

IBM DB2 Universal Database
Building Applications

for UNIX** Environments
Version 5

Document Number S10J-8161-00

IBM DB2 Universal Database ÉÂÔ

Building Applications
for UNIX** Environments
Version 5

 S10J-8161-00

IBM DB2 Universal Database ÉÂÔ

Building Applications
for UNIX** Environments
Version 5

 S10J-8161-00

Before using this information and the product it supports, be sure to read the general information under Appendix D,
“Notices” on page 127.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in U.S. or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1993, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

About This Book . vii
Who Should Use This Book . viii
How To Use This Book . viii
Highlighting Conventions . x

Chapter 1. About the DB2 Software Developer's Kit 1
Supported Servers . 2
Supported Software by Platform . 2

AIX . 3
HP-UX . 3
Solaris . 3

Sample Programs . 4

Chapter 2. Setup . 19
Setting Your Environment . 19
Installing, Cataloging, and Binding the SAMPLE Database 20

Installing . 20
Cataloging . 21
Binding . 22

Where to Go Next . 23

Chapter 3. Introduction to Embedded SQL Applications 25
Using the Micro Focus COBOL Compiler . 26
About Stored Procedures and User-Defined Functions (UDFs) 27

C++ Considerations for UDFs and Stored Procedures 28
Error Checking . 29

Chapter 4. Building AIX Embedded SQL Applications 31
IBM C . 31

Building C Stored Procedures . 33
Coding and Compiling Stored Procedures 36

Relationship to Your CALL Statement . 36
Building C User-Defined Functions (UDFs) 37
Coding and Compiling UDFs . 40

Relationship to Your CREATE FUNCTION Statement 40
Multi-threaded Applications on AIX Version 4 41

IBM C Set++ . 41
Building C++ Stored Procedures . 43
Multi-threaded Applications on AIX Version 4 46

IBM XL FORTRAN for AIX . 46
Building FORTRAN Stored Procedures . 48
Using the IBM XL FORTRAN for AIX Compiler 51

IBM COBOL Set for AIX . 52
Building IBM COBOL Set for AIX Stored Procedures 54
Using the IBM COBOL Set for AIX Compiler 57

 Copyright IBM Corp. 1993, 1997 iii

Micro Focus COBOL . 58
Building Micro Focus COBOL Stored Procedures 60

Setting Up and Running REXX Programs . 63

Chapter 5. Building HP-UX Embedded SQL Applications 65
HP-UX C/C++ . 65

Building C Stored Procedures . 68
Building C User-Defined Functions (UDFs) 71
Multi-threaded Applications . 73

HP FORTRAN/9000 . 73
Building FORTRAN Stored Procedures . 76

Micro Focus COBOL . 78
Building Micro Focus COBOL Stored Procedures 80

Exiting the Stored Procedure . 84

Chapter 6. Building Solaris Embedded SQL Applications 85
SPARCompiler C/C++ . 85

Building C Stored Procedures . 88
Building C User-Defined Functions (UDFs) 91
Multi-threaded Applications . 94

SPARCompiler FORTRAN . 94
Building FORTRAN Stored Procedures . 96

Micro Focus COBOL . 99

Chapter 7. Building DB2 Call Level Interface (CLI) Applications 103
Coding a Script File by Platform . 103

AIX . 104
HP-UX . 104
Solaris . 105

Building and Running a CLI Program . 106

Chapter 8. Building Java Applications and Applets 109
Setting Up the AIX Environment . 109
Setting Up the HP-UX Environment . 109
Setting Up the Solaris Environment . 110
Building and Running a JDBC Application . 110
Building and Running a JDBC Applet . 111

Appendix A. About Database Manager Instances 113

Appendix B. Problem Determination . 115

Appendix C. How the DB2 Library Is Structured 117
SmartGuides . 117
Online Help . 118
DB2 Books . 120
About the Information Center . 124

iv Building Applications for UNIX Environments

Appendix D. Notices . 127
Trademarks . 127
Trademarks of Other Companies . 128

Index . 129

Contacting IBM . 131

 Contents v

vi Building Applications for UNIX Environments

About This Book

This book explains how to build applications using the DB2 Software Developer's Kits
(DB2 SDKs) for DB2 Universal Database Version 5 on the following UNIX operating
systems:

 ¹ AIX
 ¹ HP-UX
 ¹ Solaris

The book provides information to set up your environment for developing DB2
applications, and step-by-step instructions to compile, link, and run these applications in
this environment.

Different programming interfaces can be used to develop your applications:

Embedded SQL Uses SQL statements that are
precompiled before your
program is compiled.

DB2 Call Level Interface (CLI) Is a callable SQL interface
based on the X/Open CLI
specification, and is compatible
with the Microsoft Corporation's
Open Database Connectivity
(ODBC).

DB2 Application Programming Interfaces (APIs) Use DB2 administrative APIs in
your applications to create
administrative programs.

For information on these programming interfaces, and to decide which one best fits
your needs, refer to the Road Map to DB2 Programming, especially chapter 2,
"Deciding which Programming Interface to Use".

For more detailed information on each of the different programming interfaces, refer to:

¹ Embedded SQL Programming Guide

Discusses how to code and design application programs that access DB2 family
servers using embedded SQL.

¹ CLI Guide and Reference

Explains how to code and design application programs that use the DB2 Call Level
Interface and ODBC.

 ¹ API Reference

Discusses how to code and design application programs that use DB2 Application
Programming Interfaces.

You will find the following books useful for further related information, such as detailed
product installation and setup:

 Copyright IBM Corp. 1993, 1997 vii

 ¹ Quick Beginnings

Explains how to install the database manager, and the DB2 Software Developer's
Kit (DB2 SDK) on server and client workstations.

 ¹ Command Reference

Explains how to use the DB2 Command Line Processor (CLP).

 ¹ Troubleshooting Guide

Helps you resolve application development problems involving DB2 clients and
servers, as well as problems with related tasks in database administration and
connectivity.

For a complete list of the DB2 documentation library, see Appendix C, “How the DB2
Library Is Structured” on page 117.

Who Should Use This Book
You should use this book if you want to develop applications on one of the currently
supported UNIX platforms for DB2 Universal Database Version 5. You may use
embedded SQL, the DB2 CLI, Java applications or Java applets to access DB2
databases, or DB2 APIs to create administrative programs.

In order to use this book, you should know one or more of the supported programming
languages on any of the supported UNIX platforms listed in “Supported Software by
Platform” on page 2.

How To Use This Book
The book is designed to allow easy access to the information you need to develop your
applications. The first two chapters contain common information for users who will be
developing either embedded SQL, DB2 CLI, Java, or DB2 API applications on any of
these platforms, and should therefore be read by all users. Chapter 3 contains common
information for all those who want to develop embedded SQL applications.

Each of Chapters 4, 5, and 6 gives detailed information for developing embedded SQL
applications on one of the supported platforms. In addition, the DB2 API script file for
each supported compiler in these chapters is noted after the first embedded SQL script
file for the compiler is discussed, as these files share the same compile and link
options.

Chapter 7 contains common information for all those developing DB2 CLI applications.
Chapter 8 contains common information for all those developing Java applications and
applets for DB2.

To use this book, a user who wanted, for example, to develop embedded SQL
applications on Solaris should read Chapters 1, 2, 3, and 6. A user who wanted to
develop DB2 CLI applications on any of the platforms should read Chapters 1, 2, and 7.
A user who wanted to develop Java applications or applets for DB2 on a supporting
platform should read Chapters 1, 2, and 8.

viii Building Applications for UNIX Environments

Since DB2 API calls can be made from either the embedded SQL, CLI, or Java
programming interfaces, a user who wanted to develop DB2 API applications using one
of these interfaces should read the appropriate set of chapters given above.

Please note that some of the common chapters contain sections that have information
specific to each platform, such as Supported Software by Platform in Chapter 1 and
Coding a Script File by Platform in Chapter 7.

This book contains the following chapters and appendices:

Chapter 1, About the DB2 Software Developer's Kit, describes the DB2 SDK. It lists the
supported servers and software of each of the UNIX platforms supported by DB2
Universal Database Version 5. It also describes the sample programs.

Chapter 2, Setup, explains how to set up the client/server and programming
environment before you use the DB2 SDK.

Chapter 3, Introduction to Embedded SQL Applications, shows you how to build
programs that use embedded SQL statements.

Chapter 4, Building AIX Embedded SQL Applications, shows you how to build AIX
programs that use embedded SQL statements.

Chapter 5, Building HP-UX Embedded SQL Applications, shows you how to build
HP-UX programs that use embedded SQL statements.

Chapter 6, Building Solaris Embedded SQL Applications, shows you how to build
Solaris programs that use embedded SQL statements.

Chapter 7, Building DB2 Call Level Interface (CLI) Applications, shows you how to build
programs that use DB2 Call Level Interface function calls.

Chapter 8, Building Java Applications and Applets, shows you how to build DB2
programs in Java.

Appendix A, About Database Manager Instances, explains database manager
instances and how to use them to manage databases.

Appendix B, Problem Determination, describes build and run-time problems you can
encounter, and what sources of information you can use to resolve them.

Appendix C, How the DB2 Library Is Structured, describes the components of the
library, including online help, SmartGuides, and books.

Appendix D, Notices, lists notices concerning IBM publications, and trademarks of IBM
and other companies.

 About This Book ix

 Highlighting Conventions
This book uses the following conventions:

Italics Indicate one of the following:

¹ Introduction of a new term
¹ Names or values that are supplied by the user
¹ References to another source of information

 ¹ General emphasis

UPPERCASE Indicates one of the following:

 ¹ API names
¹ Database manager data types

 ¹ Field names
 ¹ Key words
 ¹ SQL statements

Example text Indicates one of the following:

¹ Coding examples and code fragments
 ¹ Commands
¹ Examples of output, similar to what is displayed by the system
¹ Examples of specific data values
¹ Examples of system messages
¹ File and directory names
¹ Information that you are instructed to type

Bold Emphasizes a point.

x Building Applications for UNIX Environments

Chapter 1. About the DB2 Software Developer's Kit

The DB2 Software Developer's Kit (DB2 SDK) provides the tools and environment you
need to develop applications that access DB2 servers and application servers that
implement the Distributed Relational Database Architecture (DRDA).

You can develop applications on a server or client that has the DB2 SDK installed.
Your applications can also run on a server or client. To run your applications on a
client, you must have the appropriate DB2 Client Application Enabler (DB2 CAE)
installed. The DB2 CAE is installed from the DB2 Client Pack. See Chapter 2, “Setup”
on page 19 for information about setting up your programming environment.

The DB2 SDKs for the UNIX platforms described in this book include the following:

¹ Precompilers for C, C++, COBOL, and FORTRAN.

¹ Include files and code samples to develop applications that use embedded SQL.

¹ Programming libraries, include files, and code samples that use the DB2 Call Level
Interface (DB2 CLI) to develop applications which are easily ported to ODBC and
compiled with an ODBC SDK. The DB2 CAE contains an ODBC driver for DB2 that
supports applications developed with Visigenic ODBC version 2.1.

¹ DB2 Java Database Connectivity (DB2 JDBC) support to develop Java applications
and applets.

¹ On AIX, support to develop database applications that use the REXX language.

¹ Interactive SQL through the Command Line Processor (CLP) to prototype SQL
statements or to perform ad hoc queries against the database.

¹ A documented API to enable other application development tools to implement
precompiler support for DB2 directly within their products. For example, on AIX,
IBM COBOL and PL/I use this interface. Information on documented APIs can be
obtained by downloading either of the following files. On Compuserve, the file is
located in the IBM DB2 Family Forum on CompuServe (GO IBMDB2). Once in this
forum, get the file called PREPAPI.TXT from Library 1. This file must be downloaded
in ASCII format. On the Internet, go to the anonymous FTP site
ps.boulder.ibm.com . The file is called prepapi.txt, and is located in the directory
/ps/products/db2/info. This file is in ASCII format. Refer to the DB2 Solutions
Directory for other examples of IBM and third party providers. You can get the
Directory from CompuServe in the IBMDB2 forum, or contact your IBM
representative for a copy.

¹ SQL 92 and MVS Conformance Flagger: Identifies embedded SQL statements in
applications that do not conform to the ISO/ANSI SQL92 Entry Level standard, or
which are not supported by DB2 for MVS. If you migrate applications developed on
a workstation to another platform, the Flagger saves you time by showing syntax
incompatibilities. Refer to the Command Reference for information about the
SQLFLAG option in the PRECOMPILE PROGRAM command.

 Copyright IBM Corp. 1993, 1997 1

 Supported Servers
You use the DB2 SDK to develop applications that will run on a specific platform.
However, your applications can access remote databases on the following platforms:

¹ DB2 for OS/2
¹ DB2 for AIX
¹ DB2 for Windows NT
¹ DB2 for HP-UX
¹ DB2 for Solaris
¹ DB2 for SINIX
¹ DB2 for SCO OpenServer
¹ Distributed Relational Database Architecture (DRDA)-compliant application servers,

such as:
– DB2 for MVS/ESA
– DB2 for VSE & VM (formerly SQL/DS for VM and VSE)
– DB2 for OS/400
– DRDA-compliant application servers from database vendors other than IBM.

¹ DB2 CLI applications that conform to ODBC can be ported to work under ODBC,
provided an ODBC driver manager is available on the application platform.

Supported Software by Platform
This section lists the compilers and related software supported by DB2 for the platforms
described in this book. The compiler information assumes that you are using the DB2
precompiler for that platform, and not the precompiler support that may be built into one
of the listed compilers. The exception is VisualAge for Basic; in this case, the
precompiler is provided by VisualAge for Basic and not by DB2. For information on
precompiler support built into any of the listed compilers, see that compiler's
documentation.

Refer to the specific Quick Beginnings book for any of these platforms for information
on the communication products supported by that platform's operating system.

Notes:

1. The README file for a supported platform may contain information on other
compilers that are supported for that platform. The README file for a platform can
be found in the directory in which the program files are installed.

2. Micro Focus COBOL . Any existing applications precompiled with DB2 Version
2.1.1 or earlier and compiled with Micro Focus COBOL should be re-precompiled
with the current version of DB2, and then recompiled with Micro Focus COBOL. If
these applications built with the earlier versions of the IBM precompiler are not
re-precompiled, there is a possibility of database corruption if abnormal termination
occurs.

3. VisualAge for Basic . The product includes DB2 functions for embedded and static
SQL, stored procedures, and User-Defined Functions (UDFs). It includes sample
applications that connect to DB2 with embedded SQL, CLI and ODBC. The
precompiler support for DB2 is provided by VisualAge for Basic. Refer to the

2 Building Applications for UNIX Environments

VisualAge for Basic documentation for more information, especially for the versions
of DB2 supported, and for details about the sample applications provided by the
product.

 AIX
The DB2 SDK for AIX supports the following operating system:

AIX/6000 Version 4.1

The DB2 SDK for AIX supports the following programming languages and compilers:

C IBM C for AIX Version 3.1

C/C++ IBM C Set++ for AIX Version 3.1

FORTRAN IBM XL FORTRAN for AIX Version 3.2

COBOL IBM COBOL Set for AIX Version 1.1, and Micro Focus COBOL
Version 3.2.46 or later

REXX IBM AIX REXX/6000 AISPO Product Number: 5764-057

Java Java Development Kit (JDK) 1.1 for AIX from IBM

Basic IBM VisualAge for Basic Version 1

 HP-UX
The DB2 SDK for HP-UX supports the following operating systems:

HP-UX Version 10.10 and later, and Patch Levels: PHCO_6134,
PHKL_5837, PHKL_6133, PHKL_6189, PHKL_6273,
PHSS_5956

The DB2 SDK for HP-UX supports the following programming languages:

C HP C/HP-UX Version A.10.13, and Patch Level
PHSS_5743

C++ HP-UX C++ Version A.10.03.60, and Patch Level
PHSS_5883

FORTRAN HP FORTRAN/9000 Version 10.0

COBOL Micro Focus COBOL Version 3.2

Java HP-UX Developer's Kit for Java Release 1.1 from
Hewlett-Packard

 Solaris
The DB2 SDK for Solaris supports the following operating system:

Solaris Version 2.5.1 or later

The DB2 SDK for Solaris supports the following programming languages:

 Chapter 1. About the DB2 Software Developer's Kit 3

C SPARCompiler C Version 3.0.1 or later

C++ SPARCompiler C++ Version 4.0.1 or later, and IBM C
Set++ for Solaris Version 1.1.1

FORTRAN SPARCompiler FORTRAN Version 3.0.1

COBOL Micro Focus COBOL Version 3.2

Java Java Development Kit (JDK) 1.1 for Solaris from Sun
Microsystems

 Sample Programs
The DB2 SDK comes with sample programs. The file extensions for each supported
language, and the directories where the programs can be found on the supported
platforms, are given in Table 1 on page 5.

The sample programs providing examples of embedded SQL and DB2 API calls are
shown in Table 2 on page 8. Command Line Processor (CLP) files provided by DB2
are shown in Table 3 on page 13.

Java sample programs are shown in Table 4 on page 14. Object Linking and
Embedding (OLE) sample programs are shown in Table 5 on page 14. The sample
programs demonstrating DB2 CLI calls are shown in Table 6 on page 15.

You can use the sample programs to learn how to code your applications.

4 Building Applications for UNIX Environments

Table 1. Sample Program File Extensions and Locations

Language CLI Programs
Programs with
Embedded SQL

Programs without
Embedded SQL

C File Ext. .c .sqc .c

Directory samples/cli samples/c samples/c

C++ File Ext. Not Applicable .sqC (UNIX)
.sqx

.C (UNIX)

.cxx (Intel)

Directory Not Applicable samples/cpp samples/cpp

COBOL File Ext. Not Applicable .sqb .cbl

Directory Not Applicable samples/cobol

samples/cobol_mf

samples/cobol

samples/cobol_mf

FORTRAN File Ext. Not Applicable .sqf .f (UNIX)
.for (OS/2)

Directory Not Applicable samples/fortran samples/fortran

REXX File Ext. Not Applicable .cmd .cmd

Directory Not Applicable samples/rexx samples/rexx

JAVA File Ext. Not Applicable Not Applicable .java

Directory Not Applicable Not Applicable samples/java

OLE File Ext. Not Applicable Not Applicable Not Applicable

Directory samples\ole Not Applicable samples\ole

Note:

Programs without SQL Denotes programs with no SQL statements in them (primarily programs
using DB2 API functions).

Directory Delimiters On UNIX are /. On OS/2 and Windows platforms, are \.

IBM COBOL samples Are only supplied on the OS/2, AIX, Windows NT and Windows 95 platforms
in the cobol subdirectory.

Micro Focus Cobol Samples Are supplied on all platforms except the Macintosh. The 16-bit Micro Focus
COBOL examples are supplied in the cobol_16 subdirectory on OS/2, and
the cobol subdirectory on Windows 3.1. For all other platforms, the Micro
Focus COBOL samples are in the cobol_mf subdirectory.

Fortran Samples Are only supplied on the AIX, HP-UX, Silicon Graphics IRIX, Solaris, and
OS/2 platforms.

REXX Samples Are only supplied on the AIX, OS/2, Windows NT and Windows 95
platforms.

Java Samples Are stored procedures and UDFs, as well as Java Database Connectivity
(JDBC) applications and applets. Java samples are available on the AIX,
HP-UX, Solaris, OS/2, Windows NT and Windows 95 platforms.

OLE Samples Are for Object Linking and Embedding (OLE) in Microsoft Visual Basic and
Microsoft Visual C++, supplied on the Windows NT and Windows 95
platforms only.

The above table lists the supported languages within the specified programming paradigms. Not all sample
programs have been ported to all the supported programming languages.

 Chapter 1. About the DB2 Software Developer's Kit 5

You can find the sample programs in the samples subdirectory of the directory where
DB2 has been installed. There is a subdirectory for each supported language. The
following examples show you how to locate the samples written in C or C++ on each
supported platform.

¹ On UNIX platforms.

You can find the C source code for embedded SQL and DB2 API programs in
sqllib/samples/c under your database instance directory; the C source code for
DB2 CLI programs is in sqllib/samples/cli. For additional information about the
sample programs in Table 2 on page 8 and Table 6 on page 15, refer to the
README file in the appropriate samples subdirectory under your database manager
instance. The README file will contain any additional samples that are not listed in
this book.

¹ On OS/2, Windows NT, and Windows 95 platforms.

You can find the C source code for embedded SQL and DB2 API programs in
%DB2PATH%\samples\c under the DB2 install directory; the C source code for DB2
CLI programs is in %DB2PATH%\samples\cli. The variable %DB2PATH% determines
where DB2 is installed. Depending on which drive DB2 is installed, %DB2PATH% will
point to drive:\sqllib. For additional information about the sample programs in
Table 2 on page 8 and Table 6 on page 15, refer to the README file in the
appropriate %DB2PATH%\samples subdirectory. The README file will contain any
additional samples that are not listed in this book.

¹ On Windows 3.1.

You can find the C source code for embedded SQL and DB2 API programs in
%DB2PATH%\samples\c; the C source code for DB2 CLI programs is in
%DB2PATH%\samples\cli. The db2.ini file, which stores the DB2 settings, defines
the value for %DB2PATH%, which by default points to drive:\sqllib\win. The value of
%DB2PATH%, as referenced in the db2.ini file, is only recognized within the DB2
environment. For additional information about the sample programs in Table 2 on
page 8 and Table 6 on page 15, refer to the README files in these subdirectories.
The README files will contain any additional samples that are not listed in this book.

 ¹ On Macintosh.

You can find the sample programs in the DB2:samples: folder. There are
sub-folders for sample programs written in C and CLI. For additional information
about the sample programs in Table 2 on page 8 and Table 6 on page 15, refer
to the README file in the DB2:samples: folder. The README file will contain any
additional samples that are not listed in this book.

Not all of the sample programs are available in all the supported programming
languages.

The sample programs directory is typically read-only on most platforms. Before you
alter or build the sample programs, copy them to your working directory. On the
Macintosh, copy them to your working folder.

Note: The sample programs that are shipped with DB2 Universal Database have
dependencies on the English version of the Sample database and the

6 Building Applications for UNIX Environments

associated table and column names. If the Sample database has been
translated into another national language on your version of DB2 Universal
Database, you need to update the name of the Sample database, and the
names of the tables and the columns coded in the supplied sample programs,
to the names used in the translated Sample database. Otherwise, you will
experience problems running the sample programs as shipped.

Currently, the Sample database is translated for the following countries:

 ¹ France
 ¹ Italy
 ¹ Spain
 ¹ Finland
 ¹ Norway
¹ People’s Republic of China

In Table 2 on page 8, ‘Yes’, in the Embedded SQL column, indicates that the program
contains embedded SQL. A blank indicates that the program does not contain
embedded SQL, and thus no precompiling is required.

 Chapter 1. About the DB2 Software Developer's Kit 7

Table 2 (Page 1 of 6). Sample Programs Showing Embedded SQL and APIs

Sample Program
Name

Embedded
SQL Program Description

adhoc Yes Demonstrates dynamic SQL and the SQLDA structure to process SQL
commands interactively. SQL commands are input by the user, and output
corresponding to the SQL command is returned.

advsql Yes Demonstrates the use of advanced SQL expressions like CASE, CAST,
and scalar full selects.

asynrlog Yes Demonstrates the use of the following API:

ASYNCHRONOUS LOG READ

autoloader A UNIX Korn shell script that prepares ftp scripts for data transfer from
remote hosts and generates a temporary buffer space (FIFO or named
pipes). It then starts db2split and invokes DB2 LOAD.

In a partitioned environment, partitioning keys are used to determine the
partition where the data resides. Therefore, data must pass through a
splitting phase before it can be loaded at the correct partition.

The entire split and load process can be accomplished by the autoLoader

utility. It uses a system-defined hashing function to partition the data into
as many output files as there are partitions in the nodegroup in which the
table is defined. It then loads these output files concurrently across the
set of partitions in the nodegroup.

backrest Demonstrates the use of the following APIs:

 BACKUP DATABASE

 RESTORE DATABASE

ROLL FORWARD DATABASE

blobfile Yes Demonstrates the manipulation of a Binary Large Object (BLOB), by
reading a BLOB value from the sample database and placing it in a file,
the contents of which can be displayed using an external viewer.

bindfile Yes Demonstrates the use of the BIND API to bind an embedded SQL
application to a database.

calludf Yes Demonstrates the use of the library of User-Defined Functions (UDFs)
created by udf for the SAMPLE database tables.

client Demonstrates the use of the following APIs:

 SET CLIENT

 QUERY CLIENT

columns Yes Demonstrates the use of a cursor that is processed using dynamic SQL.
This program lists all the entries in the system table,
SYSIBM.SYSTABLES, under a desired schema name.

cursor Yes Demonstrates the use of a cursor using static SQL.

d_dbconf Demonstrates the use of the following API:

GET DATABASE CONFIGURATION DEFAULTS

d_dbmcon Demonstrates the use of the following API:

GET DATABASE MANAGER CONFIGURATION DEFAULTS

da_manip Yes Provides a library of routines to manipulate SQLDAs and SQLVARs.

8 Building Applications for UNIX Environments

Table 2 (Page 2 of 6). Sample Programs Showing Embedded SQL and APIs

Sample Program
Name

Embedded
SQL Program Description

db2mon Demonstrates how to use the Database System Monitor APIs, and how to
process the output data buffer returned from the Snapshot API.

db2uext2 Provides a sample log management user exit.

dbauth Yes Demonstrates the use of the following API:

 GET AUTHORIZATIONS

dbcat Demonstrates the use of the following APIs:

 CATALOG DATABASE

CLOSE DATABASE DIRECTORY SCAN

GET NEXT DATABASE DIRECTORY ENTRY

OPEN DATABASE DIRECTORY SCAN

 UNCATALOG DATABASE

dbcmt Demonstrates the use of the following APIs:

CHANGE DATABASE COMMENT

dbconf Demonstrates the use of the following APIs:

 CREATE DATABASE

 DROP DATABASE

GET DATABASE CONFIGURATION

RESET DATABASE CONFIGURATION

UPDATE DATABASE CONFIGURATION

dbinst Demonstrates the use of the following APIs:

ATTACH TO INSTANCE

DETACH FROM INSTANCE

 GET INSTANCE

dbmconf Demonstrates the use of the following APIs:

GET DATABASE MANAGER CONFIGURATION

RESET DATABASE MANAGER CONFIGURATION

UPDATE DATABASE MANAGER CONFIGURATION

dbsnap Demonstrates the use of the following API:

DATABASE SYSTEM MONITOR SNAPSHOT

dbstart Demonstrates the use of the following API:

START DATABASE MANAGER

dbstat Yes Demonstrates the use of the following APIs:

 REORGANIZE TABLE

 RUN STATISTICS

dbstop Demonstrates the use of the following APIs:

 FORCE USERS

STOP DATABASE MANAGER

db_udcs Demonstrates the use of the following APIs in order to simulate the
collating behaviour of a DB2 for MVS/ESA or OS/390 CCSID 500
(EBCDIC International) collating sequence:

 CREATE DATABASE

 DROP DATABASE

 Chapter 1. About the DB2 Software Developer's Kit 9

Table 2 (Page 3 of 6). Sample Programs Showing Embedded SQL and APIs

Sample Program
Name

Embedded
SQL Program Description

dcscat Demonstrates the use of the following APIs:

ADD DCS DIRECTORY ENTRY

CLOSE DCS DIRECTORY SCAN

GET DCS DIRECTORY ENTRY FOR DATABASE

GET DCS DIRECTORY ENTRIES

OPEN DCS DIRECTORY SCAN

UNCATALOG DCS DIRECTORY ENTRY

delet Yes Demonstrates static SQL to delete items from a database.

dmscont Demonstrates the use of the following APIs in order to create a database
with more than one database managed storage (DMS) container:

 CREATE DATABASE

 DROP DATABASE

dynamic Yes Demonstrates the use of a cursor using dynamic SQL.

ebcdicdb Demonstrates the use of the following APIs in order to simulate the
collating behaviour of a DB2 for MVS/ESA or OS/390 CCSID 037
(EBCDIC US English) collating sequence:

 CREATE DATABASE

 DROP DATABASE

expsamp Yes Demonstrates the use of the following APIs:

 EXPORT

 IMPORT

 in conjunction with a DRDA database.

fillcli Yes Demonstrates the client-side of a stored procedure that uses the SQLDA
to pass information specifying which table the stored procedure populates
with random data.

fillsrv Yes Demonstrates the server-side of a stored procedure example that uses
the SQLDA to receive information from the client specifying the table that
the stored procedure populates with random data.

impexp Yes Demonstrates the use of the following APIs:

 EXPORT

 IMPORT

inpcli Yes Demonstrates stored procedures using either the SQLDA structure or host
variables. This is the client program of a client/server example. (The
server program is called inpsrv.) The program fills the SQLDA with
information, and passes it to the server program for further processing.
The SQLCA status is returned to the client program. This program shows
the invocation of stored procedures using an embedded SQL CALL
statement.

inpsrv Yes Demonstrates stored procedures using the SQLDA structure. This is the
server program of a client/server example. (The client program is called
inpcli.) The program creates a table (PRESIDENTS) in the SAMPLE

database with the information received in the SQLDA. The server program
does all the database processing and returns the SQLCA status to the
client program.

10 Building Applications for UNIX Environments

Table 2 (Page 4 of 6). Sample Programs Showing Embedded SQL and APIs

Sample Program
Name

Embedded
SQL Program Description

joinsql Yes An example using advanced SQL join expressions.

largevol Yes Demonstrates parallel query processing in a partitioned environment, and
the use of an NFS file system to automate the merging of the result sets.

lobeval Yes Demonstrates the use of LOB locators and deferring the evaluation of the
actual LOB data.

lobfile Yes Demonstrates the use of LOB file handles.

lobloc Yes Demonstrates the use of LOB locators.

loblocud Demonstrates the use of LOB locators in a user-defined function.

lobval Yes Demonstrates the use of LOBs.

makeapi Yes Demonstrates the use of the following APIs:

 BIND

 PRECOMPILE PROGRAM

START DATABASE MANAGER

STOP DATABASE MANAGER

migrate Demonstrates the use of the following API:

 MIGRATE DATABASE

monreset Demonstrates the use of the following API:

RESET DATABASE SYSTEM MONITOR DATA AREAS

monsz Demonstrates the use of the following APIs:

ESTIMATE DATABASE SYSTEM MONITOR BUFFER SIZE

DATABASE SYSTEM MONITOR SNAPSHOT

nodecat Demonstrates the use of the following APIs:

 CATALOG NODE

CLOSE NODE DIRECTORY SCAN

GET NEXT NODE DIRECTORY ENTRY

OPEN NODE DIRECTORY SCAN

 UNCATALOG NODE

openftch Yes Demonstrates fetching, updating, and deleting of rows using static SQL.

outcli Yes Demonstrates stored procedures using the SQLDA structure. This is the
client program of a client/server example. (The server program is called
outsrv.) This program allocates and initializes a one variable SQLDA, and
passes it to the server program for further processing. The filled SQLDA is
returned to the client program along with the SQLCA status. This program
shows the invocation of stored procedures using an embedded SQL CALL
statement.

outsrv Yes Demonstrates stored procedures using the SQLDA structure. This is the
server program of a client/server example. (The client program is called
outcli.) The program fills the SQLDA with the median SALARY of the
employees in the STAFF table of the SAMPLE database. The server program
does all the database processing (finding the median). The server
program returns the filled SQLDA and the SQLCA status to the client
program.

 Chapter 1. About the DB2 Software Developer's Kit 11

Table 2 (Page 5 of 6). Sample Programs Showing Embedded SQL and APIs

Sample Program
Name

Embedded
SQL Program Description

qload Yes Demonstrates the use of the following API:

 LOAD QUERY

rebind Yes Demonstrates the use of the following API:

 REBIND PACKAGE

rechist Demonstrates the use of the following APIs:

CLOSE RECOVERY HISTORY FILE SCAN

GET NEXT RECOVERY HISTORY FILE ENTRY

OPEN RECOVERY HISTORY FILE SCAN

PRUNE RECOVERY HISTORY FILE ENTRY

UPDATE RECOVERY HISTORY FILE ENTRY

recursql Yes Demonstrates the use of advanced SQL recursive queries.

regder Demonstrates the use of the following APIs:

 REGISTER

 DEREGISTER

restart Demonstrates the use of the following API:

 RESTART DATABASE

sampudf Yes Demonstrates the use of User-Defined Types (UDTs) and User-Defined
Functions (UDFs). The UDFs declared in this program are all sourced
UDFs.

setact Demonstrates the use of the following API:

SET ACCOUNTING STRING

setrundg Demonstrates the use of the following API:

SET RUNTIME DEGREE

static Yes Uses static SQL to retrieve information.

sws Demonstrates the use of the following API:

DATABASE MONITOR SWITCH

system Demonstrates most of the system-specific calls.

tabinfo Yes Provides a library of routines for obtaining table and column information
from the system tables and for accessing the information obtained.

tabscont Demonstrates the use of the following APIs:

TABLESPACE CONTAINER QUERY

OPEN TABLESPACE CONTAINER QUERY

FETCH TABLESPACE CONTAINER QUERY

CLOSE TABLESPACE CONTAINER QUERY

SET TABLESPACE CONTAINER QUERY

12 Building Applications for UNIX Environments

Table 2 (Page 6 of 6). Sample Programs Showing Embedded SQL and APIs

Sample Program
Name

Embedded
SQL Program Description

tabspace Demonstrates the use of the following APIs:

 TABLESPACE QUERY

SINGLE TABLESPACE QUERY

OPEN TABLESPACE QUERY

FETCH TABLESPACE QUERY

GET TABLESPACE STATISTICS

CLOSE TABLESPACE QUERY

tabsql Yes Demonstrates the use of advanced SQL table expressions.

tblcli Demonstrates a call to a table function (client-side) to display weather
information for a number of cities.

tblsrv Demonstrates a table function (server-side) that processes weather
information for a number of cities.

tload Yes Demonstrates the use of the following APIs:

 EXPORT

QUIESCE TABLESPACE FOR TABLES

 LOAD

trigsql Yes An example using advanced SQL triggers and constraints.

udf Yes Creates a library of User-Defined Functions (UDFs) made specifically for
the SAMPLE database tables, but can be used with tables of compatible
column types.

updat Yes Uses static SQL to update a database.

util Demonstrates the use of the following APIs:

GET ERROR MESSAGE

GET SQLSTATE MESSAGE

INSTALL SIGNAL HANDLER

 INTERRUPT

 This program also contains code to output information from an SQLDA.

varinp Yes An example of variable input to Embedded Dynamic SQL statement calls
using parameter markers.

Table 3 (Page 1 of 2). Command Line Processor (CLP) Sample Files.

Sample File
Name

File Description

const.clp Creates a table with a CHECK CONSTRAINT clause.

cte.clp Demonstrates a common table expression. The equivalent sample program demonstrating this
advanced SQL statement is tabsql.

flt.clp Demonstrates a recursive query. The equivalent sample program demonstrating this advanced
SQL statement is recursql.

join.clp Demonstrates an outer join of tables. The equivalent sample program demonstrating this
advanced SQL statement is joinsql.

 Chapter 1. About the DB2 Software Developer's Kit 13

Table 3 (Page 2 of 2). Command Line Processor (CLP) Sample Files.

Sample File
Name

File Description

stock.clp Demonstrates the use of triggers. The equivalent sample program demonstrating this advanced
SQL statement is trigsql.

testdata.clp Uses DB2 built-in functions such as RAND() and TRANSLATE() to populate a table with
randomly generated test data.

Table 4. Java Sample Programs

Sample Program
Name Program Description

DB2Appl.java A Java Database Connectivity (JDBC) application that queries the sample database using the
invoking user's privileges.

DB2Applt.java A Java Database Connectivity (JDBC) applet that queries the sample database using a user
and server specified as applet parameters.

DB2Applt.html An HTML file that embeds the DB2Applt.java applet sample program. It needs to be
customized with server and user information.

DB2Stp.java A Java stored procedure that updates the EMPLOYEE table on the server, and returns new
salary and payroll information to the client.

DB2Udf.java A Java user-defined function (UDF) that demonstrates several tasks, including integer
division, manipulation of Character Large OBjects (CLOBs), and the use of Java instance
variables.

samples.zip A file containing compiled .class files for all DB2 Java samples.

Table 5. Object Linking and Embedding (OLE) Sample Programs

Sample Program
Name Program Description

sales Demonstrates rollup queries on a Microsoft Excel sales spreadsheet (implemented in Visual
Basic).

names Queries a Lotus Notes address book (implemented in Visual Basic).

inbox Queries Microsoft Exchange inbox e-mail messages through OLE/Messaging (implemented in
Visual Basic).

invoice An OLE automation user-defined function that sends Microsoft Word invoice documents as
e-mail attachments (implemented in Visual Basic).

ccounter A counter OLE automation user-defined function (implemented in Visual C++).

salarysrv An OLE automation stored procedure that calculates the median salary of the STAFF table of
the SAMPLE database (implemented in Visual Basic).

salaryclt A client program that invokes the median salary OLE automation stored procedure salarysrv
(implemented in Visual Basic and in Visual C++).

14 Building Applications for UNIX Environments

Table 6 (Page 1 of 3). Sample CLI Programs in DB2 Universal Database

Sample Program
Name Program Description

Utility files used by most CLI samples

samputil.c Utility functions used by most samples

samputil.h Header file for samputil.c, included by most samples

General CLI Samples

adhoc.c Interactive SQL with formatted output (was typical.c)

async.c ** Run a function asynchronously (based on fetch.c)

basiccon.c Basic connection

browser.c List columns, foreign keys, index columns or stats for a table

colpriv.c List column Privileges

columns.c List all columns for table search string

compnd.c Compound SQL example

datasour.c List all available data sources

descrptr.c ** Example of descriptor usage

drivrcon.c Rewrite of basiccon.c using SQLDriverConnect

duowcon.c Multiple DUOW Connect type 2, syncpoint 1 (one phase commit)

embedded.c Show equivalent DB2 CLI calls, for embedded SQL (in comments)

fetch.c Simple example of a fetch sequence

getattrs.c List some common environment, connection and statement options/attributes

getcurs.c Show use of SQLGetCursor, and positioned update

getdata.c Rewrite of fetch.c using SQLGetData instead of SQLBindCol

getfuncs.c List all supported functions

getfuncs.h Header file for getfuncs.c

getinfo.c Use SQLGetInfo to get driver version and other information

getsqlca.c Rewrite of adhoc.c to use prepare/execute and show cost estimate

lookres.c Extract string from resume clob using locators

mixed.sqc CLI sample with functions written using embedded SQL (Note: This file must be
precompiled)

multicon.c Multiple connections

native.c Simple example of calling SQLNativeSql, and SQLNumParams

prepare.c Rewrite of fetch.c, using prepare/execute instead of execdirect

proccols.c List procedure parameters using SQLProcedureColumns

procs.c List procedures using SQLProcedures

sfetch.c ** Scrollable cursor example (based on xfetch.c)

setcolat.c Set column attributes (using SQLSetColAttributes)

setcurs.c Rewrite of getcurs.c using SQLSetCurs for positioned update

 Chapter 1. About the DB2 Software Developer's Kit 15

Table 6 (Page 2 of 3). Sample CLI Programs in DB2 Universal Database

Sample Program
Name Program Description

seteattr.c Set environment attribute (SQL_ATTR_OUTPUT_NTS)

tables.c List all tables

typeinfo.c Display type information for all types for current data source

xfetch.c Extended Fetch, multiple rows per fetch

BLOB Samples

picin.c Loads graphic BLOBS into the emp_photo table directly from a file using
SQLBindParamToFile

picin2.c Loads graphic BLOBS into the emp_photo table using SQLPutData

showpic.c Extracts BLOB picture to file (using SQLBindColToFile), then displays the graphic.

showpic2.c Extracts BLOB picture to file using piecewise output, then displays the graphic.

Stored Procedure Samples

clicall.c Defines a CLI function which is used in the embedded SQL sample mrspcli3.sqc

inpcli.c Call embedded input stored procedure samples/c/inpsrv

inpcli2.c Call CLI input stored procedure inpsrv2

inpsrv2.c CLI input stored procedure (rewrite of embedded sample inpsrv.sqc)

mrspcli.c CLI program that calls mrspsrv.c

mrspcli2.c CLI program that calls mrspsrv2.sqc

mrspcli3.sqc An embedded SQL program that calls mrspsrv2.sqc using clicall.c

mrspsrv.c Stored procedure that returns a multi-row result set

mrspsrv2.sqc An embedded SQL stored procedure that returns a multi-row result set

outcli.c Call embedded output stored procedure samples/c/inpsrv

outcli2.c Call CLI output stored procedure inpsrv2

outsrv2.c CLI output stored procedure (rewrite of embedded sample inpsrv.sqc)

Samples using ORDER tables created by create.c (Run in the following order)

create.c Creates all tables for the order scenario

custin.c Inserts customers into the customer table (array insert)

prodin.c Inserts products into the products table (array insert)

prodpart.c Inserts parts into the prod_parts table (array insert)

ordin.c Inserts orders into the ord_line, ord_cust tables (array insert)

ordrep.c Generates order report using multiple result sets

partrep.c Generates exploding parts report (recursive SQL Query)

order.c UDF library code (declares a 'price' UDF)

order.exp Used to build order libary

Version 2 Samples unchanged

v2sutil.c samputil.c using old v2 functions

16 Building Applications for UNIX Environments

Table 6 (Page 3 of 3). Sample CLI Programs in DB2 Universal Database

Sample Program
Name Program Description

v2sutil.h samputil.h using old v2 functions

v2fetch.c fetch.c using old v2 functions

v2xfetch.c xfetch.c using old v2 functions

Note: Samples marked with a ** are new for this release.

Other files in the samples/cli directory include:

¹ README - Lists all example files.
¹ makefile - Makefile for all files

 Chapter 1. About the DB2 Software Developer's Kit 17

18 Building Applications for UNIX Environments

 Chapter 2. Setup

Before you can use the DB2 SDK to develop applications, you need to set up your
programming environment for DB2. It is recommended that you ensure that your
existing environment is correctly set up by first building a non-DB2 application. Then, if
you encounter any problems, please see the documentation that comes with your
compiler or interpreter.

To set up your programming environment for DB2, the following must be installed and
working:

¹ The database manager on the server with the database instance for your
environment. Refer to Appendix A, “About Database Manager Instances” on
page 113 if you need information about database instances.

¹ The DB2 SDK on the client or server workstation on which you are going to
develop applications.

¹ The connection to the remote server, if you are developing on a client workstation
connected to a remote server.

¹ A compiler or interpreter for one of the supported programming languages on the
UNIX platform you are using, listed in “Supported Software by Platform” on page 2.
Consult the documentation for the compiler or interpreter you are using.

For more detailed information on installation and setup, refer to the Quick Beginnings
book for your UNIX platform.

When the above are installed and working, you can set up your environment by
following the steps in the “Setting Your Environment” section.

After you set up your environment, you may want to set up the sample database, which
is used by the examples in this book. To install the database, see “Installing,
Cataloging, and Binding the SAMPLE Database” on page 20

Setting Your Environment
You need to set environment variables so you can access the database instance that
was created when the database manager was installed. Each database manager
instance has two files, db2profile and db2cshrc, which contain scripts to set the
environment variable for that instance. The Quick Beginnings book provides general
information about setting environment variables. This section provides specific
instructions to set environment variables to access a database instance.

Run the script by entering:

For Korn shell: . $HOME/sqllib/db2profile

For C shell: source $HOME/sqllib/db2cshrc

where $HOME is the home directory of the instance owner.

 Copyright IBM Corp. 1993, 1997 19

For your convenience, you may want to include this command in your .profile file, so
that it runs automatically when you log in.

Installing, Cataloging, and Binding the SAMPLE Database
To use the examples in this book, you need to install the SAMPLE database on a
server workstation. Refer to the SQL Reference for a listing of the contents of the
SAMPLE database.

If you will be accessing the SAMPLE database on the server from a remote client, you
need to catalog the SAMPLE database on the client workstation.

Also, if you will be accessing the SAMPLE database on the server from a remote client
that is running a different version of DB2 or running on a different operating system,
you need to bind the database utilities, including the DB2 CLI, to the SAMPLE
database.

 Installing
To create the SAMPLE database, you must have Administrator authority. If you need
more information about Administrator authority, refer to the Quick Beginnings book.

To install the database, do the following on the server:

1. Ensure the location of db2sampl (the program that installs the SAMPLE database)
is in your path. The db2profile or db2cshrc file will put db2sampl in your path, so it
will be there unless you change it.

¹ On AIX, HP_UX, Solaris, SINIX, and SCO OpenServer, db2sampl is located in:

$HOME/sqllib/misc

where $HOME is the home directory of the DB2 instance owner.

¹ On OS/2, Windows 95 and Windows NT, db2sampl is located in:

%DB2PATH% \bin

where %DB2PATH% is where DB2 is installed.

2. Set the DB2INSTANCE environment variable to the name of the instance where
you want to install the SAMPLE database.

¹ On AIX, HP_UX, Solaris, SINIX, and SCO OpenServer, you can do this for the
Korn shell by entering:

DB2INSTANCE=instance_name
export DB2INSTANCE

where instance_name is the name of the database instance.

¹ On OS/2, Windows 95 and Windows NT, enter:

set DB2instance=instance_name

20 Building Applications for UNIX Environments

3. Create the SAMPLE database by entering db2sampl followed by where you want to
create the sample database. On UNIX-based systems, this is a path, and would be
entered as:

db2sampl path

On OS/2 or Windows-based systems, this is a drive, and would be entered as:

db2sampl drive

If you do not specify the path or drive, the installation program installs the sample
tables in the default path or drive specified by the DFTDBPATH parameter in the
database manager configuration file. If you need information about the
configuration file, refer to the Administration Guide.

The authentication type for the database is the same as the instance in which it is
created. If you need more information about specifying authentication when
creating a database instance, refer to the Quick Beginnings book.

Installing on DRDA-Compliant Application Servers

If you want to run the sample programs against a DRDA-compliant application server,
such as DB2 for MVS/ESA, you need to create a database that contains the sample
STAFF and ORG tables described in the SQL Reference. You may want to refer to the
sample program, expsamp, which uses the STAFF and ORG tables to demonstrate how
APIs are used to import and export tables and table data to and from a DRDA
database.

To create the database:

1. Install the SAMPLE database in a DB2 common server instance using db2sampl.

2. Connect to the SAMPLE database.

3. Export the ORG and STAFF tables to a file.

4. Connect to the DRDA-compliant database.

5. Create the ORG and STAFF tables.

6. Import the ORG and STAFF tables.

If you need information about exporting and importing files, refer to the Command
Reference and the API Reference. If you need information about connecting to a
database and creating tables, refer to the SQL Reference.

 Cataloging
If you will be accessing the SAMPLE database on the server from a remote client, you
need to catalog the SAMPLE database on the client workstation.

You do not need to catalog the SAMPLE database on the server workstation because it
was cataloged when you created it.

Cataloging updates the database directory on the client workstation with the name of
the database that the client application wants to access. When processing client

 Chapter 2. Setup 21

requests, the database manager uses the cataloged name to find and connect to the
database.

The Quick Beginnings book provides general information on cataloging databases. This
section provides specific instructions on cataloging the SAMPLE database.

To catalog the sample database from the remote client workstation, enter:

db2 catalog database sample as sample at node nodename

where nodename is the name of the server node.

The Quick Beginnings book explains how to catalog nodes as part of setting up
communication protocols. You must also catalog the remote node before you can
connect to the database.

 Binding
If you will be accessing the SAMPLE database on the server from a remote client that
is running a different version of DB2 or running on a different operating system, you
need to bind the database utilities, including the DB2 CLI, to the SAMPLE database.

To bind the database utilites, do the following on the client workstation:

1. Connect to the SAMPLE database by entering:

db2 connect to sample

2. Bind the utilities to the database by entering:

db2 bind BNDPATH/@db2ubind.lst blocking all sqlerror continue messages

bind.msg

db2 bind BNDPATH/@db2cli.lst blocking all sqlerror continue messages

cli.msg

where BNDPATH is the path where the bind files are located, such as
$HOME/sqllib/bnd/, where $HOME is the home directory of the DB2 instance owner.

Note: If you installed the SAMPLE database on a DRDA-compliant application
server, specify one of the following .lst files instead of db2ubind.lst :

ddcsmvs.lst for DB2 for MVS/ESA

ddcsvse.lst for DB2 for VSE and VM

ddcs400.lst for DB2 for OS/400

3. Verify that the bind was successful by checking the bind message files bind.msg

and cli.msg.

The Quick Beginnings book provides general information about binding the database
utilities.

22 Building Applications for UNIX Environments

Where to Go Next
Once your environment is set up, you are ready to build your DB2 applications. The
following chapters discuss the sample programs, and show you how to compile, link,
and run them.

If you are developing embedded SQL applications, see Chapter 3, “Introduction to
Embedded SQL Applications” on page 25, and then the embedded SQL chapter for the
platform you are using. If you are developing CLI applications, see Chapter 7, “Building
DB2 Call Level Interface (CLI) Applications” on page 103. If you are developing Java
applications, see Chapter 8, “Building Java Applications and Applets” on page 109. If
you are developing DB2 API applications see the appropriate chapter or chapters given
above for the programming interface you will be using.

For further information, refer to the following books. To develop applications using
embedded SQL, see the Embedded SQL Programming Guide. For applications using
DB2 CLI or ODBC see the CLI Guide and Reference. For DB2 API applications, see
the API Reference.

 Chapter 2. Setup 23

24 Building Applications for UNIX Environments

Chapter 3. Introduction to Embedded SQL Applications

Each DB2 SDK includes sample programs that embed SQL statements. Chapters 4
through 6 explain how to build the sample programs for the supported compilers using
script files supplied with the DB2 SDK for that platform. You can also use the makefiles
that are supplied. Both the makefiles and the script files show you the compiler options
you can use. These options are defined for each platform's supported compilers in the
appropriate chapter. You might need to modify the options for your environment.

When you run a script file to build a sample program containing embedded SQL, the
script file executes the following steps:

¹ Connects to a database.
¹ Precompiles your source file.
¹ Binds your bind file to the database.
¹ Disconnects from the database.
¹ Compiles and links your source file.

For User-Defined Functions (UDFs), you do not need to connect to a database or
precompile and bind the program.

Note: The chapters on using embedded SQL show you just some of the script files.
The directories that contain the sample programs contain all the script files, as
well as a README file which may contain additional information about them.

Sections in these chapters also list the steps you can follow to build and run the sample
programs shown in Table 7 on page 25 using the supported programming languages.
The steps you follow might vary, depending on your environment:

Table 7 (Page 1 of 2). Sample Programs Referred to in Script Files

Sample
Program
Name

Program Description

updat Demonstrates the use of static SQL to update a database.

outsrv Demonstrates stored procedures using the SQLDA structure. This is the server program of a
client/server example. (The client program is called outcli.) The program fills the SQLDA with
the median SALARY of the employees in the STAFF table of the SAMPLE database. The server
program does all the database processing (finding the median), and then returns the filled
SQLDA and the SQLCA status to the client program. The outsrv program runs on the
database server, and must be built there.

outcli Demonstrates stored procedures using the SQLDA structure. This is the client program of a
client/server example. (The server program is called outsrv.) The program allocates and
initializes a one-variable SQLDA, and passes it to the server program for further processing.
The filled SQLDA is returned to the client program along with the SQLCA status. This program
shows the invocation of stored procedures using an embedded SQL CALL statement.

 Copyright IBM Corp. 1993, 1997 25

Table 7 (Page 2 of 2). Sample Programs Referred to in Script Files

Sample
Program
Name

Program Description

udf Creates a library of User-Defined Functions (UDFs) made specifically for the SAMPLE
database tables, but can be used with tables with compatible column types. (The sample
program calludf uses the functions created by udf.) The udf program runs on the database
server, and must be built there.

calludf Demonstrates the library of User-Defined Functions (UDFs) created by udf for the SAMPLE
database tables. The calludf program uses the functions created by udf.

The source files for these sample programs are in the appropriate programming
language subdirectory of sqllib/samples:

C sqllib/samples/c

C++ sqllib/samples/cpp

IBM COBOL sqllib/samples/cobol

Micro Focus COBOL sqllib/samples/cobol_mf

FORTRAN sqllib/samples/fortran

Note: Of the samples given in Table 7 on page 25, the C++ directory,
sqllib/samples/cpp, contains only a C++ version of the updat program. The
stored procedure script files documented for the C++ compilers use the C
versions of the outsrv and outcli programs found in sqllib/samples/c. In
addition, sqllib/samples/cpp contains object-oriented sample programs specific
to C++. These programs use several class source files and CLP script files to
construct and manipulate a credit database system. See the README file in the
sqllib/samples/cpp directory for more information.

After you build the sample programs they can be used as templates to create your own
applications. This can be done by modifying the sample programs with your own SQL
statements. You can build the modified programs using either the makefile or the script
files to see if they work correctly. You can also build your own embedded SQL
programs using these files.

“Sample Programs” on page 4 lists all of the sample programs. The Embedded SQL
Programming Guide explains how the samples containing embedded SQL work; the
CLI Guide and Reference explains how the samples containing CLI work; and the API
Reference explains how the samples containing DB2 APIs work.

Note: It is recommended that, before you alter or build the sample programs, you
copy them from sqllib/samples to your own working directory.

Using the Micro Focus COBOL Compiler
If you develop applications that contain embedded SQL and DB2 API calls, and you are
using the Micro Focus COBOL compiler, keep the following points in mind:

26 Building Applications for UNIX Environments

¹ When you precompile your application using the command line processor
command db2 prep, use the target mfcob option (the default).

¹ In order to use the built-in precompiler front-end, runtime interpreter or Animator
debugger, add the DB2 Generic API entry points to the Micro Focus runtime
module rts32. Refer the Quick Beginnings book for instructions.

¹ You must include the DB2 COBOL COPY file directory in the Micro Focus COBOL
environment variable COBCPY. The directory specifies the location of COPY files.
The DB2 COPY files for Micro Focus COBOL reside in sqllib/include/cobol_mf

under the database instance directory.

To include the directory on AIX, enter:

export COBCPY=$COBCPY:/usr/lpp/db2_05_00/include/cobol_mf

To include the directory on HP-UX enter:

export COBCPY=$COBCPY:/opt/IBMdb2/V5.0/include/cobol_mf

To include the directory on Solaris enter:

export COBCPY=$COBCPY:/opt/IBMdb2/V5.0/include/cobol_mf

Note: You might want to set COBCPY in the .profile file.

About Stored Procedures and User-Defined Functions (UDFs)
Stored procedures are programs that access the database and return information to
your client application. User-Defined Functions (UDFs) are your own scalar or table
functions. Stored procedures and UDFs are compiled on the server, and stored and
executed in a shared library on the server. This shared library is created when you
compile the stored procedures and UDFs.

The shared library has an entry point, which is called from the server to access
procedures in the shared library. Unlike compilers on other UNIX platforms, the IBM XL
C compiler on AIX allows you to specify any exported function name in the library as
the default entry point. This is the function that is called if only the library name is
specified in a stored procedure call or CREATE FUNCTION statement. This can be
done with the -e option in the link step. For example:

-e funcname

makes funcname the default entry point. For information on how this relates to the
CREATE FUNCTION statement, see “Relationship to Your CREATE FUNCTION
Statement” on page 40.

On other UNIX platforms, no such mechanism exists, so the default entry point is
assumed by DB2 to be the same name as the library itself.

AIX requires you to provide an export file which specifies which global functions in the
library are callable from outside it. This file must include the names of all stored
procedures and/or user-defined functions in the library. Other UNIX platforms simply
export all global functions in the library. This is an example of an AIX export file:

 Chapter 3. Introduction to Embedded SQL Applications 27

#! outsrv export file

outsrv

The export file outsrv.exp lists the stored procedure outsrv. The linker uses
outsrv.exp to create the shared library outsrv that contains the stored procedure of the
same name.

Note: After the shared library is built, it is typically copied into a directory from which
DB2 will access it. When attempting to replace either a stored procedure or a
user-defined function shared library, you should either run /usr/sbin/slibclean

to flush the AIX shared library cache, or remove the library from the target
directory and then copy the library from the source directory to the target
directory. Otherwise, the copy operation may fail because AIX keeps a cache of
referenced libraries and does not allow the library to be overwritten.

For more information about stored procedures and UDFs, refer to your compiler
documentation. The AIX compiler documentation also has additional information on
export files.

C++ Considerations for UDFs and Stored Procedures
Because function names can be 'overloaded' in C++, that is, two functions with the
same name can coexist if they have different arguments, as in int foo(int i) and
int foo(char c), C++ compilers 'type-decorate' or 'mangle' function names by
default. This means that argument type names are appended to their function names to
resolve them, as in foo__Fi and foo__Fc for the two earlier examples.

The type-decorated function name can be determined from the .o file using the nm
command:

nm myprog.o

The command produces some output which includes a line similar to the following:

myprogen__FPlT1PsT3PcN35| 3792|unamex| | ...

When registering such a UDF with CREATE FUNCTION, the EXTERNAL NAME clause
must specify the mangled function name obtained from nm (not including the |
character):

CREATE FUNCTION myprogo(...) RETURNS...

 ...

EXTERNAL NAME '/whatever/path/myprog!myprogen__FPlT1PsT3PcN35'

 ...

Likewise, when calling a stored procedure, the function name also specifies the
mangled function name:

CALL '/whatever/path/myprog!myprogen__FPlT1PsT3PcN35' (...)

28 Building Applications for UNIX Environments

If your stored procedure or UDF library does not contain overloaded C++ function
names, you have the option of using extern "C" to force the compiler to not
type-decorate function names. (Note that you can always overload the SQL function
names given to UDFs, since DB2 resolves what library function to call based on the
name and the parameters it takes.)

#include <string.h>
#include <stdlib.h>

#include "sqludf.h"

/*---*/

/* function fold: output = input string is folded at point indicated */

/* by the second argument. */

/* inputs: CLOB, input string */

/* LONG position to fold on */

/* output: CLOB folded string */

/*---*/

extern "C" void fold(

SQLUDF_CLOB *in1, /* input CLOB to fold */

 ...

 ...

}

/* end of UDF: fold */

/*---*/

/* function find_vowel: */

/* returns the position of the first vowel. */

/* returns error if no vowel. */

/* defined as NOT NULL CALL */

/* inputs: VARCHAR(500) */

/* output: INTEGER */

/*---*/

extern "C" void findvwl(

SQLUDF_VARCHAR *in, /* input smallint */

 ...

 ...

}

/* end of UDF: findvwl */

In this example, the UDFs fold and findvwl are not type-decorated by the compiler,
and should be registered in the CREATE FUNCTION statement using their plain
names. Similarly, if a C++ stored procedure is coded with extern "C", its undecorated
function name would be used in the CALL statement.

 Error Checking
The sample programs use the following error-checking utilities:

util.c For C sample programs

 Chapter 3. Introduction to Embedded SQL Applications 29

util.f For FORTRAN sample programs

checkerr.cbl For COBOL sample programs

The script files you use to build the sample programs create the appropriate object file:

util.o For C sample programs

util.o For FORTRAN sample programs

checkerr.o For COBOL sample programs

30 Building Applications for UNIX Environments

Chapter 4. Building AIX Embedded SQL Applications

This chapter provides detailed information for building embedded SQL applications on
AIX. In the script files, commands that begin with db2 are Command Line Processor
(CLP) commands. Refer to the Command Reference if you need more information
about CLP commands.

Considerations for running IBM and Micro Focus COBOL

Because of the way AIX loads stored procedures and resolves library references within
them, there are requirements on how COBOL should be installed. These requirements
become a factor when a COBOL program loads a shared library (stored procedure) at
run time.

When a stored procedure is loaded, the chain of libraries it refers to must also be
loaded. When AIX searches for a library only indirectly referenced by your program, it
must use the path compiled into the library that referenced it when it was built by the
language provider (IBM COBOL or Micro Focus COBOL). This path may very well not
be the same path in which the compiler was installed. If the library in the chain cannot
be found, the stored procedure load will fail, and you will receive SQLCODE -10013.

To ensure this does not happen, install the compiler wherever you want, then create
symbolic links of all language libraries from the install directory into /usr/lib (a
directory that is almost always searched when a library needs to be loaded). You could
link the libraries into sqllib/function (the stored procedure directory), but this only
works for one database instance; /usr/lib works for everyone on the machine. It is
strongly recommended that you do not copy the libraries in; this especially applies to
Micro Focus COBOL when multiple copies of the libraries exist.

A sample symbolic link of Micro Focus COBOL is provided below (assuming it is
installed in /usr/lpp/cobdir):

[1]> su root

[2]> cd /usr/lib

[1]> ln -sf /usr/lpp/cobdir/coblib/*.a .

 IBM C
The script file bldxlc, in sqllib/samples/c, contains the commands to build a sample C
program.

The first parameter, $1, specifies the name of your source file. The second parameter,
$2, specifies the name of the database to which you want to connect. Parameter $3
specifies the user ID for the database, and $4 specifies the password. Only the first
parameter, the source file name, is required. Database name, user ID, and password
are optional. If no database name is supplied, the program uses the default sample
database.

 Copyright IBM Corp. 1993, 1997 31

#! /bin/ksh

bldxlc script file

Builds a sample C program containing embedded SQL

Usage: bldxlc <prog_name> [<db_name> [< userid> <password>]]

Connect to a database.

if (($# < 2))

then

db2 connect to sample

elif (($# < 3))

then

db2 connect to $2

else

db2 connect to $2 user $3 using $4

fi

Precompile the program.

db2 prep $1.sqc bindfile

Bind the program to the database.

db2 bind $1.bnd

Disconnect from the database.

db2 connect reset

Compile the util.c error-checking utility.

xlc -I/usr/lpp/db2_05_00/include -c util.c

Compile the program.

xlc -I/usr/lpp/db2_05_00/include -c $1.c

Link the program.

xlc -o $1 $1.o util.o -ldb2 -L/usr/lpp/db2_05_00/lib

Compile and Link Options for bldxlc

The script file contains the following compile options:

xlc The IBM XL C compiler.

-Ipath Specify the location of the DB2 include files. For example:
-I/usr/lpp/db2_05_00/include.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

32 Building Applications for UNIX Environments

To build the sample program updat.sqc, do the following:

1. Go to the window in which you set your environment variables by running
db2profile. See “Setting Your Environment” on page 19 if you need more
information.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Build the sample program, connecting to the SAMPLE database, by entering:

bldxlc updat

The result is an executable file updat. You can run the executable file against the
SAMPLE database to see how it works by doing the following :

1. Go to the window in which you set your environment variables by running
db2profile.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Run the program. If you built the updat sample program, enter:

updat

Note: To build C applications that do not contain embedded SQL, you can use the
script file bldxlcapi. It contains the same compile and link options as bldxlc,
but does not connect, prep, bind, or disconnect from the SAMPLE database. It
is used to compile and link the DB2 API sample programs written in C.

Compile and Link Options for bldxlc

The script file contains the following link options:

xlc Use the compiler to link edit.

-o filename Specify the name of the executable program.

util.o Include the object file for error checking.

-ldb2 Link to the database manager library.

-Lpath Specify the location of the DB2 runtime shared libraries. For example:
-L/usr/lpp/db2_05_00/lib. If you do not specify the -L option, the compiler
assumes the following path: /usr/lib:/lib.

Refer to your compiler documentation for additional compiler options.

Building C Stored Procedures
The script file bldxlcsrv, in sqllib/samples/c, contains the commands to build a stored
procedure. The script file compiles the stored procedure into a shared library that can
be called by a client application.

The first parameter, $1, specifies the name of your source file. The second parameter,
$2, specifies the name of the database to which you want to connect. Parameter $3
specifies the user ID for the database, and $4 specifies the password. Only the first

 Chapter 4. Building AIX Embedded SQL Applications 33

parameter, the source file name, is required. Database name, user ID, and password
are optional. If no database name is supplied, the program uses the default sample
database.

The script file uses the source file name, $1, for the shared library name, and for the
main entry point to the shared library.

#! /bin/ksh

bldxlcsrv script file

Builds a stored procedure

Usage: bldxlcsrv <stor_proc_name> [<db_name> [<userid> <password>]]

Connect to a database.

if (($# < 2))

then

db2 connect to sample

elif (($# < 3))

then

db2 connect to $2

else

db2 connect to $2 user $3 using $4

fi

Precompile the program.

db2 prep $1.sqc bindfile

Bind the program to the database.

db2 bind $1.bnd

Disconnect from the database.

db2 connect reset

Compile the util.c error-checking utility.

xlc -I/usr/lpp/db2_05_00/include -c util.c

Compile the program.

xlc -I/usr/lpp/db2_05_00/include -c $1.c

Link the program using the export file $1.exp,

creating a shared library called $1 with the default

entry point $1.

xlc -o $1 $1.o util.o -ldb2 -L/usr/lpp/db2_05_00/lib \

-H512 -T512 -bE:$1.exp -e $1

Copy the shared library to the sqllib/function subdirectory of the DB2 instance.

Note: this assumes the user has write permission to this directory.

eval "H=˜$DB2INSTANCE"
cp $1 $H/sqllib/function

34 Building Applications for UNIX Environments

To build the outsrv.sqc stored procedure, do the following:

1. Go to the window in which you set your environment variables by running
db2profile. Refer to “Setting Your Environment” on page 19 if you need more
information.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Build the stored procedure, connecting to the SAMPLE database, by entering:

bldxlcsrv outsrv

The script file copies the stored procedure to the server in the path
sqllib/function to indicate that the stored procedure is fenced. If you want the
stored procedure to be unfenced, you must move it to the
sqllib/function/unfenced directory. These paths are in the home directory of the
DB2 instance.

Note: An unfenced stored procedure or UDF runs in the same address space as
the database manager and results in increased performance when
compared to a fenced stored procedure or UDF, which runs in an address
space isolated from the database manager. With unfenced stored
procedures or UDFs there is a danger that user code could accidentally or

Compile and Link Options for bldxlcsrv

The script file contains the following compile options:

xlc The IBM XL C compiler.

-Ipath Specify the location of the DB2 include files. For example:
-I/usr/lpp/db2_05_00/include.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

The script file contains the following link options:

xlc Use the compiler to link edit.

-o filename Specify the output as a shared library file.

util.o Include the object file for error checking.

-ldb2 Link with the database manager library.

-Lpath Specify the location of the DB2 runtime shared libraries. For example:
-L/usr/lpp/db2_05_00/lib. If you do not specify the -L option, the compiler
assumes the following path: /usr/lib:/lib.

-H512 Specify output file alignment.

-T512 Specify output file text segment starting address.

-bE:filename.exp
Specify an export file. The export file contains a list of the stored
procedures.

-e entry Specify the default entry point to the shared library.

Refer to your compiler documentation for additional compiler options.

 Chapter 4. Building AIX Embedded SQL Applications 35

maliciously damage the database control structures. Therefore, you should
only run unfenced stored procedures or UDFs when you need to maximize
the performance benefits. Ensure these programs are thoroughly tested
before running them as unfenced. Refer to the Embedded SQL
Programming Guide for more information about fenced and not fenced
stored procedures.

4. If necessary, set the file mode for the stored procedure so the DB2 instance can
run it.

Once you build the stored procedure outsrv, you can build the client application outcli
that calls the stored procedure. You can build outcli using the bldxlc script file. Refer
to “IBM C” on page 31 for details.

To run the stored procedure, do the following:

1. Go to the window in which you set your environment variables by running
db2profile.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Run the sample client application by entering:

outcli remote_database userid password

where

remote_database
Is the name of the database to which you want to connect. The name
could be SAMPLE, or its remote alias, or some other name.

userid Is a valid user ID.

password Is a valid password.

The client application passes a variable to the server program outsrv, which gives
it a value and then returns the variable to the client application.

Coding and Compiling Stored Procedures
This section provides a general discussion about coding stored procedures, and the
compiler options you can use.

Relationship to Your CALL Statement
The Embedded SQL Programming Guide describes how to code your stored procedure.
The SQL Reference describes how to invoke your stored procedure at the location of a
database using the CALL statement. This section ties how you compile and link your
stored procedure to the information you provide in the CALL statement.

When you compile and link your program, you can identify functions in two ways:

¹ Using the -e option.

For example, you can specify the following in the link step:

36 Building Applications for UNIX Environments

-e modify

This indicates that the default entry point for the linked library is the function
modify.

If you are linking a library mystored in a directory /u/mydir/procs, and you want to
use the default entry point modify as specified above, code your CALL statement
as follows:

CALL '/u/mydir/procs/mystored'

The library mystored is loaded into memory, and the function modify is picked up
by DB2 as the default entry point, and is executed.

¹ Using an export file specified using the -bE: option.

Generally speaking, you would use this link option when you have more than one
stored procedure in your library, and you want to access additional functions as
stored procedures.

To continue the example from above, suppose that the library mystored contains
three stored procedures: modify as above, remove, and add. You identify modify as
the default entry point, as above, and indicate in the link step that remove and add
are additional entry points by including them in an export file.

In the link step, you specify:

-bE:mystored.exp

which identifies the export file mystored.exp.

The export file looks like this:

* additional entry points for mystored

#!

remove

add

Finally, your two CALL statements for the stored procedures, which invoke the
remove and add functions, are coded as follows:

CALL '/u/mydir/procs/mystored!remove'

and

CALL '/u/mydir/procs/mystored!add'

Building C User-Defined Functions (UDFs)
The script file bldxlcudf, in sqllib/samples/c, contains the commands to build a UDF.
UDFs are compiled like stored procedures, but you do not need to connect to a
database or precompile and bind the program.

Note: A UDF does not contain embedded SQL statements. Rather, the application
that uses the UDF contains the statements, such as calludf.

 Chapter 4. Building AIX Embedded SQL Applications 37

The first parameter, $1, specifies the name of your source file.

The script file uses the source file, $1, for the shared library name, and for the default
entry point to the shared library.

#! /bin/ksh

bldxlcudf script file

Builds a sample C UDF library.

Usage: bldxlcudf <prog_name>

Compile the program.

xlc -I/usr/lpp/db2_05_00/include -c $1.c

Link the program.

xlc -o $1 $1.o -ldb2 -ldb2apie -L/usr/lpp/db2_05_00/lib -H512 -T512 -bE:$1.exp -e $1

Copy the shared library to the sqllib/function subdirectory of the DB2 instance.

Note: this assumes the user has write permission to this directory.

eval "H=˜$DB2INSTANCE"
cp $1 $H/sqllib/function

Compile and Link Options for bldxlcudf

The script file contains the following compile options:

xlc The IBM XL C compiler.

-Ipath Specify the location of the DB2 include files. For example:
-I/usr/lpp/db2_05_00/include.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

The script file contains the following link options:

xlc Use the compiler to link edit.

-o filename Specify the output as a shared library file.

-ldb2 Link with the database manager library.

-ldb2apie Link with the DB2 API Engine library to allow the use of LOB locators.

-Lpath Specify the location of the DB2 runtime shared libraries. For example:
-L/usr/lpp/db2_05_00/lib. If you do not specify the -L option, the compiler
assumes the following path: /usr/lib:/lib.

-H512 Specify output file alignment.

-T512 Specify output file text segment starting address.

-bE:filename.exp
Specify an export file. The export file contains a list of the UDFs.

-e entry Specify the default entry point to the shared library.

Refer to your compiler documentation for additional compiler options. Refer to “Coding and
Compiling UDFs” on page 40 for a general discussion about compiler options and UDFs.

38 Building Applications for UNIX Environments

To build the user-defined function udf, do the following:

1. Go to the window in which you set your environment variables by running
db2profile. Refer to “Setting Your Environment” on page 19 if you need more
information.

2. Build the UDF by entering:

bldxlcudf udf

The script file copies the UDF to the server in the path sqllib/function to indicate
that the UDF is fenced. If you want the UDF to be unfenced, you must move it to
the sqllib/function/unfenced directory. These paths are in the home directory of
the DB2 instance.

Note: An unfenced UDF or stored procedure runs in the same address space as
the database manager and results in increased performance when
compared to a fenced UDF or stored procedure, which runs in an address
space isolated from the database manager. With unfenced UDFs or stored
procedures there is a danger that user code could accidentally or
maliciously damage the database control structures. Therefore, you should
only run unfenced UDFs or stored procedures when you need to maximize
the performance benefits. Ensure these programs are thoroughly tested
before running them as unfenced. Refer to the Embedded SQL
Programming Guide for more information about fenced and not fenced
UDFs.

3. If necessary, set the file mode for the UDF so the DB2 instance can run it.

Once you build udf, you can build the client application, calludf, that calls it. You can
build calludf using the bldxlc script file. Refer to “IBM C” on page 31 for details.

To run the UDF, do the following:

1. Go to the window in which you set your environment variables by running
db2profile.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Run the sample calling application by entering:

calludf

The calling application calls functions from the udf library.

After you run the calling application, you can also invoke the UDF interactively
using the command line processor like this:

db2 "SELECT name, DOLLAR(salary), SAMP_MUL(DOLLAR(salary), FACTOR(1.2))

FROM staff"

You do not have to type the command line processor commands in uppercase.

 Chapter 4. Building AIX Embedded SQL Applications 39

Coding and Compiling UDFs
This section provides a general discussion about coding UDFs, and the compiler
options you can use.

Relationship to Your CREATE FUNCTION Statement
The Embedded SQL Programming Guide describes how to code your UDF. The SQL
Reference describes how to register your UDF with DB2 using the CREATE
FUNCTION statement. This section ties how you compile and link your UDF to the
information you provide in the EXTERNAL NAME clause of the CREATE FUNCTION
statement.

When you compile and link your program, you can identify functions in two ways:

¹ Using the -e option.

For example, you can specify the following in the link step:

-e modify

This indicates that the default entry point for the linked library is the function
modify.

If you are linking a library myudfs in a directory /u/mydir/procs, and you want to
use the default entry point modify as specified above, include the following in your
CREATE FUNCTION statement:

EXTERNAL NAME '/u/mydir/procs/myudfs'

DB2 picks up the default entry point of the library myudfs, which is the function
modify.

¹ Using an export file specified using the -bE: option.

Generally speaking, you would use this link option when you have more than one
UDF in your library, and you want to access additional functions as UDFs.

To continue the example from above, suppose that the library myudfs contains
three UDFs: modify as above, remove, and add. You identify modify as the default
entry point, as above, and indicate in the link step that remove and add are
additional entry points by including them in an export file.

In the link step, you specify:

-bE:myudfs.exp

which identifies the export file myudfs.exp.

The export file looks like this:

* additional entry points for myudfs

#!

remove

add

40 Building Applications for UNIX Environments

Finally, your two CREATE FUNCTION statements for the UDFs, which are
implemented by the remove and add functions, would contain these EXTERNAL
NAME clauses:

EXTERNAL NAME '/u/mydir/procs/myudfs!remove'

and

EXTERNAL NAME '/u/mydir/procs/myudfs!add'

Multi-threaded Applications on AIX Version 4
Multi-threaded applications on AIX Version 4 need to be compiled and linked with the
xlc_r compiler instead of the xlc compiler, or with the xlC_r compiler instead of the
xlC compiler.

IBM C Set++

The script file bldcset, in sqllib/samples/cpp, contains the commands to build a
sample C++ program.

The first parameter, $1, specifies the name of your source file. The second parameter,
$2, specifies the name of the database to which you want to connect. Parameter $3
specifies the user ID for the database, and $4 specifies the password. Only the first
parameter, the source file name, is required. Database name, user ID, and password
are optional. If no database name is supplied, the program uses the default sample
database.

 Chapter 4. Building AIX Embedded SQL Applications 41

#! /bin/ksh

bldcset script file

Build sample C++ program that contains embedded SQL.

Usage: bldcset <prog_name> [<db_name> [<userid> <password>]]

Connect to a database.

if (($# < 2))

then

db2 connect to sample

elif (($# < 3))

then

db2 connect to $2

else

db2 connect to $2 user $3 using $4

fi

Precompile the program.

db2 prep $1.sqC bindfile

Bind the program to the database.

db2 bind $1.bnd

Disconnect from the database.

db2 connect reset

Compile the util.c error-checking utility.

xlC -I/usr/lpp/db2_05_00/include -c util.C

Compile the program.

xlC -I/usr/lpp/db2_05_00/include -c $1.C

Link the program.

xlC -o $1 $1.o util.o -ldb2 -L/usr/lpp/db2_05_00/lib

Compile and Link Options for bldcset

The script file contains the following compile options:

xlC The IBM C Set ++ compiler.

-Ipath Specify the location of the DB2 include files. For example:
-I/usr/lpp/db2_05_00/include.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

42 Building Applications for UNIX Environments

To build the sample program updat.sqC, do the following:

1. Go to the window in which you set your environment variables by running
db2profile. Refer to “Setting Your Environment” on page 19 if you need more
information.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Build the sample program, connecting to the SAMPLE database, by entering:

bldcset updat

The result is an executable file updat. You can run the executable file against the
SAMPLE database to see how it works by doing the following:

1. Go to the window in which you set your environment variables by running
db2profile.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Run the program. If you built the updat sample program, enter:

updat

Compile and Link Options for bldcset

The script file contains the following link options:

xlC Use the compiler to link edit.

-o filename Specify the name of the executable program.

util.o Include the object file for error checking.

-ldb2 Link with the database manager library.

-Lpath Specify the location of the DB2 runtime shared libraries. For example:
-L/usr/lpp/db2_05_00/lib. If you do not specify the -L option, the compiler
assumes the following path: /usr/lib:/lib.

Refer to your compiler documentation for additional compiler options.

Building C ++ Stored Procedures
The script file bldcsetsrv, in sqllib/samples/cpp, contains the commands to build a
stored procedure. The script file compiles the stored procedure into a shared library that
can be called by a client application.

The first parameter, $1, specifies the name of your source file. The second parameter,
$2, specifies the name of the database to which you want to connect. Parameter $3
specifies the user ID for the database, and $4 specifies the password. Only the first
parameter, the source file name, is required. Database name, user ID, and password
are optional. If no database name is supplied, the program uses the default sample
database.

 Chapter 4. Building AIX Embedded SQL Applications 43

The script file uses the source file name, $1, for the shared library name, and for the
main entry point to the shared library.

#! /bin/ksh

bldcsetsrv script file

Builds a C++ stored procedure.

Usage: bldcsetsrv <stor_proc_name> [<db_name> [<userid> <password>]]

Connect to a database.

if (($# < 2))

then

db2 connect to sample

elif (($# < 3))

then

db2 connect to $2

else

db2 connect to $2 user $3 using $4

fi

Precompile the program.

db2 prep $1.sqC bindfile

Bind the program to the database.

db2 bind $1.bnd

Disconnect from the database.

db2 connect reset

Compile the util.c error-checking utility.

xlC -I/usr/lpp/db2_05_00/include -c util.c

Compile the program.

xlC -I/usr/lpp/db2_05_00/include -c $1.C

Link the program using the export file $1.exp,

creating a shared library called $1 with the main

entry point $1.

makeC++SharedLib -p 1024 -o $1 $1.o util.o -ldb2 -L/usr/lpp/db2_05_00/lib \

-H512 -T512 -bE:$1.exp -e $1

Copy the shared library to the sqllib/function subdirectory of the DB2 instance.

Note: this assumes the user has write permission to this directory.

eval "H=˜$DB2INSTANCE"
cp $1 $H/sqllib/function

44 Building Applications for UNIX Environments

To build the outsrv stored procedure, do the following:

1. Go to the window in which you set your environment variables by running
db2profile. Refer to “Setting Your Environment” on page 19 if you need more
information.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Copy the C source file outsrv.sqc to outsrv.sqC so that it has the C++ file
extension .sqC.

4. Build the stored procedure, connecting to the SAMPLE database, by entering:

bldcsetsrv outsrv

The script file copies the stored procedure to the server in the path
sqllib/function to indicate that the stored procedure is fenced. If you want the
stored procedure to be unfenced, you must move it to the
sqllib/function/unfenced directory. These paths are in the home directory of the
DB2 instance.

Note: An unfenced stored procedure or UDF runs in the same address space as
the database manager and results in increased performance when
compared to a fenced stored procedure or UDF, which runs in an address
space isolated from the database manager. With unfenced stored
procedures or UDFs there is a danger that user code could accidentally or

Compile and Link Options for bldcsetsrv

The script file contains the following compile options:

xlC The IBM C Set++ compiler.

-Ipath Specify the location of the DB2 include files. For example:
-I/usr/lpp/db2_05_00/include.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

The script file contains the following link options:

makeC++SharedLib
Linker script for stored procedures with static constructors.

-p 1024 Set the priority to the arbitrary value of 1024.

-o filename Specify the output as a shared library file.

-Lpath Specify the location of the DB2 runtime shared libraries. For example:
-L/usr/lpp/db2_05_00/lib. If you do not specify the -L option, the compiler
assumes the following path: /usr/lib:/lib.

-E filename.exp Specify an export file. The export file contains a list of the stored
procedures.

-ldb2 Link with the database manager library.

util.o Include the object file for error checking.

Refer to your compiler documentation for additional compiler options.

 Chapter 4. Building AIX Embedded SQL Applications 45

maliciously damage the database control structures. Therefore, you should
only run unfenced stored procedures or UDFs when you need to maximize
the performance benefits. Ensure these programs are thoroughly tested
before running them as unfenced. Refer to the Embedded SQL
Programming Guide for more information about fenced and not fenced
stored procedures.

5. If necessary, set the file mode for the stored procedure so the DB2 instance can
run it.

Once you build the stored procedure outsrv, you can build the client application outcli
that calls the stored procedure. First, copy the C source file outcli.sqc to outcli.sqC
so that it has the C++ file extension .sqC. Then you can build outcli using the bldcset
script file. Refer to “IBM C Set++” on page 41 for details.

To run the stored procedure, do the following:

1. Go to the window in which you set your environment variables by running
db2profile.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Run the sample client application by entering:

outcli remote_database userid password

where

remote_database
Is the name of the database to which you want to connect. The name
could be SAMPLE, or its remote alias, or some other name.

userid Is a valid user ID.

password Is a valid password.

The client application passes a variable to the server program outsrv, which gives
it a value and then returns the variable to the client application.

Multi-threaded Applications on AIX Version 4
Multi-threaded applications on AIX Version 4 need to be compiled and linked with the
xlC_r compiler instead of the xlC compiler.

IBM XL FORTRAN for AIX
The script file bldxlf, in sqllib/samples/fortran, contains the commands to build a
sample FORTRAN program.

The first parameter, $1, specifies the name of your source file. The second parameter,
$2, specifies the name of the database to which you want to connect. Parameter $3
specifies the user ID for the database, and $4 specifies the password. Only the first
parameter, the source file name, is required. Database name, user ID, and password

46 Building Applications for UNIX Environments

are optional. If no database name is supplied, the program uses the default sample
database.

#! /bin/ksh

bldxlf script file

Build sample FORTRAN program containing embedded SQL.

Usage: bldxlf <prog_name> [<db_name> [<userid> <password>]]

Connect to a database.

if (($# < 2))

then

db2 connect to sample

elif (($# < 3))

then

db2 connect to $2

else

db2 connect to $2 user $3 using $4

fi

Precompile the program.

db2 prep $1.sqf bindfile

Bind the program to the database.

db2 bind $1.bnd

Disconnect from the database.

db2 connect reset

Compile the util.f error-checking utility.

xlf -I/usr/lpp/db2_05_00/include -c util.f

Compile the program.

xlf -I/usr/lpp/db2_05_00/include -c $1.f

Link the program.

xlf -o $1 $1.o util.o -ldb2 -L/usr/lpp/db2_05_00/lib

Compile and Link Options for bldxlf

The script file contains the following compile options:

xlf The FORTRAN compiler.

-Ipath Specify the location of the DB2 include files. For example:
-I/usr/lpp/db2_05_00/include.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

 Chapter 4. Building AIX Embedded SQL Applications 47

To build the sample program updat.sqf, do the following:

1. Go to the window in which you set your environment variables by running
db2profile. Refer to “Setting Your Environment” on page 19 if you need more
information.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Build the sample program, connecting to the SAMPLE database, by entering:

bldxlf updat

The result is an executable file updat. You can run the executable file against the
SAMPLE database to see how it works by doing the following :

1. Go to the window in which you set your environment variables by running
db2profile.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Run the program. If you built the updat sample program, enter:

updat

Note: To build FORTRAN applications that do not contain embedded SQL, you can
use the script file bldxlfapi. It contains the same compile and link options as
bldxlf, but does not connect, prep, bind, or disconnect from the SAMPLE
database. It is used to compile and link the DB2 API sample programs written in
FORTRAN.

Compile and Link Options for bldxlf

The script file contains the following link options:

xlf Use the compiler to link edit.

-o filename Specify the name of the executable program.

util.o Include the object file for error-checking.

-ldb2 Link with the database manager library.

-Lpath Specify the location of the DB2 runtime shared libraries. For example:
-L/usr/lpp/db2_05_00/lib. If you do not specify the -L option, the compiler
assumes the following path: /usr/lib:/lib.

Refer to your compiler documentation for additional compiler options.

Building FORTRAN Stored Procedures
The script file bldxlfsrv, in sqllib/samples/fortran, contains the commands to build a
stored procedure. The script file compiles the stored procedure into a shared library that
can be called by a client application.

The first parameter, $1, specifies the name of your source file. The second parameter,
$2, specifies the name of the database to which you want to connect. Parameter $3

48 Building Applications for UNIX Environments

specifies the user ID for the database, and $4 specifies the password. Only the first
parameter, the source file name, is required. Database name, user ID, and password
are optional. If no database name is supplied, the program uses the default sample
database.

The script file uses the source file name, $1, for the shared library name, and for the
main entry point to the shared library.

#! /bin/ksh

bldxlfsrv script file

Builds a FORTRAN stored procedure.

Usage: bldxlfsrv <stor_proc_name> [<db_name> [<userid> <password>]]

Connect to a database.

if (($# < 2))

then

db2 connect to sample

elif (($# < 3))

then

db2 connect to $2

else

db2 connect to $2 user $3 using $4

fi

Precompile the program.

db2 prep $1.sqf bindfile

Bind the program to the database.

db2 bind $1.bnd

Disconnect from the database.

db2 connect reset

Compile the util.f error-checking utility.

xlf -I/usr/lpp/db2_05_00/include -c util.f

Compile the program.

xlf -I/usr/lpp/db2_05_00/include -c $1.f

Link the program using the export file $1.exp,

creating a shared library called $1 with the main

entry point $1.

xlf -o $1 $1.o util.o -ldb2 -L/usr/lpp/db2_05_00/lib \

-H512 -T512 -bE:$1.exp -e $1

Copy the shared library to the sqllib/function subdirectory of the DB2 instance.

Note: this assumes the user has write permission to this directory.

eval "H=˜$DB2INSTANCE"
cp $1 $H/sqllib/function

 Chapter 4. Building AIX Embedded SQL Applications 49

To build the outsrv.sqf stored procedure, do the following:

1. Go to the window in which you set your environment variables by running
db2profile. Refer to “Setting Your Environment” on page 19 if you need more
information.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Build the stored procedure, connecting to the SAMPLE database, by entering:

bldxlfsrv outsrv

The script file copies the stored procedure to the server in the path
sqllib/function to indicate that the stored procedure is fenced. If you want the
stored procedure to be unfenced, you must move it to the
sqllib/function/unfenced directory. These paths are in the home directory of the
DB2 instance.

Note: An unfenced stored procedure or UDF runs in the same address space as
the database manager and results in increased performance when
compared to a fenced stored procedure or UDF, which runs in an address
space isolated from the database manager. With unfenced stored
procedures or UDFs there is a danger that user code could accidentally or

Compile and Link Options for bldxlfsrv

The script file contains the following compile options:

xlf The FORTRAN compiler.

-Ipath Specify the location of the DB2 include files. For example:
-I/usr/lpp/db2_05_00/include.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

The script file contains the following link options:

xlf Use the compiler to link edit.

-o filename Specify the output as a shared library file.

util.o Include the object file for error-checking.

-ldb2 Link with the database manager library.

-Lpath Specify the location of the DB2 runtime shared libraries. For example:
-L/usr/lpp/db2_05_00/lib. If you do not specify the -L option, the compiler
assumes the following path: /usr/lib:/lib.

-H512 Specify output file alignment.

-T512 Specify output file text segment starting address.

-bE:filename.exp
Specify an export file. The export file contains a list of the stored
procedures.

-e entry Specify the default entry point to the shared library.

Refer to your compiler documentation for additional compiler options.

50 Building Applications for UNIX Environments

maliciously damage the database control structures. Therefore, you should
only run unfenced stored procedures or UDFs when you need to maximize
the performance benefits. Ensure these programs are thoroughly tested
before running them as unfenced. Refer to the Embedded SQL
Programming Guide for more information about fenced and not fenced
stored procedures.

4. If necessary, set the file mode for the stored procedure so the DB2 instance can
run it.

Once you build the stored procedure outsrv, you can build the client application outcli
that calls the stored procedure. You can build outcli using the bldxlf script file. Refer
to “IBM XL FORTRAN for AIX” on page 46 for details.

To run the stored procedure, do the following:

1. Go to the window in which you set your environment variables by running
db2profile.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Run the sample client application by entering:

outcli

The client application passes a variable to the server program outsrv, which gives it a
value and then returns the variable to the client application.

Using the IBM XL FORTRAN for AIX Compiler
If you develop applications that contain embedded SQL and DB2 API calls, and you are
using the IBM XL Fortran for AIX compiler, keep the following points in mind:

¹ The Fortran compiler (xlf) treats lines with a D or d in column 1 as conditional lines.
You can either compile these lines for debugging or treat them as comments.

The precompiler always treats lines with a D or d in column one as comments.

¹ The compiler is case insensitive by default. You can make it case sensitive by
using a compiler option.

SQL keywords are always case insensitive. If you make the compiler case
sensitive, you must enter all Fortran keywords in lowercase. Additionally, identifier
references must match the case of declarations.

¹ A single tab introduces source lines such that the following character is positioned
at column 7. The compiler treats tabs in locations other than between columns 1-6,
and in character constants, as blanks.

¹ You cannot use the following data declaration keywords in host variable
declarations: POINTER, BYTE, STATIC, and AUTOMATIC.

¹ Pass by-value arguments using %VAL() and by-reference arguments using %REF().
The API Reference uses this syntax in the Fortran DB2 API examples.

 Chapter 4. Building AIX Embedded SQL Applications 51

¹ You cannot use the XL FORTRAN for AIX free-format option in .sqf files.

¹ The DB2 precompiler is case insensitive, but XL Fortran for AIX may not be,
depending on compiler options. Therefore, do not use host variables with the same
spelling and expect the case of the letters in the variable to make them unique. For
example, the precompiler treats NAME, name, and Name as equal.

Similarly, the following keywords are recognized to different extents by the
precompiler, and always in a case insensitive manner:

@PROCESS END IMPLICIT SUBROUTINE

AUTOMATIC ENDDO INTEGER

BLOCKDATA ENDFILE LOGICAL

BYTE ENDIF PARAMETER

CHARACTER ENTRY POINTER

COMPLEX FORMAT PROGRAM

DOUBLECOMPLEX FUNCTION REAL

DOUPLEPRECISION IF STATIC

¹ The precompiler allows only digits, blanks, and tab characters within columns 1-5
on continuation lines.

¹ You cannot use the \ character to include string delimiters within strings. For
example, use the strings 'the''character' or "the""character" instead of
'the\'character' or "the\"character".

¹ FORTRAN .sqf source files do not support Hollerith constants.

IBM COBOL Set for AIX
The script file bldcob, in sqllib/samples/cobol, contains the commands to build an
embedded SQL sample COBOL program.

The first parameter, $1, specifies the name of your source file. The second parameter,
$2, specifies the name of the database to which you want to connect. Parameter $3
specifies the user ID for the database, and $4 specifies the password. Only the first
parameter, the source file name, is required. Database name, user ID, and password
are optional. If no database name is supplied, the program uses the default sample
database.

52 Building Applications for UNIX Environments

#! /bin/ksh

bldcob script file

Builds a COBOL program containing embedded SQL

Usage: bldcob <prog_name> [<db_name> [<userid> <password>]]

Connect to a database.

if (($# < 2))

then

db2 connect to sample

elif (($# < 3))

then

db2 connect to $2

else

db2 connect to $2 user $3 using $4

fi

Precompile the program.

db2 prep $1.sqb bindfile

Bind the program to the database.

db2 bind $1.bnd

Disconnect from the database.

db2 connect reset

Compile the checkerr.cbl error checking utility.

cob2 -qpgmname\(mixed\) -qlib -I/usr/lpp/db2_05_00/include/cobol_a \

 -c checkerr.cbl

Compile the program.

cob2 -qpgmname\(mixed\) -qlib -I/usr/lpp/db2_05_00/include/cobol_a \

 -c $1.cbl

Link the program.

cob2 -o $1 $1.o checkerr.o -ldb2 -L/usr/lpp/db2_05_00/lib

Compile and Link Options for bldcob

The script file contains the following compile options:

cob2 The IBM COBOL Set compiler.

-qpgmname\(mixed\)

Instructs the compiler to permit CALLs to library entry points with
mixed-case names.

-qlib Instructs the compiler to process COPY statements.

-Ipath Specify the location of the DB2 include files. For example:
-I/usr/lpp/db2_05_00/include/cobol_a.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

 Chapter 4. Building AIX Embedded SQL Applications 53

To build the sample program updat.sqb, do the following:

1. Go to the window in which you set your environment variables by running
db2profile. Refer to “Setting Your Environment” on page 19 if you need more
information.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Build the sample program, connecting to the SAMPLE database, by entering:

bldcob updat

The result is an executable file updat. You can run the executable file against the
SAMPLE database to see how it works by doing the following :

1. Go to the window in which you set your environment variables by running
db2profile.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Run the program. If you built the updat sample program, enter:

updat

Note: To build IBM COBOL applications that do not contain embedded SQL, you can
use the script file bldcobapi. It contains the same compile and link options as
bldcob, but does not connect, prep, bind, or disconnect from the SAMPLE
database. It is used to compile and link DB2 API sample programs written in
COBOL.

Compile and Link Options for bldcob

The script file contains the following link options:

cob2 Use the compiler to link edit.

-o filename Specify the name of the executable program.

checkerr.o Include the object file for error-checking.

-ldb2 Link with the database manager library.

-Lpath Specify the location of the DB2 runtime shared libraries. For example:
-L/usr/lpp/db2_05_00/lib. If you do not specify the -L option, the compiler
assumes the following path: /usr/lib:/lib.

Refer to your compiler documentation for additional compiler options.

Building IBM COBOL Set for AIX Stored Procedures
The script file bldcobsrv, in sqllib/samples/cobol, contains the commands to build a
stored procedure. The script file compiles the stored procedure into a shared library on
the server that can be called by a client application.

The first parameter, $1, specifies the name of your source file. The second parameter,
$2, specifies the name of the database to which you want to connect. Parameter $3

54 Building Applications for UNIX Environments

specifies the user ID for the database, and $4 specifies the password. Only the first
parameter, the source file name, is required. Database name, user ID, and password
are optional. If no database name is supplied, the program uses the default sample
database.

The script file uses the source file name, $1, for the shared library name, and for the
main entry point to the shared library.

#! /bin/ksh

bldcobsrv script file

Build a COBOL stored procedure.

Usage: bldcobsrv <stor_proc_name> [<db_name> [<userid> <password>]]

Connect to a database.

if (($# < 2))

then

db2 connect to sample

elif (($# < 3))

then

db2 connect to $2

else

db2 connect to $2 user $3 using $4

fi

Precompile the program.

db2 prep $1.sqb bindfile target ibmcob

Bind the program to the database.

db2 bind $1.bnd

Disconnect from the database.

db2 connect reset

Compile the checkerr.cbl error checking utility.

cob2 -qpgmname\(mixed\) -qlib -I/usr/lpp/db2_05_00/include/cobol_a \

 -c checkerr.cbl

Compile the program.

cob2 -qpgmname\(mixed\) -qlib -c -I/usr/lpp/db2_05_00/include/cobol_a $1.cbl

Link the program using the export file $1.exp

creating a shared library called $1 with the main

entry point $1.

cob2 -o $1 $1.o checkerr.o -H512 -T512 -e $1 -bE:$1.exp \

 -L/usr/lpp/db2_05_00/lib -ldb2

Copy the shared library to the sqllib/function subdirectory of the DB2 instance.

Note: this assumes the user has write permission to this directory.

eval "H=˜$DB2INSTANCE"
cp $1 $H/sqllib/function

 Chapter 4. Building AIX Embedded SQL Applications 55

To build the outsrv.sqb stored procedure, do the following:

1. Go to the window in which you set your environment variables by running
db2profile. Refer to “Setting Your Environment” on page 19 if you need more
information.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Build the stored procedure, connecting to the SAMPLE database, by entering:

bldcobsrv outsrv

The script file copies the stored procedure to the server in the path
sqllib/function to indicate that the stored procedure is fenced. If you want the
stored procedure to be unfenced, you must move it to the
sqllib/function/unfenced directory. These paths are in the home directory of the
DB2 instance.

Compile and Link Options for bldcobsrv

The script file contains the following compile options:

cob2 The IBM COBOL Set compiler.

-qpgmname\(mixed\)

Instructs the compiler to permit CALLs to library entry points with
mixed-case names.

-qlib Instructs the compiler to process COPY statements.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

-Ipath Specify the location of the DB2 include files. For example:
-I/usr/lpp/db2_05_00/include/cobol_a.

The script file contains the following link options:

cob2 Use the compiler to link edit.

-o filename Specify the output as a shared library file.

checkerr.o Include the object file for error-checking.

-H512 Specify output file alignment.

-T512 Specify output file text segment starting address.

-e entry Specify the default entry point to the shared library.

-bE:filename.exp
Specify an export file. The export file contains a list of the stored
procedures.

-Lpath Specify the location of the DB2 runtime shared libraries. For example:
-L/usr/lpp/db2_05_00/lib. If you do not specify the -L option, the compiler
assumes the following path: /usr/lib:/lib.

-ldb2 Link with the database manager library.

Refer to your compiler documentation for additional compiler options.

56 Building Applications for UNIX Environments

Note: An unfenced stored procedure or UDF runs in the same address space as
the database manager and results in increased performance when
compared to a fenced stored procedure or UDF, which runs in an address
space isolated from the database manager. With unfenced stored
procedures or UDFs there is a danger that user code could accidentally or
maliciously damage the database control structures. Therefore, you should
only run unfenced stored procedures or UDFs when you need to maximize
the performance benefits. Ensure these programs are thoroughly tested
before running them as unfenced. Refer to the Embedded SQL
Programming Guide for more information about fenced and not fenced
stored procedures.

4. If necessary, set the file mode for the stored procedure so the DB2 instance can
run it.

Once you build the stored procedure outsrv, you can build the client application outcli
that calls the stored procedure. You can build outcli using the bldcob script file. Refer
to “IBM COBOL Set for AIX” on page 52 for details.

To run the stored procedure, do the following:

1. Go to the window in which you set your environment variables by running
db2profile.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Run the sample client application by entering:

outcli

The client application passes a variable to the server program outsrv, which gives
it a value and then returns the variable to the client application.

Using the IBM COBOL Set for AIX Compiler
If you develop applications that contain embedded SQL and DB2 API calls, and you are
using the IBM COBOL Set for AIX compiler, keep the following points in mind:

¹ When you precompile your application using the command line processor
command db2 prep, use the target ibmcob option.

¹ Do not use tab characters in your source files.

¹ You can use the PROCESS and CBL keywords in the first line of your source files to
set compile options.

¹ If your application contains only embedded SQL, but no DB2 API calls, you do not
need to use the pgmname(mixed) compile option. If you use DB2 API calls, you
must use the pgmname(mixed) compile option.

¹ The DB2 COPY files for IBM COBOL Set for AIX reside in
sqllib/include/cobol_a under the database instance directory. Specify COPY file
names to include the .cbl extension as follows:

COPY "sql.cbl".

 Chapter 4. Building AIX Embedded SQL Applications 57

Micro Focus COBOL
The script file bldmfcob, in sqllib/samples/cobol_mf, contains the commands to build a
sample COBOL program.

The first parameter, $1, specifies the name of your source file. The second parameter,
$2, specifies the name of the database to which you want to connect. Parameter $3
specifies the user ID for the database, and $4 specifies the password. Only the first
parameter, the source file name, is required. Database name, user ID, and password
are optional. If no database name is supplied, the program uses the default sample
database.

#! /bin/ksh

bldmfcob script file

Builds a COBOL program containing embedded SQL

Usage: bldmfcob <prog_name> [<db_name> [<userid> <password>]]

Connect to a database.

if (($# < 2))

then

db2 connect to sample

elif (($# < 3))

then

db2 connect to $2

else

db2 connect to $2 user $3 using $4

fi

Precompile the program.

db2 prep $1.sqb bindfile

Bind the program to the database.

db2 bind $1.bnd

Disconnect from the database.

db2 connect reset

Set COBCPY to include the DB2 COPY files directory.

export COBCPY=/usr/lpp/db2_05_00/include/cobol_mf:$COBCPY

Compile the checkerr.cbl error checking utility.

cob -c -x checkerr.cbl

Compile the program.

cob -c -x $1.cbl

Link the program.

cob -x -o $1 $1.o checkerr.o -ldb2 -ldb2gmf -L/usr/lpp/db2_05_00/lib

58 Building Applications for UNIX Environments

To build the sample program updat.sqb, do the following:

1. Go to the window in which you set your environment variables by running
db2profile. Refer to “Setting Your Environment” on page 19 if you need more
information.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Build the sample program, connecting to the SAMPLE database, by entering:

bldmfcob updat

The result is an executable file updat. You can run the executable file against the
SAMPLE database to see how it works by doing the following :

1. Go to the window in which you set your environment variables by running
db2profile.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Run the program. If you built the updat sample program, enter:

updat

Note: To build Micro Focus COBOL applications that do not contain embedded SQL,
you can use the script file bldmfapi. It contains the same compile and link
options as bldmfcob, but does not connect, prep, bind, or disconnect from the
SAMPLE database. It is used to compile and link DB2 API sample programs
written in COBOL.

Compile and Link Options for bldmfcob

The script file contains the following compile options:

cob The COBOL compiler.

-c Perform compile only; no link.

-x Produce an executable program.

The script file contains the following link options:

cob Use the compiler to link edit.

-x Produce an executable program.

-o filename Specify the name of the executable program.

-ldb2 Link with the database manager library.

-ldb2gmf Link with the DB2 exception-handler library for M. F. COBOL.

-Lpath Specify the location of the DB2 runtime shared libraries. For example:
-L/usr/lpp/db2_05_00/lib. If you do not specify the -L option, the compiler
assumes the following path: /usr/lib:/lib.

Refer to your compiler documentation for additional compiler options.

 Chapter 4. Building AIX Embedded SQL Applications 59

Building Micro Focus COBOL Stored Procedures
The script file bldmfcobs, in sqllib/samples/cobol_mf, contains the commands to build
a stored procedure. The script file compiles the stored procedure into a shared library
on the server that can be called by a client application.

The first parameter, $1, specifies the name of your source file. The second parameter,
$2, specifies the name of the database to which you want to connect. Parameter $3
specifies the user ID for the database, and $4 specifies the password. Only the first
parameter, the source file name, is required. Database name, user ID, and password
are optional. If no database name is supplied, the program uses the default sample
database.

The script file uses the source file name, $1, for the shared library name, and for the
main entry point to the shared library.

60 Building Applications for UNIX Environments

#! /bin/ksh

bldmfcobs script file

Build sample COBOL stored procedure

Usage: bldmfcobs <stored_proc_name> [<db_name> [<userid> <password>]]

Connect to a database.

if (($# < 2))

then

db2 connect to sample

elif (($# < 3))

then

db2 connect to $2

else

db2 connect to $2 user $3 using $4

fi

Precompile the program.

db2 prep $1.sqb bindfile

Bind the program to the database.

db2 bind $1.bnd

Disconnect from the database.

db2 connect reset

Set COBCPY to include the DB2 COPY files directory.

export COBCPY=/usr/lpp/db2_05_00/include/cobol_mf:$COBCPY

Compile the checkerr.cbl error checking utility.

cob -c -x checkerr.cbl

Compile the program.

cob -c -x $1.cbl

Link the program using the export file $1.exp,

creating a shared library called $1 with the main

entry point $1.

cob -x -o $1 $1.o -Q -bE:$1.exp -Q "-e $1" -Q -bI:/usr/lpp/db2_05_00/lib/db2g.imp \

-B static -ldb2gmf -L/usr/lpp/db2_05_00/lib

Copy the shared library to the sqllib/function subdirectory of the DB2 instance.

Note: this assumes the user has write permission to this directory.

eval "H=˜$DB2INSTANCE"
cp $1 $H/sqllib/function

 Chapter 4. Building AIX Embedded SQL Applications 61

To build the outsrv.sqb stored procedure, do the following:

1. Go to the window in which you set your environment variables by running
db2profile. Refer to “Setting Your Environment” on page 19 if you need more
information.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Build the stored procedure, connecting to the SAMPLE database, by entering:

bldmfcobs outsrv

The script file copies the stored procedure to the server in the path
sqllib/function to indicate that the stored procedure is fenced. If you want the
stored procedure to be unfenced, you must move it to the
sqllib/function/unfenced directory. These paths are in the home directory of the
DB2 instance.

Note: An unfenced stored procedure or UDF runs in the same address space as
the database manager and results in increased performance when
compared to a fenced stored procedure or UDF, which runs in an address
space isolated from the database manager. With unfenced stored
procedures or UDFs there is a danger that user code could accidentally or

Compile and Link Options for bldmfcobs

The script file contains the following compile options:

cob The COBOL compiler.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

-x Produce an executable program.

The script file contains the following link options:

cob Use the compiler to link edit.

-x Produce an executable program.

-o filename Specify the name of the executable program.

-Q -bE:filename.exp
Specify an export file. The export file contains a list of the stored
procedures.

-Q "-e $1" Specify the default entry point to the shared library.

-Q -bI:/usr/lpp/db2_05_00/lib/db2g.imp

Provides a list of entry points to the DB2 application library.

-B static Produce a statically-linked library.

-Lpath Specify the location of the DB2 runtime shared libraries. For example:
-L/usr/lpp/db2_05_00/lib. If you do not specify the -L option, the compiler
assumes the following path: /usr/lib:/lib.

-ldb2gmf Link with the DB2 exception-handler library for M. F. COBOL.

Refer to your compiler documentation for additional compiler options.

62 Building Applications for UNIX Environments

maliciously damage the database control structures. Therefore, you should
only run unfenced stored procedures or UDFs when you need to maximize
the performance benefits. Ensure these programs are thoroughly tested
before running them as unfenced. Refer to the Embedded SQL
Programming Guide for more information about fenced and not fenced
stored procedures.

4. If necessary, set the file mode for the stored procedure so the DB2 instance can
run it.

Once you build the stored procedure outsrv, you can build the client application outcli
that calls the stored procedure. You can build outcli using the bldmfcob script file.
Refer to “Micro Focus COBOL” on page 58 for details.

To run the stored procedure, do the following:

1. Go to the window in which you set your environment variables by running
db2profile.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Run the sample client application by entering:

outcli

The client application passes a variable to the server program outsrv, which gives
it a value and then returns the variable to the client application.

Setting Up and Running REXX Programs
You do not precompile or bind REXX programs.

To run DB2 REXX/SQL programs on AIX, you must set the LIBPATH environment
variable to include sqllib/lib under the DB2 install directory.

If LIBPATH has not been set yet, enter:

export LIBPATH=/lib:/usr/lib:/usr/lpp/db2_05_00/sqllib/lib

If LIBPATH has been set already, enter:

export LIBPATH=$LIBPATH:/usr/lpp/db2_05_00/sqllib/lib

On AIX, your application file can have any file extension. You can run your application
using either of the following two methods:

1. At the shell command prompt, enter rexx name where name is the name of your
REXX program.

2. If the first line of your REXX program contains a "magic number", (#!), and
identifies the directory where the REXX/6000 interpreter resides, you can run your
REXX program by entering its name at the shell command prompt. For example, if

 Chapter 4. Building AIX Embedded SQL Applications 63

the REXX/6000 interpreter file is in the /usr/bin directory, include the following as
the very first line of your REXX program:

#! /usr/bin/rexx

Then, make the program executable by entering the following command at the
shell command prompt:

chmod +xname

Run your REXX program by entering its file name at the shell command prompt.

REXX sample programs are in the directory sqllib/samples/rexx. To run the sample
REXX program updat.cmd, do one of the following:

¹ Run the program directly. Enter:

updat.cmd

¹ Specify the REXX interpreter and the program. Enter:

rexx updat.cmd

For further information on REXX and DB2, refer to the Embedded SQL Programming
Guide, chapter 13, "Programming in REXX".

64 Building Applications for UNIX Environments

Chapter 5. Building HP-UX Embedded SQL Applications

This chapter provides detailed information for building embedded SQL applications on
HP-UX. In the script files, commands that begin with db2 are Command Line Processor
(CLP) commands. Refer to the Command Reference if you need more information
about CLP commands.

 HP-UX C/C++

The script files in this section are coded for C programs using the C compiler. To use
C++ programs you need to use the C++ compiler. To do this, make the changes to the
script files given in comments at the end of the files.

The script file bldcc, in sqllib/samples/c, contains the commands to build a sample C
program.

The first parameter, $1, specifies the name of your source file. The second parameter,
$2, specifies the name of the database to which you want to connect. The third
parameter, $3, specifies the user ID for the database, and $4 specifies the password.
Only the first parameter, the source file name, is required. Database name, user ID,
and password are optional. If no database name is supplied, the program uses the
default sample database.

 Copyright IBM Corp. 1993, 1997 65

#! /bin/ksh

bldcc script file

Builds a sample C program containing embedded SQL

Usage: bldcc <prog_name> [<db_name> [<userid> <password>]]

Connect to a database.

if (($# < 2))

then

db2 connect to sample

elif (($# < 3))

then

db2 connect to $2

else

db2 connect to $2 user $3 using $4

fi

Precompile the program.

db2 prep $1.sqc bindfile

Bind the program to the database.

db2 bind $1.bnd

Disconnect from the database.

db2 connect reset

Compile the util.c error-checking utility.

cc -Aa +e -I/opt/IBMdb2/v5.0/include -c util.c

Compile the program.

cc -Aa +e -I/opt/IBMdb2/v5.0/include -c $1.c

Link the program.

cc -o $1 $1.o util.o -L/opt/IBMdb2/v5.0/lib -ldb2 -lhppa

Note: To use the C++ compiler, substitute the following steps.

Precompile the program.

db2 prep $1.sqC bindfile

Compile the util.c error-checking utility.

CC +a1 -I/opt/IBMdb2/v5.0/include -c util.c

Compile the program.

CC +a1 -I/opt/IBMdb2/v5.0/include -c $1.C

Link the program.

CC -o $1 $1.o util.o -L/opt/IBMdb2/v5.0/lib -ldb2 -lhppa

66 Building Applications for UNIX Environments

To build the sample program updat.sqc, do the following:

1. Go to the window in which you set your environment variables by running
db2profile. Refer to “Setting Your Environment” on page 19 if you need more
information.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Build the sample program, connecting to the SAMPLE database, by entering:

bldcc updat

The result is an executable file updat. You can run the executable file against the
SAMPLE database to see how it works by doing the following :

1. Go to the window in which you set your environment variables by running
db2profile.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Run the program. If you built the updat sample program, enter:

updat

Note: To build C applications that do not contain embedded SQL, you can use the
script file bldccapi. It contains the same compile and link options as bldcc, but
does not connect, prep, bind, or disconnect from the SAMPLE database. It is
used to compile and link the DB2 API sample programs written in C.

Compile and Link Options for bldcc

The script file contains the following compile options:

cc The C compiler.
-Aa Use ANSI standard mode (for the C compiler only).
+e Enables HP value-added features while compiling in ANSI C mode.
-Ipath Specify the location of the DB2 include files. For example:

-I/opt/IBMdb2/v5.0/include

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

The script file contains the following link options:

cc Use the compiler to link edit.
-o $1 Specify the name of the object module.
util.o Include the object file for error checking.
-Lpath Specify the location of the DB2 runtime shared libraries. For example:

-L/opt/IBMdb2/v5.0/lib. If you do not specify the -L option, /usr/lib:/lib
is assumed.

-ldb2 Link with the DB2 library.
-lhppa Specify the HP PA-RISC library (required).

Refer to your compiler documentation for additional compiler options.

 Chapter 5. Building HP-UX Embedded SQL Applications 67

Building C Stored Procedures
The script file bldccsrv, in sqllib/samples/c, contains the commands to build a C
stored procedure. The script file compiles the stored procedure into a shared library that
can be called by a client application.

The first parameter, $1, specifies the name of your source file. The second parameter,
$2, specifies the name of the database to which you want to connect. The third
parameter, $3, specifies the user ID for the database, and $4 specifies the password.
Only the first parameter, the source file name, is required. Database name, user ID,
and password are optional. If no database name is supplied, the program uses the
default sample database.

The script file uses the source file name, $1, for the shared library name.

68 Building Applications for UNIX Environments

#! /bin/ksh

bldccsrv script file

Build C stored procedure.

Usage: bldccsrv <prog_name> [<db_name> [<userid> <password>]]

Connect to a database.

if (($# < 2))

then

db2 connect to sample

elif (($# < 3))

then

db2 connect to $2

else

db2 connect to $2 user $3 using $4

fi

Precompile the program.

db2 prep $1.sqc bindfile

Bind the program to the database.

db2 bind $1.bnd

Disconnect from the database.

db2 connect reset

Compile the program.

cc +u1 +Z -Aa +e -I/opt/IBMdb2/v5.0/include -c $1.c

Link the program to create a shared library

ld -b -o $1 $1.o -L/opt/IBMdb2/v5.0/lib -ldb2

Copy the shared library to the sqllib/function subdirectory of the DB2 instance.

Note: this assumes the user has write permission to this directory.

eval "H=˜$DB2INSTANCE"
cp $1 $H/sqllib/function

Note: to use the C++ compiler, substitute the following steps.

Precompile the program.

db2 prep $1.sqC bindfile

Compile the program.

CC +Z -I/opt/IBMdb2/v5.0/include -c $1.C

Ensure the stored procedure is coded with extern "C".

 Chapter 5. Building HP-UX Embedded SQL Applications 69

To build the outsrv.sqc stored procedure, do the following:

1. Go to the window in which you set your environment variables by running
db2profile. Refer to “Setting Your Environment” on page 19 if you need more
information.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Build the stored procedure, connecting to the SAMPLE database, by entering:

bldccsrv outsrv

The script file copies the stored procedure to the server in the path
sqllib/function to indicate that the stored procedure is fenced. If you want the
stored procedure to be unfenced, you must move it to the
sqllib/function/unfenced directory. These paths are in the home directory of the
DB2 instance.

Note: An unfenced stored procedure or UDF runs in the same address space as
the database manager and results in increased performance when
compared to a fenced stored procedure or UDF, which runs in an address
space isolated from the database manager. With unfenced stored
procedures or UDFs there is a danger that user code could accidentally or
maliciously damage the database control structures. Therefore, you should
only run unfenced stored procedures or UDFs when you need to maximize
the performance benefits. Ensure these programs are thoroughly tested
before running them as unfenced. Refer to the Embedded SQL

Compile and Link Options for bldccsrv

The script file contains the following compile options:

cc The C compiler.
+u1 Allow unaligned data access. Use only if your application uses unaligned

data.
-Aa Use ANSI standard mode (for the C compiler only).
+Z Generate position-independent code.
+e Enables HP value-added features while compiling in ANSI C mode.
-Ipath Specify the location of the DB2 include files. For example:

-I/opt/IBMdb2/v5.0/include.
-c Perform compile only; no link. This book assumes that compile and link are

separate steps.

The script file contains the following link options:

ld Use the linker to link edit.
-b Create a shared library rather than a normal executable.
-o $1 Specify the name of the object module.
-Lpath Specify the location of the DB2 runtime shared libraries. For example:

-L/opt/IBMdb2/v5.0/lib. If you do not specify the -L option, /usr/lib:/lib
is assumed.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

70 Building Applications for UNIX Environments

Programming Guide for more information about fenced and not fenced
stored procedures.

4. If necessary, set the file mode for the stored procedure so the DB2 instance can
run it.

Once you build the stored procedure outsrv, you can build the client application that
calls the stored procedure. You can build outcli using the bldcc file. Refer to “HP-UX
C/C++” on page 65 for details.

To run the stored procedure, do the following :

1. Go to the window in which you set your environment variables by running
db2profile.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Run the sample client application by entering:

outcli remote_database userid password

where

remote_database
Is the name of the database to which you want to connect. The name
could be SAMPLE, or its remote alias, or some other name.

userid Is a valid user ID.

password Is a valid password.

The client application passes a variable to the server program, outsrv, which gives it a
value and then returns the variable to the client application.

Building C User-Defined Functions (UDFs)
The script file bldccudf, in sqllib/samples/c, contains the commands to build a UDF.
UDFs are compiled like stored procedures, but you do not need to connect to a
database or precompile and bind the program.

Note: A UDF does not contain embedded SQL statements. Rather, the application
that uses the UDF contains the statements, such as calludf.

The first parameter, $1, specifies the name of your source file. The script file also uses
this source file name for the shared library name.

 Chapter 5. Building HP-UX Embedded SQL Applications 71

#! /bin/ksh

bldccudf script file

Builds sample c UDF library.

Usage: bldccudf <prog_name>

Compile the program.

cc +u1 +Z -Aa +e -I/opt/IBMdb2/v5.0/include -c $1.c

Link the program and create a shared library.

ld -b -o $1 $1.o -L/opt/IBMdb2/v5.0/lib -ldb2 -ldb2apie

Copy the shared library to the sqllib/function subdirectory of the DB2 instance.

Note: this assumes the user has write permission to this directory.

eval "H=˜$DB2INSTANCE"
cp $1 $H/sqllib/function

Note: to use the C++ compiler, substitute the following step.

Compile the program.

CC +Z -I/opt/IBMdb2/v5.0/include -c $1.C

Ensure the UDF is coded with extern "C".

To build the user-defined function udf, do the following:

Compile and Link Options for bldccudf

The script file contains the following compile options:

cc The C compiler.
+u1 Allow unaligned data access. Use only if your application uses unaligned

data.
-Aa Use ANSI standard mode (for the C compiler only).
+Z Generate position-independent code.
+e Enables HP value-added features while compiling in ANSI C mode.
-Ipath Specify the location of the DB2 include files. For example:

-I/opt/IBMdb2/v5.0/include.
-c Perform compile only; no link. This book assumes that compile and link are

separate steps.

The script file contains the following link options:

ld Use the linker to link edit.
-b Create a shared library rather than a normal executable.
-o $1 Specify the name of the object module.
-Lpath Specify the location of the DB2 runtime shared libraries. For example:

-L/opt/IBMdb2/v5.0/lib. If you do not specify the -L option, /usr/lib:/lib
is assumed.

-ldb2 Link with the DB2 library.
-ldb2apie Link with the DB2 API Engine library to allow the use of LOB locators.

Refer to your compiler documentation for additional compiler options.

72 Building Applications for UNIX Environments

1. Go to the window in which you set your environment variables by running
db2profile. Refer to “Setting Your Environment” on page 19 if you need more
information.

2. Build the UDF by entering:

bldccudf udf

The script file copies the UDF to the server in the path sqllib/function to indicate
that the UDF is fenced. If you want the UDF to be unfenced, you must move it to
the sqllib/function/unfenced directory. These paths are in the home directory of
the DB2 instance.

Note: An unfenced UDF or stored procedure runs in the same address space as
the database manager and results in increased performance when
compared to a fenced UDF or stored procedure, which runs in an address
space isolated from the database manager. With unfenced UDFs or stored
procedures there is a danger that user code could accidentally or
maliciously damage the database control structures. Therefore, you should
only run unfenced UDFs or stored procedures when you need to maximize
the performance benefits. Ensure these programs are thoroughly tested
before running them as unfenced. Refer to the Embedded SQL
Programming Guide for more information about fenced and not fenced
UDFs.

3. If necessary, set the file mode for the UDF so the DB2 instance can run it.

Once you build udf, you can build the client application, calludf, that calls it. You can
build calludf using the bldcc file. Refer to “HP-UX C/C++” on page 65 for details.

To run the UDF, do the following :

1. Go to the window in which you set your environment variables by running
db2profile.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Run the sample calling application by entering:

calludf

The calling application calls functions from the udf library.

 Multi-threaded Applications
Multi-threaded applications on HP-UX need to be linked with libcma.sl. Add -lcma to
the end of the link command when building a multi-threaded application.

 HP FORTRAN/9000
The script file bldf77, in sqllib/samples/fortran, contains the commands to build a
sample FORTRAN program.

 Chapter 5. Building HP-UX Embedded SQL Applications 73

The first parameter, $1, specifies the name of your source file. The second parameter,
$2, specifies the name of the database to which you want to connect. The third
parameter, $3, specifies the user ID for the database, and $4, specifies the password.
Only the first parameter, the source file name, is required. Database name, user ID,
and password are optional. If no database name is supplied, the program uses the
default sample database.

#! /bin/ksh

bldf77 script file

Builds a FORTRAN program containing embedded SQL

Usage: bldf77 <prog_name> [<db_name> [<userid> <password>]]

Connect to a database.

if (($# < 2))

then

db2 connect to sample

elif (($# < 3))

then

db2 connect to $2

else

db2 connect to $2 user $3 using $4

fi

Precompile the program.

db2 prep $1.sqf bindfile

Bind the program to the database.

db2 bind $1.bnd

Disconnect from the database.

db2 connect reset

Compile the util.f error-checking utility.

f77 -w -c -I/opt/IBMdb2/v5.0/include -c util.f

Compile the program.

f77 -w -c -I/opt/IBMdb2/v5.0/include $1.f

Link the program.

f77 $1.o util.o -Wl,-L/opt/IBMdb2/v5.0/lib -ldb2 -lhppa -o $1

74 Building Applications for UNIX Environments

To build the sample program updat.sqf, do the following:

1. Go to the window in which you set your environment variables by running
db2profile. Refer to “Setting Your Environment” on page 19 if you need more
information.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Build the sample program, connecting to the SAMPLE database, by entering:

bldf77 updat

The result is an executable file updat. You can run the executable file against the
SAMPLE database to see how it works by doing the following :

1. Go to the window in which you set your environment variables by running
db2profile.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Run the program. If you built the updat sample program, enter:

updat

Note: To build FORTRAN applications that do not contain embedded SQL, you can
use the script file bldf77api. It contains the same compile and link options as
bldf77, but does not connect, prep, bind, or disconnect from the SAMPLE
database. It is used to compile and link the DB2 API sample programs written in
FORTRAN.

Compile and Link Options for bldf77

The script file contains the following compile options:

f77 The FORTRAN compiler.
-w Suppress warning messages.
-c Perform compile only; no link. This book assumes that compile and link are

separate steps.
-Ipath Specify the location of the DB2 include files. For example:

-I/opt/IBMdb2/v5.0/include

The script file contains the following link options:

f77 Use the compiler to link edit.
util.o Include the object file for error checking.
-Wl, The linker can use the path in -L to find the shared library.
-Lpath Specify the location of the DB2 runtime shared libraries. For example:

-L/opt/IBMdb2/v5.0/lib.
-ldb2 Link with the DB2 library.
-lhppa Specify the HP PA-RISC library (required).
-o $1 Specify the name of the object module.

Refer to your compiler documentation for additional compiler options.

 Chapter 5. Building HP-UX Embedded SQL Applications 75

Building FORTRAN Stored Procedures
The script file bldf77sp, in sqllib/samples/fortran, contains the commands to build a
stored procedure. The script file compiles the stored procedure into a shared library on
the server that can be called by a client application.

The first parameter, $1, specifies the name of your source file. The second parameter,
$2, specifies the name of the database to which you want to connect. The third
parameter, $3, specifies the user ID for the database, and $4, specifies the password.
Only the first parameter, the source file name, is required. Database name, user ID,
and password are optional. If no database name is supplied, the program uses the
default sample database.

The script file uses the source file name, $1, for the shared library name.

#! /bin/ksh

bldf77sp script file

Builds a sample FORTRAN stored procedure

Usage: bldf77sp <stored_proc_name> [<db_name> [<userid> <password>]]

Connect to a database.

if (($# < 2))

then

db2 connect to sample

elif (($# < 3))

then

db2 connect to $2

else

db2 connect to $2 user $3 using $4

fi

Precompile the program.

db2 prep $1.sqf bindfile

Bind the program to the database.

db2 bind $1.bnd

Disconnect from the database.

db2 connect reset

Compile the program.

f77 -w -n -c +Z -I/opt/IBMdb2/v5.0/include $1.f -o $1.o

Link the program.

ld -b -E -o $1 $1.o -L/opt/IBMdb2/v5.0/lib

Copy the shared library to the sqllib/function subdirectory of the DB2 instance.

Note: this assumes the user has write permission to this directory.

eval "H=˜$DB2INSTANCE"
cp $1 $H/sqllib/function

76 Building Applications for UNIX Environments

To build the stored procedure outsrv.sqf do the following:

1. Go to the window in which you set your environment variables by running
db2profile. Refer to “Setting Your Environment” on page 19 if you need more
information.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Build the stored procedure, connecting to the SAMPLE database, by entering:

bldf77srv outsrv

The script file copies the stored procedure to the server in the path
sqllib/function to indicate that the stored procedure is fenced. If you want the
stored procedure to be unfenced, you must move it to the
sqllib/function/unfenced directory. These paths are in the home directory of the
DB2 instance.

Note: An unfenced stored procedure or UDF runs in the same address space as
the database manager and results in increased performance when
compared to a fenced stored procedure or UDF, which runs in an address
space isolated from the database manager. With unfenced stored
procedures or UDFs there is a danger that user code could accidentally or
maliciously damage the database control structures. Therefore, you should
only run unfenced stored procedures or UDFs when you need to maximize
the performance benefits. Ensure these programs are thoroughly tested
before running them as unfenced. Refer to the Embedded SQL
Programming Guide for more information about fenced and not fenced
stored procedures.

Compile and Link Options for bldf77sp

The script file contains the following compile options:

f77 The FORTRAN compiler.
-w Suppress warning messages.
-n Generate a shared object file.
-c Perform compile only; no link.
+Z Generate position-independent code.
-Ipath Specify the location of the DB2 include files. For example:

-I/opt/IBMdb2/v5.0/include.
-o $1 Specify the name of the object module.

Refer to your compiler documentation for additional compiler options.

The script file contains the following link options:

ld Use the linker to link edit.
-b -E Specify the default export file for the stored procedure.
-o $1 Specify the name of the object module.
-Lpath Specify the location of the DB2 runtime shared libraries. For example:

-L/opt/IBMdb2/v5.0/lib.

Refer to your compiler documentation for additional compiler options.

 Chapter 5. Building HP-UX Embedded SQL Applications 77

4. If necessary, set the file mode for the stored procedure so the DB2 instance can
run it.

Once you build the stored procedure outsrv, you can build outcli that calls the stored
procedure. You can build outcli using the bldf77 script file. Refer to “HP
FORTRAN/9000” on page 73 for details.

To run the stored procedure, do the following :

1. Go to the window in which you set your environment variables by running
db2profile.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Run the sample client application by entering:

outcli

The client application passes a variable to the server program outsrv, which gives it a
value and then returns the variable to the client application.

Micro Focus COBOL
The script file bldmfcc, in sqllib/samples/cobol_mf, contains the commands to build a
sample COBOL program.

The first parameter, $1, specifies the name of your source file. The second parameter,
$2, specifies the name of the database to which you want to connect. The third
parameter, $3, specifies the user ID for the database, and $4, specifies the password.
Only the first parameter, the source file name, is required. Database name, user ID,
and password are optional. If no database name is supplied, the program uses the
default sample database.

78 Building Applications for UNIX Environments

#! /bin/ksh

bldmfcc script file

Builds a COBOL program containing embedded SQL

Usage: bldmfcc <prog_name> [<db_name> [<userid> <password>]]

Connect to a database.

if (($# < 2))

then

db2 connect to sample

elif (($# < 3))

then

db2 connect to $2

else

db2 connect to $2 user $3 using $4

fi

Precompile the program.

db2 prep $1.sqb bindfile

Bind the program to the database.

db2 bind $1.bnd

Disconnect from the database.

db2 connect reset

Set COBCPY to include the DB2 COPY files directory.

export COBCPY=$COBCPY:/opt/IBMdb2/v5.0/include/cobol_mf

Compile the checkerr.cbl error checking utility.

cob -cx checkerr.cbl

Compile the program.

cob -cx $1.cbl

Link the program.

cob -x $1.o checkerr.o -L/opt/IBMdb2/v5.0/lib -ldb2 -lhppa -ldb2gmf

Compile and Link Options for bldmfcc

The script file contains the following compile options:

cob The Micro Focus COBOL compiler.
-cx Compile to object module.

 Chapter 5. Building HP-UX Embedded SQL Applications 79

To build the sample program updat.sqb, do the following:

1. Go to the window in which you set your environment variables by running
db2profile. Refer to “Setting Your Environment” on page 19 if you need more
information.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Build the sample program, connecting to the SAMPLE database, by entering:

bldmfcc updat

The result is an executable file updat. You can run the executable file against the
SAMPLE database to see how it works by doing the following:

1. Go to the window in which you set your environment variables by running
db2profile. Refer to “Setting Your Environment” on page 19 if you need more
information.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Run the program. If you built the updat sample program, enter:

updat

Note: To build Micro Focus COBOL applications that do not contain embedded SQL,
you can use the script file bldmfapi. It contains the same compile and link
options as bldmfcc, but does not connect, prep, bind, or disconnect from the
SAMPLE database. It is used to compile and link DB2 API sample programs
written in COBOL.

Compile and Link Options for bldmfcc

The script file contains the following link options:

cob Use the compiler to link edit.
-x Specify an executable program.
checkerr.o Include the object file for error checking.
-Lpath Specify the location of the DB2 runtime shared libraries. For example:

-L/opt/IBMdb2/v5.0/lib.
-ldb2 Link with the DB2 library.
-lhppa Specify the HP PA-RISC library (required).
-ldb2gmf Link to the DB2 library.

Refer to your compiler documentation for additional compiler options.

Building Micro Focus COBOL Stored Procedures
The script file bldmfsp, in sqllib/samples/cobol_mf, contains the commands to build a
stored procedure. The script file compiles the stored procedure into a shared library on
the server that can be called by a client application.

80 Building Applications for UNIX Environments

The first parameter, $1, specifies the name of your source file. The second parameter,
$2, specifies the name of the database to which you want to connect. The third
parameter, $3, specifies the user ID for the database, and $4 specifies the password.
Only the first parameter, the source file name, is required. Database name, user ID,
and password are optional. If no database name is supplied, the program uses the
default sample database.

The script file uses the source file name, $1, for the shared library name.

 Chapter 5. Building HP-UX Embedded SQL Applications 81

#! /bin/ksh

bldmfsp script file

Builds a COBOL stored procedure.

Usage: bldmfsp <stored_proc_name> [<db_name> [<userid> <password>]]

Connect to a database.

if (($# < 2))

then

db2 connect to sample

elif (($# < 3))

then

db2 connect to $2

else

db2 connect to $2 user $3 using $4

fi

Precompile the program.

db2 prep $1.sqb bindfile

Bind the program to the database.

db2 bind $1.bnd

Disconnect from the database.

db2 connect reset

Set COBCPY to include the DB2 COPY files directory.

export COBCPY=$COBCPY:/opt/IBMdb2/v5.0/include/cobol_mf

Compile the checkerr.cbl error checking utility.

cob +Z -cx checkerr.cbl

Compile the program.

cob +Z -cx $1.cbl

Link the program.

ld -b -o $1 $1.o -L/opt/IBMdb2/v5.0/lib -ldb2 -lhppa -ldb2gmf \

-L$COBDIR/coblib -lcobol -lcrtn

Copy the shared library to the sqllib/function subdirectory of the DB2 instance.

Note: this assumes the user has write permission to this directory.

eval "H=˜$DB2INSTANCE"
cp $1 $H/sqllib/function

Compile and Link Options for bldmfsp

The script file contains the following compile options:

cob The COBOL compiler.
+Z Generate position-independent code.
-cx Compile to object module.

82 Building Applications for UNIX Environments

To build the outsrv.sqb stored procedure, do the following:

1. Go to the window in which you set your environment variables by running
db2profile. Refer to “Setting Your Environment” on page 19 if you need more
information.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Build the stored procedure, connecting to the SAMPLE database, by entering:

bldmfsp outsrv

The script file copies the stored procedure to the server in the path
sqllib/function to indicate that the stored procedure is fenced. If you want the
stored procedure to be unfenced, you must move it to the
sqllib/function/unfenced directory. These paths are in the home directory of the
DB2 instance.

Note: An unfenced stored procedure or UDF runs in the same address space as
the database manager and results in increased performance when
compared to a fenced stored procedure or UDF, which runs in an address
space isolated from the database manager. With unfenced stored
procedures or UDFs there is a danger that user code could accidentally or
maliciously damage the database control structures. Therefore, you should
only run unfenced stored procedures or UDFs when you need to maximize
the performance benefits. Ensure these programs are thoroughly tested
before running them as unfenced. Refer to the Embedded SQL
Programming Guide for more information about fenced and not fenced
stored procedures.

4. If necessary, set the file mode for the stored procedure so the DB2 instance can
run it.

Once you build the stored procedure outsrv, you can build the client application that
calls the stored procedure. You can build outcli using the bldmfcc file. Refer to “Micro
Focus COBOL” on page 78 for details.

Compile and Link Options for bldmfsp

The script file contains the following link options:

ld Use the linker to link edit.
-b Create a shared library rather than a normal executable file.
-o Produce an output object file.
-Lpath Specify the location of the DB2 runtime shared libraries. For example:

-L/opt/IBMdb2/v5.0/lib.
-ldb2 Link with the DB2 shared library.
-lhppa Specify the HP PA-RISC library (required).
-ldb2gmf Link to the DB2 library.
-Lpath Specify the location of the COBOL runtime libraries. For example:

-L$COBDIR/coblib.

Refer to your compiler documentation for additional compiler options.

 Chapter 5. Building HP-UX Embedded SQL Applications 83

To run the stored procedure, do the following :

1. Go to the window in which you set your environment variables by running
db2profile.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Run the sample client application by entering:

outcli

The client application passes a variable to the server program outsrv, which gives
it a value and then returns the variable to the client application.

Exiting the Stored Procedure
When you develop your stored procedures, exit your stored procedure using the
following statement:

move SQLZ-HOLD-PROC to return-code.

With this statement, the stored procedure returns correctly to the client application.

84 Building Applications for UNIX Environments

Chapter 6. Building Solaris Embedded SQL Applications

This chapter provides detailed information for building embedded SQL applications on
Solaris. In the script files, commands that begin with db2 are Command Line Processor
(CLP) commands. Refer to the Command Reference if you need more information
about CLP commands.

 SPARCompiler C/C ++

The compile and link steps in the script files in this section are for Sparcompiler C.
They also contain, commented out, the compile and link steps for the IBM C Set++
compiler. To use the scripts with this compiler, just comment out the Sparcompiler
compile and link steps and uncomment those for C Set++.

The script files are coded for C programs using a C compiler. To use C++ programs
you need to use a C++ compiler. To do this, make the changes to the script files given
in comments at the end of the files.

The script file bldcc, in sqllib/samples/c, contains the commands to build a sample C
program.

The first parameter, $1, specifies the name of your source file. The second parameter,
$2, specifies the name of the database to which you want to connect. The third
parameter, $3, specifies the user ID for the database, and $4 specifies the password.
Only the first parameter, the source file name, is required. Database name, user ID,
and password are optional. If no database name is supplied, the program uses the
default sample database.

 Copyright IBM Corp. 1993, 1997 85

#! /bin/ksh

bldcc script file

Builds a sample c program.

Usage: bldcc <prog_name> [<db_name> [<userid> <password>]]

Connect to a database.

if (($# < 2))

then

db2 connect to sample

elif (($# < 3))

then

db2 connect to $2

else

db2 connect to $2 user $3 using $4

fi

Precompile the program.

db2 prep $1.sqc bindfile

Bind the program to the database.

db2 bind $1.bnd

Disconnect from the database.

db2 connect reset

Compile the util.c error-checking utility.

cc -I/opt/IBMdb2/v5.0/include -c util.c

Compile the program. (Using the SPARCompiler C compiler)

cc -I/opt/IBMdb2/v5.0/include -c $1.c

Link the program.

cc -o $1 $1.o util.o -L/opt/IBMdb2/v5.0/lib -R/opt/IBMdb2/v5.0/lib -ldb2

Using the IBM C Set++ compiler.

Compile the util.c error-checking utility.

xlc -I/opt/IBMdb2/v5.0/include -c util.c

Compile the program.

xlc -I/opt/IBMdb2/v5.0/include -c $1.c

Link the program.

xlc -o $1 $1.o util.o -L/opt/IBMdb2/v5.0/lib -R/opt/IBMdb2/v5.0/lib -ldb2

To compile C++ Programs.

Change 'cc' to 'CC' in the compile and link steps or 'xlc' to 'xlC' for IBM

C Set++.

Change '.sqc' to '.sqC' in the precompile step and '.c' to '.C' in the

compile step.

86 Building Applications for UNIX Environments

To build the sample program updat.sqc, do the following:

1. Go to the window in which you set your environment variables by running
db2profile. Refer to “Setting Your Environment” on page 19 if you need more
information.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Build the sample program, connecting to the SAMPLE database, by entering:

bldcc updat

The result is an executable file updat. You can run the executable file against the
SAMPLE database to see how it works by doing the following :

1. Go to the window in which you set your environment variables by running
db2profile.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Run the program. If you built the updat sample program, enter:

updat

Note: To build C applications that do not contain embedded SQL, you can use the
script file bldccapi. It contains the same compile and link options as bldcc, but
does not connect, prep, bind, or disconnect from the SAMPLE database. It is
used to compile and link the DB2 API sample programs written in C.

Compile and Link Options for bldcc

The script file contains the following compile options:

cc The C compiler.

-Ipath Specify the location of the DB2 include files. For example:
-I/opt/IBMdb2/v5.0/include

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

The script file contains the following link options:

cc Use the compiler to link edit.

-o $1 Specify the name of the object module.

util.o Include the object file for error checking.

-Lpath Specify the location of the DB2 static and shared libraries at link-time. For
example: -L/opt/IBMdb2/v5.0/lib. If you do not specify the -L option,
/usr/lib:/lib is assumed.

-Rpath Specify the location of the DB2 shared libraries at run-time. For example:
-R/opt/IBMdb2/v5.0/lib.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

 Chapter 6. Building Solaris Embedded SQL Applications 87

Building C Stored Procedures
The script file bldccsrv, in sqllib/samples/c, contains the commands to build a C
stored procedure. The script file compiles the stored procedure into a shared library that
can be called by a client application.

The first parameter, $1, specifies the name of your source file. The second parameter,
$2, specifies the name of the database to which you want to connect. The third
parameter, $3, specifies the user ID for the database, and $4 specifies the password.
Only the first parameter, the source file name, is required. Database name, user ID,
and password are optional. If no database name is supplied, the program uses the
default sample database.

The script file uses the source file name, $1, for the shared library name.

88 Building Applications for UNIX Environments

#! /bin/ksh

bldccsrv script file

Build sample c stored procedure.

Usage: bldccsrv <prog_name> [<db_name> [<userid> <password>]]

Connect to a database.

if (($# < 2))

then

db2 connect to sample

elif (($# < 3))

then

db2 connect to $2

else

db2 connect to $2 user $3 using $4

fi

Precompile the program.

db2 prep $1.sqc bindfile

Bind the program to the database.

db2 bind $1.bnd

Disconnect from the database.

db2 connect reset

Compile the util.c error-checking utility.

cc -Xa -misalign -Kpic -I/opt/IBMdb2/v5.0/include -c util.c

Compile the program. (Using the SPARCompiler C compiler)

cc -Xa -misalign -Kpic -I/opt/IBMdb2/v5.0/include -c $1.c

Link the program and create a shared library

cc -G -o $1 $1.o -L/opt/IBMdb2/v5.0/lib -R/opt/IBMdb2/v5.0/lib -ldb2 -e$1

Using the IBM C Set++ compiler.

Compile the util.c error-checking utility.

xlc -qmisalign -qpic=small -I/opt/IBMdb2/v5.0/include -c util.c

Compile the program.

xlc -qmisalign -qpic=small -I/opt/IBMdb2/v5.0/include -c $1.c

Link the program and create a shared library

xlc -G -o $1 $1.o -L/opt/IBMdb2/v5.0/lib -R/opt/IBMdb2/v5.0/lib -ldb2 -e$1

Copy the shared library to the sqllib/function subdirectory of the DB2 instance.

Note: this assumes the user has write permission to this directory.

eval "H=˜$DB2INSTANCE"
cp $1 $H/sqllib/function

To compile C++ Programs, change 'cc' to 'CC' in the compile and link steps or

'xlc' to 'xlC' for IBM C Set++. Change '.sqc' to '.sqC' in the precompile step.

In the compile step change '.c' to '.C' and do not use '-Xa'. In the link step

do not use '-e$1'. Ensure the stored procedure is coded with extern "C".

 Chapter 6. Building Solaris Embedded SQL Applications 89

To build the outsrv.sqc stored procedure, do the following:

1. Go to the window in which you set your environment variables by running
db2profile. Refer to “Setting Your Environment” on page 19 if you need more
information.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Build the stored procedure, connecting to the SAMPLE database, by entering:

bldccsrv outsrv

The script file copies the stored procedure to the server in the path
sqllib/function to indicate that the stored procedure is fenced. If you want the
stored procedure to be unfenced, you must move it to the
sqllib/function/unfenced directory. These paths are in the home directory of the
DB2 instance.

Note: An unfenced stored procedure or UDF runs in the same address space as
the database manager and results in increased performance when
compared to a fenced stored procedure or UDF, which runs in an address
space isolated from the database manager. With unfenced stored
procedures or UDFs there is a danger that user code could accidentally or

Compile and Link Options for bldccsrv

The script file contains the following compile options:

cc The C compiler.

-Xa Compile assuming ANSI conformance.

-misalign Allow loading and storage of misaligned data. Use only if your application
uses misaligned data.

-Kpic Generate position-independent code for shared libraries.

-Ipath Specify the location of the DB2 include files. For example:
-I/opt/IBMdb2/v5.0/include

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

The script file contains the following link options:

ld Use the compiler to link edit.

-G Generate a shared library.

-o $1 Specify the name of the object module.

-Lpath Specify the location of the DB2 static and shared libraries at link-time. For
example: -L/opt/IBMdb2/v5.0/lib. If you do not specify the -L option,
/usr/lib:/lib is assumed.

-Rpath Specify the location of the DB2 shared libraries at run-time. For example:
-R/opt/IBMdb2/v5.0/lib.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

90 Building Applications for UNIX Environments

maliciously damage the database control structures. Therefore, you should
only run unfenced stored procedures or UDFs when you need to maximize
the performance benefits. Ensure these programs are thoroughly tested
before running them as unfenced. Refer to the Embedded SQL
Programming Guide for more information about fenced and not fenced
stored procedures.

4. If necessary, set the file mode for the stored procedure so the DB2 instance can
run it.

Once you build the stored procedure outsrv, you can build the client application outcli
that calls the stored procedure. You can build outcli using the bldcc file. Refer to
“SPARCompiler C/C++” on page 85 for details.

To run the stored procedure, do the following :

1. Go to the window in which you set your environment variables by running
db2profile.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Run the sample client application by entering:

outcli remote_database userid password

where

remote_database Is the name of the database to which you want to connect.
The name could be SAMPLE, or its remote alias, or some
other name.

userid Is a valid user ID.

password Is a valid password.

The client application passes a variable to the server program outsrv, which gives it a
value and then returns the variable to the client application.

Building C User-Defined Functions (UDFs)
The script file bldccudf, in sqllib/samples/c, contains the commands to build a UDF.
UDFs are compiled like stored procedures, but you do not need to connect to a
database or precompile and bind the program.

Note: A UDF does not contain embedded SQL statements. Rather, the application
that uses the UDF contains the statements, such as calludf.

The first parameter, $1, specifies the name of your source file. The script file also uses
this source file name for the shared library name.

 Chapter 6. Building Solaris Embedded SQL Applications 91

#! /bin/ksh

bldccudf script file

Builds a C user-defined function library.

Usage: bldccudf <prog_name>

Compile the program. (Using the SPARCompiler C compiler)

cc -Xa -misalign -Kpic -I/opt/IBMdb2/v5.0/include -c $1.c

Link the program and create a shared library.

cc -o $1 $1.o -L/opt/IBMdb2/v5.0/lib -R/opt/IBMdb2/v5.0/lib -ldb2 -ldb2apie -G

Using the IBM C Set++ compiler.

Compile the program.

xlc -qmisalign -qpic=small -I/opt/IBMdb2/v5.0/include -c $1.c

Link the program and create a shared library.

xlc -o $1 $1.o -L/opt/IBMdb2/v5.0/lib -R/opt/IBMdb2/v5.0/lib -ldb2 -ldb2apie -G

Copy the shared library to the sqllib/function subdirectory of the DB2 instance.

Note: this assumes the user has write permission to this directory.

eval "H=˜$DB2INSTANCE"
cp $1 $H/sqllib/function

To compile C++ Programs, change 'cc' to 'CC' in the compile and link steps

or 'xlc' to 'xlC' for IBM C Set++. In the precompile step change '.sqc' to '.sqC'.

In the compile step change '.c' to '.C' and do not use '-Xa'.

Ensure the UDF is coded with extern "C".

Compile and Link Options for bldccudf

The script file contains the following compile options:

cc The C compiler.

-Xa Compile assuming ANSI conformance.

-misalign Allow loading and storage of misaligned data. Use only if your application
uses misaligned data.

-Kpic Generate position-independent code for shared libraries.

-Ipath Specify the location of the DB2 include files. For example:
-I/opt/IBMdb2/v5.0/include.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

92 Building Applications for UNIX Environments

To build the user-defined function udf, do the following:

1. Go to the window in which you set your environment variables by running
db2profile. Refer to “Setting Your Environment” on page 19 if you need more
information.

2. Build the UDF by entering:

bldccudf udf

The script file copies the UDF to the server in the path sqllib/function to indicate
that the UDF is fenced. If you want the UDF to be unfenced, you must move it to
the sqllib/function/unfenced directory. These paths are in the home directory of
the DB2 instance.

Note: An unfenced UDF or stored procedure runs in the same address space as
the database manager and results in increased performance when
compared to a fenced UDF or stored procedure, which runs in an address
space isolated from the database manager. With unfenced UDFs or stored
procedures there is a danger that user code could accidentally or
maliciously damage the database control structures. Therefore, you should
only run unfenced UDFs or stored procedures when you need to maximize
the performance benefits. Ensure these programs are thoroughly tested
before running them as unfenced. Refer to the Embedded SQL
Programming Guide for more information about fenced and not fenced
UDFs.

3. If necessary, set the file mode for the UDF so the DB2 instance can run it.

Once you build udf, you can build the client application, calludf, that calls it. You can
build calludf using the bldcc file. Refer to “SPARCompiler C/C++” on page 85 for
details.

To run the UDF, do the following :

Compile and Link Options for bldccudf

The script file contains the following link options:

cc Use the compiler to link edit.

-o $1 Specify the name of the object module.

-Lpath Specify the location of the DB2 static and shared libraries at link-time. For
example: -L/opt/IBMdb2/v5.0/lib. If you do not specify the -L option,
/usr/lib:/lib is assumed.

-Rpath Specify the location of the DB2 shared libraries at run-time. For example:
-R/opt/IBMdb2/v5.0/lib.

-ldb2 Link with the DB2 library.

-ldb2apie Link with the DB2 API Engine library to allow the use of LOB locators.

-G Generate a shared library.

Refer to your compiler documentation for additional compiler options.

 Chapter 6. Building Solaris Embedded SQL Applications 93

1. Go to the window in which you set your environment variables by running
db2profile.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Run the sample calling application by entering:

calludf

The calling application calls functions from the udf library.

 Multi-threaded Applications
Multi-threaded applications on Solaris need to be compiled with the -D_REENTRANT flag,
and linked with libthread.so. Add -D_REENTRANT following the cc or xlc compile
command, and add -lthread to the end of the link command, when building a
multi-threaded application.

 SPARCompiler FORTRAN
Note: Before using the SPARCompiler FORTRAN compiler, make sure db2ln was run

when DB2 was installed. This command links the DB2 header files into
/usr/include. If this has not been done, SPARCompiler FORTRAN may not be
able to find the header files because it does not have an environment variable
or a switch such as -l to locate them.

The script file bldf77, in sqllib/samples/fortran, contains the commands to build a
sample FORTRAN program.

The first parameter, $1, specifies the name of your source file. The second parameter,
$2, specifies the name of the database to which you want to connect. The third
parameter, $3, specifies the user ID for the database, and $4 specifies the password.
Only the first parameter, the source file name, is required. Database name, user ID,
and password are optional. If no database name is supplied, the program uses the
default sample database.

94 Building Applications for UNIX Environments

#! /bin/ksh

bldf77 script file

Builds a FORTRAN program that contains embedded SQL

Usage: bldf77 <prog_name> [<db_name> [<userid> <password>]]

Connect to a database.

if (($# < 2))

then

db2 connect to sample

elif (($# < 3))

then

db2 connect to $2

else

db2 connect to $2 user $3 using $4

fi

Precompile the program.

db2 prep $1.sqf bindfile

Bind the program to the database.

db2 bind $1.bnd

Disconnect from the database.

db2 connect reset

Compile the util.f error-checking utility.

f77 -w -c util.f

Compile the program.

f77 -w -c $1.f

Link the program.

f77 $1.o util.o -L/opt/IBMdb2/v5.0/lib -R/opt/IBMdb2/v5.0/lib \

-R/opt/SUNWspro/lib -ldb2 -o $1

Compile and Link Options for bldf77

The script file contains the following compile options:

f77 The FORTRAN compiler.

-w Suppress warning messages.

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

 Chapter 6. Building Solaris Embedded SQL Applications 95

To build the sample program updat.sqf, do the following:

1. Go to the window in which you set your environment variables by running
db2profile. Refer to “Setting Your Environment” on page 19 if you need more
information.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Build the sample program, connecting to the SAMPLE database, by entering:

bldf77 updat

The result is an executable file updat. You can run the executable file against the
SAMPLE database to see how it works by doing the following :

1. Go to the window in which you set your environment variables by running
db2profile.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Run the program. If you built the updat sample program, enter:

updat

Note: To build FORTRAN applications that do not contain embedded SQL, you can
use the script file bldf77api. It contains the same compile and link options as
bldf77, but does not connect, prep, bind, or disconnect from the SAMPLE
database. It is used to compile and link the DB2 API sample programs written in
FORTRAN.

Compile and Link Options for bldf77

The script file contains the following link options:

f77 Use the compiler to link edit.

util.o Include the object file for error checking.

-Lpath Specify the location of the DB2 runtime shared libraries. For example:
-L/opt/IBMdb2/v5.0/lib.

-Rpath Specify the library search path for the dynamic library. For example:
-R/opt/IBMdb2/v5.0/lib.

-Rpath Specify the compiler-specific library. For example: -R/opt/SUNWspro/lib.

-ldb2 Link with the DB2 library.

-o $1 Specify the name of the object module.

Refer to your compiler documentation for additional compiler options.

Building FORTRAN Stored Procedures
The script file bldf77sp, in sqllib/samples/fortran, contains the commands to build a
stored procedure. The script file compiles the stored procedure into a shared library on
the server that can be called by the client application.

96 Building Applications for UNIX Environments

The first parameter, $1, specifies the name of your source file. The second parameter,
$2, specifies the name of the database to which you want to connect. The third
parameter, $3, specifies the user ID for the database, and $4 specifies the password.
Only the first parameter, the source file name, is required. Database name, user ID,
and password are optional. If no database name is supplied, the program uses the
default sample database.

The script file uses the source file name, $1, for the shared library name.

#! /bin/ksh

bldf77sp script file

Builds a FORTRAN stored procedure

Usage: bldf77 <stored_proc_name> [<db_name> [<userid> <password>]]

Connect to a database.

if (($# < 2))

then

db2 connect to sample

elif (($# < 3))

then

db2 connect to $2

else

db2 connect to $2 user $3 using $4

fi

Precompile the program.

db2 prep $1.sqf bindfile

Bind the program to the database.

db2 bind $1.bnd

Disconnect from the database.

db2 connect reset

Build the stored procedure.

f77 -w -G $1.f -o $1

Copy the shared library to the sqllib/function subdirectory of the DB2 instance.

Note: this assumes the user has write permission to this directory.

eval "H=˜$DB2INSTANCE"
cp $1 $H/sqllib/function

 Chapter 6. Building Solaris Embedded SQL Applications 97

To build the stored procedure outsrv.sqf do the following:

1. Go to the window in which you set your environment variables by running
db2profile. Refer to “Setting Your Environment” on page 19 if you need more
information.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Build the stored procedure, connecting to the SAMPLE database, by entering:

bldf77sp outsrv

The script file copies the stored procedure to the server in the path
sqllib/function to indicate that the stored procedure is fenced. If you want the
stored procedure to be unfenced, you must move it to the
sqllib/function/unfenced directory. These paths are in the home directory of the
DB2 instance.

Note: An unfenced stored procedure or UDF runs in the same address space as
the database manager and results in increased performance when
compared to a fenced stored procedure or UDF, which runs in an address
space isolated from the database manager. With unfenced stored
procedures or UDFs there is a danger that user code could accidentally or
maliciously damage the database control structures. Therefore, you should
only run unfenced stored procedures or UDFs when you need to maximize
the performance benefits. Ensure these programs are thoroughly tested
before running them as unfenced. Refer to the Embedded SQL
Programming Guide for more information about fenced and not fenced
stored procedures.

4. If necessary, set the file mode for the stored procedure so the DB2 instance can
run it.

Once you build the stored procedure outsrv, you can build outcli that calls the stored
procedure. You can build outcli using the bldf77 script file. Refer to “SPARCompiler
FORTRAN” on page 94 for details.

To run the stored procedure, do the following :

Compile and Link Options for bldf77sp

The script file contains the following compile options:

f77 The FORTRAN compiler.

-w Suppress warning messages.

-G Generate a shared library.

-o $1 Specify the name of the object module.

Refer to your compiler documentation for additional compiler options.

98 Building Applications for UNIX Environments

1. Go to the window in which you set your environment variables by running
db2profile.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Run the sample client application by entering:

outcli

The client application passes a variable to the server program outsrv, which gives it a
value and then returns the variable to the client application.

Micro Focus COBOL
The script file bldmfcc, in sqllib/samples/cobol_mf, contains the commands to build a
sample COBOL program.

The first parameter, $1, specifies the name of your source file. The second parameter,
$2, specifies the name of the database to which you want to connect. The third
parameter, $3, specifies the user ID for the database, and $4, specifies the password.
Only the first parameter, the source file name, is required. Database name, user ID,
and password are optional. If no database name is supplied, the program uses the
default sample database.

 Chapter 6. Building Solaris Embedded SQL Applications 99

#! /bin/ksh

bldmfcc script file.

Usage: bldmfcc <prog_name> [<db_name> [<userid> <password>]]

Connect to a database.

if (($# < 2))

then

db2 connect to sample

elif (($# < 3))

then

db2 connect to $2

else

db2 connect to $2 user $3 using $4

fi

Precompile the program.

db2 prep $1.sqb bindfile

Bind the program to the database.

db2 bind $1.bnd

Disconnect from the database.

db2 connect reset

Set COBCPY to include the DB2 COPY files directory.

export COBCPY=/opt/IBMdb2/v5.0/include/cobol_mf:$COBCPY

Compile the checkerr.cbl error checking utility.

cob -cx checkerr.cbl

Compile the program.

cob -cx $1.cbl

Link the program.

cob -x $1.o checkerr.o -L/opt/IBMdb2/v5.0/lib -ldb2 -ldb2gmf

Compile and Link Options for bldmfcc

The script file contains the following compile options:

cob The Micro Focus COBOL compiler.

-cx Compile to object module.

100 Building Applications for UNIX Environments

To build the sample program updat.sqb, do the following:

1. Go to the window in which you set your environment variables by running
db2profile. Refer to “Setting Your Environment” on page 19 if you need more
information.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Build the sample program, connecting to the SAMPLE database, by entering:

bldmfcc updat

The result is an executable file updat. You can run the executable file against the
SAMPLE database to see how it works by doing the following:

1. Go to the window in which you set your environment variables by running
db2profile.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Run the program. If you built the updat sample program, enter:

updat

Note: To build Micro Focus COBOL applications that do not contain embedded SQL,
you can use the script file bldmfapi. It contains the same compile and link
options as bldmfcc, but does not connect, prep, bind, or disconnect from the
SAMPLE database. It is used to compile and link DB2 API sample programs
written in COBOL.

Compile and Link Options for bldmfcc

The script file contains the following link options:

cob Use the compiler to link edit.

-x Specify an executable program.

checkerr.o Include the object file for error checking.

-Lpath Specify the location of the DB2 runtime shared libraries. For example:
-L/opt/IBMdb2/v5.0/lib.

-ldb2 Link with the DB2 library.

-ldb2gmf Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

 Chapter 6. Building Solaris Embedded SQL Applications 101

102 Building Applications for UNIX Environments

Chapter 7. Building DB2 Call Level Interface (CLI) Applications

The DB2 SDK comes with sample programs that use DB2 Call Level Interface (DB2
CLI) function calls. You can study the samples to learn how to access DB2 databases
in your applications using DB2 CLI function calls. You can also use stored procedures
with DB2 CLI. For information on DB2 CLI stored procedures refer to the CLI Guide
and Reference.

This chapter shows you how to build and run a sample program using a script file we
supply. The script file shows you the compiler options you can use. It builds the sample
program by compiling and linking the source file.

The sample programs and a makefile are contained in the sqllib/samples/cli

directory. You can build the sample programs using the make facility. See the README
file in sqllib/samples/cli for details about using the makefile, and for more
information about the sample programs. You may need to modify the compiler options
in the script file and the makefile for your environment.

Once you have compiled and run the supplied sample programs, you can modify the
source files, and the makefile, for your own needs. You can then build the modified
sample programs by using the makefile to see if they work correctly. You can also
build your own programs using the makefile. All the sample programs are listed in
Table 6 on page 15.

Note: It is recommended that, before you alter or build the sample programs, you
copy them from sqllib/samples/cli to your own working directory.

Coding a Script File by Platform
The script file clibld contains the commands to build the sample DB2 CLI program
clisampl.c. You can find both the script file and clisampl.c in sqllib/samples/cli.

Study the script file and the compiler options for the platform you are using. Then go to
“Building and Running a CLI Program” on page 106 for the steps to follow in order to
build and run the program.

 Copyright IBM Corp. 1993, 1997 103

 AIX
IBM XL C is used in the following version of the clibld script file:

#! /bin/ksh

clibld script file -- AIX

Build clisampl

Compile the program.

xlc -I/usr/lpp/db2_05_00/include -c clisampl.c

Link the program.

xlc -o clisampl clisampl.o -L/usr/lpp/db2_05_00/lib -ldb2

Note: Multi-threaded applications on AIX Version 4 need to be compiled and linked
with the xlc_r compiler instead of the xlc compiler, or with the xlC_r compiler
instead of the xlC compiler.

Compile and Link Options for clibld

The script file contains the following compile options:

xlc The IBM XL C compiler.

-Ipath Specify the location of the DB2 include files. For example:
-I/usr/lpp/db2_05_00/include

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

The script file contains the following link options:

xlc Use the compiler to link edit.

-o filename Specify the name of the executable program.

-ldb2 Link with the database manager library.

-Lpath Specify the location of the DB2 runtime shared libraries. For example:
-L/usr/lpp/db2_05_00/lib. If you do not specify the -L option, the compiler
assumes the following path: /usr/lib:/lib.

Refer to your compiler documentation for additional compiler options.

 HP-UX
HP-UX C is used in the following version of the clibld script file:

104 Building Applications for UNIX Environments

#! /bin/ksh

clibld script file -- HP-UX

Build clisampl

Compile the program.

cc -Aa +e -I/opt/IBMdb2/v5.0/include -c clisampl.c

Link the program.

cc -o clisampl clisampl.o -L/opt/IBMdb2/v5.0/lib -ldb2 -lhppa

Note: Multi-threaded applications on HP-UX need to be linked with libcma.sl. Add
-lcma to the end of the link command when building a multi-threaded
application.

Compile and Link Options for clibld

The script file contains the following compile options:

cc Use the C compiler.

-Aa Use ANSI standard mode.

+e Enables HP value-added features while compiling in ANSI C mode.

-Ipath Specify the location of the DB2 include files. For example:
-I/usr/IBMdb2/v5.0/include

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

The script file contains the following link options:

cc Use the compiler to link edit.

-o filename Specify the name of the executable program.

-Lpath Specify the location of the DB2 runtime shared libraries.

-ldb2 Link with the database manager library.

-lhppa Specify the HP PA-RISC library (required).

Refer to your compiler documentation for additional compiler options.

 Solaris
SPARCompiler C is used in the following version of the clibld script file:

 Chapter 7. Building DB2 Call Level Interface (CLI) Applications 105

#! /bin/ksh

clibld script file -- Solaris

Build clisampl

Compile the program.

cc -I/opt/IBMdb2/v5.0/include -c clisampl.c

Link the program.

cc -o clisampl clisampl.o -L/opt/IBMdb2/v5.0/lib -R/opt/IBMdb2/v5.0/lib -ldb2

Note: Multi-threaded applications on Solaris need to be compiled with the
-D_REENTRANT flag, and linked with libthread.so. Add -D_REENTRANT following
the cc or xlc compile command, and add -lthread to the end of the link
command, when building a multi-threaded application.

Compile and Link Options for clibld

The script file contains the following compile options:

cc Use the C compiler.

-Ipath Specify the location of the DB2 include files. For example:
-I/usr/IBMdb2/v5.0/include

-c Perform compile only; no link. This book assumes that compile and link are
separate steps.

The script file contains the following link options:

cc Use the compiler to link edit.

-o filename Specify the name of the executable program.

-Lpath Specify the location of the DB2 static and shared libraries at link-time.

-Rpath Specify the location of the DB2 shared libraries at run-time.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

Building and Running a CLI Program
To build the sample program clisampl:

1. Go to the window in which you set your environment variables. In order to do this,
run db2profile. Refer to “Setting Your Environment” on page 19 if you need more
information.

2. Build the sample program by entering:

clibld

The result is an executable file clisampl. You can run the executable file to see how it
works. The sample program accepts command line arguments for a database, user ID,
and password so you can connect to any database to which you have access.

106 Building Applications for UNIX Environments

To run the sample program, enter:

clisampl database userid password

where

database Is the name of a cataloged database.

userid Is a user ID that has SYSADM authority.

password Is a valid password.

If you need information about cataloging databases, or about SYSADM authority and
passwords, refer to the Quick Beginnings book for your platform.

The clisampl program performs the following SQL operations using DB2 CLI function
calls:

1. Connects to a database.

2. Creates a table.

3. Inserts data into the table using a parameter marker.

4. Selects the data.

5. Drops the table.

6. Disconnects from the database.

You should see the following output:

Connecting

Create table - CREATE TABLE CLISAMPL (COL1 VARCHAR(50))

Insert - INSERT INTO CLISAMPL VALUES (?)

Select - SELECT * FROM CLISAMPL

Number of columns - 1

Column name - COL1

Column type - 12

Column precision - 50

Column scale - 0

Column nullable - TRUE

Column value - Row 1

Column value - Row 2

Disconnecting

Exiting program

 Chapter 7. Building DB2 Call Level Interface (CLI) Applications 107

108 Building Applications for UNIX Environments

Chapter 8. Building Java Applications and Applets

You can access DB2 databases through the appropriate port of the Java Development
Kit (JDK) Version 1.1 on AIX, Solaris, or HP-UX. The JDK includes Java Database
Connectivity (JDBC) support to build the following types of Java programs:

¹ JDBC applications, which rely on the DB2 Client Application Enabler (CAE) to
connect to DB2.

¹ JDBC applets, that do not require any other DB2 component code on the client.

See the Web Page at http://www.software.ibm.com/data/db2/java for more
information.

DB2 also provides support for user-defined functions (UDFs) and stored procedures
created in Java.

For more detailed information on DB2 programming in Java, refer to the Embedded
SQL Programming Guide, chapter 15, "Programming in Java". This covers creating and
running JDBC applications and applets, and creating Java UDFs and stored
procedures.

This chapter presents information to set up your environment for running Java
applications on AIX, HP-UX and Solaris. This is followed by sections explaining how to
build and run a DB2 JDBC application and a DB2 JDBC applet.

Setting Up the AIX Environment
To build Java applications on AIX with DB2 JDBC support, you need to install and
configure the following on your development machine:

1. The Java Development Kit (JDK) Version 1.1 for AIX from IBM (refer to
http://www.software.ibm.com/data/db2/java).

2. The DB2 Client Application Enabler for AIX from the DB2 Client Pack. It must be
Version 2.1.0 or later.

To run JDBC programs on AIX, the following environment variables must be set
correctly. You must ensure that:

¹ CLASSPATH includes "." and the file sqllib/java/db2java.zip

¹ PATH includes the directory sqllib/bin

¹ LD_LIBRARY_PATH includes the directory sqllib/lib

Setting Up the HP-UX Environment
To build Java applications on HP-UX with DB2 JDBC support, you need to install and
configure the following on your development machine:

 Copyright IBM Corp. 1993, 1997 109

1. The HP-UX Developer's Kit for Java Release 1.1 from Hewlett-Packard (refer to
http://www.software.ibm.com/data/db2/java).

2. The DB2 Client Application Enabler for HP-UX from the DB2 Client Pack. It must
be Version 2.1.0 or later.

To run JDBC programs on HP-UX, the following environment variables must be set
correctly. You must ensure that:

¹ CLASSPATH includes "." and the file sqllib/java/db2java.zip

¹ PATH includes the directory sqllib/bin

¹ LD_LIBRARY_PATH includes the directory sqllib/lib

Setting Up the Solaris Environment
To build Java applications on Solaris with DB2 JDBC support, you need to install and
configure the following on your development machine:

1. The Java Development Kit (JDK) Version 1.1 for Solaris from Sun Microsystems
(refer to http://www.software.ibm.com/data/db2/java).

2. The DB2 Client Application Enabler for Solaris from the DB2 Client Pack. It must
be Version 2.1.0 or later.

To run JDBC programs on Solaris, the following environment variables must be set
correctly. You must ensure that:

¹ CLASSPATH includes "." and the file sqllib/java/db2java.zip

¹ PATH includes the directory sqllib/bin

¹ LD_LIBRARY_PATH includes the directory sqllib/lib

Building and Running a JDBC Application
You do not precompile or bind Java programs.

Start your application from the desktop or command line, like any other application. The
DB2 JDBC driver handles the JDBC API calls from your application and uses the CAE
to communicate the requests to the server and receive the results.

A sample application, DB2Appl.java, is provided in the sqllib/samples/java directory.
If you installed the DB2 SAMPLE database, you can run the sample by changing to the
sqllib/samples/java directory, and doing the following:

1. Start the database manager on the server, if it is not already running, by entering:

db2start

 2. Enter:

javac DB2Appl.java

java DB2Appl

110 Building Applications for UNIX Environments

As an alternative to step 2 above, you can use the pre-compiled version of
DB2Appl.java in samples.zip. To do this, ensure CLASSPATH also includes the file
sqllib/samples/java/samples.zip. Then, run the java interpreter on the application by
entering:

java DB2Appl

Building and Running a JDBC Applet
Like other Java applets, JDBC applets are distributed over the Web. Typically, you
would embed the applet in an HTML page, as the following steps demonstate. These
steps assume that the appropriate port for your platform of the Java Development Kit
(JDK) Version 1.1, and at least the client package of DB2, are installed and working.

1. Run the Java compiler ("javac") on your applet's Java source. For the basic JDBC
applet sample, DB2Applt.java, DB2 provides a compiled version in
sqllib/samples/java/samples.zip so you may omit this step.

2. Construct an HTML file that will embed the applet. Unless you hard-code this into
the applet source, you may opt to include applet parameters to identify the JDBC
applet server, user ID and password information. For DB2Applt.java, DB2 provides
the file, DB2Applt.html.

3. For a larger JDBC applet that consists of several Java classes, you may choose to
package all its classes into a single ZIP file. In this case, add your ZIP file into the
archive parameter in the "applet" tag. For details, see the JDK Version 1.1
documentation.

4. Along with the DB2 client package, you must install JDBC applets on a Web
server. If necessary, configure the DB2 client package by cataloging remote nodes
and/or databases.

5. Pick an unused TCP/IP port number for use by the JDBC applet server. This is not
the TCP/IP port used by the svcename of a DB2 server. Start the server by the
db2jstrt program. For example, if you designate port 6789 for JDBC access to
your DB2 instance, enter db2jstrt 6789 to start the JDBC applet server.

6. Copy the embedding HTML file, the JDBC applet's .class or ZIP file, and the
sqllib/java/db2java.zip file into a directory under the Web browser's document
root. For DB2Applt.java, copy sqllib/samples/java/samples.zip,
sqllib/samples/java/DB2Applt.html, and sqllib/java/db2java.zip. You will need
to customize this copy of the DB2Applt.html file to identify your Web server, JDBC
applet server port number, user ID and password.

7. You may wish to place the ZIP files into a directory that is shared by several
applets that may be loaded from your Web site. In this case, you may need to add
a codebase parameter into the "applet" tag in the HTML file to identify that
directory. For details, see the JDK Version 1.1 documentation.

8. To run JDBC applets you must install a Web browser, or other compatible applet
viewer, capable of running programs compiled with the JDK Version 1.1.

 Chapter 8. Building Java Applications and Applets 111

9. In the Web browser, open the URL identifying the HTML file at the Web server.
The JDBC applet and the JDBC applet driver will be downloaded and executed
inside the browser.

112 Building Applications for UNIX Environments

Appendix A. About Database Manager Instances

DB2 supports multiple database manager instances on the same machine. A database
manager instance has its own configuration files, directories, and databases.

Each database manager instance can manage several databases. However, a given
database belongs to only one instance. Figure 1 shows this relationship.

Database Database

Machine

Database Manager

Instance

Database Manager

Instance

Database

Table Table Table Table Table Table

User/

Application

Connect to

Figure 1. Database Manager Instances

Database manager instances give you the flexibility to have multiple database
environments on the same machine. For example, you can have one database
manager instance for development, and another instance for production.

With UNIX servers you can have different DB2 versions on different database manager
instances. For example, you can have one database manager instance running DB2
Version 2, and another running DB2 Universal Database Version 5.

With OS/2 and NT servers you must have the same DB2 version, release, and
modification level on each database manager instance. You cannot have one database
manager instance running DB2 Version 2, and another instance running DB2 Universal
Database Version 5.

 Copyright IBM Corp. 1993, 1997 113

You need to know the following for each instance you use:

instance name For AIX, HP-UX, Solaris, SINIX, and SCO OpenServer,
this is a valid username that you specify when you
create the database manager instance.

For OS/2 and Windows NT, this is an alphanumeric
string of up to eight characters. The DB2 instance is
created for you during install.

instance directory The home directory where the instance is located.

For AIX, HP-UX, Solaris, SINIX, and SCO OpenServer,
the home directory is $HOME/sqllib, where $HOME is
the home directory of the instance owner.

For OS/2 and Windows NT, the directory is
%DB2PATH%\instance_name. The variable %DB2PATH%

determines where DB2 is installed. Depending on
which drive DB2 is installed, %DB2PATH% will point to
drive:\sqllib.

The instance path on OS/2 and Windows NT is created
based on either:

%DB2PATH%\%DB2INSTANCE% (for example, C:\SQLLIB\DB2)

or, if DB2INSTPROF is defined:

%DB2INSTPROF%\%DB2INSTANCE% (for example,
C:\PROFILES\DB2)

The DB2INSTPROF environment is used on OS/2 and
Windows NT to support running DB2 on a network
drive in which the client machine has only read access.
In this case, DB2 will be set to point to drive:\sqllib,
and DB2INSTPROF will be set to point to a local path,
for example, C:\PROFILES, which will contain all
instance specific information such as catalogs and
configurations, since DB2 requires update access to
these files.

For information about creating and managing database manager instances, refer to the
Quick Beginnings book.

114 Building Applications for UNIX Environments

 Appendix B. Problem Determination

You can encounter the following kinds of problems when building or running your
applications:

¹ Client or server problems, such as failing to connect to the database during a build
or when running your application.

¹ Operating system problems, such as not being able to find files during a build.

¹ Compiler option problems during a build.

¹ Syntax and coding problems during a build or when running your application.

You can use the following sources of information to resolve these problems:

Build script files
For build problems, such as connecting to a database, precompiling,
compiling, linking, and binding, you can use the script files shown in this book
to see command line processor commands and compiler options that work.

Compiler documentation
For compiler option problems not covered by the build script files.

Embedded SQL Programming Guide
Refer to the Embedded SQL Programming Guide for syntax and other coding
problems.

CLI Guide and Reference
Refer to the CLI Guide and Reference for syntax and other coding problems
related to CLI programs.

SQLCA data structure
If your application issues SQL statements or calls database manager APIs, it
must check for error conditions by examining the SQLCA data structure.

The SQLCA data structure returns error information in the SQLCODE and
SQLSTATE fields. The database manager updates the structure after every
SQL statement is executed, and after most database manager API calls.

Your application can retrieve and print the error information or display it on
the screen. Refer to the Embedded SQL Programming Guide for more
information.

Online error messages
The database manager, database administration utility, installation and
configuration process, and the command line processor generate online error
messages. Each of these messages has a unique prefix as follows:

Prefix Source

SQL Database manager

DBA Database Director

DBI Installation and configuration

 Copyright IBM Corp. 1993, 1997 115

DB2 Command line processor

A four or five digit message number follows the prefix. A single letter follows
the message number indicating the severity of the error.

You can use the command line processor to see the help for the message.
Type:

db2 "? xxxnnnn"

where xxx is the message prefix, and nnnn is the message number. Include
the quotes.

Refer to the Message Reference for more information about online error
messages.

Diagnostic tools and error log
For build or runtime problems you cannot resolve using the other sources of
information. The diagnostic tools include a trace facility, system log, and
message log, among others. DB2 puts error and warning conditions in an
error log based on priority and origin. Refer to the Troubleshooting Guide for
more information. There is also a CLI trace facility specifically for debugging
CLI programs. For more information, refer to the CLI Guide and Reference.

116 Building Applications for UNIX Environments

Appendix C. How the DB2 Library Is Structured

The DB2 Universal Database library consists of SmartGuides, online help, and books.
This section describes the information that is provided, and how to access it.

To help you access product information online, DB2 provides the Information Center on
OS/2, Windows 95, and the Windows NT operating systems. You can view task
information, DB2 books, troubleshooting information, sample programs, and DB2
information on the Web. “About the Information Center” on page 124 has more details.

 SmartGuides
SmartGuides help you complete some administration tasks by taking you through each
task one step at a time. SmartGuides are available on OS/2, Windows 95, and the
Windows NT operating systems. The following table lists the SmartGuides.

SmartGuide Helps you to... How to Access...

Add Database Catalog a database on a client workstation. From the Client Configuration
Assistant, click on Add .

Create Database Create a database, and to perform some basic
configuration tasks.

From the Control Center, click with the
right mouse button on the Databases
icon and select Create ->New.

Performance
Configuration

Tune the performance of a database by
updating configuration parameters to match your
business requirements.

From the Control Center, click with the
right mouse button on the database
you want to tune and select Configure
performance .

Backup Database Determine, create, and schedule a backup plan. From the Control Center, click with the
right mouse button on the database
you want to backup and select
Backup ->Database using
SmartGuide .

Restore Database Recover a database after a failure. It helps you
understand which backup to use, and which logs
to replay.

From the Control Center, click with the
right mouse button on the database
you want to restore and select
Restore ->Database using
SmartGuide .

Create Table Select basic data types, and create a primary
key for the table.

From the Control Center, click with the
right mouse button on the Tables icon
and select Create ->Table using
SmartGuide .

Create Table Space Create a new table space. From the Control Center, click with the
right mouse button on the Table
spaces icon and select Create ->Table
space using SmartGuide .

 Copyright IBM Corp. 1993, 1997 117

 Online Help
Online help is available with all DB2 components. The following table describes the
various types of help.

Type of Help Contents How to Access...

Command Help Explains the syntax of
commands in the
command line
processor.

From the command line processor in
interactive mode, enter:

? command

where command is a keyword or the entire
command.

For example, ? catalog displays help for all
the CATALOG commands, whereas ?
catalog database displays help for the
CATALOG DATABASE command.

Control Center
Help

Explains the tasks
you can perform in a
window or notebook.
The help includes
prerequisite
information you need
to know, and
describes how to use
the window or
notebook controls.

From a window or notebook, click on the
Help push button or press the F1 key.

Message Help Describes the cause
of a message
number, and any
action you should
take.

From the command line processor in
interactive mode, enter:

? message number

where message number is a valid message
number.

For example, ? SQL30081 displays help
about the SQL30081 message.

To view message help one screen at a time,
enter:

? XXXnnnnn | more

where XXX is the message prefix, such as
SQL, and nnnnn is the message number,
such as 30081.

To save message help in a file, enter:

? XXXnnnnn > filename.ext

where filename.ext is the file where you want
to save the message help.

Note: On UNIX-based systems, enter:

\? XXXnnnnn | more or

\? XXXnnnnn > filename.ext

118 Building Applications for UNIX Environments

Type of Help Contents How to Access...

SQL Help Explains the syntax of
SQL statements.

From the command line processor in
interactive mode, enter:

help statement

where statement is an SQL statement.

For example, help SELECT displays help
about the SELECT statement.

SQLSTATE Help Explains SQL states
and class codes.

From the command line processor in
interactive mode, enter:

? sqlstate or ? class-code

where sqlstate is a valid five digit SQL state
and class-code is a valid two digit class
code.

For example, ? 08003 displays help for the
08003 SQL state, whereas ? 08 displays
help for the 08 class code.

 Appendix C. How the DB2 Library Is Structured 119

 DB2 Books
The table in this section lists the DB2 books. They are divided into two groups:

¹ Cross-platform books: These books are for DB2 on any of the supported platforms.

¹ Platform-specific books: These books are for DB2 on a specific platform. For
example, there is a separate Quick Beginnings book for DB2 on OS/2, Windows
NT, and UNIX-based operating systems.

Most books are available in HTML and PostScript format, and in hardcopy that you can
order from IBM. The exceptions are noted in the table.

You can obtain DB2 books and access information in a variety of different ways:

View To view an HTML book, you can do the following:

¹ If you are running DB2 administration tools on OS/2, Windows 95, or
the Windows NT operating systems, you can use the Information
Center. “About the Information Center” on page 124 has more details.

¹ Use the open file function of the Web browser supplied by DB2 (or one
of your own) to open the following page:

 sqllib/doc/html/index.htm

The page contains descriptions of and links to the DB2 books. The
path is located on the drive where DB2 is installed.

You can also open the page by double-clicking on the DB2 Online
Books icon. Depending on the system you are using, the icon is in the
main product folder or the Windows Start menu.

Search To search for information in the HTML books, you can do the following:

¹ Click on Search the DB2 Books at the bottom of any page in the
HTML books. Use the search form to find a specific topic.

¹ Click on Index at the bottom of any page in an HTML book. Use the
Index to find a specific topic in the book.

¹ Display the Table of Contents or Index of the HTML book, and then
use the find function of the Web browser to find a specific topic in the
book.

¹ Use the bookmark function of the Web browser to quickly return to a
specific topic.

¹ Use the search function of the Information Center to find specific
topics. “About the Information Center” on page 124 has more details.

Print To print a book on a PostScript printer, look for the file name shown in the
table.

Order To order a hardcopy book from IBM, use the form number.

120 Building Applications for UNIX Environments

Book Name Book Description Form Number

File Name

Cross-Platform Books

Administration Getting Started Introduces basic DB2 database administration
concepts and tasks, and walks you through the
primary administrative tasks.

S10J-8154

db2k0x50

Administration Guide Contains information required to design, implement,
and maintain a database to be accessed either locally
or in a client/server environment.

S10J-8157

db2d0x50

API Reference Describes the DB2 application programming interfaces
(APIs) and data structures you can use to manage
your databases. Explains how to call APIs from your
applications.

S10J-8167

db2b0x50

CLI Guide and Reference Explains how to develop applications that access DB2
databases using the DB2 Call Level Interface, a
callable SQL interface that is compatible with the
Microsoft ODBC specification.

S10J-8159

db2l0x50

Command Reference Explains how to use the command line processor, and
describes the DB2 commands you can use to manage
your database.

S10J-8166

db2n0x50

DB2 Connect Enterprise Edition
Quick Beginnings

Provides planning, installing, configuring, and using
information for DB2 Connect Enterprise Edition. Also
contains installation and setup information for all
supported clients.

S10J-7888

db2cyx50

DB2 Connect Personal Edition
Quick Beginnings

Provides planning, installing, configuring, and using
information for DB2 Connect Personal Edition.

S10J-8162

db2c1x50

DB2 Connect User's Guide Provides concepts, programming and general using
information about the DB2 Connect products.

S10J-8163

db2c0x50

DB2 Connectivity Supplement Provides setup and reference information for
customers who want to use DB2 for AS/400, DB2 for
OS/390, DB2 for MVS, or DB2 for VM as DRDA
Application Requesters with DB2 Universal Database
servers, and customers who want to use DRDA
Application Servers with DB2 Connect (formerly
DDCS) application requesters.

Note: Available in HTML and PostScript formats
only.

No form number

db2h1x50

Embedded SQL Programming
Guide

Explains how to develop applications that access DB2
databases using embedded SQL, and includes
discussions about programming techniques and
performance considerations.

S10J-8158

db2a0x50

Glossary Provides a comprehensive list of all DB2 terms and
definitions.

Note: Available in HTML format only.

No form number

db2t0x50

 Appendix C. How the DB2 Library Is Structured 121

Book Name Book Description Form Number

File Name

Installing and Configuring DB2
Clients

Provides installation and setup information for all DB2
Client Application Enablers and DB2 Software
Developer's Kits.

Note: Available in HTML and PostScript formats
only.

No form number

db2iyx50

Master Index Contains a cross reference to the major topics
covered in the DB2 library.

Note: Available in PostScript format and hardcopy
only.

S10J-8170

db2w0x50

Message Reference Lists messages and codes issued by DB2, and
describes the actions you should take.

S10J-8168

db2m0x50

Replication Guide and Reference Provides planning, configuring, administering, and
using information for the IBM Replication tools
supplied with DB2.

S95H-0999

db2e0x50

Road Map to DB2 Programming Introduces the different ways your applications can
access DB2, describes key DB2 features you can use
in your applications, and points to detailed sources of
information for DB2 programming.

S10J-8155

db2u0x50

SQL Getting Started Introduces SQL concepts, and provides examples for
many constructs and tasks.

S10J-8156

db2y0x50

SQL Reference Describes SQL syntax, semantics, and the rules of the
language. Also includes information about
release-to-release incompatibilities, product limits, and
catalog views.

S10J-8165

db2s0x50

System Monitor Guide and
Reference

Describes how to collect different kinds of information
about your database and the database manager.
Explains how you can use the information to
understand database activity, improve performance,
and determine the cause of problems.

S10J-8164

db2f0x50

Troubleshooting Guide Helps you determine the source of errors, recover
from problems, and use diagnostic tools in
consultation with DB2 Customer Service.

S10J-8169

db2p0x50

What's New Describes the new features, functions, and
enhancements in DB2 Universal Database.

Note: Available in HTML and PostScript formats
only.

No form number

db2q0x50

Platform-Specific Books

Building Applications for UNIX
Environments

Provides environment setup information and
step-by-step instructions to compile, link, and run DB2
applications on a UNIX system.

S10J-8161

db2axx50

Building Applications for
Windows and OS/2
Environments

Provides environment setup information and
step-by-step instructions to compile, link, and run DB2
applications on a Windows or OS/2 system.

S10J-8160

db2a1x50

122 Building Applications for UNIX Environments

Book Name Book Description Form Number

File Name

DB2 Extended Enterprise Edition
Quick Beginnings

Provides planning, installing, configuring, and using
information for DB2 Universal Database Extended
Enterprise Edition for AIX.

S72H-9620

db2v3x50

DB2 Personal Edition Quick
Beginnings

Provides planning, installing, configuring, and using
information for DB2 Universal Database Personal
Edition on OS/2, Windows 95, and the Windows NT
operating systems.

S10J-8150

db2i1x50

DB2 SDK for Macintosh Building
Your Applications

Provides environment setup information and
step-by-step instructions to compile, link, and run DB2
applications on a Macintosh system.

Note: Available in PostScript format and hardcopy
for DB2 Version 2.1.2 only.

S50H-0528

sqla7x02

DB2 SDK for SCO OpenServer
Building Your Applications

Provides environment setup information and
step-by-step instructions to compile, link, and run DB2
applications on a SCO OpenServer system.

Note: Available for DB2 Version 2.1.2 only.

S89H-3242

sqla9x02

DB2 SDK for Silicon Graphics
IRIX Building Your Applications

Provides environment setup information and
step-by-step instructions to compile, link, and run DB2
applications on a Silicon Graphics system.

Note: Available in PostScript format and hardcopy
for DB2 Version 2.1.2 only.

S89H-4032

sqlaax02

DB2 SDK for SINIX Building
Your Applications

Provides environment setup information and
step-by-step instructions to compile, link, and run DB2
applications on a SINIX system.

Note: Available in PostScript format and hardcopy
for DB2 Version 2.1.2 only.

S50H-0530

sqla8x00

Quick Beginnings for OS/2 Provides planning, installing, configuring, and using
information for DB2 Universal Database on OS/2. Also
contains installing and setup information for all
supported clients.

S10J-8147

db2i2x50

Quick Beginnings for UNIX Provides planning, installing, configuring, and using
information for DB2 Universal Database on
UNIX-based platforms. Also contains installing and
setup information for all supported clients.

S10J-8148

db2ixx50

Quick Beginnings for Windows
NT

Provides planning, installing, configuring, and using
information for DB2 Universal Database on the
Windows NT operating system. Also contains
installing and setup information for all supported
clients.

S10J-8149

db2i6x50

 Appendix C. How the DB2 Library Is Structured 123

Notes:

1. The character in the sixth position of the file name indicates the language of a
book. For example, the file name db2d0e50 indicates that the Administration Guide
is in English. The following letters are used in the file names to indicate the
language of a book:

2. For late breaking information that could not be included in the DB2 books, see the
README file. Each DB2 product includes a README file which you can find in the
directory where the product is installed.

Language Identifier Language Identifier
Brazilian Portuguese B Hungarian H
Bulgarian U Italian I
Czech X Norwegian N
Danish D Polish P
English E Russian R
Finnish Y Slovenian L
French F Spanish Z
German G Swedish S

About the Information Center
The Information Center provides quick access to DB2 product information. The
Information Center is available on OS/2, Windows 95, and the Windows NT operating
systems. You must install the DB2 administration tools to see the Information Center.

Depending on your system, you can access the Information Center from the:

¹ Main product folder
¹ Toolbar in the Control Center
¹ Windows Start menu.

The Information Center provides the following kinds of information. Click on the
appropriate tab to look at the information:

Tasks Lists tasks you can perform using DB2.

Reference Lists DB2 reference information, such as keywords, commands,
and APIs.

Books Lists DB2 books.

Troubleshooting Lists categories of error messages and their recovery actions.

Sample Programs Lists sample programs that come with the DB2 Software
Developer's Kit. If the Software Developer's Kit is not installed,
this tab is not displayed.

Web Lists DB2 information on the World Wide Web. To access this
information, you must have a connection to the Web from your
system.

124 Building Applications for UNIX Environments

When you select an item in one of the lists, the Information Center launches a viewer to
display the information. The viewer might be the system help viewer, an editor, or a
Web browser, depending on the kind of information you select.

The Information Center provides search capabilities so you can look for specific topics,
and filter capabilities to limit the scope of your searches.

 Appendix C. How the DB2 Library Is Structured 125

126 Building Applications for UNIX Environments

 Appendix D. Notices

Any reference to an IBM licensed program in this publication is not intended to state or
imply that only IBM’s licensed program may be used. Any functionally equivalent
product, program or service that does not infringe any of IBM’s intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the

IBM Director of Licensing,
 IBM Corporation,

500 Columbus Avenue,
Thornwood, NY, 10594

 USA.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Canada Limited
 Department 071

1150 Eglinton Ave. East
North York, Ontario

 M3C 1H7
 CANADA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

This publication may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

 Trademarks
The following terms are trademarks or registered trademarks of the IBM Corporation in
the United States and/or other countries:

 Copyright IBM Corp. 1993, 1997 127

ACF/VTAM
ADSTAR
AISPO
AIX
AIXwindows
AnyNet
APPN
AS/400
CICS
C Set++
C/370
DATABASE 2
DatagLANce
DataHub
DataJoiner
DataPropagator
DataRefresher
DB2
Distributed Relational Database Architecture
DRDA
Extended Services
FFST
First Failure Support Technology
IBM
IMS
Lan Distance

MVS/ESA
MVS/XA
NetView
OS/400
OS/390
OS/2
PowerPC
QMF
RACF
RISC System/6000
SAA
SP
SQL/DS
SQL/400
S/370
System/370
System/390
SystemView
VisualAge
VM/ESA
VSE/ESA
VTAM
WIN-OS/2

Trademarks of Other Companies
The following terms are trademarks or registered trademarks of the companies listed:

C-bus is a trademark of Corollary, Inc.

HP-UX is a trademark of Hewlett-Packard.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks or
registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by IBM
Corporation under license.

Solaris is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a double asterisk
(**), may be trademarks or service marks of others.

128 Building Applications for UNIX Environments

 Index

A
about the DB2 SDK 1
about this book vii
AIX/6000, supported versions 3
API script file references

bldccapi for HP-UX C 67
bldccapi for SPARCompiler C on Solaris 87
bldcobapi for IBM COBOL on AIX 54
bldf77api for HP FORTRAN/9000 on HP-UX 75
bldf77api for SPARCompiler FORTRAN on

Solaris 96
bldmfapi for Micro Focus COBOL on AIX 59
bldmfapi for Micro Focus COBOL on HP-UX 80
bldmfapi for Micro Focus COBOL on Solaris 101
bldxlcapi for XL C on AIX 33
bldxlfapi for XL FORTRAN on AIX 48

APIs and your own precompiler 1
applets, Java 109
applications

call level interface (CLI) 103
embedded SQL 25
Java 109

B
background knowledge you need viii
Basic, VisualAge for 2
binding the SAMPLE database 20
bldcc script file for C embedded SQL programs

using HP-UX C 65
using SPARCompiler C on Solaris 85

bldccsrv script file for C stored procedures
using HP-UX C 68
using SPARCompiler C on Solaris 88

bldccudf script file for C UDFs
using HP-UX C 71
using SPARCompiler C on Solaris 91

bldcob script file for IBM COBOL Set for AIX 52
bldcobsrv script file for IBM COBOL Set for AIX stored

procedures 54
bldcset script file for IBM C Set++ for AIX 41
bldcsetsrv script file for IBM C Set++ for AIX stored

procedures 43
bldf77 script file for FORTRAN 77 embedded SQL

programs

bldf77 script file for FORTRAN 77 embedded SQL
programs (continued)

using HP FORTRAN/9000 on HP-UX 73
using SPARCompiler FORTRAN on Solaris 94

bldf77sp script file for FORTRAN stored procedures
using HP FORTRAN/9000 on HP-UX 76
using SPARCompiler FORTRAN on Solaris 96

bldmfcc script file for Micro Focus COBOL embedded
SQL programs

on HP-UX 78
on Solaris 99

bldmfcob script file for Micro Focus COBOL on AIX 58
bldmfcobs script file for Micro Focus COBOL stored

procedures on AIX 60
bldmfsp script file for Micro Focus COBOL stored

procedures on HP-UX 80
bldxlc script file for XL C on AIX 31
bldxlcsrv script file for XL C stored procedures on

AIX 33
bldxlcudf script file for XL C UDFs on AIX 37
bldxlf script file for XL FORTRAN on AIX 46
bldxlfsrv script file for XL FORTRAN stored procedures

on AIX 48
book, about this vii

C
C/C++ compilers, supported versions 3
C++ sample programs 26
call level interface applications, script files, and

makefile 103
CALL statement and stored procedures 36
calludf sample program 25
cataloging the SAMPLE database 20
checkerr.cbl for error checking 29
CLI

DB2 CLI applications 103
problem determination 115
sample programs 4

clibld script file for DB2 CLI applications 103
Client Application Enabler, included in the DB2 Client

Pack 1
client problems 115
clisampl sample program 103
CLP sample files 4
COBOL compilers

 Copyright IBM Corp. 1993, 1997 129

COBOL compilers (continued)
supported versions 3

code samples, included in the DB2 SDK 1
coding and compiling stored procedures 36
coding and compiling UDFs 40
Command Line Processor (CLP) files 4
Command Line Processor (CLP) in the DB2 SDK 1
compilers

problems 115
supported versions 3

contents of this book viii
CREATE FUNCTION statement and UDFs 40

D
database manager instances

about 113
installing 19

db2sampl, using to install the SAMPLE database 20
development environment provided by the DB2 SDK 1
DFTDBPATH, using to specify the default path 20
diagnostic tools 115
directories that contain sample programs 4
documentation, related vii
DRDA-compliant application servers, installing 21

E
embedded SQL

building your applications, build files 25
sample programs 4

environment, setting it to use the DB2 SDK 19
error checking utility 29
error messages and error log 115
example text, use of x
expsamp program, using to export tables 21
EXTERNAL NAME clause and UDFs 40

F
Flagger, about the SQL 92 and MVS Conformance 1
Fortran compilers, supported versions 3

H
home directory, instance 113
how to use this book viii

I
include files in the SDK 1
installing the SAMPLE database 20
instance name and home directory 113
italics, use of x

J
Java

building an applet 111
building an application 110
sample programs 4
setting up the AIX environment 109
setting up the HP-UX environment 109
setting up the Solaris environment 110
supporting platforms 3

L
languages, supported 3

background you need viii
log, error 115

M
makefile for DB2 CLI programs 103
messages, online error 115
Micro Focus COBOL

supporting platforms 3
using the compiler 26

Microsoft ODBC supported in the DB2 SDK 1

O
object-oriented C++ programs 26
ODBC

and supported servers 2
supported in the DB2 SDK 1

OLE sample programs 4
online error messages 115
operating system problems 115
ORG tables, creating and exporting 21
outcli sample program 25
outsrv sample program 25

P
precompilers

included in the DB2 SDK 1

130 Building Applications for UNIX Environments

prefixes, error message 115
prerequisites

compilers 3
environment setup 19
operating system 3
programming knowledge you need viii

problem determination 115
publications, related vii

R
related publications vii
remote server connections 19
REXX

setting up and running programs 63
supported version on AIX 3

S
SAMPLE database, installing 20
sample programs

listing 4
with DB2 CLI 103
with embedded SQL 25

servers
problems 115
supported 2

setting up your environment 19
Software Developer's Kit (DB2 SDK), about the DB2 1
software, supported 3
SQLCA data structure 115
STAFF tables, creating and exporting 21
stored procedures

about 27
using HP FORTRAN/9000 76
using HP-UX C 68
using IBM C Set++ for AIX 43
using IBM COBOL Set for AIX 54
using IBM XL C on AIX 33
using IBM XL FORTRAN on AIX 48
using Micro Focus COBOL on AIX 60
using Micro Focus COBOL on HP-UX 80
using SPARCompiler C on Solaris 88
using SPARCompiler FORTRAN on Solaris 96

structure of this book viii
syntax problems 115
SYSADM authority 106

T
tools

diagnostic 115
in the DB2 SDK 1

U
udf sample program 25
updat sample program 25
user-defined functions (UDFs)

about 27
using HP-UX C 71
using IBM XL C on AIX 37
using SPARCompiler C on Solaris 91

using this book vii
util.c and util.f for error checking 29

V
versions of compilers supported 3
VisualAge for Basic 2

W
who should use this book viii

X
XL FORTRAN, using the compiler 51

 Index 131

132 Building Applications for UNIX Environments

 Contacting IBM

This section lists ways you can get more information
from IBM.

If you have a technical problem, please take the time to
review and carry out the actions suggested by the
Troubleshooting Guide before contacting DB2 Customer
Support. Depending on the nature of your problem or
concern, this guide will suggest information you can
gather to help us to serve you better.

For information or to order any of the DB2 Universal
Database products contact an IBM representative at a
local branch office or contact any authorized IBM
software remarketer.

Telephone

If you live in the U.S.A., call one of the following
numbers:

¹ 1-800-237-5511 to learn about available service
options.

¹ 1-800-IBM-CALL (1-800-426-2255) or
1-800-3IBM-OS2 (1-800-342-6672) to order
products or get general information.

¹ 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the
United States, see Appendix A of the IBM Software
Support Handbook. You can access this document by
selecting the "Roadmap to IBM Support" item at:
http://www.ibm.com/support/.

Note that in some countries, IBM-authorized dealers
should contact their dealer support structure instead of
the IBM Support Center.

World Wide Web
http://www.software.ibm.com/data/
http://www.software.ibm.com/data/db2/library/

The DB2 World Wide Web pages provide current DB2
information about news, product descriptions, education
schedules, and more. The DB2 Product and Service
Technical Library provides access to frequently asked
questions, fixes, books, and up-to-date DB2 technical
information. (Note that this information may be in English
only.)

Anonymous FTP Sites
ftp.software.ibm.com

Log on as anonymous. In the directory /ps/products/db2,
you can find demos, fixes, information, and tools
concerning DB2 and many related products.

Internet Newsgroups
comp.databases.ibm-db2, bit.listserv.db2-l

These newsgroups are available for users to discuss
their experiences with DB2 products.

CompuServe
GO IBMDB2 to access the IBM DB2 Family forums

All DB2 products are supported through these forums.

To find out about the IBM Professional Certification
Program for DB2 Universal Database, go to
http://www.software.ibm.com/data/db2/db2tech/db2cert.html

 Copyright IBM Corp. 1993, 1997 133

ÉÂÔÙ

Part Number: 10J8161

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

S10J-8161-00

1
0
J
8
1
6
1

