse, there might be no row
in which to record the warehouse address.

To satisfy second normal form, the information shown above, in Table 8, would be split
into the following two tables:

Table 9. Part-Stock Table Conforms to Second Normal Form

PART (Primary Key) WAREHOUSE (Primary Key) QUANTITY
P0010 Warehouse A 400
P0010 Warehouse B 543
P0010 Warehouse C 329
P0020 Warehouse B 200
P0020 Warehouse D 278

Chapter 1. Designing Your Logical Database 13

Table 10. Wareh

ouse Table Conforms to Second Normal Form

WAREHOUSE (P

rimary Key) WAREHOUSE_ADDRESS

Warehouse A

1608 New Field Road

Warehouse B

4141 Greenway Drive

Warehouse C

171 Pine Lane

Warehouse D

800 Massey Street

However, there is a performance consideration in having the two tables in second
normal form. Application programs that produce reports on the location of parts must
join both tables to retrieve the relevant information.

To better understand performance considerations, see Part 3, “Tuning Application
Performance” on page 263.

Third Normal Form

A table is in third normal form if each non-key column provides a fact that is
independent of other non-key columns and depends only on the key.

Third normal form is violated when a non-key column is a fact about another non-key
column. For example, the first table in the following example contains the columns
EMPNO and WORKDEPT. Suppose a column DEPTNAME is added. The new column
depends on WORKDEPT, whereas the primary key is the column EMPNO; thus the
table now violates third normal form.

Changing DEPTNAME for a single employee, John Parker, does not change the
department name for other employees in that department. The inconsistency that
results is shown in the updated version of the table in the following example.

Table 11. Unnormalized Employee-Department Table Before Update

EMPNO (Primary

Key) FIRSTNAME LASTNAME WORKDEPT DEPTNAME
000290 John Parker El11 Operations
000320 Ramlal Mehta E21 Software Support
000310 Maude Setright E11 Operations

The following example shows the content of the table following an update to the
DEPTNAME column for John Parker. Note that there are now two different department
names used for department number (WORKDEPT) E11:

14 Administration Guide

Table 12. Unnormalized Employee-Department Table After Update.

Information in table has become

inconsistent.

EMPNO (Primary

Key) FIRSTNAME LASTNAME WORKDEPT DEPTNAME
000290 John Parker E11 Installation Mgmt
000320 Ramlal Mehta E21 Software Support
000310 Maude Setright E11 Operations

The table can be normalized by providing a new table, with columns for WORKDEPT
and DEPTNAME. In that case, an update like changing a department name is much
easier—the update only has to be made to the new table. An SQL query that shows the
department name along with the employee name is more complex to write because it
requires joining the two tables. This query will probably also take longer to execute than
the query of a single table. In addition, the entire arrangement takes more storage
space because the WORKDEPT column must appear in both tables. The following
tables are defined as a result of normalizing EMPDEPT.

Table 13. Employee Table After Normalizing the Employee-Department Table

EMPNO (Primary Key) FIRSTNAME LASTNAME WORKDEPT
000290 John Parker E11
000320 Ramlal Mehta E21
000310 Maude Setright E11

Table 14. Department Table After Normalizing the Employee-Department Table

DEPTNO (Primary Key) DEPTNAME
E11 Operations
E21 Software Support

Fourth Normal

Form
A table is in fourth normal form if no row contains two or more independent multi-valued
facts about an entity.

Consider these entities: employees, skills, and languages. An employee can have
several skills and know several languages. There are two relationships, one between
employees and skills, and one between employees and languages. A table is not in
fourth normal form if it represents both relationships, as in the following example:

Chapter 1. Designing Your Logical Database 15

Table 15. Table Violating Fourth Normal Form

EMPNO (Primary Key) SKILL (Primary Key) LANGUAGE (Primary Key)
000130 Data Modelling English
000130 Database Design English
000130 Application Design English
000130 Data Modelling Spanish
000130 Database Design Spanish
000130 Application Design Spanish

Instead, the relationships should be represented in two tables, as in the following
examples.

Table 16. Employee-Skill Table in Fourth Normal Form

EMPNO (Primary Key) SKILL (Primary Key)
000130 Data Modelling
000130 Database Design
000130 Application Design

Table 17. Employee-Language Table in Fourth Normal Form

EMPNO (Primary Key) LANGUAGE (Primary Key)
000130 English
000130 Spanish

If, however, the facts are interdependent—that is, the employee applies certain
languages only to certain skills—then the table should not be split.

Any data can be put into fourth normal form. A good rule when designing a database is
to arrange all data in tables in fourth normal form, and then decide whether the result
gives you an acceptable level of performance. If it does not, you are at liberty to
denormalize your design.

Planning for Constraint Enforcement

A constraint is a rule that the database manager enforces. Four types of constraint
handling are covered in this section:

Unique Constraints Ensures the unique values of a key in a table. Any
changes to the columns that compose the unique key
are checked for uniqueness.

16 Administration Guide

Referential Integrity Enforces referential constraints on insert, update, and
delete operations. It is the state of a database in which
all values of all foreign keys are valid.

Table Check Constraints Verify that changed data does not violate conditions
specified when a table was created or altered.

Triggers Define a set of actions that are executed when called by
an update, delete, or insert operation on a specified
table.

Unigue Constraints
A unique constraint is the rule that the values of a key are valid only if they are unique
within the table. Each column making up the key in a unique constraint must be defined
as NOT NULL. Unigue constraints are defined in the CREATE TABLE or the ALTER
TABLE statements using the PRIMARY KEY clause or the UNIQUE clause.

A table can have any number of unique constraints; however, you can only define one
unique constraint as the primary key for a table. Also, a table cannot have more than
one unique constraint on the same set of columns.

When a unique constraint is defined, the database manager creates (if needed) a
unique index and designates it as either a primary or unique system-required index.
The enforcement of the constraint is through the unique index. Once a unique
constraint has been established on a column, the check for uniqueness during multiple
row updates is deferred until the end of the update.

A unigue constraint can also be used as the parent key in a referential constraint.

Referential Integrity
Referential integrity lets you define required relationships between and within tables.
The database manager maintains these relationships which are expressed as
referential constraints and require that all values of a given attribute or column of a
table also exist in some other table or column. For example, a typical referential
constraint might require that every employee in the EMPLOYEE table must be in a
department that exists in the DEPARTMENT table. No employee can be in a
department that does not exist.

You can build referential constraints into a database to ensure that referential integrity
is maintained. When planning for referential integrity, identify the relationships to be
established between database tables. You can identify a relationship by defining a
primary key and referential constraints.

The following two tables are related, and show some of the relationships to be
discussed:

Chapter 1. Designing Your Logical Database 17

Table 18. DEPARTMENT Table

DEPTNO (Primary Key) DEPTNAME MGRNO
AO0 Spiffy Computer Service Div. 000010
BO1 Planning 000020
co1 Information Center 000030
D11 Manufacturing Systems 000060

Table 19. EMPLOYEE Table

EMPNO (Primary WORKDEPT

Key) FIRSTNAME LASTNAME (Foreign Key) PHONENO
000010 Christine Haas A00 3978
000030 Sally Kwan co1 4738
000060 Irving Stern D11 6423
000120 Sean O'Connell A00 2167
000140 Heather Nicholls co1 1793
000170 Masatoshi Yoshimura D11 2890

The following definitions are useful for understanding referential integrity.

A unique key is a set of columns where no two values are duplicated in any other row.
You may define one unique key for each table as the primary key. The unique key may
also be known as a parent key when referenced by a foreign key.

A primary key is a unique key that is part of the definition of the table. Each table can
only have one primary key. In the preceding tables DEPTNO and EMPNO are the
primary keys of the DEPARTMENT and EMPLOYEE tables.

A foreign key is a column or set of columns in a table that refer to a unique key or
primary key of the same or another table. A foreign key is used to establish a
relationship with a unique key or primary key to enforce referential integrity among
tables. The column WORKDEPT in the EMPLOYEE table is a foreign key because it
refers to the primary key, column DEPTNO, in the DEPARTMENT table.

A composite key is a key that has more than one column. Unique primary and foreign
keys can be composite keys. For example, if departments were uniquely identified by
the combination of division number and department number, two columns would be
needed to comprise the key to the DEPARTMENT table.

A parent key is a primary key or unique key of a referential constraint.
A parent table is a table containing a parent key that is related to at least one foreign

key in the same or another table. A table can be a parent in an arbitrary number of
relationships. For example, the DEPARTMENT table, which has a primary key of

18 Administration Guide

DEPTNO, is a parent of the EMPLOYEE table, which contains the foreign key
WORKDEPT.

A parent row is a row of a parent table whose parent key value matches at least one
foreign key value in a dependent table. A row in a parent table is not necessarily a
parent row. The fourth row (D11) of the DEPARTMENT table is the parent row of the
third and sixth rows in the EMPLOYEE table. The second row (B01) of the
DEPARTMENT table is not the parent of any other rows.

A dependent table is a table containing one or more foreign keys. A dependent table
can also be a parent table. A table can be a dependent in an arbitrary number of
relationships. For example, the EMPLOYEE table contains the foreign key
WORKDEPT, which is dependent on the DEPARTMENT table that has a primary key.

A dependent row is a row of a dependent table that has a non-null foreign key value
that matches a parent key value. The foreign key value represents a reference from the
dependent row to the parent row. Since foreign keys may accept null values, a row in a
dependent table is not necessarily a dependent row.

A table is a descendent of a table if it is a dependent table or if it is a descendent of a
dependent table. A descendent table contains a foreign key that can be traced back to
the parent key of some table.

A referential cycle is a path that connects a table to itself. When a table is directly
connected to itself, it is a self-referencing table. If the EMPLOYEE table has another
column called MGRID that contains the EMPNO of each employee's manager, then the
EMPLOYEE table would be a self-referencing table. MGRID would be a foreign key for
the EMPLOYEE table.

A referential constraint is an assertion that non-null values of a designated foreign key
are valid only if they also appear as values of a unique key of a designated table. The
purpose of referential constraints is to guarantee that database relationships are
maintained and data entry rules are followed.

A self-referencing table is both a parent and a dependent in the same relationship. A
self-referencing row is a row that is a parent and a dependent of itself. The constraint
that exists in this situation is called a self-referencing constraint. For example, if the
value of the foreign key in a row of a self-referencing table matches the value of the
unique key in that row, then the row is self-referencing.

The following additional topic is discussed within this section:

¢ “Implications for SQL Operations”

Implications for SQL Operations

Enforcement of referential constraints has special implications for some SQL operations
that depend on whether the table is a parent or a dependent. This segment describes
the effects of referential integrity on the SQL INSERT, DELETE, UPDATE, and DROP
operations.

Chapter 1. Designing Your Logical Database 19

The database manager does not automatically enforce referential constraints across
systems. As a result, if you wish to enforce referential constraints across systems, your
application programs must contain the necessary logic.

The following referential integrity rules are discussed:

¢ INSERT Rules
e DELETE Rules
e UPDATE Rules.

INSERT Rules: You can insert a row at any time into a parent table without any action
being taken in the dependent table. However, you cannot insert a row into a dependent
table, unless there is a row in the parent table with a parent key value equal to the
foreign key value of the row that is being inserted, unless the foreign key value is null.
The value of a composite foreign key is null if any component of the value is null.

This rule is implicit when a foreign key is specified.

When you try to insert a row into a table that has referential constraints, the INSERT
operation is not allowed if any of the non-null foreign key values are not present in the
parent key. If the INSERT operation fails for one row during an attempt to insert more
than one row, all rows in the statement are backed out.

DELETE Rules: When you delete a row from a parent table, the database manager
checks if there are any dependent rows in the dependent table with matching foreign
key values. If any dependent rows are found, several actions could be taken. You can
determine which action will be taken by specifying a delete rule when you create the
dependent table.

The delete rules for a dependent table (the table containing the foreign key) when a
primary key is deleted are:

RESTRICT Prevents any row in the parent table from being deleted
if any dependent rows are found. If you need to remove
both parent and dependent rows, delete dependent
rows first. Deleting the parent row first would violate the
referential constraint and is not allowed.

See the SQL Reference for an example where this is
different from NO ACTION.

NO ACTION Enforces the presence of a parent row for every child
after all the referential constraints are applied. See the
SQL Reference for an example where this is different
from RESTRICT.

CASCADE Implies that deleting a row in the parent table
automatically deletes any related rows in the dependent
table. This rule is useful when a row in the dependent
table has no significance without a row in the parent
table.

20 Administration Guide

Deleting the parent row first would automatically delete
the dependent rows referencing a primary key.
Therefore, the dependent rows would not need to be
deleted first. If some of these dependent rows have
dependents of their own, the delete rule for those
relationships will be applied. In other words, the
database manager can handle cascading deletions.

SET NULL Ensures that deletion of a row in the parent table sets
the values of the foreign key in any dependent rows to
null. Other parts of the row are unchanged.

If no delete rule is explicitly defined when the table is created, the NO ACTION rule will
be applied.

Any table that can be involved in a delete operation is said to be delete-connected. The
following restrictions apply to delete-connected relationships.

e A table cannot be delete-connected to itself in a referential cycle of more than one
table.

e When a table is delete-connected to another table through more than one
dependent relationship, these relationships must have the same delete rule, either
CASCADE or NO ACTION.

¢ When a self-referencing table is a dependent of another table in a CASCADE
relationship, the delete rule of the self-referencing relationship must also be
CASCADE.

You can, at any time, delete rows from a dependent table without taking any action on
the parent table. For example, in the department-employee relationship, an employee
could retire and have his row deleted from the employee table with no effect on the
department table. (Ignore, for the moment, the reverse relationship of
employee-department, in which the department manager ID is a foreign key referring to
the parent key of the employee table. If a manager retires, there is an effect on the
department table.)

UPDATE Rules: The database manager prevents the update of a unique key of a
parent row. When you update a foreign key in a dependent table, and the foreign key
is not null, it must match some value of the parent key of the parent table of the
relationship. If any referential constraint is violated by an UPDATE operation, an error
occurs and no rows are updated.

When a value in a column of the parent key is updated:

¢ If any row in the dependent table matches the original value of the key, the update
is rejected when the update rule is RESTRICT.

¢ If any row in the dependent table does not have a corresponding parent key when
the update statement is completed (excluding after triggers), the update is rejected
when the update rule is NO ACTION.

Chapter 1. Designing Your Logical Database 21

To update the value of a parent key that is in a parent row, you must first remove the
relationship to any child rows in the dependent tables by either:

e Deleting the child rows; or,
e Update the foreign keys in dependent tables to include another valid key value.

When there is no dependency to the key value in the row, the row is no longer a parent
in a referential relationship and can be updated.

If part of a foreign key is being updated and no part of the foreign key value is null, the
new value of the foreign key must appear as a unique key value in the parent table. If
there is no foreign key dependent on a given unique key, that is, the row containing the
unique key is not a parent row, then part of the unique key may be updated. However,
no more than one row can be selected for updating in this case, because you are
working with a unique key where duplicate rows are not allowed.

Table Check Constraints

Triggers

Business rules identified within your design can be enforced through table check
constraints. Table check constraints specify search conditions that are enforced for
each row of a table. These constraints are automatically activated when an update or
insert statement runs against the table. They are defined when using either CREATE
TABLE or ALTER TABLE statements.

A table check constraint can be used for validation. For example: the values of a
department number must lie within the range 10 to 100; the job title of an employee can
only be 'Sales', 'Manager', or 'Clerk’; or an employee who has been with the company
for more than 8 years must earn more than $40,500.

See Chapter 5, “Utilities for Moving Data” on page 141 for more information on the
impact of table check constraints on the IMPORT and LOAD commands.

A trigger is a defined set of actions that are executed when a delete, insert, or update
operation is carried out against a specified table. To help support business rules,
triggers can be defined. Triggers are stored in the database, therefore application
development is faster because you do not have to code the actions in every application
program. The trigger is coded once, stored in the database and automatically called by
the database manager, as required, when an application uses the database. This
ensures that the business rules related to the data are always enforced. If a business
rule does change, only a modification to the trigger is required instead of to each
application program.

For example, triggers can be used to automatically update summary or audit data.

A user-defined function (UDF) can be called within a triggered SQL statement. This
allows the triggered action to perform a non-SQL operation when the trigger is fired. For
example, e-mail can be sent as an alert mechanism. For more information on triggers,
see “Creating a Trigger” on page 89 and the Embedded SQL Programming Guide
manual.

22 Administration Guide

Other Database Design Considerations

When designing a database, it is important to consider which tables each user should
be able to access. Access to tables is granted or revoked through authorizations. The
highest level of authority is the system administration authority (SYSADM). A user with
SYSADM authority can assign other authorizations, including the database
administrator authority (DBADM).

There are other requirements that you may have to consider during your design, such
as audit, history, summary, security, and parallel processing capability.

For audit purposes, you may have to record every update made to your data for a
specified period. For example, you may want to update an audit table, each time an
employee's salary was changed. Updates to this table could be made automatically if a
trigger was established to enforce this behavior.

For performance reasons, you may only want to access a selected amount of data,
while maintaining the base data as history. You should include within your design, the
requirements for maintaining this historical data, such as the number of months or
years of data that is required to be available before it can be purged.

There may be situations identified within your design that deal with summary
information. For example, you may want to keep track of the number of active
employees. In this case, a summary table could be updated each time a new employee
joined the company, or when an existing employee left the company.

Security implications should also be identified within your design. For example, you may
decide to support user access to certain types of data through security tables. You can
define access levels to various types of data and who can access this data.

Confidential data such as employee and payroll data, would have stringent security
restrictions imposed where only a select number of individuals could be authorized to
view this data, whereas certain time reporting data could be set up to be viewed
globally. For more information on security and authorizations, see Chapter 4, “
Controlling Database Access” on page 111.

As your business grows, you may need the additional capacity and performance
capability provided by DB2 Extended Enterprise Edition. In this environment, your
database is partitioned across several machines or systems, each responsible for the
storage and retrieval of a portion of the overall database. In this environment, each
partition (or node) of the database works in parallel to handle SQL or utility operations.

Issues and considerations relating to parallel operations are presented as appropriate to

the topics presented in the following chapters. These issues and considerations are
typically found toward the end of each topic.

Chapter 1. Designing Your Logical Database 23

24 Administration Guide

Chapter 2. Designing Your Physical Database

After you have completed Chapter 1, Designing Your Logical Database and before
Chapter 3, Implementing Your Design, there are a number of factors you should
consider about the physical environment in which your database and tables will be
implemented. These factors include understanding the files that will be created to
support and manage your database, understanding how much space will be required to
store your data, and determining how you should use table spaces that are required to
store your data.

The following topics are discussed:

¢ Database Physical Directories

e Estimating Space Requirements for Tables
e Additional Space Requirements

¢ Designing Nodegroups

¢ Designing and Choosing Table Spaces

Database Physical Directories

When a database is created, the database manager creates a separate subdirectory to
store control files (such as log header files) and to allocate containers to default table
spaces. Objects associated with the database are not always stored in the database
directory; they can be stored in various locations, including directly on devices.

The database is created in the instance that is defined in the DB2INSTANCE
environment variable or in the instance to which you have explicitly attached (using the
ATTACH command). See the “Using Multiple Instances of the Database Manager” on
page 56 for an introduction to instances.

The naming scheme used on UNIX platforms is
current_path/$DB2INSTANCE/NODE/SQLOO0O1

The naming scheme used on Intel platforms is
D:current_path\$DB2INSTANCE\NODE\SQLOGOO1

where “D:” is a “drive letter” identifying the volume where the root directory is located.

SQLOGOO1 contains objects associated with the first database created, and subsequent
databases are given higher numbers: SQL00002 and so on.

The subdirectories are created in a directory with the same name as the database
manager instance to which you are attached when you are creating the database. (On
Intel platforms, the subdirectories are created under the root directory on a given
volume which is identified by a “drive letter.”) These instance and database
subdirectories are created within the path specified in the CREATE DATABASE
command, and the database manager maintains them automatically. Depending on
your platform, each instance might be owned by an instance owner, who has system
administrator (SYSADM) authority over the databases belonging to that instance.

© Copyright IBM Corp. 1993, 1997 25

To avoid potential problems, do not create directories that use the same naming
scheme, and do not manipulate directories that have already been created by the

database manager.

Database Physical Files

The following files are found within the database:

File Name
SQLDBCON

SQLOGCTL.LFH

Syyyyyyy.LOG

SQLINSLK

SQLTMPLK

SQLSPCS.1

SQLSPCS.2

SQLBP.1

SQLBP.2

26 Administration Guide

Description

This file stores the tuning parameters and flags for the database.
See Chapter 19, “Configuring DB2” on page 459 for information
about changing database configuration parameters.

This file is used to help track and control all of the database log
files.

Database log files, numbered from 0000000 to 9999999. The
number of these files is controlled by the logprimary and
logsecond configuration parameters. The size of the individual
files is controlled by the logfilsiz configuration parameter.

With circular logging, the files are reused and the same numbers
will remain. With archival logging, the file numbers will increase in
sequence as logs are archived and new logs are allocated. When
9999999 is reached, the number will wrap.

By default, these log files are stored in a directory called
SQLOGDIR. SQLOGDIR is found in the SQLnnnnn subdirectory.

This file is used to help ensure that a database is only used by
one instance of the database manager.

This file is used to help ensure that a database is only used by
one instance of the database manager.

This file contains the definition and current state of all table
spaces in the database.

This file is a copy of SQLSPCS.1, and is created for protection in
case SQLSPCS.1 fails. Without one of these files, you will not be
able to access your database.

This file contains the definition of all of the buffer pools used in
the database.

This file is a copy of SQLBP.1 and is created for protection in
case SQLBP.1 fails. Without one of these files, you will not be
able to access your database.

Notes:

1. Do not make any direct changes to these files. They can only be accessed
indirectly using the documented APIs and by tools that implement those APIs,
including the command line processor commands and the graphical Control Center.

2. Do not remove these files.
3. Do not move these files.

4. The only supported means of backing up a database or table space is through the
BACKUP API, including the command line processor and Control Center
implementations of that API.

Estimating Space Requirements for Tables
The following information provides a general rule for estimating the size of a database:

e “System Catalog Tables”

e “User Table Data” on page 28

e “Long Field Data” on page 28

e “Large Object (LOB) Data” on page 29
¢ “Index Space” on page 30

After reading these sections, you should read “Designing and Choosing Table Spaces”
on page 38.

Information is not provided for the space required by such things as:

¢ The local database directory file

e The system database directory file

¢ The file management overhead required by the operating system, including:
— file block size
— directory control space

Information such as row size and structure is precise. However, multiplication factors for
file overhead because of disk fragmentation, free space, and variable length columns
will vary in your own database since there is such a wide range of possibilities for the
column types and lengths of rows in a database. After initially estimating your database
size, create a test database and populate it with representative data. You will then find
a multiplication factor that is more accurate for your own particular database design.

System Catalog Tables
When a database is initially created, system catalog tables are created. The system
tables will grow as database objects and privileges are added to the database. Initially,
they use approximately 1600 KB of disk space.

The amount of space allocated for the catalog tables depends on the type of table
space and the extent size for the table space containing the catalog tables. For
example, if a DMS table space with an extent size of 32 is used, the catalog table
space will initially be allocated 20MB of space. For more information, see “Designing
and Choosing Table Spaces” on page 38.

Chapter 2. Designing Your Physical Database 27

Note: For databases with multiple partitions, the catalog tables only reside on the
partition where the CREATE DATABASE was issued. Disk space for the catalog
tables is only required for that partition.

User Table Data

Table data is stored on 4KB pages. Each page contains 76 bytes of overhead for the
database manager. This leaves 4020 bytes to hold user data (or rows), although no row
can exceed 4005 bytes in length. A row will not span multiple pages.

Note that the table data pages do not contain the data for columns defined with LONG
VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, or DBCLOB data types. The rows in
a table data page do, however, contain a descriptor of these columns. (See “Long Field
Data” and “Large Object (LOB) Data” on page 29 for information about estimating the
space required for the table objects that will contain the data stored using these data

types.)

Rows are inserted into the table in a first-fit order. The file is searched (using a free
space map) for the first available space that is large enough to hold the new row. When
a row is updated, it is updated in place unless there is insufficient room left on the 4KB
page to contain it. If this is the case, a record is created in the original row location
which points to the new location in the table file of the updated row.

See “Long Field Data” and “Large Object (LOB) Data” on page 29 for information about
how LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB and DBCLOB data is
stored and for estimating the space required to store these types of columns.

For each user table in the database, the number of pages can be estimated by
calculating:

ROUND DOWN(4020/(average row size + 8)) = records_per_page
Then use records_per_page with:

(number_of_records/records_per_page) * 1.1 = number_of_pages

The average row size is the sum of the average column sizes. For information on the
size of each column, see CREATE TABLE in the SQL Reference.

The factor of “1.1” is for overhead such as page overhead and free space.

Long Field Data

28

If a table has LONG VARCHAR or LONG VARGRAPHIC data, in addition to the byte
count of 20 for the LONG VARCHAR or LONG VARGRAPHIC descriptor (in the table
row), the data itself must be stored. Long field data is stored in a separate table object
which is structured differently from the other data types (see “User Table Data” and
“Large Object (LOB) Data” on page 29).

Data is stored in 32KB areas that are broken up into segments whose sizes are
“powers of two” times 512 bytes. (Hence these segments can be 512 bytes, 1024
bytes, 2048 bytes, and so on, up to 32,700 bytes.)

Administration Guide

Each of these data types is stored in a fashion that enables free space to be reclaimed
easily. Allocation and free space information is stored in 4KB allocation pages, which
appear infrequently throughout the object.

The amount of unused space in the object depends on the size of the long field data
and whether this size is relatively constant across all occurrences of the data. For data
entries larger than 255 bytes, this unused space can be up to 50 percent of the size of
the long field data.

If character data is less than 4KB in length, and it fits in the record with the rest of the
data, the CHAR, GRAPHIC, VARCHAR, or VARGRAPHIC data types should be used
instead of LONG VARCHAR or LONG VARGRAPHIC.

Large Object (LOB) Data
If a table has BLOB, CLOB, or DBCLOB data, in addition to the byte count (between 72
and 312 bytes) for the BLOB, CLOB, or DBCLOB descriptor (in the table row), the data
itself must be stored. This data is stored in two separate table objects that are
structured differently than other data types (see “User Table Data” on page 28 and
“Long Field Data” on page 28).

To estimate the space required by large object data, you need to consider the two table
objects used to store data defined with these data types:

e LOB Data Objects

Data is stored in 64MB areas that are broken up into segments whose sizes are
“powers of two” times 1024 bytes. (Hence these segments can be 1024 bytes,
2048 bytes, 4096 bytes, and so on, up to 64MB.)

To reduce the amount of disk space used by the LOB data, you can use the
COMPACT parameter on the lob-options-clause on the CREATE TABLE and
ALTER TABLE statements. The COMPACT option minimizes the amount of disk
space required by allowing the LOB data to be split into smaller segments so that it
will use the smallest amount of space possible. This does not involve data
compression but is simply using the minimum amount of space to the nearest 1KB
boundary. Without the COMPACT option, there is no attempt to reduce the space
used to the nearest 1KB boundary. Appending to LOB values stored using the
COMPACT option may result in slower performance compared to appending LOB
values for which the COMPACT option is not specified.

The amount of free space contained in LOB data objects will be influenced by the
amount of update and delete activity, as well as the size of the LOB values being
inserted.

¢ LOB Allocation Objects

Allocation and free space information is stored in 4KB allocation pages separated
from the actual data. The number of these 4KB pages is dependent on the amount
of data, including unused space, allocated for the large object data. The overhead
is calculated as follows: one 4KB pages for every 64GB plus one 4KB page for
every 8MB.

Chapter 2. Designing Your Physical Database 29

If character data is less than 4KB in length, and it fits in the record with the rest of the
data, the CHAR, GRAPHIC, VARCHAR, or VARGRAPHIC data types should be used
instead of BLOB, CLOB or DBCLOB.

Index Space
For each index, the space needed can be estimated as:

(average index key size + 8) * number of rows * 2
where:

e The “average index key size” is the byte count of each column in the index key.
See the CREATE TABLE statement in the SQL Reference for information on how
to calculate the byte count for columns with different data types. (Note that to
estimate the average column size for VARCHAR and VARGRAPHIC columns, use
an average of the current data size, plus one byte. Do not use the maximum
declared size.)

e The factor of 2 is for overhead, such as non-leaf pages and free space.

Note: For every column that allows nulls, add one extra byte for the null indicator.

Temporary space is required when creating the index. The maximum amount of
temporary space required during index creation can be estimated as:

(average index key size + 8) * number of rows * 3.2

where the factor of 3.2 is for index overhead as well as space required for the sorting
needed to create the index.

Note: In the case of non-unique indexes, only four (4) bytes are required to store
duplicate key entries. The estimates shown above assume no duplicates. The
space required to store an index may be over-estimated by the formula shown
above.

The following two calculations can be used to estimate the number of leaf pages. The
results are not guaranteed. The results are only an estimate, and the accuracy depends
largely on how well the averages used reflect the actual data.

Note: For SMS, the minimum space is 12KB. For DMS, the minimum is an extent.

The average number of keys per page is roughly:
(.9 * (3997 - (Mx2))) = (D + 1)

K+ 6+ (4 xD)
where:

e M =3997 /(8 + minimumKeySize)
e D = average number of duplicates per key value
e K = averageKeySize

Remember that minimumKeySize and averageKeysize must have an extra 1 byte for
each nullable key part.

30 Administration Guide

The number of pages (including non-leaf pages) can be roughly calculated as follows:

P = number of pages = 0 initially
X = total number of pages

N = average number of keys per page
Y = X/N

While (Y > 1)

{
P=P
Y=y

}

P =P+ P/16000 + 3

+Y
/N
Finally, the amount of space for the index is P * 4096.

For DMS table spaces, add together the total sizes for all indexes on a table and round
up to a multiple of the extent size for the table space where the index resides.

Additional Space Requirements
Additional space is also required as follows:

e “Log File Space”
e “Temporary Work Space” on page 32

Log File Space
The amount of space (in bytes) required for log files can range from:

(Togprimary * (logfilsiz + 2) * 4096) + 8192
to:

((Togprimary + logsecond) * (logfilsiz + 2) » 4096) + 8192
where:

e Jogprimary is the number of primary log files as defined in the database
configuration file (see “Number of Primary Log Files (logprimary)” on page 521)

¢ Jogsecond is the number of secondary log files as defined in the database
configuration file (see “Number of Secondary Log Files (logsecond)” on page 522)

¢ Jogfilsiz is the number of pages in each log file as defined in the database
configuration file (see “Size of Log Files (lodfilsiz)” on page 519)

e 2 is the number of header pages required for each log file

e 4096 is the number of bytes in one page

e 8192 is the size (in bytes) of the log control file.

The upper limit of log space is dependent on the actual number of secondary log files
that the database manager requires at run time. This upper limit may never be used or
may only be used during occasional periods of high-volume activity.

Note: If the database is enabled for roll-forward recovery, special log space
requirements should be considered:

Chapter 2. Designing Your Physical Database 31

e With the logretain configuration parameter enabled, the log files will be archived in
the log path directory. The on-line disk space will eventually fill up, unless you
move the log files to a different location.

e With the userexit configuration parameter enabled, a user exit program moves the
archived log files to a different location. Extra log space is still required to allow for:

— On-line archived logs that are waiting to be moved by the user exit program
— New log files being formatted for future use.

Temporary Work Space
Some SQL statements require temporary tables for processing (such as a work file for
sorts that cannot be done in memory). These require disk space for storage during the
time they are used. The amount required will be totally dependent on the queries and
the size of tables returned, and therefore cannot be estimated.

You can use the database system monitor and query table space APIs to help you
observe the amount of work space being used during the normal course of operations.

Designing Nodegroups

A nodegroup is a named set of one or more nodes that are defined as belonging to a
database. Each database partition that is part of the database system configuration
must already be defined in a partition configuration file called db2nodes.cfg. A
nodegroup can contain from one database partition to the entire number of database
partitions defined for the database system.

You create a new nodegroup using the CREATE NODEGROUP statement. You modify
a nodegroup using the ALTER NODEGROUP statement. You can add or drop one or
more database partitions from a nodegroup. The database partitions must be defined in
the db2Znodes.cfg file before modifying the nodegroup. Table spaces (defined later)
reside within nodegroups. Tables reside within table spaces.

When a nodegroup is created or modified, a partitioning map is associated with it. A
partitioning map, in conjunction with a partitioning key and a hashing algorithm, is used
by the database manager to determine which database partition in the nodegroup will
store a given row of data. More information on partitioning maps, keys, and other
related issues are discussed later in this chapter.

With a non-partitioned database, no partitioning key or partitioning map is required.
There are no nodegroup design considerations if you are using a non-partitioned
database. A database partition is part of the database that consists of its own user
data, indexes, configuration files, and transaction logs. Default nodegroups that were
created when the database was created, are used by the database manager.
IBMCATGROUP is the default nodegroup for the table space containing the system
catalogs. IBMTEMPGROUP is the default nodegroup for the table spaces containing
the temporary tables. IBMDEFAULTGROUP is the default nodegroup for the table
spaces containing the user-defined tables the user chooses to put there.

If you are using a multiple partition nodegroup, consider the following design points:

32 Administration Guide

¢ |n a multiple partition nodegroup, you can only create a unique index if it is a
superset of the partitioning key.

¢ Depending on the number of database partitions in the database, you may have
one or more single-partition nodegroups and one or more multiple partition
nodegroups present.

¢ There can be no duplicate database partitions within a nodegroup, although the
same database partition may be found in one or more nodegroups.

¢ To ensure fast recovery of the database partition with the system catalog tables,
avoid placing user tables on the same database partition. This is accomplished by
placing user tables in nodegroups that do not include the database partition in the
IBMCATGROUP nodegroup.

You should place small tables in single database partition nodegroups, except where
you want to take advantage of collocation with a larger table. Collocation is the
placement of rows from different tables that contain related data in the same database
partition. Collocated tables allow the database to utilize more efficient join strategies.
Collocated tables can reside in a single database partition nodegroup. Tables are
considered collocated if they reside in a multiple partition nodegroup, and have the
same number of columns in the partitioning key and the data types of the
corresponding columns are partition compatible. Rows in collocated tables with the
same partitioning key value are placed on the same database partition. Tables can be
in separate table spaces in the same nodegroup and still be considered collocated.

You should avoid extending medium-sized tables across too many database partitions.
For example, a 100 MB table may perform better on a 16-database partition nodegroup
than on a 32-database partition nodegroup.

You can use nodegroups to separate online-transaction-processing (OLTP) tables from
decision-support tables to ensure that the performance of OLTP transactions is not
impacted by decision-support transactions.

Nodegroup Design Considerations
Based on the logical design of your database, and the amount of data that the
database is required to process, you should have a good idea whether your database
needs to be partitioned. If you need to partition your database, you should consider the
following to complete your database design as it relates to nodegroup use:

e “Data Partitioning”

e “Partitioning Maps” on page 34

e “Partitioning Keys” on page 35

e “Table Collocation” on page 37

e “Partition Compatibility” on page 38

Data Patrtitioning

DB2 supports a partitioned storage model allowing you to store data across several
database partitions in the database. This means that the data is physically stored
across more than one database partition and yet can be accessed as if the data were

Chapter 2. Designing Your Physical Database 33

located in the same place. Applications and users accessing data in a partitioned
database do not need to be aware of the location of the data.

The data, while physically split, is used and managed as a logical whole. Users can
choose how to partition their data by declaring partitioning keys. Users can also
determine which and how many database partitions their table data can be spread
across by selecting the table space and the associated nodegroup in which the data
should be stored. In addition, a partitioning map (which is user-updateable) is used with
a hashing algorithm to specify the mapping of partitioning key values to database
partitions which determines the placement and retrieval of each row of data. As a
result, you can spread the workload across a partitioned database for large tables while
allowing smaller tables to be stored on one or more database partitions. Each database
partition has local indexes on the data it stores resulting in increased performance for
local data access.

You are not restricted in your design to having all tables in their table spaces divided
equally across all database partitions in the database. DB2 supports partial
declustering, which means that you can divide tables and their table spaces across a
subset of database partitions in the system (that is, a nodegroup). You do not have to
divide all tables in their table spaces across all the database partitions in the system.

Partitioning Maps

In a partitioned database environment, the database manager has to have a way of
knowing which rows of a table are stored on which database partition in the database.
The database manager has to know where to go to look at or retrieve the data it needs.
Just as we need a map to find our way around a city to different locations, the
database manager needs a map, called a partitioning map, to find the right part of the
database (that is, which database partition) to go to get different parts of the data in the
database.

A partitioning map is an internally generated array containing either 4096 entries for
multiple partition nodegroups, or a single entry for single partition nodegroups. For a
single partition nodegroup, the partitioning map has only one entry containing the
partition number of the database partition where all the rows of a database table are
stored. For multiple partition nodegroups, the partition numbers of the nodegroup are
specified in a round-robin fashion. Just as a city map is organized into sections using a
grid, the database manager uses a partitioning key to determine the location (the
database partition) where the data is stored.

For example, assume that you have a database created on four database partitions
(numbered 0-3). The partitioning map for the IBMDEFAULTGROUP nodegroup of this
database would be:

6123012...

If a nodegroup had been created in the database using database partitions 1 and 2, the
partitioning map for that nodegroup would be:

l1212121...

34 Administration Guide

If the partitioning key for a table to be loaded in the database is an integer that has
possible values between 1 and 500000, the partitioning key is hashed to a partition
number between 0 and 4095. That number is used as an index into the partitioning
map to select the database partition for that row.

Figure 16 shows how the row with the partitioning key value (c1, c2, ¢3) is mapped to
partition 2, which, in turn, references database partition n5.

partitioning key
Row: (..,c1,c2,c3,...)

HJ

partitioning function maps (c1, c2, c3) to partition number 2

Partitioning Map: | n0 | n2 |n5| n0| n6

o 1 2 3 4 .. 4095

Figure 16. Data Distribution Using a Partition Map

A partition map is a flexible way of controlling where data is stored in a partitioned
database. If you have a need at some future time to change the data distribution across
the database partitions in your database, you can use the data redistribution utility. The
data redistribution utility allows you to re-balance or introduce skew into the data
distribution. For more information regarding this utility, see Chapter 16, “Redistributing
Data Across Database Partitions” on page 435.

You can use the Get Table Partitioning Information (sqlugtpi) API to obtain a copy of a
partitioning map that you can view. For more information on this API, see the AP/
Reference manual.

Partitioning Keys

A partitioning key is a column (or group of columns) that is used to determine the
partition in which a particular row of data is stored. A partitioning key is defined on a
table using the CREATE TABLE statement. If a partitioning key is not defined for a
table in a table space that is divided across more than one database partition in a
nodegroup, one is created by default from the first column of the primary key. If no
primary key is specified, the default partitioning key is the first non-long field column
defined on that table. (Long includes all long data types and all Large Object data
types). If you are creating a table in a table space associated with a single database
partition nodegroup and you want to have a partitioning key, you must define the
partitioning key explicitly. One is not created by default.

If no columns satisfy the requirement of the default partitioning key, the table is created

without one. Tables without a partitioning key are only allowed in single database
partition nodegroups. You can add or drop partitioning keys at a later time following the

Chapter 2. Designing Your Physical Database 35

initial creation of the table using the ALTER TABLE statement. Altering the partition key
can only be done to a table in a table space that is associated with a single database
partition nodegroup.

Choosing a good partitioning key is important. When you make the choice, you must
know:

e How tables are to be accessed
e The nature of the query workload
e The join strategies employed by the database system.

If collocation is not a major consideration, a good partitioning key for a table is one that
spreads the data evenly on all database partitions in the nodegroup. The partitioning
key for each table in a table space that is associated with a nodegroup determines if
the tables are collocated. Tables are considered collocated when:

e The tables are placed in table spaces that are in the same nodegroup
e The partition keys in each table have the same number of columns
e The data types of the corresponding columns are partition-compatible.

This ensures that rows of collocated tables with the same partitioning key values are
located on the same partition. For more information on partition-compatibility, see
“Partition Compatibility” on page 38. For more information on table collocation, see
“Table Collocation” on page 37.

An inappropriate partitioning key can cause the distribution in the data of the table to be
uneven. Columns with unevenly distributed data and columns with a small number of
distinct values should not be chosen as a partitioning key. The number of distinct
values must be great enough to ensure an even distribution of rows across all database
partitions in the nodegroup. The cost of applying the partitioning hash algorithm is
proportional to the size of the partitioning key. The partitioning key cannot be more than
16 columns, but fewer columns make for better performance. Unnecessary columns
should not be included in the partitioning key.

The following points should be considered when defining partitioning keys:

e Creation of a table with only long data types (LONG VARCHAR, LONG
VARGRAPHIC, BLOB, CLOB, and DBCLOB) is not allowed for multi-partition
tables.

¢ Once defined, alteration of the partition key definition is not allowed.

¢ You cannot update the partitioning key column value for a row in the table.
e You can only delete or insert partitioning key column values.

e The partitioning key should include the most frequently joined columns.

e The partitioning key should be made up of columns that often participate in a
GROUP BY clause.

¢ Any unique key or primary key must contain all the partitioning key columns.

36 Administration Guide

¢ |n an online-transaction processing (OLTP) environment, all columns in the
partitioning key should participate in the transaction by using equal (=) predicates
with constants or host variables. For example, assume you have an employee
number, emp_no that is often used in transactions such as:

UPDATE emp_table SET ... WHERE
emp_no = host-variable

In a situation like this, the emp_no column is a good choice as a single column
partitioning key for the emp_table table.

Hash patrtitioning is the method whereby the placement of each row in the partitioned
table is determined. The method works as follows:

1. The hashing algorithm is applied to the value of the partitioning key.

2. The hashing algorithm generates a partitioning map number between zero (0) and
4095.

3. The partitioning map is created when a nodegroup is created. Each of the partition
numbers is sequentially repeated in a round-robin fashion to fill the partition map.
For more information on partitioning maps, see “Partitioning Maps” on page 34.

4. The partition map number is used as an index into the partitioning map. The
number at that location in the partitioning map is the number of the database
partition where the row is stored.

Table Collocation

When logically designing your database, and based on the needs of your applications,
you may find that two or more tables will jointly provide data in response to frequently
asked queries. When physically designing your database, you want related data from
these two tables to be located as close together as possible. In an environment where
the database is physically divided among two or more database partitions, there must
be a way to keep the related pieces of the divided tables as close together as possible.
The ability to do this is called table collocation. Tables are collocated when they are
stored in the same nodegroup, and when their partitioning keys are compatible.

DB2 has the ability to recognize, when accessing more than one table for a join or
subquery, that the data to be joined is located at the same database partition. When
this happens, DB2 can choose to perform the join or subquery at the database partition
where the data is stored instead of having to move data between database partitions.
This ability to carry out joins or subqueries at the database partition has significant
performance advantages. The data from the tables must be divided in the same way
and then positioned or located at the same database partition.

Since both tables are to be divided across multiple database partitions, both tables
require a partitioning key. Placing both tables in the same nodegroup ensures a
common partition map. The tables may be in different table spaces, but the table
spaces must be associated with the same nodegroup. The data types of the
corresponding columns in each partition key must be partition-compatible.

Chapter 2. Designing Your Physical Database 37

Partition Compatibility

The base data types of corresponding columns of partitioning keys are compared and
can be declared as being partition compatible. Partition compatible data types have the
property that two variables, one of each type, with the same value, are mapped to the
same partition number by the same partitioning algorithm.

Partition compatibility has the following characteristics:

e A base data type is compatible with another of the same base data type.

¢ Internal formats are used for DATE, TIME, and TIMESTAMP data types. They are
not compatible with each other, and none are compatible with CHAR.

¢ Partition compatibility is not affected by columns with NOT NULL or FOR BIT
DATA definitions.

¢ NULL values of compatible data types are treated identically. Different results might
be produced for NULL values of non-compatible data types.

¢ Base data types of a User Defined Type are used to analyze partition compatibility.

¢ Decimals of the same value in the partitioning key are treated identically, even if
their scale and precision differ.

¢ Trailing blanks in character strings (CHAR, VARCHAR, GRAPHIC, or
VARGRAPHIC) are ignored by the system-provided hashing algorithm.

e SMALLINT and INTEGER are compatible data types.

e REAL and FLOAT are compatible data types.

e CHAR and VARCHAR of different lengths are compatible data types.

e GRAPHIC and VARGRAPHIC are compatible data types.

¢ LONG VARCHAR, LONG VARGRAPHIC, CLOB, DBLOB and BLOB data types
are not applicable for partition compatibility since they are not supported as
partitioning keys.

Designing and Choosing Table Spaces

A table space is a storage model that provides a level of indirection between a
database and the tables stored within that database. Table spaces reside in
nodegroups. Table spaces allow you to assign the location of database and table data
directly onto containers. (A container can be a directory name, a device name, or a file
name.) This can provide improved performance, more flexible configuration, and better
integrity.

Since table spaces reside in nodegroups, the table space selected to hold a table
defines how the data for the table is partitioned across the database partitions in a
nodegroup. A single table space can span several containers. It is possible for multiple
containers (from one or more table spaces) to be created on the same physical disk (or
drive, in Intel terms). For improved performance, each container should use a different
disk. The following diagram shows an example of the relationship between tables and
table spaces within a database and the containers and disks associated with the
database.

38 Administration Guide

Database

Nodegroup
HUMANRES SCHED
Table Space Table Space
EMPLOYEE DEPARTMENT PROJECT
Table Table Table
- A - .
Container Container Container Container Container

0

1

2

3

4

Figure 17. Table Spaces and Tables Within a Database

The EMPLOYEE and DEPARTMENT tables are in the HUMANRES table space which

spans Containers 0, 1, 2 and 3. The PROJECT table is in the SCHED table space in
Container 4. This example shows each container existing on a separate disk.

The database manager attempts to balance the load of the data across the containers.

As a result, all containers will be used to store data. The number of pages that the

database manager writes to a container before using a different container is called the
extent size. The database manager does not always start storing table data in the first

container.

The following diagram shows the HUMANRES table space with an extent size of two
4KB pages, and with four containers each with a small number of allocated extents.
The DEPARTMENT and EMPLOYEE tables both have 7 pages and span all four

containers.

Chapter 2. Designing Your Physical Database

39

HUMANRES Table Space

Container 0 Container 1 Container 2 Container 3
Extent
Size {DEPARTMENT EMPLOYEE EMPLOYEE EMPLOYEE
4KB { EMPLOYEE DEPARTMENT DEPARTMENT DEPARTMENT
Page

Figure 18. Use of Container and Extents

A database must contain at least three table spaces:

¢ One catalog table space, which contains all the system catalog tables for the
database. This table space is called SYSCATSPACE and it cannot be dropped.
IBMCATGROUP is the default nodegroup for this table space.

e One or more user table spaces, which contain all user-defined tables. By default,
one table space, USERSPACEL], is created. IBMDEFAULTGROUP is the default
nodegroup for this table space.

You should specify a table space name when you create a table, or the results
may not be what you intend. If you do not specify a table space name, the table is
placed according to the following rules: if the table space IBMDEFAULTGROUP
exists, then use it. If it does not exist, use a table space created by you if one
exists. Otherwise, use USERSPACEL if it exists. If USERSPACEL1 does not exist,
table creation fails.

e One or more temporary table spaces, which contain temporary tables. By default
one table space called TEMPSPACEL is created. A database must have at least
one temporary table space. IBMTEMPGROUP is the default nodegroup for this
table space.

If a database uses more than one temporary table space, temporary objects are
allocated among the temporary table spaces in a round robin fashion.

An application may encounter a temp-tablespace-full condition when one of the
table spaces is full even if there is still room in the other temporary table spaces.
Thus, you should observe the following guidelines when creating temporary table
spaces:

40 Administration Guide

— Create as few temporary table spaces as possible. It's always better to put all
of the containers into a single table space rather than dividing them up among
multiple table spaces.

— Make all temporary table spaces the same size if possible.

Note: In a partitioned database environment, the catalog node will have all three table
spaces and the other database partitions will each have only TEMPSPACE1
and USERSPACEL.

There are two types of table spaces, both of which can be used in a single database:

e System Managed Space Table Space: The operating system's file manager
controls the storage space.

e Database Managed Space Table Space: The database manager controls the
storage space.

After understanding the differences between these two types of table spaces, see
“Table Space Design Considerations” on page 46.

System Managed Space Table Space
In a System Managed Space (SMS) table space, the operating system's file system
manager allocates and manages the space where the table is to be stored. The storage
model typically consists of many files, representing table objects, stored in the file
system space. The user decides on the location of the files, DB2 controls their names,
and the file system is responsible for managing them. By controlling the amount of data
written to each file, the database manager evenly spreads the data over the table
space containers. An SMS table space is the default table space.

In addition to the database physical files, each table has at least one SMS physical file
associated with it. See “SMS Physical Files” on page 43 for a list of these files and a
description of their contents.

In an SMS table space, the file is extended one page at a time as the object grows.
When inserting a large number of rows, some delay may result from waiting for the
system to allocate another page.

Note: If you need improved insert performance, you can consider enabling multipage
file allocation. This allows the system to allocate or extend the file by more than
one page at a time. You must run db2empfa to enable multipage file allocation.
The db2empfa utility must be run on each database patrtition in a partitioned
database. Once multipage file allocation is enabled, it cannot be disabled. See
the Command Reference for more information on db2empfa.

You should explicitly define SMS table spaces using the MANAGED BY SYSTEM on
the CREATE DATABASE command or on the CREATE TABLESPACE statement. You
must consider two key factors when you design your SMS table spaces:

1. Containers for the table space
You must specify the number of containers that you wish to use for your table
space. It is very important to identify all the containers you want to use, since you

Chapter 2. Designing Your Physical Database 41

cannot add or delete containers after an SMS table space is created. In a
partitioned database environment, when a new partition is added to the nodegroup
for an SMS table space, the ALTER TABLESPACE statement can be used to add
containers for the new partition.

Each container used for an SMS table space identifies an absolute or relative
directory name. Each of these directories can be located on a different file system
(or physical disk). As a result, the maximum size of the table space can be
calculated by:

number of containers * (maximum file system size supported by the
operating system)

Note: This formula assumes that there is a distinct file system mapped to each
container, and that each file system has the supported maximum of space
available. In practice, this may not be the case and the practical maximum
database size may be much smaller.

2. Extent size for the table space

Similar to specifying the number of containers, the extent size can only be
specified when the table space is created. Because it cannot be changed later, it is
important to select an appropriate value for the extent size. See “Choosing an
Extent Size” on page 50 for more information.

When creating a table space, if you do not specify the extent size, the database
manager will create the table space using the default extent size, defined by the
dft_extent_sz database configuration parameter (see “Default Extent Size of Table
Spaces (dft_extent_sz)” on page 506). This configuration parameter is initially set
based on information provided when the database is created. If the
DFT_EXTENTSIZE parameter is not specified on the CREATE DATABASE
command, the default extent size will be set to 32.

To choose the appropriate values for the number of containers and the extent size for
the table space, you must understand:

e The limitation that your operating system imposes on the size of a logical file
system.

For example, some operating systems have a 2GB limit. Therefore, if you want a
64GB table object, you will need at least 32 containers on this type of system.

Check the limitations on size and the number of containers on the platform where
you are working as part of your determination regarding the number of containers
and the extent size for the table space.

When you create the table space, you can specify containers that reside on
different files systems and as a result increase the amount of data that can be
stored in the database.

¢ How the database manager manages the data files and containers associated with
a table space.

The first table data file (SQLO0001.DAT) is created in the first container specified
for the table space, and this file is allowed to grow to the extent size. After it

42 Administration Guide

reaches this size, the database manager writes the data to SQLO0O001.DAT in the
next container. This process continues until all of the containers contain
SQLO0001.DAT files, at which time, the database manager returns to the first
container to which data was written for that table. This process (known as striping)
continues through the container directories until either a container becomes full at
which time a -289 error is returned; or, no more space can be allocated from the
operating system at which time a disk-full error is returned. This mechanism is also
used for index (SQLnnnnn.INX), long field (SQLnnnnn.LF), and LOB
(SQLnnnnn.LB and SQLnnnnn.LBA) files.

Note: The SMS table space is full as soon as any one of its containers is full.
Thus, it is important to allocate the same amount of space for each
container.

To help spread data across the containers more evenly, the database manager
determines the container to start writing a table's data by taking the table's ID (1 in
the above example) modulo the number of containers. Containers are numbered
sequentially starting at 0.

See “SMS Physical Files” for more information about the files used in an SMS
table space.

SMS Physical Files
The following files are found within an SMS table space directory container:

File Name
SQLTAG.NAM

SQLxxxxx.DAT

SQLxXXxxX.LF

SQLxxxxx.LB

SQLxxxxx.LBA

SQLxxxxx.INX

Description

There is one of these files in each container subdirectory, and
they are used by the database manager when you connect to the
database to verify that the database is complete and consistent.

Table file. All rows of a table are stored here, with the exception
of LONG VARCHAR, LONG VARGRAPHIC, CLOB, BLOB or
DBCLOB data.

File containing LONG VARCHAR or LONG VARGRAPHIC data
(also called “long field data”). This file is only created if LONG
VARCHAR or LONG VARGRAPHIC columns exist in the table.

Files containing BLOB, CLOB, or DBCLOB data (also called
“LOB data”). These files are only created if BLOB, CLOB, or
DBCLOB columns exist in the table.

Files containing allocation and free space information about the
SQLxxxxx.LB files.

Index file for a table. All indexes for the corresponding table are
stored in this single file. It is only created if indexes have been
defined.

Note: When an index is dropped, the space is not physically
freed from the index (.INX) file until the index file is
deleted. The index file will be deleted if all the indexes on
the table are dropped (and committed) or if the table is

Chapter 2. Designing Your Physical Database 43

reorganized. If the index file is not deleted, the space will
be marked free once the drop has been committed, and
will be reused for future index creations or index
maintenance.

SQLxxxxx.DTR Temporary data file for a REORG of a DAT file. While
reorganizing a table, the REORG ultility creates a table in one of
the temporary table spaces. These temporary table spaces can
be defined to use containers different from those used for the
user-defined tables.

SQLxxxxx.LFR Temporary data file for a REORG of a LF file. Notes for the .DTR
file apply here as well.

SQLxxxxx.RLB Temporary data file for a REORG of a LB file. Notes for the .DTR
file apply here as well.

SQLxxxxx.RBA Temporary data file for a REORG of a LBA file. Notes for the
.DTR file apply here as well.

Notes:

1. Do not make any direct changes to these files. They can only be accessed
indirectly using the documented APIs and by tools that implement those APIs,
including the command line processor commands and the graphical Control Center.

2. Do not remove these files.
3. Do not move these files.

4. The only supported means of backing up a database or table space is through the
BACKUP API, including implementations of that API, such as those provided by the
command line processor and Control Center.

Database Managed Space Table Space
In a Database Managed Space (DMS) table space, the database manager controls the
storage space. The storage model consists of a limited number of devices, whose
space is managed by DB2. The Administrator decides which devices to use, and DB2
manages the space on the devices. This table space is essentially an implementation of
a special purpose file system designed to best meet the needs of the database
manager. The table space definition includes a list of the devices or files belonging to
the table space in which data can be stored.

A DMS table space containing user-defined tables and data can be defined as:

e Aregular table space to store normal table and index data

e Along table space to store long field or LOB data
When designing your DMS table spaces and containers, you should consider the
following:

e The database manager uses striping to ensure an even distribution of data across
all containers.

44 Administration Guide

The maximum size of the different types of table spaces:

— Regular table and index data—64GB
— Long field data—2TB
— Temp data—2TB

Unlike SMS table spaces, the containers that make up a DMS table space do not
need to be the same size. Also, if any container is full, DMS table spaces use any
available free space from other containers.

The space is preallocated.

Because it is preallocated, the space must be available before the table space can
be created. When using device containers, the device must also exist with enough
space for the definition of the container. Each device can have only one container
defined to it, so to avoid wasted space, the size of the device and the size of the
container should be equivalent. If, for example, the device is allocated with 5000
pages and the device container is defined to allocate 3000 pages, then 2000 pages
on the device will not be usable.

One page in every container is reserved for overhead and the remaining pages will
be used one extent at a time. Only full extents are used in the container, so for
optimal space management, you can use the following formula to help you
determine the appropriate size to use when allocating a container:

(extent size * n) + 1

where, extent size is the size of each extent for the table space and n is the
number of extents you want to store in the container.

The number of extents you require:

— Three extents in the table space are reserved for overhead

— At least two extents are required to store any user table data. (These two
extents allow for the regular data for one table, not for any index, long field or
large object data which require their own extents.)

Device containers must use logical volumes with a “character special interface,” not
physical volumes.

You can use files instead of devices with DMS table spaces. No operational
difference exists between a file and a device; however, a file can be less efficient
because of the runtime overhead associated with the filesystem. Files are useful
when:

Devices are not directly supported

— A device is not available

Maximum performance is not required
— You do not want to set up devices.

Some operating systems allow you to have physical devices greater than 2GB in
size. You should consider partitioning the physical device into multiple logical
devices so that no container is bigger than the size allowed by the operating
system.

Chapter 2. Designing Your Physical Database 45

Adding Containers to DMS Table Spaces
You can add a container to an existing table space to increase its storage capacity with
the ALTER TABLESPACE statement. The contents of the table space are then
re-balanced across all containers. Access to the table space is not restricted during the
re-balancing. If you need to add more than one container, you should add them at the
same time either in one ALTER TABLESPACE statement or within the same
transaction to prevent the database manager from having to re-balance the containers
more than once.

You should check how full the containers for a table space are by using the LIST
TABLESPACE CONTAINERS or the LIST TABLESPACES commands. Adding new
containers should be done before the existing containers are almost or completely full.
The new space across all the containers is not available until the re-balance is
complete.

Adding a container which is smaller than existing containers results in a uneven
distribution of data. This can cause parallel I/O operations, such as prefetching data, to
perform less efficiently than they otherwise could on containers of equal size.

Table Space Design Considerations
Based on the logical design of your database, you should have a good idea of the size
of each table, and as a result, of your database. Based on your understanding of this
information, you should consider the following to complete your database design as it
relates to table space use:

¢ Considerations for Table Space Input and Output (I/O)

e Mapping Table Spaces to Buffer Pools

e Mapping Table Spaces to Nodegroups

e Mapping Tables to Table Spaces

e Choosing an Extent Size

e Recommendations for Catalog and Temporary Table Spaces
* Workload Considerations

e Choosing an SMS or DMS Table Space

Considerations for Table Space Input and Output (I/O)

The type and design of your table space determines the efficiency of the 1/O performed
against that table space. Here are some concepts that you should understand before
considering further the issues surrounding table space design and use.

Big-block reads
A read where several pages (usually an extent) is retrieved in a
single request. Reading several pages at once is more efficient than
reading each page separately.

Prefetching
The reading of pages in advance of those pages being referenced by
a query. The overall objective is to reduce response time. This can
be achieved if the prefetching of pages can occur asynchronously to
the execution of the query. The best response time is achieved when

46 Administration Guide

either the CPU(s) or the I/O subsystem are operating at maximum
capacity.

Page cleaning
As pages are read and modified, these pages accumulate in the
database buffer pool. Whenever a page is read in, there must be a
buffer pool page to read it into. If the buffer pool is full of modified
pages, one of these modified pages must be written out to the disk
before the new page can be read in. To prevent the buffer pool from
becoming full, page cleaner tasks write out modified pages in order
to guarantee the availability of buffer pool pages for use by read
requests.

Whenever it is advantageous, DB2 performs big-block reads. This typically occurs when
retrieving data that is sequential or partially sequential in nature. The amount of data
read in one read depends on the extent size -- the bigger the extent size, the more
pages that are read at one time.

How the extent is stored on disk affects the I/O efficiency. When considering a DMS
table space using device containers, the data tends to be contiguous on disk and can
be read with a minimum of seek time and disk latency. However, if files are being used,
the data may have been broken up by the file system and stored in more than one
location on disk. This occurs most often when using SMS table spaces where files are
extended one page at a time, making fragmentation more likely. Preallocation of a large
file for use by a DMS table space tends to be contiguous on disk, especially if the file
was allocated in a clean file space.

DB2 performing big-block reads is only one way in which query execution is assisted.
You can control how aggressive prefetching can be by tuning the PREFETCHSIZE
parameter on the CREATE TABLESPACE statement. (The default value for all table
spaces in the database is set by the dft_prefetch_sz configuration parameter.) The
PREFETCHSIZE parameter tells DB2 how many pages to read whenever a prefetch is
triggered. By setting PREFETCHSIZE to a multiple of the EXTENTSIZE parameter on
the CREATE TABLESPACE statement, you can cause multiple extents to be read in
parallel. (The default value for all table spaces in the database is set by the
dft_extent_sz configuration parameter. The EXTENTSIZE parameter specifies the
number of 4K pages that will be written to a container before skipping to the next
container.)

For example, suppose you had a table space that used three devices. If you set the
PREFETCHSIZE to be three times the EXTENTSIZE, then DB2 can do a big-block
read from each device in parallel, thereby significantly increasing the 1/0 throughput.
This assumes that each device is a separate physical device and that the controller has
sufficient bandwidth to handle the data stream from each device. Note that DB2 may
have to dynamically adjust the prefetch parameters at runtime based on query speed,
buffer pool utilization, and other factors.

You should know that some file systems use their own prefetching (such as the
Journaled File System on AIX). In some cases, the file system prefetching is set to be

Chapter 2. Designing Your Physical Database 47

more aggressive than the DB2 prefetching. This results in situations where you observe
that prefetching for SMS and DMS table spaces with file containers is outperforming
prefetching for DMS table spaces with devices. This is misleading since it is likely the
result of the additional level of prefetching that is occurring in the file system. DMS
table spaces should be able to outperform any equivalent configuration.

For prefetching or even reading to be efficient, a sufficient number of clean buffer pool
pages must exist into which to read the data. For example, there could be a parallel
prefetch request which reads three extents from a table space and where a modified
page must be written out from the buffer pool for each page being read. With the
potential for a buffer page to be written out for every page being read in, it is clear that
the prefetch request is slowed significantly perhaps to the point where it cannot keep up
with the query. Page cleaners should be configured in sufficient numbers to satisfy the
prefetch request. At least one page cleaner should be defined for each real disk used
by the database. For more information on these topics and performance, see the
Chapter 14, “Operational Performance” on page 395.

Mapping Table Spaces to Buffer Pools

Each table space is associated with a specific buffer pool. The default buffer pool is
IBMDEFAULTBP. If another buffer pool is to be associated with a table space, the
buffer pool must exist (it is defined with the CREATE BUFFERPOOL statement), and
the association is defined when the table space is created (using the CREATE
TABLESPACE statement). The association between the table space and the buffer pool
can be changed using the ALTER TABLESPACE statement.

Having more than one buffer pool allows you to configure the memory used by the
database to improve overall performance and to help with setting performance goals for
specific applications. For example, for table spaces with one or more large tables which
are accessed randomly by users, the size of the buffer pool can be limited since
caching the data pages might not be beneficial. Another example would have the table
space for an important online transaction application associated with a buffer pool that
is larger than others. In this way, the data pages used by the application could be
cached longer in the buffer pool resulting in lower response times. Care must be taken
in configuring new buffer pools beyond the default.

The storage required for all the buffer pools must be available to the database manager
when starting up the database. If DB2 is unable to obtain the storage required for all
defined buffer pools, the database manager will start up with the default buffer pool of a
minimal size, and issue a warning message.

In a partitioned database environment, you can create a buffer pool of the same size
for all partitions in the database. You can also create buffer pools of particular sizes on
different partitions. For more information on the CREATE BUFFERPOOL statement,
see the SQL Reference manual.

Mapping Table Spaces to Nodegroups
In a partitioned database environment, each table space is associated with a specific
nodegroup. This allows for the characteristics of the table space to be applied to each

48 Administration Guide

node in the nodegroup. The nodegroup must exist (it is defined with the CREATE
NODEGROUP statement), and the association between the table space and the
nodegroup is defined when the table space is created using the CREATE
TABLESPACE statement.

You cannot change the association between table space and nodegroup using the
ALTER TABLESPACE statement. You can only change the table space specification for
individual partitions within the nodegroup. If not in a partitioned database environment,
each table space is associated with a default nodegroup. The default nodegroup when
defining a table space is IBMDEFAULTGROUP unless a temporary table space is
being defined and then IBMTEMPGROUP is used. For more information on the
CREATE NODEGROUP statement, see the SQL Reference manual. For more
information on nodegroups and physical database design, see the “Designing
Nodegroups” on page 32.

Mapping Tables to Table Spaces
When determining how to map tables to table spaces in your design, you should
consider:

e The partitioning of your tables.

At a minimum, you should ensure that the table space you choose is in the
nodegroup with the partitioning you desire.

e The amount of data in the table.

If you plan to store many small tables in a table space, consider using SMS for that
table space. The DMS advantages with 1/0 and space management efficiency are
not as important with small tables. The SMS advantages of allocating space one
page at a time, and only when needed, are more attractive with smaller tables. If
one of your tables is larger, or you need faster access to the data in the tables,
then a DMS table space with a small extent size should be considered.

You may wish to use a separate table space for each very large table and group
all small tables together in a single table space. This separation also allows you to
select an appropriate extent size based on the table space usage. (See “Choosing
an Extent Size” on page 50 for additional information.)

¢ The type of data in the table.

You may, for example, have tables containing historical data that is used
infrequently and as a result the end-user may be willing to accept a longer
response time for queries executed against this data. In this situation, you could
use a different table space for the historical tables and assign this table space to
less expensive physical devices that have slower access rates.

Alternatively, you may be able to identify some essential tables which require high
availability and fast response time. You may want to put these tables into a table
space assigned to a fast physical device that can help support these important
data requirements.

Using DMS table spaces, you can also spread your table across three different
table spaces: one for index data; one for LOB and long field data; one for regular

Chapter 2. Designing Your Physical Database 49

table data. This allows you to choose the table space characteristics and the
physical devices supporting those table spaces to best suit the type of data. For
example, you could put your index data on the fastest devices you have available,
and as a result, obtain significant performance improvements. If you split a table
across DMS table spaces, you should consider backing up and restoring all parts
of the table together if ROLLFORWARD recovery is enabled. SMS table spaces do
not support the spreading of your table across table spaces in this fashion.

e The administration requirements of your tables.

Some administration functions can be performed at the table space level instead of
the database or table level. For example, taking a back up of a table space instead
of a database can help you make better use of your time and resources. It allows
you to frequently back up table spaces with large volumes of changes, while only
occasionally backing up tables spaces with very low volumes of changes.

You may restore a database or a table space. If unrelated tables do not share
table spaces, you have the ability to restore a smaller portion of your database,
and as a result, reduce the time and resource requirements for the restore utility.

A general rule-of-thumb could be to group related tables in a set of table spaces.
These tables could be related through referential constraints, or through other
business constraints defined on the tables using triggers.

Another aspect to consider for administration of your tables, is how often you might
want to drop and redefine a particular table. If the frequency is high, you may want
to define the table in its own table space, since it is more efficient to drop a DMS
table space than it is to drop a table.

Choosing an Extent Size

The extent size for a table space indicates the number of pages of table data that will
be written to a container before data will be written to the next container. When
selecting an extent size, you should consider:

e The size and type of tables in the table space.

Space in DMS table spaces is allocated to a table an extent at a time. As the table
is populated and an extent becomes full, a new extent is allocated.

A table is made up of the following separate table objects
— A DATA object. This is where the regular column data is stored.
— An INDEX object. All indexes defined on the table are stored here.

— A LONG FIELD object. If your table has one or more LONG columns, they are
all stored here.

— Two LOB objects. If your table has one or more LOB columns, they are stored
in these two table objects:

- One table object for the LOB data

- A second table object for meta-data describing the LOB data

50 Administration Guide

Each table object is stored separately, and therefore each allocates new extents as
needed. Each table object is also paired up with a meta-data object called an
extent map, which describes all the extents in the table space which belong to the
table object. Space for extent maps is also allocated an extent at a time.

The initial allocation of space for a table, therefore, is two extents for each table
object. If you have many small tables in a table space, you may have a relatively
large amount of space allocated to store a relatively small amount of data. In such
a case, you should specify a small extent size, or use an SMS table space which
allocates pages one at a time.

If, on the other hand, you have a very large table that has a high growth rate, and
you are using an DMS table space with a small extent size, you could have
unnecessary overhead related to the frequent allocation of additional extents.

The type of access to the tables.

If access to the tables includes many queries or transactions that process large
quantities of data, prefetching data from the tables may provide significant
performance benefits. (See “Prefetching Data into the Buffer Pool” on page 405 for
information about data prefetching and recommendations on its relationship to the
extent size.)

The minimum number of extents required.

There must be enough space in the containers for five extents of the table space,
otherwise the table space will not be created.

Recommendations for Catalog and Temporary Table Spaces
For each database, a single SMS temporary table space is recommended. SMS and
not DMS, is recommended for the following reasons:

Although DB2 supports multiple temporary table spaces, at runtime DB2 uses each
temporary table space in turn and not at the same time. DB2 controls which
temporary table space is used and not the user. Therefore each temporary table
space must be large enough to accommodate the largest possible temporary table.
As a result, it makes more sense to pool all the temporary space into one
temporary table space. Allowing for multiple temporary table spaces is still useful
when you want to change the definition of your table space. Since you must always
have at least one table space, you must be able to have two table spaces to
change the definition -- one with the old definition and one with the new definition.

DB2 attempts to keep temporary tables in memory as much as possible. Since a
DMS table space is comprised of pre-allocated storage space, and since you need
to pre-allocate sufficient space to handle peak temporary space use, and since the
pre-allocated space is not free for use for any other purpose, the choice of a DMS
table space is not the best choice. With a SMS table space, temporary space is not
pre-allocated but only consumed when needed. When not needed by the database
manager, this space is free for other use.

DMS should only be considered if you need better performance than is possible if you
use SMS.

Chapter 2. Designing Your Physical Database 51

For each database, a SMS table space for the catalogs is recommended. SMS and not
DMS, is recommended for the following reasons:

e The database catalog consists of many tables of varying sizes. When using a DMS
table space, a minimum of two extents are allocated for each table object.
Depending on the extent size chosen, a significant amount of allocated and unused
space may result. If using a DMS table space, then a small extent size (two to four
pages) should be chosen; otherwise, a SMS table space should be used.

e There are large object (LOB) columns in the catalog tables. LOB data is not kept in
the buffer pool with other data but is read from disk each time it is needed.
Reading from disk slows down the performance of DB2 where the LOB columns of
the catalogs are involved. Since a file system usually has its own place for storing
(or caching) data, using a SMS table space, or a DMS table space built on file
containers, make avoidance of 1/0 possible when the LOB has previously been
referenced.

Given these considerations, a SMS table space is a slightly better choice for the
catalogs.

Another factor to consider is if you will need to enlarge the catalog table space in the
future. While some platforms have support for enlarging the underlying storage for SMS
containers, and while the use of redirected restore to enlarge a SMS table space is
available, the use of a DMS table space would allow for easier addition of new
containers than the two other choices.

Workload Considerations

The primary type of workload being managed by DB2 in your environment can have an
effect on your choice of the type of table space used. An online transaction process
(OLTP) workload is characterized by transactions that make random access to data and
that usually return small sets of data. Given that the access is random, and to one or a
few pages, then prefetching is not possible. The important fact when considering 1/0
becomes the retrieving of a page of data with the minimum cost possible.

DMS table spaces using device containers perform best in this situation. DMS table
spaces with file containers or SMS table spaces are also reasonable choices for OLTP
workloads if maximum performance is not required. With little or no sequential I/O
expected, the settings for the EXTENTSIZE and PREFETCHSIZE parameters on the
CREATE TABLESPACE statement are not important for 1/O efficiency.

A query workload is characterized by transactions that make sequential or partially
sequential access to data and that usually return large sets of data. Efficient parallel
prefetch should be possible in the type of table space chosen. A DMS table space
using multiple device containers and where each container is on a separate disk, offers
the greatest potential for efficient prefetching. The value of the PREFETCHSIZE
parameter on the CREATE TABLESPACE statement should be set to the value of the
EXTENTSIZE parameter multiplied by the number of device containers. This allows
DB2 to prefetch from all containers in parallel.

52 Administration Guide

A reasonable alternative with a query workload is to use files if the file system has its
own prefetching. The files can be either of DMS type using file containers, or of SMS
type. Note that if you use SMS, you need to have the directory containers map to
separate physical disks in order to achieve 1/O parallelism.

A mixed workload is characterized by transactions that are a mixture of the two types
mentioned above. Your choice of SMS or DMS table spaces result from combining the
considerations and advice from each of the two types of workload. Your goal will be to
make single I/O requests as efficient as possible for OLTP workloads, and to maximize
the efficiency of parallel I/O for the query workload.

Choosing an SMS or DMS Table Space
There are a number of trade-offs to consider when determining which type of table
space you should use to store your data.

Advantages of a SMS Table Space:

e Space is not allocated by the system until it is required
e Creating a database requires less initial work since you do not have to predefine
the containers.

Advantages of a DMS Table Space:

¢ The size of a table space can be increased by adding containers, using the ALTER
TABLESPACE statement. Existing data is automatically rebalanced across the new
set of containers to retain optimal 1/0 efficiency.
¢ A table can be split across multiple table spaces based on the type of data being
stored:
— Long field and LOB data
— Indexes
— Regular table data
You might want to separate your table data for performance reasons, or to
increase the amount of data stored for a table. For example, you could have a
table with 64GB of regular table data, 64GB of index data and 2TB of long data.
¢ The location of the data on the disk can be controlled, if the operating system
allows this.
« |f all table data is in a single table space, a table space can be dropped and
redefined with less overhead than dropping and redefining a table.
¢ In general, a well-tuned set of DMS table spaces will outperform SMS table
spaces.

In general, small personal databases are easiest to manage with SMS table spaces. On
the other hand, for large, growing databases you will probably only want to use SMS
table spaces for the temporary table spaces and separate DMS table spaces, with
multiple containers, for each table. In addition, long fields and indexes would be stored
on their own table spaces.

If you choose to use DMS table spaces with device containers, you must be willing to
tune and administer your environment. For more information, see “Performance
Considerations for DMS Devices” on page 416.

Chapter 2. Designing Your Physical Database 53

54 Administration Guide

Chapter 3. Implementing Your Design

After determining the design of your database, you must create the database and the
objects within it. These objects include schemas, nodegroups, table spaces, tables,
views, aliases, user-defined types (UDTs), user-defined functions (UDFs), triggers,
constraints, indexes, and packages. You can create these objects using SQL
statements in the command line processor, from the Control Center (on the Windows
95, Windows NT, and OS/2 operating systems), or through APIs in applications.

For information on SQL statements, see the SQL Reference manual. For information on
command line processor commands and user APIs, see the Command Reference and
API Reference manuals respectively.

Note: Your platform may support a user interface where you can create database
objects. This interface can be used instead of the SQL statements, command
line processor commands, or user APIs. Check the Quick Beginnings manual
for your platform to determine if you have this capability.

The following topics are expanded and discussed in greater detail later in this chapter:

¢ Conceptual information you should know before you create a database
¢ How to Create Objects

¢ How to Alter Objects

¢ How to Delete Objects.

There may be operating system-specific differences with some of the topics discussed
below in those areas where DB2 Universal Database interacts with the operating
system. You may be able to take advantage of native operating system capabilities or
differences beyond those offered by DB2 UDB. You should refer to your appropriate
Quick Beginnings manuals and specific operating system documentation for precise
differences.

As an example, Windows NT** supports an application type known as a “service.” DB2
for Windows NT can have a DB2 instance defined as a service. A service can be
started automatically at system boot, by a user through the Services control panel
applet, or by a Win32-based application that uses the service functions included in the
Microsoft** Win32** application programming interface (API). Services can execute
even when no user is logged on to the system.

Introductory Concepts for Database Implementation
Before you implement a database, you should understand the following concepts:

e “Starting and Stopping DB2” on page 56

e “Using Multiple Instances of the Database Manager” on page 56
¢ “Organizing and Grouping Objects by Schema” on page 57

¢ “Enabling Intra-Partition Parallelism” on page 57

¢ “Enabling Data Partitioning” on page 58

© Copyright IBM Corp. 1993, 1997 55

Starting and Stopping DB2
You may need to start or stop DB2 during normal business operations; for example, to
do maintenance. To start DB2 on your system, enter the command:

db2start

This command can be run through the Control Center (on Windows 95, Windows NT,
or OS/2 operating systems), or at the server as an operating system command or as a
command line processor command. You must have SYSADM, SYSCTRL, or
SYSMAINT authority to run this command.

To stop DB2 on your system, you must do the following:

1. Attach to an instance of the database. You do not require any special authorization
for this.

2. Display all applications and users that are connected to the specific database that
you want to stop. To ensure that no vital or critical applications are running, list
applications. You need SYSADM, SYSCTRL and SYSMAINT authority for this.

3. Force all applications and users off the database. You require SYSADM and
SYSCTRL authority to force users.

4. Stop the DB2 instance by typing the command:

db2stop

The db2stop command can be run as an operating system command or as a Command
Line Processor command. This command can only be run at the server. No database
connections are allowed when running this command; however, if there are any
instance attachments, they are forced off before DB2 is stopped.

Using Multiple Instances of the Database Manager
Multiple instances of the database manager may be created on a single server. This
means that you can create several instances of the same product on a physical
machine, and have them running concurrently. This provides flexibility in setting up
environments.

You may wish to have multiple instances to:

e Separate your development environment from your production environment.

e Separately tune each for the specific applications it will service.

e Protect sensitive information from administrators. For example, you may wish to
have your payroll database protected on its own instance so that owners of other
instances will not be able to see payroll data.

DB2 program files are physically stored in one location on a particular machine. Each
instance that is created points back to this location so the program files are not
duplicated for each instance created. Several related databases can be located within a
single instance.

Instances are cataloged as either local or remote in the node directory. Your default
instance is defined by the DB2INSTANCE environment variable. You can attach to

56 Administration Guide

other instances to perform maintenance and utility tasks that can only be done at an
instance level, such as creating a database, forcing off applications, monitoring a
database, or updating the database manager configuration. When you attempt to attach
to an instance that is not in your default instance, the node directory is used to
determine how to communicate with that instance.

To attach to another instance, which may be remote, use the ATTACH command as
described in the Command Reference manual. For example,

attach to testdb2

will attach you to the instance called testdb2 that was previously cataloged in the node
directory.

After performing maintenance activities for the testdb2 instance, you can then detach
from that instance by executing the following command:

detach

The Command Reference provides information about the type of connection that is
required to execute each command.

DB2 support for multiple instances varies by operating system. See the Quick
Beginnings guide appropriate to your platform for information on defining multiple DB2
instances on one machine.

Organizing and Grouping Objects by Schema
The objects in a relational database are organized into schemas, which provide a
logical classification of objects in the database. The schema is an object identified in
the high-order part of a two-part object name. When an object such as a table, view,
alias, distinct type, function, index, package or trigger is created, it is assigned to a
schema. This assignment is done either explicitly or implicitly.

For example, USER A issues a CREATE TABLE statement in schema C as follows:
CREATE TABLE C.X (COL1 INT)

As described in “Definition of System Catalog Tables” on page 73, some objects are
created within certain schemas when the database is created.

Before creating your own objects, you need to consider whether you want to create
them in your default schema (identified by your user ID) or by using a separate schema
that logically groups the objects. If you are creating objects that will be shared, using a
different schema name can be very beneficial. For more information on how to explicitly
create a schema, see “Creating a Schema” on page 79.

Enabling Intra-Partition Parallelism
You must modify configuration parameters to take advantage of parallelism within a
database partition or within a non-partitioned database. For example, intra-partition
parallelism can be used to take advantage of the multiple processors on a symmetric
muti-processor (SMP) machine.

Chapter 3. Implementing Your Design 57

Use the GET DATABASE CONFIGURATION and the GET DATABASE MANAGER
CONFIGURATION commands to find out the values of individual entries in a specific
database, or in the database manager configuration file. To modify individual entries for
a specific database or in the database manager configuration file, use the UPDATE
DATABASE CONFIGURATION and the UPDATE DATABASE MANAGER
CONFIGURATION commands respectively.

Configuration parameters that affect intra-partition parallelism include the
max_querydegree and intra_parallel database manager parameters, and the dft_degree
database parameter. For more information on configuration parameters, see

Chapter 19, “Configuring DB2” on page 459.

Enabling Data Partitioning
When running in a multiple partition environment, you can create a database from any
node that exists in the db2nodes.cfg file using the CREATE DATABASE command or
the sqglecrea() application programming interface (API). For information, see the
Command Reference and API Reference manuals.

Before creating a partitioned database, you must determine if you will be a local or
remote client to the instance where the database is to be created. Second, you must
attach to the instance. You must also select which database partition will be the catalog
node for the database. The database partition to which you attach and execute the
CREATE DATABASE command becomes the catalog node for that particular database.

The catalog node is the database partition on which all system catalog tables are
stored. All access to system tables must go through this database partition.

If possible, you should create each database in a separate instance. If this is not
possible (that is, you must create more than one database per instance), you should
spread the catalog nodes among the available database partitions. Doing this reduces
contention for catalog information at a single database partition.

Note: You should regularly do a backup of the catalog node and avoid putting data on
it (whenever possible), because other data increases the time required for the
backup.

When you create a database, it is automatically created across all the database
partitions defined in the db2nodes.cfg file.

When the first database in the system is created, a system database directory is
formed. It is appended with information about any other databases that you create. The
system database directory is sqldbdir and is located in the sq11ib directory under your
home directory. This directory must reside on a shared file system, (for example, NFS
on UNIX platforms) because there is only one system database directory for all the
database partitions that make up the parallel database.

Also resident in the sqldbdir directory is the system intention file. It is called sqldbins,
and ensures that the database partitions remain synchronized. The file must also reside

58 Administration Guide

on a shared file system since there is only one directory across all database partitions.
The file is shared by all the partitions making up the database.

Configuration parameters have to be modified to take advantage of data partitioning.
Use the GET DATABASE CONFIGURATION and the GET DATABASE MANAGER
CONFIGURATION commands to find out the values of individual entries in a specific
database, or in the database manager configuration file. To modify individual entries in
a specific database, or in the database manager configuration file, use the UPDATE
DATABASE CONFIGURATION and the UPDATE DATABASE MANAGER
CONFIGURATION commands respectively.

The database manager configuration parameters affecting a partitioned database
include conn_elapse, fcm_num_anchors, fem_num_buffers, fcm_num_connect,
fem_num_rgb, max_connretries, max_coordagents, max_time_diff, num_poolagents,
and stop_start_time.

For more information on configuration parameters, see Chapter 19, “Configuring DB2”
on page 459.

Before Creating a Database
Before creating a database, you should consider or carry out the following tasks:

¢ Design Logical and Physical Database Characteristics

e Create an Instance

¢ Establish Environment Variables and the Profile Registry
e DB2 Administration Server (DAS)

e Create a Node Configuration File

¢ Create a Database Configuration File

¢ Enable FCM Communications

Design Logical and Physical Database Characteristics
You must make logical and physical database design decisions before you create a
database. To find out more about logical database design, see Chapter 1, “Designing
Your Logical Database” on page 3. To find out more about physical database design,
see Chapter 2, “Designing Your Physical Database” on page 25.

Create an Instance
As part of your installation procedure, you create an instance of DB2. It is possible to
have more than one instance on a system. You may only work within one instance of
DB2 at a time.

Use the db2icrt command to create an instance of DB2. When using this command,
you should provide the login name of the instance owner and optionally specify the
authentication type of the instance. The authentication type applies to all databases
created under that instance. The authentication type is a statement of where the
authenticating of users will take place. For more information on authentication, see
Chapter 4, “ Controlling Database Access” on page 111. For more information on the
db2icrt command, see the Command Reference manual.

Chapter 3. Implementing Your Design 59

Establish Environment Variables and the Profile Registry
Environment variables and registry values control your database environment.

Prior to the introduction of the DB2 profile registry, changing your environment variables
on Windows or OS/2 workstations (for example) required you to change an environment
variable and reboot. Now, your environment is controlled with a few exceptions by
registry values stored in the DB2 profile registries. Use the db2set command to update
registry values without rebooting; this information is stored immediately in the profile
registries.

Note: The DB2 environment variables db2instance, db2path, and db2instprof may
not, depending on the operating system, be stored in the DB2 profile registries.
In order to update these environment variables, the set command must be used
and the system rebooted.

Using the profile registry allows for centralized control of the environment variables.
Appendix E, “DB2 Registry Values and Environment Variables” on page 633 lists many
of the environment variables and registry values. Different levels of support are now
provided through the different environment profiles. Remote administration of the
environment variables is also available when using the DB2 Administration Server.

There are four (4) profile registries. They are:

e The DB2 Instance Level Profile Registry. The majority of the DB2 environment
variables are placed within this registry. The environment variable settings for a
particular instance are kept in this registry.

e The DB2 Global Level Profile Registry. If an environment variable is not set for a
particular instance, this registry is used. This registry has the machine-wide
environment variable settings.

e The DB2 Instance Node Level Profile Registry. In a system where the database is
divided across different database partitions, this registry resides on every node
(that is, machine), and contains environment variable settings for all instances
storing data on the node.

e The DB2 Instance Names Registry. This registry contains a list of all instance
names recognized by this system.

Users can override DB2 Instance Profile Registry environment variable settings for their
session by changing session environment variable settings using the db2set command.

DB2 configures the operating environment by checking for registry values and
environment variables and resolving them in the following order:

1. Environment variables set with the set command.

2. Registry values set with the instance node level profile (using the db2set -I
command with a node number as shown below).

3. Registry values set with the db2set command.

4. Registry values set with the instance profile (using the db2set -I command as
shown below).

5. Registry values set with the group profile (using the db2set -G command as shown
below).

60 Administration Guide

Using the db2set Command
The db2set command supports the local declaration of the environment variables to a
particular setting.

To display help information for the command, use:
db2set ?

To list the complete set of all supported registry variables for your platform, use:
db2set -1r

To list all currently defined registry variables for this session, use:
db2set

To show the current session value of a registry variable, use:

db2set variable_name

To delete the current session value of a registry variable, use:

db2set variable_name=

To change a registry variable for this session only, use:

db2set variable_name=new_value

To change a registry variable default for all databases in the instance, use:
db2set variable_name=new_value
-1 instance_name
To change a registry variable default for all instances in the system, use:
db2set variable_name=new_value -G

Note: The two parameters "-I" and "-G" cannot be used at the same time in the same
command.

To change a registry variable default for a particular node in an instance, use:

db2set variable_name=new_value

-1 instance_name node_number

To reset all registry variables for an instance back to the defaults found in the Global
Profile Registry, use:

db2set -r variable_name
To reset all registry variables for a node in an instance back to the defaults found in the
Global Profile Registry, use:

db2set -r variable_name node_number

Chapter 3. Implementing Your Design 61

Setting Environment Variables on OS/2

On OS/2, you should have no environment variables defined in config.sys apart from
DB2PATH and DB2INSTPROF. All values should be defined in the profile registries

using the db2set command except for those that remain true environment variables.

DB2INSTANCE also remains a true environment variable, however, it is not required if
you make use of the DB2INSTDEF registry variable. This variable defines the default
instance name to use if DB2INSTANCE is not set.

To set system environment variables, do the following: Edit the config.sys file, and
reboot the system to have the change take effect.

The different profile registries are located according to the following:
e The DB2 Instance Level Profile Registry file is located under:
%DB2INSTPROF%\instance_name\PROFILE.ENV

Note: The instance_name is specific to the database partition you are working
with.

e The DB2 Global Level Profile Registry is located under:
%DB2INSTPROF%\PROFILES.REG

¢ The DB2 Instance Node Level Profile Registry is located under:
%DB2INSTPROF%\instance_name\NODES\node_number .ENV

Note: The instance_name and the node_number are specific to the database
partition you are working with.

There is an additional registry file that keeps track of all defined nodes. The
information in this file is roughly equivalent to what is kept in the db2nodes.cfg file.

%DB2INSTPROF%\instance_name\NODES.CFG
e The DB2 System Profile Registry is located under:
%DB2INSTPROF%\PROFILES.REG

Remote registry support is allowed: Only the global level profile registry key,
GLOBAL_PROFILE, must be local to a machine. The system profile registry key,
PROFILES, may reside on a cluster or a remote machine registry. To specify the
remote registry, set the DB2 system variable, DB2ZREMOTEPREG, to the remote
machine name. For example,

db2set DB2REMOTEPREG=\\rmtwkstn
where lIrmtwkstn is the remote workstation name.
Note: Care should be taken in setting this option since all the DB2 instance profiles
and instance listings will be located on the specified remote machine name.

This feature may be used in combination with setting DBINSTPROF to point to a
remote LAN drive on the same machine that contains the registry.

62 Administration Guide

Setting Environment Variables on Windows NT and Windows 95

On the Windows NT and Windows 95 operating systems, all DB2 environment values
should be defined in the profile registries using the db2set command, except for those
that are true environment variables. For Windows NT, you should not have the DB2
environment variables defined in either your machine's user or system environment
variables sections. On Windows 95, you should not have DB2 environment variables
defined in your autoexec.bat file.

To determine the settings of an environment variable, use the echo command. For
example, to check the value of the db2path environment variable, enter:
echo %db2path%

To set system environment variables, do the following:

On Windows 95: Edit the autoexec.bat file, and reboot the system to have the change
take effect.

On Windows NT 4.x: You can set the DB2 environment variables db2instance,
db2path, and db2instprof as follows:

e Select Start, Settings , Control Panel .

¢ Double-click on the System icon.

¢ In the System Control Panel, in the System Environment Variables section, do the
following:

1. If the db2instance variable does not exist:

a. Select any system environment variable.
b. Change the name in the Variable field to db2instance.
c. Change the Value field to the instance name, for example db2inst.

2. If the db2instance variable already exists, append a new value:

a. Select the db2instance environment variable.
b. Change the Value field to the instance name, for example db2inst.

3. Select Set.
4. Select OK.

5. Reboot your system for these changes to take effect.

The profile registries are located as follows:

e The DB2 Instance Level Profile Registry in the Windows NT operating system
registry, with the path:

\HKEY_LOCAL_MACHINE\SOFTWARE\IBM\DB2\PROFILES\instance_name

Note: The instance_name is specific to the database partition you are working
with.

¢ The DB2 Global Level Profile Registry in the Windows NT registry, with the path:
\HKEY_LOCAL_MACHINE\SOFTWARE\IBM\DB2\GLOBAL PROFILE

Chapter 3. Implementing Your Design 63

¢ The DB2 Instance Node Level Profile Registry in the Windows NT registry, with the
path:

... \SOFTWARE\IBM\DB2\PROFILES\instance_name\NODES\node_number

Note: The instance_name and the node_number are specific to the database
partition you are working with.

e The DB2 System Profile Registry in the Windows NT operating system registry,
with the path:

\HKEY_LOCAL_MACHINE\SOFTWARE\IBM\DB2\PROFILES

Remote registry support is allowed: Only the global level profile registry key,
GLOBAL_PROFILE, must be local to a machine. The system profile registry key,
PROFILES, may reside on a cluster or a remote machine registry. To specify the
remote registry, set the DB2 system variable, DB2REMOTEPREG, to the remote
machine name. For example,

db2set DB2REMOTEPREG=\\rmtwkstn
where |lrmtwkstn is the remote workstation name.
Note: Care should be taken in setting this option since all DB2 instance profiles and
instance listings will be located on the specified remote machine name.

This feature may be used in combination with setting DBINSTPROF to point to a
remote LAN drive on the same machine that contains the registry.

Setting Environment Variables on UNIX Systems

The scripts db2profile (for Korn shell) and db2cshrc (for Bourne shell or C shell) are
provided as examples to help you set up the database environment. You can find these
files in insthome/sq11ib, where insthome is the home directory of the instance owner.

These scripts include statements to:

e Update a user's path with the following directories:

— insthome/sq11ib/bin
— insthome/sql1ib/adm
— insthome/sqllib/misc

e Set db2instance to the default local instance_name for execution.
An instance owner or SYSADM user may customize these scripts for all users of an

instance. Alternatively, users can copy and customize a script, then invoke a script
directly or add it to their .profile or .login files.

To change the environment variable for the current session, issue commands similar to
the following:
e For Korn shell:

db2instance=instl
export db2instance

64 Administration Guide

¢ For Bourne shell or C shell:
set db2instance instl
In order for the DB2 profile registry to be administered properly, the following file

ownership rules must be followed on UNIX operating systems. (For information on DB2
Administration Server (DAS), see “DB2 Administration Server (DAS).")

¢ The DB2 Instance Level Profile Registry file is located under:
$INSTHOME/sq11ib/profile.env
The access permissions and ownership of this file should be:
-rw-r--r-- Instance_Owner DAS Instance Group profile.env
The $INSTHOME is the home path of the instance owner.
e The DB2 Global Level Profile Registry is located under:
— /var/db2/v5/default.env for AlX, Solaris, SINIX, and SCO operating systems.
— Jvar/opt/db2/v5/default.env for the HP-UX operating system.
The access permissions and ownership of this file should be:
-rw-r--r-- DAS_Instance_Owner DAS_Instance_Group default.env
¢ The DB2 Instance Node Level Profile Registry is located under:
$INSTHOME/sq11ib/nodes/node_number.env
The access permissions and ownership of the directory and this file should be:

drwxrwxr-x Instance_Owner DAS_Instance_Group nodes

-rw-r--r-- Instance_Owner DAS Instance_Group node_number.env

Note: The Instance_Owner and the DAS_Instance_Owner should both be
members of the DAS_Instance_Group.

The $INSTHOME is the home path of the instance owner.
e The DB2 System Profile Registry is located under:

— /var/db2/v5/profiles.reg for AIX, Solaris, SINIX, and SCO operating
systems.
— /var/opt/db2/v5/profiles.reg for the HP-UX operating system.

The access permissions and ownership of this file should be:

-rw-r--r-- root system profiles.reg

DB2 Administration Server (DAS)
DB2 Administration Server (DAS) is a DB2 instance that enables remote administration
of DB2 servers. The Administration Server instance is created and used in a similar
fashion to any other DB2 instance. You can only have one DAS on a machine.

For more information on setting up DAS communications, see the Quick Beginnings for
your platform.

Chapter 3. Implementing Your Design 65

Creating the DAS
e On the OS/2 or Windows NT platforms:

Enter db2admin create. (If this command returns an error stating that a DAS
already exists, issue a "db2admin drop”, then re-issue "db2admin create".)

When creating the DAS, you can optionally provide a user account name and a
user password. If valid, the user account name and password will identify the
owner of the DAS. After you create the DAS, you can establish or modify its
ownership by providing a user account name and user password with the
db2admin setid command.

e On UNIX platforms:
1. Ensure that you have root authority.

2. At a command prompt, issue the following command from the instance
subdirectory in the path of the DB2 Universal Database instance:

dasicrt ASName
where ASName is the instance name of the Administration Server.

Once you create an Administration Server, you should use it to establish directory
structures and access permissions.

Starting and Stopping the DAS
To start the DAS, enter db2admin start

To stop the DAS, enter db2admin stop

Note: For both cases under UNIX, the person using these commands must have
logged on with the authorization ID of the DAS owner.

Configuring the DAS
To see the current values for those database manager configuration parameters
relevant to the DAS, enter:

db2 get admin cfg
To update individual entries in the database manager configuration file relevant to the
DAS, enter:

db2 update admin cfg using ...

See the Command Reference for more information on which database manager
configuration parameters can be modified.

To reset the configuration parameters to the recommended database manager defaults,
enter:
db2reset admin cfg

Changes to the database manager configuration file become effective only after they
are loaded into memory (that is, when db2start is executed).

66 Administration Guide

To set up the communications protocols for the DAS, see the Quick Beginnings for your
platform.

Cataloging the DB2 Administration Server

The DB2 Administration Server must be cataloged before the user can attach to the
DAS. The only difference from the normal CATALOG NODE command is the addition
of the keyword ADMIN after the keyword CATALOG. For more information on using the
CATALOG command for nodes, including the differences for the various communication
protocols, see the Command Reference.

When cataloging locally, you must know the instance name of the DAS. Use the db2set
command to view the instance name:

db2set db2adminserver

Security Considerations for the DAS
Use the following command to associate a user ID with the DAS:

db2admin setid userid password
Note: Do not use the Windows NT operating system to set the user ID for the DAS.
There is no guarantee that the user will receive all required privileges.

It is recommended that the user ID has SYSADM authority on each of the servers
within the environment so that it can start or stop other instances if required.

Removing the DAS
To remove the DAS:

e On the OS/2 or Windows NT operating systems:
1. Stop the DAS, using db2admin stop.
2. Drop the DAS, using db2admin drop.

¢ On UNIX platforms:
1. Ensure that you have root authority.

2. From the instance subdirectory in the path of the DB2 Universal Database
instance, issue:

dasidrop ASName

where the ASName is the instance name of the Administration Server.

Create a Node Configuration File
If your database is to operate in a partitioned database environment, you must create a
node configuration file called db2nodes.cfg. This file must be located in the sq11ib
subdirectory of the home directory for the instance before you can start the database
manager with parallel capabilities across multiple partitions. The file contains
configuration information for all database partitions in an instance, and is shared by all
database partitions for that instance.

Chapter 3. Implementing Your Design 67

Note: You should not create files or directories under the sq11ib subdirectory other
than those created by DB2 to prevent the loss of data if an instance is deleted.
There are two exceptions. If your system supports stored procedures, put the
stored procedure applications in the function subdirectory under the sq11ib
subdirectory. (For information on stored procedures, see “Stored Procedures” on
page 296.) The other exception is when user-defined distinct functions (UDFs)
have been created. UDF executables are allowed in the same directory.

The file contains one line for each database partition that belongs to an instance. Each
line has the following format:

nodenum hostname [logical-port [netname]]

Tokens are delimited by blanks. The variables are:

nodenum

hostname

logical-port

68 Administration Guide

The node number, which can be from 0 to 999, uniquely defines a node.
Node numbers must be in ascending sequence. You can have gaps in
the sequence.

Once a node number is assigned, it cannot be changed. (Otherwise the
information in the partitioning map, which specifies how data is
partitioned, would be compromised.)

If you drop a node, its node number can be used again for any new
node that you add.

The node number is used to generate a node name in the database
directory. It has the format:

NODEnnnn

The nnnn is the node number, which is left-padded with zeros. This
node number is also used by the CREATE DATABASE and DROP
DATABASE commands.

The hostname of the IP address for inter-partition communications.
(There is an exception when netname is specified. In this situation,
netname is used for most communications, with hostname only being used
for DB2START, DB2STOP, and db2_al1.)

This parameter is optional, and specifies the logical port number for the
node. This number is used with the database manager instance name to
identify a TCP/IP service name entry in the etc/services file.

The combination of the IP address and the logical port is used as a
well-known address, and must be unique among all applications to
support communications connections between nodes.

For each hostname, one logical-port must be either 0 (zero) or blank
(which defaults to 0). The node associated with this logical-port is the
default node on the host to which clients connect. You can override this
with the DB2NODE environment variable in db2profile script, or with
the sqlesetc() API.

If you have multiple nodes on the same host (that is, more than one
nodenum for a host), you should assign the logical-port numbers to the
logical nodes in ascending order, from 0, with no gaps.

netname This parameter is optional, and is used to support a host that has more
than one active TCP/IP interface, each with its own hostname.

The following example shows a possible node configuration file for an RS/6000 SP
system on which SP2EN1 has multiple TCP/IP interfaces, two logical nodes, and uses
SP2SW1 as the DB2 Universal Database interface. It also shows the node numbers
starting at 1 (rather than at 0), and a gap in the nodenum sequence:

nodenum hostname logical-port netname

1 SP2EN1 0 SP2SW1
2 SP2EN1 1 SP2SW1
4 SP2EN2 0

5 SP2EN3

You can update the db2nodes.cfg file using an editor of your choice. You must be
careful, however, to protect the integrity of the information in the file, as data
partitioning requires that the node number not be changed. The node configuration file
is locked when you issue DB2START and unlocked after DB2STOP ends the database
manager. The DB2START command can update the file, if necessary, when the file is
locked. For example, you can issue DB2START with the RESTART option or the
ADDNODE option.

Note: If the DB2STOP command is not successful and does not unlock the node
configuration file, issue DB2STOP FORCE to unlock it.

Create a Database Configuration File
A database configuration file is also created for each database. This file contains
values for various configuration parameters that affect the use of the database, such
as:

¢ Parameters specified and/or used when creating the database (for example,
database code page, collating sequence, DB2 release level)

e Parameters indicating the current state of the database (for example, backup
pending flag, database consistency flag, roll-forward pending flag)

e Parameters defining the amount of system resources that the operation of the
database may use (for example, buffer pool size, database logging, sort memory
size).

These parameters are described in detail in Chapter 19, “Configuring DB2” on
page 459, and throughout this book.

Performance Tip: Many of the configuration parameters come with default values, but
may need to be updated to achieve optimal performance for your database.

On the Windows NT and OS/2 platforms, use the Performance Configuration
SmartGuide, which helps you tune performance and balance memory requirements for

Chapter 3. Implementing Your Design 69

a single database per instance by suggesting which configuration parameters to modify
and providing suggested values for them. To use this SmartGuide:

1. From the Control Center, click with mouse button 2 on the database for which you
want to configure performance.

2. Select Configure Performance from the pop-up menu. The Performance
Configuration SmartGuide opens.

3. Follow the steps in the SmartGuide and answer the questions it asks. (See the
Administration Getting Started for a list of these questions.)

4. Note that if you select to update the parameters, they are not updated until:

¢ For database parameters, the first new connection to the database after all
applications were disconnected.

¢ For database manager parameters, the next time you stop and start the
instance.

In most cases the values recommended by the Performance Configuration SmartGuide
will provide better performance than the default values, because they are based on
information about your workload and you own particular server. However, note that the
values are designed to improve the performance of, though not necessarily optimize,
your database system. They should be thought of as a starting point on which you can
make further adjustments to obtain optimized performance.

For details on how to refine your system by benchmarking, and to configure your
system, see Chapter 18, “Benchmark Testing” on page 447 and Chapter 19,
“Configuring DB2” on page 459.

For multiple partitions: ~ When you have a database that is partitioned across more
than one partition, the configuration file should be the same on all database partitions.
Consistency is required since the SQL compiler compiles distributed SQL statements
based on information in the local node configuration file and creates an access plan to
satisfy the needs of the SQL statement. Maintaining different configuration files on
database partitions could lead to different access plans, depending on which database
partition the statement is prepared. Use db2_all to create the same configuration file on
all database partitions.

Enable FCM Communications
In a partitioned database environment, most communication between database
partitions is handled by the Fast Communications Manager (FCM). To enable the FCM
at a database partition and allow communication with other database partitions, you
must create a service directory in the partition's /etc/services file as shown below.
The FCM uses the specified port to communicate. If you have defined multiple
partitions on the same host, you must define a range of ports as shown below. The
syntax of a service entry is as follows:

DB2_instance port/tcp #comment

70 Administration Guide

DB2_instance
The value for instance is the name of the database manager instance.
All characters in the name must be lowercase. Assuming an instance
name of db2puser, you would specify DB2_db2puser

porticp The TCP/IP port that you want to reserve for the database partition.

#comment Any comment that you want to associate with the entry. The comment
must be preceded by a pound sign (#).

If the /etc/services file is shared, you must ensure that the number of ports allocated
in the file is either greater than or equal to the largest number of multiple database
partitions in the instance. When allocating ports, also ensure that you account for any
processor that can be used as a backup.

If the /etc/services file is not shared, the same considerations apply, with one
additional consideration: you must ensure that the entries defined for the DB2 instance
are the same in all /etc/services files (though other entries that do not apply to your
partitioned database do not have to be the same).

If you have multiple database partitions on the same host in an instance, you must
define more than one port for the FCM to use. To do this, include two lines in the
etc/services file to indicate the range of ports you are allocating. The first line
specifies the first port, while the second line indicates the end of the block of ports. In
the following example, five ports are allocated for the instance sales. This means no
processor in the instance has more than five database partitions.

DB2_sales 9000/tcp
DB2_sales END 9004/tcp

Note: You must specify END in uppercase only. Also you must ensure that you include
both underscore () characters.

Creating a Database

Creating a database sets up all the system catalog tables that are needed by the
database and allocates the database recovery log. The database configuration file is
created, and the default values are set. The database manager will also bind the
database utilities to the database.

The following database privileges are automatically granted to PUBLIC: CREATETAB,
BINDADD, CONNECT, and IMPLICIT_SCHEMA. SELECT privilege on the system
catalog views is also granted to PUBLIC.

The following command line processor command creates a database called personl, in
the default location, with the associated comment "Personnel DB for BSchiefer Co".

create database personl
with "Personnel DB for BSchiefer Co"

The tasks carried out by the database manager when you create a database are
discussed in the following sections:

Chapter 3. Implementing Your Design 71

e “Definition of Initial Nodegroups” on page 72

e “Definition of Initial Table Spaces”

e “Definition of System Catalog Tables” on page 73
e “Local Database Directory” on page 74

e “System Database Directory” on page 74

e “Definition of Database Recovery Log” on page 75
¢ “Binding Utilities to the Database” on page 75

e “Creating Nodegroups” on page 77

For additional information related to the physical implementation of your database, see
Chapter 2, “Designing Your Physical Database” on page 25.

If you wish to create a database in a different, possibly remote, database manager
instance, see “Using Multiple Instances of the Database Manager” on page 56. This
topic also provides an introduction to the command you need to use if you want to
perform any instance-level administration against an instance other than your default
instance, including remote instances.

Note: See the Command Reference for information about the default database
location and about specifying a different location with the CREATE DATABASE
command.

Definition of Initial Nodegroups
When a database is initially created, database partitions are created for all partitions
specified in the db2nodes.cfg file. Other partitions can be added or removed with the
ADD NODE and DROP NODE commands.

Three nodegroups are defined:

e IBMCATGROUP for the SYSCATSPACE table space, holding system catalog
tables

e IBMTEMPGROUP for the TEMPSPACEL table space, holding temporary tables
created during database processing

e |IBMDEFAULTGROUP for the USERSPACEL1 table space, by default holding user
tables and indexes.

Definition of Initial Table Spaces
When a database is initially created, three table spaces are defined:

e SYSCATSPACE for the system catalog tables (see “Definition of System Catalog
Tables” on page 73)

e TEMPSPACEL for temporary tables created during database processing.

e USERSPACEL1 for user-defined tables and indexes

If you do not specify any table space parameters with the CREATE DATABASE
command, the database manager will create these table spaces using system managed
storage (SMS) directory containers. These directory containers will be created in the
subdirectory created for the database (see “Database Physical Directories” on

page 25). The extent size for these table spaces will be set to the default.

72 Administration Guide

If you do not want to use the default definition for these table spaces, you may specify
their characteristics on the CREATE DATABASE command. For example, the following
command could be used to create your database on OS/2:

CREATE DATABASE PERSONL

CATALOG TABLESPACE
MANAGED BY SYSTEM USING ('d:\pcatalog','e:\pcatalog')
EXTENTSIZE 16 PREFETCHSIZE 32

USER TABLESPACE
MANAGED BY DATABASE USING (FILE'd:\db2data\personl' 5000,

FILE'd:\db2data\personl' 5000)

EXTENTSIZE 32 PREFETCHSIZE 64

TEMPORARY TABLESPACE
MANAGED BY SYSTEM USING ('f:\db2temp\personl')

WITH "Personnel DB for BSchiefer Co"

In this example, the definition for each of the initial table spaces is explicitly provided.
You only need to specify the table space definitions for those table spaces for which
you do not want to use the default definition.

The coding of the MANAGED BY phrase on the CREATE DATABASE command
follows the same format as the MANAGED BY phrase on the CREATE TABLESPACE
command. For additional examples, see “Creating a Table Space” on page 77.

Before creating your database, see “Designing and Choosing Table Spaces” on
page 38.

Definition of System Catalog Tables
A set of system catalog tables is created and maintained for each database. These
tables contain information about the definitions of the database objects (for example,
tables, views, indexes, and packages), and security information about the type of
access users have to these objects. These tables are stored in the SYSCATSPACE
table space,

These tables are updated during the operation of a database; for example, when a
table is created. You cannot explicitly create or drop these tables, but you can query
and view their content. When the database is created, in addition to the system catalog
table objects, the following database objects are defined in the system catalog:

¢ A set of user-defined functions (UDFs) is created in the SYSFUN schema. For
more information about these system-created functions, see the SQL Reference
manual.

¢ A set of read-only views for the system catalog tables is created in the SYSCAT
schema. See Appendix |, “Catalog Views” on page 697 for information about these
views.

¢ A set of updatable catalog views is created in the SYSSTAT schema. These
updatable views allow you to update certain statistical information to investigate the
performance of a hypothetical database, or to update statistics without using the
RUNSTATS utility. See “Updatable Catalog Views” on page 698.

Chapter 3. Implementing Your Design 73

After your database has been created, you may wish to limit the access to the system
catalog views, as described in “Securing the System Catalog Views” on page 138.

Definition of Database Directories
Three directories are used when establishing or setting up a new database.

¢ Local Database Directory
¢ System Database Directory
¢ Node Directory

Local Database Directory

A local database directory file exists in each path (or drive on other platforms) in which
a database has been defined. This directory contains one entry for each database
accessible from that location. Each entry contains:

¢ The database name provided with the CREATE DATABASE command

e The database alias name (which is the same as the database name, if an alias
name is not specified)

e A comment describing the database, as provided with the CREATE DATABASE
command

e The name of the root directory for the database

e Other system information.

To see the contents of this file for a particular database, issue the following command,
where location specifies the location of the database:

LIST DATABASE DIRECTORY ON location

System Database Directory

A system database directory file exists for each instance of the database manager, and
contains one entry for each database that has been cataloged for this instance.
Databases are implicitly cataloged when the CREATE DATABASE command is issued
and can also be explicitly cataloged with the CATALOG DATABASE command. For
information about cataloging databases, see “Cataloging a Database” on page 76.

For each database created, an entry is added to the directory containing the following
information:

¢ The database name provided with the CREATE DATABASE command

¢ The database alias name (which is the same as the database name)

¢ The database comment provided with the CREATE DATABASE command

¢ The location of the local database directory

¢ An indicator that the database is indirect, which means that it resides on the same
machine as the system database directory file

¢ Other system information.

To see the contents of this file, issue the LIST DATABASE DIRECTORY command
without specifying the location of the database directory file.

74 Administration Guide

In a partitioned database environment, you must ensure that all database partitions
always access the same system database directory file, sqldbdir, in the sqldbdir
subdirectory of the home directory for the instance. Unpredictable errors can occur if
either the system database directory or the system intention file sqldbins in the same
sqldbdir subdirectory are symbolic links to another file that is on a shared file system.
These files are described in “Enabling Data Partitioning” on page 58.

Node Directory

The database manager creates the node directory when the first database partition is
cataloged. To catalog a database partition, use the CATALOG NODE command. To list
the contents of the local node directory, use the LIST NODE DIRECTORY command.
The node directory is created and maintained on each database client. The directory
contains an entry for each remote workstation having one or more databases that the
client can access. The DB2 client uses the communication end point information in the
node directory whenever a database connection or instance attachment is requested.

The entries in the directory also contain information on the type of communication
protocol to be used to communicate from the client to the remote database partition.
Cataloging a local database partition creates an alias for an instance that resides on
the same machine. A local node should be cataloged when there is more than one
instance on the same workstation to be accessed from the user's client.

Definition of Database Recovery Log
A database recovery log keeps a record of all changes made to a database, including
the addition of new tables or updates to existing ones. This log is made up of a
number of log extents, each contained in a separate file called a log file.

The database recovery log can be used to ensure that a failure (for example, a system
power outage or application error) does not leave the database in an inconsistent state.
In case of a failure, the changes already made but not committed are rolled back, and
all committed transactions, which may not have been physically written to disk, are
redone. These actions ensure the integrity of the database.

For more information, see Chapter 6, “ Recovering a Database” on page 179.

Binding Utilities to the Database
When a database is created, the database manager attempts to bind the utilities in
db2ubind.1st to the database. This file is stored in the bnd subdirectory of your sq11ib
directory.

Binding a utility creates a package, which is an object that includes all the information

needed to process specific SQL statements from a single source file.

Note: If you wish to use these utilities from a client, you must bind them explicitly. See
the Quick Beginnings manual appropriate to your platform for information.

If for some reason you need to bind or rebind the ultilities to a database, issue the
following commands using the command line processor:

Chapter 3. Implementing Your Design 75

connect to sample
bind @db2ubind.Tst

Note: You must be in the directory where these files reside to create the packages in
the sample database. The bind files are found in the BND subdirectory of the
SQLLIB directory. In this example, sample is the name of the database.

Cataloging a Database
When you create a new database, it is automatically cataloged in the system database
directory file. You may also use the CATALOG DATABASE command to explicitly
catalog a database in the system database directory file. The CATALOG DATABASE
command allows you to catalog a database with a different alias name, or to catalog a
database entry that was previously deleted using the UNCATALOG DATABASE
command.

The following command line processor command catalogs the personl database as
humanres:

catalog database personl as humanres
with "Human Resources Database"

Here, the system database directory entry will have humanres as the database alias,
which is different from the database name (personl).

You can also catalog a database on an instance other than the default. In the following
example, connections to database B are to INSTANCE_C.

catalog database b as b at node instance_c

Note: The CATALOG DATABASE command is also used on client nodes to catalog
databases that reside on database server machines. For more information, see
the Quick Beginnings manual appropriate to your platform.

For information on the Distributed Computing Environment (DCE) cell directory, see
“DCE Directory Services” on page 77 and Appendix F, “Using Distributed Computing
Environment (DCE) Directory Services” on page 647.

Note: To improve performance, you may cache directory files, including the database
directory, in memory. (See “Directory Cache Support (dir_cache)” on page 497
for information about enabling directory caching.) When directory caching is
enabled, a change made to a directory (for example, using a CATALOG
DATABASE or UNCATALOG DATABASE command) by another application
may not become effective until your application is restarted. To refresh the
directory cache used by a command line processor session, issue a db2
terminate command.

In addition to the application level cache, a database manager level cache is also used
for internal, database manager look-up. To refresh this “shared” cache, issue the
db2stop and db2start commands.

For more information about directory caching, see “Directory Cache Support
(dir_cache)” on page 497.

76 Administration Guide

DCE Directory Services

DCE is an Open Systems Foundation** (OSF**) architecture that provides tools and
services to support the creation, use, and maintenance of applications in a distributed
heterogeneous computing environment. It is a layer between the operating system, the
network, and a distributed application that allows client applications to access remote
servers.

With local directories, the physical location of the target database is individually stored
on each client workstation in the database directory and node directory. The database
administrator can therefore spend a large amount of time updating and changing these
directories. The DCE directory services provide a central directory alternative to the
local directories. It allows information about a database or a database manager
instance to be recorded once in a central location, and any changes or updates to be
made at that one location.

DCE is not a prerequisite for running DB2, but if you are operating in a DCE
environment, see Appendix F, “Using Distributed Computing Environment (DCE)
Directory Services” on page 647 for more information.

Creating Nodegroups
You create a nodegroup with the CREATE NODEGROUP statement. This statement
specifies the set of nodes on which the table space containers and table data are to
reside. This statement also:

¢ Creates a partitioning map for the nodegroup. For details about the partitioning
map, see “Partitioning Maps” on page 34.

¢ Generates a partitioning map ID.

¢ Inserts records into the following catalog tables:

— SYSCAT.NODEGROUPS
— SYSCAT.PARTITIONMAPS
— SYSCAT.NODEGROUPDEF

Assume that you want to load some tables on a subset of the database partitions in
your database. You would use the following command to create a nodegroup of two
nodes (1 and 2) in a database consisting of at least 3 (0 to 2) nodes:

CREATE NODEGROUP mixngl2 ON NODES (1,2)
For more information about creating nodegroups, see the SQL Reference manual.

The CREATE DATABASE command or sqlecrea() API also create the default system
nodegroups, IBMDEFAULTGROUP, IBMCATGROUP, and IBMTEMPGROUP. (See
“Designing and Choosing Table Spaces” on page 38 for information.)

Creating a Table Space
Creating a table space within a database assigns containers to the table space and
records its definitions and attributes in the database system catalog. You can then
create tables within this table space.

Chapter 3. Implementing Your Design 77

The syntax of the CREATE TABLESPACE statement is discussed in detail in the SQL
Reference manual. For information on SMS and DMS table spaces, see “Designing and
Choosing Table Spaces” on page 38.

The following SQL statement creates an SMS table space on OS/2 or Windows NT
using three directories on three separate drives:

CREATE TABLESPACE RESOURCE
MANAGED BY SYSTEM
USING ('d:\acc_tbsp', 'e:\acc_tbsp', 'f:\acc_tbsp')

The following SQL statement creates a DMS table space on OS/2 using two file
containers each with 5,000 pages:

CREATE TABLESPACE RESOURCE
MANAGED BY DATABASE
USING (FILE'd:\db2data\acc_tbhsp' 5000,
FILE'e:\db2data\acc_tbsp' 5000)

In the above two examples, explicit names have been provided for the containers. You
may also specify relative container names, in which case, the container will be created
in the subdirectory created for the database (see “Database Physical Directories” on
page 25).

In addition, if part of the path name specified does not exist, the database manager will
create it. If a subdirectory is created by the database manager, it may also be deleted
by the database manager when the table space is dropped.

The assumption in the above examples is that the table spaces are not associated with
a specific nodegroup. The default nodegroup IBMDEFAULTGROUP is used when the
following parameter is not specified in the statement:

IN nodegroup

The following SQL statement creates a DMS table space on a UNIX-based system
using three logical volumes of 10000 pages each, and specifies their 1/0
characteristics:

CREATE TABLESPACE RESOURCE
MANAGED BY DATABASE
USING (DEVICE '/dev/rdblv6' 10000,
DEVICE '/dev/rdblv7' 10000,
DEVICE '/dev/rdb1v8' 10000)
OVERHEAD 24.1
TRANSFERRATE 0.9

The UNIX devices mentioned in this SQL statement must already exist and be able to
be written to by the instance owner and the SYSADM group.

The following example creates a DMS table space on a nodegroup called
ODDNODEGROUP in a UNIX partitioned database. ODDNODEGROUP must be
previously created with a CREATE NODEGROUP statement. In this case, the
ODDNODEGROUP nodegroup is assumed to be made up of database partitions

78 Administration Guide

numbered 1, 3, and 5. On all database partitions, use the device /dev/hdisk0 for
10000 4K pages. In addition, declare a device for each database partition of 40000 4K
pages.
CREATE TABLESPACE PLANS
MANAGED BY DATABASE
USING (DEVICE '/dev/HDISKO' 10000, DEVICE '/dev/nlhd01' 40000) ON NODE 1
(DEVICE '/dev/HDISKO' 10000, DEVICE '/dev/n3hd03' 40000) ON NODE 3
(DEVICE '/dev/HDISK®' 10000, DEVICE '/dev/n5hd05' 40000) ON NODE 5

UNIX devices are classified into two categories: character serial devices and
block-structured devices. For all file-system devices, it is normal to have a
corresponding character serial device (or raw device) for each block device (or cooked
device). The block-structured devices are typically designated by names similar to “hd0”
or “fd0.” The character serial devices are typically designated by names similar to
“rhd0,” “rfd0,” or “rmt0.” These character serial devices have faster access than block
devices. The character serial device names should be used on the CREATE
TABLESPACE command and not block device names.

The overhead and transfer rate help to determine the best access path to use when the
SQL statement is compiled. For information on the OVERHEAD and TRANSFERRATE
parameters, see Part 3, “Tuning Application Performance” on page 263.

DB2 can greatly improve the performance of sequential /0 using the sequential
prefetch facility, which uses parallel /0. See “Understanding Sequential Prefetching” on
page 406 for details on this facility.

The ALTER TABLESPACE SQL statement can be used to add a container to a DMS
table space and modify the PREFETCHSIZE, OVERHEAD, and TRANSFERRATE
settings for a table space. The transaction issuing the table space statement should be
committed as soon as possible, to prevent system catalog contention.

Note: The PREFETCHSIZE should be a multiple of the EXTENTSIZE. For example if
the EXTENTSIZE is 10, the PREFETCHSIZE should be 20 or 30. For more
information, see “Understanding Sequential Prefetching” on page 406.

Creating Table Spaces in Nodegroups

By placing a table space in a multiple database partition nodegroup, all of the tables
within the table space are divided or partitioned across each database patrtition in the
nodegroup. The table space is created into a nodegroup. Once in a nodegroup, the
table space must remain there; It cannot be changed to another nodegroup. The
CREATE TABLESPACE statement is used to associate a table space with a
nodegroup.

Creating a Schema
While organizing your data into tables, it may also be beneficial to group tables (and
other related objects) together. This is done by defining a schema through the use of
the CREATE SCHEMA statement. Information about the schema is kept in the system
catalog tables of the database to which you are connected. As other objects are
created, they can be placed within this schema.

Chapter 3. Implementing Your Design 79

The syntax of the CREATE SCHEMA statement is described in detail in the SQL
Reference manual. The new schema name cannot already exist in the system catalogs
and it cannot begin with "SYS".

If a user has SYSADM or DBADM authority, then the user can create a schema with
any valid name. When a database is created, IMPLICIT_SCHEMA authority is granted
to PUBLIC (that is, to all users).

The definer of any objects created as part of the CREATE SCHEMA statement is the
schema owner. This owner can GRANT and REVOKE schema privileges to other
users.

The following is an example of a CREATE SCHEMA statement that creates a schema
for an individual user with the authorization ID "joe":

CREATE SCHEMA joeschma AUTHORIZATION joe

This statement must be issued by a user with DBADM authority.

Schemas may also be implicitly created when a user has IMPLICIT_SCHEMA authority.
With this authority, users implicitly create a schema whenever they create an object
with a schema name that does not already exist.

If users do not have IMPLICIT_SCHEMA authority, they can create a schema using
their own authorization ID.

Creating a Table
After you determine how to organize your data into tables, the next step is to create
those tables, by using the CREATE TABLE statement. The table descriptions are
stored in the system catalog of the database to which you are connected.

The syntax of the CREATE TABLE statement is described in detail in the SQL
Reference. For information about naming tables, columns, and other database objects,
see Appendix D, “Naming Rules” on page 629.

The CREATE TABLE statement gives the table a name, which is a qualified or
unqualified identifier, and a definition for each of its columns. You can store each table
in a separate table space, so that a table space will contain only one table. If a table
will be dropped and created often, it is more efficient to store it in a separate table
space and then drop the table space instead of the table. You can also store many
tables within a single table space. In a partitioned database environment, the table
space chosen also defines the nodegroup and the database partitions on which table
data is stored.

The table does not contain any data at first. To add rows of data to it, use one of the
following:

e The INSERT statement, described in the SQL Reference
¢ The LOAD or IMPORT commands, described in the Command Reference

80 Administration Guide

It is possible to add data into the table without logging the change. This is done using
the NOT LOGGED INITIALLY parameter on the CREATE TABLE statement. Any
changes made to the table by an INSERT, DELETE, UPDATE, CREATE INDEX,
DROP INDEX, or ALTER TABLE operation in the same unit of work in which the table
is created are not logged. Logging begins in subsequent units of work.

A table consists of one or more column definitions. A maximum of 500 columns can be
defined for a table. Columns represent the attributes of an entity. The values in any
column are all the same type of information. See the SQL Reference for more
information.

A column definition includes a column name, data type, and any necessary null
attribute, or default value (optionally chosen by the user).

The column name describes the information contained in the column and should be
something that will be easily recognizable. It must be unique within the table; however,
the same name can be used in other tables. See “Object Names” on page 631 for
information about naming rules.

The data type of a column indicates the length of the values in it and the kind of data
that is valid for it. The database manager uses character string, numeric, date, time and
large object data types. Graphic string data types are only available for database
environments using multi-byte character sets. In addition, columns can be defined with
user-defined distinct types, which are discussed in “Creating a User-Defined Type
(UDT)” on page 92.

The default attribute specification indicates what value is to be used if no value is
provided. The default value can be specified, or a system-defined default value used.
Default values may be specified for columns with, and without, the null attribute
specification.

The null attribute specification indicates whether or not a column can contain null
values.

The following is an example of a CREATE TABLE statement that creates the
EMPLOYEE table in the RESOURCE table space. This table is defined in the sample
database:

CREATE TABLE EMPLOYEE
(EMPNO CHAR(6) NOT NULL PRIMARY KEY,
FIRSTNME VARCHAR(12) NOT NULL,
MIDINIT CHAR(1) NOT NULL WITH DEFAULT,
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3),
PHONENO CHAR(4),
PHOTO BLOB(10M) NOT NULL)
IN RESOURCE

The following sections build on the previous example to cover other options you should
consider:

Chapter 3. Implementing Your Design 81

e “Large Object (LOB) Column Considerations” on page 82
¢ “Defining a Unique Constraint” on page 83

¢ “Defining Referential Constraints” on page 84

¢ “Defining a Table Check Constraint” on page 87

e “Creating a Table in Multiple Table Spaces” on page 87
e “Creating a Table in a Partitioned Database” on page 88

Large Object (LOB) Column Considerations
Before creating a table that contains large object columns, you need to make the
following decisions:

1. Do you want to log changes to LOB columns?

If you do not want to log these changes, you must turn logging off by specifying the
NOT LOGGED clause when you create the table. For example:

CREATE TABLE EMPLOYEE
(EMPNO CHAR(6) NOT NULL PRIMARY KEY,
FIRSTNME VARCHAR(12) NOT NULL,
MIDINIT CHAR(1) NOT NULL WITH DEFAULT,
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3),
PHONENO CHAR(4),
PHOTO BLOB(16M) NOT NULL NOT LOGGED)
IN RESOURCE

If the LOB column is larger than 1 GB, logging must be turned off. (As a rule of
thumb, you may not want to log LOB columns larger than 10 MB.) As with other
options specified on a column definition, the only way to change the logging option
is to re-create the table.

Even if you choose not to log changes, LOB columns are shadowed to allow
changes to be rolled back, whether the roll back is the result of a system
generated error, or an application request. Shadowing is a recovery technique
where current storage page contents are never overwritten. That is, old, unmodified
pages are kept as “shadow” copies. These copies are discarded when they are no
longer needed to support a transaction rollback.

Note: When recovering a database using the RESTORE and ROLLFORWARD
commands, LOB data that was “NOT LOGGED” and was written since the last
backup will be replaced by binary zeros

2. Do you want to minimize the space required for the LOB column?

You can make the LOB column as small as possible using the COMPACT clause
on the CREATE TABLE statement. For example:

82 Administration Guide

CREATE TABLE EMPLOYEE

(EMPNO CHAR(6) NOT NULL PRIMARY KEY,

FIRSTNME VARCHAR(12) NOT NULL,

MIDINIT CHAR(1) NOT NULL WITH DEFAULT,

LASTNAME VARCHAR(15) NOT NULL,

WORKDEPT CHAR(3),

PHONENO CHAR(4),

PHOTO BLOB(16M) NOT NULL NOT LOGGED COMPACT)
IN RESOURCE

There is a performance cost when appending to a table with a compact LOB
column, particularly if the size of LOB values are increased (because of storage
adjustments that must be made).

On platforms such as OS/2 where sparse file allocation is not supported and where
LOBs are placed in SMS table spaces, consider using the COMPACT clause.
Sparse file allocation has to do with how physical disk space is used by an
operating system. An operating system that supports sparse file allocation does not
use as much physical disk space to store LOBs as compared to an operating
system not supporting sparse file allocation. The COMPACT option allows for even
greater physical disk space “savings” regardless of the support of sparse file
allocation. Because you can get some physical disk space savings when using
COMPACT, you should consider using COMPACT if your operating system does
not support sparse file allocation.

Note: DB2 system catalogs for Version 5 use LOB columns and may take up
more space than in previous versions.

Defining Constraints
This section discusses how to define constraints:

¢ “Defining a Unique Constraint”
¢ “Defining Referential Constraints” on page 84
e “Defining a Table Check Constraint” on page 87

For more information on constraints, see “Planning for Constraint Enforcement” on
page 16 and the SQL Reference.

Defining a Unique Constraint: Unique constraints ensure that every value in the
specified key is unique. A table can have any number of unique constraints, with at
most one unique constraint defined as a primary key.

You define a unique constraint with the UNIQUE clause in the CREATE TABLE or
ALTER TABLE statements. The unique key can consist of more than one column.
More than one unique constraint is allowed on a table.

Once established, the unique constraint is enforced automatically by the database

manager when an INSERT or UPDATE statement modifies the data in the table. The
unique constraint is enforced through a unique index.

Chapter 3. Implementing Your Design 83

When a unique constraint is defined in an ALTER TABLE statement and an index
exists on the same set of columns of that unique key, that index becomes the unique
index and is used by the constraint.

You can take any one unique constraint and use it as the primary key. The primary key
can be used as the parent key in a referential constraint (along with other unique
constraints). There can be only one primary key per table. You define a primary key
with the PRIMARY KEY clause in the CREATE TABLE or ALTER TABLE statement.
The primary key can consist of more than one column.

A primary index forces the value of the primary key to be unique. When a table is
created with a primary key, the database manager creates a primary index on that key.

Some performance tips for indexes used as unique constraints include:

e If you are using the IMPORT command, or the INSERT mode with the LOAD
command, for an initial large load of data, create the unique key after the data has
been imported or loaded. This avoids the overhead of maintaining the index while
the table is being loaded. It also results in the index using the least amount of
storage.

e If you are using the LOAD utility in REPLACE mode, create the unique key before
loading the data. In this case, creation of the index during the load is more efficient
than using the CREATE INDEX statement after the load.

¢ When loading a small amount of data to an existing table, you can improve
performance if you use the IMPORT utility instead of LOAD's INSERT mode.

Defining Referential Constraints: Referential integrity is imposed by adding
referential constraints to table and column definitions. Referential constraints are
established with the the FOREIGN KEY Clause, and the REFERENCES Clause in the
CREATE TABLE or ALTER TABLE statements.

The identification of foreign keys enforces constraints on the values within the rows of a
table or between the rows of two tables. The database manager checks the constraints
specified in a table definition and maintains the relationships accordingly. The goal is to
maintain integrity whenever one database object references another.

For example, primary and foreign keys each have a department number column. For
the EMPLOYEE table, the column name is WORKDEPT, and for the DEPARTMENT
table, the name is DEPTNO. The relationship between these two tables is defined by
the following constraints:

e There is only one department number for each employee in the EMPLOYEE table,
and that number exists in the DEPARTMENT table.

e Each row in the EMPLOYEE table is related to no more than one row in the
DEPARTMENT table. There is a unique relationship between the tables.

e Each row in the EMPLOYEE table that has a non-null value for WORKDEPT is
related to a row in the DEPTNO column of the DEPARTMENT table.

e The DEPARTMENT table is the parent table, and the EMPLOYEE table is the
dependent table.

84 Administration Guide

The SQL statement defining the parent table, DEPARTMENT, is:

CREATE TABLE DEPARTMENT
(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(29) NOT NULL,
MGRNO CHAR(6) ,
ADMRDEPT CHAR(3) NOT NULL,
LOCATION CHAR(16),

PRIMARY KEY (DEPTNO))
IN RESOURCE

The SQL statement defining the dependent table, EMPLOYEE, is:

CREATE TABLE EMPLOYEE
(EMPNO CHAR(6) NOT NULL PRIMARY KEY,
FIRSTNME VARCHAR(12) NOT NULL,
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3),
PHONENO CHAR(4),
PHOTO BLOB(10m) NOT NULL,
FOREIGN KEY DEPT (WORKDEPT)
REFERENCES DEPARTMENT ON DELETE NO ACTION)
IN RESOURCE

By specifying the DEPTNO column as the primary key of the DEPARTMENT table and
WORKDEPT as the foreign key of the EMPLOYEE table, you are defining a referential
constraint on the WORKDEPT values. This constraint enforces referential integrity
between the values of the two tables. In this case, any employees that are added to the
EMPLOYEE table must have a department number that can be found in the
DEPARTMENT table.

The delete rule for the referential constraint in the employee table is NO ACTION,
which means that a department cannot be deleted from the DEPARTMENT table if
there are any employees in that department.

Although the previous examples use the CREATE TABLE statement to add a referential
constraint, the ALTER TABLE statement can also be used. See “Altering a Table” on
page 101.

Another example: The same table definitions are used as those in the previous
example. Also, the DEPARTMENT table is created before the EMPLOYEE table. Each
department has a manager, and that manager is listed in the EMPLOYEE table.
MGRNO of the DEPARTMENT table is actually a foreign key of the EMPLOYEE table.
Because of this referential cycle, this constraint poses a slight problem. You could add
a foreign key later (see “Adding Primary and Foreign Keys” on page 102). You could
also use the CREATE SCHEMA statement to create both the EMPLOYEE and
DEPARTMENT tables at the same time (see the example in the SQL Reference).

FOREIGN KEY Clause: A foreign key references a primary key or a unique key in the

same or another table. A foreign key assignment indicates that referential integrity is to
be maintained according to the specified referential constraints. You define a foreign

Chapter 3. Implementing Your Design 85

key with the FOREIGN KEY clause in the CREATE TABLE or ALTER TABLE
statement.

The number of columns in the foreign key must be equal to the number of columns in
the corresponding primary or unique constraint (called a parent key) of the parent table.
In addition, corresponding parts of the key column definitions must have the same data
types and lengths. The foreign key can be assigned a constraint name. If you do not
assign a name, one is automatically assigned. For ease of use, it is recommended that
you assign a constraint name and do not use the system-generated name.

The value of a composite foreign key matches the value of a parent key if the value of
each column of the foreign key is equal to the value of the corresponding column of the
parent key. A foreign key containing null values cannot match the values of a parent
key, since a parent key by definition can have no null values. However, a null foreign
key value is always valid, regardless of the value of any of its non-null parts.

The following rules apply to foreign key definitions:

e A table can have many foreign keys
e A foreign key is nullable if any part is nullable
e A foreign key value is null if any part is null.

REFERENCES Clause: The REFERENCES clause identifies the parent table in a
relationship, and defines the necessary constraints. You can include it in a column
definition or as a separate clause accompanying the FOREIGN KEY clause, in either
the CREATE TABLE or ALTER TABLE statements.

If you specify the REFERENCES clause as a column constraint, an implicit column list
is composed of the column name or names that are listed. Remember that multiple
columns can have separate REFERENCES clauses, and that a single column can have
more than one.

Included in the REFERENCES clause is the delete rule. In our example, the ON
DELETE NO ACTION rule is used, which states that no department can be deleted if
there are employees assigned to it. Other delete rules include ON DELETE CASCADE,
ON DELETE SET NULL, and ON DELETE RESTRICT. See “DELETE Rules” on

page 20.

Implications for Utility Operations: The LOAD utility will turn off constraint checking for
self-referencing and dependent tables, placing these tables into check pending state.
After the LOAD utility has completed, you will need to turn on the constraint checking
for all tables for which it was turned off. For example, if the DEPARTMENT and
EMPLOYEE tables are the only tables that have been placed in check pending state,
you can execute the following command:

SET CONSTRAINTS FOR DEPARTMENT, EMPLOYEE IMMEDIATE CHECKED

The IMPORT uitility is affected by referential constraints in the following ways:

e The REPLACE and REPLACE CREATE functions are not allowed if the object
table has any dependents other than itself.

86 Administration Guide

To use these functions, first drop all foreign keys in which the table is a parent.
When the import is complete, re-create the foreign keys with the ALTER TABLE
statement.

e The success of importing into a table with self-referencing constraints depends on
the order in which the rows are imported.

Defining a Table Check Constraint: A table check constraint specifies a search
condition that is enforced for each row of the table on which the table check constraint
is defined. You create a table check constraint on a table by associating a
check-constraint definition with the table when the table is created or altered. This
constraint is automatically activated when an INSERT or UPDATE statement modifies
the data in the table. A table check constraint has no effect on a DELETE or SELECT
statement.

A constraint name cannot be the same as any other constraint specified within the
same CREATE TABLE statement. If you do not specify a constraint name, the system
generates an 18-character unique identifier for the constraint.

A table check constraint is used to enforce data integrity rules not covered by key
uniqueness or a referential integrity constraint. In some cases, a table check constraint
can be used to implement domain checking. The following constraint issued on the
CREATE TABLE statement ensures that the start date for every activity is not after the
end date for the same activity:

CREATE TABLE EMP_ACT

(EMPNO CHAR(6) NOT NULL,
PROJNO CHAR(6) NOT NULL,
ACTNO SMALLINT NOT NULL,

EMPTIME DECIMAL(5,2),

EMSTDATE DATE,

EMENDATE DATE,

CONSTRAINT ACTDATES CHECK(EMSTDATE <= EMENDATE))
IN RESOURCE

Although the previous example uses the CREATE TABLE statement to add a table
check constraint, the ALTER TABLE statement can also be used. See “Altering a
Table” on page 101.

Creating a Table in Multiple Table Spaces

Data, index, and long column data can be stored in the same table space as the table
or in a different table space only for DMS. The following example shows how the
EMP_PHOTO table could be created to store the different parts of the table in different
table spaces:

CREATE TABLE EMP_PHOTO

(EMPNO CHAR(6) NOT NULL,
PHOTO_FORMAT VARCHAR(10) NOT NULL,
PICTURE BLOB(100K))

IN RESOURCE
INDEX IN RESOURCE_INDEXES
LONG IN RESOURCE_PHOTO

Chapter 3. Implementing Your Design 87

This example will cause the EMP_PHOTO data to be stored as follows:

¢ Indexes created for the EMP_PHOTO table will be stored in the
RESOURCES_INDEXES table space

¢ Data for the PICTURE column will be stored in the RESOURCE_PHOTO table
space

¢ Data for the EMPNO and PHOTO_FORMAT columns will be stored in the
RESOURCE table space.

See “Table Space Design Considerations” on page 46 for additional considerations on
the use of multiple DMS table spaces for a single table.

See the SQL Reference for more information.

Creating a Table in a Partitioned Database
Before creating a table that will be physically divided or partitioned, you need to
consider the following:

e Table spaces can span more than one database partition. The number of partitions
they scan depends on the number of partitions in a nodegroup.

e Tables can be collocated by being placed in the same table space or by being
placed in another table space that, together with the first table space, is associated
with the same nodegroup. For more information, see “Table Collocation” on
page 37.

One additional option exists when creating a table in a partitioned database
environment: the partitioning key. A partitioning key is a key that is part of the definition
of a table. It determines the partition on which each row of data is stored.

It is important to select an appropriate partitioning key because it cannot be changed
later. Furthermore, any unique indexes (and therefore unique or primary keys) must be
defined as a superset of the partitioning key. That is, if a partitioning key is defined,
unique keys and primary keys must include all of the same columns as the partitioning
key (they may have more columns).

If you do not specify the partitioning key explicitly, the following defaults are used.
Ensure that the default partitioning key is appropriate.

e If a primary key is specified in the CREATE TABLE statement, the first column of
the primary key is used as the partitioning key.

e If there is no primary key, the first column that is not a long field is used.

e If no columns satisfy the requirements for a default partitioning key, the table is
created without one (this is allowed only in single-partition nodegroups).

Following is an example:

88 Administration Guide

CREATE TABLE MIXREC (MIX_CNTL INTEGER NOT NULL,
MIX_DESC CHAR(20) NOT NULL,
MIX_CHR CHAR(9) NOT NULL,
MIX_INT INTEGER NOT NULL,
MIX_INTS SMALLINT NOT NULL,
MIX_DEC DECIMAL NOT NULL,
MIX_FLT FLOAT NOT NULL,
MIX_DATE DATE NOT NULL,
MIX_TIME TIME NOT NULL,
MIX_TMSTMP TIMESTAMP NOT NULL)
IN MIXTS12
PARTITIONING KEY (MIX_INT) USING HASHING

In the preceding example, the table space is MIXTS12 and the partitioning key is
MIX_INT. If the partitioning key is not specified explicitly, it is MIX_CNTL. (If no primary
key is specified and no partitioning key is defined, the partitioning key is the first
non-long column in the list.)

A row of a table, and all information about that row, always resides on the same
database partition.

The size limit for one partition of a table is 64 GB, or the available disk space,
whichever is smaller. The size of the table can be as large as 64 GB (or the available
disk space) times the number of database partitions.

Creating a Trigger
A trigger defines a set of actions that are executed in conjunction with, or triggered by,
an INSERT, UPDATE, or DELETE clause on a specified base table. Some uses of
triggers are to:

¢ Validate input data

¢ Generate a value for a newly-inserted row

¢ Read from other tables for cross-referencing purposes
e Write to other tables for audit-trail purposes

You can use triggers to support general forms of integrity or business rules. For
example, a trigger can check a customer's credit limit before an order is accepted or
update a summary data table.

The benefits of using a trigger are:

¢ Faster application development: Because a trigger is stored in the database, you
do not have to code the actions it does in every application.

¢ Easier maintenance: Once a trigger is defined, it is automatically invoked when the
table that it is created on is accessed.

¢ Global enforcement of business rules: If a business policy changes, you only need
to change the trigger and not each application program.

The following SQL statement creates a trigger that increases the number of employees
each time a new person is hired, by adding 1 to the number of employees (NBEMP)

Chapter 3. Implementing Your Design 89

column in the COMPANY_STATS table each time a row is added to the EMPLOYEE
table.

CREATE TRIGGER NEW_HIRED
AFTER INSERT ON EMPLOYEE
FOR EACH ROW MODE DB2SQL
UPDATE COMPANY_STATS SET NBEMP = NBEMP+1;

A trigger body can include one or more of the following SQL statements: INSERT,
searched UPDATE, searched DELETE, full-selects, SET transition-variable, and
SIGNAL SQLSTATE. See the SQL Reference and the Embedded SQL Programming
Guide for information about creating and using triggers. The trigger can be activated
before or after the INSERT, UPDATE, or DELETE statement to which it refers.

Trigger Dependencies
All dependencies of a trigger on some other object are recorded in the
SYSCAT.TRIGDEP catalog. A trigger can depend on the following objects:

e The base table on which the trigger is defined, or an alias representing the base
table

e Any tables referenced in the trigger action

e Any views referenced in the triggered action

e Any function instances used in the triggered action

e Any alias references in the triggered action

e Authorization privileges required by the trigger

If one of these objects is dropped, the trigger becomes inoperative but its definition is
retained in the catalog. To revalidate this trigger, you must retrieve its definition from
the catalog and submit a new CREATE TRIGGER statement.

If a trigger is dropped, its description is deleted from the SYSCAT.TRIGGERS catalog
view and all of its dependencies are deleted from the SYSCAT.TRIGDEP catalog view.
All packages having UPDATE, INSERT, or DELETE dependencies on the trigger are
invalidated.

If the dependent object is a view and it is made inoperative, the trigger is also marked
inoperative. Any packages dependent on triggers that have been marked inoperative
are invalidated. (For more information, see “Statement Dependencies When Changing
Objects” on page 108.)

Creating a User-Defined Function (UDF)
User-defined functions (UDFs) extend and add to the support provided by built-in
functions of SQL, and can be used wherever a built-in function can be used. You can
create UDFs as either:

¢ An external function, which is written in a programming language.
e A sourced function, whose implementation is inherited from some other existing
function.

There are three types of UDFs:

90 Administration Guide

Scalar Returns a single-valued answer each time it is called. For example, the
built-in function SUBSTR() is a scalar function. Scalar UDFs can be
either external or sourced.

Column Returns a single-valued answer from a set of like values (a column). It is
also sometimes called an aggregating function in DB2. An example of a
column function is the built-in function AVG(). An external column UDF
cannot be defined to DB2, but a column UDF which is sourced upon one
of the built-in column functions can be defined. This is useful for distinct

types.

For example, if there is a distinct type SHOESIZE defined with base type
INTEGER, a UDF AVG(SHOESIZE) which is sourced on the built-in
function AVG(INTEGER) could be defined, and it would be a column
function.

Table Returns a table to the SQL statement which references it. Table
functions may only be referenced in the FROM clause of a SELECT
statement. Such a function can be used to apply SQL language
processing power to data which is not DB2 data, or to convert such data
into a DB2 table.

For example, table functions can take a file and convert it to a table,
tabularize sample data from the World Wide Web, or access a Lotus
Notes database and return information such as the date, sender, and
text of mail messages. This information can be joined with other tables in
the database.

A table function can only be an external function. It cannot be a sourced
function.

Information about existing UDFs is recorded in the SYSCAT.FUNCTIONS and
SYSCAT.FUNCPARMS catalog views. The system catalog does not contain the
executable code for the UDF. (Therefore, when creating your backup and recovery
plans you should consider how you will manage your UDF executables.)

Statistics about the performance of UDFs are important when compiling SQL
statements. For information about how to update UDF statistics in the system catalog,
see “Updating Statistics for User-Defined Functions” on page 335.

A UDF cannot be dropped if a view, trigger, table check constraint, or another UDF is
dependent on it. If a UDF is dropped, packages that are dependent on it are marked
inoperative. (For more information, see “Statement Dependencies When Changing
Objects” on page 108.)

For details on using the CREATE FUNCTION statement to write a UDF to suit your
specific application, see the Embedded SQL Programming Guide. See the SQL
Reference for details on UDF syntax.

Chapter 3. Implementing Your Design 91

Creating a User-Defined Type (UDT)
A user-defined type (UDT) is a distinct type derived from an existing type, such as an
integer, decimal, or character type. UDTs support strong typing, which means that they
share the same representations as the type they are derived from, but by definition the
derived type and the source type are incompatible. They cannot be compared directly
to each other.

Instances of the same distinct type can be compared to each other, if the WITH
COMPARISONS clause is specified on the CREATE DISTINCT TYPE statement.
Instances of UDTs cannot be used as arguments of functions or operands of operations
that were defined on the source type. Similarly, the source type cannot be used in
arguments or operands that were defined to use a UDT.

The SYSCAT.DATATYPES catalog view allows you to see the UDTs that have been
defined for your database. This catalog view also shows you the data types defined by
the database manager when the database was created. For a complete list of all data
types, see the SQL Reference.

The following SQL statement creates the UDT t_educ as a smallint:
CREATE DISTINCT TYPE T_EDUC AS SMALLINT WITH COMPARISONS

Once you have created a UDT, you can use it to define columns in a CREATE TABLE

statement:
CREATE TABLE EMPLOYEE
(EMPNO CHAR(6) NOT NULL,

FIRSTNME ~ VARCHAR(12) NOT NULL,
LASTNAME ~ VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3),
PHONENO CHAR(4),
PHOTO BLOB(16M) NOT NULL,
EDLEVEL T_EDUC)

IN RESOURCE

A UDT cannot be used as an argument for most of the system-provided, or built-in,
functions. User-defined functions must be provided to enable these and other
operations. For more information about creating and using user-defined functions, see
the SQL Reference and the Embedded SQL Programming Guide.

You can drop a UDT only if:

e Itis not used in a column definition for an existing table.
e |tis not used in a UDF function that cannot be dropped. A UDF cannot be dropped
if a view, trigger, table check constraint, or another UDF is dependent on it.

When a UDT is dropped, any functions that are dependent on it are also dropped.

92 Administration Guide

Creating a View
Views are derived from one or more base tables or views, and can be used
interchangeably with base tables when retrieving data. When changes are made to the
data shown in a view, the data is changed in the table itself.

A view can be created to limit access to sensitive data, while allowing more general
access to other data. For example, the EMPLOYEE table may have salary information
in it, which should not be made available to everyone. The employee's phone number,
however, should be generally accessible. In this case, a view could be created from the
LASTNAME and PHONENO columns only. Access to the view could be granted to
PUBLIC, while access to the entire EMPLOYEE table could be restricted to those who
have the authorization to see salary information. For information about read-only views,
see the SQL Reference manual.

With a view, you can make a subset of table data available to an application program
and validate data that is to be inserted or updated. A view can have column names that
are different from the names of corresponding columns in the original tables.

The use of views provides flexibility in the way your programs and end-user queries can
look at the table data.

The following SQL statement creates a view on the EMPLOYEE table that lists all
employees in Department A0O with their employee and telephone numbers:

CREATE VIEW EMP_VIEW (DAOONAME, DAGONUM, PHONENO)
AS SELECT LASTNAME, EMPNO, PHONENO FROM EMPLOYEE
WHERE WORKDEPT = 'A0Q'

WITH CHECK OPTION

The first line of this statement names the view and defines its columns. The name
EMP_VIEW must be unique within its schema in SYSCAT.TABLES. The view name
appears as a table name although it contains no data. The view will have three
columns called DAOONAME, DAOONUM, and PHONENO, which correspond to the
columns LASTNAME, EMPNO, and PHONENO from the EMPLOYEE table. The
column names listed apply one-to-one to the select list of the SELECT statement. If
column names are not specified, the view uses the same names as the columns of the
result table of the SELECT statement.

The second line is a SELECT statement that describes which values are to be selected
from the database. It may include the clauses ALL, DISTINCT, FROM, WHERE,
GROUP BY, and HAVING. The name or names of the data objects from which to select
columns for the view must follow the FROM clause.

The WITH CHECK OPTION clause indicates that any updated or inserted row to the
view must be checked against the view definition, and rejected if it does not conform.
This enhances data integrity but requires additional processing. If this clause is
omitted, inserts and updates are not checked against the view definition.

The following SQL statement creates the same view on the EMPLOYEE table using the
SELECT AS clause:

Chapter 3. Implementing Your Design 93

CREATE VIEW EMP_VIEW
SELECT LASTNAME AS DAOGONAME,
EMPNO AS DAOONUM,
PHONENO
FROM EMPLOYEE
WHERE WORKDEPT = 'A0O'
WITH CHECK OPTION

Once a view is defined, it cannot be changed. To modify a view definition, you must
drop and re-create it.

You can create a view that uses a UDF in its definition. However, to update this view
so that it contains the latest functions, you must drop it and then re-create it. If a view is
dependent on a UDF, that function cannot be dropped.

The following SQL statement creates a view with a function in its definition:

CREATE VIEW EMPLOYEE_PENSION (NAME, PENSION)
AS SELECT NAME, PENSION(HIREDATE,BIRTHDATE,SALARY,BONUS)
FROM EMPLOYEE

The UDF function PENSION calculates the current pension an employee is eligible to
receive, based on a formula involving their HIREDATE, BIRTHDATE, SALARY, and
BONUS.

In addition to using views as described above, a view can also be used to:

e Alter a table without affecting application programs
e Sum the values in a column, select the maximum values, or average the values.

An alternative to creating a view is to use a nested or common table expression to
reduce catalog lookup and improve performance. See the SQL Reference for more
information about common table expressions.

Creating an Alias
An alias is an indirect method of referencing a table or view, so that an SQL statement
can be independent of the qualified name of that table or view. Only the alias definition
must be changed if the table or view name changes. An alias can be created on
another alias. An alias can be used in a view or trigger definition and in any SQL
statement, except for table check-constraint definitions, in which an existing table or
view name can be referenced.

The alias is replaced at statement compilation time by the table or view name. If the
alias or alias chain cannot be resolved to a table or view name, an error results. For
example, if WORKERS is an alias for EMPLOYEE, then at compilation time:

SELECT * FROM WORKERS

becomes in effect
SELECT * FROM EMPLOYEE

94 Administration Guide

An alias name can be used wherever an existing table name can be used, and can
refer to another alias if no circular or repetitive references are made along the chain of
aliases.

The following SQL statement creates an alias WORKERS for the EMPLOYEE table:
CREATE ALIAS WORKERS FOR EMPLOYEE

The alias name cannot be the same as an existing table, view, or alias, and can only
refer to a table within the same database. The name of a table or view used in a
CREATE TABLE or CREATE VIEW statement cannot be the same as an alias name in
the same schema.

You do not require special authority to create an alias, unless the alias is in a schema
other than the one owned by your current authorization ID, in which case DBADM
authority is required.

An alias can be defined for a table, view, or alias that does not exist at the time of
definition. However, it must exist when an SQL statement containing the alias is
compiled.

When an alias, or the object to which an alias refers, is dropped, all packages
dependent on the alias are marked invalid and all views and triggers dependent on the
alias are marked inoperative.

Note: DB2 for MVS/ESA employs two distinct concepts of aliases: ALIAS and
SYNONYM. These two concepts differ from DB2 Universal Database as follows:

¢ ALIASes in DB2 for MVS/ESA:

— Require their creator to have special authority or privilege
— Cannot reference other aliases.

e SYNONYMs in DB2 for MVS/ESA:

— Can only be used by their creator

— Are always unqualified

— Are dropped when a referenced table is dropped
— Do not share namespace with tables or views.

Creating an Index
An index is a list of the locations of rows, sorted by the contents of one or more
specified columns. Indexes are typically used to speed up access to a table. However,
they can also serve a logical data design purpose. For example, a unique index does
not allow entry of duplicate values in the columns, thereby guaranteeing that no two
rows of a table are the same. Indexes can also be created to specify ascending or
descending order of the values in a column.

An index is defined by columns in the base table. It can be defined by the creator of a
table, or by a user who knows that certain columns require direct access. Up to 16
columns can be specified for an index. A primary index key is automatically created on
the primary key, unless a user-defined index already exists.

Chapter 3. Implementing Your Design 95

Any number of indexes can be defined on a particular base table and they can have a
beneficial effect on the performance of queries. However, the more indexes there are,
the more the database manager must modify during update, delete, and insert
operations. Creating a large number of indexes for a table that receives many updates
can slow down processing of requests. Therefore, use indexes only where a clear
advantage for frequent access exists.

An index key is a column or collection of columns on which an index is defined, and
determines the usefulness of an index. Although the order of the columns making up an
index key does not make a difference to index key creation, it may make a difference to
the optimizer when it is deciding whether or not to use an index.

If the table being indexed is empty, an index is still created, but no index entries are
made until the table is loaded or rows are inserted. If the table is not empty, the
database manager makes the index entries while processing the CREATE INDEX
statement.

Indexes for tables in a partitioned database are built using the same CREATE INDEX
statement. They are partitioned based on the partitioning key of the table. An index on
a table is made of the local indexes in that table on each node in the nodegroup. Note
that unique indexes defined in a multiple partition environment must be a superset of
the partitioning key.

Performance Tip: Create your indexes before using the LOAD utility if you are going to
carry out the following series of tasks:

¢ Create Table

e Load Table

¢ Create Index

¢ Perform RUNSTATS

You should consider ordering the execution of tasks in the following way:

1. Create the table
2. Create the index
3. Load the table with the index create and statistics update options requested.

For more information on LOAD performance improvements, see “System Catalog
Tables” on page 27.

Indexes are maintained after they are created. Subsequently, when application
programs use a key value to randomly access and process rows in a table, the index
based on that key value can be used to access rows directly. This is important,
because the physical storage of rows in a base table is not ordered. When a row is
inserted, it is placed in the most convenient storage location that can accommodate it.
When searching for rows of a table that meet a particular selection condition and the
table has no indexes, the entire table is scanned. An index optimizes data retrieval
without performing a lengthy sequential search.

The data for your indexes can be stored in the same table space as your table data, or
in a separate table space containing index data. The table space used to store the

96 Administration Guide

index data is determined when the table is created (see “Creating a Table in Multiple
Table Spaces” on page 87).

The following two sections “Using an Index” and “Using the CREATE INDEX
Statement” provide more information on creating an index.

Using an Index

An index is never directly used by an application program. The decision on whether to
use an index and which of the potentially available indexes to use is the responsibility
of the optimizer.

The best index on a table is one that:

¢ Uses high-speed disks
¢ |s highly-clustered
¢ |s made up of only a few narrow columns

For a detailed discussion of how an index can be beneficial, see “Index Scan Concepts”
on page 349.

Using the CREATE INDEX Statement

You can create an index that will allow duplicates (a non-unique index) to enable
efficient retrieval by columns other than the primary key, and allow duplicate values to
exist in the indexed column or columns.

The following SQL statement creates a non-unique index called LNAME from the
LASTNAME column on the EMPLOYEE table, sorted in ascending order:

CREATE INDEX LNAME ON EMPLOYEE (LASTNAME ASC)

The following SQL statement creates a unique index on the phone number column:
CREATE UNIQUE INDEX PH ON EMPLOYEE (PHONENO DESC)

A unique index ensures that no duplicate values exist in the indexed column or
columns. The constraint is enforced at the end of the SQL statement that updates rows
or inserts new rows. This type of index cannot be created if the set of one or more
columns already has duplicate values.

The keyword ASC puts the index entries in ascending order by column, while DESC
puts them in descending order by column. The default is ascending order.

In multiple partition databases, unique indexes must be defined as supersets of the
partitioning key.

For intra-partition parallelism, index create performance is improved by using multiple
processors for the scanning and sorting of data that is performed during index creation.
The use of multiple processors is enabled by setting intra_parallel to YES(1) or
ANY(-1). The number of processors used during index create is determined by the
system and is not affected by the configuration parameters dft_degree or
max_querydegree, by the application runtime degree, or by the SQL statement

Chapter 3. Implementing Your Design 97

compilation degree. If the database configuration parameter index sort is NO, then
index create will not use multiple processors.

Before Altering a Database

After a database design has been implemented, but before changing the database
design, you should consider the following:

¢ Changing Logical and Physical Design Characteristics

¢ Changing Environment Variables and the Profile Registry Variables
¢ Changing the Node Configuration File

¢ Changing the Database Configuration File

Changing Logical and Physical Design Characteristics
Before you make changes affecting the entire database, you should review all the
logical and physical design decisions. For example, when altering a table space, you
should review your design decision regarding the use of SMS or DMS storage types.
(See “Designing and Choosing Table Spaces” on page 38.)

Changing Environment Variables and the Profile Registry Variables
You must consider which environment variables (if any) need to be changed on your
particular operating system. If any environment variables are changed, you need to
restart the system for the new environment variables to take effect. Review whether you
should reset the profile registry variables in the Global Profile registry before altering
your database. You can then reset the profile registry values to those that are best
suited to the new database environment. If only profile registry values have been
changed, the system does not need to be restarted.

Changing the Node Configuration File
If you are planning changes to any nodegroups, you should review the contents of the
node configuration file, db2nodes.cfg. When adding a new database partition to a
nodegroup, you should first ensure that the database partition is one of those listed in
the node configuration file. The database partition to be added to a nodegroup may
already be part of another nodegroup and therefore already be in the node
configuration file. If it is not, you must stop DB2, change the file by adding the new
database partition information and then restart DB2. The new entry in the node
configuration file takes effect the next time that DB2 is started. You should not remove
the database partition entry in the node configuration file when removing a node from a
nodegroup.

Changing the Database Configuration File
If you are planning changes to the database, you should review the values for the
configuration parameters. Some of the values can be adjusted as part of the changes
made to the database. However, just as with the initial setting of the configuration
parameters, you may want to consider doing some benchmark testing to achieve
optimal performance for your database. For more information on benchmark testing,
see Chapter 18, “Benchmark Testing” on page 447.

98 Administration Guide

Altering a Database

You need to do some tasks before making a change to your database. These tasks
include:

e Altering a Nodegroup
¢ Dropping a Database

Altering a Nodegroup

You can add nodes to a nodegroup, or you can reorganize existing nodes to create a
new nodegroup.

When you add a node to a nodegroup, you do not have to drop and re-create the
tables and table spaces in the new nodegroup. To add a node to a hodegroup:

1. Add the nodename to the configuration file db2nodes.cfg.

2. Run the ADD NODE command to create database partitions on the new node for
all databases currently defined. (See the Command Reference for information.)

(To drop nodes, run the DROP NODE command and then remove the nodename
entries from the db2nodes.cfg file.)

Once you add or drop nodes, you must redistribute the current data across the new set
of nodes in the nodegroup. To do this, use the REDISTRIBUTE NODEGROUP
command. For information, see Chapter 16, “Redistributing Data Across Database
Partitions” on page 435 and the Command Reference.

Dropping a Database
Although some of the objects in a database can be altered, the database itself cannot
be altered: it must be dropped and re-created. Dropping a database can have
far-reaching effects, because this action deletes all its objects, containers, and
associated files. The dropped database is uncataloged in the database directories.

The following command deletes the database SAMPLE:
DROP DATABASE SAMPLE

Altering a Table Space

When you create a database, you create at least three table spaces: one catalog table
space (SYSCATSPACE); one user table space (default name is USERSPACEL); and
one temporary table space (whose default name is TEMPSPACEL). You must keep at
least one of each of these table spaces, And can add additional user and temporary
table spaces if you wish. Note that you cannot drop the catalog table space,
SYSCATSPACE; and there must always be at least one temporary table space.

This section discusses how to change table spaces as follows:

e “Adding a Container to a DMS Table Space” on page 100
¢ “Dropping a User Table Space” on page 100
e “Altering the Temporary Table Space” on page 100

Chapter 3. Implementing Your Design 99

Adding a Container to a DMS Table Space

You can increase the size of a DMS table space (that is, one created with the
MANAGED BY DATABASE clause) by adding one or more containers to the table
space.

The following example illustrates how to add two new device containers (each with
40000 pages) to a table space on a UNIX-based system:

ALTER TABLESPACE RESOURCE
ADD (DEVICE '/dev/rhd9' 160000,
DEVICE '/dev/rhd10' 160000)

The contents of the table space are re-balanced across all containers. Access to the
table space is not restricted during the re-balancing. If you need to add more than one
container, you should add them at the same time.

Note that the ALTER TABLESPACE statement allows you to change other properties of
the table space that can affect performance. For more information, see “Table Space
Impact on Query Optimization” on page 304.

Dropping a User Table Space

When you drop a user table space, you delete all the data in that table space, free the
containers, remove the catalog entries, and all objects defined in the table space are
either dropped or marked as invalid.

You cannot drop a table space if a table stores at least one of its parts in it and one or
more of its parts in another table space. The table must be dropped first.

The following SQL statement drops the table space ACCOUNTING:
DROP TABLESPACE ACCOUNTING

For information on SQL statements, see the SQL Reference.

You can reuse the containers in an empty table space by dropping the table space, but
you must COMMIT the DROP TABLESPACE command, or have had AUTOCOMMIT
on, before attempting to reuse the containers.

Altering the Temporary Table Space

You cannot drop the temporary table space, because the database must always have
at least one temporary table space. If you wish to change the specifications of this table
space, you must add a new temporary table space first and then drop the old
temporary table space.

The following SQL statement creates a new temporary table space called
TEMPSPACE2:

CREATE TEMPORARY TABLESPACE TEMPSPACE2
MANAGED BY SYSTEM USING ('d')

100 Administration Guide

Once TEMPSPACE?2 is created, you can then drop the original temporary table space
TEMPSPACEL1 with the command:

DROP TABLESPACE TEMPSPACE1

You can reuse the containers in an empty table space by dropping the table space, but
you must COMMIT the DROP TABLESPACE command, or have had AUTOCOMMIT
on, before attempting to reuse the containers.

Dropping a Schema
Before dropping a schema, all objects that were in that schema must be dropped
themselves or moved to another schema. To ensure that there are no objects in the
schema when executing the DROP statement, use the RESTRICT attribute. The
schema name must be in the catalog when attempting the DROP statement; otherwise
an error is returned. In the following example, the schema "joeschma" is dropped:

DROP SCHEMA joeschma RESTRICT

Altering a Table
You should perform one or more of the following tasks when you modify a table as a
result of a table design. These tasks include:

¢ Adding Columns to an Existing Table
e Altering a Constraint

e Adding a Constraint

e Dropping a Constraint

¢ Renaming an Existing Table

¢ Dropping a Table

¢ Changing Partitioning Keys

Note that you cannot alter triggers for tables; you must drop any trigger that is no
longer appropriate (see “Dropping a Trigger” on page 106), and add its replacement
(see “Creating a Trigger” on page 89).

Adding Columns to an Existing Table

When a new column is added to an existing table, only the table description in the
system catalog is modified, so access time to the table is not affected immediately.
Existing records are not physically altered until they are modified using an UPDATE
statement. When retrieving an existing row from the table, a null or default value is
provided for the new column, depending on how the new column was defined. Columns
that are added after a table is created cannot be defined as NOT NULL: they must be
defined as either NOT NULL WITH DEFAULT or as nullable.

Columns can be added with an SQL statement. The following statement uses the
ALTER TABLE statement to add three columns to the EMPLOYEE table:

ALTER TABLE EMPLOYEE
ADD MIDINIT CHAR(1) NOT NULL WITH DEFAULT
ADD HIREDATE DATE
ADD WORKDEPT CHAR(3)

Chapter 3. Implementing Your Design 101

A column definition includes a column name, data type, and any necessary constraints.
In addition to adding columns to a table, the ALTER TABLE statement can be used to
add or drop a primary or foreign key and to add or drop a table check constraint
definition. For more information about the ALTER TABLE statement, see the SQL
Reference manual.

Altering a Constraint
You can only alter constraints by dropping them and then adding new ones to take their
place. For more information, see:

e “Adding a Constraint”
e “Dropping a Constraint” on page 103

For more information on constraints, see “Defining Constraints” on page 83.

Adding a Constraint
You add constraints with the ALTER TABLE statement. For more information on this
statement, including its syntax, see the SQL Reference manual.

For more information on constraints, see “Defining Constraints” on page 83.

Adding a Unique Constraint: Unique constraints can be added to an existing table.
The constraint name cannot be the same as any other constraint specified within the
ALTER TABLE statement, and must be unique within the table (this includes the names
of any referential integrity constraints that are defined). Existing data is checked against
the new condition before the statement succeeds.

The following SQL statement adds a unique constraint to the EMPLOYEE table that
represents a new way to uniquely identify employees in the table:

ALTER TABLE EMPLOYEE
ADD CONSTRAINT NEWID UNIQUE(EMPNO,HIREDATE)

Adding Primary and Foreign Keys: The following examples show the ALTER TABLE
statement to add primary keys and foreign keys to a table:

ALTER TABLE PROJECT
ADD CONSTRAINT PROJECT KEY
PRIMARY KEY (PROJNO)
ALTER TABLE EMP_ACT
ADD CONSTRAINT ACTIVITY KEY
PRIMARY KEY (EMPNO, PROJNO, ACTNO)
ADD CONSTRAINT ACT EMP_REF
FOREIGN KEY (EMPNO)
REFERENCES EMPLOYEE
ON DELETE RESTRICT
ADD CONSTRAINT ACT PROJ_REF
FOREIGN KEY (PROJNO)
REFERENCES PROJECT
ON DELETE CASCADE

102 Administration Guide

To add constraints to a large table, it is more efficient to put the table into the check
pending state, add the constraints, and then check the table for a consolidated list of
violating rows. Use the SET CONSTRAINTS statement to explicitly set the check
pending state: if the table is a parent table, check pending is implicitly set for all
dependent and descendent tables.

When a foreign key is added to a table, packages and cached dynamic SQL containing
the following statements may be marked as invalid:

e Statements that insert or update the table containing the foreign key
e Statements that update or delete the parent table.

See “Statement Dependencies When Changing Objects” on page 108 for information.

Adding a Table Check Constraint: Check constraints can be added to an existing
table with the ALTER TABLE statement. The constraint name cannot be the same as
any other constraint specified within an ALTER TABLE statement, and must be unique
within the table (this includes the names of any referential integrity constraints that are
defined). Existing data is checked against the new condition before the statement
succeeds.

The following SQL statement adds a constraint to the EMPLOYEE table that the salary
plus commission of each employee must be more than $25,000:

ALTER TABLE EMPLOYEE
ADD CONSTRAINT REVENUE CHECK (SALARY + COMM > 25000)

To add constraints to a large table, it is more efficient to put the table into the
check-pending state, add the constraints, and then check the table for a consolidated
list of violating rows. Use the SET CONSTRAINTS statement to explicitly set the
check-pending state: if the table is a parent table, check pending is implicitly set for all
dependent and descendent tables.

When a table check constraint is added, packages and cached dynamic SQL that insert
or update the table may be marked as invalid. See “Statement Dependencies When
Changing Objects” on page 108 for more information.

Dropping a Constraint
You drop constraints with the ALTER TABLE statement. For more information on this
statement, including its syntax, see the SQL Reference manual.

For more information on constraints, see “Defining Constraints” on page 83.

Dropping a Unique Constraint: You can explicitly drop a unique constraint using the
ALTER TABLE statement. The name of all unique constraints on a table can be found
in the SYSCAT.INDEXES system catalog view.

The following SQL statement drops the unique constraint NEWID from the EMPLOYEE

table:

ALTER TABLE EMPLOYEE
DROP UNIQUE NEWID

Chapter 3. Implementing Your Design 103

Dropping this unique constraint invalidates any packages or cached dynamic SQL that
used the constraint.

Dropping Primary and Foreign Keys: The following examples use the DROP
PRIMARY KEY and DROP FOREIGN KEY clauses in the ALTER TABLE statement to
drop primary keys and foreign keys on a table:

ALTER TABLE EMP_ACT
DROP PRIMARY KEY
DROP FOREIGN KEY ACT_EMP_REF
DROP FOREIGN KEY ACT_PROJ_REF
ALTER TABLE PROJECT
DROP PRIMARY KEY

For information about the ALTER TABLE statement, see the SQL Reference manual.

When a foreign key constraint is dropped, packages or cached dynamic SQL
statements containing the following may be marked as invalid:

e Statements that insert or update the table containing the foreign key
e Statements that update or delete the parent table.

See “Statement Dependencies When Changing Objects” on page 108 for more
information.

Dropping a Table Check Constraint: You can explicitly drop or change a table check
constraint using the ALTER TABLE statement, or implicitly drop it as the result of a
DROP TABLE statement. The name of all check constraints on a table can be found in
the SYSCAT.CHECKS catalog view.

The following SQL statement drops the table check constraint REVENUE from the
EMPLOYEE table:

ALTER TABLE EMPLOYEE
DROP CHECK REVENUE

When you drop a table check constraint, all packages and cached dynamic SQL
statements with INSERT or UPDATE dependencies on the table are invalidated. (See
“Statement Dependencies When Changing Objects” on page 108 for more information.)
To drop a table check constraint with a system-generated name, look for the name in
the SYSCAT.CHECKS catalog view.

Renaming an Existing Table
You can give an existing table a new name within a schema and maintain the
authorizations and indexes that were created on the original table.

The existing table cannot be referenced in any of the following:

e Views
e Triggers
¢ Referential constraints.

104 Administration Guide

Also, there must be no check constraints within the table. Any packages or cached
dynamic SQL statements dependent on the original table are invalidated. Finally, any
aliases referring to the original table are not modified.

You should consider checking the appropriate system catalog tables to ensure that the
table being renamed is not affected by any of these restrictions.

The SQL statement below renames the EMPLOYEE table within the COMPANY
schema to EMPL:

RENAME TABLE COMPANY.EMPLOYEE TO EMPL

Packages must be re-bound if they refer to a table that has just been renamed. The
packages can be implicitly re-bound if:

¢ Another table is renamed using the original name of the table, or
e An alias or view is created using the original name of the table.

One of these two choices must be completed before any implicit or explicit re-binding is
attempted. If neither choice is made, any re-bind will fail.

For more information about the RENAME TABLE statement, see the SQL Reference
manual.

Dropping a Table
A table can be dropped with a DROP TABLE SQL statement. The following statement
drops the table called EMPLOYEE:

DROP TABLE EMPLOYEE

When a table is dropped, the row in the SYSCAT.TABLES catalog that contains
information about that table is dropped, and any other objects that depend on the table
are affected. For example:

¢ All column names are dropped.

¢ Indexes created on any columns of the table are dropped.

¢ All views based on the table are marked inoperative. (See “Recovering Inoperative
Views” on page 107 for more information.)

¢ All privileges on the dropped table and dependent views are implicitly revoked.

¢ All referential constraints in which the table is a parent or dependent are dropped.

¢ All packages and cached dynamic SQL statements dependent on the dropped
table are marked invalid, and remain so until the dependent objects are re-created.
(See “Statement Dependencies When Changing Objects” on page 108 for more
information.)

¢ An alias definition on the table is not affected, because an alias can be undefined

¢ All triggers dependent on the dropped table are marked inoperative.

Changing Partitioning Keys

You can only change a partitioning key on tables in single-partition nodegroups. This is
done by first dropping the existing partitioning key and then creating another.

Chapter 3. Implementing Your Design 105

The following SQL statement drops the partitioning key MIX_INT from the MIXREC
table:

ALTER TABLE MIXREC
DROP PARTITIONING KEY MIX_INT

For more information, see the ALTER TABLE statement in the SQL Reference manual.

You cannot change the partitioning key of a table in a multiple database partition
nodegroup. If you try to drop it, an error is returned.

The only methods to change the partitioning key of multiple database partition
nodegroups are either:

e Export all of the data to a single-partition nodegroup and then follow the above
instructions.

e Export all of the data, drop the table, redefine the partitioning key, and then import
all of the data.

Neither of these methods are practical for large databases; it is therefore essential that
you define the appropriate partitioning key before implementing the design of large
databases.

Dropping a Trigger
A trigger object can be dropped using the DROP statement, but this procedure will
cause dependent packages to be marked invalid, as follows:

e If an update trigger without an explicit column list is dropped, then packages with
an update usage on the target table are invalidated.

e If an update trigger with a column list is dropped, then packages with update usage
on the target table are only invalidated if the package also had an update usage on
at least one column in the column-name list of the CREATE TRIGGER statement.

e If an insert trigger is dropped, packages that have an insert usage on the target
table are invalidated.

e If a delete trigger is dropped, packages that have a delete usage on the target
table are invalidated.

A package remains invalid until the application program is explicitly bound or rebound,
or it is run and the database manager automatically rebinds it.

Dropping a User-Defined Function (UDF)
A user-defined function (UDF) can be dropped using the DROP statement. Functions
implicitly generated by the CREATE DISTINCT TYPE statement cannot be dropped. It
is not possible to drop a function that is in either the SYSIBM schema or the SYSFUN
schema.

Other objects can be dependent on a function. All such dependencies must be removed
before the function can be dropped, with the exception of packages which are marked
inoperative. Such a package is not implicitly rebound. It must either be rebound using
the BIND or REBIND commands or it must be prepared by use of the PREP command.
See the Command Reference manual for more information on these commands.

106 Administration Guide

Dropping a UDF invalidates any packages or cached dynamic SQL statements that
used it.

Dropping a User-Defined Type

You can drop a user-defined type (UDT) using the DROP DISTINCT TYPE statement.
You cannot drop a UDT if it is used in a column definition for an existing table. The
database manager will attempt to drop all functions that are dependent on this distinct
type. If the UDF cannot be dropped, the UDT cannot be dropped. A UDF cannot be
dropped if a view, trigger, table check constraint, or another UDF is dependent on it.
Dropping a UDT invalidates any packages or cached dynamic SQL statements that
used it.

For more information about the user-defined types, see the SQL Reference and
Embedded SQL Programming Guide manuals.

Dropping a View
You may not change a view definition; the view must be dropped and re-created.

The following example shows how to drop the EMP_VIEW:
DROP VIEW EMP_VIEW

Any views that are dependent on the view being dropped will be made inoperative.
(See “Recovering Inoperative Views” for more information.)

Other database objects such as tables and indexes will not be affected although
packages and cached dynamic statements are marked invalid. See “Statement
Dependencies When Changing Objects” on page 108 for more information.

For more information on dropping and creating views, see the SQL Reference manual.

Recovering Inoperative Views
When an object is dropped, views can become inoperative if they are dependent on
that object.

The following steps can help you recover an inoperative view:

¢ Determine the SQL statement that was initially used to create the view. You can
obtain this information from the TEXT column of the SYSCAT.VIEW catalog view.

¢ Re-create the view by using the CREATE VIEW statement with the same view
name and same definition.

e Use the GRANT statement to re-grant all privileges that were previously granted on
the view. (Note that all privileges granted on the inoperative view are revoked.)

If you do not want to recover an inoperative view, you can explicitly drop it with the

DROP VIEW statement, or you can create a new view with the same name but a
different definition.

Chapter 3. Implementing Your Design 107

An inoperative view only has entries in the SYSCAT.TABLES and SYSCAT.VIEWS
catalog views; all entries in the SYSCAT.VIEWDEP, SYSCAT.TABAUTH,
SYSCAT.COLUMNS and SYSCAT.COLAUTH catalog views are removed.

Dropping an Index
You cannot change any clause of an index definition; you must drop the index and
create it again. (Dropping an index does not cause any other objects to be dropped but
may cause some packages to be invalidated.)

The following SQL statement drops the index called PH:
DROP INDEX PH

A primary key or unique key index cannot be explicitly dropped. You must use one of
the following methods to drop it:

e If the primary index or unique constraint was created automatically for the primary
key or unique key, dropping the primary key or unique key will cause the index to
be dropped. Dropping is done through the ALTER TABLE statement.

e |If the primary index or the unique constraint was user-defined, the primary key or
unique key must be dropped first, through the ALTER TABLE statement. After the
primary key or unique key is dropped, the index is no longer considered the
primary index or unique index, and it can be explicitly dropped.

If you drop a non-primary or non-unique index, any packages and cached dynamic SQL
statements that depend on the indexes are marked invalid. See “Statement
Dependencies When Changing Objects” for more information. The application program
is not affected by changes resulting from adding or dropping indexes.

Statement Dependencies When Changing Objects
Statement dependencies include package and cached dynamic SQL statements. A
package is a database object that contains the information needed by the database
manager to access data in the most efficient way for a particular application program.
Binding is the process that creates the package the database manager needs in order
to access the database when the application is executed. The Embedded SQL
Programming Guide discusses how to create packages in detail.

Packages and cached dynamic SQL statements can be dependent on the following
types of objects:

e Schemas

e Tables

e Views

e Aliases

¢ Indexes

e User-defined functions

e Triggers

¢ Referential constraints

e Table check constraints.

108 Administration Guide

These objects could be explicitly referenced, for example, a table or user-defined
function that is involved in an SQL SELECT statement. The objects could also be
implicitly referenced, for example, a dependent table that needs to be checked to
ensure that referential constraints are not violated when a row in a parent table is
deleted. Packages are also dependent on the privileges which have been granted to
the package creator.

If a package or cached dynamic SQL statement depends on an object and that object
is dropped, the package or cached dynamic SQL statement will be placed in an
“invalid” state. If the object that is dropped is a user-defined function, the package is
placed in an “inoperative” state.

Packages or cached dynamic SQL statements in an “invalid” state are implicitly
rebound the next time they are accessed. They can also be explicitly rebound. If a
package or cached dynamic SQL statement was marked invalid because a trigger was
dropped, it will be rebound without the trigger.

Packages or cached dynamic SQL statements in an “inoperative” state must be
explicitly rebound before they can be used again. See the Embedded SQL
Programming Guide for more information about binding and rebinding packages.

In some cases, it will not be possible to rebind the package. For example, if a table has
been dropped and not re-created, the package cannot be rebound. In this case, you
will need to either re-create the object or change the application so it does not use the
dropped object.

In many other cases, for example if one of the constraints was dropped, it will be
possible to rebind the package.

The following system catalog views help you to determine the state of a package and
the package's dependencies:

e SYSCAT.PACKAGEAUTH
e SYSCAT.PACKAGEDEP
* SYSCAT.PACKAGES

For more information about object dependencies, see the DROP statement in the SQL
Reference manual.

Chapter 3. Implementing Your Design 109

110 Administration Guide

Chapter 4. Controlling Database Access

One of the most important responsibilities of the database administrator and the system
administrator is database security. Securing your database involves several activities:

¢ Preventing accidental loss of data or data integrity through equipment or system
malfunction. (This subject is covered in “Backing Up a Database” on page 201.)

¢ Preventing unauthorized access to valuable data. You must ensure that sensitive
information is not accessed by those without a “need to know.”

¢ Preventing unauthorized persons from committing mischief through malicious
deletion or tampering with data.

The following topics are discussed:

e “An Overview of DB2 Security”

e “Selecting an Authentication Method for Your Server” on page 113
e “Authentication Considerations for Remote Clients” on page 116

e “Partitioned Database Considerations” on page 116

e “Using DCE Security Services to Authenticate Users” on page 117
e “Privileges, Authorities, and Authorization” on page 121

e “Controlling Access to Database Objects” on page 129

e “Tasks and Required Authorizations” on page 135

e “Using the System Catalog” on page 136

Planning for Security: ~ Start by defining your objectives for a database access control
plan, and specifying who shall have access to what and under what circumstances.
Your plan should also describe how to meet these objectives by using database
functions, functions of other programs, and administrative procedures.

An Overview of DB2 Security

To protect data and resources associated with a database server, DB2 uses a
combination of external security services and internal access control information. To
access a database server you must pass some security checks before you are given
access to database data or resources. The first step in database security is called
authentication, where the user must prove he is who he says he is. The second step is
called authorization, where the database manager decides if the validated user is
allowed to perform the requested action or access the requested data.

Authentication
Authentication of a user is completed using a security facility outside of DB2. The
security facility can be part of the operating system, a separate product, or, in certain
cases, not exist at all. On UNIX platforms, the security facility is in the operating system
itself. DCE Security Services is a separate product that provides the security facility for
a distributed environment. There are no security facilities on the Windows 95 or
Windows 3.1 operating systems.

© Copyright IBM Corp. 1993, 1997 111

The security facility requires two items to authenticate a user: first, the user is identified
to the security facility by a user ID; second, the user proves he is this identity by
providing a piece of information known only to the user and the security facility; for
example, a password.

Once authenticated,

e The user must then be identified to DB2 using an SQL authorization name authid.
This name can be the same as the user ID, or a mapped value. For example, on a
UNIX platform, a DB2 authid is derived by transforming to upper case letters a
UNIX user ID that follows DB2 naming conventions. In another example, within the
DCE Security Services product, the DB2 authid is contained in the DCE registry
and is extracted from there once authentication has successfully completed.

e A list of groups in which the user is a member is obtained. Group membership may
be used when authorizing the user. Groups are security facility entities that must
also map to DB2 authorization names. This mapping is done in a method similar to
that used for user IDs.

DB2 will obtain a list of groups up to a maximum of 64 groups. If a user is a
member of more than 64 groups, only the first 64 that map to valid DB2
authorization names will be added to the DB2 group list. No error is created when
this happens, and any groups after the first 64 are ignored by DB2.

DB2 uses the security facility to authenticate users in one of two ways:

e DB2 uses your successful security system login as evidence of your identity and
allows the following using that identity:

— Use of local commands to access local data
— Use of remote connections where the server trusts the client authentication.

e DB2 accepts a user ID and password combination and uses successful validation
of this pair by the security facility as evidence of your identity and allows:

— Use of remote connections where the server requires proof of authentication
— Use of operations where the user wants to execute a command under an
identity other than the identity used for login

Authorization

Authorization is the process whereby DB2 obtains information about an authenticated
DB2 user that indicates the database operations a user may perform and what data
objects may be accessed. With each user request there may be more than one
authorization check depending on the objects and operations involved.

Authorization is performed using DB2 facilities. DB2 tables and configuration files are
used to record the permissions associated with each authorization name. The
authorization name of an authenticated user, and those of groups in which the user is a
member, are compared against the recorded permissions. Based on the comparison,
DB2 decides whether to allow the user the requested access.

112 Administration Guide

There are two types of permissions recorded by DB2: privileges and authority levels. A
privilege defines a single permission for an authorization name, enabling a user to
create or access database resources. Privileges are stored in the database catalogs
for a given database. Authority levels provide a method of grouping privileges and
control over higher level database manager maintenance and utility operations.
Database-specific authorities are stored in the database catalogs for each database;
system authorities are recorded by group membership and are stored in the database
manager configuration file for a given instance.

Groups provide a convenient means of performing authorization for a collection of users
without having to grant or revoke privileges for each user individually. Unless otherwise
specified, group authorization names can be used anywhere authorization names are
used for authorization purposes. In general, group membership is considered for
dynamic SQL and non-database object authorizations (such as instance level
commands and utilities) and is not considered for static SQL. Specific cases where
group membership does not apply are noted throughout DB2 documentation, where
applicable.

“Privileges, Authorities, and Authorization” on page 121 presents further details on
these topics.

The following section (“Selecting an Authentication Method for Your Server”) provides
additional information about the system entry validation checking that is particularly
relevant if you have remote clients accessing the database.

Selecting an Authentication Method for Your Server

Access to an instance or a database first requires that the user be authenticated. The
authentication type for each instance determines how and where a user will be verified.
The authentication type is stored in the database manager configuration file at the
server. It is initially set when the instance is created. See “Authentication Type
(authentication)” on page 572 for more information on this database manager
configuration parameter. There is one authentication type per instance, which covers
access to that database server and all the databases under its control.

The following authentication types are provided:

SERVER Specifies that authentication occurs on the server using local operating
system security. If a user ID and password are specified during the
connection or attachment attempt, they are compared to the valid user ID
and password combinations at the server to determine if the user is
permitted to access the instance. This is the default security mechanism.

Note: The server code detects whether a connection is local or remote.
For local connections, when authentication is SERVER, a user ID
and password are not required for authentication to be successful.

If the remote instance has SERVER authentication, the user ID and
password must be provided by the user or retrieved by DB2 and provided

Chapter 4. Controlling Database Access 113

CLIENT

114 Administration Guide

to the server for validation even though the user has already logged on to
the local machine or to the domain.

Specifies that authentication occurs on the database partition where the
application is invoked using operating system security. The user ID and
password specified during a connection or attachment attempt are
compared with the valid user ID and password combinations on the client
node to determine if the user ID is permitted access to the instance. No
further authentication will take place on the database server.

If the user performs a local or client login, the user is known only to that
local client workstation.

If the remote instance has CLIENT authentication, two other parameters
determine the final authentication type: trust_allcints and trust_cintauth.

CLIENT level security for TRUSTED clients only:

Trusted clients are clients that have a reliable, local security system.
Specifically, all clients are trusted clients except for Macintosh, Windows
3.1, and Windows 95 operating systems.

When the authentication type of CLIENT has been selected, an additional
option may be selected to protect against clients whose operating
environment has no inherent security.

To protect against unsecured clients, the administrator can select Trusted
Client Authentication by setting the trust_allcints parameter to NO. This
implies that all trusted platforms can authenticate the user on behalf of the
server. Untrusted clients are authenticated on the Server and must provide
a user ID and password. You use the trust_allcints configuration parameter
to indicate whether you are trusting clients. The default for this parameter
is YES. For more information on this parameter, see “Trust All Clients
(trust_allcints)” on page 574.

Note: It is possible to trust all clients (trust_allcints is YES) yet have some
of those clients as those who do not have a native safe security
system for authentication.

You may also want to complete authentication at the server even for
trusted clients. To indicate where to validate trusted clients, you use the
trust_clintauth configuration parameter. The default for this parameter is
CLIENT. See “Trusted Clients Authentication (trust_clntauth)” on page 575
for more information on this parameter.

Note: For trusted clients only, if no user ID or password is explicitly
provided when attempting to CONNECT or ATTACH, then
validation of the user takes place at the client. The frust_cintauth
parameter is only used to determine where to validate the
information provided on the USER/USING clauses.

Table 20. Trusted Client Options

TRUST_ALLCLNTS

Untrusted
Client
Trusted Client Trusted Client Authentication
Authentication Authentication password
TRUST_CLNTAUTH no password with password required

YES (default)

CLIENT (default) CLIENT CLIENT N/A

YES (default)

SERVER CLIENT SERVER N/A

NO

CLIENT (default) CLIENT CLIENT SERVER

NO

SERVER CLIENT SERVER SERVER

DCS

DCE

Note:

Note:

Note:

Primarily used to catalog a database accessed using DB2 Connect. (Refer
to the DB2 Connect User's Guide section on Security for more details on
this topic.) When it is used to specify the authentication type for an
instance in the database manager configuration file, it means the same as
for authentication SERVER, unless the server is being accessed via the
Distributed Relational Database Architecture (DRDA) Application Server
(AS) architecture using the Advanced Program-To-Program
Communications (APPC) protocol. In this case, using DCS indicates that
authentication will occur at the server, but only in the APPC layer. Further
authentication will not occur in the DB2 code. This value is only supported
when the APPC SECURITY parameter for the connection is specified as
SAME or PROGRAM.

Specifies that the user is authenticated using DCE Security Services. For
more information on DCE Security, see “Using DCE Security Services to
Authenticate Users” on page 117.

When DB2 Connect is part of the system environment, the authentication types
have slightly different meanings. Also, here we are presenting the authentication
type that is stored in the database manager configuration file for the DB2
Universal Database. In DB2 Connect, the authentication types used are those
stored in the database directory. Refer to the section on Security in the DB2
Connect User's Guide for more details on this topic.

The type of authentication you choose is only important if you have remote
database clients accessing the database. Most users accessing the database
through local clients are always authenticated on the same machine as the
database. An exception may exist when DCE Security Services are used. For
information about supporting and using remote clients, see your Quick
Beginnings manual.

Do not inadvertently lock yourself out of your instance when you are changing
the authentication information, since access to the configuration file itself is
protected by information in the configuration file. The following database
manager configuration file parameters control access to the instance:

* AUTHENTICATION *
e SYSADM_GROUP *

Chapter 4. Controlling Database Access 115

e TRUST_ALLCLNTS
e TRUST_CLNTAUTH
e SYSCTRL_GROUP
e SYSMAINT_GROUP

* Indicates the two most important parameters, and those most likely to cause a
problem.

There are some things that can be done to ensure this does not happen: If you
do accidentally lock yourself out of the DB2 system, you have a failsafe option
available on all platforms that will allow you to override the usual DB2 security
checks to update the database manager configuration file using a highly
privileged local operating system security user. This user always has the
privilege to update the database manager configuration file and thereby correct
the problem. However, this security bypass is restricted to a local update of the
database manager configuration file. You cannot use a failsafe user remotely or
for any other DB2 command. This special user is identified as follows:

¢ UNIX platforms: the instance owner

¢ NT platform: someone belonging to the local “administrators” group

e 0OS/2 platform: a UPM administrator

e other platforms: there is no local security on the other platforms, so all
users pass local security checks anyway

Authentication Considerations for Remote Clients

When cataloging a database for remote access, the authentication type may be
specified in the database directory entry.

For databases accessed using DB2 Connect: If a value is not specified, SERVER
authentication is assumed.

For databases accessed remotely but not using DB2 Connect: The authentication type
is not required. However, if it is not specified the client must first contact the server to
obtain the value before beginning the authentication flow. If specified, authentication
can begin immediately provided the value specified matches that at the server. If a
mismatch is detected: DB2 attempts to recover, which may result in more flows to
reconcile the difference, or in an error if DB2 cannot recover. In the case of a
mismatch, the value at the server is assumed to be correct.

Partitioned Database Considerations

116

In a partitioned database, each partition of the database must have the same set of
users and groups defined. If the definitions are not the same, the user may be
authorized to do different things on different partitions. Consistency across all partitions
is recommended.

Administration Guide

Using DCE Security Services to Authenticate Users

When considering security for your distributed database environment, Distributed
Computing Environment (DCE) Security Services are a good option because DCE
provides:

¢ Centralized administration of users and passwords.
¢ No transmission of clear text passwords and user IDs.

¢ A single sign-on for users.

DB2 supports DCE default login contexts, connection login contexts, and delegated
contexts. A default login context is established when a user does a dce_login on a
client. Subsequent DB2 commands have access to this context and may perform user
authentication without further user intervention (that is, no requirement for a user ID or
password). A connection login context is established for a DB2 session using the user
ID and password provided on CONNECT or ATTACH using the USER/USING clause.
Finally, a delegated login context occurs when a DB2 client is used as part of a DCE
server application. The DCE server application (that is also a DB2 client), receives
requests from a DCE client application, from which point the original identity of the user
originates. Provided the DCE client and DCE server are correctly configured to allow
the DCE server to be a delegate for the DCE client, DB2 will obtain the delegated token
and forward this to the DB2 server. This allows the DB2 server to use the original
identity of the DCE client, rather than using the identity of the DCE server, to process
requests. Information on how to establish a delegated login context can be obtained
from the DCE documentation for your platform.

How to Setup a DB2 User for DCE
Users must be registered in the Distributed Computing Environment (DCE) Registry and
have correct attributes before being used with DB2. See the appropriate
platform-specific DCE documentation for information on how to create a DCE principal.

Each DB2 user wishing to use a DCE-authenticated server must have a DCE principal
and account defined in the DCE Registry with the client flag enabled. This principal
must also have an entry in its Extended Registry Attributes (ERA) section showing what
authorization name will be used for this principal when it connects to a particular DCE
authenticated server.

You may also wish to have user principals be members of groups in order to use group
privileges in the database. Similar information in the group ERA maps the group name
to a DB2 authorization name. The authorization name is a secondary authorization
name but the same restrictions apply. Please refer to your DCE documentation for
additional information on how to create groups and add members.

The information in the ERA maps a user's DCE principal or group name to a DB2
authorization name for a particular server DCE principal name. To use an ERA, an ERA
schema indicating the format of this attribute must be defined. This needs to be done
once per DCE cell and is accomplished by completing the following steps:

1. Login to DCE as a valid DCE administrator

Chapter 4. Controlling Database Access 117

2. Invoke dcecp and enter the following at the prompt:

xattrschema create /.:/sec/xattrschema/db2map \
-aclmgr {{principal rmvr m} {group rmvr m}} \
-annotation {Schema entry for DB2 database access} \
-encoding stringarray \

-multivalued no \

-uuid 1lche84ca-9df3-11cf-84cd-02608c2cd17b

V V.V V VYV

This creates the Extended Registry Attribute db2map.

To view this mapping, issue the following command at the dcecp prompt:

> xattrschema show /.:/sec/xattrschema/db2map

You will see the following:

{axTmgr
{{principal {{query r} {update m} {test r} {delete m}}}
{group {{query r} {update m} {test r} {delete m}}}}}

annotation {Schema entry for DB2 database access}}
applydefs no}

intercell rejects}

multivalued no}

reseved no}

scope {}}

trighind {}}

trigype none}

unique no}

uuid 1lcbe84ca-9df3-11cf-84cd-02608c2cd17b}

e e e T

Note: Restrictions on the contents of the authorization name recorded in the ERA are
not enforced by DCE. If a DCE principal or group is given an invalid
authorization name, an error results when an attempt is made by DB2 to
authenticate that user. (Recall that authentication may occur at CONNECT,
ATTACH, DB2START, or any other operation where authentication is required.)
It is also highly recommended that you ensure the assignment of authorization
names to DCE principals is one-to-one and unique. DCE does not check these
conditions.

If a DB2 client is to access a DB2 UDB server, once they are registered as DCE
principals, the ERA information must be added to provide the mapping from the
principal name to the authorization name. This must be done once for each user or
group; and, is accomplished by completing the following steps:

e Login to DCE as a valid DCE administrator
¢ Invoke dcecp and at the prompt enter the following:

> principal modify principal_name \
> -add {db2map map_1 map_2...map_n}

where map_n uses the following format:

DCE_server_principal,DB2_authid

118 Administration Guide

where DCE_server_principal is a valid DCE principal name for a DB2 UDB server
(or is the wildcard * which indicates this mapping is valid for any DB2 server not
already specified in another map_n entry) and DB2_authid is a valid DB2
authorization name.

How to Setup a DB2 Server to Use DCE
Servers must be registered in the Distributed Computing Environment (DCE) Registry
and have correct attributes before being used with DB2. See the appropriate
platform-specific DCE documentation for information on how to create a DCE server
principal.

The DCE Security client runtime code must be installed and accessible by the server
instance.

Each DB2 server that wishes to use DCE as an authentication mechanism must
register with DCE at the time of issuing DB2START. To avoid having to do this
manually, DCE provides a method whereby a server maintains its own user ID and
password (key) information in a special file called a keytab file. At DB2START, DB2
reads the database manager configuration file and obtains the authentication type for
the instance. If it finds the authentication type is DCE, DCE calls are made by the DB2
server to obtain the information from the keytab file. It is this information that is used to
register the server with DCE. This registration allows the server to accept DCE tokens
from DCE clients and to use them to authenticate these users.

The instance administrator must create the keytab file for the instance using DCE
commands. Detailed information on how to create a keytab file is included in the DCE
documentation for your platform. In that document, refer to the details associated with
the keytab file and the commands dcecp keytab or rgy_edit. The DB2 keytab file must
be named keytab.db2 and must reside in the security subdirectory of the sql11ib
directory for the instance. (For Intel-based operating systems, the file must reside in the
security subdirectory of the INSTANCENAME subdirectory of the sq11ib directory.
INSTANCENAME is the instance name of the database you are working with.) It should
contain only one entry for the server principal for the specified instance; anything else
results in an error at DB2START time. On UNIX operating system platforms, this file
must be protected with file permissions to only allow read/write for the instance owner.

Following is an example of the creation of the keytab file:

e Login to DCE as a valid DCE user
e Invoke rgy edit, and enter the following at the prompt:

> ktadd -p principal_name -pw principal_password \
> -f keytab.db2

To start DB2 using DCE authentication once the DCE configuration is complete, you
must tell DB2 it is to use DCE authentication by updating the database manager
configuration file with authentication type “DCE.” This is done by issuing the following
CLP command:

Chapter 4. Controlling Database Access 119

update database manager configuration using authentication DCE
sysadm_group DCE_group_name

Then perform a dce_Togin to a valid DB2 DCE user and issue DB2START.

Note: Before starting DB2 using DCE authentication, ensure you have defined a DCE
user principal to be used as your SYSADM for the instance so that you have a
valid DCE user ID from which to start, stop, and administer the instance.
Please see “How to Setup a DB2 User for DCE” on page 117 for instructions
on how to do this.

In addition to these instructions, ensure the principal created is a member of the
SYSADM_GROUP for the instance. By default, this group name is DB2ADMIN
for DCE authentication when no group is explicitly specified (that is, when the
SYSADM_GROUP is null), but it can be updated before changing the
authentication type for the instance to a group name (authorization name) of
your choice. The DCE group that you select must have an ERA defined that
maps it to the specified SYSADM_GROUP authorization name.

How to Setup a DB2 Client Instance to Use DCE
A client-only instance may be established to use DCE authentication for local
operations by updating the database manager configuration file and setting the
authentication type to DCE. There is no requirement to have a keytab file for a
client-only instance since there is no server that needs to register to DCE. In general, it
is not recommended (or required) that a client-only DB2 instance use DCE
authentication, but it is supported.

A client that wishes to access a remote database using DCE security requires access
to the applicable DCE Security product. Optionally, the client may choose to catalog the
authentication type for the target database in the database directory. If the client
chooses to specify DCE authentication, the fully-qualified DCE server principal name
must also be specified. If DCE authentication is not specified in the directory, the
authentication and principal information is obtained from the server at CONNECT time.

DB2 Restrictions Using DCE Security
Using DCE authentication places some restrictions on certain SQL functions provided
by DB2 and related to group support. The following restrictions exist when using DCE
authentication:

1. When using the GRANT or REVOKE statements, the keywords USER and GROUP
must be specified to qualify the authorization name specified, otherwise an error is
issued.

2. When using the AUTHORIZATION clause of the CREATE SCHEMA statement, the
group membership of the authorization name specified will not be considered in
evaluating the authorizations required to perform the statements that follow this
clause. This may result in an authorization failure during execution of the CREATE
SCHEMA statement.

3. When a package is rebound by a user other than the original binder of the
package, the privileges of the original binder are reevaluated. In this case, group

120 Administration Guide

membership of the original binder are not considered when reevaluating privileges.
This may result in an authorization failure during rebinding.

Privileges, Authorities, and Authorization

Privileges enable users to create or access database resources. Authority levels
provide a method of grouping privileges and higher-level database manager
maintenance and utility operations. Together, these act to control access to the
database manager and its database objects. Users can access only those objects for
which they have the appropriate authorization, that is, the required privilege or authority.

The following authorities exist:

e “System Administration Authority (SYSADM)” on page 123
e “Database Administration Authority (DBADM)” on page 125
e “System Control Authority (SYSCTRL)” on page 124

e “System Maintenance Authority (SYSMAINT)” on page 124

The following types of privileges exist:

¢ “Database Privileges” on page 126

e “Schema Privileges” on page 127

e “Table and View Privileges” on page 127
e “Package Privileges” on page 128

¢ “Index Privileges” on page 129

Figure 19 on page 122 illustrates the hierarchical relationship between authorities and

privileges. In the hierarchy, the lower level authorities and privileges are subsets of
those above them.

Chapter 4. Controlling Database Access 121

SYSADM

SYSCTRL
DBADM SYSMAINT
Authorities
Privileges
BINDADD CONNECT CONTROL CONTROL CONTROL CONTROL | | (Schema)
(Database) (Database) (Indexes) (Packages) (Tables) (Views) Owners)
BIND ALL ALL ALTERIN
CREATE_NOT FENCED | |CREATETAB EXECUTE | | ALTER DELETE CREATEIN
(Database) (Database) DELETE INSERT DROPIN
INDEX SELECT
INSERT UPDATE
REFERENCES
IMPLICIT_SCHEMA
(Database) SELECT
UPDATE

Figure 19. Hierarchy of Authorities and Privileges

A user or group can have one or more of the following levels of authorization:

e Administrative authority (SYSADM or DBADM) gives full privileges for a set of
objects.

e System authority (SYSCTRL or SYSMAINT) gives full privileges for managing the
system, but does not allow access to the data.

¢ Ownership privilege (also called CONTROL privilege in some cases) gives full
privileges for a specific object.

e Individual privileges may be granted to allow a user to carry out specific functions
on specific objects.

e Implicit privileges may be granted to a user who has the privilege to execute a
package. While users can run the application, they do not necessarily require
explicit privileges on the data objects used within the package. For more
information see “Allowing Indirect Privileges through a Package” on page 132.

Users with administrative authority (SYSADM or DBADM) or ownership privileges
(CONTROL) can grant and revoke privileges to and from others, using the GRANT and
REVOKE statements. (See “Controlling Access to Database Objects” on page 129.) It
is also possible to grant a table, view, or schema privilege to another user if that
privilege is held WITH GRANT OPTION. However, the WITH GRANT OPTION does

122 Administration Guide

not allow the person granting the privilege to revoke the privilege once granted. You
must have SYSADM authority, DBADM authority, or CONTROL privilege to revoke the
privilege.

A user or group can be authorized for any combination of individual privileges or
authorities. When a privilege is associated with a resource, that resource must exist.
For example, a user cannot be given the SELECT privilege on a table unless that table
has previously been created.

Note: Care must be taken when an authorization name is given authorities and
privileges and there is no user created with that authorization name. At some
later time, a user can be created with that authorization name and automatically
receive all of the authorities and privileges associated with that authorization
name.

See the Command Reference, the API Reference, or the SQL Reference for
information about what authorization is required for a particular command, API, or SQL
statement.

System Administration Authority (SYSADM)
SYSADM authority is the highest level of administrative authority. Users with SYSADM
authority can run utilities, issue database and database manager commands, and
access the data in any table in any database within the database manager instance. It
provides the ability to control all database objects in the instance, including databases,
tables, views, indexes, packages, schemas, aliases, data types, functions, procedures,
triggers, table spaces, nodegroups, buffer pools, and event monitors.

SYSADM authority is assigned to the group specified by the sysadm_group
configuration parameter (see “System Administration Authority Group Name
(sysadm_group)” on page 570). Membership in that group is controlled outside the
database manager through the security facility used on your platform. See the Quick
Beginnings for information on how to use your system security facility to create,
change, or delete SYSADM authorities.

Only a user with SYSADM authority can perform the following functions:

¢ Migrate a database

¢ Change the database manager configuration file (including specifying the groups
having SYSCTRL or SYSMAINT authority)

e Grant DBADM authority.

In addition, a user with SYSADM authority can perform the functions of users with the
following authorities:

e “System Control Authority (SYSCTRL)” on page 124
e “System Maintenance Authority (SYSMAINT)” on page 124
e “Database Administration Authority (DBADM)” on page 125

Note: When users with SYSADM authority create databases, they are automatically
granted explicit DBADM authority on the database. If the database creator is
removed from the SYSADM group, and if you want to also prevent them from

Chapter 4. Controlling Database Access 123

accessing that database as a DBADM, you must explicitly revoke this DBADM
authority.

System Control Authority (SYSCTRL)
SYSCTRL authority is the highest level of system control authority. This authority
provides the ability to perform maintenance and utility operations against the database
manager instance and its databases. These operations can affect system resources,
but they do not allow direct access to data in the databases. System control authority is
designed for users administering a database manager instance containing sensitive
data.

SYSCTRL authority is assigned to the group specified by the sysctrl_group
configuration parameter (see “System Control Authority Group Name (sysctrl_group)”
on page 571). If a group is specified, membership in that group is controlled outside
the database manager through the security facility used on your platform.

Only a user with SYSCTRL authority or higher can do the following:

e Update a database, node, or distributed connection services (DCS) directory
e Force users off the system

e Create or drop a database

e Drop, create, or alter a table space

¢ Restore to new database.

In addition, a user with SYSCTRL authority can perform the functions of users with
“System Maintenance Authority (SYSMAINT)” authority.

Users with SYSCTRL authority also have the implicit privilege to connect to a database.

Note: When users with SYSCTRL authority create databases, they are automatically
granted explicit DBADM authority on the database. If the database creator is
removed from the SYSCTRL group, and if you want to also prevent them from
accessing that database as a DBADM, you must explicitly revoke this DBADM
authority.

System Maintenance Authority (SYSMAINT)
SYSMAINT authority is the second level of system control authority. This authority
provides the ability to perform maintenance and utility operations against the database
manager instance and its databases. These operations can affect system resources,
but they do not allow direct access to data in the databases. System maintenance
authority is designed for users maintaining databases within a database manager
instance that contains sensitive data.

SYSMAINT authority is assigned to the group specified by the sysmaint_group
configuration parameter (see “System Maintenance Authority Group Name
(sysmaint_group)” on page 572). If a group is specified, membership in that group is
controlled outside the database manager through the security facility used on your
platform.

124 Administration Guide

Only a user with SYSMAINT or higher system authority can do the following:

Update database configuration files

Backup a database or table space

Restore to an existing database

Perform roll forward recovery

Start or stop a database instance

Restore a table space

Run trace

Take database system monitor snapshots of a database manager instance or its
databases.

A user with SYSMAINT, DBADM, or higher authority can do the following:

Query the state of a table space

Update log history files

Quiesce a table space

Reorganize a table

Collect catalog statistics using the RUNSTATS utility.

Users with SYSMAINT authority also have the implicit privilege to connect to a
database.

Database Administration Authority (DBADM)
DBADM authority is the second highest level of administrative authority. It applies only
to a specific database, and allows the user to run certain utilities, issue database
commands, and access the data in any table in the database. When DBADM authority
is granted, BINDADD, CONNECT, CREATETAB, CREATE_NOT_FENCED, and
IMPLICIT_SCHEMA privileges are granted as well. Only a user with SYSADM authority
can grant or revoke DBADM authority. Users with DBADM authority can grant
privileges on the database to others and can revoke any privilege from any user
regardless of who granted it.

Only a user with DBADM or higher authority can do the following:

Read log files
Create, activate and drop event monitors
Run the load utility.

A user with DBADM, SYSMAINT, or higher authority can do the following:

Query the state of a table space

Update log history files

Quiesce a table space.

Reorganize a table

Collect catalog statistics using the RUNSTATS utility.

Note: A DBADM can only perform the above functions on the database for which

DBADM authority is held.

Chapter 4. Controlling Database Access 125

Database Privileges
Database privileges involve actions on a database as a whole:

e CONNECT allows a user to access the database

e BINDADD allows a user to create new packages in the database

e CREATETAB allows a user to create new tables in the database

e CREATE_NOT_FENCED allows a user to create a user-defined function (UDF) or
procedure that is “not fenced.” UDFs or procedures that are “not fenced” must be
extremely well tested because the database manager does not protect its storage
or control blocks from these UDFs or procedures. (As a result, a poorly written
and tested UDF or procedure that is allowed to run “not fenced” can cause serious
problems for your system.) (See the Embedded SQL Programming Guide or the
SQL Reference for more information.)

¢ |IMPLICIT_SCHEMA allows any user to create a schema implicitly by creating an
object using a CREATE statement with a schema name that does not already
exist. SYSIBM becomes the owner of the implicitly created schema and PUBLIC is
given the privilege to create objects in this schema.

Only users with SYSADM or DBADM authority can grant and revoke these privileges to
and from other users.

Note: When a database is created, the following privileges are automatically granted
to PUBLIC:

e CREATETAB

e BINDADD

e CONNECT

e IMPLICIT_SCHEMA

e SELECT privilege on the system catalog views.

To remove any privilege, a DBADM or SYSADM must explicitly revoke the privilege
from PUBLIC.

Implicit Schema Authority (IMPLICIT_SCHEMA) Considerations

When a new database is created, or when a database is migrated from the previous
release, PUBLIC is given IMPLICIT_SCHEMA database authority. With this authority,
any user can create a schema by creating an object and specifying a schema name
that does not already exist. SYSIBM becomes the owner of the implicitly created
schema and PUBLIC is given the privilege to create objects in this schema.

If control of who can implicitly create schema objects is required for the database,
IMPLICIT_SCHEMA database authority should be revoked from PUBLIC. Once this is
done, there are only three (3) ways that a schema object is created:

e Any user can create a schema using their own authorization name on a CREATE
SCHEMA statement.

¢ Any user with DBADM authority can explicitly create any schema which does not
already exist, and can optionally specify another user as the owner of the schema.

126 Administration Guide

¢ Any user with DBADM authority has IMPLICIT_SCHEMA database authority
(independent of PUBLIC) so that they can implicitly create a schema with any
name at the time they are creating other database objects. SYSIBM becomes the
owner of the implicitly created schema and PUBLIC has the privilege to create
objects in the schema.

A user always has the ability to explicitly create their own schema using their own
authorization name.

Schema Privileges

Schema privileges involve actions on schemas in a database. A user may be granted
any of the following privileges:

e CREATEIN allows the user to create objects within the schema.
e ALTERIN allows the user to alter objects within the schema.

e DROPIN allows the user to drop objects from within the schema.

The owner of the schema has all of these privileges and the ability to grant them to
others. The objects that are manipulated within the schema object include: tables,
views, indexes, packages, data types, functions, triggers, procedures, and aliases.

Table and View Privileges
Table and view privileges involve actions on tables or views in a database. A user
must have CONNECT privilege on the database to use any of the following privileges:

e CONTROL provides the user with all privileges for a table or view including the
ability to drop it, and to grant and revoke individual table privileges. You must have
SYSADM or DBADM authority to grant CONTROL. The creator of a table
automatically receives CONTROL privilege on the table. The creator of a view
automatically receives CONTROL privilege only if they have CONTROL privilege
on all tables and views referenced in the view definition, or they have SYSADM or
DBADM authority.

e ALTER allows the user to add columns to a table, to add or change comments on
a table and its columns, to add a primary key or unique constraint and to create or
drop a table check constraint. The user can also create triggers on the table,
although additional authority on all the objects referenced in the trigger (including
SELECT on the table if the trigger references any of the columns of the table) is
required. A user with ALTER privilege on all the descendent tables can drop a
primary key; a user with ALTER privilege on the table and REFERENCES privilege
on the parent table, or REFERENCES privilege on the appropriate columns, can
create or drop a foreign key. A user with ALTER privilege can also COMMENT ON
a table.

e DELETE allows the user to delete rows from a table or view.

¢ INDEX allows the user to create an index on a table. Creators of indexes
automatically have CONTROL privilege on the index. For more information, see
“Index Privileges” on page 129.

¢ INSERT allows the user to insert an entry into a table or view, and to run the
IMPORT utility.

Chapter 4. Controlling Database Access 127

¢ REFERENCES allows the user to create and drop a foreign key, specifying the
table as the parent in a relationship. The user may have this privilege only on
specific columns.

e SELECT allows the user to retrieve rows from a table or view, to create a view on
a table, and to run the EXPORT uitility.

e UPDATE allows the user to change an entry in a table, a view, or for one or more
specific columns in a table or view. The user may have this privilege only on
specific columns.

The privilege to grant these privileges to others may also be granted using the WITH
GRANT OPTION on the GRANT statement.

Note: When a user or group is granted CONTROL privilege on a table, all other
privileges on that table are automatically granted WITH GRANT OPTION. If you
subsequently revoke the CONTROL privilege on the table from a user, that user
will still retain the other privileges that were automatically granted. To revoke all
the privileges that are granted with the CONTROL privilege, you must either
explicitly revoke each individual privilege or specify the ALL keyword on the
REVOKE statement, for example:

REVOKE ALL
ON EMPLOYEE FROM USER HERON

The following manuals provide information about the authorizations required to execute
specific commands, APIs, or SQL statements:

e SQL Reference
e Command Reference
* API| Reference.

See “User Update-Capable Catalog Statistics” on page 330 for information about the
authorization required to update catalog statistics.

For information about how view privileges are determined, see the CREATE VIEW
statement in the SQL Reference manual.

Package Privileges
A package is a database object that contains the information needed by the database
manager to access data in the most efficient way for a particular application program.
Package privileges enable a user to create and manipulate packages. The user must
have CONNECT privilege on the database to use any of the following privileges:

e CONTROL provides the user with the ability to rebind, drop, or execute a package
as well as the ability to extend those privileges to others. The creator of a package
automatically receives this privilege. A user with CONTROL privilege is granted the
BIND and EXECUTE privileges, and can grant BIND and EXECUTE privileges to
other users as well. To grant CONTROL privilege, the user must have SYSADM or
DBADM authority.

e BIND allows the user to rebind an existing package.

e EXECUTE allows the user to execute a package.

128 Administration Guide

In addition to these package privileges, the BINDADD database privilege allows users
to create new packages or rebind an existing package in the database.

Index Privileges
The creator of an index automatically receives CONTROL privilege on the index.
CONTROL privilege on an index is really the ability to drop the index. To grant
CONTROL privilege on an index, a user must have SYSADM or DBADM authority.

The table-level INDEX privilege allows a user to create an index on that table (see
“Table and View Privileges” on page 127).

Controlling Access to Database Objects

Controlling data access requires an understanding of direct and indirect privileges,
administrative authorities, and packages. This section explains these topics and
provides some examples.

Directly granted privileges are stored in the system catalog. Methods for auditing the
implementation of the database access control plan are discussed in “Using the System
Catalog” on page 136.

Authorization is controlled in three ways:

e Explicit authorization is controlled through privileges controlled with the GRANT
and REVOKE statements

¢ Implicit authorization is controlled by creating and dropping objects

¢ Indirect privileges are associated with packages.

The following topics are discussed:

e “Granting Privileges”

¢ “Revoking Privileges” on page 130

¢ “Managing Implicit Authorizations by Creating and Dropping Objects” on page 131
¢ “Allowing Indirect Privileges through a Package” on page 132

e “Controlling Access to Data with Views” on page 132.

Granting Privileges
The GRANT statement allows an authorized user to grant privileges. A privilege can be
granted to one or more authorization names in one statement; or to PUBLIC, which
makes the privileges available to all users. Note that an authorization name can be
either an individual user or a group.

On operating systems where users and groups exist with the same name, you should
specify whether you are granting the privilege to the user or group. Both the GRANT
and REVOKE statements support the keywords USER and GROUP. If these optional
keywords are not used, the database manager checks the operating system security
facility to determine whether the authorization name identifies a user or a group. If the
authorization name could be both a user and a group, an error is returned.

Chapter 4. Controlling Database Access 129

The following example grants SELECT privileges on the EMPLOYEE table to the user
HERON:

GRANT SELECT
ON EMPLOYEE TO USER HERON

The following example grants SELECT privileges on the EMPLOYEE table to the group
HERON:

GRANT SELECT
ON EMPLOYEE TO GROUP HERON

To grant privileges on most database objects, the user must have SYSADM authority,
DBADM authority, or CONTROL privilege on that object; or, the user must hold the
privilege WITH GRANT OPTION. Privileges can be granted only on existing objects. To
grant CONTROL privilege to someone else, the user must have SYSADM or DBADM
authority. To grant DBADM authority, the user must have SYSADM authority.

See the SQL Reference for more information about the GRANT statement.

Revoking Privileges
The REVOKE statement allows authorized users to revoke privileges previously granted
to other users. To revoke privileges on database objects, you must have DBADM
authority, SYSADM authority, or CONTROL privilege on that object. Note that holding
a privilege WITH GRANT OPTION is not sufficient to revoke that privilege. To revoke
CONTROL privilege from another user, you must have SYSADM or DBADM authority.
To revoke DBADM authority, you must have SYSADM authority. Privileges can only be
revoked on existing objects.

Note: A user without DBADM authority or CONTROL privilege on a table or view is
not able to revoke a privilege that they granted through their use of the WITH
GRANT OPTION. Also, there is no cascade on the revoke to those who have
received privileges granted by the person being revoked. For more information
on the authority required to revoke privileges, see the SQL Reference manual.

If a privilege has been granted to both a user and a group with the same name, you
must specify the GROUP or USER keyword when revoking the privilege. The following
example revokes the SELECT privilege on the EMPLOYEE table from the user
HERON:

REVOKE SELECT
ON EMPLOYEE FROM USER HERON

The following example revokes the SELECT privilege on the EMPLOYEE table from the
group HERON:

REVOKE SELECT
ON EMPLOYEE FROM GROUP HERON

Note that revoking a privilege from a group may not revoke it from all members of that
group. If an individual name has been directly granted a privilege, it will keep it until that
privilege is directly revoked.

130 Administration Guide

If a table privilege is revoked from a user, privileges are also revoked on any view
created by that user which depends on the revoked table privilege. However, only the
privileges implicitly granted by the system are revoked. If a privilege on the view was
granted directly by another user, the privilege is still held.

If an explicitly-granted table (or view) privilege is revoked from a user with DBADM
authority, privileges will not be revoked from other views defined on that table. This is
because the view privileges are available through the DBADM authority and are not
dependent on explicit privileges on the underlying tables.

If you have defined a view based on one or more underlying tables or views and you
lose the SELECT privilege to one or more of those tables or views, then the view
cannot be used.

Note: When CONTROL privilege is revoked from a user on a table or a view, the user
continues to have the ability to grant privileges to others. When given
CONTROL privilege, the user also receives all other privileges WITH GRANT
OPTION. Once CONTROL is revoked, all of the other privileges remain WITH
GRANT OPTION until they are explicitly revoked.

All packages that are dependent on revoked privileges are marked invalid, but can be
validated if rebound by a user with appropriate authority. Packages can also be rebuilt if
the privileges are subsequently granted again to the binder of the application; running
the application will trigger a successful implicit rebind. If privileges are revoked from
PUBLIC, all packages bound by users having only been able to bind based on PUBLIC
privileges are invalidated. If DBADM authority is revoked from a user, all packages
bound by that user are invalidated including those associated with database utilities.
Attempting to use a package that has been marked invalid causes the system to
attempt to rebind the package. If this rebind attempt fails, an error occurs (SQLCODE
-727). In this case, the packages must be explicitly rebound by a user with:

e Authority to rebind the packages
e Appropriate authority for the objects used within the packages

These packages should be rebound at the time the privileges are revoked. See the
SQL Reference for more information about the REVOKE and REBIND PACKAGE
statements.

If you have defined a trigger based on one or more privileges and you lose one or more
of those privileges, then the trigger cannot be used.

Managing Implicit Authorizations by Creating and Dropping Objects
The database manager implicitly grants certain privileges to a user who issues a
CREATE SCHEMA, CREATE TABLE, CREATE VIEW, or CREATE INDEX statement,
or who creates a new package using a PREP or BIND command. Privileges are also
granted when objects are created by users with SYSADM or DBADM authority.
Similarly, privileges are removed when an object is dropped.

When the created object is a table, index, or package, the user receives CONTROL
privilege on the object. When the object is a view, the CONTROL privilege for the view

Chapter 4. Controlling Database Access 131

is granted implicitly only if the user has CONTROL privilege for all tables and views
referenced in the view definition.

When the object explicitly created is a schema, the schema owner is given ALTERIN,
CREATEIN, and DROPIN privileges WITH GRANT OPTION. An implicitly created
schema has CREATEIN granted to PUBLIC.

For information about how view privileges are determined, see the CREATE VIEW
statement in the SQL Reference manual.

Allowing Indirect Privileges through a Package
Access to data within a database can be requested by application programs, as well as
by persons engaged in an interactive workstation session. A package contains
statements that allow users to perform a variety of actions on many database objects.
Each of these actions requires one or more privileges.

Privileges granted to individuals binding the package and to PUBLIC are used for
authorization checking when static SQL is bound. Privileges granted through groups are
not used for authorization checking when static SQL is bound. The user who binds a
package must either have been explicitly granted all the privileges required to execute
the static SQL statements in the package or have been implicitly granted the necessary
privileges through PUBLIC. PUBLIC, group, and user privileges are all used when
checking to ensure the user has the appropriate authorization (BIND or BINDADD
privilege) to bind the package.

Packages may include both static and dynamic SQL. To process a package with static
SQL, a user need only have EXECUTE privilege on the package. This user can then
indirectly obtain the privileges of the package binder for any static SQL in the package
but only within the restrictions imposed by the package.

To process a package with any dynamic SQL statements, the user must have
EXECUTE privilege on the package. The user needs EXECUTE privilege on the
package plus any privileges required to execute the dynamic SQL statements in the
package. The binder's authorities and privileges are used for any static SQL in the
package.

Controlling Access to Data with Views
A view provides a means of controlling access or extending privileges to a table by
allowing:

e Access only to designated columns of the table.

For users and application programs that require access only to specific columns of
a table, an authorized user can create a view to limit the columns addressed only
to those required.

e Access only to a subset of the rows of the table.

By specifying a WHERE clause in the subquery of a view definition, an authorized
user can limit the rows addressed through a view.

132 Administration Guide

To create a view, a user must have SYSADM authority, DBADM authority, or
CONTROL or SELECT privilege for each table or view referenced in the view definition.
The user must also be able to create an object in the schema specified for the view.
That is, CREATEIN privilege for an existing schema or IMPLICIT_SCHEMA authority on
the database if the schema does not already exist. See “Creating a View” on page 93
for more information.

The following scenario illustrates how views can restrict access to information.

Many people may require access to information in the STAFF table, for different
reasons. For example:

The personnel department needs to be able to update and look at the entire table.

This requirement can be easily met by granting SELECT and UPDATE privileges
on the STAFF table to the group PERSONNL:

GRANT SELECT,UPDATE ON TABLE STAFF TO GROUP PERSONNL

Individual department managers need to look at the salary information for their
employees.

This requirement can be met by creating a view for each department manager.
For example, the following view can be created for the manager of department
number 51:

CREATE VIEW EMPO51 AS
SELECT NAME,SALARY,JOB FROM STAFF
WHERE DEPT=51

GRANT SELECT ON TABLE EMPO51 TO JANE

The manager with the authorization name JANE would query the EMPO51 view just
like the STAFF table. When accessing the EMPO051 view of the STAFF table, this
manager views the following information:

NAME SALARY JOB
Fraye 45150.0 Magr
Williams 37156.5 Sales
Smith 35654.5 Sales
Lundquist 26369.8 Clerk
Wheeler 22460.0 Clerk

All users need to be able to locate other employees. This requirement can be met
by creating a view on the NAME column of the STAFF table and the LOCATION
column of the ORG table, and by joining the two tables on their respective DEPT
and DEPTNUMB columns:

CREATE VIEW EMPLOCS AS
SELECT NAME, LOCATION FROM STAFF, ORG
WHERE STAFF.DEPT=0RG.DEPTNUMB

GRANT SELECT ON TABLE EMPLOCS TO PUBLIC

Users who access the employee location view will see the following information:

Chapter 4. Controlling Database Access 133

NAME LOCATION
Molinare New York

Lu New York
Daniels New York
Jones New York
Hanes Boston
Rothman Boston

Ngan Boston
Kermisch Boston
Sanders Washington
Pernal Washington
James Washington
Sneider Washington
Marenghi Atlanta
O'Brien Atlanta
Quigley Atlanta
Naughton Atlanta
Abrahams Atlanta
Koonitz Chicago

Plotz Chicago
Yamaguchi Chicago
Scoutten Chicago
Fraye Dallas
Williams Dallas

Smith Dallas
Lundquist Dallas
Wheeler Dallas

Lea San Francisco
Wilson San Francisco
Graham San Francisco
Gonzales San Francisco
Burke San Francisco
Quill Denver

Davis Denver
Edwards Denver
Gafney Denver

134 Administration Guide

Tasks and Required Authorizations

Not all organizations divide job responsibilities in the same manner. Table 21 lists
some other common job titles, the tasks that usually accompany them, and the
authorities or privileges that are needed to carry out those tasks.

Table 21. Common Job Titles, Tasks, and Required Authorization

JOB TITLE

TASKS

REQUIRED AUTHORIZATION

Department Administrator

Oversees the departmental
system; creates databases

SYSCTRL authority. SYSADM
authority if the department has its
own instance.

Security Administrator

Authorizes other users for some or
all authorizations and privileges

SYSADM or DBADM authority.

Database Administrator

Designs, develops, operates,
safeguards, and maintains one or
more databases

DBADM and SYSMAINT authority
over one or more databases.
SYSCTRL authority in some
cases.

System Operator

Monitors the database and carries
out backup functions

SYSMAINT authority.

Application Programmer

Develops and tests the database
manager application programs;
may also create tables of test data

BINDADD, BIND on an existing
package, CONNECT and
CREATETAB on one or more
databases, some specific schema
privileges, and a list of privileges
on some tables.

User Analyst

Defines the data requirements for
an application program by
examining the system catalog
views

SELECT on the catalog views;
CONNECT on one or more
databases.

Program End User

Executes an application program

EXECUTE on the package;
CONNECT on one or more
databases. See the note following
this table.

Information Center Consultant

Defines the data requirements for
a query user; provides the data by
creating tables and views and by
granting access to database
objects

DBADM authority over one or
more databases.

Query User

Issues SQL statements to retrieve,
add, delete, or change data; may
save results as tables

CONNECT on one or more
databases; CREATEIN on the
schema of the tables and views
being created; and, SELECT,
INSERT, UPDATE, DELETE on
some tables and views.

If an application program contains dynamic SQL statements, the Program End User
may need other privileges in addition to EXECUTE and CONNECT (such as SELECT,
INSERT, DELETE, and UPDATE).

Chapter 4. Controlling Database Access

135

Using the System Catalog

Information about each database is automatically maintained in a set of views called
the system catalog, which is created when the database is generated. This system
catalog describes tables, columns, indexes, programs, privileges, and other objects.

Six of these views list the privileges held by users and the identity of the user granting
each privilege:

SYSCAT.DBAUTH Lists the database privileges
SYSCAT.TABAUTH Lists the table and view privileges
SYSCAT.COLAUTH Lists the column privileges
SYSCAT.PACKAGEAUTH Lists the package privileges
SYSCAT.INDEXAUTH Lists the index privileges
SYSCAT.SCHEMAAUTH Lists the schema privileges

Privileges granted to users by the system will have SYSIBM as the grantor. SYSADM,
SYSMAINT and SYSCTRL are not listed in the system catalog.

The CREATE and GRANT statements place privileges in the system catalog. Users
with SYSADM and DBADM authorities can grant and revoke SELECT privilege on the
system catalog views. The following examples show how to extract information about
privileges by using these SQL queries:

e “Retrieving Authorization Names with Granted Privileges”

e “Retrieving All Names with DBADM Authority” on page 137

e “Retrieving Names Authorized to Access a Table” on page 137
e “Retrieving All Privileges Granted to Users” on page 137

e “Securing the System Catalog Views” on page 138

Retrieving Authorization Names with Granted Privileges
No single system catalog view contains information about all privileges. The following
statement retrieves all authorization names with privileges:

SELECT DISTINCT GRANTEE, GRANTEETYPE, 'DATABASE' FROM SYSCAT.DBAUTH
ggiggT DISTINCT GRANTEE, GRANTEETYPE, 'TABLE ' FROM SYSCAT.TABAUTH
ggiggT DISTINCT GRANTEE, GRANTEETYPE, 'PACKAGE ' FROM SYSCAT.PACKAGEAUTH
ggiggT DISTINCT GRANTEE, GRANTEETYPE, 'INDEX ' FROM SYSCAT.INDEXAUTH
SEEEET DISTINCT GRANTEE, GRANTEETYPE, 'COLUMN ' FROM SYSCAT.COLAUTH
ggiggT DISTINCT GRANTEE, GRANTEETYPE, 'SCHEMA ' FROM SYSCAT.SCHEMAAUTH
ORDER BY GRANTEE, GRANTEETYPE, 3

Periodically, the list retrieved by this statement should be compared with lists of user

and group names defined in the system security facility. You can then identify those
authorization names that are no longer valid.

136 Administration Guide

Note: If you are supporting remote database clients, it is possible that the
authorization name is defined at the remote client only and not on your
database server machine.

Retrieving All Names with DBADM Authority

The following statement retrieves all authorization names that have been directly
granted DBADM authority:

SELECT DISTINCT GRANTEE FROM SYSCAT.DBAUTH
WHERE DBADMAUTH = 'Y'

Retrieving Names Authorized to Access a Table
The following statement retrieves all authorization names that are directly authorized to
access the table EMPLOYEE with the qualifier JAMES:

SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.TABAUTH
WHERE TABNAME = 'EMPLOYEE'
AND TABSCHEMA = 'JAMES'
UNION
SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.COLAUTH
WHERE TABNAME = 'EMPLOYEE'
AND TABSCHEMA = 'JAMES'

To find out who can update the table EMPLOYEE with the qualifier JAMES, issue the
following statement:

SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.TABAUTH
WHERE TABNAME = 'EMPLOYEE' AND TABSCHEMA = 'JAMES' AND
(CONTROLAUTH = 'Y' OR
UPDATEAUTH = 'Y' OR UPDATEAUTH = 'G')
UNION
SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.DBAUTH
WHERE DBADMAUTH = 'Y!
UNION
SELECT DISTINCT GRANTEETYPE, GRANTEE FROM SYSCAT.COLAUTH
WHERE TABNAME = 'EMPLOYEE' AND TABSCHEMA = 'JAMES' AND
PRIVTYPE = 'U'

This retrieves any authorization names with DBADM authority, as well as those names
to which CONTROL or UPDATE privileges have been directly granted. However, it will
not return the authorization names of users who only hold SYSADM authority.

Remember that some of the authorization names may be groups, not just individual
users.

Retrieving All Privileges Granted to Users
By making queries on the system catalog views, users can retrieve a list of the
privileges they hold and a list of the privileges they have granted to other users. For
example, the following statement retrieves a list of the database privileges that have
been directly granted to an individual authorization name:

Chapter 4. Controlling Database Access 137

SELECT * FROM SYSCAT.DBAUTH
WHERE GRANTEE = USER AND GRANTEETYPE = 'U'

The following statement retrieves a list of the table privileges that were directly granted
by a specific user:

SELECT * FROM SYSCAT.TABAUTH
WHERE GRANTOR = USER

The following statement retrieves a list of the individual column privileges that were
directly granted by a specific user:

SELECT * FROM SYSCAT.COLAUTH
WHERE GRANTOR = USER

The keyword USER in these statements is always equal to the value of a user's
authorization name. USER is a read-only special register. See the SQL Reference for
more information on special registers.

Securing the System Catalog Views
During database creation, SELECT privilege on the system catalog views is granted to
PUBLIC. (See “Database Privileges” on page 126 for other privileges that are
automatically granted to PUBLIC.) In most cases, this does not present any security
problems. For very sensitive data, however, it may be inappropriate, as these tables
describe every object in the database. If this is the case, consider revoking the
SELECT privilege from PUBLIC; then grant the SELECT privilege as required to
specific users. Granting and revoking SELECT on the system catalog views is done in
the same way as for any view, but you must have either SYSADM or DBADM authority
to do this.

At a minimum, you should consider restricting access to the SYSCAT.DBAUTH,
SYSCAT.TABAUTH, SYSCAT.PACKAGEAUTH, SYSCAT.INDEXAUTH,
SYSCAT.COLAUTH, and SYSCAT.SCHEMAAUTH catalog views. This would prevent
information on user privileges, which could be used to target an authorization name for
break-in, becoming available to everyone with access to the database.

You should also examine the columns for which statistics are gathered (see

Chapter 11, “System Catalog Statistics” on page 311). Some of the statistics recorded
in the system catalog contain data values which could be sensitive information in your
environment. If these statistics contain sensitive data, you may wish to revoke SELECT
privilege from PUBLIC for the SYSCAT.COLUMNS and SYSCAT.COLDIST catalog
views.

If you wish to limit access to the system catalog views, you could define views to let
each authorization name retrieve information about its own privileges.

For example, the following view MYSELECTS includes the owner and name of every
table on which a user's authorization name has been directly granted SELECT privilege:

138 Administration Guide

CREATE VIEW MYSELECTS AS
SELECT TABSCHEMA, TABNAME FROM SYSCAT.TABAUTH
WHERE GRANTEETYPE = 'U'
AND GRANTEE = USER
AND SELECTAUTH = 'Y'

The keyword USER in this statement is always equal to the value of the authorization
name.

The following statement makes the view available to every authorization name:
GRANT SELECT ON TABLE MYSELECTS TO PUBLIC

And finally, remember to revoke SELECT privilege on the base table:
REVOKE SELECT ON TABLE SYSCAT.TABAUTH FROM PUBLIC

Chapter 4. Controlling Database Access 139

140 Administration Guide

Chapter 5. Utilities for Moving Data

The LOAD utility moves data into tables, extends existing indexes, and generates
statistics. LOAD moves the data much faster than the IMPORT utility when large
amounts of data are involved. Data, unloaded using the EXPORT utility, can be loaded
with the LOAD utility.

The AutoLoader utility splits large amounts of data and loads the split data into the
different partitions of a partitioned database.

The IMPORT and EXPORT utilities move data between a table or view and another
database or spreadsheet program; between DB2 databases; and between DB2
databases and host databases using DB2 Connect.

DataPropagator Relational (DPROPR) is a component of DB2 Universal Database that
allows automatic copying of table updates to other tables in other DB2 relational
databases.

Note: Other vendor's products that move data in and out of databases are also
available, but are not discussed here.

The following topics are discussed:

e Using the LOAD Utility

¢ Using the AutoLoader Utility

¢ Using the IMPORT Utility

e Using the EXPORT Utility

¢ LOAD, IMPORT, and EXPORT File Formats
e Moving Data Between Systems

Notes:

1. Remember to ensure you have the required file permissions when accessing data
from local area networks (LANS).

2. If DB2 for Windows NT has been defined as a Service to the Windows NT
operating system, the Service must have a User Account with the required
Read/Write file permissions to use LAN resources (drives, directories, and files).

Using the LOAD Utility

The LOAD utility is intended for the initial load or an append of a table where large
amounts of data are moved. There are no restrictions on the data types used by the
LOAD utility including large objects (LOBs) and user-defined types (UDTs). The LOAD
utility speeds up the task of loading large amounts of data into a database. LOAD is
faster than IMPORT because LOAD writes formatted pages directly into the database
while IMPORT does SQL INSERTSs. The data being loaded must be local to the server
(unlike IMPORT and EXPORT where data can be passed from the client).

© Copyright IBM Corp. 1993, 1997 141

In addition to the overview to the LOAD utility above, here are some details about the
LOAD utility that may be of interest to you. The LOAD utility also almost completely
eliminates the logging associated with the loading of data. In place of logging, you have
the option of making a copy of the loaded portion of the table. LOAD does not fire
triggers; and does not perform referential, and table, constraint checking (other than
validating the uniqueness of the unique indexes). Tables with such options defined may
be populated faster, or more simply, using IMPORT. If you have a recoverable
database, you can do one of the following:

e Use the non-recoverable LOAD option (and not require a backup)

e Explicitly request a copy of the loaded portion of the table be made

e Take a backup of the table space(s) in which the table resides after the completion
of the load.

The LOAD utility can take advantage of a hardware configuration where multiple
processors and/or multiple storage devices are used such as in a symmetric
multiprocessor (SMP) environment. There are several ways in which parallel processing
of large amounts of data can take place using the LOAD utility. One way is through the
use of multiple storage devices which allows for 1/O parallelism during the LOAD
process. Another way involves the use of the multiple processors in an SMP
environment which allows for intra-partition parallelism. And both can be used together
to provide even faster loading of the data.

The following topics provide more information:

e Overview of the LOAD Process

e Details About LOAD

e LOAD Performance Considerations

e LOAD Temporary Space Limitations

¢ Restarting LOAD and Database Recovery
e LOAD Exception Table

e Checking For Constraint Violations

Overview of the LOAD Process
There are multiple phases to the LOAD process: Load, where the data is written into
the table; Build, where the indexes are created; and Delete, where the rows that
caused a unique key violation are removed from the table. You must run the SET
CONSTRAINTS SQL statement after the load completes if there are tables left in the
check pending state to validate the table for referential integrity and check constraints.
The LOAD utility generates messages about the progress of each phase. If a failure
occurs during the LOAD process, these messages will assist you in deciding how to
recover.

During the Load phase, data is loaded into the table; index keys and table statistics are
collected if necessary. Save points, or points of consistency, are established at intervals
specified by you in the SAVECOUNT parameter on the LOAD command. These points of
consistency are not established exactly on the number of rows specified with the
SAVECOUNT parameter; rather the number of rows are converted to a page count, and
rounded up to intervals of the extent size. Messages let you know how many input rows

142 Administration Guide

were successfully loaded at the time of the save point. If a failure occurs, you should
use the number of input rows at the last successful consistency point with the
RESTARTCOUNT parameter during a restart. If the failure occurs near the beginning of the
LOAD process and you were doing a REPLACE, you might consider restarting the load
using the REPLACE option.

During the Build phase, indexes are created based on the index keys collected in the
Load phase. The index keys are sorted during the Load phase and index statistics are
collected. The statistics collected are similar to those collected during RUNSTATS. If a
failure occurs, the Build phase restarts from the beginning.

Unique key violations are placed into the exception table, if one was specified, and
messages on rejected rows are put into the message file. Following the completion of
the LOAD process: review these messages, correct any problems, and insert the
corrected rows into the table.

Note: The recording of warnings has a detrimental effect on the performance of the
LOAD. If performance is important, and you anticipate a large number of
warnings, you should consider using the NOROWWARNINGS filetype modifier. If this
filetype modifier was specified, these warnings are suppressed.

During the Delete phase, all rows causing a unique key violation are deleted. If a failure
occurs, this phase should be restarted by you from the beginning. Information on the
rows containing the invalid keys is stored in a temporary file. After you request a restart
to begin at the Delete phase, the violating rows are deleted based on the information in
a temporary file. You must not modify any data in any temporary files. Also, you must
restart the LOAD command with the same parameters, otherwise the Delete phase will
fail. If the temporary file has been modified, or does not exist, you should restart the
LOAD command at the Build phase. Once the index is re-built, any invalid keys are
placed in the exception table if it exists, and duplicate keys are deleted.

Since regular logging is not performed, LOAD uses pending states to preserve
consistency of the database. The Load and Build phases of the LOAD process place
any associated table spaces into a load pending state. The Delete phase of the LOAD
process places any associated table spaces into a delete pending state. If you
complete the LOAD process but you do not have either Togretain or userexit “on”;
and, you have not specified the COPY YES option nor the NONRECOVERABLE option, then
any associated table spaces are placed in a backup pending state. These states can
be checked by using the LIST TABLESPACES command. (For more information on
LIST TABLESPACES, see the Command Reference manual.) One last possible state
associated with the LOAD process is concerned with referential and check constraints.
Dependent tables may be placed in a check pending state following the completion of
the LOAD process.

LOAD can also be used with a non-recoverable option. This allows you to perform a
non-recoverable LOAD without affecting the recoverability of all other tables in the
database. When this type of LOAD is run, there is no requirement for either using the
COPY YES option or having a backup taken.

Chapter 5. Utilities for Moving Data 143

If a LOAD fails, the table space(s) involved could be in an inconsistent state because
there is no logging. For this reason, the table spaces are left in a load pending state.
To remove the load pending state, you will have to restart the LOAD, perform a LOAD
REPLACE on the same table on which the LOAD failed, or recover the table space(s)
using a RESTORE with the most recent backup (either table space or database
backup) and then carry out further recovery actions. (You could also drop the table
space and then re-create it.)

For more information on how to recover, see Chapter 6, “ Recovering a Database” on
page 179.

Details About LOAD

The LOAD utility inserts data into a table from an input file, from a device, or using a
named pipe, any of which must reside on the node where the database resides. The
table must exist. (Indexes on the table may or may not exist. LOAD only builds indexes
that are already defined on the table.) If the table receiving the new data already
contains data, you can replace or append to the existing data.

Note: If you are loading a table that already contains data and the database is
non-recoverable, make sure that you have a backed-up copy of the database,
or the table space for the table being loaded, before using LOAD so that you
can recover from errors.

If the existing table is a parent table containing a primary or unique key
referenced by a foreign key in a dependent table, replacing data in the parent
table places the dependent table in a check pending state. The SET
CONSTRAINTS statement must then be used to validate the referential and
check constraints.

The table spaces in which the loaded table resides are quiesced in exclusive mode. For
more information on QUIESCE, see the Command Reference manual.

Note: In the following command line processor example, and in the other in the other
examples in this chapter, relative path names are used. Please be aware that
relative path names are only allowed on calls from a client on the same node as
the database. The use of fully-qualified path names is recommended.

The following is an example of the command line processor syntax for the LOAD
command:

db2 Toad from stafftab.ixf of ixf messages staff.msgs
insert into userid.staff copy yes use adsm data buffer 20

This example assumes no indexes are involved, any warning or error messages are
placed in staff.msgs, a copy of the changes made is stored in ADSTAR Distributed
Storage Manager (ADSM), and 20 pages of buffer space are to be used during the
load. See “ADSTAR Distributed Storage Manager” on page 230 for more information
on using ADSM.

If indexes are involved, the following is an example of the command line processor
syntax for the LOAD command:

144 Administration Guide

db2 Toad from stafftab.ixf of ixf messages staff.msgs
remote file stafftmp replace into staff using . sort buffer 200

This example is similar to the previous one except that: stafftmp is used as a base file
name for temporary files such as “stafftmp.msg,” “stafftmp.log,” and “stafftmp.rid”; the
current directory of the user is used as the working directory; and 200 pages of buffer
space are used to sort index keys. For more information on the LOAD command, see
the Command Reference manual.

Since you will typically be loading large amounts of data using the LOAD command, a
LOAD QUERY command can be used to check the progress of the LOAD process if
the REMOTE FILE option has been specified. You require a connection to the same
database and a separate CLP session to enter this command. This command can be
used by local and remote users. For more information on the LOAD QUERY command,
see the Command Reference manual.

The LOAD utility can also be invoked by the application programming interfaces (APIs)
sqluload and sqglgload . For more information on the requirements when loading data
to a table using these APIs, see the AP/ Reference manual.

You should also review the following points. Each represents a task that you may need
to perform and each is carried out as part of the LOAD command. For more
information on any of the following tasks, see the AP/ Reference and/or the Command
Reference manuals.

¢ Definition of the path(s) and the input filename(s) in which the LOBs are stored.
The use of LOBSINFILE in the MODIFIED BY parameter will tell the LOAD utility that
all LOB data is being loaded from files.

¢ Determine if column values being loaded have implied decimal points or not. The
use of IMPLIEDDECIMAL in the MODIFIED BY parameter will tell the LOAD utility that
there are decimal points to be applied to the data as it enters the table. For
example, with the IMPLIEDDECIMAL, the value 12345 is loaded into a
DECIMAL(8,2) column as 123.45, NOT 12345.00.

¢ Determine whether statistics will be gathered during the load process. (This option
is not supported if the load is in INSERT or RESTART mode.) Gathering statistics
is only valid when indexes are already defined on the table prior to the load.

¢ Define the method to use for loading the data: column location, column name, or
relative column position.

¢ Determine whether to keep a copy of the changes made. (This option is not
supported if forward log recovery is disabled for the database; that is,
LOGRETAIN=OFF and USEREXIT=0FF.) If no copy is made, and forward log
recovery is not disabled, the table space is left in a backup pending state at the
completion of the load.

For more information on how to recover, see Chapter 6, “ Recovering a Database”
on page 179.

¢ Declare the location of the directories holding temporary files during the creation of
indexes. The directories are defined by the USING parameter. When defining the
directory, if it is unqualified and a local connection, the directory will be qualified
using the current directory of the user running the load. If the directory is

Chapter 5. Utilities for Moving Data 145

unqualified and part of a remote connection, the load will fail. If the parameter is
not defined by the USING parameter, the default is to create the files in the tmp
subdirectory in the directory defined by the DB2INSTPROF environment variable.
You should be aware that the amount of information stored in this directory will be
at least equal to the size of all the indexes and possibly twice that size.

e For all other temporary files either a base name defined by REMOTE FILE is used or,
the default name db2utmp is used. There are many temporary files that the load
process may create: The temporary files for sorting go in the path specified by the
USING option; other temporary files go in the path specified by the REMOTE FILE
option. Only the remote message temporary file is of any interest to you. You can
use the LOAD QUERY command to save the messages generated by the load
process to a file that can later be viewed as output. See the Command Reference
for further information on these topics.

The remote file resides on the server machine and is accessed by the DB2
instance exclusively. Therefore, any filename qualification given to this parameter
must reflect the directory structure of the server, not the client, and the DB2
instance owner must have read and write permission on the file. In addition, the
user must ensure that two loads are not issued having the same fully-qualified
remote filename.

There are several ways in which the remote filename may be selected and
qualified when the user has just given a partially qualified name, or no name at all.

Notes:

1. No remote filename is given in a load operation where the user is on the same
machine as the database instance. In this case, the load utility uses the name
db2utmp and qualifies it with the current working directory of the user. Two
loads from the same directory with this option will clash in the use of the
remote filename. Therefore, this option is not recommended.

2. No remote filename is given in a load operation where the user is on a
different machine than the database instance. In this case, the load utility will
generate a name that will reside in the database directory. This effectively
prevents the user from using the load query facility, since the facility requires
the name of the remote file. In addition, the filename generated is not
guaranteed to be unique, and therefore clashes may occur between different
load operations. Therefore, this option is not recommended.

3. A non-fully-qualified filename is given in a load operation, where the user is on
the same machine as the database instance. In this case, the name is
qualified by using the current directory of the user. The user must ensure that
the two loads are not issued from the same directory with the same remote
filename.

4. A non-fully-qualified filename is given in a load operation, where the user is on
a different machine than the database instance. In this case, the load utility
will reject the filename. It must be fully-qualified from the client.

5. A fully-qualified filename is given in a load operation. This will be the filename
used. The user must ensure that two loads are not issued with the same
remote filename. This is the recommended usage.

146 Administration Guide

You should use a remote filename if you wish to use the LOAD QUERY tool. It is
difficult to determine the remote filename if you do not provide the one to be used.
For more information on LOAD and the importance of the filename, see “Restarting
the LOAD” on page 150.

To load data into a table, you must have either SYSADM or DBADM authority.

There are restrictions and limitations with the LOAD utility:

e Attempts to create or drop tables in a table space that is in load pending state will
fail.

¢ You cannot load data into a database accessed through DB2 Connect or to a
downlevel server other than DB2 Version 2.

Note: Options only available with this release of DB2 cannot be used with a
server from the previous release.

e If a REPLACE is performed on a table and an error occurs during the LOAD, the
original data in the table is lost. Keep the LOAD input to allow the LOAD to be
restarted if an error occurs during the process.

¢ |If there is no value for a NOT NULL column, the row is rejected since the LOAD
utility attempts to load a NULL value. This condition also applies when there is no
value for a NOT NULL WITH DEFAULT column. If a NOT NULL WITH DEFAULT column is
not one of the columns being loaded, it is filled with the DEFAULT values.

e Triggers are not activated on newly-loaded rows. Any business rules forming these
triggers are not enforced by the LOAD command.

The LOAD utility optionally updates table and index statistics as part of the load
process if run in REPLACE mode. If data is appended into a table, statistics are not
gathered for the table. Run RUNSTATS following the completion of the load process to
collect up-to-date statistics for the table. If gathering statistics on a table with a unique
index, and duplicate keys are deleted during the Delete phase, then the statistics are
not updated to account for the deleted records. If you think you will have duplicate
records, you should not collect statistics during the LOAD but run RUNSTATS after the
LOAD process.

To ensure the loaded data doesn't cause referential integrity or check constraint
violations, any loaded table that is a parent table will cause all dependent tables to be
placed in a check pending state. To remove the table from the restricted state, you
must run the SET CONSTRAINTS statement.

With LOAD, there is a possibility of unequal code page situations involving possible
expansion or contraction of the character data. Such situations could occur with
Japanese or Traditional-Chinese Extended UNIX Code (EUC) and double-byte
character sets (DBCS) which may have different length encodings for the same
character. An option, NOCHECKLENGTHS, is used to toggle between two situations:

1. Comparison of input data length to target column length is performed before
reading in any data. If the input length is larger than the target, NULLs are inserted
for that column if it is nullable. Otherwise, the request is rejected. This is the
default.

Chapter 5. Utilities for Moving Data 147

2. No initial comparison is performed and, on a row-by-row basis, an attempt is made
to load the data. If the data is too long after translation is complete, the row is
rejected. Otherwise, the data is loaded. Specifying NOCHECKLENGTHS will enable this
behavior.

LOAD Performance Considerations
The performance of LOAD depends on the nature and size of the data, the number of
indexes, the options used, and whether the SET CONSTRAINTS statement is required.
Use of SET CONSTRAINTS lengthens the total time needed to load the table and
make it usable again. (For more information on the SET CONSTRAINTS statement,
see the SQL Reference manual.)

The LOAD utility performs almost equally well in either INSERT mode or REPLACE
mode.

Index creation will reduce the performance of the load process, especially when data is
added to a table already containing data. If there are many indexes on a table which
already has a large amount of data and only a small percentage of data to be loaded,
you should consider using the IMPORT utility instead of the LOAD utility. Unique
indexes also reduce the performance of the load process if duplicates are encountered.
In most cases it is still more efficient to create the index during the LOAD than to
complete the LOAD and then use the CREATE INDEX command for each of the
indexes.

The LOAD utility automatically attempts to provide the best performance possible by
determining the best values for DISK_PARALLELISM, CPU_PARALLELISM, DATA_BUFFER, and
SORT_BUFFER if these parameters have not be specified by the user at the time the utility
is run. Optimization of these values is done based on the size and the free space
available in the utility heap. Consider allowing the LOAD utility to choose the values for
these parameters and then attempt to tune the parameters for your particular needs.

Performance of the LOAD can be improved by:

e Using the FASTPARSE option in the MODIFIED BY parameter reduces the data
checking done on the user-supplied column values, and performance is enhanced.
This option should only be used when the data being loaded is known to be valid.
This may improve the performance of the LOAD process by about 10 or 20
percent.

e Specifying as many devices for the temporary sort directories as you can so that
there is opportunity for parallel /O during sorting. When very large sort areas are
required on systems with restricted file sizes then multiple directories are required.

e Specifying as large a value for the sort buffer as possible. The sort buffer memory
is allocated from the utility heap. Ensure that the utility heap is defined to be large
enough.

e Using CPU_PARALLELISM during the LOAD so that you can choose to preserve or not
preserve the order of the input data being loaded. The default is to preserve order.
Specify ANYORDER on the LOAD command to override this default and gain
additional performance improvements.

148 Administration Guide

Note: The additional performance improvements would be to the create index
time, but may hurt in the query performance time if the original data was in
clustered index sequence.

e Using the SORT BUFFER and DATA BUFFER parameters. The SORT BUFFER will improve
performance only if indexes are created when using LOAD. The DATA BUFFER
parameter specifies the total amount of memory allocated to the LOAD utility as a
buffer. The SORT BUFFER parameter specifies the amount of memory allocated for
sorting index keys. (This assumes there is real storage to handle the increased
buffer size and prevent increased paging.) Both buffer allocations come from the
utility heap. You can modify the util_heap sz database configuration parameter
accordingly. See “Utility Heap Size (util_heap_sz)” on page 475.

¢ Specifying multiple directories in different file systems for the USING parameter.
Specifying multiple directories improves performance only if indexes are created
during the LOAD.

e Controlling the parallelism used during the LOAD in a machine environment where
symmetric multi-processor (SMP) exploitation is possible. You can control
parallelism in two ways:

— By using the parameter CPU_PARALLELISM. This parameter controls the degree
of paralellism used when parsing, converting, and formatting records.

Note: When tables include either LOB or LONG VARCHAR data,
CPU_PARALLELISM is set to one. Parallelism is not supported in this
case.

— By using the parameter DISK_PARALLELISM. This parameter controls the degree
of parallelism used when writing data to the table space containers.

The maximum value for these parameters will not exceed an internal algorithmic
maximum. If the number for these parameters is zero (0), or is not specified, the
default is determined at the time the utility is run based on database and system
configurations and data characteristics. For more information on the LOAD
command, see the Command Reference manual.

¢ Using the BINARY NUMERICS and PACKED DECIMAL parameters when loading binary
data in ASC data files, to improve the load time involving numeric data.

¢ Installing high performance sorting libraries from third party vendors to create
indexes during the load. Examples of third party sort products include:
SMARTSsort** and SyncSort**. This is done through the use of the DB2SORT
environment variable. See “Establish Environment Variables and the Profile
Registry” on page 60 for more information on environment variables,

The COPY YES/NO option specifies whether to create a copy of the input data during
LOAD or not. If "YES" is chosen, performance is reduced because all the data being
loaded is copied at the same time. This choice is faster than accepting a backup
pending state and having to do a backup later before accessing the table. If "NO" is
chosen, and forward recovery in enabled, then the table is placed in a backup pending
state.

Chapter 5. Utilities for Moving Data 149

LOAD Temporary Space Limitations
When creating indexes during the LOAD, you require at least as much disk space as
the sum of the index sizes and possibly twice as much. The space used is temporary;
that is, it is located outside the database in the directories specified for the USING
parameter or in the tmp directory defined by the DB2INSTPROF environment variable.

Restarting LOAD and Database Recovery
A LOAD can be restarted following a failure. A copy image of the loaded data can be
created for use when recovering a database.

The following discuss these considerations in more detail:

¢ Restarting the LOAD
e Creating a Copy Image of Loaded Data

Restarting the LOAD
If a failure occurs while loading data, you can restart the load from the last save point
or point of consistency; or reload the entire table by using the REPLACE option.

The remote file specified in the LOAD restart operation should be the one that was
specified in the LOAD command that failed.

There are a number of options available should you decide to restart the load.

If you decide to restart using the RESTARTCOUNT number option, then you must use the
number of rows at the last successful consistency point. To determine that value, use
the LOAD QUERY command with either the name specified with the REMOTE FILE
option or the default name db2utmp. By choosing RESTARTCOUNT number, the LOAD
restarts from the row following the row identified by the number and attempts to finish
the load.

Note: The RESTARTCOUNT number can only be used with the last successfully completed
consistency point. If the last consistency point started but did not complete (that
is, SQL3519W is not followed by SQL3520W), then you must carry out the
action as described in the help for message SQL3519W.

If you do not want to continue loading rows, or if the failure was during the Build phase,
you can use the RESTARTCOUNT B option. The LOAD process brings the table to the state
of the last save point or point of consistency and then restarts the Build phase. By
choosing this option the LOAD restarts, does not attempt to load additional rows, and
builds the indexes for the rows already loaded.

If the message file states that the Build phase completed and all temporary files are
unmodified as left by the LOAD, you can use the RESTARTCOUNT D option. The
information on the rows containing duplicate keys stored in the temporary files is used
to delete those rows.

The restarted LOAD command should continue until the completion of the LOAD
process.

150 Administration Guide

Note: For minor errors such as nonexistent data files or an invalid dcoldata, the LOAD
will clean up and take the table out of the load pending state. You must do the
LOAD again in either REPLACE or INSERT mode with correct parameters.

Creating a Copy Image of Loaded Data

If the table being loaded is part of a recoverable database, then logging is in effect.
Since LOAD does not log the changes made to the table, you have the option of
specifying COPY YES to create a copy of the data being loaded. This copy is used during
roll-forward recovery to re-create the changes to the database done by LOAD.

When using this option you should also consider using multiple devices or directories to
allow for the best possible I/O exploitation.

For more information on the load copy location file, see “Using the Load Copy Location
File” on page 225.

If forward recovery is enabled (1ogretain or userexit is “on”) and the COPY option was
not used, all table spaces in which the loaded table resides are left in a backup
pending state. A backup of the database or the table space(s) is required to remove
this pending status. The backup is done before any other units of work against the
database or table space can be started.

For more information on how to recover, see Chapter 6, “ Recovering a Database” on
page 179.

During forward recovery, if the load copy is not available, then the table spaces (of the
loaded table) which are being rolled forward will be set to the restore pending state.
These table spaces must be restored from a backup image taken after the table load.

An error is returned if you specify NONRECOVERABLE and COPY YES. There is no need for a
copy in such a case since it would not be needed during recovery.

LOAD Exception Table
The exception table is a user-created table which mimics the definition of the table
being loaded. It is specified by the FOR EXCEPTION option on the LOAD command. The
table is used to store copies of rows that violate unique index rules.

Note: Any rows rejected before the building of the index on the loaded table because
of invalid data are not inserted into the exception table.

Rows are added to the existing information in the exception table. The existing
information may include rows listing check constraint or foreign key violations; or invalid
rows from a previous LOAD. If you want only the invalid rows from this LOAD, you will
need to remove the existing rows before invoking LOAD.

The exception table used with the LOAD utility is identical to the exception table(s)
used by the SET CONSTRAINTS statement. An exception table should be created to
perform a load which has a unique index and may have duplicate records. If an
exception table is not provided for the LOAD, and duplicate records are found, then the

Chapter 5. Utilities for Moving Data 151

LOAD will continue. However, only a warning message is issued about the deleted
duplicate records and the deleted duplicate records are not placed anywhere.

After completing the load, information in the exception table can be used any way you
wish. You may want to use the information to correct any data that was in error and
insert the rows into the original table.

The exception table message column has the following structure:

Table 22. Exception Table Message Column Structure for LOAD

Field number Contents Size Comments
1 Number of violations 5 characters Right justified padded with
0

2 Type of first violation. Only 1 character 'I' - Unique Index violation
"I"is used by LOAD

3 Length of constraint/index 5 characters Right justified padded with
token ‘0’

4 Constraint/index token length from the previous

field

Note: Only Unique Index violations will be reported by LOAD. The Check Constraint and Foreign Key violations will be reported
by running the SET CONSTRAINTS statement with the IMMEDIATE CHECKED FOR EXCEPTION options. Only one unique index
violation in a row is reported. LONG or Large Object (LOB) data is not inserted into the exception table. Index token is
the “lID” value from SYSCAT.INDEXES that identifies the index.

Checking For Constraint Violations

The loaded table may be in the check pending state if it has table check constraints or
referential integrity constraints defined on it. The STATUS flag of the SYSCAT.TABLES in
the row corresponding to the loaded table indicates the check pending state of the
table. For the loaded table to be usable, the STATUS must have a value of “N” indicating
the normal state of the table.

To remove a table from the check pending state, use the SET CONSTRAINT
statement. For more information on the SET CONSTRAINTS statement, see the SQL
Reference manual. One or more tables may be submitted to be checked in a single
invocation. For a dependent table to be checked, the parent table must not be in the
check pending state. In the case of a referential integrity cycle, all the tables involved in
the cycle must be included in a single invocation of the SET CONSTRAINTS statement.

To manage the loading of several tables, consider the position of each within referential
relationships along with the table size and time windows available to carry out the load.
It may be convenient, for example, to check the parent table for check constraint
violations while the dependent table is loaded. This can only occur if the two tables are
not in the same table space.

Exception tables are convenient for a consolidated report of all the rows that have
constraints violated. If the exception table option is not used, only the first violation is
reported. This may be a cause for frustration when dealing with large tables having
more than one constraint violation. The same exception table used for the LOAD utility

152 Administration Guide

may be used for checking constraint violations. As with the LOAD utility, there is no

checking done when running the SET CONSTRAINTS statement to ensure that the

exception table is empty. The extra timestamp column in the exception table may be
used to distinguish newly-inserted rows from the old ones, if necessary.

The SET CONSTRAINTS statement does not activate any DELETE triggers as a result of
deleting rows that violate constraints. It must be noted, however, that once the table is
removed from the check pending state, triggers are active. This implies that, if we
correct data and INSERT rows from the exception table into the loaded table, any
INSERT trigger defined on the table will be activated. The implications of this on the data
should be considered and, if necessary, suitable action should be taken. One option is
to drop the INSERT trigger, INSERT rows from the exception table, and then recreate the
INSERT trigger.

Using the AutoLoader Utility

In a partitioned database, partitioning keys are used to determine the database partition
where the data resides. Therefore, data must pass through a splitting phase before it
can be loaded at the correct database partition.

The entire "split and load" process is accomplished by the AutoLoader utility which uses
the hashing algorithm to partition the data into as many output pipes as there are
database partitions in the nodegroup in which the table was defined. It then loads these
output pipes concurrently across the set of database partitions in the nodegroup. A key
feature of the AutoLoader utility, is that it uses pipes for all data transfer required in the
split and load process. It also uses multiple database partitions for the splitting phase,
thereby improving the performance significantly.

The AutoLoader utility may be run in one of the following modes:

SPLIT_AND_LOAD In this mode, data is split and then loaded on the correct database
partitions. Pipes are used for temporary storage and transfer of data.

SPLIT_ONLY With this choice, the data is only split. A set of split data files are
generated for the requested output database partitions. You must
have sufficient storage for the original input source and for each of the
split data files. The output from the split function writes the files in the
location pointed to by the parameter SPLIT_FILE_LOCATION or in the
AutolLoader current working directory. Data is split into separate files
that are named using the convention filename.xxx where xxx is the
node number to which the split file belongs and filename is no longer
than eight characters.

LOAD_ONLY Data is expected to be already split into separate files that are named
using the following convention filename.xxx where xxx is the node
number to which the split file belongs and filename is no longer than
eight characters. AutoLoader expects to find these files in the
SPLIT_FILE_LOCATION or in the current AutoLoader working
directory. These split files are loaded concurrently on their
corresponding nodes.

Chapter 5. Utilities for Moving Data 153

ANALYZE This option generates a customized optimal partitioning map for a
nodegroup. It is recommended that a data file with a large number of
records be specified as input. The output from the ANALYZE mode
can be used with the MAP_FILE_INPUT parameter. The larger the
number of records used, the better the representation to the actual
data that can be analyzed, and the better the resulting new
partitioning map. The map will produce a more even distribution of
data across each of the database partitions in the nodegroup.

See Appendix O, “Supplemental AutoLoader Information” on page 851 for more
information on database partitions and for platform-specific usage notes. Before using
the AutoLoader utility, you should be familiar with the LOAD utility. To learn more about
the LOAD process, see “Using the LOAD Utility” on page 141.

Planning to Use the AutoLoader Utility
The AutoLoader utility requires the main autoloader driver db2autold and other related
executable files each located in the misc sub-directory under the sqllib sub-directory. A
sample configuration file, autoloader.cfg, is found under the autoloader sub-directory of
the samples sub-directory of the sqllib sub-directory.

Before using the AutoLoader utility, you should:

1. Read Appendix O, “Supplemental AutoLoader Information” on page 851 which
shows specific details for using the AutoLoader utility.

2. Create a temporary directory and move the autoloader.cfg file into it. This directory
must be accessible from all the participating split and load database partitions.

3. Modify the autoloader.cfg file according to the directions included in the file.

4. You should test the AutoLoader with small amounts of data first to get familiar with
the utility.

Running the AutoLoader Utility
The AutoLoader utility is executed by typing the following command:

db2autold [options]
with one or more of the following options:

-C Uses the config_file specified as the configuration file for the AutoLoader utility.
The default is 'autoloader.cfg'.

-d Cleans up the temporary resources allocated by the AutoLoader utility. In case
the AutoLoader utility exits abnormally, it is necessary to run this option to clean
up all associated temporary directories, files and processes.

-i This makes the cleanup interactive. By default, cleanup is done without a prompt.
This must only be used with the -d option.

The AutoLoader utility creates a file called autoload.log to keep messages returned
from the main autoloader script. You can check the contents of this file to track the
progress of the AutoLoader utility. As well, AutoLoader creates files called

154 Administration Guide

load_log. XXX and splt_log.XXX which contain messages from the load and split
processes respectively.

Some Considerations with AutoLoader
There are some items you should consider before using the AutoLoader utility:

¢ |f you wish to maintain the order of the input data, then only one database partition
should be used for splitting. Parallel splitting cannot guarantee that the data is
loaded in the order it was received.

¢ If you are using the LOBSINFILE option of the LOAD utility, then all directories
containing the LOB files have to be accessible from all the database partitions
being loaded. See Appendix O, “Supplemental AutoLoader Information” on
page 851 for information on how this is done.

¢ For optimal performance, the AutoLoader utility should be invoked on a database
partition that is not participating in either the splitting or loading operations. As well,
if the splitting nodes are different from the loading database partitions, there is less
contention for CPU cycles on any one database partition. On a SMP system, you
can improve performance if you ensure at least one CPU for every split to be done.

¢ |f you are using multiple database partitions to split the data and the AutoLoader
utility is used with a savecount of greater than zero then an error is returned. This
ensures that you can restart the AutoLoader utility since the arrival order of the
records cannot be determined when you use multiple splitting database patrtitions.

Sample AutoLoader Configuration File
idgdddssddssdddsaddssadtsaddsaddssddgsdddsadasdddssddgsdadsaddsdatsdi
Release level of this configuration file.
Please do not delete or modify this line.
Release=V5.1.0

LOAD Command

- Specify a complete LOAD command including the file_name, file_type and

the table_name.

- It may be necessary that the load command is double-quoted if it includes
special shell characters, Tike round brackets (or).

#

- Refer to the Command Reference for the complete syntax.

#

DEL data file

db2 load from your_data of del replace into your_schema.your table
ASC data file

db2 load from your_data of asc modified by reclen=19\
method L "(1 16, 17 18)" replace into your schema.your table

Chapter 5. Utilities for Moving Data 155

igdgdsdsdsdddsdddadadaddddsdddsdddddsdddsdsdsdadadadadadadadadadadadadd
#
Miscellaneous AutolLoader Parameters

DATABASE ... Name of the database being loaded into.
DATABASE=your_db

HOSTNAME ... Name of the machine to FTP the data file from. This may be

an MVS host or another workstation. Make sure that the .netrc
file is set up accordingly. Please comment out with a # or
leave blank if file is local.

#HOSTNAME=

SPLIT_FILE_LOCATION ... The complete path name of the Tocation

- to place the split files for SPLIT_ONLY mode

- to look for split files if in LOAD_ONLY mode

If not specified, and in SPLIT_ONLY mode, the split

files are placed in the current working directory.

If not specified, and in LOAD_ONLY mode, the

AutoLoader utility looks for the split files in the

current working directory.

SPLIT_FILE_LOCATION=/u/user/

OUTPUT_NODES ... Database partitions on which lToad is to be performed.
The supplied node numbers must be a subset of database
partitions on which the table is defined and must also
exist in the db2nodes.cfg file. If Teft blank, all
database partitions that the table is defined on will
have data Toaded into them.

W H H H

OUTPUT_NODES=(0,1)

SPLIT_NODES ... The 1ist of database partitions participating in the
splitting process. Splitting database partitions may be

the same or different from the database partitions being
loaded into. These database partitions must also exist in
the db2nodes.cfg file. If Teft blank, all database

partitions that the table is defined on will be used for
splitting.

SPLIT_NODES=(0)

RUN_STAT_NODE ... If "statistics yes" is specified in the LOAD command,

then statistics will be collected only on one database

partition. This parameter specifies the database partition
you wish to collect statistics on. If Teft blank or -1,
the default is the first database partition in output node
list.

UN_STAT_NODE=-1

T I I I FH

156 Administration Guide

s dddsdddsdddsdddssaddsaddsdddsdddasaddasddssddsddddadddsaddsaddaddd
#
Optional AutolLoader parameters ... These may or may not be specified.

MODE ... Specify the mode to run AutolLoader in.

SPLIT_AND_LOAD is the default.

#

Other valid values are:

SPLIT ONLY ... Load process is not performed. Output from the

splitting database partitions is written to files
in the SPLIT_FILE_LOCATION or in the current

AutoLoader working directory.

#

LOAD_ONLY ... Data must be pre-split. The split files are sent to
correct database partition for loading. The split
filenames must follow the convention filename.xxx
where filename was provided in the LOAD command and
xxX is the nodenumber. Also, it is assumed that

filename.xxx is in the SPLIT_FILE_LOCATION or

in the current AutolLoader working directory.

#

ANALYZE ... This option is used to generate an optimal

partition map for a nodegroup.

MODE=SPLIT_AND_LOAD

LOGFILE ... This name is used as a base name to create the following files.
autoload.LOG ... used to track progress of AutolLoader.

splt_LOG.XXX ... Holds output from splitting operation on
database partition xx.

load_LOG.XXX ... Holds output from load operation on

database partition xx.

LOGFILE=LOG

NOTNFS_DIR ... The path name to the not-nfs space on each database

partition. If not specified, it is "notnfs" with

respect to the root directory.

NOTNFS_DIR=/notnfs

st ddddsdssaaddddgsaddasdsaaddsdsssdddadadadiddaaaii
#
Optional Splitter parameters ... These may or may not be specified.

CHECK_LEVEL ... Can be either CHECK or NOCHECK

- CHECK: Program will check for truncation of record at

Input/Output (default).

- NOCHECK: Program will not check for truncation of record
at Input/Output.

CHECK_LEVEL=CHECK

Chapter 5. Utilities for Moving Data 157

MAP_FILE_INPUT ... Input filename for the partitioning map. If the

partitioning map is customized rather than a

default one, this parameter must be specified.

It points to the file containing the customized

partitioning map. You can get a customized

partitioning map by either using the db2gpmap program
to extract the map from the database system catalog

table; or you can run the ANALYZE mode db2autold

to generate an optimal map. The map generated by the

ANALYZE mode must be moved to each database partition
in your database before actual loading can proceed.

#

MAP_FILE_INPUT=filename_of_your_customized_partitioning map

MAP_FILE_OUTPUT ... Output file name for partitioning map. This parameter
should be used with the db2autold program executed

in ANALYZE mode. An optimal partitioning map with even
distribution across all database partitions is

generated. If it is not specified and the running mode
is ANALYZE, a default filename "OutMap" is used.
MAP_FILE OUTPUT=filename_for your optimal_partitioning _map

TRACE ... Tracing hashing values. Dump of all the data conversion process
and output of hashing values. Argument is the number of records
to trace.

TRACE=100

NEWLINE ... Only meaningful if the input data file is an ASC file with each
record delimited by a new Tine character, and the RecLen

parameter in the load command is specified.

If YES, AutolLoader always checks if the record is terminated
by a new Tine character or not. It also checks if the record
length is the same as the expected ReclLen or not. The default
for this parameter is NO.

NEWLINE=YES

Loading into Multiple Database Partitions
If you are loading data into a table in a multiple database partition nodegroup, the
LOAD utility requires that the files that are to be loaded were split and contain the
correct header information. The LOAD utility verifies the header information that the
split operation of AutoLoader writes to each data file to ensure that the data goes to the
correct location. (The header information is described in Appendix N, “Splitting Data
with db2split” on page 839.)

If you are loading data into a table in a single database partition nodegroup, the files do
not have to be split, even if the table is defined to have a partitioning key. In this
situation, you would specify the NOHEADER option of the LOAD utility.

The LOAD utility checks that the partitioning map used by the split operation of
AutoLoader is the same one specified when the table is being loaded. If not, an error is
returned. It also checks that the file partition is loaded at the correct database partition,
and that the data types of the partitioning key columns specified during splitting match

158 Administration Guide

the current definition in the catalog. The nodegroup to which the table is loaded cannot
be redistributed between the time that the data file is partitioned and the time that the
parts are loaded into the corresponding database table. If redistribution has been done,
the utility cannot load the partitioned data.
LOAD supports the following flat file formats:

¢ Non-delimited ASCII (ASC)

¢ Delimited ASCII (DEL)

e PC/IXF Format (IXF)
However, AutoLoader can only be used to split DEL and ASC files.

Note: IXF files cannot be split, but can be loaded into a single-node nodegroup using
the 'NOHEADER' option in the LOAD command.

Using the IMPORT Utility

The IMPORT utility inserts data from an input file into a table or view. If the table or
view receiving the imported data already contains data, you can either replace or
append the existing data with the data in the file.

Note: If the existing table is a parent table containing a primary key that is referenced
by a foreign key in a dependent table, its data cannot be replaced, only added
to.

The following is an example of the command line processor syntax for the IMPORT
command:

db2 import from stafftab.ixf of ixf insert into userid.staff

The following information is required when importing data to a table or view:

e The path and the input file name where the data to import is stored.

¢ The name or alias of the table or view where the data is imported.

e The format of the data in the input file. This format can be IXF, WSF, DEL, or ASC.
See “LOAD, IMPORT, and EXPORT File Formats” on page 164 for details.

¢ Whether the data in the input file is to be inserted, updated, replaced, or appended
to the existing data in the table or view.

¢ A message file name.

When importing into large object (LOB) columns, the data can come either from the
same file as the rest of the column data, or from separate files. In the latter case, there
is one file for each LOB instance.

The column data in the file contains either the data to load into the column, or a

filename where the data to load is stored. The default is the file contains the data to
load into the column.

Chapter 5. Utilities for Moving Data 159

Notes:

1. When LOB data is stored in the file, no more than 32KB of data is allowed.
Truncation warnings are ignored.

2. All of the LOB data must be stored in the main file or each LOB stored in separate
files. The main file cannot have a mixture of LOB data and file names.

For more information on importing LOBs from files, see the LOBSINFILE option in the
Command Reference manual.

You may also provide the following information:

e The method to use for importing the data: column location, column name, or
relative column position.

e The number of rows to INSERT before committing the changes to the table. If you
periodically do a COMMIT, this reduces the number of rows that are lost if a failure
and a rollback occur during the import.

e The number of records in the file to skip before beginning the import. If an error
occurs during an import, you may specify this information to restart the import
operation immediately following the last row that was successfully imported and
committed.

e The names of the columns within the table or view into which the data is to be
inserted.

To import data into a new table, you must have SYSADM authority, DBADM authority,
or CREATETAB privilege for the database. To replace data in an existing table or view,
you must have SYSADM authority, DBADM authority, or CONTROL privilege for the
table or view. To append data to an existing table or view, you must have SELECT and
INSERT privileges for the table or view.

With IMPORT, there is a possibility of unequal code page situations involving possible
expansion or contraction of the character data. Such situations could occur with
Japanese or Traditional-Chinese Extended UNIX Code (EUC) and double-byte
character sets (DBCS) which may have different length encodings for the same
character. An option, NOCHECKLENGTHS, is used to toggle between two situations:

1. Comparison of input data length to target column length is performed before
reading in any data. If the input length is larger than the target, NULLs are inserted
for that column if it is nullable. Otherwise, the request is rejected. This is the
default.

2. No initial comparison is performed and, on a row-by-row basis, an attempt is made
to import the data. If the data is too long after translation is complete, the row is
rejected. Otherwise, the data is imported. Specifying NOCHECKLENGTHS will enable
this behavior.

The IMPORT utility casts user-defined distinct types (UDTSs) to similar base data types
automatically. This saves you from having to explicitly cast UDTs to the base data
types. Casting allows for comparisons between UDTs and the base data types in SQL.

Use the IMPORT utility to re-create a table that was saved by using the EXPORT utility.
The table must have been exported to an IXF file. When creating a table from an IXF

160 Administration Guide

file, not all attributes of the original table are preserved. For example, the referential
constraints, foreign key definitions, and user-defined data types are not retained. If the
IXF file was created with the LOBSINFILE option, then the length of the original LOB is
lost. Attributes of the original table that are preserved or retained are:

e Column information
— Names
— Types including user-defined distinct types. (User-defined distinct types are
preserved as their base type.)
— Lengths (except for lob_file types)
— Codepages (if applicable)
¢ Index information
— Name
— Creator
— Column names of key parts (with a restriction if + or — are in the names)
— Ascending or descending
— Uniqueness

Note: Before running the import utility, you must be connected or connected implicitly
to the database into which the data will be imported. Also, the utility issues a
COMMIT or ROLLBACK statement; therefore, you should complete all
transactions and release all locks by performing either a COMMIT or
ROLLBACK before using the utility.

Using IMPORT with Buffered Inserts
In a partitioned database environment, the IMPORT utility can be enabled to use
buffered inserts. This reduces the messaging that occurs when data is loaded, resulting
in better performance.

To cause the IMPORT utility to use buffered inserts, the BIND command must be used.
The import package, db2uimpm.bnd has to be rebound against the database with the
INSERT BUF option. This can be achieved using the following commands:

db2 connect to your_database
db2 BIND db2uimpm.bnd INSERT BUF

However, any one of the individual inserts that are buffered can fail. It is not possible to
report the failing row and error back to the user as IMPORT usually does. Therefore,
buffered inserts should only be enabled with the IMPORT utility if the user is not
concerned about error reporting.

Import in a Client/Server Environment
When you import a file to a remote database, a stored procedure may be called to
perform the import on the server. A stored procedure will not be called when:

¢ The application and database code pages are different

¢ The file being imported is a multiple-part PC/IXF file

¢ The method used for importing the data is either column name or relative column
position

Chapter 5. Utilities for Moving Data 161

¢ The target column list provided is longer than 4K

e An OS/2 or DOS client is importing a file from diskette
e LOBPATHS or LOBSINFILE is specified

e NULL INDICATORS are specified for ASC files.

When importing using a stored procedure, messages are created in the message file
using the default language installed on the server. The messages are in the language
of the application if the language at the client and the server are the same.

The import utility creates two temporary files in the tmp directory indicated by the
DB2INSTPROF environment variable on the database server. One file is for data and the
other file is for messages generated by the import utility.

If you receive an error about writing or opening data on the server, make sure that:

e This directory exists

o Sufficient disk space for the files exists
e Write-permission to this directory for the system administrator exists.

Differences Between the IMPORT and LOAD Uitilities
This table gives you a quick comparison between the two utilities highlighting the

important differences between them.

The IMPORT utility

The LOAD utility

Significantly slower than the LOAD utility on large
amounts of data.

Significantly faster than the IMPORT utility on large
amounts of data because of LOAD's writing of
formatted pages directly into the database.

Limited intra-partition parallelism exploitation.

Exploitation of intra-partition parallelism. Typically, this
requires symmetric multiprocessor (SMP) machines.

No FASTPARSE support.

Support for FASTPARSE datatype. Reduced data
checking on user-supplied data.

No CODEPAGE support.

Support for CODEPAGE datatype. Converts character
data (and numeric data specified in characters) from
the code page given with this datatype to the
database code page during the load operation.

Creation of table and indexes supported with IXF
format.

Table and indexes must exist.

WSF format is supported.

WSF format is not supported.

No BINARYNUMERICS support.

Support for BINARYNUMERICS datatype.

No PACKEDDECIMAL support.

Support for PACKEDDECIMAL datatype.

Can import into views and tables. (Aliases are
supported.)

Can load into tables only. (Aliases are supported.)

The table space(s) that the table and its indexes
reside in are online for the duration of the import.

The table space(s) that the table and its indexes
reside in are offline for the duration of the load.

All rows are logged.

Minimal logging is performed.

Triggers will be fired.

Triggers are not supported.

162 Administration Guide

The IMPORT utility

The LOAD utility

If an import is interrupted and a commitcount was

specified, the table is usable and will contain the rows
that were loaded up to the last commit. The user has
the choice to restart the import or use the table as is.

If a load is interrupted and a savecount was specified,
the table remains in load pending state and cannot be
used until the load is restarted to continue the load or
the table space is restored from a backup image
created some time before the load.

Space required is approximately the size of the largest
index plus about 10%. This space requirement is used
from the temporary table spaces within the database.

Space required is approximately the sum of the size of
all indexes defined on the table and possibly twice this
size. The space required is temporary space outside
of the database.

All constraints are validated during an import.

Unigueness is verified during a load but all other
constraints must be checked using the SET
CONSTRAINTS statement.

The keys of each row are inserted into the index one
at a time during import.

During a load, all the keys are sorted and the index is
built after the data has been loaded.

If up-to-date statistics are required after an import,
RUNSTATS must be run afterwards.

Statistics can be gathered during the load if all the
data in the table is being replaced.

You can import into a host database through DB2
Connect.

You cannot load into a host database.

Files that are imported must reside on the node where
import is invoked.

Files/pipes that are loaded must reside on the node
where the database resides.

No backup image is required.

The backup image can be created during the LOAD
procedure.

Using the EXPORT Utility

The EXPORT utility exports data from a database into an operating system file. The
output file has the format specified by the data format parameter.

The following is an example of the command line processor syntax for the EXPORT

command:

db2 export to staff.ixf of ixf

select * from userid.staff

The following information is required when exporting data:

e A SELECT statement specifying the data to be exported.

¢ The path and name of the operating system file that stores the exported data.

¢ The format of the data in the input file. This format can be IXF, WSF, or DEL. See
“LOAD, IMPORT, and EXPORT File Formats” on page 164.

¢ A message file name.

When exporting from LOB columns, the default action is to select the first 32K bytes of
data. The data is placed either in the same file as the rest of the column data, or into
separate files. In the latter case, each LOB value is placed in separate files by using
the FILETMOD option LOBSINFILE and the LOBPATHS/LOBFILE parameters. For more
information, see the Command Reference.

Chapter 5. Utilities for Moving Data 163

Note: Extensions from 000 to 999 are automatically added to the base name given in
the LOBFILE parameter — one for each LOB file.

You may also provide the following information:

¢ A method that allows you to specify new column names when exporting to IXF or
WSF files. If this method is not specified, the column names from the table or view
are used in the exported file.

¢ A file type modifier to specify additional format information when creating DEL and
WSF files.

You must have SYSADM authority, DBADM authority, CONTROL privilege, or SELECT
privilege for each table participating in the export.

A table may be saved by using the EXPORT utility and specifying the IXF file format.
The saved table may be re-created using the IMPORT utility. The EXPORT utility will
fail if the data you want to export exceeds the space available on the file system on
which the exported file will be created. In this case, you should limit the amount of data
selected by specifying conditions on the WHERE clause so that the export file will fit on
the target file system. You will have to run the EXPORT utility multiple times to export
all the data you desire.

Note: Before running the export utility, you must be connected or connected implicitly
to the database from which the data will be exported. Also, the utility will issue a
COMMIT statement; therefore, you should complete all transactions and release
all locks by performing either a COMMIT or ROLLBACK before calling it.

When you want to use the EXPORT utility in a multiple database partition environment,
you can use db2_all to have the utility carry out the task at each database partition.
The SELECT statement used with EXPORT must be able to only get the data found
locally. The selection condition appears as follows:

SELECT * FROM tablename WHERE NODENUMBER(column-name) = CURRENT NODE

Only the rows from tablename found on the local database partition are exported to the
filename (like staff.ixfin the previous example) where there is a file with this name at
every database partition. The contents of these files are overwritten by the output from
the EXPORT command.

LOAD, IMPORT, and EXPORT File Formats

Four types of files can be imported to a database, and three types can be exported or
loaded. The type indicates the format of the data within the operating system file. The
supported file formats are:

DEL Delimited ASCII, for exchanging files with a wide variety of industry applications,
especially other database products. This is a commonly used way of storing data
that separates column values with a special delimiting character.

ASC Non-delimited ASCII for importing or loading data from other applications that
create flat text files with aligned column data.

164 Administration Guide

WSF Work-Sheet formats, for exchange with products such as Lotus** 1-2-3** and
Symphony**. The LOAD utility does not support this data type. The database
manager supports WSF files generated and/or supported by:

e Lotus 1-2-3 Release 1, 1A, 2 and 2J
e Lotus Symphony Release 1.0 and 1.1

IXF PC version of the Integrated Exchange Format, the preferred method for
exchange within the database manager. Use PC/IXF to export data from a table
so it can be imported later into the same or another table.

For DEL, WSF, and ASC data file formats, define the table, including its column names
and data types, before importing the file. The data types in the operating system file
fields are converted into the corresponding type of data in the database table. The
IMPORT utility accepts data with minor incompatibility problems, including character
data imported with possible padding or truncation, and numeric data imported into
different types of numeric fields.

For IXF data file formats, the table does not need to exist before beginning the import.
It can be automatically created when the data is imported. User-defined distinct types
(UDTs) are not made part of the new table column types; instead, the base type is
used.

Similarly, when exporting to the IXF data file format, UDTs are stored as base data
types in the IXF file.

The following topics describe these file formats:

¢ Delimited ASCII (DEL) File Format

¢ Nondelimited ASCII (ASC) File Format
¢ WSF File Format

e PC/IXF File Format

For more information on using these formats, see the Command Reference.

Delimited ASCII (DEL) File Format
A DEL file is a sequential ASCII file with row and column delimiters. It can be used to
exchange data with a variety of products using different column delimiters.

Each DEL file is a stream of ASCII characters consisting of cell values ordered by row
and then by column. Rows in the data stream are separated by row delimiters. Within a
row, the individual cell values are separated by column delimiters. When a file is
defined as DEL, spaces that precede the first character or follow the last character of a
cell value are discarded.

You can override the default characters for the column delimiter (,), the character string
delimiter ("), and the decimal point (.).

The following is an example of a DEL file:

Chapter 5. Utilities for Moving Data 165

"Smith, Bob",4973,15.46
"Jones, Bi11",12345,16.34
"Williams, Sam",452,193.78

Each line ends with a row delimiter which is the end-of-line indicator used by the
operating system. In the case of UNIX-based implementations, the end-of-line indicator
is an ASCI!I line feed (LF) character. In the case of Intel-based implementations, the
end-of-line indicator is an ASCII carriage return/line feed (CRLF) sequence. Each line
ends with a line feed (LF) character which is the row delimiter. In this example, a row is
"Smith, Bob",4973,15.46.

Quotes (that is, character string delimiters: ") are required so that the commas in the
names are not interpreted as being column delimiters. In the example DEL file above,
the first column contains "Smith, Bob" "Jones, Bill" "Williams, Sam".

If you change the column delimiter to a semicolon (;), the character string delimiter to a
single quote ('), and the decimal point character to a comma (,), the same file would
appear as follows:

'Smith, Bob';4973;15,46
'Jones, Bil1';12345;16,34
'"Williams, Sam';452;193,78

When importing or exporting DEL files, keep in mind the following:

e For the character string and column delimiters:

— A space (X'20') is never a valid delimiter or column delimiter.

— The period (.) is not a valid character string delimiter, because it conflicts with
periods in time and timestamp values.

— When exporting to a DEL file, for the character delimiter string choose a
character that does not occur within the data to be exported. An attempt to
export character data containing a character string delimiter will cause a
warning message. An attempt to import such a file will produce erroneous
results.

e Import of character strings that are not enclosed in character string delimiters is
allowed. The end of a nondelimited character string is determined by the first
occurrence of a space, a character string delimiter, or a row delimiter.

e A null value is indicated by the absence of a cell value where one would normally
occur, or by a string of spaces.

e Because some other products restrict the length of character fields, the EXPORT
command sends a warning message whenever a character column greater than
254 characters is selected for export. The IMPORT command accommodates fields
as long as the longest possible length, which is 32700 bytes.

e When working with DB2 on Intel-based operating systems, the first occurrence of
an end-of-file character (X'1A") that is not within a character string indicates the
end of the file. No data following the end-of-file character is imported. If the
NOEOFCHAR option is specified, this character is ignored.

¢ Integer, decimal, and scientific notation constants can be imported into numeric
database columns that are within the proper range.

166 Administration Guide

¢ The acceptable forms for importing date and time data are based on the country
code of the target database.

When exporting DEL files, all dates by default are in YYYYMMDD format. To get ISO
format (YYYY-MM-DD), specify DATEISO in the FILETMOD attribute.

Code Page Considerations: When you are importing or exporting a DEL file, the code
page for the data is assumed to be the same as that of the application executing the
utility. If it is different, unpredictable results may occur. When loading a DEL file, the
code page for the data is assumed to be the same as that of the database.

Any graphic data extracted (using EXPORT) by a client running under Japanese or
Traditional-Chinese EUC code pages will be encoded using the EUC encoding rather
than the UCS-2 internal representation when it is written to the file. Any graphic data
imported to (using IMPORT) or loaded by (using LOAD) clients running under these
code pages will be converted from the EUC encoding to the UCS-2 internal
representation before the data is inserted or loaded, respectively, into the database.

Nondelimited ASCII (ASC) File Format
An ASC file is a sequential ASCII file with row delimiters. It can be used to exchange
data with any ASCII product that can create data in a columnar format, including word
processors.

Each ASC file is a stream of ASCII characters consisting of data values organized by
row and column. Rows in the data stream are separated by a row delimiter, which is
the end-of-line indicator used by the operating system. In the case of UNIX-based
implementations, the end-of-line indicator is an ASCII line feed (LF) character. In the
case of Intel-based implementations, the end-of-line indicator is an ASCII carriage
return/line feed (CRLF) sequence. If the RECLEN=x option is used, each “X” characters is
considered one row.

Each column within a row is defined by a beginning-ending location pair. Each pair
represents locations specified as byte positions within a row. (The first position within a
row is byte position 1.) The first element of each location pair is the byte within the row
where the column begins and the second element is the byte where the column ends.
The columns may overlap. Within one ASCII file, every row has the same column
definitions.

No special processing is done for column names. Each row is considered to be data,
which means that ASC files are assumed to have no row or column names.

See the APl Reference and the Command Reference for more information about ASCII
file formats used for import.

Code Page Considerations: When you are importing an ASC file, the code page for

the data is assumed to be the same as that of the application executing the utility. If it
is different, unpredictable results may occur. When loading an ASC file, the code page
for the data is assumed to be the same as that of the database.

Chapter 5. Utilities for Moving Data 167

Any graphic data extracted (using EXPORT) by a client running under Japanese or
Traditional-Chinese EUC code pages will be encoded using the EUC encoding rather
than the UCS-2 internal representation when it is written to the file. Any graphic data
imported to (using IMPORT) or loaded by (using LOAD) clients running under these
code pages will be converted from the EUC encoding to the UCS-2 internal
representation before the data is inserted or loaded, respectively, into the database.

WSF File Format

Lotus 1-2-3 and Symphony products use the same basic format, with additional
functions added at each new release. The database manager supports the subset of
the worksheet records that are the same for all the Lotus products. That is, for the
releases of Lotus 1-2-3 and Symphony products supported by the database manager,
all file names with any three-character extension are accepted, for example: WKS,
WK1, WRK, WR1, WJ2.

Each WSF file represents one worksheet. The database manager uses the following
conventions to interpret worksheets and to provide consistency in worksheets
generated by its export operations:

e Cells in the first row (ROW value 0) are reserved for descriptive information about
the entire worksheet. All data within this row is optional. It is ignored during import.

e Cells in the second row (ROW value 1) are used for column labels.

¢ The remaining rows are data rows (records, or rows of data from the table).

e Cell values under any column heading are values for that particular column or field.

e A null value is indicated by the absence of a real cell content record (for example,
no integer, number, label, or formula record) for a particular column within a row of
cell content records.

Note: A row of all nulls will be neither imported nor exported.

In order to create a file that is compliant with WSF format, some loss of data may occur
when exporting from a table into a file with WSF format.

Code Page Considerations: Data in the WSF files use a Lotus code point mapping
that is not necessarily the same as existing code pages supported by DB2. As a result,
when importing or exporting a WSF file, data is converted from the Lotus code points
to/from the code points used by the application code page. DB2 supports conversion
between the Lotus code points and code points defined by code pages 437, 819, 850,
860, 863, and 865.

Note: For multi-byte character set users, no conversions are performed.

PC/IXF File Format
The personal computer (PC) version of the IXF format is a specific format used by the
database manager. IMPORT and LOAD accept only PC/IXF files, not host IXF files.
PCI/IXF is a structured description of a database table that contains an external
representation of the internal table. Data exported in PC/IXF format can be imported
into another DB2 for Universal Database product database. The code page value
stored in the IXF file must pass code page checks with the application environment and

168 Administration Guide

database. The IMPORT utility can be invoked with the parameter settings indicating that
code page mismatches are to be ignored.

Keep the following rules in mind when importing PC/IXF files into tables and views:

¢ A non-nullable PC/IXF column can be loaded or imported into a nullable column.

¢ A nullable PC/IXF column can be loaded or imported into a non-nullable column,
although some rows may be rejected.

¢ Numeric columns accept columns of any numeric type, although some data may be
rejected because it is out of range.

¢ Fixed-length string columns in the PC/IXF file that are too long for the target
column are not compatible and are not imported or loaded. Variable-length string
columns with actual lengths that are not compatible with the target column are
processed according to the compatibility rules used when adding data to a table or
view. The data is padded on the right with spaces if necessary.

e Date, time, and timestamp columns accept data from PC/IXF columns with
matching types and from character PC/IXF columns. Data values from character
PC/IXF columns must be valid input values for dates, times, or timestamps for
successful insertion into each of the corresponding type columns.

e A file with more than 1024 columns will be rejected.

e Large object (LOB) files can only go into large objects (LOBSs).

e Large objects (LOBs) can go into CHAR fields.

Code Page Considerations: A PC/IXF file does not have to be using the same code
page as the application running the import or load utility. The code page of the data in
the PC/IXF file is stored in the file.

If the PC/IXF file and the application performing the import or load are using the same
code page, processing occurs as for a regular application. If they are using different
code pages, processing depends on how the import or load utility were invoked:

e |f the FORCEIN option has been specified, the file code page is ignored and the
import or load assume that the data is in the application code page.

* |f the FORCEIN option is not specified, the results depend on whether a code page
conversion table exists for the file code page and the application code page for
IMPORT or the database code page for LOAD.

— If a conversion table exists, the IMPORT utility or LOAD utility converts the
data, and the utility continues with a warning that the conversion has occurred.

— If there is no conversion table, the IMPORT utility or LOAD utility ends with an
error.

When exporting a PC/IXF file using the LOBSINFILE option and then importing or
loading to a client having a different code page, any CLOBs or DBCLOBs are not
converted. The CLOBs and DBCLOBs are kept in separate files when the rest of the
data is imported or loaded. To properly import or load CLOB and DBCLOB data, the
utility must be used as an application having the same code page as the PC/IXF file.

Any graphic data imported to (using IMPORT) or loaded by (using LOAD) clients

running under Japanese or Traditional-Chinese Extended Unix Code (EUC) code pages
will be assumed to be encoded using the UCS-2 code set. Mixed character data is

Chapter 5. Utilities for Moving Data 169

assumed to be encoded using the EUC code set. Similarly, any graphic data extracted
(using EXPORT) by clients running under either of the two EUC code pages remains
encoded as UCS-2. This is done to improve performance.

Moving Data Between Systems

The IMPORT and EXPORT utilities may be used to transfer data between DB2
databases, and to and from DRDA host databases.

DataPropagator Relational (DPROPR) is another method for moving data between
databases in an enterprise.

The following topics provide more information:

e Moving Data Between DB2 Databases
e Moving Data Using the db2move Tool
e Moving Data With DB2 Connect

¢ Using Replication to Move Your Data

Moving Data Between DB2 Databases
Compatibility considerations are most important when loading or importing/exporting
data between Intel-based and UNIX-based platforms.

For more information, see the following topics:

e PC/IXF Format
¢ Delimited ASCII (DEL) File Formats
e WSF File Format

PC/IXF Format

PCI/IXF is the recommended format for transferring data between DB2 databases.
PCI/IXF files allow the Load utility or the Import utility to process numeric data, normally
machine dependent, in a machine independent fashion. For example, numeric data is
stored and handled differently in Intel** and other hardware architectures.

To provide compatibility of PC/IXF files between all products in the DB2 family the
EXPORT utility creates files with numeric data in Intel format, and the IMPORT utility
expects it in this format.

Note: Depending on the hardware platform, DB2 products convert numeric values
between Intel and non-Intel formats (using byte reversal) during both export and
import operations.

Multiple Part Files: UNIX-based implementations of DB2 do not create multiple-part
PCI/IXF files during export. However, they will allow you to import such a file that was
created by DB2 for OS/2. When importing this type of file, all parts should be in the
same directory, otherwise an error is returned by the utility.

The single-part PC/IXF files created by the UNIX-based implementations of DB2 export
utility can be imported by DB2 for OS/2.

170 Administration Guide

Delimited ASCII (DEL) File Formats
DEL files have differences based on the operating system on which they were created.
The differences are:

¢ Row separator characters
— Intel-based text files use a carriage return/line feed (CRLF) sequence
— UNIX-based text files use a line feed (LF) character
¢ End-of-file character
— Intel-based text files have an end-of-file character (X'1A")
— UNIX-based text files do not have an end-of-file character

Since DEL export files are text files, they may be transferred from one operating system
to another. File transfer programs handle the above differences if you transfer the file
using the text mode. Using the binary mode to transfer the file does not convert row
separator and end-of-file characters as required.

If character data fields contain row separator characters, these will also be converted
during the file transfer. This conversion will cause an inappropriate change to the data
and as a result, when the file is imported into a database on the different platform, data
shrinkage or expansion may occur. For this reason, we recommend that you do not
use DEL export files to move data between DB2 databases.

WSF File Format

Numeric data in WSF format files is stored using Intel machine format. This format
allows Lotus WSF files to be transferred and used in different Lotus operating
environments (for example, Intel-based and UNIX-based systems).

As a result of this consistency in internal formats, exported WSF files from DB2
products can be used by Lotus 1-2-3 and Symphony running on a different platform.
DB2 products can also import WSF files that were created on different platforms.

Transfer WSF files between operating systems platforms in binary, not text mode.

Do not use the WSF file format to transfer data between DB2 databases, since a loss
of data may occur. Use the PC/IXF file format instead.

Moving Data Using the db2move Tool
db2move is a tool that can help move large numbers of tables between DB2 databases
located on workstations. db2move queries the system catalog tables for a particular
database and compiles a list of all user tables. The tool then exports these tables in
PC/IXF format. The PC/IXF files can be imported or loaded to another local DB2
database on the same system, or can be transferred to another workstation platform
and imported or loaded to a DB2 database on that platform.

db2move calls the DB2 export, import, and load APIs depending on the action requested
by the user. Therefore, the requesting user ID must have the correct authorization
required by the APIs or the request will fail. Also, db2move inherits the limitations and
restrictions of the APIs. db2move is found in the misc subdirectory of the sqllib
directory.

Chapter 5. Utilities for Moving Data 171

The syntax of the tool is:

db2move dbname action [options...]

The dbname is the name of the database. The action must be one of: EXPORT,
IMPORT or LOAD. The options are:

-tc

-lo

table-creators. The default is all creators.

This is an EXPORT action only. If specified, only those tables created by the
creators listed with this option are exported. If not specified, the default is to use
all creators. When specifying multiple creators, each must be separated by
commas; no blanks are allowed between creator IDs. The maximum number of
creators that can be specified is 10. This option can be used with the “-tn”
table-names option to select the tables for export.

The wildcard character, asterisk (*), can be used in table-creators and can be
placed anywhere in the string.

table-names. The default is all user tables.

This is an EXPORT action only. If specified, only those tables whose names
match exactly to those in the specified string are exported. If not specified, the
default is to use all user tables. When specifying multiple table-names, each must
be separated by commas; no blanks are allowed between table-names. The
maximum number of table-names that can be specified is 10. This option can be
used with the “-tc” table-creators option to select the tables for export. db2move
will only export those tables whose names are matched with specified
table-names and whose creators are matched with specified table-creators.

The wildcard character, asterisk (*), can be used in table-names and can be
placed anywhere in the string.

import-option. The default is REPLACE_CREATE.

Valid options include INSERT, INSERT_UPDATE, REPLACE, CREATE, and
REPLACE_CREATE.

load-option. The default is INSERT.
Valid options include INSERT and REPLACE.
lobpaths. The default is the current directory.

This option shows the absolute path names where LOB files are created (as part
of EXPORT) or searched for (as part of IMPORT or LOAD). When specifying
multiple lobpaths, each must be separated by commas; no blanks are allowed
between lobpaths. If the first path runs out of space (during EXPORT) or the files
are not found in the path (during IMPORT or LOAD), the second path will be
used. Each subsequent path will be used for the same reasons should the same
conditions exist.

If the action is an EXPORT and lobpaths are specified, all files in the lobpath
directories are deleted , the directories are removed, and new directories are
created. If not specified, the current directory is used for the lobpath.

172 Administration Guide

userid. The default is the logged on user ID.

Both user ID and password are optional. However, if one is specified, both must
be specified. If db2move is run on a client connecting to a remote server, user 1D
and password should be specified.

password. The default is the logged on password.

Both user ID and password are optional. However, if one is specified, both must
be specified. If db2move is run on a client connecting to a remote server, user 1D
and password should be specified.

The following are several examples showing the db2move:

db2move sample export

This will export all tables in sample; the defaults are used for all options.
db2move sample export -tc useridl,us*rid2 -tn tbnamel,*tbname2

This will export all tables created by “userid1” or user IDs LIKE “us%rid2”; and,
table-name is “tbnamel” or table-names LIKE “%tbname2.”
db2move sample import -1 D:\LOBPATH1,C:\LOBPATH2

This example is applicable for Intel-based platforms only. This will import all tables
in sample; any LOB files are to be searched for using lobpaths “D:\LOBPATH1"
and “C:\LOBPATH2."

db2move sample load -1 /home/userid/lobpath,/tmp

This example is applicable for UNIX-based platforms only. This will load all tables
in sample; any LOB files are to be searched for using the Tobpath subdirectory in
the userid subdirectory of the the home directory or in the tmp subdirectory.
db2move sample import -io replace -u userid -p password

This will import all tables in sample in REPLACE mode; the user ID and password
are used.

Usage notes:

1.

2.

This tool exports, imports, or loads user-created tables. If you want to duplicate a
database from one platform to another platform db2move only helps you to move
the tables. You need to consider moving all other objects associated with the
tables such as: aliases, views, triggers, user-defined functions, and so on. db21o0ok
can help you move some of these objects by extracting the data definition
language (DDL) statements from the database. db21o00k is another tool that is
found under the misc subdirectory in the sq11ib subdirectory.

When EXPORT, IMPORT, or LOAD APIs are called by db2move, the FileTypeMod
parameter is set to “lobsinfile.” That is, LOB data is kept in separate files from
PC/IXF files. There are 26 000 file names available for LOB files.

LOAD action must be run locally on the machine where the database and data file
reside. When the LOAD API is called by db2move, the CopyTargetlList parameter is
set to NULL. That is, no copying is done. If Togretain is on, the LOAD cannot be
rolled forward later on. The table space where the loaded tables reside is placed in
“backup pending” state and is not accessible. A full database backup or a table
space backup is required to take the table space out of the “backup pending” state.

Chapter 5. Utilities for Moving Data 173

The db2move LOAD action is not supported in DB2 Universal Database where
partitioned databases may be used.
Notes when using EXPORT:

e Input: None.
e Output:

EXPORT.out The summarized result of the EXPORT action.

db2move.Ist The list of original table names, their corresponding PC/IXF file
names (tabnnn.ixf), and message file names (tabnnn.msg). This
list, the exported PC/IXF files, and LOB files (tabnnnc.yyy) are
used as input to the db2move IMPORT or LOAD action.

tabnnn.ixf The exported PC/IXF file of a table.
tabnnn.msg The export message file of the corresponding table.
tabnnnc.yyy The exported LOB files of a table.

“nnn” is the table number. “c” is a letter of the alphabet. “yyy”is a
number ranging from 001 to 999.

These files are created only if the table being exported contains
LOB data. If created, these LOB files are placed in the “lobpath”
directories. There are a total of 26 000 possible names for the
LOB files.

system.msg The message file containing system messages for creating or
deleting file or directory commands. This is only used if the action
is EXPORT and a lobpath is specified.

Notes when using IMPORT:
e Input:
db2move.lIst An output file from the EXPORT action.
tabnnn.ixf An output file from the EXPORT action.
tabnnnc.yyy An output file from the EXPORT action.
e Output:
IMPORT.out The summarized result of the IMPORT action.

tabnnn.msg The import message file of the corresponding table.

Notes when using LOAD:
e Input:
db2move.Ist An output file from the EXPORT action.
tabnnn.ixf An output file from the EXPORT action.
tabnnnc.yyy An output file from the EXPORT action.

174 Administration Guide

e Output:
LOAD.out The summarized result of the LOAD action.

tabnnn.msg The LOAD message file of the corresponding table.

Moving Data With DB2 Connect

You may be working in a more complex environment where you need to move data
between a host database system and the workstation environment. In such an
environment, you may work with DB2 Connect; as the gateway for the data from the
host to the workstation as well as the reverse.

The following section discusses the considerations when importing and exporting data
using DB2 Connect.

Using Import and Export Utilities

The import and export utilities let you move data from a DRDA server database to a file
on the DB2 Connect workstation or vice versa. You can then use this data with any
other application or RDBMS that supports this import/export format. For example, you
can export data from DB2 for MVS/ESA into a delimited ASCII file and later import it
into a DB2 for OS/2 database.

You can perform export and import functions from a database client or from the DB2
Connect workstation.
Notes:

1. The data to be imported or exported must comply with the size and data type
restrictions of both databases.

2. To improve import performance, you can use compound SQL. Specify
COMPOUND=number in the import API or the CLP filetype-mod string parameter to
group the specified number of SQL statements into a block. This may reduce
network overhead and improve response time.

3. For information on the syntax of the import and export utilities from the command
line processor, see the Command Reference manual.
Moving Data from a Workstation to a DRDA Server: To export to a DRDA server
database:
1. Export the rows of information from the DB2 table into a PC/IXF file.

2. If the DRDA server database does not contain a table having attributes compatible
with the information to be imported into it, create a compatible table.

3. Using the INSERT option, import the PC/IXF file to a table in the DRDA server
database.

Chapter 5. Utilities for Moving Data 175

Moving Data from a DRDA Server to a Workstation: To import data from a DRDA
server database:

1. Export the rows of information from the DRDA server database table to a PC/IXF
file.

2. Use the PC/IXF file for importing to a DB2 table.
Restrictions: With the DB2 Connect program, import or export operations must meet
the following conditions:

¢ The file type must be PC/IXF.

¢ Index definitions are not stored on export or used on import.

e A table with attributes that are compatible with those of the data must exist before
you can import to it. Importing through the DB2 Connect program cannot create a
table because INSERT is the only supported option.

e A commit count interval must not be specified with import.

If these conditions are violated, the operation will fail and an error message will be
generated.

Mixed Single-Byte and Double-Byte Data: If you import and export mixed data
(columns containing both single-byte and double-byte data), consider the following:

e On systems that store data in EBCDIC (MVS, 0S/390, OS/400, VM, and VSE),
shift-out and shift-in characters mark the start and end of double-byte data. When
you define column lengths for your database tables, be sure to allow enough room
for these characters.

e Variable-length character columns are recommended unless the data in a column
has a consistent pattern. If it does, fixed length is acceptable.

Replacement for SQLQMF Utility: ~ The function of the SQLQMF utility with DDCS for
OS/2 has been replaced by the DB2 Connect Import/Export functions. The advantages
are:

¢ No need for QMF on the host

¢ No need to logon to the host (a TSO id is still required on DB2 for MVS/ESA or
DB2 for OS/390)

e Supports DB2 for MVS, DB2 for OS/390, DB2 for OS/400, and DB2 for VM and
VSE

¢ Good performance achieved by using compound SQL
e Supports several file formats, in addition to ASCII

e Can be run from a client machine with no SNA connectivity.

Refer to the Command Reference for further information on using these commands.

176 Administration Guide

Using Replication to Move Your Data
Replication allows you to copy data on a regular basis to multiple remote databases. If
you need to have updates to a master database automatically copied to other
databases, you can use the replication features of DB2 to specify what data should be
copied, which database tables the data should be copied to, and how often the updates
should be copied. The replication features in DB2 are a part of a larger IBM solution for
replicating data in small and large enterprises—IBM Relational Data Replication (IBM
Replication).

The IBM Replication tools are a set of IBM DataPropagator Relational (DPROPR)
programs and DB2 Universal Database tools that copy data between distributed
relational database management systems:

e Between DB2 Universal Database platforms.

e Between DB2 Universal Database platforms and host databases supporting
Distributed Relational Database Architecture (DRDA) connectivity.

¢ Between host databases that support Distributed Relational Database Architecture
(DRDA) connectivity.

Based on the DPROPR V1 offering, IBM Replication tools allow you to copy data
automatically between DB2 relational databases, as well as nonrelational and non-IBM
databases.

You can use the IBM Replication tools to define, synchronize, automate, and manage
copy operations from a single control point for data across your enterprise. The
replication tools in DB2 Universal Database offer replication between relational
databases only. The tool set manages the copying (replication) of data in a
store-and-forward manner.

Why use Replication?

Replication allows you to give end-users and applications access to production data
without putting extra load on the production database. You can copy the data to a
database local to an end-user or application, rather than have them access the data
remotely. A typical replication scenario involves a source table with copies in one or
more remote databases, for example, a central bank and its local branches. A change
occurs in the “master” or source database. At a predetermined time, an automatic
update of all of the other DB2 relational databases takes place and all the changes are
copied to the target database tables.

The replication tools allow you to customize the copy table structure. You can use SQL
when copying to the target database to subset, aggregate, or otherwise enhance the
data being copied. You can also create the copy tables structure to fit your needs:
read-only copies that duplicate the source table, show data at a certain point in time,
provide a history of changes, or stage data to be copied to additional target tables.
Additionally, you can create read-write copies that can be updated by end-users or
applications and have the changes replicated back to the master table. You can
replicate views of source tables and views of copies. Event-driven replication is also
possible.

Chapter 5. Utilities for Moving Data 177

The replication tools currently support DB2 on MVS/ESA, AS/400, AlX, OS/2, VM and
VSE, Windows NT, HP, and the Solaris Operating environment. You can also replicate
to non-IBM databases, such as Oracle, Microsoft SQL Server, and Lotus Notes.

The IBM Replication Tools in Detail

There are two components of the IBM Replication tools solution: IBM DPROPR Capture
and IBM DPROPR Apply. You can setup these two components with the DB2 Control
Center. The operation of these two components, and the monitoring of them, happen
outside of the Control Center.

The IBM DPROPR Capture program captures the changes from the source tables. A
source table can be an external table containing SQL data from a file system or
nonrelational database manager loaded outside DPROPR; an existing table in the
database; or, a table that has previously been updated by the IBM DPROPR Apply
program, which allows changes to be copied back to the source or to other target
tables.

The changes are copied into a change data table, where they are stored until the target
system is ready to copy them. The Apply program then takes the changes from the
change data table and copies them to the target tables.

You use the Control Center to set up the replication environment, define source and
target tables, specify the timing of the automated copying, specify SQL enhancements
to the data, and define relationships between the source and the target tables.

For more information, see the Replication Guide and Reference, S95H-0999.

178 Administration Guide

Chapter 6. Recovering a Database

A database can become unusable because of hardware or software failure (or both),
and the different failure situations may require different recovery actions. You should
have a strategy in place to protect your database against the possibility of these failure
situations. When designing a strategy, you should also rehearse it. This will allow you
to detect any shortcomings in the plan, and to avoid problems when you have to
recover the database.

This chapter discusses the different recovery methods that can be used in the event
there is a problem involving the database. Also discussed are considerations and
decisions that will assist in determining the recovery method best suited to your
business environment. Each recovery method is described along with the associated
concepts, and the commands provided with the product to support these methods.

The following are major topics within this chapter:

¢ Overview of Recovery

e Factors Affecting Recovery

e Recovery Method: Crash Recovery

¢ Recovery Method: Restore Recovery

¢ Recovery Method: Roll-Forward Recovery
¢ ADSTAR Distributed Storage Manager

One type of problem that requires database recovery is not handled by DB2: the
corruption of data that is caused by errant logic or incorrect input in an application. You
can use restore and roll-forward recovery to recover the database to a point in time that
is close to when the application began working with the database. Or, you can attempt
to back out the effects of the application on the database by executing the transactions
in reverse. You must exercise caution if you decide to follow the second approach.
This chapter does not provide further description about application errors.

Overview of Recovery

You need to know the strategies available to you to help when there are problems with
the database. Typically you will deal with media and storage problems, power
interruptions, and application failures. You need to know that you can back up your
database, or individual table spaces, and then rebuild them should they be damaged or
corrupted in some way. The rebuilding of the database is called recovery. There are
three ways recovery of a damaged database can take place: crash recovery, restore,
and roll-forward.

1. Crash recovery is the method that protects a database from being left in an
inconsistent, or unusable, state. Transactions, or units of work, against the
database can be interrupted unexpectedly. For example, should a failure (power
interruption, application failure) occur before all of the changes that are part of the
unit of work are completed and committed, the database is left in an inconsistent
and unusable state.

© Copyright IBM Corp. 1993, 1997 179

Units of work

1 [rollback
2 rollback
3 [rollback
4 rollback
.
.
Crash

All four rolled back

TIME

Figure 20. Rolling Back Units of Work

The database then needs to be moved to a consistent and usable state. This is
done by rolling back incomplete transactions and completing committed
transactions that were still in memory when the crash occurred.

You can do this by entering a RESTART DATABASE command. If you want this
done in every case of a failure, then you should consider the use of the automatic
restart enable (autorestart) configuration parameter. The default for this
configuration parameter is that the RESTART DATABASE routine will be started
every time it is needed. When (autorestart) is enabled, the next connect request to
the database after the failure causes RESTART DATABASE to be executed.

Crash recovery always moves the database to a consistent and usable state. If
crash recovery occurs for a database that is enabled for forward recovery (that is,
the logretain or userexit configuration parameter is on for the database), and an
error occurs during crash recovery that is attributable to an individual table space,
that table space is taken off-line. Crash recovery continues. The table space taken
off-line is placed in a roll-forward pending state.

At the completion of crash recovery, the other table spaces in the database are still
usable and connections to the database can be established. (There are exceptions
involving the table spaces that have the temporary tables or the system catalog
tables. These will be discussed under roll-forward recovery.)

Following crash recovery, you may need to take additional action. You may need to
work with the table spaces taken off-line as mentioned above. You may need to
conduct a restore recovery and/or a roll-forward recovery depending on the error.

2. Restore recovery (also known as version control) allows for the restoration of
previous version or image of the database that was made using the BACKUP
command.

180 Administration Guide

BACKUP Units of work 1 [
database 2
3 |
4 RESTORE
| database
create
i
BACKUP
database
image

TIME

Figure 21. Restoring a Database

A database restore will rebuild the entire database using a backup of the database
made at some point earlier. A backup of the database allows you to restore a
database to a state identical to the time when the backup was made. Every unit of
work from the time of the backup to the time of the failure is lost. (The need to
re-create these units of work introduces the possibility of the next recovery method,
roll-forward recovery, which is discussed later.)

Using the database restore recovery method, you must schedule and perform a full
backup of the database on a regular basis.

In a partitioned database environment, the database is located across many
database partition servers (or nodes). You must restore all database partitions, and
the backups that you use for the RESTORE must all have been taken at the same
time. (Each database partition is backed up and restored separately.) A backup of
each database partition taken at the same time is known as a version backup.

3. Roll-forward recovery may be the next task to be done following a restore
depending on the state of the database. For roll-forward recovery to be possible on
a database, the database must be recoverable, and must be in the roll-forward
pending state at the end of the restore.

Recoverable databases have either the logretain or userexit (or both) database
configuration parameters turned “on.” This allows for active and archived logs to be
kept and results in the ability for the database to have roll-forward recovery. Table
space BACKUP and RESTORE, and online BACKUP and RESTORE, are
applicable to recoverable databases only.

Non-recoverable databases have both logretain and userexit turned “off.” Only
active logs are kept for crash recovery; no roll-forward recovery is allowed. Restore

Chapter 6. Recovering a Database 181

recovery using offline backups is the primary means of recovery for problems with
this mode of database.

The scenarios that you need consider at this point are:

a.

Database roll-forward recovery, which follows the restore of the database with
the application of database logs. The database logs record all changes made
to the database. This method completes the recovery of the database to a
state identical to the time just before the failure.

1 active log
n archived logs
database | Units of work | database .
| changes in logs
create
BACKUP
database
image
TIME
—

Figure 22. Database Roll-Forward Recovery

182 Administration Guide

To use the database roll-forward recovery method, you must have created a
backup of the database as well as archiving the logs by enabling either
logretain or userexit. There are decisions that you must make regarding the
logging procedure that you use. (Logging is discussed in more detail later. See
the section on “Database Logs” on page 185.)

In a partitioned database system, the database is located across many
database server partitions. In this environment, if you are performing
point-in-time roll-forward recovery, all database partitions must be rolled
forward to ensure that all partitions are at the same level. If you need to
restore a single database partition, you can perform roll-forward recovery to
the end of the logs to bring it up to the same level as the other database
partitions in the database.

When the database is enabled for forward recovery, it is also possible to back
up and restore table spaces. Table space restore requires a backup made
using BACKUP. This backup can be of the entire database (all of the table

spaces) or of one or more individual table spaces. This method restores the
selected table spaces to a state identical to the time the backup was made.

Notes:

1) Those table spaces not selected at the time of the BACKUP will not be in
the same state as those that were restored.

2) Using the table space restore recovery method, you must identify “key”
table spaces in the database to be recovered as well as schedule and
perform a backup of the database or the “key” table spaces on a regular
basis.

BACKUP Units of work
table space(s)

RESTORE
table space(s)

create

i

BACKUP
table space
image

TIME
—

Figure 23. Restoring One or More Table Spaces

Table space roll-forward recovery can be required in the following two situations:

1. If one or more table spaces are in a roll-forward pending state because of crash
recovery, you can use the ROLLFORWARD command to apply the logs against
the table spaces.

Note: If the table space in error contains the system catalog tables, you will not
be able to start the database. You must restore the SYSCATSPACE table
space, then perform roll-forward recovery on it to the end of the logs.

Chapter 6. Recovering a Database 183

Units of work ROLLFORWARD

changes in logs

1 active log
n archived logs

TIME

Note that there is no RESTORE

Figure 24. Table Space Roll-Forward Recovery

2. The second scenario occurs after a table space restore. A table space is always in
the roll-forward pending state after it is restored, and it must be rolled forward.
Again, use the ROLLFORWARD command to apply the logs against the table
spaces.

In a partitioned database system, if you are rolling forward a table space to a point in
time, you do not have to supply the list of nodes (database partitions) on which the
table space resides. The database manager submits the ROLLFORWARD request to
all database partitions. If you are rolling forward a subset of the table spaces to the end
of the logs, you must supply the list of nodes. If you want to roll forward all table
spaces to the end of the logs, you do not have to supply the list of nodes. By default,
the ROLLFORWARD request is sent to all database partitions.

Factors Affecting Recovery

To decide which database recovery method to use, you must consider the following key
factors:

e Will the database be recoverable or non-recoverable?
e How near to the time of failure will you need to recover the database (the point of
recovery)?
e How much time can be spent recovering the database? This would include:
— Time between backups (will affect roll-forward recovery)?
— Time the database is usable or accessible (backing up online or offline based
on data availability needs)?
e How much storage space can be allocated for backup copies and archived logs?
e Will you be using table space level or full database level backup?

184 Administration Guide

In general, a database maintenance and recovery strategy should ensure that all
information is available when it is required for database recovery. The strategy should
include a regular schedule for taking database backups, as well as scheduled backups
when a database is created, or in the case of a partitioned database system, when the
system is scaled by adding or dropping database partition servers (nodes). In addition
to these basic requirements, a good strategy will include elements that reduce the
likelihood and impact of database failure.

The following topics provide additional information:

¢ Recoverable and Non-Recoverable Databases
¢ Database Logs

¢ Reducing Logging on Work Tables

¢ Point of Recovery

¢ Frequency of Backups and Time Required

¢ Recovery Time Required

e Storage Considerations

e Keeping Related Data Together

¢ Recovery Performance Considerations

¢ Disaster Recovery Considerations

Recoverable and Non-Recoverable Databases
If you can re-create data easily, the database holding that data is a candidate to be a
non-recoverable database. For example:

¢ Tables that hold data from an outside source that is used for read-only applications
(and the data is not mixed with existing data) should be considered for placement
within a non-recoverable database.

e Tables with small amounts of data. Here recovery is not a problem. Rather, there is
just not enough logging done for the data to justify the added complexity of
managing log files and rolling forward after a restore.

e Large tables where small numbers of rows are periodically added. Again, there is
not enough volatility to justify managing log files and rolling forward after a restore.

If you cannot re-create data easily, then the database holding that data is a candidate
to be a recoverable database. The following are examples of data that should be part of
a recoverable database:

¢ Data that you cannot re-create. This includes data whose source is destroyed after
the data is loaded, and data that is manually entered into tables.

¢ Data that is modified by application programs or workstation users after it is loaded
into the database.

Database Logs
All databases have logs associated with them. These logs keep records of database
changes. Some logs, called active logs, are used by crash recovery to prevent a failure
(system power, application error) from leaving a database in an inconsistent state.
Changes already made but not committed because of the failure are rolled back. All
committed units of work, which may not have been physically written to disk because of
the failure, are redone. These actions ensure the integrity of the database.

Chapter 6. Recovering a Database 185

Roll-forward recovery can use both the active logs and logs that have been archived to
rebuild a database either to the end of the logs, or to a specific point in time. The
roll-forward function achieves this by reapplying changes that are found in the archived
and active logs to the restored database.

Roll-forward recovery can also use logs to rebuild a table space. You can recover a
table space to the end of the logs, or to a specific point in time.

Units of work Units of work
BACKUP
database

update update
1 active log 1 active log
n archived logs n archived logs
TIME
o

Logs are used between backups to track the changes to the databases.

Figure 25. Active and Archived Database Logs in Roll-forward Recovery

The types of database logs that pertain to recovery follow:

Active logs

Active logs contain transactions that have been committed, but may not
have been physically written from memory (buffer pool) to disk (database
containers). These logs contain information necessary to roll-back any
active transaction not committed during normal processing. The RESTART
DATABASE command uses the active logs, if needed, to move the
database to a consistent and usable state by means of crash recovery. The
ROLLFORWARD command may also use the active logs, if needed, during
a point-in-time recovery or a recovery to the end of the logs. Active logs
are located in the database log path directory.

Online archived logs

When all changes in the active log are no longer needed for normal
processing, the log is closed, and becomes an archived log. An archived
log is said to be online when it is stored in the database log path directory.

Offline archived logs

186 Administration Guide

You also have the ability to store archived logs in a location other than the
database log path directory, by using a user exit program. (See

Appendix J, “User Exit for Database Recovery” on page 753 for
information.) An archived log is said to be offline when it is not stored in
the database log path directory.

Two parameters in the database configuration file allow you to change where archived
logs are stored: the newlogpath parameter and the userexit parameter. Changing the
newlogpath parameter also affects where active logs are stored.

To determine which log extents in the database log path directory are archived logs,

check the value of the database configuration file parameter loghead. This parameter
indicates the lowest numbered log that is active. Those logs with sequence numbers

less than that of this log are archived logs and can be moved.

Notes:

1. If you erase an active log, the database becomes unusable and must be restored
before it can be used again. Also, you will be able to roll forward the changes from
the logs only up to the first log that was erased.

2. If you are concerned that your active logs may be damaged (due to a disk crash),
you should consider mirroring the volumes on which the logs are stored. By having
multiple copies of the logs, you will not lose any transactions, which may happen
when active logs are damaged.

Reducing Logging on Work Tables
If your application creates and populates work tables from master tables, and you are
not concerned about the recoverability of these work tables because they can be easily
re-created from the master tables, you may want to create the work tables with the
NOT LOGGED INITIALLY parameter of the CREATE TABLE statement. The advantage
of using the NOT LOGGED INITIALLY parameter is that any changes made on the
table (including Insert, Delete, Update, or Create Index operations) in the same unit of
work that the table was created in will not be logged. This not only reduces the logging
that is done, but also obtains better performance for your application.

Notes:

1. You can create more than one table with the NOT LOGGED INITIALLY parameter
in the same unit of work.

2. Changes to the catalog tables and other user tables are still logged.

Because changes to the table are not logged, you should consider the following when
deciding to use the NOT LOGGED INITIALLY parameter:

¢ All changes to the table are written out at commit time. This means that the commit
may take longer.

¢ An error received for any operation in a unit of work in which the table is created
will result in the rollback of the entire unit of work. In this case, the application
receives the SQLCODE -1476 (SQLSTATE 40506).

¢ When rolling forward, you cannot recover these tables. If the roll-forward operation
encounters a table that was created with the NOT LOGGED INITIALLY parameter,
this table will be marked as unavailable. After the database is recovered, any
attempt to access the table will result in SQL1477N being returned.

Note: When a table is created, row locks are held on the catalog tables until a
COMMIT is done. To take advantage of the no logging behavior, you must

Chapter 6. Recovering a Database 187

populate the table in the same unit of work in which it is created. This has
implications for concurrency. For more information, see “Concurrency” on
page 265.

For more information about creating tables, see the SQL Reference manual.

Point of Recovery
The restore and roll-forward methods provide different points of recovery. The
restore-only method involves making an offline, full database backup copy of the
database at scheduled times. With this method, the backup copy of the database is
only as current as the time that the last backup was made. For instance, if you make a
backup copy at the end of each day and you lose the database midway through the
next day, you will lose a half-day's worth of changes.

In the roll-forward recovery method, changes made to the database are retained in
logs. With this method, you first restore the database or table space(s) using a backup
copy; then you use the logs to reapply changes that were made to the database since
the backup copy was created.

With roll-forward recovery enabled, you can take advantage of online backup and table
space level backup. For full database and table space roll-forward recovery, you can
choose to recover to the end of the logs or to a specified point-in-time. For instance, if
an application corrupted the database, you could start with a restored copy of the
database, and roll-forward changes up until just before that application started. All units
of work in the logs after the time specified will not be reapplied.

You can also roll forward table spaces to the end of the logs, or to a specific point in
time. For more information about rolling forward table spaces, see “Rolling Forward
Changes in a Table Space” on page 220.

Frequency of Backups and Time Required
Your recovery plan should allow for regularly scheduled backups, since backing up a
database requires time and system resource.

You should take full database backups regularly, especially if you archive the logs
(which allows for roll-forward recovery). If your recovery strategy includes roll-forward
recovery, a recent full database backup will mean that there are fewer archived logs to
apply to the database, which reduces the amount of time required by the
ROLLFORWARD utility to recover the database.

You should also consider that instead of overwriting backups and logs, that you save
more than one full database backup and its associated logs as an extra precaution.

You can do a backup while the database is either online or offline. If it is online, other
applications or processes can continue to connect to the database as well as read and
modify data while the backup task is running. If the backup is performed offline, only
the backup task can be connected to the database. The implication of offline backup is

188 Administration Guide

that the rest of your organization cannot connect to the database while the backup task
is running.

To reduce the time when the database is not available, consider using online backups.
Online backups are supported only if roll-forward recovery is enabled. If roll-forward
recovery is enabled and you have a complete set of logs, you can rebuild the database
should the need arise.

If you use DMS table spaces, you can store different types of data in their own table
spaces to reduce the time required for backups. You can keep table data in one table
space, the LONG and LOB data in another table space, and the INDEX data in another
table space.

If you reorganize a table, you should back up the affected table spaces after the
operation completes. If you have to restore the table spaces, you will not have to roll
forward through the data reorganization.

If a database contains large amounts of long field and LOB data, backing up the
database could be very time-consuming. The BACKUP command provides the
capability to back up selected table spaces. By storing long field and LOB data in
separate table spaces, the time required to complete the back up of the data can be
reduced by choosing not to back up the table spaces containing the long field and LOB
data. If the long field and LOB data is critical to your business, backing up these table
spaces should be considered against the time required to complete the restore task for
these table spaces. If the LOB data can be reproduced from a separate source then,
when creating or altering a table to include LOB columns, choose the NOT LOGGED
option.

Note: If you back up a table space that contains table data without the table spaces
containing the associated the LONG or LOB fields, you cannot perform
point-in-time roll-forward recovery on that table space. All the table spaces that
contain any type of data for a table must be rolled forward simultaneously to the
same point in time.

While the online backup operation is running, changes can also be occurring on the
tables. The roll-forward recovery method is used to ensure that all table changes are
captured.

While the general focus of this chapter is on the database, your overall recovery
planning should include recovering:

e The operating system and DB2 executables

¢ Applications, UDFs, and stored procedure code in operating system libraries
¢ Commands for creating DB2 instances and non-DB2 resources

¢ Operating system security

¢ Load copies from a LOAD operation (if you specify COPY YES for the LOAD)

Chapter 6. Recovering a Database 189

Recovery Time Required
The time required to recover a database is made up of two parts: the time required to
complete the restore of the backup; and, if the database is enabled for forward
recovery, the time required to apply the logs during the ROLLFORWARD operation.
When formulating a recovery plan, you should determine what is a reasonable amount
of time for your business operations to be impacted while the database is being
recovered.

Testing your overall recovery plan will assist you in determining whether the time
required to recover the database is reasonable given your business requirements.
Following each test, you may want to increase the frequency with which you take a
backup. If roll-forward recovery is part of your strategy, this will reduce the number of
logs that are archived between backups and, as a result, reduce the time required to
roll forward the database after a restore.

Storage Considerations
When deciding which recovery method to use, consider the storage space required.

The restore method requires space to hold the backup copy of the database and the
restored database. The roll-forward method requires space to hold the backup copy of
the database or table spaces, the restored database, and the archived database logs.

If a table contains long field or large object (LOB) columns, you should consider placing
this data into a separate table space. This will affect your storage space considerations
as well as affect your plan for recovery. With a separate table space for long field and
LOB data, and knowing the time required to back up long field and LOB data, you may
decide to use a recovery plan that only infrequently saves a backup of this long
field/LOB table space. You may also choose, when creating or altering a table to
include LOB columns, not to log changes to that column. This will reduce the size of
the log space required and the corresponding log archive space.

The backup of a SMS table space which contains LOBs can be bigger than the size of
the original table space. The backup can be as much as 40 per cent larger depending
on the LOB data size in the table space. For example, if you take a backup of a 1GB
SMS table space (with LOBSs), you will need more than 1GB of disk space when you
restore it. This situation only occurs on file systems that support sparse allocation (for
example, UNIX operating systems).

To prevent a media failure from destroying a database and your ability to rebuild it, you
should keep the database backup, the database logs, and the database itself on
different devices. For this reason, it is highly recommended that you use the
newlogpath configuration parameter to put database logs on a separate device once
the database is created. (This and other configuration parameters related to logging are
discussed in “Rolling Forward Changes in a Database” on page 216.)

Because the database logs can take a large amount of storage, if you plan on using the

roll-forward recovery method you must decide how to manage the archived logs. Your
choices include one of the following:

190 Administration Guide

Dedicate enough space in the database log path directory to retain the logs.
Manually copy the logs to a storage device or directory other than the database log
path directory.

Use a user exit program to copy these logs to another storage device. (See
Appendix J, “User Exit for Database Recovery” on page 753 for more information.)

Note: Under OS/2, the database manager supports a user exit program to handle the

storage of both backup copies of databases and database logs on standard and
non-standard devices. See Appendix J, “User Exit for Database Recovery” on
page 753 for more information.

Keeping Related Data Together
As part of your database design, you will know the relationships that exist between
tables. These relationships can be at the application level, where transactions update
more than one table, or at the database level, where referential integrity exists between
tables, or where triggers on one table affect another table. You should consider these
relationships when developing a recovery plan. You will want to back up related sets of
data together. The sets of data can be established at either the table space or the
database level. By keeping related sets of data together, you can recover to a point
where all of the data is consistent. This is especially important if you want to be able to
perform point-in-time roll-forward recovery on table spaces.

Recovery Performance Considerations
The following items should be considered when thinking about recovery performance:

You can improve performance for databases that are frequently updated by placing
the logs on a separate device. All database changes are written in the logs.

In the case of an online transaction processing (OLTP) environment, often more
1/0 is needed for the logs than to store a data row. Placing the logs on a separate
physical disk will minimize disk arm movement that would be required to move
between a log and the physical database files.

You should also consider what other files are on the disk. For example, moving the
logs to the same disk used for system paging in a system that has insufficient real
memory will defeat your tuning efforts.
To reduce the amount of time required to complete a restore:
— Adjust the restore buffer size. The buffer size must be a multiple of the buffer
size that was used during the backup.
— Increase the number of buffers.

If you use multiple buffers and 1/0O channels, you should use at least twice as
many buffers as channels to ensure that the channels do not have to wait for
data. The size of the buffers used will also contribute to the performance of the
restore operation. The ideal restore buffer size should be a multiple of the
extent size for the table space(s).

If you have multiple table spaces with different extent sizes, specify a value
that is a multiple of the largest extent size.
— Use multiple target devices.

Chapter 6. Recovering a Database 191

— Increase the level of parallelism by using the intra_parallel database manager
configuration parameter. Increasing the level of parallelism can greatly
improve restore performance. For more information about the parameter, see
“Enable Intra-Partition Parallelism (intra_parallel)” on page 560.

e If a table contains large amounts of long field and LOB data, restoring it could be
very time-consuming. If the database is enabled for forward recovery, the
RESTORE command provides the capability to restore selected table spaces. By
storing long field and LOB data in separate table spaces, the time required to
complete the restore of the data can be reduced by choosing not to restore the
table spaces containing the long field and LOB data. If the long field and LOB data
is critical to your business, restoring these table spaces should be considered
against the time required to complete the back up task for these table spaces. If
the LOB data can be reproduced from a separate source then, when creating or
altering a table to include LOB columns, choose the NOT LOGGED option. If you want
to roll forward the table spaces that contain the table, you must roll forward to the
end of the logs so that all table spaces that contain the table are consistent.

Note: If you back up a table space that contains table data without the table
spaces containing the associated the LONG or LOB fields, you cannot
perform point-in-time roll-forward recovery on that table space. All the table
spaces that contain any type of data for a table must be rolled forward
simultaneously to the same point in time.

Recall that long field and LOB data for the same table must be placed in the same
table space.

¢ Offline backups are faster than online backups.

e Multiple I/O buffers and devices should be used.

¢ Allocate at least twice as many buffers as there are devices being used.

e Do not overload the 1/0 device controller bandwidth.

¢ Use more buffers of smaller size rather than a few large buffers.

¢ Tune the number and the size of the buffers according to the system's resources.

It is also recommended that you monitor and measure within your own system
environment. The recommendations are only a starting point: each business and each
environment is unique.

Disaster Recovery Considerations

192

The term disaster recovery is used to describe the activities that need to be done to
restore the database in the event of a fire, earthquake, vandalism, or other catastrophic
events. A plan for disaster recovery can include one or more of the following:

e A site to be used in the event of an emergency
e A different machine on which to recover the database
e Off-site storage of database backups and archived logs

If your plan for disaster recovery is to recover the entire database on another machine,
you require at least one full database backup and all the archived logs for the
database. When operating your business with this consideration, you may choose to
keep a standby database up-to-date by applying the logs to it as they are archived. Or,

Administration Guide

you may choose to keep the database backup and log archives in the standby site, and
perform a restore/rollforward only after a disaster has occurred. (In this case, a recent
database backup is clearly desirable.) With a disaster, however, it is generally not
possible to recover all of the transactions up to the time of the disaster.

The usefulness of a table space backup for disaster recovery depends on the scope of
the failure. When a major disaster occurs, a full database backup is needed on a
standby site. If the disaster is a damaged disk, then a table space backup (for each
table space using that disk) can be used to recover. If you have lost access to a
container because of a disk failure (or for any other reason), you can restore the
container to a different location. For additional information, see “Redefining Table
Space Containers During RESTORE” on page 211.

With critical business data being stored in your database, you should plan for the
possibility of a natural or man-made disaster affecting your database. Both table space
backups and full database backups can have a role to play in any disaster recovery
plan. The DB2 facilities available for backing up, restoring, and rolling forward data
changes provide a foundation for a disaster recovery plan. You should ensure that you
have tested recovery procedures in place to protect your business.

Reducing the Impact of Media Failure

To reduce the possibility of having to recover from a media failure, and to simplify
recovering from this type of failure, you should:

e Mirror or duplicate the disks that hold the data and logs for important databases.

¢ In a partitioned database environment, set up a more rigorous procedure for
handling the data and logs on the catalog node. Because this node is very
important for maintaining the database, you should put it on a more reliable disk,
duplicate it, and take more frequent backups of it. Also try to avoid putting user
data on it.

Note: When an I/O error occurs on a table space, the database will “crash.” Following
a restart of the database, the table space with the 1/O error is disabled while the
rest of the database remains accessible.

Protecting Against Disk Failure
If you are concerned about damaged data or active logs due to a disk crash, an area
you might wish to consider at some point is the use of some form of tolerance to disk
failures. Generally, this would be accomplished through the use of a disk array. A disk
array consists of a collection of disk drives that appear as a single large disk drive to an
application.

Disk arrays involve disk striping, which is the distribution of a file across multiple disks,
mirroring of disks and data parity checks. Through the use of a disk array, the data and
logs are protected from disk faults, and you will not lose any transactions which may
otherwise happen if disk fault tolerance were not implemented.

Chapter 6. Recovering a Database 193

Disk arrays are sometimes referred to simply as RAID (Redundant Array of Inexpensive
Disks). The specific term RAID generally applies only to hardware disk arrays. Disk
arrays can also be provided through software in the operating system or application
level. The point of distinction between hardware and software disk arrays is how CPU
processing of I/O requests is handled. For hardware disk arrays, disk controllers
manage the 1/O activity, whereas with software disk arrays this is done by the operating
system or application.

Hardware Disk Arrays (RAID)

With a RAID disk array, multiple disks are used and managed by a disk controller,
complete with its own CPU. All of the logic required to manage the disks forming the
array is contained on the disk controller and so this implementation is operating system
independent.

There are five types of RAID architectures, RAID-1 through RAID-5, and each provides
disk fault-tolerance. Each of the five has some trade-off in function and performance.
By definition, RAID refers to a redundant array. RAID-0, which provides only data
striping and not fault-tolerant redundancy, is purposely excluded in this discussion
about protecting your data in the event of a disk failure. Although the RAID specification
defines five architectures, only RAID-1 and RAID-5 are typically used today.

RAID-1 is also known as disk mirroring or duplexing. Disk mirroring duplicates data
(complete file) from one disk onto a second disk using a single disk controller. Disk
duplexing is the same as mirroring except disks are attached to a second disk controller
(like two SCSI adapters). Data protection is good. Either disk can fail and data is still
accessible from the other disk. With duplexing, a disk controller could fail as well and
still have complete protection of data. Performance with RAID-1 is also good but the
trade-off in this implementation is that the required disk capacity is twice that of the
actual amount of data, since data is duplicated on pairs of drives.

RAID-5 involves data and parity striping by sectors. RAID-5 stripes data, sector(s) at a
time, across all disks. Parity is interleaved with data information rather than stored on a
dedicated drive. Data protection is good. If any disk fails, the data can still be
accessed by using the information from the other disks along with the striped parity
information. Read performance is good though write performance is considerably worse
than that of RAID-1 or normal disk. A RAID-5 configuration requires a minimum of three
identical disks. The amount of extra disk space required for overhead varies with the
number of disks in the array. In the case of a RAID-5 configuration of 5 disks, the
space overhead is 20%.

In using a RAID disk array, a failed disk (except RAID-0) will not prevent users from
accessing data on the array. When hot-pluggable or hot-swappable disks are used in
the array, a replacement disk can be swapped with the failed disk while the array is in
use. For RAID-5, if two disks fail at the same time, all data is lost (but the chance of
two disk failures at once is very rare).

You might consider using RAID-1 or software-mirrored disks, described in the next
section, for your logs since this provides for recoverability to the point of failure and
offers good write performance, which is important for logs. In situations where reliability

194 Administration Guide

is crucial so that time cannot be lost in recovering data in case of a disk failure, and
write performance is not quite so critical, consider using RAID-5 disks. Further, if write
performance is crucial and you are willing to achieve this with the cost of additional disk
space, consider RAID-1 for your data as well as logs.

Software Disk Arrays

A software disk array accomplishes much the same as a hardware disk array but the
management of the disk traffic is done by either an operating system task or an
application program running on the server. The key point is that like all other programs,
the software array must contend for CPU and system resources. This is not a good
option for a CPU-constrained system and it should be remembered that overall disk
array performance is dependent on the server's CPU load and capacity.

A typical software disk array provides disk-mirroring, as with RAID-1. Although
redundant disks are required, a software disk array is comparatively inexpensive to
implement since costly RAID disk controllers are not required. One caution with
software disk arrays is that having the operating system boot drive in the disk array will
prevent your system from starting if that drive fails. If the drive fails before the disk
array is running, the disk array cannot start to allow access to the drive. Generally, a
boot drive separate from the disk array is also required.

Reducing the Impact of Transaction Failure
To reduce the impact of a transaction failure, try to ensure the following:
¢ Uninterrupted power supplies.
¢ Adequate disk space for database logs.

¢ Reliable communication links among the database partition servers in a partitioned
database environment.

e Synchronization of the system clocks in a partitioned database environment. See
“System Clock Synchronization in a Partitioned Database System” for more
information.

System Clock Synchronization in a Partitioned Database System

You should maintain relatively synchronized system clocks across the database
partition servers to ensure smooth database operations and unlimited forward
recoverability. The time difference among the database partition servers plus any
potential operational and communication delays for a transaction should be less than
the value found in the Maximum Time Difference Among Nodes (max_time_diff)
database manager configuration parameter.

To ensure that the log record timestamps reflect the sequence of transactions, DB2 in a
partitioned database system uses the system clock on each machine as the basis for
the timestamps in the log records. If, however, the system clock is set ahead, the log
clock is automatically set ahead with it. Although the system clock can be set
backwards, the clock for the logs cannot, and remains at the same advanced time until

Chapter 6. Recovering a Database 195

the system clock exceeds this time. At this time, the log time again reflects the system
clock. The implication of this is that a short-term system clock error on a database node
can have long-lasting effect on the timestamps of database logs.

As a hypothetical example, assume that the system clock on database partition server
A is mistakenly set to November 7, 1999 when the year is 1997, and assume that the
mistake is quickly corrected after an update transaction is committed in the database
partition at that database partition server. If the database is in continual use, and is
regularly updated over time, any point in time between November 7, 1997 and
November 7, 1999 is virtually unreachable through roll-forward recovery. When the
commit on database partition server A is done the timestamp in the database log is set
to 1999, and the clock of the database log stays at November 7, 1999, until the system
clock exceeds this time. If you attempt to roll forward to a point in time within the
incorrect time frame, the operation will stop at the first timestamp that is beyond the
specified stop point, which is November 7, 1997.

Although DB2 cannot control updates to the system clock, the max_time_diff database
manager configuration parameter reduces the possibility of this type of problem
occurring in the database system:

¢ The configurable values for this parameter range from 1 minute to 24 hours. For
information about setting max_time_diff, see “Maximum Time Difference Among
Nodes (max_time_diff)” on page 560.

¢ When the first connection request is made to a non-catalog node, this database
partition server sends its time to the catalog node for the database. The catalog
node then checks that the time on the node requesting the connection and its own
time are within the tolerance specified by the max_time_diff parameter. If the value
specified by the parameter is exceeded, the connection is not allowed.

e An update transaction that involves more than two database partition servers in the
database must verify that the time on the participating database partition servers is
synchronized before the update can be committed. If two or more database
partition servers have a greater time difference than that allowed by max_time_diff,
the transaction is rolled back to prevent the incorrect time from being propagated
into other database partition servers.

To correct and prevent an incorrect timestamp in a database log from being propagated
further:
1. Adjust the system clock to the correct time.

2. Restore the database partition on the appropriate database partition server with a
backup that was taken before the time was incorrectly set.

3. Roll forward the changes to the end of the log for the database partition.
4. Take a back-up copy of the database partition immediately after the changes are
rolled forward.

After you do these steps, the log time will be adjusted, the incorrect timestamp will not
be propagated, and you will be able to do point-in-time recovery on the database
partition from the last backup that you took of the partition.

196 Administration Guide

Recovery Method: Crash Recovery

Crash recovery using the RESTART DATABASE command or the automatic restart
enable configuration parameter (autorestart) protects a database from being left in an
inconsistent, or unusable, state.

The following topics provide additional information:

e Getting to a Consistent Database
¢ Transaction Failure Recovery in a Partitioned Database Environment

Getting to a Consistent Database
While applications or commands are running against a database, an interruption in
power or the failure of an application may cause the immediate cessation or stopping of
all activity with the database. One or more of the applications or commands may have
started working with the data in the database but not have completed. The partially
completed units of work leave the database in an inconsistent, or unusable, state.

In this section, as with each of the recovery methods, planning considerations and how
to invoke the specific utilities or commands to carry out the method are reviewed. Then,
any concepts or related issues that allow effective use of this method are presented.

See the following topics for more information:

¢ Planning to Use Automatic Restart
¢ Enabling Automatic Restart

Planning to Use Automatic Restart

The only consideration is whether you want the rollback of incomplete units of work at
the time of a failure to be done by the database manager. If you do, use the automatic
restart enable (autorestart) configuration parameter. If not, you should be prepared to
issue the RESTART DATABASE command when a database failure occurs.

Enabling Automatic Restart

Automatic restart is enabled through the autorestart database configuration parameter.
The default for this parameter is that automatic restart is “on.” See “Auto Restart
Enable (autorestart)” on page 529 for more information.

Transaction Failure Recovery in a Partitioned Database Environment
Database commands and applications can fail for various reasons. A transaction failure
is not the failure of a database action when it is caused by an incorrect parameter, a
limit being exceeded, or a rollback caused by a deadlock. Rather, it is a severe error or
condition that causes the database or database manager to end abnormally, and
requires that the database be recovered. Examples include events such as a power
failure on a machine (causing the database manager and database partitions on it to be
down), or a COMMIT/ROLLBACK failure that causes the database to go down because
the disk that contains the database log is full, and no additional log files can be
allocated for writing the COMMIT/ROLLBACK record.

Chapter 6. Recovering a Database 197

Typically, database recovery is required on both the failed database partition server and
any other database partition server that was participating in the same transaction or
application. Database recovery on the failed database partition server is often called
crash recovery. Crash recovery occurs on the database partition server that failed after
the condition that caused the failure is corrected (for example, the power supply is
reactivated, or a damaged disk is replaced). Database recovery on the other (still
active) database partition servers occurs immediately after the failure is detected.
Sometimes called database partition failure recovery, in this recovery process,
resources are transparently cleaned up for the failed transaction or application.

For more information, see “Failure Recovery on an Active Database Partition Server,”
and “Transaction Failure Recovery on the Failed Database Partition Server” on
page 199 .

Two-Phase Commit Protocol

The discussion of two-phase commit protocol here is to introduce crash recovery in a
partitioned database system. For more information about two-phase commit, refer to
“Understanding the Two-Phase Commit Process” on page 246.

In a partitioned database environment, the database partition server on which an
application is submitted is the coordinator node, and the first agent that works for the
application is the coordinator agent. The coordinator agent is responsible for distributing
work to other database partition servers, and it keeps track of which ones are involved
in the transaction. When the application issues a COMMIT for a transaction, the
coordinator agent commits the transaction by using the two-phase commit protocol. In
the first phase, the coordinator node distributes a PREPARE request to all the other
database partition servers that are participating in the transaction. These servers then
respond with one of the following:

READ-ONLY No data change occurred at this server
YES Data change occurred at this server
NO Because of an error, the server is not prepared to commit

If one of the servers responds “NO,” the transaction is rolled back. Otherwise, the
coordinator node begins the second phase.

In the second phase, the coordinator node writes a COMMIT log record, then
distributes a COMMIT request to all the servers that responded “YES.” After all the
other database partition servers have committed, they send an acknowledgement of the
COMMIT to the coordinator node. The transaction is complete when the coordinator
agent has received all COMMIT acknowledgements from all the participating servers. At
this point, the coordinator agent writes a FORGET log record.

Failure Recovery on an Active Database Partition Server
If any database partition server detects that another server is down, all work that is
associated with the failed database partition server is stopped:

¢ If the still active database partition server is the coordinator node for an application
and the application was running on the failed database partition server (and not

198 Administration Guide

ready to COMMIT), the coordinator agent is interrupted to do failure recovery. If the
coordinator agent is in the second phase of COMMIT processing, the application
receives the SQL error message SQL0279N, and loses its database connection.
Otherwise, the coordinator agent will distribute a ROLLBACK request to all other
servers participating in the transaction, and SQL1229N is returned to the
application.

¢ |If the failed database partition server was the coordinator node for the application,
agents that are still working for the application on the active servers are interrupted
to do failure recovery. The current transaction is rolled back locally on each server,
unless it has been prepared and is waiting for the transaction outcome. In this
situation, the transaction is left indoubt. See “Recovering from Problems During
Two-Phase Commit” on page 249 for more information about how an indoubt
transaction is resolved.

¢ |f the application connected to the failed database partition server (before it failed),
but neither the local database partition server nor the failed database partition
server is the coordinator node, agents working for this application are interrupted.

Any process (such as an agent or deadlock detector) that attempts to send a request to
the failed server is informed that it cannot send the request.

Transaction Failure Recovery on the Failed Database Partition

Server

If the failure caused the database manager to end abnormally, when the processor is
restarted, you can issue DB2START with the RESTART option to restart the database
manager. If you cannot restart the processor, you can also use DB2START to restart
the database manager on a different processor. For more information, see the START
DATABASE MANAGER command and API in the Command Reference and API
Reference manuals respectively.

An abnormal end may result in database partitions on the server being left in an
inconsistent state (meaning that they are unusable). To make them usable, crash
recovery is required to make them consistent. Crash recovery can be triggered on a
database partition server:

¢ Explicitly with a RESTART DATABASE command
¢ Implicitly by a CONNECT request when the autorestart database configuration
parameter is on.

Crash recovery reapplies the log records in the active log files to ensure that the effect
of all complete transactions are in the database. After all the changes are reapplied, all
uncommitted transactions are rolled back locally, except for indoubt transactions. In a
partitioned database environment, there are two types of indoubt transaction:

¢ On a database partition server that is not the coordinator node, a transaction is
indoubt if it is prepared but not yet committed.

¢ On the coordinator node, a transaction is indoubt if it is committed but not yet
logged as complete (that is, the FORGET record is not yet written). This situation

Chapter 6. Recovering a Database 199

occurs when the coordinator agent has not received all the COMMIT
acknowledgements from all the servers that worked for the application.

Crash recovery attempts to resolve all the indoubt transactions by doing one of the
following. The action that is taken depends on whether the database partition server
was the coordinator node for an application:

e |If the server that restarted is not the coordinator node for the application, it sends a
guery message to the coordinator agent to discover the outcome of the transaction.

e |If the server that restarted is the coordinator node for the application, it sends a
message to all the other agents (subordinate agents) that the coordinator agent is
still waiting for COMMIT acknowledgments.

It is possible that crash recovery may not be able to resolve all the indoubt transactions
(for example, some of the database partition servers are not available). In this situation,
the SQL warning message SQL1061W is returned. You should note that indoubt
transactions hold resources, such as locks and active log space. It is possible to get to
a point where no changes can be made to the database because the active log space
is help up by indoubt transactions. For this reason, you should investigate if indoubt
transactions remain after crash recovery, and recover all database partition servers that
are required to resolve the indoubt transactions as quickly as possible.

If one or more servers that are required to resolve an indoubt transaction cannot be
recovered in time, and access is required to database partitions on other servers, you
can manually resolve the indoubt transaction by making an heuristic decision. You can
use the LIST INDOUBT TRANSACTIONS command to query, commit, and roll back the
indoubt transaction on the server. For more information, see the LIST INDOUBT
TRANSACTIONS command and API in the Command Reference and API Reference
manuals respectively.

Note: The LIST INDOUBT TRANSACTIONS command is also used for transactions in
a distributed transaction environment. See Chapter 7, “Distributed Databases”
on page 239 and Chapter 8, “Using DB2 with an XA-Compliant Transaction
Manager” on page 255 for more information about distributed environments. To
distinguish between the two types of indoubt transactions, the “originator” field in
the output that is returned by LIST INDOUBT TRANSACTIONS displays one of
the following:

e DB2 Universal Database Extended Enterprise Edition, which indicates that
the transaction originated in the partitioned database environment.

e XA, which indicates that the transaction originated in the distributed
environment.

Identifying the Failed Database Partition Server
When a database partition server fails, the application will typically receive one of the
following SQLCODESs. The method for detecting which database manager failed
depends on the SQLCODE received:

200 Administration Guide

SQLO0279N This SQLCODE is received when a database partition server involved in a
transaction is terminated during COMMIT processing.

SQL1224N This SQLCODE is received when the database partition server that failed is
the coordinator node for the transaction.

SQL1229N This SQLCODE is received when the database partition server that failed is
not the coordinator node for the transaction.

Determining which database partition server failed is a two-step process. The SQLCA
associated with SQLCODE SQL1229N contains the node number of the server that
detected the error in the sixth array position of the sglerrd field. (The node number that
is written for the server corresponds to the node number in the db2nodes.cfg file.) On
the database partition server that detects the error, a message that indicates the node
number of the failed server is written in the db2diag.1og file.

Note: If multiple logical nodes are being used on a processor, the failure of one logical
node may cause other logical nodes on the same processor to fail.
Typically, to recover from the failure of a database partition server:
1. Correct the problem that caused the failure.

2. Restart the database manager with the DB2START command from any database
partition server.

3. Restart the database with the RESTART DATABASE command on the failed
database partition server or servers.

Recovery Method: Restore Recovery

Restore recovery using the BACKUP command in conjunction with the RESTORE
command puts the database or table space in a state that has been previously saved.

The following topics provide additional information:

e Backing Up a Database
¢ Restoring a Database
¢ Recovery History File Information

Backing Up a Database
To make a backup copy of the database, you use the BACKUP command or the
Control Center. Within the Control Center, you select the database to be backed up and
then select the backup action.

Chapter 6. Recovering a Database 201

CREATE | | BACKup | Unitsofwork | pegroRe
[|
database database database
create
BACKUP
database
image
TIME
—_—

Figure 26. Creating a Database Image

In a partitioned database system, you back up database partitions individually using the
BACKUP DATABASE command. The operation is local to the database partition server
where you issue the command. You can, however, issue db2_all from one of the
database partition servers in the instance to submit the backup command on a list of
servers, which you identify by their node number. If you do this, you must back up the
catalog node first, then back up the other database partitions. You can also use the
Control Center to backup database partitions.

In a partitioned database system, you can use the LIST NODES command to determine
the list of nodes (database partition servers) that have user tables on them. If you do
not require forward recovery capability, regularly back up the database on this list of
nodes. If you want to be able to do forward recovery, you must regularly back up the
database on the list of nodes, and you must have at least one backup of the rest of the
nodes in the system (even those that do not contain user data for that database).

Two situations require the backed-up image of a database partition at a database
partition server that does not contain user data for the database:

¢ You added a database partition server to the database system after taking the last
backup, and you need to do forward recovery on this database partition server.

¢ Point-in-time recovery is used, which requires that all database partitions in the
system are in the roll-forward pending state.

You must keep in mind the recovery method to be used. The following sections
provides requirements and other considerations that apply to this task:

¢ Planning to Use the BACKUP Command
¢ Invoking the BACKUP Command
e Backup Images Created by BACKUP

202 Administration Guide

Planning to Use the BACKUP Command

Your planning considerations should include:

You must have SYSADM, SYSCTRL, or SYSMAINT authority to use the BACKUP
command.

The database may be local or remote. The backup remains on the database server
unless a storage management product such as ADSTAR* Distributed Storage
Manager (ADSM) is used.

You can back up a database or table space to a fixed disk, a tape, or a location
managed by ADSM or another vendor storage management product. See
“ADSTAR Distributed Storage Manager” on page 230 for information on ADSM.

Under OS/2, you can also back up to diskette or to a user exit.
Under Windows NT and Windows 95, you can back up to diskette.

Under OS/2, a user exit is used when backing up to tape because the operating
system has no native tape support.

Under UNIX-based operating systems and Windows NT, native tape support is
available.

Roll-forward recovery is not enabled by the default setting (“Off") of the logretain
and userexit configuration parameters. The default for both parameters is set to
“Off” because, initially, there is no backup that you can use to recover the
database; initially, the database cannot be recovered, so you cannot perform
forward recovery on it.

To enable a new database for roll-forward recovery, you must enable at least one
of these configuration parameters before taking the first backup of the database.
When you change the value of one or both parameters, the database will be put
into the backup pending state, which requires that you take an offline backup of the
database. After the backup operation completes successfully, the database can be
used.

A table space backup and a table space restore cannot be run at the same time,
even if the backup and restore are working on different table spaces.

In OS/2, when backing up a database online to a user exit, please note that the
database will be quiesced before the backup starts. As such, the backup will wait
for all transactions to either commit or rollback before it starts. While the backup is
running, all new transactions will wait until the backup is complete, and, once the
backup is completed, all transactions will continue processing as usual.

If you have tables that span more than one table space, you should backup (and
restore) the set of table spaces together.

If your database is enabled for roll-forward recovery and you are using a tape
system that does not support the ability to uniquely reference a backup, it is
recommended that you do not keep multiple backup copies of the same database
on the same tape.

Multiple files may be created to contain the backed up data from the database or
table space.

Chapter 6. Recovering a Database 203

In OS/2, when you restore from a user exit and roll forward the database, the path
to the database is the only reference used to locate the containers. Therefore, all
the containers for that database that are on the backup tape are restored.

¢ In a partitioned database environment, an offline backup uses an exclusive
connection to the database at that database partition server (that is, the operation
requires an exclusive connection to the database partition), so no other application
can be connected to the database partition. When yo