IBM DB2 Universal Database
Building Applications

for Windows** and OS/2

Environments

Version 5

Document Number S10J-8160-00

IBM DB2 Universal Database

Building Applications
for Windows™* and OS/2

Environments

Version 5

S10J-8160-00

IBM DB2 Universal Database

Building Applications
for Windows™* and OS/2

Environments

Version 5

S10J-8160-00

Before using this information and the product it supports, be sure to read the general information under Appendix D,
“Notices” on page 151.

This document contains proprietary information of IBM. It is provided under a license agreement and is protected by
copyright law. The information contained in this publication does not include any product warranties and any
statements provided in this manual should not be interpreted as such.

Order publications through your IBM representative or the IBM branch office serving your locality or by calling
1-800-879-2755 in U.S. or 1-800-IBM-4YOU in Canada.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

About This Book Vii
Who Should Use This Book viii
How to Use This Book viii
Highlighting Conventions X
Chapter 1. About the DB2 Software Developer's Kit 1
Supported Servers e 2
Supported Software by Platform oo 2
Windows NT and Windows 95 3
Windows 3.1 L 4
OS/2 . . e 4
Sample Programs L 4
Chapter 2. Setup 19
Setting the Windows NT and Windows 95 Environment 19
Setting the Windows 3.1 Environment 20
Setting the OS/2 Environment Lo 21
Enabling Communications on the Server L. 22
Installing, Cataloging, and Binding the SAMPLE Database 23
Installing 23
Cataloging e 24
Binding 25
Where to Go Next 27
Chapter 3. Introduction to Embedded SQL Applications 29
Module Definition Files for Stored Procedures and UDFs 31
Error Checking 33
Chapter 4. Building Windows NT and Windows 95 Embedded SQL
Applications L 35
Microsoft Visual C++ 36
Building Stored Procedures with Microsoft Visual C++ 38
Building User-Defined Functions (UDFs) with Microsoft Visual C++ 41
IBM VisualAge C++ e 43
Building Stored Procedures with IBM VisualAge C++ 46
Building User-Defined Functions (UDFs) with IBM VisualAge C++ 49
Micro Focus COBOL e 51
Building Stored Procedures with Micro Focus COBOL 53
Using the Micro Focus COBOL Compiler 56
IBM VisualAge for COBOL e 57
Building IBM VisualAge for COBOL Stored Procedures 59
Using the IBM VisualAge for COBOL Compiler 61
Object REXX e 62
Object Linking and Embedding (OLE) Automation 62
User-Defined Functions (UDFs) with Microsoft Visual Basic 63

© Copyright IBM Corp. 1993, 1997 iii

User-Defined Functions (UDFs) with Microsoft Visual C++
Sample OLE Automation Controller for Stored Procedures

Chapter 5. Building Windows 3.1 Embedded SQL Applications
The Microsoft Windows and WIN-OS/2 Environments
Running Batch Files in a Microsoft Windows Environment
Running Batch Files in a WIN-OS/2 Environment
Microsoft Visual C++
Using Winos2bd.bat
Using Winbld.bat
Building the Microsoft Visual C++ Client Application for Stored Procedures
Building the Microsoft Visual C++ Client Application for UDFs
Borland C++
Building the Borland C++ Client Application for Stored Procedures
Building the Borland C++ Client Application for UDFs
Micro Focus COBOL
Using Bldos2cb.bat
Using Bldwincb.bat oo
Building the Micro Focus COBOL Client Application for Stored Procedures . .
Building the Micro Focus COBOL Client Application for UDFs

Chapter 6. Building OS/2 Embedded SQL Applications
IBM VisualAge C++ for OS/2
Building IBM VisualAge C++ Stored Procedures
Building IBM VisualAge C++ User-Defined Functions (UDFs)
Borland C++ for OS/2
Building Borland C++ Stored Procedures
Building Borland C++ User-Defined Functions (UDFs)
IBM VisualAge for COBOL for OS/2
Building IBM VisualAge for COBOL Stored Procedures
Using the IBM VisualAge for COBOL Compiler
Micro Focus COBOL (16-bit)
Building 16-bit Micro Focus COBOL Stored Procedures
Using the 16-bit Micro Focus COBOL Compiler
Micro Focus COBOL (32-bit)
Building 32-bit Stored Procedures with Micro Focus COBOL
Using the 32-bit Micro Focus COBOL Compiler
FORTRAN 77 . . .
Building FORTRAN 77 Stored Procedures
Using the WATCOM FORTRAN 77 Compiler
REXX . o e

Chapter 7. Building DB2 Call Level Interface (CLI) Applications
Building and Running a DB2 CLI Application
Windows NT and Windows 95
Windows 3.1
OS/2 . e

Building Applications for Windows and OS/2 Environments

Chapter 8. Building Java Applications and Applets 133

Setting the Windows NT Environment 133
Setting the OS/2 Environment Lo 133
Building and Running a JDBC Application 134
Building and Running a JDBC Applet 134
Appendix A. About Database Manager Instances 137
Appendix B. Problem Determination 139
Appendix C. How the DB2 Library Is Structured 141
SmartGuides L e 141
Online Help o e 142
DB2 BOOKS 144
About the Information Center oo 148
Appendix D. Notices 151
Trademarks L 151
Trademarks of Other Companies 152
Index . . . e 153
Contacting IBM 155

Contents V

Vi Building Applications for Windows and OS/2 Environments

About This Book

This book explains how to build applications using the DB2 Software Developer's Kits
(DB2 SDKs) for the following operating systems:

e Windows NT
¢ Windows 95
¢ Windows 3.1
e 0S/2

Note: Whenever this book mentions Windows NT or Windows 95, both Windows NT
and Windows 95 are implied, except in the case of Systems Network
Architecture (SNA) support or DB2 Connect, formerly known as Distributed
Database Connection Services (DDCS). These are supported on Windows NT
only.

The book provides information to set up your environment for developing DB2
applications, and step-by-step instructions to compile, link, and run these applications in
this environment.

Different programming interfaces can be used to develop your applications:

Embedded SQL Uses SQL statements that are
precompiled before your
program is compiled.

DB2 Call Level Interface (CLI) Is a callable SQL interface
based on the X/Open CLI
specification, and is compatible
with the Microsoft Corporation's
Open Database Connectivity
(ODBC).

DB2 Application Programming Interfaces (APIs) Use DB2 administrative APIs in
your applications to create
administrative programs.

For information on these programming interfaces, and to decide which one best fits

your needs, refer to the Road Map to DB2 Programming, especially chapter 2,

"Accessing DB2 Databases".

For more detailed information on each of the different programming interfaces, refer to:
e Embedded SQL Programming Guide

Discusses how to code and design application programs that access DB2 family
servers using embedded SQL.

e CLI Guide and Reference

Discusses how to code and design application programs that use the DB2 Call
Level Interface and ODBC.

© Copyright IBM Corp. 1993, 1997 Vii

e API Reference
Discusses how to code and design application programs that use DB2 Application
Programming Interfaces.
You will find the following books useful for further related information, such as detailed
product installation and setup:
e Quick Beginnings

Explains how to install the database manager, and the DB2 Software Developer's
Kit (DB2 SDK) on server and client workstations.

e Command Reference
Explains how to use the DB2 Command Line Processor (CLP).
e Troubleshooting Guide

Helps you resolve application development problems involving DB2 clients and
servers, as well as problems with related tasks in database administration and
connectivity.

For a complete list of the DB2 documentation library, refer to Appendix C, “How the
DB2 Library Is Structured” on page 141.

Who Should Use This Book

You should use this book if you want to develop applications on one of the currently
supported Windows or OS/2 platforms. You may use embedded SQL, the DB2 CLI,
Java applications or Java applets to access DB2 databases, or DB2 APIs to create

administrative programs.

In order to use this book, you should know one or more of the supported programming
languages on any of the supported platforms listed in “Supported Software by Platform”
on page 2.

How to Use This Book

viii

The book is designed to allow easy access to the information you need to develop your
applications. The first two chapters contain common information for users who will be
developing either embedded SQL, DB2 CLI, Java, or DB2 API applications on any of
these platforms, and should therefore be read by all users. Chapter 3 contains common
information for all those who want to develop embedded SQL applications.

Each of Chapters 4, 5, and 6 gives detailed information for developing embedded SQL
applications on one of the supported platforms. In addition, the DB2 API batch or
command file for each supported compiler in these chapters is noted after the first
embedded SQL batch or command file for the compiler is discussed, as these files
share the same compile and link options.

Building Applications for Windows and OS/2 Environments

Chapter 7 contains common information for all those developing DB2 CLI applications.
Chapter 8 contains common information for all those developing Java applications and
applets for DB2.

To use this book, a user who wanted, for example, to develop embedded SQL
applications on OS/2 should read Chapters 1, 2, 3, and 6. A user who wanted to
develop DB2 CLI applications on any of the platforms should read Chapters 1, 2, and 7.
A user who wanted to develop Java applications or applets for DB2 on Windows NT or
0S/2 should read Chapters 1, 2, and 8.

Please note that some of the common chapters contain sections that have information
specific to each platform, such as Supported Software by Platform in Chapter 1 and
Building and Running a DB2 CLI Application in Chapter 7.

This book contains the following chapters and appendices:

Chapter 1, About the DB2 Software Developer's Kit, describes the DB2 SDK. It lists the
supported servers, and the software of each of the Windows and OS/2 platforms
currently supported by DB2. It also describes the sample programs.

Chapter 2, Setup, explains how to set up the client/server and programming
environment before you use the DB2 SDK.

Chapter 3, Introduction to Embedded SQL Applications, shows you how to build
programs that use embedded SQL statements.

Chapter 4, Building Windows NT and Windows 95 Embedded SQL Applications, shows
you how to build Windows NT and Windows 95 programs that use embedded SQL
statements.

Chapter 5, Building Windows 3.1 Embedded SQL Applications, shows you how to build
Windows 3.1 programs that use embedded SQL statements.

Chapter 6, Building OS/2 Embedded SQL Applications, shows you how to build OS/2
programs that use embedded SQL statements.

Chapter 7, Building DB2 Call Level Interface (CLI) Applications, shows you how to build
programs that use DB2 Call Level Interface function calls.

Chapter 8, Building Java Applications and Applets, shows you how to build DB2
programs in Java.

Appendix A, About Database Manager Instances, explains database manager
instances and how to use them to manage databases.

Appendix B, Problem Determination, describes build and run time problems you can
encounter, and what sources of information you can use to resolve them.

Appendix C, How the DB2 Library Is Structured, describes the components of the
library, including online help, SmartGuides, and books.

About This Book iX

Appendix D, Notices, lists notices concerning IBM publications, and trademarks of IBM
and other companies.

Highlighting Conventions
This book uses the following conventions:
Italics Indicate one of the following:

¢ Introduction of a new term

¢ Names or values that are supplied by the user
¢ References to another source of information

e General emphasis

UPPERCASE Indicates one of the following:

e API names

e Database manager data types
e Field names

e Key words

e SQL statements

Example text Indicates one of the following:

e Coding examples and code fragments

e Commands

e Examples of output, similar to what is displayed by the system
e Examples of specific data values

¢ Examples of system messages

¢ File and directory names

¢ Information that you are instructed to type

Bold Emphasizes a point.

X Building Applications for Windows and OS/2 Environments

Chapter 1.

About the DB2 Software Developer's Kit

The DB2 Software Developer's Kit (DB2 SDK) provides the tools and environment you
need to develop applications that access DB2 servers and application servers that
implement the Distributed Relational Database Architecture (DRDA).

You can develop applications on a server or client that has the DB2 SDK installed.
Your applications can also run on a server or client. To run your applications on a
client, you must have the appropriate DB2 Client Application Enabler (DB2 CAE)
installed. The DB2 CAE is installed from the DB2 Client Pack. See Chapter 2, “Setup”
on page 19 for information about setting up your programming environment.

The DB2 SDKs for the Windows and OS/2 platforms covered in this book provide the
following:

e Precompilers for C, C++, COBOL, and FORTRAN (0OS/2 only).
¢ Include files and code samples to develop applications that use embedded SQL.

¢ Programming libraries, include files, and code samples that use the DB2 Call Level
Interface (DB2 CLI) to develop applications that are easily ported to ODBC and
compiled with an ODBC SDK (available from Microsoft for Microsoft platforms, and
from Visigenic for all other platforms). The DB2 CAE for OS/2 contains an ODBC
driver for DB2 that supports applications developed with Visigenic ODBC version
2.1. For Windows platforms, the DB2 CAE contains an ODBC driver for DB2 that
supports applications developed with the Microsoft ODBC Software Developer's Kit.

¢ DB2 Java Database Connectivity (DB2 JDBC) support to develop Java applications
and applets.

e On 0S/2, Windows NT, and Windows 95, support to develop database applications
that use the REXX language.

¢ On Windows NT and Windows 95, code samples of Object Linking and Embedding
(OLE) automation UDFs in Microsoft Visual Basic and Microsoft Visual C++, and a
sample OLE automation controller implemented as a stored procedure which
controls other OLE automation stored procedures.

¢ Interactive SQL through the Command Line Processor to prototype SQL
statements or to perform ad hoc queries against the database.

¢ A documented API to enable other application development tools to implement
precompiler support for DB2 directly within their products. For example, on OS/2,
IBM PL/I uses this interface. Information on documented APIs can be obtained by
downloading either of the following files. On Compuserve, the file is located in the
IBM DB2 Family Forum on CompuServe (GO IBMDB2). Once in this forum, get the
file called PREPAPI.TXT from Library 1. This file must be downloaded in ASCII
format. On the Internet, go to the anonymous FTP site ps.boulder.ibm.com . The
file is called prepapi.txt, and is located in the directory /ps/products/db2/info.
This file is in ASCII format. Refer to the DB2 Solutions Directory for other examples
of IBM and third party providers. You can get the Directory from CompuServe in
the IBMDB2 forum. Or contact your IBM representative for a copy.

© Copyright IBM Corp. 1993, 1997 1

e SQL 92 and MVS Conformance Flagger: Identifies embedded SQL statements in
applications that do not conform to the ISO/ANSI SQL92 Entry Level standard, or
which are not supported by DB2 for MVS. If you migrate applications developed on
a workstation to another platform, the Flagger saves you time by showing syntax
incompatibilities. Refer to the Command Reference for information about the
SQLFLAG option in the PRECOMPILE PROGRAM command.

Supported Servers

You use the DB2 SDK to develop applications that run on a specific platform. However,
your applications can access remote databases on the following platforms:

e DB2 for 0OS/2
e DB2 for AIX
e DB2 for Windows NT
e DB2 for HP-UX
e DB2 for Solaris
e DB2 for SINIX
e DB2 for SCO OpenServer
¢ Distributed Relational Database Architecture (DRDA)-compliant application servers,
such as:
— DB2 for MVS/ESA
— DB2 for VSE & VM (formerly SQL/DS for VM and VSE)
— DB2 for OS/400
— DRDA-compliant application servers from database vendors other than IBM.
e DB2 CLI applications that conform to ODBC can be ported to work under ODBC.
An ODBC driver manager must be available on the application platform.

Supported Software by Platform

2

This section lists the compilers and related software supported by DB2 for the platforms
described in this book. The compiler information assumes that you are using the DB2
precompiler for that platform, and not the precompiler support that may be built into one
of the listed compilers. The exception is VisualAge for Basic for OS/2 and for Windows;
in this case, the precompiler is provided by VisualAge for Basic and not by DB2. For
information on precompiler support built into any of the listed compilers, see that
compiler's documentation.

Refer to the specific Quick Beginnings book for any of these platforms for information
on the communication products supported by that platform's operating system.

Notes:

1. The README file for a supported platform may contain information on other
compilers that are supported for that platform. The README file for a platform can
be found in the directory in which the program files are installed.

2. Micro Focus COBOL (16-bit). Any existing applications precompiled with DB2
Version 2.1.1 or earlier and compiled with Micro Focus COBOL (16-bit) should be
re-precompiled with the current version of DB2, and then recompiled with Micro

Building Applications for Windows and OS/2 Environments

Focus COBOL. If these applications built with the earlier versions of the IBM
precompiler are not re-precompiled, there is a possibility of database corruption if
abnormal termination occurs. This support requires Micro Focus COBOL V3.2.46 or
V3.2.50 plus the following patch, available on CompuServe:

Forum: MICROFOCUS
Library: ICD Product Updates (Library 4)
Filename: DB2211UP.ZIP

This patch may also be available directly from Micro Focus. Obtain the patch and

apply it to your V3.2.46 or V3.2.50 Compiler. Micro Focus intends to integrate the

patch in their COBOL product for subsequent versions of the compiler; however, it
may not be integrated in versions immediately after V3.2.50. If you are in doubt as
to whether your version has the patch integrated, contact Micro Focus.

3. VisualAge for Basic for OS/2 and for Windows. This product includes DB2
functions for embedded SQL, stored procedures, and User-Defined Functions
(UDFs). It includes sample applications that connect to DB2 with embedded SQL ,
CLI and ODBC. The precompiler support for DB2 is provided by VisualAge for
Basic. Refer to the VisualAge for Basic documentation for more information,
especially for the versions of DB2 supported, and for details about the sample
applications provided by the product.

4. Microsoft Visual Basic. The SDK for Windows NT and Windows 95 supports DB2
programming using Object Linking and Embedding (OLE) automation with Visual
Basic. You can also use Visual Basic and ODBC to develop client applications that
access DB2. However, no DB2 precompiler is supplied for this language. For
further information, see “Object Linking and Embedding (OLE) Automation” on
page 62.

Windows NT and Windows 95
The DB2 SDK for Windows NT and Windows 95 supports the following operating

systems:

Microsoft Windows NT Version 3.5.1 or later (both workstation and server
versions)

Microsoft Windows 95 Version 4.00.950 or later

The DB2 SDK for Windows NT and Windows 95 supports the following programming

languages:

C/C++ Microsoft Visual C++ Version 4.1 or later, and IBM VisualAge for C++
for Windows Version 3.5 or later

COBOL Micro Focus COBOL Version 4.0.20 (32-bit), and IBM VisualAge for

COBOL for OS/2 Version 1.2

Note: The IBM VisualAge for COBOL for OS/2 compiler provides a
COBOL development environment for OS/2, Windows 95 and
Windows NT. It can be installed and run on any of these
operating systems.

Chapter 1. About the DB2 Software Developer's Kit 3

Windows 3.1

0S/2

REXX
Java

Basic

Object REXX for Windows NT/95 Version 1.0
Java Development Kit (JDK) 1.1 for Win32 from Sun Microsystems

IBM VisualAge for Basic for OS/2 and for Windows Version 1, and
Microsoft Visual Basic Version 4.0 or later (see the notes above on
VisualAge for Basic and Visual Basic)

The DB2 SDK for Windows 3.1 supports the following operating systems:

Microsoft Windows Version 3.1
Microsoft Windows for Workgroups Version 3.11
0S/2 WIN-OS/2 session under Version 2.11,

WARP 3.0, and WARP 4.0

The DB2 SDK for Windows 3.1 supports the following programming languages:

C/C++

COBOL

Microsoft Visual C++ Version 1.5 or later, and Borland C++ Version
4.0 or Version 4.5

Micro Focus COBOL Version 3.2.46 or later (16-bit)

The DB2 SDK for OS/2 supports the following operating systems:

0s/2

Version 2.11, WARP 3.0, and WARP 4.0

The DB2 SDK for OS/2 supports the following programming languages:

C/C++

FORTRAN
COBOL

REXX
Java

Basic

IBM VisualAge C++ for OS/2 Version 3, and Borland C++ for OS/2
Version 1.5

WATCOM FORTRAN 77 32 Version 10.5

IBM VisualAge for COBOL for OS/2 Version 1.2, Micro Focus
COBOL Version 3.2.46 or later (16-bit), and Micro Focus COBOL
Version 4.0.20 (32-bit)

IBM Procedures Language 2/REXX (supplied as part of 0S/2)
Java Development Kit (JDK) 1.1 for OS/2 from IBM

IBM VisualAge for Basic for 0S/2 and for Windows Version 1 (See
the note above on VisualAge for Basic)

Sample Programs

The DB2 SDK comes with sample programs. The file extensions for each supported
language, and the directories where the programs can be found on the supported
platforms, are given in Table 1 on page 6.

4 Building Applications for Windows and OS/2 Environments

The sample programs providing examples of embedded SQL and DB2 API calls are
shown in Table 2 on page 9. Command Line Processor (CLP) files provided by DB2
are shown in Table 3 on page 14.

Java sample programs are shown in Table 4 on page 15. Object Linking and
Embedding (OLE) sample programs are shown in Table 5 on page 15. The sample
programs demonstrating DB2 CLI calls are shown in Table 6 on page 16.

You can use the sample programs to learn how to code your applications.

Chapter 1. About the DB2 Software Developer's Kit

5

Table 1. Sample Program File Extensions and Locations

Programs with Programs without
Language CLI Programs Embedded SQL Embedded SQL
C File Ext. .C .sqc .C
Directory samples/cli samples/c samples/c
C++ File Ext. Not Applicable .sqC (UNIX) .C (UNIX)
.SQgX .cxx (Intel)
Directory Not Applicable samples/cpp samples/cpp
COBOL File Ext. Not Applicable .sgb .chl
Directory Not Applicable samples/cobol samples/cobol
samples/cobol_mf samples/cobol_mf
FORTRAN File Ext. Not Applicable .sqf .f (UNIX)
.for (0S/2)
Directory Not Applicable samples/fortran samples/fortran
REXX File Ext. Not Applicable .cmd .cmd
Directory Not Applicable samples/rexx samples/rexx
JAVA File Ext. Not Applicable Not Applicable .java
Directory Not Applicable Not Applicable samples/java
OLE File Ext. Not Applicable Not Applicable Not Applicable
Directory samples\ole Not Applicable samples\ole
Note:

Programs without SQL

Directory Delimiters

IBM COBOL samples

Micro Focus Cobol Samples

Fortran Samples

REXX Samples

Java Samples

OLE Samples

Denotes programs with no SQL statements in them (primarily programs
using DB2 API functions).

On UNIX are /. On OS/2 and Windows platforms, are \.

Are only supplied on the OS/2, AIX, Windows NT and Windows 95 platforms
in the cobol subdirectory.

Are supplied on all platforms except the Macintosh. The 16-bit Micro Focus
COBOL examples are supplied in the cobol_16 subdirectory on OS/2, and
the cobol subdirectory on Windows 3.1. For all other platforms, the Micro
Focus COBOL samples are in the cobol_mf subdirectory.

Are only supplied on the AIX, HP-UX, Silicon Graphics IRIX, Solaris, and
OS/2 platforms.

Are only supplied on the AlX, OS/2, Windows NT and Windows 95
platforms.

Are stored procedures and UDFs, as well as Java Database Connectivity
(JDBC) applications and applets. Java samples are available on the AlX,
HP-UX, Solaris, OS/2, Windows NT and Windows 95 platforms.

Are for Object Linking and Embedding (OLE) in Microsoft Visual Basic and
Microsoft Visual C++, supplied on the Windows NT and Windows 95
platforms only.

The above table lists the supported languages within the specified programming paradigms. Not all sample
programs have been ported to all the supported programming languages.

6 Building Applications for Windows and OS/2 Environments

You can find the sample programs in the samples subdirectory of the directory where
DB2 has been installed. There is a subdirectory for each supported language. The
following examples show you how to locate the samples written in C or C++ on each
supported platform.

On UNIX platforms.

You can find the C source code for embedded SQL and DB2 API programs in
sql1ib/samples/c under your database instance directory; the C source code for
DB2 CLI programs is in sq11ib/samples/c1i. For additional information about the
sample programs in Table 2 on page 9 and Table 6 on page 16, refer to the
README file in the appropriate samples subdirectory under your database manager
instance. The README file will contain any additional samples that are not listed in
this book.

On 0S/2, Windows NT, and Windows 95 platforms.

You can find the C source code for embedded SQL and DB2 API programs in
%DB2PATH%\samples\c under the DB2 install directory; the C source code for DB2
CLI programs is in %DB2PATH%\samples\c1i. The variable %DB2PATH% determines
where DB2 is installed. Depending on which drive DB2 is installed, %DB2PATH% will
point to drive:\sq11ib. For additional information about the sample programs in
Table 2 on page 9 and Table 6 on page 16, refer to the README file in the
appropriate %DB2PATH%\samples subdirectory. The README file will contain any
additional samples that are not listed in this book.

On Windows 3.1.

You can find the C source code for embedded SQL and DB2 API programs in
%DB2PATH%\samples\c; the C source code for DB2 CLI programs is in
%DB2PATH%\samples\c1i. The db2.ini file, which stores the DB2 settings, defines
the value for %DB2PATH%, which by default points to drive:\sq11ib\win. The value of
%DB2PATH%, as referenced in the db2.1ini file, is only recognized within the DB2
environment. For additional information about the sample programs in Table 2 on
page 9 and Table 6 on page 16, refer to the README files in these subdirectories.
The README files will contain any additional samples that are not listed in this book.

On Macintosh.

You can find the sample programs in the DB2:samples: folder. There are
sub-folders for sample programs written in C and CLI. For additional information
about the sample programs in Table 2 on page 9 and Table 6 on page 16, refer
to the README file in the DB2:samples: folder. The README file will contain any
additional samples that are not listed in this book.

Not all of the sample programs are available in all the supported programming

languages.

The sample programs directory is typically read-only on most platforms. Before you
alter or build the sample programs, copy them to your working directory. On the
Macintosh, copy them to your working folder.

Note: The sample programs that are shipped with DB2 Universal Database have
dependencies on the English version of the Sample database and the

Chapter 1. About the DB2 Software Developer's Kit

associated table and column names. If the Sample database has been
translated into another national language on your version of DB2 Universal
Database, you need to update the name of the Sample database, and the
names of the tables and the columns coded in the supplied sample programs,
to the names used in the translated Sample database. Otherwise, you will
experience problems running the sample programs as shipped.

Currently, the Sample database is translated for the following countries:

e France

e ltaly

e Spain

e Finland

e Norway

e People’s Republic of China

In Table 2 on page 9, ‘Yes’, in the Embedded SQL column, indicates that the program

contains embedded SQL. A blank indicates that the program does not contain
embedded SQL, and thus no precompiling is required.

8 Building Applications for Windows and OS/2 Environments

Table 2 (Page 1 of 6).

Sample Programs Showing Embedded SQL and APIs

Sample Program Embedded
Name SQL Program Description
adhoc Yes Demonstrates dynamic SQL and the SQLDA structure to process SQL
commands interactively. SQL commands are input by the user, and output
corresponding to the SQL command is returned.
advsql Yes Demonstrates the use of advanced SQL expressions like CASE, CAST,
and scalar full selects.
asynrlog Yes Demonstrates the use of the following API:
ASYNCHRONOUS LOG READ
autoloader A UNIX Korn shell script that prepares ftp scripts for data transfer from
remote hosts and generates a temporary buffer space (FIFO or named
pipes). It then starts db2sp1it and invokes DB2 LOAD.
In a partitioned environment, partitioning keys are used to determine the
partition where the data resides. Therefore, data must pass through a
splitting phase before it can be loaded at the correct partition.
The entire split and load process can be accomplished by the autolLoader
utility. It uses a system-defined hashing function to partition the data into
as many output files as there are partitions in the nodegroup in which the
table is defined. It then loads these output files concurrently across the
set of partitions in the nodegroup.
backrest Demonstrates the use of the following APIs:
BACKUP DATABASE
RESTORE DATABASE
ROLL FORWARD DATABASE
blobfile Yes Demonstrates the manipulation of a Binary Large Object (BLOB), by
reading a BLOB value from the sample database and placing it in a file,
the contents of which can be displayed using an external viewer.
bindfile Yes Demonstrates the use of the BIND API to bind an embedded SQL
application to a database.
calludf Yes Demonstrates the use of the library of User-Defined Functions (UDFs)
created by udf for the SAMPLE database tables.
client Demonstrates the use of the following APIs:
SET CLIENT
QUERY CLIENT
columns Yes Demonstrates the use of a cursor that is processed using dynamic SQL.
This program lists all the entries in the system table,
SYSIBM.SYSTABLES, under a desired schema name.
cursor Yes Demonstrates the use of a cursor using static SQL.
d_dbconf Demonstrates the use of the following API:
GET DATABASE CONFIGURATION DEFAULTS
d_dbmcon Demonstrates the use of the following API:
GET DATABASE MANAGER CONFIGURATION DEFAULTS
da_manip Yes Provides a library of routines to manipulate SQLDAs and SQLVARSs.

Chapter 1. About the DB2 Software Developer's Kit 9

Table 2 (Page 2 of 6). Sample Programs Showing Embedded SQL and APIs

Sample Program Embedded
Name SQL Program Description
db2mon Demonstrates how to use the Database System Monitor APIs, and how to
process the output data buffer returned from the Snapshot API.
db2uext2 Provides a sample log management user exit.
dbauth Yes Demonstrates the use of the following API:
GET AUTHORIZATIONS
dbcat Demonstrates the use of the following APIs:

CATALOG DATABASE

CLOSE DATABASE DIRECTORY SCAN
GET NEXT DATABASE DIRECTORY ENTRY
OPEN DATABASE DIRECTORY SCAN
UNCATALOG DATABASE

dbemt Demonstrates the use of the following APIs:
CHANGE DATABASE COMMENT

dbconf Demonstrates the use of the following APIs:

CREATE DATABASE

DROP DATABASE

GET DATABASE CONFIGURATION
RESET DATABASE CONFIGURATION
UPDATE DATABASE CONFIGURATION

dbinst Demonstrates the use of the following APIs:

ATTACH TO INSTANCE
DETACH FROM INSTANCE
GET INSTANCE

dbmconf Demonstrates the use of the following APIs:

GET DATABASE MANAGER CONFIGURATION
RESET DATABASE MANAGER CONFIGURATION
UPDATE DATABASE MANAGER CONFIGURATION

dbsnap Demonstrates the use of the following API:
DATABASE SYSTEM MONITOR SNAPSHOT

dbstart Demonstrates the use of the following API:
START DATABASE MANAGER

dbstat Yes Demonstrates the use of the following APIs:

REORGANIZE TABLE
RUN STATISTICS

dbstop Demonstrates the use of the following APIs:

FORCE USERS
STOP DATABASE MANAGER

db_udcs Demonstrates the use of the following APIs in order to simulate the
collating behaviour of a DB2 for MVS/ESA or OS/390 CCSID 500
(EBCDIC International) collating sequence:

CREATE DATABASE
DROP DATABASE

10 Building Applications for Windows and OS/2 Environments

Table 2 (Page 3 of 6). Sample Programs Showing Embedded SQL and APIs

Sample Program
Name

Embedded
SQL

Program Description

dcscat

Demonstrates the use of the following APIs:

ADD DCS DIRECTORY ENTRY

CLOSE DCS DIRECTORY SCAN

GET DCS DIRECTORY ENTRY FOR DATABASE
GET DCS DIRECTORY ENTRIES

OPEN DCS DIRECTORY SCAN

UNCATALOG DCS DIRECTORY ENTRY

delet

Yes

Demonstrates static SQL to delete items from a database.

dmscont

Demonstrates the use of the following APIs in order to create a database
with more than one database managed storage (DMS) container:

CREATE DATABASE
DROP DATABASE

dynamic

Yes

Demonstrates the use of a cursor using dynamic SQL.

ebcdicdb

Demonstrates the use of the following APIs in order to simulate the
collating behaviour of a DB2 for MVS/ESA or OS/390 CCSID 037
(EBCDIC US English) collating sequence:

CREATE DATABASE
DROP DATABASE

expsamp

Yes

Demonstrates the use of the following APIs:

EXPORT
IMPORT

in conjunction with a DRDA database.

fillcli

Yes

Demonstrates the client-side of a stored procedure that uses the SQLDA
to pass information specifying which table the stored procedure populates
with random data.

fillsrv

Yes

Demonstrates the server-side of a stored procedure example that uses
the SQLDA to receive information from the client specifying the table that
the stored procedure populates with random data.

impexp

Yes

Demonstrates the use of the following APIs:

EXPORT
IMPORT

inpcli

Yes

Demonstrates stored procedures using either the SQLDA structure or host
variables. This is the client program of a client/server example. (The
server program is called inpsrv.) The program fills the SQLDA with
information, and passes it to the server program for further processing.
The SQLCA status is returned to the client program. This program shows
the invocation of stored procedures using an embedded SQL CALL
statement.

inpsrv

Yes

Demonstrates stored procedures using the SQLDA structure. This is the
server program of a client/server example. (The client program is called
inpcli.) The program creates a table (PRESIDENTS) in the SAMPLE
database with the information received in the SQLDA. The server program
does all the database processing and returns the SQLCA status to the
client program.

Chapter 1. About the DB2 Software Developer's Kit 11

Table 2 (Page 4 of 6). Sample Programs Showing Embedded SQL and APIs

Sample Program Embedded
Name SQL Program Description

joinsql Yes An example using advanced SQL join expressions.

largevol Yes Demonstrates parallel query processing in a partitioned environment, and
the use of an NFS file system to automate the merging of the result sets.

Tobeval Yes Demonstrates the use of LOB locators and deferring the evaluation of the
actual LOB data.

lobfile Yes Demonstrates the use of LOB file handles.

Tobloc Yes Demonstrates the use of LOB locators.

Toblocud Demonstrates the use of LOB locators in a user-defined function.

Tobval Yes Demonstrates the use of LOBs.

makeapi Yes Demonstrates the use of the following APIs:

BIND

PRECOMPILE PROGRAM
START DATABASE MANAGER
STOP DATABASE MANAGER

migrate Demonstrates the use of the following API:
MIGRATE DATABASE

monreset Demonstrates the use of the following API:
RESET DATABASE SYSTEM MONITOR DATA AREAS

monsz Demonstrates the use of the following APIs:

ESTIMATE DATABASE SYSTEM MONITOR BUFFER SIZE
DATABASE SYSTEM MONITOR SNAPSHOT

nodecat Demonstrates the use of the following APIs:

CATALOG NODE

CLOSE NODE DIRECTORY SCAN
GET NEXT NODE DIRECTORY ENTRY
OPEN NODE DIRECTORY SCAN
UNCATALOG NODE

openftch Yes Demonstrates fetching, updating, and deleting of rows using static SQL.

outcli Yes Demonstrates stored procedures using the SQLDA structure. This is the
client program of a client/server example. (The server program is called
outsrv.) This program allocates and initializes a one variable SQLDA, and
passes it to the server program for further processing. The filled SQLDA is
returned to the client program along with the SQLCA status. This program
shows the invocation of stored procedures using an embedded SQL CALL
statement.

outsrv Yes Demonstrates stored procedures using the SQLDA structure. This is the
server program of a client/server example. (The client program is called
outcli.) The program fills the SQLDA with the median SALARY of the
employees in the STAFF table of the SAMPLE database. The server program
does all the database processing (finding the median). The server
program returns the filled SQLDA and the SQLCA status to the client
program.

12 Building Applications for Windows and OS/2 Environments

Table 2 (Page 5 of 6).

Sample Programs Showing Embedded SQL and APIs

Sample Program
Name

Embedded
SQL

Program Description

qload

Yes

Demonstrates the use of the following API:
LOAD QUERY

rebind

Yes

Demonstrates the use of the following API:
REBIND PACKAGE

rechist

Demonstrates the use of the following APIs:

CLOSE RECOVERY HISTORY FILE SCAN

GET NEXT RECOVERY HISTORY FILE ENTRY
OPEN RECOVERY HISTORY FILE SCAN
PRUNE RECOVERY HISTORY FILE ENTRY
UPDATE RECOVERY HISTORY FILE ENTRY

recursql

Yes

Demonstrates the use of advanced SQL recursive queries.

regder

Demonstrates the use of the following APIs:

REGISTER
DEREGISTER

restart

Demonstrates the use of the following API:
RESTART DATABASE

sampudf

Yes

Demonstrates the use of User-Defined Types (UDTs) and User-Defined
Functions (UDFs). The UDFs declared in this program are all sourced
UDFs.

setact

Demonstrates the use of the following API:
SET ACCOUNTING STRING

setrundg

Demonstrates the use of the following API:
SET RUNTIME DEGREE

static

Yes

Uses static SQL to retrieve information.

SWS

Demonstrates the use of the following API:
DATABASE MONITOR SWITCH

system

Demonstrates most of the system-specific calls.

tabinfo

Yes

Provides a library of routines for obtaining table and column information
from the system tables and for accessing the information obtained.

tabscont

Demonstrates the use of the following APIs:

TABLESPACE CONTAINER QUERY

OPEN TABLESPACE CONTAINER QUERY
FETCH TABLESPACE CONTAINER QUERY
CLOSE TABLESPACE CONTAINER QUERY
SET TABLESPACE CONTAINER QUERY

Chapter 1. About the DB2 Software Developer's Kit

13

Table 2 (Page 6 of 6). Sample Programs Showing Embedded SQL and APIs

Sample Program Embedded
Name SQL Program Description

tabspace Demonstrates the use of the following APIs:

TABLESPACE QUERY

SINGLE TABLESPACE QUERY
OPEN TABLESPACE QUERY
FETCH TABLESPACE QUERY
GET TABLESPACE STATISTICS
CLOSE TABLESPACE QUERY

tabsql Yes Demonstrates the use of advanced SQL table expressions.

tblcli Demonstrates a call to a table function (client-side) to display weather
information for a number of cities.

tblsrv Demonstrates a table function (server-side) that processes weather
information for a number of cities.

tload Yes Demonstrates the use of the following APlIs:

EXPORT
QUIESCE TABLESPACE FOR TABLES
LOAD

trigsql Yes An example using advanced SQL triggers and constraints.

udf Yes Creates a library of User-Defined Functions (UDFs) made specifically for
the SAMPLE database tables, but can be used with tables of compatible
column types.

updat Yes Uses static SQL to update a database.

util Demonstrates the use of the following APIs:

GET ERROR MESSAGE

GET SQLSTATE MESSAGE
INSTALL SIGNAL HANDLER
INTERRUPT

This program also contains code to output information from an SQLDA.

varinp Yes An example of variable input to Embedded Dynamic SQL statement calls
using parameter markers.

Table 3 (Page 1 of 2). Command Line Processor (CLP) Sample Files.

Sample File File Description

Name

const.clp Creates a table with a CHECK CONSTRAINT clause.

cte.clp Demonstrates a common table expression. The equivalent sample program demonstrating this

advanced SQL statement is tabsql.

flt.clp Demonstrates a recursive query. The equivalent sample program demonstrating this advanced
SQL statement is recursql.

join.clp Demonstrates an outer join of tables. The equivalent sample program demonstrating this
advanced SQL statement is joinsql.

14 Building Applications for Windows and OS/2 Environments

Table 3 (Page 2 of 2). Command Line Processor (CLP) Sample Files.

Sample File File Description
Name
stock.clp Demonstrates the use of triggers. The equivalent sample program demonstrating this advanced

SQL statement is trigsql.

testdata.clp

Uses DB2 built-in functions such as RAND() and TRANSLATE() to populate a table with
randomly generated test data.

Table 4. Java Sample Programs

Sample Program
Name

Program Description

DB2App1.java

A Java Database Connectivity (JDBC) application that queries the sample database using the
invoking user's privileges.

DB2Applt.java

A Java Database Connectivity (JDBC) applet that queries the sample database using a user
and server specified as applet parameters.

DB2App1t.html

An HTML file that embeds the DB2App1t.java applet sample program. It needs to be
customized with server and user information.

DB2Stp.java

A Java stored procedure that updates the EMPLOYEE table on the server, and returns new
salary and payroll information to the client.

DB2Udf.java

A Java user-defined function (UDF) that demonstrates several tasks, including integer
division, manipulation of Character Large OBjects (CLOBs), and the use of Java instance
variables.

samples.zip

A file containing compiled .class files for all DB2 Java samples.

Table 5. Object Linking and Embedding (OLE) Sample Programs

Sample Program
Name

Program Description

sales Demonstrates rollup queries on a Microsoft Excel sales spreadsheet (implemented in Visual
Basic).

names Queries a Lotus Notes address book (implemented in Visual Basic).

inbox Queries Microsoft Exchange inbox e-mail messages through OLE/Messaging (implemented in
Visual Basic).

invoice An OLE automation user-defined function that sends Microsoft Word invoice documents as
e-mail attachments (implemented in Visual Basic).

ccounter A counter OLE automation user-defined function (implemented in Visual C++).

salarysrv An OLE automation stored procedure that calculates the median salary of the STAFF table of
the SAMPLE database (implemented in Visual Basic).

salaryclt A client program that invokes the median salary OLE automation stored procedure salarysrv

(implemented in Visual Basic and in Visual C++).

Chapter 1. About the DB2 Software Developer's Kit 15

Table 6 (Page 1 of 3). Sample CLI Programs in DB2 Universal Database

Sample Program
Name

Program Description

Utility files used by most CLI samples

samputil.c

Utility functions used by most samples

samputil.h

Header file for samputil.c, included by most samples

General CLI Samples

adhoc.c Interactive SQL with formatted output (was typical.c)

async.c ** Run a function asynchronously (based on fetch.c)
basiccon.c Basic connection

browser.c List columns, foreign keys, index columns or stats for a table
colpriv.c List column Privileges

columns.c List all columns for table search string

compnd.c Compound SQL example

datasour.c List all available data sources

descrptr.c **

Example of descriptor usage

drivrcon.c Rewrite of basiccon.c using SQLDriverConnect

duowcon.c Multiple DUOW Connect type 2, syncpoint 1 (one phase commit)

embedded.c Show equivalent DB2 CLI calls, for embedded SQL (in comments)

fetch.c Simple example of a fetch sequence

getattrs.c List some common environment, connection and statement options/attributes

getcurs.c Show use of SQLGetCursor, and positioned update

getdata.c Rewrite of fetch.c using SQLGetData instead of SQLBindCol

getfuncs.c List all supported functions

getfuncs.h Header file for getfuncs.c

getinfo.c Use SQLGetInfo to get driver version and other information

getsglca.c Rewrite of adhoc.c to use prepare/execute and show cost estimate

lookres.c Extract string from resume clob using locators

mixed.sqc CLI sample with functions written using embedded SQL (Note: This file must be
precompiled)

multicon.c Multiple connections

native.c Simple example of calling SQLNativeSql, and SQLNumParams

prepare.c Rewrite of fetch.c, using prepare/execute instead of execdirect

proccols.c List procedure parameters using SQLProcedureColumns

procs.c List procedures using SQLProcedures

sfetch.c ** Scrollable cursor example (based on xfetch.c)

setcolat.c Set column attributes (using SQLSetColAttributes)

setcurs.c Rewrite of getcurs.c using SQLSetCurs for positioned update

16 Building Applications for Windows and OS/2 Environments

Table 6 (Page 2 of 3). Sample CLI Programs in DB2 Universal Database

Sample Program

Name Program Description

seteattr.c Set environment attribute (SQL_ATTR_OUTPUT_NTS)
tables.c List all tables

typeinfo.c Display type information for all types for current data source
xfetch.c Extended Fetch, multiple rows per fetch

BLOB Samples

picin.c Loads graphic BLOBS into the emp_photo table directly from a file using
SQLBindParamToFile

picin2.c Loads graphic BLOBS into the emp_photo table using SQLPutData

showpic.c Extracts BLOB picture to file (using SQLBindColToFile), then displays the graphic.

showpic2.c Extracts BLOB picture to file using piecewise output, then displays the graphic.

Stored Procedure Samples

clicall.c Defines a CLI function which is used in the embedded SQL sample mrspcli3.sqc
inpcli.c Call embedded input stored procedure samples/c/inpsrv

inpcli2.c Call CLI input stored procedure inpsrv2

inpsrv2.c CLI input stored procedure (rewrite of embedded sample inpsrv.sqc)

mrspcli.c CLI program that calls mrspsrv.c

mrspcli2.c CLI program that calls mrspsrv2.sqc

mrspcli3.sqc An embedded SQL program that calls mrspsrv2.sqc using clicall.c

mrspsrv.c Stored procedure that returns a multi-row result set

mrspsrv2.sqc

An embedded SQL stored procedure that returns a multi-row result set

outcli.c Call embedded output stored procedure samples/c/inpsrv
outcli2.c Call CLI output stored procedure inpsrv2
outsrv2.c CLI output stored procedure (rewrite of embedded sample inpsrv.sqc)

Samples using ORDER tables created by create.c (Run in the following order)

create.c Creates all tables for the order scenario

custin.c Inserts customers into the customer table (array insert)
prodin.c Inserts products into the products table (array insert)
prodpart.c Inserts parts into the prod_parts table (array insert)

ordin.c Inserts orders into the ord_line, ord_cust tables (array insert)
ordrep.c Generates order report using multiple result sets

partrep.c Generates exploding parts report (recursive SQL Query)
order.c UDF library code (declares a 'price' UDF)

order.exp Used to build order libary

Version 2 Samples unchanged

v2sutil.c

samputil.c using old v2 functions

Chapter 1. About the DB2 Software Developer's Kit

17

Table 6 (Page 3 of 3). Sample CLI Programs in DB2 Universal Database

Sample Program

Name Program Description

v2sutil.h samputil.h using old v2 functions
v2fetch.c fetch.c using old v2 functions
v2xfetch.c xfetch.c using old v2 functions

Note: Samples marked with a ** are new for this release.
Other files in the samples/c1i directory include:

e README - Lists all example files.
¢ makefile - Makefile for all files

18 Building Applications for Windows and OS/2 Environments

Chapter 2.

Setup

Before you can use the DB2 SDK to develop applications, you need to set up your
programming environment for DB2. It is recommended that you ensure that your
existing environment is correctly set up by first building a non-DB2 application. Then, if
you encounter any problems, please see the documentation that comes with your
compiler or interpreter.

To set up your programming environment for DB2, the following must be installed and
working:
¢ The database manager on the server with a database instance for your

environment. Refer to Appendix A, “About Database Manager Instances” on
page 137 if you need information about database instances.

e The DB2 SDK on the client or server workstation on which you are going to
develop applications.

¢ The connection to the remote server, if you are developing on a client workstation
connected to a remote server.

¢ A compiler or interpreter for one of the supported programming languages on the
Windows or OS/2 platform you are using, listed in “Supported Software by
Platform” on page 2. Consult the documentation for the compiler or interpreter you
are using.

More detailed information on installation and setup can be found in the Quick
Beginnings book for your Windows or OS/2 platform.

When the above are installed and working, you can set up your environment by
following the steps in one of the following sections:

e “Setting the Windows NT and Windows 95 Environment” on page 19
e “Setting the Windows 3.1 Environment” on page 20
e “Setting the OS/2 Environment” on page 21

After you set up your environment, you may want to set up the sample database, which
is used by the examples in this book. To install the database, see “Installing,
Cataloging, and Binding the SAMPLE Database” on page 23.

Setting the Windows NT and Windows 95 Environment

When you install the DB2 SDK for Windows NT, the install program updates the
Windows NT configuration registry with the environment variables INCLUDE, LIB, PATH,
DB2PATH, and DB2INSTANCE. The default instance is DB2.

When you install the DB2 SDK for Windows 95, the install program updates the
autoexec.bat file.

You can override these environment variables to set the values for the machine or the
currently logged-on user. To override these values, use any of the following:

© Copyright IBM Corp. 1993, 1997 19

The Windows 95 or Windows 3.1 command window
The Windows NT control panel
The Windows 95 autoexec.bat file

Note: Exercise caution when changing these environment variables. Do not change

the DB2PATH environment variable.

These environment variables can be updated for running most Windows NT and
Windows 95 programs. In addition, you must take the following specific steps for
running DB2 applications:

When building C or C++ programs, you must ensure that the INCLUDE environment
variable contains %DB2PATH\INCLUDE as the first directory.

When building Micro Focus COBOL programs, set the COBCPY environment variable
to point to %DB2PATH%\INCLUDE\cobol_mf.

When building IBM COBOL programs, set the SYSLIB environment variable to point
to %DB2PATH%\INCLUDE\cobol_a.

Ensure the LIB environment variable points to %DB2PATH%\1ib by using:
set LIB=%DB2PATH%\1ib;%LIB%

Ensure that the DB2COMM environment variable is set at the server of a remote
database.

Ensure that the security service has started at the server for SERVER
authentication, and at the client, depending on the level of authentication for
CLIENT authentication. To start the security service, use the NET START
DB2NTSECSERVER command.

Notes:

1.

All DB2 environment variables can be defined in the user's environment or set up
as registry variables. Please see the Command Reference for information on
registry variables and the db2set command.

DB2INSTANCE should only be defined at the user environment level. It is not
required if you make use of the DB2INSTDEF registry variable which defines the
default instance name to use if DB2INSTANCE is not set.

Setting the Windows 3.1 Environment

20

You define the Windows 3.1 environment by editing the ASCII file db2.ini in the
c:\windows directory. Before you make any changes, make a backup copy of the file.
Refer to the Quick Beginnings book for information about setting the environment using
db2.ini.

Note: If installing the Windows 3.1 DB2 CAE under WIN-OS/2, the db2.1ini file will

normally be stored in the d:\os2\mdos\winos2 directory. However, if Windows
has been separately installed, the db2.ini file will normally be found in
c:\windows.

Building Applications for Windows and OS/2 Environments

The DB2 installation program appends the following to the variables in the
AUTOEXEC.BAT file:

\sq11ib\win\bin to the PATH variable.
\sq11ib\win\bin to the LIB variable.
\sq1Tib\win\include to the INCLUDE variable.

You might need to modify the file to suit your environment.

Setting the OS/2 Environment

Most OS/2 compilers use environment variables to control various options. You can set
these variables in your CONFIG.SYS file, or you can create command files to set them.

CONFIG.SYS The advantage of setting the environment variables in your
CONFIG.SYS file is that once you get them right, they are set every time
you start (boot) your computer.

Command File The advantage of setting the environment variables in a command file
is that you can have a shorter path and the flexibility to use several
compilers. The disadvantage is that you must remember to run the
command file at the start of each programming session.

If you set environment variables by running a command file, you must build your
applications in the same window in which you set the environment variables. If you
build your applications in another window, you will not be using the same options you
set in your first window.

When you install the DB2 SDK, the statements shown below are put into the
CONFIG.SYS file. The command files shown in the rest of this book assume the
statements are present in the CONFIG.SYS file. If you edit the CONFIG.SYS file after
installing the DB2 SDK, make sure these statements are not removed.

The CONFIG.SYS file must have the following statement:
set LIB=%DB2PATH%\1ib;%LIB%

In addition, if you are using one of the programming languages shown below, the
CONFIG.SYS file must have the appropriate statement:

C++ set INCLUDE=%DB2PATH%\include;%INCLUDE%
FORTAN set FINCLUDE=%DB2PATH%\include;%FINCLUDE%
IBM COBOL set SYSLIB=%SYSLIB%;%DB2PATH%\include\cobol a

Micro Focus COBOL set COBCPY=%DB2PATH%\include\cobol_mf;%COBCPY%

Note: On 0OS/2, you should have no DB2 environment variables defined in
CONFIG.SYS apart from DB2PATH and DB2INSTPROF. All DB2 variables
should be defined in the DB2 Instance Profile Registry either at the global level,
the instance level, or the instance node level (Parallel Edition). Use the
db2set.exe command to set, modify, and list the variables.

Chapter 2. Setup 21

DB2INSTANCE is not required if you make use of the DB2INSTDEF registry
variable which defines the default instance name to use if DB2INSTANCE is not
set.

Enabling Communications on the Server

Before you begin installing, cataloging and binding the SAMPLE database, you should
ensure the server is operational and configured to support the protocol being cataloged.
Do the following on the server:

1. Ensure that the db2comm environment variable is set. For example, enter:
db2set DB2COMM=tcpip
2. Ensure that the protocol for TCP/IP support is configured.

Refer to the Quick Beginnings book for instructions for adding the TCP/IP settings
to the Services file.

3. Start the database instance by entering:
db2start

Windows NT Considerations
In a DB2 for Windows NT production system, you have to start the database instance

as a service. The steps are as follows:

e If using communications protocols, ensure that the db2comm environment variable is
set in the System Environment Variables section of the Windows NT control panel.

e Start the security service. This can be done automatically (see the note below), or
you can select to have this service start manually using the following command:

NET START DB2NTSECSERVER
e Start the instance by entering:
db2start

Note: Starting the Security Service automatically. Normally the only time you would
want to set the security service to start automatically is if the workstation is
acting as a DB2 client connecting to a server that is configured for Client
Authentication. To have the security service start automatically, do the following:

1. Click on the "Start" button.

Click on "Settings".

Click on "Control Panel".

In the Control Panel, click on "Services".

In the Services window, highlight "DB2 Security Server".

2 T o

If it does not have the settings "Started" and "Automatic” listed, click on
"Startup".

7. Click on "Automatic".

22 Building Applications for Windows and OS/2 Environments

8. Click on "OK".

9. Reboot your machine to have the settings take effect.

Installing, Cataloging, and Binding the SAMPLE Database

To use the examples in this book, you need to install the SAMPLE database on a
server workstation. Refer to the SQL Reference for a listing of the contents of the
SAMPLE database.

If you will be accessing the SAMPLE database on the server from a remote client, you
need to catalog the SAMPLE database on the client workstation.

Additionally, if you will be accessing the SAMPLE database on the server from a
remote client running a different version of DB2 or running on a different operating
system, you need to bind the database utilities, including the DB2 CLI, to the SAMPLE
database.

Installing
To create the SAMPLE database, you must have Administrator authority. If you need
more information about Administrator authority, refer to the Quick Beginnings book.
To install the database, do the following on the server:

1. Ensure you have the location of db2samp1 (the program that installs the SAMPLE
database) in your path. The db2install program will put db2samp1 in your path, so
it will be there unless you change it.

¢ On AIX, HP_UX, Solaris, SINIX, and SCO OpenServer, db2samp] is located in:
$HOME/sq11ib/misc
where $HOME is the home directory of the DB2 instance owner.

e On 0S/2, Windows 95 and Windows NT, db2samp1 is located in:
9%DB2PATH% \bin
where %DB2PATH% is where DB2 is installed.

2. Set the DB2INSTANCE environment variable to the name of the instance where
you want to install the SAMPLE database.

e On AIX, HP_UX, Solaris, SINIX, and SCO OpenServer, you can do this for the
Korn shell by entering:

DB2INSTANCE=instance_name
export DB2INSTANCE

where instance_name is the name of the database instance.

e On 0S/2, Windows 95 and Windows NT, the default instance name is DB2, so
only if you want to use an instance other than the default, set the database
instance where you want to install the SAMPLE database by entering:

set DB2instance=instance_name

Chapter 2. Setup 23

Cataloging

where instance_name is the name of the database instance.

3. Create the SAMPLE database by entering db2samp1 followed by where you want to
create the sample database. On Windows and OS/2-based systems, this is a
drive, and would be entered as:

db2samp1 drive
On UNIX-based systems, this is a path, and would be entered as:
db2samp1 path

If you do not specify the path, the installation program installs the sample tables in
the default path specified by the DFTDBPATH parameter in the database manager
configuration file. If you need information about the configuration file, refer to the
Administration Guide.

The authentication type for the database is the same as the instance in which it is
created. If you need more information about specifying authentication when
creating a database instance, refer to the Quick Beginnings book.

Installing on DRDA-Compliant Application Servers

If you want to run the sample programs against a DRDA-compliant application server,
such as DB2 for MVS/ESA, you need to create a database that contains the sample
STAFF and ORG tables described in the SQL Reference. You may want to refer to the
sample program, expsamp, which uses the STAFF and ORG tables to demonstrate how
APIs are used to import and export tables and table data to and from a DRDA
database.
To create the database:

1. Create the SAMPLE database in a DB2 common server instance using db2samp]l.
Connect to the SAMPLE database.
Export the ORG and STAFF tables to a file.
Connect to the DRDA-compliant database.
Create the ORG and STAFF tables.

Import the ORG and STAFF tables.

o o M w DN

If you need information about exporting and importing files, refer to the Command
Reference and the Administration Guide. If you need information about connecting to a
database and creating tables, refer to the SQL Reference.

If you will be accessing the SAMPLE database on the server from a remote client, you
need to catalog the SAMPLE database on the client workstation.

You do not need to catalog the SAMPLE database on the server workstation because it
was cataloged when you created it.

24 Building Applications for Windows and OS/2 Environments

Binding

Cataloging updates the database directory on the client workstation with the name of
the database the client application wants to access. When processing client requests,
the database manager uses the cataloged name to find and connect to the database.

The Quick Beginnings book provides general information about cataloging databases.
This section provides specific instructions to catalog the SAMPLE database.

For OS/2, Windows 95 and Windows NT, catalog the sample database from the remote
client workstation by entering:

db2 catalog database sample as sample at node nodename
where nodename is the name of the server node.

For Windows 3.1, double-click on the Command Line Processor icon in the IBM
DATABASE 2 Windows group. Then enter the following at the prompt:

catalog database sample as sample at node nodename
where nodename is the name of the server node.

You can exit the command line processor by entering either terminate or quit at the
prompt.

The Quick Beginnings book explains how to catalog nodes as part of setting up
communication protocols. You must also catalog the remote node before you can
connect to the database.

If you will be accessing the SAMPLE database on the server from a remote client
running a different version of DB2 or running on a different operating system, you need
to bind the database utilities, including the DB2 CLlI, to the SAMPLE database.

Binding creates the package that the database manager needs to access the database
when an application is executed. Binding can be done explicitly by specifying the BIND
command against the bind file created during precompilation.

The Quick Beginnings book provides general information about binding the database
utilities. This section provides specific instructions to bind the database utilities to the
SAMPLE database on each of the supported OS/2 and Windows platforms.

You bind the database utilites differently depending on the platform of the client
workstation you are using.
On a Client Workstation running Windows 95 or Windows NT Version 4.0:

1. From the Start Menu, select Programs.

2. From the Programs Menu, select DB2 for Windows 95 or DB2 for Windows NT,
depending on your operating system.

Chapter 2. Setup 25

3. From the DB2 for Windows 95 menu, or the DB2 for Windows NT menu, select the
DB2 command window.

The command window displays.

4. Connect to the SAMPLE database. At the prompt, enter:
db2 connect to sample
Press Enter.

5. Bind the utilities to the database by entering:

db2 bind %DB2PATH%\bnd\@db2ubind.1st blocking all
sqlerror continue messages bind.msg

where %DB2PATH% is the path where DB2 is installed.
Press Enter.

6. Exit the command window, and verify that the bind was successful by checking the
bind message file bind.msg.

Note: On a Client Workstation running Windows NT Version 3.5.1 or earlier, the steps
you follow will be different due to the differences in interface with Version 4.0.
See your Windows NT documentation for details.
On a Client Workstation running Windows 3.1:
1. Start Windows.

2. Double-click on the Command Line Processor icon in the IBM DATABASE 2
Windows group.

3. Connect to the SAMPLE database by entering:
connect to sample

The utilities will be automatically bound to the database by DB2 with this
command, so the user does not have to explicitly bind them.

4. Exit the Command Line Processor, and verify that the bind was successful by
checking the bind message file bind.msg.
On a Client Workstation running OS/2:
1. Connect to the SAMPLE database by entering:
db2 connect to sample

The utilities will be automatically bound to the database by DB2 with this
command, so the user does not have to explicitly bind them.

2. Exit the Command Line Processor, and verify that the bind was successful by
checking the bind message file bind.msg.

For all platforms:

If you installed the SAMPLE database on a DRDA-compliant application server, specify
one of the following .1st files instead of db2ubind.1st:

26 Building Applications for Windows and OS/2 Environments

ddcsmvs.Ist for DB2 for MVS/ESA
ddcsvse.lst for DB2 for VSE and VM
ddcs400.Ist for DB2 for OS/400

Where to Go Next

Once your environment is set up, you are ready to build your DB2 applications. The
following chapters discuss the sample programs, and show you how to compile, link,
and run them.

If you are developing embedded SQL applications, see Chapter 3, “Introduction to
Embedded SQL Applications” on page 29, and then the embedded SQL chapter for the
platform you are using. If you are developing CLI applications, see Chapter 7, “Building
DB2 Call Level Interface (CLI) Applications” on page 127. If you are developing Java
applications, see Chapter 8, “Building Java Applications and Applets” on page 133.

For further information, refer to the following books. To develop applications using
embedded SQL or Java, see the Embedded SQL Programming Guide. For applications
using DB2 CLI or ODBC see the CL/ Guide and Reference. For DB2 API applications,
see the API Reference.

Chapter 2. Setup 27

28 Building Applications for Windows and OS/2 Environments

Chapter 3.

Introduction to Embedded SQL Applications

Each DB2 SDK includes sample programs that embed SQL statements. Chapters 4
through 6 explain how to build the sample programs for the supported compilers by
running files containing compile and link commands supplied with the DB2 SDK for that
platform. These files are called batch files on Windows platforms and command files on
OS/2. You can also use the makefiles that are supplied. The makefiles and the batch
and command files show you the compiler options you can use. These options are
defined for each platform's supported compilers in the appropriate chapter. You might
need to modify the options for your environment.

The batch or command file builds a sample program by doing the following:

e Connects to a database.

¢ Precompiles your source file.

¢ Binds your bind file to the database.
e Disconnects from the database.

e Compiles and links your source file.

For user-defined functions (UDFs), you do not need to connect to a database or
precompile and bind the program. See “Module Definition Files for Stored Procedures
and UDFs” on page 31 for more information about UDFs.

Note: The embedded SQL chapters for the supported platforms show you just some
of the batch and command files. Look in the directories that contain the sample
programs for all of these files, and for a README file that may contain
additional information about them.

Sections in these chapters also list the steps you can follow to build and run the sample
programs shown in Table 7 on page 29 using the supported programming languages.
The steps you follow might vary, depending on your environment.

Table 7 (Page 1 of 2). Sample Programs Referred to in Script Files

Sample Program Description

Program

Name

updat Demonstrates the use of static SQL to update a database.

outsrv Demonstrates stored procedures using the SQLDA structure. This is the server program of a
client/server example. (The client program is called outcli.) The program fills the SQLDA with
the median SALARY of the employees in the STAFF table of the SAMPLE database. The server
program does all the database processing (finding the median), and then returns the filled
SQLDA and the SQLCA status to the client program. The outsrv program runs on the
database server, and must be built there.

outcli Demonstrates stored procedures using the SQLDA structure. This is the client program of a
client/server example. (The server program is called outsrv.) The program allocates and
initializes a one-variable SQLDA, and passes it to the server program for further processing.
The filled SQLDA is returned to the client program along with the SQLCA status. This program
shows the invocation of stored procedures using an embedded SQL CALL statement.

© Copyright IBM Corp. 1993, 1997 29

Table 7 (Page 2 of 2). Sample Programs Referred to in Script Files

Sample Program Description

Program

Name

udf Creates a library of User-Defined Functions (UDFs) made specifically for the SAMPLE
database tables, but can be used with tables with compatible column types. (The sample
program calludf uses the functions created by udf.) The udf program runs on the database
server, and must be built there.

calludf Demonstrates the library of User-Defined Functions (UDFs) created by udf for the SAMPLE
database tables. The calludf program uses the functions created by udf.

The source files for these sample programs are in the appropriate programming
language subdirectory of %DB2PATH%\samples:

C %DB2PATH%\samples\c
C++ %DB2PATH%\sampTles\cpp
IBM COBOL %DB2PATH%\samples\cobol

Micro Focus COBOL (32-bit) %DB2PATH%\samples\cobol_mf

Micro Focus COBOL (16-bit) %DB2PATH%\samples\cobol 16 (OS/2);
%DB2PATH%\samples\cobol (Windows 3.1)

FORTRAN %DB2PATH%\samples\fortran

Note: Of the samples given in Table 7 on page 29, the C++ directory,
%DB2PATH%\samples\cpp, contains only a C++ version of the updat program. The
stored procedure and UDF batch and command files documented for the C++
compilers use the C versions of the outsrv, outcli, udf and calludf programs
found in %DB2PATH%\samples\c. In addition, DB2PATH%\samples\cpp contains
object-oriented sample programs specific to C++. These programs use several
class source files and CLP script files to construct and manipulate a credit
database system. See the README file in the %DB2PATH%\samples\cpp directory
for more information.

After you build the sample programs, you can use them as templates to create your
own applications. This can be done by modifying the sample programs with your own
SQL statements. You can build the modified programs using either the makefile or the
batch or command files to see if they work correctly. You can also build your own
embedded SQL programs using these files.

“Sample Programs” on page 4 lists all of the sample programs. The Embedded SQL
Programming Guide explains how the samples containing embedded SQL work; the
CLI Guide and Reference explains how the samples containing CLI work; and the AP/
Reference explains how the samples containing DB2 APIs work.

Note: It is recommended that, before you alter or build the sample programs, you
copy them from %DB2PATH%\samples to your own working directory.

30 Building Applications for Windows and OS/2 Environments

Module Definition Files for Stored Procedures and UDFs

This section contains information for developing applications on the server, and
therefore does not apply to the client-only platform, Windows 3.1.

Stored procedures are programs that access the database and return information to
your client application. User-Defined Functions (UDFs) are your own scalar or table

functions. Stored procedures and UDFs are stored in a dynamic link library (DLL) on
the server.

When you compile stored procedures and UDFs, you create the DLL that contains your
stored procedures and UDFs.

To create a stored procedure or UDF, you may need a module definition (".def") file. A
module definition file can be used to define various attributes of the DLL, including
which function names are exported by the DLL. DB2 requires that the names of all
stored procedures and UDFs be exported by the DLL in which the stored procedures
and UDFs reside. For some compiler and operating system combinations, a module
definition file may not be required since all function names in a DLL are exported by
default.

You can create a module definition using a text editor. Here are a couple of example
module definition files for the sample program outsrv, one each for a C++ compiler on
0S/2 and Windows NT. The module definition files for the sample stored procedures
and UDFs are contained in the appropriate language sub-directory for each compiler,
along with the sample programs.

This version of the file outsrv.def is for the VisualAge for C++ compiler on OS/2:

LIBRARY OUTSRV INITINSTANCE TERMINSTANCE
DESCRIPTION 'Library for DB2 Stored Procedure OUTSRV'
PROTMODE
DATA

MULTIPLE

NONSHARED
CODE

LOADONCALL

SHARED
EXPORTS

outsrv

This version of outsrv.def is for the Microsoft Visual C++ compiler on Windows NT:

LIBRARY OUTSRV
EXPORTS outsrv

Chapter 3. Introduction to Embedded SQL Applications 31

32

Both versions of outsrv.def list the stored procedure outsrv. The linker uses
outsrv.def to define various attributes of the DLL outsrv.d11, including which function
names get exported by the DLL.

On 0OS/2, a stored procedure or UDF must use system linkage conventions. On
Windows NT and Windows 95, a stored procedure or UDF must use the _stdcall
(WINAPI) linkage conventions. Since these conventions are supported by all compilers
on their respective operating systems, a compiled stored procedure or UDF can be
invoked by any supported compiler on that operating system.

The IBM VisualAge C++ compiler on Windows NT exports function names that are type
decorated by affixing the ampersand symbol, @, followed by an integer representing the
number of bytes of arguments. This is shown in the following sample module definition
file for UDFs, udfva.def, where, for example, increase and raise have ten (DWORD)
arguments, and wordcount and findvw have eight:

LIBRARY UDF
DESCRIPTION 'Library for DB2 User Defined Functions'
EXPORTS
_increase@40
_raise@40
_wordcount@32
_findvw@32
_ctr@28
_i1ob@40
_leni@32
_promote@32

Sections in the appropriate embedded SQL chapter for your platform show you how to
build stored procedures and UDFs by using, if required, a module definition (.def) file
for the following supported programming languages:

On Windows NT and Windows 95:

Stored procedures C/C++, COBOL
UDFs C/C++

On OS/2:

Stored procedures C/C++, COBOL, and FORTRAN
UDFs C/C++

If you need more information about module definition and export files, and DLLs, refer
to your compiler documentation.

Building Applications for Windows and OS/2 Environments

Error Checking
The sample programs may use the following error checking utilities:
util.c For C sample programs
checkerr.cbl For COBOL sample programs.
util.f For FORTRAN sample programs
The batch or command files you use to build the sample programs may require the
appropriate object file:
util.obj For C and FORTRAN sample programs
checkerr.obj For COBOL sample programs.
The batch and command files that require an error checking utility object file create the
one they use. If you want to compile an object file for the supported language on your
platform outside of these batch and command files, use the compile step in the

appropriate file for that language in the embedded SQL chapter for your operating
system.

As an example, here are the compile steps you would follow to create the C error
checking utility object files for some compilers on the Windows and OS/2 platforms.
You would enter one of the following, using the appropriate compiler:

On Windows NT and Windows 95 using Microsoft Visual C = ++

cl -Z7 -0d -c -W2 -D_X86_=1 -DWIN32 -I%DB2PATH%\include util.c
On Windows 3.1 using Microsoft Visual C ++

cl /c /Gy /ALw /W3 /Mg /DDB2WIN util.c
On OS/2 using IBM VisualAge C ++

icc -C+ -0- -Ti+ util.c

Chapter 3. Introduction to Embedded SQL Applications 33

34 Building Applications for Windows and OS/2 Environments

Chapter 4. Building Windows NT and Windows 95 Embedded SQL
Applications

This chapter provides detailed information for building embedded SQL applications on
Windows NT and Windows 95. In the batch files, commands that begin with db2 are
Command Line Processor (CLP) commands. Refer to the Command Reference if you
need more information about DB2 commands.

Note: All applications on Windows NT and Windows 95, both embedded SQL and
non-embedded SQL, must be built in a DB2 command window, and not from an
operating system command prompt.

WCHARTYPE CONVERT Precompile Option

The WCHARTYPE precompile option handles graphic data in either multi-byte format or
wide-character format using the wchar_t data type. More information on this option can
be found in the Embedded SQL Programming Guide.

For DB2 for Windows NT and DB2 for Windows 95, the WCHARTYPE CONVERT
option is supported for applications compiled with the Microsoft Visual C++ compiler,
and not supported for applications compiled with the IBM VisualAge C++ compiler.

If you are using the IBM VisualAge C++ compiler, use the default NOCONVERT option
for WCHARTYPE. With the NOCONVERT option, no implicit character conversion
occurs between application and the database manager. Data in a graphic host variable
is sent to and received from the database manager as unaltered Double Byte Character
Set (DBCS) characters.

If you need to convert your graphic data to multi-byte format from wide-character
format, use the wcstombs () function. For example:

wchar_t widechar[200] ;
wchar_t mb[200] ;
wcstombs ((char *)mb,widechar,200);

EXEC SQL INSERTINTO TABLENAME VALUES(:mb);

Similarly, you can use the mbstowcs () function to convert from multi-byte to
wide-character format.

For the Microsoft Visual C++ compiler, do not use the CONVERT option if your
application inserts data into a DB2 database in a code page that is different from the
database code page. DB2 normally performs a code page conversion in this situation;
however, the Microsoft C runtime environment does not handle substitution characters
for certain double byte characters. This could result in run time conversion errors.

Do not issue a setlocale() call from your application if your application is statically
bound to the C runtime libraries, as this may lead to C runtime conversion errors. Using
setlocale() is not a problem if your application is dynamically bound to the C runtime
library. This is also the case for stored procedures.

© Copyright IBM Corp. 1993, 1997 35

Microsoft Visual C ++
Notes:

1. For information on Object Linking and Embedding (OLE) automation using Visual
C++ see “Object Linking and Embedding (OLE) Automation” on page 62.

2. For Microsoft Visual C++ Version 2.1, compile errors may occur during compilation
of a file generated by the DB2 precompiler, and display an incorrect file name. For
example, if you precompile a source file, func.sqc, to produce a C file, func.c, in
some instances the error message that the C compiler gives for an error in the file,
func.c, is incorrect. The message may state that the error is in the file func.c,
instead of stating that it is in the file func.sqc.

This problem is only apparent if the error in the source code is after any #include
statements at the top of the source file, and before any code that the precompiler
generates for embedded SQL statements.

The batch file b1dmsemb.bat, in $DB2PATH%\samples\c, contains the commands to build a
sample Microsoft Visual C program.

You can also use the batch file to build a C++ program after you modify it. The
comments in the batch file describe the modifications you need to make.

The first parameter, %1, specifies the name of your source file. The second parameter,
%2, specifies the name of the database to which you want to connect. The third
parameter, %3, specifies the user ID for the database, and %4 specifies the password.
Only the first parameter, the source file name, is required. Database name, user ID,
and password are optional. If no database name is supplied, the program uses the
default sample database.

@echo off

rem bldmsemb.bat file

rem Builds a sample C or C++ program containing embedded SQL

rem using the Microsoft Visual C++ compiler.

rem Usage: bldmsemb <prog name> [<db name> [< userid> <password>]]

rem Connect to a database.
if "%1" == "" goto error
if "%2" == "" goto casel
if "%3" == "" goto case2
if "%4" == "" goto error
goto case3
:casel

db2 connect to sample

goto continue
:case2

db2 connect to %2

goto continue
:case3

db2 connect to %2 user %3 using %4

36 Building Applications for Windows and OS/2 Environments

:Co

rem
rem
db2

rem
db2

rem
db2

rem
rem

cl

rem
1in

got

cer
ech

rex
@ec

goto continue
ntinue

Precompile the program.
To build a C++ program, change the source file extension to .sgx.
prep %l.sqc bindfile

Bind the program to the database.
bind %1.bnd

Disconnect from the database.
connect reset

Compile the program. To build a C++ program, change the
source file extension to '.cxx'.
-Z7 -0d -c -W2 -D_X86_=1 -DWIN32 -I%DB2PATH%\include %1.c util.c

Link the program.
k -debug:full -debugtype:cv -out:%1.exe %1l.obj util.obj db2api.lib

0 exit

ror
0 Usage: bldmsemb <prog name> [<db_name> [< userid> <password>]]
it

ho on

Compile and Link Options for bldmsemb

T

C

he batch file contains the following compile options:

1 The Microsoft Visual C++ compiler.

-77 C7 style CodeView information generated.
-0d Disable optimizations. It is easier to use a debugger with optimization off.

-C Perform compile only; no link. This book assumes that compile and link are

separate steps.

-W2 Set warning level.

T
1

)
%

d

he batch file contains the following link options:
ink Use the 32-bit linker to link edit.

-debug:full Include debugging information.
-debugtype:cv Indicate the debugger type.

-out:%1.exe Specify a filename

1.0bj Include the object file
b2api.lib Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

To

build the sample program updat.sqx, do the following:

Chapter 4. Building Windows NT and Windows 95 Embedded SQL Applications

37

1. Start the database manager on the server, if it is not already running, by entering:
db2start
2. Start the Security Service for the Windows NT server by entering:
net start DBZNTSECSERVER
3. Build the sample program, connecting to the SAMPLE database, by entering:
bTdmsemb updat
The result is an executable file updat.exe. You can run the executable file against the
SAMPLE database to see how it works by doing the following:
1. Start the database manager on the server, if it is not already running, by entering:
db2start
2. Start the Security Service for the Windows NT server by entering:
net start DB2NTSECSERVER

3. Run the program. If you built the updat sample program, from a command line,
enter:

updat

Note: To build C applications that do not contain embedded SQL, you can use the
batch file b1dmsapi.bat. It contains the same compile and link options as
bldmsemb.bat, but does not connect, prep, bind, or disconnect from the
SAMPLE database. It is used to compile and link the DB2 API sample programs
written in C.

Building Stored Procedures with Microsoft Visual C ++

38

The batch file b1dmsstp.bat, in $DB2PATH%\samples\c, contains the commands to build a
C stored procedure for a DB2 for Windows NT server. The batch file builds the stored
procedure into a DLL on the server.

You can also use the batch file to build a C++ stored procedure after you have modified
the file. The comments in the batch file describe the modifications you need to make.

The first parameter, %1, specifies the name of your source file. The second parameter,
%2, specifies the name of the database to which you want to connect. The third
parameter, %3, specifies the user ID for the database, and %4 specifies the password.
Only the first parameter, the source file name, is required. Database name, user ID,
and password are optional. If no database name is supplied, the program uses the
default sample database.

The batch file uses the source file name, %1, for the DLL name.

@echo off

rem bldmsstp.bat file

rem Builds a C or C++ stored procedure using the Microsoft Visual C++ compiler.
rem Usage: bldmsstp <prog name> [<db _name> [< userid> <password>]]

Building Applications for Windows and OS/2 Environments

rem Connect to a database.

if "%1" == "" goto error
if "%2" == "" goto casel
if "%3" == "" goto case2
if "%4" == "" goto error
goto case3

:casel

db2 connect to sample
goto continue
:case2
db2 connect to %2
goto continue
:case3
db2 connect to %2 user %3 using %4
goto continue
:continue

rem Precompile the program. To build a C++ stored procedure, change the
rem source file extension to .sgx.
db2 prep %1.sqc bindfile

rem Bind the program to the database.
db2 bind %1.bnd

rem Disconnect from the database.
db2 connect reset

rem Compile the program. To build a C++ stored procedure, change
rem the source file extension to .cxx.
cl -Z7 -0d -c -W2 -D_X86_=1 -DWIN32 %1.c

rem Link the program.
link -debug:full -debugtype:cv -out:%1.d11 %1.obj db2api.lib -def:%1.def

rem Copy the stored procedure DLL to the 'function' directory
copy %1.d11 %DB2PATH%\function

goto exit

zerror
echo Usage: bldmsstp <prog name> [<db_name> [< userid> <password>]]

rexit
@echo on

Chapter 4. Building Windows NT and Windows 95 Embedded SQL Applications

39

40

Compile and Link Options for bldmsstp

cl
-77
-0d

-C

-W2

The batch file contains the following compile options:

The Microsoft Visual C++ compiler.
C7 style CodeView information generated.
Disable optimization.

Perform compile only; no link. This book assumes that compile and link are
separate steps.

Output warning, error, and severe and unrecoverable error messages.

Tink
-debug:full
-debugtype:cv
%1.d1

%1.0bj
db2api.Tlib
%1.def

The batch file contains the following link options:

Use the linker to link edit.
Include debugging information.
Indicates the debugger type.
Build a .DLL file.

Include the object file.

Link with the DB2 library.

Module definition file.

Refer to your compiler documentation for additional compiler options.

To build the outsrv.sqgx stored procedure, do the following:

1. Start the database manager on the server, if it is not already running, by entering:

db2start

2. Start the Security Service for the Windows NT server by entering:
net start DB2NTSECSERVER

3. Build the stored procedure, connecting to the SAMPLE database, by entering:

bldmsstp outsrv

The batch file uses the module definition file outsrv.def, contained in the same
directory as the sample programs, to build the stored procedure. The batch file
copies the stored procedure DLL, outsrv.d11, to the server in the path

%DB2PATH%\ function to indicate that the stored procedure is fenced. If you want the
stored procedure to be unfenced, you must move it to the

%DB2PATH%\ function\unfenced directory. These paths are in the home directory of
the DB2 instance.

Note: An unfenced stored procedure or UDF runs in the same address space as
the database manager and results in increased performance when
compared to a fenced stored procedure or UDF, which runs in an address
space isolated from the database manager. With unfenced stored
procedures or UDFs there is a danger that user code could accidentally or
maliciously damage the database control structures. Therefore, you should
only run unfenced stored procedures or UDFs when you need to maximize
the performance benefits. Ensure these programs are thoroughly tested

Building Applications for Windows and OS/2 Environments

before running them as unfenced. Refer to the Embedded SQL
Programming Guide for more information about fenced and unfenced stored
procedures.

Once you build the stored procedure, outsrv, you can build the client application that
calls the stored procedure. You can build outcli using the b1dmsemb file. See “Microsoft
Visual C++” on page 36 for details.
To run the stored procedure, do the following :
1. Start the database manager on the server, if it is not already running, by entering:
db2start
2. Start the Security Service for the Windows NT server by entering:
net start DB2NTSECSERVER
3. At the command line, enter:

outcli remote_database userid password

where

remote_database is the name of the database to which you want to connect.
The name could be SAMPLE, or its remote alias, or some
other name.

userid is a valid user ID.

password is a valid password.

The client application passes a variable to the server program, outsrv, which gives it a
value and then returns the variable to the client application.

Building User-Defined Functions (UDFs) with Microsoft Visual C ++
The batch file b1dmsudf, in %DB2PATH%\samples\c, contains the commands to build a C
UDF. UDFs are compiled like stored procedures, but you do not need to connect to a
database to precompile and bind the program.

Note: A UDF does not contain embedded SQL statements. Instead, it contains C or
C++ statements. See the sample UDF program calludf.

You can use the batch file to build a C++ UDF after you modify it. The comments in the
batch file describe the modification you need to make.

The one parameter it takes, %1, specifies the name of your source file. The batch file
uses the source file name, %1, for the DLL name.

@echo off

rem bldmsudf.bat file

rem Build sample C or C++ user-defined function (UDF).
rem Usage: bldmsudf <udf_prog_name>

rem Compile the program. To build a C++ UDF, change the source

rem file extension to '.cxx'.

Chapter 4. Building Windows NT and Windows 95 Embedded SQL Applications 41

cl -Z7 -0d -c -W2 -D_X86 =1 -DWIN32 %l.c
rem Link the program.
link -debug:full -debugtype:cv -d11 -out:%1.d11 %1.obj db2api.lib db2apie.lib -def:%1.def

rem Copy the UDF DLL to the 'function' directory
copy %1.d11 %DB2PATH%\function
@echo on

Compile and Link Options for bldmsudf

The batch file b1dmsudf contains the following compile options:

cl The Microsoft Visual C++ compiler.

-77 C7 style CodeView information generated.

-0d Disable optimization.

-c Perform compile only; no link. This book assumes that compile and link are

separate steps.

-W2 Output warning, error, and severe and unrecoverable error messages.

The batch file contains the following link options:
Tink Use the linker to link edit.
-debug: full Include debugging information.

-debugtype:cv Indicates the debugger type.

-d11 Create a DLL.

%1.d11 Build a .DLL file.

%1.0bj Include the object file.
db2api.lib Link with the DB2 library.

db2apie.lib Link with the DB2 API Engine library.

%1.def Module definition file.

Refer to your compiler documentation for additional compiler options.

To build the user-defined function udf, at the DB2 command line processor window,
enter:

bldmsudf udf

The batch file uses the module definition file udf.def, contained in the same directory
as the sample programs, to build the user-defined function. The batch file copies the
user-defined function DLL, udf.d11, to the server in the path %DB2PATH%\function to
indicate that the UDF is fenced. If you want the UDF to be unfenced, you must move it
to the %DB2PATH%\function\unfenced directory. These paths are in the home directory of
the DB2 instance.

Note: An unfenced UDF or stored procedure runs in the same address space as the
database manager and results in increased performance when compared to a
fenced UDF or stored procedure, which runs in an address space isolated from
the database manager. With unfenced UDFs or stored procedures there is a
danger that user code could accidentally or maliciously damage the database

42 Building Applications for Windows and OS/2 Environments

control structures. Therefore, you should only run unfenced UDFs or stored
procedures when you need to maximize the performance benefits. Ensure these
programs are thoroughly tested before running them as unfenced. Refer to the
Embedded SQL Programming Guide for more information about fenced and
unfenced UDFs.

Once you build udf, you can build the application calludf that calls the UDF. You can
build calTudf using the b1dmsemb batch file. Refer to “Microsoft Visual C++" on page 36
for details.
To run the UDF, do the following:
1. Start the database manager on the server, if it is not already running, by entering:
db2start
2. Start the Security Service for the Windows NT server by entering:
net start DB2NTSECSERVER
3. Run the sample calling application by entering:
calludf
The application calls functions from the udf library.

After you run the calling application, you can also invoke the UDF interactively
using the command line processor. Connect to the database, then enter:

SELECT name, DOLLAR(salary), SAMP_MUL(DOLLAR(salary), FACTOR(1.2)) FROM staff

You do not have to type the command line processor commands in uppercase.

IBM VisualAge C ++

The batch file bldvaemb.bat, in %DB2PATH%\samples\c, contains the commands to build
a sample IBM VisualAge C program. Ensure the LIB environment variable points to
%DB2PATH%\11b like this:

set LIB=%DB2PATH%\1ib;%LIB%

You can also use the batch file to build a C++ program after you modify it. The
comments in the batch file describe the modifications you need to make.

The first parameter, %1, specifies the name of your source file. The second parameter,
%2, specifies the name of the database to which you want to connect. The third
parameter, %3, specifies the user ID for the database, and %4 specifies the password.
Only the first parameter, the source file name, is required. Database name, user ID,
and password are optional. If no database name is supplied, the program uses the
default sample database.

@echo off

rem bldvaemb.bat file

rem Builds a sample C or C++ program containing embedded SQL using
rem the IBM VisualAge C++ compiler.

rem USAGE: bldvaemb <prog _name> [<db_name> [< userid> <password>]]

Chapter 4. Building Windows NT and Windows 95 Embedded SQL Applications 43

rem Connect to a database.

if "%1" == "" goto error
if "%2" == "" goto casel
if "%3" == "" goto case2
if "%4" == "" goto error
goto case3

:casel

db2 connect to sample
goto continue
:case?
db2 connect to %2
goto continue
:case3
db2 connect to %2 user %3 using %4
goto continue
:continue

rem Precompile the program.
rem To build a C++ program, change the source file extension to .sgx.
db2 prep %1.sqc bindfile

rem Bind the program to the database.
db2 bind %1.bnd

rem Disconnect from the database.
db2 connect reset

rem Compile the program. To build a C++ program, change the

rem source file extension to '.cxx'.
icc -c¢ -Ti -W1 %1.c util.c

rem Link the program.
ilink /MAP /DEBUG /ST:32000 /PM:VIO %1.obj util.obj db2api.lib

goto exit

zerror
echo Usage: bldvaemb <prog_name> [<db_name> [< userid> <password>]]

texit
@echo on

44 Building Applications for Windows and OS/2 Environments

Compile and Link Options for bldvaemb

-C

The batch file contains the following compile options:

icc The IBM VisualAge C++ compiler.

-Ti Generate debugger information.

-W1 Output warning, error, and severe and unrecoverable error messages.

Perform compile only; no link. This book assumes that compile and link are
separate steps.

The batch file contains the following link options:

ilink Use the resource linker to link edit.

/MAP Generate a map file.

/DEBUG Include debugging information.

/ST:32000 Specify a stack size of at least 32 000.

/PM:VIO Enable the program to run in a window or in a full screen.
%1.0bj Include the object file.

util.obj Include the error-checking utility object file.

db2api.lib Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

To build the sample program updat.sqx, do the following:

1.

The

Start the database manager on the server, if it is not already running, by entering:
db2start

Start the Security Service for the Windows NT server by entering:

net start DB2NTSECSERVER

Build the sample program, connecting to the SAMPLE database, by entering:
bldvaemb updat

result is an executable file updat.exe. You can run the executable file against the

SAMPLE database to see how it works by doing the following :

1.

Start the database manager on the server, if it is not already running, by entering:
db2start

Start the Security Service for the Windows NT server by entering:

net start DB2NTSECSERVER

Run the program. If you built the updat sample program, enter the following at the
command line:

updat

Note: To build VisualAge C++ applications that do not contain embedded SQL, you

can use the batch file b1dvaapi.bat. It contains the same compile and link
options as bldvaemb.bat, but does not connect, prep, bind, or disconnect from

Chapter 4. Building Windows NT and Windows 95 Embedded SQL Applications 45

the SAMPLE database. It is used to compile and link the DB2 API sample
programs written in C/C++.

Building Stored Procedures with IBM VisualAge C ++

The batch file b1dvastp.bat, in $DB2PATH%\samples\c, contains the commands to build a
C stored procedure for a DB2 for Windows NT server. The batch file compiles the
stored procedure with a DLL on the server.

You can also use the batch file to build a C++ stored program after you modify it. The
comments in the batch file describe the modifications you need to make.

The first parameter, %1, specifies the name of your source file. The second parameter,
%2, specifies the name of the database to which you want to connect. The third
parameter, %3, specifies the user ID for the database, and %4 specifies the password.
Only the first parameter, the source file name, is required. Database name, user ID,
and password are optional. If no database name is supplied, the program uses the
default sample database.

The batch file uses the source file name, %1, for the DLL name.

@echo off

rem bldvastp.bat file

rem Builds a sample C or C++ stored procedure using the IBM VisualAge C++ compiler.
rem Usage: bldvastp <prog name> [<db _name> [< userid> <password>]]

rem Connect to a database.
if "%1" == "" goto error
if "%2" == "" goto casel
if "%3" == "" goto case2
if "%4" == "" goto error
goto case3
:casel
db2 connect to sample
goto continue
:case?
db2 connect to %2
goto continue
:case3
db2 connect to %2 user %3 using %4
goto continue
:continue

rem Precompile the program. To build a C++ stored procedure, change the
rem source file extension to '.sqgx'.
db2 prep %1.sqc bindfile

rem Bind the program to the database.
db2 bind %1.bnd

rem Disconnect from the database.
db2 connect reset

46 Building Applications for Windows and OS/2 Environments

rem
rem
icc

rem
rem
rem
rem
rem
rem

Compile the program. To build a C++ stored procedure, change the
source file extension to .cxx.
-ct -Ti -Ge- -Gm+ -W1 %l.c

Import the Tibrary and create a definition file.

The function name in the .def file must be decorated to be consistent

with the function name in the .map file. Typically, this is done by
prepending "_" and appending "@" and the number of bytes of arguments,

for example, "@16". In outsrvva.def, the IBM VisualAge C++ compiler requires
"EXPORTS _outsrv@l6" and not "EXPORTS outsrv".

i1ib /GI %lva.def

rem

Link the program and produce a DLL.

ilink /ST:64000 /PM:VIO /MAP /DLL %1.obj %lva.exp db2api.lib

rem

Copy the Stored Procedure DLL to the 'function' directory.

copy %1.d11 %DB2PATH%\function

goto exit

zerror
echo Usage: bldvastp <prog_name> [<db_name> [< userid> <password>]]

cexit
@echo on

Compile and Link Options for bldvastp

The batch file contains the following compile options:

icc The IBM VisualAge C++ compiler.

-c+ Perform compile only; no link. This book assumes that compile and link are
separate steps.

-Ti Generate debugger information.

-Ge- Build a .DLL file. Use the version of the runtime library that is statically
linked.

-Gm+ Link with multitasking libraries.

-W1 Output warning, error, and severe and unrecoverable error messages.

Chapter 4. Building Windows NT and Windows 95 Embedded SQL Applications 47

Compile and Link Options for bldvastp
The batch file contains the following link options:
ilink Use the resource linker to link edit.
/ST:64000 Specify a stack size of least of 64 000.
/PM:VIO Enable the program to run in a window or full screen.
/MAP Generate a MAP file.
/DLL Build a .DLL file.
%1.0bj Include the object file.
%1lva.exp VisualAge export file.
db2api.lib Link with the DB2 library.
Refer to your compiler documentation for additional compiler options.

To build the outsrv.sqx stored procedure, do the following:

1. Start the database manager on the server, if it is not already running, by entering:
db2start

2. Start the Security Service for the Windows NT server by entering:
net start DB2NTSECSERVER

3. Build the stored procedure, connecting to the SAMPLE database, by entering:
bldvastp outsrv

The batch file uses the module definition file outsrvva.def, contained in the same
directory as the sample programs, to build the stored procedure. The batch file
copies the stored procedure DLL, outsrv.d11, to the server in the path
%DB2PATH%\function to indicate that the stored procedure is fenced. If you want the
stored procedure to be unfenced, you must move it to the

%DB2PATH%\ function\unfenced directory. These paths are in the home directory of
the DB2 instance.

Note: An unfenced stored procedure or UDF runs in the same address space as
the database manager and results in increased performance when
compared to a fenced stored procedure or UDF, which runs in an address
space isolated from the database manager. With unfenced stored
procedures or UDFs there is a danger that user code could accidentally or
maliciously damage the database control structures. Therefore, you should
only run unfenced stored procedures or UDFs when you need to maximize
the performance benefits. Ensure these programs are thoroughly tested
before running them as unfenced. Refer to the Embedded SQL
Programming Guide for more information about fenced and unfenced stored
procedures.

Once you build the stored procedure outsrv, you can build the client application that

calls the stored procedure. You can build outcli using the b1dvaemb file. Refer to “IBM
VisualAge C++" on page 43 for details.

48 Building Applications for Windows and OS/2 Environments

To run the stored procedure, do the following :

1. Start the database manager on the server, if it is not already running, by entering:
db2start

2. Start the Security Service for the Windows NT server by entering:
net start DBZNTSECSERVER

3. Enter the following at the command line:

outcli remote_database userid password

where

remote_database is the name of the database to which you want to connect.
The name could be SAMPLE, or its remote alias, or some
other name.

userid is a valid user ID.

password is a valid password.

The client application passes a variable to the server program, outsrv, which gives it a
value, and then returns the variable to the client application.

Building User-Defined Functions (UDFs) with IBM VisualAge C ++
The batch file b1dvaudf, in %DB2PATH%\samples\c, contains the commands to build a C
UDF. UDFs are compiled like stored procedures, but you do not need to connect to a
database to precompile and bind the program.

Note: A UDF does not contain embedded SQL statements. Instead, the application
that uses the UDF contains the statements, such as calludf.

You can also use the batch file to build a C++ UDF after you modify it. The comments
in the batch file describe the modification you need to make.

The first parameter, %1, specifies the name of your source file. The batch file uses the
source file name, %1, for the DLL name.

@echo off

rem bldvaudf.bat file

rem Builds a C or C++ user-defined function (UDF) using the
rem IBM VisualAge C++ compiler.

rem Usage: bldvaudf <udf_program_name>

rem Compile the program. To build a C++ UDF, change the source
rem file extension to '.cxx'.
icc -Ti -c+ -Ge- -Gm+ -W1 %1l.c

rem Import the Tibrary and create a definition file. Note that the function
rem name in the .def file must be decorated to be consistent with the

rem decorated function name in the .map file. Typically, this involves

rem prepending an underscore, "_", and appending an ampersand along

rem with an integer representing the number of bytes of arguments, for

Chapter 4. Building Windows NT and Windows 95 Embedded SQL Applications 49

rem example, "@16". In udfva.def, the IBM VisualAge C++ compiler
rem requires "EXPORTS _ctr@28" and not "EXPORTS ctr".
ilib /GI %lva.def

rem Link the program to a dynamic link library
ilink /ST:64000 /PM:VIO /MAP /DLL %1.obj %lva.exp db2api.lib db2apie.lib

rem Copy the UDF DLL to the 'function' directory.
copy %1.d11 %DB2PATH%\function
@echo on

Compile and Link Options for bldvaudf

The batch file b1dvaudf contains the following compile options:

icc The IBM VisualAge C++ compiler.

-Ti Generate debugger information.

-c+ Perform compile only; no link. This book assumes that compile and link are
separate steps.

-Ge- Build a .DLL file. Use the version of the runtime library that is statically
linked.

-Gm+ Link with multitasking libraries.

-W1 Output warning, error, and severe and unrecoverable error messages.

The batch file contains the following link options:

ilink Use the resource linker to link edit.

/ST:64000 Specify a stack size of at least 64000.

/PM:VIO Enable the program to run in a window or a full screen.
/MAP Generate a MAP file.

/DLL Build a .DLL file.

%1.0bj Include the object file.

%1lva.exp Include the VisualAge export file.

db2api.lib Link with the DB2 library.

db2apie.lib Link with the DB2 API Engine library.

Refer to your compiler documentation for additional compiler options.

To build the user-defined function udf, enter the following at a DB2 command line
processor c1p.exe window:

bldvaudf udf

The batch file uses the module definition file, udfva.def, contained in the same
directory as the sample programs, to build the user-defined function. The batch file
copies the user-defined function DLL, udf.d11, to the server in the path
%DB2PATH%\function to indicate that the UDF is fenced. If you want the UDF to be
unfenced, you must move it to the %DB2PATH%\function\unfenced directory. These paths
are in the home directory of the DB2 instance.

50 Building Applications for Windows and OS/2 Environments

Note: An unfenced UDF or stored procedure runs in the same address space as the
database manager and results in increased performance when compared to a
fenced UDF or stored procedure, which runs in an address space isolated from
the database manager. With unfenced UDFs or stored procedures there is a
danger that user code could accidentally or maliciously damage the database
control structures. Therefore, you should only run unfenced UDFs or stored
procedures when you need to maximize the performance benefits. Ensure these
programs are thoroughly tested before running them as unfenced. Refer to the
Embedded SQL Programming Guide for more information about fenced and
unfenced UDFs.

Once you build udf, you can build the application calludf that calls the UDF. You can
build calludf using the bldvaemb batch file. Refer to “IBM VisualAge C++" on page 43
for details.

To run the UDF, do the following:

1. Start the database manager on the server, if it is not already running, by entering:
db2start

2. Start the Security Service for the Windows NT server by entering:
net start DB2NTSECSERVER

3. Run the sample calling application by entering:
calludf
The application calls functions from the udf library.

After you run the calling application, you can also invoke the UDF interactively
using the command line processor. Connect to the database, then enter:

SELECT name, DOLLAR(salary), SAMP_MUL(DOLLAR(salary), FACTOR(1.2)) FROM staff

You do not have to type the command line processor commands in uppercase.

Micro Focus COBOL

The batch file b1dmfcob, in %DB2PATH%\samples\cobol mf, contains the commands to
build a sample COBOL program.

The first parameter, %1, specifies the name of your source file. The second parameter,
%2, specifies the name of the database to which you want to connect. The third
parameter, %3, specifies the user ID for the database, and %4 specifies the password.
Only the first parameter, the source file name, is required. Database name, user ID,
and password are optional. If no database name is supplied, the program uses the
default sample database.

@echo off

rem bldmfcob.bat file

rem Build a sample Cobol program using the Micro Focus COBOL compiler.
rem Usage: bldmfcob <prog _name> [<db_name> [< userid> <password>]]

Chapter 4. Building Windows NT and Windows 95 Embedded SQL Applications 51

rem Connect to a database.

if "%1" == "" goto error
if "%2" == "" goto casel
if "%3" == "" goto case2
if "%4" == "" goto error
goto case3

:casel

db2 connect to sample
goto continue
:case?
db2 connect to %2
goto continue
:case3
db2 connect to %2 user %3 using %4
goto continue
:continue

rem Precompile the program.
db2 prep %1.sgb bindfile target mfcob

rem Bind the program to the database.
db2 bind %1.bnd

rem Disconnect from the database.
db2 connect reset

rem Compile the error-checking utility.
cobol checkerr.cbl constant 32-bit (1);

rem Compile the program.
cobol %1.cbl constant 32-bit (1);

rem Link the program.
cb11ink -1 %1l.obj checkerr.obj db2api.lib

goto exit

terror
echo Usage: bldmfcob <prog_name> [<db_name> [< userid> <password>]]

rexit
@echo on

Compile and Link Options for bldmfcob

The batch file contains the following compile options:
cobol The Micro Focus COBOL compiler.
constant 32-bit (1) Set the constant 32-bit flag to true.

52 Building Applications for Windows and OS/2 Environments

Compile and Link Options for bldmfcob

The batch file contains the following link options:

cb1Tink Use the linker to link edit.

-1 Link with the Icobol library.

checkerr.obj Link with the error-checking utility object file.
db2api.lib Link with the DB2 API library.

Refer to your compiler documentation for additional compiler options.

To build the sample program, updat.sgb, do the following:
1. Start the database manager on the server, if it is not already running, by entering:
db2start
2. Start the Security Service for the Windows NT server by entering:
net start DB2NTSECSERVER

3. Build the sample program, connecting to the SAMPLE database. From the DB2
command line processor command window, enter:

bTldmfcob updat

The result is an executable file updat.exe. You can run the executable file against the
SAMPLE database to see how it works by doing the following:
1. Start the database manager on the server, if it is not already running, by entering:
db2start

2. Start the Security Service for the Windows NT server by entering:
net start DB2NTSECSERVER

3. Enter the following at the command line:
updat

Note: To build Micro Focus COBOL applications that do not contain embedded SQL,
you can use the batch file b1dapicb. It contains the same compile and link
options as b1dmfcob, but does not connect, prep, bind, or disconnect from the
SAMPLE database. It is used to compile and link the DB2 API sample programs
written in COBOL.

Building Stored Procedures with Micro Focus COBOL
The batch file b1dmfcbs, in %DB2PATH%\samples\cobol_mf, contains the commands to

build a stored procedure. The batch file compiles the stored procedure into a DLL on
the server.

The first parameter, %1, specifies the name of your source file. The second parameter,
%2, specifies the name of the database to which you want to connect. The third
parameter, %3, specifies the user ID for the database, and %4 specifies the password.
Only the first parameter, the source file name, is required. Database name, user ID,

Chapter 4. Building Windows NT and Windows 95 Embedded SQL Applications 53

54

and password are optional. If no database name is supplied, the program uses the
default sample database. The batch file uses the source file name, %1, for the DLL
name.

@echo off

rem bldmfcbs.bat file

rem Build sample COBOL stored procedure using Micro Focus COBOL compiler.
rem Usage: bldmfchs <prog name> [<db _name> [< userid> <password>]]

rem Connect to a database.

if "%1" == "" goto error
if "%2" == "" goto casel
if "%3" == "" goto case2
if "%4" == "" goto error
goto case3

:casel

db2 connect to sample
goto continue
:case?
db2 connect to %2
goto continue
:case3
db2 connect to %2 user %3 using %4
goto continue
:continue

rem Precompile the program.
db2 prep %1.sgb bindfile target mfcob

rem Bind the program to the database.
db2 bind %1.bnd

rem Disconnect from the database.
db2 connect reset

rem Compile the stored procedure.
cobol %1.cbl constant 32-bit (1) /case;

rem Link the stored procedure and create a shared library.
cb11link /d %1.obj db2api.lib

rem Copy stored procedure to the %DB2PATH%\function directory.
rem Substitute the path where DB2 is installed for %DB2PATH%.
copy %1.d11 %DB2PATH%\function

goto exit

zerror
echo Usage: bldmfcbs <prog_name> [<db_name> [< userid> <password>]]

texit
@echo on

Building Applications for Windows and OS/2 Environments

Compile and Link Options for bldmfcbs

The batch file contains the following compile options:
cobol The Micro Focus COBOL compiler.
constant 32-bit (1) Set the constant 32-bit flag to true.

/case Prevent external symbols being converted to upper case.

The batch file contains the following link options:

cb1Tink Use the Micro Focus COBOL linker to link edit.
/d Create a .dll file.
db2api.lib Link with the DB2 API library.

Refer to your compiler documentation for additional compiler options.

To build the stored procedure outsrv.sgb do the following:

1. Start the database manager on the server, if it is not already running, by entering:
db2start

2. Start the Security Service for the Windows NT server by entering:
net start DBZNTSECSERVER

3. Build the stored procedure, connecting to the SAMPLE database. Enter the
following in a DB2 command line processor command window:

bldmfcbs outsrv

The linker uses a default entry point unspecified by the user. The /d option is used
to create the DLL file in order to build the stored procedure. The batch file copies
the stored procedure DLL, outsrv.dl11, to the server in the path

%DB2PATH%\ function to indicate that the stored procedure is fenced. If you want the
stored procedure to be unfenced, you must move it to the

%DB2PATH%\ function\unfenced directory. These paths are in the home directory of
the DB2 instance.

Note: An unfenced stored procedure or UDF runs in the same address space as
the database manager and results in increased performance when
compared to a fenced stored procedure or UDF, which runs in an address
space isolated from the database manager. With unfenced stored
procedures or UDFs there is a danger that user code could accidentally or
maliciously damage the database control structures. Therefore, you should
only run unfenced stored procedures or UDFs when you need to maximize
the performance benefits. Ensure these programs are thoroughly tested
before running them as unfenced. Refer to the Embedded SQL
Programming Guide for more information about fenced and unfenced stored
procedures.

Once you build the stored procedure outsrv, you can build outcli that calls the stored
procedure. You can build outcli using the bldmfcob.bat file. Refer to “Micro Focus
COBOL" on page 51 for details.

Chapter 4. Building Windows NT and Windows 95 Embedded SQL Applications 55

To run the stored procedure, do the following :

1. Start the database manager on the server, if it is not already running, by entering:
db2start

2. Start the Security Service for the Windows NT server by entering:
net start DB2NTSECSERVER

3. Enter the following at the command line:
outcli

The client application passes a variable to the server program, outsrv, which gives it a
value and then returns the variable to the client application.

Using the Micro Focus COBOL Compiler

56

If you develop applications that contain embedded SQL and DB2 API calls, and you are
using the Micro Focus compiler, keep the following points in mind:

e When you precompile your application using the command line processor
command db2 prep, use the target mfcob option.

e Ensure the LIB environment variable points to %DB2PATH%\11b like this:
set LIB=%DB2PATH%\1ib;%LIB%

e The DB2 COPY files for Micro Focus COBOL reside in sql11ib\include\cobol_mf.
Set the COBCPY environment variable to include the directory like this:

set COBCPY=sql1ib\include\cobol mf;%COBCPY%

e DB2API.LIB provides the import library for COBOL programs and is located in the
1ib directory in the DB2 for Windows NT install directory.

Calls to all DB2 application programming interfaces and generated code must be made
using calling convention 74. The DB2 COBOL precompiler automatically inserts a
CALL-CONVENTION clause in a SPECIAL-NAMES paragraph. If the
SPECIAL-NAMES paragraph does not exist, the DB2 COBOL precompiler creates it, as
follows:

Identification Division
Program-ID. "static".
special-names.

call-convention 74 is DB2API.

Also, the precompiler automatically places the symbol DB2API, which is used to identify
the calling convention, after the "call" keyword whenever a DB2 API is called. This
occurs, for instance, whenever the precompiler generates a DB2 API runtime call from
an embedded SQL statement.

If calls to DB2 APIs are made in an application which is not precompiled, you should
manually create a SPECIAL-NAMES paragraph in the application, similar to that given
above. If you are calling a DB2 API directly, then you will need to manually add the
DB2API symbol after the "call* keyword.

Building Applications for Windows and OS/2 Environments

IBM VisualAge for COBOL

The batch file bldvacob.bat, in %DB2PATH%\samples\cobol, contains the commands to
build a sample COBOL program.

The first parameter, %1, specifies the name of your source file. The second parameter,
%2, specifies the name of the database to which you want to connect. Parameter %3
specifies the user ID for the database, and %4 specifies the password. Only the first
parameter, the source file name, is required. Database name, user ID, and password
are optional. If no database name is supplied, the program uses the default sample
database.

@echo off

rem bldvacob.bat file

rem Build sample Cobol program using the IBM VisualAge for COBOL compiler.
rem Usage: bldvacob <prog name> [<db_name> [< userid> <password>]]

rem Connect to a database.
if "%1" == "" goto error
if "%2" == "" goto casel
if "%3" == "" goto case2
if "%4" == "" goto error
goto case3
:casel
db2 connect to sample
goto continue
:case2
db2 connect to %2
goto continue
:case3
db2 connect to %2 user %3 using %4
goto continue
:continue

rem Precompile the program.
db2 prep %1.sqb bindfile target ibmcob

rem Bind the program to the database.
db2 bind %1.bnd

rem Disconnect from the database.
db2 connect reset

rem Compile the error checking facility.
cob2 -gpgmname(mixed) -c -qlib -I%DB2PATH%\include\cobol_a checkerr.chl

rem Compile the program.
cob2 -gpgmname(mixed) -c -qlib -I%DB2PATH%\include\cobol a %1.chl

rem Link the program.
cob2 %1.obj checkerr.obj db2api.lib

Chapter 4. Building Windows NT and Windows 95 Embedded SQL Applications 57

goto exit

:error
echo Usage: bldvacob <prog_name> [<db_name> [< userid> <password>]]

rexit
@echo on

Compile and Link Options for bldvacob

-C

The batch file contains the following compile options:

cob2 The IBM COBOL compiler.
-gpgmname (mixed) Instructs the compiler to permit CALLs to library entry points with

mixed-case names.
Perform compile only; no link. This book assumes that compile and link
are separate steps.

-qlib Instructs the compiler to process COPY statements.
-Ipath Specify the location of the DB2 include files. For example:

-1%DB2PATH%\include\cobol_a.

checkerr.cbl Compile the error-checking utility.

The batch file contains the following link options:

cob2 Use the compiler to link edit.
checkerr.obj Include the error-checking utility object file.
db2api.lib Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

To build the sample program updat.sgb, do the following:

1.

The

Start the database manager on the server, if it is not already running, by entering:
db2start

Start the Security Service for the Windows NT server by entering:
net start DB2NTSECSERVER

Build the sample program, connecting to the SAMPLE database. From the DB2
command line processor command window, enter:

bldvacob updat

result is an executable file updat. You can run the executable file against the

SAMPLE database to see how it works by doing the following :

1.

Start the database manager on the server, if it is not already running, by entering:
db2start

Start the Security Service for the Windows NT server by entering:
net start DBZNTSECSERVER

. Enter the following at the command line:

updat

58 Building Applications for Windows and OS/2 Environments

Note: To build IBM VisualAge for COBOL applications that do not contain embedded
SQL, you can use the batch file b1dvcapi.bat. It contains the same compile and
link options as bldvacob.bat, but does not connect, prep, bind, or disconnect
from the SAMPLE database. It is used to compile and link the DB2 APl sample
programs written in COBOL.

Building IBM VisualAge for COBOL Stored Procedures

The batch file b1dvacbs.bat, in %DB2PATH%\samples\cobol, contains the commands to
build a stored procedure. The batch file compiles the stored procedure into a DLL on
the server.

The first parameter, %1, specifies the name of your source file. The second parameter,
%2, specifies the name of the database to which you want to connect. Parameter %3
specifies the user ID for the database, and %4 specifies the password. Only the first
parameter, the source file name, is required. Database name, user ID, and password
are optional. If no database name is supplied, the program uses the default sample
database. The batch file uses the source file name, %1, for the DLL name.

@echo off

rem bldvachs.bat file

rem Build sample COBOL stored procedure using IBM VisualAge for COBOL compiler.
rem Usage: bldvacbs <prog name> [<db name> [< userid> <password>]]

rem Connect to a database.
if "%1" == "" goto error
if "%2" == "" goto casel
if "%3" == "" goto case2
if "%4" == "" goto error
goto case3
:casel
db2 connect to sample
goto continue
:case2
db2 connect to %2
goto continue
:case3
db2 connect to %2 user %3 using %4
goto continue
:continue

rem Precompile the program.
db2 prep %1.sqb bindfile target ibmcob

rem Bind the program to the database.
db2 bind %1.bnd

rem Disconnect from the database.
db2 connect reset

rem Compile the stored procedure.
cob2 -gpgmname(mixed) -c -qlib -I%DB2PATH%\include\cobol_a %1.chl

Chapter 4. Building Windows NT and Windows 95 Embedded SQL Applications 59

60

rem Link the stored procedure and create a shared library.
cob2 -d11 %1.obj db2api.lib

rem Copy stored procedure to the %DB2PATH%\function directory.
rem Substitute the path where DB2 is installed for %DB2PATH%.
copy %1.d11 %DB2PATH%\function

goto exit

terror
echo Usage: bldvachs <prog_name> [<db_name> [< userid> <password>]]

rexit
@echo on

Compile and Link Options for bldvacbs

The batch file contains the following compile options:

cob2 The IBM COBOL compiler.
-gpgmname (mixed) Instructs the compiler to permit CALLSs to library entry points with
mixed-case names.

-C Perform compile only; no link. This book assumes that compile and link
are separate steps.

-qlib Instructs the compiler to process COPY statements.

-Ipath Specify the location of the DB2 include files. For example:

-1%DB2PATH%\include\cobol_a.

The batch file contains the following link options:

cob2 Use the compiler to link edit.
-d11 Create the DLL with the source program name.
db2api.lib Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

To build the outsrv.sgb stored procedure, do the following:
1. Start the database manager on the server, if it is not already running, by entering:
db2start
2. Start the Security Service for the Windows NT server by entering:
net start DB2NTSECSERVER

3. Build the sample program, connecting to the SAMPLE database. From the DB2
command line processor command window, enter:

bldvacbhs outsrv

The batch file copies the stored procedure DLL, outsrv.d11, to the server in the
path %DB2PATH%\ function to indicate that the stored procedure is fenced. If you
want the stored procedure to be unfenced, you must move it to the

%DB2PATH%\ function\unfenced directory. These paths are in the home directory of

the DB2 instance.

Building Applications for Windows and OS/2 Environments

Note: An unfenced stored procedure or UDF runs in the same address space as
the database manager and results in increased performance when
compared to a fenced stored procedure or UDF, which runs in an address
space isolated from the database manager. With unfenced stored
procedures or UDFs there is a danger that user code could accidentally or
maliciously damage the database control structures. Therefore, you should
only run unfenced stored procedures or UDFs when you need to maximize
the performance benefits. Ensure these programs are thoroughly tested
before running them as unfenced. Refer to the Embedded SQL
Programming Guide for more information about fenced and unfenced stored
procedures.

Once you build the stored procedure outsrv, you can build the client application outc1i
that calls the stored procedure. You can build outc1i using the bldvacob batch file. See
“IBM VisualAge for COBOL" on page 57 for details.

To run the stored procedure, do the following:

1.

Start the database manager on the server, if it is not already running, by entering:
db2start

Start the Security Service for the Windows NT server by entering:

net start DBZNTSECSERVER

Enter the following at the command line:

outcli

The client application passes a variable to the server program outsrv, which gives
it a value and then returns the variable to the client application.

Using the IBM VisualAge for COBOL Compiler

If you develop applications that contain embedded SQL and DB2 API calls, and you are
using the IBM VisualAge for COBOL compiler, keep the following points in mind:

When you precompile your application using the command line processor
command db2 prep, use the target ibmcob option.

Do not use tab characters in your source files.

You can use the PROCESS and CBL keywords in your source files to set compile
options. Place the keywords in columns 8 to 72 only.

If your application contains only embedded SQL, but no DB2 API calls, you do not
need to use the pgmname (mixed) compile option. If you use DB2 API calls, you
must use the pgmname (mixed) compile option.

The DB2 COPY files for IBM VisualAge for COBOL reside in
%DB2PATH%\include\cobol_a under the database instance directory. Specify COPY
file names to include the .cb1 extension as follows:

COPY "sql.ch1".

Chapter 4. Building Windows NT and Windows 95 Embedded SQL Applications 61

Object REXX

Object REXX is an object-oriented version of the REXX language. Object-oriented
extensions have been added to traditional REXX, but its existing functions and
instructions have not changed. The Object REXX interpreter is an enhanced version of
its predecessor, with additional support for:

e Classes, objects, and methods
¢ Messaging and polymorphism
¢ Single and multiple inheritance

Object REXX is fully compatible with earlier, non-object-oriented versions of REXX. In
this section, whenever we refer to REXX, we are referring to all versions of REXX,
including Object REXX.

You do not precompile or bind REXX programs.

On Windows NT, REXX programs are not required to start with a comment. However,
for portability reasons you are recommended to start each REXX program with a
comment that begins in the first column of the first line. This will allow the program to
be distinguished from a batch command on other platforms:

/* Any comment will do. */
REXX sample programs can be found in the directory %DB2PATH%\samples\rexx. To run
the sample REXX program updat, do the following:
1. Start the database manager on the server, if it is not already running, by entering:
db2start
2. Enter:
updat

For further information on REXX and DB2, refer to the Embedded SQL Programming
Guide, chapter 13, "Programming in REXX".

Object Linking

and Embedding (OLE) Automation

This section describes Object Linking and Embedding (OLE) automation UDFs in
Microsoft Visual Basic and Microsoft Visual C++, as well as a sample OLE automation
controller for stored procedures.

You can implement OLE automation UDFs and stored procedures in any language, as
OLE is language independent, by exposing methods of OLE automation servers, and
registering the methods as UDFs with DB2. Application development environments
which support the development of OLE automation servers include certain versions of
the following: Microsoft Visual Basic, Microsoft Visual C++, Microsoft Visual J++,
Microsoft FoxPro, Borland Delphi, Powersoft PowerBuilder, and Micro Focus COBOL.
Also, Java beans objects that are wrapped properly for OLE, for example with Microsoft
Visual J++, can be accessed via OLE automation.

62 Building Applications for Windows and OS/2 Environments

You need to refer to the documentation of the appropriate application development
environment for further information on developing OLE automation servers. For more
detailed information on DB2 programming using OLE automation, refer to the
Embedded SQL Programming Guide, chapter 7. That chapter covers creating and
running OLE automation UDFs.

User-Defined Functions (UDFs) with Microsoft Visual Basic
Microsoft Visual Basic supports the creation of OLE automation servers. A new kind of
object is created in Visual Basic by adding a class module to the Visual Basic project.
Methods are created by adding public sub-procedures to the class module. These
public procedures can be registered to DB2 as OLE automation UDFs. Refer to the
Microsoft Visual Basic manual, Creating OLE Servers, Microsoft Corporation, 1995, and
to the OLE samples provided by Microsoft Visual Basic, for further documentation on
creating and building OLE servers.

DB2 provides self-containing samples of OLE automation UDFs in Microsoft Visual
Basic, located in the directory %DB2PATH%\samples\ole\msvb.

User-Defined Functions (UDFs) with Microsoft Visual C = ++
Microsoft Visual C++ supports the creation of OLE automation servers. Servers can be
implemented using Microsoft Foundation Classes and the Microsoft Foundation Class
application wizard, or as Win32 applications. Servers can be DLLs or EXEs. Refer to
the Microsoft Visual C++ documentation and to the OLE samples provided by Microsoft
Visual C++ for further information. For information on building Visual C++ UDFs for
DB2, see “Building User-Defined Functions (UDFs) with Microsoft Visual C++” on
page 41.

DB2 provides self-containing samples of OLE automation UDFs in Microsoft Visual C++,
located in the directory %DB2PATH%\samples\ole\msvc.

Sample OLE Automation Controller for Stored Procedures
Directory %DB2PATH%\samples\ole\stpcntr contains a sample OLE automation controller
implemented in Microsoft Visual C++ as a stored procedure. The automation controller
can be used to invoke stored procedures through OLE automation. The first SQLVAR in
the SQLDA provides the OLE programmable identifier, progID, and the name of the
method which should be invoked. OLE automation stored procedures must be
implemented as in-process OLE automation servers.

The directory %DB2PATH%\samples\ole\msvb contains a Visual Basic project, salarysvr,
with a "median” stored procedure which calculates the median salary in the STAFF
table of the DB2 samples database. The stored procedure is implemented in Microsoft
Visual Basic and DB2 CLI. The Visual Basic project, salaryclt, shows a DB2 client
implemented in Visual Basic, which invokes the "median" stored procedure. The
directory %DB2PATH%\samples\ole\msvc contains a DB2 client program, salaryclt,
implemented in Microsoft Visual C++, which invokes the "median" stored procedure.

Chapter 4. Building Windows NT and Windows 95 Embedded SQL Applications 63

64 Building Applications for Windows and OS/2 Environments

Chapter 5. Building Windows 3.1 Embedded SQL Applications

This chapter provides detailed information for building embedded SQL applications on
Windows 3.1. The samples and batch files used in the chapter are in the appropriate
language subdirectory of %DB2PATH%\samples. The db2.ini file, which stores the DB2
settings, defines the value for %DB2PATH%, which by default points to drive:\sq11ib\win.
The value of %DB2PATH%, as referenced in the db2.1ini file, is only recognized within the
DB2 environment.

Programming notes for WIN 3.1 applications

The Windows 3.1 operating environment has certain limitations with regard to issuing a
NotifyRegister and unloading the DLL in the _WEP procedure. These limitations affect
DB2 for Windows 3.1 applications in the following ways.

If the application calls the Windows API NotifyRegister, DB2 for Windows 3.1 will not
perform cleanup when that application exits. This may cause a memory leak problem
when DB2 for Windows 3.1 is used concurrently by multiple applications.

If the application uses a DLL to load the main DB2 for Windows 3.1 DLL (DB2W.DLL),
it is recommended that a connect reset be issued before the DLL is unloaded. The
connect reset must not be issued in the _WEP of that DLL.

The Microsoft Windows and WIN-OS/2 Environments

There are two environments for running DB2 applications in Windows 3.1, the Microsoft
Windows environment, and the WIN-OS/2 environment which is accessed through
0S/2. An important difference between these environments is that WIN-OS/2 does not
support the WXServer tool, due to the fact that OS/2 does not support .386 device
drivers. The steps you need to run batch files in these environments vary, and are
explained in the following sections.

Running Batch Files in a Microsoft Windows Environment
To run the batch files we supply in a Microsoft Windows environment, you must install a
tool that lets you run Windows programs from a DOS session. From the DOS session,
the batch file invokes the DB2 command line processor, a Windows program, to
connect to a database, precompile your source file, and then bind the bind file to the
database.

One example of a tool that lets you run Windows programs from a DOS session is the
WXServer tool that comes with Microsoft Visual C++. If you do not have such a tool,
you can study the batch files to learn what steps you need to perform manually to build
your applications, and what compiler options to use.

© Copyright IBM Corp. 1993, 1997 65

66

Using WXServer

Microsoft Visual C++ comes with WXServer, which lets you run Microsoft Windows
programs from a DOS session inside Windows 3.1. However, WXServer is not installed
when you install the compiler.
To install WXServer, do the following:

1. Get the Microsoft Visual C++ CD-ROM.

2. Go to the \vcl52\bin directory on the product CD-ROM.

Note: Depending on the version and release of the Microsoft Visual C++ compiler
you are using, the vcl52 directory may be called by a different name. If in
doubt, contact Microsoft.

3. Copy the following files from the \vc152\bin directory on the product CD-ROM to
the \msvc\bin directory on your workstation:

wX.exe
WXSTVr.exe
vmb . 386

4. Edit the system.ini file on your workstation. In the 386Enh section of the file, add
the following line:

device=c:\msvc\bin\vmb.386
If the drive and/or path are different, substitute the correct drive and path.
5. If you are in Windows, exit and restart Windows for the changes to take effect.

Before using the batch files, run the \msvc\bin\wxsrvr.exe program to start the server.
Its also possible to create an icon for it and place it in the startup folder.

Preparing Your Source Files Without WXServer

If you do not have a tool like WXServer that lets you run Windows programs from a
DOS session, do the following to precompile your source file, and to bind the bind file
to the DB2 database:

1. Start Windows.

2. Double-click on the Command Line Processor icon in the IBM Database 2
Windows group.

Alternatively, you can click on File and then Run... in Windows File Manager. In
the Command Line entry field, enter:

%DB2PATH%\bin\db2c1pw.exe
3. Execute the following commands from the command line processor prompt:
connect to sample

prep updat.sgx bindfile nolinemacro

Building Applications for Windows and OS/2 Environments

bind updat.bnd
connect reset

terminate

To execute the above commands, first modify the Command Line Processor
Windows Program Item to specify the samples source file directory as the working
directory. If you do not do this, you will have to enter the full path for the source file
name, as follows:

prep %DB2PATH%\samples\updat.sqx bindfile nolinemacro
bind %DB2PATH%\samples\updat.bnd

Running Batch Files in a WIN-OS/2 Environment

In this environment, you must run a batch file in a DOS Full Screen session. You
cannot run it in a DOS Window.

Additionally, to use the Microsoft Visual C++ compiler in a DOS session, you might
need to change the DOS settings shown below. Refer to the OS/2 documentation for
information about changing DOS settings.

DPMI_DOS_API Must be set to ENABLED (default is AUTO).
DPMI_MEMORY_LIMIT Must be set to 10 or higher.

Microsoft Visual C ++

This section presents batch files for building sample C++ programs for both the
WIN-OS/2 environment and the Microsoft Windows environment. The batch file
winos2bd.bat contains the commands to build a sample C++ program using WIN-OS/2.
The batch file winbld.bat contains the commands to build a sample C++ program using
Microsoft Windows.

You can modify either batch file to build a C program. The comments in the batch file
describe the modifications you need to make. The batch files can be found in
%DB2PATH%\samples\c

The first parameter, %1, in each batch file specifies the name of your source file. The
second parameter, %2, specifies the name of the database to which you want to
connect.

The batch files put DB2 command line processor commands to connect to a database
and precompile your program into the temporary file preptmp. You cannot execute
Command Line Processor (CLP) commands directly from a batch file. Refer to the
Command Reference if you need more information about CLP commands.

Chapter 5. Building Windows 3.1 Embedded SQL Applications 67

Using Winos2bd.bat
You must run winos2bd.bat in a DOS Full Screen session. You cannot run
winos2bd.bat in a DOS Window. Refer to “Running Batch Files in a WIN-OS/2
Environment” on page 67 for details.

@echo off

rem winos2bd.bat file

rem Build sample C or C++ program containing embedded SQL.
rem Prepare the source file: connect to a database,

rem precompile the program, and bind the program to the
rem database. To build a C program, change the source file
rem extension to .sqc.

echo connect to %2 > preptmp

echo prep %1.sgx bindfile nolinemacro >> preptmp

echo bind %1.bnd >> preptmp

echo connect reset >> preptmp

echo quit >> preptmp

rem Invoke command line processor with input file preptmp.

win db2cTpw -f preptmp

rem NOTE: Update the following assumed drive and directory to your current

rem
rem
rem

d.

working drive and directory (where your application source files
reside). This way, the compiler will find your source files after
exiting the Windows environment.

cd \sqllib\win\samples\c

erase preptmp

rem
rem

Compile the program. To build a C program, change the
source file extension to .c.

cl /c /Gy /ALw /W3 /Mg /DDB2WIN %1.cxx

rem Link the program.
Tink /ST:32000 /SE:400 /NOD %1.obj util.obj,,,11ibcewg+1ibw+oldnames+db2w;
@echo on
Compile and Link Options for winos2bd

The batch file contains the following compile options:

cl The Microsoft Visual C++ compiler.

/c Perform compile only; no link. This book assumes that compile and link are

separate steps.

/Gy Generate separate functions for the linker.

/ALw Use large memory model.

/W3 Set warning level; 1 is most severe, 4 is least severe.

/Mg Use QuickWin compile and include library.

/DDB2WIN Identifies the Windows platform.

68 Building Applications for Windows and OS/2 Environments

Compile and Link Options for winos2bd

The batch file contains the following link options:

1ink Use the Microsoft Visual C++ linker to link edit.
/ST:32000 Specify a stack size of 32000.

/SE:400 Specify the maximum number of segments.
/NOD Do not use default libraries

util.obj Include error checking object file.

v Use the default executable and map filenames.

11ibcewq+1ibw+oldnames
Microsoft Visual C++ LIB files.

db2w DB2 SDK for Windows import LIB file.

Refer to your compiler documentation for additional compiler options.

To build the sample program updat.sqc, do the following:
1. Start the database manager on the server, if it is not already running, by entering:
db2start
2. Build the sample program, connecting to the SAMPLE database, by entering:
winos2bd updat sample
The result is an executable file updat.exe. You can run the executable file against the
SAMPLE database to see how it works by doing the following :
1. Start the database manager on the server, if it is not already running, by entering:
db2start
2. Start Windows if it is not already started.
3. In Windows File Manager, click on File and then Run....
4. If you built the updat sample program, enter:
path\updat

where path specifies the location of the executable.

Using Winbld.bat
To use winbld.bat, you must have a tool that lets you run Windows programs from a
DOS session, such as WXServer, installed and running. Refer to “Running Batch Files
in a Microsoft Windows Environment” on page 65 for details.

Run winbld.bat from a DOS prompt in Microsoft Windows.

@echo off

rem winbld.bat file

rem Builds a C or C++ program containing embedded SQL.
rem Prepare the source file: connect to a database,

rem precompile the program, and bind the program to the

Chapter 5. Building Windows 3.1 Embedded SQL Applications 69

rem database. To build a C program, change the source file
rem extension to .sqc.

echo connect to %2 > preptmp

echo prep %1.sgx bindfile nolinemacro >> preptmp

echo bind %1.bnd >> preptmp

echo connect reset >> preptmp

echo quit >> preptmp

rem Invoke command line processor with input file preptmp.
wx db2clpw -f preptmp

erase preptmp

rem Compile the program. To build a C program, change the
rem source file extension to .c.

cl /c /Gy /ALw /W3 /Mg /DDB2WIN %1.cxx

rem Link the program.

Tink /ST:32000 /SE:400 /NOD %1.obj util.obj,,,11ibcewg+1ibwtoldnames+db2w;
@echo on

Compile and Link Options for winbld

The batch file contains the following compile options:

cl The Microsoft Visual C++ compiler.

/c Perform compile only; no link. This book assumes that compile and link are
separate steps.

/Gy Generate separate functions for the linker.

/ALw Use large memory model.

/W3 Set warning level; 1 is most severe, 4 is least severe.

/Mg Use QuickWin compile and include library.

/DDB2WIN Identifies the Windows platform.

The batch file contains the following link options:

Tink Use the Microsoft Visual C ++ linker to link edit.

/ST:32000 Specify a stack size of 32000.

/SE:400 Specify the maximum number of segments.

/NOD Do not use default libraries

util.obj Include error checking object file.

yss Use the default executable and map filenames.

11ibcewq+1ibw+oldnames
Microsoft Visual C ++ LIB files.

db2w DB2 SDK for Windows import LIB file.

Refer to your compiler documentation for additional compiler options.

To build the sample program updat.sqc, do the following:
1. Start the database manager on the server, if it is not already running, by entering:
db2start

2. Build the sample program, connecting to the SAMPLE database, by entering:

Building Applications for Windows and OS/2 Environments

winbld updat sample
The result is an executable file, updat.exe. You can run the executable file against the
SAMPLE database to see how it works by doing the following :
1. Start the database manager on the server, if it is not already running, by entering:
db2start
2. Start Windows if it is not already started.
3. In Windows File Manager, click on File and then Run....
4. If you built the updat sample program, enter:
path\updat
where path specifies the location of the executable.

Note: To build C applications that do not contain embedded SQL, you can use the
batch file makeapi.bat. It contains the same compile and link options as
winos2bd.bat and winbld.bat, but does not connect, prep, bind, or disconnect
from the SAMPLE database. It is used to compile and link the DB2 APl sample
programs written in C.

Building the Microsoft Visual C ++ Client Application for Stored Procedures
Stored procedures are programs that access the database and return information to
your Windows client application. You build and store stored procedures on the server.
As DB2 for Windows 3.1 is client-only, the server runs on another operating system
platform.

To build the stored procedure, outsrv, on Windows NT, see Chapter 4, “Building
Windows NT and Windows 95 Embedded SQL Applications” on page 35. To build the
stored procedure, outsrv, on OS/2, see Chapter 6, “Building OS/2 Embedded SQL
Applications” on page 85. If you are using a UNIX server, refer to the embedded SQL
chapter for that platform in Building Applications for UNIX Environments.

Once you build the stored procedure outsrv, you can build the client application outcli
that calls the stored procedure. You can build outcli using either the winos2bd.bat or
the winbld.bat file. Refer to “Microsoft Visual C++" on page 67 for details.
To run the stored procedure, do the following:
1. Start the database manager on the server, if it is not already running, by entering:
db2start
2. Start Windows if it is not already started.
3. In Windows File Manager, click on File and then Run....
4. Enter the sample program name:
path\outcli remote_database userid password

where

Chapter 5. Building Windows 3.1 Embedded SQL Applications 71

path Specifies the location of the executable.

remote_database Is the name of the database to which you want to connect.
The name could be SAMPLE, or its remote alias, or some
other name.

userid Is a valid user ID.

password Is a valid password.

The client application passes a variable to the server program outsrv, which gives
it a value and then returns the variable to the client application.

Building the Microsoft Visual C ++ Client Application for UDFs

72

UDFs are your own scalar functions that you build and store on the server. As DB2 for
Windows 3.1 is client-only, the server runs on another operating system platform.

To build the user-defined function, udf, on Windows NT, see Chapter 4, “Building
Windows NT and Windows 95 Embedded SQL Applications” on page 35. To build the
user-defined function, udf, on 0OS/2, see Chapter 6, “Building OS/2 Embedded SQL
Applications” on page 85. If you are using a UNIX server, refer to the embedded SQL
chapter for that platform in Building Applications for UNIX Environments.

Once you build udf, you can build the client application, calludf, that calls it. You can
build calludf using either the winos2bd.bat or the winb1d.bat file. Refer to “Microsoft
Visual C++" on page 67 for details.
To run the UDF, do the following:
1. Start the database manager on the server, if it is not already running, by entering:
db2start
2. Start Windows if it is not already started.
3. In Windows File Manager, click on File and then Run....
4. Enter the sample program name:
path\calludf
where path specifies the location of the executable.
The application calls functions from the udf program.
After you run the calling application, you can also invoke the UDF interactively in a
DOS session from the DB2 command line processor. To start the processor,

double-click on the Command Line Processor icon in the IBM Database 2 Windows
group. Connect to the database, then enter:

SELECT name, DOLLAR(salary), SAMP_MUL(DOLLAR(salary), FACTOR(1.2)) FROM staff

You do not have to type the command line processor commands in uppercase.

Building Applications for Windows and OS/2 Environments

Borland C ++

For the Borland C++ compiler, you must run the batch files in a Microsoft Windows
environment. You can find the batch files in %DB2PATH%\samples\c.

The batch file b1dbprep.bat puts the DB2 command line processor commands to
connect to a database and precompile your program into the temporary file, preptmp.
You cannot execute command line processor commands directly from a batch file.
Refer to the Command Reference if you need more information about the commands.

To use bldbprep.bat, you must either have a tool installed and running that lets you
run Windows programs from a DOS session, such as WXServer, or you must prepare
your source file to be used without such a tool. Refer to “Running Batch Files in a
Microsoft Windows Environment” on page 65 for details.

@echo off

rem bldbprep.bat file

rem Prepare the source file: connect to a database,

rem precompile the program, and bind the program to the
rem database.

echo connect to %2 > preptmp

echo prep %1.sgx bindfile nolinemacro >> preptmp

echo bind %1.bnd >> preptmp

echo quit >> preptmp

rem Invoke command line processor with input file preptmp using
rem the WXServer tool.

wx db2clpw -f preptmp

erase preptmp

@echo on

Note: The output file from bldbprep.bat has a file extension .cxx. To build a C++
program using b1dbor.bat, change the extension to .cpp. To build a C program
using bldbor.bat, change the extension to .c. You may also need to change
the drive letter for the path.

After using b1dbprep.bat, you can use bldbor.bat to compile and link the C or C++ file,
or you can use the Integrated Development Environment with the compiler options
shown in bldbor.bat. To use bldbor.bat, we recommend that you increase the
available XMS and EMS memory for the Windows DOS prompt.

To increase the memory, edit the dosprmpt.pif file using the Windows PIF editor. For
both XMS and EMS memory, increase the required memory to 4096 KB, and increase
the KB Limit to -1. The KB Limit setting of -1 allocates as much memory as the
application requests, up to the limit of the system memory. For more information, refer
to the online Help for the Windows PIF editor.

The batch file b1dbor.bat contains the commands to build a sample C++ program. The

first parameter, %1, specifies the name of your source file. The second parameter, %2,
specifies the name of the database to which you want to connect.

Chapter 5. Building Windows 3.1 Embedded SQL Applications 73

74

@echo off
rem bldbor.bat file
rem Compile and link sample C++ program.

rem Create a temporary compile response file.

echo /DDB2WIN /DBORLAND /X- /u /A- /k /N /[y /v /3 /a2 /p- /ml /dc
/NT /Ff /tWS /0d /c /W > bcc.rsp

rem Compile the program. To build a C program, change the source

rem file extension to .c. You might need to change the drive Tletter

rem for the path.

bcc /ID:\BCA\INCLUDE;C:\SQLLIB\WIN\INCLUDE @bcc.rsp %1.cpp

erase bcc.rsp

rem Create a temporary Tink response file. You might need to change

rem the drive Tetters for the path.

echo /LD:\BCA\LIB;C:\SQLLIB\WIN\LIB /c /v /n /P /s /1
/e cOwl+ > tlink.rsp

echo %1.obj+util.obj,%l.exe >> tlink.rsp

echo %1l.map >> tlink.rsp

echo db2w+mathwl+cwl+import >> tlink.rsp

echo %default.def >> tlink.rsp

rem Link the program.

tlink @tlink.rsp

erase tlink.rsp

@echo on

Building Applications for Windows and OS/2 Environments

Compile and Link Options for bldbor

The batch file contains the following compile options:

bcc The Borland C++ compiler.

Ipath Include path for Borland C++ and DB2 include files.
/DDB2WIN Identifies the Windows platform.

/DBORLAND Compiler define to isolate Borland-only code.

/X- Generate autodependency information.

/u Generate underscores.

/A- Use Borland C++ keywords, not ANSI.

/k Generate standard stack frame.

/N Test for stack overflow (recommended for debugging).
ly Generate line numbers for use with debugger.

/v Generate debug information.

/3 Use the instruction set for the 80386 processor.
/a2 Align on word boundary.

/p- Use C calling conventions.

/ml Use the large memory model.

/dc Put constant strings in code segments.

/Vf Use far virtual tables.

/Ff Use automatic far data.

/tWS Make windows .exe with smart callbacks, and all functions exportable.
/0d Disable all optimizations during testing.

/c Create object file only.

/W Create an EasyWin application.

Chapter 5. Building Windows 3.1 Embedded SQL Applications 75

Compile and Link Options for bldbor

The batch file contains the following link options:

t1ink Use the Borland C++ linker to link edit.

Lpath Library path for Borland C++ and DB2 library files.

/v Include debug information.

/n Ignore default libraries.

/P Pack code segments.

/s Create detailed map file.

/1 Create a section in the map file for source code line numbers.

/e Process extended dictionaries.

cowl+ The command line linker requires that the startup module cowl.obj be the
first object file in the tlink statement.

db2w DB2 import LIB file.

mathwl+cwl+import

Borland C++ LIB files.

%default.def The default definition file.

Refer to your compiler documentation for additional compiler options.

To build the sample program updat.sqx, do the following:

1.

The

Start the database manager on the server, if it is not already running, by entering:
db2start

Ensure that you have either a tool installed and running that lets you run Windows
programs from a DOS session, such as WXServer, or that you have prepared your
source file to be used without such a tool. Refer to “Running Batch Files in a
Microsoft Windows Environment” on page 65 for details.

Precompile the sample program, connecting to the SAMPLE database, by entering:
bldbprep updat sample

. Build the sample program by entering:

bTdbor updat

result is an executable file, updat.exe. You can run the executable file against the

SAMPLE database to see how it works by doing the following :

1.

Start the database manager on the server, if it is not already running, by entering:
db2start

Start Windows if it is not already started.

In Windows File Manager, click on File and then Run....

If you built the updat sample program, enter:

path\updat

76 Building Applications for Windows and OS/2 Environments

where path specifies the location of the executable.

Building the Borland C ++ Client Application for Stored Procedures
Stored procedures are programs that access the database and return information to
your Windows 3.1 client application. Stored procedures are built and stored on the
server. As DB2 for Windows 3.1 is client-only, the server runs on another operating
system platform.

To build the stored procedure, outsrv, on Windows NT, see Chapter 4, “Building
Windows NT and Windows 95 Embedded SQL Applications” on page 35. To build the
stored procedure, outsrv, on OS/2, see Chapter 6, “Building OS/2 Embedded SQL
Applications” on page 85. If you are using a UNIX server, refer to the embedded SQL
chapter for that platform in Building Applications for UNIX Environments.

Once you build the stored procedure outsrv, you can build the client application outc1i
that calls the stored procedure. You can build outcli using the b1dbprep.bat and
b1dbor.bat files. Refer to “Borland C++” on page 73 for details.
To run the stored procedure, do the following:

1. Start the database manager on the server, if it is not already running, by entering:

db2start

2. Start Windows if it is not already started.

3. In Windows File Manager, click on File and then Run....

4. Enter the sample program name:

path\outcli remote_database userid password

where

path Specifies the location of the executable.

remote_database Is the name of the database to which you want to connect.
The name could be SAMPLE, or its remote alias, or some
other name.

userid Is a valid user ID.

password Is a valid password.

The client application passes a variable to the server program, outsrv, which gives
it a value and then returns the variable to the client application.

Building the Borland C ++ Client Application for UDFs
User-Defined Functions (UDFs) are your own scalar functions that you build and store
on the server. As DB2 for Windows 3.1 is client-only, the server runs on another
operating system platform.

To build the user-defined function, udf, on Windows NT, see Chapter 4, “Building
Windows NT and Windows 95 Embedded SQL Applications” on page 35. To build the
user-defined function, udf, on 0OS/2, see Chapter 6, “Building OS/2 Embedded SQL

Chapter 5. Building Windows 3.1 Embedded SQL Applications 77

Applications” on page 85. If you are using a UNIX server, refer to the embedded SQL
chapter for that platform in Building Applications for UNIX Environments.

Once you build the user-defined function, udf, you can build the client application,
calludf, that calls it. You can build calludf using the bldbprep.bat and bldbor.bat
files. Refer to “Borland C++" on page 73 for details.
To run the stored procedure, do the following:
1. Start the database manager on the server, if it is not already running, by entering:
db2start
2. Start Windows if it is not already started.
3. In Windows File Manager, click on File and then Run....
4. Enter the sample program name:
path\calludf
where path specifies the location of the executable.
The application calls functions from the udf program.
After you run the calling application, you can also invoke the UDF interactively in a
DOS session from the DB2 command line processor. To start the processor,

double-click on the Command Line Processor icon in the IBM Database 2 Windows
group. Connect to the database, then enter:

SELECT name, DOLLAR(salary), SAMP_MUL(DOLLAR(salary), FACTOR(1.2)) FROM staff

You do not have to type the command line processor commands in uppercase.

Micro Focus COBOL

78

This section presents batch files for building sample COBOL programs for both the
Microsoft Windows environment and the WIN-OS/2 environment. The batch file
bldos2cb.bat contains the commands to build a sample COBOL program using
WIN-OS/2. The batch file bldwincb.bat contains the commands to build a sample
COBOL program using Microsoft Windows.

The first parameter, %1, in each batch file specifies the name of your source file. The
second parameter, %2, specifies the name of the database to which you want to
connect.

The batch files put DB2 command line processor commands to connect to a database
and precompile your program into the temporary file preptmp. You cannot execute
Command Line Processor (CLP) commands directly from a batch file. Refer to the
Command Reference if you need more information about CLP commands.

Building Applications for Windows and OS/2 Environments

Using Bldos2cb.bat
You must run bldos2cb.bat in a DOS Full Screen session. You cannot run
bldos2cb.bat in a DOS Window. See “Running Batch Files in a WIN-OS/2
Environment” on page 67 for details on running batch files in a WIN-OS/2 environment.

@echo off
rem bldos2cb.bat file
rem Build a sample COBOL program.

rem Prepare the source file: connect to a database,

rem precompile the program, and bind the program to the
rem database.

echo connect to %2 > preptmp

echo prep %l.sgb bindfile >> preptmp

echo bind %1.bnd >> preptmp

echo connect reset >> preptmp

echo quit >> preptmp

rem Invoke command line processor with input file preptmp.
win db2clpw -f preptmp

rem NOTE: Update the following assumed drive and directory to your current

rem working drive and directory (where your application source files
rem reside). This way, the compiler will find your source files after
rem exiting the Windows environment.

d.

cd \sqllib\win\samples\cobol

erase preptmp

rem Compile the program.

cobol %1.chl /notrunc;

rem Link the program.

Tink /ST:16000 /se:400 /nod /noe /nopackc
%1.obj+checkerr.obj+cblwina.obj,,,Tcoboldw+1cobol+cobw+db2w+db2gmfw, %1.def;

@echo on

Compile and Link Options for bldos2ch

The batch file contains the following compile options:
cobol The Micro Focus COBOL compiler.

/notrunc Do not truncate in decimal to the number of digits given by the PICTURE
clause on all stores into COMP items.

Chapter 5. Building Windows 3.1 Embedded SQL Applications 79

Compile and Link Options for bldos2cb

The batch file contains the following link options:

Tink Use the Micro Focus COBOL linker to link edit.
/ST:16000 Specify a stack size of at least 16000.

/se:400 Specify the maximum number of segments.
/nod Do not use default libraries.

/noe Turn off extended dictionary searches.
/nopackc Turn off code-segment packing.

checkerr.obj Include the error-checking utility object file.
cblwina.obj Micro Focus COBOL Windows object file.

1coboldw+1coboTl+cobw

Micro Focus COBOL LIB files.

db2w DB2 SDK for Windows import LIB file.
db2gmfw Link with the DB2 exception-handler library for Windows.
%1.def Module definition file. You can copy and modify the sample Micro Focus

COBOL winhello.def file. You may need to increase the values for
HEAPSIZE and STACKSIZE for larger applications. Also, remove the
EXPORTS line.

The stack size specified in %1.def should match the stack size specified
using the /ST: compiler option.

Refer to your compiler documentation for additional compiler options.

To build the sample program updat.sqb, do the following:

1.

Start the database manager on the server, if it is not already running, by entering:
db2start

Copy the winhello.def file from the Micro Focus COBOL install area to updat.def.

3. Edit updat.def to remove the EXPORTS line.

Build the sample program, connecting to the SAMPLE database, by entering:
bldos2cb updat sample

The result is an executable file updat.exe. You can run the executable file against the
SAMPLE database to see how it works by doing the following :

1.

Start the database manager on the server, if it is not already running, by entering:
db2start

Start Windows if it is not already started.

In Windows File Manager, click on File and then Run....

If you built the updat sample program, enter:

path\updat

80 Building Applications for Windows and OS/2 Environments

where path specifies the location of the executable.

Using Bldwincb.bat
Bldwincb.bat assumes a tool such as WXServer, that lets you run Windows programs
from a DOS session, is installed and running. Refer to “The Microsoft Windows and
WIN-OS/2 Environments” on page 65 for details.

@echo off
rem bldwincbh.bat file
rem Build a sample COBOL program.

rem Prepare the source file: connect to a database,

rem precompile the program, and bind the program to the
rem database.

echo connect to %2 > preptmp

echo prep %l.sgb bindfile >> preptmp

echo bind %1.bnd >> preptmp

echo connect reset >> preptmp

echo quit >> preptmp

rem Invoke command Tine processor with input file preptmp using
rem a tool such as WXServer. If you are using another tool,

rem replace wx with the appropriate command.

wx db2clpw -f preptmp

erase preptmp

rem Compile the program.
cobol %1.ch1l /notrunc;

rem Link the program.

Tink /ST:16000 /se:400 /nod /noe /nopackc %1.obj+checkerr.obj+cblwina.obj,,,1cob
oldw+1cobol+cobw+db2w+db2gmfw, sample.def;

@echo on

Compile and Link Options for bldwincb

The batch file contains the following compile options:
cobol The Micro Focus COBOL compiler.

/notrunc Do not truncate in decimal to the number of digits given by the PICTURE
clause on all stores into COMP items.

Chapter 5. Building Windows 3.1 Embedded SQL Applications 81

Compile and Link Options for bldwinch

The batch file contains the following link options:

Tink Use the Micro Focus COBOL linker to link edit.
/ST:16000 Specify a stack size of at least 16000.

/se:400 Specify the maximum number of segments.
/nod Do not use default libraries.

/noe Turn off extended dictionary searches.
/nopackc Turn off code-segment packing.

checkerr.obj Include the error-checking utility object file.
cblwina.obj Micro Focus COBOL Windows object file.

1coboldw+1coboTl+cobw
Micro Focus COBOL LIB files.

db2w DB2 SDK for Windows import LIB file.
db2gmfw Link with the DB2 exception-handler library for Windows.
sample.def

Refer to your compiler documentation for additional compiler options.

To build the sample program updat.sgb, do the following:
1. Start the database manager on the server, if it is not already running, by entering:
db2start
2. Copy the winhello.def file from the Micro Focus COBOL install area to updat.def.
3. Edit updat.def to remove the EXPORTS line.
4. Build the sample program, connecting to the SAMPLE database, by entering:
bTldwincb updat sample
The result is an executable file updat.exe. You can run the executable file against the
SAMPLE database to see how it works by doing the following :
1. Start the database manager on the server, if it is not already running, by entering:
db2start
2. Start Windows if it is not already started.
3. In Windows File Manager, click on File and then Run....
4. If you built the updat sample program, enter:
path\updat
where path specifies the location of the executable.

Note: To build Micro Focus COBOL applications that do not contain embedded SQL,
you can use the batch file b1dwnapi.bat. It contains the same compile and link
options as bldos2cb.bat and bldwincb.bat, but does not connect, prep, bind, or

82 Building Applications for Windows and OS/2 Environments

disconnect from the SAMPLE database. It is used to compile and link the DB2
API sample programs written in COBOL.

Building the Micro Focus COBOL Client Application for Stored Procedures
Stored procedures are programs that access the database and return information to
your Windows client application. Stored procedures are built and stored on the server.
As DB2 for Windows 3.1 is client-only, the server runs on another operating system
platform.

To build the stored procedure, outsrv, on Windows NT, see Chapter 4, “Building
Windows NT and Windows 95 Embedded SQL Applications” on page 35. To build the
stored procedure, outsrv, on OS/2, see Chapter 6, “Building OS/2 Embedded SQL
Applications” on page 85. If you are using a UNIX server, refer to the embedded SQL
chapter for that platform in Building Applications for UNIX Environments.

Once you build the stored procedure, outsrv, you can build the client application,
outcli, that calls the stored procedure. You can build outcli using the bldos2cb.bat
file if you are in the WIN-OS/2 environment, or b1dwincb.bat if you are in the Microsoft
Windows environment. Refer to “Micro Focus COBOL” on page 78 for details.
To run the stored procedure, do the following:

1. Start the database manager on the server, if it is not already running, by entering:

db2start

2. Start Windows if it is not already started.

3. In Windows File Manager, click on File and then Run....

4. Enter the sample program name:

path\outcli remote_database userid password

where

path Specifies the location of the executable.

remote_database Is the name of the database to which you want to connect.
The name could be SAMPLE, or its remote alias, or some
other name.

userid Is a valid user ID.

password Is a valid password.

The client application passes a variable to the server program, outsrv, which gives
it a value and then returns the variable to the client application.

Building the Micro Focus COBOL Client Application for UDFs
User-Defined Functions (UDFs) are your own scalar functions that you store on the
server. As DB2 for Windows 3.1 is client-only, the server runs on another operating
system platform.

Chapter 5. Building Windows 3.1 Embedded SQL Applications 83

84

To build the user-defined function, udf, on Windows NT, see Chapter 4, “Building
Windows NT and Windows 95 Embedded SQL Applications” on page 35. To build the
user-defined function, udf, on OS/2, see Chapter 6, “Building OS/2 Embedded SQL
Applications” on page 85. If you are using a UNIX server, refer to the embedded SQL
chapter for that platform in Building Applications for UNIX Environments.

Once you build udf, you can build the Micro Focus COBOL client application, calludf,
that calls it. You can build calludf using the bldos2cb.bat file if you are in the
WIN-OS/2 environment, or bldwincb.bat if you are in the Microsoft Windows
environment. Refer to “Micro Focus COBOL” on page 78 for details.
To run the UDF, do the following:
1. Start the database manager on the server, if it is not already running, by entering:
db2start
2. Start Windows if it is not already started.
3. In Windows File Manager, click on File and then Run....
4. Enter the sample program name:
path\calludf
where path specifies the location of the executable.
The application calls functions from the udf program.
After you run the calling application, you can also invoke the UDF interactively in a
DOS session from the DB2 command line processor. To start the processor,

double-click on the Command Line Processor icon in the IBM Database 2 Windows
group. Connect to the database, then enter:

SELECT name, DOLLAR(salary), SAMP_MUL(DOLLAR(salary), FACTOR(1.2)) FROM staff

You do not have to type the command line processor commands in uppercase.

Building Applications for Windows and OS/2 Environments

Chapter 6.

Building OS/2 Embedded SQL Applications

This chapter provides detailed information for building embedded SQL applications on
0S/2. In the command files, commands that begin with db2 are Command Line
Processor (CLP) commands. Refer to the Command Reference if you need more
information about CLP commands.

Compound SQL Statements

Compound SQL statements containing user-defined SQLDAs are not permitted in a
16-bit application on OS/2.

C++ Type Decoration Consideration

When writing a stored procedure or a UDF using a C++ compiler on OS/2, you may
want to consider declaring the stored procedure or UDF as:

extern "C" procedure or function declaration

The extern "C" prevents type decoration or mangling of the function name by the C++
compiler. Without this declaration, you have to include all the type decoration for the
function name when you call the stored procedure, or issue the CREATE FUNCTION
statement.

Data Access Builder

VisualAge C++ Version 3 provides a database application development tool called the
Data Access Builder. VisualAge C++ corrective service contains Data Access Builder
enhancements to access DB2 for OS/2 Version 2.1 databases. This service is included
in a CTV30x.ZIP file (where x is a numeric identifier of the particular CSD). To find out
if the enhancement is in a particular CTV30x.ZIP file, look in the CTV30x.LST file that
can be found in the same place as the CTV30x.ZIP file.

These files are available in the following places:

COMPUSERVE
e GO OS2DF1
e Look in library 4

INTERNET
e Use anonymous ftp to get to the software.watson.ibm.com site.

e The files will be in the pub/os2/cset++ directory.

© Copyright IBM Corp. 1993, 1997 85

IBM VisualAge C ++ for OS/2

86

The command file b1dvaemb.cmd, in %DB2PATH%\samples\c, contains the commands to
build a sample C program.

You can also use the command file to build a C++ program after you modify it. The
comments in the command file describe the modifications you need to make.

The first parameter, %1, specifies the name of your source file. The second parameter,
%2, specifies the name of the database to which you want to connect. Parameter %3
specifies the user ID for the database, and %4 specifies the password. Only the first
parameter, the source file name, is required. Database name, user ID, and password
are optional. If no database name is supplied, the program uses the default sample
database.

@echo off

rem bldvaemb command file

rem Builds a C or C++ program that contains embedded SQL

rem Usage: bldvaemb <prog name> [<db_name> [< userid> <password>]]

rem Connect to a database.
if "%1" == "" goto error
if "%2" == "" goto casel
if "%3" == "" goto case2
if "%4" == "" goto error
goto case3
:casel
db2 connect to sample
goto continue
:case2
db2 connect to %2
goto continue
:case3
db2 connect to %2 user %3 using %4
goto continue
:continue

rem Precompile the program. To build a C++ program, change
rem the source file extension to .sgx.
db2 prep %1.sqc bindfile

rem Compile the util.c error checking utility. For C++,
rem change the source file extension to .cxx
icc -c util.c

rem Compile the program. To build a C++ program, change
rem the source file extension to .cxx.
icc -C+ -0- -Ti+ %l.c

rem Link the program.
i1ink /NOFREE /NOI /DEBUG /ST:32000 /PM:VIO %1.obj util.obj,,,db2api;

Building Applications for Windows and OS/2 Environments

rem To use the LINK386 linker, uncomment the following 1ink386 command
rem and comment out the above ilink command.
rem 1ink386 /NOI /DEBUG /ST:32000 /PM:VIO %1.obj util.obj,,,db2api;

rem Bind the program to the database.

db2 bind %1.bnd

rem Disconnect from the database.
db2 connect reset

goto exit

error

echo Usage: bldvaemb <prog_name> [<db_name> [< userid> <password>]]

cexit
@echo on

Compile and Link Options for bldvaemb

icc
-C+

-0-
-Ti+

The command file contains the following compile options:

The IBM VisualAge C++ compiler.

Perform compile only; no link. This book assumes that compile and link are
separate steps.

No optimization. It is easier to use a debugger with optimization off.
Generate debugger information

ilink
/NOFREE
/NOI
/DEBUG
/ST:32000
/PM:VIO
util.obj
db2api

The command file contains the following link options:

Refer to your compiler documentation for additional compiler options.

Use the ilink linker to link edit.

No free format.

No Ignore Case. Force case sensitive identifiers.
Include debugging information.

Specify a stack size of at least 32000.

Enable the program to run in an OS/2 window.
Include the object file for error checking.

Link with the DB2 library.

To build the sample program updat.sqc, do the following:

1. If necessary, go to the window in which you set your environment variables. See
“Setting the OS/2 Environment” on page 21 if you need more information.

2. Start the database manager on the server, if it is not already running, by entering:

db2start

3. Build the sample program, connecting to the SAMPLE database, by entering:

bldvaemb updat

The result is an executable file updat. You can run the executable file against the
SAMPLE database to see how it works by doing the following :

Chapter 6. Building 0S/2 Embedded SQL Applications 87

1. If necessary, go to the window in which you set your environment variables.

2. Start the database manager on the server, if it is not already running, by entering:
db2start

3. Run the program. If you built the updat sample program, enter:
updat

Note: To build VisualAge C++ applications that do not contain embedded SQL,
you can use the command file b1dvaapi.cmd. It contains the same compile
and link options as bldvaemb.cmd, but does not connect, prep, bind, or
disconnect from the SAMPLE database. It is used to compile and link the
DB2 API sample programs written in C/C++.

Building IBM VisualAge C ++ Stored Procedures

88

The command file bldvastp, in %DB2PATH%\samples\c, contains the commands to build a
C stored procedure for a DB2 for OS/2 server. The command file compiles the stored
procedure into a DLL on the server.

You can also use the command file to build a C++ stored procedure after you modify it.
The comments in the command file describe the modifications you need to make.

The first parameter, %1, specifies the name of your source file. The second parameter,
%2, specifies the name of the database to which you want to connect. Parameter %3
specifies the user ID for the database, and %4 specifies the password. Only the first
parameter, the source file name, is required. Database name, user ID, and password
are optional. If no database name is supplied, the program uses the default sample
database.

The command file uses the source file name, %1, for the DLL name.

@echo off

rem bldvastp command file

rem Builds a C or C++ stored procedure

rem Usage: bldvastp <prog name> [<db name> [< userid> <password>]]

rem Connect to a database.
if "%1" == "" goto error
if "%2" == "" goto casel
if "%3" == "" goto case2
if "%4" == "" goto error
goto case3
:casel

db2 connect to sample

goto continue
:case2

db2 connect to %2

goto continue
:case3

db2 connect to %2 user %3 using %4

Building Applications for Windows and OS/2 Environments

goto continue
:continue

rem Precompile the program. To build a C++ stored procedure, change
rem the source file extension to .sgx.
db2 prep %1.sqc bindfile

rem Compile the program. To build a C++ stored procedure, change
rem the source file extension to .cxx
icc -C+ -Ti+ -Ge- -Gm+ -W2 %1.c

rem Link the program.
i1ink /NOFREE /NOI /DEBUG /ST:32000 %1.obj,%1.d11,,db2api,%1.def;

rem To use LINK386 linker, comment out the above ilink command
rem and uncomment the following 1ink386 command.

rem 1ink386 /NOI

/DEBUG /ST:32000 %1.0bj,%1.d11,,db2api,%1.def;

rem Bind the program to the database.

db2 bind %1.bnd

rem Disconnect from the database.
db2 connect reset

rem Copy stored procedure to the %DB2PATH%\function directory.
rem Substitute the path where DB2 is installed for %DB2PATH%.
copy %1.d11 %DB2PATH%\function

goto exit

ierror

echo Usage: bldvastp <prog_name> [<db_name> [< userid> <password>]]

cexit
@echo on

Compile and Link Options for bldvastp

icc
-C+

-Ti+
-Ge-

-Gm+
-W2

The command file contains the following compile options:

The IBM VisualAge C++ compiler.

Perform compile only; no link. This book assumes that compile and link are
separate steps.

Generate debugger information.

Build a .DLL file. Use the version of the runtime library that is statically
linked.

Link with multitasking libraries.

Output warning, error, and severe and unrecoverable error messages.

Chapter 6. Building OS/2 Embedded SQL Applications

89

90

Compile and Link Options for bldvastp

The command file contains the following link options:

ilink Use the ilink linker to link edit.

/NOFREE No free format.

/NOI No Ignore Case. Force case sensitive identifiers.
/DEBUG Include debugging information.

/ST:32000 Specify a stack size of at least 32000.

%1.d11 Include the dynamic link library.

db2api Link with the DB2 library.

%1.def Module definition file.

Refer to your compiler documentation for additional compiler options.

To build the outsrv.sqc stored procedure, do the following:

1. If necessary, go to the window in which you set your environment variables. Refer
to “Setting the OS/2 Environment” on page 21 if you need more information.

2. Start the database manager on the server, if it is not already running, by entering:
db2start

3. Build the stored procedure, connecting to the SAMPLE database, by entering:
bldvastp outsrv

The command file uses the module definition file outsrv.def, contained in the
same directory as the sample programs, to build the stored procedure. The
command file copies the stored procedure DLL, outsrv.d11, to the server in the
path %DB2PATH%\function to indicate that the stored procedure is fenced. If you
want the stored procedure to be unfenced, you must move it to the

%DB2PATH%\ function\unfenced directory. These paths are in the home directory of
the DB2 instance.

Note: An unfenced stored procedure or UDF runs in the same address space as
the database manager and results in increased performance when
compared to a fenced stored procedure or UDF, which runs in an address
space isolated from the database manager. With unfenced stored
procedures or UDFs there is a danger that user code could accidentally or
maliciously damage the database control structures. Therefore, you should
only run unfenced stored procedures or UDFs when you need to maximize
the performance benefits. Ensure these programs are thoroughly tested
before running them as unfenced. Refer to the Embedded SQL
Programming Guide for more information about fenced and unfenced stored
procedures.

Once you build the stored procedure outsrv, you can build the client application outcli
that calls the stored procedure. You can build outcl1i by using the b1dvaemb command
file. Refer to “IBM VisualAge C++ for OS/2” on page 86 for details.

To run the stored procedure, do the following:

1. If necessary, go to the window in which you set your environment variables.

Building Applications for Windows and OS/2 Environments

2. Start the database manager on the server, if it is not already running, by entering:
db2start

3. Run the sample client application by entering:

outcli remote_database userid password

where

remote_database Is the name of the database to which you want to connect.
The name could be SAMPLE, or its remote alias, or some
other name.

userid Is a valid user ID.

password Is a valid password.

The client application passes a variable to the server program, outsrv, which gives
it a value and then returns the variable to the client application.

Building IBM VisualAge C ++ User-Defined Functions (UDFs)
The command file bldvaudf, in %DB2PATH%\samples\c, contains the commands to build a
C UDF. UDFs are compiled like stored procedures, but you do not need to connect to a
database or precompile and bind the program.

Note: A UDF does not contain embedded SQL statements. Rather, the application
that uses the UDF contains the statements, such as calludf.

You can also use the command file to build a C++ UDF after you modify it. The
comments in the command file describe the modifications you need to make.

The parameter, %1, specifies the name of your source file.

The command file uses the source file name, %1, for the DLL name.

@echo off

rem bldvaudf command file

rem Builds a C or C++ user-defined function (UDF)
rem Usage: bldvaudf <UDF_name>

rem Compile the program. To build a C++ UDF, change
rem the source file extension to .cxx.
icc -C+ -Ti+ -Ge- -Gm+ -W2 %1.c

rem Link the program.
i1ink /NOFREE /MAP /NOI /DEBUG /ST:32000 %1.obj,%1.d11,,db2api db2apie,%1.def;

rem To use the LINK386 Tinker, uncomment the following 1ink386 command
rem and comment out the above ilink command.
rem 1ink386 /MAP /NOI /DEBUG /ST:32000 %1.obj,%1.d11,,db2api db2apie,%1.def;

rem Copy the UDF to the %DB2PATH%\function directory

copy %1.d11 %DB2PATH%\function
@echo on

Chapter 6. Building 0S/2 Embedded SQL Applications 91

Compile and Link Options for bldvaudf

icc
-C+

-Ti+
-Ge-

-Gm+
-W2

The command file contains the following compile options:

The IBM VisualAge C++ compiler.

Perform compile only; no link. This book assumes that compile and link are
separate steps.

Generate debugger information.

Build a .DLL file. Use the version of the runtime library that is statically
linked.

Link with multitasking libraries.

Output warning, error, and severe and unrecoverable error messages.

ilink
/NOFREE
/MAP

/NOI
/DEBUG
/ST:32000
%1.d11
db2api
db2apie
%1.def

The command file contains the following link options:

Use the ilink linker to link edit.

No free format.

Generate a map file.

No Ignore Case. Force case sensitive identifiers.
Include debugging information.

Specify a stack size of at least 32000.

Include the dynamic link library.

Link with the DB2 library.

Link with the DB2 API Engine library.

Module definition file.

Refer to your compiler documentation for additional compiler options.

To build the user-defined function, udf, do the following:

1. If necessary, go to the window in which you set your environment variables. Refer
to “Setting the OS/2 Environment” on page 21 if you need more information.

2. Build the user-defined function by entering:
bldvaudf udf

The command file uses the module definition file, udf.def, contained in the same
directory as the sample programs, to build the user-defined function. The command
file copies the user-defined function DLL, udf.d11, to the server in the path
%DB2PATH%\ function to indicate that the UDF is fenced. If you want the UDF to be
unfenced, you must move it to the %DB2PATH%\function\unfenced directory. These
paths are in the home directory of the DB2 instance.

Note:

An unfenced UDF or stored procedure runs in the same address space as
the database manager and results in increased performance when
compared to a fenced UDF or stored procedure, which runs in an address
space isolated from the database manager. With unfenced UDFs or stored
procedures there is a danger that user code could accidentally or
maliciously damage the database control structures. Therefore, you should
only run unfenced UDFs or stored procedures when you need to maximize
the performance benefits. Ensure these programs are thoroughly tested
before running them as unfenced. Refer to the Embedded SQL
Programming Guide for more information about fenced and unfenced
UDFs.

92 Building Applications for Windows and OS/2 Environments

Once you build udf, you can build the client application, calludf, that calls it. You can
build calludf by using the b1dvaemb command file. Refer to “IBM VisualAge C++ for
0S/2" on page 86 for details.
To run the UDF, do the following:
1. If necessary, go to the window in which you set your environment variables.
2. Start the database manager on the server, if it is not already running, by entering:
db2start
3. Run the sample calling application by entering:
calludf
The application calls functions from the udf library.

After you run the calling application, you can also invoke the UDF interactively
using the command line processor. Connect to the database, then enter:

SELECT name, DOLLAR(salary), SAMP_MUL(DOLLAR(salary), FACTOR(1.2))
FROM staff

You do not have to type the command line processor commands in uppercase.

Borland C ++ for OS/2

The command file b1dbremb.cmd, in %DB2PATH%\samples\c, contains the commands to
build a sample Borland C program.

You can also use the text of the command file to build a Borland C++ program after you
modify it. The comments in the command file describe the modifications you need to
make.

The first parameter, %1, specifies the name of the source file. The second parameter,
%2, specifies the name of the database to which you want to connect. Parameter %3
specifies the user ID for the database, and %4 specifies the password. Only the first
parameter, the source file name, is required. Database name, user ID, and password
are optional. If no database name is supplied, the program uses the default sample
database.

@echo off

rem bldbremb command file

rem Builds a Borland C or C++ program that contains embedded SQL

rem Usage: bldbremb <prog _name> [<db_name> [< userid> <password>]]

rem Connect to a database.
if "%1" == "" goto error
if "%2" == "" goto casel
if "%3" == "" goto case2
if "%4" == "" goto error
goto case3
:casel

db2 connect to sample

Chapter 6. Building 0S/2 Embedded SQL Applications 93

goto continue
:case?
db2 connect to %2
goto continue
:case3
db2 connect to %2 user %3 using %4
goto continue
:continue

rem Precompile the program. For a C++ program, change the target BORLAND_C
rem to BORLAND_CPLUSPLUS, and use either the .sqc or .sqx extension.
db2 prep %1.sqc bindfile target BORLAND C

rem Compile the program. For a C++ program, change .c to .cpp, and add the -P

rem option to bcc. Note: A1l C/C++ files that include DB2 header files, and have not
rem been precompiled using one of the targets BORLAND C or BORLAND_CPLUSPLUS,

rem must be compiled using the -DSQL_BORLAND_C_OR_CPLUSPLUS define.

rem For example, the file util.c must be compiled with this define.

bcc -I%db2path%\include -c -w- -a4 -DSQL_BORLAND_C_OR_CPLUSPLUS %1.c util.c

rem Link the program (using the Borland Tinker).
tlink /v /Toe /Le:\bcos2\1ib e:\bcos2\1ib\c02.0bj %1.0bj
util.obj,%1l.exe,,%db2path%\1ib\db2api c2 os2

rem Bind the program to the database.
db2 bind %1.bnd

rem Disconnect from the database.
db2 connect reset

goto exit

zerror
echo Usage: bldbremb <prog name> [<db name> [< userid> <password>]]

texit
@echo on

94 Building Applications for Windows and OS/2 Environments

Compile and Link Options for bldbremb

The command file contains the following compile options:

bcc The Borland C++ compiler.

-1%db2path%\include Search path for the DB2 header files.

-c Perform compile only; no link. This section assumes that compile
and link are separate steps.

-P For C++ only. Perform a C++ compile regardless of source file
extension.

-w- Do not display compiler warnings.

-a4 Align to double word boundaries.

-DSQL_BORLAND_C_OR_CPLUSPLUS
Compile a C or C++ file using the Borland C++ compiler. All C/C++
files that include DB2 header files and have not been precompiled
using one of the targets BORLAND_C or BORLAND_CPLUSPLUS
must be compiled using the -DSQL_BORLAND_C_OR_CPLUSPLUS
define. The file util.c is an example of a file that must be compiled
with this define.

The command file contains the following link options:

tlink The Borland C++ linker.

/v Includes full symbolic debugging information.

/Toe Build an .exe file.

/Le:\bcos2\1ib Search path for the Borland C++ libraries (assuming that the Borland

C++ libraries are installed in e:\bcos2\lib).

e:\bcos2\1ib\c02.0bj Borland initialization module for programs (assuming that the Borland
C++ libraries are installed in e:\bcos2\lib). This must be the first
object file in the list.

util.obj Include this object file for error checking.
%db2path%\1ib\db2api Link with the DB2 library.

c2 Link with the Borland run-time library.
0s2 Link with the OS/2 import library.

Refer to your compiler documentation for additional compiler options.

To build the sample program updat.sqc, do the following:

1. If necessary, go to the window in which you set your environment variables. Refer
to “Setting the OS/2 Environment” on page 21 if you need more information.

2. Start the database manager on the server, if it is not already running, by entering:
db2start

3. Build the sample program, connecting to the SAMPLE database, by entering:
bT1dbremb updat
The result is an executable file, updat.exe. You can run the executable file against the
SAMPLE database to see how it works by doing the following :
1. If necessary, go to the window in which you set your environment variables.

2. Start the database manager on the server, if it is not already running, by entering:
db2start

Chapter 6. Building OS/2 Embedded SQL Applications 95

3. Run the program. If you built the updat sample program, enter:
updat

Note: To build Borland C++ applications that do not contain embedded SQL, you
can use the command file b1dbrapi.cmd. It contains the same compile and
link options as bldbremb.cmd, but does not connect, prep, bind, or
disconnect from the SAMPLE database. It is used to compile and link the
DB2 API sample programs written in C/C++.

Building Borland C ++ Stored Procedures

The command file b1dbrstp.cmd, in %DB2PATH%\samples\c, contains the commands to
build a Borland C stored procedure for a DB2 for OS/2 server. The command file
compiles the stored procedure into a DLL on the server.

You can also use the command file to build a Borland C++ stored procedure after you
modify it. The comments in the command file describe the modifications you need to
make.

The first parameter, %1, specifies the name of your source file. The second parameter,
%2, specifies the name of the database to which you want to connect. Parameter %3
specifies the user ID for the database, and %4 specifies the password. Only the first
parameter, the source file name, is required. Database name, user ID, and password
are optional. If no database name is supplied, the program uses the default sample
database.

The command file uses the source file name, %1, for the DLL name.

@echo off

rem bldbrstp command file

rem Builds a Borland C or C++ stored procedure

rem Usage: bldbrstp <prog name> [<db_name> [< userid> <password>]]

rem Connect to a database.
if "%1" == "" goto error
if "%2" == "" goto casel
if "%3" == "" goto case2
if "%4" == "" goto error
goto case3
:casel
db2 connect to sample
goto continue
:case2
db2 connect to %2
goto continue
:case3
db2 connect to %2 user %3 using %4
goto continue
:continue

96 Building Applications for Windows and OS/2 Environments

rem
rem
db2

rem
rem
rem
rem
rem
bcc

rem

Precompile the program. For a C++ program, change the target BORLAND C
to BORLAND_CPLUSPLUS, and use either the .sqc or the .sqx extension.
prep %l.sqc bindfile target BORLAND_C

Compile the program. For a C++ stored procedure, change .c to .cpp and add the
-P option to bcc. Note: A11 C/C++ files that include DB2 header files and have
not been precompiled using one of the targets BORLAND_C or BORLAND_CPLUSPLUS,
must be compiled using the -DSQL_BORLAND_C_OR_CPLUSPLUS define.

For example, the file util.c must be compiled with this define.
-I%db2path%\include -c -w- -a4 -DSQL_BORLAND _C_OR_CPLUSPLUS %1.c

Link the program (using the Borland Tinker).

tlink /v /Tod /Le:\bcos2\1ib e:\bcos2\1ib\c02d.obj

rem
db2

rem
db2

rem
rem

%1.0bj,%1.d11, ,%db2path%\1ib\db2api c2 o0s2,%1.def

Bind the program to the database.
bind %1.bnd

Disconnect from the database.
connect reset

Copy the dynamic Tink library to the function subdirectory.
Note: Substitute the DB2 instance directory for %db2path%

copy %1.d11 %db2path%\function

goto exit

:error
echo Usage: bldbrstp <prog_name> [<db_name> [< userid> <password>]]

rexi

t

@echo on

Compile and Link Options for bldbrstp

The command file contains the following compile options:

bcc The Borland C++ compiler.
-I%db2path%\include Search path for the DB2 header files.

-P For C++ only. Perform a C++ compile regardless of source file
extension.

-w- Do not display compiler warnings.

-a4 Align to double word boundaries.

-DSQL_BORLAND_C_OR_CPLUSPLUS

Perform compile only; no link. This section assumes that compile
and link are separate steps.

Compile a C or C++ file using the Borland C++ compiler. All C/C++
files that include DB2 header files and have not been precompiled
using one of the targets BORLAND_C or BORLAND_CPLUSPLUS
must be compiled using the -DSQL_BORLAND_C_OR_CPLUSPLUS
define. The file util.c is an example of a file that must be compiled
with this define.

Chapter 6. Building 0S/2 Embedded SQL Applications 97

98

Compile and Link Options for bldbrstp

The command file contains the following link options:

tlink The Borland C++ linker.

/v Includes full symbolic debugging information.

/Tod Build a DLL.

/Le:\bcos2\1ib Search path for the Borland C++ libraries (assuming that the Borland

C++ libraries are installed in e:\bcos2\lib).

e:\bcos2\1ib\c02d.obj Borland initialization module for programs (assuming that the Borland
C++ libraries are installed in e:\bcos2\lib). This must be the first
object file in the list.

util.obj Include this object file for error checking.
%db2path%\1ib\db2api Link with the DB2 library.

c2 Link with the Borland run-time library.
0s2 Link with the OS/2 import library.

%1.def Module definition file.

Refer to your compiler documentation for additional compiler options.

To build the outsrv.sqc stored procedure, do the following:

1. If necessary, go to the window in which you set your environment variables. Refer
to “Setting the OS/2 Environment” on page 21 if you need more information.

2. The command file uses the module definition file, outsrv.def, contained in the
same directory as the sample programs, to build the stored procedure. Edit the
outsrv.def file to make the following changes:

a. Remove TERMINSTANCE from the line:

LIBRARY OUTSRV INITINSTANCE TERMINSTANCE
b. Remove the line:

SHARED

3. Start the database manager on the server, if it is not already running, by entering:
db2start

4. Build the stored procedure, connecting to the SAMPLE database, by entering:
bldbrstp outsrv

The command file copies the stored procedure DLL, outsrv.d11, to the server in
the path %DB2PATH%\function to indicate that the stored procedure is fenced. If you
want the stored procedure to be unfenced, you must move it to the
%DB2PATH%\function\unfenced directory. These paths are in the home directory of
the DB2 instance.

Note: An unfenced stored procedure or UDF runs in the same address space as
the database manager and results in increased performance when
compared to a fenced stored procedure or UDF, which runs in an address
space isolated from the database manager. With unfenced stored
procedures or UDFs there is a danger that user code could accidentally or
maliciously damage the database control structures. Therefore, you should
only run unfenced stored procedures or UDFs when you need to maximize

Building Applications for Windows and OS/2 Environments

the performance benefits. Ensure these programs are thoroughly tested
before running them as unfenced. Refer to the Embedded SQL
Programming Guide for more information about fenced and unfenced stored
procedures.

Once you build the stored procedure, outsrv, you can build the client application,
outcli, that calls the stored procedure. You can build outcli using the b1dbremb
command file. Refer to “Borland C++ for OS/2” on page 93 for details.
To run the stored procedure, do the following:

1. If necessary, go to the window in which you set your environment variables.

2. Start the database manager on the server, if it is not already running, by entering:
db2start

3. Run the sample client application by entering:

outcli remote_database userid password

where

remote_database Is the name of the database to which you want to connect.
The name could be SAMPLE, or its remote alias, or some
other name.

userid Is a valid user ID.

password Is a valid password.

The client application passes a variable to the server program, outsrv, which gives
it a value and then returns the variable to the client application.

Building Borland C ++ User-Defined Functions (UDFSs)
The command file b1dbrudf.cmd, in %DB2PATH%\samples\c, contains the commands to
build a Borland C UDF. UDFs are compiled like stored procedures, but you do not need
to connect to a database or precompile and bind the program.

You can also use the text of the command file to build a Borland C++ UDF after you
modify it. The comments in the command file describe the modifications you need to
make.

Note: A UDF does not contain embedded SQL statements. Rather, the application
that uses the UDF contains the statements, such as calludf.

The first parameter, %1, specifies the name of your source file.

The command file uses the source file name, %1, for the DLL name.

@echo off

rem bldbrudf command file

rem Builds a C or C++ user-defined function (UDF)
rem Usage: bldbrudf <UDF_name>

Chapter 6. Building 0S/2 Embedded SQL Applications 99

100

rem Compile the program. To build a C++ user-defined function (UDF),
rem change the source file extension from .c to .cpp, and add

rem the -P option to bcc. Note: A11 C/C++ files that include DB2

rem header files, and have not been precompiled using one of the

rem targets BORLAND C or BORLAND_ CPLUSPLUS, must be compiled

rem using the -DSQL_BORLAND C_OR_CPLUSPLUS define.

rem For example, the file util.c must be compiled with this define.
bcc -I%db2path%\include -c -w- -a4 -DSQL_BORLAND_C_OR_CPLUSPLUS %1.c

rem Link the program (using the Borland Tinker).
tlink /v /Tod /Le:\bcos2\1ib e:\bcos2\1ib\c02d.obj
%1.0bj,%1.d11,,%db2path%\1ib\db2api %db2path%\1ib\db2apie c2 o0s2,%1.def

rem Copy the dynamic Tink library to the function subdirectory.
rem Note: Substitute the DB2 instance directory for %db2path%
copy %1.d11 %db2path%\function

@echo on

Compile and Link Options for bldbrudf

bcc
-1%db2path%\include

-a4

The command file contains the following compile options:

The Borland C++ compiler.

Search path for the DB2 header files.

Perform compile only; no link. This section assumes that compile
and link are separate steps.

For C++ only. Perform a C++ compile regardless of source file
extension.

Do not display compiler warnings.

Align to double word boundaries.

-DSQL_BORLAND_C_OR_CPLUSPLUS

Compile a C or C++ file using the Borland C++ compiler. All C/C++
files that include DB2 header files and have not been precompiled
using one of the targets BORLAND_C or BORLAND_CPLUSPLUS
must be compiled using the -DSQL_BORLAND_C_OR_CPLUSPLUS
define. The file util.c is an example of a file that must be compiled
with this define.

Building Applications for Windows and OS/2 Environments

Compile and Link Options for bldbrudf

The command file contains the following link options:

tlink The Borland C++ linker.

/v Includes full symbolic debugging information.

/Tod Build a DLL.

/Le:\bcos2\1ib Search path for the Borland C++ libraries (assuming that the Borland

C++ libraries are installed in e:\bcos2\lib).

e:\bcos2\1ib\c02d.obj Borland initialization module for programs (assuming that the Borland
C++ libraries are installed in e:\bcos2\lib). This must be the first
object file in the list.

%db2path%\1ib\db2api Link with the DB2 library.

%db2path%\1ib\db2apie Link with the DB2 API Engine library.

c2 Link with the Borland run-time library.
0s2 Link with the OS/2 import library.
%1.def Module definition file.

Refer to your compiler documentation for additional compiler options.

To build the user-defined function, udf, do the following:

1. If necessary, go to the window in which you set your environment variables. Refer
to “Setting the OS/2 Environment” on page 21 if you need more information.

2. The command file uses the module definition file, udf.def, contained in the same
directory as the sample programs, to build the user-defined function. Edit the
udf.def file to make the following changes:

a. Remove TERMINSTANCE from the line:
LIBRARY OUTSRV INITINSTANCE TERMINSTANCE
b. Remove the line:

SHARED

3. Start the database manager on the server, if it is not already running, by entering:
db2start

4. Build the UDF by entering:
bldbrudf udf

The command file copies the user-defined function DLL, udf.d11, to the server in
the path %DB2PATH%\function to indicate that the UDF is fenced. If you want the
UDF to be unfenced, you must move it to the %DB2PATH%\function\unfenced
directory. These paths are in the home directory of the DB2 instance.

Note: An unfenced UDF or stored procedure runs in the same address space as
the database manager and results in increased performance when
compared to a fenced UDF or stored procedure, which runs in an address
space isolated from the database manager. With unfenced UDFs or stored
procedures there is a danger that user code could accidentally or
maliciously damage the database control structures. Therefore, you should
only run unfenced UDFs or stored procedures when you need to maximize

Chapter 6. Building OS/2 Embedded SQL Applications 101

the performance benefits. Ensure these programs are thoroughly tested
before running them as unfenced. Refer to the Embedded SQL
Programming Guide for more information about fenced and unfenced
UDFs.

Once you build udf, you can build the application calludf that calls it. You can build
calludf using the bTdbremb command file. Refer to “Borland C++ for OS/2” on page 93
for details.
To run the UDF, do the following:
1. If necessary, go to the window in which you set your environment variables.
2. Start the database manager on the server, if it is not already running, by entering:
db2start
3. Run the sample calling application by entering:
calludf
The application calls functions from the udf library.

After you run the calling application, you can also invoke the UDF interactively
using the Command Line Processor. Connect to the database, then enter:

SELECT name, DOLLAR(salary), SAMP_MUL(DOLLAR(salary), FACTOR(1.2))
FROM staff

You do not have to type the Command Line Processor commands in uppercase.

IBM VisualAge for COBOL for OS/2

102

The command file b1dibmcbh.cmd, in %DB2PATH%\samples\cobol, contains the commands
to build a sample COBOL program.

The first parameter, %1, specifies the name of your source file. The second parameter,
%2, specifies the name of the database to which you want to connect. Parameter %3
specifies the user ID for the database, and %4 specifies the password. Only the first
parameter, the source file name, is required. Database name, user ID, and password
are optional. If no database name is supplied, the program uses the default sample
database.

@echo off

rem bldibmcb command file

rem Builds a COBOL program that contains embedded SQL

rem Usage: bldibmcb <prog name> [<db_name> [< userid> <password>]]

rem Connect to a database.
if "%1" == "" goto error
if "%2" == "" goto casel
if "%3" == "" goto case2
if "%4" == "" goto error
goto case3

:casel

Building Applications for Windows and OS/2 Environments

db2 connect to sample
goto continue
:case2
db2 connect to %2
goto continue
:case3
db2 connect to %2 user %3 using %4
goto continue
:continue

rem Precompile the program.
db2 prep %1.sgb bindfile target ibmcob

rem Compile the checkerr error checking utility.
cob2 -c -g -gpgmname(mixed) -qlib -I%DB2PATH%\include\cobol_a checkerr.chl

rem Compile the program.
cob2 -c -g -gpgmname(mixed) -qlib -I%DB2PATH%\include\cobol_a %1.cbl

rem Link the program.
ilink %1.0bj checkerr.obj db2api.lib /ST:32000 /PM:VIO /NOI /DEBUG

rem Bind the program to the database.
db2 bind %1.bnd

rem Disconnect from the database.
db2 connect reset

goto exit

terror
echo Usage: bldibmcb <prog name> [<db_name> [< userid> <password>]]

cexit
@echo on

Compile and Link Options for bldibmcb

The command file contains the following compile options:

cob2 The IBM COBOL compiler.

-c Perform compile only; no link. This book assumes that compile and link
are separate steps.

-g Include debug information.

-gpgmname (mixed) Instructs the compiler to permit CALLs to library entry points with
mixed-case names.

-qlib Instructs the compiler to process COPY statements.

-Ipath Specify the location of the DB2 include files. For example:
-1%DB2PATH%\include\cobol_a.

Chapter 6. Building OS/2 Embedded SQL Applications 103

Compile and Link Options for bldibmcb

The command file contains the following link options:

ilink Use the ilink linker to link edit.

checkerr.obj Include the error-checking utility object file.
db2api.lib Link with the DB2 library.

/ST:32000 Specify a stack size of at least 32000.

/PM:VIO Enable the program to run in an OS/2 window.
/NOI Do not ignore case when linking.

/DEBUG Include debugging information.

Refer to your compiler documentation for additional compiler options.

To build the sample program updat.sqb, do the following:

1. If necessary, go to the window in which you set your environment variables. Refer
to “Setting the OS/2 Environment” on page 21 if you need more information.

2. Start the database manager on the server, if it is not already running, by entering:
db2start

3. Build the sample program, connecting to the SAMPLE database, by entering:
b1dibmcb updat

The result is an executable file updat. You can run the executable file against the
SAMPLE database to see how it works by doing the following :

1. If necessary, go to the window in which you set your environment variables.

2. Start the database manager on the server, if it is not already running, by entering:
db2start

3. Run the program. If you built the updat sample program, enter:
updat

Note: To build IBM VisualAge for COBOL applications that do not contain embedded
SQL, you can use the command file b1dapicb.cmd. It contains the same compile
and link options as b1dibmcb.cmd, but does not connect, prep, bind, or
disconnect from the SAMPLE database. It is used to compile and link the DB2
API sample programs written in COBOL.

Building IBM VisualAge for COBOL Stored Procedures
The command file b1dicobs, in %DB2PATH%\samples\cobol, contains the commands to
build a stored procedure. The command file compiles the stored procedure into a DLL
on the server.

The first parameter, %1, specifies the name of your source file. The second parameter,
%2, specifies the name of the database to which you want to connect. Parameter %3
specifies the user ID for the database, and %4 specifies the password. Only the first
parameter, the source file name, is required. Database name, user ID, and password
are optional. If no database name is supplied, the program uses the default sample
database.

104 Building Applications for Windows and OS/2 Environments

The command file uses the source file name, %1, for the DLL name.

@echo off

rem bldicobs command file

rem Builds a COBOL stored procedure

rem Usage: bldicobs <prog _name> [<db_name> [< userid> <password>]]

rem Connect to a database.

if "%1" == "" goto error
if "%2" == "" goto casel
if "%3" == "" goto case2
if "%4" == "" goto error
goto case3

:casel

db2 connect to sample
goto continue
:case?
db2 connect to %2
goto continue
:case3
db2 connect to %2 user %3 using %4
goto continue
:continue

rem Precompile the program.
db2 prep %1.sgb bindfile target ibmcob

rem Compile the program.
cob2 -c -g -gpgmname(mixed) -qlib -I%DB2PATH%\include\cobol_a %1.cbl

rem Link the program.
ilink %1.0bj checkerr.obj %1.def db2api.lib /ST:32000 /PM:VIO /NOI /DEBUG

rem Bind the program to the database.
db2 bind %1.bnd

rem Disconnect from the database.
db2 connect reset

rem Copy stored procedure to the %DB2PATH%\function directory.
rem Substitute the path where DB2 is installed for %DB2PATH%.
copy %1.d11 %DB2PATH%\function

goto exit

zerror
echo Usage: bldicobs <prog_name> [<db_name> [< userid> <password>]]

texit
@echo on

Chapter 6. Building OS/2 Embedded SQL Applications

105

106

Compile and Link Options for bldicobs

The command file contains the following compile options:

cob2 The IBM COBOL compiler.

-c Perform compile only; no link. This book assumes that compile and link
are separate steps.

-g Include debug information.

-gpgmname (mixed) Instructs the compiler to permit CALLs to library entry points with
mixed-case names.

-qlib Instructs the compiler to process COPY statements.

-Ipath Specify the location of the DB2 include files. For example:
-1%DB2PATH%\include\cobol_a.

The command file contains the following link options:

ilink Use the ilink linker to link edit.

checkerr.obj Include the error-checking utility object file.
%1.def Module definition file.

db2api.lib Link with the DB2 library.

/ST:32000 Specify a stack size of at least 32000.

/PM:VIO Enable the program to run in an OS/2 window.
/NOI Do not ignore case when linking.

/DEBUG Include debugging information.

Refer to your compiler documentation for additional compiler options.

To build the outsrv.sgb stored procedure, do the following:

1. If necessary, go to the window in which you set your environment variables. Refer
to “Setting the OS/2 Environment” on page 21 if you need more information.

2. Start the database manager on the server, if it is not already running, by entering:
db2start

3. Build the stored procedure, connecting to the SAMPLE database, by entering:
bldicobs outsrv

The command file uses the module definition file outsrv.def, contained in the
same directory as the sample programs, to build the stored procedure. The
command file copies the stored procedure DLL, outsrv.dl11, to the server in the
path %DB2PATH%\function to indicate that the stored procedure is fenced. If you
want the stored procedure to be unfenced, you must move it to the
%DB2PATH%\function\unfenced directory. These paths are in the home directory of
the DB2 instance.

Note: An unfenced stored procedure or UDF runs in the same address space as
the database manager and results in increased performance when
compared to a fenced stored procedure or UDF, which runs in an address
space isolated from the database manager. With unfenced stored
procedures or UDFs there is a danger that user code could accidentally or
maliciously damage the database control structures. Therefore, you should
only run unfenced stored procedures or UDFs when you need to maximize
the performance benefits. Ensure these programs are thoroughly tested
before running them as unfenced. Refer to the Embedded SQL

Building Applications for Windows and OS/2 Environments

Programming Guide for more information about fenced and unfenced stored
procedures.

Once you build the stored procedure, outsrv, you can build the client application,
outcli, that calls the stored procedure. You can build outcli using the b1dibmcb
command file. Refer to “IBM VisualAge for COBOL for OS/2” on page 102 for details.

To run the stored procedure, do the following:
1. If necessary, go to the window in which you set your environment variables.
2. Start the database manager on the server, if it is not already running, by entering:
db2start
3. Run the sample client application by entering:
outcli

The client application passes a variable to the server program, outsrv, which gives
it a value and then returns the variable to the client application.

Using the IBM VisualAge for COBOL Compiler
If you develop applications that contain embedded SQL and DB2 API calls, and you are
using the IBM VisualAge for COBOL compiler, keep the following points in mind:

¢ When you precompile your application using the command line processor
command, db2 prep, use the target ibmcob option.

¢ Do not use tab characters in your source files.

¢ You can use the PROCESS and CBL keywords in your source files to set compile
options. Place the keywords in columns 8 to 72 only.

e If your application contains only embedded SQL, but no DB2 API calls, you do not
need to use the pgmname (mixed) compile option. If you use DB2 API calls, you
must use the pgmname (mixed) compile option.

e The DB2 COPY files for IBM VisualAge for COBOL reside in
%DB2PATH%\include\cobol_a under the database instance directory. Specify COPY
file names to include the .cb1 extension as follows:

COPY "sql.cb1".

Micro Focus COBOL (16-bit)

The command file b1dmfcob.cmd, in %DB2PATH%\samples\cobol_16, contains the
commands to build a sample COBOL program.

The first parameter, %1, specifies the name of your source file. The second parameter,
%2, specifies the name of the database to which you want to connect. Parameter %3
specifies the user ID for the database, and %4 specifies the password. Only the first
parameter, the source file name, is required. Database name, user ID, and password
are optional. If no database name is supplied, the program uses the default sample
database.

Chapter 6. Building OS/2 Embedded SQL Applications 107

108

@echo off
rem bldmfcob command file (for building examples containing embedded SQL)
rem Usage: bldmfcob <prog name> [<db_name> [< userid> <password>]]

rem Connect to a database.

if "%1" == "" goto error
if "%2" == "" goto casel
if "%3" == "" goto case2
if "%4" == "" goto error
goto case3

:casel

db2 connect to sample
goto continue
:case2
db2 connect to %2
goto continue
:case3
db2 connect to %2 user %3 using %4
goto continue
:continue

rem Precompile the program.
db2 prep %1.sgb bindfile target mfcobl6

rem Compile the checkerr error checking utility
cobol checkerr.cbl /NOTRUNC;

rem Compile the program.
cobol %1.cbl /NOTRUNC;

rem Link the program.
link /ST:32000 /PM:VIO /NOI
%1.obj+checkerr.obj,,,coblib+0s2286.1ib+sqldynl6+db2gmf16;

rem Bind the program to the database.
db2 bind %1.bnd

rem Disconnect from the database.
db2 connect reset

goto exit

:error
echo Usage: bldmfcob <prog_name> [<db_name> [< userid> <password>]]

rexit
@echo on

Building Applications for Windows and OS/2 Environments

Compile and Link Options for bldmfcob

The command file contains the following compile options:

cobol The Micro Focus COBOL compiler.
/NOTRUNC Do not truncate in decimal to the number of digits given by the PICTURE
clause on all stores into COMP items.

The command file contains the following link options:

Tink Use the 16-bit linker to link edit.

/ST:32000 Specify a stack size of at least 32000.

/PM:VIO Enable the program to run in an OS/2 window.

/NOI Do not ignore case when linking.

checkerr.obj Include the error-checking utility object file.

coblib Micro Focus COBOL library.

0s2286.11b Link with the 16-bit OS/2 library.

sqldynl6 Link with the 16-bit DB2 library.

db2gmf16 Link with the DB2 exception-handler library for 16-bit M. F. COBOL.

Refer to your compiler documentation for additional compiler options.

To build the sample program, updat.sgb, do the following:

1. If necessary, go to the window in which you set your environment variables. Refer
to “Setting the OS/2 Environment” on page 21 if you need more information.

2. Start the database manager on the server, if it is not already running, by entering:
db2start

3. Build the sample program, connecting to the SAMPLE database, by entering:
bTldmfcob updat

The result is an executable file, updat. You can run the executable file against the
SAMPLE database to see how it works by doing the following:

1. If necessary, go to the window in which you set your environment variables.

2. Start the database manager on the server, if it is not already running, by entering:
db2start

3. Run the program. If you built the updat sample program, enter:
updat

Note: To build Micro Focus COBOL applications that do not contain embedded SQL,
you can use the command file bldmfapi.cmd. It contains the same compile and
link options as b1dmfcob.cmd, but does not connect, prep, bind, or disconnect
from the SAMPLE database. It is used to compile and link the DB2 API sample
programs written in COBOL.

Building 16-bit Micro Focus COBOL Stored Procedures

The command file b1dmfcbs, in %DB2PATH%\samples\cobol_16, contains the commands
to build a stored procedure. The command file compiles the stored procedure into a
DLL on the server.

Chapter 6. Building OS/2 Embedded SQL Applications 109

The first parameter, %1, specifies the name of your source file. The second parameter,
%2, specifies the name of the database to which you want to connect. Parameter %3
specifies the user ID for the database, and %4 specifies the password. Only the first
parameter, the source file name, is required. Database name, user ID, and password
are optional. If no database name is supplied, the program uses the default sample
database.

The command file uses the source file name, %1, for the DLL name.

@echo off
rem bldmfcbs command file (for building a stored procedure)
rem Usage: bldmfchs <prog name> [<db_name> [< userid> <password>]]

rem Connect to a database.
if "%1" == "" goto error
if "%2" == "" goto casel
if "%3" == "" goto case2
if "%4" == "" goto error
goto case3
:casel
db2 connect to sample
goto continue
:case2
db2 connect to %2
goto continue
:case3
db2 connect to %2 user %3 using %4
goto continue
:continue

rem Precompile the program.
db2 prep %1.sqgb bindfile target mfcobl6

rem Compile the program.
cobol %1.cbl /NOTRUNC;

rem Link the program.
Tink /ST:32000 /PM:VIO /NOI /NOD
%1.0bj,%1.d11,,1cobol+0s2286+sq1dynl6+db2gmfl6,%1.def;

rem Bind the program to the database.
db2 bind %1.bnd

rem Disconnect from the database.
db2 connect reset

rem Copy stored procedure to the %DB2PATH%\function directory.
rem Substitute the path where DB2 is installed for %DB2PATH%.
copy %1.d11 %DB2PATH%\function

goto exit

110 Building Applications for Windows and OS/2 Environments

zerror
echo Usage: bldmfcbhs <prog name> [<db_name> [< userid> <password>]]

cexit
@echo on

Compile and Link Options for bldmfcbs

The command file contains the following compile options:

cobol The Micro Focus COBOL compiler.
/NOTRUNC Do not truncate in decimal to the number of digits given by the PICTURE
clause on all stores into COMP items.

The command file contains the following link options:

Tink Use the 16-bit linker to link edit.

/ST:32000 Specify a stack size of at least 32000.

/PM:VIO Enable the program to run in an OS/2 window.

/NOI Do not ignore case when linking.

/NOD Ignore library files referenced in object files, and accept libraries input on
the command line.

%1.d11 Include the dynamic link library.

Tcoblib Micro Focus COBOL library.

052286 Link with the 16-bit OS/2 library.

sqldynl6 Link with the 16-bit DB2 library.

db2gmf16 Link with the DB2 exception-handler library for 16-bit M. F. COBOL.

%1.def Module definition file.

Refer to your compiler documentation for additional compiler options.

To build the outsrv.sgb stored procedure, do the following:

1. If necessary, go to the window in which you set your environment variables. Refer
to “Setting the OS/2 Environment” on page 21 if you need more information.

2. Start the database manager on the server, if it is not already running, by entering:
db2start

3. Build the stored procedure, connecting to the SAMPLE database, by entering:
bldmfcbs outsrv

The command file uses the module definition file outsrv.def, contained in the
same directory as the sample programs, to build the stored procedure. The
command file copies the stored procedure DLL, outsrv.d11, to the server in the
path %DB2PATH%\function to indicate that the stored procedure is fenced. If you
want the stored procedure to be unfenced, you must move it to the
%DB2PATH%\function\unfenced directory. These paths are in the home directory of
the DB2 instance.

Note: An unfenced stored procedure or UDF runs in the same address space as
the database manager and results in increased performance when
compared to a fenced stored procedure or UDF, which runs in an address
space isolated from the database manager. With unfenced stored
procedures or UDFs there is a danger that user code could accidentally or

Chapter 6. Building OS/2 Embedded SQL Applications 111

maliciously damage the database control structures. Therefore, you should
only run unfenced stored procedures or UDFs when you need to maximize
the performance benefits. Ensure these programs are thoroughly tested
before running them as unfenced. Refer to the Embedded SQL
Programming Guide for more information about fenced and unfenced stored
procedures.

Once you build the stored procedure, outsrv, you can build the client application,
outcli, that calls it. You can build outcli using the bldmfcob command file. See “Micro
Focus COBOL (16-bit)” on page 107 for details.
To run the stored procedure, do the following:
1. If necessary, go to the window in which you set your environment variables.
2. Start the database manager on the server, if it is not already running, by entering:
db2start
3. Run the sample client application by entering:
outcli

The client application passes a variable to the server program, outsrv, which gives
it a value and then returns the variable to the client application.

Using the 16-bit Micro Focus COBOL Compiler

112

Compound SQL statements containing user-defined SQLDAs are not permitted in a
16-bit application on OS/2.

If you develop applications that contain embedded SQL and DB2 API calls, and you are
using the Micro Focus COBOL compiler, keep the following points in mind:

e When you precompile your application using the command line processor
command, db2 prep, use the target mfcobl6 option.

e The DB2 COPY files for Micro Focus COBOL reside in
%DB2PATH%\incTude\cobol_mf. Set the COBCPY environment variable to include the
directory like this:

set COBCPY=%DB2PATH%\include\cobol_mf;%COBCPY%

e If you develop a 16-bit Micro Focus COBOL application that calls DB2 APIs, you
must make the following changes from what appears in the AP/ Reference:

1. Add two underscore characters before the APl name.
2. Reverse the order of the parameters.

For example:

Building Applications for Windows and OS/2 Environments

call "__sqlgback" using
by reference db-name
by value 0
by reference sqlca
by value drive
type
db-name-1
0.

The following table lists the APIs available to 16-bit applications. These are all DB2
Version 1 APIs. These are the only APIs on OS/2 for which conversion between 16
and 32 bit is provided. The DATABASE 2 OS/2 Programming Reference
(S62G-3666) describes them. That book is not part of the DB2 library, but you can
order it from IBM. See “Contacting IBM” on page 155 for details.

DB2 Version 2 and DB2 Universal Database Version 5 APIs cannot be called from
16-bit COBOL applications. To use these APIs, and especially to take advantage of
the enhanced APIs in Version 5, you are recommended to move to 32-bit Micro
Focus COBOL. See “Micro Focus COBOL (32-bit)” on page 114 for details.

API Name Purpose

SQLGBACK Backup Database Creates a backup copy of a
database.

SQLGBNDR Bind Invokes the bind utility.

SQLGCATD Catalog Database Stores database location information
in the system database directory.

SQLGCRDB Create Database Initializes a new database with an
optional user-defined collating
sequence, creates the system tables,
and allocates the recovery log.

SQLGCHG Change Database Comment Allows changing of a database
comment.

SQLGDOPS Open Database Directory Scan Stores a copy in memory of the
system or a volume database
directory, and returns the number of
entries.

SQLGDRES Restore a Database Rebuild a damaged or corrupted
database to the state it was in at the
time it was backed up.

SQLGEUDB Update Database Configuration Allows individual entries in a specific

File database configuration file to be
modified.

SQLGEXP Export From Exports data from a database to one
of several external file formats.

SQLGFREE Terminate Database Status Releases all resources obtained by

the COLLECT DATABASE STATUS
API.

Chapter 6. Building 0S/2 Embedded SQL Applications 113

API

Name

Purpose

SQLGFROL

Roll Forward a Database

Rolls forward a database by applying
transactions recorded and retained in
the archive log files.

SQLGIMP

Import to

Inserts data from an external file with
a supported file format into a table or
view.

SQLGNEXT

Get Next Database Status Block

Obtains information about the next
database or group of databases
following a call to the COLLECT
DATABASE STATUS API.

SQLGOPST

Collect Database Status

Collects a brief summary of
database activity at the time of the
request.

SQLGRDBC

Reset Database Configuration File

Resets the configuration of a specific
database to the system defaults.

SOLGREOR

Reorganize Table

Reorganizes the physical storage of
a table.

SQLGREST

Restart Database

Restarts a database that has been
abnormally terminated and left in an
uncommitted state.

SQLGSTAT

Run Statistics

Updates statistics about the physical
characteristics of a table and the
associated indexes.

SQLGSTPD

Stop Using Database

Disconnects an application from a
database.

SQLGUSER

Get User Status

Returns the status of all users
connected to a specific database.

SQLGXDBC

Get Database Configuration File

Returns values of individual entries
in a specific database configuration.

Micro Focus COBOL (32-bit)

The command file b1dmfcob, in %DB2PATH%\samples\cobol_mf, contains the commands
to build a sample COBOL program.

The first parameter, %1, specifies the name of your source file. The second parameter,
%2, specifies the name of the database to which you want to connect. The third
parameter, %3, specifies the user ID for the database, and Parameter %4, specifies the
password. Only the first parameter, the source file name, is required. Database name,
user ID, and password are optional. If no database name is supplied, the program uses
the default sample database.

114

Building Applications for Windows and OS/2 Environments

@echo off

rem bldmfcob.cmd file

rem Build sample Cobol program using the Micro Focus COBOL compiler.
rem Usage: bldmfcob <prog name> [<db_name> [< userid> <password>]]

rem Connect to a database.

if "%1" == "" goto error
if "%2" == "" goto casel
if "%3" == "" goto case2
if "%4" == "" goto error
goto case3

:casel

db2 connect to sample
goto continue
:case2
db2 connect to %2
goto continue
:case3
db2 connect to %2 user %3 using %4
goto continue
:continue

rem Precompile the program. If target mfcob is
rem not specified target mfcobl6 is assumed.
db2 prep %1.sqb bindfile target mfcob

rem Bind the program to the database.
db2 bind %1.bnd

rem Disconnect from the database.
db2 connect reset

rem Compile the error-checking utility.
cobol checkerr.cbl;

rem Compile the program.
cobol %1.chl;

rem Link the program.
cb11link %1.o0bj checkerr.obj db2api.lib db2gmf32.1ib

goto exit

zerror
echo Usage: bldmfcob <prog name> [<db_name> [< userid> <password>]]

texit
@echo on

Chapter 6. Building OS/2 Embedded SQL Applications

115

Compile and Link Options for bldmfcob

The command file contains the following compile option:

cobol The Micro Focus COBOL compiler.

The command file contains the following link options:
cb11ink Use the linker to link edit.

checkerr.obj Include the error-checking utility object file.
db2api.lib Link with the DB2 API library.

db2gmf32.1ib Link with the DB2 exception-handler library for 32-bit M. F. COBOL.

Refer to your compiler documentation for additional compiler options.

To build the sample program updat.sqb, do the following:

1. Start the database manager on the server, if it is not already running, by entering:
db2start

2. Build the sample program, connecting to the SAMPLE database. From a DB2
Command Line Processor command window, enter:
bTldmfcob updat

The result is an executable file updat.exe. You can run the executable file against the
SAMPLE database to see how it works by doing the following :
1. Start the database manager on the server, if it is not already running, by entering:
db2start

2. From a command line, enter:
updat

Note: To build 32-bit Micro Focus COBOL applications that do not contain embedded
SQL, you can use the command file b1dmfapi.cmd. It contains the same compile
and link options as bldmfcob.cmd, but does not connect, prep, bind, or
disconnect from the SAMPLE database. It is used to compile and link the DB2
API sample programs written in COBOL.

Building 32-bit Stored Procedures with Micro Focus COBOL

116

The command file b1dmfcbs, in %DB2PATH%\samples\cobol_mf, contains the commands
to build a stored procedure. The command file compiles the stored procedure into a
DLL on the server.

The first parameter, %1, specifies the name of your source file. The second parameter,
%2, specifies the name of the database to which you want to connect. The third
parameter, %3, specifies the user ID for the database, and parameter %4, specifies the
password. Only the first parameter, the source file name, is required. Database name,
user ID, and password are optional. If no database name is supplied, the program uses
the default sample database. The command file uses the source file name, %1, for the
DLL name.

Building Applications for Windows and OS/2 Environments

@echo off

rem bldmfcbs.cmd file

rem Build sample COBOL stored procedure using Micro Focus COBOL compiler.
rem Usage: bldmfchs <prog name> [<db_name> [< userid> <password>]]

rem Connect to a database.

if "%1" == "" goto error
if "%2" == "" goto casel
if "%3" == "" goto case2
if "%4" == "" goto error
goto case3

:casel

db2 connect to sample
goto continue
:case2
db2 connect to %2
goto continue
:case3
db2 connect to %2 user %3 using %4
goto continue
:continue

rem Precompile the program. If target mfcob is
rem not specified target mfcobl6 is assumed.
db2 prep %1.sqb bindfile target mfcob

rem Bind the program to the database.
db2 bind %1.bnd

rem Disconnect from the database.
db2 connect reset

rem Compile the stored procedure.
cobol %1.cbhl;

rem Link the stored procedure and create a shared library.
cb1link /d %1.obj db2api.lib db2gmf32.1ib

rem Copy stored procedure to the %DB2PATH%\function directory.
rem Substitute the path where DB2 is installed for %DB2PATH%.
copy %1.d11 %DB2PATH%\function

goto exit

:error
echo Usage: bldmfcbhs <prog name> [<db_name> [< userid> <password>]]

rexit
@echo on

Chapter 6. Building OS/2 Embedded SQL Applications

117

Compile and Link Options for bimfcbs

The command file contains the following compile option:

cobol The Micro Focus COBOL compiler.

The command file contains the following link options:

cb11ink Use the Micro Focus COBOL linker to link edit.
/d Create a .dll file.

db2api.lib Include the DB2 API library.

db2gmf32.1ib Link with the DB2 exception-handler library for 32-bit M. F. COBOL.

Refer to your compiler documentation for additional compiler options.

To build the stored procedure outsrv.sgb do the following:

1. Start the database manager on the server, if it is not already running, by entering:
db2start

2. Build the stored procedure, connecting to the SAMPLE database. In a DB2
Command Line Processor command window, enter:

bldmfcbs outsrv

The linker uses a default entry point unspecified by the user. The /d option is used
to create the .d11 file in order to build the stored procedure. The command file
copies the stored procedure DLL, outsrv.d11, to the server in the path
%DB2PATH%\function to indicate that the stored procedure is fenced. If you want the
stored procedure to be unfenced, you must move it to the

%DB2PATH%\ function\unfenced directory. These paths are in the home directory of
the DB2 instance.

Note: An unfenced stored procedure or UDF runs in the same address space as
the database manager and results in increased performance when
compared to a fenced stored procedure or UDF, which runs in an address
space isolated from the database manager. With unfenced stored
procedures or UDFs there is a danger that user code could accidentally or
maliciously damage the database control structures. Therefore, you should
only run unfenced stored procedures or UDFs when you need to maximize
the performance benefits. Ensure these programs are thoroughly tested
before running them as unfenced. Refer to the Embedded SQL
Programming Guide for more information about fenced and unfenced stored
procedures.

Once you build the stored procedure outsrv, you can build outcli that calls the stored
procedure. You can build outcli using the bl1dmfcob.cmd file. Refer to “Micro Focus
COBOL (16-bit)” on page 107 for details.

To run the stored procedure, do the following:

1. Start the database manager on the server, if it is not already running, by entering:

118 Building Applications for Windows and OS/2 Environments

db2start
2. From the command line, enter:

outcli

The client application passes a variable to the server program outsrv, which gives it a
value and then returns the variable to the client application.

Using the 32-bit Micro Focus COBOL Compiler

When building applications with the Micro Focus COBOL compiler that contain
embedded SQL and DB2 API calls, keep the following points in mind:

¢ When you precompile your application using the command line processor
command db2 prep, use the target mfcob option.

e Ensure the LIB environment variable points to %DB2PATH%\11b like this:
set LIB=%DB2PATH%\1ib;%LIB%

e The DB2 COPY files for Micro Focus COBOL reside in
%DB2PATH%\include\cobol_mf. Set the COBCPY environment variable to include the
directory like this:

set COBCPY=%DB2PATH%\include\cobol mf;%COBCPY%

e The DB2API.LIB provides the import library for COBOL programs and is located in
the 1ib directory in the DB2 for OS/2 install directory.

Calls to all DB2 application programming interfaces and generated code must be made
using calling convention 8. The DB2 COBOL precompiler automatically inserts a
CALL-CONVENTION clause in a SPECIAL-NAMES paragraph. If the SPECIAL-NAMES
paragraph does not exist, the DB2 COBOL precompiler creates it, as follows:

Identification Division
Program-ID. "static".
special-names.

call-convention 8 is DB2API.

Also, the precompiler automatically places the symbol DB2API, which is used to identify
the calling convention, after the "call" keyword whenever a DB2 API is called. This
occurs, for instance, whenever the precompiler generates a DB2 API runtime call from
an embedded SQL statement.

If calls to DB2 APIs are made in an application which is not precompiled, you should
manually create a SPECIAL-NAMES paragraph in the application, similar to that given
above. If you are calling a DB2 API directly, then you will need to manually add the
DB2API symbol after the "call" keyword.

FORTRAN 77

The command file b1dfor, in %DB2PATH%\samples\fortran, contains the commands to
build a sample FORTRAN program.

Chapter 6. Building OS/2 Embedded SQL Applications 119

The first parameter, %1, specifies the name of your source file. The second parameter,
%2, specifies the name of the database to which you want to connect. Parameter %3
specifies the user ID for the database, and %4 specifies the password. Only the first
parameter, the source file name, is required. Database name, user ID, and password
are optional. If no database name is supplied, the program uses the default sample
database.

@echo off

rem bldfor command file

rem Builds a FORTRAN program that contains embedded SQL

rem Usage: bldfor <prog _name> [<db_name> [< userid> <password>]]

rem Connect to a database.
if "%1" == "" goto error
if "%2" == "" goto casel
if "%3" == "" goto case2
if "%4" == "" goto error
goto case3
:casel
db2 connect to sample
goto continue
:case?
db2 connect to %2
goto continue
:case3
db2 connect to %2 user %3 using %4
goto continue
:continue

rem Precompile the program.
db2 prep %1.sqf bindfile

rem Compile the util.for error-checking utility.
wfc386 /debug /d2 /noref util.for

rem Compile the program.
wfc386 /debug /d2 /noref %1.for

rem Link the program.
wlink debug all sys os2v2 file %l.obj file util.obj library db2api.lib
option stack=32000

rem Bind the program to the database.
db2 bind %1.bnd

rem Disconnect from the database.
db2 connect reset

goto exit

zerror
echo Usage: bldfor <prog_name> [<db_name> [< userid> <password>]]

120 Building Applications for Windows and OS/2 Environments

cexit
@echo on

Compile and Link Options for bldfor

The command file contains the following compile options:

wfc386 The FORTRAN compiler.

debug Perform runtime checking.

d2 Include full debugging information.

noref Do not issue warnings about unreferenced symbols. This will avoid

extraneous warnings.

The command file contains the following link options:

wlink Use the WATCOM linker to link edit.
debug all Include debugging information.

sys 0s2v2 Produce OS/2 Version 2.0 executables.
file %1.0bj Specify the input object file.

util.obj Include the error-checking utility object file.

lTibrary db2api.lib
Link with the DB2 library.
db2api.lib Include the DB2 application programming interface library.
option
stack=32000 Specify a stack size of at least 32000.

Refer to your compiler documentation for additional compiler options.

To build the sample program, updat.sqf, do the following:

1. If necessary, go to the window in which you set your environment variables. Refer
to “Setting the OS/2 Environment” on page 21 if you need more information.

2. Start the database manager on the server, if it is not already running, by entering:
db2start
3. Build the sample program, connecting to the SAMPLE database, by entering:
bldfor updat
The result is an executable file, updat. You can run the executable file against the
SAMPLE database to see how it works by doing the following:
1. If necessary, go to the window in which you set your environment variables.
2. Start the database manager on the server, if it is not already running, by entering:
db2start
3. Run the program. If you built the updat sample program, enter:
updat

Note: To build FORTRAN applications that do not contain embedded SQL, you can
use the command file b1dapi.cmd. It contains the same compile and link options
as bldfor.cmd, but does not connect, prep, bind, or disconnect from the

Chapter 6. Building OS/2 Embedded SQL Applications 121

SAMPLE database. It is used to compile and link the DB2 API sample programs
written in FORTRAN.

Building FORTRAN 77 Stored Procedures

122

When building FORTRAN stored procedures on OS/2, you require the following
statement in your stored procedure:

c$pragma aux (_syscall) <sp_nm> parm (data_reference, data_reference,
c data_reference, data_reference)

The command file b1dforsr, in %DB2PATH%\samples\fortran, contains the commands to
build a stored procedure. The command file compiles the stored procedure into a DLL
on the server.

The first parameter, %1, specifies the name of your source file. The second parameter,
%2, specifies the name of the database to which you want to connect. Parameter %3
specifies the user ID for the database, and %4 specifies the password. Only the first
parameter, the source file name, is required. Database name, user ID, and password
are optional. If no database name is supplied, the program uses the default sample
database.

@echo off

rem bldforsr command file

rem Builds a FORTRAN stored procedure program

rem Usage: bldforsr <prog _name> [<db_name> [< userid> <password>]]

rem Connect to a database.
if "%1" == "" goto error
if "%2" == "" goto casel
if "%3" == "" goto case2
if "%4" == "" goto error
goto case3
:casel
db2 connect to sample
goto continue
:case2
db2 connect to %2
goto continue
:case3
db2 connect to %2 user %3 using %4
goto continue
:continue

rem Precompile the program.
db2 prep %1.sqf bindfile

rem Compile the program.
wfc386 /noref %1.for

rem Link the program.
wlink sys o0s2v2 d11 export %1 file %1.obj library db2api.lib
lTibrary 0s2386.1ib option stack=32000

Building Applications for Windows and OS/2 Environments

rem Bind the program to the database.
db2 bind %1.bnd

rem Disconnect from the database.
db2 connect reset

rem Copy the dynamic Tink library to the function subdirectory.
rem Note: Substitute the DB2 instance directory for %db2path%
copy %1.d11 %db2path%\function

goto exit

:error
echo Usage: bldforsr <prog name> [<db_name> [< userid> <password>]]

cexit
@echo on

Compile and Link Options for bldforsr

The command file contains the following compile options:

wfc386 The FORTRAN compiler.
noref Do not issue warnings about unreferenced symbols. This will avoid
extraneous warnings.

The command file contains the following link options:

wlink Use the WATCOM linker to link edit.

sys 0s2v2 Produce OS/2 Version 2.0 executables.

a1l Link with the dynamic link library.

export %1 Export the entry point for the stored procedure.

file %1.0bj Specify the input object file.
Tibrary db2api.lib
Link with the DB2 library.
lTibrary 0s2386.1ib
Link to the OS/2 32-bit library.
option
stack=32000 Specify a stack size of at least 32000.

Refer to your compiler documentation for additional compiler options.

To build the outsrv.sqf stored procedure, do the following:

1. If necessary, go to the window in which you set your environment variables. Refer
to “Setting the OS/2 Environment” on page 21 if you need more information.

2. Start the database manager on the server, if it is not already running, by entering:
db2start

3. Build the stored procedure, connecting to the SAMPLE database, by entering:

bldforsr outsrv

Chapter 6. Building OS/2 Embedded SQL Applications 123

Note:

The command file does not use a module definition file. Instead, the linker
accepts an entry point as an argument for the export option. In this case,
the entry point for the stored procedure is the same name as the source
file. This may not be the case for other stored procedures you build. If it is
different, modify the command file to accept another argument for the entry
point, and modify the link step to have the export option accept the entry
point argument (instead of %1, as it does now). For example, if the entry
point was the fifth argument, you would write the link step as:

wlink sys os2v2 d11 export %5 file %1.obj library db2api.lib
library 0s2386.1ib option stack=32000

The command file copies the stored procedure DLL, outsrv.dl11, to the server in
the path %DB2PATH%\ function to indicate that the stored procedure is fenced. If you
want the stored procedure to be unfenced, you must move it to the
%DB2PATH%\ function\unfenced directory. These paths are in the home directory of
the DB2 instance.

Note:

An unfenced stored procedure or UDF runs in the same address space as
the database manager and results in increased performance when
compared to a fenced stored procedure or UDF, which runs in an address
space isolated from the database manager. With unfenced stored
procedures or UDFs there is a danger that user code could accidentally or
maliciously damage the database control structures. Therefore, you should
only run unfenced stored procedures or UDFs when you need to maximize
the performance benefits. Ensure these programs are thoroughly tested
before running them as unfenced. Refer to the Embedded SQL
Programming Guide for more information about fenced and unfenced stored
procedures.

Once you build the stored procedure, outsrv, you can build the client application,
outcli, that calls the stored procedure. You can build outcli using the bldfor
command file. Refer to “FORTRAN 77" on page 119 for details.

To

1.
2.

run the stored procedure, do the following:

If necessary, go to the window in which you set your environment variables.

Start the database manager on the server, if it is not already running, by entering:
db2start

Run the sample client application by entering:

outcli

The client application passes a variable to the server program, outsrv, which gives
it a value and then returns the variable to the client application.

Using the WATCOM FORTRAN 77 Compiler

If you develop applications that contain embedded SQL and DB2 API calls, and you are
using the WATCOM FORTRAN 77 compiler, keep the following points in mind:

124

Building Applications for Windows and OS/2 Environments

The WATCOM compiler treats lines with a D or d in column 1 as conditional lines.
You can either compile these lines for debugging or treat them as comments.

The precompiler always treats lines with a D or d in column one as comments.

In the Fortran examples that call DB2 APIs, the API Reference uses %val () to
show parameters passed by value, and %ref() to show parameters passed by
reference. Remove these modifiers when you code applications for WATCOM

FORTRAN 77. They are not required.

The DB2 include files for WATCOM FORTRAN 77 use the compiler's pragma
mechanism to indicate which parameters should be passed by reference and which
by value. As long as your application includes the appropriate file, parameters are
passed correctly.

The precompiler allows only digits, blanks, and tab characters within columns 1-5
on continuation lines.

.sqf source files do not support Hollerith constants.

REXX

You do not compile or bind REXX programs.

On OS/2, your application file must have a .cmd extension. After creation, you can run
your application directly from the operating system command prompt.

An OS/2 REXX program must contain a comment that begins in the first column of the
first line, to distinguish it from a batch command:

/* Any comment will do. */

REXX sample programs can be found in the directory %DB2PATH%\samples\rexx. To run
the sample REXX program updat, do the following:

1.

Start the database manager on the server, if it is not already running, by entering:
db2start
Enter:

updat

For further information on REXX and DB2, refer to the Embedded SQL Programming
Guide, chapter 13, "Programming in REXX".

Chapter 6. Building OS/2 Embedded SQL Applications 125

126 Building Applications for Windows and OS/2 Environments

Chapter 7. Building DB2 Call Level Interface (CLI) Applications

The DB2 SDK comes with sample programs that use DB2 Call Level Interface (DB2
CLI) function calls. You can study the samples to learn how to access DB2 databases
in your applications using DB2 CLI function calls.

This chapter shows you how to build and run a sample program using a file containing
compile and link commands supplied with the DB2 SDK for that platform. On Windows
platforms it is called a batch file. On OS/2, it is called a command file. The batch or
command file shows you the compiler options you can use. It builds the sample
program by compiling and linking the source file.

The sample programs are contained in %DB2PATH%\samples\c1i. The value of %DB2PATH%
determines where DB2 is installed. It is an environmental variable on Windows NT,
Windows 95 and OS/2, which by default points to drive:\sq11ib. On Windows 3.1, the
db2.1ini file, which stores the DB2 settings, defines the value for %DB2PATH%, which by
default points to drive:\sq11ib\win. The value of %DB2PATH%, as referenced in the
db2.1ini file, is only recognized within the DB2 environment.

You can build the sample programs by using the makefile with the make facility found
in the same directory. Read the README file in the directory for details about using the
makefile, and for more information about the sample programs. You may need to
modify the compiler options in the command or batch file, and the makefile, for your
environment.

Once you have compiled and run the supplied sample programs, you can modify the
source files, and the makefile, for your own needs. You can then build the modified
sample programs by using the makefile to see if they work correctly. You can also
build your own programs using the makefile. All the sample programs are listed in
Table 6 on page 16.

Note: It is recommended that, before you alter or build the sample programs, you
copy them from %DB2PATH%\samples\c1i to your own working directory.

Building and Running a DB2 CLI Application

The CLI samples directory contains a batch or command file to build a sample program
on each of the supported Windows or OS/2 platforms. On Windows NT and Windows
95, the batch file c1ib1d.bat builds the program c1isampl; on Windows 3.1, the batch
file c1ibldw.bat builds the program clisampw; and on OS/2, the command file c1ibld
builds the sample program clisampl. For each platform, you can find both the batch or
command file, and the sample program, in the appropriate language sub-directory.

In the following sections you can study how to construct the batch or command file with
the compiler options for the platform you are using. You can then see how the program
is run, once it is built with the batch or command file. Also, you can see the output
produced from running the sample program. All the programs described in this chapter
produce the same output.

© Copyright IBM Corp. 1993, 1997 127

Windows NT and Windows 95

128

Note: All applications on Windows NT and Windows 95, both embedded SQL and
non-embedded SQL, must be built in a DB2 command window, and not from an
operating system command prompt.

Microsoft Visual C++ is used in the following batch file, c1ibld.bat.

rem clibld batch file - Windows 95 and Windows NT - Microsoft Visual C++
rem Build a CLI sample C program.

rem Compile the program.

cl -Z7 -0d -c -W2 -D_X86_=1 -DWIN32 -I%DB2PATH%\include clisampl.c

rem Link the program.

link -debug:full -debugtype:cv -out:clisampl.exe clisampl.obj db2cl1i.Tib

Compile and Link Options for clibld

The batch file contains the following compile options:

cl The Microsoft Visual C++ compiler.

-77 C7 style CodeView information generated.

-0d Disable optimizations. It is easier to use a debugger with optimization off.
-c Perform compile only; no link. This book assumes that compile and link are

separate steps.

-W2 Set warning level.

The batch file contains the following link options:
1ink Use the 32-bit linker to link edit.
-debug:full Include debugging information.
-debugtype:cv Indicate the debugger type.

-out:clisampl.exe
Specify the executable.

clisampl.obj Include the object file.
db2cli.lib Link with the DB2 CLI library.

Refer to your compiler documentation for additional compiler options.

To build the sample program clisampl, do the following:
1. Start the database manager on the server, if it is not already running, by entering:
db2start
2. Start the Security Service for the Windows NT server by entering:
net start DB2NTSECSERVER
3. Build the sample program by entering:
clibld
The result is an executable file c1isamp1. You can run the executable file to see how it

works. The sample program accepts command line arguments for a database, user ID,
and password, so you can connect to any database to which you have access.

Building Applications for Windows and OS/2 Environments

To run the sample program, enter:
clisampl database userid password

where

database Is the name of a catalogued database.
userid Is a user ID that has Administrator authority.
password s a valid password.

If you need information about cataloged databases, or about Administrator authority and
passwords, refer to the Quick Beginnings book.

The clisampl program performs the following SQL operations using DB2 CLI function
calls:
1. Connects to a database.
Creates a table.
Inserts data into the table using a parameter marker.
Selects the data.

Drops the table.

I e

Disconnects from the database.

You should see the following output:

Connecting

Create table - CREATE TABLE CLISAMPL (COL1 VARCHAR(50))
Insert - INSERT INTO CLISAMPL VALUES (?)
Select - SELECT * FROM CLISAMPL

Number of columns - 1

Column name - COL1

Column type - 12

Column precision - 50

Column scale - 0

Column nullable - TRUE

Column value - Row 1

Column value - Row 2

Disconnecting

Exiting program

Windows 3.1
Microsoft Visual C++ is used in the following batch file, clibldw.bat.

rem clibldw batch file - Windows 3.1 - Microsoft Visual C++

rem Build a CLI sample C program.

rem Compile the program.

cl /c /Gy /ALw /W3 /Mg /DDB2WIN clisampw.c

rem Link the program.

link /ST:32000 /SE:512 /NOD clisampw.obj,,,11ibcewq+1ibw+oldnames+db2cliw;

Chapter 7. Building DB2 Call Level Interface (CLI) Applications 129

130

Compile and Link Options for clibldw

The batch file contains the following compile options:

cl The Microsoft Visual C++ compiler.

/c Perform compile only; no link. This book assumes that compile and link are
separate steps.

/Gy Generate separate functions for the linker.

/ALw Use large memory model.

/W3 Set warning level; 1 is most severe, 4 is least severe.

/Mq Use QuickWin compile and include library.

/DDB2WIN Identifies the Windows platform.

The batch file contains the following link options:

Tink Use the Microsoft Visual C ++ linker to link edit.
/ST:32000 Specify a stack size of 32000.

/SE:512 Specify the maximum number of segments.
/NOD Do not use default libraries

yss Use the default executable and map filenames.

11ibcewq+1ibw+oldnames
Microsoft Visual C ++ LIB files.

db2cliw The DB2 CLI library.

Refer to your compiler documentation for additional compiler options.

To build the sample program, c1isampw, enter:

clibldw

The result is an executable file c1isampw. You can run the executable file to see how it
works by doing the following:

1. Start the database manager on the server, if it is not already running, by entering:
db2start

2. To run the program, start Windows if it is not started already.
3. In Windows File Manager, click on File and then Run....
4. Enter the name of the sample program:

path\c1isampw

where path specifies the location of the executable.

The c1isampw program writes its output to the file clisampl.log in the directory where
you invoked clisampw. You should see the following output in clisampl.log:

Building Applications for Windows and OS/2 Environments

0S/2

Connecting

Create table - CREATE TABLE CLISAMPL (COL1 VARCHAR(50))
Insert - INSERT INTO CLISAMPL VALUES (?)
Select - SELECT * FROM CLISAMPL

Number of columns - 1

Column name - COL1

Column type - 12

Column precision - 50

Column scale - 0

Column nullable - TRUE

Column value - Row 1

Column value - Row 2

Disconnecting

Exiting program

IBM VisualAge C++ is used in the following command file, cT1ib1d.cmd.

rem clibld command file - 0S/2 - IBM VisualAge C++ compiler

rem Build a CLI sample C program.

rem Compile the program.

icc -C+ -0- -Ti+ clisampl.c

rem Link the program.

ilink /NOFREE /NOI /DEBUG /ST:128000 /PM:VIO clisampl.obj,,,db2cli;

Compile and Link Options for clibld

-C+

The command file contains the following compile options:

icc The IBM VisualAge C++ compiler.
Perform compile only; no link. This book assumes that compile and link are
separate steps.

-0- No optimization. It is easier to use a debugger with optimization off.

-Ti+ Generate debugger information

The command file contains the following link options:

ilink Use the ilink linker to link edit.

/NOFREE No free format.

/NOI No Ignore Case. Force case sensitive identifiers.
/DEBUG Include debugging information.

/ST:128000 Specify a stack size of at least 128 000.

/PM:VIO Enable the program to run in an OS/2 window.
db2cli Link with the DB2 CLI library.

Refer to your compiler documentation for additional compiler options.

To build the sample program clisampl, do the following:

1.

2.

If necessary, go to the window in which you set your environment variables. Refer

to Chapter 2, “Setup” on page 19 if you need more information.
Build the sample program by entering:
clibld

Chapter 7. Building DB2 Call Level Interface (CLI) Applications

131

132

The result is an executable file c1isampl. You can run the executable file to see how it
works. The sample program accepts command line arguments for a database, user ID,
and password so you can connect to any database to which you have access.

To run the sample program, enter:

clisampl database userid password

where
database Is the name of a cataloged database.
userid Is a user ID that has SYSADM authority.

password Is a valid password.

If you need information about cataloged databases, or about SYSADM authority and
passwords, refer to the Quick Beginnings book.

The clisampl program performs the following SQL operations using DB2 CLI function
calls:
1. Connects to a database.
Creates a table.
Inserts data into the table using a parameter marker.
Selects the data.

Drops the table.

o 0~ D

Disconnects from the database.

You should see the following output:

Connecting

Create table - CREATE TABLE CLISAMPL (COL1 VARCHAR(50))
Insert - INSERT INTO CLISAMPL VALUES (?)
Select - SELECT * FROM CLISAMPL

Number of columns - 1

Column name - COL1

Column type - 12

Column precision - 50

Column scale - 0

Column nullable - TRUE

CoTumn value - Row 1

Column value - Row 2

Disconnecting

Exiting program

Building Applications for Windows and OS/2 Environments

Chapter 8. Building Java Applications and Applets

You can access DB2 databases through the Java Development Kit (JDK) Version 1.1,
which includes Java Database Connectivity (JDBC) support to build the following types
of Java programs:

¢ JDBC applications, which rely on the DB2 Client Application Enabler (CAE) to
connect to DB2.

e JDBC applets, that do not require any other DB2 component code on the client.

See the Web Page at http://www.software.ibm.com/data/db2/java for more
information.

DB2 also provides support for user-defined functions (UDFs) and stored procedures
created in Java.

For more detailed information on DB2 programming in Java, refer to the Embedded
SQL Programming Guide, chapter 15, "Programming in Java". That chapter covers
creating and running JDBC applications and applets, and creating Java UDFs and
stored procedures.

This chapter presents information to set up your environment for running Java
applications on Windows NT and OS/2. This is followed by sections explaining how to
build a DB2 JDBC application and a DB2 JDBC applet.

Setting the Windows NT Environment

To build Java applications on Windows NT with DB2 JDBC support, you need to install
and configure the following on your development machine:

1. The Java Development Kit (JDK) Version 1.1 for Win32 from Sun Microsystems
(refer to http://www.software.ibm.com/data/db2/java).

2. The DB2 Client Application Enabler for Windows NT from the DB2 Client Pack. It
must be Version 2.1.0 or later.
To run JDBC programs on Windows NT, the following environment variables must be
set correctly. You must ensure that:
e CLASSPATH includes "." and the file $DB2PATH%\java\db2java.zip
e PATH includes the directory %DB2PATH%\bin

Setting the OS/2 Environment

To build Java applications on OS/2 with DB2 JDBC support, you need to install and
configure the following on your development machine:

1. The Java Development Kit (JDK) Version 1.1 for OS/2 from IBM (refer to
http://www.software.ibm.com/data/db2/java).

© Copyright IBM Corp. 1993, 1997 133

2. The DB2 Client Application Enabler for OS/2 from the DB2 Client Pack. It must be
Version 2.1.0 or later.

To run JDBC programs on OS/2, the following environment variables must be set
correctly. You must ensure that:

e CLASSPATH includes "." and the file %DB2PATH%\java\db2java.zip

¢ PATH includes the directory %DB2PATH%\bin

e LIBPATH includes the directory %DB2PATH%\d11

Building and Running a JDBC Application

You do not precompile or bind Java programs.

Start your application from the desktop or command line, like any other application. The
DB2 JDBC driver handles the JDBC API calls from your application and uses the CAE
to communicate the requests to the server and receive the results.

A sample application, DB2App1.java, is provided in the %DB2PATH%\samples\java
directory. If you installed the DB2 SAMPLE database, you can run the sample by first
changing to the %DB2PATH%\samples\java directory. For Windows NT, you would start
the Security Service for the Windows NT server by entering:

net start DB2NTSECSERVER
For both Windows NT and OS/2, you would then do the following:
1. Start the database manager on the server, if it is not already running, by entering:
db2start
2. Enter:
javac DB2Appl.java
java DB2App1

As an alternative to step 2 above, you can use the precompiled version of
DB2App1.java in samples.zip. To do this, ensure CLASSPATH also includes the file
%DB2PATH%\samples\java\samples.zip. Then, run the Java interpreter on the application
by entering:

java DB2Appl

Building and Running a JDBC Applet

134

Like other Java applets, JDBC applets are distributed over the Web. Typically, you
would imbed the applet in an HTML page, as the following steps demonstrate. These
steps assume the Java Development Kit (JDK) Version 1.1, and at least the client
package of DB2, are installed and working.

1. Run the Java compiler ("javac") on your applet's Java source. For the basic JDBC
applet sample, DB2App1t.java, DB2 provides a compiled version in
%DB2PATH\samples\java\samples.zip so you can omit this step.

Building Applications for Windows and OS/2 Environments

. Construct an HTML file that will imbed the applet. Unless you hard-code this into
the applet source, you can opt to include applet parameters to identify the JDBC
applet server, user ID and password information. For DB2Appl1t.java, DB2 provides
the file, DB2App1t.html.

. For a larger JDBC applet that consists of several Java classes, you may choose to
package all its classes into a single ZIP file. In this case, add your ZIP file into the
archive parameter in the "applet” tag. See the JDK Version 1.1 documentation for
details.

. Along with the DB2 client package, you must install JDBC applets on a Web
server. If necessary, configure the DB2 client package by cataloging remote nodes
and/or databases.

. Pick an unused TCP/IP port number for use by the JDBC applet server. This is not
the TCP/IP port used by the svcename of a DB2 server. Start the server by the
db2jstrt program. For example, if you designate port 6789 for JDBC access to
your DB2 instance, enter db2jstrt 6789 to start the JDBC applet server.

. Copy the imbedding HTML file, the JDBC applet's .class or ZIP file, and the
%DB2PATH%\java\db2java.zip file into a directory under the Web browser's
document root. For DB2App1t.java, copy %DB2PATH%\samples\java\samples.zip,
%DB2PATH%\samples\java\DB2App1t.html, and %DB2PATH%\java\db2java.zip. You
will need to customize this copy of the DB2App1t.html file to identify your Web
server, JDBC applet server port number, user ID and password.

. You may want to place the ZIP files into a directory that is shared by several
applets that can be loaded from your Web site. In this case, you may need to add
a codebase parameter into the "applet" tag in the HTML file to identify that
directory. See the JDK Version 1.1 documentation for details.

. To run JDBC applets, you must install a Web browser or other compatible applet
viewer, capable of running programs compiled with the JDK Version 1.1.

. In the Web browser, open the URL identifying the HTML file at the Web server.
The JDBC applet and the JDBC applet driver will be downloaded and executed
inside the browser.

Chapter 8. Building Java Applications and Applets 135

136 Building Applications for Windows and OS/2 Environments

Appendix A. About Database Manager Instances

DB2 supports multiple database manager instances on the same machine. A database
manager instance has its own configuration files, directories, and databases.

Each database manager instance can manage several databases. However, a given
database belongs to only one instance. Figure 1 shows this relationship.

B Machine .
Database Manager Database Manager
Instance Instance
User/
Application
g
Database Database Database
Table Table Table Table Table Table

Figure 1. Database Manager Instances

Database manager instances give you the flexibility to have multiple database
environments on the same machine. For example, you can have one database
manager instance for development, and another instance for production.

With UNIX servers you can have different DB2 versions on different database manager
instances. For example, you can have one database manager instance running DB2
Version 2, and another running DB2 Universal Database Version 5.

With OS/2 and NT servers you must have the same DB2 version, release, and
modification level on each database manager instance. You cannot have one database
manager instance running DB2 Version 2, and another instance running DB2 Universal
Database Version 5.

© Copyright IBM Corp. 1993, 1997 137

138

You need to know the following for each instance you use:

instance name

instance directory

For AIX, HP-UX, Solaris, SINIX, and SCO OpenServer,
this is a valid user name that you specify when you
create the database manager instance.

For OS/2 and Windows NT, this is an alphanumeric
string of up to eight characters. The DB2 instance is
created for you during install.

The home directory where the instance is located.

For AIX, HP-UX, Solaris, SINIX, and SCO OpenServer,
the home directory is $HOME/sq11ib, where SHOME is
the home directory of the instance owner.

For OS/2 and Windows NT, the directory is
%DB2PATH%linstance_name. The variable %DB2PATH%
determines where DB2 is installed. Depending on
which drive DB2 is installed, %DB2PATH% will point to
drive\sq11ib.

The instance path on OS/2 and Windows NT is created
based on either:

%DB2PATH%\%DB2INSTANCE% (for example, C:\SQLLIB\DB2)
or, if DB2INSTPROF is defined:

%DB2INSTPROF%\%DB2INSTANCE% (for example,
C:\PROFILES\DB?2)

The DB2INSTPROF environment is used on OS/2 and
Windows NT to support running DB2 on a network
drive in which the client machine has only read access.
In this case, DB2 will be set to point to drive:\sq11ib,
and DB2INSTPROF will be set to point to a local path,
for example, C:\PROFILES, which will contain all
instance-specific information such as catalogs and
configurations, since DB2 requires update access to
these files.

For information about creating and managing database manager instances, refer to the

Quick Beginnings book.

Building Applications for Windows and OS/2 Environments

Appendix B. Problem Determination

You can encounter the following kinds of problems when building or running your
applications:

¢ Client or server problems, such as failing to connect to the database during a build
or when running your application.

¢ Operating system problems, such as not being able to find files during a build.
e Compiler option problems during a build.

¢ Syntax and coding problems during a build or when running your application.

You can use the following sources of information to resolve these problems:

Build script files
For build problems, such as connecting to a database, precompiling,
compiling, linking, and binding, you can use the script files shown in this book
to see command line processor commands and compiler options that work.

Compiler documentation
For compiler option problems not covered by the build script files.

Embedded SQL Programming Guide
Refer to the Embedded SQL Programming Guide for syntax and other coding
problems.

CLI Guide and Reference
Refer to the CL/ Guide and Reference for syntax and other coding problems
related to CLI programs.

SQLCA data structure
If your application issues SQL statements or calls database manager APIs, it
must check for error conditions by examining the SQLCA data structure.

The SQLCA data structure returns error information in the SQLCODE and
SQLSTATE fields. The database manager updates the structure after every
SQL statement is executed, and after most database manager API calls.

Your application can retrieve and print the error information or display it on
the screen. Refer to the Embedded SQL Programming Guide for more
information.

Online error messages
The database manager, database administration utility, installation and
configuration process, and the command line processor generate online error
messages. Each of these messages has a unique prefix as follows:

Prefix Source

SQL Database manager

DBA Database Director

DBI Installation and configuration

© Copyright IBM Corp. 1993, 1997 139

140

DB2 Command line processor

A four or five digit message number follows the prefix. A single letter follows
the message number indicating the severity of the error.

You can use the command line processor to see the help for the message.
Type:
db2 "? xxxnnnn"

where xxx is the message prefix, and nnnn is the message number. Include
the quotes.

Refer to the Message Reference for more information about online error
messages.

Diagnostic tools and error log

Use these for build or runtime problems that you cannot resolve using the
other sources of information. The diagnostic tools include a trace facility,
system log, and message log, among others. DB2 puts error and warning
conditions in an error log based on priority and origin. Refer to the
Troubleshooting Guide for more information. There is also a CLI trace facility
specifically for debugging CLI programs. For more information, refer to the
CLI Guide and Reference.

Building Applications for Windows and OS/2 Environments

Appendix C. How the DB2 Library Is Structured

The DB2 Universal Database library consists of SmartGuides, online help, and books.
This section describes the information that is provided, and how to access it.

To help you access product information online, DB2 provides the Information Center on
0S/2, Windows 95, and the Windows NT operating systems. You can view task
information, DB2 books, troubleshooting information, sample programs, and DB2
information on the Web. “About the Information Center” on page 148 has more details.

SmartGuides

SmartGuides help you complete some administration tasks by taking you through each
task one step at a time. SmartGuides are available on OS/2, Windows 95, and the
Windows NT operating systems. The following table lists the SmartGuides.

SmartGuide

Helps you to...

How to Access...

Add Database

Catalog a database on a client workstation.

From the Client Configuration
Assistant, click on Add .

Create Database

Create a database, and to perform some basic
configuration tasks.

From the Control Center, click with the
right mouse button on the Databases
icon and select Create->New.

Performance
Configuration

Tune the performance of a database by
updating configuration parameters to match your
business requirements.

From the Control Center, click with the
right mouse button on the database
you want to tune and select Configure
performance .

Backup Database

Determine, create, and schedule a backup plan.

From the Control Center, click with the
right mouse button on the database
you want to backup and select
Backup ->Database using

SmartGuide .

Restore Database

Recover a database after a failure. It helps you
understand which backup to use, and which logs
to replay.

From the Control Center, click with the
right mouse button on the database
you want to restore and select
Restore ->Database using

SmartGuide .

Create Table

Select basic data types, and create a primary
key for the table.

From the Control Center, click with the
right mouse button on the Tables icon
and select Create->Table using
SmartGuide .

Create Table Space

Create a new table space.

From the Control Center, click with the
right mouse button on the Table
spaces icon and select Create->Table
space using SmartGuide .

© Copyright IBM Corp. 1993, 1997

141

Online Help

Online help is available with all DB2 components. The following table describes the
various types of help.

Type of Help

Contents

How to Access...

Command Help

Explains the syntax of
commands in the
command line
processor.

From the command line processor in
interactive mode, enter:

? command

where command is a keyword or the entire
command.

For example, ? catalog displays help for all
the CATALOG commands, whereas ?
catalog database displays help for the
CATALOG DATABASE command.

Control Center
Help

Explains the tasks
you can perform in a
window or notebook.
The help includes
prerequisite
information you need
to know, and
describes how to use
the window or
notebook controls.

From a window or notebook, click on the
Help push button or press the F1 key.

Message Help

Describes the cause
of a message
number, and any
action you should
take.

From the command line processor in
interactive mode, enter:

? message number

where message number is a valid message
number.

For example, ? SQL30081 displays help
about the SQL30081 message.

To view message help one screen at a time,
enter:

? XXXnnnnn | more

where XXX is the message prefix, such as
SQL, and nnnnn is the message number,
such as 30081.

To save message help in a file, enter:
? XXXnnnnn > filename.ext

where filename.ext is the file where you want
to save the message help.

Note: On UNIX-based systems, enter:
\? XXXnnnnn | more or

\? XXXnnnnn > filename.ext

142 Building Applications for Windows and OS/2 Environments

Type of Help Contents How to Access...

SQL Help Explains the syntax of From the command line processor in
SQL statements. interactive mode, enter:

help statement
where statement is an SQL statement.

For example, help SELECT displays help
about the SELECT statement.

SQLSTATE Help Explains SQL states From the command line processor in
and class codes. interactive mode, enter:

? sqlstate or ? class-code

where sqlstate is a valid five digit SQL state
and class-code is a valid two digit class
code.

For example, ? 08003 displays help for the
08003 SQL state, whereas ? 08 displays
help for the 08 class code.

Appendix C. How the DB2 Library Is Structured 143

DB2 Books

The table in this section lists the DB2 books. They are divided into two groups:

¢ Cross-platform books: These books are for DB2 on any of the supported platforms.

e Platform-specific books: These books are for DB2 on a specific platform. For
example, there is a separate Quick Beginnings book for DB2 on OS/2, Windows
NT, and UNIX-based operating systems.

Most books are available in HTML and PostScript format, and in hardcopy that you can
order from IBM. The exceptions are noted in the table.

You can obtain DB2 books and access information in a variety of different ways:

View To view an HTML book, you can do the following:

If you are running DB2 administration tools on OS/2, Windows 95, or
the Windows NT operating systems, you can use the Information
Center. “About the Information Center” on page 148 has more details.

Use the open file function of the Web browser supplied by DB2 (or one
of your own) to open the following page:

sqllib/doc/html/index.htm

The page contains descriptions of and links to the DB2 books. The
path is located on the drive where DB2 is installed.

You can also open the page by double-clicking on the DB2 Online
Books icon. Depending on the system you are using, the icon is in the
main product folder or the Windows Start menu.

Search To search for information in the HTML books, you can do the following:

Click on Search the DB2 Books at the bottom of any page in the
HTML books. Use the search form to find a specific topic.

Click on Index at the bottom of any page in an HTML book. Use the
Index to find a specific topic in the book.

Display the Table of Contents or Index of the HTML book, and then
use the find function of the Web browser to find a specific topic in the
book.

Use the bookmark function of the Web browser to quickly return to a
specific topic.

Use the search function of the Information Center to find specific
topics. “About the Information Center” on page 148 has more details.

Print To print a book on a PostScript printer, look for the file name shown in the
table.
Order To order a hardcopy book from IBM, use the form number.

144 Building Applications for Windows and OS/2 Environments

Book Name

Book Description

Form Number

File Name
Cross-Platform Books

Administration Getting Started Introduces basic DB2 database administration S10J-8154
concepts and tasks, and walks you through the db2kOX50
primary administrative tasks.

Administration Guide Contains information required to design, implement, S10J-8157
and maintain a database to be accessed either locally db2d0x50
or in a client/server environment.

API| Reference Describes the DB2 application programming interfaces S10J-8167
(APIs) and data structures you can use to manage db2b0x50
your databases. Explains how to call APIs from your
applications.

CLI Guide and Reference Explains how to develop applications that access DB2 S10J-8159
databases using the DB2 Call Level Interface, a db210x50
callable SQL interface that is compatible with the
Microsoft ODBC specification.

Command Reference Explains how to use the command line processor, and S10J-8166
describes the DB2 commands you can use to manage db2n0x50
your database.

DB2 Connect Enterprise Edition Provides planning, installing, configuring, and using S10J-7888

Quick Beginnings information for DB2 Connect Enterprise Edition. Also

L .) 8 db2cyx50
contains installation and setup information for all
supported clients.

DB2 Connect Personal Edition Provides planning, installing, configuring, and using S10J-8162

Quick Beginnings information for DB2 Connect Personal Edition. db2¢1x50

DB2 Connect User's Guide Provides concepts, programming and general using S10J-8163
information about the DB2 Connect products. db2cOX50

DB2 Connectivity Supplement

Provides setup and reference information for
customers who want to use DB2 for AS/400, DB2 for
0S/390, DB2 for MVS, or DB2 for VM as DRDA
Application Requesters with DB2 Universal Database
servers, and customers who want to use DRDA
Application Servers with DB2 Connect (formerly
DDCS) application requesters.

Note: Available in HTML and PostScript formats
only.

No form number
db2h1x50

Embedded SQL Programming
Guide

Explains how to develop applications that access DB2
databases using embedded SQL, and includes
discussions about programming techniques and
performance considerations.

S10J-8158
db2a0x50

Glossary

Provides a comprehensive list of all DB2 terms and
definitions.

Note: Available in HTML format only.

No form number
db2t0x50

Appendix C. How the DB2 Library Is Structured

145

Book Name

Book Description

Form Number

File Name

Installing and Configuring DB2
Clients

Provides installation and setup information for all DB2
Client Application Enablers and DB2 Software

No form number

2
Developer's Kits. db2iyx50
Note: Available in HTML and PostScript formats
only.
Master Index Contains a cross reference to the major topics S10J-8170
covered in the DB2 library. db2WOX50
Note: Available in PostScript format and hardcopy
only.
Message Reference Lists messages and codes issued by DB2, and S10J-8168
describes the actions you should take. db2mOx50
Replication Guide and Reference Provides planning, configuring, administering, and S95H-0999
usmg_lnformauon for the IBM Replication tools db2e0x50
supplied with DB2.
Road Map to DB2 Programming Introduces the different ways your applications can S10J-8155
access DB2, describes key DB2 features you can use
. D .) db2u0x50
in your applications, and points to detailed sources of
information for DB2 programming.
SQL Getting Started Introduces SQL concepts, and provides examples for S10J-8156
many constructs and tasks. db2y0x50
SQL Reference Describes SQL syntax, semantics, and the rules of the S10J-8165
language. Also |ncl.udes mfo_rr_n.a_tlon about - db2sOX50
release-to-release incompatibilities, product limits, and
catalog views.
System Monitor Guide and Describes how to collect different kinds of information S10J-8164
Reference about your database and the database manager.
; . . db2f0Ox50
Explains how you can use the information to
understand database activity, improve performance,
and determine the cause of problems.
Troubleshooting Guide Helps you determine the source of errors, recover S10J-8169
from problems, and use diagnostic tools in db2p0x50

consultation with DB2 Customer Service.

What's New Describes the new features, functions, and No form number
enhancements in DB2 Universal Database. db2g0x50
Note: Available in HTML and PostScript formats
only.
Platform-Specific Books
Building Applications for UNIX Provides environment setup information and S10J-8161
Environments step_—by-_step instructions to compile, link, and run DB2 db2axx50
applications on a UNIX system.
Building Applications for Provides environment setup information and S10J-8160
Windows and 0S/2 step-by-step instructions to compile, link, and run DB2
; S) db2a1x50
Environments applications on a Windows or OS/2 system.
146 Building Applications for Windows and OS/2 Environments

Book Name Book Description Form Number
File Name
DB2 Extended Enterprise Edition Provides planning, installing, configuring, and using S72H-9620
Quick Beginnings information for DB2 Universal Database Extended db2v3x50
Enterprise Edition for AlX.
DB2 Personal Edition Quick Provides planning, installing, configuring, and using S10J-8150
Beginnings information for DB2 Universal Database Personal db2i1x50
Edition on 0OS/2, Windows 95, and the Windows NT
operating systems.
DB2 SDK for Macintosh Building Provides environment setup information and S50H-0528
Your Applications step-by-step instructions to compile, link, and run DB2 sqla7x02

applications on a Macintosh system.

Note: Available in PostScript format and hardcopy
for DB2 Version 2.1.2 only.

DB2 SDK for SCO OpenServer
Building Your Applications

Provides environment setup information and S89H-3242
step-by-step instructions to compile, link, and run DB2

e 1a9x02
applications on a SCO OpenServer system. Sqrasx
Note: Available for DB2 Version 2.1.2 only.
DB2 SDK for Silicon Graphics Provides environment setup information and S89H-4032
IRIX Building Your Applications step-by-step instructions to compile, link, and run DB2 sglaax02

applications on a Silicon Graphics system.

Note: Available in PostScript format and hardcopy
for DB2 Version 2.1.2 only.

DB2 SDK for SINIX Building

Provides environment setup information and S50H-0530

Your Applications step-by-step instructions to compile, link, and run DB2
L sgla8x00
applications on a SINIX system.
Note: Available in PostScript format and hardcopy
for DB2 Version 2.1.2 only.
Quick Beginnings for OS/2 Provides planning, installing, configuring, and using S10J-8147
information for DB2 Universal Database on OS/2. Also .
L . . . db2i2x50
contains installing and setup information for all
supported clients.
Quick Beginnings for UNIX Provides planning, installing, configuring, and using S10J-8148
information for DB2 Universal Database on db2ixx50
UNIX-based platforms. Also contains installing and
setup information for all supported clients.
Quick Beginnings for Windows Provides planning, installing, configuring, and using S10J-8149
NT information for DB2 Universal Database on the db2i6x50

Windows NT operating system. Also contains
installing and setup information for all supported
clients.

Appendix C. How the DB2 Library Is Structured

147

Notes:

1. The character in the sixth position of the file name indicates the language of a
book. For example, the file name db2d0e50 indicates that the Administration Guide
is in English. The following letters are used in the file names to indicate the
language of a book:

Language Identifier Language Identifier
Brazilian Portuguese B Hungarian H
Bulgarian U Italian |
Czech X Norwegian N
Danish D Polish P
English E Russian R
Finnish Y Slovenian L
French F Spanish z
German G Swedish S

2. For late breaking information that could not be included in the DB2 books, see the
README file. Each DB2 product includes a README file which you can find in the
directory where the product is installed.

About the Information Center

The Information Center provides quick access to DB2 product information. The
Information Center is available on OS/2, Windows 95, and the Windows NT operating
systems. You must install the DB2 administration tools to see the Information Center.

Depending on your system, you can access the Information Center from the:

e Main product folder
e Toolbar in the Control Center
¢ Windows Start menu.

The Information Center provides the following kinds of information. Click on the
appropriate tab to look at the information:

Tasks Lists tasks you can perform using DB2.

Reference Lists DB2 reference information, such as keywords, commands,
and APIs.

Books Lists DB2 books.

Troubleshooting Lists categories of error messages and their recovery actions.

Sample Programs Lists sample programs that come with the DB2 Software
Developer's Kit. If the Software Developer's Kit is not installed,
this tab is not displayed.

Web Lists DB2 information on the World Wide Web. To access this
information, you must have a connection to the Web from your
system.

148 Building Applications for Windows and OS/2 Environments

When you select an item in one of the lists, the Information Center launches a viewer to
display the information. The viewer might be the system help viewer, an editor, or a
Web browser, depending on the kind of information you select.

The Information Center provides search capabilities so you can look for specific topics,
and filter capabilities to limit the scope of your searches.

Appendix C. How the DB2 Library Is Structured 149

150 Building Applications for Windows and OS/2 Environments

Appendix D. Notices

Any reference to an IBM licensed program in this publication is not intended to state or
imply that only IBM’s licensed program may be used. Any functionally equivalent
product, program or service that does not infringe any of IBM’s intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the

IBM Director of Licensing,
IBM Corporation,

500 Columbus Avenue,
Thornwood, NY, 10594
USA.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM Canada Limited
Department 071

1150 Eglinton Ave. East
North York, Ontario
M3C 1H7

CANADA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

This publication may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Trademarks

The following terms are trademarks or registered trademarks of the IBM Corporation in
the United States and/or other countries:

© Copyright IBM Corp. 1993, 1997 151

ACF/NTAM MVS/ESA

ADSTAR MVS/XA
AISPO NetView
AIX 0S/400
AlXwindows 0S/390
AnyNet 0Ss/2
APPN PowerPC
AS/400 QMF

CICS RACF

C Set++ RISC System/6000
C/370 SAA
DATABASE 2 SP
DatagLANce SQL/DS
DataHub SQL/400
DataJoiner S/370
DataPropagator System/370
DataRefresher System/390
DB2 SystemView
Distributed Relational Database Architecture VisualAge
DRDA VM/ESA
Extended Services VSE/ESA
FFST VTAM

First Failure Support Technology WIN-OS/2
IBM

IMS

Lan Distance

Trademarks of Other Companies

The following terms are trademarks or registered trademarks of the companies listed:
C-bus is a trademark of Corollary, Inc.

HP-UX is a trademark of Hewlett-Packard.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks or
registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by IBM
Corporation under license.

Solaris is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, or service names, which may be denoted by a double asterisk
(**), may be trademarks or service marks of others.

152 Building Applications for Windows and OS/2 Environments

Index

A

about the DB2 SDK 1
about this book vii
API batch and command files, note references to
bldapi command file for FORTRAN 77 on OS/2 121
bldapicb batch file for Micro Focus COBOL on
Windows NT 53
bldapicb command file for IBM VisualAge for COBOL
on OS/2 104
bldbrapi command file for Borland C++ on OS/2 96
bldmfapi command file for Micro Focus COBOL
(16-bit) on OS/2 109
bldmfapi command file for Micro Focus COBOL
(32-bit) on OS/2 116
bldmsapi batch file for Microsoft Visual C++ on
Windows NT 38
bldvaapi batch file for IBM VisualAge C++ on
Windows NT 45
bldvaapi command file for IBM VisualAge C++ on
0Ss/2 88
bldvcapi batch file for VisualAge for COBOL on
Windows NT 59
bldwnapi batch file for Micro Focus COBOL on
Windows 3.1 82
makeapi batch file for Microsoft Visual C++ on
Windows 3.1 71
APIs and your own precompiler 1
applets, Java 133
applications
call level interface (CLI) 127
embedded SQL 29
Java 133

B

background knowledge you need Vviii
Basic
Microsoft Visual 3
VisualAge for 3
batch files on Windows 3.1
bldbor for Borland C++ 73
bldbprep for Borland C++ 73
bldos2cb for Micro Focus COBOL 78
bldwincb for Micro Focus COBOL 78
winbld for Microsoft Visual C++ 67

© Copyright IBM Corp. 1993, 1997

batch files on Windows 3.1 (continued)
winos2bd for Microsoft Visual C++ 67
batch files on Windows NT and Windows 95
bldmfcbs for Micro Focus COBOL stored
procedures 53
bldmfcob for Micro Focus COBOL 51
bldmsemb for Microsoft Visual C++ 36
bldmsstp for Microsoft Visual C++ stored
procedures 38
bldmsudf for Microsoft Visual C++ UDFs 41
bldvacbs for IBM VisualAge for COBOL stored
procedures 59
bldvacob for IBM VisualAge for COBOL 57
bldvaemb for IBM VisualAge C++ 43
bldvastp for IBM VisualAge C++ stored
procedures 46
bldvaudf for IBM VisualAge C++ UDFs 49
binding the SAMPLE database 23
bldbor batch file for Borland C++ on Windows 3.1 73
bldbprep batch file for Borland C++ on Windows 3.1 73
bldbremb command file for Borland C++ on OS/2 93
bldbrstp command file for Borland C++ stored
procedures on OS/2 96
bldbrudf command file for Borland C++ UDFs on
0S/2 99
bldfor command file for FORTRAN 77 on OS/2 119
bldforsr command file for FORTRAN 77 stored
procedures on OS/2 122
bldibmcb command file for IBM VisualAge for COBOL for
0Ss/2 102
bldicobs command file for IBM VisualAge for COBOL for
OS/2 stored procedures 104
bldmfcbs batch file for Micro Focus COBOL stored
procedures on Windows NT 53
bldmfcbs command file for Micro Focus COBOL (16-bit)
stored procedures on OS/2 109
bldmfcbs command file for Micro Focus COBOL (32-bit)
stored procedures on 0OS/2 116
bldmfcob batch file for Micro Focus COBOL on Windows
NT 51
bldmfcob command file for Micro Focus COBOL (16-bit)
on OS/2 107
bldmfcob command file for Micro Focus COBOL (32-bit)
on OS/2 114
bldmsemb batch file for Microsoft Visual C++ on
Windows NT 36

153

bldmsstp batch file for Microsoft Visual C++ for stored
procedures on Windows NT 38

bldmsudf batch file for Microsoft Visual C++ UDFs on
Windows NT 41

bldos2cb batch file for Micro Focus COBOL on Windows
3.1 78

bldvacbs batch file for IBM VisualAge for COBOL stored
procedures on Windows NT 59

bldvacob batch file for IBM VisualAge for COBOL on
Windows NT 57

bldvaemb batch file for IBM VisualAge C++ on Windows
NT 43

bldvaemb command file for IBM VisualAge C++ on
0Ss/2 86

bldvastp batch file for IBM VisualAge C++ stored
procedures on Windows NT 46

bldvastp command file for IBM VisualAge C++ stored
procedures on OS/2 88

bldvaudf batch file for IBM VisualAge C++ UDFs on
Windows NT 49

bldvaudf command file for IBM VisualAge C++ UDFs on
0s/2 91

bldwincb batch file for Micro Focus COBOL on Windows
3.1 78

Bold, use of x

book, about this vii

C

C++ compilers, supported versions 2
C++ sample programs 30
calludf sample program 29
cataloging the SAMPLE database 23
checkerr.cbl for error checking 33
CLI
building and running an application 127
clibld batch file on Windows NT 128
clibld command file on OS/2 131
clibldw batch file on Windows 3.1 129
clisampl sample program 127
problem determination 139
sample programs 4
clibld batch file for DB2 CLI applications on Windows
NT 128
clibld command file for DB2 CLI applications on
0Ss/2 131
clibldw batch file for DB2 CLI applications on Windows
3.1 129
Client Application Enabler (DB2 CAE) 1

client problems 139
clisampl sample program 127
CLP sample files 4
COBOL compilers
DB2 API linkage call convention 74 with Micro Focus
COBOL on Windows NT 56
DB2 API linkage call convention 8 with Micro Focus
COBOL (32-bit) on OS/2 119
DB2APL.lib with Micro Focus COBOL (32-bit) on
0s/2 119
DB2API.lib with Micro Focus COBOL on Windows
NT 56
supported versions 2
using IBM VisualAge for COBOL for OS/2 107
using IBM VisualAge for COBOL on Windows
NT 61
using Micro Focus COBOL (16-bit) on OS/2 112
using Micro Focus COBOL (32-bit) on OS/2 119
using Micro Focus COBOL on Windows NT 56
code samples, included in the DB2 SDK 1
command files on 0S/2
bldbremb for Borland C++ 93
bldbrstp for Borland C++ stored procedures 96
bldbrudf for Borland C++ UDFs 99
bldfor for FORTRAN 77 on OS/2 119
bldforsr for FORTRAN 77 stored procedures on
0s/2 122
bldibmcb for IBM VisualAge for COBOL 102
bldicobs for IBM VisualAge for COBOL stored
procedures 104
bldmfcbs for Micro Focus COBOL (16-bit) stored
procedures 109
bldmfcbs for Micro Focus COBOL (32-bit) stored
procedures 116
bldmfcob for Micro Focus COBOL (16-bit) 107
bldmfcob for Micro Focus COBOL (32-bit) 114
bldvaemb for IBM VisualAge C++ 86
bldvastp for IBM VisualAge C++ stored
procedures 88
bldvaudf for IBM VisualAge C++ UDFs 91
clibld for DB2 CLI applications 131
Command Line Processor (CLP) files 4
Command Line Processor (CLP) in the DB2 SDK 1
comments in REXX programs 62, 125
compilers
problems 139
supported 2
Compound SQL statements on OS/2 85
configuring communications protocol 22

154 Building Applications for Windows and OS/2 Environments

connection problems 139

contents of this book viii

CONVERT option on Windows NT 35
CREATE FUNCTION statement on OS/2 85

D

Data Access Builder on OS/2 85
database manager instances

about 137

and the DB2 programming environment 19
db2sampl, using to install the SAMPLE database 23
DB2W.DLL on Windows 3.1 65
definition files, module 31
development environment provided by the DB2 SDK 1
DFTDBPATH, using to specify the default path 23
diagnostic tools 140
directories that contain sample programs 4
DLLs, about 31
documentation, related vii
DRDA-compliant application servers, installing 24
dynamic link libraries, about 31

E

embedded SQL
building your applications, build files 29
sample programs 4
enabling communications on the server 22
environment
Microsoft Windows on Windows 3.1 65
setting the OS/2 21
setting the Windows 3.1 20
setting the Windows NT and Windows 95 19
WIN-OS/2 on Windows 3.1 65
error checking utility 33
error messages and error log 139
example text, use of x
expsamp program, using to export tables 24
extern "C" procedure or function declaration on
0S/2 85

F

Flagger, about the SQL 92 and MVS Conformance 1
FORTRAN
building sample programs 119
compilers, supported versions 2
using the WATCOM FORTRAN 77 compiler on
0S/2 124

H

Hollerith constants and FORTRAN 77 on OS/2 124
home directory, instance 137

How to use this book viii

HTML and Java applets 134

include files in the DB2 SDK 1
installing

the SAMPLE database 23

the SDK 19
instance name and home directory 137
italics, use of x

J

Java
building and running a JDBC applet 134
building and running a JDBC application 134
building applications and applets 133
sample programs 4
setting the OS/2 environment 133
setting the Windows NT environment 133
supporting platforms 2

Java Database Connectivity (JDBC) 133

L

languages, supported 2
log, error 140

M

makefile

for DB2 CLI applications 127

for embedded SQL applications 29
mbstowcs() function on Windows NT 35
messages, online error 139
Micro Focus COBOL

supported compilers 2

using the 16-bit compiler on OS/2 112

using the 32-bit compiler on OS/2 119

using the compiler on Windows NT 56
Microsoft ODBC supported in the DB2 SDK 1
Microsoft Windows, supported versions 3
module definition files, about 31

Index 155

N S

NOCONVERT option on Windows NT 35 SAMPLE database
NotifyRegister, Windows APl on Windows 3.1 65 binding 25

cataloging 24

db2sampl, using to install 23

O installing 23
Object REXX sample programs
running programs on Windows NT 62 listing 4
supported version 2 with DB2 CLI 127
object-oriented C++ programs 30 with embedded SQL 29
OoDBC servers
and supported servers 2 configuring communications protocol 22
supported in the DB2 SDK 1 problems 139
OLE automation starting communications 22
and UDFs with Microsoft Visual Basic 63 supported 2
and UDFs with Microsoft Visual C++ 63 setlocale() function on Windows NT 35
sample controller for stored procedures 63 setting up your environment 19
sample programs 4 Software Developer's Kit (DB2 SDK), about the DB2 1
with Windows NT and Windows 95 62 software, supported 2
online error messages 139 SPECIAL-NAMES paragraph 56, 119
operating system problems 139 SQLCA data structure 139
ORG tables, creating and exporting 23 STAFF tables, creating and exporting 23
outcli sample program 29 stored procedures
outsrv sample program 29 and DLLs 31

and module definition files 31
building Borland C++ on OS/2 96

P building FORTRAN 77 on OS/2 122
precompilers building IBM VisualAge C++ on OS/2 88
and supported DB2 platforms 2 building IBM VisualAge C++ on Windows NT 46
included in the DB2 SDK 1 building IBM VisualAge for COBOL for OS/2 104
prefixes, error message 139 building IBM VisualAge for COBOL on Windows
prerequisites NT 59
compilers 2 building Micro Focus COBOL (16-bit) on OS/2 109
environment setup 19 building Micro Focus COBOL (32-bit) on OS/2 116
operating system 2 building Micro Focus COBOL on Windows NT 53
programming knowledge you need viii building Microsoft Visual C++ on Windows NT 38
problem determination 139 Windows 3.1 Borland C++ client application for 77
publications, related vii Windows 3.1 Micro Focus COBOL client application
for 83

Windows 3.1 Microsoft Visual C++ client application

R for 71

related publications vii structure of this book viii
remote server connections 19 syntax problems 139

REXX SYSADM authority 132
running programs on OS/2 125
running programs on Windows NT 62 T
supported versions 2

tools
diagnostic 140

156 Building Applications for Windows and OS/2 Environments

tools (continued)
in the DB2 SDK 1

U

udf sample program 29
updat sample program 29
Upper case, use of X
user-defined functions (UDFs)
and DLLs 31
and module definition files 31
building Borland C++ on OS/2 99
building IBM VisualAge C++ on OS/2 91
building IBM VisualAge C++ on Windows NT 49
building Microsoft Visual C++ on Windows NT 41
Windows 3.1 Borland C++ client application for 77
Windows 3.1 Micro Focus COBOL client application
for 83
Windows 3.1 Microsoft Visual C++ client application
for 72
using this book vii
util.c and util.f for error checking 33

Vv

versions of compilers supported 2

W

WATCOM FORTRAN 77, coding and compiling
using 124

WCHARTYPE CONVERT precompile option on
Windows NT 35

wcstombs() function on Windows NT 35

who should use this book viii

wide-character format on Windows NT 35

winbld batch file for Microsoft Visual C++ on Windows
3.1 67

Windows, supported versions 3

winos2bd batch file for Microsoft Visual C++ on Windows
3.1 67

WXServer, using in a Windows 3.1 environment 65

Z

zip files
for Data Access Builder on OS/2 85
for Java 133

Index

157

158 Building Applications for Windows and OS/2 Environments

Contacting IBM

This section lists ways you can get more information
from IBM.

If you have a technical problem, please take the time to
review and carry out the actions suggested by the
Troubleshooting Guide before contacting DB2 Customer
Support. Depending on the nature of your problem or
concern, this guide will suggest information you can
gather to help us to serve you better.

For information or to order any of the DB2 Universal
Database products contact an IBM representative at a
local branch office or contact any authorized IBM
software remarketer.

Telephone

If you live in the U.S.A., call one of the following
numbers:

e 1-800-237-5511 to learn about available service
options.

e 1-800-IBM-CALL (1-800-426-2255) or
1-800-3IBM-0OS2 (1-800-342-6672) to order
products or get general information.

e 1-800-879-2755 to order publications.

For information on how to contact IBM outside of the
United States, see Appendix A of the IBM Software
Support Handbook. You can access this document by
selecting the "Roadmap to IBM Support" item at:
http://lwww.ibm.com/support/.

© Copyright IBM Corp. 1993, 1997

Note that in some countries, IBM-authorized dealers
should contact their dealer support structure instead of
the IBM Support Center.

World Wide Web
http://www.software.ibm.com/data/
http://www.software.ibm.com/data/db2/library/

The DB2 World Wide Web pages provide current DB2
information about news, product descriptions, education
schedules, and more. The DB2 Product and Service
Technical Library provides access to frequently asked
guestions, fixes, books, and up-to-date DB2 technical
information. (Note that this information may be in English
only.)

Anonymous FTP Sites
ftp.software.ibm.com

Log on as anonymous. In the directory /ps/products/db2,
you can find demos, fixes, information, and tools
concerning DB2 and many related products.

Internet Newsgroups
comp.databases.ibm-db2, bit.listserv.db2-I

These newsgroups are available for users to discuss
their experiences with DB2 products.

CompuServe
GO IBMDB2 to access the IBM DB2 Family forums

All DB2 products are supported through these forums.

To find out about the IBM Professional Certification
Program for DB2 Universal Database, go to
http://www.software.ibm.com/data/db2/db2tech/db2cert.html

159

Part Number: 10J8160

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

10J8160

