IBM DB2 Universal Database

API Reference

Version 5.2

S10J-8167-01

IBM DB2 Universal Database

API Reference

Version 5.2

S10J-8167-01

Before using this information and the product it supports, be sure to read the general information under Appendix I,
“Notices” on page 571.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in U.S. or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

About This Book iX
Who Should Use this Book iX
How this Book is Structured iX
Chapter 1. Application Programming Interfaces 1
DB2 APIS . . . e 1
DB2 Sample Programs 5
How the API Descriptions are Organized 8
sqglabndx - Bind 11
sqlaintp - Get Error Messageo 16
sqlaprep - Precompile Program 19
sglarbnd - Rebind L 25
sqlbctcq - Close Tablespace Container Query 29
sqlbctsq - Close Tablespace Query 31
sqlbftcq - Fetch Tablespace Container Query 33
sqlbftpg - Fetch Tablespace Query 36
sqlbgtss - Get Tablespace Statistics 39
sqlbmtsq - Tablespace Query 41
sqlbotcq - Open Tablespace Container Query 44
sqlbotsq - Open Tablespace Query a7
sqlbstpq - Single Tablespace Query 50
sqlbstsc - Set Tablespace Containers 53
sglbtcq - Tablespace Container Queryo 56
sqlcspqy - List DRDA Indoubt Transactions 59
sqle_activate_db - Activate Database oL 61
sqle_deactivate_db - Deactivate Database 64
sgleaddn - Add Node 67
sqleatcp - Attach and Change Password 70
sgleatin - Attach 74
sqglecadb - Catalog Database, 78
sglecran - Create Database at Node 85
sqlecrea - Create Database 87
sqglectnd - Catalog Node 95
sgledcgd - Change Database Comment 100
sgledcls - Close Database Directory Scan 104
sgledgne - Get Next Database Directory Entry 106
sgledosd - Open Database Directory Scan 109
sqgledpan - Drop Database at Node 112
sqledreg - Deregister 114
sqgledrpd - Drop Database 116
sqgledrpn - Drop Node Verify 119
sqgledtin - Detach 121
sglefmem - Free Memory 123
sqlefrce - Force Application 125
sglegdad - Catalog DCS Database 129

© Copyright IBM Corp. 1993, 1998 iii

iv

sglegdcl - Close DCS Directory Scano i 132

sglegdel - Uncatalog DCS Database 134
sglegdge - Get DCS Directory Entry for Database 137
sglegdgt - Get DCS Directory Entries 139
sglegdsc - Open DCS Directory Scan 142
sglegins - GetInstance 144
sgleintr - Interrupt L L 146
sqleisig - Install Signal Handler 149
sglemgdb - Migrate Database Lo 151
sglencls - Close Node Directory Scan 154
sglengne - Get Next Node Directory Entry 156
sglenops - Open Node Directory Scan 159
sqlepstart - Start Database Manager 162
sqlepstp - Stop Database Manager L. 165
sqglegryc - Query Client 168
sqleqryi - Query Client Information L. 171
sqleregs - Register L 174
sqlerstd - Restart Databaseo 177
sglesact - Set Accounting Stringo 180
sqglesdeg - Set Runtime Degreeo 182
sqglesetc - Set Client 185
sqleseti - Set Client Information L. 188
sgleuncd - Uncatalog Database 191
sgleuncn - Uncatalog Node 194
sqlfddb - Get Database Configuration Defaults 196
sqlfdsys - Get Database Manager Configuration Defaults 198
sqlfrdb - Reset Database Configuration 200
sqlfrsys - Reset Database Manager Configuration 203
sqlfudb - Update Database Configuration 206
sqlfusys - Update Database Manager Configuration 210
sqlfxdb - Get Database Configuration 213
sqlfxsys - Get Database Manager Configuration 216
sqglgaddr - Get Address 219
sqlgdref - Dereference Addresso o 220
sglgmepy - Copy Memory L 222
sglmon - Get/Update Monitor Switches 224
sglmonss - Get Snapshot 227
sqglmonsz - Estimate Size Required for sgimonss() Output Buffer 230
sglmrset - Reset Monitor 233
sqlogstt - Get SQLSTATE Message v v v v v it it 236
sqgluadau - Get Authorizations 239
sqlubkp - Backup Database 242
sqludrdt - Redistribute Nodegroup 249
sqluexpr - EXport e 253
sqlugrpn - Get Row Partitioning Number L. 260
sqlugtpi - Get Table Partitioning Information 264
sqluhcls - Close Recovery History File Scan 266
sqgluhgne - Get Next Recovery History File Entry 268

API Reference

sqluhops - Open Recovery History File Scan 271

sqluhprn - Prune Recovery History File 276
sqluhupd - Update Recovery History File 279
sqluimpr - Import 283
sqluload - Load 295
sqlugry - Load Query 304
sglurcon - Reconcile 306
sqlureot - Reorganize Table o 309
sqlurestore - Restore Database L. 313
sqlurlog - Asynchronous Read Log 324
sqluroll - Rollforward Database 327
sqlustat - Runstats L 336
sqluvgdp - Quiesce Tablespaces for Table 342
Chapter 2. Additional REXX APIs 347
Change Isolation Level 348
Chapter 3. Data Structures 349
RFWD-INPUT 352
RFWD-OUTPUT e e e e e 355
SQL-AUTHORIZATIONS e e e e 358
SQL-DIR-ENTRY e 361
SQLA-FLAGINFO 363
SQLB-TBS-STATS 365
SQLB-TBSCONTQRY-DATA e e 367
SQLB-TBSPQRY-DATA e 369
SQLCA . e 373
SQLCHAR . . . e 375
SQLDA . . e 376
SQLDCOL 379
SQLE-ADDN-OPTIONS e 383
SQLE-CLIENT-INFO 385
SQLE-CONN-SETTING e 388
SQLE-NODE-APPC 392
SQLE-NODE-APPN 393
SQLE-NODE-CPIC e 394
SQLE-NODE-IPXSPX e 395
SQLE-NODE-LOCAL e 396
SQLE-NODE-NETB e 397
SQLE-NODE-NPIPE e 398
SQLE-NODE-STRUCT e e e e 399
SQLE-NODE-TCPIP e 401
SQLE-REG-NWBINDERY 402
SQLE-START-OPTIONS e e e 403
SQLEDBCOUNTRYINFO e e e 407
SQLEDBDESC e 408
SQLEDBSTOPOPT e e 414
SQLEDINFO e 416

Contents V

Vi

SQLENINFO . o ot o oo
SQLFUPD . . oot o oo
SQLM-COLLECTED . . .\t v vt oo e e
SQLM-RECORDING-GROUP o oot
SOLMA o
SQLOPT oot e e e e
SQLU-LSN .« o oot e o
SQLU-MEDIA-LIST . . o ottt e e
SQLU-RLOG-INFO . o o ottt oo e e
SQLU-TABLESPACE-BKRST-LIST . . . o vttt
SQLUEXPT-OUT . . o o ot e e
SQLUHINFO . . o oo oo
SQLUIMPT-IN . o oo oo
SQLUIMPT-OUT . . o o oot e
SQLULOAD-IN . o oo oo
SQLULOAD-OUT . . o o ot e
SQLUPL oo e
SQLXA-RECOVER . . . o o o
SQLXAXID . . oot o

Appendix A. Naming Conventions

Appendix B. Transaction APIs o
Heuristic APIS e
sqlxhfrg - Forget Transaction Status
sqglxphcm - Commit an Indoubt Transaction
sqlxphqr - List Indoubt Transactions
sqlxphrl - Roll Back an Indoubt Transaction

Appendix C. Precompiler Customization APIs

Appendix D. Backup and Restore APIs for Vendor Products
Operational Overview
Number of Sessions
Operation with No Errors, Warnings or Prompting
PROMPTING Mode e
Device Characteristics
If Error Conditions Are ReturnedtoDB2
Warning Conditions
Operational Hintsand Tips
Recovery History File
Functions and Data Structures
sqluvint - Initialize and Link to Device
sgluvget - Reading Data from Device
sqluvput - Writing Data to Device
sgluvend - Unlink the Device and Release its Resources
sqluvdel - Delete Committed Session
DB2-INFO e

API Reference

VENDOR-INFO 506

INIT-INPUT . . e e 507
INIT-OUTPUT o e 508
DATA 509
RETURN-CODE e 510
Invoking Backup/Restore Using Vendor Products 512
The Control Center 512
The Command Line Processor 512
Backup and Restore API Function Calls 513
Appendix E. Threaded Applications with Concurrent Access 515
sqgleAttachToCtx - Attach to Context 517
sqgleBeginCtx - Create and Attach to an Application Context 518
sqgleDetachFromCtx - Detach From Context 520
sqleEndCtx - Detach and Destroy Application Context 521
sqgleGetCurrentCtx - Get Current Context 523
sqleinterruptCtx - Interrupt Context 524
sqleSetTypeCtx - Set Application Context Type 525
Appendix F. DB2 Common Server Log Records 527
Log Manager Header 529
Data Manager Log Recordso 531
Initialize Table 533
Import Replace (Truncate) 536
Rollback Insert 536
Reorg Table 536
Create Index, Drop Index 537
Create Table, Drop Table, Rollback Create Table, Rollback Drop Table 537
Alter Propagation, Alter Check Pending, Rollback Propagation Change,

Rollback Check Pending Change 537
Alter Table Add Columns, Rollback Add Columns 538
Insert Record, Delete Record, Rollback Delete Record, Rollback Update

Record 539
Update Record 542

Long Field Manager Log Records 543
Add/Delete/Non-update Long Field Record 544
LOB Manager Log Records Lo 545
Insert LOB Data Log Record (AFIM_DATA) 545
Insert LOB Data Log Record (AFIM_AMOUNT) 546
Transaction Manager Log Records 546
Normal Commit 546
Heuristic Commit L 547
MPP Coordinator Commit 547
MPP Subordinator Commit 547
Normal Abort 548
Heuristic Abort 548
Local Pending List 548
Global Pending List 549

Contents Vii

viii

XA Prepare 549

MPP Subordinator Prepare 550
Backout Free 551
Utility Manager Log Records 551
Migration Begin L 551
Migration End 551
Load Start 552
Table Load Delete Start 552
Load Delete Start Compensation 552
Load Pending List 552
Backup End L 553
Tablespace Rolled Forward 553
Tablespace Roll Forward to PIT Begins 553
Tablespace Roll Forward to PITEnds 554
Datalink Manager Log Records 554
Link File 555
Unlink File o 555
Delete Group L 556
Delete PGroup e 556
DLFM Prepare e e 557
Appendix G. Application Migration Considerations 559
Changed APIs and Data Structureso 560
Appendix H. How the DB2 Library Is Structured 561
SmartGuides 561
Online Help o 562
DB2 BOOKS e 563
Viewing Online Books 567
Searching Online Books 568
Printing the PostScript Bookso 568
Ordering the Printed DB2 Books 569
Information Center 570
Appendix I. Notices 571
Trademarks L 571
Trademarks of Other Companies 572
Index 573
Contacting IBM 575

API Reference

About This Book

This book provides information about the use of application programming interfaces
(APIs) to execute database administrative functions. It presents detailed information on
the use of database manager API calls in applications written in the following
programming languages:

e C

e COBOL

¢ FORTRAN
¢ REXX.

For a compiled language, an appropriate precompiler must be available to process the
statements. Precompilers are provided for all supported languages.

Who Should Use this Book

It is assumed that the reader has an understanding of database administration and
application programming, plus a knowledge of:

e Structured Query Language (SQL)
e The C, COBOL, FORTRAN, or REXX programming language
¢ Application program design.

How this Book is Structured

This book provides the reference information needed to develop administrative
applications.

The following topics are covered:

Chapter 1 Provides a description of all database manager APIs.

Chapter 2 Describes DB2 APIs that are only supported in the REXX
programming language.

Chapter 3 Describes data structures used when calling APIs.

Appendix A Explains the conventions used to name objects such as databases
and tables.

Appendix B Provides a description of transaction and heuristic APIs.

Appendix C Describes how to contact IBM for information about the function and

use of APIs that enable the customization of precompilers.

Appendix D Describes the function and use of APIs that enable DB2 to interface
with other vendor software.

Appendix E Describes new APIs that permit the allocation of separate
environments or contexts for each thread within a process, enabling
true concurrent access to a DB2 database.

© Copyright IBM Corp. 1993, 1998 ix

Appendix F Provides information on extracting and working with DB2 log records.

Appendix G Discusses issues that should be considered before migrating an
application to DB2 Version 5.

X API Reference

Chapter 1. Application Programming Interfaces

DB2 APIs

This chapter describes the DB2 application programming interfaces in alphabetical
order. The APIs enable most of the administrative functions from within an application

program.

Note: Slashes (/) in directory paths are specific to UNIX based systems, and are
equivalent to back slashes (\) in directory paths on OS/2 and Windows

operating systems.

DB2 APIs

The following table lists the APIs grouped by functional category:

Table 1 (Page 1 of 5). DB2 APIs

API
Function Sample INCLUDE
API Description Name b Code cd File ef
Database Manager Control
START DATABASE MANAGER sqlepstart makeapi sqlenv
STOP DATABASE MANAGER sqlepstp makeapi, sqlenv
dbstop
GET DATABASE MANAGER CONFIGURATION sqlfxsys dbmconf sqlutil
GET DATABASE MANAGER CONFIGURATION sqlfdsys d_dbmcon sqlutil
DEFAULTS
RESET DATABASE MANAGER sqlfrsys dbmconf sqlutil
CONFIGURATION
UPDATE DATABASE MANAGER sqlfusys dbmconf sqlutil
CONFIGURATION
SET RUNTIME DEGREE sqlesdeg setrundg sqlenv
Database Control
RESTART DATABASE sqlerstd restart sqlenv
CREATE DATABASE sqlecrea dbconf sqlenv
CREATE DATABASE AT NODE sqlecran n/a sqlenv
DROP DATABASE sqledrpd dbconf sqlenv
DROP DATABASE AT NODE sqledpan n/a sqlenv
MIGRATE DATABASE sqlemgdb migrate sqlenv
LIST INDOUBT TRANSACTIONS sqlxphgr n/a sqlxa
ACTIVATE DATABASE sqle_acti- n/a sqlenv
vate_db
DEACTIVATE DATABASE sqle_deac- n/a sqlenv
tivate_db

© Copyright IBM Corp. 1993, 1998

DB2 APIs

2 APl Reference

Table 1 (Page 2 of 5). DB2 APIs

API
Function Sample INCLUDE
API Description Name b Code cd File e f
LIST DRDA INDOUBT TRANSACTIONS sqlcspqy n/a sqlxa
Database Directory Management
CATALOG DATABASE sqlecadb dbcat sqlenv
UNCATALOG DATABASE sqleuncd dbcat sqlenv
CATALOG DCS DATABASE sqlegdad dcscat sqlenv
UNCATALOG DCS DATABASE sqlegdel dcscat sqlenv
CHANGE DATABASE COMMENT sqledcgd dbemt sqlenv
OPEN DATABASE DIRECTORY SCAN sqledosd dbcat sqlenv
GET NEXT DATABASE DIRECTORY ENTRY sqledgne dbcat sqlenv
CLOSE DATABASE DIRECTORY SCAN sqledcls dbcat sqlenv
OPEN DCS DIRECTORY SCAN sqlegdsc dcscat sqlenv
GET DCS DIRECTORY ENTRIES sqlegdgt dcscat sqlenv
CLOSE DCS DIRECTORY SCAN sqlegdcl dcscat sqlenv
GET DCS DIRECTORY ENTRY FOR sqlegdge dcscat sqlenv
DATABASE
Client/Server Directory Management
CATALOG NODE sqlectnd nodecat sqlenv
UNCATALOG NODE sqleuncn nodecat sqlenv
OPEN NODE DIRECTORY SCAN sqlenops nodecat sqlenv
GET NEXT NODE DIRECTORY ENTRY sqlengne nodecat sqlenv
CLOSE NODE DIRECTORY SCAN sqlencls nodecat sqlenv
Network Support
REGISTER sqleregs regder sqlenv
DEREGISTER sqledreg regder sqlenv
Database Configuration

GET DATABASE CONFIGURATION sq1fxdb dbconf sqlutil
GET DATABASE CONFIGURATION sqlfddb d_dbconf sqlutil
DEFAULTS

RESET DATABASE CONFIGURATION sqlfrdb dbconf sqlutil
UPDATE DATABASE CONFIGURATION sq1fudb dbconf sqlutil

Recovery

BACKUP DATABASE sqlubkp backrest sqlutil
RECONCILE sqlurcon n/a sqlutil
RESTORE DATABASE sqlurst backrest sqlutil

DB2 APIs

Table 1 (Page 3 of 5). DB2 APIs

API
Function Sample INCLUDE
API Description Name b Code cd File e f
ROLLFORWARD DATABASE sqluroll backrest sqlutil
OPEN RECOVERY HISTORY FILE SCAN sqluhops rechist sqlutil
GET NEXT RECOVERY HISTORY FILE sqluhgne rechist sqlutil
ENTRY
CLOSE RECOVERY HISTORY FILE SCAN sqluhcls rechist sqlutil
PRUNE RECOVERY HISTORY FILE sqluhprn rechist sqlutil
UPDATE RECOVERY HISTORY FILE sqluhupd rechist sqlutil
Operational Utilities
FORCE APPLICATION sqlefrce dbstop sqlenv
REORGANIZE TABLE sqlureot dbstat sqlutil
RUNSTATS sqlustat dbstat sqlutil
Database Monitoring
ESTIMATE SIZE REQUIRED FOR sgimonss() sqlmonsz monsz sqlmon
OUTPUT BUFFER
GET/UPDATE MONITOR SWITCHES sqTmon n/a sqlmon
GET SNAPSHOT sqImonss dbsnap sqlmon
RESET MONITOR sqimrset monreset sqlmon
Data Utilities
EXPORT sqluexpr impexp sqlutil
IMPORT sqluimpr impexp sqlutil
LOAD sqluload tload sqlutil
LOAD QUERY sqluqry qload sqlutil
General Application Programming
GET ERROR MESSAGE sqlaintp utit, sql
checkerr
GET SQLSTATE MESSAGE sqlogstt utit, sql
checkerr
INSTALL SIGNAL HANDLER sqleisig util, sqlenv
checkerr
INTERRUPT sqleintr util, sqlenv
checkerr
DEREFERENCE ADDRESS sqlgdref nodecat sqlutil
COPY MEMORY sqlgmcpy tspace sqlutil
FREE MEMORY sqlefmem tabspace, sqlenv
tspace

Chapter 1.

Application Programming Interfaces

3

DB2 APIs

4 API Reference

Table 1 (Page 4 of 5). DB2 APIs

API
Function Sample INCLUDE
API Description Name b Code cd File e f
GET ADDRESS sqlgaddr dbmconf sqlutil
Application Preparation

PRECOMPILE PROGRAM sqlaprep makeapi sql

BIND sqlabndx makeapi sql

REBIND sqlarbnd rebind sql

Remote Server Utilities
ATTACH sqleatin dbinst sqlenv
ATTACH AND CHANGE PASSWORD sqleatcp dbinst sqlenv
DETACH sqledtin dbinst sqlenv
Table Space Management
TABLESPACE CONTAINER QUERY sqlbtcq tabscont sqlutil
OPEN TABLESPACE CONTAINER QUERY sqlbotcq tabscont sqlutil
FETCH TABLESPACE CONTAINER QUERY sqlbftcq tabscont sqlutil
CLOSE TABLESPACE CONTAINER QUERY sqlbctcq tabscont sqlutil
SET TABLESPACE CONTAINERS sqlbstsc backrest sqlutil
TABLESPACE QUERY sqlbmtsq tabspace sqlutil
SINGLE TABLESPACE QUERY sqlbstpqg tabspace sqlutil
OPEN TABLESPACE QUERY sqlbotsq tabspace sqlutil
FETCH TABLESPACE QUERY sqlbftpg tabspace sqlutil
CLOSE TABLESPACE QUERY sqlbctsq tabspace sqlutil
GET TABLESPACE STATISTICS sqlbgtss tabspace sqlutil
QUIESCE TABLESPACES FOR TABLE sqluvqdp tquiesce sqlutil
Node Management
ADD NODE sqleaddn n/a sqlenv
DROP NODE VERIFY sqledrpn n/a sqlenv
Nodegroup Management
REDISTRIBUTE NODEGROUP sqludrdt n/a sqlutil
Additional APIs

GET AUTHORIZATIONS sqluadau dbauth sqlutil
GET INSTANCE sqlegins dbinst sqlenv
QUERY CLIENT sqleqryc client sqlenv
QUERY CLIENT INFORMATION sqleqryi n/a sqlenv
SET CLIENT sqlesetc client sqlenv

DB2 Sample Programs

Table 1 (Page 5 of 5). DB2 APIs

API

Function Sample INCLUDE
API Description Name b Code cd File e f
SET CLIENT INFORMATION sqleseti n/a sqlenv
SET ACCOUNTING STRING sqlesact setact sqlenv
ASYNCHRONOUS READ LOG sqlurlog n/a sqlutil
GET ROW PARTITIONING NUMBER sqlugrpn n/a sqlutil
GET TABLE PARTITIONING INFORMATION sqlugtpi n/a sqlutil

Note:

a This is a pre-version 2 API and is not supported on all platforms.
b The fourth character of the generic API function name is always g.

€ The sample programs can be found in the language specific directory of the
samples directory in the sq11ib directory (for example, sqllib\samples\c for C
source code).

d The file extensions on sample code depend on the programming language being
used. For example, for sample code written in C, the extension is .c or .sqc. Not
all programs are available in all supported programming languages. Not all APIs
have sample code (indicated by n/a).

€ The file extensions on INCLUDE files depend on the programming language being
used. For example, an INCLUDE file written for C has a file extension of .h.

f The INCLUDE files can be found in directory sq11ib\include (directory delimiters
are dependant upon the operating system).

DB2 Sample Programs

The following table lists the APIs grouped by sample program:

Table 2 (Page 1 of 4). DB2 APIs by Sample Program

Sample Code

Included APIs

backrest

sqlbstsc - Set Tablespace Containers
sqlubkp - Backup Database

sqluroll - Rollforward Database
sqlurst - Restore Database

checkerr

sqglaintp - Get Error Message
sqleintr - Interrupt

sqleisig - Install Signal Handler
sqglogstt - Get SQLSTATE Message

client

sglegryc - Query Client
sqglesetc - Set Client

d_dbconf

sqlfddb - Get Database Configuration Defaults

d_dbmcon

sqlfdsys - Get Database Manager Configuration Defaults

dbauth

sqluadau - Get Authorizations

Chapter 1. Application Programming Interfaces

DB2 Sample Programs

6 APl Reference

Table 2 (Page 2 of 4). DB2 APIs by Sample Program

Sample Code

Included APIs

dbcat

sglecadb - Catalog Database

sgledcls - Close Database Directory Scan
sgledgne - Get Next Database Directory Entry
sgledosd - Open Database Directory Scan
sgleuncd - Uncatalog Database

dbcmt

sgledcgd - Change Database Comment

dbconf

sglecrea - Create Database

sqledrpd - Drop Database

sqlfrdb - Reset Database Configuration
sqlfudb - Update Database Configuration
sqglfxdb - Get Database Configuration

dbinst

sgleatcp - Attach and Change Password
sqgleatin - Attach

sgledtin - Detach

sglegins - Get Instance

dbmconf

sqlfrsys - Reset Database Manager Configuration
sqlfusys - Update Database Manager Configuration
sqlfxsys - Get Database Manager Configuration
sqlgaddr - Get Address

dbsnap

sglmonss - Get Snapshot

dbstat

sqlureot - Reorganize Table
sqglustat - Runstats

dbstop

sqlefrce - Force Application
sglepstp - Stop Database Manager

dcscat

sglegdad - Catalog DCS Database

sglegdcl - Close DCS Directory Scan

sglegdel - Uncatalog DCS Database

sglegdge - Get DCS Directory Entry for Database
sglegdgt - Get DCS Directory Entries

sglegdsc - Open DCS Directory Scan

impexp

sqluexpr - Export
sqluimpr - Import

makeapi

sglabndx - Bind

sqlaprep - Precompile Program
sqlepstp - Stop Database Manager
sqlepstr - Start Database Manager

migrate

sglemgdb - Migrate Database

monreset

sqglmrset - Reset Monitor

monsz

sglmonsz - Estimate Size Required for sgimonss() Output Buffer

DB2 Sample Programs

Table 2 (Page 3 of 4). DB2 APIs by Sample Program

Sample Code

Included APIs

nodecat

sglectnd - Catalog Node

sglencls - Close Node Directory Scan
sglengne - Get Next Node Directory Entry
sglenops - Open Node Directory Scan
sgleuncn - Uncatalog Node

sqlgdref - Dereference Address

gload

sqlugry - Load Query

rebind

sqglarbnd - Rebind

rechist

sgluhcls - Close Recovery History File Scan
sgluhgne - Get Next Recovery History File Entry
sqluhops - Open Recovery History File Scan
sqluhprn - Prune Recovery History File
sqluhupd - Update Recovery History File

regder

sqledreg - Deregister
sgleregs - Register

restart

sglerstd - Restart Database

setact

sglesact - Set Accounting String

setrundg

sglesdeg - Set Runtime Degree

tabscont

sglbctcq - Close Tablespace Container Query
sqlbftcq - Fetch Tablespace Container Query
sqlbotcq - Open Tablespace Container Query
sqlbtcq - Tablespace Container Query

tabspace

sqlbctsq - Close Tablespace Query
sqlbftpq - Fetch Tablespace Query
sglbgtss - Get Tablespace Statistics
sqglbmtsq - Tablespace Query
sglbotsqg - Open Tablespace Query
sqlbstpq - Single Tablespace Query
sglefmem - Free Memory

tload

sqluload - Load

tquiesce

sqluvgdp - Quiesce Tablespaces for Table

tspace

sglefmem - Free Memory
sqlgmcpy - Copy Memory

util

sqglaintp - Get Error Message
sqleintr - Interrupt

sqleisig - Install Signal Handler
sglogstt - Get SQLSTATE Message

Chapter 1. Application Programming Interfaces

Table 2 (Page 4 of 4). DB2 APIs by Sample Program

Sample Code Included APIs

n/a sqglcspqy - List DRDA Indoubt Transactions
sqle_activate_db - Activate Database
sqle_deactivate_db - Deactivate Database
sgleaddn - Add Node

sglecran - Create Database at Node
sgledpan - Drop Database at Node
sqgledrpn - Drop Node Verify

sqlegryi - Query Client Information

sqgleseti - Set Client Information

sqgludrdt - Redistribute Nodegroup
sqlugrpn - Get Row Partitioning Number
sqlugtpi - Get Table Partitioning Information
sqglurcon - Reconcile

sqglurlog - Asynchronous Read Log
sqglxphgr - List Indoubt Transactions

Note: @ The sample programs can be found in the language specific directory of the samples
directory in the sq11ib directory (for example, sq11ib\samples\c for C source code).
The file extensions on sample code depend on the programming language being
used. For example, for sample code written in C, the extension is .c or .sqc. Not all
programs are available in all supported programming languages. Not all APIs have
sample code (indicated by n/a).

How the API Descriptions are Organized

A short description of each API precedes some or all of the following subsections.

Scope
The API's scope of operation within the instance. In a single-node system, the scope is
that single node only. In a multi-node system, it is the collection of all logical nodes
defined in the node configuration file, db2nodes.cfg.

Authorization
The authority required to successfully call the API.

Required Connection
One of the following: database, instance, none, or establishes a connection. Indicates
whether the function requires a database connection, an instance attachment, or no
connection to operate successfully. An explicit connection to the database or
attachment to the instance may be required before a particular API can be called. APIs
that require a database connection or an instance attachment can be executed either
locally or remotely. Those that require neither cannot be executed remotely; when
called at the client, they affect the client environment only. For information about
database connections and instance attachments, see the Administration Guide.

8 API Reference

API Include File

The name of the include file that contains the API prototype, and any necessary
predefined constants and parameters.

C API Syntax

The C syntax of the API call.

Generic API Syntax

The syntax of the API call for the COBOL and FORTRAN programming languages.

Attention: Provide one extra byte for every character string passed to an API. Failure
to do so may cause unexpected errors. This extra byte is modified by the database
manager.

API Parameters

A description of each API parameter and its values. Predefined values are listed with
the appropriate symbolics. Actual values for symbolics can be obtained from the
appropriate language include files. COBOL programmers should substitute a hyphen (-)
for the underscore () in all symbolics. For more information about parameter data
types in each host language, see the sample programs.

Note:

Applications calling database manager APIs must properly check for error
conditions by examining return codes and the SQLCA structure. Most database
manager APIs return a zero return code when successful. In general, a
non-zero return code indicates that the secondary error handling mechanism,
the SQLCA structure, may be corrupt. In this case, the called API is not
executed. A possible cause for a corrupt SQLCA structure is passing an invalid
address for the structure.

Error information is returned in the SQLCODE and SQLSTATE fields of the
SQLCA structure, which is updated after most database manager API calls.
Source files calling database manager APIs can provide one or more SQLCA
structures; their names are arbitrary. An SQLCODE value of zero means
successful execution (with possible SQLWARN warning conditions). A positive
value means that the statement was successfully executed but with a warning,
as with truncation of a host variable. A negative value means that an error
condition occurred.

An additional field, SQLSTATE, contains a standardized error code that is
consistent across other IBM database products, and across SQL92 compliant
database managers. Use SQLSTATEs when concerned about portability, since
SQLSTATESs are common across many database managers.

The SQLWARN field contains an array of warning indicators, even if SQLCODE
is zero.

Chapter 1. Application Programming Interfaces 9

REXX API Syntax
The REXX syntax of the API call, where appropriate.

A new interface, SQLDB2, has been added to support calling APIs from REXX. The
SQLDB?2 interface was created to provide support in REXX for new or previously
unsupported APIs that do not have any output other than the SQLCA. Invoking a
command through the SQLDB2 interface is syntactically the same as invoking the
command through the command line processor (CLP), except that the token call db2
is replaced by CALL SQLDB2. Using the CALL SQLDB2 from REXX has the following
advantages over calling the CLP directly:

¢ The compound REXX variable SQLCA is set
e By default, all CLP output messages are turned off.

For more information about the SQLDB2 interface, see the Embedded SQL
Programming Guide.

REXX Parameters
A description of each REXX API parameter and its values, where appropriate.

Sample Programs
The location and the names of sample programs illustrating the use of the API in one or

more supported languages (C, COBOL, FORTRAN, and REXX).

Usage Notes
Other information.

See Also
A cross-reference to related information.

10 API Reference

sglabndx - Bind

sglabndx - Bind

Scope

Authorization

Invokes the bind utility, which prepares SQL statements stored in the bind file
generated by the precompiler, and creates a package that is stored in the database.

This API can be called from any node in db2nodes.cfg. It updates the database
catalogs on the catalog node. Its effects are visible to all nodes.

One of the following:

e sysadm or dbadm authority
e BINDADD privilege if a package does not exist and one of:
— IMPLICIT_SCHEMA authority on the database if the schema name of the
package does not exist
— CREATEIN privilege on the schema if the schema name of the package exists
e ALTERIN privilege on the schema if the package exists
e BIND privilege on the package if it exists.

The user also needs all privileges required to compile any static SQL statements in the
application. Privileges granted to groups are not used for authorization checking of
static statements. If the user has sysadm authority, but not explicit privileges to
complete the bind, the database manager grants explicit dbadm authority automatically.

Required Connection

Database

API Include File

C API Syntax

sql.h

/* File: sql.h */

/* APL: Bind */

[* ... */

SQL_API_RC SQL_API FN

sqlabndx (

_SQLOLDCHAR +* pBindFileName,
_SQLOLDCHAR +* pMsgFiTleName,
struct sqlopt * pBindOptions,
struct sqlca * pSqlca);

[* ... %/

Chapter 1. Application Programming Interfaces 11

sqlabndx - Bind

Generic API Syntax

/* File: sql.h */
/* API: Bind */
[* .. %/
SQL_API_RC SQL_API_FN
sqlgbndx (
unsigned short MsgFileNamelen,
unsigned short BindFileNamelLen,
struct sqlca * pSqlca,
struct sqlopt * pBindOptions,
_SQLOLDCHAR * pMsgFiTleName,
_SQLOLDCHAR * pBindFileName);
[* ... %/

API Parameters

MsgFileNameLen
Input. A 2-byte unsigned integer representing the length of the message file
name in bytes.

BindFileNameLen
Input. A 2-byte unsigned integer representing the length of the bind file
name in bytes.

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

pBindOptions
Input. A structure used to pass bind options to the API. For more
information about this structure, see “SQLOPT” on page 436.

pMsgFileName
Input. A string containing the destination for error, warning, and
informational messages. Can be the path and the name of an operating
system file, or a standard device. If a file already exists, it is overwritten. If
it does not exist, a file is created.

pBindFileName
Input. A string containing the name of the bind file, or the name of a file
containing a list of bind file names. The bind file names must contain the
extension .bnd. A path for these files can be specified.

Precede the name of a bind list file with the at sign (@). For example, a
fully qualified bind list file name might be:

/u/userl/bnd/@all.1st

The bind list file should contain one or more bind file names, and must
have the extension .1st.

12 APl Reference

sglabndx - Bind

Precede all but the first bind file name with a plus symbol (+). The bind
file names may be on one or more lines. For example, the bind list file
all.1st might contain:

mybindl.bnd+mybind2.bnd+
mybind3.bnd+
mybind4.bnd

Path specifications on bind file names in the list file can be used. If no path
is specified, the database manager takes path information from the bind list
file.

REXX API Syntax

This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

Sample Programs

Usage Notes

C \sqllib\samples\c\makeapi.sqc
COBOL \sqllib\samples\cobol\prepbind.sqgb
FORTRAN \sqllib\samples\fortran\prepbind.sqf

Binding can be done as part of the precompile process for an application program
source file, or as a separate step at a later time. Use BIND when binding is performed
as a separate process.

The name used to create the package is stored in the bind file, and is based on the
source file name from which it was generated (existing paths or extensions are
discarded). For example, a precompiled source file called myapp.sqc generates a
default bind file called myapp.bnd and a default package name of MYAPP. (However, the
bind file name and the package name can be overridden at precompile time by using
the SQL_BIND_OPT and the SQL_PKG_OPT options in “sqlaprep - Precompile
Program” on page 19.)

BIND executes under the transaction that the user has started. After performing the
bind, BIND issues a COMMIT (if bind is successful) or a ROLLBACK (if bind is
unsuccessful) operation to terminate the current transaction and start another one.

Binding halts if a fatal error or more than 100 errors occur. If a fatal error occurs during
binding, BIND stops binding, attempts to close all files, and discards the package.

Binding application programs has prerequisite requirements and restrictions beyond the
scope of this manual. For more detailed information about binding application programs
to databases, see the Embedded SQL Programming Guide.

The following table lists valid values for the type and the val fields of the bind options
structure (see “SQLOPT” on page 436), as well as their corresponding CLP options.

Chapter 1. Application Programming Interfaces 13

sqlabndx - Bind

For a description of the bind options (including default values), see the Command
Reference.

Table 3 (Page 1 of 2). BIND Option Types and Values

CLP Option

Option Type

Option Values

ACTION ADD

SQL_ACTION_OPT

SQL_ACTION_ADD

ACTION REPLACE

SQL_ACTION_OPT

SQL_ACTION_REPLACE

BLOCKING ALL

SQL_BLOCK_OPT

SQL_BL_ALL

BLOCKING NO

SQL_BLOCK_OPT

SQL_BL_NO

BLOCKING UNAMBIG

SQL_BLOCK_OPT

SQL_BL_UNAMBIG

CCSIDG

SQL_CCSIDG_OPT

sglopt.sqloptions.val

CCSIDM SQL_CCSIDM_OPT sglopt.sqloptions.val
CCsSIDS SQL_CCSIDS_OPT sqlopt.sqloptions.val
CHARSUB BIT SQL_CHARSUB_OPT SQL_CHARSUB_BIT

CHARSUB DEFAULT

SQL_CHARSUB_OPT

SQL_CHARSUB_DEFAULT

CHARSUB MIXED

SQL_CHARSUB_OPT

SQL_CHARSUB_MIXED

CHARSUB SBCS

SQL_CHARSUB_OPT

SQL_CHARSUB_SBCS

CNULREQD NO

SQL_CNULREQD_OPT

SQL_CNULREQD_NO

CNULREQD YES

SQL_CNULREQD_OPT

SQL_CNULREQD_YES

COLLECTION

SQL_COLLECTION_OPT

sqglchar structure

DATETIME DEF

SQL_DATETIME_OPT

SQL_DATETIME_DEF

DATETIME EUR

SQL_DATETIME_OPT

SQL_DATETIME_EUR

DATETIME ISO

SQL_DATETIME_OPT

SQL_DATETIME_ISO

DATETIME JIS

SQL_DATETIME_OPT

SQL_DATETIME_JIS

DATETIME LOC

SQL_DATETIME_OPT

SQL_DATETIME_LOC

DATETIME USA

SQL_DATETIME_OPT

SQL_DATETIME_USA

DECDEL COMMA

SQL_DECDEL_OPT

SQL_DECDEL_COMMA

DECDEL PERIOD

SQL_DECDEL_OPT

SQL_DECDEL_PERIOD

DEC 15 SQL_DEC_OPT SQL_DEC_15

DEC 31 SQL_DEC_OPT SQL_DEC_31
DEGREE 1 SQL_DEGREE_OPT SQL_DEGREE_1
DEGREE ANY SQL_DEGREE_OPT SQL_DEGREE_ANY

DEGREE degree

SQL_DEGREE_OPT

Integer between 1 and 32767.

DYNAMICRULES BIND

SQL_DYNAMICRULES_OPT

SQL_DYNAMICRULES_BIND

DYNAMICRULES RUN

SQL_DYNAMICRULES_OPT

SQL_DYNAMICRULES_RUN

DYNAMICRULES DEFINE

SQL_DYNAMICRULES_OPT

SQL_DYNAMICRULES_DEFINE

DYNAMICRULES INVOKE

SQL_DYNAMICRULES_OPT

SQL_DYNAMICRULES_INVOKE

EXPLAIN NO

SQL_EXPLAIN_OPT

SQL_EXPLAIN_NO

EXPLAIN YES

SQL_EXPLAIN_OPT

SQL_EXPLAIN_YES

EXPLAIN ALL

SQL_EXPLAIN_OPT

SQL_EXPLAIN_ALL

EXPLSNAP NO

SQL_EXPLSNAP_OPT

SQL_EXPLSNAP_NO

EXPLSNAP YES

SQL_EXPLSNAP_OPT

SQL_EXPLSNAP_YES

14 APl Reference

sqlabndx - Bind

Table 3 (Page 2 of 2). BIND Option Types and Values

CLP Option Option Type Option Values
EXPLSNAP ALL SQL_EXPLSNAP_OPT SQL_EXPLSNAP_ALL
FUNCPATH SQL_FUNCTION_PATH sglchar structure
GENERIC SQL_GENERIC_OPT sqlchar structure
GRANT SQL_GRANT_OPT sglchar structure

GRANT PUBLIC

SQL_GRANT_OPT

sglchar structure

GRANT TO USER

SQL_GRANT_USER_OPT

sglchar structure

GRANT TO GROUP

SQL_GRANT_GROUP_:OPT

sqlchar structure

INSERT BUF SQL_INSERT_OPT SQL_INSERT_BUF
INSERT DEF SQL_INSERT_OPT SQL_INSERT_DEF
ISOLATION RS SQL_ISO_OPT SQL_READ_STAB

ISOLATION NC SQL_ISO_OPT SQL_NO_COMMIT
ISOLATION CS SQL_ISO_OPT SQL_CURSOR_STAB
ISOLATION RR SQL_ISO_OPT SQL_REP_READ

ISOLATION UR SQL_ISO_OPT SQL_UNCOM_READ

OWNER SQL_OWNER_OPT sqlchar structure

QUALIFIER SQL_QUALIFIER_OPT sglchar structure

QUERYOPT SQL_QUERYOPT_OPT SQL_QUERYOPT_0,1,2,3,5,7,9

RELEASE COMMIT

SQL_RELEASE_OPT

SQL_RELEASE_COMMIT

RELEASE DEALLOCATE

SQL_RELEASE_OPT

SQL_RELEASE_DEALLOCATE

REPLVER SQL_REPLVER_OPT sqglchar structure
RETAIN NO SQL_RETAIN_OPT SQL_RETAIN_NO
RETAIN YES SQL_RETAIN_OPT SQL_RETAIN_YES

SQLERROR CHECK

SQL_SQLERROR_OPT

SQL_SQLERROR_CHECK

SQLERROR CONTINUE

SQL_SQLERROR_OPT

SQL_SQLERROR_CONTINUE

SQLERROR NOPACKAGE

SQL_SQLERROR_OPT

SQL_SQLERROR_NOPACKAGE

SQLWARN NO SQL_SQLWARN_OPT SQL_SQLWARN_NO
SQLWARN YES SQL_SQLWARN_OPT SQL_SQLWARN_YES
STRDEL APOSTROPHE SQL_STRDEL_OPT SQL_STRDEL_APOSTROPHE
STRDEL QUOTE SQL_STRDEL_OPT SQL_STRDEL_QUOTE

TEXT SQL_TEXT_OPT sqglchar structure

VALIDATE BIND

SQL_VALIDATE_OPT

SQL_VALIDATE_BIND

VALIDATE RUN

SQL_VALIDATE_OPT

SQL_VALIDATE_RUN

Note: Option values showing sqlchar structure have a val field that contains a pointer to “SQLCHAR” on
page 375. This structure contains a character string that specifies the option value.

See Also
“sqglaprep - Precompile Program” on page 19.

Chapter 1. Application Programming Interfaces 15

sglaintp - Get Error Message

sqglaintp - Get Error Message

Retrieves the message associated with an error condition specified by the sglcode field
of the sglca structure.

Authorization
None

Required Connection
None

API Include File
sql.h

C API Syntax

/* File: sql.h */
/* API: Get Error Message */
[* oo %/
SQL_API_RC SQL_API_FN
sqlaintp (

char * pBuffer,

short BufferSize,

short LineWidth,

struct sqlca * pSqlca);
[* ... %/

Generic APl Syntax

/* File: sql.h =/
/* APL: Get Error Message */
[x .. %/
SQL_API_RC SQL_API_FN
sqlgintp (
short BufferSize,
short LineWidth,
struct sqlca * pSqlca,
_SQLOLDCHAR * pBuffer);
[* ... 0%/

16 APl Reference

API Parameters

BufferSize

LineWidth

pSqlca

pBuffer

REXX API Syntax

sglaintp - Get Error Message

Input. Size, in bytes, of a string buffer to hold the retrieved message text.

Input. The maximum line width for each line of message text. Lines are
broken on word boundaries. A value of zero indicates that the message
text is returned without line breaks.

Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

Output. A pointer to a string buffer where the message text is placed. If the
message must be truncated to fit in the buffer, the truncation allows for the
null string terminator character.

GET MESSAGE INTO :msg [LINEWIDTH width]

REXX API Parameters

msg

width

Sample Programs

Usage Notes

C

COBOL
FORTRAN
REXX

REXX variable into which the text message is placed.

Maximum line width for each line in the text message. The line is broken
on word boundaries. If width is not given or set to 0, the message text
returns without line breaks.

\sqllib\samples\c\util.c
\sqllib\samples\cobol\checkerr.cbl
\sqllib\samples\fortran\util.f

\sqllib\samples\rexx\dbcat.cmd

One message is returned per call.

A new line (line feed, LF, or carriage return/line feed, CR/LF) sequence is placed at the
end of each message.

If a positive line width is specified, new line sequences are inserted between words so
that the lines do not exceed the line width.

Chapter 1. Application Programming Interfaces 17

sglaintp - Get Error Message

If a word is longer than a line width, the line is filled with as many characters as will fit,
a new line is inserted, and the remaining characters are placed on the next line.

Return Codes

Code Message

+i Positive integer indicating the number of bytes in the formatted message. If this
is greater than the buffer size input by the caller, the message is truncated.

-1 Insufficient memory available for message formatting services to function. The
requested message is not returned.

-2 No error. The sqglca did not contain an error code (SQLCODE = 0).

-3 Message file inaccessible or incorrect.

-4 Line width is less than zero.

-5 Invalid sglca, bad buffer address, or bad buffer length.

If the return code is -1 or -3, the message buffer will contain additional information
about the problem.

See Also
“sglogstt - Get SQLSTATE Message” on page 236.

18 API Reference

sqlaprep - Precompile Program

sglaprep - Precompile Program

Scope

Authorization

Processes an application program source file containing embedded SQL statements. A
modified source file is produced containing host language calls for the SQL statements
and, by default, a package is created in the database.

This API can be called from any node in db2nodes.cfg. It updates the database
catalogs on the catalog node. Its effects are visible to all nodes.

One of the following:

e sysadm or dbadm authority
¢ BINDADD privilege if a package does not exist and one of:
— IMPLICIT_SCHEMA authority on the database if the schema name of the
package does not exist
— CREATEIN privilege on the schema if the schema name of the package exists
e ALTERIN privilege on the schema if the package exists
e BIND privilege on the package if it exists.

The user also needs all privileges required to compile any static SQL statements in the
application. Privileges granted to groups are not used for authorization checking of
static statements. If the user has sysadm authority, but not explicit privileges to
complete the bind, the database manager grants explicit dbadm authority automatically.

Required Connection

Database

API Include File

C API Syntax

sql.h

/* File: sql.h */

/* API: Precompile Program =/

[* ... */

SQL_API_RC SQL_API_FN

sqlaprep (

_SQLOLDCHAR +* pProgramName,
_SQLOLDCHAR +* pMsgFiTleName,
struct sqlopt * pPrepOptions,
struct sqlca * pSqlca);

[* ... %/

Chapter 1. Application Programming Interfaces 19

sqlaprep - Precompile Program

Generic API Syntax

/* File: sql.h x/
/* API: Precompile Program */

/* ...

*/

SQL_API_RC SQL_API_FN

/[* ...

sqlgprep (

unsigned short MsgFileNamelen,
unsigned short ProgramNamelen,
struct sqlca * pSqlca,

struct sqlopt * pPrepOptions,
_SQLOLDCHAR * pMsgFileName,
_SQLOLDCHAR * pProgramName) ;
*/

API| Parameters

MsgFileNameLen

Input. A 2-byte unsigned integer representing the length of the message file
name in bytes.

ProgramNameLen

Input. A 2-byte unsigned integer representing the length of the program
name in bytes.

pSqlca

Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

pPrepOptions

Input. A structure used to pass precompile options to the API. For more
information about this structure, see “SQLOPT” on page 436.

pMsgFileName

Input. A string containing the destination for error, warning, and
informational messages. Can be the path and the name of an operating
system file, or a standard device. If a file already exists, it is overwritten. If
it does not exist, a file is created.

pProgramName

20 APl Reference

Input. A string containing the name of the application to be precompiled.
Use the following extensions:

.sgb - for COBOL applications

.sqc - for C applications

.sqC - for UNIX C++ applications

.sqf - for FORTRAN applications

.sqgx - for C++ applications

When the TARGET option is used, the input file name extension does not
have to be from this predefined list.

The preferred extension for C++ applications containing embedded SQL on
UNIX based systems is sqC; however, the sqx convention, which was

sqlaprep - Precompile Program

invented for systems that are not case sensitive, is tolerated by UNIX
based systems.

REXX API Syntax

This API can be called from REXX through the SQLDB?2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

Sample Programs

Usage Notes

C \sqllib\samples\c\makeapi.sqc
COBOL
FORTRAN \sqgllib\samples\fortran\prepbind.sqf

\sqllib\samples\cobol\prepbind.sqgb

A modified source file is produced, which contains host language equivalents to the
SQL statements. By default, a package is created in the database to which a
connection has been established. The name of the package is the same as the
program file name (minus the extension and folded to uppercase), up to a maximum of
8 characters.

Following connection to a database, sqlaprep executes under the transaction that was
started. PRECOMPILE PROGRAM then issues a COMMIT or a ROLLBACK operation
to terminate the current transaction and start another one.

Precompiling stops if a fatal error or more than 100 errors occur. If a fatal error does
occur, PRECOMPILE PROGRAM stops precompiling, attempts to close all files, and
discards the package.

The following table lists valid values for the type and the val fields of the precompile
options structure (see “SQLOPT” on page 436), as well as their corresponding CLP
options. For a description of the precompile options (including default values), see the
Command Reference.

Table 4 (Page 1 of 4). PRECOMPILE Option Types and Values

CLP Option API Option Type API Option Values
ACTION ADD SQL_ACTION_OPT SQL_ACTION_ADD
ACTION REPLACE SQL_ACTION_OPT SQL_ACTION_REPLACE
BINDFILE SQL_BIND_OPT Null

BINDFILE filename SQL_BIND_OPT sqlchar structure

BLOCKING ALL

SQL_BLOCK_OPT

SQL_BL_ALL

BLOCKING NO

SQL_BLOCK_OPT

SQL_BL_NO

BLOCKING UNAMBIG

SQL_BLOCK_OPT

SQL_BL_UNAMBIG

CCSIDG value SQL_CCSIDG_OPT sqlopt.sgloptions.val
CCSIDM value SQL_CCSIDM_OPT sqlopt.sqloptions.val
CCSIDS value SQL_CCSIDS_OPT sglopt.sqloptions.val
CHARSUB BIT SQL_CHARSUB_OPT SQL_CHARSUB_BIT

Chapter 1.

Application Programming Interfaces

21

sqlaprep - Precompile Program

Table 4 (Page 2 of 4)

. PRECOMPILE Option Types and Values

CLP Option

API Option Type

API Option Values

CHARSUB DEFAULT

SQL_CHARSUB_OPT

SQL_CHARSUB_DEFAULT

CHARSUB MIXED

SQL_CHARSUB_OPT

SQL_CHARSUB_MIXED

CHARSUB SBCS

SQL_CHARSUB_OPT

SQL_CHARSUB_SBCS

CNULREQD NO

SQL_CNULREQD_OPT

SQL_CNULREQD_NO

CNULREQD YES

SQL_CNULREQD_OPT

SQL_CNULREQD_YES

COLLECTION coll-id

SQL_COLLECTION_OPT

sqlchar structure

CONNECT 1

SQL_CONNECT_OPT

SQL_CONNECT_1

CONNECT 2

SQL_CONNECT_OPT

SQL_CONNECT_2

DATETIME DEF

SQL_DATETIME_OPT

SQL_DATETIME_DEF

DATETIME EUR

SQL_DATETIME_OPT

SQL_DATETIME_EUR

DATETIME ISO

SQL_DATETIME_OPT

SQL_DATETIME_ISO

DATETIME JIS

SQL_DATETIME_OPT

SQL_DATETIME_JIS

DATETIME LOC

SQL_DATETIME_OPT

SQL_DATETIME_LOC

DATETIME USA

SQL_DATETIME_OPT

SQL_DATETIME_USA

DECDEL COMMA

SQL_DECDEL_OPT

SQL_DECDEL_COMMA

DECDEL PERIOD

SQL_DECDEL_OPT

SQL_DECDEL_PERIOD

DEC 15

SQL_DEC_OPT

SQL_DEC_15

DEC 31

SQL_DEC_OPT

SQL_DEC_31

DEFERRED_PREPARE ALL

SQL_DEFERRED_PREPARE_OPT

SQL_DEFERRED_PREPARE_ALL

DEFERRED_PREPARE NO

SQL_DEFERRED_PREPARE_OPT

SQL_DEFERRED_PREPARE_NO

DEFERRED_PREPARE YES

SQL_DEFERRED_PREPARE_OPT

SQL_DEFERRED_PREPARE_YES

DEGREE 1

SQL_DEGREE_OPT

SQL_DEGREE_1

DEGREE ANY

SQL_DEGREE_OPT

SQL_DEGREE_ANY

DEGREE degree

SQL_DEGREE_OPT

Integer between 1 and 32767.

DISCONNECT EXPLICIT

SQL_DISCONNECT_OPT

SQL_DISCONNECT_EXPL

DISCONNECT CONDITIONAL

SQL_DISCONNECT_OPT

SQL_DISCONNECT_COND

DISCONNECT AUTOMATIC

SQL_DISCONNECT_OPT

SQL_DISCONNECT_AUTO

DYNAMICRULES BIND

SQL_DYNAMICRULES_OPT

SQL_DYNAMICRULES_BIND

DYNAMICRULES RUN

SQL_DYNAMICRULES_OPT

SQL_DYNAMICRULES_RUN

DYNAMICRULES DEFINE

SQL_DYNAMICRULES_OPT

SQL_DYNAMICRULES_DEFINE

DYNAMICRULES INVOKE

SQL_DYNAMICRULES_OPT

SQL_DYNAMICRULES_INVOKE

EXPLAIN NO

SQL_EXPLAIN_OPT

SQL_EXPLAIN_NO

EXPLAIN YES

SQL_EXPLAIN_OPT

SQL_EXPLAIN_YES

EXPLAIN ALL

SQL_EXPLAIN_OPT

SQL_EXPLAIN_ALL
Not supported by DRDA.

EXPLSNAP NO

SQL_EXPLSNAP_OPT

SQL_EXPLSNAP_NO

EXPLSNAP YES

SQL_EXPLSNAP_OPT

SQL_EXPLSNAP_YES

EXPLSNAP ALL

SQL_EXPLSNAP_OPT

SQL_EXPLSNAP_ALL

FUNCPATH SQL_FUNCTION_PATH sqlchar structure
GENERIC SQL_GENERIC_OPT sqlchar structure
INSERT BUF SQL_INSERT_OPT SQL_INSERT_BUF
INSERT DEF SQL_INSERT_OPT SQL_INSERT_DEF
ISOLATION RS SQL_ISO_OPT SQL_READ_STAB
ISOLATION NC SQL_ISO_OPT SQL_NO_COMMIT
ISOLATION CS SQL_ISO_OPT SQL_CURSOR_STAB
ISOLATION RR SQL_ISO_OPT SQL_REP_READ

22 API Reference

sqlaprep - Precompile Program

Table 4 (Page 3 of 4). PRECOMPILE Option Types and Values

CLP Option

API Option Type

API Option Values

ISOLATION UR

SQL_ISO_OPT

SQL_UNCOM_READ

LANGLEVEL SAAl

SQL_STANDARDS_OPT

SQL_SAA_COMP

LANGLEVEL MIA

SQL_STANDARDS_OPT

SQL_MIA_COMP

LANGLEVEL SQL92E

SQL_STANDARDS_OPT

SQL_SQL92E_COMP

LEVEL levelname

SQL_LEVEL_OPT

sqlchar structure

NOLINEMACRO

SQL_LINEMACRO_OPT

SQL_NO_LINE_MACROS

(default) SQL_LINEMACRO_OPT SQL_LINE_MACROS
OPTLEVEL 0 SQL_OPTIM_OPT SQL_DONT_OPTIMIZE
OPTLEVEL 1 SQL_OPTIM_OPT SQL_OPTIMIZE

OUTPUT filename SQL_PREP_OUTPUT_OPT sqlchar structure

OWNER SQL_OWNER_OPT sglchar structure

PACKAGE SQL_PKG_OPT Null

PACKAGE pkgname SQL_PKG_OPT sglchar structure

QUALIFIER SQL_QUALIFIER_OPT sqlchar structure

QUERYOPT SQL_QUERYOPT_OPT SQL_QUERYOPT_0,1,2,3,5,7,9

RELEASE COMMIT

SQL_RELEASE_OPT

SQL_RELEASE_COMMIT

RELEASE DEALLOCATE

SQL_RELEASE_OPT

SQL_RELEASE_DEALLOCATE

REPLVER versn-str

SQL_REPLVER_OPT

sqlchar structure

RETAIN NO SQL_RETAIN_OPT SQL_RETAIN_NO
RETAIN YES SQL_RETAIN_OPT SQL_RETAIN_YES
SQLCA SAA SQL_SAA_OPT SQL_SAA_YES
SQLCA NONE SQL_SAA_OPT SQL_SAA_NO

SQLERROR CHECK

SQL_SQLERROR_OPT

SQL_SQLERROR_CHECK

SQLERROR CONTINUE

SQL_SQLERROR_OPT

SQL_SQLERROR_CONTINUE

SQLERROR NOPACKAGE

SQL_SQLERROR_OPT

SQL_SQLERROR_NOPACKAGE

SQLFLAG SQL92E SYNTAX

SQL_FLAG_OPT

SQL_SQL92E_SYNTAX

SQLFLAG MVSDB2V23 SYNTAX

SQL_FLAG_OPT

SQL_MVSDB2V23_SYNTAX

SQLFLAG MVSDB2V31 SYNTAX

SQL_FLAG_OPT

SQL_MVSDB2V31_SYNTAX

SQLFLAG MVSDB2V41 SYNTAX

SQL_FLAG_OPT

SQL_MVSDB2V41_SYNTAX

SQLRULES DB2

SQL_RULES_OPT

SQL_RULES_DB2

SQLRULES STD

SQL_RULES_OPT

SQL_RULES_STD

SQLWARN NO

SQL_SQLWARN_OPT

SQL_SQLWARN_NO

SQLWARN YES

SQL_SQLWARN_OPT

SQL_SQLWARN_YES

STRDEL APOSTROPHE

SQL_STRDEL_OPT

SQL_STRDEL_APOSTROPHE

STRDEL QUOTE

SQL_STRDEL_OPT

SQL_STRDEL_QUOTE

SYNCPOINT ONEPHASE

SQL_SYNCPOINT_OPT

SQL_SYNC_ONEPHASE

SYNCPOINT TWOPHASE

SQL_SYNCPOINT_OPT

SQL_SYNC_TWOPHASE

SYNCPOINT NONE

SQL_SYNCPOINT_OPT

SQL_SYNC_NONE

SYNTAX

SQL_SYNTAX_OPT

SQL_SYNTAX_CHECK

(default)

SQL_SYNTAX_OPT

SQL_NO_SYNTAX_CHECK

TARGET compiler

SQL_TARGET_OPT

sqlchar structure

TEXT text-str

SQL_TEXT_OPT

sqlchar structure

VALIDATE BIND

SQL_VALIDATE_OPT

SQL_VALIDATE_BIND

VALIDATE RUN

SQL_VALIDATE_OPT

SQL_VALIDATE_RUN

VERSION versn-str

SQL_VERSION_OPT

sqlchar structure

WCHARTYPE CONVERT

SQL_WCHAR_OPT

SQL_WCHAR_CONVERT

Chapter 1.

Application Programming Interfaces

23

sqlaprep - Precompile Program

Table 4 (Page 4 of 4). PRECOMPILE Option Types and Values

CLP Option API Option Type

API Option Values

WCHARTYPE NOCONVERT SQL_WCHAR_OPT

SQL_WCHAR_NOCONVERT

SQL_NO_OPT

(none)

(none)

See Also
“sglabndx - Bind” on page 11.

24 API Reference

sglarbnd - Rebind

sglarbnd - Rebind

Authorization

Allows the user to recreate a package stored in the database without the need for a
bind file.

One of the following:

e sysadm or dbadm authority
e ALTERIN privilege on the schema
¢ BIND privilege on the package.

The authorization ID logged in the BOUNDBY column of the SYSCAT.PACKAGES
system catalog table, which is the ID of the most recent binder of the package, is used
as the binder authorization ID for the rebind, and for the default schema for table
references in the package. Note that this default qualifier may be different from the
authorization ID of the user executing the rebind request. REBIND will use the same
bind options that were specified when the package was created.

Required Connection

Database

API Include File

C API Syntax

sql.h

/* File: sql.h */

/* APL: Rebind */

[* ... %/

SQL_API_RC SQL_API _FN

sqlarbnd (

char * pPackageName,
struct sqlca * pSqlca,
void * pReserved);

[* ... %/

Chapter 1. Application Programming Interfaces 25

sqlarbnd - Rebind

Generic API Syntax

/* File: sql.h */
/* API: Rebind */
[* .. %/
SQL_API_RC SQL_API_FN
sqlgrbnd (
unsigned short PackageNamelen,
char * pPackageName,
struct sqlca * pSqlca,
void * pReserved);

[* ... %/

API Parameters

PackageNamelLen
Input. A 2-byte unsigned integer representing the length of the package
name in bytes.

pPackageName
Input. A string containing the qualified or unqualified name that designates
the package to be rebound. An unqualified package name is implicitly
qualified by the current authorization ID.

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

pReserved
Reserved for future use. Must be set to NULL.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

Sample Programs
C \sqllib\samples\c\rebind.sqc

COBOL \sqllib\samples\cobol\rebind.sgb
FORTRAN \sqllib\samples\fortran\rebind.sqf

Usage Notes
REBIND does not automatically commit the transaction following a successful rebind.
The user must explicitly commit the transaction. This enables "what if* analysis, in
which the user updates certain statistics, and then tries to rebind the package to see
what changes. It also permits multiple rebinds within a unit of work.

26 API Reference

sglarbnd - Rebind

This API:

Provides a quick way to recreate a package. This enables the user to take
advantage of a change in the system without a need for the original bind file. For
example, if it is likely that a particular SQL statement can take advantage of a
newly created index, REBIND can be used to recreate the package. REBIND can
also be used to recreate packages after “sglustat - Runstats” on page 336 has
been executed, thereby taking advantage of the new statistics.

Provides a method to recreate inoperative packages. Inoperative packages must
be explicitly rebound by invoking either the bind utility or the rebind utility. A
package will be marked inoperative (the VALID column of the SYSCAT.PACKAGES
system catalog will be set to X) if a function instance on which the package
depends is dropped.

Gives users control over the rebinding of invalid packages. Invalid packages will be
automatically (or implicitly) rebound by the database manager when they are
executed. This may result in a noticeable delay in the execution of the first SQL
request for the invalid package. It may be desirable to explicitly rebind invalid
packages, rather than allow the system to automatically rebind them, in order to
eliminate the initial delay and to prevent unexpected SQL error messages which
may be returned in case the implicit rebind fails. For example, following migration,
all packages stored in the database will be invalidated by the DB2 Version 5
migration process. Given that this may involve a large number of packages, it may
be desirable to explicitly rebind all of the invalid packages at one time. This explicit
rebinding can be accomplished using BIND, REBIND, or the db2rbind tool (see
"db2rbind - Rebind all Packages" in the Command Reference).

The choice of whether to use BIND or REBIND to explicitly rebind a package depends
on the circumstances. It is recommended that REBIND be used whenever the situation
does not specifically require the use of BIND, since the performance of REBIND is
significantly better than that of BIND. BIND must be used, however:

When there have been modifications to the program (for example, when SQL
statements have been added or deleted, or when the package does not match the
executable for the program).

When the user wishes to modify any of the bind options as part of the rebind.
REBIND does not support any bind options. For example, if the user wishes to
have privileges on the package granted as part of the bind process, BIND must be
used, since it has an SQL_GRANT_OPT option.

When the package does not currently exist in the database.

When detection of all bind errors is desired. REBIND only returns the first error it
detects, and then ends, whereas the BIND command returns the first 100 errors
that occur during binding.

REBIND is supported by DB2 Connect.

If REBIND is executed on a package that is in use by another user, the rebind will not
occur until the other user's logical unit of work ends, because an exclusive lock is held

Chapter 1. Application Programming Interfaces 27

sqlarbnd - Rebind

on the package's record in the SYSCAT.PACKAGES system catalog table during the
rebind.

When REBIND is executed, the database manager recreates the package from the
SQL statements stored in the SYSCAT.STATEMENTS system catalog table.

If REBIND encounters an error, processing stops, and an error message is returned.

The Explain tables are populated during REBIND if either SQL_EXPLSNAP_OPT or
SQL_EXPLAIN_OPT have been set to YES or ALL (check EXPLAIN_SNAPSHOT and
EXPLAIN_MODE columns in the catalog). The Explain tables used are those of the
REBIND requester, not the original binder.

See Also

“sglabndx - Bind” on page 11
“sglustat - Runstats” on page 336.

28 API Reference

sqlbctcq - Close Tablespace Container Query

sglbctcq - Close Tablespace Container Query

Ends a table space container query request and frees the associated resources.

Authorization
One of the following:

sysadm
sysctrl
sysmaint
dbadm

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */
/* API: Close Tablespace Container Query =*/
[* ... %/
SQL_API_RC SQL_API_FN
sqlbctcq (
struct sqlca * pSqlca);
[* ... %/

Generic API Syntax

/* File: sqlutil.h =/
/* API: Close Tablespace Container Query =*/
[* .. %/
SQL_API_RC SQL_API_FN
sqlgcteq (
struct sqlca * pSqlca);
[* .. %/

API| Parameters
pSqlca

Output. A pointer to the sglca structure. For more information about this

structure, see “SQLCA” on page 373.

Chapter 1.

Application Programming Interfaces

29

sqlbctcq - Close Tablespace Container Query

Sample Programs
Cc \sqllib\samples\c\tabscont.sqc

COBOL \sqllib\samples\cobol\tabscont.sqb
FORTRAN \sgllib\samples\fortran\tabscont.sqf

See Also
“sqlbftcq - Fetch Tablespace Container Query” on page 33
“sglbotcq - Open Tablespace Container Query” on page 44
“sglbstsc - Set Tablespace Containers” on page 53
“sglbtcq - Tablespace Container Query” on page 56.

30 API Reference

sqlbctsq - Close Tablespace Query

sglbctsq - Close Tablespace Query

Ends a table space query request, and frees up associated resources.

Authorization
One of the following:

sysadm
sysctrl
sysmaint
dbadm

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */
/* API: Close Tablespace Query =/
[* .../
SQL_API_RC SQL_API_FN
sqlbctsq (
struct sqlca * pSqlca);
[* ... %/

Generic API Syntax

/* File: sqlutil.h =/
/* API: Close Tablespace Query =/
[* .. %/
SQL_API_RC SQL_API_FN
sqlgctsq (
struct sqlca * pSqlca);

[* ... %/

API| Parameters
pSqlca

Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

Chapter 1. Application Programming Interfaces 31

sqlbctsq - Close Tablespace Query

Sample Programs

Cc \sqllib\samples\c\tabspace.sqc

COBOL \sqgllib\samples\cobol\tabspace.sqb

FORTRAN \sgllib\samples\fortran\tabspace.sqf
See Also

“sqlbftpq - Fetch Tablespace Query” on page 36

“sglbgtss - Get Tablespace Statistics” on page 39
“sglbotsqg - Open Tablespace Query” on page 47

“sglbstpq - Single Tablespace Query” on page 50
“sglbmtsq - Tablespace Query” on page 41.

32 APl Reference

sqlbftcq - Fetch Tablespace Container Query

sqlbftcq - Fetch Tablespace Container Query

Fetches a specified number of rows of table space container query data, each row
consisting of data for a container.

Scope
In a partitioned database server environment, only the table spaces on the current node
are listed.

Authorization
One of the following:

sysadm
sysctrl
sysmaint
dbadm

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */
/* APL: Fetch Tablespace Container Query =*/
[* ... %/
SQL_API_RC SQL_API_FN
sqlbftcq (
struct sqlca * pSqlca,
unsigned long MaxContainers,
struct SQLB_TBSCONTQRY_DATA * pContainerData,
unsigned long * pNumContainers);

[* oo/

Chapter 1. Application Programming Interfaces 33

sqlbftcq - Fetch Tablespace Container Query

Generic API Syntax

/* File: sqlutil.h */
/* API: Fetch Tablespace Container Query */
[* ... %/
SQL_API_RC SQL_API_FN
sqlgftcq (
struct sqlca * pSqlca,
unsigned Tong MaxContainers,
struct SQLB_TBSCONTQRY_DATA = pContainerData,
unsigned long * pNumContainers);

[* ... %/

API Parameters

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

MaxContainers
Input. The maximum number of rows of data that the user allocated output
area (pointed to by pContainerData) can hold.

pContainerData
Output. Pointer to the output area, a structure for query data. For more
information about this structure, see “SQLB-TBSCONTQRY-DATA” on
page 367. The caller of this APl must allocate space for MaxContainers of
these structures, and set pContainerData to point to this space. The API
will use this space to return the table space container data.

pNumContainers
Output. Number of rows of output returned.

Sample Programs
C \sqllib\samples\c\tabscont.sqc

COBOL \sqllib\samples\cobol\tabscont.sgb
FORTRAN \sgllib\samples\fortran\tabscont.sqf

Usage Notes
The user is responsible for allocating and freeing the memory pointed to by the
pContainerData parameter. This API can only be used after a successful sqlbotcq call.
It can be invoked repeatedly to fetch the list generated by sqglbotcq .

For more information, see “sqlbotcq - Open Tablespace Container Query” on page 44.

34 API Reference

sqlbftcq - Fetch Tablespace Container Query

See Also
“sglbctcq - Close Tablespace Container Query” on page 29
“sglbotcq - Open Tablespace Container Query” on page 44
“sglbstsc - Set Tablespace Containers” on page 53
“sglbtcq - Tablespace Container Query” on page 56.

Chapter 1. Application Programming Interfaces 35

sqlbftpq - Fetch Tablespace Query

sqlbftpg - Fetch Tablespace Query

Fetches a specified number of rows of table space query data, each row consisting of
data for a table space.

Scope
In a partitioned database server environment, only the table spaces on the current node
are listed.

Authorization
One of the following:

sysadm
sysctrl
sysmaint
dbadm

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h =/
/* API: Fetch Tablespace Query =*/
[* ... %/
SQL_API_RC SQL_API_FN
sqlbftpq (
struct sqlca * pSqlca,
unsigned long MaxTablespaces,
struct SQLB_TBSPQRY_DATA * pTablespaceData,
unsigned long * pNumTablespaces);
[* ... %/

36 APl Reference

sqlbftpg - Fetch Tablespace Query

Generic API Syntax

/* File: sqlutil.h */
/* API: Fetch Tablespace Query */
[* .../
SQL_API_RC SQL_API_FN
sqlgftpq (
struct sqlca * pSqlca,
unsigned long MaxTablespaces,
struct SQLB_TBSPQRY_DATA * pTablespaceData,
unsigned long * pNumTablespaces);

[* oo %/

API| Parameters

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

MaxTablespaces
Input. The maximum number of rows of data that the user allocated output
area (pointed to by pTablespaceData) can hold.

pTablespaceData

Input and output. Pointer to the output area, a structure for query data. For

more information about this structure, see “SQLB-TBSPQRY-DATA” on
page 369. The caller of this APl must:
¢ Allocate space for MaxTablespaces of these structures
* Initialize the structures
e Set TBSPQVER in the first structure to SQLB_TBSPQRY_DATA_ID
e Set pTablespaceData to point to this space. The API will use this
space to return the table space data.
pNumTablespaces
Output. Number of rows of output returned.

Sample Programs

Usage Notes

C \sqllib\samples\c\tabspace.sqc
COBOL \sqgllib\samples\cobol\tabspace.sqgb
FORTRAN \sgllib\samples\fortran\tabspace.sqf

The user is responsible for allocating and freeing the memory pointed to by the
pTablespaceData parameter. This API can only be used after a successful sglbotsq
call. It can be invoked repeatedly to fetch the list generated by sqlbotsq .

For more information, see “sqlbotsq - Open Tablespace Query” on page 47.

Chapter 1. Application Programming Interfaces

37

sqlbftpq - Fetch Tablespace Query

See Also

“sglbctsq - Close Tablespace Query” on page 31
“sglbgtss - Get Tablespace Statistics” on page 39
“sglbotsq - Open Tablespace Query” on page 47
“sglbstpq - Single Tablespace Query” on page 50
“sglbmtsq - Tablespace Query” on page 41.

38 APl Reference

sqglbgtss - Get Tablespace Statistics

sglbgtss - Get Tablespace Statistics

Provides information on the space utilization of a table space.

Scope

In a partitioned database server environment, only the table spaces on the current node

are listed.

Authorization
One of the following:

sysadm
sysctrl
sysmaint
dbadm

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */
/* API: Get Tablespace Statistics */
[* ... %/
SQL_API_RC SQL_API_FN
sqlbgtss (

struct sqlca * pSqlca,

unsigned long Tablespaceld,

struct SQLB_TBS_STATS * pTablespaceStats);
[* .../

Chapter 1. Application Programming Interfaces

39

sglbgtss - Get Tablespace Statistics

Generic API Syntax

/* File: sqlutil.h */
/* API: Get Tablespace Statistics */
[* .. %/
SQL_API_RC SQL_API_FN
sqlggtss (

struct sqlca * pSqlca,

unsigned Tong Tablespaceld,

struct SQLB_TBS_STATS * pTablespaceStats);
[* ... %/

API Parameters

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

Tablespaceld
Input. ID of the single table space to be queried.

pTablespaceStats
Output. A pointer to a user-allocated SQLB_TBS_STATS structure. The
information about the table space is returned in this structure. For more
information about this structure, see “SQLB-TBS-STATS” on page 365.

Sample Programs
C \sgllib\samples\c\tabspace.sqc

COBOL \sqgllib\samples\cobol\tabspace.sqgb
FORTRAN \sgllib\samples\fortran\tabspace.sqf

Usage Notes
See “SQLB-TBS-STATS” on page 365 for information about the fields returned and
their meaning.

See Also
“sglbctsq - Close Tablespace Query” on page 31
“sqlbftpq - Fetch Tablespace Query” on page 36
“sglbotsqg - Open Tablespace Query” on page 47
“sqlbstpg - Single Tablespace Query” on page 50
“sglbmtsq - Tablespace Query” on page 41.

40 API Reference

sqglbmtsq - Tablespace Query

sglbmtsq - Tablespace Query

Provides a one-call interface to the table space query data. The query data for all table
spaces in the database is returned in an array.

Scope

In a partitioned database server environment, only the table spaces on the current node
are listed.

Authorization
One

of the following:

sysadm
sysctrl
sysmaint
dbadm

Required Connection
Database

API Include File

sqlutil.h

C API Syntax

/*
/*

SQ

[* ...

/[* ...

File: sqlutil.h =/

API: Tablespace Query */

*/

L_API_RC SQL_API_FN

sqlbmtsq (
struct sqlca * pSqlca,
unsigned long * pNumTablespaces,
struct SQLB_TBSPQRY_DATA *xx pppTablespaceData,
unsigned Tong reservedl,
unsigned long reserved?);

*/

Chapter 1. Application Programming Interfaces

41

sqlbmtsq - Tablespace Query

Generic API Syntax

/* File: sqlutil.h */

/* API: Tablespace Query =*/

[* ... %/

SQL_API_RC SQL_API_FN

sqlgmtsq (

struct sqlca * pSqlca,
unsigned Tong * pNumTablespaces,
struct SQLB_TBSPQRY_DATA =% pppTablespaceData,
unsigned Tong reservedl,
unsigned long reserved?2);

[x .. %/

API Parameters

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

pNumTablespaces
Output. The total number of table spaces in the connected database.

pppTablespaceData
Output. The caller supplies the API with the address of a pointer. The
space for the table space query data is allocated by the API, and a pointer
to that space is returned to the caller. On return from the call, the pointer
points to an array of SQLB_TBSPQRY_DATA pointers to the complete set
of table space query data.

reservedl
Input. Always SQLB_RESERVEDI.

reserved?2

Input. Always SQLB_RESERVED2.

Sample Programs
C \sqllib\samples\c\tabspace.sqc

COBOL \sqgllib\samples\cobol\tabspace.sqb
FORTRAN \sqllib\samples\fortran\tabspace.sqf

Usage Notes
This API uses the lower level services, namely:

¢ “sqlbotsq - Open Tablespace Query” on page 47
e “sglbftpg - Fetch Tablespace Query” on page 36
e “sglbctsq - Close Tablespace Query” on page 31

to get all of the table space query data at once.

42 APl Reference

sqglbmtsq - Tablespace Query

If sufficient memory is available, this function returns the number of table spaces, and a
pointer to the memory location of the table space query data. It is the user's
responsibility to free this memory with a call to sglefmem (see “sglefmem - Free
Memory” on page 123).

If sufficient memory is not available, this function simply returns the number of table
spaces, and no memory is allocated. If this should happen, use “sglbotsq - Open
Tablespace Query” on page 47, “sqlbftpq - Fetch Tablespace Query” on page 36, and
“sglbctsq - Close Tablespace Query” on page 31, to fetch less than the whole list at
once.

See Also
“sglbctsq - Close Tablespace Query” on page 31
“sglbftpq - Fetch Tablespace Query” on page 36
“sglbgtss - Get Tablespace Statistics” on page 39
“sglbotsq - Open Tablespace Query” on page 47
“sqlbstpq - Single Tablespace Query” on page 50.

Chapter 1. Application Programming Interfaces 43

sqlbotcq - Open Tablespace Container Query

sqlbotcq - Open Tablespace Container Query

Prepares for a table space container query operation, and returns the number of

containers currently in the table space.

Authorization
One of the following:

sysadm
sysctrl
sysmaint
dbadm

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */
/* API: Open Tablespace Container Query =/
[* ... %/
SQL_API_RC SQL_API_FN
sqlbotcq (

struct sqlca * pSqlca,

unsigned Tong Tablespaceld,

unsigned long * pNumContainers);

[* oo %/

Generic API Syntax

/* File: sqlutil.h =/
/* API: Open Tablespace Container Query */
[* ... %/
SQL_API_RC SQL_API_FN
sqlgotcq (

struct sqlca * pSqlca,

unsigned Tong Tablespaceld,

unsigned long * pNumContainers);

[* ... %/

44 API Reference

API Parameters

Sample Programs

Usage Notes

sglbotcq - Open Tablespace Container Query

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA”" on page 373.
Tablespaceld
Input. ID of the table space for which container data is desired. If the
special identifier SQLB_ALL_TABLESPACES (in sqlutil) is specified, a
complete list of containers for the entire database is produced.
pNumContainers

C

Output. The number of containers in the specified table space.

\sqllib\samples\c\tabscont.sqc

COBOL \sgllib\samples\cobol\tabscont.sgb

FORTRAN \sqgllib\samples\fortran\tabscont.sqf

This API is normally followed by one or more calls to “sqlbftcq - Fetch Tablespace
Container Query” on page 33, and then by one call to “sglbctcq - Close Tablespace
Container Query” on page 29.

An application can use the following APIs to fetch information about containers in use
by table spaces:

“sqlbtcq - Tablespace Container Query” on page 56

Fetches a complete list of container information. The API allocates the space
required to hold the information for all the containers, and returns a pointer to this
information. Use this API to scan the list of containers for specific information.
Using this API is identical to calling the three APIs below (sglbotcq , sqlbftcq , and
sqlbctcq), except that this APl automatically allocates the memory for the output
information. A call to this APl must be followed by a call to “sglefmem - Free
Memory” on page 123 to free the memory.

“sqglbotcq - Open Tablespace Container Query” on page 44
“sqlbftcq - Fetch Tablespace Container Query” on page 33
“sglbctcq - Close Tablespace Container Query” on page 29

These three APIs function like an SQL cursor, in that they use the
OPEN/FETCH/CLOSE paradigm. The caller must provide the output area for the
fetch. Unlike an SQL cursor, only one table space container query can be active at
a time. Use this set of APIs to scan the list of table space containers for specific
information. These APIs allows the user to control the memory requirements of an
application (compared with “sqlbtcq - Tablespace Container Query” on page 56).

When sqlbotcq is called, a snapshot of the current container information is formed in
the agent servicing the application. If the application issues a second table space

Chapter 1. Application Programming Interfaces 45

sqlbotcq - Open Tablespace Container Query

container query call (sglbtcq or sqlbotcq), this snapshot is replaced with refreshed
information.

No locking is performed, so the information in the buffer may not reflect changes made
by another application after the snapshot was generated. The information is not part of
a transaction.

There is one snapshot buffer for table space queries and another for table space
container queries. These buffers are independent of one another.

See Also
“sglbctcq - Close Tablespace Container Query” on page 29
“sqlbftcq - Fetch Tablespace Container Query” on page 33
“sglbstsc - Set Tablespace Containers” on page 53
“sglbtcq - Tablespace Container Query” on page 56.

46 APl Reference

sglbotsq - Open Tablespace Query

sglbotsq - Open Tablespace Query

Prepares for a table space query operation, and returns the number of table spaces
currently in the database.

Authorization
One of the following:

sysadm
sysctrl
sysmaint
dbadm

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */
/* API: Open Tablespace Query =/
[* .../
SQL_API_RC SQL_API_FN
sqlbotsq (
struct sqlca * pSqlca,
unsigned Tong TablespaceQueryOptions,
unsigned long * pNumTablespaces);
[* ... %/

Generic API Syntax

/* File: sqlutil.h */
/* API: Open Tablespace Query =*/
[* .../
SQL_API_RC SQL_API_FN
sqlgotsq (
struct sqlca * pSqlca,
unsigned long TablespaceQueryOptions,
unsigned long * pNumTablespaces);

[* oo %/

Chapter 1. Application Programming Interfaces 47

sqlbotsq - Open Tablespace Query

API| Parameters

pSqlca

Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

TablespaceQueryOptions

Input. Indicates which table spaces to process. Valid values (defined in
sqlutil) are:
SQLB_OPEN_TBS_ALL

Process all the table spaces in the database.
SQLB_OPEN_TBS_RESTORE

Process only the table spaces that the user's agent is restoring.

pNumTablespaces

Sample Programs

C

Output. The number of table spaces in the connected database.

\sqllib\samples\c\tabspace.sqc

COBOL \sqgllib\samples\cobol\tabspace.sqb

FORTRAN \sqgllib\samples\fortran\tabspace.sqf

Usage Notes

This API is normally followed by one or more calls to “sqlbftpq - Fetch Tablespace
Query” on page 36, and then by one call to “sqlbctsq - Close Tablespace Query” on
page 31.

An application can use the following APlIs to fetch information about the currently
defined table spaces:

48 APl Reference

“sglbstpq - Single Tablespace Query” on page 50

Fetches information about a given table space. Only one table space entry is
returned (into a space provided by the caller). Use this APl when the table space
identifier is known, and information about only that table space is desired.

“sqlbmtsq - Tablespace Query” on page 41

Fetches information about all table spaces. The API allocates the space required to
hold the information for all table spaces, and returns a pointer to this information.
Use this API to scan the list of table spaces when searching for specific
information. Using this API is identical to calling the three APIs below, except that
this APl automatically allocates the memory for the output information. A call to this
API must be followed by a call to “sqlefmem - Free Memory” on page 123 to free
the memory.

“sqlbotsq - Open Tablespace Query” on page 47
“sqlbftpq - Fetch Tablespace Query” on page 36
“sqlbctsq - Close Tablespace Query” on page 31

These three APIs function like an SQL cursor, in that they use the
OPEN/FETCH/CLOSE paradigm. The caller must provide the output area for the

See Also

sglbotsq - Open Tablespace Query

fetch. Unlike an SQL cursor, only one table space query may be active at a time.
Use this set of APIs to scan the list of table spaces when searching for specific
information. This set of APIs allows the user to control the memory requirements of
an application (compared with “sqlbmtsq - Tablespace Query” on page 41).

When sqlbotsq is called, a snapshot of the current table space information is buffered
in the agent servicing the application. If the application issues a second table space
query call (sqlbtsq or sglbotsq), this snapshot is replaced with refreshed information.

No locking is performed, so the information in the buffer may not reflect more recent
changes made by another application. The information is not part of a transaction.

There is one snapshot buffer for table space queries and another for table space
container queries. These buffers are independent of one another.

“sglbctsq - Close Tablespace Query” on page 31
“sqlbftpq - Fetch Tablespace Query” on page 36

“sglbstpq - Single Tablespace Query” on page 50
“sglbmtsq - Tablespace Query” on page 41.

Chapter 1. Application Programming Interfaces 49

sqlbstpq - Single Tablespace Query

sqlbstpq - Single Tablespace Query

Retrieves information about a single currently defined table space.

Scope
In a partitioned database server environment, only the table spaces on the current node
are listed.

Authorization
One of the following:

sysadm
sysctrl
sysmaint
dbadm

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h =/
/* API: Single Tablespace Query */
[* ... %/
SQL_API_RC SQL_API_FN
sqlbstpq (
struct sqlca * pSqlca,
unsigned Tong Tablespaceld,
struct SQLB_TBSPQRY_DATA * pTablespaceData,
unsigned long reserved);

[* oo %/

50 API Reference

sqlbstpq - Single Tablespace Query

Generic API Syntax

/* File: sqlutil.h */

/* API: Single Tablespace Query */

[* .../

SQL_API_RC SQL_API_FN

sqlgstpq (

struct sqlca * pSqlca,
unsigned Tong Tablespaceld,
struct SQLB_TBSPQRY_DATA * pTablespaceData,
unsigned long reserved);

[* oo %/

API| Parameters

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

Tablespaceld
Input. Identifier for the table space which is to be queried.

pTablespaceData
Input and output. Pointer to a user-supplied SQLB_TBSPQRY_DATA
structure where the table space information will be placed upon return. The
caller of this API must initialize the structure and set TBSPQVER to
SQLB_TBSPQRY_DATA_ID (in sqlutil).

reserved

Input. Always SQLB_RESERVEDI.

Sample Programs
C \sqllib\samples\c\tabspace.sqc

COBOL \sgllib\samples\cobol\tabspace.sgb
FORTRAN \sgllib\samples\fortran\tabspace.sqf

Usage Notes
This API retrieves information about a single table space if the table space identifier to
be queried is known. This API provides an alternative to the more expensive OPEN
TABLESPACE QUERY, FETCH, and CLOSE combination of APIs, which must be used
to scan for the desired table space when the table space identifier is not known in
advance. The table space IDs can be found in the system catalogs. No agent snapshot
is taken; since there is only one entry to return, it is returned directly.

For more information, see “sqlbotsq - Open Tablespace Query” on page 47.

Chapter 1. Application Programming Interfaces 51

sqlbstpq - Single Tablespace Query

See Also

“sglbctsq - Close Tablespace Query” on page 31
“sglbftpq - Fetch Tablespace Query” on page 36

“sglbgtss - Get Tablespace Statistics” on page 39
“sglbotsqg - Open Tablespace Query” on page 47

“sglbmtsq - Tablespace Query” on page 41.

52 APl Reference

sqlbstsc - Set Tablespace Containers

sglbstsc - Set Tablespace Containers

This API facilitates the provision of a redirected restore, in which the user is restoring a
database, and a different set of operating system storage containers is desired or
required.

Use this API when the table space is in a storage definition pending or a storage
definition allowed state. These states are possible during a restore operation,
immediately prior to the restoration of database pages.

Authorization
One of the following:

sysadm
sysctrl

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

[* File: sqlutil.h */
/* API: Set Tablespace Containers */
[* ... %/
SQL_API_RC SQL_API FN
sqlbstsc (
struct sqlca * pSqlca,
unsigned Tong SetContainerOptions,
unsigned Tong Tablespaceld,
unsigned lTong NumContainers,
struct SQLB_TBSCONTQRY_DATA * pContainerData);
[* .. %/

Chapter 1. Application Programming Interfaces 53

sqlbstsc - Set Tablespace Containers

Generic API Syntax

/* File: sqlutil.h */
/* API: Set Tablespace Containers */
[* ... %/
SQL_API_RC SQL_API_FN
sqlgstsc (
struct sqlca * pSqlca,
unsigned Tong SetContainerOptions,
unsigned Tong Tablespaceld,
unsigned Tong NumContainers,
struct SQLB_TBSCONTQRY DATA * pContainerData);
[* ... %/

API Parameters
pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.
SetContainerOptions
Input. Use this field to specify additional options. Valid values (defined in
sqlutil) are:
SQLB_SET_CONT_INIT_STATE
Redo alter table space operations when performing a roll forward.
SQLB_SET_CONT_FINAL_STATE
Ignore alter table space operations in the log when performing a roll
forward.
Tablespaceld
Input. Identifier for the table space which is to be changed.
NumContainers
Input. The number of rows the structure pointed to by pContainerData
holds.
pContainerData
Input. Container specifications. Although the SQLB_TBSCONTQRY _DATA
structure is used, only the contType, totalPages, name, and nameLen (for
languages other than C) fields are used; all other fields are ignored.

Sample Programs
C \sqllib\samples\c\backrest.c

COBOL \sqllib\samples\cobol\backrest.cbl
FORTRAN \sgllib\samples\fortran\backrest.f

54 API Reference

Usage Notes

See Also

sqlbstsc - Set Tablespace Containers

This API is used in conjunction with “sqglurestore - Restore Database” on page 313.

A backup of a database, or one or more table spaces, keeps a record of all the table
space containers in use by the table spaces being backed up. During a restore, all
containers listed in the backup are checked to see if they currently exist and are
accessible. If one or more of the containers is inaccessible for any reason, the restore
will fail. In order to allow a restore in such a case, the redirecting of table space
containers is supported during the restore. This support includes adding, changing, or
removing of table space containers. It is this API that allows the user to add, change or
remove those containers. For more information, see the Administration Guide.

Typical use of this APl would involve the following sequence of actions:

1. Invoke “sqlurestore - Restore Database” on page 313 with CallerAction set to
SQLUD_RESTORE_STORDEF.

The restore utility returns an sglcode indicating that some of the containers are
inaccessible.

2. Invoke sqglbstsc to set the table space container definitions with the
SetContainerOptions parameter set to SQLB_SET_CONT_FINAL_STATE.

3. Invoke sqlurst a second time with CallerAction set to SQLUD_CONTINUE.

The above sequence will allow the restore to use the new table space container
definitions and will ignore table space add container operations in the logs when
“sqluroll - Rollforward Database” on page 327 is called after the restore is complete.

The user of this API should be aware that when setting the container list, there must be
sufficient disk space to allow for the restore or rollforward operation to replace all of the
original data into these new containers. If there is not sufficient space, such table
spaces will be left in the recovery pending state until sufficient disk space is made
available. A prudent Database Administrator will keep records of disk utilization on a
regular basis. Then, when a restore or rollforward operation is needed, the required
disk space will be known.

“sqglubkp - Backup Database” on page 242
“sqluroll - Rollforward Database” on page 327
“sqlurestore - Restore Database” on page 313.

Chapter 1. Application Programming Interfaces 55

sqlbtcq - Tablespace Container Query

sqlbtcq - Tablespace Container Query

Provides a one-call interface to the table space container query data. The query data
for all containers in a table space, or for all containers in all table spaces, is returned in
an array.

Scope
In a partitioned database server environment, only the table spaces on the current node
are listed.

Authorization
One of the following:

sysadm
sysctrl
sysmaint
dbadm

Required Connection
Database

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */
/* API: Tablespace Container Query */
[* ... %/
SQL_API_RC SQL_API_FN
sqlbtcq (

struct sqlca * pSqlca,

unsigned Tong Tablespaceld,

unsigned Tong * pNumContainers,

struct SQLB TBSCONTQRY DATA ** ppContainerData);
[* ... %/

56 API Reference

sglbtcq - Tablespace Container Query

Generic API Syntax

/*
/*

[* ...
SQL_API_RC SQL_API_FN
sqlgteq (

/*

File: sqlutil.h =/
API: Tablespace Container Query */

*/

struct sqlca * pSqlca,

unsigned Tong Tablespaceld,

unsigned long * pNumContainers,

struct SQLB_TBSCONTQRY_DATA ** ppContainerData);
ces ¥/

API| Parameters

Sample Programs

Usage Notes

pSqlca

Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

Tablespaceld

C

Input. ID of the table space for which container data is desired, or a special
ID, SQLB_ALL TABLESPACES (defined in sqlutil), which produces a list of all
containers for the entire database.

pNumContainers

Output. The number of containers in the table space.

ppContainerData

Output. The caller supplies the API with the address of a pointer to a
SQLB _TBSCONTQRY_DATA structure. The space for the table space
container query data is allocated by the API, and a pointer to that space is
returned to the caller. On return from the call, the pointer to the
SQLB_TBSCONTQRY_DATA structure points to the complete set of table
space container query data.

\sqllib\samples\c\tabscont.sqc

COBOL \sqgllib\samples\cobol\tabscont.sqgb

FORTRAN \sgllib\samples\fortran\tabscont.sqf

This API uses the lower level services, namely:

“sglbotcq - Open Tablespace Container Query” on page 44
“sglbftcq - Fetch Tablespace Container Query” on page 33
“sglbctcq - Close Tablespace Container Query” on page 29

to get all of the table space container query data at once.

Chapter 1. Application Programming Interfaces 57

sqlbtcq - Tablespace Container Query

If sufficient memory is available, this function returns the number of containers, and a
pointer to the memory location of the table space container query data. It is the user's
responsibility to free this memory with a call to sglefmem (see “sglefmem - Free
Memory” on page 123).

If sufficient memory is not available, this function simply returns the number of
containers, and no memory is allocated. If this should happen, use “sqglbotcq - Open
Tablespace Container Query” on page 44, “sqlbftcq - Fetch Tablespace Container
Query” on page 33, and “sqlbctcq - Close Tablespace Container Query” on page 29 to
fetch less than the whole list at once.

See Also
“sglbctcq - Close Tablespace Container Query” on page 29
“sglbftcq - Fetch Tablespace Container Query” on page 33
“sglbotcq - Open Tablespace Container Query” on page 44
“sglbstsc - Set Tablespace Containers” on page 53
“sglbtcq - Tablespace Container Query” on page 56.

58 APl Reference

sglcspqy - List DRDA Indoubt Transactions

sglcspqy - List DRDA Indoubt Transactions

Authorization

Provides a list of transactions that are indoubt between partner LUs connected by LU
6.2 protocols.

sysadm

Required Connection

Instance

API Include File

C API Syntax

sqlxa.h

/* File: sqlxa.h =/
/* API: List DRDA Indoubt Transactions */

[* .. %/

extern int SQL_API_FN sqlcspqy(SQLCSPQY_INDOUBT **indoubt_data,
long *indoubt_count,
struct sqlca *sqlca);

/% .0 %/

API Parameters

Usage Notes

indoubt_data
Output. A pointer to the returned array.
indoubt_count
Output. The number of elements in the returned array.
pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

DRDA indoubt transactions occur when communication is lost between coordinators
and participants in distributed units of work.

A distributed unit of work lets a user or application read and update data at multiple
locations within a single unit of work. Such work requires a two-phase commit.

The first phase requests all the participants to prepare for commit. The second phase

commits or rolls back the transactions. If a coordinator or participant becomes
unavailable after the first phase then the distributed transactions are indoubt.

Chapter 1. Application Programming Interfaces 59

sqlcspgy - List DRDA Indoubt Transactions

Before issuing LIST DRDA INDOUBT TRANSACTIONS, the application process must
be connected to the Sync Point Manager (SPM) instance. Use the SPM_NAME as the
dbalias on the CONNECT statement (see the SQL Reference for more information

about using CONNECT). SPM_NAME is a database manager configuration parameter.

60 APl Reference

sgle_activate_db - Activate Database

sgle_activate_db - Activate Database

Scope

Authorization

Activates the specified database and starts up all necessary database services, so that
the database is available for connection and use by any application.

This API activates the specified database on all nodes within the system. If one or
more of these nodes encounters an error during activation of the database, a warning is
returned. The database remains activated on all nodes on which the API has
succeeded.

Note: If it is the coordinator node or the catalog node that encounters the error, the
API returns a negative sglcode, and the database will not be activated on any
node.

One of the following:

sysadm
sysctrl
sysmaint

Required Connection

None. Applications invoking ACTIVATE DATABASE cannot have any existing database
connections.

API Include File

C API Syntax

sqlenv.h

/* File: sqlenv.h */
/* API: Activate Database */
/% ... %/
SQL_API_RC SQL_API_FN
sqle_activate_db (
char * pDbAlias,
char * pUserName,
char * pPassword,
void * pReserved,
struct sqlca * pSqlca);
[* ... %/

Chapter 1. Application Programming Interfaces 61

sgle_activate_db - Activate Database

Generic API Syntax

/* File: sqlenv.h x/

/* API: Activate Database */

/% ... %/

SQL_API_RC SQL_API_FN

sqlg_activate_db (

unsigned short DbAliaslLen,
unsigned short UserNamelLen,
unsigned short PasswordLen,
char * pDbAlias,
char * pUserName,
char * pPassword,
void * pReserved,
struct sqlca * pSqlca);

/% ... %/

API| Parameters

DbAliasLen
Input. A 2-byte unsigned integer representing the length of the database
alias name in bytes.

UserNamelLen
Input. A 2-byte unsigned integer representing the length of the user name
in bytes. Set to zero if no user name is supplied.

PasswordLen
Input. A 2-byte unsigned integer representing the length of the password in
bytes. Set to zero if no password is supplied.

pDbAlias
Input. Pointer to the database alias name.

pUserName
Input. Pointer to the user ID starting the database. Can be NULL.

pPassword
Input. Pointer to the password for the user name. Can be NULL, but must
be specified if a user name is specified.

pReserved
Reserved for future use.

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

62 API Reference

sgle_activate_db - Activate Database

Usage Notes
If a database has not been started, and a DB2 CONNECT TO (or an implicit connect)
is encountered in an application, the application must wait while the database manager
starts up the required database. In such cases, this first application spends time on
database initialization before it can do any work. However, once the first application
has started a database, other applications can simply connect and use it.

Database administrators can use ACTIVATE DATABASE to start up selected
databases. This eliminates any application time spent on database initialization.

Databases initialized by ACTIVATE DATABASE can only be shut down by
“sgle_deactivate_db - Deactivate Database” on page 64, or by “sqlepstp - Stop
Database Manager” on page 165. To obtain a list of activated databases, call
“sglmonss - Get Snapshot” on page 227.

If a database was started by a DB2 CONNECT TO (or an implicit connect) and
subsequently an ACTIVATE DATABASE is issued for that same database, then
DEACTIVATE DATABASE must be used to shut down that database.

ACTIVATE DATABASE behaves in a similar manner to a DB2 CONNECT TO (or an
implicit connect) when working with a database requiring a restart (for example,
database in an inconsistent state). The database will be restarted before it can be
initialized by ACTIVATE DATABASE.

See Also
“sgle_deactivate_db - Deactivate Database” on page 64.

Chapter 1. Application Programming Interfaces 63

sgle_deactivate_db - Deactivate Database

sqle_deactivate db - Deactivate Database

Stops the specified database.

Scope
In an MPP system, this API deactivates the specified database on all nodes in the
system. If one or more of these nodes encounters an error, a warning is returned. The
database will be successfully deactivated on some nodes, but may remain activated on
the nodes encountering the error.
Note: If it is the coordinator node or the catalog node that encounters the error, the
API returns a negative sqglcode, and the database will not be reactivated on any
node on which it was deactivated.
Authorization
One of the following:
sysadm
sysctrl
sysmaint

Required Connection
None. Applications invoking DEACTIVATE DATABASE cannot have any existing
database connections.

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */
/* API: Deactivate Database */
/% ... %/
SQL_API_RC SQL_API_FN
sqle_deactivate_db (
char * pDbAlias,
char * pUserName,
char * pPassword,
void * pReserved,
struct sqlca * pSqlca);
[* ... %/

64 API Reference

sgle_deactivate_db - Deactivate Database

Generic API Syntax

/* File: sqlenv.h */
/* API: Deactivate Database */
/% ... %/
SQL_API_RC SQL_API_FN
sqlg_deactivate_db (
unsigned short DbAliaslLen,
unsigned short UserNamelen,
unsigned short PasswordLen,
char * pDbAlias,
char * pUserName,
char * pPassword,
void * pReserved,
struct sqlca * pSqlca);
/% ... %/

AP| Parameters

DbAliasLen
Input. A 2-byte unsigned integer representing the length of the database
alias name in bytes.
UserNamelLen
Input. A 2-byte unsigned integer representing the length of the user name
in bytes. Set to zero if no user name is supplied.
PasswordLen
Input. A 2-byte unsigned integer representing the length of the password in
bytes. Set to zero if no password is supplied.
pDbAlias
Input. Pointer to the database alias name.
pUserName
Input. Pointer to the user ID stopping the database. Can be NULL.
pPassword
Input. Pointer to the password for the user name. Can be NULL, but must
be specified if a user name is specified.
pReserved
Reserved for future use.
pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA”" on page 373.

REXX API Syntax

This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

Chapter 1. Application Programming Interfaces 65

sgle_deactivate_db - Deactivate Database

Usage Notes
Databases initialized by ACTIVATE DATABASE can only be shut down by
DEACTIVATE DATABASE. “sqlepstp - Stop Database Manager” on page 165
automatically stops all activated databases before stopping the database manager. If a
database was initialized by ACTIVATE DATABASE, the last DB2 CONNECT RESET
statement (counter equal 0) will not shut down the database; DEACTIVATE DATABASE

must be used.

See Also
“sgle_activate_db - Activate Database” on page 61.

66 API Reference

sgleaddn - Add Node

sgleaddn - Add Node

Adds a new node to the parallel database system. This API creates database partitions
for all databases currently defined in the MPP server on the new node. The user can
specify the source node for any temporary table spaces to be created with the
databases, or specify that no temporary table spaces are to be created. The API must
be issued from the node that is being added, and can only be issued on an MPP

server.
Scope
This API only affects the node on which it is executed.
Authorization
One of the following:
sysadm
sysctrl

Required Connection
None

API Include File

sqlenv.h

C API Syntax

/* File: sqlenv.h */
/% API: Add Node */
[* ... %/
SQL_API_RC SQL_API_FN
sqleaddn (
void * pAddNodeOptions,
struct sqlca * pSqlca);
VERY

Chapter 1. Application Programming Interfaces 67

sgleaddn - Add Node

Generic API Syntax

/* File: sqlenv.h x/
/* API: Add Node */
[* .. %/
SQL_API_RC SQL_API_FN
sqlgaddn (
unsigned short addnOptionsLen,
struct sqlca * pSqlca,
void * pAddNodeOptions);
[* ... %/

API Parameters

addnOptionsLen
Input. A 2-byte unsigned integer representing the length of the optional
sqle_addn_options structure in bytes.

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

pAddNodeOptions
Input. A pointer to the optional sgle_addn_options structure. This structure
is used to specify the source node, if any, of the temporary table space
definitions for all database partitions created during the add node
operation. If not specified (that is, a NULL pointer is specified), the
temporary table space definitions will be the same as those for the catalog
node. For more information about this structure, see
“SQLE-ADDN-OPTIONS” on page 383.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

Usage Notes
Before adding a new node, ensure that there is sufficient storage for the containers that
must be created for all existing databases on the system.

The add node operation creates an empty database partition on the new node for every
database that exists in the instance. The configuration parameters for the new database
partitions are set to the default value.

If an add node operation fails while creating a database partition locally, it enters a

clean-up phase, in which it locally drops all databases that have been created. This
means that the database partitions are removed only from the node being added (that

68 APl Reference

See Also

sgleaddn - Add Node

is, the local node). Existing database partitions remain unaffected on all other nodes. If
this fails, no further clean up is done, and an error is returned.

The database partitions on the new node cannot be used to contain user data until after
the ALTER NODEGROUP statement has been used to add the node to a nodegroup.
For details, see the SQL Reference.

This API will fail if a create database or a drop database operation is in progress. The
API can be called again once the operation has completed.

If temporary table spaces are to be created with the database partitions, sgleaddn may
have to communicate with another node in the MPP system in order to retrieve the
table space definitions. The start_stop_time database manager configuration parameter
is used to specify the time, in minutes, by which the other node must respond with the
table space definitions. If this time is exceeded, the API fails. Increase the value of
start_stop_time, and call the API again.

“sglecrea - Create Database” on page 87
“sqgledrpn - Drop Node Verify” on page 119
“sqlepstart - Start Database Manager” on page 162.

Chapter 1. Application Programming Interfaces 69

sqleatcp - Attach and Change Password

sqleatcp - Attach and Change Password

Authorization

Enables an application to specify the node at which instance-level functions (CREATE
DATABASE and FORCE APPLICATION, for example) are to be executed. This node
may be the current instance (as defined by the value of the DB2INSTANCE
environment variable), another instance on the same workstation, or an instance on a
remote workstation. Establishes a logical instance attachment to the node specified,
and starts a physical communications connection to the node if one does not already
exist.

Note: This API extends the function of “sgleatin - Attach” on page 74 by permitting the
optional change of the user password for the instance being attached.

None

Required Connection

This API establishes an instance attachment.

API Include File

C API Syntax

sqlenv.h

/* File: sqlenv.h */
/* API: Attach and Change Password */
[x .. %/
SQL_API_RC SQL_API_FN
sqleatcp (
char * pNodeName,
char * pUserName,
char * pPassword,
char * pNewPassword,
struct sqlca * pSqlca);
[x ... %/

70 APl Reference

sqleatcp - Attach and Change Password

Generic API Syntax

/* File: sqlenv.h */
/* API: Attach and Change Password */
/% ... %/
SQL_API_RC SQL_API_FN
sqlgatcp (
unsigned short NewPasswordLen,
unsigned short PasswordLen,
unsigned short UserNamelen,
unsigned short NodeNamelLen,
struct sqlca * pSqlca,
char * pNewPassword,
char * pPassword,
char * pUserName,
char * pNodeName);
[* o0 %/

API Parameters

NewPasswordLen
Input. A 2-byte unsigned integer representing the length of the new
password in bytes. Set to zero if no new password is supplied.

PasswordLen
Input. A 2-byte unsigned integer representing the length of the password in
bytes. Set to zero if no password is supplied.

UserNamelLen
Input. A 2-byte unsigned integer representing the length of the user name
in bytes. Set to zero if no user name is supplied.

NodeNameLen
Input. A 2-byte unsigned integer representing the length of the node name
in bytes. Set to zero if no node name is supplied.

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

pNewPassword
Input. A string containing the new password for the specified user name.
Set to NULL if a password change is not required.

pPassword
Input. A string containing the password for the specified user name. May
be NULL.

pUserName
Input. A string containing the user name under which the attachment is to
be authenticated. May be NULL.

pNodeName
Input. A string containing the alias of the instance to which the user wants
to attach. This instance must have a matching entry in the local node

Chapter 1. Application Programming Interfaces 71

sqleatcp - Attach and Change Password

directory. The only exception is the local instance (as specified by the
DB2INSTANCE environment variable), which can be specified as the
object of an attachment, but cannot be used as a node name in the node
directory. May be NULL.

REXX API Syntax

Calling this API directly from REXX is not supported. However, REXX programmers can
utilize this function by calling the DB2 command line processor to execute the ATTACH
command. For more information, see the REXX programming chapter in the Embedded
SQL Programming Guide.

Sample Programs

Usage Notes

C \sqllib\samples\c\dbinst.c
COBOL \sqllib\samples\cobol\dbinst.cbl
FORTRAN \sgllib\samples\fortran\dbinst.f

Note: A node name in the node directory can be regarded as an alias for an instance.

If an attach request succeeds, the sqlerrmc field of the sgica will contain 9 tokens
separated by hexadecimal FF (similar to the tokens returned when a CONNECT
request is successful):

=

Country code of the application server

Code page of the application server

Authorization 1D

Node name (as specified on the API)

Identity and platform type of the server (see the SQL Reference).
Agent ID of the agent which has been started at the server
Agent index

Node number of the server

Number of partitions if the server is a partitioned database server.

©CONOO~WD

If the node name is a zero-length string or NULL, information about the current state of
attachment is returned. If no attachment exists, sqlcode 1427 is returned. Otherwise,
information about the attachment is returned in the sqglerrmc field of the sqgica (as
outlined above).

If an attachment has not been made, instance-level APIs are executed against the
current instance, specified by the DB2INSTANCE environment variable.

Certain functions (db2start , db2stop , and all directory services, for example) are never
executed remotely. That is, they affect only the local instance environment, as defined
by the value of the DB2INSTANCE environment variable.

If an attachment exists, and the API is issued with a node name, the current attachment
is dropped, and an attachment to the new node is attempted.

72 API Reference

See Also

sqleatcp - Attach and Change Password

Where the user name and password are authenticated, and where the password is
changed, depend on the authentication type of the target instance. For detailed
information about authentication types, see the Administration Guide.

The node to which an attachment is to be made can also be specified by a call to
“sglesetc - Set Client” on page 185 (see the SQL_ATTACH_NODE option in
“SQLE-CONN-SETTING” on page 388).

“sgleatin - Attach” on page 74
“sgledtin - Detach” on page 121
“sglesetc - Set Client” on page 185.

Chapter 1. Application Programming Interfaces

73

sqleatin - Attach

sqgleatin - Attach

Enables an application to specify the node at which instance-level functions (CREATE
DATABASE and FORCE APPLICATION, for example) are to be executed. This node
may be the current instance (as defined by the value of the DB2INSTANCE
environment variable), another instance on the same workstation, or an instance on a
remote workstation. Establishes a logical instance attachment to the node specified,
and starts a physical communications connection to the node if one does not already
exist.

Note: If a password change is required, use “sqleatcp - Attach and Change Password
on page 70 instead of sgleatin .

Authorization
None

Required Connection
This API establishes an instance attachment.

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */
/* API: Attach */
[* ... %/
SQL_API_RC SQL_API_FN
sqleatin (
char * pNodeName,
char * pUserName,
char * pPassword,
struct sqlca * pSqlca);
[* ... %/

74 API Reference

sgleatin - Attach

Generic API Syntax

/* File: sqlenv.h */
/* API: Attach =/
[* .../
SQL_API_RC SQL_API_FN
sqlgatin (
unsigned short PasswordLen,
unsigned short UserNamelen,
unsigned short NodeNamelLen,
struct sqlca * pSqlca,
char * pPassword,
char * pUserName,
char * pNodeName);

[* o0 %/

API| Parameters

PasswordLen
Input. A 2-byte unsigned integer representing the length of the password in
bytes. Set to zero if no password is supplied.

UserNameLen
Input. A 2-byte unsigned integer representing the length of the user name
in bytes. Set to zero if no user name is supplied.

NodeNamelLen
Input. A 2-byte unsigned integer representing the length of the node name
in bytes. Set to zero if no node name is supplied.

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

pPassword
Input. A string containing the password for the specified user name. May
be NULL.

pUserName
Input. A string containing the user name under which the attachment is to
be authenticated. May be NULL.

pNodeName
Input. A string containing the alias of the instance to which the user wants
to attach. This instance must have a matching entry in the local node
directory. The only exception is the local instance (as specified by the
DB2INSTANCE environment variable), which can be specified as the
object of an attachment, but cannot be used as a node name in the node
directory. May be NULL.

Chapter 1. Application Programming Interfaces 75

sqleatin - Attach

REXX API Syntax

ATTACH [TO nodename [USER username USING password]]

REXX APl Parameters

nodename

username

password

Sample Programs

Usage Notes

C

COBOL
FORTRAN
REXX

Alias of the instance to which the user wants to attach. This instance must
have a matching entry in the local node directory. The only exception is the
local instance (as specified by the DB2INSTANCE environment variable),
which can be specified as the object of an attachment, but cannot be used
as a node name in the node directory.

Name under which the user attaches to the instance.

Password used to authenticate the user name.

\sqllib\samples\c\dbinst.c
\sqllib\samples\cobol\dbinst.cbl
\sqllib\samples\fortran\dbinst.f

\sqgllib\samples\rexx\dbinst.cmd

Note: A node name in the node directory can be regarded as an alias for an instance.

If an attach request succeeds, the sqglerrmc field of the sgica will contain 9 tokens
separated by hexadecimal FF (similar to the tokens returned when a CONNECT
request is successful):

=

©CoNTOrWN

Country code of the application server

Code page of the application server

Authorization 1D

Node name (as specified on the API)

Identity and platform type of the server (see the SQL Reference).
Agent ID of the agent which has been started at the server
Agent index

Node number of the server

Number of partitions if the server is a partitioned database server.

If the node name is a zero-length string or NULL, information about the current state of
attachment is returned. If no attachment exists, sqlcode 1427 is returned. Otherwise,
information about the attachment is returned in the sqglerrmc field of the sqgica (as
outlined above).

76 API Reference

See Also

sgleatin - Attach

If an attachment has not been made, instance-level APIs are executed against the
current instance, specified by the DB2INSTANCE environment variable.

Certain functions (db2start , db2stop , and all directory services, for example) are never
executed remotely. That is, they affect only the local instance environment, as defined
by the value of the DB2INSTANCE environment variable.

If an attachment exists, and the API is issued with a node name, the current attachment
is dropped, and an attachment to the new node is attempted.

Where the user name and password are authenticated depends on the authentication
type of the target instance. For detailed information about authentication types, see the
Administration Guide.

The node to which an attachment is to be made can also be specified by a call to
“sglesetc - Set Client” on page 185 (see the SQL_ATTACH_NODE option in
“SQLE-CONN-SETTING” on page 388).

“sgleatcp - Attach and Change Password” on page 70
“sgledtin - Detach” on page 121
“sglesetc - Set Client” on page 185.

Chapter 1. Application Programming Interfaces 77

sglecadb - Catalog Database

sglecadb - Catalog Database

Stores database location information in the system database directory. The database
can be located either on the local workstation or on a remote node.

Scope
This API affects the system database directory. In a partitioned database environment,
when cataloging a local database into the system database directory, this APl must be
called from a node on the server where the database resides.

Authorization
One of the following:

sysadm
sysctrl

Required Connection
None

API Include File

sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Catalog Database */

[* ... 0%/

SQL_API_RC SQL_API_FN

sqlecadb (

_SQLOLDCHAR * pDbName,
_SQLOLDCHAR =* pDbAlias,
unsigned char Type,
_SQLOLDCHAR * pNodeName,
_SQLOLDCHAR * pPath,
_SQLOLDCHAR =* pComment,
unsigned short Authentication,
_SQLOLDCHAR =* pDcePrincipal,
struct sqlca * pSqlca);

[* ... %/

78 APl Reference

sglecadb - Catalog Database

Generic API Syntax

/* File: sqlenv.h */

/* API: Catalog Database */

[* ... %/

SQL_API_RC SQL_API_FN

sqlgcadb (

unsigned short DCEPrinLen,
unsigned short CommentlLen,
unsigned short PathLen,
unsigned short NodeNamelLen,
unsigned short DbAliaslLen,
unsigned short DbNameLen,
struct sqlca * pSqlca,
_SQLOLDCHAR = pDcePrin,
unsigned short Authentication,
_SQLOLDCHAR +* pComment,
_SQLOLDCHAR * pPath,
_SQLOLDCHAR +* pNodeName,
unsigned char Type,
_SQLOLDCHAR = pDbAlias,
_SQLOLDCHAR * pDbName) ;

[* ... %/

API Parameters

DCEPrinLen
Input. A 2-byte unsigned integer representing the length in bytes of the
DCE principal. Set to zero if no principal is provided. This value should be
nonzero only when authentication is specified as SQL_AUTHENTICATION_DCE.

CommentLen
Input. A 2-byte unsigned integer representing the length in bytes of the
comment. Set to zero if no comment is provided.

PathLen
Input. A 2-byte unsigned integer representing the length in bytes of the
path of the local database directory. Set to zero if no path is provided.

NodeNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
node name. Set to zero if no node name is provided.

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

DbNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database name.

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA”" on page 373.

Chapter 1. Application Programming Interfaces 79

sglecadb - Catalog Database

pDcePrin

Input. A string containing the DCE principal name of the DB2 server on
which the database resides. This value should only be specified when
authentication is SQL_AUTHENTICATION_DCE. The principal must be the same
as the value stored in the server's keytab file.

Authentication

pComment

pPath

Input. Contains the authentication type specified for the database.
Authentication is a process that verifies that the user is who he/she claims
to be. Access to database objects depends on the user's authentication.
Valid values (from sqlenv) are:
SQL_AUTHENTICATION_SERVER
Specifies that authentication takes place on the node containing the
target database.
SQL_AUTHENTICATION_CLIENT
Specifies that authentication takes place on the node where the
application is invoked.
SQL_AUTHENTICATION_DCS
Specifies that authentication takes place on the node containing the
target database, except when using DB2 Connect, when it specifies
that authentication takes place at the DRDA AS.
SQL_AUTHENTICATION_DCE
Specifies that authentication takes place using DCE Security Services.
SQL_AUTHENTICATION_NOT_SPECIFIED
Authentication not specified.

This parameter can be set to SQL_AUTHENTICATION_NOT_SPECIFIED, except
when cataloging a database that resides on a DB2 Version 1 server.

Specifying the authentication type in the database catalog results in a
performance improvement during a connect.

For more information about authentication types, see the Administration
Guide.

Input. A string containing an optional description of the database. A null
string indicates no comment. The maximum length of a comment string is
30 characters.

Input. A string which, on UNIX based systems, specifies the name of the
path on which the database being cataloged resides. Maximum length is
215 characters.

On OS/2 or the Windows operating system, this string specifies the letter of
the drive on which the database being cataloged resides.

If a NULL pointer is provided, the default database path is assumed to be
that specified by the database manager configuration parameter dftdbpath.

pNodeName

80 API Reference

Input. A string containing the name of the node where the database is
located. May be NULL.

sglecadb - Catalog Database

Note: If neither pPath nor pNodeName is specified, the database is
assumed to be local, and the location of the database is assumed
to be that specified in the database manager configuration
parameter dftdbpath.

Type
Input. A single character that designates whether the database is indirect,
remote, or is cataloged via DCE. Valid values (defined in sqlenv) are:
SQL_INDIRECT
Specifies that the database resides at this instance.
SQL_REMOTE
Specifies that the database resides at another instance.
SQL_DCE
Specifies that the database is cataloged via DCE.
pDbAlias
Input. A string containing an alias for the database.
pDbName
Input. A string containing the database name.

CATALOG DATABASE - REXX API Syntax

CATALOG DATABASE dbname [AS alias] [ON path|AT NODE nodename]
[AUTHENTICATION authentication] [WITH "comment"]

REXX API Parameters

dbname

Name of the database to be cataloged.

alias

Alternate name for the database. If an alias is not specified, the database

name is used as the alias.

path

Path on which the database being cataloged resides.

nodename

Name of the remote workstation where the database being cataloged

resides.

Note: If neither path nor nodename is specified, the database is assumed
to be local, and the location of the database is assumed to be that
specified in the database manager configuration parameter
dftdbpath.

authentication
Place where authentication is to be done. Valid values are:
SERVER

Authentication occurs at the node containing the target database. This
is the default.

Chapter 1. Application Programming Interfaces 81

sglecadb - Catalog Database

comment

CLIENT
Authentication occurs at the node where the application is invoked.
DCS
Specifies how authentication will take place for databases accessed
using DB2 Connect. The behavior is the same as for the type SERVER,
except that when the authentication type is SERVER, DB2 Connect forces
authentication at the gateway, and when the authentication type is DCS,
authentication is assumed to take place at the host.
DCE SERVER PRINCIPAL dce_principal_name
Fully qualified DCE principal name for the target server. This value is
also recorded in the keytab file at the target server.

Describes the database or the database entry in the system database
directory. The maximum length of a comment string is 30 characters. A
carriage return or a line feed character is not permitted. The comment text
must be enclosed by double quotation marks.

CATALOG GLOBAL DATABASE - REXX API Syntax

REXX API Parameters

Example

CATALOG GLOBAL DATABASE db_global_name AS alias
USING DIRECTORY {DCE} [WITH comment]

db_global_name

alias

DCE

comment

The fully qualified name that uniquely identifies the database in the DCE
name space.

Alternate name for the database.

The global directory service being used.

Describes the database or the database entry in the system database
directory. The maximum length of a comment string is 30 characters. A

carriage return or a line feed character is not permitted. The comment text
must be enclosed by double quotation marks.

call SQLDBS 'CATALOG GLOBAL DATABASE /.../celll/subsys/database/DB3
AS dbtest USING DIRECTORY DCE WITH "Sample Database"'

Sample Programs

C
COBOL

82 API Reference

\sgllib\samples\c\dbcat.c
\sqgllib\samples\cobol\dbcat.cbl

Usage Notes

sglecadb - Catalog Database

FORTRAN \sqgllib\samples\fortran\dbcat.f
REXX \sqllib\samples\rexx\dbcat.cmd

Use CATALOG DATABASE to catalog databases located on local or remote nodes,
recatalog databases that were uncataloged previously, or maintain multiple aliases for
one database (regardless of database location).

DB2 automatically catalogs databases when they are created. It catalogs an entry for
the database in the local database directory, and another entry in the system database
directory. If the database is created from a remote client (or a client which is executing
from a different instance on the same machine), an entry is also made in the system
database directory at the client instance.

Databases created at the current instance (as defined by the value of the
DB2INSTANCE environment variable) are cataloged as indirect. Databases created at
other instances are cataloged as remote (even if they physically reside on the same
machine).

CATALOG DATABASE automatically creates a system database directory if one does
not exist. The system database directory is stored on the path that contains the
database manager instance that is being used. The system database directory is
maintained outside of the database. Each entry in the directory contains:

e Alias

¢ Authentication type

¢ Comment

¢ Database

e Entry type

¢ Local database directory (when cataloging a local database)
¢ Node name (when cataloging a remote database)

¢ Release information.

If a database is cataloged with the type parameter set to SQL_INDIRECT, the value of the
authentication parameter provided will be ignored, and the authentication in the
directory will be set to SQL_AUTHENTICATION_NOT_SPECIFIED.

List the contents of the system database directory using “sqgledosd - Open Database
Directory Scan” on page 109, “sgledgne - Get Next Database Directory Entry” on
page 106, and “sqledcls - Close Database Directory Scan” on page 104.

If directory caching is enabled (see the configuration parameter dir_cache in “sqlfxsys -
Get Database Manager Configuration” on page 216), database, node, and DCS
directory files are cached in memory. An application's directory cache is created during
its first directory lookup. Since the cache is only refreshed when the application
modifies any of the directory files, directory changes made by other applications may
not be effective until the application has restarted. To refresh DB2's shared cache
(server only), stop (db2stop) and then restart (db2start) the database manager. To

Chapter 1. Application Programming Interfaces 83

sglecadb - Catalog Database

refresh the directory cache for another application, stop and then restart that
application.

See Also
“sgledcls - Close Database Directory Scan” on page 104
“sgledgne - Get Next Database Directory Entry” on page 106
“sgledosd - Open Database Directory Scan” on page 109
“sgleuncd - Uncatalog Database” on page 191.

84 API Reference

sglecran - Create Database at Node

sglecran - Create Database at Node

Scope

Authorization

Creates a database only on the node that calls the API. This API is not intended for
general use. For example, it should be used with “sglurestore - Restore Database” on
page 313 if the database partition at a node was damaged and must be recreated.
Improper use of this API can cause inconsistencies in the system, so it should only be
used with caution.

Note: If this API is used to recreate a database partition that was dropped (because it
was damaged), the database at this node will be in the restore-pending state.
After recreating the database partition, the database must immediately be
restored on this node.

This API only affects the node on which it is called.

One of the following:

sysadm
sysctrl

Required Connection

Instance. To create a database at another node, it is necessary to first attach to that
node. A database connection is temporarily established by this APl during processing.

API Include File

C API Syntax

sqlenv.h

/* File: sqlenv.h */
/* API: Create Database at Node */
[* .../
SQL_API_RC SQL_API_FN
sqlecran (

char * pDbName,

void * pReserved,

struct sqlca * pSqlca);
[* ... %/

Chapter 1. Application Programming Interfaces 85

sglecran - Create Database at Node

Generic API Syntax

/* File: sqlenv.h x/
/* API: Create Database at Node */
/% ... %/
SQL_API_RC SQL_API_FN
sqlgcran (
unsigned short reservedLen,
unsigned short dbNamelLen,
struct sqlca * pSqlca,
void * pReserved,
char * pDbName);
[* ... %/

API Parameters

reservedLen
Input. Reserved for the length of pReserved.

dbNameLen
Input. A 2-byte unsigned integer representing the length of the database
name in bytes.

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

pReserved
Input. A spare pointer that is set to null or points to zero. Reserved for
future use.

pDbName
Input. A string containing the name of the database to be created. Must not
be NULL.

REXX API Syntax
This API can be called from REXX through the SQLDB?2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

Usage Notes
When the database is successfully created, it is placed in restore-pending state. The
database must be restored on this node before it can be used.

See Also

“sglecrea - Create Database” on page 87
“sgledpan - Drop Database at Node” on page 112.

86 API Reference

sglecrea - Create Database

sglecrea - Create Database

Initializes a new database with an optional user-defined collating sequence, creates the
three initial table spaces, creates the system tables, and allocates the recovery log.

Scope
In a multi-node environment, this API affects all nodes that are listed in the
$HOME/sq11ib/db2nodes.cfg file.

The node from which this API is called becomes the catalog node for the new
database.

Authorization
One of the following:

sysadm
sysctrl

Required Connection
Instance. To create a database at another (remote) node, it is necessary to first attach
to that node. A database connection is temporarily established by this API during
processing.

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */
/* APL: Create Database */
[* ... %/
SQL_API_RC SQL_API_FN
sqlecrea (
char * pDbName,
char * plLocalDbAlias,
char * pPath,
struct sqledbdesc * pDbDescriptor,
struct sqledbcountryinfo * pCountryInfo,
char Reserved?2,
void * pReservedl,
struct sqlca * pSqlca);
[* ... %/

Chapter 1. Application Programming Interfaces 87

sglecrea - Create Database

Generic API Syntax

/* File: sqlenv.h x/
/* API: Create Database */
[* ... %/
SQL_API_RC SQL_API_FN
sqlgcrea (
unsigned short PathLen,
unsigned short LocalDbAliasLen,
unsigned short DbNameLen,
struct sqlca * pSqlca,
void * pReservedl,
unsigned short Reserved2,
struct sqledbcountryinfo * pCountryInfo,
struct sqledbdesc * pDbDescriptor,
char * pPath,
char * pLocalDbAlias,
char * pDbName);
[* ... %/

API| Parameters

PathLen
Input. A 2-byte unsigned integer representing the length of the path in
bytes. Set to zero if no path is provided.

LocalDbALiasLen
Input. A 2-byte unsigned integer representing the length of the local
database alias in bytes. Set to zero if no local alias is provided.

DbNamelLen
Input. A 2-byte unsigned integer representing the length of the database
name in bytes.

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA”" on page 373.

pReservedl
Input. A spare pointer that is set to null or points to zero.

Reserved2
Input. Reserved for future use.

pCountryinfo
Input. A pointer to the sgledbcountryinfo structure, containing the locale
and the code set for the database. For more information about this
structure, see “SQLEDBCOUNTRYINFO” on page 407. For a list of valid
locale and code set values, see one of the Quick Beginnings books. May
be NULL.

pDBDescriptor

Input. A pointer to the database description block used when creating the
database. The database description block may be used to supply values

88 API Reference

pPath

sglecrea - Create Database

that are permanently stored in the configuration file of the database, such
as collating sequence. Its structure is described in “SQLEDBDESC” on
page 408. May be NULL.

Input. On UNIX based systems, specifies the path on which to create the
database. If a path is not specified, the database is created on the default
database path specified in the database manager configuration file
(dftdbpath parameter). On OS/2 or the Windows operating system,
specifies the letter of the drive on which to create the database. May be
NULL.

Note: For MPP systems, a database should not be created in an
NFS-mounted directory. If a path is not specified, ensure that the
dftdbpath database manager configuration parameter is not set to
an NFS-mounted path (for example, on UNIX based systems, it
should not specify the $HOME directory of the instance owner). The
path specified for this APl in an MPP system cannot be a relative
path.

pLocalDbAlias

pDbName

REXX API Syntax

Input. A string containing the alias to be placed in the client's system
database directory. May be NULL. If no local alias is specified, the
database name is the default.

Input. A string containing the database name. This is the database name
that will be cataloged in the system database directory. Once the database
has been successfully created in the server’'s system database directory, it
is automatically cataloged in the system database directory with a database
alias identical to the database name. Must not be NULL.

CREATE DATABASE dbname [ON path] [ALIAS dbalias]
[USING CODESET codeset TERRITORY territory]
[COLLATE USING {SYSTEM | IDENTITY | USER :udcs}]
[NUMSEGS numsegs] [DFT_EXTENT SZ dft_extentsize]
[CATALOG TABLESPACE <tablespace_definition>]
[USER TABLESPACE <tablespace_definition>]
[TEMPORARY TABLESPACE <tablespace definition>]
[WITH comment]

Where <tablespace_definition> stands for:
MANAGED BY {

SYSTEM USING :SMS_string |

DATABASE USING :DMS_string }

[EXTENTSIZE number_of_ pages]

[PREFETCHSIZE number of pages]

[OVERHEAD number_of_milliseconds]

[TRANSFERRATE number_of_milliseconds]

Chapter 1. Application Programming Interfaces 89

sglecrea - Create Database

REXX AP| Parameters
dbname
Name of the database.
dbalias
Alias of the database.
path
Path on which to create the database.

If a path is not specified, the database is created on the default database
path specified in the database manager configuration file (dftdbpath
configuration parameter).

Note: For MPP systems, a database should not be created in an
NFS-mounted directory. If a path is not specified, ensure that the
dftdbpath database manager configuration parameter is not set to
an NFS-mounted path (for example, on UNIX based systems, it
should not specify the $HOME directory of the instance owner). The
path specified for this APl in an MPP system cannot be a relative
path.

codeset
Code set to be used for data entered into the database.
territory
Territory code (locale) to be used for data entered into the database.
SYSTEM
Uses the collating sequence of the operating system based on the current
country code.
IDENTITY
The collating sequence is the identity sequence, where strings are
compared byte for byte, starting with the leftmost byte.
USER udcs
The collating sequence is specified by the calling application in a host
variable containing a 256-byte string defining the collating sequence.
numsegs
Number of segment directories that will be created and used to store the
DAT, IDX, and LF files.
dft_extentsize
Specifies the default extentsize for table spaces in the database.
SMS_string
A compound REXX host variable identifying one or more containers that
will belong to the table space, and where the table space data will be
stored. In the following, XXX represents the host variable name. Note that
each of the directory names cannot exceed 254 bytes in length.

XXX.0 Number of directories specified

XXX.1 First directory name for SMS table space
XXX.2 Second directory name for SMS table space
XXX.3 and so on.

90 API Reference

sglecrea - Create Database

DMS_string
A compound REXX host variable identifying one or more containers that
will belong to the table space, where the table space data will be stored,
container sizes (specified in a number of 4KB pages) and types (file or
device). The specified devices (not files) must already exist. In the
following, XXX represents the host variable name. Note that each of the
container names cannot exceed 254 bytes in length.

XXX.0 Number of strings in the REXX host variable (number of first
level elements)

XXX.1.1 Type of the first container (file or device)
XXX.1.2 First file name or device name

XXX.1.3 Size (in pages) of the first container

XXX.2.1 Type of the second container (file or device)
XXX.2.2 Second file name or device name

XXX.2.3 Size (in pages) of the second container
XXX.3.1 and so on.

EXTENTSIZE number_of pages
Number of 4KB pages that will be written to a container before skipping to
the next container.

PREFETCHSIZE number_of pages
Number of 4KB pages that will be read from the table space when data
prefetching is being performed.

OVERHEAD number_of _milliseconds
Number that specifies the 1/0 controller overhead, disk seek, and latency
time in milliseconds.

TRANSFERRATE number_of _milliseconds
Number that specifies the time in milliseconds to read one 4KB page into
memory.

comment
Description of the database or the database entry in the system directory.
Do not use a carriage return or line feed character in the comment. Be
sure to enclose the comment text in double quotation marks. Maximum
size is 30 characters.

Sample Programs
C \sqllib\samples\c\dbconf.c

COBOL \sqgllib\samples\cobol\dbconf.cbl
FORTRAN \sgllib\samples\fortran\dbconf.f
REXX \sqllib\samples\rexx\dbconf.cmd

Chapter 1. Application Programming Interfaces 91

sglecrea - Create Database

Usage Notes

CREATE DATABASE:

92 API Reference

Creates a database in the specified subdirectory. In an MPP system, creates the
database on all nodes listed in db2nodes.cfg, and creates a
$DB2INSTANCE/NODEXxxxx directory under the specified subdirectory at each node,
where xxxx represents the local node number. In a non-MPP system, creates a
$DB2INSTANCE/NODEOOOO directory under the specified subdirectory.

Creates the system catalog tables and recovery log.
Catalogs the database in the following database directories:

— server's local database directory on the path indicated by pPath or, if the path
is not specified, the default database path defined in the database manager
system configuration file. A local database directory resides on each file
system that contains a database.

— server's system database directory for the attached instance. The resulting
directory entry will contain the database name and a database alias.

If the APl was called from a remote client, the client's system database
directory is also updated with the database name and an alias.

Creates a system or a local database directory if neither exists. If specified, the
comment and code set values are placed in both directories.

Stores the specified code set, territory, and collating sequence. A flag is set in the
database configuration file if the collating sequence consists of unique weights, or if
it is the identity sequence.

Creates the schemata called SYSCAT, SYSFUN, SYSIBM, and SYSSTAT with
SYSIBM as the owner. The server node on which this API is called becomes the
catalog node for the new database. Two nodegroups are created automatically:
IBMDEFAULTGROUP and IBMCATGROUP. For more information, see the SQL
Reference.

Binds the previously defined database manager bind files to the database (these
are listed in db2ubind.1st). If one or more of these files do not bind successfully,
sqlecrea returns a warning in the SQLCA, and provides information about the
binds that failed. If a bind fails, the user can take corrective action and manually
bind the failing file. The database is created in any case. A schema called NULLID
is implicitly created when performing the binds with CREATEIN privilege granted to
PUBLIC.

Creates SYSCATSPACE, TEMPSPACEL, and USERSPACE]1 table spaces. The
SYSCATSPACE table space is only created on the catalog node. All nodes have
the same table space definitions.

Grants the following:

— DBADM authority, and CONNECT, CREATETAB, BINDADD,
CREATE_NOT_FENCED, and IMPLICIT_SCHEMA privileges to the database
creator

sglecrea - Create Database

— CONNECT, CREATETAB, BINDADD, and IMPLICIT_SCHEMA privileges to
PUBLIC

— SELECT privilege on each system catalog to PUBLIC

— BIND and EXECUTE privilege to PUBLIC for each successfully bound utility.

With dbadm authority, one can grant these privileges to (and revoke them from) other
users or PUBLIC. If another administrator with sysadm or dbadm authority over the
database revokes these privileges, the database creator nevertheless retains them.

In an MPP environment, the database manager creates a subdirectory,
$DB2INSTANCE/NODExxxx, under the specified or default path on all nodes. The xxxx is
the node number as defined in the db2nodes.cfqg file (that is, node 0 becomes
NODE0Q000). Subdirectories SQL00001 through SQLnnnnn will reside on this path. This
ensures that the database objects associated with different nodes are stored in different
directories (even if the subdirectory $DB2INSTANCE under the specified or default path is
shared by all nodes).

CREATE DATABASE will fail if the application is already connected to a database.

If the database description block structure is not set correctly, an error message is
returned (see “SQLEDBDESC” on page 408).

The "eye-catcher" of the database description block must be set to the symbolic value
SQLE_DBDESC_2 (defined in sqlenv). The following sample user-defined collating
sequences are available in the host language include files:

sqle819a If the code page of the database is 819 (ISO Latin/1), this sequence will
cause sorting to be performed according to the host CCSID 500 (EBCDIC
International).

sqle819b If the code page of the database is 819 (ISO Latin/1), this sequence will
cause sorting to be performed according to the host CCSID 037 (EBCDIC
US English).

sqle850a If the code page of the database is 850 (ASCII Latin/1), this sequence will
cause sorting to be performed according to the host CCSID 500 (EBCDIC
International).

sqle850b If the code page of the database is 850 (ASCII Latin/1), this sequence will
cause sorting to be performed according to the host CCSID 037 (EBCDIC
US English).

sqle932a If the code page of the database is 932 (ASCII Japanese), this sequence
will cause sorting to be performed according to the host CCSID 5035
(EBCDIC Japanese).

sqle932b If the code page of the database is 932 (ASCII Japanese), this sequence
will cause sorting to be performed according to the host CCSID 5026
(EBCDIC Japanese).

Chapter 1. Application Programming Interfaces 93

sglecrea - Create Database

The collating sequence specified during CREATE DATABASE cannot be changed later,
and all character comparisons in the database use the specified collating sequence.
This affects the structure of indexes as well as the results of queries.

Use sglecadb to define different alias names for the new database.

See Also
“sglabndx - Bind” on page 11
“sglecadb - Catalog Database” on page 78
“sglecran - Create Database at Node” on page 85
“sgledpan - Drop Database at Node” on page 112
“sgledrpd - Drop Database” on page 116.

94 API Reference

sglectnd - Catalog Node

sglectnd - Catalog Node

Stores information in the node directory about the location of a DB2 server instance

based on the communications protocol used to access that instance. The information is
needed to establish a database connection or attachment between an application and a

server instance.

Authorization
One of the following:

sysadm
sysctrl

Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */
/* API: Catalog Node */
[* .../
SQL_API_RC SQL_API_FN
sqlectnd (
struct sqle_node_struct * pNodelInfo,
void * pProtocolInfo,
struct sqlca * pSqlca);
[* ... %/

Generic API Syntax

/* File: sqlenv.h */
/* API: Catalog Node */
[* .../
SQL_API_RC SQL_API_FN
sqlgctnd (
struct sqlca * pSqlca,
struct sqle_node_struct * pNodeInfo,
void * pProtocolInfo);

[* oo %/

Chapter 1.

Application Programming Interfaces

95

sglectnd - Catalog Node

API Parameters
pNodelnfo
Input. A pointer to a node directory structure. For more information about
this structure, see “SQLE-NODE-STRUCT” on page 399.
pProtocolinfo
Input. A pointer to the protocol structure. For more information about these
structures, see:
e “SQLE-NODE-CPIC” on page 394
e “SQLE-NODE-IPXSPX" on page 395
e “SQLE-NODE-LOCAL” on page 396
e “SQLE-NODE-NETB” on page 397
e “SQLE-NODE-NPIPE” on page 398
e “SQLE-NODE-TCPIP” on page 401.
pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

CATALOG APPC NODE - REXX API Syntax

CATALOG APPC NODE nodename DESTINATION symbolic_destination_name
[SECURITY {NONE|SAME|PROGRAM}]
[WITH comment]

REXX API Parameters

nodename
Alias for the node to be cataloged.

symbolic_destination_name
Symbolic destination name of the remote partner node.

comment
An optional description associated with this node directory entry. Do not
include a CR/LF character in a comment. Maximum length is 30
characters. The comment text must be enclosed by double quotation
marks.

CATALOG IPX/SPX NODE - REXX API Syntax

CATALOG IPXSPX NODE nodename REMOTE file_server SERVER objectname
[WITH comment]

96 API Reference

REXX API Parameters

nodename

file_server

objectname

comment

sglectnd - Catalog Node

Alias for the node to be cataloged.

Name of the NetWare file server where the internetwork address of the
database manager instance is registered. The internetwork address is
stored in the bindery at the NetWare file server, and is accessed using
objectname.

The database manager server instance is represented as the object,
objectname, on the NetWare file server. The server's IPX/SPX internetwork
address is stored and retrieved from this object.

An optional description associated with this node directory entry. Do not
include a CR/LF character in a comment. Maximum length is 30
characters. The comment text must be enclosed by double quotation
marks.

CATALOG LOCAL NODE - REXX API Syntax

CATALOG LOCAL NODE nodename INSTANCE instance name [WITH comment]

REXX API Parameters

nodename

Alias for the node to be cataloged.

instance_name

comment

Name of the instance to be cataloged.

An optional description associated with this node directory entry. Do not
include a CR/LF character in a comment. Maximum length is 30
characters. The comment text must be enclosed by double quotation
marks.

CATALOG NETBIOS NODE - REXX API Syntax

CATALOG NETBIOS NODE nodename REMOTE server_nname ADAPTER adapternum
[WITH comment]

REXX API Parameters

nodename

Alias for the node to be cataloged.

Chapter 1. Application Programming Interfaces 97

sglectnd - Catalog Node

server_nname
Name of the remote workstation. This is the workstation name (nname)
found in the database manager configuration file of the server instance.
adapternum
Local LAN adapter number.
comment
An optional description associated with this node directory entry. Do not
include a CR/LF character in a comment. Maximum length is 30
characters. The comment text must be enclosed by double quotation
marks.

CATALOG NPIPE NODE - REXX API Syntax

CATALOG NPIPE NODE nodename REMOTE computer name INSTANCE instance_name

REXX API Parameters
nodename
Alias for the node to be cataloged.
computer_name
The computer name of the node on which the target database resides.
instance_name
Name of the instance to be cataloged.

CATALOG TCPIP NODE - REXX API Syntax

CATALOG TCPIP NODE nodename REMOTE hostname SERVER servicename
[WITH comment]

Parameters

nodename
Alias for the node to be cataloged.

hostname
Host name of the node where the target database resides.

servicename
Either the service name of the database manager instance on the remote
node, or the port number associated with that service name.

comment
An optional description associated with this node directory entry. Do not
include a CR/LF character in a comment. Maximum length is 30
characters. The comment text must be enclosed by double quotation
marks.

98 API Reference

sglectnd - Catalog Node

Sample Programs

Usage Notes

See Also

C \sqllib\samples\c\nodecat.c
COBOL \sqllib\samples\cobol\nodecat.cbl
FORTRAN \sqllib\samples\fortran\nodecat.f
REXX \sqllib\samples\rexx\nodecat.cmd

DB2 creates the node directory on the first call to this API if the node directory does not
exist. On OS/2 or the Windows operating system, the node directory is stored in the
directory of the instance being used. On UNIX based systems, it is stored in the DB2
install directory (sq11ib, for example).

If directory caching is enabled (see the configuration parameter dir_cache in “sqlfxsys -
Get Database Manager Configuration” on page 216), database, node, and DCS
directory files are cached in memory. An application's directory cache is created during
its first directory lookup. Since the cache is only refreshed when the application
modifies any of the directory files, directory changes made by other applications may
not be effective until the application has restarted. To refresh DB2's shared cache
(server only), stop (db2stop) and then restart (db2start) the database manager. To
refresh the directory cache for another application, stop and then restart that
application.

To list the contents of the node directory, use “sglenops - Open Node Directory Scan”
on page 159, “sglengne - Get Next Node Directory Entry” on page 156, and “sqlencls -
Close Node Directory Scan” on page 154.

“sglencls - Close Node Directory Scan” on page 154
“sglengne - Get Next Node Directory Entry” on page 156
“sglenops - Open Node Directory Scan” on page 159
“sgleuncn - Uncatalog Node” on page 194.

Chapter 1. Application Programming Interfaces 99

sgledcgd - Change Database Comment

sgledcgd - Change Database Comment

Changes a database comment in the system database directory or the local database
directory. New comment text can be substituted for text currently associated with a

comment.

Scope
This API only affects the node on which it is issued.

Authorization
One of the following:

sysadm
sysctrl

Required Connection
None

API Include File

sqlenv.h

C API Syntax

/* File: sqlenv.h */
/% API: Change Database Comment »*/
[* ... %/
SQL_API_RC SQL_API_FN
sqledcgd (
_SQLOLDCHAR =* pDbAlias,
_SQLOLDCHAR * pPath,
_SQLOLDCHAR =* pComment,
struct sqlca * pSqlca);
[x .. %/

100 API Reference

Generic API Syntax

sgledcgd - Change Database Comment

/* File: sqlenv.h */

/* API: Change Database Comment =*/

/* ...

SQL_API_RC SQL_API_FN
sqlgdcgd (

[* ...

*/

unsigned short CommentLen,
unsigned short PathlLen,
unsigned short DbAliasLen,
struct sqlca * pSqlca,
_SQLOLDCHAR * pComment,
_SQLOLDCHAR * pPath,
_SQLOLDCHAR * pDbAlias);
*/

APl Parameters

CommentLen

Input. A 2-byte unsigned integer representing the length in bytes of the
comment. Set to zero if no comment is provided.

PathLen

Input. A 2-byte unsigned integer representing the length in bytes of the
path parameter. Set to zero if no path is provided.

DbAliasLen

Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

pSqlca

Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

pComment

pPath

Input. A string containing an optional description of the database. A null
string indicates no comment. It can also indicate no change to an existing
database comment.

Input. A string containing the path on which the local database directory
resides. If the specified path is a null pointer, the system database
directory is used.

The comment is only changed in the local database directory or the system
database directory on the node on which the API is executed. To change
the database comment on all nodes, run the APl on every node.

pDbAlias

Input. A string containing the database alias. This is the name that is
cataloged in the system database directory, or the name cataloged in the
local database directory if the path is specified.

Chapter 1. Application Programming Interfaces 101

sgledcgd - Change Database Comment

REXX API Syntax

CHANGE DATABASE database_alias COMMENT [ON path] WITH comment

REXX APl Parameters

database_alias

path

comment

Sample Programs
C

COBOL
FORTRAN
REXX

Usage Notes

Alias of the database whose comment is to be changed.

To change the comment in the system database directory, it is necessary
to specify the database alias.

If the path where the database resides is specified (with the path
parameter), enter the name (not the alias) of the database. Use this
method to change the comment in the local database directory.

Path on which the database resides.

Describes the entry in the system database directory or the local database
directory. Any comment that helps to describe the cataloged database can
be entered. The maximum length of a comment string is 30 characters. A

carriage return or a line feed character is not permitted. The comment text
must be enclosed by double quotation marks.

\sqllib\samples\c\dbcmt.c
\sqllib\samples\cobol\dbcmt.chbl
\sqgllib\samples\fortran\dbcmt.f

\sqllib\samples\rexx\dbcmt.cmd

New comment text replaces existing text. To append information, enter the old
comment text, followed by the new text.

To modify an existing comment:

1. Call “sgledosd - Open Database Directory Scan” on page 109

2. Call “sgledgne - Get Next Database Directory Entry” on page 106 to retrieve the
old comment

3. Modify the retrieved comment

4. Call “sgledcls - Close Database Directory Scan” on page 104

5. Call "sgledcgd - Change Database Comment" to replace the old text with the
modified text.

102 APl Reference

sgledcgd - Change Database Comment

Only the comment for an entry associated with the database alias is modified. Other
entries with the same database name, but with different aliases, are not affected.

If the path is specified, the database alias must be cataloged in the local database
directory. If the path is not specified, the database alias must be cataloged in the
system database directory.

See Also
“sglecrea - Create Database” on page 87
“sglecadb - Catalog Database” on page 78.

Chapter 1. Application Programming Interfaces 103

sgledcls - Close Database Directory Scan

sgledcls - Close Database Directory Scan

Frees the resources allocated by “sgledosd - Open Database Directory Scan” on
page 109.

Authorization
None

Required Connection
None

API Include File

sqlenv.h

C API Syntax

/* File: sqlenv.h %/
/* API: Close Database Directory Scan */
[* ... %/
SQL_API_RC SQL_API_FN
sqledcls (

unsigned short Handle,

struct sqlca * pSqlca);
[* ... %/

Generic API Syntax

/* File: sqlenv.h */
/% API: Close Database Directory Scan */
[* .. %/
SQL_API_RC SQL_API_FN
sqlgdcls (

unsigned short Handle,

struct sqlca * pSqlca);
[* ... %/

API Parameters
Handle
Input. Identifier returned from the associated OPEN DATABASE
DIRECTORY SCAN API.

104 APl Reference

sgledcls - Close Database Directory Scan

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

REXX API Syntax

CLOSE DATABASE DIRECTORY scanid

REXX AP| Parameters
scanid
A host variable containing the scanid returned from the OPEN DATABASE
DIRECTORY SCAN API.

Sample Programs
C \sqllib\samples\c\dbcat.c

COBOL \sgllib\samples\cobol\dbcat.cbl
FORTRAN \sqgllib\samples\fortran\dbcat.f
REXX \sqgllib\samples\rexx\dbcat.cmd

See Also

“sgledgne - Get Next Database Directory Entry” on page 106
“sgledosd - Open Database Directory Scan” on page 109.

Chapter 1. Application Programming Interfaces 105

sgledgne - Get Next Database Directory Entry

sgledgne - Get Next Database Directory Entry

Returns the next entry in the system database directory or the local database directory
copy returned by “sgledosd - Open Database Directory Scan” on page 109.
Subsequent calls to this API return additional entries.

Authorization
None

Required Connection
None

API Include File

sqlenv.h

C API Syntax

/* File: sqlenv.h */
/% API: Get Next Database Directory Entry */
[* oo %/
SQL_API_RC SQL_API_FN
sqledgne (

unsigned short Handle,

struct sqledinfo *x ppDbDirEntry,

struct sqlca * pSqlca);
[* ... %/

Generic API Syntax

/* File: sqlenv.h */
/* APL: Get Next Database Directory Entry =*/
[* ... %/
SQL_API_RC SQL_API_FN
sqlgdgne (

unsigned short Handle,

struct sqledinfo ** ppDbDirEntry,

struct sqlca * pSqlca);
[* ... %/

106 APl Reference

API Parameters
Handle

sgledgne - Get Next Database Directory Entry

Input. Identifier returned from the associated OPEN DATABASE
DIRECTORY SCAN API.

ppDbDIrEntry

pSqlca

REXX API Syntax

Output. The caller supplies the API with the address of a pointer to an
sqledinfo structure. The space for the directory data is allocated by the API,
and a pointer to that space is returned to the caller. A call to “sgledcls -
Close Database Directory Scan” on page 104 frees the allocated space.
Information returned to the buffer is described in “SQLEDINFO” on

page 416.

Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

GET DATABASE DIRECTORY ENTRY :scanid [USING :value]

REXX API Parameters

scanid

value

A REXX host variable containing the identifier returned from the OPEN
DATABASE DIRECTORY SCAN API.

A compound REXX host variable to which the database entry information is
returned. If no name is given, the name SQLDINFO is used. In the following,
XXX represents the host variable name (the corresponding field names are
taken from the structure returned by the API):

XXX.0 Number of elements in the variable (always 12)

XXX.1 ALIAS (alias of the database)

XXX.2 DBNAME (name of the database)

XXX.3 DRIVE/PATH (local database directory path name)

XXX.3.1 NODE NUMBER (valid for local database directory only)

XXX.4 INTNAME (token identifying the database subdirectory)

XXX.5 NODENAME (name of the node where the database is
located)

XXX.6 DBTYPE (product name and release number)

XXX.7 COMMENT (comment associated with the database)

XXX.8 Reserved

XXX.9 TYPE (entry type)

Chapter 1. Application Programming Interfaces 107

sgledgne - Get Next Database Directory Entry

XXX.10 AUTHENTICATION (authentication type)
XXX.10.1 DCE principal

XXX.11 GLBDBNAME (Global database name)
XXX.12 CATALOG NODE NUMBER

Sample Programs
Cc \sqllib\samples\c\dbcat.c

COBOL \sgllib\samples\cobol\dbcat.cbl
FORTRAN \sqllib\samples\fortran\dbcat.f
REXX \sqllib\samples\rexx\dbcat.cmd

Usage Notes
All fields of the directory entry information buffer are padded to the right with blanks.

A subsequent GET NEXT DATABASE DIRECTORY ENTRY obtains the entry following
the current entry.

The sqlcode value of sglca is set to 1014 if there are no more entries to scan when
GET NEXT DATABASE DIRECTORY ENTRY is called.

The count value returned by the OPEN DATABASE DIRECTORY SCAN API can be
used to scan through the entire directory by issuing GET NEXT DATABASE
DIRECTORY ENTRY calls, one at a time, until the number of scans equals the count of
entries.

See Also

“sgledcls - Close Database Directory Scan” on page 104
“sgledosd - Open Database Directory Scan” on page 109.

108 API Reference

sgledosd - Open Database Directory Scan

sgledosd - Open Database Directory Scan

Stores a copy of the system database directory or the local database directory in
memory, and returns the number of entries. This copy represents a snapshot of the
directory at the time the directory is opened. This copy is not updated, even if the
directory itself is changed later.

Use “sgledgne - Get Next Database Directory Entry” on page 106 to advance through
the database directory, examining information about the database entries. Close the
scan using “sgledcls - Close Database Directory Scan” on page 104. This removes the
copy of the directory from memory.

Authorization
None

Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */
/* APL: Open Database Directory Scan */
[* ... %/
SQL_API_RC SQL_API_FN
sqledosd (
_SQLOLDCHAR * pPath,
unsigned short * pHandle,
unsigned short * pNumEntries,
struct sqlca * pSqlca);
[* ... %/

Chapter 1. Application Programming Interfaces 109

sgledosd - Open Database Directory Scan

Generic API Syntax

[* ... %/

QLo
[* .. %/

/* File: sqlenv.h x/
/* API: Open Database Directory Scan */

SQL_API_RC SQL_API_FN
sqlgdosd (
unsigned short PathLen,
struct sqlca * pSqlca,
unsigned short * pNumEntries,
unsigned short * pHandle,

LDCHAR * pPath);

API Parameters

PathLen
Input. A 2-byte unsigned integer representing the length in bytes of the
path parameter. Set to zero if no path is provided.

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

pNumEntries
Output. Address of a 2-byte area where the number of directory entries is
returned.

pHandle
Output. Address of a 2-byte area for the returned identifier. This identifier
must be passed to “sgledgne - Get Next Database Directory Entry” on
page 106 for scanning the database entries, and to “sqledcls - Close
Database Directory Scan” on page 104 to release the resources.

pPath

REXX API Syntax

Input. The name of the path on which the local database directory resides.
If the specified path is a NULL pointer, the system database directory is
used.

OPEN DATABASE DIRECTORY [ON path_name] USING :value

REXX AP| Parameters
path_name

110 API Reference

Name of the path on which the local database directory resides. If the path
is not specified, the system database directory is used.

value

Sample Programs

Usage Notes

See Also

C

COBOL
FORTRAN
REXX

sgledosd - Open Database Directory Scan

A compound REXX host variable to which database directory information is
returned. In the following, XXX represents the host variable name.

XXX.0 Number of elements in the variable (always 2)
XXX.1 Identifier (handle) for future scan access
XXX.2 Number of entries contained within the directory.

\sqllib\samples\c\dbcat.c
\sqllib\samples\cobol\dbcat.cbl
\sqllib\samples\fortran\dbcat.f

\sqllib\samples\rexx\dbcat.cmd

Storage allocated by this APl is freed by “sqgledcls - Close Database Directory Scan” on

page 104.

Multiple OPEN DATABASE DIRECTORY SCAN APIs can be issued against the same
directory. However, the results may not be the same. The directory may change
between openings.

There can be a maximum of eight opened database directory scans per process.

“sgledcls - Close Database Directory Scan” on page 104
“sgledgne - Get Next Database Directory Entry” on page 106.

Chapter 1. Application Programming Interfaces 111

sgledpan - Drop Database at Node

sqledpan - Drop Database at Node

Drops a database at a specified node. Can only be run on an MPP server.

Scope
This API only affects the node on which it is called.

Authorization
One of the following:

sysadm
sysctrl

Required Connection
None. An instance attachment is established for the duration of the call.

API Include File

sqlenv.h

C API Syntax

/* File: sqlenv.h */
/* API: Drop Database at Node */
[* oo %/
SQL_API_RC SQL_API_FN
sqledpan (
char * pDbAlias,
void * pReserved,
struct sqlca * pSqlca);
[* ... %/

Generic API Syntax

/* File: sqlenv.h */
/* API: Drop Database at Node */
/% .0 %/
SQL_API_RC SQL_API FN
sqlgdpan (
unsigned short Reservedl,
unsigned short DbAliaslLen,
struct sqlca * pSqlca,
void * pReserved?,
char * pDbAlias);
/% ... %/

112 APl Reference

sgledpan - Drop Database at Node

APl Parameters
Reservedl
Reserved for future use.

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.
pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.
pReserved?2
A spare pointer that is set to null or points to zero. Reserved for future use.
pDbAlias
Input. A string containing the alias of the database to be dropped. This
name is used to reference the actual database name in the system
database directory.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

Usage Notes
This API is used by utilities supplied with DB2 Universal Database Extended Enterprise
Edition, and is not intended for general use. Improper use of this API can cause
inconsistencies in the system, so it should only be used with caution.

See Also
“sglecran - Create Database at Node” on page 85
“sgledrpd - Drop Database” on page 116.

Chapter 1. Application Programming Interfaces 113

sqledreg - Deregister

sqledreg - Deregister

Deregisters the DB2 server from a network file server. The DB2 server's network
address is removed from a specified registry on the file server.

Authorization
None

Required Connection
None

API Include File

sqlenv.h

C API Syntax

/* File: sqlenv.h %/

/% API: Deregister =/

[* oo %/

SQL_API_RC SQL_API_FN

sqledreg (

unsigned short Registry,
void * pRegisterInfo,
struct sqlca * pSqlca);

[* ... %/

Generic API Syntax

/* File: sqlenv.h */

/* API: Deregister =/

[* ... %/

SQL_API RC SQL_API FN

sqlgdreg (

unsigned short Registry,
void * pRegisterInfo,
struct sqlca * pSqlca);

[x .. %/

API Parameters
Registry
Input. Indicates where on the network file server to deregister the DB2
server. In this release, the only supported registry is SQL_NWBINDERY
(NetWare file server bindery, defined in sqlenv).

114 APl Reference

sgledreg - Deregister

pRegisterinfo
Input. A pointer to the sgle_reg _nwbindery structure. In this structure, the
caller specifies a user name and password that are valid on the network
file server. For more information about this structure, see
“SQLE-REG-NWBINDERY” on page 402.

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

REXX API Syntax

This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

Sample Programs

Usage Notes

See Also

C \sqllib\samples\c\regder.c
COBOL \sqllib\samples\cobol\regder.chbl
FORTRAN \sqllib\samples\fortran\regder.f

When Registry has a value of SQL_NWBINDERY, this APl uses the NetWare user name
and password supplied in the sgle_reg_nwbindery structure to log onto the NetWare file
server (FILESERVER) specified in the database manager configuration file. The object
name (OBJECTNAME) specified in the database manager configuration file is deleted
from the NetWare file server bindery.

The NetWare user name and password specified must have supervisory or equivalent
authority.

This API must be issued locally from the DB2 server. It is not supported remotely.
If the IPX/SPX fields are reconfigured, or the DB2 server's IPX/SPX internetwork

address changes, deregister the DB2 server from the network file server before making
the changes, and then register it again after the changes have been made.

“sgleregs - Register” on page 174.

Chapter 1. Application Programming Interfaces 115

sqledrpd - Drop Database

sqledrpd - Drop Database

Deletes the database contents and all log files for the database, uncatalogs the
database, and deletes the database subdirectory.

Scope
By default, this API affects all nodes that are listed in the $HOME/sq11ib/db2nodes.cfg
file.

Authorization
One of the following:

sysadm
sysctrl

Required Connection
Instance. It is not necessary to call ATTACH before dropping a remote database. If the
database is cataloged as remote, an instance attachment to the remote node is
established for the duration of the call.

API Include File

sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Drop Database */

[* ... %/

SQL_API_RC SQL_API_FN

sqledrpd (

_SQLOLDCHAR =* pDbAlias,
_SQLOLDCHAR +* pReserved?,
struct sqlca * pSqlca);

[* ... %/

116 APl Reference

sqledrpd - Drop Database

Generic API Syntax

/* File: sqlenv.h */

/* API: Drop Database */

[* .../

SQL_API_RC SQL_API_FN

sqlgdrpd (

unsigned short Reservedl,
unsigned short DbAliaslLen,
struct sqlca * pSqlca,
_SQLOLDCHAR * pReserved?2,
_SQLOLDCHAR * pDbAlias);

[* ... %/

API| Parameters

Reserved1
Reserved for future use.

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA”" on page 373.

pReserved?2
A spare pointer that is set to null or points to zero. Reserved for future use.

pDbAlias
Input. A string containing the alias of the database to be dropped. This
name is used to reference the actual database name in the system
database directory.

REXX API Syntax

DROP DATABASE dbalias

REXX API Parameters

dbalias
The alias of the database to be dropped.

Sample Programs
C \sqllib\samples\c\dbconf.sqc

COBOL \sqllib\samples\cobol\dbconf.sgb

Chapter 1. Application Programming Interfaces 117

sgledrpd - Drop Database

Usage Notes

See Also

FORTRAN \sqgllib\samples\fortran\dbconf.sqf
REXX \sqgllib\samples\rexx\dbconf.cmd

sqledrpd deletes all user data and log files. If the log files are needed for a roll-forward
recovery after a restore operation, the files should be saved prior to calling this API.

The database must not be in use; all users must be disconnected from the database
before the database can be dropped.

To be dropped, a database must be cataloged in the system database directory. Only
the specified database alias is removed from the system database directory. If other
aliases with the same database name exist, their entries remain. If the database being
dropped is the last entry in the local database directory, the local database directory is
deleted automatically.

If this API is called from a remote client (or from a different instance on the same
machine), the specified alias is removed from the client's system database directory.
The corresponding database name is removed from the server's system database
directory.

This API unlinks all files that are linked through any DATALINK columns. Since the
unlink operation is performed asynchronously on the DB2 File Manager, its effects may
not be seen immediately on the DB2 File Manager, and the unlinked files may not be
immediately available for other operations. When the API is called, all the DB2 File
Managers configured to that database must be available; otherwise, the drop database
operation will fail.

“sglecadb - Catalog Database” on page 78
“sglecrea - Create Database” on page 87
“sglecran - Create Database at Node” on page 85
“sgledpan - Drop Database at Node” on page 112
“sgleuncd - Uncatalog Database” on page 191.

118 API Reference

sgledrpn - Drop Node Verify

sgledrpn - Drop Node Verify

Verifies whether a node is being used by a database. A message is returned, indicating
whether the node can be dropped.

Scope
This API only affects the node on which it is issued.

Authorization
One of the following:

sysadm
sysctrl
API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */
/* API: Drop Node Verify =*/
[* .../
SQL_API_RC SQL_API_FN
sqledrpn (
unsigned short Action,
void * pReserved,
struct sqlca * pSqlca);
[* ... %/

Generic API Syntax

/* File: sqlenv.h */

/* API: Drop Node Verify =*/

[* ... %/

SQL_API_RC SQL_API_FN

sqlgdrpn (

unsigned short Reservedl,
struct sqlca * pSqlca,
void * pReserved?,
unsigned short Action);

[* ... %/

Chapter 1. Application Programming Interfaces 119

sgledrpn - Drop Node Verify

API Parameters
Reservedl
Reserved for the length of pReserved?2.
pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.
pReserved2
A spare pointer that is set to NULL or points to 0. Reserved for future use.
Action
The action requested. The valid value is:

SQL_DROPNODE_VERIFY

REXX API Syntax
This API can be called from REXX through the SQLDB?2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

Usage Notes
If a message is returned, indicating that the node is not in use, use the db2stop
command with DROP NODENUM to remove the entry for the node from the
db2nodes. cfg file, which removes the node from the database system.

If a message is returned, indicating that the node is in use, the following actions should
be taken:

1. If the node contains data, redistribute the data to remove it from the node using
“sgludrdt - Redistribute Nodegroup” on page 249. Use either the drop node option
on the sqludrdt API, or the ALTER NODEGROUP statement to remove the node
from any nodegroups for the database. This must be done for each database that
contains the node in a nodegroup. For more information, see the SQL Reference.

2. Drop any event monitors that are defined on the node.

3. Rerun sgledrpn to ensure that the database is no longer in use.
See Also

“sgleaddn - Add Node” on page 67
“sglepstp - Stop Database Manager” on page 165.

120 APl Reference

sgledtin - Detach

sgledtin - Detach

Removes the logical instance attachment, and terminates the physical communication
connection if there are no other logical connections using this layer.

Authorization
None

Required Connection
None. Removes an existing instance attachment.

API Include File

sqlenv.h

C API Syntax

/* File: sqlenv.h */
/* API: Detach =*/
[* ... %/
SQL_API_RC SQL_API_FN
sqledtin (
struct sqlca * pSqlca);
[* ... %/

Generic APl Syntax

/* File: sqlenv.h */
/* APL: Detach =*/
[* .../
SQL_API_RC SQL_API_FN
sqlgdtin (
struct sqlca * pSqlca);
[* .../

APl Parameters
pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

Chapter 1. Application Programming Interfaces 121

sqledtin - Detach

REXX API Syntax

DETACH

Sample Programs
Cc \sqllib\samples\c\dbinst.c

COBOL \sqllib\samples\cobol\dbinst.cbl
FORTRAN \sqllib\samples\fortran\dbinst.f
REXX \sqllib\samples\rexx\dbinst.cmd

See Also
“sgleatin - Attach” on page 74.

122 APl Reference

sglefmem - Free Memory

sglefmem - Free Memory

Frees memory allocated by DB2 APIs on the caller's behalf. Intended for use with
“sglbtcq - Tablespace Container Query” on page 56 and “sqlbmtsq - Tablespace
Query” on page 41.

Authorization
None

Required Connection
None

API Include File

sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Free Memory =/

[* .../

SQL_API_RC SQL_API_FN

sqlefmem (

struct sqlca * pSqlca,
void * pBuffer);

[* ... %/

Generic API Syntax

/* File: sqlenv.h */

/* API: Free Memory =/

[* .../

SQL_API_RC SQL_API_FN

sqlgfmem (

struct sqlca * pSqlca,
void * pBuffer);

[* ... %/

API Parameters
pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

Chapter 1. Application Programming Interfaces 123

sglefmem - Free Memory

pBuffer
Input. Pointer to the memory to be freed.

Sample Programs
C \sqllib\samples\c\tabspace.sqc

COBOL \sqllib\samples\cobol\tspace.sqb
FORTRAN \sgllib\samples\fortran\tspace.sqf

124 APl Reference

sglefrce - Force Application

sglefrce - Force Application

Scope

Authorization

Forces local or remote users or applications off the system to allow for maintenance on
a server.

Attention: If an operation that cannot be interrupted (RESTORE DATABASE, for
example) is forced, the operation must be successfully re-executed before the database
becomes available.

This API affects all nodes that are listed in the $HOME/sq11ib/db2nodes.cfg file.

In a partitioned database environment, this APl does not have to be issued from the
coordinator node of the application being forced. This APl can be issued from any node
(database partition server) in the partitioned database environment.

One of the following:

sysadm
sysctrl

Required Connection

Instance. To force users off a remote server, it is necessary to first attach to that
server. If no attachment exists, this API is executed locally.

API Include File

C API Syntax

sqlenv.h

/* File: sqlenv.h */
/* API: Force Application */
[* ... %/
SQL_API _RC SQL_API FN
sqlefrce (
long NumAgentlIds,
unsigned long * pAgentIds,
unsigned short ForceMode,
struct sqlca * pSqlca);
[* ... %/

Chapter 1. Application Programming Interfaces 125

sglefrce - Force Application

Generic API Syntax

/* File: sqlenv.h x/
/* API: Force Application */
[* ... %/
SQL_API_RC SQL_API_FN
sqlgfrce (
struct sqlca * pSqlca,
unsigned short ForceMode,
unsigned long * pAgentlds,
long NumAgentIds);
[* ... %/

API Parameters

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

ForceMode
Input. An integer specifying the operating mode of the FORCE
APPLICATION API. Only the asynchronous mode is supported. This
means that FORCE APPLICATION does not wait until all specified users
are terminated before returning. It returns as soon as the API has been
issued successfully, or an error occurs. As a result, there may be a short
interval between the time the FORCE APPLICATION call completes and
the specified users have been terminated.

This parameter must be set to SQL_ASYNCH (defined in sqlenv).
pAgentlds
Input. Pointer to an array of unsigned long integers. Each entry describes
the agent ID of the corresponding database user. To list the agent IDs of
the active applications, use “sglmonss - Get Snapshot” on page 227.
NumAgentids
Input. An integer representing the total number of users to be terminated.
This number should be the same as the number of elements in the array of
agent IDs.

If this parameter is set to SQL_ALL_USERS (defined in sqlenv), all users are
forced. If it is set to zero, an error is returned.

REXX API Syntax

FORCE APPLICATION {ALL | :agentidarray} [MODE ASYNC]

126 APl Reference

sglefrce - Force Application

REXX API Parameters
ALL
All applications will be disconnected from their database connection.
agentidarray
A compound REXX host variable containing the list of agent IDs to be
terminated. In the following, XXX is the name of the host variable:

XXX.0 Number of agents to be terminated
XXX.1 First agent ID

XXX.2 Second agent ID

XXX.3 and so on.

ASYNC
The only mode currently supported means that FORCE APPLICATION
does not wait until all specified applications are terminated before returning.

Sample Programs
C \sqllib\samples\c\dbstop.sqc

COBOL \sqllib\samples\cobol\dbstop.sgb
FORTRAN \sgllib\samples\fortran\dbstop.sqf
REXX \sqllib\samples\rexx\dbstop.cmd

Usage Notes
db2stop cannot be executed during a force. The database manager remains active so
that subsequent database manager operations can be handled without the need for
db2start .

To preserve database integrity, only users who are idling or executing interruptible
database operations can be terminated.

After a FORCE has been issued, the database will still accept requests to connect.
Additional forces may be required to completely force all users off.

The database system monitor functions are used to gather the agent IDs of the users to
be forced. For more information, see the System Monitor Guide and Reference.

When the force mode is set to SQL_ASYNCH (the only value permitted), the API
immediately returns to the calling application.

Minimal validation is performed on the array of agent IDs to be forced. The user must
ensure that the pointer points to an array containing the total number of elements
specified. If NumAgentids is set to SQL_ALL_USERS, the array is ignored.

When a user is terminated, a ROLLBACK is performed to ensure database consistency.

All users that can be forced will be forced. If one or more specified agent IDs cannot be
found, sglcode in the sglca structure is set to 1230. An agent ID may not be found, for

Chapter 1. Application Programming Interfaces 127

sglefrce - Force Application

instance, if the user signs off between the time an agent ID is collected and sqglefrce is
called. The user that calls this API is never forced off.

Agent IDs are recycled, and are used to force applications some time after being
gathered by the database system monitor. When a user signs off, therefore, another
user may sign on and acquire the same agent ID through this recycling process, with
the result that the wrong user may be forced.

See Also
“sgleatin - Attach” on page 74
“sgledtin - Detach” on page 121
“sglepstp - Stop Database Manager” on page 165
“sglmonss - Get Snapshot” on page 227.

128 APl Reference

sglegdad - Catalog DCS Database

sglegdad - Catalog DCS Database

Stores information about remote databases in the Database Connection Services (DCS)
directory. These databases are accessed through an Application Requester (AR), such
as DB2 Connect. Having a DCS directory entry with a database name matching a
database name in the system database directory invokes the specified AR to forward
SQL requests to the remote server where the database resides. For more information
about DB2 Connect and DCS directory entries, see the DB2 Connect User's Guide.

Authorization
One of the following:

sysadm
sysctrl

Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */
/* API: Catalog DCS Database */
[* .../
SQL_API_RC SQL_API_FN
sqlegdad (
struct sql_dir_entry * pDCSDirEntry,
struct sqlca * pSqlca);
[* oo/

Generic APl Syntax

/* File: sqlenv.h */
/* API: Catalog DCS Database */
[* .../
SQL_API_RC SQL_API_FN
sqlggdad (

struct sqlca * pSqlca,

struct sql_dir_entry * pDCSDirEntry);
[* .../

Chapter 1. Application Programming Interfaces 129

sglegdad - Catalog DCS Database

API Parameters

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

pDCSDirEntry
Input. A pointer to an sql_dir_entry (Database Connection Services
directory) structure. For more information about this structure, see
“SQL-DIR-ENTRY” on page 361.

REXX API Syntax

CATALOG DCS DATABASE dbname [AS target_dbname]
[AR arname] [PARMS parms] [WITH comment]

REXX API Parameters
dbname
The local database name of the directory entry to be added.
target_dbname
The target database name.

arname
The application client name.

parms
Parameter string. If specified, the string must be enclosed by double
quotation marks.

comment

Description associated with the entry. Maximum length is 30 characters.
Enclose the comment by double quotation marks.

Sample Programs
C \sqllib\samples\c\dcscat.c

COBOL \sqgllib\samples\cobol\dcscat.cbl
FORTRAN \sgllib\samples\fortran\dcscat.f
REXX \sgllib\samples\rexx\dcscat.cmd

Usage Notes
The DB2 Connect program provides connections to DRDA Application Servers such as:

e DB2 for OS/390 databases on System/370 and System/390 architecture host
computers

e DB2 for VM and VSE databases on System/370 and System/390 architecture host
computers

e (0S/400 databases on Application System/400 (AS/400) host computers.

130 API Reference

sglegdad - Catalog DCS Database

The database manager creates a Database Connection Services directory if one does
not exist. This directory is stored on the path that contains the database manager
instance that is being used. The DCS directory is maintained outside of the database.

The database must also be cataloged as a remote database in the system database
directory.

List the contents of the DCS directory using “sglegdsc - Open DCS Directory Scan” on
page 142, “sglegdge - Get DCS Directory Entry for Database” on page 137, “sqlegdgt -
Get DCS Directory Entries” on page 139, and “sqglegdcl - Close DCS Directory Scan”
on page 132.

Note: If directory caching is enabled (see the configuration parameter dir_cache in
“sglfxsys - Get Database Manager Configuration” on page 216), database,
node, and DCS directory files are cached in memory. An application's directory
cache is created during its first directory lookup. Since the cache is only
refreshed when the application modifies any of the directory files, directory
changes made by other applications may not be effective until the application
has restarted. To refresh DB2's shared cache (server only), stop (db2stop) and
then restart (db2start) the database manager. To refresh the directory cache for
another application, stop and then restart that application.

See Also
“sglegdel - Uncatalog DCS Database” on page 134.

Chapter 1. Application Programming Interfaces 131

sqlegdcl - Close DCS Directory Scan

sqlegdcl - Close DCS Directory Scan

Frees the resources that are allocated by “sqlegdsc - Open DCS Directory Scan” on
page 142.

Authorization
None

Required Connection
None

API Include File

sqlenv.h

C API Syntax

/* File: sqlenv.h %/
/* API: Close DCS Directory Scan */
[* ... %/
SQL_API_RC SQL_API_FN
sqlegdcl (
struct sqlca * pSqlca);
[* ... %/

Generic APl Syntax

/* File: sqlenv.h */
/* API: Close DCS Directory Scan */
[* ... %/
SQL_API_RC SQL_API_FN
sqlggdcl (
struct sqlca * pSqlca);
[* ... %/

APl Parameters
pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

132 APl Reference

sqlegdcl - Close DCS Directory Scan

REXX API Syntax

CLOSE DCS DIRECTORY

Sample Programs
C \sqllib\samples\c\dcscat.c

COBOL \sqllib\samples\cobol\dcscat.cbl
FORTRAN \sgllib\samples\fortran\dcscat.f
REXX \sqllib\samples\rexx\dcscat.cmd

See Also

“sqlegdgt - Get DCS Directory Entries” on page 139
“sglegdsc - Open DCS Directory Scan” on page 142.

Chapter 1. Application Programming Interfaces 133

sglegdel - Uncatalog DCS Database

sqlegdel - Uncatalog DCS Database

Deletes an entry from the Database Connection Services (DCS) directory.

Authorization
One of the following:

sysadm
sysctrl

Required Connection
None

API Include File

sqlenv.h

C API Syntax

/* File: sqlenv.h */
/% API: Uncatalog DCS Database =/
[x .. %/
SQL_API_RC SQL_API_FN
sqlegdel (
struct sql_dir_entry * pDCSDirEntry,
struct sqlca * pSqlca);
[* .. %/

Generic API Syntax

/* File: sqlenv.h */
/* API: Uncatalog DCS Database =/
[* ... %/
SQL_API_RC SQL_API_FN
sqlggdel (

struct sqlca * pSqlca,

struct sql_dir_entry * pDCSDirEntry);
[* ... %/

API| Parameters
pSqlca

Output. A pointer to the sglca structure. For more information about this

structure, see “SQLCA” on page 373.

134 APl Reference

sglegdel - Uncatalog DCS Database

pDCSDirEntry

REXX API Syntax

Input/Output. A pointer to the Database Connection Services directory
structure. For more information about this structure, see “SQL-DIR-ENTRY”
on page 361. Fill in the /db field of this structure with the local name of the
database to be deleted. The DCS directory entry with a matching local
database name is copied to this structure before being deleted.

UNCATALOG DCS DATABASE dbname [USING :value]

REXX API Parameters

dbname

value

Sample Programs

Usage Notes

C

COBOL
FORTRAN
REXX

The local database name of the directory entry to be deleted.

A compound REXX host variable into which the directory entry information
is returned. In the following, XXX represents the host variable name. If no
name is given, the name SQLGWINF is used.

XXX.0 Number of elements in the variable (always 7)
XXX.1 RELEASE

XXX.2 LDB

XXX.3 TDB

XXX.4 AR

XXX.5 PARMS

XXX.6 COMMENT

XXX.7 RESERVED.

\sqgllib\samples\c\dcscat.c
\sqllib\samples\cobol\dcscat.cbl
\sqllib\samples\fortran\dcscat.f

\sqllib\samples\rexx\dcscat.cmd

DCS databases are also cataloged in the system database directory as remote
databases that can be uncataloged using “sqgleuncd - Uncatalog Database” on

page 191.

To recatalog a database in the DCS directory, use “sglegdad - Catalog DCS Database”
on page 129.

Chapter 1. Application Programming Interfaces 135

sglegdel - Uncatalog DCS Database

To list the DCS databases that are cataloged on a node, use “sglegdsc - Open DCS
Directory Scan” on page 142, “sglegdgt - Get DCS Directory Entries” on page 139, and
“sglegdcl - Close DCS Directory Scan” on page 132.

If directory caching is enabled (see the configuration parameter dir_cache in “sqlfxsys -
Get Database Manager Configuration” on page 216), database, node, and DCS
directory files are cached in memory. An application's directory cache is created during
its first directory lookup. Since the cache is only refreshed when the application
modifies any of the directory files, directory changes made by other applications may
not be effective until the application has restarted. To refresh DB2's shared cache
(server only), stop (db2stop) and then restart (db2start) the database manager. To
refresh the directory cache for another application, stop and then restart that
application.

See Also

“sglegdad - Catalog DCS Database” on page 129

“sglegdcl - Close DCS Directory Scan” on page 132

“sglegdge - Get DCS Directory Entry for Database” on page 137
“sglegdgt - Get DCS Directory Entries” on page 139

“sglegdsc - Open DCS Directory Scan” on page 142

“sgleuncd - Uncatalog Database” on page 191.

136 APl Reference

sglegdge - Get DCS Directory Entry for Database

sglegdge - Get DCS Directory Entry for Database

Returns information for a specific entry in the Database Connection Services (DCS)
directory.

Authorization
None

Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */
/* API: Get DCS Directory Entry for Database */
[* .../
SQL_API_RC SQL_API_FN
sqlegdge (

struct sql_dir_entry * pDCSDirEntry,

struct sqlca * pSqlca);
[* ... %/

Generic API Syntax

/* File: sqlenv.h */
/* API: Get DCS Directory Entry for Database */
[* ... %/
SQL_API_RC SQL_API_FN
sqlggdge (

struct sqlca * pSqlca,

struct sql_dir_entry * pDCSDirEntry);
[* ... %/

API Parameters
pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

Chapter 1. Application Programming Interfaces 137

sglegdge - Get DCS Directory Entry for Database

pDCSDirEntry

Input/Output. Pointer to the Database Connection Services directory
structure. For more information about this structure, see “SQL-DIR-ENTRY”
on page 361. Fill in the /db field of this structure with the local name of the
database whose DCS directory entry is to be retrieved. The remaining
fields in the structure are filled in upon return of this API.

REXX API Syntax

GET DCS DIRECTORY ENTRY FOR DATABASE dbname [USING :value]

REXX API| Parameters
dbname

Specifies the local database name of the directory entry to be obtained.

value

A compound REXX host variable into which the directory entry information
is returned. In the following, XXX represents the host variable name. If no
name is given, the name SQLGWINF is used.

XXX.0 Number of elements in the variable (always 7)
XXX.1 RELEASE
XXX.2 LDB
XXX.3 TDB
XXX.4 AR
XXX.5 PARMS
XXX.6 COMMENT
XXX.7 RESERVED.
Sample Programs
C \sqllib\samples\c\dcscat.c

COBOL \sqllib\samples\cobol\dcscat.cbl
FORTRAN \sgllib\samples\fortran\dcscat.f

REXX \sgllib\samples\rexx\dcscat.cmd

See Also

“sglegdad - Catalog DCS Database” on page 129
“sglegdcl - Close DCS Directory Scan” on page 132
“sglegdel - Uncatalog DCS Database” on page 134
“sqglegdgt - Get DCS Directory Entries” on page 139
“sglegdsc - Open DCS Directory Scan” on page 142.

138 APl Reference

sglegdgt - Get DCS Directory Entries

sglegdgt - Get DCS Directory Entries

Transfers a copy of Database Connection Services (DCS) directory entries to a buffer

supplied by the application.

Authorization
None

Required Connection
None

API Include File

sqlenv.h

C API Syntax

/* File: sqlenv.h */
/* API: Get DCS Directory Entries x/
[* .../
SQL_API_RC SQL_API_FN
sqlegdgt (
short * pNumEntries,
struct sql_dir_entry * pDCSDirEntries,
struct sqlca * pSqlca);
[* ... %/

Generic API Syntax

/* File: sqlenv.h */
/* API: Get DCS Directory Entries x/
[* .0 %/
SQL_API RC SQL_API FN
sqlggdgt (
struct sqlca * pSqlca,
short * pNumEntries,

struct sql_dir_entry * pDCSDirEntries);

[* oo/

APl Parameters
pSqlca

Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

Chapter 1. Application Programming Interfaces 139

sglegdgt - Get DCS Directory Entries

pNumEntries
Input/Output. Pointer to a short integer representing the number of entries
to be copied to the caller's buffer. The number of entries actually copied is
returned.

pDCSDirEntries
Output. Pointer to a buffer where the collected DCS directory entries will be
held upon return of the API call. For more information about this structure,
see “SQL-DIR-ENTRY” on page 361. The buffer must be large enough to
hold the number of entries specified in the pNumEntries parameter.

REXX API Syntax

GET DCS DIRECTORY ENTRY [USING :value]

REXX API Parameters

value
A compound REXX host variable into which the directory entry information
is returned. In the following, XXX represents the host variable name. If no
name is given, the name SQLGWINF is used.

XXX.0 Number of elements in the variable (always 7)
XXX.1 RELEASE

XXX.2 LDB

XXX.3 TDB

XXX.4 AR

XXX.5 PARMS

XXX.6 COMMENT

XXX.7 RESERVED.

Sample Programs
C \sqllib\samples\c\dcscat.c

COBOL \sgllib\samples\cobol\dcscat.cbl
FORTRAN \sgllib\samples\fortran\dcscat.f
REXX \sqllib\samples\rexx\dcscat.cmd

Usage Notes
“sglegdsc - Open DCS Directory Scan” on page 142, which returns the entry count,
must be called prior to issuing GET DCS DIRECTORY ENTRIES.

If all entries are copied to the caller, the Database Connection Services directory scan
is automatically closed, and all resources are released.

140 APl Reference

sglegdgt - Get DCS Directory Entries

If entries remain, subsequent calls to this API should be made, or CLOSE DCS
DIRECTORY SCAN should be called, to release system resources.

See Also
“sglegdcl - Close DCS Directory Scan” on page 132
“sglegdge - Get DCS Directory Entry for Database” on page 137
“sglegdsc - Open DCS Directory Scan” on page 142.

Chapter 1. Application Programming Interfaces 141

sqlegdsc - Open DCS Directory Scan

sqlegdsc - Open DCS Directory Scan

Authorization

Stores a copy in memory of the Database Connection Services directory entries, and
returns the number of entries. This is a snapshot of the directory at the time the
directory is opened.

The copy is not updated if the directory itself changes after a call to this API. Use
“sglegdgt - Get DCS Directory Entries” on page 139 to retrieve the entries, and
“sglegdcl - Close DCS Directory Scan” on page 132 to release the resources
associated with calling this API.

None

Required Connection

None

API Include File

C API Syntax

sqlenv.h

/* File: sqlenv.h */
/* APL: Open DCS Directory Scan */
[x .. %/
SQL_API_RC SQL_API_FN
sqlegdsc (

short * pNumEntries,

struct sqlca * pSqlca);
[x .. %/

Generic API Syntax

/* File: sqlenv.h */
/* APL: Open DCS Directory Scan */
[* ... %/
SQL_API_RC SQL_API_FN
sqlggdsc (

struct sqlca * pSqlca,

short * pNumEntries);
[* ... %/

142 APl Reference

sglegdsc - Open DCS Directory Scan

API Parameters

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA”" on page 373.

pNumEntries
Output. Address of a 2-byte area to which the number of directory entries
is returned.

REXX API Syntax

OPEN DCS DIRECTORY

Sample Programs
C \sqgllib\samples\c\dcscat.c

COBOL \sqllib\samples\cobol\dcscat.cbl
FORTRAN \sgllib\samples\fortran\dcscat.f
REXX \sgllib\samples\rexx\dcscat.cmd

Usage Notes

The caller of the scan uses the returned value pNumEntries to allocate enough memory
to receive the entries. If a scan call is received while a copy is already held, the
previous copy is released, and a new copy is collected.

See Also
“sglegdcl - Close DCS Directory Scan” on page 132
“sglegdge - Get DCS Directory Entry for Database” on page 137
“sglegdgt - Get DCS Directory Entries” on page 139.

Chapter 1. Application Programming Interfaces 143

sglegins - Get Instance

sqglegins - Get Instance

Returns the value of the DB2INSTANCE environment variable.

Authorization
None

Required Connection
None

API Include File

sqlenv.h

C API Syntax

/* File: sqlenv.h */
/* API: Get Instance =/
[* ... %/
SQL_API_RC SQL_API_FN
sqlegins (
_SQLOLDCHAR =* plInstance,
struct sqlca * pSqlca);
[* .. ox/

Generic API Syntax

/* File: sqlenv.h */
/* API: Get Instance =/
[x .. %/
SQL_API_RC SQL_API_FN
sqlggins (
struct sqlca * pSqlca,
_SQLOLDCHAR * pInstance);
TEREY

APl Parameters
pSqlca

Output. A pointer to the sglca structure. For more information about this

structure, see “SQLCA” on page 373.
plnstance

Output. Pointer to a string buffer where the database manager instance
name is placed. This buffer must be at least 8 bytes in length.

144 APl Reference

sqglegins - Get Instance

REXX API Syntax

GET INSTANCE INTO :instance

REXX API Parameters

instance
A REXX host variable into which the database manager instance name is
to be placed.

Sample Programs
C \sqllib\samples\c\dbinst.c

COBOL \sqllib\samples\cobol\dbinst.cbl
FORTRAN \sgllib\samples\fortran\dbinst.f
REXX \sqllib\samples\rexx\dbinst.cmd

Usage Notes
The value in the DB2INSTANCE environment variable is not necessarily the instance to
which the user is attached.

To identify the instance to which a user is currently attached, call “sqgleatin - Attach” on
page 74, with null arguments except for the sglca structure.

Chapter 1. Application Programming Interfaces 145

sqleintr - Interrupt

sqgleintr - Interrupt

Stops a request. This APl is called from a control break signal handler in an application.
The control break signal handler can be the default, installed by “sqleisig - Install Signal
Handler” on page 149, or a routine supplied by the programmer and installed using an
appropriate operating system call.

Authorization
None

Required Connection
None

API Include File

sqlenv.h

C API Syntax

/* File: sqlenv.h */
/* APL: Interrupt */
[* ... %/
SQL_API_RC SQL_API_FN
sqleintr (
void);
[* ... %/

Generic APl Syntax

/* File: sqlenv.h */
/* API: Interrupt */
[* ... %/
SQL_API_RC SQL_API_FN
sqlgintr (
void);

[* ... %/

API| Parameters
The INTERRUPT API does not accept any parameters.

146 APl Reference

sgleintr - Interrupt

REXX API Syntax

Example

Usage Notes

INTERRUPT

call SQLDBS 'INTERRUPT'

No database manager APIs should be called from an interrupt handler except the
INTERRUPT API. However, the system will not prevent it.

Any database transaction in a state of committing or rollback cannot be interrupted.

An interrupted database manager request returns a code indicating that it was
interrupted.

The following table summarizes the effect of an interrupt on other APIs:

Table 5. INTERRUPT Actions

Database Activity

Action

IMPORT/EXPORT Utility cancelled. Database updates rolled back.

REORGANIZE TABLE Utility cancelled. Table is left in its previous state.

BACKUP Utility cancelled. Data on media may be
incomplete.

RESTORE Utility cancelled. DROP DATABASE performed.
Not applicable to table space level restore.

LOAD Utility cancelled. Data in table may be incomplete.

PREP Precompile cancelled. Package creation rolled
back.

BIND Binding cancelled. Package creation rolled back.

COMMIT None. COMMIT completes.

FORCE APPLICATION None. FORCE APPLICATION completes.

ROLLBACK None. ROLLBACK completes.

CREATE DATABASE/CREATE DATABASE AT
NODE/ADD NODE/DROP NODE VERIFY

After a certain point, these APIs are not
interruptible. If the interrupt is received before this
point, the database is not created. If the interrupt
is received after this point, the interrupt is ignored.

DROP DATABASE/DROP DATABASE AT NODE

None. These APIs complete.

Directory Services

Directory left in consistent state. Utility function
may or may not be performed.

SQL Data Definition statements

Database transactions set to state existing prior to
the SQL statement.

Other SQL statements

Database transactions set to state existing prior to
the SQL statement.

Chapter 1. Application Programming Interfaces

147

sqleintr - Interrupt

See Also
“sgleisig - Install Signal Handler” on page 149.

148 APl Reference

sqgleisig - Install Signal Handler

sqgleisig - Install Signal Handler

Authorization

Installs the default interrupt (usually Control-C and/or Control-Break) signal handler.
When this default handler detects an interrupt signal, it resets the signal and calls
“sgleintr - Interrupt” on page 146.

None

Required Connection

None

API Include File

C API Syntax

sqlenv.h

/* File: sqlenv.h */
/* API: Install Signal Handler =/
[* .../
SQL_API_RC SQL_API_FN
sqleisig (
struct sqlca * pSqlca);
[* .../

Generic APl Syntax

/* File: sqlenv.h */
/* API: Install Signal Handler x/
[* .../
SQL_API_RC SQL_API_FN
sqlgisig (
struct sqlca * pSqlca);
[* .../

APl Parameters

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

Chapter 1. Application Programming Interfaces 149

sqleisig - Install Signal Handler

REXX API Syntax

INSTALL SIGNAL HANDLER

Sample Programs
Cc \sqllib\samples\c\dbcmt.c

COBOL \sqllib\samples\cobol\ish.cbl
FORTRAN \sgllib\samples\fortran\ish.f
REXX \sqllib\samples\rexx\dbcmt.cmd

Usage Notes
If an application has no signal handler, and an interrupt is received, the application is
terminated. This API provides simple signal handling, and can be used if an application
does not have extensive interrupt handling requirements.

The API must be called for the interrupt signal handler to function properly.

If an application requires a more elaborate interrupt handling scheme, a signal handling
routine that can also call “sqleintr - Interrupt” on page 146 can be developed. Use
either the operating system call or the language-specific library signal function. “sqleintr
- Interrupt” on page 146 should be the only database manager operation performed by
a customized signal handler. Follow all operating system programming techniques and
practices to ensure that the previously installed signal handlers work properly.

See Also
“sgleintr - Interrupt” on page 146.

150 API Reference

sglemgdb - Migrate Database

sglemgdb - Migrate Database

Converts previous versions of DB2 databases to current formats. Following are the
database releases that are supported in the DB2 V5.0 database migration process:

e DB2 for OS/2 Version 1.x and Version 2.x to Version 5.0
e DB2 for AIX Version 1.x and Version 2.x to Version 5.0
e DB2 for HP-UX Version 2.x to Version 5.0

e DB2 for Solaris Version 2.x to Version 5.0

e DB2 for Windows NT Version 2.x to Version 5.0

e DB2 Parallel Edition Version 1.x to Version 5.0.

Authorization
sysadm

Required Connection
This API establishes a database connection.

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Migrate Database */

[* ... %/

SQL_API_RC SQL_API_FN

sqlemgdb (

_SQLOLDCHAR +* pDbAlias,
_SQLOLDCHAR +* pUserName,
_SQLOLDCHAR +* pPassword,
struct sqlca * pSqlca);

[* .. %/

Chapter 1. Application Programming Interfaces 151

sglemgdb - Migrate Database

Generic API Syntax

/* File: sqlenv.h x/

/* API: Migrate Database */

[* .. %/

SQL_API_RC SQL_API_FN

sqlgmgdb (

unsigned short PasswordLen,
unsigned short UserNamelLen,
unsigned short DbAliaslLen,
struct sqlca * pSqlca,
_SQLOLDCHAR =* pPassword,
_SQLOLDCHAR =* pUserName,
_SQLOLDCHAR * pDbAlias);

[* ... %/

API| Parameters

PasswordLen

Input. A 2-byte unsigned integer representing the length in bytes of the
password. Set to zero when no password is supplied.

UserNameLen

Input. A 2-byte unsigned integer representing the length in bytes of the
user name. Set to zero when no user name is supplied.

DbAliasLen

Input. A 2-byte unsigned integer representing the length in bytes of the

database alias.

pSqlca

Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

pPassword

Input. A string containing the password of the supplied user name (if any).

May be NULL.

pUserName

Input. A string containing the user name of the application. May be NULL.

pDbAlias

Input. A string containing the alias of the database that is cataloged in the
system database directory.

REXX API Syntax

MIGRATE DATABASE dbalias [USER username USING password]

152 APl Reference

sglemgdb - Migrate Database

REXX API Parameters

dbalias

Alias of the database to be migrated.
username

User name under which the database is to be restarted.
password

Password used to authenticate the user name.

Sample Programs
C \sqgllib\samples\c\migrate.c

COBOL \sqllib\samples\cobol\migrate.cbl
FORTRAN \sgllib\samples\fortran\migrate.f
REXX \sqllib\samples\rexx\migrate.cmd

Usage Notes
This API will only migrate a database to a newer version, and cannot be used to
convert a migrated database to its previous version.

The database must be cataloged before migration.

For detailed information about database migration, see one of the Quick Beginnings
books.

Chapter 1. Application Programming Interfaces 153

sglencls - Close Node Directory Scan

sqglencls - Close Node Directory Scan

Frees the resources that are allocated by “sqglenops - Open Node Directory Scan” on

page 159.

Authorization
None

Required Connection
None

API Include File

sqlenv.h

C API Syntax

/* File: sqlenv.h %/
/* API: Close Node Directory Scan x/
[* oo %/
SQL_API_RC SQL_API_FN
sqlencls (

unsigned short Handle,

struct sqlca * pSqlca);
[* ... %/

Generic API Syntax

/* File: sqlenv.h */
/% API: Close Node Directory Scan x/
[* .. %/
SQL_API_RC SQL_API_FN
sqlgncls (

unsigned short Handle,

struct sqlca * pSqlca);
[* ... %/

APl Parameters
Handle

Input. Identifier returned from the associated OPEN NODE DIRECTORY

SCAN API.

154 APl Reference

sglencls - Close Node Directory Scan

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

REXX API Syntax

CLOSE NODE DIRECTORY :scanid

REXX API Parameters

scanid
A host variable containing the scanid returned from the OPEN NODE
DIRECTORY SCAN API.

Sample Programs
C \sqllib\samples\c\nodecat.sqc

COBOL \sqllib\samples\cobol\nodecat.sqb
FORTRAN \sqgllib\samples\fortran\nodecat.sqf
REXX \sqllib\samples\rexx\nodecat.cmd

See Also

“sglengne - Get Next Node Directory Entry” on page 156
“sglenops - Open Node Directory Scan” on page 159.

Chapter 1. Application Programming Interfaces 155

sglengne - Get Next Node Directory Entry

sglengne - Get Next Node Directory Entry

Returns the next entry in the node directory after “sglenops - Open Node Directory
Scan” on page 159 is called. Subsequent calls to this API return additional entries

Authorization
None

Required Connection
None

API Include File

sqlenv.h

C API Syntax

/* File: sqlenv.h %/
/% API: Get Next Node Directory Entry */
[* oo %/
SQL_API_RC SQL_API_FN
sqlengne (
unsigned short Handle,
struct sqleninfo ** ppNodeDirEntry,
struct sqlca * pSqlca);
[* ... %/

Generic API Syntax

/* File: sqlenv.h */

/* API: Get Next Node Directory Entry */

[* ... %/

SQL_API RC SQL_API FN

sqlgngne (

unsigned short Handle,
struct sqleninfo ** ppNodeDirEntry,
struct sqlca * pSqlca);

[* ... %/

API Parameters
Handle
Input. Identifier returned from “sqglenops - Open Node Directory Scan” on
page 159

156 APl Reference

sglengne - Get Next Node Directory Entry

ppNodeDirEntry

pSqlca

REXX API Syntax

Output. Address of a pointer to an sqleninfo structure. The caller of this API
does not have to provide memory for the structure, just the pointer. Upon
return from the API, the pointer points to the next node directory entry in
the copy of the node directory allocated by “sglenops - Open Node
Directory Scan” on page 159. For more information about the sgleninfo
structure, see “SQLENINFO” on page 419.

Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

GET NODE DIRECTORY ENTRY :scanid [USING :value]

REXX APl Parameters
scanid

value

A REXX host variable containing the identifier returned from the OPEN
NODE DIRECTORY SCAN API.

A compound REXX host variable to which the node entry information is
returned. If no name is given, the name SQLNINFO is used. In the following,
XXX represents the host variable name (the corresponding field names are
taken from the structure returned by the API):

XXX.0 Number of elements in the variable (always 16)
XXX.1 NODENAME

XXX.2 LOCALLU

XXX.3 PARTNERLU

XXX.4 MODE

XXX.5 COMMENT

XXX.6 RESERVED

XXX.7 PROTOCOL (protocol type)

XXX.8 ADAPTER (NetBIOS adapter #)

XXX.9 RESERVED

XXX.10 SYMDESTNAME (symbolic destination name)
XXX.11 SECURITY (security type)

XXX.12 HOSTNAME

XXX.13 SERVICENAME

Chapter 1. Application Programming Interfaces 157

sglengne - Get Next Node Directory Entry

XXX.14 FILESERVER
XXX.15 OBJECTNAME
XXX.16 INSTANCE (local instance name).

Sample Programs
C \sgllib\samples\c\nodecat.c

COBOL \sqllib\samples\cobol\nodecat.cbl
FORTRAN \sgllib\samples\fortran\nodecat.f

REXX \sgllib\samples\rexx\nodecat.cmd

Usage Notes
All fields in the node directory entry information buffer are padded to the right with
blanks.

The sqlcode value of sglca is set to 1014 if there are no more entries to scan when this
APl is called.

The entire directory can be scanned by calling this APl pNumEntries times
(pNumEntries is returned by “sglenops - Open Node Directory Scan” on page 159).

See Also

“sglencls - Close Node Directory Scan” on page 154
“sglenops - Open Node Directory Scan” on page 159.

158 APl Reference

sglenops - Open Node Directory Scan

sglenops - Open Node Directory Scan

Stores a copy in memory of the node directory, and returns the number of entries. This
is a snapshot of the directory at the time the directory is opened. This copy is not
updated, even if the directory itself is changed later.

Use “sglengne - Get Next Node Directory Entry” on page 156 to advance through the
node directory and examine information about the node entries. Close the scan using
“sglencls - Close Node Directory Scan” on page 154. This removes the copy of the
directory from memory.

Authorization
None

Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */
/* APL: Open Node Directory Scan */
[* ... %/
SQL_API_RC SQL_API_FN
sqlenops (
unsigned short * pHandle,
unsigned short * pNumEntries,
struct sqlca * pSqlca);
[* ... %/

Generic API Syntax

/* File: sqlenv.h */
/* API: Open Node Directory Scan */
[* .../
SQL_API_RC SQL_API_FN
sqlgnops (
unsigned short * pHandle,
unsigned short * pNumEntries,
struct sqlca * pSqlca);
[* ... */

Chapter 1. Application Programming Interfaces 159

sqlenops - Open Node Directory Scan

API| Parameters

pHandle
Output. Identifier returned from this API. This identifier must be passed to
“sglengne - Get Next Node Directory Entry” on page 156, and “sglencls -
Close Node Directory Scan” on page 154.

pNumEntries
Output. Address of a 2-byte area to which the number of directory entries
is returned.

pSqlca

REXX API Syntax

Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

OPEN NODE DIRECTORY USING :value

REXX APl Parameters

value

Sample Programs
C

COBOL
FORTRAN
REXX

Usage Notes

A compound REXX variable to which node directory information is
returned. In the following, XXX represents the host variable name.

XXX.0 Number of elements in the variable (always 2)
XXX.1 Specifies a REXX host variable containing a number for scanid
XXX.2 The number of entries contained within the directory.

\sqllib\samples\c\nodecat.c
\sqllib\samples\cobol\nodecat.chbl
\sgllib\samples\fortran\nodecat.f

\sqgllib\samples\rexx\nodecat.cmd

Storage allocated by this API is freed by calling “sqglencls - Close Node Directory Scan”
on page 154.

Multiple node directory scans can be issued against the node directory. However, the
results may not be the same. The directory may change between openings.

There can be a maximum of eight node directory scans per process.

160 APl Reference

sglenops - Open Node Directory Scan

See Also
“sglencls - Close Node Directory Scan” on page 154
“sglengne - Get Next Node Directory Entry” on page 156.

Chapter 1. Application Programming Interfaces 161

sglepstart - Start Database Manager

sqlepstart - Start Database Manager

Starts the current database manager instance background processes on a single node
or on all the nodes defined in a multi-node environment.

This API is not valid on a client.

Scope
In a multi-node environment, this API affects all nodes that are listed in the
$HOME/sq11ib/db2nodes.cfg file, unless the nodenum parameter is used (see
“SQLE-START-OPTIONS” on page 403).

Authorization
One of the following:

sysadm
sysctrl
sysmaint

Required Connection
None

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */
/* API: Start Database Manager x/
[* ... %/
SQL_API_RC SQL_API_FN
sqlepstart (
struct sqle_start_options * pStartOptions,
struct sqlca * pSqlca);
[* ... %/

162 APl Reference

sqlepstart - Start Database Manager

Generic API Syntax

/* File: sqlenv.h */
/* API: Start Database Manager x/
[* .../
SQL_API_RC SQL_API_FN
sqlgpstart (
struct sqle_start options * pStartOptions,
struct sqlca * pSqlca);
[* .../

API Parameters

pStartOptions
A pointer to the sqgle_start_options structure. This structure contains the
start-up options. The pointer can be null. For more information about this
structure, see “SQLE-START-OPTIONS” on page 403.

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

REXX API Syntax
This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

Sample Programs
C \sqllib\samples\c\dbstart.c

COBOL \sqllib\samples\cobol\dbstart.cbl
FORTRAN \sgllib\samples\fortran\dbstart.f
REXX \sqgllib\samples\rexx\dbstart.cmd

Usage Notes

It is not necessary to call this APl on a client node. It is provided for compatibility with
older clients, but it has no effect on the database manager.

Once started, the database manager instance runs until the user stops it, even if all
application programs that were using it have ended.

If no parameters are specified in a multi-node database environment, the database
manager is started on all parallel nodes specified in the node configuration file.

If the API call is still processing, ensure that the applicable nodes have started before
issuing a request to the database.

Chapter 1. Application Programming Interfaces 163

sqlepstart - Start Database Manager

The db2cshrc file is not supported and cannot be used to define the environment.

On UNIX platforms, sqlepstart supports the SIGINT and SIGALRM signals. The
SIGINT signal is issued if CTRL+C is pressed. The SIGALRM signal is issued if the
value specified for the start_stop_time database manager configuration parameter is
reached. If either signal occurs, all in-progress startups are interrupted and a message
(SQL1044N for SIGINT and SQL6037N for SIGALRM) is returned from each interrupted
node to the $HOME/sq11ib/1og/db2start. timestamp.log error log file. Nodes that are
already started are not affected. If CTRL+C is pressed on a node that is starting,
db2stop must be issued on that node before an attempt is made to start it again.

See Also

“sgleaddn - Add Node” on page 67
“sglepstp - Stop Database Manager” on page 165.

164 APl Reference

sqlepstp - Stop Database Manager

sglepstp - Stop Database Manager

Scope

Authorization

Stops the current database manager instance. Unless explicitly stopped, the database
manager continues to be active. This API does not stop the database manager instance
if any applications are connected to databases. If there are no database connections,
but there are instance attachments, it forces the instance attachments and stops the
database manager. This API also deactivates any outstanding database activations
before stopping the database manager.

This API can also be used to drop a node from the db2nodes.cfg file (MPP systems
only).

This API is not valid on a client.

In a multi-node environment, this API affects all nodes that are listed in the
$HOME/sq11ib/db2nodes.cfg file, unless the nodenum parameter is used (see
“SQLEDBSTOPOPT” on page 414).

One of the following:

sysadm
sysctrl
sysmaint

Required Connection

None

API Include File

C API Syntax

sqlenv.h

/* File: sqlenv.h */
/* API: Stop Database Manager =/
[* o0 %/
SQL_API_RC SQL_API_FN
sqlepstp (
struct sqledbstopopt * pStopOptions,
struct sqlca * pSqlca);
[* .. %/

Chapter 1. Application Programming Interfaces 165

sqlepstp - Stop Database Manager

Generic API Syntax

/* File: sqlenv.h x/
/* API: Stop Database Manager */
[* ... %/
SQL_API_RC SQL_API_FN
sqlgpstp (
struct sqledbstopopt * pStopOptions,
struct sqlca * pSqlca);
[* ... %/

API| Parameters

pStopOptions
A pointer to the sqledbstopopt structure. This structure contains the stop
options. The pointer can be null. For more information about this structure,
see “SQLEDBSTOPOPT” on page 414.

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

REXX API Syntax

This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

Sample Programs

Usage Notes

Cc \sqllib\samples\c\dbstop.c
COBOL \sqllib\samples\cobol\dbstop.cbl
FORTRAN \sqllib\samples\fortran\dbstop.f
REXX \sqllib\samples\rexx\dbstop.cmd

It is not necessary to call this API on a client node. It is provided for compatibility with
older clients, but it has no effect on the database manager.

Once started, the database manager instance runs until the user stops it, even if all
application programs that were using it have ended.

If the database manager cannot be stopped because application programs are still
connected to databases, use “sqlefrce - Force Application” on page 125 to disconnect
all users first, or call the sqglepstp API again with the FORCE option.

166 APl Reference

sqlepstp - Stop Database Manager

The following information currently applies to multiple node environments only:

See Also

If no parameters are specified, the database manager is stopped on each node
listed in the node configuration file. The db2diag.log file may contain messages to
indicate that other nodes are shutting down.

Any nodes added to the MPP system since the previous call to sqlepstp will be
updated in the db2nodes.cfqg file.

On UNIX platforms, this API supports the SIGALRM signal, which is issued if the
value specified for the start_stop_time database manager configuration parameter
is reached. If this signal occurs, all in-progress stops are interrupted, and message
SQL6037N is returned from each interrupted node to the
$HOME/sq11ib/10g/db2stop. timestamp.log error log file. Nodes that are already
stopped are not affected.

The db2cshrc file is not supported and cannot be specified as the value for the
PROFILE parameter.

“sgle_deactivate_db - Deactivate Database” on page 64
“sqledrpn - Drop Node Verify” on page 119

“sqlefrce - Force Application” on page 125

“sglepstart - Start Database Manager” on page 162.

Chapter 1. Application Programming Interfaces 167

sqlegryc - Query Client

sqlegryc - Query Client

Returns current connection settings for an application process. For information about
the applicable connection settings and their values, see “SQLE-CONN-SETTING” on
page 388.

Authorization
None

Required Connection
None

API Include File

sqlenv.h

C API Syntax

/* File: sqlenv.h */
/% API: Query Client */
[* oo %/
SQL_API_RC SQL_API_FN
sqleqryc (
struct sqle_conn_setting * pConnectionSettings,
unsigned short NumSettings,
struct sqlca * pSqlca);
[* ... %/

Generic API Syntax

/* File: sqlenv.h */
/* APL: Query Client =/
[* ... %/
SQL_API_RC SQL_API_FN
sqlggryc (
struct sqle_conn_setting * pConnectionSettings,
unsigned short NumSettings,
struct sqlca * pSqlca);
[* ... %/

168 APl Reference

API Parameters

sglegryc - Query Client

pConnectionSettings

Input/Output. A pointer to an sqle_conn_setting structure, which specifies
connection setting types and values. The user defines an array of
NumSettings connection settings structures, and sets the type field of each
element in this array to indicate one of the five possible connection settings
options. Upon return, the value field of each element contains the current
setting of the option specified. For more information about this structure,
see “SQLE-CONN-SETTING” on page 388.

NumSettings

pSqlca

REXX API Syntax

Input. Any integer (from 0 to 7) representing the number of connection
option values to be returned.

Output. A pointer to the sqlca structure. For more information about this
structure, see “SQLCA” on page 373.

QUERY CLIENT INTO :output

REXX API| Parameters

output

A compound REXX host variable containing information about the current
connection settings of the application process. In the following, XXX
represents the host variable name.

XXX.1 Current connection setting for the CONNECTION type
XXX.2 Current connection setting for the SQLRULES
XXX.3 Current connection setting indicating which connections will be

released when a COMMIT is issued.

XXX.4 Current connection setting of the SYNCPOINT option.
Indicates whether a transaction manager should be used to
enforce two-phase commit semantics, whether the database
manager should ensure that there is only one database being
updated when multiple databases are accessed within a single
transaction, or whether neither of these options is to be used.

XXX.5 Current connection setting for the maximum number of
concurrent connections for a NETBIOS adapter.
XXX.6 Current connection setting for deferred PREPARE.

Chapter 1. Application Programming Interfaces 169

sqlegryc - Query Client

Sample Programs
Cc \sqllib\samples\c\client.c

COBOL \sqllib\samples\cobol\client.cbl
FORTRAN \sqllib\samples\fortran\client.f
REXX \sqgllib\samples\rexx\client.cmd

Usage Notes

The connection settings for an application process can be queried at any time during
execution.

If QUERY CLIENT is successful, the fields in the sqgle_conn_setting structure will
contain the current connection settings of the application process. If SET CLIENT has
never been called, the settings will contain the values of the precompile options only if
an SQL statement has already been processed; otherwise, they will contain the default
values for the precompile options.

For information about distributed unit of work (DUOW), see the Administration Guide.
See Also

“sglegryi - Query Client Information” on page 171
“sglesetc - Set Client” on page 185.

170 APl Reference

sqleqryi - Query Client Information

sglegryi - Query Client Information

I

| Returns existing client information. Since this API permits specification of a database

| alias, an application can query client information associated with a specific connection.
| Returns null if “sqgleseti - Set Client Information” on page 188 has not previously

| established a value.

If a specific connection is requested, this API returns the latest values for that
connection. If all connections are specified, the API returns the values that are to be
associated with all connections; that is, the values passed in the last call to sgleseti
(specifying all connections).

| Authorization
| None

| Required Connection
| None

| API Include File
I sqglenv.h

| C API Syntax

/* File: sqlenv.h */
/* API: Query Client Information */
[* ... %/
SQL_API_RC SQL_API_FN
sqleqryi (
unsigned short DbAliaslLen,
char * pDbAlias,
unsigned short NumItems,
struct sqle_client_infox pClient_Info,
struct sqlca * pSqlca);
[* .../

Chapter 1. Application Programming Interfaces 171

sqleqryi - Query Client Information

Generic API Syntax

/* File: sqlenv.h x/
/* API: Query Client Information */
[* ... %/
SQL_API_RC SQL_API_FN
sqleqryi (
unsigned short DbAliaslen,
char * pDbAlias,
unsigned short NumItems,
struct sqle_client_info* pClient_Info,
struct sqlca * pSqlca);
[* ... %/

API Parameters

Usage Notes

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias. If a value greater than zero is provided, pDbAlias must
point to the alias name. Returns the settings associated with the last call to
sgleseti for this alias (or a call to sqleseti specifying a zero length alias). If
zero is specified, returns the settings associated with the last call to
sgleseti which specified a zero length alias.

pDbAlias
Input. A pointer to a string containing the database alias.

Numltems
Input. Number of entries being modified. The minimum value is 1.

pClient_Info
Input. A pointer to an array of Numitems sqle_client_info structures, each
containing a type field indicating which value to return, and a pointer to the
returned value. The area pointed to must be large enough to accommodate
the value being requested. For more information about this structure, see
“SQLE-CLIENT-INFO” on page 385.

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

The settings can be queried at any time during execution. If the API call is successful,
the current settings are returned to the specified areas. Returns a length of zero and a
null-terminated string (\0) for any fields that have not been set through a call to
“sgleseti - Set Client Information” on page 188.

172 APl Reference

sqleqryi - Query Client Information

| See Also
| “sgleseti - Set Client Information” on page 188.

Chapter 1. Application Programming Interfaces 173

sqleregs - Register

sqleregs - Register

Registers the DB2 server on the network server. The DB2 server's network address is
stored in a specified registry on the file server, where it can be retrieved by a client
application that uses the IPX/SPX communication protocol.

Authorization
None

Required Connection
None

API Include File

sqlenv.h

C API Syntax

/* File: sqlenv.h */

/% API: Register x/

[* oo %/

SQL_API_RC SQL_API_FN

sqleregs (

unsigned short Registry,
void * pRegisterInfo,
struct sqlca * pSqlca);

[* ... %/

Generic API Syntax

/* File: sqlenv.h */

/* API: Register =/

[* ... %/

SQL_API_RC SQL_API_FN

sqlgregs (

unsigned short Registry,
void * pRegisterInfo,
struct sqlca * pSqlca);

[* ... %/

174 APl Reference

sgleregs - Register

API Parameters

Registry
Input. Indicates where on the network file server to register the DB2 server.
In this release, the only supported value is SQL_NWBINDERY (NetWare file
server bindery, defined in sqlenv).

pRegisterinfo
Input. A pointer to the sqgle_reg _nwbindery structure. In the structure, the
caller specifies a user name and password that are valid on the network
file server. For more information about this structure, see
“SQLE-REG-NWBINDERY” on page 402.

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA”" on page 373.

REXX API Syntax

This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

Sample Programs

Usage Notes

C \sqgllib\samples\c\regder.c
COBOL \sqllib\samples\cobol\regder.cbl
FORTRAN \sgllib\samples\fortran\regder.f

This API determines the IPX/SPX address of the DB2 server machine (the machine
from which it was called), and then creates an object in the NetWare file server bindery
using the value for objectname specified in the database manager configuration file.
The IPX/SPX address of the DB2 server is stored as a property in that object. In order
for a client to connect or attach to a DB2 database using IPX/SPX file server
addressing, it must catalog an IPX/SPX node (using the same FILESERVER and
OBJECTNAME specified on the server) in the node directory.

The specified NetWare user name and password must have supervisory or equivalent
authority.

This API must be issued locally from a DB2 server. It is not supported remotely.

After installation and configuration of DB2, the DB2 server should be registered once on
the network file server (unless only direct addressing will be used by IPX/SPX clients to
connect to this DB2 server). After that, if the IPX/SPX fields are reconfigured, or the
DB2 server's IPX/SPX internetwork address changes, deregister the DB2 server on the
network file server before making the changes, and then register it again after the
changes have been made.

Chapter 1. Application Programming Interfaces 175

sqleregs - Register

See Also
“sgledreg - Deregister” on page 114.

176 APl Reference

sglerstd - Restart Database

sglerstd - Restart Database

Restarts a database that has been abnormally terminated and left in an inconsistent
state. At the successful completion of RESTART DATABASE, the application remains
connected to the database if the user has CONNECT privilege.

Scope
This API affects only the node on which it is executed.

Authorization
None

Required Connection
This API establishes a database connection.

API Include File
sqlenv.h

C API Syntax

/* File: sqlenv.h */

/* API: Restart Database */

/% ... %/

SQL_API_RC SQL_API FN

sqlerstd (

_SQLOLDCHAR +* pDbAlias,
_SQLOLDCHAR = pUserName,
_SQLOLDCHAR +* pPassword,
struct sqlca * pSqlca);

/% oo %/

Chapter 1. Application Programming Interfaces 177

sglerstd - Restart Database

Generic API Syntax

/* File: sqlenv.h x/

/* API: Restart Database */

[* .. %/

SQL_API_RC SQL_API_FN

sqlgrstd (

unsigned short PasswordLen,
unsigned short UserNamelLen,
unsigned short DbAliaslLen,
struct sqlca * pSqlca,
_SQLOLDCHAR =* pPassword,
_SQLOLDCHAR =* pUserName,
_SQLOLDCHAR * pDbAlias);

JEE Y

API Parameters

PasswordLen
Input. A 2-byte unsigned integer representing the length in bytes of the
password. Set to zero if no password is supplied.

UserNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
user name. Set to zero if no user name is supplied.

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

pPassword
Input. A string containing the password of the supplied user name (if any).
May be NULL.

pUserName
Input. A string containing the user name of the application. May be NULL.

pDbAlias
Input. A string containing the alias of the database that is to be restarted.

REXX API Syntax

RESTART DATABASE database_alias [USER username USING password]

178 APl Reference

sglerstd - Restart Database

REXX API Parameters

database_alias

Alias of the database to be restarted.
username

User name under which the database is to be restarted.
password

Password used to authenticate the user name.

Sample Programs

Usage Notes

See Also

C \sqllib\samples\c\restart.c
COBOL \sqllib\samples\cobol\restart.cbl
FORTRAN \sqllib\samples\fortran\restart.f

REXX \sgllib\samples\rexx\restart.cmd

Call this API if an attempt to connect to a database returns an error message,
indicating that the database must be restarted. This action occurs only if the previous
session with this database terminated abnormally (due to power failure, for example).

At the completion of this API, a shared connection to the database is maintained if the
user has CONNECT privilege, and an SQL warning is issued if any indoubt transactions
exist. In this case, the database is still usable, but if the indoubt transactions are not
resolved before the last connection to the database is dropped, another RESTART
DATABASE must be issued before the database can be used again. Use the
transaction APIs (see Appendix B, “Transaction APIsS” on page 471) to generate a list
of indoubt transactions. For more information about indoubt transactions, see the
Administration Guide.

If the database is only restarted on a single node within an MPP system, a message
may be returned on a subsequent database query indicating that the database needs to

be restarted. This occurs because the database on a node on which the query depends
must also be restarted. Restarting the database on all nodes solves the problem.

CONNECT TO statement in the SQL Reference.

Chapter 1. Application Programming Interfaces 179

sglesact - Set Accounting String

sglesact - Set Accounting String

Authorization

Provides accounting information that will be sent to a DRDA server with the
application's next connect request.

None

Required Connection

None

API Include File

C API Syntax

sqlenv.h

/* File: sqlenv.h %/
/* API: Set Accounting String x/
[* oo %/
SQL_API_RC SQL_API_FN
sqlesact (
char * pAccountingString,
struct sqlca * pSqlca);
[* ... %/

Generic API Syntax

/* File: sqlenv.h */
/* API: Set Accounting String =/
[* o0 %/
SQL_API_RC SQL_API_FN
sqlgsact (
unsigned short AccountingStringlLen,
char * pAccountingString,
struct sqlca * pSqlca);
[* ... %/

API| Parameters

AccountingStringLen
Input. A 2-byte unsigned integer representing the length in bytes of the
accounting string.

pAccountingString
Input. A string containing the accounting data.

180 API Reference

sglesact - Set Accounting String

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

Sample Programs
C \sqllib\samples\c\setact.c

COBOL \sqllib\samples\cobol\setact.cbl
FORTRAN \sgllib\samples\fortran\setact.f

Usage Notes
To send accounting data with a connect request, an application should call this API
before connecting to a database. The accounting string can be changed before
connecting to another database by calling the API again; otherwise, the value remains
in effect until the end of the application. The accounting string can be at most
SQL_ACCOUNT_STR_SZ (defined in sqlenv) bytes long; longer strings will be truncated. To
ensure that the accounting string is converted correctly when transmitted to the DRDA
server, use only the characters A to Z, 0 to 9, and the underscore ().

See Also
The DB2 Connect User's Guide, which contains more information about the accounting
string and the DRDA servers that support it.
“sgleseti - Set Client Information” on page 188.

Chapter 1. Application Programming Interfaces 181

sqlesdeg - Set Runtime Degree

sglesdeg - Set Runtime Degree

Sets the maximum run time degree of intra-partition parallelism for SQL statements for
specified active applications. It has no effect on CREATE INDEX parallelism.

Scope
This API affects all nodes that are listed in the $HOME/sq111ib/db2nodes.cfg file.

Authorization
One of the following:

sysadm
sysctrl

Required Connection
Instance. To change the maximum run time degree of parallelism on a remote server, it
is first necessary to attach to that server. If no attachment exists, the SET RUNTIME
DEGREE statement fails.

API Include File

sqlenv.h

C API Syntax

/* File: sqlenv.h */
/% API: Set Runtime Degree =/
[* ... %/
SQL_API_RC SQL_API_FN
sqlesdeg (
long NumAgentlIds,
unsigned long * pAgentlds,
long Degree,
struct sqlca * pSqlca);
[* oo %/

182 APl Reference

sqlesdeg - Set Runtime Degree

Generic API Syntax

/* File: sqlenv.h */
/* API: Set Runtime Degree */
[* .../
SQL_API_RC SQL_API_FN
sqlgsdeg (
struct sqlca * pSqlca,
long Degree,
unsigned long * pAgentlds,
Tong NumAgentIds);
[* .../

API| Parameters

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

Degree
Input. The new value for the maximum run time degree of parallelism. The
value must be in the range 1 to 32767.

pAgentlds

Input. Pointer to an array of unsigned long integers. Each entry describes

the agent ID of the corresponding application. To list the agent IDs of the

active applications, use “sqlmonss - Get Snapshot” on page 227.
NumAgentlds

Input. An integer representing the total number of active applications to

which the new degree value will apply. This number should be the same as

the number of elements in the array of agent IDs.

If this parameter is set to SQL_ALL_USERS (defined in sqlenv), the new
degree will apply to all active applications. If it is set to zero, an error is
returned.

REXX API Syntax

This API can be called from REXX through the SQLDB2 interface. See “How the API
Descriptions are Organized” on page 8, or the Embedded SQL Programming Guide.
For a description of the syntax, see the Command Reference.

Sample Programs
C \sqllib\samples\c\setrundg.c

Usage Notes

The database system monitor functions are used to gather the agent IDs and degrees
of active applications. For more information, see the System Monitor Guide and
Reference.

Chapter 1. Application Programming Interfaces 183

sqlesdeg - Set Runtime Degree

See Also

Minimal validation is performed on the array of agent IDs. The user must ensure that
the pointer points to an array containing the total number of elements specified. If
NumAgentlds is set to SQL_ALL_USERS, the array is ignored.

If one or more specified agent IDs cannot be found, the unknown agent IDs are
ignored, and the function continues. No error is returned. An agent ID may not be
found, for instance, if the user signs off between the time an agent ID is collected and
the API is called.

Agent IDs are recycled, and are used to change the degree of parallelism for
applications some time after being gathered by the database system monitor. When a
user signs off, therefore, another user may sign on and acquire the same agent ID
through this recycling process, with the result that the new degree of parallelism will be
modified for the wrong user.

“sglmonss - Get Snapshot” on page 227.

184 APl Reference

sqlesetc - Set Client

sglesetc - Set Client

Specifies connection settings for the application. For information about the applicable
connection settings and their values, see “SQLE-CONN-SETTING” on page 388.

Authorization
None

Required Connection
None

API Include File

sqlenv.h

C API Syntax

/* File: sqlenv.h */
/* API: Set Client x/
[* ... %/
SQL_API_RC SQL_API_FN
sqlesetc (
struct sqle_conn_setting * pConnectionSettings,
unsigned short NumSettings,
struct sqlca * pSqlca);
[* ... %/

Generic API Syntax

/* File: sqlenv.h */
/* API: Set Client */
[* ... %/
SQL_API_RC SQL_API FN
sqlgsetc (
struct sqle_conn_setting * pConnectionSettings,
unsigned short NumSettings,
struct sqlca * pSqlca);
/% ... %/

API| Parameters
pConnectionSettings
Input. A pointer to the sgle_conn_setting structure, which specifies
connection setting types and values. Allocate an array of NumSettings
sqle_conn_setting structures. Set the type field of each element in this

Chapter 1. Application Programming Interfaces 185

sqlesetc - Set Client

pSqlca

REXX API Syntax

array to indicate the connection option to set. Set the value field to the
desired value for the option. For more information about this structure, see
“SQLE-CONN-SETTING” on page 388.

NumSettings
Input. Any integer (from O to 7) representing the number of connection
option values to set.

Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

SET CLIENT USING

:values

REXX API| Parameters
values

186 APl Reference

A compound REXX host variable containing the connection settings for the
application process. In the following, XXX represents the host variable

name.
XXX.0
XXX.1

XXX.2

XXX.3

XXX.4

Number of connection settings to be established

Specifies how to set up the CONNECTION type. The valid values
are:

1 Type 1 CONNECT

2 Type 2 CONNECT

Specifies how to set up the SQLRULES. The valid values are:
DB2 Process type 2 CONNECT according to the DB2 rules
STD Process type 2 CONNECT according to the Standard rules

Specifies how to set up the scope of disconnection to databases
at commit. The valid values are:

EXPLICIT Disconnect only those marked by the SQL
RELEASE statement

CONDITIONAL Disconnect only those that have no open
WITH HOLD cursors

AUTOMATIC Disconnect all connections

Specifies how to set up the coordination among multiple database
connections during commits or rollbacks. The valid values are:

TWOPHASE Use Transaction Manager (TM) to coordinate
two-phase commits

sqlesetc - Set Client

ONEPHASE Use one-phase commit
NONE Do not enforce single updater and multiple
reader

XXX.5 Specifies the maximum number of concurrent connections for a
NETBIOS adapter.

XXX.6 Specifies when to execute the PREPARE statement. The valid

values are:

NO The PREPARE statement will be executed at
the time it is issued

YES The PREPARE statement will not be executed

until the corresponding OPEN, DESCRIBE, or
EXECUTE statement is issued. However, the
PREPARE INTO statement is not deferred

ALL Same as YES, except that the PREPARE
INTO statement is also deferred

Sample Programs
C \sgllib\samples\c\client.c

COBOL \sqllib\samples\cobol\client.cbl
FORTRAN \sgllib\samples\fortran\client.f
REXX \sgllib\samples\rexx\client.cmd

Usage Notes
If this API is successful, the connections in the subsequent units of work will use the
connection settings specified. If this API is unsuccessful, the connection settings are
unchanged.

The connection settings for the application can only be changed when there are no
existing connections (for example, before any connection is established, or after
RELEASE ALL and COMMIT).

Once the SET CLIENT API has executed successfully, the connection settings are fixed
and can only be changed by again executing the SET CLIENT API. All corresponding
precompiled options of the application modules will be overridden.

For information about distributed unit of work (DUOW), see the Administration Guide.
See Also

“sglegryc - Query Client” on page 168
“sgleseti - Set Client Information” on page 188.

Chapter 1. Application Programming Interfaces 187

sqleseti - Set Client Information

sqleseti - Set Client Information

Authorization

Permits an application to set client information associated with a specific connection,
provided a connection already exists.

In a TP monitor or 3-tier client/server application environment, there is a need to obtain
information about the client, and not just the application server that is working on behalf
of the client. By using this API, the application server can pass the client's user ID,
workstation information, program information, and other accounting information to the
DB2 server; otherwise, only the application server's information is passed, and that
information is likely to be the same for the many client invocations that go through the
same application server.

The application can elect to not specify an alias, in which case the client information will
be set for all existing, as well as future, connections. This API will only permit
information to be changed outside of a unit of work, either before any SQL is executed,
or after a commit or a rollback. If the call is successful, the values for the connection
will be sent at the next opportunity, grouped with the next SQL request sent on that
connection; a successful call means that the values have been accepted, and that they
will be propagated to subsequent connections.

This API can be used to establish values prior to connecting to a database, or it can be
used to set or modify the values once a connection has been established.

None

Required Connection

None

API Include File

C API Syntax

sqlenv.h

/* File: sqlenv.h */
/* APL: Set Client Information */
[* ... %/
SQL_API_RC SQL_API_FN
sqleseti (
unsigned short DbAliaslLen,
char * pDbAlias,
unsigned short NumItems,
struct sqle_client_infox pClient_Info,
struct sqlca * pSqlca);
[* ... %/

188 APl Reference

sgleseti - Set Client Information

Generic API Syntax

/* File: sqlenv.h */
/* APL: Set Client Information =/
[* .../
SQL_API_RC SQL_API_FN
sqleseti (
unsigned short DbAliaslLen,
char * pDbAlias,
unsigned short NumItems,
struct sqle_client_info* pClient_Info,
struct sqlca * pSqlca);
[* .../

API Parameters

Usage Notes

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias. If a value greater than zero is provided, pDbAlias must
point to the alias name, and the settings will affect only the specified
connection. If zero is specified, the settings will affect all existing and future
connections.

pDbAlias
Input. A pointer to a string containing the database alias.

Numlitems
Input. Number of entries being modified. The minimum value is 1.

pClient_Info
Input. A pointer to an array of Numitems sqle_client_info structures, each
containing a type field indicating which value to set, the length of that
value, and a pointer to the new value. For more information about this
structure, see “SQLE-CLIENT-INFO” on page 385.

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

If an alias name was provided, a connection to the alias must already exist, and all
connections to that alias will inherit the changes. The information will be retained until
the connection for that alias is broken. If an alias name was not provided, settings for
all existing connections will be changed, and any future connections will inherit the
changes. The information will be retained until the program terminates.

The field names represent quidelines for the type of information that can be provided.
For example, a TP monitor application could choose to provide the TP monitor
transaction ID along with the application name in the SQL_CLIENT_INFO_APPLNAM
field. This would provide better monitoring and accounting on the DB2 server, where
the DB2 transaction ID can be associated with the TP monitor transaction ID.

Chapter 1. Application Programming Interfaces 189

sqleseti - Set Client Information

Currently this API will only pass information to DB2 OS/390 Version 5 and higher. All
information (except the accounting string) is displayed on the DISPLAY THREAD
command, and they will all be logged into the accounting records.

See Also
“sqleqryi - Query Client Information” on page 171
“sglesact - Set Accounting String” on page 180
“sglesetc - Set Client” on page 185.

190 API Reference

sgleuncd - Uncatalog Database

sgleuncd - Uncatalog Database

Deletes an entry from the system database directory.

Authorization
One of the following:

sysadm
sysctrl

Required Connection
None

API Include File

sqlenv.h

C API Syntax

/* File: sqlenv.h */
/* API: Uncatalog Database =/
[* ... %/
SQL_API_RC SQL_API_FN
sqleuncd (
_SQLOLDCHAR +* pDbAlias,
struct sqlca * pSqlca);
[* o0 %/

Generic API Syntax

/* File: sqlenv.h */
/* API: Uncatalog Database =/
[* ... %/
SQL_API_RC SQL_API_FN
sqlguncd (
unsigned short DbAliaslLen,
struct sqlca * pSqlca,
_SQLOLDCHAR * pDbAlias);
[* .. %/

API| Parameters
DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

Chapter 1. Application Programming Interfaces 191

sgleuncd - Uncatalog Database

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

pDbAlias
Input. A string containing the database alias that is to be uncataloged.

REXX API Syntax

UNCATALOG DATABASE dbname

REXX API Parameters

dbname
Alias of the database to be uncataloged.

Sample Programs

Usage Notes

C \sqllib\samples\c\dbcat.c
COBOL \sgllib\samples\cobol\dbcat.cbl
FORTRAN \sqgllib\samples\fortran\dbcat.f
REXX \sqllib\samples\rexx\dbcat.cmd

Only entries in the system database directory can be uncataloged. Entries in the local
database directory can be deleted using “sqledrpd - Drop Database” on page 116.

To recatalog the database, use “sglecadb - Catalog Database” on page 78.

To list the databases that are cataloged on a node, use “sqgledosd - Open Database
Directory Scan” on page 109, “sgledgne - Get Next Database Directory Entry” on
page 106, and “sqledcls - Close Database Directory Scan” on page 104.

The authentication type of a database, used when communicating with a down-level
server, can be changed by first uncataloging the database, and then cataloging it again
with a different type.

If directory caching is enabled (see the configuration parameter dir_cache in “sqlfxsys -
Get Database Manager Configuration” on page 216), database, node, and DCS
directory files are cached in memory. An application's directory cache is created during
its first directory lookup. Since the cache is only refreshed when the application
modifies any of the directory files, directory changes made by other applications may
not be effective until the application has restarted. To refresh DB2's shared cache
(server only), stop (db2stop) and then restart (db2start) the database manager. To
refresh the directory cache for another application, stop and then restart that
application.

192 APl Reference

sgleuncd - Uncatalog Database

See Also
“sglecadb - Catalog Database” on page 78
“sgledcls - Close Database Directory Scan” on page 104
“sgledgne - Get Next Database Directory Entry” on page 106
“sgledosd - Open Database Directory Scan” on page 109.

Chapter 1. Application Programming Interfaces 193

sgleuncn - Uncatalog Node

sgleuncn - Uncatalog Node

Deletes an entry from the node directory.

Authorization
One of the following:

sysadm
sysctrl

Required Connection
None

API Include File

sqlenv.h

C API Syntax

/* File: sqlenv.h */
/% API: Uncatalog Node =/
[x .. %/
SQL_API_RC SQL_API_FN
sqleuncn (
_SQLOLDCHAR =* pNodeName,
struct sqlca * pSqlca);
[* .. %/

Generic API Syntax

/* File: sqlenv.h */
/* API: Uncatalog Node =/
[x .. %/
SQL_API_RC SQL_API_FN
sqlguncn (
unsigned short NodeNamelLen,
struct sqlca * pSqlca,
_SQLOLDCHAR * pNodeName) ;
[*x .. %/

API Parameters
NodeNameLen
Input. A 2-byte unsigned integer representing the length in bytes of the
node name.

194 APl Reference

sgleuncn - Uncatalog Node

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

pNodeName
Input. A string containing the name of the node to be uncataloged.

REXX API Syntax

UNCATALOG NODE nodename

REXX API Parameters

nodename
Name of the node to be uncataloged.

Sample Programs

Usage Notes

See Also

C \sqllib\samples\c\nodecat.c
COBOL \sgllib\samples\cobol\nodecat.cbl
FORTRAN \sqgllib\samples\fortran\nodecat.f
REXX \sqgllib\samples\rexx\nodecat.cmd

To recatalog the node, use “sqglectnd - Catalog Node” on page 95.

To list the nodes that are cataloged, use “sqglenops - Open Node Directory Scan” on
page 159, “sglengne - Get Next Node Directory Entry” on page 156, and “sqlencls -
Close Node Directory Scan” on page 154.

If directory caching is enabled (see the configuration parameter dir_cache in “sqlfxsys -
Get Database Manager Configuration” on page 216), database, node, and DCS
directory files are cached in memory. An application's directory cache is created during
its first directory lookup. Since the cache is only refreshed when the application
modifies any of the directory files, directory changes made by other applications may
not be effective until the application has restarted. To refresh DB2's shared cache
(server only), stop (db2stop) and then restart (db2start) the database manager. To
refresh the directory cache for another application, stop and then restart that
application.

“sglectnd - Catalog Node” on page 95

“sglencls - Close Node Directory Scan” on page 154
“sglengne - Get Next Node Directory Entry” on page 156
“sglenops - Open Node Directory Scan” on page 159.

Chapter 1. Application Programming Interfaces 195

sqglfddb - Get Database Configuration Defaults

sqlfddb - Get Database Configuration Defaults

Returns the default values of individual entries in a database configuration file.

Authorization
None

Required Connection
Instance. It is not necessary to call ATTACH before getting the configuration of a
remote database. If the database is cataloged as remote, an instance attachment to the
remote node is established for the duration of the call.

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h =/
/* API: Get Database Configuration Defaults =/
[* oo %/
SQL_API_RC SQL_API_FN
sqlfddb (

char * pDbATias,

unsigned short NumItems,

struct sqlfupd * pltemlList,

struct sqlca * pSqlca);
[* ... %/

Generic API Syntax

/* File: sqlutil.h */
/* APL: Get Database Configuration Defaults */
JEE Y
SQL_API_RC SQL_API_FN
sqlgddb (
unsigned short DbAliaslen,
unsigned short NumItems,
struct sqlfupd * pItemlList,
struct sqlca * pSqlca,
char * pDbAlias);
[x .. %/

196 APl Reference

sqglfddb - Get Database Configuration Defaults

API Parameters

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

Numlitems
Input. Number of entries to be returned. The minimum valid value is 1.

pltemList
Input/Output. Pointer to an array of Numitems sqlfupd structures, each
containing a token field indicating which value to return, and a pointer field
indicating where to place the configuration value. For more information
about this structure, see “SQLFUPD” on page 422.

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA”" on page 373.

pDbAlias

Input. A string containing the database alias.

Sample Programs
C \sgllib\samples\c\d_dbconf.c

COBOL \sqllib\samples\cobol\d_dbconf.cbl
FORTRAN \sqgllib\samples\fortran\d_dbconf.f

Usage Notes
The application is responsible for allocating sufficient memory for each data element
returned. For example, the value returned for newlogpath can be up to 242 bytes in
length.

DB2 returns the current value of non-updateable parameters.

If an error occurs, the information returned is not valid. If the configuration file is invalid,
an error message is returned. The database must be restored from a backup version.

To set the database configuration parameters to the recommended database manager
defaults, use “sqlfrdb - Reset Database Configuration” on page 200.

For a brief description of the database configuration parameters, see the Command
Reference. For more information about tuning these parameters, see the Administration
Guide.

See Also
“sqlfrdb - Reset Database Configuration” on page 200
“sqlfudb - Update Database Configuration” on page 206
“sqlfxdb - Get Database Configuration” on page 213.

Chapter 1. Application Programming Interfaces 197

sqglfdsys - Get Database Manager Configuration Defaults

sqlfdsys - Get Database Manager Configuration Defaults

Authorization

Returns the default values of individual entries in the database manager configuration

file.

None

Required Connection

None or instance. An instance attachment is not required to perform database manager
configuration operations at the current instance (as defined by the value of the
DB2INSTANCE environment variable), but is required to perform database manager
configuration operations at other instances. To display the database manager
configuration for another instance, it is necessary to first attach to that instance.

API Include File

C API Syntax

sqlutil.h

/* File: sqlutil.h */
/* API: Get Database Manager Configuration Defaults =/
[x .. %/
SQL_API_RC SQL_API_FN
sqlfdsys (

unsigned short NumItems,

struct sqlfupd * pltemList,

struct sqlca * pSqlca);
[x .. %/

Generic API Syntax

/* File: sqlutil.h =/
/* API: Get Database Manager Configuration Defaults =/
[* ... %/
SQL_API_RC SQL_API_FN
sqlgdsys (

unsigned short NumItems,

struct sqlfupd * pltemlList,

struct sqlca * pSqlca);
[* ... %/

198 APl Reference

sqglfdsys - Get Database Manager Configuration Defaults

API Parameters

Numitems
Input. Number of entries being returned. The minimum valid value is 1.

pltemList
Input/Output. Pointer to an array of Numlitems sqlfupd structures, each
containing a token field indicating which value to return, and a pointer field
indicating where to place the configuration value. For more information
about this structure, see “SQLFUPD” on page 422.

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

Sample Programs
C \sqllib\samples\c\d_dbmcon.c

COBOL \sqllib\samples\cobol\d_dbmcon.cbl
FORTRAN \sqgllib\samples\fortran\d_dbmcon.f

Usage Notes
If an attachment to a remote instance (or a different local instance) exists, the default
database manager configuration parameters for the attached server are returned,;
otherwise, the local default database manager configuration parameters are returned.

If an error occurs, the information returned is not valid. If the configuration file is invalid,
an error message is returned. The user must again install the database manager to
recover.

The current value of non-updateable parameters is returned as the default.

To set the database manager configuration parameters to the recommended database
manager defaults, use “sqlfrsys - Reset Database Manager Configuration” on
page 203.

For a brief description of the database manager configuration parameters, see the
Command Reference. For more information about tuning these parameters, see the
Administration Guide.

See Also
“sqlfrsys - Reset Database Manager Configuration” on page 203
“sqlfusys - Update Database Manager Configuration” on page 210
“sqlfxsys - Get Database Manager Configuration” on page 216.

Chapter 1. Application Programming Interfaces 199

sqlfrdb - Reset Database Configuration

sqlfrdb - Reset Database Configuration

Scope

Authorization

Resets the configuration file of a specific database to the system defaults.

This API only affects the node on which it is issued.

One of the following:

sysadm
sysctrl
sysmaint

Required Connection

Instance. An explicit attachment is not required. If the database is listed as remote, an
instance attachment to the remote node is established for the duration of the call.

API Include File

C API Syntax

sqlutil.h

/* File: sqlutil.h =/
/% API: Reset Database Configuration */
[* ... %/
SQL_API_RC SQL_API_FN
sqlfrdb (

_SQLOLDCHAR =* pDbAlias,

struct sqlca * pSqlca);
[* ... %/

Generic API Syntax

/* File: sqlutil.h =/
/% API: Reset Database Configuration */
[*x .. %/
SQL_API_RC SQL_API_FN
sqlgrdb (

unsigned short DbAliaslLen,

struct sqlca * pSqlca,

char * pDbAlias);
[x .. %/

200 API Reference

sqglfrdb - Reset Database Configuration

API Parameters

DbAliasLen
Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA”" on page 373.

pDbAlias

Input. A string containing the database alias.

REXX API Syntax

RESET DATABASE CONFIGURATION FOR dbname

REXX API Parameters

dbname
Alias of the database associated with the configuration file.

Sample Programs

Usage Notes

C \sgllib\samples\c\dbconf.c
COBOL \sqgllib\samples\cobol\dbconf.cbl
FORTRAN \sqgllib\samples\fortran\dbconf.f
REXX \sqgllib\samples\rexx\dbconf.cmd

This API resets the entire configuration (except for non-updateable parameters).

To view or print a list of the current database configuration parameters for a database,
use “sqlfxdb - Get Database Configuration” on page 213.

To view the default values for database configuration parameters, use “sqglfddb - Get
Database Configuration Defaults” on page 196.

To change the value of a configurable parameter, use “sqlfudb - Update Database
Configuration” on page 206.

Changes to the database configuration file become effective only after they are loaded
into memory. All applications must disconnect from the database before this can occur.

If an error occurs, the database configuration file does not change.

The database configuration file cannot be reset if the checksum is invalid. This may
occur if the database configuration file is changed without using the appropriate API. If
this happens, the database must be restored to reset the database configuration file.

Chapter 1. Application Programming Interfaces 201

sqlfrdb - Reset Database Configuration

For a brief description of the database configuration parameters, see the Command
Reference. For more information about these parameters, see the Administration Guide.

See Also
“sqlfddb - Get Database Configuration Defaults” on page 196
“sqlfudb - Update Database Configuration” on page 206
“sqlfxdb - Get Database Configuration” on page 213.

202 API Reference

sqlfrsys - Reset Database Manager Configuration

sglfrsys - Reset Database Manager Configuration

Resets the parameters in the database manager configuration file to the system
defaults.

Authorization
sysadm

Required Connection
None or instance. An instance attachment is not required to perform database manager
configuration operations at the current instance (as defined by the value of the
DB2INSTANCE environment variable), but is required to perform database manager
configuration operations at other instances. To reset the database manager
configuration for another instance, it is necessary to first attach to that instance.

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */
/* API: Reset Database Manager Configuration */
[* ... %/
SQL_API_RC SQL_API_FN
sqlfrsys (
struct sqlca * pSqlca);
[* ... %/

Generic APl Syntax

/* File: sqlutil.h */
/* API: Reset Database Manager Configuration */
[* .. %/
SQL_API_RC SQL_API_FN
sqlgrsys (
struct sqlca * pSqlca);
[* ... %/

API| Parameters
pSqlca
Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

Chapter 1. Application Programming Interfaces 203

sqlfrsys - Reset Database Manager Configuration

REXX API Syntax

RESET DATABASE MANAGER CONFIGURATION

Sample Programs

Usage Notes

Cc \sqllib\samples\c\dbmconf.c
COBOL \sqllib\samples\cobol\dbmconf.cbl
FORTRAN \sqgllib\samples\fortran\dbmconf.f
REXX \sqgllib\samples\rexx\dbmconf.cmd

If an attachment to a remote instance (or a different local instance) exists, the database
manager configuration parameters for the attached server are reset; otherwise, the local
database manager configuration parameters are reset.

This API resets the entire configuration (except for non-updateable parameters).

To view or print a list of the current database manager configuration parameters, use
“sglfxsys - Get Database Manager Configuration” on page 216.

To view the default values for database manager configuration parameters, use
“sqlfdsys - Get Database Manager Configuration Defaults” on page 198.

To change the value of a configurable parameter, use “sqlfusys - Update Database
Manager Configuration” on page 210.

Changes to the database manager configuration file become effective only after they
are loaded into memory. For a server configuration parameter, this occurs during
execution of db2start . For a client configuration parameter, this occurs when the
application is restarted.

If an error occurs, the database manager configuration file does not change.

The database manager configuration file cannot be reset if the checksum is invalid.
This may occur if the database manager configuration file is changed without using the
appropriate API. If this happens, the database manager must be installed again to reset
the database manager configuration file.

For a brief description of the database manager configuration parameters, see the
Command Reference. For more information about these parameters, see the
Administration Guide.

204 APl Reference

sqlfrsys - Reset Database Manager Configuration

See Also
“sqlfdsys - Get Database Manager Configuration Defaults” on page 198
“sqlfusys - Update Database Manager Configuration” on page 210
“sglfxsys - Get Database Manager Configuration” on page 216.

Chapter 1. Application Programming Interfaces 205

sqlfudb - Update Database Configuration

sqlfudb - Update Database Configuration

Scope

Authorization

Modifies individual entries in a specific database configuration file.

A database configuration file resides on every node on which the database has been
created.

This API only affects the node on which it is issued.

One of the following:

sysadm
sysctrl
sysmaint

Required Connection

Instance. An explicit attachment is not required. If the database is listed as remote, an
instance attachment to the remote node is established for the duration of the call.

API Include File

C API Syntax

sqlutil.h

/* File: sqlutil.h */
/* API: Update Database Configuration */
[* ... %/
SQL_API_RC SQL_API_FN
sqlfudb (

_SQLOLDCHAR = pDbAlias,

unsigned short NumItems,

struct sqlfupd * pItemList,

struct sqlca * pSqlca);
[* ... %/

206 API Reference

Generic API Syntax

sglfudb - Update Database Configuration

/* ...

/[* ...

/* File: sqlutil.h */
/* API: Update Database Configuration */

SQL_API_RC SQL_API_FN
sqlgudb (

unsigned short DbAliaslLen,
unsigned short NumItems,
unsigned short * pItemListLens,
struct sqlfupd * pItemlList,
struct sqlca * pSqlca,
char * pDbAlias);

API Parameters

DbAliasLen

Numltems

Input. A 2-byte unsigned integer representing the length in bytes of the
database alias.

Input. Number of entries being modified. The minimum valid value is 1.

pltemlListLens

pltemList

pSqlca

pDbAlias

REXX API Syntax

Input. An array of 2-byte unsigned integers representing the length of each
of the new configuration field values in the pltemList. It is necessary to
provide lengths for those fields that contain strings only, such as
newlogpath. If, for example, newlogpath is the fifth element in the pltemList
array, its length must be the fifth element in the pltemListLens array.

Input. Pointer to an array of Numltems sqlfupd structures, each containing
a token field indicating which value to update, and a pointer field indicating
the new value. For more information about this structure, see “SQLFUPD”
on page 422.

Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

Input. A string containing the database alias.

UPDATE DATABASE CONFIGURATION FOR dbname USING :values

Chapter 1. Application Programming Interfaces 207

sqlfudb - Update Database Configuration

REXX APl Parameters

dbname
Alias of the database associated with the configuration file.

values
A compound REXX host variable containing tokens indicating which
configuration fields are to be modified. The application provides the token
and the new value for each field. The following are elements of a variable,
where XXX represents the host variable name:
XXX.0 Twice the number of fields supplied (number of data elements

in the remainder of the variable)

XXX.1 First token
XXX.2 Value supplied for the first field
XXX.3 Second token
XXX.4 Value supplied for the second field
XXX.5 and so on.

Sample Programs
C \sqllib\samples\c\dbconf.c

COBOL \sgllib\samples\cobol\dbconf.cbl
FORTRAN \sqllib\samples\fortran\dbconf.f
REXX \sqgllib\samples\rexx\dbconf.cmd

Usage Notes

To view or print a list of the database configuration parameters, use “sqlfxdb - Get
Database Configuration” on page 213.

To view the default values for database configuration parameters, use “sqlfddb - Get
Database Configuration Defaults” on page 196.

To reset the database configuration parameters to the recommended defaults, use
“sqlfrdb - Reset Database Configuration” on page 200.

The default values of these parameters may differ for each type of database node
configured (server, client, or server with remote clients). See the Administration Guide
for the ranges and the default values that can be set on each node type. The valid
token values for each configuration entry are listed in Table 44 on page 422.

Not all parameters can be updated.

Changes to the database configuration file become effective only after they are loaded
into memory. All applications must disconnect from the database before this can occur.

If an error occurs, the database configuration file does not change.
The database configuration file cannot be updated if the checksum is invalid. This may
occur if the database configuration file is changed without using the appropriate API. If

this happens, the database must be restored to reset the database configuration file.

208 API Reference

sglfudb - Update Database Configuration

For a brief description of the database configuration parameters, see the Command
Reference. For more information about these parameters, see the Administration Guide.

See Also
“sqlfddb - Get Database Configuration Defaults” on page 196
“sqlfrdb - Reset Database Configuration” on page 200
“sqlfxdb - Get Database Configuration” on page 213.

Chapter 1. Application Programming Interfaces 209

sqlfusys - Update Database Manager Configuration

sqlfusys - Update Database Manager Configuration

Authorization

Modifies individual entries in the database manager configuration file.

sysadm

Required Connection

None or instance. An instance attachment is not required to perform database manager
configuration operations at the current instance (as defined by the value of the
DB2INSTANCE environment variable), but is required to perform database manager
configuration operations at other instances. To update the database manager
configuration for another instance, it is necessary to first attach to that instance.

API Include File

C API Syntax

sqlutil.h

/* File: sqlutil.h =/
/* API: Update Database Manager Configuration =/
[x ... %/
SQL_API_RC SQL_API_FN
sqlfusys (
unsigned short NumItems,
struct sqlfupd * pltemList,
struct sqlca * pSqlca);
[* .. %/

Generic API Syntax

/* File: sqlutil.h */
/* API: Update Database Manager Configuration =/
[* ... %/
SQL_API_RC SQL_API_FN
sqlgusys (

unsigned short NumItems,

unsigned short * pltemListlLens,

struct sqlfupd * pltemlList,

struct sqlca * pSqlca);
[* ... %/

210 API Reference

API Parameters
Numltems

sglfusys - Update Database Manager Configuration

Input. Number of entries being modified. The minimum valid value is 1.

pltemlListLens

pltemList

pSqlca

REXX API Syntax

Input. An array of 2-byte unsigned integers representing the length of each
of the new configuration field values in the pltemList. It is necessary to
provide lengths for those fields that contain strings only, such as dftdbpath.
If, for example, dftdbpath is the fifth element in the pltemList array, its
length must be the fifth element in the pltemListLens array.

Input. Pointer to an array of Numltems sqlfupd structures, each containing
a token field indicating which value to update, and a pointer field indicating
the new value. For more information about this structure, see “SQLFUPD”
on page 422.

Output. A pointer to the sglca structure. For more information about this
structure, see “SQLCA” on page 373.

UPDATE DATABASE MANAGER CONFIGURATION USING :values

REXX API Parameters

values

Sample Programs
C

COBOL
FORTRAN
REXX

A compound REXX host variable containing tokens that indicate the
configuration fields to be modified. The application provides the token and
the new value for each field. The following are elements of a variable,
where XXX represents the host variable name:

XXX.0 Number of elements in the variable. This value is two times the
number of fields to modify.

XXX.1 First token

XXX.2 New value for the first field

XXX.3 Second token

XXX.4 New value for the second field

XXX.5 and so on.

\sqllib\samples\c\dbmconf.c
\sqllib\samples\cobol\dbmconf.chbl
\sqllib\samples\fortran\dbmconf.f

\sgllib\samples\rexx\dbmconf.cmd

Chapter 1. Application Programming Interfaces 211

sqlfusys - Update Database Manager Configuration

Usage Notes

See Also

If an attachment to a remote instance (or a different local instance) exists, the database
manager configuration parameters for the attached server are updated; otherwise, the
local database manager configuration parameters are updated.

To view or print a list of the database manager configuration parameters, use “sqlfxsys
- Get Database Manager Configuration” on page 216.

To reset the database manager configuration parameters to the recommended
database manager defaults, use “sqglfrsys - Reset Database Manager Configuration” on
page 203.

The default values of these parameters may differ for each type of database node
configured (server, client, or server with remote clients). See the Administration Guide
for the ranges and the default values that can be set on each node type. The valid
token values for each configuration entry are listed in Table 46 on page 425.

Not all parameters can be updated.

Changes to the database manager configuration file become effective only after they
are loaded into memory. For a server configuration parameter, this occurs during
execution of db2start . For a client configuration parameter, this occurs when the
application is restarted.

If an error occurs, the database manager configuration file does not change.

The database manager configuration file cannot be updated if the checksum is invalid.

This may occur if the database manager configuration file is changed without using the
appropriate API. If this happens, the database manager must be reinstalled to reset the
database manager configuration file.

For a brief description of the database manager configuration parameters, see the
Command Reference. For more information about these parameters, see the
Administration Guide.

“sglfdsys - Get Database Manager Configuration Defaults” on page 198
“sglfrsys - Reset Database Manager Configuration” on page 203
“sglfxsys - Get Database Manager Configuration” on page 216.

212 API Reference

sqglfxdb - Get Database Configuration

sglfxdb - Get Database Configuration

Returns the values of individual entries in a database configuration file.

For a brief description of the database configuration parameters, see the Command
Reference. For detailed information about these parameters, see the Administration
Guide.

Scope
This API returns information only for the node from which it is called.

Authorization
None

Required Connection
Instance. It is not necessary to call ATTACH before getting the configuration of a
remote database. If the database is cataloged as remote, an instance attachment to the
remote node is established for the duration of the call.

API Include File
sqlutil.h

C API Syntax

/* File: sqlutil.h */
/* API: Get Database Configuration =/
[* .../
SQL_API_RC SQL_API_FN
sqlfxdb (
_SQLOLDCHAR +* pDbAlias,
unsigned short NumItems,
struct sqlfupd * pItemlList,
struct sqlca * pSqlca);
[* .../

Chapter 1. Application Programming Interfaces 213

sqglfxdb - Get Database Configuration

Generic API Syntax

[* ... %/

sqlgxdb

[* ..o %/

/* File: sqlutil.h */
/* API: Get Database Configura