
OS/390

C/C++
User’s Guide

SC09-2361-04

IBM

OS/390

C/C++
User’s Guide

SC09-2361-04

IBM

Note!
Before using this information and the product it supports be sure to read the general information under “Notices” on page xv.

Fourth Edition, September 1998

This edition applies to Version 2 Release 6 of OS/390 C/C++ (5647-A01) and to all subsequent releases and
modifications until otherwise indicated in new editions or other updated documentation. Make sure that you use the
correct edition for the level of the program listed above. Also, ensure that you apply all necessary PTFs for the
program.

Technical changes in the text since the last release of this book are indicated by a vertical line (|) to the left of the
change.

Order publications through your IBM representative or the IBM branch office serving your location. Publications are
not stocked at the address below. Note that the OS/390 C/C++ publications are available through the OS/390 Library
page at: http://www.s390.ibm.com/os390/bkserv.

IBM welcomes your comments. You can send your comments electronically to the network ID listed below. Be sure
to include your entire network address if you wish a reply.

Internet: torrcf@ca.ibm.com
IBMLink: toribm(torrcf)
IBM/PROFS: torolab4(torrcf)
IBMMAIL: ibmmail(caibmwt9)

To send your comments by facsimile (attention: RCF coordinator) use the following FAX numbers:

United States and Canada: 416-448-6161
Other Countries: (+1)-416-448-6161

Alternatively, you can use the Reader’s Comment Form that is provided at the back of this publication, or mail your
comments directly to:

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR
1150 Eglinton Avenue East
North York, Ontario, Canada. M3C 1H7

If you send comments, include the title and order number of this book, and the page number or topic related to your
comment. When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 1999. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Notices . xv
Standards . xv
Trademarks . xvi

Part 1. Introduction . 1

Chapter 1. About This Book 3
IBM OS/390 C/C++ and Related Publications 4
Hardcopy Books . 9
Softcopy Books . 9
Softcopy Examples . 9
OS/390 C/C++ on the World Wide Web 10
C/C++ News.... 10
How to Read the Syntax Diagrams 11

Chapter 2. About IBM OS/390 C/C++ 15
Changes for Version 2 Release 6. 15
The C/C++ Compilers . 16

The C Language . 16
The C++ Language . 16
Common Features of the OS/390 C and C++ Compilers 17
OS/390 C Compiler Specific Features 18
Features That Are Specific to the OS/390 C++ Compiler 18

Utilities . 19
Class Libraries . 19

Class Library Source . 20
The Debug Tool . 20
OS/390 Language Environment 21
The Program Management Binder 21
OS/390 UNIX System Services (OS/390 UNIX) 22
OS/390 C/C++ Applications with OS/390 UNIX C/C++ Functions 23
Input and Output . 24

I/O Interfaces . 24
File Types . 25
Additional I/O Features . 25

The System Programming C Facility. 26
Interaction with Other IBM Products 26
Additional Features of OS/390 C/C++ 27

Chapter 3. Important Changes to the Prelinker Documentation 31

Part 2. User’s Reference . 33

Chapter 4. OS/390 C Example 35
Example of an OS/390 C Program 35

CBC3UAAM . 35
CBC3UAAN . 36

Compiling, Binding, and Running the OS/390 C Example 37
Under OS/390 Batch . 37
Under TSO . 37
Under the OS/390 Shell . 38

© Copyright IBM Corp. 1996, 1999 iii

Chapter 5. OS/390 C++ Examples 39
Example of an OS/390 C++ Program 39

CBC3UBRH . 40
CBC3UBRC . 41

Compiling, Binding, and Running the OS/390 C++ Example 43
Under OS/390 Batch . 43
Under TSO . 43
Under the OS/390 Shell . 45

Example of an OS/390 C++ Template Program. 45
CLB3ALST.C . 46
CLB3ALST.H . 46
CLB3AITR.C . 47
CLB3AITR.H . 47
CLB3AMAX.H . 47
CLB3AMAX.C . 48
CLB3AMIN.H . 48
CLB3AMIN.C . 48
CLB3ASTR.H . 49
CLB3ATMP.CXX . 50

Compiling, Binding, and Running the C++ Template Example 51
Under OS/390 Batch . 51
Under TSO . 53
Under the OS/390 Shell . 53

Chapter 6. Compiler Options 55
Specifying Compiler Options 55

IPA Considerations . 56
Using Special Characters. 57
Specifying OS/390 C Compiler Options Using #pragma Options 58
Specifying Compiler Options under OS/390 UNIX 59

Compiler Option Defaults . 59
Summary of Compiler Options 59
Compatibility Options . 62
Compiler Options for File Management. 63
Options That Control the Compiler Listing. 64
Options for Debugging and Diagnosing Errors 65
Options That Control the Source Code 66
Options That Control the Object Code 66
Options That Control the Preprocessor. 68
Options That Control Program Execution 68
Options That Control the IPA Object 68
Options That Control the IPA Link Step. 69
Direct-to-SOM Options. 70
Portability Options . 70
Description of Compiler Options 70

AGGREGATE | NOAGGREGATE. 70
ALIAS | NOALIAS . 71
ANSIALIAS | NOANSIALIAS 72
ARCHITECTURE . 73
ARGPARSE | NOARGPARSE 74
ATTRIBUTE | NOATTRIBUTE 75
CHECKOUT | NOCHECKOUT 76
CONVLIT | NOCONVLIT . 78
CSECT | NOCSECT . 79
DEFINE . 82
DIGRAPH | NODIGRAPH 82

iv OS/390 V2R6.0 C/C++ User’s Guide

DLL | NODLL . 84
EVENTS | NOEVENTS . 85
EXECOPS | NOEXECOPS 86
EXH | NOEXH. 87
EXPMAC | NOEXPMAC . 88
EXPORTALL | NOEXPORTALL 88
FASTTEMPINC | NOFASTTEMPINC 89
FLAG | NOFLAG . 90
FLOAT . 91
GENPCH | NOGENPCH . 95
GONUMBER | NOGONUMBER 96
HALT(num) . 97
INFO | NOINFO . 98
INLINE | NOINLINE . 99
INLRPT | NOINLRPT . 102
IPA | NOIPA . 103
LANGLVL . 107
LIBANSI | NOLIBANSI . 110
LIST | NOLIST . 110
LOCALE | NOLOCALE . 112
LONGNAME | NOLONGNAME 114
LSEARCH | NOLSEARCH 115
MARGINS | NOMARGINS 121
MAXMEM | NOMAXMEM 123
MEMORY | NOMEMORY. 124
NESTINC | NONESTINC . 125
OBJECT | NOOBJECT . 125
OE | NOOE. 127
OFFSET | NOOFFSET . 128
OMVS | NOOMVS . 129
OPTFILE | NOOPTFILE . 129
OPTIMIZE | NOOPTIMIZE 131
PHASEID . 133
PLIST . 134
PORT | NOPORT . 134
PPONLY | NOPPONLY . 136
REDIR | NOREDIR . 138
RENT | NORENT . 139
ROUND . 140
SEARCH | NOSEARCH . 140
SERVICE | NOSERVICE . 142
SEQUENCE | NOSEQUENCE 143
SHOWINC | NOSHOWINC 145
SOM | NOSOM . 145
SOMEINIT | NOSOMEINIT 146
SOMGS | NOSOMGS . 146
SOMRO | NOSOMRO . 147
SOMVOLATTR | NOSOMVOLATTR 148
SOURCE | NOSOURCE . 148
SPILL | NOSPILL . 150
SRCMSG | NOSRCMSG . 151
SSCOMM | NOSSCOMM 151
START | NOSTART . 152
STRICT | NOSTRICT . 153
TARGET . 153
TEMPINC | NOTEMPINC 156

Contents v

||

||

||

||

||

TERMINAL | NOTERMINAL. 157
TEST | NOTEST . 158
TUNE . 161
UNDEFINE . 163
UPCONV | NOUPCONV . 163
USEPCH | NOUSEPCH . 164
WSIZEOF | NOWSIZEOF 165
XREF | NOXREF. 166
XSOMINC | NOXSOMINC 167

Description of Compatible Compiler Options 168
DECK | NODECK . 169
HWOPTS | NOHWOPTS . 170
SYSLIB . 170
SYSPATH | NOSYSPATH 171
USERLIB . 172
USERPATH | NOUSERPATH 173

Using the OS/390 C Compiler Listing 174
IPA Considerations . 174
Example of an OS/390 C Compiler Listing 175
OS/390 C Compiler Listing Components 180

Using the OS/390 C++ Compiler Listing 183
IPA Considerations . 183
Example of an OS/390 C++ Compiler Listing 184
OS/390 C++ Compiler Listing Components 190

Using the IPA Link Step Listing 193
Example of an IPA Link Step Listing 193
IPA Link Step Listing Components 200

Chapter 7. Binder Options and Control Statements 207
Binder Options . 207

ALIASES(ALL | NO). 207
CALL(YES | NO) . 207
CASE(UPPER | MIXED) . 207
COMPAT(PM1 | PM2 | PM3 | CURRENT | CURR) 208
DYNAM(DLL | NO) . 208
LET(0 | 4 | 8 | 12) . 208
LIST(OFF | STMT | SUMMARY | NOIMP | ALL) 209
MAP(YES | NO) . 209
OPTIONS . 209
REUS(NONE | SERIAL | RENT) 209
UPCASE(YES | NO) . 210
XREF(YES | NO). 210

Binder Control Statements . 210
AUTOCALL Control Statement 211
ENTRY Control Statements 211
IMPORT Control Statements 212
INCLUDE Control Statements 212
LIBRARY Control Statement 213
NAME control statement . 214
RENAME Control Statement 214

Chapter 8. Runtime Options 217
Specifying Runtime Options . 217

Using the #pragma runopts Preprocessor Directive 217

Part 3. Compiling, Binding, and Running OS/390 C/C++ Programs219

vi OS/390 V2R6.0 C/C++ User’s Guide

Chapter 9. Compiling . 221
Compiling with IPA . 221

The IPA Compile Step . 221
The IPA Link Step . 222

Input to the OS/390 C/C++ Compiler 223
Primary Input . 224
Secondary Input . 224

Output from the Compiler. 224
Specifying Output Files . 225

Valid Input/Output File Types 227
Compiling Under OS/390 Batch 228

Using Cataloged Procedures for OS/390 C 229
Using Cataloged Procedures for OS/390 C++ 229

Using Special Characters. 230
Using Your Own JCL . 230
Specifying Source Files . 231
Specifying Include Files . 232
Specifying Output Files . 232
Compiling Under TSO . 233

Using the CC and CXX REXX EXECs 233
Specifying Sequential and Partitioned Data Sets 234
Specifying HFS Files or Directories 235
Using ISPF to Invoke the Compiler 236

Compiling and Binding under the OS/390 Shell. 239
Compiling and Binding in One Step with c89 and c++ (or cxx) 242
Using the make Utility . 243

Using Feature Test Macros . 244
Using Include Files . 246

Specifying Include File Names 247
Forming File Names . 247
Forming Data Set Names with LSEARCH | SEARCH Options 248
Search Sequence . 250
Determining whether the File Name is in Absolute Form 251
Using SEARCH and LSEARCH 253

Search Sequences for Include Files 254
With the NOOE option . 255
With the OE option . 255
Compiling OS/390 C Source Code Using the SEARCH option 257
Compiling OS/390 C++ Source Code Using the SEARCH option 257

Chapter 10. Using Precompiled Headers 259
Determining the Initial Sequence 259

Matching the Initial Sequence 262
Example - Reusing Sequences 263

Using the GENP and USEP Compiler Options 263
Using an Alternative Initial Sequence 264

Restrictions . 264
Organizing Your Source Files 265

Common Header File . 266
Global PCH File for the Entire Directory 266
One PCH file for Each Member of the Directory 266

Chapter 11. Using the IPA Link Step with OS/390 C/C++ Programs 267
IPA Linking Your Program . 267
Using DD Statements for the Standard Data Sets 268

Primary Input (SYSIN) . 269

Contents vii

Location of Compiler and OS/390 Language Environment Library (STEPLIB) 269
Secondary Input (SYSLIB) 269
Output (SYSLIN or SYSPUNCH) 270
Destination of Errors Generated by the IPA Link Step (SYSOUT) 270
Listing (SYSCPRT) . 270
Temporary Workspaces for the IPA Link Step (SYSUTx) 271

IPA Link Step Input . 271
Primary Input . 271
Secondary Input . 272
Object File Formats . 274
Object Record Formats . 275
The IPA Link Step Control File 277

Output from the IPA Link Step 281
Specifying Output Files . 281
Mapping Static Symbol Names 283

Running the IPA Link Step Under OS/390 Batch 283
Using the EDCI and CBCI Cataloged Procedures 284
Using Your Own JCL . 286

Running the IPA Link Step in OS/390 UNIX 286
Using JCL . 286
Invoking IPA from the c89 Utility 287

Chapter 12. Binding OS/390 C/C++ Programs 289
When You Can Use the Binder 289
When You Cannot Use the Binder 289

Your Output is a PDS, not a PDSE 289
CICS . 289
MTF . 289
IPA . 289

Using Different Methods to Bind 290
Single Final Bind . 290
Bind Each Compile Unit . 291
Build and Use a DLL . 292
Rebind a Changed Compile Unit 294

Binding Under OS/390 UNIX 294
OS/390 UNIX Example . 295
Single Final Bind Using c89 295
Bind Each Compile Unit Using c89 296
Build and Use a DLL Using c89 297
Rebind a Changed Compile Unit Using c89 297

Binding under OS/390 Batch 299
OS/390 Batch Example . 299
Single Final Bind under OS/390 Batch 299
Bind Each Compile Unit under OS/390 Batch 300
Build and Use a DLL under OS/390 Batch 301
Rebind a Changed Compile Unit under OS/390 Batch 303
Writing JCL for the binder 304

Binding Under TSO Using CXXBIND 305
TSO Example . 306
Single Final Bind Under TSO 307
Bind Each Compile Unit Under TSO. 307
Build and Use a DLL under TSO 308
Rebind a Changed Compile Unit Under TSO 308

Chapter 13. Binder Processing 311
Primary Input Processing . 312

viii OS/390 V2R6.0 C/C++ User’s Guide

C or C++ Object Module as Input. 312
Secondary Input Processing. 312

Load Module as Input . 313
Program Object as input . 313

Autocall Input Processing (Library Search) 313
Incremental Autocall Processing (AUTOCALL Control Statement) 313
Final Autocall Processing (SYSLIB) 314
Rename Processing . 314
Generating Aliases for Automatic Library Call (Library Search) 315

Dynamic Link Library (DLL) Processing 315
Statically bound functions 316
Imported Variables . 316
Imported Functions . 316

Output Program Object . 316
Output IMPORT Statements. 317
Output Listing . 317

Header . 318
Input Event Log . 319
Module Map . 319
Cross Reference Table . 321
Imported and Exported Symbols Listing 321
Mangled to Demangled Symbol Cross Reference 322
Processing Options . 323
Save Operation Summary 323
Save Module Attributes . 323
Entry Point and Alias Summary 324
Long Symbol Abbreviation Table 324
DDname vs Pathname Cross Reference Table 325
Message Summary Report 325

Binder Processing of C/C++ Object to Program Object 326
Rebindability . 327

Error recovery . 329
Unresolved Symbols . 329
Significance of Library Search Order 330
Duplicates . 331
Duplicate functions from autocall 333
Hunting down references to unresolved symbols 333
Non-reentrant DLL Problems 333

Code That Has Been Prelinked 334

Chapter 14. Running an OS/390 C/C++ Application 335
Running an Application Under OS/390 Batch 335

Specifying Runtime Options under OS/390 Batch 335
Specifying Runtime Options in the EXEC Statement 336
Using Cataloged Procedures 336

Running an Application under TSO 337
Specifying Runtime Options under TSO 338
Passing Arguments to the OS/390 C/C++ Application 338

Running an Application under OS/390 UNIX 339
OS/390 UNIX Application Environments 339
Specifying Runtime Options under OS/390 UNIX 339
Restriction on Using 24-bit AMODE Programs 340
Copying Applications between a PDS and HFS 340
Running a Data Set Member from the OS/390 Shell 340
Running an OS/390 UNIX Application under OS/390 Batch 340

Contents ix

Part 4. Utilities and Tools .343

Chapter 15. Model Tool . 345
About the OS/390 C/C++ Model Tool 345
Accessing Library Functions. 345

Method 1. 346
Method 2. 346
Method 3. 348
Method 4. 348

Accessing Pragma Directives 348
Method 1. 348
Method 2. 349
Method 3. 349

Chapter 16. Object Library Utility 351
Creating an Object Library Under OS/390 Batch 351
Creating and Object Library Under TSO 352
Object Library Utility Map. 353

Chapter 17. DLL Rename Utility 357
DLL Redistribution Scenario. 357
Inputs and Outputs . 358

Restriction . 359
Using the DLL Rename Utility under OS/390 Batch 360

Example of Renaming a DLL under OS/390 Batch 361
Using the DLL Rename Utility under TSO. 361

Specifying DLLRNAME Parameters Directly 361
Specifying DLLRNAME Parameters Using an Input File 362
Example of Renaming a DLL under TSO 363

Chapter 18. Filter Utility . 365
CXXFILT Options. 366

SYMMAP | NOSYMMAP . 366
SIDEBYSIDE | NOSIDEBYSIDE 366
WIDTH(width) | NOWIDTH 366
REGULARNAME | NOREGULARNAME 366
CLASSNAME | NOCLASSNAME 367
SPECIALNAME | NOSPECIALNAME 367
Unknown Type of Name . 367

Under OS/390 Batch . 367
Under TSO . 368

Chapter 19. DSECT Conversion Utility 371
DSECT Utility Options . 371

SECT . 371
BITF0XL | NOBITF0XL . 372
COMMENT | NOCOMMENT 373
DEFSUB | NODEFSUB . 373
EQUATE | NOEQUATE . 373
HDRSKIP | NOHDRSKIP. 375
INDENT | NOINDENT . 376
LOCALE | NOLOCALE . 376
LOWERCASE | NOLOWERCASE 376
OPTFILE | NOOPTFILE . 377
PPCOND | NOPPCOND . 377
SEQUENCE | NOSEQUENCE 377

x OS/390 V2R6.0 C/C++ User’s Guide

UNNAMED | NOUNNAMED. 378
OUTPUT. 378
RECFM . 378
LRECL . 378
BLKSIZE. 378

Generation of Structures . 378
Under OS/390 Batch . 381
Under TSO . 382

Chapter 20. Coded Character Set and Locale Utilities 385
Coded Character Set Conversion Utilities 385

iconv Utility . 385
genxlt Utility . 387
localedef Utility . 388

Part 5. OS/390 UNIX Utilities .393

Chapter 21. Archive and Make Utilities 395
Archive Libraries . 395
Creating Archive Libraries . 395
Creating Makefiles . 396

Chapter 22. BPXBATCH Utility 397
BPXBATCH Usage . 397

Parameter . 398
Usage Notes . 398
Files . 399

Part 6. Appendixes .401

Appendix A. Prelinking and Linking OS/390 C/C++ Programs 403
Prelinking an Application . 403

Using DD Statements for the Standard Data Sets - Prelinker 404
Input to the Prelinker . 406
Prelinker Output . 406
Mapping long names to S-Names 407

Linking an Application . 408
Using DD Statements for Standard Data Sets—Linkage Editor 408
Input to the Linkage Editor 409
Output from the Linkage Editor 410
Link-Editing Multiple Object Modules 412

Building DLLs . 412
Linking Your Code . 413

Using DLLs . 413
Prelinking and Linking an Application Under OS/390 Batch and TSO. 417
OS/390 Language Environment Prelinker Map 418

Processing the Prelinker Automatic Library Call 423
References to Currently Undefined Symbols (External References) 423
Prelinking and Linking Under OS/390 Batch 423
Writing JCL for the Prelinker and Linkage Editor 425
Secondary Input to the Linker 426
Using Additional Input Object Modules under OS/390 Batch 427
Under TSO . 428
Using CPLINK. 431
Using LINK . 433

Contents xi

Prelinking and Link-Editing under the OS/390 Shell 434
Using your JCL . 435
Setting c89 to Invoke the Prelinker 437
Using the c89 Utility. 437

Prelinker Control Statement Processing 437
IMPORT Control Statement 438
INCLUDE Control Statement 438
LIBRARY Control Statement 439
RENAME Control Statement 440

Reentrancy . 441
Natural or Constructed Reentrancy 441
Using the Prelinker to Make Your Program Reentrant 442
Generating a Reentrant Load Module in C 442
Generating a Reentrant Load Module in C++ 443

Resolving Multiple Definitions of the Same Template Function 443
External Variables . 444

Appendix B. Prelinker and Linkage Editor Options 445
Prelinker Options. 445

DLLNAME(dll-name) . 445
DUP | NODUP . 445
ER | NOER . 445
MAP | NOMAP . 445
MEMORY | NOMEMORY. 446
NCAL | NONCAL. 446
OMVS | NOOMVS . 446
UPCASE | NOUPCASE . 447

Linkage Editor Options. 447

Appendix C. Diagnosing Problems 449
Problem Checklist . 449
When Does the Error Occur? 450

The Error Occurs at Compile Time 450
The Error Occurs at IPA Link Time 451
The Error Occurs at Bind Time. 452
The Error Occurs at Prelink Time 452
The Error Occurs at Link Time 453
The Error Occurs at Run Time 453

Installation Problems . 455

Appendix D. IBM Supplied Cataloged Procedures and REXX EXECs . . . 457
Tailoring PROCs, REXX EXECs, and EXECs 458
Data Sets Used . 460

Description of Data Sets Used 460
Examples Using Cataloged Procedures 466

Appendix E. Using Assembler Macros 467
CBC3UAAP. 469
CBC3UAAQ . 470
CBC3UAAR . 471
CBC3UAAS. 472
CBC3UAAT . 473
CBC3UAAU . 474

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 475
Return Codes . 475

xii OS/390 V2R6.0 C/C++ User’s Guide

Compiler Messages . 475

Appendix G. Other Return Codes and Messages 595

Appendix H. Utility Messages 597
DSECT Utility Messages . 597

Return Codes . 597
Messages . 597

DLLRNAME Utility Messages 599
Return Codes . 599
Messages . 599

CXXFILT Utility Messages . 600
Return Codes . 600
Messages . 600

Appendix I. Other OS/390 C Utilities 603
Using the Old Syntax for CC 603
Using CMOD . 604

Appendix J. Layout of the Events File 607
Description of the Fileid Field 607
Description of the Filend Field 608
Description of the Error Field 608

Glossary . 611

Bibliography . 639
OS/390 . 639
VS COBOL II Release 4 . 639
COBOL FOR MVS & VM Release 2. 639
COBOL for OS/390 & VM Version 2 Release 1. 639
PL/I for MVS & VM Release 1 Modification 1 640
OS PL/I Version 2 Release 3 640
VS FORTRAN Version 2 Release 6 640
CICS/ESA Version 4 Release 1 640
CICS Transaction Server for OS/390 Release 2 640
DB2 Version 3 Release 1. 640
DB2 Version 4 Release 1. 641
DB2 Version 5 Release 1. 641
IMS/ESA Version 4 Release 1 641
IMS/ESA Version 5 Release 1 641
IMS/ESA Version 6 Release 1 641
QMF Version 3 Release 2 . 641
VSAM . 642

INDEX . 643

Readers’ Comments — We’d Like to Hear from You 657

Contents xiii

xiv OS/390 V2R6.0 C/C++ User’s Guide

Notices

Any reference to an IBM licensed program in this publication is not intended to state
or imply that only IBM’s licensed program may be used. Any functionally equivalent
product, program, or service that does not infringe any of IBM’s intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing,
IBM Corporation, 500 Columbus Avenue, Thornwood, NY, 10594, USA.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact IBM Canada Ltd., Department 071,
1150 Eglinton Avenue East, North York, Ontario M3C 1H7, Canada. Such
information may be available, subject to appropriate terms and conditions, including
in some cases, payment of a fee.

This publication may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

This publication documents intended Programming Interfaces that allow the
customer to write OS/390 C/C++ programs.

Any interfaces, including service component interfaces, that are not documented in
the OS/390 C/C++ publications are not formal interfaces. You should not build any
dependencies on these interfaces, as IBM can change or remove interfaces at any
time, without notice.

Any pointers in this publication to non-IBM Web sites are provided for convenience
only and do not in any manner serve as an endorsement of these Web sites. IBM
accepts no responsibility for the content or use of non-IBM Web sites specifically
mentioned in this publication or accessed through an IBM Web site that is
mentioned in this publication.

Standards

Extracts are reprinted from IEEE Std 1003.1—1990, IEEE Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 1: System
Application Program Interface (API) [C language], copyright 1990 by the Institute of
Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE P1003.1a Draft 6 July 1991, Draft Revision to
Information Technology—Portable Operating System Interface (POSIX), Part 1:
System Application Program Interface (API) [C Language], copyright 1992 by the
Institute of Electrical and Electronic Engineers, Inc.

© Copyright IBM Corp. 1996, 1999 xv

Extracts are reprinted from IEEE Std 1003.2—1992, IEEE Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 2: Shells and
Utilities, copyright 1990 by the Institute of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE Std P1003.4a/D6—1992, IEEE Draft Standard
Information Technology—Portable Operating System Interface (POSIX)—Part 1:
System Application Program Interface (API)—Amendment 2: Threads Extension [C
language], copyright 1990 by the Institute of Electrical and Electronic Engineers,
Inc.

Extracts from ISO/IEC 9899:1990 have been reproduced with the permission of the
International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC). The complete standard can be obtained from
any ISO or IEC member or from the ISO or IEC Central Offices, Case postale 56,
CH - 1211 Geneva 20, Switzerland. Copyright remains ISO and IEC.

Extracts from X/Open Specification, Programming Languages, Issue 4 Release 2,
copyright 1988, 1989, February 1992, by the X/Open Company Limited, have been
reproduced with the permission of X/Open Company Limited. No further
reproduction of this material is permitted without the written notice from the X/Open
Company Ltd, UK.

Trademarks

The following terms, which may be denoted by a single asterisk (*), are trademarks
of International Business Machines Corporation in the United States or other
countries or both:

AD/Cycle AFP AIX
AIX/6000 AT AS/400
BookManager C Set ++ C/370
C/MVS C++/MVS Common User Access
CICS CICS/ESA CICSPlex
COBOL/370 CUA CT
DATABASE 2 DB2 DFSMS
DFSMS/MVS DFSMSdfp DRDA
ESCON GDDM Hiperspace
IBM IBMLink IMS
IMS/ESA MVS/DFP MVS/ESA
MVS/SP MVS/XA Open Class
OpenEdition Operating System/2 Operating System/400
OS OPEN OS/2 OS/390
OS/400 PROFS PS/2
QMF RACF RETAIN
S/370 S/390 SAA
SOM SOMobjects SP
SQL/DS System/370 System/390
System Object Model Systems Application

Architecture
VisualAge

VM/ESA VSE/ESA VTAM
3090 3890 400

Microsoft, Windows, Windows NT, and the Windows logo are registered trademarks
of Microsoft Corporation.

xvi OS/390 V2R6.0 C/C++ User’s Guide

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

Notices xvii

xviii OS/390 V2R6.0 C/C++ User’s Guide

Part 1. Introduction

This part presents introductory concepts on the OS/390 C/C++ product, and
discusses the OS/390 C/C++ library. Specifically, it discusses the following:

v “Chapter 1. About This Book” on page 3

v “Chapter 2. About IBM OS/390 C/C++” on page 15

v “Chapter 3. Important Changes to the Prelinker Documentation” on page 31

© Copyright IBM Corp. 1996, 1999 1

2 OS/390 V2R6.0 C/C++ User’s Guide

Chapter 1. About This Book

This edition of the OS/390 C/C++ User’s Guide is intended for users of the IBM
OS/390 C/C++ compiler with the OS/390 Language Environment product. It
provides you with information about implementing (compiling, linking, and running)
programs that are written in C and C++. It contains guidelines for preparing C and
C++ programs to run under the OS/390 operating system.

To use this, or any other OS/390 C/C++ book, you must have a working knowledge
of the C and C++ programming languages. You should also know the operating
system, and the related products as appropriate. This includes the OS/390
Language Environment product and OS/390 UNIX® System Services (OS/390
UNIX).

© Copyright IBM Corp. 1996, 1999 3

IBM OS/390 C/C++ and Related Publications

This section summarizes the content of the IBM OS/390 C/C++ publications and
shows where to find related information in other publications.

Table 1. OS/390 C/C++ Publications

Book Title and Number Key Sections/Chapters in the Book

OS/390 C/C++ Programming Guide,
SC09-2362

Guidance information for:

v C/C++ input and output
v Debugging OS/390 C programs that use input/output
v Using linkage specifications in C++
v Combining C and assembler
v Creating and using DLLs
v Using threads in an OS/390 UNIX application
v Reentrancy
v Using the decimal data type in C and C++
v Handling exceptions, error conditions, and signals
v Optimizing code
v Optimizing your C/C++ code with Interprocedural Analysis
v Network communications under OS/390 UNIX
v Interprocess communications using OS/390 UNIX
v Structuring a program that uses C++ templates
v Using environment variables
v Using System Programming C facilities
v Library functions for the System Programming C facilities
v Using runtime user exits
v Using the OS/390 C multitasking facility
v Using other IBM products with OS/390 C/C++ (CICS*, CSP, DWS, DB2*,

GDDM*, IMS*, ISPF, QMF*)
v Direct-to-SOM support under OS/390 C/C++
v Internationalization: locales and character sets, code set conversion utilities,

mapping variant characters
v POSIX character set
v Code point mappings
v Locales supplied with OS/390 C/C++
v Charmap files supplied with OS/390 C/C++
v Examples of charmap and locale definition source files
v Converting code from code character set IBM-1047
v Using built-in functions
v Programming considerations for OS/390 UNIX C/C++

OS/390 C/C++ User’s Guide,
SC09-2361

Guidance information for:
v OS/390 C/C++ examples
v Compiler options
v Binder options and control statements
v Specifying OS/390 Language Environment runtime options
v Compiling, IPA Linking, binding, and running OS/390 C/C++ programs
v Using precompiled headers
v Utilities (Object Library, DLL Rename, CXXFILT, DSECT Conversion, Code

Set and Locale, ar and make, BPXBATCH)
v Diagnosing problems
v Cataloged procedures and REXX EXECs supplied by IBM
v Error messages and return codes

4 OS/390 V2R6.0 C/C++ User’s Guide

Table 1. OS/390 C/C++ Publications (continued)

Book Title and Number Key Sections/Chapters in the Book

OS/390 C/C++ Language Reference,
SC09-2360

Reference information for:
v The C and C++ Languages
v Lexical elements of OS/390 C and OS/390 C++
v Declarations, expressions and operators
v Implicit type conversions
v Functions and statements
v Preprocessor directives
v C++ classes, class members, and friends
v C++ overloading, special member functions, and inheritance
v C++ templates and exception handling
v OS/390 C and OS/390 C++ compatibility

OS/390 C/C++ Run-Time Library
Reference, SC28-1663

Reference information for:
v C header files
v C Library functions

OS/390 C Curses, SC28-1907 Reference information for:
v Curses concepts
v Key data types
v General rules for characters, renditions, and window properties
v General rules of operations and operating modes
v Use of macros
v Restrictions on block-mode terminals
v Curses functional interface
v Contents of headers
v The terminfo database

OS/390 C/C++ Compiler and
Run-Time Migration Guide,
SC09-2359

Guidance and reference information for:
v Common migration questions
v Application executable program compatibility
v Source program compatibility
v Input and output operations compatibility
v Class library migration considerations
v Changes between releases of OS/390
v C/370* V1 to V2 compiler changes
v Other migration considerations

OS/390 C/C++ Reference Summary,
SX09-1313

Summary tables for:
v Character set, trigraphs, digraphs, and keywords
v Escape sequences, storage classes
v Predefined and derived types, type qualifiers
v Operator precedence, redirection symbols
v fprintf() format, type characters, and flag characters
v fscanf() format and type characters
v __amrc structure
v Hardware exceptions and signals
v Compiler return codes
v Compiler options
v #pragma directives
v Library functions
v Utilities

Chapter 1. About This Book 5

Table 1. OS/390 C/C++ Publications (continued)

Book Title and Number Key Sections/Chapters in the Book

OS/390 C/C++ IBM Open Class
Library User’s Guide, SC09-2363

Guidance information for:
v Using the Complex Mathematics Class Library: Review of complex

numbers, header files, constructing complex objects, mathematical
operators for complex, friend functions for complex, handling complex
mathematics errors

v Using the I/O Stream Class Library: Introduction, getting started, advanced
topics, and manipulators

v Using the Collection Class Library: Overview, instantiating and using,
element and key functions, tailoring a collection implementation,
polymorphic use of collections, support for notifications, exception handling,
tutorials, problem solving, compatibility with previous releases, thread safety

v Using the Application Support Class Library: Introduction, String classes,
Exception and Trace classes, Date and Time classes, controlling threads
and protecting data, the IBM Open Class* notification framework, Binary
Coded Decimal classes

OS/390 C/C++ IBM Open Class
Library Reference, SC09-2364

Reference information for:
v Complex Mathematics Class Library
v I/O Stream Class Library
v Collection Class Library
v Application Support Class Library

OS/390 C/C++ SOM-Enabled Class
Library User’s Guide and Reference,
SC09-2366

Guidance and reference information for:
v C++ SOM (RRBC-enabled) versions of Collection and Application Support

Class Libraries
v Cross-language SOM version of the Collection Class Library

Debug Tool User’s Guide and
Reference, SC09-2137

Guidance and reference information for:
v Preparing to debug programs
v Debugging programs
v Using Debug Tool in different environments
v Language-specific information
v Debug Tool reference

APAR and BOOKS files (Shipped with
Program materials)

Partitioned data set CBC.SCBCDOC on the product tape contains the
members, APAR and BOOKS, which provide additional information for using
the IBM OS/390 C/C++ licensed program, including:
v Isolating reportable problems
v Keywords
v Preparing an Authorized Program Analysis Report (APAR)
v Problem identification worksheet
v Maintenance on OS/390
v Late changes to OS/390 C/C++ publications

Note: For complete and detailed information on linking and running with OS/390 Language Environment and using
the OS/390 Language Environment runtime options, refer to the OS/390 Language Environment Programming Guide,
SC28-1939. For complete and detailed information on using interlanguage calls, refer to OS/390 Language
Environment Writing Interlanguage Applications, SC28-1943.

The following table lists the OS/390 C/C++ and related publications. The table
groups the publications according to the tasks they describe.

6 OS/390 V2R6.0 C/C++ User’s Guide

Table 2. Publications by Task

Tasks Books

Planning, preparing, and migrating to OS/390 C/C++
v OS/390 C/C++ Compiler and Run-Time Migration

Guide, SC09-2359
v OS/390 Language Environment Customization,

SC28-1941
v OS/390 UNIX System Services Planning, SC28-1890
v OS/390 Planning for Installation, GC28-1726
v OS/390 Task Atlas, available on the OS/390 Library

page on the World Wide Web
(http://www.s390.ibm.com/os390/bkserv)

Installing v OS/390 Program Directory
v OS/390 Planning for Installation, GC28-1726
v OS/390 Language Environment Customization,

SC28-1941

Coding programs v OS/390 C/C++ Run-Time Library Reference,
SC28-1663

v OS/390 C/C++ Language Reference, SC09-2360
v OS/390 C/C++ Reference Summary, SX09-1313
v OS/390 C/C++ Programming Guide, SC09-2362
v OS/390 Language Environment Concepts Guide,

GC28-1945
v OS/390 Language Environment Programming Guide,

SC28-1939
v OS/390 Language Environment Programming

Reference, SC28-1940
v OS/390 C/C++ IBM Open Class Library User’s Guide,

SC09-2363
v OS/390 C/C++ IBM Open Class Library Reference,

SC09-2364
v OS/390 C/C++ SOM-Enabled Class Library User’s

Guide and Reference, SC09-2366

Coding and binding programs with interlanguage calls v OS/390 C/C++ Programming Guide, SC09-2362
v OS/390 C/C++ Language Reference, SC09-2360
v OS/390 Language Environment Programming Guide,

SC28-1939
v OS/390 Language Environment Writing Interlanguage

Applications, SC28-1943
v DFSMS/MVS Program Management, SC26-4916

Compiling, binding, and running programs v OS/390 C/C++ User’s Guide, SC09-2361
v OS/390 Language Environment Programming Guide,

SC28-1939
v OS/390 Language Environment Debugging Guide and

Run-Time Messages, SC28-1942
v DFSMS/MVS Program Management, SC26-4916
v OS/390 Messages Database, available on the OS/390

Library page in the World Wide Web
(http://www.s390.ibm.com/os390/bkserv)

Compiling and binding applications in the OS/390 UNIX
environment

v OS/390 C/C++ User’s Guide, SC09-2361
v OS/390 UNIX System Services User’s Guide,

SC28-1891
v OS/390 UNIX System Services Command Reference,

SC28-1892
v DFSMS/MVS Program Management, SC26-4916

Chapter 1. About This Book 7

Table 2. Publications by Task (continued)

Tasks Books

Compiling and binding SOM applications with OS/390
SOMobjects*

v OS/390 SOMobjects Programmer’s Guide, GC28-1859
v OS/390 C/C++ Programming Guide, SC09-2362
v OS/390 C/C++ User’s Guide, SC09-2361

Debugging programs v README file
v Debug Tool User’s Guide and Reference, SC09-2137
v OS/390 C/C++ User’s Guide, SC09-2361
v OS/390 C/C++ Programming Guide, SC09-2362
v OS/390 Language Environment Programming Guide,

SC28-1939
v OS/390 Language Environment Debugging Guide and

Run-Time Messages, SC28-1942
v OS/390 UNIX System Services Messages and Codes,

SC28-1908
v OS/390 UNIX System Services User’s Guide,

SC28-1891
v OS/390 UNIX System Services Command Reference,

SC28-1892
v OS/390 UNIX System Services Programming Tools,

SC28-1904

Using shells and utilities in the OS/390 UNIX environment v OS/390 C/C++ User’s Guide, SC09-2361
v OS/390 UNIX System Services Command Reference,

SC28-1892
v OS/390 UNIX System Services Messages and Codes,

SC28-1908

Using sockets library functions in the OS/390 UNIX
environment

v OS/390 C/C++ Run-Time Library Reference,
SC28-1663

Porting a UNIX Application to OS/390 v OS/390 UNIX System Services Porting Guide

This guide contains useful information about supported
header files and C functions, sockets in an OS/390
UNIX environment, process management, compiler
optimization tips, and suggestions for improving the
application’s performance after it has been ported. The
Porting Guide is available as a PDF file which you can
download, or as web pages which you can browse, at
the following URL:
http://www.s390.ibm.com/unix/bpxa1por.html

Performing diagnosis and submitting an Authorized
Program Analysis Report (APAR)

v OS/390 C/C++ User’s Guide, SC09-2361
v CBC.SCBCDOC(APAR) on OS/390 C/C++ product tape

Quick reference v OS/390 C/C++ Reference Summary, SX09-1313

Multimedia Tutorial v For a new way of learning C++ programming, you can
order the CD-ROM Experience C++: A Multimedia
Tutorial, SK2T-1158. This tutorial runs in DOS.

Note: For information on using the prelinker, see “Appendix A. Prelinking and Linking OS/390 C/C++ Programs” on
page 403. As of Release 4, this appendix contains information that was previously in the chapter on prelinking and
linking OS/390 C/C++ programs in OS/390 C/C++ User’s Guide. It also contains prelinker information that was
previously in the OS/390 C/C++ Programming Guide.

8 OS/390 V2R6.0 C/C++ User’s Guide

Hardcopy Books

The following OS/390 C/C++ books are available in hardcopy:
v OS/390 C/C++ Run-Time Library Reference, SC28-1663
v OS/390 C/C++ User’s Guide, SC09-2361
v OS/390 C/C++ Programming Guide, SC09-2362
v OS/390 C/C++ Reference Summary, SX09-1313
v OS/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363
v OS/390 C Curses, SC28-1907
v OS/390 C/C++ Compiler and Run-Time Migration Guide, SC09-2359
v Debug Tool User’s Guide and Reference, SC09-2137

You can purchase these books on their own, or as part of a set. You receive the
OS/390 C/C++ Compiler and Run-Time Migration Guide, SC09-2359 at no charge.
Feature code 8009 includes the remaining books.

Softcopy Books

All of the OS/390 C/C++ publications (except for the OS/390 C/C++ Reference
Summary) are available in softcopy book format. The books are available on the
tape that accompanies the OS/390 product, and on a CD-ROM called the IBM
Online Library Omnibus Edition: OS/390 Collection, SK2T-6700.

To read the softcopy books, the BookManager* Read (Program 5684-062,
5695-046) licensed program must be available on your operating system.
BookManager Read provides access to online information as an alternative to hard
copy documents. You can read, search, make notes, and select sections of text to
print.

Also available are BookManager Read/DOS (Program 73F6-022) for the DOS
operating system, and BookManager Read/2 (Program 73F6-023) for the OS/2
operating system. With these products, you can download online books to your
workstation and read them.

If your system has BookManager Read installed, you can enter the command
BOOKMGR to start BookManager and display a list of books available to you. If you
know the name of the book that you want to view, you can use the OPEN
command to open the book directly.

Note: If your workstation does not have graphics capability, BookManager Read
cannot correctly display some characters, such as arrows and brackets.

You can also browse the books on the World Wide Web by clicking on "The Library"
link on the OS/390 home page. The URL for this page is:
http://www.s390.ibm.com/os390/index.html

Softcopy Examples

Most of the larger examples in the following books are available in
machine-readable form:
v OS/390 C/C++ Language Reference, SC09-2360
v OS/390 C/C++ User’s Guide, SC09-2361
v OS/390 C/C++ Programming Guide, SC09-2362
v OS/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363

Chapter 1. About This Book 9

v OS/390 C/C++ IBM Open Class Library Reference, SC09-2364
v OS/390 C/C++ SOM-Enabled Class Library User’s Guide and Reference,

SC09-2366

In the following books, a label on an example indicates that the example is
distributed in softcopy. The label is the name of a member in the data sets
CBC.SCBCSAM or CBC.SCLBSAM. The labels have the form CBCxyyy or CLBxyyy, where
x refers to a publication:
v R and X refer to the OS/390 C/C++ Language Reference, SC09-2360
v G refers to the OS/390 C/C++ Programming Guide, SC09-2362
v U refers to the OS/390 C/C++ User’s Guide, SC09-2361
v A refers to the OS/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363

Examples labelled as CBCxyyy appear in the OS/390 C/C++ Language Reference,
the OS/390 C/C++ Programming Guide, and the OS/390 C/C++ User’s Guide.
Examples labelled as CLBxyyy appear in the OS/390 C/C++ IBM Open Class
Library User’s Guide.

An exception applies to the example names for the Collection Class Library which
do not follow a naming convention. These examples are in the OS/390 C/C++ IBM
Open Class Library Reference, SC09-2364 and in the OS/390 C/C++ SOM-Enabled
Class Library User’s Guide and Reference, SC09-2366. For the OS/390 C/C++
SOM-Enabled Class Library User’s Guide and Reference, SC09-2366, the label
refers to a member name in the data set CBC.SCLBXSM.

OS/390 C/C++ on the World Wide Web

Additional information on OS/390 C/C++ is available on the World Wide Web. The
URL for the OS/390 C/C++ home page is:
http://www.software.ibm.com/ad/c390/index.html

This page contains late-breaking information about the OS/390 C/C++ product,
including the compiler, the class libraries, and utilities. It also contains a tutorial on
the source level interactive debugger. There are links to other useful information,
such as the OS/390 C/C++ information library and the libraries of other OS/390
elements that are available on the Web. The OS/390 C/C++ home page also
contains information on active Beta programs, samples that you can download,
C/370 product newsletters, and links to other related Web sites.

C/C++ News...

IBM also publishes the C/370 Compiler Newsletter. This free newsletter keeps
subscribers up to date on the latest product releases. It also provides coding hints
and tips, questions and answers, and news about C/370 products and IBM OS/390
C/C++.

To take advantage of this free publication, send your name, full mailing address,
and phone number, as follows:

v Send a message electronically to the following network ID :

– Internet: inetc370@ca.ibm.com

– IBMMAIL: ibmmail(caibmrxz)

v Mail your request to:

10 OS/390 V2R6.0 C/C++ User’s Guide

EDITOR, C/370 Compiler Newsletter
IBM Canada Ltd. Laboratory
9/604/895/TOR
895 Don Mills Road
NORTH YORK ONTARIO CANADA M3C 1W3

How to Read the Syntax Diagrams

This book describes the syntax for commands, directives, and statements, using the
following structure:

v Read the syntax diagrams from left to right, from top to bottom, following the path
of the line.

A double right arrowhead indicates the beginning of a command, directive, or
statement. A single right arrowhead indicates that it is continued on the next line.
In the following diagrams, "statement" represents a command, directive, or
statement.

ÊÊ statement ÊÍ

The following indicates a continuation; the opposing arrowheads indicate the end
of a command, directive, or statement.

ÊÊ statement ÊÍ

Diagrams of syntactical units other than complete commands, directives, or
statements look like this:

ÊÊ statement ÊÍ

v Required items are on the horizontal line (the main path).

ÊÊ statement required_item ÊÍ

v Optional items are below the main path.

ÊÊ statement
optional_item

ÊÍ

v If you can choose from two or more items, they are vertical in a stack.

If you must choose one of the items, one item of the stack is on the main path.

ÊÊ statement required_choice1
required_choice2

ÊÍ

If choosing one of the items is optional, the entire stack is below the main path.

Chapter 1. About This Book 11

ÊÊ statement
optional_choice1
optional_choice2

ÊÍ

v An arrow that returns to the left above the main line indicates an item that you
can repeat.

ÊÊ »statement repeatable_item ÊÍ

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.

v Keywords are not italicized, and should be entered exactly as shown (for
example, pragma). You must spell keywords exactly as shown in the syntax
diagram. Variables are in lowercase italics (in hardcopy), for example, identifier.
They represent user-supplied names or values.

v If the syntax diagram shows punctuation marks, parentheses, arithmetic
operators, or other nonalphanumeric characters, you must enter them as part of
the syntax.

Note: You do not always require the white space between tokens. You should,
however, include at least one blank space between tokens unless otherwise
specified.

The following syntax diagram example shows the syntax for the #pragma comment
directive.

ÊÊ
(1) (2) (3)

pragma
(4)

comment Ê

Ê
(5) (6) (9) (10)

(compiler)
date
timestamp

copyright
user (7) (8)

, " token_sequence "

ÊÍ

Notes:

1 This is the start of the syntax diagram.

2 The symbol -# must appear first.

3 The keyword -pragma must follow the -# symbol.

4 The keyword -comment must follow the keyword -pragma.

5 An opening parenthesis must follow the keyword -comment.

6 The comment type must be entered only as one of the following: -compiler,
-date, -timestamp, -copyright, or -user.

7 If the comment type is -copyright or -user, and an optional character string
is following, a comma must be present after the comment type.

12 OS/390 V2R6.0 C/C++ User’s Guide

8 A character string must follow the comma. The character string must be
enclosed in double quotation marks.

9 A closing parenthesis is required.

10 This is the end of the syntax diagram.

The following examples of the #pragma comment directive are syntactically correct
according to the diagram above:

#pragma comment(date)
#pragma comment(user)
#pragma comment(copyright,"This text will appear in the module")

Chapter 1. About This Book 13

14 OS/390 V2R6.0 C/C++ User’s Guide

Chapter 2. About IBM OS/390 C/C++

The C/C++ feature of the IBM OS/390 licensed program provides support for C and
C++ application development on the OS/390 platform. The C/C++ feature is based
on the C/C++ for MVS/ESA* product.

IBM OS/390 C/C++ includes:
v A C compiler (referred to as the OS/390 C compiler)
v A C++ compiler (referred to as the OS/390 C++ compiler)
v A set of C++ class libraries
v Application Support Class and Collection Class Library source
v A mainframe interactive Debug Tool (optional)
v A set of utilities for C/C++ application development

IBM offers the C language on other platforms, such as the AIX*, IBM Operating
System/2* (OS/2*), IBM Operating System/400* Version 3 (OS/400*), Sun Solaris,
VM/ESA*, VSE/ESA*, and Windows® operating systems. The AIX, OS/2, OS/400,
Sun Solaris, and Windows operating systems also offer the C++ language.

Changes for Version 2 Release 6

OS/390 C/C++ has made the following changes for this release:

v Added support for the Institute of Electrical and Electronics Engineers (IEEE)
binary floating-point data type, in conformance with the IEEE 754 standard, as
applicable to the S/390* environment. For details on the OS/390 C/C++ support,
see “FLOAT” on page 91. In addition, two related sub-options have been
introduced, ARCH(3) and TUNE(3). The two sub-options support the new G5
processor architecture, and IEEE binary floating-point data. Refer to
“ARCHITECTURE” on page 73 and “TUNE” on page 161 for details.

Complete IEEE binary floating-point support for OS/390 and its elements requires
that you apply small programming enhancements (SPEs) to OS/390 V2R6.0, and
to specific releases of some software. These SPEs are delivered as program
temporary fixes (PTFs). Consult your System Programmer to ensure that the
SPE PTFs you require for IEEE binary floating-point support, as documented in
the OS/390 Planning for Installation publication, are applied to your system. The
OS/390 Planning for Installation publication documents the complete software
requirements for IEEE binary floating-point support on OS/390.

v Improved the performance of the Binary Coded Decimal (BCD) class library, and
its compatibility with the decimal data type in C, and other S/390 languages. For
details, see Using the C++ Decimal Data Type in the OS/390 C/C++
Programming Guide.

v Added support for the long long integer data type. For more details, see the
sections on integer declarations in the OS/390 C/C++ Language Reference. The
run-time library, including functions such as printf() and scanf(), does not
support the long long data type at this time.

v Added a new compiler option, PORT, that enables you to increase the syntax
checking for the #pragma pack directive in your code. This option is helpful when
porting code that contains #pragma pack directives or packed data from other
platforms. For more information on the PORT option, see “PORT | NOPORT” on
page 134.

v Added a new compiler option, FASTTEMPINC, that enables you to improve your
compilation time for C++ class templates if you use a large number of recursive

© Copyright IBM Corp. 1996, 1999 15

templates in an application. For more information on the FASTEMPINC option, see
“FASTTEMPINC | NOFASTTEMPINC” on page 89.

v Retroactive to OS/390 Version 1 Release 3, the IBM Open Class Library is
licensed with the base operating system. This enables applications to use this
library at run time without having to license the OS/390 C/C++ compiler
feature(s) or to use the DLL Rename Utility.

v The level of optimization you get when you specify the OPT(1), or OPT, compiler
option is the same as when you specify OPT(2). For more information on the
OPTIMIZATION option, see the “OPTIMIZE | NOOPTIMIZE” on page 131.

v The OS/390 C++ class library header files are now distributed in the hierarchical
file system (HFS) in directory /usr/lpp/ioclib/include.

v As part of the name change of OpenEdition* to OS/390 UNIX System Services,
occurrences of OpenEdition have been changed to OS/390 UNIX System
Services or its abbreviated name, OS/390 UNIX, throughout the OS/390 C/C++
information library. OpenEdition may continue to appear in messages, panel text,
and other code locations.

The C/C++ Compilers

The following sections describe the C and C++ languages and the OS/390 C/C++
compilers.

The C Language

The C language is a general purpose, versatile, and functional programming
language, which allows a programmer to create applications quickly and easily. C
provides high-level control statements and data types as do other structured
programming languages. It also provides many of the benefits of a low-level
language.

The C++ Language

The C++ language is based on the C language, but incorporates support for
object-oriented concepts. For a detailed description of the differences between
OS/390 C++ and OS/390 C, refer to the OS/390 C/C++ Language Reference.

The C++ language introduces classes, which are user-defined data types that may
contain data definitions and function definitions. You can use classes from
established class libraries, develop your own classes, or derive new classes from
existing classes by adding data descriptions and functions. New classes can inherit
properties from one or more classes. Not only do classes describe the data types
and functions available, but they can also hide (encapsulate) the implementation
details from user programs. An object is an instance of a class.

The C++ language also provides templates and other features that include access
control to data and functions, and better type checking and exception handling. It
also supports polymorphism and the overloading of operators.

16 OS/390 V2R6.0 C/C++ User’s Guide

Common Features of the OS/390 C and C++ Compilers

The C or C++ compilers offer many features to help your work:

v Optimization support.

– Algorithms to take advantage of S/390 architecture to get better optimization
for speed and use of computer resources through the OPTIMIZE and IPA
compile-time options.

– The OPTIMIZE compile-time option to instruct the compiler to optimize the
machine instructions it generates, to produce faster-running object code,
thereby optimizing application performance at run time.

– Interprocedural Analysis (IPA), to perform optimizations across compilation
units, thereby optimizing application performance at run time.

– The precompiled header facility, to save information from one compilation unit
for use in another or to reuse information when re-compiling the source
compilation unit, thereby improving performance at compile time.

v DLLs (dynamic link libraries) to reduce application size, and dynamically link to
exported variables and functions at run time.

IBM OS/390 C/C++ provides support for generating DLLs in a way similar to the
way OS/2 generates DLLs. DLLs allow a function reference or a variable
reference in one executable to use a definition located in another executable at
run time. You can use both load-on-reference and load-on-demand DLLs. When
your program calls a DLL function, or references a DLL, IBM OS/390 C/C++
provides a load-on-reference DLL. Your application code explicitly controls
load-on-demand DLLs at the source level.

You can use DLLs to split applications into smaller modules and improve system
memory usage. DLLs also offer more flexibility for building, packaging, and
redistributing applications.

v Full program reentrancy.

With reentrancy, many users can simultaneously run a program. A reentrant
program uses less storage if it is stored in the LPA (link pack area) or ELPA
(extended link pack area) and simultaneously run by multiple users. It also
reduces processor I/O when the program starts up, and improves program
performance by reducing the transfer of data to auxiliary storage. OS/390 C
programmers can design programs that are naturally reentrant. For those
programs that are not naturally reentrant, C programmers can use constructed
reentrancy. To do this, compile programs with the RENT option and use the
program management binder supplied with OS/390, or the OS/390 Language
Environment Prelinker (prelinker) and program management binder. The OS/390
C++ compiler always ensures that C++ programs are reentrant.

v Locale-based internationalization support derived from the IEEE POSIX
1003.2-1992 standard. Also derived from the X/Open CAE Specification, System
Interface Definitions, Issue 4 and Issue 4 Version 2. This allows programmers to
use locales to specify language/country characteristics for their applications.

v The ability to call and be called by other languages such as assembler, COBOL,
PL/1, and Fortran, to enable programmers to integrate OS/390 C/C++ code with
existing applications.

v Exploitation of OS/390 and OS/390 UNIX technology.

OS/390 UNIX is an IBM implementation of the open operating system
environment, as defined in the XPG4 and POSIX standards.

v When used with OS/390 UNIX and OS/390 Language Environment, support for
the following standards at the system level:

Chapter 2. About IBM OS/390 C/C++ 17

– A subset of the extended multibyte and wide character functions as defined by
the Programming Language C Amendment 1. This is ISO/IEC
9899:1990/Amendment 1:1994(E)

– ISO/IEC 9945-1:1990(E)/IEEE POSIX 1003.1-1990

– A subset of IEEE POSIX 1003.1a, Draft 6, July 1991

– IEEE Portable Operating System Interface (POSIX) Part 2, P1003.2

– A subset of IEEE POSIX 1003.4a, Draft 6, February 1992 (the IEEE POSIX
committee has renumbered POSIX.4a to POSIX.1c)

– X/Open CAE Specification, System Interfaces and Headers, Issue 4 Version 2

– A subset of IEEE 754-1985 (R1990) IEEE Standard for Binary Floating-Point
Arithmetic (ANSI), as applicable to the S/390 environment.

– X/Open CAE Specification, Network Services, Issue 4

v Year 2000 support.

OS/390 C Compiler Specific Features

In addition to the features common to OS/390 C/C++, the OS/390 C compiler
provides you with the following capabilities:

v The ability to write portable code that conforms to the following standards:

– All elements of the ISO standard ISO/IEC 9899:1990 (E)

– ANSI/ISO 9899:1990[1992] (formerly ANSI X3.159-1989 C)

– X/Open Specification Programming Language Issue 3, Common Usage C

– FIPS-160

v System programming capabilities, which allow you to use OS/390 C in place of
assembler

v Additional optimization capabilities through the INLINE compile-time option

v Extensions of the standard definitions of the C language to provide programmers
with support for the OS/390 environment, such as fixed-point (packed) decimal
data support

Features That Are Specific to the OS/390 C++ Compiler

In addition to the features common to OS/390 C/C++, the OS/390 C++ compiler
provides you with the following:

v An implementation based on the definition of the language that is contained in
the Draft Proposal International Standard for Information Systems– Programming
Language C++ (X3J16/92-00091). The OS/390 C++ compiler also conforms to a
subset of the C++ ANSI/ISO (Draft) Standard (X3J16/93-0062).

v System Object Model (SOM) support, through the SOM Interface Definition
Language (IDL) compiler available with OS/390 SOMobjects. You can use the
IDL compiler and associated emitters to create language-specific bindings that
define the interface to a SOM object. This enables OS/390 C++ programs to
share SOM objects with other languages. In addition, SOM enables
release-to-release binary compatibility.

With Direct-to-SOM (DTS) support in the OS/390 C++ compiler, you can
generate SOM objects directly from C++ code. You do not need to create and
process the IDL first. You can write virtually the same code you do when creating
C++ objects.

Note: The OS/390 C++ compiler no longer supports IDL generation through the
IDL compile-time option. This option instructed the compiler to generate

18 OS/390 V2R6.0 C/C++ User’s Guide

IDL. Mixed-language or distributed object applications used IDL. If you
need IDL for your applications, you should now code it yourself instead of
generating it through the IDL compile option.

v C++ template support and exception handling consistent with VisualAge* C++
product implementations.

Utilities

The OS/390 C/C++ compilers provide the following utilities:

v The Object Library Utility to update partitioned data set (PDS) libraries of object
modules and Interprocedural Analysis (IPA) object modules

v The DLL Rename Utility to make selected DLLs a unique component of the
applications with which they are packaged

v The CXXFILT Utility to map OS/390 C++ mangled names to the original source

v The localedef Utility to read the locale definition file and produce a locale object
that the locale-specific library functions can use

v The DSECT Conversion Utility to convert descriptive assembler DSECTs into
OS/390 C/C++ data structures

v The C/C++ Model Tool to provide online help for C/C++ #pragma directives and
runtime library functions. These functions are other than the C Curses functions,
and are at the level that is supplied in OS/390 Release 2

Class Libraries

IBM OS/390 C/C++ provides a base set of class libraries, called C/C++ IBM Open
Class, which is consistent with that available in other members of the VisualAge
C++ product family. These class libraries are:

v The I/O Stream Class Library

The I/O Stream Class Library lets you perform input and output (I/O) operations
independent of physical I/O devices or data types that are used. You can code
sophisticated I/O statements easily and clearly, and define input and output for
your own data types. You can improve the maintainability of programs that use
input and output by using the I/O Stream Class Library.

v The Complex Mathematics Class Library

The Complex Mathematics Class Library lets you manipulate and perform
standard arithmetic on complex numbers. Scientific and technical fields use
complex numbers.

v The Application Support Class Library

The Application Support Class Library provides the basic abstractions that are
needed during the creation of most C++ applications, including String, Date, and
Time.

The Application Support Class library is available in a C++ SOM version as well
as the regular C++ native version.

v The Collection Class Library

The Collection Class Library implements a wide variety of classical data
structures such as stack, tree, list, hash table, and so on. Most programs use
collections. You can develop programs without having to define every collection.
Programmers can start programming by using a high level of abstraction, and
later replace an abstract data type with the appropriate concrete implementation.
Each abstract data type has a common interface for all of its implementations.
The Collection Class Library provides programmers with a consistent set of

Chapter 2. About IBM OS/390 C/C++ 19

building blocks from which they can derive application objects. The library design
exploits features of the C++ language such as exception handling and template
support.

The Collection Class Library is available in a C++ SOM and a cross-language
SOM version, as well as the regular C++ native version.

All of the libraries that are described above are thread-safe, except the
cross-language SOM version of the Collection Class Library.

All of the libraries that are described above are available in both static and DLL
formats. OS/390 C/C++ packages the Application Support Class and Collection
Class libraries together in a single DLL. For compatibility, separate side-decks are
available for the Application Support Class and Collection Class libraries, in addition
to the side-deck available for the combined library.

Note: Retroactive to OS/390 Version 1 Release 3, the IBM Open Class Library is
licensed with the base operating system. This enables applications to use
this library at run time without having to license the OS/390 C/C++ compiler
feature(s) or to use the DLL Rename Utility.

Class Library Source

The Class Library Source consists of the following:

v Application Support Class Library source code

v Collection Class Library source code (C++ native and C++ SOM only)

v Instructions for building the Application Support Class and Collection Class
Libraries in C++ native (static and DLL) versions

v Instructions for building the Application Support Class and Collection Class
Libraries in C++ SOM (static and DLL) versions

v Class Library Language Environment message file source

v Instructions for building the Class Library Language Environment message files

The Debug Tool

IBM OS/390 C/C++ supports program development by using a mainframe
interactive Debug Tool. This optionally available tool allows you to debug
applications in their native host environment, such as CICS/ESA, IMS/ESA*, DB2,
and so on. The Debug Tool provides the following support and function:
v Step mode
v Breakpoints
v Monitor
v Frequency analysis
v Dynamic patching

You can record the debug session in a log file, and replay the session. You can also
use the Debug Tool to help capture test cases for future program validation or to
further isolate a problem within an application.

You can specify either data sets or hierarchical file system (HFS) files as source
files.

20 OS/390 V2R6.0 C/C++ User’s Guide

OS/390 Language Environment

IBM OS/390 C/C++ exploits the C/C++ runtime environment and library of runtime
services available with OS/390 Language Environment (formerly Language
Environment for MVS & VM, Language Environment/370 and LE/370).

OS/390 Language Environment consists of four language-specific runtime libraries,
and Base Routines and Common Services; see Figure 1. OS/390 Language
Environment establishes a common runtime environment and common runtime
services for language products, user programs, and other products.

The common execution environment is composed of data items and services that
are included in library routines available to an application that runs in the
environment. The OS/390 Language Environment provides a variety of services:

v Services that satisfy basic requirements common to most applications. These
include support for the initialization and termination of applications, allocation of
storage, interlanguage communication (ILC), and condition handling.

v Extended services that are often needed by applications. OS/390 C/C++ contains
these functions within a library of callable routines, and include interfaces to
operating system functions and a variety of other commonly used functions.

v Runtime options that help in the execution, performance, and diagnosis of your
application.

v Access to operating system services; OS/390 UNIX services are available to an
application programmer or program through the OS/390 C/C++ language
bindings.

v Access to language-specific library routines, such as the OS/390 C/C++ library
functions.

The Program Management Binder

The binder provided with OS/390 combines the object modules, load modules, and
program objects comprising an OS/390 application. It produces a single output
program object or load module that you can load for execution. The binder supports
all C and C++ code, provided that you store the output program in a PDSE
(Partitioned Data Set Extended) member or an HFS file.

C/C++
Language
Specific
Library

COBOL
Language
Specific
Library

PL/I
Language
Specific
Library

FORTRAN
Language
Specific
Library

Language Environment Base Routines and Common Services

Figure 1. Libraries in OS/390 Language Environment

Chapter 2. About IBM OS/390 C/C++ 21

If you cannot use a PDSE member or HFS file, and your program contains C++
code, or C code that is compiled with any of the RENT, LONGNAME, DLL or IPA
compile-time options, you must use the prelinker.

Using the binder without using the prelinker has the following advantages:

v Faster rebinds when recompiling and rebinding a few of your source files

v Rebinding at the single compile unit level of granularity (except when you use the
IPA compile-time option)

v Input of object modules, load modules, and program objects

v Improved long name support:
– Long names do not get converted into prelinker generated names
– Long names appear in the binder maps, enabling full cross-referencing
– Variables do not disappear after prelink
– Fewer steps in the process of producing your executable program

The prelinker provided with OS/390 Language Environment combines the object
modules comprising an OS/390 C/C++ application and produces a single object
module. You can link-edit the object module into a load module (which is stored in a
PDS), or bind it into a load module or a program object stored in a PDS, or a PDSE
or HFS file.

OS/390 UNIX System Services (OS/390 UNIX)

OS/390 UNIX provides capabilities under OS/390 to make it easier to implement or
port applications in an open, distributed environment. OS/390 UNIX Services are
available to OS/390 C/C++ application programs through the C/C++ language
bindings available with OS/390 Language Environment.

Together, the OS/390 UNIX Services, OS/390 Language Environment, and OS/390
C/C++ compilers provide an application programming interface that supports
industry standards.

OS/390 UNIX provides support for both existing OS/390 applications and new
OS/390 UNIX applications:

v C programming language support as defined by ISO/ANSI C

v C++ programming language support

v C language bindings as defined in the IEEE 1003.1 and 1003.2 standards;
subsets of the draft 1003.1a and 1003.4a standards; X/Open CAE Specification:
System Interfaces and Headers, Issue 4, Version 2, which provides standard
interfaces for better source code portability with other conforming systems; and
X/Open CAE Specification, Network Services, Issue 4, which defines the X/Open
UNIX descriptions of sockets and X/Open Transport Interface (XTI)

v OS/390 UNIX Extensions that provide OS/390-specific support beyond the
defined standards

v The OS/390 UNIX Shell and Utilities feature, which provides:

– A shell, based on the Korn Shell and compatible with the Bourne Shell

– Tools and utilities that conform to the X/Open Single UNIX Specification, also
known as X/Open Portability Guide (XPG) Version 4, Issue 2, and provide
OS/390 support. The following utilities are included:

ar Creates and maintains library archives

22 OS/390 V2R6.0 C/C++ User’s Guide

BPXBATCH Allows you to submit batch jobs that run shell commands,
scripts, or OS/390 C/C++ executable files in HFS files from a
shell session

c89 Compiles, assembles, and binds OS/390 UNIX C applications

gencat Merges the message text source files Messagefile (usually
*.msg) into a formatted message Catalogfile (usually *.cat)

lex Automatically writes large parts of a lexical analyzer based on
a description that is supplied by the programmer

make Helps you manage projects containing a set of interdependent
files, such as a program with many OS/390 C/C++ source and
object files, keeping all such files up to date with one another

yacc Allows you to write compilers and other programs that parse
input according to strict grammar rules

– Support for other utilities such as:

c++ Compiles, assembles, and binds OS/390 UNIX C++
applications

mkcatdefs Preprocesses a message source file for input to the gencat
utility

runcat Invokes mkcatdefs and pipes the message catalog source
data (the output from mkcatdefs) to gencat

dspcat Displays all or part of a message catalog

dspmsg Displays a selected message from a message catalog

v The OS/390 UNIX Debugger feature, which provides the dbx interactive symbolic
debugger for OS/390 UNIX applications

v OS/390 UNIX, which provides access to a hierarchical file system (HFS), with
support for the POSIX.1 and XPG4 standards

v OS/390 C/C++ I/O routines, which support using HFS files, standard OS/390
data sets, or a mixture of both

v Application threads (with support for a subset of POSIX.4a)

v Support for OS/390 C/C++ DLLs

OS/390 UNIX offers program portability across multivendor operating systems, with
support for POSIX.1, POSIX.1a (draft 6), POSIX.2, POSIX.4a (draft 6), and
XPG4.2.

To application developers who have worked with other UNIX environments, the
OS/390 UNIX Shell and Utilities are a familiar environment for C/C++ application
development. If you are familiar with existing MVS development environments, you
may find that the OS/390 UNIX environment can enhance your productivity. Refer to
the OS/390 UNIX System Services User’s Guide for more information on the Shell
and Utilities.

OS/390 C/C++ Applications with OS/390 UNIX C/C++ Functions

Most OS/390 UNIX C functions are available at all times. However, to use some
OS/390 UNIX C functions, you must run an OS/390 C/C++ program on a system
where the OS/390 UNIX kernel is available and active. In some situations, you must
also specify the POSIX(ON) runtime option. This is required for the POSIX.4a
threading functions, and the system and signal handling functions where the

Chapter 2. About IBM OS/390 C/C++ 23

behavior is different between POSIX/XPG4 and ANSI. Refer to the OS/390 C/C++
Run-Time Library Reference for more information about requirements for each
function.

You can invoke an OS/390 C/C++ program that uses OS/390 UNIX C functions
using the following methods:

v Directly from the OS/390 UNIX Shell.

v From another program, or from the OS/390 UNIX Shell, using one of the exec
family of functions, or the BPXBATCH utility from TSO or MVS batch.

v Using the POSIX system() call.

v Directly through TSO or MVS batch without the use of the intermediate
BPXBATCH utility. In some cases, you may require the POSIX(ON) runtime option.

Input and Output

The C/C++ runtime library that supports the OS/390 C/C++ compiler supports
different input and output (I/O) interfaces, file types, and access methods. The C++
I/O Stream Class Library provides additional support.

I/O Interfaces

The C/C++ runtime library supports the following I/O interfaces:

C Stream I/O
This is the default and the ANSI-defined I/O method. This method
processes all input and output by character.

Record I/O
The library can also process your input and output by record. A record is a
set of data that is treated as a unit. It can also process VSAM data sets by
record. Record I/O is an OS/390 C/C++ extension to the ANSI standard.

TCP/IP Sockets I/O
OS/390 UNIX provides support for an enhanced version of an
industry-accepted protocol for client/server communication that is known as
sockets. A set of C language functions provides support for OS/390 UNIX
sockets. OS/390 UNIX sockets correspond closely to the sockets that are
used by UNIX applications that use the Berkeley Software Distribution
(BSD) 4.3 standard (also known as OE sockets). The slightly different
interface of the X/Open CAE Specification, Networking Services, Issue 4, is
supplied as an additional choice. This interface is known as X/Open
Sockets.

The OS/390 UNIX socket application program interface (API) provides
support for both UNIX domain sockets and Internet domain sockets. UNIX
domain sockets, or local sockets, allow interprocess communication within
OS/390 independent of TCP/IP. Local sockets behave like traditional UNIX
sockets and allow processes to communicate with one another on a single
system. With Internet sockets, application programs can communicate with
others in the network using TCP/IP.

In addition, the C++ I/O Stream Library supports formatted I/O in C++. You can
code sophisticated I/O statements easily and clearly, and define input and output for
your own data types. This helps improve the maintainability of programs that use
input and output.

24 OS/390 V2R6.0 C/C++ User’s Guide

File Types

In addition to conventional files, such as sequential files and partitioned data sets,
the C/C++ runtime library supports the following file types:

Virtual Storage Access Method (VSAM) Data Sets
OS/390 C/C++ has native support for three types of VSAM data
organization:

v Key-sequenced data sets (KSDS). Use KSDS to access a record through
a key within the record. A key is one or more consecutive characters that
are taken from a data record that identifies the record.

v Entry-sequenced data sets (ESDS). Use ESDS to access data in the
order it was created (or in the reverse order).

v Relative-record data sets (RRDS). Use RRDS for data in which each
item has a particular number (for example, a telephone system with a
record associated with each number).

For more information on how to perform I/O operations on these VSAM file
types, see the OS/390 C/C++ Programming Guide.

Hierarchical File System Files
When you are running under MVS, TSO (batch and interactive), or IMS
environments, OS/390 C/C++ recognizes a Hierarchical File System (HFS)
file. The name specified on the fopen() or freopen() call has to conform to
certain rules (described in the OS/390 C/C++ Programming Guide). You can
create regular HFS files, special character HFS files, or FIFO HFS files. You
can also create links or directories.

Memory Files
Memory files are temporary files that reside in memory. For improved
performance, you can direct input and output to memory files rather than to
devices. Since memory files reside in main storage and only exist while the
program is executing, you primarily use them as work files. You can access
memory files across load modules through calls to non-POSIX system()
and C fetch(); they exist for the life of the root program. Standard streams
can be redirected to memory files on a non-POSIX system() call using
command line redirection.

Hiperspace* Expanded Storage
Large memory files can be placed in Hiperspace expanded storage to free
up some of your home address space for other uses. Hiperspace expanded
storage or high performance space is a range of up to 2 gigabytes of
contiguous virtual storage space. A program can use this storage as a
buffer (1 gigabyte = 230 bytes).

Additional I/O Features

IBM OS/390 C/C++ provides additional I/O support through the following features:

v User error handling for serious I/O failures (SIGIOERR)

v Improved sequential data access performance through enablement of the
DFSMS/MVS support for 31-bit sequential data buffers and sequential data
striping on extended format data sets

v Full support of PDS/Es on OS/390 — including support for multiple members
opened for write

v Overlapped I/O support under OS/390 (NCP, BUFNO)

v Multibyte character I/O functions

Chapter 2. About IBM OS/390 C/C++ 25

v Fixed-point (packed) decimal data type support in formatted I/O functions

v Support for multiple volume data sets that span more than one volume of DASD
or tape

v Support for Generation Data Group I/O

The System Programming C Facility

The System Programming C (SP C) facility allows you to build applications that
require no dynamic loading of OS/390 Language Environment libraries. It also
allows you to tailor your application to better utilize the low-level services available
on your operating system. SP C offers a number of advantages:

v You can develop applications that you can execute in a customized environment
rather than with OS/390 Language Environment services. Note that if you do not
use OS/390 Language Environment services, only some built-in functions and a
limited set of C/C++ runtime library functions are available to you.

v You can substitute the OS/390 C language in place of assembler language when
writing system exit routines, by using the interfaces that are provided by SP C.

v SP C lets you develop applications featuring a user-controlled environment, in
which an OS/390 C environment is created once and used repeatedly for C
function execution from other languages.

v You can utilize co-routines, by using a two-stack model to write application
service routines. In this model, the application calls on the service routine to
perform services independently of the user. The application is then suspended
when control is returned to the user application.

Interaction with Other IBM Products

When you use OS/390 C/C++, you can write programs that utilize the power of
other IBM products and subsystems:

v Cross System Product (CSP)

Cross System Product/Application Development (CSP/AD) is an application
generator that provides ways to interactively define, test, and generate
application programs to improve productivity in application development. Cross
System Product/Application Execution (CSP/AE) takes the generated program
and executes it in a production environment.

Note: You cannot compile CSP applications with the OS/390 C++ compiler.
However, your OS/390 C++ program can use interlanguage calls (ILC) to
call OS/390 C programs that access CSP.

v Customer Information Control System (CICS)

You can use the CICS/ESA Command-Level Interface to write C/C++ application
programs. The CICS Command-Level Interface provides data, job, and task
management facilities that are normally provided by the operating system.

Note: Code preprocessed with CICS/ESA versions prior to V4 R1 is not
supported for OS/390 C++ applications. OS/390 C++ code preprocessed
on CICS/ESA V4 R1 cannot run under CICS/ESA V3 R3.

v DATABASE 2 (DB2)

DB2 programs manage data that is stored in relational data bases. The IBM
DATABASE 2 licensed program runs on OS/390.

26 OS/390 V2R6.0 C/C++ User’s Guide

You can access the data by using a structured set of queries that are written in
Structured Query Language (SQL). The DB2 program uses SQL statements that
are embedded in the program. The SQL translator (DB2 preprocessor) translates
the embedded SQL into host language statements that perform the requested
functions. The OS/390 C/C++ compilers compile the output of the SQL translator.
The DB2 program processes a request, and processing returns to the
application.

v Data Window Services (DWS)

The Data Window Services (DWS) part of the Callable Services Library allows
your OS/390 C or OS/390 C++ program to manipulate temporary data objects
that are known as TEMPSPACE and VSAM linear data sets.

v Information Management System (IMS)

The Information Management System/Enterprise Systems Architecture (IMS/ESA)
product provides support for hierarchical databases.

v Interactive System Productivity Facility (ISPF)

OS/390 C/C++ provides access to the Interactive System Productivity Facility
(ISPF) Dialog Management Services. A dialog is the interaction between a
person and a computer. The dialog interface contains display, variable, message,
and dialog services as well as other facilities that are used to write interactive
applications.

v Graphical Data Display Manager (GDDM)

GDDM provides a comprehensive set of functions to display and print
applications most effectively:

– A windowing system that the user can tailor to display selected information

– Support for presentation and keyboard interaction

– Comprehensive graphics support

– Fonts — including support for double-byte character set (DBCS)

– Business image support

– Saving and restoring graphics pictures

– Support for many types of display terminals, printers, and plotters

v Query Management Facility (QMF)

OS/390 C supports the Query Management Facility (QMF), a query and report
writing facility, which allows you to write applications through a callable interface.
You can create applications to perform a variety of tasks, such as data entry,
query building, administration aids, and report analysis.

Additional Features of OS/390 C/C++

Feature Description

Multibyte Character Support OS/390 C/C++ supports multibyte characters for those national languages such as
Japanese whose characters cannot be represented by a single byte.

Wide Character Support Multibyte characters can be normalized by OS/390 C library functions and encoded in
units of one length. These normalized characters are called wide characters.
Conversions between multibyte and wide characters can be performed by string
conversion functions such as wcstombs(), mbstowcs(), wcsrtombs(), and mbsrtowcs(),
as well as the family of wide-character I/O functions. Wide-character data can be
represented by the wchar_t data type.

Chapter 2. About IBM OS/390 C/C++ 27

Feature Description

Extended Precision
Floating-Point Numbers

OS/390 C/C++ provides three S/370 floating-point number data types: single precision
(32 bits), declared as float; double precision (64 bits), declared as double; and
extended precision (128 bits), declared as long double.

Extended precision floating-point numbers give greater accuracy to mathematical
calculations.

As of Release 6, OS/390 C/C++ also supports IEEE 754 floating-point representation.
By default, float, double, and long double values are represented in IBM S/390
floating point format. However, the IEEE 754 floating-point representation is used if you
specify the FLOAT(IEEE754) compile option. For details on this support, see “FLOAT” on
page 91.

Command Line Redirection You can redirect the standard streams stdin, stderr, and stdout from the command
line or when calling programs using the system() function.

National Language Support OS/390 C/C++ provides message text in either American English or Japanese. You can
dynamically switch between the two languages.

Locale Definition Support OS/390 C/C++ provides a locale definition utility that supports the creation of separate
files of internationalization data, or locales. Locales can be used at run time to
customize the behavior of an application to national language, culture, and coded
character set (code page) requirements. Locale-sensitive library functions, such as
isdigit(), use this information.

Coded Character Set (Code
page) Support

The OS/390 C/C++ compiler can compile C/C++ source written in different EBCDIC
code pages. In addition, the iconv utility converts data or source from one code page to
another.

Selected Built-in Library
Functions

Selected library functions, such as string and character functions, are built into the
compiler to improve performance execution. Built-in functions are compiled into the
executable, and no calls to the library are generated.

Multitasking Facility (MTF) Multitasking is a mode of operation where your program performs two or more tasks at
the same time. OS/390 C provides a set of library functions that perform multitasking.
These functions are known as the Multitasking Facility (MTF). MTF uses the
multitasking capabilities of OS/390 to allow a single OS/390 C application program to
use more than one processor of a multiprocessing system simultaneously.

Packed Structures and
Unions

OS/390 C provides support for packed structures and unions. Structures and unions
may be packed to reduce the storage requirements of a OS/390 C program.

Fixed-point (Packed)
Decimal Data

OS/390 C supports fixed-point (packed) decimal as a native data type for use in
business applications. The packed data type is similar to the COBOL data type COMP-3
or the PL/I data type FIXED DEC, with up to 31 digits of precision.

The Application Support Class Library provides the Binary Coded Decimal Class for
C++ programs.

Long Name Support For portability, external names can be mixed case and up to 1024 characters in length.
For C++, the limit applies to the mangled version of the name.

System Calls You can call commands or executable modules using the system() function under
OS/390, OS/390 UNIX, and TSO. You can also use the system() function to call
EXECs on OS/390 and TSO, or Shell scripts using OS/390 UNIX.

Exploitation of ESA Support for OS/390, IMS/ESA, Hiperspace expanded storage, and CICS/ESA allows
you to exploit the features of the ESA.

28 OS/390 V2R6.0 C/C++ User’s Guide

Feature Description

Exploitation of hardware Use the ARCHITECTURE compiler option to select the minimum level of machine
architecture on which your program will run. ARCH(3) enables support for IEEE 754
Binary Floating-Point instructions. ARCH(2) instructs the compiler to generate faster
instruction sequences available only on newer machines.

Use the TUNE compiler option to optimize your application for a selected machine
architecture. Tune(3) optimizes your application for the new G5 processor. TUNE(2)
optimizes your application for other architectures. For information on which machines
and architectures support the above options, refer to “ARCHITECTURE” on page 73
and “TUNE” on page 161.

Chapter 2. About IBM OS/390 C/C++ 29

30 OS/390 V2R6.0 C/C++ User’s Guide

Chapter 3. Important Changes to the Prelinker Documentation

Prior to OS/390 C/C++ Version 2 Release 4, examples in this book showed how to
use the prelinker and linkage-editor, and sections throughout the book discussed
concepts of prelinking and linking. As of OS/390 C/C++ Version 2 Release 4, these
examples show how to use the binder, and the concept of binding is discussed
throughout the book.

If you still need to use the prelinker and linkage-editor, see “Appendix A. Prelinking
and Linking OS/390 C/C++ Programs” on page 403.

You can use the binder in place of the prelinker and linkage-editor, with the
following exceptions:

v Your output is a PDS, not a PDSE

If you are using OS/390 batch or TSO, and your output must target a PDS
instead of a PDSE, you cannot use the binder.

v CICS

CICS does not support PDSEs. If your program targets CICS, you cannot use
the binder.

v MTF

MTF does not support PDSEs. If your program targets MTF, you cannot use the
binder.

v IPA Restrictions

Object files that are generated by the IPA Compile step using the compiler option
IPA(NOLINK,OBJECT) may be given as input to the binder. Such an object file is a
combination of an IPA object module, and a regular compiler object module. The
binder processes the regular compiler object module, ignores the IPA object
module, and no IPA optimization is done.

Object files that are generated by the IPA Compile step using compiler option
IPA(NOLINK,NOOBJECT) should not be given as input to the binder. These are IPA
only object files, and do not contain a regular compiler object module.

© Copyright IBM Corp. 1996, 1999 31

32 OS/390 V2R6.0 C/C++ User’s Guide

Part 2. User’s Reference

This part reviews the basic steps for compiling, binding, and running OS/390 C/C++
programs under the OS/390 operating system. It also describes the options
available to you at compile, IPA link, bind, and run time.

v “Chapter 4. OS/390 C Example” on page 35

v “Chapter 5. OS/390 C++ Examples” on page 39

v “Chapter 6. Compiler Options” on page 55

v “Chapter 7. Binder Options and Control Statements” on page 207

v “Chapter 8. Runtime Options” on page 217

© Copyright IBM Corp. 1996, 1999 33

34 OS/390 V2R6.0 C/C++ User’s Guide

Chapter 4. OS/390 C Example

This chapter outlines the basic steps for compiling, binding, and running an OS/390
C example program under OS/390 batch, TSO, or the OS/390 shell.

If you have not yet compiled an OS/390 C program, some concepts in this chapter
may be unfamiliar. Refer to “Chapter 9. Compiling” on page 221, “Chapter 12.
Binding OS/390 C/C++ Programs” on page 289, and “Chapter 14. Running an
OS/390 C/C++ Application” on page 335 for a detailed description on compiling,
binding, and running an OS/390 C program.

This chapter describes steps to bind an an OS/390 C example program. It does not
describe the prelink and link steps. If you are using the prelinker, see “Appendix A.
Prelinking and Linking OS/390 C/C++ Programs” on page 403.

The example program that this chapter describes is shipped with the OS/390 C
compiler in the data set CBC.SCBCSAM.

Example of an OS/390 C Program

The following example shows a simple OS/390 C program that converts
temperatures in Celsius to Fahrenheit. You can either enter the temperatures on the
command line or let the program prompt you for the temperature.

In this example, the main program calls the function convert() to convert the
Celsius temperature to a Fahrenheit temperature and to print the result.

CBC3UAAM

#include <stdio.h> «1¬

#include "cbc3uaan.h" «2¬

void convert(double); «3¬

int main(int argc, char **argv) «4¬
{

double c_temp; «5¬

if (argc == 1) { /* get Celsius value from stdin */

printf("Enter Celsius temperature: \n"); «6¬

if (scanf("%f", &c_temp) != 1) {
printf("You must enter a valid temperature\n");

}
else {

convert(c_temp); «7¬
}

}

Figure 2. Celsius-to-Fahrenheit Conversion (Part 1 of 2)

© Copyright IBM Corp. 1996, 1999 35

CBC3UAAN

«1¬ This preprocessor directive includes the system file that contains the
declarations of standard library functions, such as the printf() function
used by this program.

The compiler searches the system libraries for the file STDIO. For more
information about searches for include files, see “Search Sequences for
Include Files” on page 254.

«2¬ This preprocessor directive includes a user file that defines constants that
are used by the program.

The compiler searches the user libraries for the file CBC3UAAN.

If the compiler cannot locate the file in the user libraries, it searches the
system libraries.

«3¬ This is a function prototype declaration. This statement declares convert()
as an external function having one parameter.

«4¬ The program begins execution at this entry point.

«5¬ This is the automatic (local) data definition to main().

«6¬ This printf statement is a call to a library function that allows you to format
your output and print it on the standard output device. The printf()
function is declared in the standard I/O header file stdio.h included at the
beginning of the program.

«7¬ This statement contains a call to the convert() function, which was
declared earlier in the program as receiving one double value, and not
returning a value.

else { /* convert the command-line arguments to Fahrenheit */
int i;

for (i = 1; i < argc; ++i) {
if (sscanf(argv[i], "%f", &c_temp) != 1)

printf("%s is not a valid temperature\n",argv[i]);
else

convert(c_temp); «7¬
}

}
}

void convert(double c_temp) { «8¬
double f_temp = (c_temp * CONV + OFFSET);
printf("%5.2f Celsius is %5.2f Fahrenheit\n",c_temp, f_temp);

}

Figure 2. Celsius-to-Fahrenheit Conversion (Part 2 of 2)

/**
* User include file: cbc3uaan.h * «9¬
**/

#define CONV (9./5.)
#define OFFSET 32

Figure 3. User #include File for the Conversion Program

36 OS/390 V2R6.0 C/C++ User’s Guide

«8¬ This is a function definition. In this example, the declaration for this function
appears immediately before the definition of the main() function. The code
for the function is in the same file as the code for the main() function.

«9¬ This is the user include file containing the definitions for CONV and OFFSET.

If you need more details on the constructs of the OS/390 C language, see the
OS/390 C/C++ Language Reference and the OS/390 C/C++ Run-Time Library
Reference.

Compiling, Binding, and Running the OS/390 C Example

In general, you can compile, bind, and run OS/390 C programs under OS/390
batch, TSO, or the OS/390 shell. You cannot run the IPA Link step under TSO, or
under OS/390 batch by using the ISPF interface. For more information, see
“Chapter 9. Compiling” on page 221, “Chapter 12. Binding OS/390 C/C++ Programs”
on page 289, and “Chapter 14. Running an OS/390 C/C++ Application” on
page 335.

This book uses the term user prefix to refer to the high-level qualifier of your data
sets. For example, in PETE.TESTHDR.H, the user prefix is PETE.

Under OS/390 Batch

Copy the IBM-supplied sample program and header file into your data set. For
example, if your user prefix is PETE, store the sample program (CBC3UAAM) in
PETE.TEST.C(CTOF) and the header file in PETE.TESTHDR.H(CBC3UAAN). You can use
the IBM-supplied cataloged procedure EDCCBG to compile, bind, and run the
example program as follows:

In Figure 4, the LSEARCH statement describes where to find the user include files.
The GO.SYSIN statement indicates that the input that follows it is given for the
execution of the program.

Under TSO

Copy the IBM-supplied sample program and header file into your data set. For
example, if your user prefix is PETE, store the sample OS/390 C program
(CBC3UAAM) in PETE.TEST.C(CTOF) and the header file in PETE.TESTHDR.H(CBC3UAAN).

Use the following set of TSO commands to compile, bind, and run the example
program:

1. Ensure that the OS/390 Language Environment runtime library and the OS/390
C compiler are in the STEPLIB, LPALST, or LNKLST concatenation.

2. Compile the OS/390 C source. You can use the REXX EXEC CC to invoke the
OS/390 C compiler under TSO as follows:

//DOCLG EXEC PROC=EDCCBG,INFILE='PETE.TEST.C(CTOF)',
// CPARM='LSEARCH(''''PETE.TESTHDR.+'''')'
//GO.SYSIN DD DATA,DLM=@@
19
@@

Figure 4. JCL to Compile, Bind, and Run the Example Program Using the EDCCBG
Procedure

Chapter 4. OS/390 C Example 37

%CC TEST.C(CTOF) (LSEARCH(TESTHDR.H)

The REXX EXEC CC compiles CTOF with the default compiler options and stores
the resulting object module in PETE.TEST.C.OBJ(CTOF).

The compiler searches for user header files in the PDS PETE.TESTHDR.H, which
you specified at compile time by the LSEARCH option.

For more information see “Compiling Under TSO” on page 233.

3. Perform a bind:
CXXBIND OBJ(TEST.C.OBJ(CTOF)) LOAD(TEST.C.LOAD(CTOF))

CXXBIND binds the object module PETE.TEST.C.OBJ(CTOF) to create an
executable module CTOF in the PDSE PETE.TEST.C.LOAD, with the default bind
options. See “Chapter 12. Binding OS/390 C/C++ Programs” on page 289 for
more information.

4. Run the program:
CALL TEST.C.LOAD(CTOF)

CALL runs CTOF from PETE.TEST.C.LOAD with the default runtime options in effect.
See “Chapter 14. Running an OS/390 C/C++ Application” on page 335 for more
information.

Under the OS/390 Shell
1. Ensure that the OS/390 Language Environment runtime library and the OS/390

C compiler are in the STEPLIB, LPALST, or LNKLST concatenation.

2. Put the source in the HFS. From the OS/390 shell type:
tso oput "'cbc.scbcsam(cbc3uaam)' '$PWD/cbc3uaam.c'"
tso oput "'cbc.scbcsam(cbc3uaan)' '$PWD/cbc3uaan.h'"

In this example, the current working directory is used, so make sure that you
are in the directory you want to use. Use the pwd command to display the
directory, the mkdir command to create a new directory, and the cd command to
change the directory.

3. Compile and bind:
c89 -o ctof cbc3uaam.c

Note: You can use c89 to compile source that is stored in a data set.

4. Run the program:
./ctof

38 OS/390 V2R6.0 C/C++ User’s Guide

Chapter 5. OS/390 C++ Examples

This chapter outlines the basic steps for compiling, binding, and running OS/390
C++ example programs under OS/390 batch, TSO, or the OS/390 shell.

If you have not yet compiled an OS/390 C++ program, some concepts in this
chapter may be unfamiliar. Refer to “Chapter 9. Compiling” on page 221,
“Chapter 12. Binding OS/390 C/C++ Programs” on page 289, and “Chapter 14.
Running an OS/390 C/C++ Application” on page 335 for a detailed description on
compiling, binding, and running an an OS/390 C++ program.

The example programs that this chapter describes are shipped with the OS/390
C++ compiler. Example programs with the names CBC3Uxxx are shipped in the data
set CBC.SCBCSAM. Example programs with the names CLB3xxxx are shipped in
the data set CBC.SCLBSAM.

Example of an OS/390 C++ Program

The following example shows a simple OS/390 C++ program that prompts you to
enter a birth date. The program output is the corresponding biorhythm chart.

The program is written in object-oriented fashion. A class that is called BioRhythm is
defined. It contains an object birthDate of class BirthDate, which is derived from
the class Date. An object that is called bio of the class BioRhythm is declared.

The example contains 2 files. File CBC3UBRH contains the classes that are used in
the main program. File CBC3UBRC contains the remaining source code. The example
files CBC3UBRC and CBC3UBRH are shipped with the OS/390 C++ compiler in data sets
CBC.SCBCSAM(CBC3UBRC) and CBC.SCBCSAM(CBC3UBRH).

If you need more details on the constructs of the OS/390 C++ language, see the
OS/390 C/C++ Language Reference or the OS/390 C/C++ Run-Time Library
Reference.

© Copyright IBM Corp. 1996, 1999 39

CBC3UBRH

//
// Sample Program: Biorhythm
// Description : Calculates biorhythm based on the current
// system date and birth date entered
//
// File 1 of 2-other file is CBC3UBRC
class Date {
public:
Date();
int DaysSince(const char *date);

protected:
int curYear, curDay;
static const int dateLen;
static const int numMonths;
static const int numDays[];

};
const int Date::dateLen = 10;
const int Date::numMonths = 12;
const int Date::numDays[Date::numMonths] = {
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31

};

class BirthDate : public Date {
public:
BirthDate();
BirthDate(const char *birthText);
int DaysOld() { return(DaysSince(text)); }

private:
char text[dateLen+1];

};

Figure 5. Header File for the Biorhythm Example (Part 1 of 2)

40 OS/390 V2R6.0 C/C++ User’s Guide

CBC3UBRC

class BioRhythm {
friend static ostream& operator<<(ostream&, BioRhythm&);

public:
BioRhythm(char *birthText) : birthDate(birthText) {
age = birthDate.DaysOld();

}
BioRhythm() : birthDate() {
age = birthDate.DaysOld();

}
˜BioRhythm() {}

int AgeInDays() {
return(age);

}
double Physical() {
return(Cycle(pCycle));

}
double Emotional() {
return(Cycle(eCycle));

}
double Intellectual() {
return(Cycle(iCycle));

}
int ok() {
return(age >= 0);

}

private:
int age;
double Cycle(int phase) {
return(sin(fmod(age, phase) / phase * M_2PI));

}
BirthDate birthDate;
static const int pCycle;
static const int eCycle;
static const int iCycle;

};

const int BioRhythm::pCycle=23; // Physical cycle - 23 days
const int BioRhythm::eCycle=28; // Emotional cycle - 28 days
const int BioRhythm::iCycle=33; // Intellectual cycle - 33 days

static ostream& operator<<(ostream&,BioRhythm&);

Figure 5. Header File for the Biorhythm Example (Part 2 of 2)

//
// Sample Program: Biorhythm
// Description : Calculates biorhythm based on the current
// system date and birth date entered
//
// File 2 of 2-other file is CBC3UBRH

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <iostream.h>
#include <iomanip.h>

#include "cbc3ubrh.h" //BioRhythm class and Date class

int main(void) {
BioRhythm bio;
int code;

if (!bio.ok()) {

Chapter 5. OS/390 C++ Examples 41

BirthDate::BirthDate(const char *birthText) {
strcpy(text, birthText);

}

BirthDate::BirthDate() {
cout << "Please enter your birthdate in the form yyyy/mm/dd\n";
cin >> setw(dateLen+1) >> text;

}

Date::DaysSince(const char *text) {

int year, month, day, totDays, delim;
int daysInYear = 0;
int i;
int leap = 0;

int rc = sscanf(text, "%4d%c%2d%c%2d",
&year, &delim, &month, &delim, &day);

--month;
if (rc != 5 || year < 0 || year > 9999 ||

month < 0 || month > 11 ||
day < 1 || day > 31 ||

(day > numDays[month]&& month != 1)) {
return(-1);

}
if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0)

leap = 1;

if (month == 1 && day > numDays[month]) {
if (day > 29)
return(-1);

else if (!leap)
return (-1);

}

for (i=0;i<month;++i) {
daysInYear += numDays[i];

}
daysInYear += day;

// correct for leap year
if (leap == 1 &&

(month > 1 || (month == 1 && day == 29)))
++daysInYear;

totDays = (curDay - daysInYear) + (curYear - year)*365;

// now, correct for leap year
for (i=year+1; i < curYear; ++i) {
if ((i % 4 == 0 && i % 100 != 0) || i % 400 == 0) {
++totDays;

}
}
return(totDays);

}

Figure 6. OS/390 C++ Biorhythm Example Program (Part 2 of 2)

42 OS/390 V2R6.0 C/C++ User’s Guide

Compiling, Binding, and Running the OS/390 C++ Example

In general, you can compile, bind, and run OS/390 C++ programs under OS/390
batch, TSO, or the OS/390 shell. You cannot run the IPA Link step under TSO, or
under OS/390 batch by using the ISPF interface. For more information, see
“Chapter 9. Compiling” on page 221, “Chapter 12. Binding OS/390 C/C++ Programs”
on page 289, and “Chapter 14. Running an OS/390 C/C++ Application” on
page 335.

This book uses the term user prefix to refers to the high-level qualifier of your data
sets. For example, in CEE.SCEERUN, the user prefix is CEE.

Under OS/390 Batch

Copy the IBM-supplied sample program and header file into your data set. For
example, if your user prefix is PETE, store the sample program (CBCUBRC) in
PETE.TEST.C(CBC3UBRC), and the header file (CBCUBRC) in
PETE.TESTHDR.H(CBC3UBRH). You can use the IBM-supplied cataloged procedure
CBCCBG to compile, bind, and run the source code as follows:

In Figure 7, the LSEARCH statement describes where to find the user include files,
and the SEARCH statement describes where to find the system include files. The
GO.SYSIN statement indicates that the input that follows it is given for the execution
of the program.

For more information on compiling, binding, and running, see “Chapter 9.
Compiling” on page 221, “Chapter 12. Binding OS/390 C/C++ Programs” on
page 289, and “Chapter 14. Running an OS/390 C/C++ Application” on page 335.

Under TSO

Copy the IBM-supplied sample program and header file into your data set. For
example, if your user prefix is PETE, store the sample program (CBCUBRC) in
PETE.TEST.C(CBC3UBRC), and the header file (CBCUBRH) in
PETE.TESTHDR.H(CBC3UBRH).

//*
//* COMPILE, BIND AND RUN
//*
//DOCLG EXEC CBCCBG,
// INFILE='PETE.TEST.C(CBC3UBRC)',
// CPARM='OPTFILE(DD:CCOPT)'
//COMPILE.CCOPT DD *

LSEARCH('PETE.TESTHDR.H')
SEARCH('CEE.SCEEH.+','CBC.SCLBH.+')

/*
//* ENTER TODAY'S DATE IN THE FORM YYYY/MM/DD
//GO.SYSIN DD *
1997/10/19

/*

Figure 7. JCL to Compile, Bind, and Run the Example Program Using the CBCCBG
Procedure

Chapter 5. OS/390 C++ Examples 43

Use the following set of TSO commands to compile, bind, and run the example
program:

1. Ensure that the OS/390 Language Environment runtime library, the OS/390
class library DLLs, and the OS/390 C++ compiler are in the STEPLIB, dynamic
LPA, or Link List concatenation.

2. Compile the OS/390 C++ source. You can use the REXX EXEC CXX to invoke
the OS/390 C++ compiler under TSO as follows:
CXX 'PETE.TEST.C(CBC3UBRC)' (LSEARCH('PETE.TESTHDR.H') OBJECT(BIO.TEXT)

SEARCH('CEE.SCEEH.+','CBC.SCLBH.+')

CXX compiles CBC3UBRC with the specified compiler options and stores the
resulting object module in PETE.BIO.TEXT(CBC3UBRC).

The compiler searches for user header files in the PDS PETE.TESTHDR.H, which
you specified at compile time with the LSEARCH option. The compiler searches for
system header files in the PDS CEE.SCEEH.+ and CBC.SCLBH.+, which you
specified at compile time with the SEARCH option.

For more information see “Compiling Under TSO” on page 233.

3. Bind:
CXXBIND OBJ(BIO.TEXT(CBC3UBRC)) LOAD(BIO.LOAD(BIORUN))

CXXBIND binds the object module PETE.BIO.TEXT(CBC3UBRC), and creates an
executable module BIORUN in PETE.BIO.LOAD PDSE with the default bind options.

Note: To avoid a bind error, the dataset PETE.BIO.LOAD must be a PDSE, not a
PDS.

For more information see “Chapter 12. Binding OS/390 C/C++ Programs” on
page 289.

44 OS/390 V2R6.0 C/C++ User’s Guide

4. Run the program:
CALL BIO.LOAD(BIORUN)

CALL runs the module BIORUN from the PDSE PETE.BIO.LOAD with the default
runtime options.

For more information see “Running an Application under TSO” on page 337.

Under the OS/390 Shell
1. Ensure that the OS/390 Language Environment runtime library and the OS/390

C++ compiler library are in the STEPLIB, LPALST, or LNKLST concatenation.

2. Put the source in the HFS. From the OS/390 shell type:
tso oput "'cbc.scbcsam(cbc3ubrc)' '$PWD/cbc3ubrc.C'"
tso oput "'cbc.scbcsam(cbc3ubrh)' '$PWD/cbc3ubrh.h'"

In this example, the current working directory is used, so make sure that you
are in the directory you want to use. Use the pwd command to display the
current working directory, the mkdir command to create a new directory, and the
cd command to change directory.

3. Compile and bind:
c++ -o bio cbc3ubrc.C

Note: You can use c++ to compile source that is stored in a data set.

4. Run the program:
./bio

Example of an OS/390 C++ Template Program

A class template or generic class is a blueprint that describes how members of a
set of related classes are constructed.

The following example shows a simple OS/390 C++ program that uses templates to
perform simple operations on linked lists. This program consists of ten files that are
described and illustrated below.

The main program, CLB3ATMP.CXX (see “CLB3ATMP.CXX” on page 50) has two
class templates: List (in the file CLB3ALST.C that uses CLB3ALST.H) and
Iterator (in the file CLB3AITR.C that uses CLB3AITR.H). List is a template of a
linked list, and Iterator is a template that walks a List class.

Chapter 5. OS/390 C++ Examples 45

CLB3ALST.C

CLB3ALST.H

#include "clb3alst.h"
template <class Item> void List<Item>::append(Item item) {
GetNode();
cur–>node = item;

}

template <class Item> void List<Item>::GetNode() {
if (cur) {
cur–>next = new Node<Item>;
cur = cur–>next;

}
else {
cur = new Node<Item>;
head = cur;

}
cur–>next = 0;
return;

}

Figure 8. Template of a Linked List

??=ifndef _CBCLIST_H_
??=ifdef __COMPILER_VER__
??=pragma filetag ("IBM-1047")

??=endif
??=define _CBCLIST_H_ 1
#pragma nomargins nosequence
#pragma checkout (suspend)

template <class Item> struct Node {
Item node;
struct Node<Item> *next;

};

template <class Item> class List {
public:

List() :cur(0), head(0) {}

˜List() {}
void append(Item item);
Node<Item> *cur, *head;

private:
void GetNode();

};
#pragma checkout (resume)
#endif

Figure 9. Header file for CBC3ALST.C

46 OS/390 V2R6.0 C/C++ User’s Guide

CLB3AITR.C

CLB3AITR.H

There are two template functions, max(T,T) (in the file CLB3AMAX.C which uses
CLB3AMAX.H), and min(T,T) (in the file CLB3AMIN.C which uses CLB3AMIN.H).
max(T,T) returns the maximum object of two objects, and min(T,T) returns the
minimum object of two objects.

CLB3AMAX.H

#include "clb3aitr.h"
template <class Item> Item& Iterator<Item>::operator++() {
node = cur–>node;
cur = cur–>next;
return(node);

}

template <class Item> int Iterator<Item>::eol() {
return(cur == 0);

}

template <class Item> void Iterator<Item>::reset() {
cur = head;

}

Figure 10. Template of an Iterator

??=ifndef _CBCITER_H_
??=ifdef __COMPILER_VER__

??=pragma filetag ("IBM-1047")
??=endif
??=define _CBCITER_H_ 1
#pragma nomargins nosequence
#pragma checkout (suspend)

#include "clb3alst.h"
template <class Item> class Iterator {
public:
Iterator(List<Item>& list)

:cur(list.head), head(list.head) {}
Item& operator++();
int eol();
void reset();

private:
Node<Item> *cur;
Node<Item> *head;
Item node;

};
#pragma checkout (resume)
#endif

Figure 11. Header file for CLB3AITR.C

template <class T> T& max(T a, T b);

Chapter 5. OS/390 C++ Examples 47

CLB3AMAX.C

CLB3AMIN.H

CLB3AMIN.C

There is one simple class, String, defined in the file CLB3ASTR.H.

template <class T> T& max(T a, T b) {
if (a > b) return(a);
else return(b);

}

template <class T> T& min(T a, T b);

template <class T> T& min(T a, T b) {
if (a < b) return(a);
else return(b);

}

48 OS/390 V2R6.0 C/C++ User’s Guide

CLB3ASTR.H

??=ifndef _CBCSTR_H_
??=ifdef __COMPILER_VER__

??=pragma filetag ("IBM-1047")
??=endif
??=define _CBCSTR_H_ 1
#pragma nomargins nosequence
#pragma checkout (suspend)

#include <iostream.h>
#include <iomanip.h>
class String {
friend static ostream& operator<<(ostream&, String&);
friend static istream& operator>>(istream&, String&);
public:
String() {
str = new char[1];
str[0] = '\0';

}
String(const char *s) {
const int len = strlen(s);
str = new char[len+1];
memcpy(str, s, len+1);

}

˜String() {
delete str;

}
void replace(const char *s) {
const int len = strlen(s);
char *newStr = new char[len+1];
delete str;
str = newStr;
memcpy(str, s, len+1);

}
int operator >(String& rhs) {
return(strcmp(str, rhs.string()));

}
int operator <(String& rhs) {
return(!strcmp(str, rhs.string()));

}
const char *string() {
return(str);

}
private:
char *str;

};
#pragma checkout (resume)
#endif

Figure 12. Definition of the String Class

Chapter 5. OS/390 C++ Examples 49

CLB3ATMP.CXX

#include "clb3amax.h"
#include "clb3amin.h"
#include "clb3alst.h"
#include "clb3aitr.h"
#include "clb3astr.h"
#include <string.h>
#include <iostream.h>
#include <iomanip.h>

template <class Item> class IOList {
public:
IOList() : list() {}
void write();
void read(const char *msg);
void append(Item item) {
list.append(item);

}
private:
List<Item> list;

};

template <class Item> void IOList<Item>::write() {
Iterator<Item> iter(list);
while (!iter.eol()) {
cout << ' ' << ++iter;

}
cout << endl;

}

template <class Item> void IOList<Item>::read(const char *msg) {
Item item;
cout << msg << endl;
while (cin >> item) {
list.append(item);

}
}

ostream& operator<<(ostream& os, String& str) {
os << str.string() << endl;
return(os);

}

istream& operator>>(istream& is, String& str) {
char tmpStr[80];
cin.width(79);
is >> tmpStr;
str.replace(tmpStr);
return(is);

}

Figure 13. OS/390 C++ Template Program (Part 1 of 2)

50 OS/390 V2R6.0 C/C++ User’s Guide

Compiling, Binding, and Running the C++ Template Example

This section describes the commands to compile, bind and run the template
example under OS/390 batch,TSO, and the OS/390 shell.

Under OS/390 Batch

To compile, bind, and run the template example program under OS/390 batch,
follow these steps:

1. Ensure that OS/390 Language Environment runtime library and the OS/390 C++
compiler are in STEPLIB, LPALST, or the LNKLST concatenation.

2. Use the following JCL to compile, bind, and run the template example. In the
example JCL, change <userhlq> to your own user prefix.

int main() {
IOList<String> stringList;
IOList<int> intList;

char line1[]= "This program will read in a list of";
char line2[]= "strings, integers and real numbers";
char line3[]= "and then print them out";

stringList.append(line1);
stringList.append(line2);
stringList.append(line3);
stringList.write();
intList.read("Enter some integers (/* to terminate)");
intList.write();

String name1 = "Bloe, Joe";
String name2 = "Jackson, Joseph";

cout << min(name1, name2) << " comes before "
<< max(name1, name2) << endl;

int num1 = 23;
int num2 = 28;

cout << min(num1, num2) << " comes before "
<< max(num1, num2) << endl;

return(0);
}

Figure 13. OS/390 C++ Template Program (Part 2 of 2)

Chapter 5. OS/390 C++ Examples 51

CBC3UNCL

//Jobcard info
//PROC JCLLIB ORDER=(CBC.SCBCPRC,
// CEE.SCEEPROC)
//*
//* Compile MAIN program, creating an object deck and a TEMPLATE PDS
//* of the source code. The TEMPLATE PDS of source code will be
//* written to the default TEMPLATE PDS '<userhlq>.TEMPINC'
//*
//MAINCC EXEC CBCC, * Compile main program
// INFILE='CBC.SCLBSAM(CLB3ATMP)',
// OUTFILE='<userhlq>.SAMPLE.OBJ(CLB3ATMP),DISP=SHR ',
// CPARM='OPTF(DD:COPTS)'
//COPTS DD *
SEARCH('CEE.SCEEH.+','CBC.SCLBH.+')
LSEARCH('CBC.SCLBSAM.+') TEMPINC

/*
//*
//* Compile PDS of TEMPLATE source code. Direct template source file
//* creation to this PDS with the TEMPINC option. Then, if any
//* TEMPLATE compilation creates new members, they will be created
//* in this PDS. The compiler will detect this and automatically
//* compile the newly created members as part of this step.
//*
//TMPCC EXEC CBCC, * Compile PDS of templates
// INFILE='<userhlq>.TEMPINC',
// OUTFILE='<userhlq>.TEMPINC.OBJ,DISP=SHR ',
// CPARM='OPTF(DD:COPTS)'
//COPTS DD *
SEARCH('CEE.SCEEH.+','CBC.SCLBH.+')
LSEARCH('CBC.SCLBSAM.+') TEMPINC

/*
//*
//* Make the PDS of template objects have long named aliases used
//* for autocall by using the EDCLIB utility with the DIR command.
//*
//GENLIB EXEC EDCLIB, * Create Template Library
// OPARM='DIR',
// LIBRARY='<userhlq>.TEMPINC.OBJ'
//*
//* Bind the program --- specify the template library on the
//* bind autocall library.
//*
//BIND EXEC CBCB, * Bind main program
// INFILE='<userhlq>.SAMPLE.OBJ(CLB3ATMP)',
// OUTFILE='<userhlq>.SAMPLE.LOAD(CLB3ATMP),DISP=SHR'
//BIND.SYSLIB DD
// DD
// DD
// DD DSN=<userhlq>.TEMPINC.OBJ,DISP=SHR
//GO EXEC CBCG,
// INFILE='<userhlq>.SAMPLE.LOAD',
// GOPGM=CLB3ATMP
//GO.SYSIN DD *
1 2 5 3 7 8 3 2 10 11

/*

Figure 14. JCL to Compile, Bind and Run the Template Example

52 OS/390 V2R6.0 C/C++ User’s Guide

Under TSO

To compile, bind, and run the example program under TSO, follow these steps:

1. Ensure that OS/390 Language Environment runtime library, the OS/390 Class
Library DLLs, and the OS/390 C++ compiler are in STEPLIB, LPALST, or the
LNKLST concatenation.

2. Compile the source files:

a. CXX 'CBC.SCLBSAM(CLB3ATMP)' (LSEARCH('CBC.SCLBSAM.+')
SEARCH('CEE.SCEEH.+','CBC.SCLBH.+') OBJ(SAMPLE.OBJ(CLB3ATMP))

Compiles CLB3ATMP with the default compiler options, and stores the object
module in userhlq.SAMPLE.OBJ(CLB3ATMP), where userhlq is your user prefix.
The template instantiation files are written to the PDS userhlq.TEMPINC.

b. CXX TEMPINC (LSEARCH('CBC.SCLBSAM.+')
SEARCH('CEE.SCEEH.+','CBC.SCLBH.+')

Compiles the PDS TEMPINC and creates the corresponding objects in the
PDS userhlq.TEMPINC.OBJ.

See “Compiling Under TSO” on page 233 for more information.

3. Create a library from the PDS userhlq.TEMPINC.OBJ:
C370LIB DIR LIB(TEMPINC.OBJ)

For more information see “Creating and Object Library Under TSO” on
page 352.

4. Bind the program:
CXXBIND OBJ(SAMPLE.OBJ(CLB3ATMP)) LIB(TEMPINC.OBJ) LOAD(SAMPLE.LOAD(CLB3ATMP))

Binds the userhlq.SAMPLE.OBJ(CLB3ATMP) text deck using the
userhlq.TEMPINC.OBJ library and the default bind options. This step creates the
executable module userhlq.SAMPLE.LOAD(CLB3ATMP).

Note: To avoid a binder error, the dataset userhlq.SAMPLE.LOAD must be a
PDSE.

For more information see “Binding Under TSO Using CXXBIND” on page 305.

5. Run the program:
CALL SAMPLE.LOAD(CLB3ATMP)

Executes the module userhlq.SAMPLE.LOAD(CLB3ATMP) using the default runtime
options. For more information see “Running an Application under TSO” on
page 337.

Under the OS/390 Shell

To compile, bind, and run the template example program under the OS/390 shell,
follow these steps:

1. Ensure that OS/390 Language Environment runtime library and the OS/390 C++
compiler are in STEPLIB, LPALST, or the LNKLST concatenation.

2. Perform a series of oput commands for all files that are used, as follows:
tso oput "'cbc.sclbsam(clb3atmp)' '$PWD/clb3atmp.C'"
tso oput "'cbc.sclbsam.h(clb3astr)' '$PWD/clb3astr.h'"
tso oput "'cbc.sclbsam.h(clb3aitr)' '$PWD/clb3aitr.h'"
tso oput "'cbc.sclbsam.h(clb3amin)' '$PWD/clb3amin.h'"
tso oput "'cbc.sclbsam.h(clb3amax)' '$PWD/clb3amax.h'"
tso oput "'cbc.sclbsam.h(clb3alst)' '$PWD/clb3alst.h'"

Chapter 5. OS/390 C++ Examples 53

tso oput "'cbc.sclbsam.c(clb3aitr)' '$PWD/clb3aitr.c'"
tso oput "'cbc.sclbsam.c(clb3alst)' '$PWD/clb3alst.c'"
tso oput "'cbc.sclbsam.c(clb3amax)' '$PWD/clb3amax.c'"
tso oput "'cbc.sclbsam.c(clb3amin)' '$PWD/clb3amin.c'"

Note: You must use the correct suffixes: C for the main source file, c for the
template definition files, and h for all header files.

3. Then, to compile and bind:
c++ -o clb3atmp clb3atmp.C

This command compiles clb3atmp.C and then compiles the ./tempinc directory
(which is created if it doesn’t already exist). It then binds using all the objects in
the ./tempinc directory. An archive file, or C370LIB object library is not created.

4. Run the program:
./clb3atmp

54 OS/390 V2R6.0 C/C++ User’s Guide

Chapter 6. Compiler Options

This chapter describes the options that you can use to alter the compilation of your
program.

Specifying Compiler Options

You can override your installation default options when you compile your OS/390
C/C++ program, by specifying an option in one of the following ways:

v In the option list when you invoke the IBM-supplied REXX EXECs.

v In the CPARM parameter of the IBM-supplied cataloged procedures, when you are
compiling under OS/390 batch.

See “Chapter 9. Compiling” on page 221, and “Appendix D. IBM Supplied
Cataloged Procedures and REXX EXECs” on page 457 for details.

v In your own JCL procedure, by passing a parameter string to the compiler.

v In an options file. See “OPTFILE | NOOPTFILE” on page 129 for details.

v For OS/390 C, in a #pragma options preprocessor directive within your source
file. See “Specifying OS/390 C Compiler Options Using #pragma Options” on
page 58 for details.

Compiler options that you specify on the command line or in the CPARM parameter
of IBM-supplied cataloged procedures can override compiler options that are
used in #pragma options. The exception is CSECT, where the #pragma csect
directive takes precedence.

v In the utilities c89, cc, or c++, by using the -W option to pass options to the
compiler.

v In the ISPF panels that are used to invoke the OS/390 C/C++ compiler in
foreground and background.

The following compiler options are inserted at the bottom of your object module to
indicate their status:

ALIAS (C compile and IPA Link step only)
ANSIALIAS (C compile and C++ compile only)
ARCHITECTURE
ARGPARSE
CONVLIT
DLL
EVENTS
EXH (C++ compile only)
EXECOPS
EXPORTALL (C compile and C++ compile only)
FLOAT
GENPCH
GONUMBER
IPA
INLINE (C compile and IPA Link step only)
LANGLVL
LIBANSI
LOCALE
LONGNAME
OPTIMIZE

© Copyright IBM Corp. 1996, 1999 55

PLIST
REDIR (C compile and IPA Link step only)
RENT (C compile and IPA Link step only)
ROUND
START
STRICT
SOM (C++ compile only)
SOMEINIT (C++ compile only)
SOMGS (C++ compile only)
TARGET
TEST
TUNE
UPCONV (C compile only)
USEPCH (C compile and C++ compile only)

IPA Considerations

The following sections explain what you should be aware of if you request
Interprocedural Analysis (IPA) through the IPA option. Refer to the OS/390 C/C++
Programming Guide for an overview of IPA before you use the IPA compiler option.

Applicability of Compiler Options under IPA

You should keep the following points in mind when specifying compiler options for
the IPA Compile or IPA Link step:

v Many compiler options do not have any special effect on IPA. For example, the
PPONLY option processes source code, then terminates processing prior to IPA
Compile step analysis.

v Compiler options that affect the way the compiler generates a regular object
module have the same effect on how the IPA compile step generates an object
module with IPA (OBJECT).

v In some situations, you must specify a compiler option on the IPA Compile step if
you want the benefit of the option on the IPA Link step. In some situations, you
must specify the option again on the IPA Link step.

v Some compiler options have special behavior or restrictions other than what is
described above.

v #pragma directives in your source code, and compiler options you specify for the
IPA Compile step, may conflict across compilation units.

#pragma directives in your source code, and compiler options you specify for the
IPA Compile step may conflict with options you specify for the IPA Link step.

IPA will detect such conflicts and apply default resolutions with appropriate
diagnostic messages. The Compiler Options Map section of the IPA Link step
listing displays the conflicts and their resolutions.

To avoid problems, use the same options and suboptions on the IPA Compile
and IPA Link steps. Also, if you use #pragma directives in your source code,
specify the corresponding options for the IPA Link step.

v You must specify either the LONGNAME compiler option or the #pragma longname
preprocessor directive on the IPA Compile step (unless you are using the c89
utility). Otherwise, the compiler generates an unrecoverable error.

v If you specify a compiler option that is irrelevant for a particular IPA step, IPA
ignores it and does not issue a message.

56 OS/390 V2R6.0 C/C++ User’s Guide

In this chapter, the description of each compiler option includes its effect on IPA
processing.

Interactions between Compiler Options and IPA Suboptions

During IPA Compile step processing, IPA handles conflicts between IPA suboptions
and certain compiler options that affect code generation.

If you specify a compiler option for the IPA Compile step, but do not specify the
corresponding suboption of the IPA option, the compiler option may override the IPA
suboption. Table 3 shows how the OPT, LIST, and GONUMBER compiler options interact
with the OPT, LIST, and GONUMBER suboptions of the IPA option. The xxxx indicates
the name of the option or suboption. NOxxxx indicates the corresponding negative
option or suboption.

Table 3. Interactions Between Compiler Options and IPA Suboptions

Compiler Option Corresponding IPA Suboption Value used in IPA Object

no option specified no suboption specified NOxxxx

no option specified NOxxxx NOxxxx

no option specified xxxx xxxx

NOxxxx no option specified NOxxxx

NOxxxx NOxxxx NOxxxx

NOxxxx xxxx xxxx

xxxx no option specified xxxx

xxxx NOxxxx xxxx 1

xxxx xxxx xxxx

Note: 1An informational message is produced that indicates that the suboption
NOxxxx is promoted to xxxx.

Using Special Characters

Under TSO

When HFS file names contain the special characters blank, backslash, and double
quote, a backslash (\) must precede these characters.

Two backslashes must precede suboptions that contain these special characters:

left parenthesis (, right parenthesis), comma, backslash, blank, double quote, less
than <, and greater than >

For example:
def(errno=\\(*__errno\\(\\)\\))

Note: Under TSO, a backslash \ must precede special characters in file names
and options.

Under the OS/390 Shell

The OS/390 shell imposes its own parsing rules. The c89 utility escapes special
compiler and runtime characters as needed to invoke the compiler, so you need

Chapter 6. Compiler Options 57

only be concerned with shell parsing rules. See OS/390 UNIX System Services
Command Reference for more information.

Under OS/390 Batch

When invoking the compiler directly (not through a cataloged procedure), you
should type a single quote (') within a string as two single quotes (''), as follows:
//COMPILE EXEC PGM=CBCDRVR,PARM='OPTFILE(''USERID.OPTS'')'

If you are using the same string to pass a parameter to a JCL PROC, use four
single quotes (''''), as follows:
//COMPILE EXEC CBCC,CPARM='OPTFILE(''''USERID.OPTS'''')'

Special characters in HFS file names that are referenced in DD cards do not need a
preceding backslash. For example, the special character blank in the file name obj
1.o does not need a preceding backslash when it is used in a DD card:
//SYSLIN DD PATH='u/user1/obj 1.o'

A backslash must precede special characters in HFS file names that are referenced
in the PARM statement. The special characters are: backslash, blank, and double
quote. For example, a backslash precedes the special character blank in the file
name obj 1.o, when used in the PARM keyword:
//STEP1 EXEC PGM=CBCDRVR,PARM='OBJ(/u/user1/obj\ 1.o)'

Specifying OS/390 C Compiler Options Using #pragma Options

You can use the #pragma options preprocessor directive to override the default
values for compiler options. Compiler options that are specified on the command
line or in the CPARM parameter of the IBM-supplied cataloged procedures can
override compiler options that are used in #pragma options. The exception is CSECT,
where the #pragma csect directive takes precedence. For complete details on the
#pragma options preprocessor directive, see the OS/390 C/C++ Language
Reference.

The #pragma options preprocessor directive must appear before the first OS/390 C
statement in your input source file. Only comments and other preprocessor
directives can precede the #pragma options directive. Only the options that are
listed below can be specified in a #pragma options directive. If you specify a
compiler option that is not in the following list, the compiler generates a warning
message, and does not use the option.

AGGREGATE OBJECT
ALIAS OPTIMIZE
ANSIALIAS RENT
ARCHITECTURE SERVICE
CHECKOUT SPILL
DECK START
GONUMBER TEST
INLINE TUNE
LIBANSI UPCONV
MAXMEM XREF

Notes:

1. When you specify conflicting attributes explicitly, or implicitly by the specification
of other options, the last explicit option is accepted. The compiler usually does
not issue a diagnostic message indicating that it is overriding any options.

58 OS/390 V2R6.0 C/C++ User’s Guide

2. When you compile your program with the SOURCE compiler option, an options list
in the listing indicates the options in effect at invocation. The values in the list
are the options that are specified on the command line, or the default options
that were specified at installation. These values do not reflect options that are
specified in the #pragma options directive.

Specifying Compiler Options under OS/390 UNIX

The c89 and c++ utilities specify most compiler options when they call the OS/390
C/C++ compiler. Therefore, #pragma options and other #pragma directives that are
overridden by command line options are not used. For example, if you compile
using c89, and have #pragma langlvl (EXTENDED) in your source, c89 uses
LANGLVL(ANSI). This is because c89 specifies ANSI explicitly when it calls the
compiler.

To change compiler options, use the corresponding c89 or c++ option. For example,
use -I to set the search option that specifies where to search for #include files. If
there is no corresponding c89 or c++ option, use -W. For example, specify -Wc,expo
to export all functions and variables.

For a complete description of c89, c++ and related utilities, refer to the OS/390
UNIX System Services Command Reference.

Compiler Option Defaults

You can use various options to change the compilation of your program. You can
specify compiler options when you invoke the compiler or, in an OS/390 C program,
in a #pragma options directive in your source program. Options that you specify
when you invoke the compiler override installation defaults and compiler options
that are specified through a #pragma options directive.

The compiler option defaults that are supplied by IBM can be changed to other
selected defaults when OS/390 C/C++ is installed. To find out the current defaults,
compile a program with only the SOURCE compiler option specified. The compiler
listing shows the options that are in effect at invocation. The listing does not reflect
options that are specified through a #pragma options directive in the source file.

Summary of Compiler Options

Most compiler options have a positive and negative form. The negative form is the
positive with NO before it. For example, NOXREF is the negative form of XREF. Table 4
lists the compiler options in alphabetical order, their abbreviations, and the defaults
that are supplied by IBM. Suboptions inside square brackets are optional. Table 5
on page 62 lists options that are compatible with previous versions of the compiler.
Use these options only in existing code. For each of these options, there is a
replacement option in Table 4 that you should use for new programs.

Table 4. Compiler Options, Abbreviations, and IBM Supplied Defaults

Compiler Option (Abbreviated Names are
underlined)

IBM Supplied Default C C++ Accepted
by IPA
Link

More
Information

AGGREGATE |NOAGGREGATE NOAGG U U See 70

ALIAS[(name)] | NOALIAS NOALI U See 71

Chapter 6. Compiler Options 59

Table 4. Compiler Options, Abbreviations, and IBM Supplied Defaults (continued)

Compiler Option (Abbreviated Names are
underlined)

IBM Supplied Default C C++ Accepted
by IPA
Link

More
Information

ANSIALIAS | NOANSIALIAS ANS U U U See 72

ARCHITECTURE(n) ARCH(0) U U U See 73

ARGPARSE| NOARGPARSE ARG U U U See 74

ATTRIBUTE[(FULL)] | NOATTRIBUTE ATT U U See 75

CHECKOUT(subopts) | NOCHECKOUT NOCHE U U See 76

CONVLIT | NOCONVLIT NOCONV U U U See 78

CSECT | NOCSECT NOCSE U U U See 79

DEFINE(name1[= | =def1], name2[= |
=def2],...)

no default user definitions U U U See 82

DIGRAPH | NODIGRAPH NODIGR U See 82

DLL(CBA | NOCBA) | NODLL(CBA |NCBA) NODLL(NOCBA) U U See 84

DLL(CBA | NOCBA) DLL(NOCBA) U U See 84

EVENTS[(filename)] | NOEVENTS NOEVENT U U U See 85

EXECOPS | NOEXECOPS EXEC U U U See 86

EXH | NOEXH EXH U See 87

EXPMAC | NOEXPMAC NOEXP U U U See 88

EXPORTALL | NOEXPORTALL NOEXPO U U U See 88

FASTTEMPINC | NOFASTTEMPINC NOFASTT U See 89

FLAG(severity) | NOFLAG FL(I) U U U See 90

FLOAT(subopts) FLOAT[(HEX, FOLD,
NOMAF, NORRM,
NOAFP)]

U U U See 91

GENPCH[(filename)] | NOGENPCH(filename) NOGENP U U U See 95

GONUMBER | NOGONUMBER NOGONUM U U U See 96

HALT(num) HALT(16) U U U See 97

INFO[(subopts)] | NOINFO NOINFO U See 98

INLINE(subopts) | NOINLINE [(subopts)] NOINL(AUTO,
NOREPORT, 100, 1000)

U U See 99

INLRPT[(filename)] | NOINLRPT[(filename)] NOINLR U U U See 102

IPA[(subopts)] | NOIPA[(subopts)] NOIPA(NOLINK, OBJECT,
NOOPT, NOLIST,
NOGONUMBER,
NOATTRIBUTE,
NOXREF,
LEVEL(1),NOMAP, DUP,
ER, NONCAL,
NOUPCASE,
NOCONTROL

U U U See 103

LANGLVL(ANSI|SAA
|SAAL2|COMPAT|EXTENDED|COMMONC)

LANG(EXTENDED) U U See 107

LIBANSI | NOLIBANSI NOLIB U U See 110

LIST[(filename)] | NOLIST [(filename)] NOLIS U U U See 110

60 OS/390 V2R6.0 C/C++ User’s Guide

||||||

||
|
|

||||

Table 4. Compiler Options, Abbreviations, and IBM Supplied Defaults (continued)

Compiler Option (Abbreviated Names are
underlined)

IBM Supplied Default C C++ Accepted
by IPA
Link

More
Information

LOCALE[(name)] | NOLOCALE NOLOC U U U See 112

LONGNAME | NOLONGNAME NOLO (C only), LO (C++
only)

U U U See 114

LSEARCH(subopts) | NOLSEARCH NOLSE U U U See 115

MARGINS | NOMARGINS NOMAR U U U See 121

MARGINS(m,n) | NOMARGINS (C compile and
IPA Link step)

V-format: NOMAR
F-format: MAR(1,72)

U U See 121

MAXMEM | NOMAXMEM MAXMEM(2097152) U U U See 123

MEMORY | NOMEMORY MEM U U U See 124

NESTINC(num) | NONESTINC NONEST U U U See 125

OBJECT[(filename)] | NOOBJECT [(filename)] OBJ U U U See 125

OE[(filename)] | NOOE[(filename)] NOOE U U U See 127

OFFSET | NOOFFSET NOOF U U U See 128

OPTFILE[(filename)] | NOOPTFILE[(filename)] NOOPTF U U U See 129

OPTIMIZE[(level)] | NOOPTIMIZE NOOPT U U U See 131

PHASEID | NOPHASEID NOPHASEID U U U See 133

PLIST(HOST | OS) PLIST(HOST) U U U See 134

PORT(PPS | NOPPS) | NOPORT(PPS |
NOPPS)

NOPORT(NOPPS) U U See 134

PPONLY[(subopts)] | NOPPONLY [(subopts)] NOPP U U U See 136

REDIR | NOREDIR RED U U U See 138

RENT| NORENT NORENT U U See 139

ROUND(opt) ROUND(N) U U U See 140

SEARCH(opt1,opt2,...) | NOSEARCH NOSE U U U See 140

SERVICE(string) | NOSERVICE NOSERV U U U See 142

SEQUENCE | NOSEQUENCE NOSEQ U U U See 143

SEQUENCE(m,n) | NOSEQUENCE V-format: NOSEQ
F-format: SEQ(73,80)

U U See 143

SHOWINC | NOSHOWINC NOSHOW U U U See 145

SOM | NOSOM NOSOM U See 145

SOMEINIT | NOSOMEINIT SOMEI U See 146

SOMGS | NOSOMGS NOSOMG U See 146

SOMRO(classname) | NOSOMRO NOSOMR U See 147

SOMVOLATTR | NOSOMVOLATTR NOSOMV U See 148

SOURCE[(filename)] | NOSOURCE[
(filename)]

NOSO U U U See 148

SPILL | NOSPILL SPILL(128) U U U See 150

SRCMSG | NOSRCMSG NOSRCM U See 151

SSCOMM | NOSSCOMM NOSS U U See 151

START | NOSTART STA U U U See 152

Chapter 6. Compiler Options 61

||||||

|
|
|||||

||||||

Table 4. Compiler Options, Abbreviations, and IBM Supplied Defaults (continued)

Compiler Option (Abbreviated Names are
underlined)

IBM Supplied Default C C++ Accepted
by IPA
Link

More
Information

STRICT | NOSTRICT STRICT U U U See 153

TARGET(suboption) TARG(LE) U U U See 153

TEMPINC[(filename)] |
NOTEMPINC[(filename)]

TEMPINC(TEMPINC) for
PDS TEMPINC(./tempinc)
for HFS

U See 156

TERMINAL | NOTERMINAL TERM U U U See 157

TEST[(subopts)] | NOTEST[(subopts)] v C default: NOTEST
(HOOK, SYM, BLOCK,
LINE, PATH)

v C++ default:
NOTEST(HOOK)

U U U See 158

TUNE(n) TUN(3) U U U See 161

UNDEFINE(name) no action U U U See 163

UPCONV | NOUPCONV NOUPC U U See 163

USEPCH[(filename)] | NOUSEPCH[(filename)] NOUSEP U U U See 164

WSIZEOF| NOWSIZEOF NOWSIZEOF U U U See 165

XREF | NOXREF NOXR U U U See 166

XSOMINC[(subopts)] | NOXSOMINC NOXS U See 167

Compatibility Options

Table 5 lists options that are compatible with previous versions of the compiler. Use
these options only if they already exist in your code. For new programs, use the
replacement options that are listed for each of the compatibility options.

Note: Some parameters such as the output data set may differ between the old
option and its replacement option. Read the description of the replacement
option before you use it.

Table 5. Compatibility Compiler Options, Abbreviations, and IBM Supplied Defaults

Compiler Option (Abbreviated
names are underlined)

IBM Supplied
Default C C++

Accepted
by IPA
Link

Replacement
Option More Information

DECK | NODECK NODECK U U OBJECT See 169 and 125

HWOPTS(STRING | NOSTRING) |
NOHWOPTS

NOHWO U U ARCH See 170 and 73

OMVS[(filename)] | NOOMVS NOOMVS U U OE See 129and 127

SYSLIB(pdsname-list) no action U U U SEARCH See 140 and 170

SYSPATH(path1,path2,...) |
NOSYSPATH

NOSYS U SEARCH See 140 and 171

USERLIB(pdsname-list) no action U U U LSEARCH See 115 and 172

USERPATH(path1,path2,...) |
NOUSERPATH

NOUSER U LSEARCH See 115 and 173

62 OS/390 V2R6.0 C/C++ User’s Guide

||||||

Compiler Options for File Management

These options specify the data set or HFS directory where the compiler stores
output files, and direct the compiler’s search for include files.

Table 6. Compiler Options for File Management

Option Description C C++ Accepted
by IPA
Link

More
Information

DECK Produces an object module, and stores it in the
data set associated with SYSPUNCH. Use
OBJECT instead of DECK.

U U See 169 and
125

FASTTEMPINC Defers generating object code until the final
version of all template definitions have been
determined. Then, a single compilation pass
generates the final object code, resulting in
improved compilation time when recursive
templates are used in an application.

U See 89

GENPCH Generates precompiled header files. U U U See 95

IPA(CONTROL) Indicates the name of the control file that
contains additional directives for the IPA Link
step. This option only affects the IPA Link step.

U U U See 106

LSEARCH Specifies the libraries or disks to be scanned for
user include files.

U U U See 115

MEMORY Improves compile-time performance by using a
MEMORY file in place of a work file, if possible.

U U U See 124

OBJECT Produces an object module, and stores it in the
file that you specify, or in the data set
associated with SYSLIN.

U U U See 125

OE Specifies that file names used in compiler
options and include directives should be
interpreted as HFS file names when the file
name provided is ambiguous. Also specifies that
POSIX.2 standard rules for include file
searching should be used.

U U U See 127

OMVS The options OMVS and OE perform the same
function. Use the OE option instead of the
OMVS option. Specifies that file names used in
compiler options and include directives should
be interpreted as HFS file names when the file
name provided is ambiguous. Also specifies that
POSIX.2 standard rules for include file
searching should be used.

U U See 129 and
127

OPTFILE Directs the compiler to look for compiler options
in the file specified.

U U U See 129

SEARCH Specifies the libraries or disks to be scanned for
system include files.

U U U See 140

SYSLIB Specifies the PDSs to be scanned for system
include files. Use SEARCH instead of SYSLIB .

U U U See 140 and
170

SYSPATH Specifies search paths to be scanned for
system include files. Use SEARCH instead of
SYSPATH.

U See 140 and
171

Chapter 6. Compiler Options 63

||
|
|
|
|
|

||||

Table 6. Compiler Options for File Management (continued)

Option Description C C++ Accepted
by IPA
Link

More
Information

TEMPINC Places template instantiation files in the PDS or
HFS directory specified.

U See 156

USEPCH Instructs the compiler to use precompiled
header files.

U U U See 164

USERLIB Specifies the PDSs to be scanned for your own
include files. Use LSEARCH instead of
USERLIB.

U U U See 115 and
172

USERPATH Specifies search paths to be scanned for your
own include files. Use LEARCH instead of
USERPATH.

U See 115 and
173

Options That Control the Compiler Listing

These options control whether the compiler produces a listing, and the kind of
information that goes into the listing.

Table 7. Compiler Options That Control Listings

Option Description C C++ Accepted
by IPA
Link

More
Information

AGGREGATE Lists structures and unions, and their sizes. The
IPA Link step accepts but ignores this option.

U U See 70

ATTRIBUTE For C++ compile, generates a cross reference
section showing attributes for each symbol and
External Symbol Cross Reference section. For
IPA Link, it also generates the Storage Offset
Listing if IPA objects were created using the C
compiler with XREF, IPA(ATTR), or IPA(XREF)
options and the symbols for the current partition
were not coalesced.

U U See 75

EXPMAC Lists all expanded macros. You must use the
SOURCE option with EXPMAC.

U U U See 88

INLINE(,REPORT,,) Generates a report on the status of inlined
functions.

U U See 99

INLRPT Generates a report on the status of inlined
functions.

U U U See 102

IPA(MAP) Generates the following listing sections for the
IPA Link step: Object File Map, Source File
Map, Compiler Options Map, Global Symbols
Map, Partition Map. This option only affects the
IPA Link step.

U U U See 103

LIST Includes the object module in the compiler
listing, in assembler-like code.

U U U See 110

OFFSET Lists offset addresses relative to entry points of
functions. The LIST option must be used with
OFFSET.

U U U See 128

SHOWINC Lists include files if SOURCE option specified. U U U See 145

64 OS/390 V2R6.0 C/C++ User’s Guide

Table 7. Compiler Options That Control Listings (continued)

Option Description C C++ Accepted
by IPA
Link

More
Information

SOURCE Lists source file. U U U See 148

XREF For C/C++, generates a cross reference listing
showing file/line definition, reference and
modification information for each symbol. Also
generates the External Symbol Cross
Reference. For IPA Link, generates the External
Symbol Cross Reference, and the Storage
Offset Listing if IPA objects were created using
the C compiler with XREF, IPA(ATTR), or
IPA(XREF) options and the symbols for the
current partition were not coalesced.

U U U See 166

Options for Debugging and Diagnosing Errors

These options help you to detect and correct errors in your OS/390 C/C++ program.

Table 8. Compiler Options for Debugging and Diagnostics

Option Description C C++ Accepted
by IPA
Link

More
Information

CHECKOUT Gives informational messages for possible
programming errors. The IPA Link step accepts
but ignores this option.

U U See 76

EVENTS Produces an events file that contains error
information and source file statistics. The IPA
Link step accepts but ignores this option.

U U U See 85

FLAG Specifies the lowest severity level to be listed. U U U See 90

GONUMBER Generates line number tables for Debug Tool
and error trace backs. The TEST option turns on
GONUMBER.

U U U See 96

INFO Generates informational messages. U See 98

IPA(DUP) Indicates whether a message and a list of
duplicate symbols are written to the console
during the IPA Link step. This option only affects
the IPA Link step.

U U U See 103

IPA(ER) Indicates whether a message and a list of
unresolved symbols are written to the console
during the IPA Link step. This option only affects
the IPA Link step.

U U U See 103

PHASEID Causes each compiler module (phase) to issue
an informational message which identifies the
compiler phase module name, product id, and
build level.

U U U See 133

SERVICE Places a string in the object module, which is
displayed in the traceback if the application fails
abnormally.

U U U See 142

SRCMSG Adds source code lines to diagnostic messages. U See 151

Chapter 6. Compiler Options 65

||
|
|
|

||||

Table 8. Compiler Options for Debugging and Diagnostics (continued)

Option Description C C++ Accepted
by IPA
Link

More
Information

TERMINAL Directs diagnostic messages to be displayed on
the terminal.

U U U See 157

TEST Generates information that the Debug Tool
needs to debug your program.

U U U See 158

Options That Control the Source Code

These options allow you to control your OS/390 C/C++ source code.

Table 9. Summary of Compiler Options Used for Source Code Control

Option Description C C++ Accepted
by IPA
Link

More
Information

HALT Specifies that the compiler stop processing files
when it returns an error severity level of n or
above.

U U U See 97

LANGLVL Specifies the language standard to be used. U U See 107

MARGINS Identifies position of source to be scanned by
the compiler.

U U U See 121

NESTINC Specifies the number of nested include files to
be allowed.

U U U See 125

SEQUENCE Specifies the columns used for sequence
numbers.

U U U See 143

SSCOMM Allows comments to be specified by two slashes
(//). The IPA Link step accepts but ignores this
option.

U U See 151

UPCONV Preserves unsignedness during OS/390 C/C++
type conversions. The IPA Link step accepts but
ignores this option.

U U See 163

WSIZEOF Causes the sizeof operator to return the
widened size for function return types

U U U See 165

Options That Control the Object Code

These options are used to control how your OS/390 C/C++ object code is
produced.

Table 10. Summary of Compiler Options Used for Object Code Control

Option Description C C++ Accepted
by IPA

More
Information

ALIAS Generates ALIAS binder control statements for
each required entry point.

U See 71

ANSIALIAS Specifies whether type-based aliasing is to be
used during optimization.

U U U See 72

66 OS/390 V2R6.0 C/C++ User’s Guide

Table 10. Summary of Compiler Options Used for Object Code Control (continued)

Option Description C C++ Accepted
by IPA

More
Information

CSECT Instructs the compiler to generate csect names
in the output object module.

U U U See 79

DLL Generates object code for DLLs or DLL
applications.

U U See 84

EXECOPS Allows runtime options to be passed to your
program.

U U U See 86

EXH Controls the generation of C++ exception
handling code.

U See 87

EXPORTALL Exports all externally defined functions and
variables.

U U U See 88

FLOAT Switches floating-point representation between
IEEE and hexadecimal.

U U U See 91

HWOPTS Generates code for different hardware features.
Use ARCH instead of this option.

U U See 170

INLINE Inlines user functions into source and helps
maximize optimization.

U U See 99

NOINLINE Disables inlining of user functions into source. U U U See 99

IPA Instructs the compiler to perform Interprocedural
Analysis (IPA) processing.

U U U See 103

IPA(LEVEL) Indicates the level of IPA optimization that the
IPA Link step should perfom.

U U U See 103

LIBANSI Indicates whether functions with the name of an
ANSI C library function are in fact ANSI C
library functions.

U U U See 110

LONGNAME Provides support for external names of mixed
case and up to 1024 characters long.

U U U See 114

MAXMEM Limits the amount of memory used for local
tables of specific, memory intensive
optimization.

U U U See 123

OBJECT Produces an object module, and stores it in the
file that you specify, or in the data set
associated with SYSLIN.

U U 125

OPTIMIZE Improves runtime performance by introducing
optimizations during code generation.

U U U See 131

RENT Generates reentrant code. The IPA Link step
accepts but ignores this option.

U U See 139

ROUND Sets the rounding mode for binary floating point
numbers.

U U U See 140

SPILL Specifies the size of the spill area to be used
for compilation.

U U U See 150

START Generates a CEESTART whenever necessary. U U U See 152

STRICT Affects the precision of floating point
calculations

U U U See 153

TARGET Generates an object module for the targeted
operating system or runtime library.

U U U See 153

TUNE Specifies the architecture for which the
execuable program will be optimized.

U U U See 161

Chapter 6. Compiler Options 67

||
|
||||

||
|
||||

||
|
||||

Options That Control the Preprocessor

These options specify how the preprocessor runs.

Table 11. Summary of Compiler Options for Preprocessor

Option Description C C++ Accepted
by IPA
Link

More
Information

ARCHITECTURE Specifies the architecture for which the
executable program instructions are to be
generated.

U U U See 73

CONVLIT Turns on string literal codepage conversion. U U U See 78

DEFINE Defines preprocessor macro names. U U U See 82

LOCALE Specifies the locale to be used at compile time. U U U See 112

PPONLY Specifies that only the preprocessor is to be run
and not the compiler.

U U U See 136

UNDEFINE Removes any value its argument may have. U U U See 163

Options That Control Program Execution

These options control the execution of your program

Table 12. Summary of Compiler Options for Program Execution

Option Description C C++ Accepted
by IPA
Link

More
Information

ARGPARSE Parses arguments provided on the invocation
line.

U U U See 74

EXECOPS Allows you to specify runtime options on the
invocation line.

U U U See 86

PLIST Specifies that the original operating system
parameter list should be available.

U U U See 134

REDIR Allows redirection of stderr, stdin, and stdout
from the invocation line.

U U U See 138

TARGET Generates an object module for the specified
runtime environment.

U U U See 153

Options That Control the IPA Object

These options control the content of the IPA object that is produced by the IPA
Compile step.

Table 13. Compiler Options for IPA Object Control

Option Description C C++ IPA More
Information

IPA(ATTRIBUTE) Saves information about symbol storage offsets
in the IPA object file.

U U U See 104

68 OS/390 V2R6.0 C/C++ User’s Guide

Table 13. Compiler Options for IPA Object Control (continued)

Option Description C C++ IPA More
Information

IPA(GONUMBER) Saves source line numbers in the IPA object file
without generating line number tables. This
option can only be specified for the IPA Compile
step, if a combined conventional/IPA object file
is requested.

U U U See 104

IPA(LIST) Saves source line numbers in the IPA object file
without generating a Pseudo Assembly listing.
This option can only be specified for the IPA
Compile step, if a combined conventional/IPA
object file is requested.

U U U See 104

IPA(OBJECT) Indicates whether a conventional (non-IPA)/IPA
object is to be produced during the IPA Compile
step.

U U U See 104

IPA(OPTIMIZE) Generates information in the IPA object file that
the compiler option OPT needs during IPA Link
processing. IPA(OPTIMIZE) is the default setting.
If you specify IPA(NOOPTIMIZE), IPA will change
the option to IPA(OPTIMIZE) and issue an
informational message.

U U U See 104

IPA(XREF) Saves information about symbol storage offsets
in the IPA object file.

U U U See 104

Options That Control the IPA Link Step

These options control the IPA Link step.

Table 14. Compiler Options for IPA Link Control

Option Description C C++ IPA More
Information

IPA(LINK) Instructs the compiler to perform IPA Link
processing.

U U U See 106

IPA(NCAL) Indicates whether library searches are
performed during the IPA Link step to locate an
object file or files that satisfy unresolved symbol
references within the current set of object
information. This suboption controls both explicit
searches triggered by the LIBRARY IPA Link
control statement, and the implicit SYSLIB
search that occurs at the end of IPA Link step
input processing.

U U U See 106

IPA(UPCASE) Determines whether an additional automatic
library call pass is made for SYSLIB if
unresolved references remain at the end of
standard IPA Link step processing. Symbol
matching is not case-sensitive in this pass.

U U U See 106

Chapter 6. Compiler Options 69

Direct-to-SOM Options

These options control the generation of SOM objects from your OS/390 C++ code.

Table 15. Summary of Compiler Options for SOM

Option Description C C++ Accepted
by IPA
Link

More
Information

SOM Turns on implicit SOM mode, and causes
som.hh to be included in a program.

U See 145

SOMGS Instructs the compiler to disable direct access to
attributes.

U See 146

SOMRO Causes the release order to the specified
classes to be written to standard output.

U See 147

SOMEINIT Instructs the compiler to initialize SOM classes
“early”, before the main function.

U See 146

SOMVOLATTR Instructs the compiler to generate volatile _get
and _set methods.

U See 148

XSOMINC Instructs the compiler to exclude header files
when implicit SOM mode is turned on.

U See 167

Portability Options

These options allow you to port your C++ code to the OS/390 C++ compiler.

Table 16. Summary of Compiler Options for Portability

Option Description C C++ Accepted
by IPA
Link

More
Information

PORT Adjusts the error recovery action that the
compiler takes when it encounters an ill-formed
#pragma pack directive.

U See 134

Description of Compiler Options

The following sections describe the compiler options and their usage. Compiler
options are listed alphabetically. Syntax diagrams show the abbreviated forms of the
compiler options.

AGGREGATE | NOAGGREGATE

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U

DEFAULT: NOAGGREGATE

CATEGORY: Listing

70 OS/390 V2R6.0 C/C++ User’s Guide

ÊÊ AGG
NOAGG

ÊÍ

The AGGREGATE option instructs the compiler to include a layout of all struct or
union type variables in the compiler listing. Depending on the struct or union
declaration, the maps are generated as follows:

v If the struct or union declaration has a tag, two maps are created: one contains
the packed layout, and the other contains the unpacked layout. Each layout map
contains the offsets and lengths of the structure members and the union
members.

v If the struct or union declaration does not have a tag, one map is generated for
the variable name that is specified on the struct or union declaration.

Effect on IPA Compile Step

The AGGREGATE option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the AGGREGATE option, but ignores it.

ALIAS | NOALIAS

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: NOALIAS

CATEGORY: Object Code Control

ÊÊ ALI
()
(name)

NOALI

ÊÍ

The ALIAS option generates ALIAS control statements that help the binder locate
modules in a load library. The suboption name is assigned to the NAME control
statement

ALIAS(name) If you specify ALIAS(name), the compiler generates the following:

v control statements in the object module.

v a NAME control statement in the form NAME name (R). R indicates
that the binder should replace the member in the library with the
new member.

The compiler generates one ALIAS control statement for every
external entry point that it encounters during compilation. These
control statements are then appended to the object module.

Chapter 6. Compiler Options 71

ALIAS If you specify ALIAS with no suboption, the compiler selects an
existing CSECT name from the program, and nominates it to the
NAME card.

ALIAS() If you use an empty set of parentheses, ALIAS(), or specify
NOALIAS, the compiler does not generate a NAME control statement.

NOALIAS If you specify NOALIAS, the compiler does not generate a NAME
control statement. NOALIAS has the same effect as ALIAS().

If you specify the ALIAS option with LONGNAME, the compiler does not generate an
ALIAS control statement.

For complete details on ALIAS and NAME control statements, see DFSMS/MVS
Program Management.

Effect on IPA Compile Step

If you specify the ALIAS option on the IPA Compile step, the IPA Link step generates
an unrecoverable error.

Effect on IPA Link Step

If you specify the ALIAS option on the IPA Link step, the IPA Link step generates an
unrecoverable error.

ANSIALIAS | NOANSIALIAS

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U

DEFAULT: ANSIALIAS

CATEGORY: Source Code Analysis

ÊÊ ANS
NOANS

ÊÍ

The ANSIALIAS option specifies whether type-based aliasing is to be used during
optimization. That is, the optimizer assumes that pointers can point only to an
object of the same type. Type-based aliasing improves optimization.

The following are not subject to type-based aliasing:

v Signed and unsigned types. For example, a pointer to a signed int can point to
an unsigned int.

v Character pointer types can point to any type.

v Types qualified as volatile or const. For example, a pointer to a const int can
point to an int.

If you specify NOANSIALIAS, the optimizer makes worst-case aliasing assumptions. It
assumes that a given pointer of a given type can point to an external object or any
object whose address is taken, regardless of type.

72 OS/390 V2R6.0 C/C++ User’s Guide

Notes:

1. This option only takes effect if the OPTIMIZE option is in effect.

2. If you specify LANGLVL(COMMONC), the ANSIALIAS option is automatically turned
off. If you want ANSIALIAS turned on, you must explicitly specify it. Using
LANGLVL(COMMONC) and ANSIALIAS together may have undesirable effects on your
code at a high optimization level. See “LANGLVL” on page 107 for more
information on LANGLVL(COMMONC).

3. A comment that indicates the ANSIALIAS option setting is generated in your
object module to aid you in diagnosing your program.

Effect on IPA Compile Step

The ANSIALIAS option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the ANSIALIAS option, but ignores it.

ARCHITECTURE

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U U

DEFAULT: ARCHITECTURE(0)

CATEGORY: Object Code Control

ÊÊ ARCH (n) ÊÍ

The ARCHITECTURE option specifies the architecture for which the executable
program’s instructions are to be generated. It allows the optimizer to take
advantage of specific hardware instruction sets. A subparameter specifes the group
to which a model number belongs.

If you specify a group which does not exist or is not supported, the compiler uses
the default, and issues a warning message.

Current groups of models that are supported include the following:

0 Is the default value. It produces code that is executable on all models.

1 Produces code that is optimized for the following models:

v 9021-520, 9021-640, 9021-660, 9021-740, 9021-820, 9021-860, and
9021-900

v 9021-xx1 and 9021-xx2

v 9672-Rx1, 9672-Exx, and 9672-Pxx

2 Produces code that is optimized for the following and follow on models:

v 9672-Rx2, 9672-Rx3, 9672-Rx4, and 2003

3 Produces code that is optimized for the 9672 G5 and follow on models

Chapter 6. Compiler Options 73

Note: Code that is compiled at ARCH(1) runs on machines in the arch(1) group and
later machines, including those in the arch(2) group. It may not run on earlier
machines. Code that is compiled at ARCH(2) may not run on arch(1) or earlier
machines.

Effect on IPA Compile Step

If you specify the ARCHITECTURE option for any compilation unit in the IPA Compile
step, the compiler generates information for the IPA Link step. This option also
affects the regular object module if you request one by specifying the IPA(OBJECT)
option.

Effect on IPA Link Step

The IPA Link step merges and optimizes the application’s code, and then divides it
into sections for code generation. Each of these sections is a partition.

If you specify the ARCH option on the IPA Link step, it uses the value of that option
for all partitions. The IPA Link step Prolog and all Partition Map sections of the IPA
Link step listing display that value.

If you do not specify the option on the IPA Link step, the value used for a partition
depends upon the value that you specified for the IPA Compile step for each
compilation unit that provided code for that partition. If you specified the same value
for each compilation unit, the IPA Link step uses that value. If you specified different
values, the IPA Link step uses the lowest level of ARCH.

The level of ARCH for a partition determines the level of TUNE for the parition. For
more information on the interaction between ARCH and TUNE, see “TUNE” on
page 161.

The Partition Map section of the IPA Link step listing, and the object module display
the final option value for each partition. If you override this option on the IPA Link
step, the Prolog section of the IPA Link step listing displays the value of the option.

The Compiler Options Map section of the IPA Link step listing displays the option
value that you specified for each IPA object file during the IPA Compile step.

ARGPARSE | NOARGPARSE

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U U

DEFAULT: ARGPARSE

CATEGORY: Program Execution

ÊÊ ARG
NOARG

ÊÍ

The ARGPARSE option specifies that the arguments supplied on the invocation line
are parsed and passed to the main() routine in the C argument format, commonly

74 OS/390 V2R6.0 C/C++ User’s Guide

argc and argv. argc contains the argument count, and argv contains the tokens
after the command processor has parsed the string.

If you specify NOARGPARSE, arguments on the invocation line are not parsed. argc
has a value of 2, and argv contains a pointer to the string.

Note: If you specify NOARGPARSE, you cannot specfiy REDIR. The compiler will turn
off REDIR with a warning since the whole string on the command line is
treated as an argument and put into argv.

This option has no effect under CICS.

Effect on IPA Compile Step

If you specify ARGPARSE for any compilation unit in the IPA Compile step, the
compiler generates information for the IPA Link step. This option also affects the
regular object module if you request one by specifying the IPA(OBJECT) option.

Effect on IPA Link Step

If you specify this option for both the IPA Compile and the IPA Link steps, the
setting on the IPA Link step overrides the setting on the IPA Compile step. This
applies whether you use ARGPARSE and NOARGPARSE as compiler options, or specify
them using the #pragma runopts directive on the IPA Compile step.

If you specified ARGPARSE on the IPA Compile step, you do not need to specify it
again on the IPA Link step to affect that step. The IPA Link step uses the
information generated for the compilation unit that contains the main() function. If it
cannot find a compilation unit that contains main(), it uses the information
generated by the first compilation unit that it finds.

ATTRIBUTE | NOATTRIBUTE

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: NOATTRIBUTE

CATEGORY: Listing

ÊÊ ATT
(FULL)

NOATT

ÊÍ

The ATTRIBUTE option produces a Cross Reference listing that shows the attributes
for each symbol, and an External Symbol Cross Reference section.

The ATTRIBUTE(FULL) option produces a listing of all identifiers that are found in
your code, even those that are not referenced. The compiler writes the listing
produced by ATTRIBUTE or ATTRIBUTE(FULL) to a listing file.

The NOATTRIBUTE option does not produce an attribute listing.

Chapter 6. Compiler Options 75

Effect on IPA Compile Step

The ATTRIBUTE option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

If you specify the ATTRIBUTE option for the IPA Link step, the IPA Link step
generates an External Symbol Cross Reference listing section. It also generates a
Storage Offset Listing if you created the IPA objects with the C compiler and
specified the XREF, IPA(ATTR), or IPA(XREF) option, and the IPA Link step did not
coalesce the symbols for the current partition.

CHECKOUT | NOCHECKOUT

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U

DEFAULT: NOCHECKOUT

CATEGORY: Debug/Diagnostic

ÊÊ »

,

CHE (subopts)
NOCHE

ÊÍ

where:

subopts is one of the suboptions that are shown in Table 17.

The CHECKOUT option specifies that the compiler is to produce informational
messages that indicate possible programming errors. The messages can help
OS/390 C programmers to debug their programs.

You can specify CHECKOUT with or without suboptions. If you include suboptions, you
can specify any number with commas between them. If you do not include
suboptions, the compiler uses the default for CHECKOUT at your installation.

This table lists the CHECKOUT suboptions, their abbreviations, and the messages they
generate.

Note: Default CHECKOUT suboptions are underlined.

Table 17. CHECKOUT Suboptions, Abbreviations, and Descriptions

CHECKOUT Suboption Abbreviated Name Description

ACCURACY |
NOACCURACY

AC | NOAC Assignments of long values
to variables that are not long

ENUM | NOENUM EN | NOEN Usage of enumerations

EXTERN | NOEXTERN EX | NOEX Unused variables that have
external declarations

76 OS/390 V2R6.0 C/C++ User’s Guide

Table 17. CHECKOUT Suboptions, Abbreviations, and Descriptions (continued)

CHECKOUT Suboption Abbreviated Name Description

GENERAL | NOGENERAL GE | NOGE General checkout messages

GOTO | NOGOTO GO | NOGO Appearance and usage of
goto statements

INIT | NOINIT I | NOI Variables that are not
explicitly initialized

PARM | NOPARM PAR | NOPAR Function parameters that are
not used

PORT | NOPORT POR | NOPOR Nonportable usage of the
OS/390 C language

PPCHECK | NOPPCHECK PPC | NOPPC All preprocessor directives

PPTRACE | NOPPTRACE PPT | NOPPT Tracing of include files by the
preprocessor

TRUNC | NOTRUNC TRU | NOTRU Variable names that are
truncated by the compiler

ALL ALL Turns on all of the suboptions
for CHECKOUT

NONE NONE Turns off all of the suboptions
for CHECKOUT

You can specify the CHECKOUT option on the invocation line and on the #pragma
options preprocessor directive. When you use both methods at the same time, the
options are merged. If an option on the invocation line conflicts with an option in the
#pragma options directive, the option on the invocation line takes precedence. The
following examples illustrate these rules.

Source file:
#pragma options (NOCHECKOUT(NONE,ENUM))

Invocation line:
CHECKOUT (GOTO)

Result:
CHECKOUT (NONE,ENUM,GOTO)

Source file:
#pragma options (NOCHECKOUT(NONE,ENUM))

Invocation line:
CHECKOUT (ALL,NOENUM)

Result:
CHECKOUT (ALL,NOENUM)

Note: If you used the CHECKOUT option and did not receive an informational
message, ensure that the setting of the FLAG option is FLAG(I).

The NOCHECKOUT option specifies that the compiler should not generate informational
error messages. Suboptions that are specified in a #pragma
options(NOCHECKOUT(subopts)) directive, or NOCHECKOUT(subopts) apply if CHECKOUT
is specified on the command line.

You can turn the CHECKOUT option off for certain files or statements of your source
program by using a #pragma checkout(suspend) directive. Refer to the OS/390
C/C++ Language Reference for more information regarding this pragma directive.

Chapter 6. Compiler Options 77

Effect on IPA Compile Step

The CHECKOUT option is used for source code analysis, and has the same effect on
IPA Compile step processing as it does on a regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the CHECKOUT option, but ignores it.

CONVLIT | NOCONVLIT

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: NOCONV

CATEGORY: Preprocessor

ÊÊ CONV
NOCONV (codepage)

ÊÍ

The CONVLIT option changes the assumed codepage for character and string literals
within the compilation unit. You can use an optional suboption to specify the
codepage that you want to use for string literals. If you specify NOCONV or CONV
without a suboption, the default codepage, or the codepage specified by the LOCALE
option is used.

You can also specify a suboption with the NOCONV option. The result of the following
specifications is the same:

v NOCONV(IBM-1027) CONV

v CONV(IBM-1027)

The CONVLIT option affects all the source files that are processed within a
compilation unit, including user header files and system header files. All string
literals within a compilation unit are converted to the specified codepage unless you
use #pragma convlit(suspend) and #pragma convlit(resume) to exclude sections
of code from conversion. See the OS/390 C/C++ Language Reference for more
information on #pragma convlit.

The CONVLIT option only affects string literals within the compilation unit. The
following determines the codepage that the rest of the program uses:

v If you specified a LOCALE, the remainder of the program will be in the codepage
that you specified with the LOCALE option.

v If you did not specify a LOCALE, the remainder of the program will be in the
default codepage IBM-1047.

The CONVLIT option does not affect the following types of string literals:

v literals in the #include directive

v literals in the #pragma directive

v literals used to specify linkage, for example, extern "C"

78 OS/390 V2R6.0 C/C++ User’s Guide

If you specify either SOM or PPONLY with CONVLIT, the compiler ignores CONVLIT.

If you specify the CONVLIT option, the codepage appears after the locale name and
locale code set in the Prolog section of the listing. The option appears in the END
card at the end of the generated object module.

Note: Although you can continue to use the __STRING_CODE_SET__ macro, you
should use the CONV option instead. If you specify both the macro and the
option, the compiler uses the option regardless of the order in which you
specify them.

Effect on IPA Compile Step

The CONVLIT option only controls processing for the IPA step for which you specify
it.

During the IPA Compile step, the compiler uses the code page that is specified by
the CONVLIT option to convert the character string literals.

Effect on IPA Link Step

The IPA Link step accepts the CONVLIT option, but ignores it.

CSECT | NOCSECT

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U

DEFAULT: NOCSECT

CATEGORY: Object Code Control

ÊÊ CSE
NOCSE (qualifier)

ÊÍ

The CSECT option ensures that the object module contains named CSECTs. Use this
option, or the #pragma CSECT directive, if you will be using SMP/E to service your
product, and to aid in debugging your program. See OS/390 C/C++ Language
Reference for further information on the #pragma CSECT directive.

The NOCSECT option does not name the code, static, or test data sections of your
object module.

The qualifier suboption of the CSECT option allows the compiler to generate long
CSECT names. If the LONGNAME compiler option was not in effect when you specified
CSECT(qualifier), the compiler turns it on, and issues a warning message.

The CSECT option names sections of your object module differently depending on
whether you specified CSECT with or without a qualifier.

Chapter 6. Compiler Options 79

The CSECT option with no qualifier

If you specify the CSECT option without the qualifier suboption, the CSECT option
names the code, static data, and test sections of your object module as csectname,
where csectname is one of the following:
v The member name of your primary source file, if it is a PDS member
v The low-level qualifier of your primary source file, if it is a sequential data set
v The source file name with path information and the right-most extension

information removed, if it is an HFS file. If the file name is more than 8
characters in length, csectname consists of the first 8 file name characters
starting from the left.

code CSECT is named with the source file name in uppercase.

data CSECT is named with the source file name in lower case.

test CSECT When you use the TEST option together with the CSECT option, the
debug information is placed in the test CSECT. The test CSECT is
the static CSECT name with the prefix $. If the static CSECT name
is eight characters long, the rightmost character is dropped. The
test CSECT name is always truncated to eight characters.

For example, if you compile /u/cricket/project/mem1.ext.c with
the option CSECT, the test CSECT will have the name $mem1.ex

The CSECT option with the qualifier suboption

If you specify the CSECT option with the qualifier suboption, the CSECT option
names the code, static data, and test sections of your object module as
qualifier#basename#suffix, where:

qualifier is the suboption you specified as a qualifier

basename is one of the following:
v the member name of your primary source file, if it

is a PDS member
v there is no basename, if your primary source file

is a sequential data set or instream JCL
v the source file name with path information and

the right-most extension information removed, if it
is an HFS file

suffix is one of the following:

C for code CSECT

S for static CSECT

T for test CSECT

For example, if you compile /u/cricket/project/mem1.ext.c with the options TEST
and CSECT(example), the compiler constructs the CSECT names as follows:
example#mem1.ext#C
example#mem1.ext#S
example#mem1.ext#T

The qualifier suboption of the CSECT option allows the compiler to generate long
CSECT names. If the compiler option LONGNAME is not in effect when you specify
CSECT(qualifier), the compiler turns it on, and issues a warning message.

80 OS/390 V2R6.0 C/C++ User’s Guide

|
|
|
|

|
|
|

For example, if you compile /u/cricket/project/reallylongfilename.ext.c with
the options TEST and CSECT(example), the compiler constructs the CSECT names as
follows:
example#reallylongfilename.ext#C
example#reallylongfilename.ext#S
example#reallylongfilename.ext#T

When you specify CSECT(qualifier), the code, data, and test CSECTs are always
generated. The test CSECT has content only if you also specify the TEST option.

If you use CSECT("") or CSECT(), the CSECT name has the form basename#suffix.

Notes:

1. The qualifier suboption takes advantage of the binder’s capabilities, and may
not generate names acceptable to the OS/390 Language Environment Prelinker.

2. The # that is appended as part of the #C, #S, or #T suffix is not locale-sensitive.

3. The string that is specified as the qualifier suboption has the following
restrictions:

v Leading and trailing blanks are removed

v You can specify a string of any length. However if the complete CSECT name
exceeds 1024 bytes, it is truncated starting from the left.

4. If the source file is either sequential or instream in your JCL, you must do one
of the following to name your CSECT:

v Specify a non-null suboption for the CSECT compiler option

v Use the #pragma csect directive

Otherwise, you will receive an error message.

Effect on IPA Compile Step

The CSECT option has the same effect on the IPA Compile step (if you specify the
OBJECT suboption of the IPA option) as it does on a regular compilation.

Effect on IPA Link Step

For the IPA Link step, this option has the following effects:
v If you specify the CSECT option without a qualifier, the IPA Link step names all of

the CSECTs that it generates. The IPA Link step determines whether the IPA Link
control file contains CSECT name prefix directives. If you did not specify the
directives, or did not specify enough CSECT entries for the number of partitions,
the IPA Link step automatically generates CSECT name prefixes for the
remaining partitions, and issues a warning each time.

v If you specify CSECT(qualifier), the form of the CSECT name that IPA Link
generates is altered. See “The IPA Link Step Control File” on page 277 for
details.

v If you do not specify the CSECT option, but you have specified CSECT name
prefix directives in the IPA Link control file, the IPA Link step names all CSECTs
in a partition. If you did not specify enough CSECT entries for the number of
partitions, the IPA Link step automatically generates a CSECT name prefix for
each remaining partition, and issues a warning message each time.

v If you do not specify the CSECT option, and do not specify CSECT name prefix
directives in the IPA Link control file, the IPA Link step does not name the
CSECTs in a partition.

v The IPA Link step ignores the information that is generated by #pragma csect on
the IPA Compile step.

Chapter 6. Compiler Options 81

|
|
|

|
|
|

|

DEFINE

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: no default user definitions

CATEGORY: Preprocessor

ÊÊ »

,

DEF (name)
=def
=

ÊÍ

The DEFINE option defines preprocessor macros that take effect before the compiler
processes the file. You can use this option more than once.

DEFINE(name)
is equal to the preprocessor directive #define name 1.

DEFINE(name=def)
is equal to the preprocessor directive #define name def.

DEFINE(name=)
is equal to the preprocessor directive #define name.

If the suboptions that you specify contain special characters, see “Using Special
Characters” on page 57 for information on how to escape special characters.

Note: There is no command-line equivalent of function-like macros that take
parameters such as the following:
#define max(a,b) ((a)>(b)?(a):(b))

Effect on IPA Compile Step

The DEFINE option is used for source code analysis, and has the same effect on an
IPA Compile step as it does on a regular compilation.

Effect on IPA Link Step

The IPA Link step accepts but ignores the DEFINE option.

DIGRAPH | NODIGRAPH

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U

DEFAULT: NODIGRAPH

CATEGORY: Source Code Analysis

82 OS/390 V2R6.0 C/C++ User’s Guide

ÊÊ DIGR
NODIGR

ÊÍ

The DIGRAPH option allows you to use additional digraphs and keywords. A digraph
is a combination of keys that produces a character not available on some
keyboards. Table 18 shows the digraphs that OS/390 C++ supports:

Table 18. Digraphs

Key Combination Character Produced

<% {

%> }

<: [

:>]

%: #

%:%: ##

Table 19 shows additional keywords that OS/390 C++ supports:

Table 19. Additional Keywords

Keyword Characters produced

bitand &

and &&

bitor |

or ||

xor ^

compl ˜

and_eq &=

or_eq |=

xor_eq ^=

not !

not_eq !=

Note: Digraphs are not replaced in string literals, comments, or character literals.
For example:

char * s = "<%%>"; // stays "<%%>"

switch (c) {
case '<%' : ... // stays '<%'
case '%>' : ... // stays '%>'

}

Effect on IPA Compile Step

The DIGRAPH option has the same effect on the IPA Compile step as it does on a
regular compilation.

Chapter 6. Compiler Options 83

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the DIGRAPH option on
that step.

DLL | NODLL

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U U

DEFAULT: NODLL(NOCBA) for C compile and IPA Link step

DLL(NOCBA) for C++ Compile

CATEGORY: Object Code Control

ÊÊ DLL
NODLL

(CBA)
(NOCBA)

ÊÍ

The DLL option instructs the compiler to produce DLL code. The DLL code can
export or import functions and external variables.

The DLL option has two suboptions:

NOCALLBACKANY
is the default. If you specify NOCALLBACKANY, no changes will be made to the
function pointer in your compile unit. The abbreviation for NOCALLBACKANY is
NOCBA.

CALLBACKANY
If you specify CALLBACKANY, all calls through function pointers will
accommodate function pointers created by older applications compiled
without the DLL option. This accommodation accounts for the incompatibility
of function pointers created with and without the DLL compiler option. The
abbreviation for CALLBACKANY is CBA.

Note: You should write your code according to the rules listed in the chapter
″Building Complex DLLs″ in the OS/390 C/C++ Programming Guide, and
compile with the NOCALLBACKANY suboption. Use the suboption CALLBACKANY
only when you have calls through function pointers and C code compiled
without the DLL option. CALLBACKANY causes all calls through function pointers
to incur overhead due to internally-generated calls to library routines that
determine whether the function pointed to is in a DLL (in which case internal
control stuctures need to be updated), or not. This overhead is unnecessary
in an environment where all function pointers were created either in C++
code or in C code compiled with the DLL option.

For information on how to create or use DLLs, and on when to use the appropriate
DLL options and suboptions, see the OS/390 C/C++ Programming Guide.

Notes:

1. You must use the LONGNAME and RENT options with the DLL option. If you use the
DLL option without RENT and LONGNAME, the OS/390 C compiler automatically
turns them on.

84 OS/390 V2R6.0 C/C++ User’s Guide

2. OS/390 C++ code is always DLL code. You cannot specify NODLL for OS/390
C++ code.

Effect on IPA Compile Step

The IPA Compile step generates information for the IPA Link step. The CALLBACKANY
option also affects the regular object module if you request one by specifying the
IPA(OBJECT) option.

Effect on IPA Link Step

The IPA Link step accepts the DLL compiler option, but ignores it.

The IPA Link step uses information from the IPA Compile step to classify an IPA
object module as DLL or non-DLL as follows:

v C code that is compiled with the DLL option is classified as DLL.

v C++ code is classified as DLL

v C code that is compiled with the NODLL option is classified as non-DLL.

Each partition is initially empty and is set as DLL or non-DLL, when the first
subprogram (function or method) is placed in the partition. The setting is based on
the DLL or non-DLL classification of the IPA object module which contained the
subprogram. Procedures from IPA object modules with incompatible DLL values will
not be inlined. This results in reduced performance. For best performance, compile
your application as all DLL code or all non-DLL code.

The IPA Link step allows you to input a mixture of IPA objects that are compiled
with DLL(CBA) and DLL(NOCBA). The IPA Link step does not convert function pointers
from the IPA Objects that are compiled with the option DLL(NOCBA).

You should only export subprograms (functions and C++ methods) or variables that
you need for the interface to the final DLL. If you export subprograms or variables
unnecessarily (for example, by using the EXPORTALL option), you severely limit IPA
optimization. Global variables are not coalesced, and unreachable or 100% inlined
code is not pruned.

EVENTS | NOEVENTS

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: NOEVENTS

CATEGORY: Debug/Diagnostic

ÊÊ EVENT
NOEVENT (Sequential filename)

Partitioned data set
Partitioned data set (member)
Hierarchical filename
Hierarchical directory

ÊÍ

Chapter 6. Compiler Options 85

The EVENTS option creates an events file that contains error information and source
file statistics. The compiler writes the events data to the DD:SYSEVENT ddname, if
you allocated one before you called the compiler. Otherwise, it allocates a data set,
and the name is the file name with SYSEVENT as the lowest-level qualifier.

If you specified a suboption, the compiler uses the data set that you specified, and
ignores the DD:SYSEVENT.

If the source file is an HFS file, and you do not specify the events file name as a
suboption, the compiler writes the events file in the current working directory. The
events file name is the name of the source file with the extension .err.

The compiler ignores #line directives when the EVENTS option is active, and issues
a warning message.

For a description of the events file’s layout, see “Appendix J. Layout of the Events
File” on page 607.

Effect on IPA Compile Step

The EVENT option has the same effect on the IPA Compile step that it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the EVENT option, but ignores it.

EXECOPS | NOEXECOPS

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U U

DEFAULT: EXECOPS

CATEGORY: Object Code Control and Program Execution

ÊÊ EXEC
NOEXEC

ÊÍ

The EXECOPS option allows you to control whether runtime options will be recognized
at run time without changing your source code. It is equivalent to including a
#pragma runopts (EXECOPS) directive in your source code.

If this option is specified on both the command line and in a #pragma runopts
directive, the option on the command line takes precedence.

Effect on IPA Compile Step

If you specify EXECOPS for any compilation unit in the IPA Compile step, the compiler
generates information for the IPA Link step. This option also affects the regular
object module if you request one by specifying the IPA(OBJECT) option.

86 OS/390 V2R6.0 C/C++ User’s Guide

Effect on IPA Link Step

If you specify the EXECOPS option for the IPA Compile step, you do not need to
specify it again on the IPA Link step. The IPA Link step uses the information
generated for the compilation unit that contains the main() function. If it cannot find
a compilation unit that contains main(), it uses information generated for the first
compilation unit that it finds.

If you specify this option on both the IPA Compile and the IPA Link steps, the
setting on the IPA Link step overrides the setting on the IPA Compile step. This
situation occurs whether you use EXECOPS and NOEXECOPS as compiler options, or
specify them by using the #pragma runopts directive on the IPA Compile step.

EXH | NOEXH

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U

DEFAULT: EXH

CATEGORY: Object Code Control

ÊÊ EXH
NOEXH

ÊÍ

The EXH option controls the generation of C++ exception handling code.

The NOEXH option suppresses the generation of the exception handling code, which
results in code that runs faster, but is not ANSI conformant.

If you compile a source file with NOEXH, active objects on the stack are not
destroyed if the stack collapses in an abnormal fashion. For example, if a C++
object is thrown, or an LE exception or signal is raised, objects on the stack will not
have their destructors run.

If a source file has try/catch blocks or throws objects, you cannot compile it with the
NOEXH option.

Effect on IPA Compile Step

The EXH option has the same effect on the IPA Compile step that it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the EXH option for that
step.

Chapter 6. Compiler Options 87

EXPMAC | NOEXPMAC

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: NOEXPMAC

CATEGORY: Listing

ÊÊ EXP
NOEXP

ÊÍ

The EXPMAC option instructs the compiler to show all expanded macros in the source
listing. If you want to use the EXPMAC option, you must also specify the SOURCE
compiler option to generate a source listing. If you specify the EXPMAC option but
omit the SOURCE option, the compiler issues a warning message, and does not
produce a source listing.

Effect on IPA Compile Step

The EXPMAC option has the same effect on the IPA Compile step that it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link Step accepts the EXPMAC option, but ignores it.

EXPORTALL | NOEXPORTALL

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: NOEXPORTALL

CATEGORY: Object Code Control

ÊÊ EXPO
NOEXPO

ÊÍ

The EXPORTALL option instructs the compiler to export all external functions and
variables in the compilation unit so that a DLL application can use them. Use this
option if you are creating a DLL and want to export all externally defined functions
and variables. You may not export the main() function.

Notes:

1. If you only want to export some of the externally defined functions and
variables, use #pragma export, or the _Export keyword for C++. For more
information see the OS/390 C/C++ Language Reference.

88 OS/390 V2R6.0 C/C++ User’s Guide

2. For C, you must use the LONGNAME and RENT options with the EXPORTALL option. If
you use the EXPORTALL option without RENT and LONGNAME, the OS/390 C
compiler turns them on.

Effect on IPA Compile Step

The IPA Compile step generates information for the IPA Link step. The EXPORTALL
option also affects the regular object module if you request one by specifying the
IPA(OBJECT) option.

Effect on IPA Link Step

The IPA Link step accepts the EXPORTALL option, but ignores it.

If you use the EXPORTALL option during the IPA Compile step, you severely limit IPA
optimization. Refer to “DLL | NODLL” on page 84 for more information about the
effects of this option on IPA processing.

FASTTEMPINC | NOFASTTEMPINC

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U

DEFAULT: NOFASTT

CATEGORY: File Management

ÊÊ FASTT
NOFASTT

ÊÍ

The FASTTEMPINC option may improve template instantiation compilation time when
large numbers of recursive templates are used in an application.

The FASTTEMPINC option defers generating object code until the final version of all
template definitions have been determined. Then, a single compilation pass is made
to generate the final object code. This means that time is not wasted on generating
object code that will be discarded and generated again.

When NOFASTT is used, the compiler generates object code each time a tempinc
source file is compiled. If recursive template definitions in a subsequent tempinc
source file cause additional template definitions to be added to a previously
processed file, an additional recompilation pass is required.

Use FASTT if you have large numbers of recursive templates. If your application has
very few recursive template definitions, the time saved by not doing code
generation may be less than the time spent in source analysis on the additional
template compilation pass. In this case, it may be better to use NOFASTT.

Effect on IPA Compile Step

The FASTT option only affects the processing of source. It has no effect on code
generation; therefore, it has the same effect on IPA Compile as it does on a regular
compilation.

Chapter 6. Compiler Options 89

|

|

||||
|
|

||

|||||

|

|

||||||||||||||

|

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|

|
|
|

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the FASTT option for
that step.

FLAG | NOFLAG

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: FLAG (I)

CATEGORY: Debug/Diagnostic

ÊÊ FL (severity)
NOFL

ÊÍ

The FLAG option specifies the minimum severity level for which you want notification.
You specify the minimum severity level by using the compiler option FLAG
(severity), where severity is one of the following:

I An informational message that is generated by the compiler. This is the
default.

W A warning message that calls attention to a possible error, although the
statement to which it refers is syntactically valid.

E An error message that shows that the compiler has detected an error and
cannot produce an object deck.

S A severe error message that describes an error that forces the compilation
to terminate.

U An unrecoverable error message that describes an error that forces the
compilation to terminate.

If you specified the options SOURCE or LIST, the messages generated by the
compiler appear immediately following the incorrect source line, and in the message
summary at the end of the compiler listing. See “Appendix F. OS/390 C/C++
Compiler Return Codes and Messages” on page 475 for a list of the messages.

The NOFLAG option is the same as the FLAG(S) option.

Effect on IPA Compile Step

The FLAG option has the same effect on the IPA Compile step that it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step uses the FLAG value that you specify for that step.

90 OS/390 V2R6.0 C/C++ User’s Guide

|

|
|

|

FLOAT

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U U

DEFAULT:
FLOAT(HEX, FOLD, NOMAF, NORRM, NOAFP*)
*dependent on ARCH() level

CATEGORY: Object Code Control

ÊÊ FLOAT (HEX | IEEE)
FOLD | NOFOLD
MAF | NOMAF
RRM | NORRM
AFP | NOAFP

ÊÍ

The FLOAT option selects the format of floating-point numbers; the format can be
either base 2 IEEE-754 binary format, or base 16 S/390 hexadecimal format. In the
description below, the IEEE-754 binary format is referred to as the binary
floating-point format, and the S/390 hexadecimal format as the hexadecimal
floating-point format. FLOAT has the following suboptions:

HEX | IEEE

DEFAULT: HEX

Specifies the format of floating-point numbers and instructions:

v IEEE instructs the compiler to generate binary floating-point numbers and
instructions. The unabbreviated form of this suboption is IEEE754.

v HEX instructs the compiler to generate hexadecimal formatted
floating-point numbers and instructions. The unabbreviated form of this
suboption is HEXADECIMAL. In previous releases of OS/390 C/C++, the
floating-point format was always hexadecimal.

FOLD | NOFOLD

DEFAULT: FOLD

Specifies that constant floating-point expressions in function scope are to
be evaluated at compile time rather than at run time. This is known as
folding.

In binary floating-point mode, the folding logic uses the rounding mode set
by the ROUND option.

In hexadecimal floating-point mode, the rounding is always towards zero. If
you specify NOFOLD in hexadecimal mode, the compiler issues a warning
and uses FOLD.

MAF | NOMAF

DEFAULT:

v NOMAF

v If NOSTRICT and FLOAT(IEEE) are specified, MAF is the default.

Chapter 6. Compiler Options 91

|

||||
|
|

||

|||||

|

|
|

|

|||||||||||||||||||||||||||||||||||||

|

|
|
|
|
|

|

|

|

|
|

|
|
|
|

|

|

|
|
|

|
|

|
|
|

|

|

|

|

Uses floating-point Multiply and Add, and Multiply and Subtract instructions
where possible, instead of the separate Multiply Float, Add Float, or Multiply
Float, Subtract Float instruction pairs. This makes floating-point calculations
faster and more accurate, but the results may not be exactly equivalent to
those produced by the two discrete instructions. This option may affect the
precision of floating-point intermediate results.

Note: The suboption MAF does not have any effect on extended
floating-point operations.

MAF is not available for hexadecimal floating-point mode.

RRM | NORRM

DEFAULT: NORRM

RRM (run-time rounding mode) tells the compiler that the run-time rounding
mode may not be the default, round-to-nearest, and prevents compiler
optimizations that rely on round-to-nearest rounding mode. Use this option if
your program changes the rounding mode by any means. Otherwise, the
program may compute incorrect results.

RRM is not available for hexadecimal floating-point mode.

AFP | NOAFP

DEFAULT:

v If the level of the ARCH option is lower than 3, the default is NOAFP

v If the level of the ARCH option is 3 or higher, the default is AFP

Note: To enable the AFP option, you must apply small programming
enhancements (SPEs) to OS/390 V2R6.0, and to specific releases of
some software. These SPEs are delivered as program temporary
fixes (PTFs). Consult your System Programmer to ensure that the
SPE PTFs that you require for IEEE binary floating-point support as
documented in the Planning for Installation publication are applied to
your system. The Planning for Installation publication documents the
complete software requirements for IEEE binary floating-point
support on OS/390.

AFP instructs the compiler to generate code which makes full use of the full
complement of 16 floating point registers. These include the four original
floating-point registers, numbered 0, 2, 4, and 6, and the Additional Floating
Point (AFP) registers, numbered 1, 3, 5, and 7 through 15.

The AFP registers are physically available only on the newer S/390
machine models, starting with the processors that are represented by the
ARCH(3) setting. However, when the application executes under OS/390
Version 2 Release 6 on a processor that does not have the AFP registers,
the operating system is able to intercept the use of an AFP register and
emulate the operation such that the AFP register appears to be available to
the application.

Note: This emulation has a significant performance cost to the application’s
execution on the non-AFP processors. This is why the default is
NOAFP when ARCH(2) or lower is specified.

92 OS/390 V2R6.0 C/C++ User’s Guide

|
|
|
|
|
|

|
|

|

|

|

|
|
|
|
|

|

|

|

|

|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

NOAFP limits the compiler’s code generation to using only the original four
floating-point registers, 0, 2, 4, and 6, which are available on all S/390
machine models.

Using IEEE Floating-Point

You should use IEEE floating-point in the following situations:

v you deal with data that are already in IEEE floating-point format

v you need the increased exponent range (see OS/390 C/C++ Language
Reference for information on exponent ranges with IEEE-754 floating-point)

v you want the changes in programming paradigm provided by infinities and NaN
(not a number)

For more information about the IEEE format, refer to the IEEE 754-1985 IEEE
Standard for Binary Floating-Point Arithmetic.

When you use IEEE floating-point, make sure that you are in the same rounding
mode at compile time (specified by the ROUND(mode) option), as at run time. Entire
compilation units will be compiled with the same rounding mode throughout the
compilation. If you switch runtime rounding modes inside a function, your results
may vary depending upon the optimization level used and other characterisitics of
your code: switch rounding mode inside functions with caution.

If you have existing data in hexadecimal floating-point (the original base 16 S/390
hexadecimal floating-point format), and have no need to communicate these data to
platforms that do not support this format, there is no reason for you to change to
IEEE floating-point format.

Applications that mix the two formats are not supported.

The binary floating-point instruction set is physically available only on processors
that are part of the ARCH(3) group or higher. You can request FLOAT(IEEE) code
generation for an application that will run on an ARCH(2) or earlier processor, if that
processor runs on the OS/390 Version 2 Release 6 or higher operating system.
This operating system level is able to intercept the use of an ″illegal″ binary
floating-point instruction, and emulate the execution of that instruction such that the
application logic is unaware of the emulation. This emulation comes at a significant
cost to application performance, and should only be used under special
circumstances. For example, to run exactly the same executable object module on
backup processors within your organization, or because you make incidental use of
binary floating-point numbers.

Effect on IPA Compile Step

The IPA Compile step generates information for the IPA Link step. This option also
affects the regular object module if you request one by specifying the IPA(OBJECT)
option.

Effect on IPA Link Step

The IPA Link step merges and optimizes the application’s code, and then divides it
into sections for code generation. Each of these sections is a partition. The IPA Link
step uses information from the IPA Compile step to determine if a subprogram can
be placed in a particular partition. Only compatible subprograms are included in a
given partition. Compatible subprograms have the same floating-point mode, and
the same values for the FLOAT suboptions, and the ROUND and STRICT options:

Chapter 6. Compiler Options 93

|
|
|

|

|

|

|
|

|
|

|
|

|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|

|
|
|
|
|
|

v Floating-point mode (binary or hexadecimal)

The floating-point mode for a partition is set to the floating-point mode (binary or
hexadecimal) of the first subprogram that is placed in the partition. Subprograms
that follow are placed in partitions that have the same floating-point mode; a
binary floating-point mode subprogram is placed in a binary floating-point mode
partition, and a hexadecimal mode subprogram is placed in a hexadecimal mode
partition.

If you specify FLOAT(HEX) or FLOAT(IEEE) during the IPA Link step, the option is
accepted, but ignored. This is because it is not possible to change the
floating-point mode after source analysis has been performed.

The Prolog and Partition Map sections of the IPA Link step listing display the
setting of the floating-point mode.

v AFP | NOAFP

The value of AFP for a partition is set to the AFP value of the first subprogram that
is placed in the partition. Subprograms that have the same AFP value are then
placed in that partition.

You can override the setting of AFP by specifying the suboption on the IPA Link
step. If you do so, all partitions will contain that value, and the Prolog section of
the IPA Link step listing will display the value.

The Partition Map section of the IPA Link step listing and the END information in
the IPA object file display the current value of the AFP suboption.

v FOLD | NOFOLD

Hexadecimal floating-point mode partitions are always set to FOLD.

For binary floating-point partitions, the value of FOLD for a partition is set to the
FOLD value of the first subprogram that is placed in the partition. Subprograms
that have the same FOLD value are then placed in that partition.

You can override the setting of FOLD | NOFOLD by specifying the suboption on the
IPA Link step. If you do so, all binary floating-point mode partitions will contain
that value, and the Prolog section of the IPA Link step listing will display the
value.

For binary floating-point mode partitions, the Partition Map section of the IPA Link
step listing displays the current value of the FOLD suboption.

v MAF | NOMAF

For IPA object files generated with the FLOAT(IEEE) option, the value of MAF for a
partition is set to the MAF value of the first subprogram that is placed in the
partition. Subprograms that have the same MAF for this suboption are then placed
in that partition.

For IPA object files generated with the FLOAT(IEEE) option, you can override the
setting of MAF | NOMAF by specifying the suboption on the IPA Link step. If you do
so, all binary floating-point mode partitions will contain that value, and the Prolog
section of the IPA Link step listing will display the value.

For binary floating-point mode partitions, the Partition Map section of the IPA Link
step listing displays the current value of the MAF suboption.

Hexadecimal mode partitions are always set to NOMAF. You cannot override this
setting.

v RRM | NORRM

For IPA object files generated with the FLOAT(IEEE) option, the value of RRM for a
partition is set to the RRM value of the first subprogram that is placed in the
partition. Subprograms that have the same RRM value are then placed in that
partition.

94 OS/390 V2R6.0 C/C++ User’s Guide

|

|
|
|
|
|
|

|
|
|

|
|

|

|
|
|

|
|
|

|
|

|

|

|
|
|

|
|
|
|

|
|

|

|
|
|
|

|
|
|
|

|
|

|
|

|

|
|
|
|

For IPA object files generated with the FLOAT(IEEE) option, you can override the
setting of RRM | NORRM by specifying the suboption on the IPA Link step. If you do
so, all binary floating-point mode partitions will contain that value, and the Prolog
section of the IPA Link step listing will display the value.

For binary floating-point mode partitions, the Partition Map section of the IPA Link
step listing displays the current value of the RRM suboption.

Hexadecimal mode partitions are always set to NORRM. You cannot override this
setting.

v ROUND option

For IPA object files generated with the FLOAT(IEEE) option, the value of the ROUND
option for a partition is set to the value of the first subprogram that is placed in
the partition.

You can override the setting of ROUND by specifying the option on the IPA Link
step. If you do so, all binary floating-point mode partitions will contain that value,
and the Prolog section of the IPA Link step listing will display the value.

For binary floating-point mode partitions, the Partition Map section of the IPA Link
step listing displays the current value of the ROUND suboption.

Hexadecimal mode partitions are always set to round towards zero. You cannot
override this setting.

v STRICT option

The value of the STRICT option for a partition is set to the value of the first
subprogram that is placed in the partition.

You can override the setting of STRICT by specifying the option on the IPA Link
step. If you do so, all partitions will contain that value, and the Prolog section of
the IPA Link step listing will display the value.

The Partition Map sections of the IPA Link step listing and the object module
display the value of the STRICT option.

Note: The inlining of subprograms (C functions, C++ functions and methods) is
inhibited if the FLOAT suboptions (including the floating-point mode), and the
ROUND and STRICT options are not all compatible between compilation units.
Calls between incompatible compliation units result in reduced performance.
For best performance, compile your applications with consistent options.

GENPCH | NOGENPCH

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: NOGENPCH

CATEGORY: File Management

ÊÊ GENP
NOGENP (Sequential filename)

Partitioned data set
Partitioned data set (member)
Hierarchical filename
Hierarchical directory

ÊÍ

Chapter 6. Compiler Options 95

|
|
|
|

|
|

|
|

|

|
|
|

|
|
|

|
|

|
|

|

|
|

|
|
|

|
|

|
|
|
|
|

|

The GENP option creates precompiled header files. If you specify the GENP option, the
compiler generates a precompiled header, even if one already exists.

If you specify the GENP and USEP options together, the compiler determines if the file
exists. If it does, the compiler updates the file if necessary, and USEP takes effect. If
it does not exist, the compiler creates the file, and USEP takes effect. If you
consistently use both options, for example by coding them in your JCL, you can
ensure that you are always using current precompiled header files.

If you specify GENP(filename), the compiler places the precompiled header data in
the specified file. If you do not specify a file name for the GENP option, the compiler
uses the SYSCPCH ddname if you allocated one. If you did not allocate SYSCPCH, the
compiler constructs the file name as follows:

v If you are compiling a data set, the compiler uses the source file name to form
the name of the precompiled header file data set. The high-level qualifier is
replaced with the userid under which the compiler is running, and PCH (for C) or
PCHPP (for C++) is appended as the low-level qualifier.

v If the source file is an HFS file, the compiler writes the precompiled header file to
a file that has the name of the source file with a .pch (for C) or .pchpp (for C++)
extension in the current working directory.

For more information on using GENP and USEP together, see “Using the GENP and
USEP Compiler Options” on page 263.

Notes:

1. The compiler ignores GENP if you specify the options PPONLY, SHOWINC, or EXPMAC.
For further information on these options, see “PPONLY | NOPPONLY” on
page 136, “SHOWINC | NOSHOWINC” on page 145, and “EXPMAC |
NOEXPMAC” on page 88.

2. You cannot use a C precompiled header file for C++, or a C++ precompiled
header file for C.

3. If you specify different file names with the GENP and USEP options, the compiler
uses the last specified file name with both options. For further information, see
“USEPCH | NOUSEPCH” on page 164.

Effect on IPA Compile Step

The GENP option has the same effect on the IPA Compile step that it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link Step accepts the GENP option, but ignores it.

GONUMBER | NOGONUMBER

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U U

DEFAULT: NOGONUMBER

CATEGORY: Debug/Diagnostic

96 OS/390 V2R6.0 C/C++ User’s Guide

ÊÊ GONUM
NOGONUM

ÊÍ

The GONUMBER option generates line number tables that correspond to the input
source file. These tables are for use by the Debug Tool and for error trace back
information when an exception occurs.

The compiler turns on this option when you use the TEST option.

Note: When you specify the GONUMBER option, a comment that indicates its use is
generated in your object module to aid you in diagnosing your program.

Effect on IPA Compile Step

If you specify the GONUMBER option on the IPA Compile step, the compiler saves
information about the source file line numbers in the IPA object file. The GONUMBER
and LIST options use this information during the IPA Link step.

If you do not specify the GONUMBER option on the IPA Compile step, the object file
produced contains the line number information for source files that contain function
begin, function end, function call, and function return statements. This is the
minimum line number information that the IPA Compile step produces. You can then
use the TEST option on the IPA Link step to generate corresponding test hooks

Effect on IPA Link Step

If you specify the GONUMBER option for the IPA Link step, the IPA Link step creates
GONUMBER tables during code generation. The level of detail in these tables
depends on the options that you used for the IPA Compile step :

v If you specified the GONUMBER, LIST, IPA(GONUMBER), or IPA(LIST) option on the
IPA Compile step, the GONUMBER tables contain complete information.

v If you did not specify any of these options on the IPA Compile step, the source
file and line number information in the IPA Link listing or GONUMBER tables
consists only of the following:

– function entry, function exit, function call, and function call return source lines.
This is the minimum line number information that the IPA Compile step
produces.

– All other object code statements have the file and line number of the function
entry, function exit, function call, and function call return that was last
encountered. This is similar to the situation of encountering source statements
within a macro.

Refer to “Interactions between Compiler Options and IPA Suboptions” on page 57
and “LIST | NOLIST” on page 110 for more information.

HALT(num)

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U

DEFAULT: HALT(16)

Chapter 6. Compiler Options 97

CATEGORY: Source Code Control

ÊÊ HALT (num) ÊÍ

The HALT option stops compilation, depending on the return code from the compiler.
This option applies to the compilation of all members of a PDS or an HFS directory.
If the return code from compiling a particular member is greater than or equal to the
value num specified in the HALT option, no more members are compiled.

Valid codes for num correspond to return codes from the compiler. See “Appendix F.
OS/390 C/C++ Compiler Return Codes and Messages” on page 475 for a list of
return codes.

Effect on IPA Compile Step

The HALT option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The HALT option affects the IPA Link step in a way similar to the way it affects the
IPA Compile step, but the message severity levels may be different. Also, the
severity levels for the IPA Link step and a C++ compilation include the
″unrecoverable″ level.

INFO | NOINFO

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U

DEFAULT: NOINFO

CATEGORY: Debug/Diagnostic

ÊÊ

»

IN
(ALL)

,

subopts
NOIN

ÊÍ

The INFO option instructs the compiler to generate warning messages. Use subopts
if you want to specify the type of warning messages.

If you specify INFO with no suboptions, it is the same as specifying INFO(ALL). The
following is a list of the subopts:

CLS Emits class informational warning messages.

CMP Emits conditional expression check messages.

CND Emits messages on redundancies or problems in conditional expressions.

98 OS/390 V2R6.0 C/C++ User’s Guide

CNV Emits messages about conversions.

CNS Emits redundant operation on constants messages.

CPY Emits warnings about copy constructors.

EFF Emits information about statements with no effect.

ENU Emits information about ENUM checks.

GNR Emits information about the generation of temporary variables.

GEN Emits message if compiler generates temporaries.

LAN Emits language level checks.

PAR Emits warning messages on unused parameters.

POR Emits warnings about nonportable constructs.

PPC Emits messages on possible problems with using the preprocessor.

PPT Emits trace of preprocessor actions.

REA Emits warnings about unreached statements.

RET Emits warnings about return statement consistency.

TRD Emits warnings about possible truncation of data.

UND Emits warnings about undefined classes.

USE Emits information about usage of variables.

VFT Indicates where vftable is generated.

ALL Emits all of the above

no suboptions
Same result as INFO(ALL).

Effect on IPA Compile Step

The INFO option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the INFO option.

INLINE | NOINLINE

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT for C Compile:

v If NOOPT is in effect: NOINLINE (AUTO,REPORT,100,1000)

NOOPT is the default for C compile

v If OPT is in effect: INLINE(AUTO,NOREPORT,100,1000)

DEFAULT for IPA Link:

v If NOOPT is in effect: NOINLINE (AUTO,NOREPORT,1000,8000)

v If OPT is in effect: INLINE(AUTO,NOREPORT,1000,8000)

Chapter 6. Compiler Options 99

OPT is the default for IPA Link.

CATEGORY: Object Code Control

ÊÊ INL
NOINL (,

AUTO REPORT

NOAUTO NOREPORT

Ê

Ê
, ,)

threshold limit

ÊÍ

The INLINE option instructs the compiler to place the code for selected functions at
the point of call; this is called inlining. It eliminates the linkage overhead and
exposes the entire inlined function for optimization by the global optimizer. It has the
following effects:

v The compiler invokes the compilation unit inliner to perform inlining of functions
within the current compilation unit.

v If the compiler inlines all invocations of a static function, it removes the
non-inlined instance of the function.

v If the compiler inlines all invocations of an externally visible function, it does not
remove the non-inlined instance of the function. This allows callers who are
outside of the current compilation unit to invoke the non-inlined instance.

v If you specify INLINE(,REPORT,,) or INLRPT, the compiler generates the Inline
Report listing section.

For more information on optimization and the INLINE option, refer to the section
about optimizing code in the OS/390 C/C++ Programming Guide.

You can specify INLINE without suboptions if you want to use the defaults. You must
include a comma between each suboption even if you want to use the default for
one of the suboptions. You must specify the suboptions in the following order:

AUTO | NOAUTO
The inliner runs in automatic mode and inlines functions within the threshold
and limit.

If you specify NOAUTO, the inliner only inlines those functions specified with
the #pragma inline directive. The #pragma inline and #pragma noinline
directives allow you to determine which functions are to be inlined and
which are not when the INLINE option is specified. These #pragma directives
have no effect if you specify NOINLINE. See the OS/390 C/C++ Language
Reference for more information on #pragma directives.

The default is AUTO

REPORT | NOREPORT
An inline report becomes part of the listing file. The inline report consists of
the following:
v An inline summary
v A detailed call structure

100 OS/390 V2R6.0 C/C++ User’s Guide

You can obtain the same report if you use the INLRPT and OPT options. For
more information on the inline report, see “Inline Report” on page 192,
“Inline Report” on page 182, and “Inline Report for IPA Inliner” on page 202.

The default is NOREPORT

threshold
The maximum relative size of a function to inline. For C compile, the default
for threshold is 100 Abstract Code Units (ACU) instructions. For the IPA
Link step, the default for threshold is 1000 ACUs. ACUs are proportional in
size to the executable code in the function; the OS/390 C compiler
translates your OS/390 C code into ACUs. The maximum threshold is
INT_MAX, as defined in the header file LIMITS.H. Specifying a threshold of 0
is the same as specifying NOAUTO.

limit The maximum relative size a function can grow before auto-inlining stops.
For C compile, the default for limit is 1000 ACUs for a function. For the IPA
Link step, the default for limit is 8000 ACUs for that function. The maximum
for limit is INT_MAX, as defined in the header file LIMITS.H. Specifying a limit
of 0 is equivalent to specifying NOAUTO.

You can specfiy the INLINE | NOINLINE option on the invocation line and in the
#pragma options preprocessor directive. When you use both methods at the same
time, the compiler merges the options. If an option on the invocation line conflicts
with an option in the #pragma options directive, the one on the invocation line takes
precedence.

For example, because you typically do not want to inline your functions when you
are developing a program, you can specify the NOINLINE option on a #pragma
options preprocessor directive. When you want to inline your functions, you can
override the NOINLINE option by specifying INLINE on the invocation line rather than
by editing your source program. The following example illustrates these rules.

Source file:
#pragma options (NOINLINE(NOAUTO,NOREPORT,,2000))

Invocation line:
INLINE (AUTO,,,)

Result:
INLINE (AUTO,NOREPORT,100,2000)

Notes:

1. When you specify the INLINE compiler option, a comment, with the values of the
suboptions, is generated in your object module to aid you in diagnosing your
program.

2. If the compiler option OPT is specified, INLINE becomes the default.

3. Specify the LIST or SOURCE compiler options to redirect the output from the
INLINE(,REPORT,,) option.

4. If you specify INLINE and TEST:
at OPT(0), INLINE is ignored.
at OPT, inlining is done

5. C++ code is always inlined at OPT

6. If you specify NOINLINE, no functions will be inlined even if you have #pragma
inline directives in your code.

Chapter 6. Compiler Options 101

|

|

Effect on IPA Compile Step

The INLINE option generates inlined code for the regular compiler object; therefore,
it affects the IPA Compile step only if you specify IPA(OBJECT). If you specify
IPA(NOOBJECT), INLINE has no effect, and there is no reason to use it.

Effect on IPA Link Step

If you specify the INLINE option on the IPA Link step, it has the following effects:

v The IPA Link step invokes the IPA inliner, which inlines subprograms (functions
and C++ methods) in the entire program.

v The IPA Link step uses #pragma inline|noinline directive information and
inline function specifier information from the IPA Compile step for source
program inlining control. Specifying the INLINE option on the IPA Compile step
has no effect on IPA Link step inlining processing.

You can use the IPA Link control file inline and noinline directives to explicitly
control the inlining of subprograms on the IPA Link step. These directives
override IPA Compile step #pragma inline|noinline directives and inline
function specifiers.

v If the IPA Link step inlines all invocations of a function, it removes the non-inlined
instance of the function, unless the function entry point was exported using a
#pragma export directive or the EXPORTALL compiler option, or was retained using
the IPA Link control file retain directive. IPA Link processes static functions and
externally visible functions in the same manner.

The IPA inliner has the inlining capabilities of the compilation unit inliner. In addition,
the IPA inliner detects complex recursion, and may inline it. If you specify the
INLRPT option, the IPA Link listing contains the IPA Inline Report section. This
section is similar to the report that the compilation unit inliner generates. If you
specify NOINLINE(,REPORT,,) or NOINLINE INLRPT, IPA generates an IPA Inline
Report section that specifies that nothing was inlined.

INLRPT | NOINLRPT

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U

DEFAULT: NOINLRPT

CATEGORY: Listing

ÊÊ INLR
NOINLR (Sequential filename)

Partitioned data set
Partitioned data set (member)
Hierarchical filename
Hierarchical directory

ÊÍ

If you use the OPTIMIZE option, you can also use INLRPT to specify that the compiler
generate a report as part of the compiler listing. The report provides the status of
functions that were inlined, specifies whether they were inlined or not and displays
the reasons for the compiler’s action.

102 OS/390 V2R6.0 C/C++ User’s Guide

You can specify filename for the inline report output file. If you do not specify
filename, the compiler uses the SYSCPRT ddname if you allocated one. If you did not
allocate SYSCPRT, the compiler uses the source file name to generate a file name.

The NOINLR option can optionally take a filename suboption. This filename then
becomes the default. If you subsequently use the INLR option without filename, the
compiler uses the filename that you specified in the earlier specification or NOINLR.
For example,
CXX HELLO (NOINLR(/hello.lis) INLR OPT

is the same as specifying:
CXX HELLO (INLR(/hello.lis) OPT

Note: If you specify filename with any of the SOURCE, LIST, or INLRPT options, all the
listing sections are combined into the last filename specified.

If you specify this multiple times, the compiler uses the last specified option with the
last specified suboption. The following two specifications have the same result:

1.
CXX HELLO (NOINLR(/hello.lis) INLR(/n1.lis) NOINLR(/test.lis) INLR

2.
CXX HELLO (INLR(/test.lis)

Effect on IPA Compile Step

The INLRPT option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

If you specify the INLRPT option on the IPA Link step, the IPA Link step listing
contains an IPA Inline Report section. Refer to “INLINE | NOINLINE” on page 99 for
more information about generating an IPA Inline Report section.

IPA | NOIPA

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U U

DEFAULT: NOIPA

CATEGORY: Object Code Control/IPA Link Control

Chapter 6. Compiler Options 103

ÊÊ

»

IPA
NOIPA ,

(NOLINK | LINK)
ATTR | NOATT
GONUM | NOGONUM
LIS | NOLIS
OBJ | NOOBJ
OPT | NOPT
XR | NOXR
LEVEL (0)

(1)
CONTROL | NOCONTROL

(fileid)
DUP | NODUP
MAP | NOMAP
NCAL | NONCAL
UPCASE | NOUPCASE

ÊÍ

The IPA option instructs the compiler to perform Interprocedural Analysis across
compilation units.

The NOIPA option instructs the compiler to perform a regular compilation.

IPA Compile Step Suboptions

IPA(NOLINK) invokes the IPA Compile step. NOLINK is the default suboption of the
IPA option. Only the following IPA suboptions affect the IPA Compile step. You can
specify other IPA suboptions, but they do not affect the IPA Compile step.

ATTRIBUTE | NOATTRIBUTE Indicates whether the compiler saves information
about symbols in the IPA object file. The IPA Link
step uses this information if you specify the ATTR or
XREF option on that step.

The difference between specifying IPA(ATTR) and
specifying ATTR or XREF is that IPA(ATTR) does not
generate a Cross Reference listing section after IPA
Compile step source analysis is complete. It also
does not generate a Storage Offset or External
Symbol Cross Reference listing section during IPA
Compile step code generation.

The default is IPA(NOATTRIBUTE). The abbreviations
are IPA(ATTR|NOATTR). If you specify the ATTR or
XREF option, it overrides the IPA(NOATTRIBUTE)
option.

GONUMBER |NOGONUMBER Indicates whether the compiler saves information
about source file line numbers in the IPA object file.
The difference between specifying IPA(GONUMBER)
and GONUMBER is that IPA(GONUMBER) does not cause
GONUMBER tables to be built during IPA Compile
step code generation. If the compiler does not build
GONUMBER tables, the size of the object module
is smaller.

104 OS/390 V2R6.0 C/C++ User’s Guide

Refer to “GONUMBER | NOGONUMBER” on
page 96 for information about the effect of this
suboption on the IPA Link step. Refer also to
“Interactions between Compiler Options and IPA
Suboptions” on page 57.

The default is IPA(NOGONUMBER). The abbreviations
are IPA(GONUM|NOGONUM). If you specify the GONUMBER
or LIST option, it overrides the IPA(NOGONUMBER)
option.

LIST | NOLIST Indicates whether the compiler saves information
about source line numbers in the IPA object file.
The difference between specifying IPA(LIST) and
LIST is that IPA(LIST) does not cause the IPA
Compile step to generate a Pseudo Assembly
listing.

Refer to “LIST | NOLIST” on page 110 for
information about the effect of this suboption on the
IPA Link step. Refer also to “Interactions between
Compiler Options and IPA Suboptions” on page 57.

The default is IPA(NOLIST). The abbreviations are
IPA(LIS|NOLIS). If you specify the GONUMBER or LIST
option, it overrides the IPA(NOLIST) option.

OBJECT | NOOBJECT Indicates whether the IPA Compile step produces a
non-IPA object in addition to the IPA object as part
of the object file.

The default is IPA(OBJECT). The abbreviations are
IPA(OBJ|NOOBJ).

OPTIMIZE | NOOPTIMIZE The default is IPA(OPTIMIZE). If you specify
IPA(NOOPTIMIZE), the compiler issues an
informational message and turns on
IPA(OPTIMIZE). The abbreviations are
IPA(OPT|NOOPT).

IPA(OPTIMIZE) generates information (in the IPA
object file) that will be needed by the OPT compiler
option during IPA Link processing.

If you specify the IPA(OBJECT), the IPA(OPTIMIZE),
and the NOOPTIMIZE option during the IPA Compile
step, the compiler creates a non-optimized object
module for debugging. If you specify the OPT(1) or
OPT(2) option on a subsequent IPA Link step, you
can create an optimized object module without first
rerunning the IPA Compile step.

XREF | NOXREF Indicates whether the compiler save information
about symbols in the IPA object file that will be
used in the IPA Link step if you specify ATTR or XREF
on that step.

The difference between specifying IPA(XREF) and
specifying ATTR or XREF is that IPA(XREF) does not
cause the compiler to generate a Cross Reference
listing section after IPA Compile step source

Chapter 6. Compiler Options 105

|
|
|

analysis is complete. It also does not cause the
compiler to generate a Storage Offset or External
Symbol Cross Reference listing section during IPA
Compile step code generation.

Refer to “XREF | NOXREF” on page 166 for
information about the effects of this suboption on
the IPA Link step.

The default is IPA(NOXREF). The abbreviations are
IPA(XR|NOXR). If you specify the ATTR or XREF
option, it overrides the IPA(NOXREF) option.

IPA Link Step Suboptions

IPA(LINK) invokes the IPA Link step. Only the following IPA suboptions affect the
IPA Link step. If you specify other IPA suboptions, they do not affect the IPA Link
step.

CONTROL[(fileid)] | NOCONTROL[(fileid)]
Specifies whether a file that contains IPA directives is available for
processing. You can specify an optional fileid. If you specify both
IPA(NOCONTROL(fileid)) and IPA(CONTROL), in that order, the IPA Link step
resolves the option to IPA(CONTROL(fileid)).

The default fileid is DD:IPACNTL if you specify the IPA(CONTROL) option.
The default is IPA(NOCONTROL).

DUP | NODUP
Indicates whether the IPA Link step writes a message and a list of duplicate
symbols to the console.

The default is IPA(DUP).

ER | NOER
Indicates whether the IPA Link step writes a message and a list of
unresolved symbols to the console.

The default is IPA(NOER).

LEVEL(0|1)
Indicates the level of IPA optimization that the IPA Link step should perform
after it links the object files into the call graph.

If you specify LEVEL(0), IPA performs function pruning and program
partitioning only. IPA performs alias analysis quickly, with some loss of
precision.

If you specify LEVEL(1), IPA performs all of the optimizations that it does at
LEVEL(0), as well as function inlining and global variable coalescing. IPA
performs more precise alias analysis for pointer dereferences and function
calls.

The compiler option OPTIMIZE that you specify on the IPA Link step controls
subsequent optimization for each partition during code generation.
Regardless of the optimization level you specified during the IPA Compile
step, you can request IPA optimization, regular code generation
optimization, both, or neither, on the IPA Link step.

The default is IPA(LEVEL(1)).

106 OS/390 V2R6.0 C/C++ User’s Guide

MAP | NOMAP
Specifies that the IPA Link step will produce a listing. The listing contains a
Prolog and the following sections:
v Object File Map
v Source File Map
v Compiler Options Map
v Global Symbols Map
v Partition Map for each partition

The default is IPA(NOMAP).

See “Using the IPA Link Step Listing” on page 193 for more information.

NCAL | NONCAL
Indicates whether the IPA Link step performs an automatic library search to
resolve references in files that the IPA Compile step produces. Also
indicates whether the IPA Link step performs library searches to locate an
object file or files that satisfy unresolved symbol references within the
current set of object information.

This suboption controls both explicit searches triggered by the LIBRARY
IPA Link control statement, and the implicit SYSLIB search that occurs at
the end of IPA Link input processing.

To help you remember the difference between NCAL and NONCAL, you may
wish to think of NCAL as "nocall" and NONCAL as "no nocall", (or "call").

The default is IPA(NONCAL).

UPCASE | NOUPCASE
Determines whether the IPA Link step makes an additional automatic library
call pass for SYSLIB if unresolved references remain at the end of standard
IPA Link processing. Symbol matching is not case sensitive in this pass.

This suboption provides support for linking assembler language object
routines, without forcing you to make source changes. The preferred
approach is to add #pragma map definitions for these symbols, so that the
correct symbols are found during normal IPA Link automatic library call
processing.

The default is IPA(NOUPCASE). The abbreviations are IPA(UPC|NOUPC).

Refer to the Interprocedural Analysis chapter in the OS/390 C/C++ Programming
Guide for an overview and more details about Interprocedural Analysis.

LANGLVL

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: LANGLVL(EXTENDED)

CATEGORY: Source Code Control

Chapter 6. Compiler Options 107

ÊÊ LANG (ANSI)
SAA
SAAL2
COMPAT
EXTENDED
COMMONC

ÊÍ

The LANGLVL option defines a macro that specifies a language level. You must then
include this macro in your code to force conditional compilation. For example, with
the use of #ifdef directives. You can write portable code if you correctly code the
different parts of your program according to the language level. You use the macro
in preprocessor directives in header files. The LANGLVL suboptions are:

LANGLVL(ANSI)
Indicates language constructs that are defined by ANSI. Some non-ANSI
stub routines will exist even if you specify LANGLVL(ANSI), for compatibility
with previous releases. The macro __ANSI__ is defined as 1.

Notes:

1. You cannot use the compiler options LANGLVL(ANSI) and NOEXH together,
because NOEXH breaks ANSI conformance. If you specify either of the
following, the compiler issues a warning message to indicate that it
ignores NOEXH:

v NOEXH LANGLVL(ANSI)

v LANGLVL(ANSI) NOEXH

2. When you specify LANGLVL(ANSI), the compiler can still read and
analyze the _Packed keyword in OS/390 C. If you want to make your
code purely ANSI, you should redefine _Packed in a header file as
follows:
#ifdef __ANSI__
#define _Packed

#endif

The compiler will now see the _Packed attribute as a blank when
LANGLVL(ANSI) is specified at compile time, and the language level of
the code will be ANSI.

LANGLVL(COMPAT)
Indicates that code is compiled to be compatible with older levels of C++.
Module initialization occurs in link order. This suboption is only available
under OS/390 C++. The macro __COMPAT__ is defined as 1.

LANGLVL(COMMONC)
Indicates language constructs that are defined by XPG, many of which
LANGLVL(EXTENDED) already supports. LANGLVL(ANSI) and
LANGLVL(EXTENDED) do not support the following, but LANGLVL(COMMONC)
does:
v Unsignedness is preserved for standard integral promotions. That is,

unsigned char is promoted to unsigned int.
v Trigraphs within literals are not processed
v sizeof operator is permitted on bitfields
v Bitfields other than int are tolerated, and a warning message is issued.
v Macro parameters within quotation marks are expanded
v Macros may be redefined without first being undefined
v The empty comment in a function-like macro is equivalent to the

ANSI/ISO token concatenation operator

108 OS/390 V2R6.0 C/C++ User’s Guide

The COMMONC suboption is available only for OS/390 C. The macro
__COMPAT__ is defined as 1 when you specify LANGLVL(COMMONC).

If you specify LANGLVL(COMMONC), the ANSIALIAS option is automatically
turned off. If you want ANSIALIAS turned on, you must explicitly specify it.

Note: The option ANSIALIAS assumes ANSI conformance code. Using
LANGLVL(COMMONC) and ANSIALIAS together may have undesirable
effects on your code at a high optimization level. See “ANSIALIAS |
NOANSIALIAS” on page 72 for more information.

LANGLVL(EXTENDED)
Indicates all language constructs available with OS/390 C/C++. Enables
extensions to the ANSI draft. The macro __EXTENDED__is defined as 1.

LANGLVL(SAA)
Indicates language constructs that are defined by SAA. This suboption is
only available under OS/390 C. See the OS/390 C/C++ Language
Reference for more information.

LANGLVL(SAAL2)
Indicates language constructs that are defined by SAA Level 2. This
suboption is only available under OS/390 C. See the OS/390 C/C++
Language Reference for more information.

Effect on IPA Compile Step

The LANGLVL option has the same effect on the IPA Compile step as it does on
regular compilation

Effect on IPA Link Step

The IPA Link Step accepts but ignores the LANGLVL option.

Chapter 6. Compiler Options 109

LIBANSI | NOLIBANSI

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U U

DEFAULT: NOLIBANSI

CATEGORY: Code Optimization

ÊÊ LIB
NOLIB

ÊÍ

The LIBANSI option indicates whether the functions with the name of an ANSI C
library function are in fact ANSI C library functions. If you specify LIBANSI, the
compiler generates code that is based on existing knowledge concerning the
behaviour of the ANSI C library function. For example, whether or not any side
effects are associated with a particular system function.

A comment that indicates the use of the LIBANSI option will be generated in your
object module to aid you in diagnosing your program.

Effect on IPA Compile Step

If you specify the LIBANSI option for any compilation unit in the IPA Compile step,
the compiler generates information for the IPA Link step. This option also affects the
regular object module if you request one by specifying the IPA(OBJECT) option.

Effect on IPA Link Step

If you specify the LIBANSI option for the IPA Compile step, you do not need to
specify it again on the IPA Link step. The IPA Link step uses the information
generated for the compilation unit that contains the main() function, or for the first
compilation unit it finds if it cannot find a compilation unit containing main().

If you specify this option on both the IPA Compile and the IPA Link steps, the
setting on the IPA Link step overrides the setting on the IPA Compile step. This
applies whether you use LIBANSI and NOLIBANSI as compiler options or specify
them using the #pragma runopts directive (on the IPA Compile step).

LIST | NOLIST

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U U

DEFAULT: NOLIST

CATEGORY: Listing

110 OS/390 V2R6.0 C/C++ User’s Guide

ÊÊ LIS
NOLIS (Sequential filename)

Partitioned data set
Partitioned data set (member)
Hierarchical filename
Hierarchical directory

ÊÍ

The LIST option instructs the compiler to generate a listing of the machine
instructions in the object module (in a format similar to assembler language
instructions) in the compiler listing.

LIST(filename) places the compiler listing in the specified file. If you do not specify a
file name for the LIST option, the compiler uses the SYSCPRT ddname if you
allocated one. Otherwise, the compiler generates a file name as follows:
v If you are compiling a data set, the compiler uses the source file name to form

name of the listing data set. The high-level qualifier is replaced with the userid
under which the compiler is running, and .LIST is appended as the low-level
qualifier.

v If you are compiling an HFS file, the compiler stores the listing in a file that has
the name of the source file with .lst extension.

The NOLIST option optionally takes a filename suboption. This filename then
becomes the default. If you subsequently use the LIST option without a filename
suboption, the compiler uses the filename that you specified in the earlier NOLIST.
For example, the following specifications have the same effect:
CXX HELLO (NOLIST(/hello.lis) LIST

CXX HELLO (LIST(/hello.lis)

If you specify data set names in an OS/390 C/C++ program, with the SOURCE, LIST
or INLRPT options, all the listing sections are combined into the last data set name
specified.

Notes:

1. Usage of information such as registers, pointers, data areas, and control blocks
that are shown in the object listing are not programming interface information.

2. If you use the following form of the command in a JES3 batch environment
where xxx is an unallocated data set, you may get undefined results.
LIST(xxx)

Effect on IPA Compile Step

If you specify the LIST option on the IPA Compile step, the compiler saves
information about the source file and line numbers in the IPA object file. This
information is available during the IPA Link step for use by the LIST or GONUMBER
options.

If you do not specify the GONUMBER option on the IPA Compile step, the object file
produced contains the line number information for source files that contain function
begin, function end, function call, and function return statements. This is the
minimum line number information that the IPA Compile step produces. You can then
use the TEST option on the IPA Link step to generate corresponding test hooks

Refer to “Interactions between Compiler Options and IPA Suboptions” on page 57
and “GONUMBER | NOGONUMBER” on page 96 for more information.

Chapter 6. Compiler Options 111

Effect on IPA Link Step

If you specify the LIST option, the IPA Link listing contains a Pseudo Assembly
section for each partition that contains executable code. Data-only partitions do not
generate a Pseudo Assembly listing section.

The source file and line number shown for each object code statement depend on
the amount of detail the IPA Compile step saves in the IPA object file, as follows:

v If you specified the GONUMBER, LIST, IPA(GONUMBER), or IPA(LIST) option for the
IPA Compile step, the IPA Link step accurately shows the source file and line
number information.

v If you did not specify any of these options on the IPA Compile step, the source
file and line number information in the IPA Link listing or GONUMBER tables
consists only of the following:

– function entry, function exit, function call, and function call return source lines.
This is the minimum line number information that the IPA Compile step
produces.

– All other object code statements have the file and line number of the function
entry, function exit, function call, and function call return that was last
encountered. This is similar to the situation of encountering source statements
within a macro.

Refer to “Interactions between Compiler Options and IPA Suboptions” on page 57
and “GONUMBER | NOGONUMBER” on page 96 for more information.

LOCALE | NOLOCALE

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U U

DEFAULT: NOLOCALE

CATEGORY: Preprocessor

ÊÊ LOC
(name)

NOLOC

ÊÍ

The LOCALE option specifies the locale to be used by the compiler as the current
locale throughout the compilation unit. To specify a locale, use the following format:

LOCALE(name)

The suboption name indicates the name of the locale to be used by the compiler at
compile time. If you omit name, the compiler uses the current default locale in the
environment. If name does not represent a valid locale name, the compiler ignores
the LOCALE, and assumes NOLOCALE.

NOLOCALE indicates that the compiler only uses the default code page, which is
IBM-1047.

112 OS/390 V2R6.0 C/C++ User’s Guide

You cannot use the LOCALE | NOLOCALE option in the OS/390 C #pragma options
directive. You can only specify it on the command line or in the PARMS list in the
JCL.

If you specify the LOCALE option, the locale name and the associated code set
appear in the header of the listing. A locale name is also generated in the object
module.

The LC_TIME category of the current locale controls the format of the time and the
date in the compiler-generated listing file. The identifiers that appear in the tables in
the listing file are sorted as specified by the LC_COLLATE category of the locale
specified in the option.

Note: The formats of the predefined macros __DATE__ , __TIME__, and
__TIMESTAMP__ are not locale-sensitive.

For more information on locales, refer to the OS/390 C/C++ Programming Guide.

Effect on IPA Compile Step

The LOCALE option controls processing only for the IPA step for which you specify it.

During the IPA Compile step, the compiler converts source code using the code
page that is associated with the locale specified by the LOCALE compile-time option.
As with non-IPA compilations, the conversion applies to identifiers, literals, and
listings. The locale that you specify on the IPA Compile step is recorded in the IPA
object file.

You should use the same code page for IPA Compile step processing for all of your
program’s source files. This code page should match the code page of the runtime
environment. Otherwise, your application may not run correctly.

Effect on IPA Link Step

The locale that you specify on the IPA Compile step does not determine the locale
that the IPA Link step uses. The LOCALE option that you specify on the IPA Link step
is used for the following:
v The encoding of the message text and the listing text.
v Date and time formatting in the Source File Map section of the listing and in the

text in the object comment string that records the date and time of IPA Link step
processing.

v Sorting of identifiers in listings. The IPA Link step uses the sort order associated
with the locale for the lists of symbols in the Inline Report (Summary), Global
Symbols Map, and Partition Map listing sections.

If the code page you used for a compilation unit for the IPA Compile step does not
match the code page you used for the IPA Link step, the IPA Link step issues an
informational message.

If you specify the IPA(MAP) option, the IPA Link step displays information about the
LOCALE option, as follows:

v The Prolog section of the listing displays the LOCALE or NOLOCALE option. If you
specified the LOCALE option, the Prolog displays the locale and code set that are
in effect.

v The Compiler Options Map listing section displays the LOCALE option active on
the IPA Compile step for each IPA object. If you specified conflicting code sets

Chapter 6. Compiler Options 113

between the IPA Compile and IPA Link steps, the listing includes a warning
message after each Compiler Options Map entry that displays a conflict.

v The Partition Map listing section shows the current LOCALE option.

LONGNAME | NOLONGNAME

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U U

DEFAULT for C : NOLONGNAME

DEFAULT for C++ : LONGNAME

CATEGORY: Object Code Control

ÊÊ LO
NOLO

ÊÍ

The LONGNAME option generates untruncated and mixed case external names in the
object module produced by the compiler for functions with non-C++ linkage.
Functions with C++ linkage are always untruncated and mixed-case external
names. These names may be up to 1024 characters in length. The system binder
recognizes the format of long external names in object modules, but the system
linkage editor does not.

For OS/390 C, if you specify the ALIAS option with LONGNAME, the compiler generates
a NAME control statement, but no ALIAS control statements.

If you use #pragma map to associate an external name with an identifier, the
compiler generates the external name in the object module. That is, #pragma map
has the same behavior for the LONGNAME and NOLONGNAME compiler options. Also,
#pragma csect has the same behavior for the LONGNAME and NOLONGNAME compiler
options.

When you specify NOLONGNAME, only functions that do not have C++ linkage are
given truncated and uppercase names.

A comment that indicates the setting of the LONGNAME option will be generated in
your object module to aid you in diagnosing your program.

Effect on IPA Compile Step

You must specify either the LONGNAME compiler option or the #pragma longname
preprocessor directive for the IPA Compile step (unless you are using the c89
utility). Otherwise, the compiler issues an unrecoverable error diagnostic message.

Effect on IPA Link Step

The IPA Link step ignores this option if you specify it, and uses the LONGNAME option
for all partitions it generates.

114 OS/390 V2R6.0 C/C++ User’s Guide

LSEARCH | NOLSEARCH

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: NOLSEARCH

CATEGORY: File Management

ÊÊ LSE (path)
NOLSE

ÊÍ

The LSEARCH option directs the preprocessor to look for the user include files in the
specified libraries.

The suboption path specifies one of the following:

v The name of a partitioned or sequential data set that contains user include files.

v An HFS path that contains user include files.

v A search path that is more complex. See “Additional Syntax” on page 116 for
details.

The #include "filename" format of the #include C/C++ preprocessor directive
indicates user include files. See “Using Include Files” on page 246 for a description
of the #include preprocessor directive.

For further information on library search sequences, see “Search Sequences for
Include Files” on page 254.

Searching for PDS or PDSE files

Example

You coded your include files as follows:
#include "sub/fred.h"
#include "fred.inl"

You specified LSEARCH as follows:
LSEARCH(USER.+,'USERID.GENERAL.+')

The compiler uses the following search sequence to look for your include files:

1. First, the compiler looks for user/sub/fred.h in this data set:
USERID.USER.SUB.H(FRED)

2. If that PDS member does not exist, the compiler looks in the data set:
USERID.GENERAL.SUB.H(FRED)

3. If that PDS member does not exist, the compiler looks in DD:USERLIB, and
then checks the system header files.

4. Next, the compiler looks for fred.inl in the data set:
USERID.USER.INL(FRED)

5. If that PDS member does not exist, the compiler will look in the data set:

Chapter 6. Compiler Options 115

USERID.GENERAL.INL(FRED)

6. If that PDS member does not exist, the compiler looks in DD:USERLIB, and
then checks the system header files.

Searching for HFS Files

The compiler forms the search path for HFS files by appending the path and name
of the #include file to the path that you specified in the LSEARCH option.

Example 1

You code #include "sub/fred.h" and specify:
LSEARCH(/u/mike)

The compiler looks for the include file /u/mike/sub/fred.h.

Example 2

You specify your header file as #include "fred.h", and your LSEARCH option as:
LSEARCH(/u/mike, ./sub)

The compiler uses the following search sequence to look for your include files:

1. The compiler looks for fred.h in:
/u/mike/fred.h

2. If that HFS file does not exist, the compiler looks in:
./sub/fred.h

3. If that HFS file does not exist, the compiler looks in the libraries specified on the
USERLIB DD statement.

4. If USERLIB DD is not allocated, the compiler follows the search order for system
include files.

The NOLSEARCH option instructs the preprocessor to search only those libraries that
are specified on the USERLIB DD statement. A NOLSEARCH option cancels all previous
LSEARCH specifications, and the compiler uses any LSEARCH options that follow it.
When you specify more than one LSEARCH option, the compiler uses all the libraries
in these LSEARCH options to find the user include files.

Note: If the filename in the #include directive is in absolute form, the compiler
does not perform a search. See “Determining whether the File Name is in
Absolute Form” on page 251 for more details on absolute #include filename.

Additional Syntax

ÊÊ »

,

LSE (opt)
//

NOLSE

ÊÍ

You must use the double slashes (//) to specify data set library searches when you
specify the ö compiler option. (You may use them regardless of the ö option).

116 OS/390 V2R6.0 C/C++ User’s Guide

The USERLIB ddname is considered the last suboption for LSEARCH, so that
specifying LSEARCH (X) is equivalent to specifying LSEARCH (X,DD:USERLIB).

Chapter 6. Compiler Options 117

Parts of the #include filename are appended to each LSEARCH opt to search for the
include file. opt has the format:

ÊÊ »

»

»

,

qualifier
’ .+ ’

.*
+

’ * ’
,

directory
./
../
/

DD:name
,

(fname.suffix)=LIB(subopt)

ÊÍ

opt specifies one of the following:

v The name of a partitioned or sequential data set that contains user include files

v An HFS path name that should be searched for the include file. You can also use
./ to specify the current directory and ../ to specify the parent directory for your
HFS file.

v A DD statement for a sequential data set or a partitioned data set. When you
specify a ddname in the search and the include file has a member name, the
member name of the include file is used as the name for the DD: name search
suboption, for example:
LSEARCH(DD:NEWLIB)
#include "a.b(c)"

The resulting file name is DD:NEWLIB(C).

v A specification of the form (fname.suffix) = (subopt,subopt,...) where
– fname is the name of the include file, or *
– suffix is the suffix of the include file, or *
– subopt indicates a subpath to be used in the search for the include files that

match the pattern of fname.suffix. There should be at least one subopt. The
possible values are:

- LIB([pds,...]) where each pds is a partitioned data set name. They are
searched in the same order as they are specified.

There is no effect on the search path if no pds is specified, but a warning is
issued.

- LIBs are cumulative; for example, LIB(A),LIB(B) is equivalent to LIB(A,
B).

- NOLIB specifies that all LIB(...) previously specified for this pattern should
be ignored at this point.

When the #include filename matches the pattern of fname.suffix, the search
continues according to the subopts in the order specified. An asterisk (*) in fname
or suffix matches anything. If the compiler does not find the file, it attempts other
searches according to the remaining options in LSEARCH.

118 OS/390 V2R6.0 C/C++ User’s Guide

Specifying Hierarchical File System Files

When specifying Hierarchical File System (HFS) library searches, do not put double
slashes at the beginning of the LSEARCH opt. Use pathnames separated by slashes
(/) in the LSEARCH opt for an HFS library. When the LSEARCH opt does not start with
double slashes, any single slash in the name indicates an HFS library. If you do not
have path separators (/), then setting the OE compile option on indicates that this is
an HFS library; otherwise the library is interpreted as a data set. See “Using
SEARCH and LSEARCH” on page 253 for additional information on HFS files.

The opt specified for LSEARCH is combined with the filename in #include to form the
include file name, for example:
LSEARCH(/u/mike/myfiles)
#include "new/headers.h"

The resulting HFS file name is /u/mike/myfiles/new/headers.h.

Specifying Sequential Data Sets and PDSs

Use an asterisk (*) or a plus sign (+) in the LSEARCH opt to specify whether the
library is a sequential or partitioned data set.

Partitioned Data Set (PDS): When you want to specify a set of PDSs as the
search path, you add a period followed by an plus sign (.+) at the end of the last
qualifier in the opt. If you do not have any qualifier, specify a single plus sign (+) as
the opt. The opt has the following syntax for specifying partitioned data set:

ÊÊ
’

»

+
,

qualifier
.+

’
ÊÍ

where qualifier is a data set qualifier.

Start and end the opt with single quotation marks (') to indicate that this is an
absolute data set specification. Single quotation marks around a single plus sign (+)
indicate that the filename that is specified in #include is an absolute partitioned
data set.

When you do not specify a member name with the #include directive, for example,
#include "PR1.MIKE.H", the PDS name for the search is formed by replacing the
plus sign with the following parts of the filename of the #include directive:

v For the PDS file name:
1. All the paths and slashes (slashes are replaced by periods)
2. All the periods and qualifiers after the leftmost qualifier

v For the PDS member name, the leftmost qualifier is used as the member name

See the first example in Table 20 on page 120.

However, if you specified a member name in the filename of the #include directive,
for example, #include "PR1.MIKE.H(M1)", the PDS name for the search is formed
by replacing the plus sign with qualified name of the PDS. See the second example
in Table 20 on page 120.

Chapter 6. Compiler Options 119

See “Forming Data Set Names with LSEARCH | SEARCH Options” on page 248 for
more information on forming PDS names.

Note: To specify a single PDS as the opt, do not specify a trailing asterisk (*) or
plus sign (+). The library is then treated as a PDS but the PDS name is
formed by just using the leftmost qualifier of the #include filename as the
member name. For example:
LSEARCH(AAAA.BBBB)
#include "sys/ff.gg.hh"

Resulting PDS name is
userid.AAAA.BBBB(FF)

Also see the third example in Table 20.

Examples: The following example shows you how to specify a PDS search path:

Table 20. Partitioned Data Set Examples

include Directive LSEARCH option Result

#include ″PR1.MIKE.H″ LSEARCH(’CC.+’) ’CC.MIKE.H(PR1)’

#include ″PR.KE.H(M1)″ LSEARCH(’CC.+’) ’CC.PR.KE.H(M1)’

#include ″A.B″ LSEARCH(CC) userid.CC(A)

#include ″A.B.D″ LSEARCH(CC.+) userid.CC.B.D(A)

#include ″a/b/dd.h″ LSEARCH(’CC.+’) ’CC.A.B.H(DD)’

#include ″a/dd.ee.h″ LSEARCH(’CC.+’) ’CC.A.EE.H(DD)’

#include ″a/b/dd.h″ LSEARCH(’+’) ’A.B.H(DD)’

#include ″a/b/dd.h″ LSEARCH(+) userid.A.B.H(DD)

#include ″A.B(C)″ LSEARCH(’D.+’) ’D.A.B(C)’

Sequential Data Set: When you want to specify a set of sequential data sets as
the search path, you add a period followed by an asterisk (.*) at the end of the last
qualifier in the opt. If you do not have any qualifiers, specify one asterisk (*) as the
opt. The opt has the following syntax for specifying a sequential data set:

ÊÊ
// ’

»

*
,

qualifier
. *

’
ÊÍ

where qualifier is a data set qualifier.

Start and end the opt with single quotation marks (') to indicate that this is an
absolute data set specification. Single quotation marks (') around a single asterisk
(*) means that the file name that is specified in #include is an absolute sequential
data set.

The asterisk is replaced by all of the qualifiers and periods in the #include filename
to form the complete name for the search (as shown in the following table).

Examples: The following example shows you how to specify a search path for a
sequential data set:

120 OS/390 V2R6.0 C/C++ User’s Guide

Table 21. Sequential Data Set Examples

include Directive LSEARCH option Result

#include ″A.B″ LSEARCH(CC.*) userid.CC.A.B

#include ″a/b/dd.h″ LSEARCH(’CC.*’) ’CC.DD.H’

#include ″a/b/dd.h″ LSEARCH(’*’) ’DD.H’

#include ″a/b/dd.h″ LSEARCH(*) userid.DD.H

Note: If the trailing asterisk is not used in the LSEARCH opt, then the specified library
is a PDS:
#include "A.B"
LSEARCH('CC')

Result is 'CC(A)' which is a PDS.

Effect on IPA Compile Step

The LSEARCH option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the LSEARCH option, but ignores it.

MARGINS | NOMARGINS

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT for C++: NOMARGINS

OS/390 C++

ÊÊ MAR
NOMAR

ÊÍ

The MARGINS option specifies the columns in the input record that are to be scanned
for input to the compiler. The compiler ignores text in the source input that does not
fall within the range that is specified on the MARGINS option.

In an OS/390 C++ program, the MARGINS option specifies that columns 1 through 72
in the input record are to be scanned for input to the compiler. The compiler ignores
any text in the source input that does not fall within that range.

If the MARGINS option is specified along with the SOURCE option in an OS/390 C
program, only the range specified on the MARGINS option is shown in the compiler
source listing.

You can use the MARGINS and SEQUENCE options together. The MARGINS option is
applied first to determine which columns are to be scanned. The SEQUENCE option is

Chapter 6. Compiler Options 121

then applied to determine which of these columns are not to be scanned. If the
SEQUENCE settings do not fall within the MARGINS settings, the SEQUENCE option has no
effect.

When a source (or include) file is opened, it initially gets the margins and sequence
specified on the command line (or the defaults if none was specified). You can reset
these settings by using #pragma margins or #pragma sequence at any point in the
file. When an #include file returns, the previous file keeps the settings it had when
it encountered the #include directive.

The NOMARGINS option specifies that the entire input source record is to be scanned
for input to the compiler.

Options for OS/390 C

DEFAULT for C:

v F-format: MARGINS (1,72)

v V-format: NOMARGINS

CATEGORY: Source Code Control

OS/390 C

ÊÊ MAR (m,n)
NOMAR

ÊÍ

In an OS/390 C program, the MARGINS option has the following additional syntax:
MARGINS(m,n)

where:

m specifies the first column of the source input that contains valid OS/390 C
code. The value of m must be greater than 0 and less than 32761.

n specifies the last column of the source input that contains valid OS/390 C
code. The value of n must be greater than m and less than 32761. An
asterisk (*) can be assigned to n to indicate the last column of the input
record. If you specify MARGINS (9,*), the compiler scans from column 9 to
the end of the record for input source statements.

Notes:

1. The MARGINS option does not reformat listings.

2. If your program uses the #include preprocessor directive to include OS/390 C
library header files and you want to use the MARGINS option, you must ensure
that the specifications on the MARGINS option does not exclude columns 20
through 50. That is, the value of m must be less than 20, and the value of n must
be greater than 50. If your program does not include any OS/390 C library
header files, you can specify any setting you want on the MARGINS option when
the setting is consistent with your own include files.

Effect on IPA Compile Step

The MARGINS option is used for source code analysis, and has the same effect on
the IPA Compile step as it does on a regular compilation.

122 OS/390 V2R6.0 C/C++ User’s Guide

Effect on IPA Link Step

The IPA Link step accepts the MARGINS option, but ignores it.

MAXMEM | NOMAXMEM

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U U

DEFAULT: MAXMEM (2097152), or MAXMEM (*), or MAXMEM (0)

CATEGORY: Object Code Control

ÊÊ MAXM (size)
NOMAXM

ÊÍ

When compiling with OPT, the MAXMEM(size) option limits the amount of memory
used for local tables of specific, memory intensive optimizations to size kilobytes.
The valid range for size is 0 to 2097152. You can use asterisk as a value for size ,
MAXMEM(*), to indicate the highest possible value, which is also the default.
NOMAXMEM, MAXMEM(0), and MAXMEM(*) are equivalent. Use the MAXMEM option if you
want to specify a memory size of less value than the default.

If the memory specified by the MAXMEM option is insufficient for a particular
optimization, the compilation is completed in such a way that the quality of the
optimization is reduced, and a warning message is issued.

When a large size is specified for MAXMEM, compilation may be aborted because of
insufficient virtual storage, depending on the source file being compiled, the size of
the subprogram in the source, and the virtual storage available for the compilation.

The advantage of using the MAXMEM option is that, for large and complex
applications, the compiler produces a slightly less-optimized object module and
generates a warning message, instead of terminating the compilation with an error
message of “insufficient virtual storage”.

Notes:

1. The limit that is set by MAXMEM is the amount of memory for specific
optimizations, and not for the compiler as a whole. Tables that are required
during the entire compilation process are not affected by or included in this limit.

2. Setting a large limit has no negative effect on the compilation of source files
when the compiler needs less memory.

3. Limiting the scope of optimization does not necessarily mean that the resulting
program will be slower, only that the compiler may finish before finding all
opportunities to increase performance.

4. Increasing the limit does not necessarily mean that the resulting program will be
faster, only that the compiler may be able to find opportunities to increase
performance.

Chapter 6. Compiler Options 123

|

Effect on IPA Compile Step

If you specify the MAXMEM option for any compilation unit in the IPA Compile step, the
compiler generates information for the IPA Link step. This option also affects the
regular object module if you request one by specifying the IPA(OBJECT) option.

The option value you specify on the IPA Compile step for each IPA object file
appears in the IPA Link step Compiler Options Map listing section.

Effect on IPA Link Step

If you specify the MAXMEM option on the IPA Link step, the value of the option is
used. The IPA Link step Prolog and Partition Map listing sections display the value
of the option.

If you do not specify the option on the IPA Link step, the value it uses for a partition
is the maximum MAXMEM value you specified for the IPA Compile step for any
compilation unit that provided code for that partition. The IPA Link Step Prolog
listing section does not display the value of the MAXMEM option, but the Partition Map
listing section does.

MEMORY | NOMEMORY

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: MEMORY

CATEGORY: File Management

ÊÊ MEM
NOMEM

ÊÍ

The MEMORY option specifies that the compiler is to use a MEMORY file in place of a
work-file if possible. See the OS/390 C/C++ Programming Guide for more
information on memory files.

This option increases compilation speed, but you may require additional memory to
use it. If you use this option and the compilation fails because of a storage error,
you must increase your storage size or recompile your program using the NOMEMORY
option.

Effect on IPA Compile Step

The MEMORY compiler option has the same effect on the IPA Compile step as it does
on a regular compilation.

Effect on IPA Link Step

The MEMORY option has the same effect on the IPA Link step as it does on a regular
compilation. If the IPA Link step fails due to an out-of-memory condition, provide
additional virtual storage. If additional storage is unavailable, specify the NOMEMORY
option.

124 OS/390 V2R6.0 C/C++ User’s Guide

NESTINC | NONESTINC

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: NONESTINC

CATEGORY: Source Code Control

ÊÊ NEST (num)
NONEST

ÊÍ

The NESTINC option specifies the number of nested include files to be allowed in
your source program. You can specify a limit of any integer from 0 to SHRT_MAX,
which indicates the maximum limit, as defined in the header file LIMITS.H. To
specify the maximum limit, use an asterisk (*). If you specify an invalid value, the
compiler issues a warning message, and uses the default limit, 255.

Specifying NONESTINC is equivalent to specifying NESTINC(255).

Note: If you use heavily nested include files, your program requires more storage
to compile.

Effect on IPA Compile Step

The NESTINC option is used for source code analysis, and has the same effect on
the IPA Compile step as it does on a regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the NESTINC option, but ignores it.

OBJECT | NOOBJECT

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U U

DEFAULT: OBJECT

CATEGORY: File Management and Object Code Control

ÊÊ OBJ
NOOBJ (Sequential filename)

Partitioned data set
Partitioned data set (member)
Hierarchical filename
Hierarchical directory

ÊÍ

The OBJECT option specifies whether the compiler is to produce an object module.

Chapter 6. Compiler Options 125

You can specify OBJECT(filename) to place the object module in that file. If you do
not specify a file name for the OBJECT option, the compiler uses the SYSLIN ddname
if you allocated it. Otherwise, the compiler generates a file name as follows:
v If you are compiling a data set, the compiler uses the source file name to form

the name of the object module data set. The high-level qualifier is replaced with
the userid under which the compiler is running, and .OBJ is appended as the
low-level qualifier.

v If you are compiling an HFS file, the compiler stores the object module in a file
that has the name of the source file with an .o extension.

The NOOBJ option can optionally take a filename suboption. This filename then
becomes the default. If you subsequently use the OBJ option without a filename
suboption, the compiler uses the filename that you specified in the earlier NOOBJ .
For example, the following specifications have the same result:

CXX HELLO (NOOBJ(/hello.obj) OBJ

CXX HELLO (OBJ(/hello.obj)

If you specify OBJ and NOOBJ multiple times, the compiler uses the last specified
option with the last specified suboption. For example, the following specifications
have the same result:

CXX HELLO (NOOBJ(/hello.obj) OBJ(/n1.obj) NOOBJ(/test.obj) OBJ

CXX HELLO (OBJ(/test.obj)

If you request a listing by using the SOURCE, INLRPT, or LIST option, and you also
specify OBJECT, the name of the object module is printed in the listing prolog.

OS/390 C: For OS/390 C programs, see Table 22 on page 169 for a description of
the relationship between the OBJECT and DECK compiler options.

Note: If you use the following form of the command in a JES3 batch environment
where xxx is an unallocated data set, you may get undefined results.
OBJECT(xxx)

Effect on IPA Compile Step

The OBJECT suboption directs the IPA Compile step to generate an IPA or a
combined IPA/conventional object module. IPA Compile uses the same rules as the
regular compile to determine the file name or data set of the object module it
generates. If you specify NOOBJECT and NODECK, the IPA Compile step suppresses
object output, but performs all analysis and code generation processing (other than
writing object records).

Note: You should not confuse the OBJECT compiler option with the OBJECT suboption
of the IPA option. Refer to “IPA | NOIPA” on page 103 for information about
the IPA(OBJECT) option.

Effect on IPA Link Step

This option also affects the IPA Link step. If you specify both OBJECT and DECK on
the IPA Link step, IPA issues a warning message and stores the object module in
the data set you specified on the SYSLIN DD name.

c89 does not normally keep the object file output from the IPA Link step, as the
output is an intermediate file in the link-edit phase processing. To find out how to

126 OS/390 V2R6.0 C/C++ User’s Guide

make the object file permanent, refer to the { _TMPS} environment variable
information in the c89 section of the OS/390 UNIX System Services Command
Reference.

Note: The OBJECT compiler option is not the same as the OBJECT suboption of the
IPA option. Refer to “IPA | NOIPA” on page 103 for information about the
IPA(OBJECT) option.

OE | NOOE

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U

DEFAULT: NOOE

CATEGORY: Source Code Control

ÊÊ OE
NOOE (filename)

ÊÍ

Notes:

1. To compile new applications, you should use this option instead of OMVS |
NOOMVS.

2. Diagnostics and listing information will refer to the file name that is specified for
the OE option (in addition to the search information).

The OE option specifies that the compiler use the POSIX.2 standard rules for
searching for files specified with #include directives. These rules state that the
current path of the file presently being processed is the path used as the starting
point for searches of include files contained in that file.

The NOOE option can optionally take a filename suboption. This filename then
becomes the default. If you subsequently use the OE option without a filename
suboption, the compiler uses the filename that you specified in the earlier NOOE. For
example, the following specifications have the same result:
CXX HELLO (NOOE(/hello.c) OE

CXX HELLO (OE(/hello.c)

If you specify OE and NOOE multiple times, the compiler uses the last specified option
with the last specified suboption. For example, the following specifications have the
same result:
CXX HELLO (NOOE(/hello.c) OE(/n1.c) NOOE(/test.c) OE

CXX HELLO (OE(/test.c)

When the OE option is in effect and the main input file is an HFS file, the path of
filename is used instead of the path of the main input file name. If the file names
indicated in other options appear ambiguous between OS/390 and HFS, the
presence of the OE option tells the compiler to interpret the ambiguous names as
HFS file names. User include files that are specified in the main input file are
searched starting from the path of filename. If the main input file is not an HFS file,
filename is ignored.

Chapter 6. Compiler Options 127

For example, if the compiler is invoked to compile HFS file /a/b/hello.c it
searches directory /a/b/ for include files specified in /a/b/hello.c, in accordance
with POSIX.2 rules . If the compiler is invoked with the OE(/c/d/hello.c) option for
the same source file, the directory specified as the suboption for the OE option,
/c/d/, is used to locate include files specified in /a/b/hello.c.

Effect on IPA Compile Step

The OE compiler option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

On the IPA Link step, the OE option controls the display of file names.

OFFSET | NOOFFSET

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: NOOFFSET

CATEGORY: Listing

ÊÊ OF
NOOF

ÊÍ

The OFFSET option instructs the compiler to display, in the pseudo-assembly listing
generated by the LIST option, the offset addresses relative to the entry point or start
of each function.

If you use the OFFSET option, you must also specify the LIST option to generate the
pseudo-assembly listing. If you specify the OFFSET option but omit the LIST option,
the compiler generates a warning message, and does not produce a
pseudo-assembly listing.

The NOOFFSET option specifies that the compiler is to display, in the
pseudo-assembley listing generated by the LIST option, the offset addresses
relative to the beginning of the generated code and not the entry point.

Effect on IPA Compile Step

If you specify the IPA(OBJECT) option (that is, if you request code generation), the
OFFSET option has the same effect on the IPA Compile step as it does on a regular
compilation.

Effect on IPA Link Step

If you specify the LIST option during IPA Link, the IPA Link listing will be affected (in
the same way as a regular compilation) by the OFFSET option setting in effect at that
time.

128 OS/390 V2R6.0 C/C++ User’s Guide

The OFFSET option that you specified on the IPA Compile step has no effect on the
IPA Link step.

OMVS | NOOMVS

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

Default: NOOMVS

CATEGORY: Source Code Control

ÊÊ OMVS
(filename)

NOOMVS

ÊÍ

In the OS/390 C environment, OMVS is a synonym for the OE option. Use the OE
option, because it provides greater flexibility and you can use it for both OS/390 C
and OS/390 C++.

You can specify filename which is the name of a partitioned or sequential data set
that contains user include files. For more information on OE, refer to “OE | NOOE”
on page 127.

Effect on IPA Compile Step

The OMVS compiler option has the same effect on the IPA Compile step as it does on
a regular compilation.

Effect on IPA Link Step

On the IPA Link step, the OMVS option controls the display of file names.

OPTFILE | NOOPTFILE

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: NOOPTFILE

CATEGORY: File Management

ÊÊ OPTF
NOOPTF (filename)

ÊÍ

The OPTFILE option directs the compiler to look for compiler options in the file
specified by filename.

Chapter 6. Compiler Options 129

You can specify any valid filename, including a DD name such as (DD:MYOPTS). The
DD name may refer to instream data in your JCL. If you do not specify filename,
the compiler uses DD:SYSOPTF.

The NOOPTF option can optionally take a filename suboption. This filename then
becomes the default. If you subsequently use the OPTF option without a filename
suboption, the compiler uses the filename that you specified in the earlier NOOPTF.
For example, the following specifications have the same result:
CXX HELLO (NOOPTF(/hello.opt) OPTF

CXX HELLO (OPTF(/hello.opt)

The options are specified in a free format with the same syntax as they would have
on the command line or in JCL. The code points for the special characters \f, \v,
and \t are whitespace characters. Everything that is specified in the file is taken to
be part of a compiler option (except for the continuation character), and
unrecognized entries are flagged. Nothing on a line is ignored.

If the record format of the options file is fixed and the record length is greater than
72, columns 73 to the end-of-line are treated as sequence numbers and are
ignored.

Notes:

1. You cannot nest the OPTFILE option. If the OPTFILE option is also used in the file
that is specified by another OPTFILE option, it is ignored.

2. If you specify NOOPTFILE after a valid OPTFILE, it does not undo the effect of the
previous OPTFILE. This is because the compiler has already processed the
options in the options file that you specified with OPTFILE. The only reason to
use NOOPTFILE is to specify an option file name that a later specification of
OPTFILE can use.

3. If the file cannot be opened or cannot be read, a warning message is issued
and the OPTFILE option is ignored.

4. The options file can be an empty file.

5. You can use an option file only once in a compilation. For example, if you use
the following options:
OPTFILE(DD:OF) OPTFILE

the compiler processes the option OPTFILE(DD:OF), but the second option
OPTFILE is not processed. A diagnostic message is produced, because the
second specification of OPTFILE uses the same option file as the first.

You can specify OPTFILE more than once in a compilation, if you use a different
options file with each specification. For example:
OPTFILE(DD:OF) OPTFILE(DD:OF1)

Examples
1. Suppose that you use the following JCL:

// CPARM='SO OPTFILE(PROJ1OPT) EXPORTALL'

If the file PROJ1OPT contains OBJECT LONGNAME, the effect on the compiler is the
same as if you specified the following:
// CPARM='SO OBJECT LONGNAME EXPORTALL'

2. Suppose that you include the following in the JCL:

130 OS/390 V2R6.0 C/C++ User’s Guide

// CPARM='OBJECT OPTFILE(PROJ1OPT) LONGNAME OPTFILE(PROJ2OPT) LIST'

If the file PROJ1OPT contains SO LIST and the file PROJ2OPT contains GONUM, the
net effect to the compiler is the same as if you specified the following:
// CPARM='OBJECT SO LIST LONGNAME GONUM LIST'

3. If a F80 format options file looks like this:
| ...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8

LIST 00000010
INLRPT 00000020

MARGINS 00000030
OPT 00000040
XREF 00000050

The compile has the same effect as if you specified the following options on the
command line or in a PARMS= statement in your JCL:
LIST INLRPT MARGINS OPT XREF

4. The following example shows how to use the options file as an instream file in
JCL:
//COMP EXEC CBCC,
// INFILE='<userid>.USER.CXX(LNKLST)',
// OUTFILE='<userid>.USER.OBJ(LNKLST),DISP=SHR ',
// CPARM='OPTFILE(DD:OPTION)'
//OPTION DD DATA,DLM=@@

LIST
INLRPT

MARGINS
OPT
XREF

@@

Effect on IPA Compile Step

The OPTFILE option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The OPTFILE option has the same effect on the IPA Link step as it does on a regular
compilation.

OPTIMIZE | NOOPTIMIZE

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U U

DEFAULT:

v C and C++ compile: NOOPTIMIZE

v IPA Link: OPTIMIZE

CATEGORY: Object Code Control

Chapter 6. Compiler Options 131

ÊÊ OPT (level)
NOOPT

ÊÍ

The OPTIMIZE option instructs the compiler to optimize the generated machine
instructions to produce a faster running object module. This type of optimization can
also reduce the amount of main storage that is required for the generated object
module. Using OPTIMIZE will increase compile time over NOOPTIMIZE and may have
greater storage requirements. During optimization, the compiler may move code to
increase run time efficiency; as a result, statement numbers in the program listing
may not correspond to the statement numbers used in runtime messages.

A list of the valid suboptions for OPT and their decscriptions follow: level can have
the following values:

0 Indicates that no optimization is to be done; this is equivalent to
NOOPTIMIZE. You should use this option in the early stages of your
application development since the compilation is efficient but the execution
is not. This option also allows you to take full advantage of the debugger.

1 The optimization done at OPTIMIZE(1) and at OPTIMIZE(2) is identical.

2 Indicates that global optimizations are to be performed. You should be
aware that the size of your functions, the complexity of your code, the
coding style, and the conformance to the ANSI standard may affect the
global optimization of your program. You should have at least 8MB of
memory to compile at this optimization level.

no level
OPTIMIZE specified with no level defaults to OPTIMIZE(2).

Inlining of functions in conjunction with other optimizations provides optimal run time
performance. See “INLINE | NOINLINE” on page 99 for more information about the
INLINE option and the OS/390 C/C++ Programming Guide for more information
about optimization.

If you specify OPTIMIZE with TEST, you can only set breakpoints at function call,
function entry, function exit, and function return points.

The option INLINE is automatically turned on when you specify OPTIMIZE, unless
you have explicitly specified the NOINLINE option.

A comment that notes the level of optimization will be generated in your object
module to aid you in diagnosing your program.

Effect of ANSIALIAS: When the ANSIALIAS option is specified, the optimizer
assumes that pointers can point only to objects of the same
type, and performs more aggressive optimization. However,
if this assumption is not true and ANISALIAS is specified,
wrong program code could be generated. If you are not
sure, use NOANSIALIAS. For more information, see
“ANSIALIAS | NOANSIALIAS” on page 72.

Effect on IPA Compile Step

On the IPA Compile step, all values (except for (0)) of the OPTIMIZE compiler option
and the OPT suboption of the IPA option have an equivalent effect.

132 OS/390 V2R6.0 C/C++ User’s Guide

|

||

|
|

Refer to the descriptions for the OPTIMIZE and LEVEL suboptions of the IPA option in
“IPA | NOIPA” on page 103 for information about using the OPTIMIZE option under
IPA.

Effect on IPA Link Step

OPTIMIZE(2) is the default for the IPA Link step, but you can specify any level of
optimization.

If you specify OPTIMIZE(1) or OPTIMIZE(2) for the IPA Link step, but only
OPTIMIZE(0) for the IPA Compile step, your program may be slower or larger than if
you specified OPTIMIZE(1) or OPTIMIZE(2) for the IPA Compile step. This situation
occurs because the IPA Compile step does not perform as many optimizations if
you specify OPTIMIZE(0).

Refer to the descriptions for the OPTIMIZE and LEVEL suboptions of the IPA option in
“IPA | NOIPA” on page 103 for information about using the OPTIMIZE option under
IPA.

PHASEID

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: NOPHASEID

CATEGORY: Debug/Diagnosic

ÊÊ PHASEID
NOPHASEID

ÊÍ

If you specify the PHASEID option, it causes each compiler module (phase) to issue
an informational message as the phase begins execution. This message identifies
compiler phase module name, product id, and build level. Use the PHASEID option to
assist you with determining the maintenance level of each compiler
component(phase).

The compiler issues a separate CBC0000(I) message each time compiler execution
causes a given compiler module(phase) to be entered. This may be many times for
a given compilation.

The FLAG option has no effect on the PHASEID informational message.

Effect on IPA Compile Step

The PHASEID option has the same effect on the IPA Compile Step as it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step uses the PHASEID option that you specify for that step.

Chapter 6. Compiler Options 133

|
|

|

|

||||
|
|

||

|||||

|

|

||||||||||||||

|

|
|
|
|
|

|
|
|

|

|

|
|

|

|

PLIST

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U U

DEFAULT: PLIST (HOST)

CATEGORY: Program Execution

ÊÊ PLIST (HOST)
OS

ÊÍ

When compiling main() programs, use the PLIST option to direct how the
parameters from the caller are passed to main().

If you specify PLIST(HOST), the parameters are presented to main() as an argument
list (argv, argc).

If you specify PLIST(OS), the parameters are passed without restructuring, and the
standard calling conventions of the operating system are used. See the OS/390
Language Environment Programming Guide for details on how to access these
parameters.

If you are compiling a main() program to run under IMS, you must specify the
PLIST(OS) and TARGET(IMS) options together.

Effect on IPA Compile Step

If you specified PLIST for any compilation unit in the IPA Compile step, it generates
information for the IPA Link step. This option also affects the regular object module
if you request one by specifying the IPA(OBJECT) option.

Effect on IPA Link Step

If you specify PLIST for the IPA Compile step, you do not need to specify it again on
the IPA Link step. The IPA Link step uses the information generated for the
compilation unit that contains the main() function, or for the first compilation unit it
finds if it cannot find a compilation unit containing main().

If you specify this option on both the IPA Compile and the IPA Link steps, the
setting on the IPA Link step overrides the setting on the IPA Compile step. This
situation occurs whether you use PLIST as a compiler option or specify it using the
#pragma runopts directive (on the IPA Compile step).

PORT | NOPORT

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U

DEFAULT: NOPORT(NOPPS)

134 OS/390 V2R6.0 C/C++ User’s Guide

CATEGORY: Portability

ÊÊ PORT
NOPORT (PPS)

NOPPS

ÊÍ

The PORT option allows you to adjust the error recovery action that the compiler
takes when it encounters an ill-formed #pragma pack directive. When you specify
PORT(PPS), the compiler uses the strict error recovery mode. When you specify any
other value for either PORT or NOPORT, the compiler uses the default error recovery
mode. When you specify PORT a suboption, the suboption setting is inherited from
the default setting or from previous PORT specifications.

Default Error Recovery

When the default error recovery mode is active, the compiler recovers from errors in
the #pragma pack directive as follows:

v #pragma pack(first_value

– If first_value is a valid S/390 value for #pragma pack, packing is done as
specified by first_value. The compiler detects the missing closing parentheses
and issues a warning message

– If first_value is not a valid S/390 value for #pragma pack, no packing changes
are made. The compiler ignores the #pragma pack directive and issues a
warning message

v #pragma pack(first_value bad_tokens

– If first_value is a valid S/390 value for #pragma pack, packing is done as
specified by first_value. If bad_tokens is invalid, the compiler detects it and
issues a warning message.

– If first_value is not a valid S/390 value for #pragma pack, no packing changes
will be performed. The compiler will ignore the #pragma pack directive and
issue a warning message

v #pragma pack(valid_value) extra_trailing_tokens

The compiler ignores the extra text and does not issue a message

Strict Error Recovery

To use the compiler’s strict error recovery mode, you must explicitly request it by
specifying PORT(PPS).

When the strict error recovery mode is active, if the compiler detects errors in the
#pragma pack directive, it ignores the pragma and does not make any packing
changes. For example, for any of the following specifications of the #pragma pack
directive:
#pragma pack(first_value

#pragma pack(first_value bad_tokens

#pragma pack(valid_value) extra_trailing_tokens

Effect on IPA Compile Step

The PORT option is used for source code analysis, and has the same effect on the
IPA compile step as it does on a regular compile.

Chapter 6. Compiler Options 135

Effect on IPA Link Step

The IPA link step accepts the PORT option but ignores it.

PPONLY | NOPPONLY

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: NOPPONLY

CATEGORY: Preprocessor

ÊÊ

»

PP
NOPP ,

(filename)
COMMENTS
NOCOMMENTS
LINES
NOLINES
n
*

ÊÍ

The PPONLY option specifies that only the preprocessor is to be run against the
source file. This output of the preprocessor consists of the original source file with
all the macros expanded and all the include files inserted. It is in a format that can
be compiled.

The suboptions are:

COMMENTS | NOCOMMENTS The COMMENTS suboption preserves comments in the
preprocessed output. The default is NOCOMMENTS.

LINES | NOLINES The LINES suboption issues #line directives at
include file boundaries, block boundaries and where
there are more than 3 blank lines. The default is
NOLINES.

filename The name for the pre-processed output file. The
filename may be a data set or an HFS file. If you
do not specify a file name for the PPONLY option, the
SYSUT10 ddname is used if it has been allocated. If
SYSUT10 has not been allocated, the file name is
generated as follows:
v If a data set is being compiled, the name of the

pre-processed output data set is formed using
the source file name. The high-level qualifier is
replaced with the userid under which the
compiler is running, and .EXPAND is appended
as the low-level qualifier.

v If the source file is an HFS file, the
pre-processed output is written to an HFS file
that has the source file name with .i extension.

136 OS/390 V2R6.0 C/C++ User’s Guide

n If a parameter n, which is an integer between 2 and
32760 inclusive, is specified, all lines are folded at
column n.

* If an asterisk (*) is specified, the lines are folded at
the maximum record length of 32760. Otherwise, all
lines are folded to fit into the output file, based on
the record length of the output file.

The PPONLY suboptions are cumulative. If you specify suboptions in multiple
instances of PPONLY and NOPPONLY, all the suboptions are combined and used for the
last occurrence of the option. For example, the following three specifications have
the same result:
CXX HELLO (NOPPONLY(/aa.exp) PPONLY(LINES) PPONLY(NOLINES)

CXX HELLO (PPONLY(/aa.exp,LINES,NOLINES)

CXX HELLO (PPONLY(/aa.exp,NOLINES)

All #line and #pragma preprocessor directives (except for margins and sequence
directives) remain. When you specify PPONLY(*), #line directives are generated to
keep the line numbers generated for the output file from the preprocessor similar to
the line numbers generated for the source file. All consecutive blank lines are
suppressed.

If you specify the PPONLY option, the compiler turns on the TERMINAL option. If you
specify the SHOWINC, XREF, AGGREGATE, or EXPMAC options with the PPONLY option, the
compiler issues a warning, and ignores the options.

If you specify the PPONLY and LOCALE options, all the #pragma filetag directives in
the source file are suppressed. The compiler generates its #pragma filetag
directive at the first line in the preprocessed output file in the following format:
??=pragma filetag ("locale code page")

where ??= is a trigraph representation of the # character.

The code page in the pragma is the code set that is specified in the LOCALE option.
For more information on locales, refer to the OS/390 C/C++ Programming Guide.

The NOPPONLY option specifies that both the preprocessor and the compiler are to be
run against the source file.

If you specify both PPONLY and NOPPONLY, the last one that is specified is used.

Effect on IPA Compile Step

The PPONLY has the same effect on the IPA Compile step as it does on a regular
compilation. It processes source code, then causes the compiler to stop processing
before it begins the IPA Compile step. You should not use this option for the IPA
Compile step.

Effect on IPA Link Step

The IPA Link step accepts the PPONLY option, but ignores it.

Chapter 6. Compiler Options 137

REDIR | NOREDIR

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: REDIR

CATEGORY: Program Execution

ÊÊ RED
NORED

ÊÍ

The REDIR option directs the compiler to create an object module that, when linked
and run, allows you to redirect stdin, stdout and stderr for your program from the
command line.

Effect on IPA Compile Step

If you specify the REDIR option for any compilation unit in the IPA Compile step, the
compiler generates information for the IPA Link step. This option also affects the
regular object module if you request one by specifying the IPA(OBJECT) option.

Effect on IPA Link Step

If you specify the REDIR option for the IPA Compile step, you do not need to specify
it again on the IPA Link step. The IPA Link step uses the information generated for
the compilation unit that contains the main() function, or for the first compilation unit
it finds if it cannot find a compilation unit containing main().

If you specify this option on both the IPA Compile and the IPA Link steps, the
setting on the IPA Link step overrides the setting on the IPA Compile step. This
situation occurs whether you use REDIR and NOREDIR as compiler options or specify
them using the #pragma runopts directive (on the IPA Compile step).

138 OS/390 V2R6.0 C/C++ User’s Guide

RENT | NORENT

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U

DEFAULT: NORENT

CATEGORY: Object Code Control

ÊÊ RENT
NORENT

ÊÍ

The RENT option specifies that the compiler is to take code that is not naturally
reentrant and make it reentrant. Refer to the OS/390 Language Environment
Programming Guide for a detailed description of reentrancy.

If you use the RENT option, the Linkage Editor cannot directly process the object
module that is produced. You must use either the binder, which is described in
“Chapter 12. Binding OS/390 C/C++ Programs” on page 289, or the prelinker, which
is described in “Appendix A. Prelinking and Linking OS/390 C/C++ Programs” on
page 403.

Notes:

1. Whenever you specify the RENT compiler option, a comment that indicates its
use is generated in your object module to aid you in diagnosing your program.

2. OS/390 C++ code always uses constructed reentrancy.

3. RENT variables reside in the modifiable writable static area for both OS/390 C
and OS/390 C++ programs.

4. NORENT variables reside in the code area (which may be write protected) for both
OS/390 C and OS/390 C++ programs.

The NORENT option specifies that the compiler is not to specifically generate
reentrant code from non-reentrant code. Any naturally reentrant code remains
reentrant.

Effect on IPA Compile Step

If you specify RENT or use #pragma strings(readonly) or #pragma
variable(RENT|NORENT) during the IPA Compile step, the information in the IPA
object file reflects the state of each symbol.

Effect on IPA Link Step

If you specify the RENT option on the IPA Link step, it ignores the option. The
reentrant/nonreentrant state of each symbol is maintained during IPA optimization
and code generation.

If you generate an IPA Link listing by using the LIST or MAP compiler option, the IPA
Link step generates a Partition Map listing section for each partition. If any symbols
within a partition are reentrant, the options section of the Partition Map displays the
RENT compiler option.

Chapter 6. Compiler Options 139

|

ROUND

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U U

DEFAULT: ROUND(N)

CATEGORY: Object Code Control

ÊÊ ROUND (N)
M
P
Z

ÊÍ

The ROUND(mode) option sets the rounding mode for floating-point compilations at
compile time where mode can be one of the following:

N round to the nearest representable number

M round towards minus infinity

P round towards plus infinity

Z round towards zero

ROUND() is the same as ROUND(N)

The ROUND(mode) option only applies to IEEE floating-point mode. In hexadecimal
mode, the rounding is always towards zero. If you specify ROUND(mode) in
hexadecimal floating-point mode, where mode is not Z, the compiler ignores
ROUND(mode) and issues a warning.

Effect on IPA Compile Step

The IPA Compile step generates information for the IPA Link step. The ROUND option
also affects the regular object module if you request one by specifying the
″IPA(OBJECT)″ option.

Effect on IPA Link Step

The IPA Link step merges and optimizes the application’s code, and then divides it
into sections for code generation. Each of these section is a partition. The IPA Link
step uses information from the IPA Compile step to ensure that an object is
included in a compatible partition. Refer to the “FLOAT” on page 91 for further
information.

SEARCH | NOSEARCH

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: NOSEARCH

140 OS/390 V2R6.0 C/C++ User’s Guide

|

||||
|
|

||

|||||

|

|

||||||||||||||||||||||||

|

|
|

||

||

||

||

||

|
|
|
|

|

|
|
|

|

|
|
|
|
|

CATEGORY: File Management

ÊÊ »

,

SE (opt)
//

NOSE

ÊÍ

The SEARCH option directs the preprocessor to look for system include files in the
specified libraries. System include files are those files that are associated with the
#include <filename> form of the #include preprocessor directive. See “Using
Include Files” on page 246 for a description of the #include preprocessor directive.

For further information on library search sequences, see “Search Sequences for
Include Files” on page 254.

The suboptions for the SEARCH option are identical to those for the LSEARCH option,
as described on page “LSEARCH | NOLSEARCH” on page 115.

The SYSLIB ddname is considered the last suboption for SEARCH, so that specifying
SEARCH (X) is equivalent to specifying SEARCH (X,DD:SYSLIB).

Any NOSEARCH option cancels all previous SEARCH specifications, and any SEARCH
options that follow it are used. When more than one SEARCH compile option is
specified, all libraries in the SEARCH options are used to find the system include files.

The NOSEARCH option instructs the preprocessor to search only those libraries that
are specified on the SYSLIB DD statement.

Notes:

1. SEARCH allows the compiler to distinguish between header files that have the
same name but reside in different data sets. If NOSEARCH is in effect, the compiler
searches for header files only in the data sets concatenated under the SYSLIB
DD statement. As the compiler includes the header files, it uses the first file it
finds, which may not be the correct one. Thus the build may encounter
unpredictable errors in the subsequent link-edit or bind, or may result in a
malfunctioning application.

2. If the filename in the #include directive is in absolute form, searching is not
performed. See “Determining whether the File Name is in Absolute Form” on
page 251 for more details on absolute #include filename.

Effect on IPA Compile Step

The SEARCH option is used for source code searching, and has the same effect on
an IPA Compile step as it does on a regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the SEARCH option, but ignores it.

Chapter 6. Compiler Options 141

|
|
|
|
|
|
|

SERVICE | NOSERVICE

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U

DEFAULT: NOSERVICE

CATEGORY: Debug/Diagnostic

ÊÊ SERV (string) ÊÍ

The SERVICE option places a string in the object module. The string is loaded into
memory when the program is executing. If the application fails abnormally, the
string is displayed in the traceback.

For OS/390 C, you can also specify this option in the source file by using the
#pragma options directive. If the SERVICE option is specified both on a #pragma
options directive and on the command line, the option that is specified on the
command line will be used.

You must enclose your string within opening and closing parentheses. You do not
need to include the string in quotes.

The following restrictions apply to the string specified:

v The string cannot exceed 64 characters in length. If it does, excess characters
are removed, and the string is truncated to 64 characters. Leading and trailing
blanks are also truncated.

v All quotes that are specified in the string are removed.

v All characters, including DBCS characters, are valid as part of the string provided
they are within the opening and closing parentheses.

v Parentheses that are specified as part of the string must be balanced. That is, for
each opening parentheses, there must be a closing one.

v When using the #pragma options directive (C only), the text is converted
according to the locale in effect.

v Only characters which belong to the invariant character set should be used, to
ensure that the signature within the object module remains readable across
locales.

Effect on IPA Compile Step

The SERVICE option has the same effect on the IPA Compile step (if you request
code generation by specifying the OBJECT suboption of the IPA option) as it does on
a regular compilation.

Effect on IPA Link Step

If you specify the SERVICE option on the IPA Compile step, or specify #pragma
options(SERVICE) in your code, it has no effect on the IPA Link step. Only the
SERVICE option you specify on the IPA Link step affects the generation of the service
string for that step.

142 OS/390 V2R6.0 C/C++ User’s Guide

SEQUENCE | NOSEQUENCE

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

CATEGORY: Source Code Control

DEFAULT for C++ NOSEQUENCE

ÊÊ SEQ
NOSEQ

ÊÍ

The SEQUENCE option defines the section of the input record that is to contain
sequence numbers. No attempt is made to sort the input lines or records into the
specified sequence or to report records out of sequence.

For OS/390 C++ programs of variable file length, the SEQUENCE option defines
columns 73 through 80 of the input record to contain sequence numbers. No
attempt is made to sort the input lines or records into those columns or to report
records out of sequence.

Options for OS/390 C

DEFAULT

v for C(F-Format): SEQUENCE (73,80)

v for C(V-Format): NOSEQUENCE

ÊÊ SEQ (m,n)
NOSEQ

ÊÍ

Under OS/390 C the SEQUENCE option has the additional syntax:
SEQUENCE(m,n)

where:

m Specifies the column number of the left-hand margin. The value of m must
be greater than 0 and less than 32767.

n Specifies the column number of the right-hand margin. The value of n must
be greater than m and less than 32767. An asterisk (*) can be assigned to n
toindicate the last column of the input record. Thus, SEQUENCE (74,*) shows
that sequence numbers are between column 74 and the end of the input
record.

Note: If your program uses the #include preprocessor directive to include OS/390
C library header files and you want to use the SEQUENCE option, you must
ensure that the specifications on the SEQUENCE option do not include any
columns from 20 through 50. That is, both m and n must be less than 20, or
both must be greater than 50. If your program does not include any OS/390
C library header files, you can specify any setting you want on the SEQUENCE
option when the setting is consistent with your own include files.

Chapter 6. Compiler Options 143

Effect on IPA Compile Step

The SEQUENCE option is used for source code analysis, and has the same effect on
an IPA Compile step as it does on a regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the SEQUENCE option, but ignores it.

144 OS/390 V2R6.0 C/C++ User’s Guide

SHOWINC | NOSHOWINC

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: NOSHOWINC

CATEGORY: Listing

ÊÊ SHOW
NOSHOW

ÊÍ

The SHOWINC option instructs the compiler to show, in both the compiler listing and
the pseudo-assembler listing, all include files processed. In the listing, the compiler
replaces all #include preprocessor directives with the source that is contained in
the include file. This option only applies if you also specify the SOURCE option.

Effect on IPA Compile Step

The SHOWINC option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the SHOWINC option, but ignores it.

SOM | NOSOM

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U

DEFAULT: NOSOM

CATEGORY: Direct-to-SOM

ÊÊ SOM
NOSOM

ÊÍ

The SOM option turns on implicit SOM mode, and also causes the file <som.hh> to
be included. It is equivalent to placing #pragma SOMAsDefault(on) at the start of the
translation unit.

All classes are implicitly derived from SOMObject until a #pragma SOMAsDefault(off)
is encountered.

For further details see the OS/390 C/C++ Programming Guide.

Chapter 6. Compiler Options 145

Effect on IPA Compile Step

The SOM option has the same effect on the IPA Compile step as it does on a regular
compilation.

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the SOM option for that
step.

SOMEINIT | NOSOMEINIT

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U

DEFAULT: SOMEINIT

CATEGORY: Direct-to-SOM

ÊÊ SOMEI
NOSOMEI

ÊÍ

The SOMEINIT option instructs the compiler to initialize SOM classes early, before
the main function. This reduces the size of the generated object module, by
avoiding unnecessary checks to determine whether or not the SOM class is
initialized.

With either the SOMEINIT or NOSOMEINIT option in effect, any reference to a static
member of a SOM class initializes the class early.

This option has no effect if SOM mode is off.

Effect on IPA Compile Step

The SOMEINIT option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the SOMEINIT option
for that step.

SOMGS | NOSOMGS

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U

DEFAULT: NOSOMGS

CATEGORY: Direct-to-SOM

146 OS/390 V2R6.0 C/C++ User’s Guide

ÊÊ SOMG
NOSOMG

ÊÍ

The SOMGS option instructs the compiler to disable direct access to attributes.
Instead, the get and set methods are used. This is equivalent to specifying #pragma
SOMNoDataDirect(on) as the first line of the translation unit.

The default NOSOMGS means that the direct data access method will be used. This
option has no effect if SOM mode is off.

Effect on IPA Compile Step

The SOMGS option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the SOMSGS option for
that step.

SOMRO | NOSOMRO

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U

DEFAULT: NOSOMRO

CATEGORY: Direct-to-SOM

ÊÊ »

,

SOMR (C++ ClassName)
NOSOMR

ÊÍ

The SOMRO option instructs the compiler to write the release order of the specified
classes to standard output in the form of a SOMReleaseOrder pragma. You can
capture the output from this option when developing new SOM classes, and include
the pragma in the class definition.

The SOMRO option has no effect if SOM mode is off.

For more information, see the OS/390 C/C++ Programming Guide.

Effect on IPA Compile Step

The SOMRO option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the SOMRO option for
that step.

Chapter 6. Compiler Options 147

SOMVOLATTR | NOSOMVOLATTR

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U

DEFAULT: NOSOMVOLATTR

CATEGORY: Direct-to-SOM

ÊÊ SOMV
NOSOMV

ÊÍ

The SOMVOLATTR option tells the compiler to generate volatile versions of the SOM
attribute _get and _set methods.

The following example shows the differences between the _get and _set methods
generated by OS/390 C++ without SOMVOLATTR, and the _get and _set methods
generated by OS/390 C++ with SOMVOLATTR. For example, consider the following
class:
class Temp : public SOMObject {
public:

int a;
#pragma SOMAttribute(a);

};

The OS/390 C++ compiler without the SOMVOLATTR option generates the following
function signatures for the accessor methods:
int Temp::_get_a ()
void Temp::_set_a (int)

The OS/390 C++ compiler with the SOMVOLATTR option generates the following
function signatures for the accessor methods:
int Temp::_get_a () const volatile
void Temp::_set_a (int) volatile

Effect on IPA Compile Step

The SOMVOLATTR option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the SOMVOLATTR option
for that step.

SOURCE | NOSOURCE

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: NOSOURCE

148 OS/390 V2R6.0 C/C++ User’s Guide

CATEGORY: Listing

ÊÊ SO
NOSO (Sequential filename)

Partitioned data set
Partitioned data set (member)
Hierarchical filename
Hierarchical directory

ÊÍ

The SOURCE option generates a listing that shows the original source input
statements plus any diagnostic messages.

If you specify SOURCE(filename), the compiler places the listing in the file that you
specified. If you do not specify a file name for the SOURCE option, the compiler uses
the SYSCPRT ddname if you allocated one. Otherwise, the compiler constructs the file
name as follows:
v If you are compiling a data set, the compiler uses the source file name to form

the name of the listing data set. The high-level qualifier is replaced with the
userid under which the compiler is running, and .LIST is appended as the
low-level qualifier.

v if the source file is an HFS file, the listing is written to a file that has the name of
the source file with a .lst extension in the current working directory.

The NOSOURCE option can optionally take a filename suboption. This filename then
becomes the default. If you subsequently use the SOURCE option without a filename
suboption, the compiler uses the filename that you specified in the earlier NOSOURCE.
For example, the following specifications have the same result:
CXX HELLO (NOSO(/hello.lis) SO

CXX HELLO (SO(/hello.lis)

If you specify SOURCE and NOSOURCE multiple times, the compiler uses the last
specified option with the last specified suboption. For example, the following
specifications have the same result:
CXX HELLO (NOSO(/hello.lis) SO(/n1.lis) NOSO(/test.lis) SO

CXX HELLO (SO(/test.lis)

Notes:

1. If you specify data set names with the SOURCE, LIST, or INLRPT option, the
compiler combines all the listing sections into the last data set name specified.

2. If you use the following form of the command in a JES3 batch environment
where xxx is an unallocated data set, you may get undefined results.
SOURCE(xxx)

Effect on IPA Compile Step

The SOURCE option has the same effect on the IPA Compile step that it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the SOURCE option, but ignores it.

Chapter 6. Compiler Options 149

SPILL | NOSPILL

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U

DEFAULT: SPILL(128)

CATEGORY: Object Code Control

ÊÊ SP
NOSP

ÊÍ

The SPILL option specifies the size of the spill area to be used for the compilation.
When too many registers are in use at once, the compiler dumps some of the into
temporary storage that is called the spill area.

You may have to expand the spill area; if so, you will receive a compiler message
telling you the size to which you should increase the spill area. Once you know the
spill area that your source program requires, you can add a #pragma
options(SPILL(size)) directive to your source. The maximum spill area size is
3900. Typically, you will only need to specify this option when compiling very large
programs with OPTIMIZE.

Notes:

1. There is an upper limit of 4096 bytes for the combined area for your spill area,
local variables and arguments passed to called functions at OPT. For best use of
your stack, do not pass large arguments, such as structures, by value.

2. If you specify NOSPILL, the compiler defaults to SPILL(128).

Effect on IPA Compile Step

If you specify the SPILL option for any compilation unit in the IPA Compile step, the
compiler generates information for the IPA Link step. This option also affects the
regular object module if you request one by specifying the IPA(OBJECT) option.

Effect on IPA Link Step

If you specify the SPILL option for the IPA Link step, it uses the value of the option
that you specify. The IPA Link step Prolog and Partition Map listing sections display
the value of the option that you specify.

If you do not specify the option for the IPA Link step, the value used for a partition
is the maximum SPILL option that you specified during the IPA Compile step for any
compilation unit that provides code for that partition. The Prolog section of the IPA
Link step listing does not display the value of the option, but the Partition Map
listing section does.

The option value that you specified for each IPA object file on the IPA Compile step
appears in the IPA Link step Compiler Options Map listing section.

150 OS/390 V2R6.0 C/C++ User’s Guide

|

|

SRCMSG | NOSRCMSG

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U

DEFAULT: NOSRCMSG

CATEGORY: Debug/Diagnostic

ÊÊ SRCM
NOSRCM

ÊÍ

The SRCMSG option adds the corresponding source code lines to the diagnostic
messages that are written to stderr. A finger line with a pointer to the column
position may also be shown.

NOSCRCMSG indicates that the source lines are not added to the diagnostic messages.

Effect on IPA Compile Step

The SRCMSG option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the SRCMSG option.

SSCOMM | NOSSCOMM

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U

DEFAULT: NOSSCOMM

CATEGORY: Source Code Control

ÊÊ SS
NOSS

ÊÍ

The SSCOMM option instructs the C compiler to recognize two slashes (//) as the
beginning of a comment terminates at the end of the line. It will continue to
recognize /* */ as comments.

If you include your OS/390 C program in your JCL stream DLM, be sure to change
the delimiters so that your comments are recognized as OS/390 C comments and
not as JCL statements. For example:
//COMPILE.SYSIN DD DATA,DLM=@@
#include <stdio.h>
void main(){

Chapter 6. Compiler Options 151

// OS/390 C comment
printf("hello world\n");
// A nested OS/390 C /* */ comment
}
@@
//* JCL comment

NOSSCOMM indicates that /* */ is the only valid comment format.

C++ Note: You can include the same delimiter in your JCL for C++ source code,
however you do not need to use the SSCOMM option.

Effect on IPA Compile Step

The SSCOMM option is used for source code analysis, and has the same effect on the
IPA Compile step as it does on a regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the SSCOMM option, but ignores it.

START | NOSTART

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U U

DEFAULT: START

CATEGORY: Object Code Control

ÊÊ STA
NOSTA

ÊÍ

The START option specifies that CEESTART is to be generated whenever necessary.

NOSTART indicates that CEESTART is never to be generated.

Whenever you specify the START compiler option, a comment that indicates its use
will be generated in your object module to aid you in diagnosing your program.

Effect on IPA Compile Step

If you specify the START option for any compilation unit in the IPA Compile step, the
compiler generates information for the IPA Link step. This option also affects the
regular object module if you request one by specifying the IPA(OBJECT) option.

Effect on IPA Link Step

The IPA Link step uses the value of the START option that you specify for that step.
It does not use the value that you specify for the IPA Compile step.

152 OS/390 V2R6.0 C/C++ User’s Guide

|

STRICT | NOSTRICT

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U U

DEFAULT: STRICT

CATEGORY: Object Code Control

ÊÊ STRICT
NOSTRICT

ÊÍ

The STRICT option instructs the compiler to perform computational operations in a
rigidly defined order so that the results are always determinable and recreatable.

NOSTRICT allows the compiler to reorder certain computations for better
performance. However, the end result may not be exactly the same as when STRICT
is specified.

In IEEE floating-point mode, NOSTRICT turns on FLOAT(MAF) unless you explicitly
specify FLOAT(NOMAF).

Effect on IPA Compile Step

The IPA Compile step generates information for the IPA Link step. This option also
affects the regular object module if you request one by specifying the IPA(OBJECT)
option.

Effect on IPA Link Step

The IPA Link step merges and optimizes the application’s code, and then divides it
into sections for code generation. Each of these sections is a partition. The IPA Link
step uses information from the IPA Compile step to ensure that an object is
included in a compatible partition. See “FLOAT” on page 91 for more information on
the effect of the STRICT option on the IPA Link step.

TARGET

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U U

DEFAULT: TARGET(LE, CURRENT)

CATEGORY: Program Execution and Object Code Control

Chapter 6. Compiler Options 153

|

||||
|
|

||

|||||

|

|

||||||||||||||

|

|
|

|
|
|

|
|

|

|
|
|

|

|
|
|
|
|

|

ÊÊ »

,

TARGET ()
LE
IMS
CURRENT
OSV1R2

ÊÍ

The TARGET option specifies the runtime environment and OS/390 release for which
the object module is to be generated. To use this option, select a runtime
environment of either LE or IMS. Then select the OS/390 Release, CURRENT or
OSV1R2. If you do not select a runtime environment or OS/390 Release the default is
TARGET(LE,CURRENT).

TARGET() Generates object code to run under OS/390 Language
Environment. It is the same as TARGET (LE,CURRENT).

The following suboptions target the Runtime Environment:

TARGET(LE) Generates object code to run under OS/390 Language
Environment. This is the default.

TARGET(IMS) Generates object code to run under the Information Management
System(IMS) subsystem. If you are compiling the main program,
you must also specify the PLIST(OS) option.

For more information about these suboptions refer to the topic
TARGET Runtime Environment Suboptions (LE,IMS).

The following suboptions target the OS/390 Release at program runtime:

TARGET(CURRENT)
Generates object code to run under the current version of OS/390.
This is the default.

TARGET(OSV1R2)
Generates object code to run under OS/390 Version 1 Release 2
and subsequent releases.

For more information about these suboptions refer to “TARGET OS/390 Release
Suboptions (CURRENT, OSV1R2)”.

The compiler generates a comment that indicates the value of TARGET in your object
module to aid you in diagnosing problems in your program.

If you specify the TARGET compile option more than once, the compiler uses the last
set of specified suboptions.

TARGET OS/390 Release Suboptions (CURRENT, OSV1R2)

The Target(OSV1R2) compiler option will allow you to generate code that can be
executed on a OS/390 Version 1 Release 2 system and subsequent versions. In
order to use this compiler option, you must utilize data sets for the Language
Environment and Class Libraries from the appropriate level of OS/390.

154 OS/390 V2R6.0 C/C++ User’s Guide

|
|
|
|
|

||
|

|

|
|
|

|
|
|

|
|
|
|

For example, to generate code to execute on an OS/390 V1R3 system, use V1R3
Language Environment and Class Library datasets during the assembly, compilation
and link-edit phases of application development on the OS/390 V2R6 system.

This compiler option will not allow you to exploit new functions provided on the
higher level OS/390 system, but rather allow you to build an application on a higher
level OS/390 system and execute on a lower level system.

Restrictions for C/C++: All input libraries used during the application build
process must be the appropriate level for the target OS/390 system.

v These system input libraries include any LE or C++ libraries, such as header,
object and Load Module (SCEEKLED) libraries.

v Ensure that any other libraries incorporated in the application, are compatible
with the target OS/390 system.

While there are no restrictions on the use of ARCH and TUNE with TARGET,á ensure
that the level specified is consistent with the target hardware.

TARGET Suboption Restrictions

CURRENT None.

OSV1R2 v The macro _TARGET_LIB_ is set to X’21020000’. The _BFP_ (add
work macro) is not defined.

v The compiler disables the language feature long long and
issues error messages if encountered in the source code.

v The compiler ignores the following options and issues a warning
message:

FLOAT() Default behaviour is FLOAT(HEX).

ROUND() Default behaviour is ROUND(N).

DLL(CBA) Default behaviour is DLL(NOCBA).

Restrictions for C: TARGET(OSV1R2) is not permitted in a #pragma options directive.

If you specify TARGET(OSV1R2) on the command line, and one or more of the
disallowed options appears in a #pragma directive, the compiler issues a warning
message and disables the option.

Effect on IPA Compile Step: If you specify the TARGET option for any compilation
unit in the IPA Compile step, the compiler generates information for the IPA Link
step. This option also affects the regular object module if you request one by
specifying the IPA(OBJECT) option.

The user is responsible for ensuring that all IPA Object files are compiled with the
appropriate header library files.

Effect on IPA Link Step: If you specify TARGET on the IPA Link step, it overrides
the TARGET value that you specified for the IPA Compile step.

The IPA Link step accepts the CURRENT and OSV1R2 suboptions. However, when
using TARGET suboptions ensure that:

v All IPA Object files are compiled with the appropriate TARGET suboption and
header files

Chapter 6. Compiler Options 155

|
|

|||

||

||
|

|
|

|
|

||

||

||
|

|

|
|
|

|
|

|
|

|
|

v All non-IPA object files are compiled with the appropriate TARGET suboption and
header files

v All other input libraries are compatible with the specified OS/390 runtime release

TARGET Runtime Environment Suboptions (LE,IMS)

The TARGET Runtime Enivronment Suboption allows you to select a runtime
environment of either LE or IMS.

Effect on IPA Compile Step: If you specify the TARGET option for any compilation
unit in the IPA Compile step, the compiler generates information for the IPA Link
step. This option also affects the regular object module if you request one by
specifying the IPA(OBJECT) option.

Effect on IPA Link Step: If you specify TARGET on the IPA Link step, it has the
following effects:

v It overrides the TARGET value that you specified for the IPA Compile step.

v It overrides the value that you specified for #pragma runopts(ENV). If you specify
TARGET(LE) or TARGET(), the IPA Link step sets the value of #pragma
runopts(ENV) to OS/390. If you specify TARGET(IMS), the IPA Link step sets the
value of #pragma runopts(ENV) to IMS.

v It may override the value that you specified for #pragma runopts(PLIST) or the
PLIST compiler option. If you specify TARGET(LE) or TARGET(), and you set the
value set for the PLIST option to something other than HOST, the IPA Link step
sets the values of #pragma runopts(PLIST) and the PLIST compiler option to IMS.
If you specify TARGET(IMS), the IPA Link step unconditionally sets the values of
the PLIST compiler option and #pragma runopts(PLIST) to IMS.

TEMPINC | NOTEMPINC

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U

DEFAULT: PDS TEMPINC(TEMPINC) or HFS directory TEMPINC(./tempinc)

CATEGORY: File Management

ÊÊ TEMPINC
NOTEMPINC (location)

ÊÍ

TEMPINC(location) places all template instantiation files into location, which may be a
PDS or an HFS directory. If you do not specify a location, the compiler places all
template instantiation files in a default location. If the source resides in a data set,
the default location is a PDS with a low-level qualifier of TEMPINC. The high-level
qualifier is the userid under which the compiler is running. If the source resides in
an HFS file, the default location is the HFS directory ./tempinc.

The NOTEMPINC option can optionally take a filename suboption. This filename then
becomes the default. If you subsequently use the TEMPINC option without a filename
suboption, then the compiler uses the filename that you specified in the earlier
NOTEMPINC. For example, the following specifications have the same result:

156 OS/390 V2R6.0 C/C++ User’s Guide

|
|

|

|

|
|

CXX HELLO (NOTEMPINC(/hello) TEMPINC

CXX HELLO (TEMPINC(/hello)

If you specify TEMPINC and NOTEMPINC multiple times, the compiler uses the last
specified option with the last specified suboption. For example, the following
specifications have the same result:
CXX HELLO (NOTEMPINC(/hello) TEMPINC(/n1) NOTEMPINC(/test) TEMPINC

CXX HELLO (TEMPINC(/test)

If you have large numbers of recursive templates, consider using FASTT. See
“FASTTEMPINC | NOFASTTEMPINC” on page 89 for details.

Note: If you use the following form of the command in a JES3 batch environment
where xxx is an unallocated data set, you may get undefined results.
TEMPINC(xxx)

Effect on IPA Compile Step

The TEMPINC option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the TEMPINC option for
that step.

TERMINAL | NOTERMINAL

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: TERMINAL

CATEGORY: Debug/Diagnostic

ÊÊ TERM
NOTERM

ÊÍ

The TERMINAL option directs all of the compiler’s diagnostic messages to stderr.

If you specify NOTERMINAL, then no diagnostic messages are sent to stderr. Under
OS/390 batch, the default for stderr is SYSPRINT.

If you specify the PPONLY option, the compiler turns on TERM.

Effect on IPA

The TERMINAL option affects both the IPA Compile and the IPA Link steps in the
same way that it affects a regular compilation.

Chapter 6. Compiler Options 157

TEST | NOTEST

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U U

CATEGORY: Debug/Diagnostic

DEFAULT: NOTEST(HOOK)

OS/390 C /C++

ÊÊ TEST
NOTEST

(
HOOK
NOHOOK

) ÊÍ

The TEST suboptions that are common to C compile, C++ compile, and IPA Link
steps are:

HOOK | NOHOOK When NOOPT is in effect When OPT is in effect

HOOK v For C++ compile, generates all
possible hooks

For C compile, generates all
possible hooks based on current
settings of BLOCK, LINE, and PATH
suboptions.

For IPA Link, generates Function
Entry, Function Exit, Function
Call, and Function Return hooks

v For C++ compile, generates
symbol information

For C compile, generates
symbol information unless NOSYM
is specified

For IPA Link, does not generate
symbol information

v Generates Function Entry,
Function Exit, Function Call and
Function Return hooks

v Does not generate symbol
information

NOHOOK v Does not generate any hooks

v For C++ compile, generates
symbol information.

For C compile, generates
symbol information based on the
current settings of SYM and BLOCK

For IPA Link, does not generate
any symbol information

v Does not generate any hooks

v Does not generate symbol
information

The TEST suboptions generate symbol tables and program hooks that the Debug
Tool needs to debug your program. The choices you make when compiling your
program affect the amount of Debug Tool function available during your debugging
session.

158 OS/390 V2R6.0 C/C++ User’s Guide

Trace Program Execution: To look at the flow of your code to aid in problem
determination, use the HOOK suboption with OPT in effect. Function entry, function
exit, function call, and function return hooks are generated. No symbol information
is generated.

When NOOPT is in effect, and you use the HOOK suboption, the debugger runs slower,
but all the Debug Tool commands such as AT ENTRY * are available.

Using TEST | NOTEST: For OS/390 C compile, you can specify the TEST | NOTEST
option on the command line and in the #pragma options preprocessor directive.
When you use both methods, the option on the command line takes precedence.
For example, if you usually do not want to generate debugging information when
you compile a program, you can specify the NOTEST option on a #pragma options
preprocessor directive. When you do want to generate debugging information, you
can then override the NOTEST option by specifying TEST on the command line rather
than editing your source program. Suboptions that you specified in a #pragma
options(NOTEST) directive, or with the NOTEST compiler option, are used if TEST is
subsequently specified on the command line.

If you specify the NOTEST option, debugging information is not generated.

You can use the CSECT option with the TEST option to place your debug information
in a named CSECT. This enables the compiler and linker to collect the debug
information in your module together which may improve the runtime performance of
your program.

If you specify the INLINE and TEST compiler options when NOOPTIMIZE is in effect,
INLINE is ignored.

If you specify the TEST option, the compiler turn on GONUMBER.

Note: To debug the following types of code, use the latest Remote Debugger
available from the OS/390 C/C++ Beta site at
http://www.software.ibm.com/ad/c390/cmvsbeta.htm:

v IEEE code

v code that uses the long long data type

v code that runs in a POSIX environment

Additional OS/390 C Compile Syntax

DEFAULT for C compile : NOTEST (HOOK,SYM,BLOCK,LINE,PATH)

ÊÊ TEST
NOTEST

(»

,

SYM
BLOCK
LINE
PATH

) ÊÍ

In addition to HOOK and NOHOOK, the following suboptions are available for C code.
You can use these suboptions along with the HOOK suboption for finer control when
debugging your program (default suboptions are underlined):

Chapter 6. Compiler Options 159

|

|
|
|

|

|

|

|

SYM| NOSYM Generates symbol table information

BLOCK | NOBLOCK Generates symbol information for nested blocks

LINE | NOLINE Generates line number hooks

PATH | NOPATH Generates path breakpoints

ALL Is equivalent to TEST (HOOK,SYM,BLOCK,LINE,PATH)

NONE Is equivalent to TEST
(HOOK,NOSYM,NOBLOCK,NOLINE,NOPATH)

Additional OS/390 C Compile suboptions

The TEST suboptions BLOCK, LINE,and PATH regulate the points where the compiler
inserts program hooks. When you set breakpoints, they are associated with the
hooks which are used to instruct the Debug Tool where to gain control of your
program.

The symbol table suboption SYM regulates the inclusion of symbol tables into the
object output of the compiler. The Debug Tool uses the symbol tables to obtain
information about the variables in the program.

SYM Generates symbol tables in the program’s object output that gives you
access to variables and other symbol information.

v You can reference all program variables by name, allowing you to
examine them or use them in expressions.

v You can use the Debug Tool command GOTO to branch to a label
(paragraph or section name).

BLOCK Inserts only block entry and exit hooks into your program’s object output. A
block is any number of data definitions, declarations, or statements that are
enclosed within a single set of braces. BLOCK also creates entry hooks and
exit hooks for nested blocks. If SYM is enabled, symbol tables are generated
for variables local to these nested blocks.

v You can only gain control at entry and exit of blocks.

v Issuing a command such as STEP causes your program to run, until it
reaches the exit point.

LINE Generates hooks at most executable statements. Hooks are not generated
for the following:
v Lines that identify blocks (lines that contain braces)
v Null statements
v Labels
v Statements that begin in an #include file.

PATH Generates hooks at all path points.

v This option does not influence the generation of entry and exit hooks for
nested blocks. You must specify the BLOCK suboption if you desire such
hooks.

v The Debug Tool can gain control only at path points and block entry and
exit points. If you attempt to STEP through your program, the Debug Tool
gains control only at statements that coincide with path points, giving the
appearance that not all statements are executed.

v The Debug Tool command GOTO is valid only for statements and labels
that coincide with path points.

160 OS/390 V2R6.0 C/C++ User’s Guide

ALL Inserts block and line hooks, and generates symbol table. Hooks are
generated at all statements, all path points (if-then-else, calls, and so on),
and all function entry and exit points.

ALL is equivalent to TEST(LINE, BLOCK, PATH, SYM).

NONE Generates all compiled-in hooks only at function entry and exit points. Block
hooks and line hooks are not inserted, and the symbol tables are
suppressed.

TEST(NONE) is equivalent to TEST(NOLINE, NOBLOCK, NOPATH, NOSYM).

For more information on debugging your program, see the Debug Tool User’s Guide
and Reference .

Effect on IPA Compile Step

On the IPA Compile step, you can specify all of the TEST suboptions that are
appropriate for the language of the code that you are compiling. However, they
affect processing only if you requested code generation, and only the conventional
object file is affected. If you specify the NOOBJECT suboption of the IPA compiler
option on the IPA Compile step, the IPA Compile step ignores the TEST option.

Effect on IPA Link Step

The IPA Link step supports only the TEST, TEST(HOOK), TEST(NOHOOK), and NOTEST
options. If you specify TEST(HOOK) or TEST, the IPA Link step generates function call,
entry, exit, and return hooks. It does not generate symbol table information. If you
specify NOTEST, the IPA Link step does not generate any debugging information. If
you specify TEST(NOHOOK), the IPA Link step generates limited debug information
without any hooks. If you specify any other TEST suboptions for the IPA Link step, it
turns them off and issues a warning message.

TUNE

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U U

DEFAULT: TUNE(3). If TUNE level is lower than ARCH, TUNE is forced to ARCH.

CATEGORY: Object Code Control

ÊÊ TUN(n) ÊÍ

The TUNE option specifies the architecture for which the executable program will be
optimized. The option will allow the optimizer to take advantage of architectural
differences such as scheduling of instructions.

You specify the group to which a model number belongs as a sub-parameter. If you
specify a model which does not exist or is not supported, a warning message is
issued stating that the suboption is invalid and that the default will be used.

Current models that are supported:

Chapter 6. Compiler Options 161

0 This option generates code that is executable on all models, but it will not
be able to take advantage of architectural differences on the models
specified below.

1 This option generates code that is executable on all models but is optimized
for the following models:

v 9021-520, 9021-640, 9021-660, 9021-740, 9021-820, 9021-860, and
9021-900

v 9021-xx1 and 9021-xx2

2 This option generates code that is executable on all models but that is
optimized for the following and follow on models:

v 9672-Rx2, 9672-Rx3, 9672-Rx4, and 2003

v 9672-Rx1, 9672-Exx, and 9672-Pxx

3 This option is the default. Produces code that is optimized for the 9672 G5
models

A comment that indicates the level of the TUNE option will be generated in your
object module to aid you in diagnosing your program.

Effect on IPA Compile Step

If you specify the TUNE option for any compilation unit in the IPA Compile step, the
compiler saves information for the IPA Link step. This option also affects the regular
object module if you request one by specifying the IPA(OBJECT) option.

Effect on IPA Link Step

The IPA Link step merges and optimizes the application’s code, and then divides it
into sections for code generation. Each of these sections is a partition.

If you specify the TUNE option for the IPA Link step, it uses the value of the option
you specify. The value you specify appears in the IPA Link step Prolog listing
section and all Partition Map listing sections.

If you do not specify the option on the IPA Link step, the value it uses for a partition
depends upon the TUNE option you specified during the IPA Compile step for any
compilation unit that provided code for that partition. If you specified the same TUNE
value for all compilation units, the IPA Link step uses that value. If you specified
different TUNE values, the IPA Link step uses the highest value of TUNE.

If the resulting level of TUNE is lower than the level of ARCH, TUNE is set to the level of
ARCH.

The Partition Map section of the IPA Link step listing, and the object module display
the final option value for each partition. If you override this option on the IPA Link
step, the Prolog section of the IPA Link step listing displays the value of the option.

The Compiler Options Map section of the IPA Link step listing displays the value of
the TUNE option that you specified on the IPA Compile step for each object file.

162 OS/390 V2R6.0 C/C++ User’s Guide

UNDEFINE

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: no action

CATEGORY: Preprocessor

ÊÊ »

,

UNDEF (name) ÊÍ

UNDEFINE(name) removes any value that name may have and makes its value
undefined.

For example, if you set OS2 to 1 with DEF(OS2=1), you can use UNDEF(OS2) option to
remove that value.

Effect on IPA Compile Step

The UNDEFINE option is used for source code analysis, and has the same effect on
the IPA Compile step that it does on a regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the UNDEFINE option, but ignores it.

UPCONV | NOUPCONV

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U

DEFAULT: NOUPCONV

CATEGORY: Source Code Control

ÊÊ UPC
NOUPC

ÊÍ

The UPCONV option causes the OS/390 C compiler to follow unsignedness preserving
rules when doing OS/390 C/C++ type conversions; that is, when widening all
integral types (char, short, int, long). Use this option when compiling older
OS/390 C/C++ programs that depend on the older conversion rules.

Whenever you specify the UPCONV compiler option, a comment noting its use will be
generated in your object module to aid you in diagnosing your program.

Chapter 6. Compiler Options 163

Effect on IPA Compile Step

The UPCONV option is used for source code analysis, and has the same effect on the
IPA Compile step that it does on a regular compilation.

Effect on IPA Link Step

The IPA Link step accepts UPCONV option, but ignores it.

USEPCH | NOUSEPCH

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: NOUSEPCH

CATEGORY: File Management

ÊÊ USEP
NOUSEP (Sequential filename)

Partitioned data set
Partitioned data set (member)
Hierarchical filename
Hierarchical directory

ÊÍ

The USEP option instructs the compiler to use precompiled header files. If you use
USEP alone, the compiler searches for the specified file and uses it. If the file you
specified does not exist, the compiler continues with a normal compilation.

If you specify the GENP and USEP options together, the compiler determines if the last
file that is specified exists. If it does, the compiler updates the file if necessary, and
USEP takes effect. If it does not exist, the compiler creates the file, and USEP takes
effect. If you consistently use both options, for example by coding them in your JCL,
you can ensure that you are always using current precompiled header files.

If you specify USEP(filename) or GENP(filename) USEP, the compiler uses the
specified name for the precompiled header file. If you do not specify a filename for
either option, the compiler uses the SYSCPCH ddname if you allocated one.
Otherwise, the compiler constructs the file name as follows:

v If you are compiling a data set, the compiler uses the source file name to form
the name of the precompiled header file data set. The high-level qualifier is
replaced with the userid under which the compiler is running, and PCH (for C) or
PCHPP (for C++) is appended as the low-level qualifier.

v If the source file is an HFS file, the precompiled header file name is formed using
the name of the source file with a .pch (for C) or .pchpp(for C++) extension in
the current working directory.

For more information on using GENP and USEP together, see “Using the GENP and
USEP Compiler Options” on page 263.

Notes:

1. The compiler ignores this option if you specify the options PPONLY, SHOWINC, or
EXPMAC.

164 OS/390 V2R6.0 C/C++ User’s Guide

2. You cannot use a C precompiled header file for C++, or a C++ precompiled
header file for C.

3. If you specify different file names with the GENP and USEP options, the file name
that is specified last is used with both options.

Effect on IPA Compile Step

The USEP option is used for source code analysis, and has the same effect on the
IPA Compile step that it does on a regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the USEP option, but ignores it.

WSIZEOF | NOWSIZEOF

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: NOWSIZEOF

CATEGORY: Source Code Control

ÊÊ WSIZEOF
NOWSIZEOF

ÊÍ

When you use the WSIZEOF option, sizeof returns the size of the widened type for
function return types instead of the size of the original return type. For example, if
you compile the following program with the WSIZEOF option, the value of i is 4.
char foo();
i = sizeof foo();

C/C++ compilers prior to and including C/C++ MVS/ESA Version 3 Release 1
returned the size of the widened type instead of the original type for function return
types.

The OS/390 C/C++ compiler now gives i the value 1, which is the size of the
original type char.

If your source code depends on the behavior of the old compilers, use the WSIZEOF
option to return the size of widened type for function return types.

The WSIZEOF option has exactly the same effect as putting a #pragma wsizeof(on)
at the beginning of your source file. For more information on #pragma wsizeof(on),
see OS/390 C/C++ Language Reference .

You cannot specify the WSIZEOF option in a #pragma options directive.

Effect on IPA Compile Step

The WSIZEOF option has the same effect on the IPA Compile step that it does on a
regular compilation.

Chapter 6. Compiler Options 165

Effect on IPA Link Step

The IPA Link step accepts the WSIZEOF option, but ignores it.

XREF | NOXREF

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U U U

DEFAULT: NOXREF

CATEGORY: Listing

ÊÊ XR
NOXR

ÊÍ

The XREF option generates a cross-reference listing that shows file definition, line
definition, reference, and modification information for each symbol. It also generates
the External Symbol Cross Reference.

For C, a separate offset listing of the variables will appear after the cross reference
table.

Note: If you use the following form of the command in a JES3 batch environment
where xxx is an unallocated data set, you may get undefined results:
XREF(xxx)

Effect on IPA Compile Step

For C, if you specify the XREF, IPA(ATTRIBUTE), or IPA(XREF) option for the IPA
Compile step, the compiler saves symbol storage offset information in the IPA object
file. No such information is produced for the regular object module that is produced
by using IPA(OBJECT). The XREF|NOXREF compiler option and #pragma
options(XREF|NOXREF) have the same effect on IPA.

For C++, this option has the same effect on the IPA Compile step as it does on a
regular C++ compilation.

Effect on IPA Link Step

If you specify the XREF option for the IPA Link step, it generates an External Symbol
Cross Reference listing section for each partition.

The IPA Link step creates a Storage Offset listing section if you created your IPA
objects with the C compiler and the XREF, IPA(ATTR), or IPA(XREF) option, and if IPA
did not coalesce the symbols for the current partition.

166 OS/390 V2R6.0 C/C++ User’s Guide

XSOMINC | NOXSOMINC

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U

DEFAULT: NOXSOMINC

CATEGORY: Direct-to-SOM

ÊÊ XS
NOXS

(»

,

suboption
) ÊÍ

The XSOMINC option allows you to exclude header files when implicit SOM mode is
turned on. By excluding header files, you prevent the classes in those header files
from deriving from the SOMobject class when implicit SOM mode is turned on. You
can exclude header files for sets of partitioned data sets (PDSs) or Hierarchical File
System (HFS) directories.

suboption may be one of the following:

v A set of partitioned data sets that are specified as data set qualifiers followed by
a plus sign. If the OE compiler option is in effect, you must prefix the first data set
qualifier with a double slash (//). The double slash is optional if you do not
specify the OE option.

v An HFS directory or directories. The directory name must end with a slash. If you
do not specfiy an ending slash, the compiler appends one.

The following examples illustrate the use of the different suboptions:

Example 1- set of PDSs, quotes used around qualifiers

If you specify the following, any PDS name that starts with the qualifiers
myuserid.TEST is excluded:
XSOMINC('myuserid.TEST.+')

For example, the compiler excludes the following data sets:
myuserid.TEST
myuserid.TEST.CXXHDR

Example 2- set of PDSs, no quotes used around qualifiers

If you do not use single quotes around the data set qualifiers, the compiler prefixes
the data set qualifiers with your default high-level qualifier.

For example, if you specify XSOMINC(TEST.+), and your default high-level qualifier is
myuserid, the compiler excludes the following data sets:
myuserid.TEST
myuserid.TEST.CXXHDR

Chapter 6. Compiler Options 167

Example 3-absolute HFS file name

If you specify an absolute HFS file name (one with a directory name) on an
#include statement, the compiler compares that name against the suboptions
specified on the XSOMINC option. If the directory names match, the compiler
excludes the classes in the specified file.

For example, if you specify XSOMINC(/dirname/) and #include "/dirname/a.h", the
directory names match, and the compiler excludes /dirname/a.h.

Example 4-relative HFS file name

If you specify a relative HFS file name (one without a directory name) on a #include
statement, the compiler combines this file name with the suboptions specified for
the SEARCH or LSEARCH options. The compiler compares the resulting file name to
what you specified for the XSOMINC option, and if the directory names match,
excludes the file.

For example, if you specify the following:
XSOMINC(/dirname/)
LSEARCH(/dirname/)

#include "new/a.h."

The resulting file name is /dirname/new/a.h. The directory name matches what you
specified on the XSOMINC option, and the compiler excludes the file.

If you specify XSOMINC more than once, the compiler will use all of the XSOMINC
suboptions to determine what to exclude. If you specify the NOXSOMINC option, the
compiler does not use previously specified XSOMINC options. However, the compiler
will use XSOMINC options that you specify after the NOXSOMINC option.

Although the default is NOXSOMINC, system programmers should set the default to
XSOMINC (//'high-level-qualifier.SCEEH.+ '), which instructs the compiler to
exclude classes in all standard OS/390 C/C++ header files from inheriting from
SOMobject when implicit SOM mode is on.

This option has no effect if implicit SOM mode is off.

Effect on IPA Compile Step

The XSOMINC option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the XSOMINC option for
that step.

Description of Compatible Compiler Options

The following section describes compiler options which are compatible with previous
versions of the compiler. Use these options only if they are already in your code.
For new programs, you should use the replacement option that is listed in Table 5
on page 62. Compiler options are listed alphabetically. The syntax diagrams show
the abbreviated forms of the compiler options.

168 OS/390 V2R6.0 C/C++ User’s Guide

Note: Some parameters such as the output data set may differ between the option
that is described and its replacement option. Read the description of the
replacement option before you use it.

DECK | NODECK

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U

DEFAULT: NODECK

CATEGORY: File Management

ÊÊ DECK
NODECK

ÊÍ

The DECK option specifies whether the compiler is to produce an object module and
store it in the data set defined by the SYSPUNCH DD statement. For new OS/390
C/C++ programs, use the OBJECT option. Table 22 details the relationship between
the DECK and OBJECT options. For a description of OBJECT see “OBJECT |
NOOBJECT” on page 125.

Table 22. Relationship between DECK and OBJECT

DECK | NODECK
Option

OBJECT |
NOOBJECT Option Result

NODECK OBJECT Object module is generated and stored in
data set defined by SYSLIN DD

DECK OBJECT Object module is generated. It is stored in
data set defined by SYSLIN DD. A warning
will be issued.

NODECK NOOBJECT No object module is generated

DECK NOOBJECT Object module is generated and stored in
data set defined by SYSPUNCH DD

Note: The defaults are OBJECT and NODECK

Effect on IPA Compile Step

The DECK option has the same effect on the IPA Compile step as it does on a
regular compilation.

Effect on IPA Link Step

The DECK option has the same effect on the IPA Compile step as it does on a
regular compilation. The DECK option only affects the step on which it is specified, so
if you specify it for the IPA Compile step, it has no effect on the IPA Link step.

Chapter 6. Compiler Options 169

HWOPTS | NOHWOPTS

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: NOHWOPTS

CATEGORY: Preprocessor

ÊÊ HWO (STR)
(NOSTR)

NOHWO

ÊÍ

Note: The ARCH option has replaced the HWOPTS option. HWOPTS(STRING) maps to
ARCH(1), and HWOPTS(NOSTRING) maps to ARCH(0). If you specify both HWOPTS
and ARCH, ARCH takes effect. Use the ARCH option instead of HWOPTS when
compiling new OS/390 C programs.

See “ARCHITECTURE” on page 73.

The HWOPTS option specifies whether the compiler is to generate code to take
advantage of different hardware. Suboptions are:

STRING Creates code for hardware that has Logical String
Assist (LSA). On such hardware, built-in functions
will have better performance if you select this
option.

NOSTRING Creates code for hardware that does not have LSA.

Effect on IPA Compile Step

If you specify the HWOPTS option for any compilation unit in the IPA Compile step, the
compiler generates information for the IPA Link step. This option also affects the
regular object module if you request one by specifying the IPA(OBJECT) option.

Effect on IPA Link Step

The HWOPTS option has the same effect on the IPA Link step as the ARCH(1) option.
Refer to “ARCHITECTURE” on page 73 for more information.

SYSLIB

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: no action

CATEGORY: File Management

170 OS/390 V2R6.0 C/C++ User’s Guide

ÊÊ SYSL (pdsnames-list) ÊÍ

Note: When compiling new OS/390 C/C++ applications, use SEARCH instead of
SYSLIB.

The SYSLIB option specifies a list of PDSs that contain system header files. The
PDSs in the list are dynamically allocated to the SYSLIB DD name. If you already
have a SYSLIB ddname specified, the compiler uses that ddname instead of the list
that you specified, and issues a warning message.

If you want to override the default SYSLIB that the CC exec allocated, you must
allocate the ddname SYSLIB before you invoke CC. If the ddname SYSLIB is not
already allocated before you invoke the CC exec, CC will allocate the default SYSLIB.
If you invoke CC with the SYSLIB compiler option, the compiler ignores the option
specification, and CC will allocate the default SYSLIB CEE.SCEEH.H and
CEE.SCEEH.SYS.H.

Effect on IPA Compile Step

The SYSLIB option is used for source code analysis, and has the same effect on the
IPA Compile step as it does on a regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the SYSLIB option, but ignores it.

SYSPATH | NOSYSPATH

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U

DEFAULT: NOSYSPATH

CATEGORY: File Management

ÊÊ SYS
(pathlist)

NOSYS

ÊÍ

Note: When compiling new OS/390 C++ applications or for HFS searching, use
SEARCH instead of SYSPATH. If you use both SEARCH and SYSPATH, the compiler
uses the option that you specified last, and ignores the other.

The SYSPATH option specifies pathnames. The compiler uses these pathnames to
construct names of PDSs that it will search for system header files. In addition,
OS/390 C++ supports SYSLIB ddnames so that header files can be searched in
exactly the same way they are in OS/390 C. The compiler uses SYSLIB to search
for include file after it performs a search using the OS/390 C++ SYSPATH directive.

Chapter 6. Compiler Options 171

You must specify each path in the SYSPATH compiler option as a sequence of
directory names that are separated by a slash (/). The directory name must be one
of the following:

v A valid PDS qualifier that does not contain a dot (.)

v The current directory (.)

v The parent directory (..)

The following are all valid path names:
v /cbc/cxxproto
v /Usr/Include
v /tcpip/include
v /dept120/../usr/include/.
v local /include

Note: /dept120/../usr/include/. resolves to the same path as /usr/include

If an include file begins with a slash (/), it is considered absolute ; otherwise, it is
considered relative . A relative file uses the SYSPATH information, in addition to itself,
to build a PDS member name, whereas an absolute file does not require the
SYSPATH information. An absolute file is considered explicit, and the compiler does
not perform a search.

A SYSPATH of /CBC/SCBCH tells the compiler to search for the following:

v *.h files in 'CBC.SCBCH.H'

v *.c files in 'CBC.SCBCH.C'

v *.inl files in 'CBC.SCBCH.INL'

For additional information see “Using Include Files” on page 246.

To reset the current syspath information, you must specify NOSYSPATH followed by
SYSPATH. You must specify NOSYSPATH to reset your installation-defined SYSPATH.

Effect on IPA Compile Step

The SYSPATH option has the same effect on the IPA Compile step as it has on a
regular compilation.

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the SYSPATH option for
that step.

USERLIB

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U U U

DEFAULT: no action

CATEGORY: File Management

172 OS/390 V2R6.0 C/C++ User’s Guide

ÊÊ USERL (pdsnames-list) ÊÍ

Note: When compiling new OS/390 C/C++ applications, use the LSEARCH option
instead of USERLIB. If you use both LSEARCH and USERLIB, the compiler uses
the option that you specified last, and ignores the other.

The USERLIB option specifies a list of PDSs that contain user header files. The
PDSs in the list are dynamically allocated to the USERLIB ddname. If you already
have a USERLIB ddname specified, the compiler uses that ddname instead of the
list that you specified, and issues a warning.

Effect on IPA Compile Step

The USERLIB option is used for source code analysis, and has the same effect on
the IPA Compile step as it has on a regular compilation.

Effect on IPA Link Step

The IPA Link step accepts the USERLIB option, but ignores it.

USERPATH | NOUSERPATH

C C++ Accepted by
IPA Link

Special IPA Processing

IPA Compile IPA Link

U

DEFAULT: NOUSERPATH

CATEGORY: File Management

ÊÊ USER
(pathlist)

NOUSER

ÊÍ

Note: When compiling new OS/390 C++ applications or for HFS searching, use
LSEARCH instead of USERPATH. If you use both LSEARCH and USERPATH, the
compiler uses the option that you specified last, and ignores the other.

The USERPATH option specifies paths to search for user-defined header files. The
compiler uses these pathnames to construct names of PDSs that it searches for
your header files. The USERPATH option only applies to searches for PDSs.

You must specify each file in the USERPATH compiler option as a sequence of
directory names that are separated by a slash (/). The directory name must be one
of the following:
v A valid PDS qualifier that does not contain a dot (.)
v The current directory (.)
v The parent directory (..)

The following are all valid path names:
v /Usr/Include
v /tcpip/include

Chapter 6. Compiler Options 173

v /dept120/../usr/include/.
v local /include

Note: /dept120/../usr/include/. resolves to the same path as /usr/include

If an include file begins with a slash (/), it is absolute ; otherwise, it is relative . A
relative file uses the USERPATH information, in addition to itself, to build a PDS
member name, whereas an absolute path does not require the USERPATH
information. If an OS/390 format is used, the file is explicit and no additional
searching is performed.

For example, a USERPATH of /USER/HEADERS instructs the compiler to search for the
following:

*.h files in 'USER.HEADERS.H'
*.c files in 'USER.HEADERS.C'
*.inl files in 'USER.HEADERS.INL'

You can also use the LSEARCH option to control the search for include files. For
additional information, see “Using Include Files” on page 246.

Effect on IPA Compile Step

The USERPATH option has the same effect on the IPA Compile step as it has on a
regular compilation.

Effect on IPA Link Step

The IPA Link step issues a diagnostic message if you specify the USERPATH option
for that step.

Using the OS/390 C Compiler Listing

If you select the SOURCE or LIST option, the compiler creates a listing that contains
information about the source program and the compilation. If the compilation
terminates before reaching a particular stage of processing, the compiler does not
generate corresponding parts of the listing. The listing contains standard information
that always appears, together with optional information that is supplied by default or
specified through compiler options.

In an interactive environment you can also use the TERMINAL option to direct all
compiler diagnostic messages to your terminal. The TERMINAL option directs only the
diagnostic messages part of the compiler listing to your terminal.

Note: Although the compiler listing is for your use, it is not a programming interface
and is subject to change.

IPA Considerations

The listings that the IPA Compile step produces are basically the same as those
that a regular compilation produces. Any differences are noted throughout this
section.

The IPA Link step listing has a separate format from the listings mentioned above.
Many listing sections are similar to those that are produced by a regular compilation

174 OS/390 V2R6.0 C/C++ User’s Guide

or the IPA Compile step with the IPA(OBJECT) option specified. Refer to “Using the
IPA Link Step Listing” on page 193 for information about IPA Link step listings.

Example of an OS/390 C Compiler Listing

Figure 15 shows an example of an OS/390 C compiler listing.

15647A01 V2 R6 M00 OS/390 C 'TSCTEST.OSV2R6M0.SCBCSAM(CBC3UAAM)' 05/25/1998 17:14:44 Page 1

* * * * * P R O L O G * * * * *

Compile Time Library : 22060000
Command options:

Program name. : 'TSCTEST.OSV2R6M0.SCBCSAM(CBC3UAAM)'
Compiler options. : *NOGONUMBER *NOALIAS *NODECK *NORENT *TERMINAL *NOUPCONV *SOURCE *LIST

: *XREF *AGGR *NOPPONLY *NOEXPMAC *NOSHOWINC *NOOFFSET *MEMORY *NOSSCOMM
: *NOLONGNAME *START *EXECOPS *ARGPARSE *NOEXPORTAL *NODLL(NOCALLBACKANY)
: *NOLIBANSI *NOWSIZEOF *REDIR *ANSIALIAS
: *TUNE(3) *ARCH(0) *SPILL(128) *MAXMEM(2097152)
: *TARGET(LE) *FLAG(I) *NOTEST(SYM,BLOCK,LINE,PATH,HOOK) *NOOPTIMIZE
: *INLINE(AUTO,REPORT,100,1000) *NESTINC(255)
: *NOCHECKOUT(NOPPTRACE,PPCHECK,GOTO,ACCURACY,PARM,NOENUM,
: NOEXTERN,TRUNC,INIT,NOPORT,GENERAL)
: *FLOAT(HEX,FOLD,NOAFP) *STRICT
: *NOCSECT
: *NOEVENTS
: *OBJECT
: *NOGENPCH
: *NOUSEPCH
: *NOOPTFILE
: *NOSERVICE
: *NOOE
: *NOIPA
: *SEARCH(//'CEE.SCEEH.+')
: *NOLSEARCH
: *NOLOCALE *HALT(16) *PLIST(HOST)

Language level. : *EXTENDED
Source margins. :
Varying length. : 1 - 32767
Fixed length. : 1 - 72

Sequence columns. :
Varying length. : none
Fixed length. : 73 - 80

* * * * * E N D O F P R O L O G * * * * *
15647A01 V2 R6 M00 OS/390 C 'TSCTEST.OSV2R6M0.SCBCSAM(CBC3UAAM)' 05/25/1998 17:14:44 Page 2

* * * * * S O U R C E * * * * *

LINE STMT SEQNBR INCNO
...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+..

1 |#include <stdio.h> | 1
2 | | 2
3 |#include "cbc3uaan.h" | 3
4 | | 4
5 |void convert(double); | 5
6 | | 6
7 |int main(int argc, char **argv) | 7
8 |{ | 8
9 | double c_temp; | 9

10 | | 10
11 1 | if (argc == 1) { /* get Celsius value from stdin */ | 11
12 | int ch; | 12
13 | | 13
14 2 | printf("Enter Celsius temperature: \n"); | 14
15 | | 15
16 3 | if (scanf("%f", &c_temp) != 1) { |
17 4 | printf("You must enter a valid temperature\n"); | 17
18 | } | 18
19 | else { | 19
20 5 | convert(c_temp); | 20
21 | } | 21
22 | } | 22
23 | else { /* convert the command-line arguments to Fahrenheit */ | 23
24 | int i; | 24
25 | | 25

Figure 15. Example of an OS/390 C listing (Part 1 of 6)

Chapter 6. Compiler Options 175

26 6 | for (i = 1; i < argc; ++i) { | 26
27 7 | if (sscanf(argv[i], "%f", &c_temp) != 1) |
28 8 | printf("%s is not a valid temperature\n",argv[i]); | 28
29 | else | 29
30 9 | convert(c_temp); | 30
31 | } | 31
32 | } | 32
33 |} | 33
34 | | 34
35 |void convert(double c_temp) { | 35
36 10 | double f_temp = (c_temp * CONV + OFFSET); | 36
37 11 | printf("%5.2f Celsius is %5.2f Fahrenheit\n",c_temp, f_temp); | 37
38 |} | 38

* * * * * E N D O F S O U R C E * * * * *
15647A01 V2 R6 M00 OS/390 C 'TSCTEST.OSV2R6M0.SCBCSAM(CBC3UAAM)' 05/25/1998 17:14:44 Page 3

* * * * * I N C L U D E S * * * * *

INCLUDE FILES --- FILE# NAME

1 TSCTEST.CEE180.SCEEH.H(STDIO)
2 TSCTEST.CEE180.SCEEH.H(FEATURES)
3 TSCTEST.OSV2R6M0.SCBCSAM(CBC3UAAN)

* * * * * E N D O F I N C L U D E S * * * * *
15647A01 V2 R6 M00 OS/390 C 'TSCTEST.OSV2R6M0.SCBCSAM(CBC3UAAM)' 05/25/1998 17:14:44 Page 4

* * * * * C R O S S R E F E R E N C E L I S T I N G * * * * *

IDENTIFIER DEFINITION ATTRIBUTES
<SEQNBR>-<FILE NO>:<FILE LINE NO>

___valist 1-1:116 Class = typedef, Length = 8
Type = array[2] of pointer to unsigned char
1-1:119, 1-1:273, 1-1:274, 1-1:275

__abend 1-1:529 Type = struct with no tag in union at offset 0

__alloc 1-1:539 Type = struct with no tag in union at offset 0

__amrc_ptr 1-1:561 Class = typedef, Length = 4
Type = pointer to struct __amrctype

__amrc_type 1-1:557 Class = typedef, Length = 220
Type = struct __amrctype
1-1:561

.

.

.
vprintf Class = extern

Type = function returning int
1-1:274

vsprintf Class = extern
Type = function returning int
1-1:275

FILE 1-1:73 Class = typedef, Length = 4
Type = struct __ffile
1-1:227, 1-1:228, 1-1:229, 1-1:230, 1-1:231, 1-1:232, 1-1:233, 1-1:234, 1-1:235, 1-1:237,
1-1:238, 1-1:239, 1-1:241, 1-1:242, 1-1:243, 1-1:244, 1-1:245, 1-1:246, 1-1:247, 1-1:249,
1-1:250, 1-1:255, 1-1:260, 1-1:262, 1-1:263, 1-1:270, 1-1:272, 1-1:273, 1-1:474, 1-1:475,
1-1:476, 1-1:478, 1-1:568

* * * * * E N D O F C R O S S R E F E R E N C E L I S T I N G * * * * *

Figure 15. Example of an OS/390 C listing (Part 2 of 6)

176 OS/390 V2R6.0 C/C++ User’s Guide

15647A01 V2 R6 M00 OS/390 C 'TSCTEST.OSV2R6M0.SCBCSAM(CBC3UAAM)' 05/25/1998 17:14:44 Page 15

* * * * * S T R U C T U R E M A P S * * * * *

===
| Aggregate map for: Total size: 8 bytes |
|...|
|__rrds_key_type |
|===|
Offset	Length	Member Name
Bytes(Bits)	Bytes(Bits)	
===================	===================	===
0	4	__fill
4	4	__recnum
===

===
| Aggregate map for: Total size: 4 bytes |
|...|
|__code |
|===|
Offset	Length	Member Name
Bytes(Bits)	Bytes(Bits)	
===================	===================	===
0	4	__error
0	4	__abend
0	2	__syscode
2	2	__rc
0	4	__feedback
0	1	__fdbk_fill
1	1	__rc
2	1	__ftncd
3	1	__fdbk
0	4	__alloc
0	2	__svc99_info
2	2	__svc99_error
===

.

.

.
* * * * * E N D O F S T R U C T U R E M A P S * * * * *

15647A01 V2 R6 M00 OS/390 C 'TSCTEST.OSV2R6M0.SCBCSAM(CBC3UAAM)' 05/25/1998 17:14:44 Page 28

* * * * * M E S S A G E S U M M A R Y * * * * *

Total Informational(00) Warning(10) Error(30) Severe Error(40)

0 0 0 0 0
* * * * * E N D O F M E S S A G E S U M M A R Y * * * * *

Figure 15. Example of an OS/390 C listing (Part 3 of 6)

Chapter 6. Compiler Options 177

15647A01 V2 R6 M00 OS/390 C 'TSCTEST.OSV2R6M0.SCBCSAM(CBC3UAAM)' 05/25/1998 17:14:44 Page 29

Inline Report (Summary)

Reason: P : #pragma noinline was specified for this routine
F : #pragma inline was specified for this routine
A : Automatic inlining
- : No reason

Action: I : Routine is inlined at least once
L : Routine is initially too large to be inlined
T : Routine expands too large to be inlined
C : Candidate for inlining but not inlined
N : No direct calls to routine are found in file (no action)
U : Some calls not inlined due to recursion or parameter mismatch
- : No action

Status: D : Internal routine is discarded
R : A direct call remains to internal routine (cannot discard)
A : Routine has its address taken (cannot discard)
E : External routine (cannot discard)
- : Status unchanged

Calls/I : Number of calls to defined routines / Number inline
Called/I : Number of times called / Number of times inlined

Reason Action Status Size (init) Calls/I Called/I Name

A I E 16 0 2/2 convert
A T,N E 114 (74) 2/2 0 main

Mode = AUTO Inlining Threshold = 100 Expansion Limit = 1000

15647A01 V2 R6 M00 OS/390 C 'TSCTEST.OSV2R6M0.SCBCSAM(CBC3UAAM)' 05/25/1998 17:14:44 Page 30

Inline Report (Call Structure)

Defined Function : convert
Calls To : 0

Called From(2,2) : main(2,2)

Defined Function : main
Calls To(2,2) : convert(2,2)

Called From : 0

Figure 15. Example of an OS/390 C listing (Part 4 of 6)

178 OS/390 V2R6.0 C/C++ User’s Guide

15647A01 V2 R6 M00 OS/390 C 'TSCTEST.OSV2R6M0.SCBCSAM(CBC3UAAM)' 05/25/1998 17:14:44 Page 31

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

Timestamp and Version Information
000000 F1F9 F9F8 =C'1998' Compiled Year
000004 F0F5 F2F5 =C'0525' Compiled Date MMDD
000008 F1F7 F1F4 F4F4 =C'171444' Compiled Time HHMMSS
00000E F0F2 F0F6 F0F0 =C'020600' Compiler Version

Timestamp and Version End

15647A01 V2 R6 M00 OS/390 C 'TSCTEST.OSV2R6M0.SCBCSAM(CBC3UAAM)': main 05/25/1998 17:14:44 Page 32

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

PPA1: Entry Point Constants
000018 1CCE A106 =F'483303686' Flags
00001C 0000 02F0 =A(PPA2-main)
000020 0000 0000 =F'0' No PPA3
000024 0000 0000 =F'0' No EPD
000028 FFFC 0000 =F'-262144' Register save mask
00002C 0000 0000 =F'0' Member flags
000030 90 =AL1(144) Flags
000031 0000 00 =AL3(0) Callee's DSA use/8
000034 0040 =H'64' Flags
000036 0012 =H'18' Offset/2 to CDL
000038 0000 0000 =F'0' Reserved
00003C 5000 00E9 =F'1342177513' CDL function length/2
000040 0000 0040 =F'64' CDL function EP offset
000044 3826 0000 =F'942014464' CDL prolog
000048 4009 00E0 =F'1074331872' CDL epilog
00004C 0000 0000 =F'0' CDL end
000050 0004 **** AL2(4),C'main'

PPA1 End

00001 | * #include <stdio.h>
00002 | *
00003 | * #include "cbc3uaan.h"
00004 | *
00005 | * void convert(double);
00006 | *
00007 | * int main(int argc, char **argv)

000058 00007 | main DS 0D
000058 47F0 F022 00007 | B 34(,r15)
00005C 01C3 C5C5 CEE eyecatcher
000060 0000 00D8 DSA size
000064 FFFF FFC0 =A(PPA1-main)
000068 47F0 F001 00007 | B 1(,r15)
00006C 58F0 C31C 00007 | L r15,796(,r12)
000070 184E 00007 | LR r4,r14
000072 05EF 00007 | BALR r14,r15
000074 0000 0000 =F'0'
000078 07F3 00007 | BR r3
00007A 90EB D00C 00007 | STM r14,r11,12(r13)

.

.

.
000338 End of Literals

*** General purpose registers used: 1101100000111111
*** Floating point registers used: 1010101000000000
*** Size of register spill area: 128(max) 0(used)
*** Size of dynamic storage: 192
*** Size of executable code: 162

Constant Area
000338 411CCCCC CCCCCCCC 42200000 00000000 |................|

PPA2: Compile Unit Block
000348 0300 2202 =F'50340354' Flags
00034C FFFF FCB8 =A(CEESTART-PPA2)
000350 0000 0000 =F'0' No PPA4
000354 FFFF FCB8 =A(TIMESTMP-PPA2)
000358 0000 0000 =F'0' No primary
00035C 0000 0000 =F'0' Flags

PPA2 End

Figure 15. Example of an OS/390 C listing (Part 5 of 6)

Chapter 6. Compiler Options 179

OS/390 C Compiler Listing Components

The following sections describe the components of a C compiler listing. These are
available for regular and IPA compilations. Differences in the IPA versions of the
listings are noted. “Using the IPA Link Step Listing” on page 193 describes
IPA-specific listings.

Heading Information

The first page of the listing is identified by the product number, the compiler version
and release numbers, the name of the data set or HFS file containing the source
code, the date and time compilation began (formatted according to the current
locale), and the page number.

Note: If the name of the data set or HFS file that contains the source code is
greater than 32 characters, it is truncated. Only the rightmost 32 characters
appear in the listing.

15647A01 V2 R6 M00 OS/390 C 'TSCTEST.OSV2R6M0.SCBCSAM(CBC3UAAM)' 05/25/1998 17:14:44 Page 38

E X T E R N A L S Y M B O L D I C T I O N A R Y

NAME TYPE ID ADDR LENGTH NAME TYPE ID ADDR LENGTH

PC 1 000000 000360 PC 2 000000 000090
MAIN LD 0 000058 000001 CONVERT LD 0 000288 000001
CEESG003 ER 3 000000 PRINTF ER 4 000000
SCANF ER 5 000000 SSCANF ER 6 000000
CEESTART ER 7 000000 CEEMAIN SD 8 000000 00000C
EDCINPL ER 9 000000 MAIN ER 10 000000

15647A01 V2 R6 M00 OS/390 C 'TSCTEST.OSV2R6M0.SCBCSAM(CBC3UAAM)' 05/25/1998 17:14:44 Page 39

E X T E R N A L S Y M B O L C R O S S R E F E R E N C E

ORIGINAL NAME EXTERNAL SYMBOL NAME

main MAIN
convert CONVERT
CEESG003 CEESG003
printf PRINTF
scanf SCANF
sscanf SSCANF
CEESTART CEESTART
CEEMAIN CEEMAIN
EDCINPL EDCINPL

15647A01 V2 R6 M00 OS/390 C 'TSCTEST.OSV2R6M0.SCBCSAM(CBC3UAAM)' 05/25/1998 17:14:44 Page 40

* * * * * S T O R A G E O F F S E T L I S T I N G * * * * *

IDENTIFIER DEFINITION ATTRIBUTES
<SEQNBR>-<FILE NO>:<FILE LINE NO>

argc 7-0:7 Class = parameter, Location = 0(r1), Length = 4

argv 7-0:7 Class = parameter, Location = 4(r1), Length = 4

c_temp 9-0:9 Class = automatic, Location = 176(r13), Length = 8

i 24-0:24 Class = automatic, Location = 184(r13), Length = 4

c_temp 35-0:35 Class = parameter, Location = 0(r1), Length = 8

f_temp 36-0:36 Class = automatic, Location = 176(r13), Length = 8

* * * * * E N D O F S T O R A G E O F F S E T L I S T I N G * * * * *

* * * * * E N D O F C O M P I L A T I O N * * * * *

Figure 15. Example of an OS/390 C listing (Part 6 of 6)

180 OS/390 V2R6.0 C/C++ User’s Guide

Prolog Section

The Prolog section provides information about the compile-time library, file
identifiers, compiler options, and other items in effect when the compiler was
invoked.

All options except those with no default (for example, DEFINE) are shown in the
listing. Any problems with the compiler options appear after the body of the Prolog
section.

IPA Considerations: If you specify IPA suboptions that are irrelevant to the IPA
Compile step, the Prolog does not display them. If IPA processing is not active, IPA
suboptions do not appear in the Prolog.

The following sections describe the optional parts of the listing and the compiler
options that generate them.

Source Program

If you specify the SOURCE option, the listing file includes input to the compiler.

Note: If you specify the SHOWINC option, the source listing shows the included text
after the #include directives.

Includes Section

The compiler generates the Includes Section when you use include files, and
specify the options SOURCE, LIST, or INLRPT.

Cross-Reference Listing

The XREF option generates a cross-reference table that contains a list of the
identifiers from the source program and the line numbers in which they appear.

Structure and Union Maps

You obtain structure and union maps by using the AGGREGATE option. The table
shows how each structure and union in the program is mapped. It contains the
following:
v Name of the structure or union and the elements within the structure or union
v Byte offset of each element from the beginning of the structure or union, and the

bit offset for unaligned bit data.
v Length of each element
v Total length of each structure, union, and substructure.

Messages

If the preprocessor or the compiler detects an error, or the possibility of an error, it
generates messages. If you specify the SOURCE compiler option, preprocessor error
messages appear immediately after the source statement in error. You can generate
your own messages in the preprocessing stage by using the #error preprocessor
directive. For information on #error, see the OS/390 C/C++ Language Reference.

If you specify the compiler options CHECKOUT or INFO(), the compiler will generate
informational diagnostic messages.

Chapter 6. Compiler Options 181

For more information on the compiler messages, see “FLAG | NOFLAG” on page 90
, and “Appendix F. OS/390 C/C++ Compiler Return Codes and Messages” on
page 475.

Message Summary

This listing section displays the total number of messages and the number of
messages for each severity level.

Inline Report

If you specify the OPTIMIZE and INLINE(,REPORT,,) options, or the OPTIMIZE and
INLRPT options, an Inline Report is included in the listing. This report contains an
inline summary and a detailed call structure.

Note: No report is produced when your source file contains only one defined
function.

The summary contains information such as:

v Name of each defined function. Function names appear in alphabetical order.

v Reason for action on a function:
– A #pragma noinline was specified for the function.
– A #pragma inline was specified for the function.
– Auto-inlining acted on the function.
– There was no reason to inline the function.

v Action on a function:
– Function was inlined at least once.
– Function was not inlined because of initial size constraints.
– Function was not inlined because of expansion beyond size constraint.
– Function was a candidate for inlining, but was not inlined.
– Function was a candidate for inlining, but was not referenced.
– The function is directly recursive, or some calls have mismatching parameters.

v Status of original function after inlining:
– Function is discarded because it is no longer referenced and is defined as

static internal.
– Function was not discarded for various reasons :

- Function is external. (It can be called from outside the compilation unit.)
- Some call to this function remains.
- Function has its address taken.

v Initial relative size of function (in Abstract Code Units (ACU)).

v Final relative size of function (in ACUs) after inlining.

v Number of calls within the function and the number of these calls that were
inlined into the function.

v Number of times the function is called by others in the compile unit and the
number of times the function was inlined.

v Mode that is selected and the value of threshold and limit specified for the
compilation.

The detailed call structure contains specific information of each function such as:
v Functions that it calls
v Functions that call it
v Functions in which it is inlined.

182 OS/390 V2R6.0 C/C++ User’s Guide

The information can help you to better analyze your program if you want to use the
inliner in selective mode.

Inlining may result in additional messages. For example, if inlining a function with
automatic storage increases the automatic storage of the function it is being inlined
into by more than 4K, a message is generated.

Pseudo Assembly Listing

The option LIST generates a listing of the machine instructions in the object module
in a form similar to assembler language.

This Pseudo Assembly listing displays the source statement line numbers and the
line number of inlined code to aid you in debugging inlined code.

External Symbol Dictionary

The LIST compiler option generates the External Symbol Dictionary. The External
Symbol Dictionary lists the names that the compiler generates for the output object
module. It includes address information and size information about each symbol.

External Symbol Cross Reference Listing

The XREF compiler option generates the External Symbol Cross Reference section.
It shows the original name and corresponding mangled name for each symbol.

Storage Offset Listing

If you specify the XREF option, the listing file includes offset information of identifiers.

Using the OS/390 C++ Compiler Listing

If you select the SOURCE, INLRPT, or LIST option, the compiler creates a listing that
contains information about the source program and the compilation. If the
compilation terminates before reaching a particular stage of processing, the
compiler does not generate corresponding parts of the listing. The listing contains
standard information that always appears, together with optional information that is
supplied by default or specified through compiler options.

In an interactive environment you can also use the TERMINAL option to direct all
compiler diagnostic messages to your terminal. The TERMINAL option directs only the
diagnostic messages part of the compiler listing to your terminal.

Note: Although the compiler listing is for your use, it is not a programming interface
and is subject to change.

IPA Considerations

The listings that the IPA Compile step produces are basically the same as those
that a regular compilation produces. Any differences are noted throughout this
section.

The IPA Link step listing has a separate format from the listings mentioned above.
Many listing sections are similar to those that are produced by a regular compilation
or the IPA Compile step with the IPA(OBJECT) option specified. Refer to “Using the
IPA Link Step Listing” on page 193 for information about IPA Link step listings.

Chapter 6. Compiler Options 183

Example of an OS/390 C++ Compiler Listing

Figure 16 shows an example of a OS/390 C++ compiler listing. Vertical ellipses
indicate sections that have been truncated.

5647A01 V2 R6 M00 OS/390 C++ 'TS14576.CXX(CBC3UBRC)' 07/16/1998 12:39:09
* * * * * P R O L O G * * * * *

Compiler options. : ANSIALIAS ARGPARSE NODIGRAPH NOEVENTS EXECOPS EXH
: NOEXPMAC NOEXPORTALL NOFASTTEMPINC NOGONUMBER INLRPT NOLIBANSI
: LIST LONGNAME NOMARGINS MEMORY OBJECT NOOFFSET
: REDIR NOSEQUENCE NOSHOWINC NOSOM SOMEINIT NOSOMGS
: NOSOMVOLATTR SOURCE NOSRCMSG START TERMINAL NOWSIZEOF
: XREF NOATTRIBUTE
: ARCH(0) FLAG(I) HALT(16) MAXMEM(2097152) NESTINC(255) OPTIMIZE(1)
: PLIST(HOST) SPILL(128) TARGET(LE) TUNE(3)
: NOCSECT
: DLL(NOCALLBACKANY)
: FLOAT(HEX,FOLD,NOAFP) STRICT
: NOINFO
: NOIPA
: NOGENPCH
: LANGLVL(EXTENDED) NOTEST(HOOK)
: NOLOCALE
: NOOE
: NOPORT
: NOPPONLY
: NOSERVICE
: TEMPINC
: OPTFILE(DD:OPTS)
: SEARCH(//'CEE.SCEEH.+',//'CBC.SCLBH.+')
: NOUSEPCH

5647A01 V2 R6 M00 OS/390 C++ 'TS14576.CXX(CBC3UBRC)' 07/16/1998 12:39:09
* * * * * S O U R C E * * * * *

1 | //
2 | // Sample Program: Biorhythm
3 | // Description : Calculates biorhythm based on the current
4 | // system date and birth date entered
5 | //
6 |
7 | #include <iostream.h>
8 | #include <iomanip.h>
9 | #include <stdio.h>

10 | #include <math.h>
11 | #include <time.h>
12 |
13 | #include "cbc3ubrh.h" // Biorhythn Class and Date Class
14 |
15 | int main(void) {
16 | BioRhythm bio;
17 | int code;
18 |
19 | if (!bio.ok()) {
20 | cerr << "Error in birthdate specification - format is yyyy/mm/dd";
21 | code = 8;
22 | }
23 | else {
24 | cout << bio; // write out birthdate for bio
25 | code = 0;
26 | }
27 | return(code);
28 | }
29 |
30 |static ostream& operator<<(ostream& os, BioRhythm& bio) {
31 | os << "Total Days : " << bio.AgeInDays() << "\n";
32 | os << "Physical : " << bio.Physical() << "\n";
33 | os << "Emotional : " << bio.Emotional() << "\n";
34 | os << "Intellectual: " << bio.Intellectual() << "\n";
35 |
36 | return(os);
37 | }

Figure 16. Example of an OS/390 C++ Compiler Listing (Part 1 of 7)

184 OS/390 V2R6.0 C/C++ User’s Guide

38 |
39 | Date::Date() {
40 | time_t lTime;
41 | struct tm *newTime;
42 |
43 | time(&lTime);
44 | newTime = gmtime(&lTime);
45 |
46 | curYear = newTime->tm_year + 1900;
47 | curDay = newTime->tm_yday + 1;
48 | }
49 |
50 | BirthDate::BirthDate(const char *birthText) {
51 | strcpy(text, birthText);
52 | }
53 |
54 | BirthDate::BirthDate() {
55 | cout << "Please enter your birthdate in the form yyyy/mm/dd\n";
56 | cin >> setw(dateLen+1) >> text;
57 | }
58 |
59 | Date::DaysSince(const char *text) {
60 |
61 | int year, month, day, totDays, delim;
62 | int daysInYear = 0;
63 |
64 | int rc = sscanf(text, "%4d%c%2d%c%2d",
65 | &year, &delim, &month,
66 | &delim, &day);
67 | --month;
68 | if (rc != 5 || year < 0 || year > 9999 ||
69 | month < 0 || month > 12 ||
70 | day < 1 || day > 31 ||
71 | day > numDays[month]) {
72 | return(-1);
73 | }
74 | else {
75 | for (int i=0;i<month;++i) {
76 | daysInYear += numDays[i];
77 | }
78 | daysInYear += day;
79 | }
80 |
81 | totDays = (curDay - daysInYear) + (curYear - year)*365 - 1;
82 |
83 | // now, correct for leap year
84 |
85 | if (((year % 4 == 0 && year % 100 != 0) ||
86 | (year % 400 == 0)) && month <= 2) {
87 | ++totDays;
88 | }
89 |
90 | for (int i=year+1; i < curYear; ++i) {
91 | if ((i % 4 == 0 && i % 100 != 0) || i % 400 == 0) {
92 | ++totDays;
93 | }
94 | }
95 | return(totDays);
96 | }

* * * * * E N D O F S O U R C E * * * * *

Figure 16. Example of an OS/390 C++ Compiler Listing (Part 2 of 7)

Chapter 6. Compiler Options 185

5647A01 V2 R6 M00 OS/390 C++ 'TS14576.CXX(CBC3UBRC)' 07/16/1998 12:39:09
* * * * * C R O S S R E F E R E N C E L I S T I N G * * * * *

___valist :
2:116 (D) 2:119 (R) 2:273 (R) 2:274 (R) 2:275 (R)

__amrc_type :
2:553 (D) 2:557 (R)

__amrc2_type :
2:566 (D) 2:570 (R)

__device_t :
2:382 (D) 2:430 (R)

__fabs :
11:74 (R)

.

.

.
* * * * * E N D O F C R O S S R E F E R E N C E L I S T I N G * * * * *

5647A01 V2 R6 M00 OS/390 C++ 'TS14576.CXX(CBC3UBRC)' 07/16/1998 12:39:09
* * * * * I N C L U D E S * * * * *

1 = TSCTEST.OSV2R6M0.SCLBH.H(IOSTREAM)
2 = TSCTEST.CEE190.SCEEH.H(STDIO)
3 = TSCTEST.CEE190.SCEEH.H(FEATURES)
4 = TSCTEST.CEE190.SCEEH.H(MEMORY)
5 = TSCTEST.CEE190.SCEEH.H(STRING)
6 = TSCTEST.CEE190.SCEEH.H(WCHAR)
7 = TSCTEST.CEE190.SCEEH.H(TIME)
8 = TSCTEST.OSV2R6M0.SCLBH.H(IOMANIP)
9 = TSCTEST.OSV2R6M0.SCLBH.H(IOSTREAM)

10 = TSCTEST.OSV2R6M0.SCLBH.H(GENERIC)
11 = TSCTEST.CEE190.SCEEH.H(MATH)
12 = TS14576.H(CBC3UBRH)

* * * * * E N D O F I N C L U D E S * * * * *

5647A01 V2 R6 M00 OS/390 C++ 'TS14576.CXX(CBC3UBRC)' 07/16/1998 12:39:09
* * * * * M E S S A G E S U M M A R Y * * * * *

TOTAL UNRECOVERABLE SEVERE ERROR WARNING INFORMATIONAL
(U) (S) (E) (W) (I)

0 0 0 0 0 0

* * * * * E N D O F M E S S A G E S U M M A R Y * * * * *

Figure 16. Example of an OS/390 C++ Compiler Listing (Part 3 of 7)

186 OS/390 V2R6.0 C/C++ User’s Guide

5647A01 V2 R6 M00 OS/390 C++ 'TS14576.CXX(CBC3UBRC)' 07/16/1998 12:39:09

Inline Report (Summary)

Reason: P : #pragma noinline was specified for this routine
F : #pragma inline was specified for this routine
A : Automatic inlining
- : No reason

Action: I : Routine is inlined at least once
L : Routine is initially too large to be inlined
T : Routine expands too large to be inlined
C : Candidate for inlining but not inlined
N : No direct calls to routine are found in file (no action)
U : Some calls not inlined due to recursion or parameter mismatch
- : No action

Status: D : Internal routine is discarded
R : A direct call remains to internal routine (cannot discard)
A : Routine has its address taken (cannot discard)
E : External routine (cannot discard)
- : Status unchanged

Calls/I : Number of calls to defined routines / Number inline
Called/I : Number of times called / Number of times inlined

Reason Action Status Size (init) Calls/I Called/I Name

A I E 26 0 2/2 Date::Date()
F I D 138 (17) 2/2 1/1 BioRhythm::BioRhythm()
A I E 99 (31) 2/2 1/1 BirthDate::BirthDate()
A N E 47 (16) 1/1 0 BirthDate::BirthDate(const char*)
F N A 37 (9) 1/1 0 BioRhythm::__dftdt()
F I D 21 0 2/2 BioRhythm::xBioRhythm()
A T - 179 (62) 3/3 1/0 operator<<(ostream&,BioRhythm&)
F I E 30 0 1/1 operator>>(istream&,const smanip_int&)
P - - 215 (44) 3/2 0 main
F I D 17 0 3/3 BioRhythm::Cycle(int)
F I D 12 1/0 1/1 BirthDate::DaysOld()
A L - 216 0 1/0 Date::DaysSince(const char*)
F I D 34 (10) 1/1 1/1 BioRhythm::Emotional()
F I D 34 (10) 1/1 1/1 BioRhythm::Intellectual()
F I D 34 (10) 1/1 1/1 BioRhythm::Physical()

Mode = AUTO Inlining Threshold = 100 Expansion Limit = 2000

5647A01 V2 R6 M00 OS/390 C++ 'TS14576.CXX(CBC3UBRC)' 07/16/1998 12:39:09

Inline Report (Call Structure)

Defined Function : Date::Date()
Calls To : 0

Called From(2,2) : BirthDate::BirthDate()(1,1) BirthDate::BirthDate(const char*)(1,1)

Defined Function : BioRhythm::BioRhythm()
Calls To(2,2) : BirthDate::BirthDate()(1,1) BirthDate::DaysOld()(1,1)

Called From(1,1) : main(1,1)

Defined Function : BirthDate::BirthDate()
Calls To(2,2) : Date::Date()(1,1) operator>>(istream&,const smanip_int&)(1,1)

Called From(1,1) : BioRhythm::BioRhythm()(1,1)

Defined Function : BirthDate::BirthDate(const char*)
Calls To(1,1) : Date::Date()(1,1)

Called From : 0
.
.
.

5647A01 V2 R6 M00 OS/390 C++ 'TS14576.CXX(CBC3UBRC)' 07/16/1998 12:39:09

Inline Report (Additional Information)

INFORMATIONAL CBC5052: Function specified is (or grows) too large to be inlined: operator<<(ostream&,BioRhythm&

INFORMATIONAL CBC5052: Function specified is (or grows) too large to be inlined: Date::DaysSince(const char*)

Figure 16. Example of an OS/390 C++ Compiler Listing (Part 4 of 7)

Chapter 6. Compiler Options 187

5647A01 V2 R6 M00 OS/390 C++ 'TS14576.CXX(CBC3UBRC)' 07/16/1998 12:39:09 6

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

Timestamp and Version Information
000000 F1F9 F9F8 =C'1998' Compiled Year
000004 F0F7 F1F6 =C'0716' Compiled Date MMDD
000008 F1F2 F3F9 F0F9 =C'123909' Compiled Time HHMMSS
00000E F0F2 F0F6 F0F0 =C'020600' Compiler Version

Timestamp and Version End

5647A01 V2 R6 M00 OS/390 C++ 'TS14576.CXX(CBC3UBRC)': operator>>(is...) 07/16/1998 12:39:09
7

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

PPA1: Entry Point Constants
000018 1CCE A109 =F'483303689' Flags
00001C 0000 0F88 =A(PPA2-operator>>(istream&,const smanip_int&))
000020 0000 0000 =F'0' No PPA3
000024 0000 0000 =F'0' No EPD
000028 FF00 0000 =F'-16777216' Register save mask
00002C 0000 0001 =F'1' Member flags
000030 E0 =AL1(224) Flags
000031 0000 01 =AL3(1) Callee's DSA use/8
000034 0040 =H'64' Flags
000036 0012 =H'18' Offset/2 to CDL
000038 0000 0000 =F'0' Offset of state variable
00003C 5000 0041 =F'1342177345' CDL function length/2
000040 0000 0060 =F'96' CDL function EP offset
000044 1826 0000 =F'405143552' CDL prolog
000048 200A 0037 =F'537526327' CDL epilog
00004C 0000 0000 =F'0' CDL end
000050 0026 **** AL2(38),C'operator>>(istream&,const smanip_int&)'

PPA1 End

operator>>(istream&,const smanip_int
&)

000078 00138 | 8 DS 0D
000078 47F0 F001 00138 | 8 B 1(,r15)
00007C 01C3 C5C5 CEE eyecatcher
000080 0000 00C8 DSA size
000084 FFFF FFA0 =A(PPA1-operator>>(istream&,const smanip_int&))
000088 90E5 D00C 00138 | 8 STM r14,r5,12(r13)
00008C 58E0 D04C 00138 | 8 L r14,76(,r13)
000090 4100 E0C8 00138 | 8 LA r0,200(,r14)
000094 5500 C314 00138 | 8 CL r0,788(,r12)
000098 4140 F04C 00138 | 8 LA r4,76(,r15)
00009C 47D0 F03A 00138 | 8 BNH 58(,r15)
0000A0 58F0 C31C 00138 | 8 L r15,796(,r12)
0000A4 184E 00138 | 8 LR r4,r14
0000A6 05EF 00138 | 8 BALR r14,r15
0000A8 0000 0008 =F'8'
0000AC 0540 00138 | 8 BALR r4,r0
0000AE 4140 4016 00138 | 8 LA r4,22(,r4)
0000B2 5000 E04C 00138 | 8 ST r0,76(,r14)
0000B6 9210 E000 00138 | 8 MVI 0(r14),16
0000BA 50D0 E004 00138 | 8 ST r13,4(,r14)
0000BE 5800 D014 00138 | 8 L r0,20(,r13)
0000C2 18DE 00138 | 8 LR r13,r14
0000C4 End of Prolog

.

.

.

*** General purpose registers used: 1111110000001111
*** Floating point registers used: 1010101000000000
*** Size of register spill area: 128(max) 0(used)
*** Size of dynamic storage: 200
*** Size of executable code: 130

.

.

.

Figure 16. Example of an OS/390 C++ Compiler Listing (Part 5 of 7)

188 OS/390 V2R6.0 C/C++ User’s Guide

5647A01 V2 R6 M00 OS/390 C++ 'TS14576.CXX(CBC3UBRC)' 07/16/1998 12:39:09 37

E X T E R N A L S Y M B O L D I C T I O N A R Y

TYPE ID ADDR LENGTH NAME

SD 1 000000 001018 @STATICP
PR 2 000000 000058 @STATIC
PR 3 000000 000004 dateLen__4Date
PR 4 000000 000004 numMonths__4Date
PR 5 000000 000030 numDays__4Date
PR 6 000000 000004 pCycle__9BioRhythm
PR 7 000000 000004 eCycle__9BioRhythm
PR 8 000000 000004 iCycle__9BioRhythm
SD 9 000000 000008 @@DLLI
LD 0 000078 000001 __rs__FR7istreamRC10smanip_int
LD 0 000448 000001 main
LD 0 000640 000001 __ct__4DateFv
LD 0 000758 000001 DaysSince__4DateFPCc
LD 0 0009A0 000001 __ct__9BirthDateFv
LD 0 000B40 000001 __ct__9BirthDateFPCc
ER 10 000000 CEESG003
ER 11 000000 CBCSG003
ER 12 000000 DaysSince__4DateFPCc
ER 13 000000 @@TRT
UR 14 000648 @STATICP
UR 15 000000 sscanf
UR 16 000000 __ls__7ostreamFd
UR 17 000000 CEETDSIN
UR 18 000000 fmod
UR 19 000000 __ls__7ostreamFi
UR 20 000000 cerr
ER 21 000000 @@TRGLOR
UR 22 000000 __dl__FPv
UR 23 000000 cin
UR 24 000000 cout
UR 25 000000 gmtime
UR 26 000000 __rs__7istreamFPc
UR 27 000000 setw__Fi
UR 28 000000 __ls__7ostreamFPCc
UR 29 000000 time
ER 30 000000 CEESTART
SD 31 000000 000008 @@PPA2
SD 32 000000 00000C CEEMAIN
ER 33 000000 EDCINPL
ER 34 000000 main

Figure 16. Example of an OS/390 C++ Compiler Listing (Part 6 of 7)

Chapter 6. Compiler Options 189

OS/390 C++ Compiler Listing Components

The following sections describe the components of a C++ compiler listing.These are
available for regular and IPA compilations. Differences in the IPA versions of the
listings are noted. “Using the IPA Link Step Listing” on page 193 describes
IPA-specific listings.

Heading Information

The first page of the listing is identified by the product number, the compiler version
and release numbers, the name of the data set or HFS file containing the source
code, the date and time compilation began (formatted according to the current
locale), and the page number.

Note: If the name of the data set or HFS file that contains the source code is
greater than 32 characters, it is truncated. Only the rightmost 32 characters
appear in the listing.

Prolog Section

The Prolog section provides information about the compile-time library, file
identifiers, compiler options, and other items in effect when the compiler was
invoked.

All options except those with no default (for example, DEFINE) are shown in the
listing. Any problems with the compiler options appear after the body of the Prolog
section.

5647A01 V2 R6 M00 OS/390 C++ 'TS14576.CXX(CBC3UBRC)' 07/16/1998 12:39:09 38

E X T E R N A L S Y M B O L C R O S S R E F E R E N C E

ORIGINAL NAME EXTERNAL SYMBOL NAME

@STATICP @STATICP
@@DLLI @@DLLI
operator>>(istream& __rs__FR7istreamRC10smanip_int
,const smanip_int&)
main main
Date::Date() __ct__4DateFv
Date::DaysSince(const char*) DaysSince__4DateFPCc
BirthDate::BirthDate() __ct__9BirthDateFv
BirthDate::BirthDate(const char*) __ct__9BirthDateFPCc
CEESG003 CEESG003
CBCSG003 CBCSG003
@@TRT @@TRT
sscanf sscanf
ostream::operator<<(double) __ls__7ostreamFd
__sin CEETDSIN
fmod fmod
ostream::operator<<(int) __ls__7ostreamFi
cerr cerr
@@TRGLOR @@TRGLOR
operator delete(void*) __dl__FPv
cin cin
cout cout
gmtime gmtime
istream::operator>>(char*) __rs__7istreamFPc
setw(int) setw__Fi
ostream::operator<<(const char*) __ls__7ostreamFPCc
time time
CEESTART CEESTART
@@PPA2 @@PPA2
CEEMAIN CEEMAIN
EDCINPL EDCINPL

* * * * * E N D O F C O M P I L A T I O N * * * * *

Figure 16. Example of an OS/390 C++ Compiler Listing (Part 7 of 7)

190 OS/390 V2R6.0 C/C++ User’s Guide

IPA Considerations: If you specify IPA suboptions that are irrelevant to the IPA
Compile step, the Prolog does not display them. If IPA processing is not active, IPA
suboptions do not appear in the Prolog.

The following sections describe the optional parts of the listing and the compiler
options that generate them.

Source Program

If you specify the SOURCE option, the listing file includes input to the compiler.

Note: If you specify the SHOWINC option, the source listing shows the included text
after the #include directives.

Cross-Reference Listing

The option XREF generates a cross-reference table that contains a list of the
identifiers from the source program. The table also displays a list of reference,
modification, and definition information for each identifier.

The option ATTR generates a cross-reference table that contains a list of the
identifiers from the source program, with a list of attributes for each identifier.

If you specify both ATTR and XREF, the cross-reference listing is a composite of the
two forms. It contains the list of identifiers, as well as the attribute and reference,
modification, and definition information for each identifier. The list is in the form:
identifier : attribute

n:m (x)

where:

n corresponds to the file number from the INCLUDE LIST. If the identifier is
from the main program, n is 0.

m corresponds to the line number in the file n.

x is the cross reference code. It takes one of the following values:
R - referenced
D - defined
M - modified

together with the line numbers in which they appear.

Includes Section

The compiler generates the Includes Section when you use include files, and
specify the options SOURCE, LIST, or INLRPT.

Messages

If the preprocessor or the compiler detects an error, or the possibility of an error, it
generates messages. If you specify the SOURCE compiler option, preprocessor error
messages appear immediately after the source statement in error. You can generate
your own messages in the preprocessing stage by using #error. For information on
#error, see the OS/390 C/C++ Language Reference.

If you specify the compiler options FLAG(I), CHECKOUT or INFO(), the compiler will
generate informational diagnostic messages.

Chapter 6. Compiler Options 191

For a description of compiler messages, see “Appendix F. OS/390 C/C++ Compiler
Return Codes and Messages” on page 475.

Message Summary

This listing section displays the total number of messages and the number of
messages for each severity level.

Inline Report

If the OPTIMIZE and INLRPT options are specified, an Inline Report will be included in
the listing. This report contains an inline summary and a detailed call structure.

Note: No report is produced when your source file contains only one defined
function.

The summary contains information such as:

v Name of each defined function. Function names appear in alphabetical order.

v Reason for action on a function:
– A #pragma noinline was specified for that function. The P indicates that

inlining could not be performed.
– A #pragma inline was specified for that function. The F indicates that the

function was declared inline.
– Auto-inlining acted on that function.
– There was no reason to inline the function.

v Action on a function:
– Function was inlined at least once.
– Function was not inlined because of initial size constraints.
– Function was not inlined because of expansion beyond size constraint.
– Function was a candidate for inlining, but was not inlined.
– Function was a candidate for inlining, but was not referenced.
– This function is directly recursive, or some calls have mismatching

parameters.

v Status of original function after inlining:
– Function is discarded because it is no longer referenced and is defined as

static internal.
– Function was not discarded for various reasons :

- Function is external. (It can be called from outside the compilation unit.)
- Some call to this function remains.
- Function has its address taken.

v Initial relative size of function (in Abstract Code Units (ACU)).

v Final relative size of function (in ACUs) after inlining.

v Number of calls within the function and the number of these calls that were
inlined into the function.

v Number of times the function is called by others in the compile unit and the
number of times this function was inlined.

v Mode that is selected and the value of threshold and limit specified for this
compilation.

The detailed call structure contains specific information of each function such as:
v What functions it calls
v What functions call it
v In which functions it is inlined.

192 OS/390 V2R6.0 C/C++ User’s Guide

The information can help you to better analyze your program if you want to use the
inliner in selective mode.

There may be additional messages as a result of the inlining. For example, if
inlining a function with automatic storage would increases the automatic storage of
the function it is being inlined into by more than 4K, a message is emitted.

Pseudo Assembly Listing

The option LIST generates a listing of the machine instructions in the object module
in a form similar to assembler language.

This Pseudo Assembly listing displays the source statement line numbers and the
line number of any inlined code to aid you in debugging inlined code.

External Symbol Dictionary

The LIST compiler option generates the External Symbol Dictionary. The External
Symbol Dictionary lists the names that the compiler generates for the output object
module. It includes address information and size information about each symbol.

External Symbol Cross Reference Listing

The ATTR or XREF compiler options generate the External Symbol Cross Reference
section. It shows the original name and corresponding mangled name for each
symbol. For additional information on mangled names, see “Chapter 18. Filter
Utility” on page 365.

Using the IPA Link Step Listing

The IPA Link step generates a listing file if you specify any of the following options:

v ATTR

v INLINE(,REPORT,,)

v INLRPT

v IPA(MAP)

v LIST

v XREF

Note: IPA does not support source listings or source annotations within Pseudo
Assembly listings. The Pseudo Assembly listings do display the file and line
number of the source code that contributed to a segment of pseudo
assembly code.

Example of an IPA Link Step Listing

Figure 17 on page 194 shows an example of an IPA Link step listing.

Chapter 6. Compiler Options 193

15647A01 V2 R6 M00 OS/390 C/C++ IPA 'TSIPA.TEST.LINKCNTL(INCLCNTL)' 06/22/1998 15:13:03 Page 1

* * * * * P R O L O G * * * * *

Compile Time Library : 22060000
Command options:

Primary input name. : 'TSIPA.TEST.LINKCNTL(INCLCNTL)'
Compiler options. : *IPA(LINK,MAP,NOREFMAP,LEVEL(1),DUP,ER,NONCAL,NOUPCASE,NOCONTROL) *NOGONUMBER

: *NOALIAS
: *NODECK *TERMINAL *LIST *XREF *NOATTR *NOOFFSET *MEMORY
: *NOCSECT
: *FLAG(I) *NOTEST(NOSYM,NOBLOCK,NOLINE,NOPATH,HOOK) *OPTIMIZE(1)
: *INLINE(AUTO,REPORT,1000,8000)
: *OBJECT *OPTFILE(DD:OPTION) *NOSERVICE *NOOE *NOLOCALE

*HALT(16)
: *IPADBG(TRACETPO)

* * * * * E N D O F P R O L O G * * * * *
15647A01 V2 R6 M00 OS/390 C/C++ IPA 'TSIPA.TEST.LINKCNTL(INCLCNTL)' 06/22/1998 15:13:03 Page 2

* * * * * O B J E C T F I L E M A P * * * * *

*ORIGIN IPA FILE ID FILE NAME
P 1 TSIPA.TEST.LINKCNTL(INCLCNTL)
PI Y 2 TSIPA.TEST.PASS1.OBJ(INCLMAIN)
PI Y 3 TSIPA.TEST.PASS1.OBJ(INCLRTN1)

x PI Y 4 TSIPA.TEST.PASS1.OBJ(INCLRTN2)

ORIGIN: P=primary input PI=primary INCLUDE SI=secondary INCLUDE IN=internal
A=automatic call U=UPCASE automatic call R=RENAME card L=C Library

* * * * * E N D O F O B J E C T F I L E M A P * * * * *
15647A01 V2 R6 M00 OS/390 C/C++ IPA 'TSIPA.TEST.LINKCNTL(INCLCNTL)' 06/22/1998 15:13:03 Page 3

* * * * * C O M P I L E R O P T I O N S M A P * * * * *

SOURCE FILE ID COMPILE OPTIONS
1 *NOALIAS *ANSIALIAS *ARCH(0) *ARGPARSE *NODLL(NOCALLBACKANY) *ENV(MVS) *EXECOPS

*FLOAT(HEX,FOLD,NOAFP)
*NOGONUMBER *IPA(NOLINK,NOOBJECT,NOCOMPRESS) *NOLOCALE *LONGNAME *NOLIBANSI *NOLIST
*MAXMEM(2097152)
*OPTIMIZE(2) *PLIST(HOST) *REDIR *NORENT *NOSTART *SPILL(128) *STRICT *NOTEST
*TUNE(3)
*XREF

2 *NOALIAS *ANSIALIAS *ARCH(0) *ARGPARSE *NODLL(NOCALLBACKANY) *ENV(MVS) *EXECOPS
*FLOAT(HEX,FOLD,NOAFP)
*NOGONUMBER *IPA(NOLINK,NOOBJECT,NOCOMPRESS) *NOLOCALE *LONGNAME *NOLIBANSI *NOLIST
*MAXMEM(2097152)
*OPTIMIZE(2) *PLIST(HOST) *REDIR *NORENT *NOSTART *SPILL(128) *STRICT *NOTEST
*TUNE(3)
*XREF

3 *NOALIAS *ANSIALIAS *ARCH(0) *ARGPARSE *NODLL(NOCALLBACKANY) *ENV(MVS) *EXECOPS
*FLOAT(HEX,FOLD,NOAFP)
*NOGONUMBER *IPA(NOLINK,NOOBJECT,NOCOMPRESS) *NOLOCALE *LONGNAME *NOLIBANSI *NOLIST
*MAXMEM(2097152)
*OPTIMIZE(2) *PLIST(HOST) *REDIR *NORENT *NOSTART *SPILL(128) *STRICT *NOTEST
*TUNE(3)
*XREF

* * * * * E N D O F C O M P I L E R O P T I O N S M A P * * * * *

Figure 17. Example of an IPA Link Step Listing (Part 1 of 7)

194 OS/390 V2R6.0 C/C++ User’s Guide

15647A01 V2 R6 M00 OS/390 C/C++ IPA 'TSIPA.TEST.LINKCNTL(INCLCNTL)' 06/22/1998 15:13:03 Page 4

* * * * * I N L I N E R E P O R T * * * * *

IPA Inline Report (Summary)

Reason: P : #pragma noinline was specified for this routine
F : #pragma inline was specified for this routine
A : Automatic inlining
C : Partition conflict
N : Not IPA Object
- : No reason

Action: I : Routine is inlined at least once
L : Routine is initially too large to be inlined
T : Routine expands too large to be inlined
C : Candidate for inlining but not inlined
N : No direct calls to routine are found in file (no action)
U : Some calls not inlined due to recursion or parameter mismatch
- : No action

Status: D : Internal routine is discarded
R : A direct call remains to internal routine (cannot discard)
A : Routine has its address taken (cannot discard)
E : External routine (cannot discard)
- : Status unchanged

Calls/I : Number of calls to defined routines / Number inline
Called/I : Number of times called / Number of times inlined

Reason Action Status Size (init) Calls/I Called/I Name

A N - 76 (44) 2/2 0 main
A I D 0 (24) 0 1/1 Incl_Rtn1
A I D 0 (8) 0 1/1 Incl_Rtn2

Mode = AUTO Inlining Threshold = 1000 Expansion Limit = 8000

15647A01 V2 R6 M00 OS/390 C/C++ IPA 'TSIPA.TEST.LINKCNTL(INCLCNTL)' 06/22/1998 15:13:03 Page 5

IPA Inline Report (Call Structure)

Defined Subprogram : main
Calls To(2,2) : Incl_Rtn2(1,1)

Incl_Rtn1(1,1)
Called From : 0

Defined Subprogram : Incl_Rtn2
Calls To : 0

Called From(1,1) : main(1,1)

Defined Subprogram : Incl_Rtn1
Calls To : 0

Called From(1,1) : main(1,1)

* * * * * E N D O F I N L I N E R E P O R T * * * * *

Figure 17. Example of an IPA Link Step Listing (Part 2 of 7)

Chapter 6. Compiler Options 195

15647A01 V2 R6 M00 OS/390 C/C++ IPA Partition 0 06/22/1998 15:13:03 Page 6

* * * * * P A R T I T I O N M A P * * * * *

PARTITION 0

PARTITION CSECT NAMES:
Code: none

Static: none
Test: none

PARTITION DESCRIPTION:
Initialization data partition

COMPILER OPTIONS FOR PARTITION 0:
*NOALIAS *ARCH(0) *ARGPARSE *NOCSECT *NODLL *ENV(MVS) *EXECOPS *FLOAT(HEX,FOLD,NOAFP) *NOGONUMBER
*IPA(LINK)
*NOLIBANSI *NOLOCALE *LONGNAME *MAXMEM(2097152) *OPTIMIZE(1) *PLIST(HOST) *REDIR *NORENT *SPILL(128)
*START
*STRICT *NOTEST *TUNE(3)

SYMBOLS IN PARTITION 0:

*TYPE FILE ID SYMBOL
D 1 gbl

TYPE: F=function D=data

SOURCE FILES FOR PARTITION 0:

*ORIGIN FILE ID SOURCE FILE NAME
P 1 TSIPA.TEST.C(INCLMAIN)

ORIGIN: P=primary input PI=primary INCLUDE

* * * * * E N D O F P A R T I T I O N M A P * * * * *

Figure 17. Example of an IPA Link Step Listing (Part 3 of 7)

196 OS/390 V2R6.0 C/C++ User’s Guide

15647A01 V2 R6 M00 OS/390 C/C++ IPA Partition 0 06/22/1998 15:13:03 Page 7

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

15647A01 V2 R6 M00 OS/390 C/C++ IPA Partition 0 06/22/1998 15:13:03 Page 8

E X T E R N A L S Y M B O L D I C T I O N A R Y

TYPE ID ADDR LENGTH NAME

SD 1 000000 000000 @STATICP
SD 2 000000 000004 gbl

15647A01 V2 R6 M00 OS/390 C/C++ IPA Partition 0 06/22/1998 15:13:03 Page 9

E X T E R N A L S Y M B O L C R O S S R E F E R E N C E

ORIGINAL NAME EXTERNAL SYMBOL NAME

@STATICP @STATICP
gbl gbl

15647A01 V2 R6 M00 OS/390 C/C++ IPA Partition 0 06/22/1998 15:13:03 Page 10

* * * * * S T O R A G E O F F S E T L I S T I N G * * * * *

IDENTIFIER DEFINITION ATTRIBUTES
<SEQNBR>-<FILE NO>:<FILE LINE NO>

gbl 5-1:5 Class = external definition, Location = CSECT GBL, Length = 4

* * * * * E N D O F S T O R A G E O F F S E T L I S T I N G * * * * *
15647A01 V2 R6 M00 OS/390 C/C++ IPA Partition 1 06/22/1998 15:13:03 Page 11

* * * * * P A R T I T I O N M A P * * * * *

PARTITION 1 OF 1

PARTITION SIZE:
Actual: 1116
Limit: 102400

PARTITION CSECT NAMES:
Code: none

Static: none
Test: none

PARTITION DESCRIPTION:
Primary partition

COMPILER OPTIONS FOR PARTITION 1:
*NOALIAS *ARCH(0) *ARGPARSE *NOCSECT *NODLL *ENV(MVS) *EXECOPS *FLOAT(HEX,FOLD,NOAFP) *NOGONUMBER
*IPA(LINK)
*NOLIBANSI *NOLOCALE *LONGNAME *MAXMEM(2097152) *OPTIMIZE(1) *PLIST(HOST) *REDIR *NORENT *SPILL(128)
*START
*STRICT *NOTEST *TUNE(3)

SYMBOLS IN PARTITION 1:

*TYPE FILE ID SYMBOL
F 1 main

TYPE: F=function D=data

SOURCE FILES FOR PARTITION 1:

*ORIGIN FILE ID SOURCE FILE NAME
P 1 TSIPA.TEST.C(INCLMAIN)
P 2 TSIPA.TEST.C(INCLRTN1)
P 3 TSIPA.TEST.C(INCLRTN2)

ORIGIN: P=primary input PI=primary INCLUDE

* * * * * E N D O F P A R T I T I O N M A P * * * * *

Figure 17. Example of an IPA Link Step Listing (Part 4 of 7)

Chapter 6. Compiler Options 197

15647A01 V2 R6 M00 OS/390 C/C++ IPA Partition 1 06/22/1998 15:13:03 Page 12

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

Timestamp and Version Information
000000 F1F9 F9F8 =C'1998' Compiled Year
000004 F0F6 F2F2 =C'0622' Compiled Date MMDD
000008 F1F5 F0F4 F5F4 =C'150454' Compiled Time HHMMSS
00000E F0F2 F0F6 F0F0 =C'020600' Compiler Version

Timestamp and Version End

15647A01 V2 R6 M00 OS/390 C/C++ IPA Partition 1: main 06/22/1998 15:13:03 Page 13

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

PPA1: Entry Point Constants
000018 1CCE A106 =F'483303686' Flags
00001C 0000 00D0 =A(PPA2-main)
000020 0000 0000 =F'0' No PPA3
000024 0000 0000 =F'0' No EPD
000028 FF00 0000 =F'-16777216' Register save mask
00002C 0000 0000 =F'0' Member flags
000030 90 =AL1(144) Flags
000031 0000 00 =AL3(0) Callee's DSA use/8
000034 02C0 =H'704' Flags
000036 0012 =H'18' Offset/2 to CDL
000038 0000 0000 =F'0' Reserved
00003C 5000 0061 =F'1342177377' CDL function length/2
000040 0000 0040 =F'64' CDL function EP offset
000044 3824 0000 =F'941883392' CDL prolog
000048 4009 0058 =F'1074331736' CDL epilog
00004C 0000 0000 =F'0' CDL end
000050 0004 **** AL2(4),C'main'

PPA1 End

000058 00010 | 1 main DS 0D
000058 47F0 F022 00010 | 1 B 34(,r15)
00005C 01C3 C5C5 CEE eyecatcher
000060 0000 00C0 DSA size
000064 FFFF FFC0 =A(PPA1-main)
000068 47F0 F001 00010 | 1 B 1(,r15)
00006C 58F0 C31C 00010 | 1 L r15,796(,r12)
000070 184E 00010 | 1 LR r4,r14
000072 05EF 00010 | 1 BALR r14,r15
000074 0000 0000 =F'0'
000078 07F3 00010 | 1 BR r3
00007A 90E5 D00C 00010 | 1 STM r14,r5,12(r13)
00007E 58E0 D04C 00010 | 1 L r14,76(,r13)
000082 4100 E0C0 00010 | 1 LA r0,192(,r14)
000086 5500 C314 00010 | 1 CL r0,788(,r12)
00008A 4130 F03A 00010 | 1 LA r3,58(,r15)
00008E 4720 F014 00010 | 1 BH 20(,r15)
000092 5000 E04C 00010 | 1 ST r0,76(,r14)
000096 9210 E000 00010 | 1 MVI 0(r14),16
00009A 50D0 E004 00010 | 1 ST r13,4(,r14)
00009E 18DE 00010 | 1 LR r13,r14
0000A0 End of Prolog

0000A0 00014 | 1 @1L2 DS 0H
0000A0 4150 0001 00016 | 1 LA r5,1
0000A4 5050 D098 00016 | 1 ST r5,@PARM.i2(,r13,152)
0000A8 5810 308E 00010 | 2 + L r1,=A(gbl)(,r3,142)
0000AC 5800 1000 00010 | 2 + L r0,gbl(,r1,0)
0000B0 1C40 00010 | 2 + MR r4,r0
0000B2 1805 00010 | 2 + LR r0,r5
0000B4 5000 1000 00010 | 2 + ST r0,gbl(,r1,0)
0000B8 5800 D098 00012 | 2 + L r0,@PARM.i2(,r13,152)
0000BC 8900 0001 00012 | 2 + SLL r0,1
0000C0 5000 D09C 00012 | 2 + ST r0,@IRET1(,r13,156)
0000C4 5000 D0A0 00012 | 2 + ST r0,k(,r13,160)
0000C8 4100 0000 00018 | 1 LA r0,0

Figure 17. Example of an IPA Link Step Listing (Part 5 of 7)

198 OS/390 V2R6.0 C/C++ User’s Guide

15647A01 V2 R6 M00 OS/390 C/C++ IPA Partition 1: main 06/22/1998 15:13:03 Page 14

OFFSET OBJECT CODE LINE# FILE# P S E U D O A S S E M B L Y L I S T I N G

0000CC 5000 D0A4 00018 | 1 ST r0,@CIV0(,r13,164)
0000D0 00018 | 1 @1L4 DS 0H
0000D0 5800 D0AC 00019 | 1 L r0,j(,r13,172)
0000D4 5000 D0A8 00019 | 1 ST r0,@PARM.i0(,r13,168)
0000D8 5800 D0A0 00019 | 1 L r0,k(,r13,160)
0000DC 5000 D0B0 00019 | 1 ST r0,@PARM.j1(,r13,176)
0000E0 5850 D0A8 00008 | 3 + L r5,@PARM.i0(,r13,168)
0000E4 1C40 00008 | 3 + MR r4,r0
0000E6 1805 00008 | 3 + LR r0,r5
0000E8 5000 D0B4 00008 | 3 + ST r0,@IRET0(,r13,180)
0000EC 5000 D0A0 00008 | 3 + ST r0,k(,r13,160)
0000F0 5800 D0A4 00008 | 3 + L r0,@CIV0(,r13,164)
0000F4 4A00 3088 00008 | 3 + AH r0,=H'1'
0000F8 5000 D0A4 00008 | 3 + ST r0,@CIV0(,r13,164)
0000FC 5500 308A 00008 | 3 + CL r0,=F'10'
000100 4740 303E 00008 | 3 + BL @1L4
000104 58F0 D0A0 00022 | 1 L r15,k(,r13,160)
000108 00022 | 1 @1L24 DS 0H

000108 Start of Epilog
000108 180D 00022 | 1 LR r0,r13
00010A 58D0 D004 00022 | 1 L r13,4(,r13)
00010E 58E0 D00C 00022 | 1 L r14,12(,r13)
000112 9825 D01C 00022 | 1 LM r2,r5,28(r13)
000116 051E 00022 | 1 BALR r1,r14
000118 0707 00022 | 1 NOPR 7

00011A Start of Literals
00011A 0001 =H'1'
00011C 0000 000A =F'10'
000120 0000 0000 =A(gbl)
000124 End of Literals

*** General purpose registers used: 1101110000001111
*** Floating point registers used: 0000000000000000
*** Size of register spill area: 128(max) 0(used)
*** Size of dynamic storage: 192
*** Size of executable code: 194

000124 0000 0000

PPA2: Compile Unit Block
000128 0300 2202 =F'50340354' Flags
00012C FFFF FED8 =A(CEESTART-PPA2)
000130 0000 0000 =F'0' No PPA4
000134 FFFF FED8 =A(TIMESTMP-PPA2)
000138 0000 0000 =F'0' No primary
00013C 0000 0000 =F'0' Flags

PPA2 End

Figure 17. Example of an IPA Link Step Listing (Part 6 of 7)

Chapter 6. Compiler Options 199

IPA Link Step Listing Components

The following sections describe the components of an IPA Link step listing.

15647A01 V2 R6 M00 OS/390 C/C++ IPA Partition 1 06/22/1998 15:13:03 Page 15

E X T E R N A L S Y M B O L D I C T I O N A R Y

TYPE ID ADDR LENGTH NAME

SD 1 000000 000140 @STATICP
LD 0 000058 000001 main
ER 2 000000 CEESG003
ER 3 000000 gbl
ER 4 000000 CEESTART
SD 5 000000 000008 @@PPA2
SD 6 000000 00000C CEEMAIN
ER 7 000000 EDCINPL
ER 8 000000 main

15647A01 V2 R6 M00 OS/390 C/C++ IPA Partition 1 06/22/1998 15:13:03 Page 16

E X T E R N A L S Y M B O L C R O S S R E F E R E N C E

ORIGINAL NAME EXTERNAL SYMBOL NAME

@STATICP @STATICP
main main
CEESG003 CEESG003
gbl gbl
CEESTART CEESTART
@@PPA2 @@PPA2
CEEMAIN CEEMAIN
EDCINPL EDCINPL

15647A01 V2 R6 M00 OS/390 C/C++ IPA Partition 1 06/22/1998 15:13:03 Page 17

* * * * * S T O R A G E O F F S E T L I S T I N G * * * * *

IDENTIFIER DEFINITION ATTRIBUTES
<SEQNBR>-<FILE NO>:<FILE LINE NO>

gbl 5-1:5 Class = external reference, Location = CSECT GBL, Length = 4

k 12-1:12 Class = automatic, Location = 160(r13), Length = 4

j 12-1:12 Class = automatic, Location = 172(r13), Length = 4

* * * * * E N D O F S T O R A G E O F F S E T L I S T I N G * * * * *
15647A01 V2 R6 M00 OS/390 C/C++ IPA Partition 1 06/22/1998 15:13:03 Page 18

* * * * * S O U R C E F I L E M A P * * * * *

OBJECT SOURCE
*ORIGIN FILE ID FILE ID SOURCE FILE NAME

P 2 1 TSIPA.TEST.C(INCLMAIN)
- Compiled by 5647A01 V2 R6 M00 OS/390 C

on 06/22/1998 15:04:54
P 3 2 TSIPA.TEST.C(INCLRTN1)

- Compiled by 5647A01 V2 R6 M00 OS/390 C
on 06/22/1998 15:05:05

P 4 3 TSIPA.TEST.C(INCLRTN2)
- Compiled by 5647A01 V2 R6 M00 OS/390 C

on 06/22/1998 15:05:13

ORIGIN: P=primary input PI=primary INCLUDE

* * * * * E N D O F S O U R C E F I L E M A P * * * * *
15647A01 V2 R6 M00 OS/390 C/C++ IPA Partition 1 06/22/1998 15:13:03 Page 19

* * * * * M E S S A G E S U M M A R Y * * * * *

TOTAL UNRECOVERABLE SEVERE ERROR WARNING INFORMATIONAL
(U) (S) (E) (W) (I)

0 0 0 0 0 0

* * * * * E N D O F M E S S A G E S U M M A R Y * * * * *

* * * * * E N D O F C O M P I L A T I O N * * * * *

Figure 17. Example of an IPA Link Step Listing (Part 7 of 7)

200 OS/390 V2R6.0 C/C++ User’s Guide

Heading Information

The first page of the listing is identified by the product number, the compiler version
and release numbers, the central title area, the date and time compilation began
(formatted according to the current locale), and the page number.

In the following listing sections, the central title area will contain the primary input
file identifier:
v Prolog
v Object File Map
v Source File Map
v Compiler Options Map
v Global Symbols Map
v Inline Report
v Messages
v Message Summary

In the following listing sections, the central title area will contain the phrase Partition
nnnn, where nnnn specifies the partition number:
v Partition Map

In the following listing sections, the title contains the phrase Partition nnnn:name.
nnnn specifies the partition number, and name specifies the name of the first function
in the partition:
v Pseudo Assembly Listing
v External Symbol Cross Reference
v Storage Offset Listing

Prolog Section

The Prolog section of the listing provides information about the compile-time library,
file identifiers, compiler options, and other items in effect when the IPA Link step
was invoked.

The listing displays all compiler options except those with no default (for example,
ARCHITECTURE). If you specify IPA suboptions that are irrelevant to the IPA Link step,
the Prolog does not display them. Any problems with compiler options appear after
the body of the Prolog section and before the End of Prolog section.

Object File Map

The Object File Map displays the names of the object files that were used as input
to the IPA Link step. Specify any of the following options to generate the Object File
Map:

v IPA(MAP)

v LIST

Other listing sections, such as the Source File Map, use the File ID numbers that
appear in this listing section.

HFS file names that are too long to fit into a single listing record continue on
subsequent listing records.

Chapter 6. Compiler Options 201

Source File Map

The Source File Map listing section identifies the source files that are included in
the object files. The IPA Link step generates this section if you specify any of the
following options:

v IPA(MAP)

v LIST

The IPA Link step formats the compilation date and time according to the locale you
specify with the LOCALE option in the IPA Link step. If you do not specify the LOCALE
option, it uses the default locale.

This section appears near the end of the IPA Link step listing. If the IPA Link step
terminates early due to errors, it does not generate this section.

Compiler Options Map

The Compiler Options Map listing section identifies the compiler options that were
specified during the IPA Compile step for each compilation unit that is encountered
when the object file is processed. For each compilation unit, it displays the final
options that are relevant to IPA Link step processing. You may have specified these
options through a compiler option or #pragma directive, or you may have picked
them up as defaults.

The IPA Link step generates this listing section if you specify the IPA(MAP) option.

Global Symbols Map

The Global Symbols Map listing section shows how global symbols are mapped into
members of global data structures by the global variable coalescing optimization
process.

Each global data structure is limited to 16 MB by the OS/390 object architecture. If
an application has more than 16 MB of data, IPA Link must generate multiple global
data structures for the application. Each global data structure is assigned a unique
name.

The Global Symbols Map includes symbol information and file name information
(file name information may be approximate). In addition, line number information is
available for C compilations if you specified any of the following options during the
IPA Compile step:

v XREF

v IPA(XREF)

v XREF(ATTRIBUTE)

The IPA Link step generates this listing section if you specify the IPA(MAP) option.

Inline Report for IPA Inliner

The Inline Report describes the actions that are performed by the IPA Inliner. The
IPA Link step generates this listing section if you specify the INLINE(,REPORT,,),
NOINLINE(,REPORT,,), or INLRPT option.

202 OS/390 V2R6.0 C/C++ User’s Guide

This report is similar to the one that is generated by the non-IPA inliner. In the IPA
version of this report, the term 'subprogram' is equivalent to a C/C++ function or a
C++ method. The summary contains information such as:

v Name of each defined subprogram. IPA sorts subprogram names in alphabetical
order.

v Reason for action on a subprogram:
– You specified #pragma noinline for the subprogram.
– You specified #pragma inline for the subprogram.
– The IPA Link step performed auto-inlining on the subprogram.
– There was no reason to inline the subprogram.
– There was a partition conflict.
– The IPA Link step could not inline the object module because it was a non-IPA

object module.

v Action on a subprogram:
– IPA inlined subprogram at least once.
– IPA did not inline subprogram because of initial size constraints.
– IPA did not inline subprogram because of expansion beyond size constraint.
– Subprogram was a candidate for inlining, but IPA did not inline it.
– Subprogram was a candidate for inlining, but was not referenced.
– The subprogram is directly recursive, or some calls have mismatched

parameters.

v Status of original subprogram after inlining:
– IPA discarded the subprogram because it is no longer referenced and is

defined as static internal.
– IPA did not discard the subprogram, for various reasons :

- Subprogram is external. (It can be called from outside the compilation unit.)
- Subprogram call to this subprogram remains.
- Subprogram has its address taken.

v Initial relative size of subprogram (in Abstract Code Units (ACUs)).

v Final relative size of subprogram (in ACUs) after inlining.

v Number of calls within the subprogram and the number of these calls that IPA
inlined into the subprogram.

v Number of times the subprogram is called by others in the compile unit and the
number of times IPA inlined the subprogram.

v Mode that is selected and the value of threshold and limit you specified for the
compilation.

Static functions whose names are not unique within the application as a whole will
have names prefixed with nnnn:, where nnnn is the source file number.

The detailed call structure contains specific information of each subprogram such
as:
v Subprograms that it calls
v Subprograms that call it
v Subprograms in which it is inlined.

The information can help you to better analyze your program if you want to use the
inliner in selective mode.

Inlining may result in additional messages. For example, if inlining a subprogram
with automatic storage increases the automatic storage of the subprogram it is
being inlined into by more than 4K, the IPA Link step issues a message.

Chapter 6. Compiler Options 203

This report may display information about inlining specific subprograms, at the point
at which IPA determines that inlining is impossible.

The counts in this report do not include calls from non-IPA to IPA programs.

Note: Even if the IPA Link step did not perform any inlining, it generates the IPA
Inline Report if you request it.

Partition Map

The Partition Map listing section describes each of the object code partitions the
IPA Link step creates. It provides the following information:
v The reason for generating each partition
v How the code is packaged (the CSECTs)
v The options used to generate the object code
v The function and global data included in the partition
v The source files that were used to create the partition

The IPA Link step generates this listing section if you specify either of the following
options :

v IPA(MAP)

v LIST

The Pseudo Assembly, External Symbol Dictionary, External Symbol Cross
Reference, and Storage Offset listing sections follow the Partition Map listing
section for the partition, if you have specified the appropriate compiler options.

Pseudo Assembly Listing

The option LIST generates a listing of the machine instructions in the current
partition of the object module, in a form similar to assembler language.

This pseudo assembly listing displays the source statement line numbers and the
line number of inlined code to aid you in debugging inlined code. Refer to
“GONUMBER | NOGONUMBER” on page 96, “IPA | NOIPA” on page 103, and
“LIST | NOLIST” on page 110 for information about source and line numbers in the
listing section.

External Symbol Dictionary

The External Symbol Dictionary lists the names that the IPA Link step generates for
the current partition of the object module. It includes address information and size
information about each symbol.

External Symbol Cross Reference Listing

The IPA Link step generates this section if you specify the ATTR or XREF compiler
option. It shows how the IPA Link step maps internal and ESD names for external
symbols that are defined or referenced in the current partition of the object module.

Storage Offset Listing

The Storage Offset listing section displays the offsets for the data in the current
partition of the object module. This section only displays variable information from C
compilation units.

204 OS/390 V2R6.0 C/C++ User’s Guide

If you specify the XREF, IPA(XREF), or IPA(ATTRIBUTE) option along with the
IPA(OBJECT) option for the IPA Compile step, and the compilation unit includes
variables, the IPA Link step may generate a Storage Offset listing.

If you specify the XREF option on the IPA Link step, and any of the compilation units
that contributed variables to a particular partition had storage offset information
encoded in the IPA object file, the IPA Link step generates a Storage Offset listing
section for that partition.

The Storage Offset listing displays the variables that IPA did not coalesce. The
symbol definition information appears as file#:line#.

Messages

If the IPA Link step detects an error, or the possibility of an error, it issues one or
more diagnostic messages, and generates the Messages listing section. This listing
section contains a summary of the messages that are issued during IPA Link step
processing.

The IPA Link step listing sorts the messages by severity. The Messages listing
section displays the listing page number where each message was originally
shown. It also displays the message text, and optionally, information relating the
error to a file name, line (if known), and column (if known).

For more information on compiler messages, see “FLAG | NOFLAG” on page 90,
and “Appendix F. OS/390 C/C++ Compiler Return Codes and Messages” on
page 475.

Message Summary

This listing section displays the total number of messages and the number of
messages for each severity level.

Chapter 6. Compiler Options 205

206 OS/390 V2R6.0 C/C++ User’s Guide

Chapter 7. Binder Options and Control Statements

This chapter describes only the binder options, suboptions, and control statements
that are considered important for a C or C++ programmer. For a detailed description
of all the binder options and control statements, see DFSMS/MVS Program
Management.

Binder Options

The binder processes options from left to right. If you specify a binder option more
than once, the binder uses the last, or rightmost option. The default options used by
the OS/390 C/C++ supplied cataloged procedures, the CXXBIND REXX exec, and the
c89, cc, and c++ utilities are indicated only where they differ from the binder default.

ALIASES(ALL | NO)

DEFAULT: ALIASES(NO)

The ALIASES(ALL) option instructs the binder to create hidden aliases for all
externally defined symbols (functions and variables). Hidden aliases are marked as
″not executable″, to prevent an unintentional load and execution. These aliases
might not be visible to some system utilities. Also, if the target of an ALIAS control
statement is a symbol, the binder does not mark the alias as hidden.

The binder does not create hidden aliases if ALIASES(NO) is in effect, or if the
module is saved in a PM2 or earlier format. See “COMPAT(PM1 | PM2 | PM3 |
CURRENT | CURR)” on page 208 for information on setting the compatibility format.

Hidden aliases are for autocall purposes only. See “Generating Aliases for
Automatic Library Call (Library Search)” on page 315.

CALL(YES | NO)

DEFAULT: CALL(YES)

Note: If you use the -r option with c89, cc or c++, the binder uses the
CALL(NO)option.

The CALL(YES) option specifies that the binder should search the libraries that are
defined by the DD SYSLIB to find symbol definitions (see “Final Autocall Processing
(SYSLIB)” on page 314).

The CALL(NO) option instructs the binder not to perform final autocall processing of
the libraries that are defined by DD SYSLIB to resolve unresolved references.

CASE(UPPER | MIXED)

Binder DEFAULT: CASE(UPPER)

Note: The default that is provided by the OS/390 C/C++ cataloged procedures,
CXXBIND, and the c89, cc, and c++ utilities is CASE(MIXED).

© Copyright IBM Corp. 1996, 1999 207

The CASE option controls the binder’s sensitivity to case. When you specify
CASE(MIXED):

v The binder distinguishes between uppercase characters and lowercase
characters, and treats two strings as different if their cases do not match exactly.

v The binder does not convert lowercase characters to uppercase in names that
are encountered in input modules, control statements, and call parameters.

When you specify CASE(UPPER), the binder converts all lowercase characters to
uppercase during processing.

Note: OS/390 C++ does not support the CASE(UPPER) option. Use CASE(MIXED) for
C++ code.

COMPAT(PM1 | PM2 | PM3 | CURRENT | CURR)

DEFAULT: COMPAT(CURRENT)

The COMPAT option specifies the compatibility level of the binder. If you do not
specify it, the default is COMPAT(CURRENT), which is the current level of the binder.
For OS/390 C/C++ code you cannot specify a compatibility level lower than PM3.

DYNAM(DLL | NO)

Binder DEFAULT: DYNAM(NO)

Note: The default that is provided by the OS/390 C/C++ cataloged procedures,
CXXBIND, and the c89, cc, and c++ utilities is DYNAM(DLL).

The DYNAM option specifies whether the binder should enable the resultant module
for DLL-type dynamic binding. You must specify DYNAM(DLL) if the program object is
to be a DLL or will need to load DLLs. If you specify DYNAM(DLL), the binder does
the following:

v Creates the Import/Export Table in section IEWBCIE of class B_IMPEXP. This
element contains information about imported and exported symbols that is
necessary to support run-time library dynamic linking and loading.

v Performs DLL-specific bind processing: that is, generates linkage areas
(descriptors) in class C_WSA for run-time library fixup.

Import/export tables and the definition side-deck are not created if you specify
DYNAM(NO), or if it is in effect by default. If you specify DYNAM(DLL), the binder RES
option is disabled. DLL-enabled modules require PM3 program objects. If you
attempt to save them in down-level program objects or load modules using COMPAT,
the binder issues a severity 12 error, and does not save the module.

LET(0 | 4 | 8 | 12)

DEFAULT: LET(4)

The LET option specifies that a generated program object should be marked as
executable even if the return code is not zero: for example, if symbols are
unresolved. For example, LET(4) marks the generated program object as
executable even if there are errors of severity 4 or less. LET is the equivalent of
LET(8).

208 OS/390 V2R6.0 C/C++ User’s Guide

LIST(OFF | STMT | SUMMARY | NOIMP | ALL)

DEFAULT: LIST(SUMMARY)

The LIST option specifies the type of information that is written to the binder map.
Use one of the following suboptions:

ALL produces a listing of individual function calls, save summary, control
statements, and messages

SUMMARY produces a listing of the summary information which includes
processing options, module attributes, save summary, and the entry
point summary, and echoes IMPORT control statements.

NOIMP produces the same output as SUMMARY, but does not echo IMPORT
control statements.

STMT produces a listing of control statements and binder messages

OFF produces a listing that contains only binder messages.

Note: The binder map contains a summary of the modules only if you specify the
suboptions SUMMARY, ALL, or NOIMP.

NOLIST is equivalent to LIST(OFF).

MAP(YES | NO)

DEFAULT: MAP(NO)

The option MAP(YES) instructs the binder to write a printed map of the program
object to DD SYSPRINT. The option MAP(NO) specifies that the binder does not
generate a map.

OPTIONS

This option specifies the DDname of a file that contains other options. For example,
OPTIONS=OPT1 specifies that further options should be read from the DDname OPT1.
This option is useful if the length of the PARM keyword in your JCL is longer that 100
characters.

REUS(NONE | SERIAL | RENT)

Binder DEFAULT: REUS(NONE)

Note: The default that is provided by the OS/390 C/C++ cataloged procedures,
CXXBIND, and the c89, cc, and c++ utilities is REUS(RENT).

If you use the -g option with c89, cc, or c++, the binder uses the option
REUS(SERIAL).

The REUS option specifies the reusability of the output program object. For C/C++
code these are the suboptions that you are most likely to use:

RENT specifies that other users or programs can share a read-only copy
of the code.

NONEL specifies that the code cannot be shared. Use this option if you

Chapter 7. Binder Options and Control Statements 209

have NORENT variables which are modified during program
execution. Such a program object cannot be in the LPA or ELPA.

If you built a DLL with REUS(NONE), any program that links to the
DLL will get a new load of both the code and data (C_WSA). This
may be a problem if other DLLs in the same program share this
DLL. See “Non-reentrant DLL Problems” on page 333.

SERIAL specifies that a single user can share the code, but it is loaded into
a modifiable area of storage. Use this option if you have NORENT
variables that are modified during program execution. Such a
program object cannot be in the LPA or ELPA.

If you built a DLL with REUS(SERIAL), any program within a single
Language Environment enclave that links to that DLL will share the
same code and data (C_WSA).

UPCASE(YES | NO)

DEFAULT: UPCASE(NO)

The UPCASE option specifies that some additional rename processing is to be done.
You should not confuse this option with the CASE(UPPER) option.

UPCASE by itself is equivalent to UPCASE(YES). The UPCASE(YES) option enforces the
uppercase mapping of some symbol names. See “Rename Processing” on
page 314 for its effect.

If you use the UPCASE option, external symbols in C programs are no longer
case-sensitive. The binder does not support the use of the UPCASE option with C++
code. Therefore, you should use the RENAME control statement rather than the
UPCASE option.

XREF(YES | NO)

DEFAULT: XREF(NO)

The XREF(YES) option instructs the binder to generate a cross-reference list of data
variables. If the XREF(NO) option is in effect, the binder does not generate a
cross-reference list of data variables.

Binder Control Statements

Binder control statements specify how the binder processes its input.

The important binder control statements for a C/C++ programmer are the following
(this is not a complete list):
v AUTOCALL
v ENTRY
v INCLUDE
v IMPORT
v LIBRARY
v NAME
v RENAME

210 OS/390 V2R6.0 C/C++ User’s Guide

You can place the control statements in a permanent data set that has the attributes
RECFM=F or RECFM=FB, and LRECL=80.

If all of the information does not fit on one control statement, you can use one or
more continuations. You must put a non-blank character in column 72 if you need to
continue a control statement on the next record. The first column of the continued
card that follows must be blank, and the statement must continue in column 2. The
binder ignores leading blanks unless they are in a quoted string. You may optionally
enclose a named token in single quotes.

You can specify input files on the INCLUDE, LIBRARY, and AUTOCALL statements as
HFS pathnames rather than DD names. Pathnames can be distinguished from DD
names by the preceding ″/″, which indicates an absolute pathname, or ″./″, which
indicates a relative pathname.

AUTOCALL Control Statement

The AUTOCALL control statement causes the binder to perform an immediate
(incremental) library search on the named library. Incremental autocall attempts to
resolve any unresolved symbols at this point in the processing, using a single
library or library concatenation. The binder searches the library before it processes
more primary or secondary input.

The AUTOCALL control statement has the following syntax:

ÊÊ AUTOCALL library ÊÍ

library If library identifies the DD name of the library or library concatenation, it
cannot exceed 8 bytes in length.

If library identifies an HFS filename, it cannot exceed 1024 bytes. The
binder assumes that the file is an archive file. If it is an HFS directory file,
then for purposes of symbol resolution, the binder uses the filenames of the
files in the directory in the same way as it uses PDSE aliases and member
names.

During incremental autocall, the binder ignores LIBRARY control statements and the
CALL option.

ENTRY Control Statements

The ENTRY control statement specifies the entry point for program execution.

The ENTRY control statement has the following syntax:

ÊÊ ENTRY name ÊÍ

name The name of the entry point for execution when the program is loaded.

By default, the program entry point for a C or C++ application is CEESTART. The
program entry point is nominated in one of three ways (listed from weakest to
strongest nomination).
1. The name of the first section that is processed by the binder

Chapter 7. Binder Options and Control Statements 211

2. The name that is nominated in the object module (CEESTART for C/C++
main())

3. The name explicitly specified on an ENTRY control statement

IMPORT Control Statements

The IMPORT control statement describes an external function or variable to be
imported, and the name of the DLL that contains its definition. The DLL name can
be a PDS or PDSE member, or an HFS filename. The function or variable should
be one that is being exported by a DLL.

If you do not specify DYNAM(DLL), the binder ignores the IMPORT control statement.

The IMPORT control statement has the following syntax:

ÊÊ IMPORT CODE
DATA

,dll-name ,identifier ÊÍ

CODE | DATA Specifies the type of contents of the module that the imported
symbol represents. A function and a variable cannot have the same
name.

dll-name The directory name (primary member or alias) or HFS filename of
the load module or program object that contains the imported
function or variable. The maximum length of a dll-name is 1024
characters. The maximum length of an HFS filename is 255 bytes.

identifier The name of the symbol (function or variable) that is to be
imported. The name cannot be longer than 1024 characters. If the
symbol has a C++ mangled name, then you must use the mangled
name on the IMPORT statement. If the identifier contains lowercase
letters, you must specify the binder option CASE(MIXED).

Typically, a DLL has an associated definition side-deck of IMPORT control
statements, which you include when you import functions or variables from that
library. You can edit the records in the side file, or substitute your own IMPORT
control statements so that some symbols are imported from DLLs in a different
library.

If your program exports symbols, the binder may also generate an output file of
corresponding IMPORT control statements. See “Output IMPORT Statements” on
page 317.

INCLUDE Control Statements

You typically place INCLUDE control statements in DD SYSLIN to include multiple
program objects, load modules, or object modules in primary input.

The INCLUDE control statement has the following syntax:

212 OS/390 V2R6.0 C/C++ User’s Guide

ÊÊ INCLUDE ddname
filename

»

,

(member)

ÊÍ

filename is the name of the file to be included.

ddname is a DD name associated with a file to be included.

member is the member of the DD to be included.

The binder attempts to read the file that is specified.

LIBRARY Control Statement

You can use the LIBRARY control statement to resolve conflicts that you cannot
resolve by changing the order of libraries in the SYSLIB concatenation.

To specify that the binder should never search for an unresolved reference
neversrch, use the following syntax for the LIBRARY control statement:

ÊÊ LIBRARY * (»

,

neversrch) ÊÍ

neversrch The binder never searches for the reference that you marked as
neversrch, on this bind step or on future rebinds.

To specify that the binder should not search for an unresolved reference nosrch,
use the following syntax for the LIBRARY control statement:

ÊÊ LIBRARY (»

,

nosrch) ÊÍ

nosrch An external reference which may be unresolved at the end of SYSLIN
processing. Automatic library call in SYSLIB does not search for such
references on this bind step. Case-sensitivity is maintained you enclose
nosrch in single quotes.

To direct the binder to search for an unresolved reference srch in a particular
library, use the following syntax of the LIBRARY control statement:

ÊÊ LIBRARY ddname (»

,

srch) ÊÍ

ddname The name of a DD that defines a library (PDS or PDSE), or a
concatenation of one or more PDS or PDSEs.

srch An external reference which may be a variable or a function.
Should this symbol be unresolved after SYSLIN is processed, and

Chapter 7. Binder Options and Control Statements 213

library search is requested, the libraries pointed to by SYSLIB are
not searched. Rather, the library (PDS or PDSE) that is defined by
ddname will be searched for an alias or a member of name srch.
See “Generating Aliases for Automatic Library Call (Library Search)”
on page 315. If the binder finds the member, it reads it as input to
the bind step. If you enclose srch in single quotes, the search is
case-sensitive.

For example, if you have a program that has both Fortran and C code, both
libraries define the member ABS and COS. You want the member COS from the
Fortran library, and the member ABS from the C library. Your LIBRARY control
statement would be similar to the following:

LIBRARY DDFORT(COS)
LIBRARY DDCLIB(ABS)

If you do not use the LIBRARY control statement, you will get both members from the
C library or both members from the Fortran library.

NAME control statement

The NAME control statement specifies the name of the program object that is output
to SYSLMOD. The NAME control statement has the following syntax:

ÊÊ NAME member_name
(R)

ÊÍ

member_name A PDS or PDSE library member name, or an HFS
file name.

R If you use the option R and the name that you
specify already exists, the binder will replace the
existing member with the output program object.

The output from the binder can be a single program object, or multiple program
objects generated by using multiple NAME control statements.

RENAME Control Statement

The RENAME control statement requests the binder to rename the references to a
symbol that remains unresolved at the end of the first pass of final autocall
processing of SYSLIB. See “Final Autocall Processing (SYSLIB)” on page 314.

You can use the RENAME control statement to resolve case differences in function
names.

The RENAME control statement has the following syntax:

ÊÊ RENAME old-name ,new-name ÊÍ

old-name The function to be renamed. Maximum length is 1024.

new-name The name to which old-name may be changed. Maximum length is
1024.

214 OS/390 V2R6.0 C/C++ User’s Guide

When the binder reads a RENAME control statement, it adds the request to the list of
such requests. Nothing else is done until rename processing. See “Rename
Processing” on page 314.

Chapter 7. Binder Options and Control Statements 215

216 OS/390 V2R6.0 C/C++ User’s Guide

Chapter 8. Runtime Options

This chapter describes how to specify runtime options and #pragma runopts
preprocessor directives available to you with OS/390 C/C++ and OS/390 Language
Environment. For a detailed description of the OS/390 Language Environment
runtime options and information about how to apply them in different environments,
refer to the OS/390 Language Environment Programming Reference.

Specifying Runtime Options

To allow your application to recognize runtime options, either the EXECOPS compiler
option, or the #pragma runopts(execops) directive must be in effect. The default
compiler option is EXECOPS.

You can specify runtime options as follows:

v At execution time in one of the following ways:
– On the GPARM option of the IBM-supplied cataloged procedures
– On the option list of the TSO CALL command
– On the PARM option of the EXEC PGM=your-program-name JCL statement
– On the exported _CEE_RUNOPTS environment variable under the OS/390 shell

v At compile time, on a #pragma runopts directive in your main program

If EXECOPS is in effect, use a slash ’/’ to separate runtime options from arguments
that you pass to the application. For example:
GPARM='STORAGE(FE,FE,FE)/PARM1,PARM2,PARM3'

If EXECOPS is in effect, Language Environment interprets the character string that
precedes the slash as runtime options. It passes the character string that follows
the slash to your application as arguments. If no slash separates the arguments,
Language Environment interprets the entire string as an argument.

If EXECOPS is not in effect, Language Environment passes the entire string to your
application.

If you specify two or more contradictory options (for example in a #pragma runopts
statement), the last option that is encountered is accepted. Runtime options that
you specify at execution time have higher precedence than those specified at
compile time.

For more information on the precedence and specification of runtime options for
applications that are compiled with the OS/390 Language Environment, refer to the
OS/390 Language Environment Programming Reference.

Using the #pragma runopts Preprocessor Directive

You can use the #pragma runopts preprocessor directive to specify OS/390
Language Environment runtime options. You can also use #pragma runopts to
specify the compiler options ARGPARSE, ENV, PLIST, REDIR, and EXECOPS. If you
specify the compiler option, it has precedence over the #pragma runopts directive.

When the runtime option EXECOPS is in effect, you can specify runtime options at
execution time, as previously described. These options override runtime options that
you compiled into the program by using the #pragma runopts directive.

© Copyright IBM Corp. 1996, 1999 217

The #pragma runopts directive can appear in any file: main, include, or source. You
can specify multiple runtime options per directive or multiple directives per
compilation unit. If you want to specify the ARGPARSE or REDIR options, the #pragma
runopts directive must be in the same compilation unit as main(). Neither runtime
option has an effect on programs invoked under the OS/390 shell. This is because
the shell program handles the parsing and redirection of command line arguments
within that environment.

When you specify multiple instances of #pragma runopts in separate compilation
units, the compiler generates a CSECT for each compilation unit that contains a
#pragma runopts directive. When you link multiple compilation units that specify
#pragma runopts, the linkage editor takes only the first CSECT, thereby ignoring
your other option statements. Therefore, you should always specify your #pragma
runopts directive in the same source file that contains the function main().

For more information on the #pragma runopts preprocessor directive, see the
OS/390 C/C++ Language Reference.

218 OS/390 V2R6.0 C/C++ User’s Guide

Part 3. Compiling, Binding, and Running OS/390 C/C++
Programs

This part describes how to compile, bind, and run an OS/390 C/C++ program using
OS/390 Language Environment in the following sections:

v “Chapter 9. Compiling” on page 221

v “Chapter 10. Using Precompiled Headers” on page 259

v “Chapter 11. Using the IPA Link Step with OS/390 C/C++ Programs” on page 267

v “Chapter 12. Binding OS/390 C/C++ Programs” on page 289

v “Chapter 13. Binder Processing” on page 311

v “Chapter 14. Running an OS/390 C/C++ Application” on page 335

© Copyright IBM Corp. 1996, 1999 219

220 OS/390 V2R6.0 C/C++ User’s Guide

Chapter 9. Compiling

This chapter describes how to compile your program with the OS/390 C/C++
compiler and OS/390 Language Environment. For specific information about
compiler options see “Chapter 6. Compiler Options” on page 55.

The OS/390 C/C++ compiler analyzes the source program and translates the
source code into machine instructions that are known as object code.

You can perform regular compilations under OS/390 batch, TSO, or the OS/390
shell.

Compiling with IPA

If you request Interprocedural Analysis (IPA) through the IPA compiler option, the
compilation process changes significantly. IPA instructs the compiler to optimize
your OS/390 C/C++ program across compilation units, and to perform optimizations
that are not otherwise available with the OS/390 C/C++ compiler. You should refer
to the OS/390 C/C++ Programming Guide for an overview of IPA processing before
you invoke the compiler with the IPA compiler option.

Differences between the IPA compilation process and the regular batch or c89
compilation process are noted throughout this chapter.

Figure 18 shows the flow of processing for a regular compilation:

IPA processing consists of two separate steps, called the IPA Compile step and the
IPA Link step.

The IPA Compile Step

The IPA Compile step is similar to a regular compilation.

You invoke the IPA Compile step for each source file in your application by
specifying the IPA(NOLINK) compiler option. The output of the IPA Compile step is

Analysis phase

Invocation parameters

Compiler

Code generation
phase

Source file(s)
Listing sections
Messages

Object module(s)
Listing sections
Messages

Figure 18. Flow of regular compiler processing

© Copyright IBM Corp. 1996, 1999 221

an IPA-optimized or a combined IPA-optimized and conventional object. Figure 19
shows the flow of IPA Compile step processing:

The same enviornments that support a regular compilation also support the IPA
Compile step.

The IPA Link Step

The IPA Link step is similar to the binding process.

Specify the IPA(LINK) compiler option to invoke the IPA Link step once for your
program as a whole. Figure 20 on page 223 shows the flow of IPA Link step
processing:

Analysis phase

IPA object creation

Invocation parameters
(IPA or IPA(NOLINK),

other suboptions may be
specified)

Compiler

Code generation
phase (optional)

Source file(s)
Listing sections
Messages
IPA object(s)

Listing sections
Messages
Regular object(s)

Figure 19. IPA Compile step processing

222 OS/390 V2R6.0 C/C++ User’s Guide

Only c89, c++ and OS/390 batch (without the ISPF interface) support the IPA Link
step. Refer to “Chapter 11. Using the IPA Link Step with OS/390 C/C++ Programs”
on page 267 for information about the IPA Link step.

Input to the OS/390 C/C++ Compiler

The following sections describe how to specify input to the OS/390 C/C++ compiler
for a regular compilation, or the IPA Compile step. For information about input for
the IPA Link step, refer to “Chapter 11. Using the IPA Link Step with OS/390 C/C++
Programs” on page 267.

If you are compiling an OS/390 C++ program or an OS/390 C program, input for the
compiler consists of the following:

v Your OS/390 C/C++ source program
v The OS/390 C/C++ standard header files including IBM-supplied Class Library

header files
v Your header files

When you invoke the OS/390 C/C++ compiler, the operating system locates and
runs the compiler. To run the compiler, you need these default data sets supplied by
IBM:
v CBC.SCBCCMP
v CEE.SCEERUN

The locations of the compiler and the runtime library were determined by the
system programmer who installed the product. The compiler and library should be
in the STEPLIB, JOBLIB, LPA, or LNKLST concatenations. LPA can be from either

IPA object
link phase

Analysis/
optimization phase

Code generation
phase

Invocation parameters
(IPA(LINK, CONTROL(dsn))

(other IPA suboptions may be
specified)

Compiler

Primary input file (object)

IPA control file
Secondary input (object, load module)

Listing sections
Messages

Listing sections
Messages

Listing sections
Messages
Final object code

Figure 20. IPA Link step processing

Chapter 9. Compiling 223

specific modules (IEALPAxx) or a list (LPALSTxx). See the cataloged procedures
shipped with the product in “Appendix D. IBM Supplied Cataloged Procedures and
REXX EXECs” on page 457.

HFS file names: Unless they appear in JCL, file names which contain the special
characters blank, backslash, and double quote must escape
these characters. The escape character is backslash (\).

Primary Input

For an OS/390 C++ or OS/390 C program (except for the IPA Link step), the
primary input to the compiler is the data set that contains your C/C++ source
program. If you are running the compiler in batch, identify the input source program
with the SYSIN DD statement. You can do this by either defining the data set that
contains the source code or by placing your source code directly in the JCL stream.
In TSO or in OS/390 UNIX System Services, identify the input source program by
name as a command line argument. The primary input source file can be any one
of the following:
v A sequential data set
v A member of a partitioned data set
v All members of a partitioned data set
v A hierarchical file system (HFS) file
v All HFS files in an absolute directory

Secondary Input

For an OS/390 C++ or OS/390 C program (except for the IPA Link step), secondary
input to the compiler consists of data sets that contain #include files. If you are
compiling a new OS/390 C/C++ program, use the LSEARCH compiler option instead
of USERPATH and USERLIB, and SEARCH instead of SYSPATH and SYSLIB. SEARCH and
LSEARCH provide greater flexibility in names and locations of #include files.

For more information on the use of these compiler options, see “LSEARCH |
NOLSEARCH” on page 115 and “SEARCH | NOSEARCH” on page 140. For more
information on naming #include files, see “Specifying Include File Names” on
page 247. For information on how the compiler searches for #include files, see
“Search Sequences for Include Files” on page 254. For more information on include
files, refer to “Using Include Files” on page 246.

Output from the Compiler

You can specify compiler output files as one of the following:
1. A sequential data set
2. A member of a partitioned data set
3. A partitioned data set
4. A hierarchical file system (HFS) file
5. An HFS directory

For valid combinations of input file types and output file types, refer to Table 25 on
page 227.

224 OS/390 V2R6.0 C/C++ User’s Guide

Specifying Output Files

You can use compile options to specify compilation output files as follows:

Table 23. Compile Options That Provide Output File Names

Output File Type Compiler Option

Object Module OBJECT(filename)

Listing File SOURCE (filename), LIST(filename),
INLRPT(filename)

Preprocessor Output PPONLY(filename)

Template Output TEMPINC(location)

Precompiled Header Output GENPCH(location)

When compiler options that generate output files are specified without suboptions to
identify the output files, and the ddnames are not allocated, the output file names
are generated based on the name of the source file. For data sets, the compiler
generates a low-level qualifier by appending a suffix to the data set name of the
source, as Table 24 showns.

For example, under TSO, the compiler generates the object file
'userid.TEST.SRC.OBJ' if you compile the following:

cc TEST.SRC (OBJ

The compiler generates the object file 'userid.TEST.SRC.OBJ(HELLO)' if you
compile the following:

cc 'hlqual.TEST.SRC(HELLO)' (OBJ

If you compile source from HFS files without specifying output filenames in the
compiler options, the compiler writes the output files are to the current working
directory. The compiler does the following to generate the output file names:

v appends a suffix, if it does not exist
v replaces the suffix, if it exists

The following default suffixes are used:

Table 24. Default Suffixes for Output File Types

Output File Type. OS/390 File HFS File

Object Module OBJ o

Listing File LIST lst

Preprocessor Output EXPAND i

Template Output TEMPINC ./tempinc

Precompiled Header Output PCH, PCHPP .pch, .pchpp

Notes:

1. Output files default to the HFS directory if the source resides in the HFS, or to
the OS/390 data set if the source resides in a data set.

2. If you have specified the OE option, see “OE | NOOE” on page 127 for a
description of the default naming convention.

3. If you supply inline source in your JCL, you must provide a file name for the
output, or route it to the job log. The compiler will not generate an output file
name automatically. You can specify a file name either as a suboption for a
compiler option, or on a ddname in your JCL.

Chapter 9. Compiling 225

4. If you are using #pragma options to specify a compile-time option that generates
an output file, you must use a ddname to specify the output file name. The
compiler will not automatically generate file names for output that is created by
#pragma options.

Listing Output

To create a listing file that contains source, object or inline reports use the SOURCE,
LIST, or INLRPT compile options. The listing includes the results of the default or
specified options of the CPARM parameter (that is, the diagnostic messages and the
object code listing). If you specify filename with two or more of these compile
options, the compiler combines the listings and writes them to the last file specified
in the compile options. If you did not specify filename, the listing will go to the
SYSCPRT DD name, if you allocated it. Otherwise, the compiler generates a default
file name as described in “LIST | NOLIST” on page 110.

Object Module Output

To create an object module and store it on disk or tape, you can use either the
OBJECT or DECK (C only) compiler options.

If you do not specify filename with the OBJECT option, the compiler stores the object
code in the file that you define in the SYSLIN DD statement. With the DECK compiler
option, the compiler uses the file that you define in the SYSPUNCH DD. If you did not
specify a suboptions, and did not allocate SYSLIN, the compiler generates a default
file name, as described in “OBJECT | NOOBJECT” on page 125.

Differences in Object Modules under IPA: The object module that a regular
compilation generates is different from the object module that the IPA Compile step
generates. The IPA Compile step and regular compilation both produce an object
module for each source file successfully processed. For the IPA Compile step,
however, the output is an IPA-optimized object file, or a combined IPA/conventional
object file (if you do not specify the NOOBJECT suboption of the IPA compiler option).
You can use the object file that the IPA(NOLINK,NOOBJECT) compiler option creates
as input to the IPA Link step only. It contains an external reference to @@DOIPA,
which remains unresolved until IPA Link step processes the file. If you attempt to
bind an IPA object file that was created by using the IPA(NOLINK,NOOBJECT) option,
the binder issues an error message.

Refer to “Valid Input/Output File Types” on page 227 for information about valid
input/output file types.

Preprocessor Output

If you specify filename with the PPONLY compile option, the compiler writes the
preprocessor output to that file. If you do not specify filename with the PPONLY
option, the compiler stores the preprocessor output in the file that you define in the
SYSUT10 DD statement. If you did not allocate SYSUT10, the compiler generates a
default file name, as described in “PPONLY | NOPPONLY” on page 136.

Template Instantiation Output

If you specify location, which is either an HFS directory or a PDS, with the TEMPINC
compile option, the compiler writes the template instantiation output to that location.
If you do not specify location with the TEMPINC option, the compiler stores the
TEMPINC output in the file that is associated with the TEMPINC DD name. If you did

226 OS/390 V2R6.0 C/C++ User’s Guide

not allocate DD:TEMPINC, the compiler determines a default destination for the
template instantiation files. See “TEMPINC | NOTEMPINC” on page 156 for more
information on this default.

Valid Input/Output File Types

Depending on the type of file that is used as primary input, certain output file types
are allowed. The following table describes these combinations of input and output
files:

Table 25. Valid Combinations of Source and Output File Types

Input Source
File

Output Data Set Specified
Without (member) Name,
for example A.B.C

Output Data Set
Specified as
filename(member),
for example A.B.C(D)

Output Specified as
HFS File, for
example a/b/c.o

Output Specified as
HFS Directory, for
example a/b

Sequential
Data Set, for
example A.B

1. If file exists as a
sequential data set,
overwrites it

2. If file does not exist,
creates sequential data
set

3. Otherwise compilation
fails

1. If PDS does not
exist, creates the
PDS and adds a
member into the
data set

2. If PDS exists and
member does not
exist, adds
member in the
PDS

3. If PDS and
member both
exist, then
overwrites the
member.

1. If the directory
does not exist,
compilation fails

2. If the directory
exists but the file
does not exist,
creates file

3. If the file exists,
overwrites the
file.

Not supported

A member of a
PDS using
(member), for
example
A.B(C)

1. If the file exists as a
sequential data set,
overwrites it

2. If the file exists as a
PDS, creates or
overwrites member

3. If file does not exist,
creates PDS and
member

1. If PDS does not
exist, creates PDS
and member

2. If PDS exists and
member does not
exist, adds
member

3. If PDS exists and
member also
exists, overwrites it

1. If directory does
not exist,
compilation fails

2. If directory exists
and the file with
the specified
filename does not
exist, creates file

3. If the directory
exists and the file
exists, overwrites
file

1. If directory does
not exist,
compilation fails

2. If directory exists
and the file with
the filename
MEMBER.ext does
not exist, creates
file

3. If directory exists
and the file with
the filename
MEMBER.ext also
exists, overwrite
file

Chapter 9. Compiling 227

Table 25. Valid Combinations of Source and Output File Types (continued)

Input Source
File

Output Data Set Specified
Without (member) Name,
for example A.B.C

Output Data Set
Specified as
filename(member),
for example A.B.C(D)

Output Specified as
HFS File, for
example a/b/c.o

Output Specified as
HFS Directory, for
example a/b

All members
of a PDS, for
example A.B

1. If file exists as a PDS,
creates or overwrites
members

2. If file does not exist,
creates PDS and
members

3. Otherwise compilation
fails

Not Supported Not Supported 1. If directory does
not exist,
compilation fails

2. If directory exists
and the files with
the filenames
MEMBER.ext do not
exist, creates files

3. If directory exists
and the files with
the filenames
MEMBER.ext exist,
overwrites them

HFS file, for
example
/a/b/d.c

1. If file exists as a
sequential data set,
overwrites it

2. If file does not exist,
creates sequential data
set

3. Otherwise compilation
fails

1. If PDS does not
exist, creates the
PDS and stores a
member into the
data set

2. If PDS exists and
member does not
exist, then add the
member in the
PDS

3. If PDS and
member both
exist, then
overwrites the
member.

1. If the directory
does not exist,
compilation fails

2. If the directory
exists but the file
does not exist,
creates file

3. If the file exists,
overwrites the
file.

1. If the directory
does not exist,
compilation fails

2. If the directory
exists and the file
does not exist,
creates it

3. If the directory
exists and the file
exists, overwrites it

HFS Directory,
for example
a/b/

Not supported Not supported Not supported 1. If the directory
does not exist,
compilation fails

2. If the directory
exists and the files
to be written do
not exist, creates
them

3. If the directory
exists and the files
to be written
already exist,
overwrites them

Compiling Under OS/390 Batch

To compile your OS/390 C/C++ source program under OS/390 batch, you can
either use cataloged procedures that IBM supplies, or write your own JCL
statements.

228 OS/390 V2R6.0 C/C++ User’s Guide

Using Cataloged Procedures for OS/390 C

You can use one of the following IBM-supplied cataloged procedures. Each
procedure includes a compilation step to compile your program.
EDCC Compile
EDCCB Compile and bind
EDCCBG Compile, bind and run
EDCI Run the IPA Link step
EDCCLIB Compile and maintain an object library
EDCCL Compile and link-edit
EDCCPLG Compile, prelink, link-edit, and run
EDCCLG Compile, link-edit, and run

IPA Considerations

Only the EDCC procedure applies to the IPA Compile step. Only the EDCI procedure
applies to the IPA Link step.

To run the IPA Compile step, use the EDCC procedure, and ensure that you specify
the IPA(NOLINK) or IPA compiler option. Note that you must also specify the
LONGNAME compiler option or the #pragma longname directive.

To create an IPA-optimized object module, you must run the IPA Compile step for
each source file in your program, and the IPA Link step once for the entire program.
Once you have successfully created an IPA-optimized object module, you must bind
it to create the final executable.

Using Cataloged Procedures for OS/390 C++

You can use one of the following cataloged procedures that IBM supplies. Each
procedure includes a compilation step to compile your program.
CBCC Compile
CBCCB Compile and bind
CBCCBG Compile, bind, and run
CBCBG Bind and run
CBCI Run the IPA Link step
CBCCL Compile, prelink, and link
CBCCLG Compile, prelink, link, and run

See “Appendix D. IBM Supplied Cataloged Procedures and REXX EXECs” on
page 457 for more information on cataloged procedures.

IPA Considerations

Only the CBCC procedure applies to the IPA Compile step. Only the CBCI procedure
applies to the IPA Link step.

To run the IPA Compile step, use the CBCC procedure, and ensure that you specify
the IPA(NOLINK) or IPA compiler option. Note that you must also specify the
LONGNAME compiler option or the #pragma longname directive.

To create an IPA-optimized object module, you must run the IPA Compile step for
each source file in your program, and the IPA Link step once for the entire program.
Once you have successfully created an IPA-optimized object module, you must bind
it to create the final executable.

Chapter 9. Compiling 229

Using Special Characters

When invoking the compiler directly, if a string contains a single quote (') it should
be written as two single quotes ('') as in:
//COMPILE EXEC PGM=CBCDRVR,PARM='OPTFILE(''USERID.OPTS'')'

If you are using the same string to pass a parameter to a JCL PROC, use four
single quotes (''''), as follows:
//COMPILE EXEC CBCC,CPARM='OPTFILE(''''USERID.OPTS'''')'

A backslash need not precede special characters in HFS file names that you use in
DD cards. For example:
//SYSLIN DD PATH='/u/user1/obj 1.o'

A backslash must precede special characters in HFS file names that you use in the
PARM statement. For example:
//STEP1 EXEC PGM=CBCDRVR,PARM='/u/user1/obj\ 1.o'

Using Your Own JCL

The following example shows sample JCL for compiling an OS/390 C program:

The following example shows sample JCL for compiling an OS/390 C++ program:

//jobname JOB acctno,name...
//COMPILE EXEC PGM=CBCDRVR,
// PARM='/SEARCH(''CEE.SCEEH.+'') NOOPT SO OBJ OPTFILE(DD:CPATH)'
//STEPLIB DD DSNAME=CEE.SCEERUN,DISP=SHR
// DD DSNAME=CBC.SCBCCMP,DISP=SHR
//SYSLIN DD DSNAME=MYID.MYPROG.OBJ(MEMBER),DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD DATA,DLM=@@
#include <stdio.h>...

int main(void)
{
/* comment */...

}
@@
//SYSUT1 DD DSN=...
//SYSUT4 DD DSN=......

//*

Figure 21. JCL for Compiling an OS/390 C Program (for NOOPT, SOURCE, and OBJ)

230 OS/390 V2R6.0 C/C++ User’s Guide

Use JCL to define your jobs and job steps to the operating system. Describe the
steps you want the operating system to perform, and specify the resources that are
required by the job. The JCL statements that are essential for running an OS/390
C/C++ job are:

v A JOB statement that identifies the start of the job

v An EXEC statement that identifies a job step and the program to be executed
either directly or by a cataloged procedure

v DD (data definition) statements that identify the input/output facilities that the
program that is executed in the job step requires

v JES control statements that provide information to the Job Entry Subsystem

For more information about JCL, refer to the publications that are listed in the
OS/390 Information Roadmap.

Specifying Source Files

For non-HFS files, use this format of the SYSIN JCL:
//SYSIN DD DSNAME=dsname,DISP=SHR

If you specify a PDS without a member name, all members of that PDS are
compiled.

Note: If you specify a PDS as your primary input, you must specify either a PDS or
an HFS directory for your output files.

For HFS files, use this format of the SYSIN JCL:
//SYSIN DD PATH='pathname'

You can specify compilation for a single file or all source files in an HFS directory,
for example:

//jobname JOB acctno,name...
//COMPILE EXEC PGM=CBCDRVR,
// PARM='/CXX SEARCH(''CEE.SCEEH.+'',''CBC.SCLBH.+''),NOOPT,SO,OBJ'
//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=CBC.SCBCCMP,DISP=SHR
//SYSLIN DD DSN=MYID.MYPROJ.OBJ,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD DATA,DLM=@@

#include <stdio.h>
#include <iostream.h>...

int main(void)
{
// comment...

}
@@
//SYSUT1 DD DSN=...
//SYSUT4 DD DSN=......

//*

Figure 22. JCL for Compiling an OS/390 C++ Program (for NOOPT, SOURCE, and OBJ)

Chapter 9. Compiling 231

//SYSIN DD PATH='/u/david'
//* All files in the directory /u/david are compiled

Note: If you specify an HFS directory as your primary input, you must specify an
HFS directory for your output files.

When you place your source code directly in the input stream, use the SYSIN DD
statement as follows:
//SYSIN DD DATA,DLM=@@

rather than:
//SYSIN DD *

When you use the DD * convention, the first C/C++ comment statement that starts
in column 1 will terminate the input to the compiler. This is because /*, the
beginning of an OS/390 C/C++ comment, is also the default delimiter.

Note: To treat columns 73 through 80 as sequence numbers, use the SEQUENCE
compiler option.

For more information about the DD * convention, refer to the publications that are
listed in the OS/390 Information Roadmap.

Specifying Include Files

Use the SEARCH option to specify system include files, and the LSEARCH option to
specify your include files. For example:
//C EXEC PGM=CBCDRVR,PARM='/CXX SEARCH(''CEE.SCEEH.+'',''CBC.SCLBH.+'')'

You can also use the SYSLIB and USERLIB DD statements (note that the SYSLIB DD
statement has a different use if you are running the IPA Link step). To specify more
than one library, concatenate multiple DD statements as follows:
//SYSLIB DD DSNAME=USERLIB,DISP=SHR
// DD DSNAME=DUPX,DISP=SHR

Note: If the concatenated data sets have different block sizes, either specify the
data set with the largest block size first, or use the DCB=dsname
subparameter on the first DD statement. For example:
//USERLIB DD DSNAME=TINYLIB,DISP=SHR,DCB=BIGLIB
// DD DSNAME=BIGLIB,DISP=SHR

where BIGLIB has the largest block size. For rules regarding concatenation
of data sets in JCL, refer to the OS/390 C/C++ Programming Guide .

Specifying Output Files

You can specify output file names as suboptions to the compiler. You can direct the
output to a PDS member as follows:
// CPARM='LIST(MY.LISTINGS(MEMBER1))'

You can direct the output to an HFS file as follows:
// CPARM='LIST(./listings/member1.lst)'

You can also use DD statements to specify output file names.

232 OS/390 V2R6.0 C/C++ User’s Guide

To specify non-HFS files, use DD statements with the DSNAME parameter. For
example,
//SYSLIN DD DSN=USERID.TEST.OBJ(HELLO),DISP=SHR

To specify HFS directories or files, use DD statements with the PATH parameter.
//SYSLIN DD PATH='/u/david/test.o',PATHOPTS(OWRONLY,OCREAT,OTRUNC)

on PATH and PATHOPTS parameters.

Note: Use the PATH and PATHOPTs parameters when specifying HFS files in the DD
statements. For additional information on these parameters, refer to the list
of publications in OS/390 Information Roadmap .

If you do not specify the output filename as a suboption, and do not allocate the
associated ddname, the compiler generates a default output file name. These are
the two situations in which the compiler will not generate a default file name:
v You supply instream source in your JCL.
v You are using #pragma options to specify a compile-time option that generates

an output file.

Compiling Under TSO

You can invoke the OS/390 C/C++ compiler under TSO in any of the following
ways:

v Foreground execution from TSO READY

v Foreground execution from the ISPF command line or the ISPF menu option 6

v Foreground execution from ISPF menu option 4

v Foreground execution from an ISPF edit session

v Background execution (batch) from ISPF menu option 5

All methods of foreground execution call the CC or CXX REXX EXECs supplied by
IBM.

Note: To run the compiler under TSO, you must have access to the runtime
libraries. To ensure that you have access to the runtime library and compiler,
do one of the following:

v If you are running under ISPF in the foreground, concatenate the libraries to
ISPLLIB.

v Have your system programmer add the libraries to the LPALST or LPA.

v Have your system programmer add the libraries to the LNKLST.

v Have your system programmer change the LOGON PROC so the libraries are added
to the STEPLIB for the TSO session.

v Have your system programmer customize the REXX EXEC CBC3C00E, which is
called by the CC, CXX, and other EXECs to set up the environment.

Using the CC and CXX REXX EXECs

You can use the CC REXX EXEC to invoke the OS/390 C compiler, and the CXX
REXX EXEC to invoke the OS/390 C++ compiler. These REXX EXECs share the
same syntax:

Chapter 9. Compiling 233

ÊÊ
% CC

CXX

»

?
filename

(,

option

ÊÍ

where

% ensures that the REXX EXEC CC is invoked, not the OS/390 UNIX
System Services cc utility.

option is any valid compiler option

filename can be one of the following:
1. A sequential data set
2. A member of a partitioned data set
3. All members of a partitioned data set
4. A hierarchical file system (HFS) file
5. All HFS files in a directory

If filename is not immediately recognizable as an HFS file or data
set, it is assumed to be a data set. Prefix the file name with // to
identify it as a data set, and with ./ or / to identify it as an HFS file.
For more information on file naming considerations refer to the
OS/390 C/C++ Programming Guide.

If you invoke either CC or CXX with no arguments or with only a single question
mark, the appropriate preceding syntax diagram is displayed.

If you are using #pragma options to specify a compile-time option that generates an
output file, you must use a ddname to specify the output file name. The compiler
will not automatically generate file names for output that is created by #pragma
options.

Unless CBC3C00E has been customized, the default SYSLIB for CC is CEE.SCEEH.H,
and CEE.SCEEH.SYS.H concatenated. If you want to override the default SYSLIB that
is allocated by the CC exec, you must allocate the ddname SYSLIB before you
invoke CC. If you did not allocate the ddname SYSLIB before you invoked CC EXEC,
the CC EXEC allocates the default SYSLIB.

Specifying Sequential and Partitioned Data Sets

To specify a sequential or partitioned data set for your source file use the following
syntax:

ÊÊ »

.

qualifier
// ’ (member) ’

DD: ddname
dd: (member)

ÊÍ

Note: If you use the leading single quote to indicating a fully qualified data set
name, you must also use the trailing single quote.

234 OS/390 V2R6.0 C/C++ User’s Guide

Specifying HFS Files or Directories

You can use the CC or CXX REXX EXECs to compile source code that is stored in
HFS files and directories. Use the following syntax when specifying HFS file or
directory as your input or output file:

ÊÊ
/

.
»

/

pathname

ÊÍ

If you specify an HFS directory, all the source files in that directory are compiled. In
the following example all the files in /u/david/src are compiled:
CC /u/david/src

When the file name contains the special characters double quote, blank or
backslash, you must precede these characters with a backslash, as follows:
CC /u/david/db\ 1.c
CC file\"one

When you use the CC or CXX REXX EXEC, you must use unambiguous HFS source
file names. For example, the following input files are HFS files:
CXX ./test/hello.c
CC /u/david/test/hello.c
CXX test/hello.c
CC ///hello.c
CC ../test/hello.c

If you specify a filename that does not include pathnames with single slashes, the
compiler treats the file as a non-HFS file. The compiler treats the following input
files as non-HFS files:
CXX hello.c
CC //hello.c

Using Special Characters

When HFS file names contain the special characters blank, backslash, and double
quote, you must precede the special character with a backslash(\).

When suboptions contain the special characters left bracket (, right bracket),
comma, backslash, blank and double quote, you must precede these characters
with a double backslash(\\) to ensure that they are interpreted correctly, as in:

def(errno=\\(*__errno\\(\\)\\))

Note: Under TSO, you must precede special characters by a backslash \ in both
file names and options.

Specifying Compiler Options under TSO

When you use REXX EXECs supplied by IBM, you can override the default
compiler options by specifying the options directly on the invocation line after an
open left parenthesis (. The following example specifies, multiple compiler options
with the sequential file STUDENT.GRADES.CXX:

Chapter 9. Compiling 235

CXX 'STUDENT.GRADES.CXX'
(LIST,TEST,
LSEARCH(MASTER.STUDENT,COURSE.TEACHER),
SEARCH(VGM9.FINANCE,SYSABC.REPORTS),
OBJ('GRADUATE.GRADES.OBJ(REPORT)')

See “Summary of Compiler Options” on page 59 for more information on compiler
options.

Using ISPF to Invoke the Compiler

Under TSO, you can use ISPF foreground and batch compile panels to start the
OS/390 C/C++ compiler. You can use online help with these panels.

Note: You cannot use ISPF to invoke the IPA Link step.

Foreground Processing
1. Select the Foreground option (4) from the ISPF-PDF PRIMARY OPTION MENU. The

FOREGROUND SELECTION PANEL is presented.

2. Select the IBM OS/390 C/C++ option (19). The OS/390 C/C++ FOREGROUND
UTILITIES panel is presented, as shown in Figure 23.

3. Select 1 to get the FOREGROUND OS/390 C COMPILE panel, or select 2 to get the
FOREGROUND OS/390 C++ COMPILE panel as shown in Figure 24 on page 237.

4. Enter information such as your source data, password, object data set name,
compiler options, and additional input libraries (as necessary).

------------------- FOREGROUND OS/390 C/C++ UTILITIES ---------------------
COMMAND ===>

Select a function from the list below.
Enter either the selection number or the command name.

1 CC OS/390 C Compiler
2 CXX OS/390 C++ Compiler

Figure 23. Foreground IBM OS/390 C/C++ Utility Panel

236 OS/390 V2R6.0 C/C++ User’s Guide

«1¬ The ISPF Library field is used if you do not specify a data set in «2¬.
Input to the compiler is either a member of an ISPF library, a member of
a partitioned data set, or a sequential data set. Fill in the Project,
Group, Type, and Member fields. To can compile the entire PDS, place an
asterisk (*) in the member field.

Note: If the source data set is partitioned and you did not specify a
member, you are presented with a member list from which to
choose the desired member.

«2¬ Use the Other Partitioned or Sequential Data Set field if your input
source is one of the following:
v a sequential data set
v a PDS with a number of qualifiers not equivalent to three.

If you specify data sets in both «1¬ and «2¬, the data set that you
specified in this field is used. To compile an entire PDS of source
instead of an individual PDS member, enter the PDS name followed by
(*). You can specify a member of a PDS by entering the member name
in parentheses after the data set name.

«3¬ If any of your data sources are password protected, you must specify
the password in the Data Set Password field.

«4¬ Use the Compiler Options field, specify the compiler options that you
want to use. For a complete list of compiler options, see “Compiler
Option Defaults” on page 59.

------------------------- FOREGROUND OS/390 C++ COMPILE ------------------
Command ===>

ISPF Library: «1¬
Project ===> USERID
Group ===> DEV ===> ===> ===>
Type ===> CXX
Member ===> * (Blank or pattern for member selection list)

(* for entire PDS)

Other Partitioned or Sequential Data Set:
Data Set Name ===> «2¬

Data Set Password ===> (If password protected) «3¬

Compiler Options:
===> «4¬
===> SEARCH('CEE.SCEEH.+','CBC.SCLBH.+')
===> USERPATH(/USERID/DEV/INCL)
===>
===> OPT
===>

Figure 24. Foreground IBM OS/390 C++ Compile Panel

Chapter 9. Compiling 237

Note for OS/390 C: The only difference in the appearance of the panels for
OS/390 C is in the heading, and the absence of the
Tempinc option.

5. Enter names of the desired output data sets.

«5¬ Use the Listing field to specify a name for the listing data set. If you
leave this field blank, the compiler generates a default name. See
“Specifying Output Files” on page 225 for information on the defaults. To
generate a listing data set, you must specify the compiler option SOURCE
or LIST under Compiler Options.

«6¬ Use the Object Data Set field to specify a name for the object data set.
If you leave this field blank, the compiler generates a default name. See
“Specifying Output Files” on page 225 for information on the defaults.

«7¬ Use the PPonly field to specify a name for the PPONLY data set. If you
leave this field blank, the compiler generates a default name. You can
also specify the LINES or COMMENTS suboptions in this field. See
“PPONLY | NOPPONLY” on page 136 for more information.

«8¬ For OS/390 C++, use the Tempinc field to specify a PDS name for the
template instantiation files. If you leave this field blank, the PDS is given
the name TEMPINC.

6. Press Enter to invoke the foreground processing program.

HFS Note: You cannot use HFS files as input to the ISPF panels, but you can
target your output to HFS files through the compiler options.

Batch Processing

Use the batch option to invoke the compiler as a batch job. JCL is generated for the
job on the basis of the information you enter on the batch processing panels, and
the job is submitted for execution.

When you choose the batch option from the ISPF-PDF PRIMARY OPTION MENU, the
BATCH SELECTION PANEL is shown. Notice the SOURCE DATA ONLINE option and the
JOB STATEMENT INFORMATION area at the bottom of this panel.

--------------------- Foreground OS/390 C++ Compile -------------------- -
COMMAND ===>

Input Source ===> 'USERID.DEV.CXX'

Output Data Sets:

Listing ===> «5¬
(enter * to specify terminal)

Object ===> «6¬

PPonly ===> «7¬

Tempinc ===> «8¬ [only appears on the OS/390 C++ panel]

Figure 25. Foreground IBM OS/390 C++ Compile Panel (2)

238 OS/390 V2R6.0 C/C++ User’s Guide

The SOURCE DATA ONLINE option specifies whether or not to check if the data set is
available. If you specify YES, ISPF checks to see if the data set exists. If it does not
exist, you receive an ISPF message to indicate that the data set was not
catalogued. If you specify NO, ISPF does not check for the data set.

The JOB STATEMENT INFORMATION consists of four lines for JCL card images. These
lines are submitted as part of the batch job, so you must follow all the rules of JCL.

Alternatively, choose the IBM OS/390 C/C++ Compiler option to show the BATCH IBM
OS/390 C/C++ COMPILE panels. These panels are similar to the FOREGROUND IBM
OS/390 C/C++ COMPILE panels. Most of the fields, such as the ISPF library, Other
Partitioned, or Sequential Data Set, and Compiler Options behave the same
way. See “Foreground Processing” on page 236 for descriptions.

The Batch option does not support passwords. If your input or output data sets are
password protected, use the Foreground option. If you submit a job that includes a
password-protected data set, the system operator is requested to enter the required
password.

Use the Listing Data Set and SYSOUT Class fields to send the compiler’s list output
directly to a SYSOUT queue or into a data set. If you fill in both fields, the value for
SYSOUT Class is used.

Enter the source information and other parameters that this panel requires, and
press <ENTER>. This generates the JCL, and submits the job.

If your system programmer has not provided a default search option for the C++
compiler, variable CBCCXOPT in CBC.SCBCUTL(CBC3C00E), or you want to modify it, you
should enter it under Compiler Options. For example, "SEARCH('CEE190.SCEEH.+')".

Compiling and Binding under the OS/390 Shell

An OS/390 UNIX C/C++ program with source code in HFS files or data sets must
be compiled to create output object files residing either in HFS files or data sets.

You can compile and bind application source code at one time, or compile the
source and then bind at another time with other application source files or compiled
objects.

The c89, c++, and cc utilities invoke the binder by default, unless the output file of
the link-editing phase (-o option) is a PDS, in which case they use the Prelinker.

Use the c89 utility to compile and bind a OS/390 UNIX System Services C
application program from the OS/390 shell. The syntax is:
c89 [-options ...] [file.c ...] [file.a ...] [file.o ...] [-l libname]

where:

options are c89 options.

file.c is a source file. Note that C source files have a file extension of
lowercase c.

file.o is an object file.

file.a is an archive file.

Chapter 9. Compiling 239

libname is an archive library.

The c89 utility supports IPA. For information on how to invoke the IPA Compile step
from c89, refer to “Invoking IPA from the c89 Utility” on page 242.

You can also use the cc exec to compile a OS/390 UNIX System Services C
application program from the OS/390 shell. For more information, see OS/390 UNIX
System Services Command Reference .

Use the c++ utility to compile and bind an OS/390 UNIX System Services C++
application program from the OS/390 shell. The syntax for c++ is:
c++ [-options ...] [file.C ...] [file.a ...] [file.o ...] [-l libname]

where:

options are C++ options.

file.C is a source file. Note that C++ files have a file extension of
uppercase C.

file.o is an object file.

file.a is an archive file.

libname is an archive library.

Another name for the c++ utility is cxx. The cxx utility and the c++ utility are
identical. You can use cxx instead of c++ in all the examples that are shown in this
section.

For a complete list of c++ options, and for more information on cxx, see OS/390
UNIX System Services Command Reference.

Note: You can compile and bind application program source and objects from
within the shell using the c89 or c++ utility. If you use either of these utilities,
you must keep track of and maintain all the source and object files for the
application program. You can use the make utility to maintain your OS/390
UNIX System Services application source files and object files automatically
when you update individual modules. The make utility runs c89 and c++ for
you.

For more information on using the make utility, see “Chapter 21. Archive and Make
Utilities” on page 395 and OS/390 UNIX System Services Programming Tools.

To compile source files without binding them, enter the c89 or c++ command with
the -c option to create object file output. Use the -o option to specify placement of
the application program executable file to be generated. The placement of the
intermediate object file output depends on the location of the source file:

v If the OS/390 C/C++ source module is an HFS file, the object file is created in
the working directory.

v If the OS/390 C/C++ source module is a data set, the object file is created as a
data set. The object file is placed in a data set with the qualified name of the
source and identified as an object.

For example, if the OS/390 C/C++ source is in the sequential data set
LANE.APPROG.USERSRC.C, the object is placed in the data set
LANE.APPROG.USERSRC.OBJ. If the source is in the partitioned data set (PDS)
member 'OLSEN.IPROGS.C(FILSER)', the object is placed in the PDS member
'OLSEN.IPROGS.OBJ(FILSER)'.

240 OS/390 V2R6.0 C/C++ User’s Guide

Note: When the OS/390 C/C++ source is located in an OS/390 PDS member,
you should specify double-quote characters around the qualified data set
name. For example:
c89 -c "//'OLSEN.IPROGS.C(FILSER)'"

If the filename is not bracketed by quotes, the parentheses around the
member name in the fully qualified PDS name would be subject to special
shell parsing rules.

Since the data set name is always converted to uppercase, you can specify it in
lowercase or mixed case.

v Compiling OS/390 C application source to produce only object files. c89
recognizes that a file is an OS/390 C source file by the .c suffix for HFS files,
and the .C low-level qualifier for data sets. c89 recognizes that a file is an object
file by the .o suffix for HFS files, and the .OBJ low-level qualifier for data sets.

– To compile OS/390 C source to create the default object file usersource.o in
your working HFS directory, specify:
c89 -c usersource.c

– To compile OS/390 C source to create an object file as a member in the PDS
'KENT.APPROG.OBJ', specify:
c89 -c "//'kent.approg.c(usersrc)'"

v Compiling OS/390 C++ application source to produce only object files. c++
recognizes that a file is an OS/390 C++ source file by the .C suffix for HFS files,
and the .CXX low-level qualifier for data sets. c++ recognizes that a file is an
object file by the .o suffix for HFS files, and the .OBJ low-level qualifier for data
sets.

– To compile OS/390 C++ source to create the default object file usersource.o
in your working HFS directory, specify:
c++ -c usersource.C

– To compile OS/390 C++ source to create an object file as a member in the
PDS 'JONATHAN.APPROG.OBJ', specify:
c++ -c "//'jonathan.approg.CXX(usersrc)'"

v Compiling and binding application source to produce an application executable
file.
– To compile an application source file to create the object file usersource.o in

the HFS working directory and the executable file mymod.out in the /app/bin
directory, specify:
c89 -o /app/bin/mymod.out usersource.c

– To compile the OS/390 C source member MAINBAL in the PDS
'CLAUDIO.PGMS.C', and bind it to produce the application executable file
/u/claudio/myappls/bin/mainbal.out, specify:
c89 -o /u/claudio/myappls/bin/mainbal.out "//'claudio.pgms.C(MAINBAL)'"

OS/390 C++ Note:

To use the TSO utility OGET to copy a C++ HFS listing file to a
VBA data set, you must add a blank to any null records in the
listing file. Use the awk command as follows:
c++ -cV mypgm.C | awk '/|[|$]/ {print} /|$/ {printf "%s \n", $0}'

> mypgm.lst

Chapter 9. Compiling 241

Compiling and Binding in One Step with c89 and c++ (or cxx)

To compile and bind a OS/390 UNIX System Services C/C++ application program in
one step to produce an executable file, specify c89 or c++ without specifying the -c
option. You can use the -o option with the command to specify the name and
location of the application program executable file to be created. The c++ and cxx
utilities are identical. You can use cxx instead of c++ in all the examples that are
shown in this section.

The c89, c++, and cc utilities invoke the binder by default, unless the output file of
the link-editing phase (-o option) is a PDS, in which case they use the Prelinker.

v To compile and bind an application source file to create the default executable
file a.out in the HFS working directory, specify:

v To compile and bind an application source file to create the mymod.out executable
file in your /app/bin directory, specify:

v To compile and bind several application source files to create the mymod.out
executable file in your /app/bin directory, specify:

v To compile and bind an application source file to create the MYLOADMD member of
your 'APPROG.LIB' PDS, specify:

v To compile and bind an application source file with several previously compiled
object files to create the executable file zinfo in your /prg/lib HFS directory,
specify:

v To compile and bind an application source file and capture the listings from the
compile and bind steps into another file, specify:

Invoking IPA from the c89 Utility

You can invoke the IPA Compile Step, the IPA Link step, or both from the c89 utility.
The step that you invoke depends upon the invocation parameters and type of files
specified. To invoke IPA, you must specify the I phase indicator along with the W
option of the c89 utility. You can specify IPA suboptions as comma-separated
keywords.

c89 usersource.c
c++ usersource.C

c89 -o /app/bin/mymod.out usersource.c
c++ -o /app/bin/mymod.out usersource.C

c89 -o /app/bin/mymod.out usrsrc.c otsrc.c "//'MUSR.C(PWAPP)'"
c++ -o /app/bin/mymod.out usrsrc.C otsrc.C "//'MUSR.C(PWAPP)'"

c89 -o "//'APPROG.LIB(MYLOADMD)'" usersource.c
c++ -o "//'APPROG.LIB(MYLOADMD)'" usersource.C

c89 -o /prg/lib/zinfo usrsrc.c xstobj.o "//'MUSR.OBJ(PWAPP)'"
c++ -o /prg/lib/zinfo usrsrc.C xstobj.o "//'MUSR.OBJ(PWAPP)'"

c89 -V barryl.c > barryl.lst
c++ -V barryl.C > barryl.lst

242 OS/390 V2R6.0 C/C++ User’s Guide

If you invoke the c89 utility by specifying the -c compiler option and at least one
source file, c89 automatically specifies IPA(NOLINK) and automatically invokes the
IPA Compile step. For example, the following command invokes the IPA Compile
step for the source file hello.c :
c89 -c -WI,noobject hello.c

If you invoke c89 with at least one source file for compilation and any number of
object files, and do not specify the -c option, c89 invokes the IPA Compile step
once for each compilation unit. It then invokes the IPA Link step once for the entire
program, and then invokes the binder. For example, the following command invokes
the IPA Compile step and the bind while creating program foo:
c89 -o foo -WI,object foo.c

Refer to the OS/390 UNIX System Services Command Reference for more
information about the c89 utility.

Specifying Options for the IPA Compile Step: When using the c89 utility, you
can pass options to the IPA Compile step, as follows:

v You can pass IPA compiler option suboptions by specifying -WI,, followed by the
suboptions.

v You can pass compiler options by specifying -Wc,, followed by the options.

Using the make Utility

You can use the make utility to control the build of your OS/390 UNIX System
Services C/C++ applications. The make utility calls the c89 utility by default to
compile and bind the programs that the previously created makefile specifies.

For example, to create myappl you compile and bind two source parts mymain.c and
mysub.c. This dependency is captured in makefile /u/jake/myappl/Makefile. No
recipe is specified, so the default makefile rules are used. If myappl was built and a
subsequent change was made only to mysub.c, you would specify:
cd /u/jake/myappl
make

The make utility sees that mysub.c has changed, and invokes the following
commands for you:
c89 -O -c mysub.c
c89 -o myappl mymain.o mysub.o

Note: The make utility requires that application program source files that are to be
“maintained” through use of a makefile reside in HFS files. To compile and
bind OS/390 C/C++ source files that are in data sets, you must use the c89
utility directly.

See the OS/390 UNIX System Services Command Reference for a description of
the make utility. For a detailed discussion on how to create and use makefiles to
manage application parts, see the OS/390 UNIX System Services Programming
Tools.

Chapter 9. Compiling 243

Using Feature Test Macros

Many of the symbols that are defined in headers are “protected” by a feature test
macro. These “protected” symbols are invisible to the application unless the user
defines the feature test macro with #define, using either of the following methods:
v In the source code before including any header files
v On the compilation command

Note that the LANGLVL compiler option does not define or undefine these macros.

Table 26 summarizes the relationships between the feature test macros and the
standards. ‘Yes’ indicates that a feature test macro makes visible the symbols that
are related to a standard.

Table 26. Feature Test Macros and Standards

Feature Test Macro POSIX .1 POSIX
.1a

POSIX
.2

POSIX
.4a

XPG4 .2 XPG4 .2
Ext

_POSIX_SOURCE Yes

_POSIX1_SOURCE 1 Yes

_POSIX1_SOURCE 2 Yes Yes

_POSIX_C_SOURCE 1 Yes

_POSIX_C_SOURCE 2 Yes Yes

_XOPEN_SOURCE Yes Yes Yes

_XOPEN_SOURCE
_EXTENDED 1

Yes Yes Yes Yes

_OPEN_SYS Yes Yes Yes Yes

_OPEN_SYS_IPC
_EXTENSIONS

Yes Yes Yes

_OPEN_SYS_PTY
_EXTENSIONS

Yes Yes Yes Yes Yes

_OPEN_THREADS Yes Yes Yes

_OPEN_SOURCE 1 Yes Yes Yes Yes

_OPEN_SOURCE 2 or
_ALL_SOURCE

Yes Yes Yes Yes Yes Yes

_OE_SOCKETS Yes Yes

_OPEN_SYS_SOCK_EXT Yes Yes Yes Yes

_ALL_SOURCE_NO_THREADYes Yes Yes Yes Yes

_OPEN_SOURCE 3 Yes Yes Yes Yes Yes Yes

The OS/390 C/C++ compiler supports the following feature test macros:

v _POSIX_SOURCE

When defined to any value with #define, it indicates that symbols that are
required by POSIX.1 are made visible. Additional symbols can be made visible if
POSIX.1 explicitly allows the symbol to appear in the header in question.

v _POSIX1_SOURCE

– When defined to 1, it has the same meaning as _POSIX_SOURCE.

244 OS/390 V2R6.0 C/C++ User’s Guide

– When defined to 2, both the POSIX.1a symbols and the POSIX.1 symbols are
made visible. Additional symbols can be made visible if POSIX.1a explicitly
allows the symbol to appear in the header in question.

v _POSIX_C_SOURCE

– When defined to 1, it indicates that symbols required by POSIX.1 are made
visible. Additional symbols can be made visible if POSIX.1 explicitly allows the
symbol to appear in the header in question.

– When defined to 2, both the POSIX.1 and POSIX.2 symbols are made visible.
Additional symbols can be made visible if POSIX.2 explicitly allows the symbol
to appear in the header in question.

v _OPEN_SYS

When defined to 1, this indicates that symbols required by POSIX.1, POSIX.1a,
and POSIX.2 are made visible. Any symbols defined by the _OPEN_THREAD macro
are also made visible. Additional symbols can be made visible if any of these
standards explicitly allows the symbol to appear in the header in question or if
the symbol is defined to be an extension.

v _OPEN_THREADS

When defined to 1, this indicates that symbols required by POSIX.1, POSIX.1a,
and POSIX.4a are made visible.

v _XOPEN_SOURCE

Defines the functionality defined in the XPG/4 standard dated July 1992.

v _XOPEN_SOURCE_EXTENDED

When defined to 1, this defines the functionality defined in the XPG/4 standard
plus the set of “Common APIs for UNIX-based Operating Systems”, April, 1994,
draft.

v _OPEN_SYS_IPC_EXTENSIONS

Defines extensions to the X/Open InterProcess Communications functions. When
_OPEN_SYS_IPC_EXTENSIONS is defined, the POSIX.1, POSIX.1a, and the XPG4
symbols are visible. This macro should be used in conjunction with
_XOPEN_SOURCE.

v _OPEN_SYS_PTY_EXTENSIONS

Defines extensions to the X/Open Pseudo TTY functions. When
_OPEN_SYS_PTY_EXTENSIONS is defined, the POSIX.1, POSIX.1a, XPG4, and XPG4.2
symbols are visible. This macro should be used in conjunction with
_XOPEN_SOURCE_EXTENDED defined to 1.

v _OPEN_SOURCE

When defined to 1, this defines all of the functionality that was available on
OS/390 OpenEdition in MVS 5.1. This macro is equivalent to specifying
_OPEN_SYS.

When defined to 2, this defines all of the functionality that is available on OS/390
OpenEdition in MVS 5.2.2, including XPG4, XPG4.2, and all of the extensions.

v _ALL_SOURCE

Defines all of the functionality that is available on OS/390 UNIX System Services,
including XPG4, XPG4.2, and all of the extensions. In addition, defining
_ALL_SOURCE makes visible a number of symbols which are not permitted under
ANSI, POSIX or XPG4, but which are provided as an aid to porting C-language
applications to OS/390 UNIX System Services.

v _OPEN_DEFAULT

When defined to 0, and if no other feature test macro is defined, then all symbols
will be visible. If in addition to _OPEN_DEFAULT only POSIX and/or XPG4 feature

Chapter 9. Compiling 245

test macros are defined, then only the symbols so requested will be visible.
Otherwise, additional symbols (e.g., those visible when the LANGLVL(EXTENDED)
compiler option is specified), may be exposed.

When defined to 1, this provides the base level of OS/390 UNIX System Services
functionality, which includes POSIX.1, POSIX.1a, and POSIX.2.

v _OE_SOCKETS

Defines a BSD-like socket interface for the function prototypes and structures
involved. This can be used with _XOPEN_SOURCE_EXTENDED 1 and the XPG4.2
socket interfaces will be replaced with the BSD-like interfaces.

v OPEN_MSGQ_EXT

Defines an interface which enables use of select(), selectex() and poll() to
monitor message and file descriptors.

v _MSE_PROTOS

The _MSE_PROTOS feature test macro does the following:

1. Selects behavior for a multibyte extension support (MSE) function declared in
wchar.h as specified by ISO/IEC 9899:1990/Amendment 1:1994 instead of
behavior for the function as defined by CAE Specification, System Interfaces
and Headers, Issue 4, July 1992 (XPG4)

2. Exposes declaration of an MSE function declared in wchar.h which is
specified by ISO/IEC 9899:1990/Amendment 1:1994 but not by XPG4.

v _ALL_SOURCE_NO_THREADS

Provides the same function as _ALL_SOURCE, except it does not expose threading
services (_OPEN_THREADS).

v _VARARG_EXT_

Allows users of the va_arg, va_end, and va_start macros to define the va_list
type differently.

v _OPEN_SYS_SOCK_EXT

Defines the interface for function prototypes and structures for the extended
sockets and bulk mode support.

v _SHARE_EXT_VARS

Provides access to an application’s POSIX and XPG4 external variables from a
dynamically loaded module such as a DLL.

Using Include Files

The #include preprocessor directive allows you to retrieve source statements from
secondary input files and incorporate them into your C/C++ program.

OS/390 C/C++ Language Reference describes the #include directive. Its syntax is:

ÊÊ #include < filename >
//

″ filename ″
//

ÊÍ

The angle brackets specify system include files, and double quotation marks specify
user include files.

When you use the #include directive, you must be aware of the following:

246 OS/390 V2R6.0 C/C++ User’s Guide

v The library search sequence, the search order that C/C++ uses to locate the file.
See “Search Sequences for Include Files” on page 254 for more information on
the library search sequence.

v The file-naming conversions that C/C++ performs.

v The area of the input record that contains sequence numbers when you are
including files with different record formats. See the OS/390 C/C++ Language
Reference for more information on #pragma sequence.

Specifying Include File Names

You can use the SEARCH and LSEARCH compiler options to specify search paths for
system include files and user include files. For more information on these options,
see “LSEARCH | NOLSEARCH” on page 115 and “SEARCH | NOSEARCH” on
page 140.

You can specify filename of the #include directive in the following format:

ÊÊ #include
//

» »

»

/ .

path qualifier
.

qualifier
’ (member) ’

DD:ddname
(member)

ÊÍ

The leading double slashes (//) not followed by a slash (in the first character of
filename) indicate that the file is to be treated as a non-HFS file, hereafter called a
data set.

Note:

1. filename immediately follows the double slashes (//) without spaces.
2. Absolute data set names are specified by putting single quotation marks

(’) around the name. Refer to the above syntax diagram for this
specification.

3. Absolute HFS filenames are specified by putting a leading slash (/) as
the first character in the file name.

4. ddnames are always considered absolute.

Forming File Names

Refer to “Determining whether the File Name is in Absolute Form” on page 251 for
information on absolute file names. When the compiler performs a library search, it
treats filename as either an HFS file name or a data set name. This depends on
whether the library being searched is HFS or MVS. If the compiler treats filename
as an HFS file name, it does not perform any conversions on it. If it treats filename
as a data set name, it performs the following conversion:

v For the first format:

Chapter 9. Compiling 247

ÊÊ » »

/ .

path qualifier
ÊÍ

1. qualifier and path are uppercased
2. each qualifier and path is truncated to 8 characters
3. invalid characters and characters not valid for a data set name are converted

to at signs (@, hex 7c)

v For the second format:

ÊÊ »

.

’ qualifier ’
(member)

ÊÍ

1. qualifier and member are uppercased
2. invalid characters are converted to at signs (@, hex 7c)

v For the third format:

ÊÊ DD:ddname
(member)

ÊÍ

1. DD:, ddname, and member are uppercased
2. invalid characters are converted to at signs (@, hex 7c)

Forming Data Set Names with LSEARCH | SEARCH Options

When the filename specified in the #include directive is not in absolute form, the
compiler combines it with different types of libraries to form complete data set
specifications. These libraries may be specified by the LSEARCH or SEARCH compiler
options. When the LSEARCH or SEARCH opt indicates a data set then depending on
whether it is a ddname, sequential data set, or PDS, different parts of filename are
used to form the ddname or data set name.

Forming DDname

The leftmost qualifier of the filename in the #include directive is used when the
filename is to be a ddname. For example:

Invocation:
SEARCH(DD:SYSLIB)

Include directive:
#include "sys/afile.g.h"

Resulting ddname:
DD:SYSLIB(AFILE)

Forming Sequential Data Set Names

You specify libraries in the SEARCH | LSEARCH options as sequential data sets by
using a trailing period followed by an asterisk (.*), or by a single asterisk (*). See
“Specifying Sequential Data Sets and PDSs” on page 119 to understand how to

248 OS/390 V2R6.0 C/C++ User’s Guide

specify sequential data sets. All qualifiers and periods (.) in filename are used for
sequential data set specification. For example:

Invocation:
SEARCH(AA.*)

Include directive:
#include "sys/afile.g.h"

Resulting fully qualified data set name:
userid.AA.AFILE.G.H

Forming PDS Name with LSEARCH | SEARCH + Specification

To specify libraries in the SEARCH and LSEARCH options as PDSs, use a period that is
followed by a plus sign (.+), or a single plus sign (+). See “Specifying Sequential
Data Sets and PDSs” on page 119 to understand how PDSs are specified. When
this is the case then all the paths, slashes (replaced by periods), and any qualifiers
following the leftmost qualifier of the filename are appended to form the data set
name. The leftmost qualifier is then used as the member name. For example:

Invocation:
SEARCH('AA.+')

Include directive:
#include "sys/afile.g.h"

Resulting fully qualified data set name:
AA.SYS.G.H(AFILE)

and

Invocation:
SEARCH('AA.+')

Include directive:
#include "sys/bfile"

Resulting fully qualified data set name:
AA.SYS(BFILE)

Forming PDS with LSEARCH | SEARCH Options With No +

When the LSEARCH or SEARCH option specifies an OS/390 library but it neither ends
with an asterisk (*) nor a plus sign (+), it is treated as a PDS. The leftmost qualifier
of the filename in the #include directive is used as the member name. For
example:

Invocation:
SEARCH('AA')

Include directive:
#include "sys/afile.g.h"

Resulting fully qualified data set name:
AA(AFILE)

Examples Of Forming Data Set Names

The following table gives the original format of the filename and the resulting
converted name when you specify the NOOE option:

Chapter 9. Compiling 249

Table 27. Include filename Conversions When NOOE Is Specified

#include Directive Converted Name

Example 1. This filename is absolute because single quotation marks (’) are used. It is a
sequential data set. A library search is not performed. LSEARCH is ignored.

#include "'USER1.SRC.MYINCS'" USER1.SRC.MYINCS

Example 2. This filename is absolute because single quotation marks (’) are used. The
compiler attempts to open data set COMIC/BOOK.OLDIES.K and fails because it is not a
valid data set name. A library search is not performed when filename is in absolute form.
SEARCH is ignored.

#include <'COMIC/BOOK.OLDIES.K'> COMIC/BOOK.OLDIES.K

Example 3.

SEARCH(LIB1.*,LIB2.+,LIB3) #include
"sys/abc/xx"

v first opt in SEARCH SEQUENTIAL FILE =
userid.LIB1.XX

v second opt in SEARCH PDS =
userid.LIB2.SYS.ABC(XX)

v third opt in SEARCH PDS = userid.LIB3(XX)

Example 4.

SEARCH(LIB1.*,LIB2.+,LIB3) #include
"Sys/ABC/xx.x"

v first opt in SEARCH SEQUENTIAL FILE =
userid.LIB1.XX.X

v second opt in SEARCH PDS =
userid.LIB2.SYS.ABC.X(XX)

v third opt in SEARCH PDS = userid.LIB3(XX)

Example 5.

SEARCH(LIB1.*,LIB2.+,LIB3) #include
<sys/name_1>

v first opt in SEARCH SEQUENTIAL FILE =
userid.LIB1.NAME@1

v second opt in SEARCH PDS =
userid.SYS(NAME@1)

v third opt in SEARCH PDS =
userid.LIB3(NAME@1)

Example 6.

SEARCH(LIB1.*,LIB2.+,LIB3) #include
<Name2/App1.App2.H>

v first opt in SEARCH SEQUENTIAL FILE =
userid.LIB1.APP1.APP2.H

v second opt in SEARCH PDS =
userid.LIB2.NAME2.APP2.H(APP1)

v third opt in SEARCH PDS = userid.LIB3(APP1)

Example 7. The PDS member named YEAREND of the library associated with the ddname
PLANLIB is used. A library search is not performed when filename in the #include directive
is in absolute form (ddname is used). SEARCH is ignored.

#include <dd:planlib(YEAREND)> DD:PLANLIB(YEAREND)

Search Sequence

The following diagram describes the compiler’s file searching sequence:

250 OS/390 V2R6.0 C/C++ User’s Guide

«1¬ The compiler opens the file without library search when the file name that is
specified in #include is in absolute form. This also means that it bypasses
the rules for the SEARCH and LSEARCH compiler options, and for POSIX.2.
See Figure 27 on page 252 for more information on absolute file testing.

«2¬ When the file name is not in absolute form, the compiler evaluates each
option in SEARCH and LSEARCH to determine whether to treat the file as a
data set or an HFS file search. The LSEARCH/SEARCH opt testing here is
described in Figure 28 on page 253.

«3¬ When the #include file name is not absolute, and is preceded by exactly
two slashes (//), the compiler treats the file as a data set. It then bypasses
all HFS file options of the SEARCH and LSEARCH options in the search.

Determining whether the File Name is in Absolute Form

The compiler determines if the file name that is specified in #include is in absolute
form as follows:

Ignore

SEARCH/LSEARCH

& POSIX.2 rules;

search file directly

Create

dataset

path

& search

Ignore

this search

opt

End of

SEARCH/

LSEARCH

processing

Create

HFS file

path

& search

#include

is absolute

filename

Start

Yes

Yes

Yes

Yes

No

No

No

No

This

of SEARCH/LSEARCH

is DS

opt
#include

preceded by

filename

II

More opt

1

2

3

Figure 26. Overview of Include File Searching

Chapter 9. Compiling 251

«1¬ The compiler first checks whether you specified OE.

«2¬ When you specify OE, if double slashes (//) do not precede filename, and
the file name starts with a slash (/), then filename is in absolute form and
the compiler opens the file directly as an HFS file. Otherwise, the file is not
an absolute file and each opt in the SEARCH or LSEARCH compiler option
determines if the file is treated as an HFS or data set in the search for the
include file.

«3¬ When OE is specified, if double slashes (//) precede filename, and the file
name starts with a slash (/), then filename is in absolute form and the
compiler opens the file directly as an HFS file. Otherwise, the file is a data
set, and more testing is done to see if the file is absolute.

«4¬ If filename is enclosed in single quotation marks (’), then it is an absolute
data set. The compiler directly opens the file and ignores the libraries that
are specified in the LSEARCH or SEARCH options.

«5¬ If you used the ddname format of the #include directive, the compiler uses
the file associated with the ddname and directly opens the file as a data
set. The libraries that are specified in the LSEARCH or SEARCH options are
ignored.

«6¬ If none of the above conditions are true then filename is not in absolute
format and each opt in the SEARCH or LSEARCH compiler option determines if
the file is an HFS or a data set and then searched for the include file.

«7¬ If none of the above conditions are true, then filename is a data set, but it is

OE
YesNo

No

No

No
No

No

No Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

filename

preceded
by //

filename

starts with
/

Start

dataset

dataset
but not

absolute

Absolute
dataset

filename

starts with
/

filename

enclosed by
single quotes

filename

enclosed by
single quotes

filename

starts with
DD:

filename

starts with
DD:

Absolute
HFS file

Not absolute
dataset

or HFS file

Absolute
HFS file

Figure 27. Testing If filename Is In Absolute Form

252 OS/390 V2R6.0 C/C++ User’s Guide

not in absolute form. Only opts in the SEARCH or LSEARCH compiler option
that are in data set format are used in the search for include file.

For example:
Options specified:

OE

Include Directive:

#include "apath/afile.h" NOT absolute, HFS/MVS (no starting slash)
#include "/apath/afile.h" absolute HFS, (starts with 1 slash)
#include "//apath/afile.h.c" NOT absolute, MVS (starts with 2 slashes)
#include "a.b.c" NOT absolute, HFS/MVS (no starting slash)
#include "///apath/afile.h" absolute HFS, (starts with 3 slashes)
#include "DD:SYSLIB" NOT absolute, HFS/MVS (no starting slash)
#include "//DD:SYSLIB" absolute, MVS (DD name)
#include "a.b(c)" NOT absolute, HFS/MVS (no starting slash)
#include "//a.b(c)" NOT absolute, OS/MVS (PDS member name)

Using SEARCH and LSEARCH

When the file name in the #include directive is not in absolute form, the opts in
SEARCH are used to find system include files and the opts in LSEARCH are used to find
user include files. Each opt is a library path and its format determines if it is an HFS
path or a data set path:

Note:
1. If opt is preceded by double slashes (//) and opt does not start with a

slash (/), then this path is a data set path.
2. If opt is preceded by double slashes (//) and opt starts with a slash (/),

then this path is an HFS path.
3. If opt is not preceded by double slashes (//) and opt starts with a slash

(/), then this path is an HFS path.

Yes

NoNoNo

No

Yes

Yes

Yes

For each in

SEARCH/LSEARCH

opt

HFS path

opt has

a /

opt

preceded

by //

opt

start with

/

OE

specified

data set

path

Figure 28. Determining if the SEARCH/LSEARCH opt is an HFS path

Chapter 9. Compiling 253

4. If opt is not preceded by double slashes (//), opt does not start with a
slash (/) and NOOE is specified then this path is a data set path.

For example:

SEARCH(./PATH) is an explicit HFS path
OE SEARCH(PATH) is treated as an HFS path
NOOE SEARCH(PATH) is treated as a non-HFS path
NOOE SEARCH(//PATH) is an explicit non-HFS path.

When combining the library with the file name specified on the #include directive, it
is the form of the library that determines how the include file name is to be
transformed. For example:
Options specified:

NOOE LSEARCH(Z, /u/myincs, (*.h)=(LIB(mac1)))

Include Directive:

#include "apath/afile.h"

Resulting fully qualified include names:

1. userid.Z(AFILE) (Z is non-HFS so filename is treated as non-HFS)
2. /u/myincs/apath/afile.h (/u/myincs is HFS so filename is treated as HFS)
3. userid.MAC1.H(AFILE) (afile.h matches *.h)

An HFS path specified on a SEARCH or LSEARCH option only combines with the file
name specified on an #include directive if the file name is not explicitly stated as
being MVS only. A file name is explicitly stated as being MVS only if two slashes (//)
precede it, and filename does not start with a slash (/). For example:
Options specified:

OE LSEARCH(/u/myincs, q, //w)

Include Directive:

#include "//file.h"

Resulting fully qualified include names

userid.W(FILE)

/u/myincs and q would not be combined with //file.h because both paths are
HFS and //file.h is explicitly MVS.

The order in which options on the LSEARCH or SEARCH option are specified is the
order that is searched.

See “LSEARCH | NOLSEARCH” on page 115 and “SEARCH | NOSEARCH” on
page 140 for more information on these compiler options.

Search Sequences for Include Files

The status of the OE option affects the search sequence.

254 OS/390 V2R6.0 C/C++ User’s Guide

With the NOOE option

Search Sequences for include files are used when the include file is not in absolute
form. “Determining whether the File Name is in Absolute Form” on page 251
describes the absolute form of include files.

If the include filename is not absolute, the compiler performs the library search as
follows:

v For system include files:
1. The search order as specified on the SEARCH option, if any.
2. The libraries specified on the SYSLIB DD statement

v For user include files:
1. The directory of the file that contains the #include directive
2. When the containing file is HFS, the search order as specified on the LSEARCH

option, if any
3. The libraries specified on the USERLIB DD statement
4. The search order for system include files

The example below shows an excerpt from a JCL stream, that compiles a C
program for a user whose user prefix is JONES:
//COMPILE EXEC PROC=EDCC,
// CPARM='SEARCH(''''BB.D'''',BB.F),LSEARCH(CC.X)'
//SYSLIB DD DSN=JONES.ABC.A,DISP=SHR
// DD DSN=ABC.B,DISP=SHR
//USERLIB DD DSN=JONES.XYZ.A,DISP=SHR
// DD DSN=XYZ.B,DISP=SHR
//SYSIN DD DSN=JONES.ABC.C(D),DISP=SHR
.
.
.

The search sequence that results from the preceding JCL statements is:

Table 28. Order of Search for Include Files

Order of Search For System Include Files For User Include Files

First BB.D JONES.CC.X

Second JONES.BB.F JONES.XYZ.A

Third JONES.ABC.A XYZ.B

Fourth ABC.B BB.D

Fifth JONES.BB.F

Sixth JONES.ABC.A

Seventh ABC.B

With the OE option

Search Sequences for include files are used when the include file is not in absolute
form. “Determining whether the File Name is in Absolute Form” on page 251
describes the absolute form of an include file.

If the include filename is not absolute, the compiler performs the library search as
follows:

v For system include files:
1. The search order as specified on the SEARCH option, if any
2. The libraries specified on the SYSLIB DD statement

Chapter 9. Compiling 255

v For user include files:
1. If you specfied OE with a file name and the file being processed is an HFS file

and a main source file, the directory of the file containing the #include
directive

2. The search order as specified on the LSEARCH option, if any
3. The libraries specified on the USERLIB DD statement
4. The search order for system include files

For example, given a file /r/you/cproc.c that contains the following #include
directives:
#include "/u/usr/header1.h"
#include "//aa/bb/header2.x"
#include "common/header3.h"
#include <header4.h>

And the following options:
OE(/u/crossi/myincs/cproc)
SEARCH(//V.+, /new/inc1, /new/inc2)
LSEARCH(//(*.x)=(lib(AAA)), /c/c1, /c/c2)

The include files would be searched as follows:

Table 29. Examples of Search Order for OS/390 UNIX

#include Directive Filename Files in Search Order

Example 1. This is an absolute pathname, so no search is performed.

#include "/u/usr/header1.h" 1. /u/usr/header.h

Example 2. This is a data set (starts with //) and is treated as such.

″//aa/bb/header2.x″ 1. userid.AAA(HEADER2)
2. DD:USERLIB(HEADER2)
3. userid.V.AA.BB.X(HEADER2)
4. DD:SYSLIB(HEADER2)

Example 3. This is a OS/390 UNIX System Services system include file with a relative path
name. The sear ch starts with the directory of the parent file or the name specified on the
OE option if the parent is the main source file (in this case the parent file is the main source
file so the OE suboption is chosen i.e. /u/crossi/myincs).

″common/header3.h″ 1. /u/crossi/myincs/common/header3.h
2. /c/c1/common/header3.h
3. /c/c2/common/header3.h
4. DD:USERLIB(HEADER3)
5. userid.V.COMMON.H(HEADER3)
6. /new/inc1/common/header3.h
7. /new/inc2/common/header3.h
8. DD:SYSLIB(HEADER3)

Example 4. This is a OS/390 UNIX System Services system include file with a relative path
name. The search follows the order of suboptions of the SEARCH option.

<header4.h> 1. userid.V.H(HEADER4)
2. /new/inc1/common/header4.h
3. /new/inc2/common/header4.h
4. DD:SYSLIB(HEADER4)

256 OS/390 V2R6.0 C/C++ User’s Guide

Compiling OS/390 C Source Code Using the SEARCH option

The following data sets contain the commonly-used system header files for C: 1

v CEE.SCEEH.H (standard header files)
v CEE.SCEEH.SYS.H (standard system header files)
v CEE.SCEEH.ARPA.H (standard internet operations headers)
v CEE.SCEEH.NET.H (standard network interface headers)
v CEE.SCEEH.NETINET.H (standard internet protocol headers)

To specify that the compiler search these data sets, code the option:
SEARCH('CEE.SCEEH.+')

IBM supplies this option as input to the Installation and Customization of the
compiler. Your system programmer can modify it as required for your installation.

The cataloged procedures, REXX EXECs, and panels that are supplied by IBM for
C specify the following data sets for the SYSLIB ddname by default:
v CEE.SCEEH.H (standard header files)
v CEE.SCEEH.SYS.H (standard system header files)

This is supplied for compatibility with previous releases, and will be overridden if
SEARCH() is used as described above.

Compiling OS/390 C++ Source Code Using the SEARCH option

The following data sets contain the commonly-used system header files for OS/390
C++: 1

v CEE.SCEEH.H (standard header files)
v CEE.SCEEH.SYS.H (standard system header files)
v CEE.SCEEH.ARPA.H (standard internet operations headers)
v CEE.SCEEH.NET.H (standard network interface headers)
v CEE.SCEEH.NETINET.H (standard internet protocol headers)
v CBC.SCLBH.H (class library header files)
v CBC.SCLBH.HPP (class library header files)
v CBC.SCLBH.C (class library template definition files)
v CBC.SCLBH.INL (class library inline definition files)

To specify that the compiler search these data sets, code the option:
SEARCH('CEE.SCEEH.+','CBC.SCLBH.+')

IBM supplies this option as input to the installation and customization of the
compiler. Your system programmer can modify it as required for your installation.

1. The high-level qualifier may be different at your installation.

Chapter 9. Compiling 257

258 OS/390 V2R6.0 C/C++ User’s Guide

Chapter 10. Using Precompiled Headers

You can improve your compile time by using precompiled headers (PCH). Use the
options GENP and USEP together to automatically create and maintain precompiled
header files for your application. If you use these options consistently, the compiler
creates precompiled header files if they do not exist, and attempts to use them if
they do. When you change a source file, the compiler automatically regenerates the
precompiled version the next time you compile your program.

The compiler generates a precompiled object for the first initial sequence of
#include directives. The next time you compile, this object can be used wherever
that initial sequence appears. The precompiled object is not re-interpreted every
time it is included, since the precompiled object is only used in cases where the
context is the same. For example, same language, same beginning sequence of
#include directives, same options, and macro definitions.

To get the most benefit from this method, use the same initial sequence of headers
wherever possible. The more files that share the same initial sequence, the greater
the improvement in your compile time. See “Organizing Your Source Files” on
page 265 for tips on getting the most improvement.

Note: A precompiled header may not be reused although a matching initial
sequence is found. Usage also depends on the availability of consistent
address locations between compilations as described in “Restrictions” on
page 264. Compile time improvement is of a statistical nature. For example,
when doing a large number of compilations in an application build, you can
obtain overall improvement even though individual compiles may not benefit
to the same degree.

Determining the Initial Sequence

The initial sequence of headers which consists of directives in the primary source
file, can consist of the following:

v #include directives

v Comments

v #error directives

v Null directives

v False conditional compilation blocks beginning with #elif or #else. In the
following example, the headers a.h, b.h, and c.h are included in the initial
sequence. The header d.h is not.
#define foo
#undef goo
#if foo
#include "a.h"
#include "b.h"

#elif
else
.
.
.

#else
else
.
.

© Copyright IBM Corp. 1996, 1999 259

.
#endif
#include "c.h"
#if goo
#include "d.h"

...

v #endif directives

Only comments, #define, #undef, and #if can precede the first #include directive.
For C programs, #pragma directives are also allowed. If anything else precedes the
#include directive, the compiler will not create or attempt to use precompiled
headers with that source file.

Any one of the following terminates the initial sequence:
v The compiler detects any construct not in the initial sequence list as described

above.
v The compiler detects #pragma hdrstop after a #include directive. In this instance

all #include directives that follow #pragma hdrstop directive will not be part of the
initial sequence.

v The compiler detects #pragma hdrstop before the first #include directive. In this
instance, there is no initial sequence, and the compiler does not create a
precompiled header.

Any #include directives after the initial sequence are not precompiled: they will be
compiled every time you compile the source file.

When a header contains conditional compilation directives to prevent it from being
included a second time, it is only counted once in the initial sequence, even if it
appears multiple times. Figure 29 on page 261 illustrates how the initial sequence
can vary, depending on whether any macros are defined on the command line.

260 OS/390 V2R6.0 C/C++ User’s Guide

sider the following code sequence:

The following table shows three different initial sequences as a result of different
compile-time options as input.

Table 30. Initial Sequence Based on Macros

Macros
Defined

Resulting Initial Sequence

None ″h1.h″, ″h2.h″, ″h3.h″

STDIO <stdio.h>, ″h1.h″, ″h2.h″, ″h3.h″

F No initial sequence (because the prototype int f(int); occurs before any
#include directives)

Although h3.h is included twice (once in main.c and once in h1.h), only the first
#include directive is considered in the initial sequence. The second #include
directive does not take effect because of the conditional compilation directive in
h3.h.

h1.h

int h1;
include "h3.h"

h2.h

int h2;

h3.h

#ifndef H3_H
#define H3_H
int h3;

#endif

main.c

/* Comments are OK */
#define M 1
#undef N
#if F
int f(int);

#endif
#if STDIO
#include <stdio.h>

#endif
#include "h1.h"

/* Comments are OK */
#include "h2.h"
#include "h3.h"
main() {
.
.
.
}

Figure 29. Initial Sequence Based on Defined Macros

Chapter 10. Using Precompiled Headers 261

Matching the Initial Sequence

Once the precompiled initial sequence is created, other compilation units in
subsequent compiles can use it. Another compilation unit can use the precompiled
initial sequence under the following conditions:
v The compilation unit has a matching initial sequence of #include directives. The

compilation unit can have a longer initial sequence, as long as the first part of the
sequence matches. Any #include directives beyond the initial matching portion
are compiled normally.

v The include files that make up the precompiled header object have not changed.
The compiler checks the modification date of each include file.

v Any macros that were expanded or tested while generating the precompiled
header object are defined with the same replacement tokens. The compiler
checks macro names that are:
– Defined before the start of the initial sequence, using the #define directive or

the def compile time option.
– Undefined before the start of the initial sequence, with the #undef directive or

the undef compile time option.
– Predefined by the compiler.

If the macro was not expanded or tested during the precompile, then its status
does not matter, and does not have to match.

v No additional macros have been defined.
v Compiler option specifications must match exactly. You must specify them in the

same way during both compilations. The only exceptions are the GENP and USEP
options; in this case, the filename suboption must also be the same.

v Under OS/390 C, the same #pragma directives, if any, before the first #include.
The specifications and order of the #pragma directives must be the same.

262 OS/390 V2R6.0 C/C++ User’s Guide

Example - Reusing Sequences

Given the following two compilation units, prog1.c, and prog2.c and two header
files h1.h and h2.h:

The file prog2.c can use the precompiled header object from prog1.c under the
following conditions:
v The macro TEST has the same definition in both prog1.c and prog2.c, or is not

defined in both.
v Macro M has the same definition in both prog1.c and prog2.c, or is not defined in

both.
v No additional macros have been defined in prog2.c (whether they are used or

not).

The different definitions of macro X in prog1.c and prog2.c do not matter, since X is
never tested or expanded.

Using the GENP and USEP Compiler Options

You can specify GENP or USEP with a suboption. If you do not specify a suboption ,
and did not allocate DD SYSCPCH, a filename is generated based on the source file
name. The default suffixes are as follows:

Source file type MVS File HFS File
C Source file PCH pch

h1.h

#if TEST
int h1;

#endif

h2.h

int h2 = M+5;

prog1.c

#undef X
#include "h1.h"
#include "h2.h"
func1() {
.
.
.
}

prog2.c

#define X 1
#include "h1.h"
#include "h2.h"
func2() {
.
.
.
}

Figure 30. Example of Reusing Initial Sequence

Chapter 10. Using Precompiled Headers 263

Source file type MVS File HFS File
C++ Source file PCHPP pchpp

When you specify GENP and USEP together, the last file name that is specified will be
used. If you compile your program as follows, the compiler uses the PCH name
MY.PCH:
CC HELLO.PDSSRC(MEM1) (GENPCH(TEST.PCH) GENPCH(MY.PCH) USEPCH(MY.PCH)

The compiler then does the following:
v If MY.PCH exists and is current, the compiler uses it if the initial sequence matches

the source initial sequence.
v If MY.PCH exists and is not current, the compiler regenerates it.
v If MY.PCH does not exist, the compiler generates it.

Depending on how source files are organized, a header file can be part of more
than one PCH file. It could be tedious to keep track of changes to the header files
and to keep the corresponding PCH files up-to-date. By consistently using GENP and
USEP options together as described above, you can automatically maintain and use
a current precompiled header.

Notes:

1. You cannot use the same precompiled header files for C and C++ programs.

2. To create a precompiled header file, you must have write access to the data
sets or directories you specify. To use a precompiled header, you must have
read permission for that file.

3. Precompiled header files do not appear in any listing files. An informational
message is printed if the compiler does not use the precompiled header file.

Using an Alternative Initial Sequence

Because of the restrictions on reusing precompiled headers (the same sequence of
headers, and the same context in terms of macro names and options), you can
create and keep more than one precompiled header object. You can then use the
one that suits your particular compilation.

You can specify the name of an alternate precompiled header file to use, or an
alternate directory to search. Use the filename suboption of the GENP and USEP
compiler options on the command line, or on the CPARM parameter of your JCL.

Restrictions

To use an existing precompiled header file, the compiler needs the same address
location that was used when the file was created. If this address location is not
available, the compiler will not use the precompiled header file. It will compile all the
#include files, ignoring the USEP option.

You can increase the probability of accessing the required address location by
following these rules:
v The compile time options must be the same during the generation and reuse of

precompiled header files. Put the options into a file, and use the compiler option
OPTFILE to ensure that you use consistent options to generate and reuse
precompiled header files.

v For C, any #pragma directives that appear before the Initial Sequence must be
the same during the generation and reuse of precompiled headers. To ensure

264 OS/390 V2R6.0 C/C++ User’s Guide

that your #pragma directives are consistent for all compilations, put them inside a
header file whenever possible. These #pragma directives need not be processed
again in the reuse compile, since they are inside a header file that is part of the
Initial Sequence. This improves the compile time.

v For C++, you cannot use a #pragma directive before the Initial Sequence.
v Maintain a consistent runtime environment when you invoke the compiler. You

can do this by using the same runtime options (i.e. the compiler as an
application, options like HEAP, STACK, etc), and the same region size. If you are
working from OE by using the OMVS shell, start the shell up directly from TSO,
instead of from ISPF. This will free more memory for the compiler.

There is no guarantee that you can use precompiled header files between different
runtime environments. For example, between TSO and batch, or between different
user sites or OS/390 installations. The available address locations may also change
after a system reconfigeration.

In addition, timestamp information must be available for the #include header files;
otherwise the compiler may not create or use the precompiled header file. This is
because the compiler needs the timestamp information to check whether a
precompiled header file is up-to-date. Make sure that timestamp information is
available in the system headers, which reside in system partition data sets and in
the HFS directory /usr/lpp .

Because timestamp information is not available in sequential data sets, avoid using
these for header files if you want to use the precompiled header feature. The
precompiled header itself can be a sequential data set.

Organizing Your Source Files

To take full advantage of precompiled headers, you may need to reorganize your
source files. There are two strategies that you can use to organize your source
files. Use the one that best suits your application environment:
v A long initial sequence of headers. This method limits the number of source files

that can reuse it, but provides significant improvement for those files.
v A short initial sequence of headers that are shared by many source files. This

method increases the number of source files that can reuse it, but the
performance improvement for any one compile is not as significant.

If your source has an initial sequence of header files which is common to all
members in a PDS or directory, then generating and using one PCH file for the
entire PDS of directory has the greatest potential performance benefit.

Set up the PCH as follows:
1. Compile a single member from the PDS or directory with GENP and

USEP(filename(member)). This can be a dummy source file with only the Initial
Sequence of header files. The purpose here is to let the compiler check whether
the precompiled header file exists and is up-to-date, and to create or refresh it if
necessary.

2. Compile the entire directory with USEP(filename(member)). You must specify the
PCH file name, including the member name if the PCH is in a PDS, with the
USEP option.

Note: If you specify GENP at this point, a the compiler generates a PCH for each
member in the directory.

Chapter 10. Using Precompiled Headers 265

Use the following hints and suggestions to organize your source files.

Common Header File

Create a common header file which has #include directives for those header files
that are shared by many different compilation units. #include this common header
file as the first header file in each primary source file, followed immediately by
#pragma hdrstop. The common headers will participate in the precompiled header
file while the other headers will be compiled normally.

Global PCH File for the Entire Directory

Create a global header file which has #include directives for every header in your
application, and include it in each primary source file. This means that a particular
source file may not use all headers in the global header file.

One PCH file for Each Member of the Directory

If your source has a different initial sequence of header files for each member in
a directory, you can generate and use one PCH file for each member by always
compiling with GENP and USEP. The first time you compile this directory, the
compilation will create a PCH file for each member. Subsequent compiles will reuse
the PCH files, thereby improving your compile time.

You do not have to specify the PCH filename; you can use the defaults. If you do
specify a PCH file name, it should be a PDS or an HFS directory. If you specify a
sequential file, PDS member or HFS file, the compiler uses this name for the output
of each PCH. If this happens, the PCH for each compile unit overwrites the
previous PCH, and only the PCH for the last compile unit remains at the end.

266 OS/390 V2R6.0 C/C++ User’s Guide

Chapter 11. Using the IPA Link Step with OS/390 C/C++
Programs

This chapter shows how to use the IPA (Interprocedural Analysis) Link step with
your OS/390 C/C++ program. Before reading this chapter, refer to the OS/390
C/C++ Programming Guide for an overview of IPA.

The IPA(LINK) option triggers IPA Link step processing.

IPA Linking Your Program

The IPA Link step combines IPA object files that are created by the IPA Compile
step with non-IPA object files and information from load module library members.
The IPA Link step optionally performs IPA and code generation optimizations, and
generates the final code and data for your program. You must bind the resulting
object module to create the executable program.

The entry point of your application must be an IPA object file.

Typically, OS/390 C/C++ applications contain references to OS/390 Language
Environment library functions, as well as interface routines for products such as
CICS and DB2. These object module and load module libraries must be available to
the IPA Link step for symbol resolution. The IPA Link step extracts all required
object information from these libraries to form part of the object module it
generates. If external references remain unresolved after the link portion of the IPA
Link step has completed, processing terminates before optimization or code
generation of the final object code. OS/390 Version 2 Release 4 has introduced the
SCEELKEX library, which is a LONGNAME object version of a large portion of the
Language Environment function library. When you IPA Link your application
program, place the SCEELKEX library ahead of the SCEELKED library in the
search order. This will preserve long runtime function names in the object module
and listings that IPA Link generates.

You should specify the libraries that are described in the previous paragraph in your
bind step. During IPA Link step processing with IPA(NONCAL) in effect, IPA resolves
object information for explicit runtime symbols. The IPA Link step produces
additional, implicit references to external runtime symbols during code generation.
Although the IPA Link step will search for explicit runtime references, it does not
search for implicit runtime references.

To avoid problems with unresolved implicit runtime references, ensure that the
runtime object module and load module libraries are available to the binder. Also,
check the binder listings and messages to make sure that all your symbols are
resolved.

If you use the prelinker, make sure that the runtime object module libraries are
available to the prelinker, and that the runtime object module and load module
libraries are available to the Linkage Editor. The Object Resolution Warnings section
of the Prelinker Map and the Linkage Editor Map display unresolved references, as
follows:

© Copyright IBM Corp. 1996, 1999 267

==
| Object Resolution Warnings |
==

WARNING EDC4015: Unresolved references are detected:
CEEBETBL CEEROOTA EDCINPL

IPA object modules contain longnames, and may be included in object libraries for
easy automatic library call resolution.

For information on creating object libraries in OS/390 C/C++, refer to “Chapter 16.
Object Library Utility” on page 351. For information on binding object modules under
OS/390 UNIX System Services, refer to “Chapter 12. Binding OS/390 C/C++
Programs” on page 289.

Using DD Statements for the Standard Data Sets

The IPA Link step uses certain ddnames. Table 31 lists these ddnames, along with
their types and functions. For details on the attributes of specific data sets see
“Description of Data Sets Used” on page 460.

Table 31. Data Sets Used by the IPA Link Step

ddname Type Function

SYSIN1 Input Primary input

STEPLIB1,5 Utility
Library

Location of
the OS/390 C/C++ compiler (which provides the
IPA Link step) and the OS/390 Language Environment

data sets

SYSLIB Library Data set for runtime library (SCEELKEX,SCEELKED)
2

Optional data sets for secondary input
4

SYSLIN1 Output Output data
set for the object module,
if the OBJECT
compiler option is specified

SYSPUNCH1 Output Output data set for the object module, if the DECK
and NOOBJECT compiler options are specified

SYSOUT4 Output Destination of diagnostic messages
generated by the IPA Link step

SYSCPRT4 Output IPA Link step listing, generated if the IPA(MAP),
LIST, or XREF option
is specified.

User-specified3 Input Additional object modules and load modules

SYSUT1,
SYSUT4-9,
SYSUT141

Output Work data sets

268 OS/390 V2R6.0 C/C++ User’s Guide

Table 31. Data Sets Used by the IPA Link Step (continued)

ddname Type Function

Notes:
1 Required data set
2 Required for library runtime routines
3 As required by the program:

v Program parts in object library or load module library format

v DLL IMPORT side-decks generated by the binder, which define function or
variable interfaces of a DLL referenced by the current application

4 Optional data set
5 Optional data sets, if the compiler and runtime library are installed in the LPA or

ELPA. To save resources and improve compile time, especially in OS/390 UNIX
System Services, do not unnecessarily specify data sets on the STEPLIB DD
name.

Primary Input (SYSIN)

Primary input to the IPA Link step must be one or more separately compiled object
modules or IPA Link control statements. You can specify this input in a sequential
data set, a member of a partitioned data set, or an in-line object module (DD *).

Location of Compiler and OS/390 Language Environment Library
(STEPLIB)

To IPA Link your program, the system must find the data sets that contain the
compiler, and the data sets that contain the OS/390 Language Environment runtime
library. If the runtime library is installed in the LPA or ELPA, it is found automatically.
Otherwise, SCEERUN must be in the JOBLIB or STEPLIB. For information on the search
order, see “Chapter 14. Running an OS/390 C/C++ Application” on page 335.

Secondary Input (SYSLIB)

Secondary input to the IPA Link step consists of object modules, or load modules
that are not part of the primary input data set but are to be included in the user
executable program. These may be included either:

v Explicitly, as a result of processing an IPA Link control INCLUDE statement.

v Implicitly, as a result of automatic call library processing. This can be due to
either

– Processing a library specified on an IPA Link control LIBRARY statement

– Searching the libraries that are allocated to SYSLIB (once the IPA Link step
has processed all primary input)

The automatic call library is used to resolve external symbols that are currently
unresolved.

The call libraries that are used as input to the IPA Link step normally include the
OS/390 Language Environment libraries. If required, include additional call libraries
such as SYS1.LINKLIB, a private program library, or a subroutine library to resolve
all external references to your application.

If you are IPA Linking an application that imports symbols from a DLL, you must
INCLUDE its definition side-deck on the SYSLIB or other user DD name. The IPA

Chapter 11. Using the IPA Link Step with OS/390 C/C++ Programs 269

Link step uses the definition side-deck to resolve external symbols for functions and
variables that your application imports. If you call more than one DLL, you need to
INCLUDE a definition side-deck for each.

You can use the SYSLIB DD statement to concatenate multiple object module
libraries and load module libraries. For more information on concatenating data
sets, see page 232.

Notes:

1. All secondary input data sets for the IPA Link step must be cataloged.

2. The IPA Link step supports PDS format load module libraries only. It does not
support Program Objects that are in PDSE format, or OS/390 UNIX System
Services HFS executable files.

Output (SYSLIN or SYSPUNCH)

The IPA Link step generates a single object module. If you specify the OBJECT
compiler option, the IPA Link step stores the object module in the data set that is
referenced by the SYSLIN DD name. If you specify the DECK and NOOBJECT compiler
options, the IPA Link step stores the object module in the data set that is referenced
by the SYSPUNCH DD name.

Destination of Errors Generated by the IPA Link Step (SYSOUT)

If the IPA Link step encounters problems, it generates diagnostic messages and
places them in the SYSOUT data set.

Listing (SYSCPRT)

If you specify the ATTRIBUTE, IPA(MAP), LIST, or XREF compiler option, the IPA Link
step writes a listing to the SYSCPRT file name. The options have the following
purposes:

ATTRIBUTE Causes IPA Link to generate an External Symbol Cross-Reference
listing section for each partition. The IPA Link step may also
generate a Storage Offset Listing if you specified the XREF,
IPA(ATTRIBUTE), or IPA(XREF) option specified during the IPA
Compile step.

IPA(MAP) Provides information about the object and source files that are
included as input to the IPA Link step, and information about the
partitions that it generates.

LIST Causes IPA Link to generate a Pseudo Assembly listing for each
partition, showing the code and data that are generated in each
partition.

XREF Causes an IPA Link to generate an External Symbol
Cross-Reference listing section to each partition. The IPA Link step
may also generate a Storage Offset Listing if you specify the XREF,
IPA(ATTRIBUTE), or IPA(XREF) option specified during the IPA
Compile step.

Refer to “Using the IPA Link Step Listing” on page 193 for more information about
listings that the IPA Link step generates.

270 OS/390 V2R6.0 C/C++ User’s Guide

Temporary Workspaces for the IPA Link Step (SYSUTx)

The IPA Link step requires data sets for use as temporary workspaces. You define
these data sets by DD statements with the names SYSUT1, SYSUT4—9, and
SYSUT14. These data sets must be on direct access devices.

IPA Link Step Input

Input to the IPA Link step can be:

v Object records, which can be:

– One or more IPA object modules

– IPA Link control statements

– OS/390 Language Environment stub routines

– Other object libraries and load module libraries

v The IPA Link step control file

Unresolved references or undefined writable static objects often result if you give
the IPA Link step object modules produced with a mixture of inconsistent options.
For example, RENT, NORENT, or DLL.

Note: The IPA Link step will not accept as input a program object that is produced
by the binder.

Primary Input

Primary input to the IPA Link step consists of a sequential data set (file) that
contains one or more separately compiled object modules or IPA Link control
statements. Specify the primary input data set through the SYSIN DD name.

Note: If you used the OS/390 Release 2 C/C++ compiler to create an IPA or
combined IPA/conventional object module, and specified the OPTIMIZE(0)
and IPA(NOOPTIMIZE) compiler options, your object module is incompatible
with a later release of the OS/390 C/C++ IPA Link step. You must recompile
your source code with a later release of the OS/390 C/C++ IPA Compile step
before attempting to use the current release of the OS/390 C/C++ IPA Link
step.

Refer to “Object Record Formats” on page 275 for more information about the
different types of object records.

IPA Linking Multiple Object Modules

OS/390C/C++ generates a CEESTART CSECT at the beginning of the object
module in two situations:

v For a source program that contains the main() function, as long as you have not
specified the NOSTART compiler option.

v For a source program containing a function for which a #pragma linkage (name,
FETCHABLE) preprocessor directive applies.

When you IPA Link multiple object modules into a single object module, the binder
resolves the entry point of the resulting object module to the external symbol

Chapter 11. Using the IPA Link Step with OS/390 C/C++ Programs 271

CEESTART. If you want to control the entry point of the object module, use the
ENTRY binder control statement or the c89 ″-e″ option.

For the IPA Link step, object modules containing the main() function or #pragma
fetchable function must be IPA object files. If these object files are IPA Linked with
other object modules produced by C, assembler, or other languages, the IPA object
file containing the main() or #pragma fetchable function must be the first module to
receive control. You must also ensure that the entry point of the resulting load
module is resolved to the external symbol CEESTART. To ensure this, you can include
the following binder ENTRY control statement in the input to the binder:
ENTRY CEESTART

If you are building a DLL with IPA, you must use the ENTRY control statement as
described above.

Secondary Input

Secondary input to the IPA Link step consists of object modules, or load modules
that are not part of the primary input data set but are to be included in the object
module. They may be included either:

v Explicitly, as a result of processing an IPA Link control INCLUDE statement.

v Implicitly, as a result of automatic call library processing. This can be due to
either

– Processing a library specified on an IPA Link control LIBRARY statement

– Searching the libraries that are allocated to SYSLIB (once the IPA Link step
has processed all primary input)

The automatic call library is used to resolve external symbols that are currently
unresolved. The IPA Link step locates the library member in which the external
symbols are defined, extracts the corresponding object information, and
incorporates it in the output object module.

The automatic call library may include:

v Object module libraries. These may contain IPA object files or non-IPA object
modules, and may contain the records of IPA Link control statements.

These libraries may be:

– PDS libraries

– PDSE libraries

– archive libraries

Note: You do not normally use control statement records within secondary input
with the c89 utility. The c89 utility allocates libraries that are passed in the
c89 invocation. You cannot allocate additional user autocall libraries with
user-specified DD names.

v Load module libraries

v OS/390 Language Environment libraries, if any of the OS/390 Language
Environment library functions are needed to resolve external references

Refer to “Object Record Formats” on page 275 for more information about the
different types of object records.

Note: You can concatenate PDS, PDSE, and load module libraries together.
However, you cannot concatenate archive libraries to other library types.

272 OS/390 V2R6.0 C/C++ User’s Guide

Specify the standard secondary input data sets with a SYSLIB DD statement. You
can also explicitly reference secondary input, through IPA Link control statements.

Additional Object Modules and Load Modules as Input

You can explicitly reference secondary input through INCLUDE or LIBRARY control
statements.

Use the INCLUDE statement to specify additional object information from object
modules or load modules that you want included in the final object module.

Use the LIBRARY statement to specify additional libraries to be searched for object
information from object modules or load modules to be included in the final object
module. The IPA Link step only uses data sets that are specified by the LIBRARY
statement if there are unresolved references once it has processed all other input.

When the IPA Link step encounters an INCLUDE statement, it incorporates the data
sets that the statement specifies. If you specify the IPA(NONCAL) option, the IPA Link
step performs a library search for currently unresolved symbols when it encounters
a LIBRARY statement. If the processing of subsequent INCLUDE or LIBRARY
statements results in new or unresolved symbols, the IPA Link step does not search
a previously encountered library again. You need to specify another LIBRARY
statement that points to the same library so that IPA Link searches it again.

Uppercase Name Resolution with the IPA(UPCASE) Option

If you specify the IPA(UPCASE) option, the IPA Link step makes an additional
automatic library call pass against the SYSLIB DD statement. In this situation,
symbol matching is case-insensitive. The purpose of this IPA(UPCASE) option is to
provide support for linking assembler object routines without source changes. It is
preferable to add #pragma map definitions for these symbols, so that IPA Link finds
the correct symbols during normal automatic library call processing.

Processing the IPA Link Automatic Library Call

The IPA Link step uses the following process to resolve a referenced and currently
undefined symbol, if you have specified the IPA(NONCAL) compiler option:

v If the data set contains a C370LIB directory created using the OS/390 C/C++
Object Library Utility, and the C370LIB directory shows that a defined symbol by
that name exists (with a case-insensitive exact match), the IPA Link step reads
the PDS member containing that symbol.

v If the data set does not contain a C370LIB directory created using the OS/390
C/C++ Object Library Utility and the reference is not to static external data, the
IPA Link step reads the member or alias with the same name (with a
case-sensitive exact match).

If unresolved symbols remain after IPA Link step has processed user input, and you
specified the NONCAL option, the IPA Link step searches the files allocated to the
SYSLIB DD name, as follows:

1. It searches for a case-insensitive exact match in the C370LIB and non-C370LIB
libraries that are concatenated to the SYSLIB DD name, as described above.

2. If the symbol remains unresolved, IPA searches OS/390 Language Environment
for a library function with the same name as the symbol. (You must include the
Language Environment stub library in the SYSLIB concatentation).

Chapter 11. Using the IPA Link Step with OS/390 C/C++ Programs 273

3. If the symbol is still unresolved, and you have specified the IPA(UPCASE) option,
IPA searches using the uppercased name.

For more information about the OS/390 C/C++ Object Library Utility, see
“Chapter 16. Object Library Utility” on page 351.

References to Currently Undefined Symbols (External
References)

If the IPA Link step finds unresolved references to external symbols after it has
completed the link portion of its processing, it issues a diagnostic message and
terminates processing.

Library Routine Considerations

OS/390 Language Environment contains runtime libraries for all Language
Environment-enabled languages: C, C++, COBOL, FORTRAN, and PL/I. For
detailed instructions on linking and running OS/390 C/C++ programs under OS/390
Language Environment, refer to the OS/390 Language Environment Programming
Guide.

OS/390 Language Environment is dynamic. That means that many of the functions,
such as library functions, are not physically stored as a part of your executable
program. Instead, only a small portion of code, known as a stub routine, is stored
with your executable program. This results in a smaller executable module. There is
a stub routine for each library function. Each stub routine has:
v The same name as the library function that it represents
v Enough code to locate the actual library function at run time

The C stub routines are in the file CEE.SCEELKED, or CEE.SCEELKEX. For detailed
information on the runtime libraries see OS/390 UNIX System Services Command
Reference.

Using DLLs

If you are building an application that imports symbols from a DLL, your input to the
IPA Link step must include the definition side-deck that the binder produced when
the DLL was built.

The IPA Link step uses longnames to resolve exported and imported symbols when
it generates an object module for an application that is compiled with the DLL
compiler option.

For information on how to create a DLL or an application that uses DLLs, see the
OS/390 C/C++ Programming Guide.

Object File Formats

The High Level Assembler (HLASM) and other OS/390 compilers and language
translators generate two object file formats:

Object File Format
The standard S/370 "TEXT" object format, packaged as fixed-length 80 byte
records. Extensions to the basic format support long external symbols when
the OS/390 C/C++ compiler LONGNAME option is in effect. IPA Link accepts
input in object file format. The OS/390 C/C++ compiler only produces files
that are in object file format.

274 OS/390 V2R6.0 C/C++ User’s Guide

Generalized Object File Format (GOFF)
A hierarchical object file format that was introduced with HLASM R2, and
the OS/390 Binder. IPA Link does NOT supported this format as input.

Refer to DFSMS/MVS Program Management for more information on object file
formats.

Object Record Formats

There are two basic types of object records which may be present in a file of object
file format.

Binary Object Records

Binary object records provide information about your program. The records may
include IPA object information, or code and data generated through the OBJECT
suboption of the IPA compiler option during the IPA Compile step.

The records include the following types:

v ESD

v XSD

v TXT

v END

v RLD

The OS/390 C/C++ compiler or an equivalent language translator may generate
these object records.

IPA Link Control Statements

You can also specify control statement records as input. These statements can
include the following types:

v INCLUDE

v LIBRARY

v RENAME

v IMPORT

v ALIAS

v NAME

The INCLUDE and LIBRARY control statements explicitly identify secondary input files.

IPA Link control statements are contiguous records that you can specify in an object
file or in a DD * stream. The syntax and format of these control statements are
similar to those that the binder uses. The logical records can span multiple
fixed-block, 80 column wide physical records.

You can specify blank records and comment control statements (those starting with
an asterisk in column 1), but the IPA Link step ignores them.

The following table shows the format of records:

Table 32. IPA Link Control Statements

Start Column End Column Field Length Description

Chapter 11. Using the IPA Link Step with OS/390 C/C++ Programs 275

Table 32. IPA Link Control Statements (continued)

1 1 1 Record type indicator
v blank-Control
v 0X02-Binary
v ″*″-Comment

2 71 70 Record data

72 72 1 Control statement
continuation indicator
v EBCDIC blank

character-No continuation
(required for last record)

v non-blank EBCDIC
character-Continuation

73 80 8 Record sequence number
(optional field, contents not
verified)

You can delimit character strings with blanks, commas, or parentheses. If character
strings contain imbedded blanks, you must enclose the strings in single quotes. If
you want to enclose a name in single quotation marks, and it contains a single
quotation mark, replace the single quotation mark with two adjacent ones. For
example, if you want the name SymbolNameWithAQuote'InTheMiddle, specify it as
follows: 'SymbolNameWithAQuote''InTheMiddle'.

All 70 data characters of a control statement are significant. Control statements
continue in column 2 (IPA conforms to the same convention as the Program
Management Binder).

The IPA Link step performs syntax checking on the object records. If it finds an
error, it issues a diagnostic message and indicates the location of the error.
Records cannot continue past the end of an object file.

The following sections describe the IPA Link control statements.

IMPORT Control Statement: The IMPORT control statement has the following
syntax:

ÊÊ IMPORT CODE dll-name function
' dll-name ' ' function '

DATA dll-name variable
' dll-name ' ' variable '

ÊÍ

dll-name The directory name (primary member or alias) or HFS filename of
the load module or program object that contains the imported
function or variable. The maximum length of a dll-name is 1024
characters. The maximum length of an HFS filename is 255 bytes.

variable An exported variable name. It is a mixed-case longname.

function An exported function name. It is a mixed-case longname.

The IPA Link step processes IMPORT statements. It passes the binder the
statements that represent entry points that are present within the DLL.

276 OS/390 V2R6.0 C/C++ User’s Guide

INCLUDE Control Statement: The INCLUDE control statement has the following
syntax:

ÊÊ INCLUDE

»

ddname (member)
' ddname ' ,

' member '

ÊÍ

ddname a ddname associated with a file to be included.

member the member of the DD to be included.

The IPA Link step attempts to read the DD or member of the DD (whichever you
specify), and if successful, resolves the INCLUDE request.

Note: The IPA Link step removes the INCLUDE control statement and does not place
it in the IPA Link output object module.

LIBRARY Control Statement: The LIBRARY control statement has the following
syntax:

ÊÊ LIBRARY name
' name '

ÊÍ

name The name of a DD that defines a library. This could be a
concatenation of one or more libraries that were created with or
without the Object Library Utility.

Note: The IPA Link step removes the LIBRARY control statement and does not place
it in the IPA Link output object module.

The IPA Link Step Control File

The IPA Link Step control file is a fixed-length or variable-length format file that
contains additional IPA processing directives. The CONTROL suboption of the IPA
compiler option identifies this file.

The IPA Link step issues an error message if any of the following conditions exist in
the control file:

v The control file directives have invalid syntax.

v There are no entries in the control file.

v Duplicate names exist in the control file.

You can specify the following directives in the control file:

csect=csect_names Supplies information that the IPA Link step uses to
name the CSECTs for each partition that it creates.
The csect_names parameter is a comma-separated
list of tokens that is used to construct CSECT
names.

The behavior of the IPA Link steps varies
depending upon whether you specify the CSECT
option with a qualifier.

Chapter 11. Using the IPA Link Step with OS/390 C/C++ Programs 277

v If you do not specify the CSECT option with a
qualifier , the IPA Link step does the following:

– Truncates each name prefix or pads it at the
end with @ symbols, if necessary, to create a
7 character token

– Uppercases the token

– Adds a suffix to specify the type of CSECT, as
follows:
C code
S static data
T test

v If you specify the CSECT option with a non-null
qualifier , the IPA Link step does the following:

– Uppercases the token

– Adds a suffix to specify the type of CSECT, as
follows where nameprefix is the qualifier you
specified for CSECT and qualifier is the name
you specified in the IPA Link Step Control
File:
qualifier#nameprefix#C code
qualifier#nameprefix#S static data
qualifier#nameprefix#T test

v If you specify the CSECT option with a null
qualifier , the IPA Link step does the following:

– Uppercases the token

– Adds a suffix to specify the type of CSECT, as
follows where nameprefix is the qualifier you
specified for CSECT:
nameprefix#C code
nameprefix#S static data
nameprefix#T test

The IPA Link step issues an error message if you
specify the CSECT compiler option but no control file,
or did not specify any csect directives in the control
file. In this situation, IPA generates a CSECT name
and an error message for each partition.

The IPA Link step issues a warning or error
message (depending upon the value of the CSECT
option) if you specify CSECT name prefixes, but the
number of entries in the csect_names list is fewer
than the number of partitions that IPA generated. In
this situation, for each unnamed partition, the IPA
Link step generates a CSECT name prefix with
format @CSnnnn, where nnnn is the partition number.
If you specify the CSECT option, the IPA Link step
also generates an error message for each unnamed
partition. Otherwise, the IPA Link step generates a
warning message for each unnamed partition.

inline= name[,name] Specifies a list of functions that are desirable for the
compiler to inline. The functions may or may not be
inlined.

278 OS/390 V2R6.0 C/C++ User’s Guide

inline= name[,name] from name[,name]
Specifies a list of functions that are desirable for the
compiler to inline, if the functions are called from a
particular function or list of functions. The functions
may or may not be inlined.

noinline= name[,name] Specifies a list of functions that the compiler will not
inline.

noinline= name[,name] from name[,name]
Specifies a list of functions that the compiler will not
inline, if the functions are called from a particular
function or list of functions.

exits= name[,name] Specifies names of functions that represent
program exits. Program exits are calls that can
never return, and can never call any procedure that
was compiled with the IPA Compile step.

lowfreq= name[,name] Specifies names of functions that are expected to
be called infrequently. These functions are typically
error handling or trace functions.

partition=small| medium|large|unsigned-integer
Specifies the size of each program partition that the
IPA Link step creates. The size of the partition is
directly proportional to the time that is required to
perform code generation, and the quality of the
generated code. When partition sizes are large, it
usually takes longer to complete the code
generation, and the quality of the generated code is
usually better.

For a finer degree of control, you can use an
unsigned-integer value to specify the partition size.
The integer is in ACUs (Abstract Code Units), and
its meaning may change between releases. You
should only use this integer for very short term
tuning efforts, or when the number of partitions (and
therefore the number of CSECTs in the output
object module) must remain constant.

The size of a CSECT cannot exceed 16 MB.

The default for this directive is medium.

safe=name[,name] Specifies a list of "safe" functions. These are
functions that do not indirectly call a visible (not
missing) function either through a direct call or a
function pointer.

isolated= name[,name] Specifies a list of "isolated" functions. These are
functions that do not directly reference global
variables accessible to visible functions. IPA
assumes that functions that are bound from shared
libraries are isolated.

pure= name[,name] Specifies a list of "pure" functions. These are
functions that are safe and isolated and do not
indirectly alter storage accessible to visible
functions. A "pure" function has no observable

Chapter 11. Using the IPA Link Step with OS/390 C/C++ Programs 279

internal state. This means that the returned value
for a given invocation of a function is independent
of any previous or future invocation of the function.

unknown= name[,name] Specifies a list of "unknown" functions. These are
functions that are not safe, isolated, or pure.

missing= attribute

Specifies the characteristics of "missing" functions.
There are two types of "missing" functions:

v Functions dynamically linked from another DLL
(defined using an IPA Link IMPORT control
statement)

v Functions that are statically available but not
compiled with the IPA option

IPA has no visibility to the code within these
functions. You must ensure that all user references
are resolved at IPA Link time with user libraries or
runtime libraries.

The default setting for this directive is unknown. This
instructs IPA to make pessimistic assumptions
about the data that may be used and modified
through a call to such a missing function, and about
the functions that may be called indirectly through
it.

You can specify the following attributes for this
directive:

safe Specifies that the missing functions
are "safe". See the description for
the safe directive, above.

isolated Specifies that the missing functions
are "isolated". See the description
for the isolated directive, above.

pure Specifies that the missing functions
are "pure". See the description for
the pure directive, above.

unknown Specifies that the missing functions
are "unknown". See the description
for the unknown directive, above.
This is the default attribute.

retain= symbol-list Specifies a list of exported functions or variables
that the IPA Link step retains in the final object
module. The IPA Link step does not prune these
functions or variables during optimization.

280 OS/390 V2R6.0 C/C++ User’s Guide

Output from the IPA Link Step

You can specify output from the IPA Link step as one of the following:
1. A sequential data set
2. A member of a partitioned data set
3. A partitioned data set
4. A hierarchical file system (HFS) file
5. An HFS directory

Output may be either an object module or a listing.

For valid combinations of input and output file types, refer to Table 25 on page 227.

Specifying Output Files

You can use compiler options to specify the output files for IPA Link, as follows:

Table 33. Compiler Options That Provide Output File Names

Output File Type Compiler Option

Object Module OBJECT(filename)

Listing File LIST(filename)

If you specify compiler options that generate output files but do not specify the
suboptions to identify the output files or allocate the ddnames, the IPA Link step
generates the output file names based on the input file name. For data sets, the
IPA Link step uses the userid under which the compiler is running as the high-level
qualifier. It generates the low-level qualifier by appending a suffix, as shown in
Table 34. OS/390 creates HFS files in the current working directory.

The IPA Link step uses the following default suffixes:

Table 34. Default Suffixes for Output File Types

Output File Type. MVS File HFS File

Output from IPA Compile
Step

OBJ o

Listing File LIST lst

Output from IPA Link Step IPA I (for c89 batch) or o
(otherwise)

Refer to the OS/390 UNIX System Services Command Reference for more
information about default suffixes.

Note: Output files default to the HFS directory if the input resides in the HFS, or to
the MVS file if the input resides in a data set.

If you use the c89 utility to compile HFS source files and perform an IPA Link in one
invocation, and do not specify output filenames in the compiler options, the compiler
writes output files to the current working directory. It generates output file names by:

v Appending a suffix, if it does not exist
v Replacing the suffix, if it exists

as shown in Table 34. For example, the following command generates the IPA
Compile step object file ./hello.o and the IPA Link step object file ./hello.I:

Chapter 11. Using the IPA Link Step with OS/390 C/C++ Programs 281

cc /user/tullio/hello.c

The IPA Link step object file ./hello.I is temporary, but you can use environment
variables to make it permanent. Refer to the OS/390 Shells and Utilities manual for
more information.

Notes:

1. If you have specified the OE option, see “OE | NOOE” on page 127 for a
description of the default naming convention.

2. If you supply the primary input file inline in your JCL, you must provide a file
name for the output, or route it to the job log. The compiler will not generate an
output file name automatically. You can specify a file name either as a suboption
for a compiler option, or on a ddname in your JCL.

Listing Output

To create a listing file that contains source, object or inline reports, use one of the
following:
v the MAP suboption of the IPA option
v the AGGREGATE option
v the LIST option
v the INLINE(,REPORT,,) option
v the XREF option

The IPA Link Step listing contains several individual listing sections that are only
generated if required. Unresolved requests generate error or warning messages in
the listing.

The listing includes the results of the default or specified options of the IPARM
parameter (that is, the diagnostic messages and the object code listing). If you
specified filename with two or more of these compile options, the IPA Link step
combines the listings and writes them to the last file named. If you did not specify
any suboptions, the IPA Link step writes the listing to the SYSCPRT DD name, if you
have allocated it. Otherwise, the IPA Link step generates a default file name as
described in “LIST | NOLIST” on page 110.

Object Module Output

To create an object module and store it on disk or tape, you can use either the
OBJECT or DECK compiler option.

If you do not specify a filename with the OBJECT compiler option, the IPA Link step
stores the object code in the file that you defined in the SYSLIN DD statement. With
the DECK and NOOBJECT compiler options, the IPA Link step uses the file that you
defined in the SYSPUNCH DD. If you did not specify any suboptions, and did not
allocate SYSLIN, the IPA Link step generates a default file name as described in
“OBJECT | NOOBJECT” on page 125.

You must use the binder (or the prelinker, followed by the linkage-editor) to process
the object module from the IPA Link step. You should not use the output object
module from one IPA Link step as input to another IPA Link step.

282 OS/390 V2R6.0 C/C++ User’s Guide

Mapping Static Symbol Names

Static symbols (such as C static functions) within a compilation unit are not exposed
as external symbols if an application program is built using the non-IPA compilation
process.

The IPA Link merges and optimizes the IPA object information, and splits it into
partitions for final code and data generation. The partitioning process must flexibly
assign the code and data from the original Compilation Units to their final partition
based on how they are used within the application.

As the IPA Link step reads IPA object modules, it assigns each static static symbol
a unique name and promotes it to an external symbol. This prevents static symbols
from constraining the partitioning. IPA Link generates the unique name by adding a
prefix to the original static name, as follows:

@n@original_name
where n is the object file id number. Refer to the Object File Map section of
the “Using the IPA Link Step Listing” on page 193 for details.

If an object file defines multiple static symbols with the same name, IPA Link
generates the unique name for the subsequent symbols as follows:

@n@m@original_name
where:

n is the object file id number.

m is the collision counter, starting with 1.

Running the IPA Link Step Under OS/390 Batch

The following diagram shows the basic IPA Link step process for your C/C++
application.

Chapter 11. Using the IPA Link Step with OS/390 C/C++ Programs 283

Use the SYSIN DD statement to specify your primary input. This may be object
modules or IPA Link step control statements.

Use the SYSLIB DD statement to specify your secondary input. Your secondary
input may be C/C++ user libraries, non-C/C++ user libraries, or the Language
Environment library. Also, if you are creating an application that imports symbols
from DLLs, you must INCLUDE the definition side-deck for each DLL from the
SYSLIB DD statement.

You can specify additional secondary input through user-specified ddnames.

The IPA Link step stores the final object module that it generates in the data set
that is referenced by the SYSLIN or SYSPUNCH DD name.

Using the EDCI and CBCI Cataloged Procedures

You can use the IBM-supplied cataloged procedures EDCI and CBCI to perform IPA
Link step processing on your program. The two procedures are the same. IBM
provides CBCI to conform to the procedure naming conventions of C++, and CBCI
is aliased to EDCI. Note that by default, the EDCI procedure does not save the
generated object module.

The EDCI procedure specifies the IPA(LINK) option for you.

The following example shows the general job control procedure for IPA linking a
program under OS/390 batch:

C Object Module
Including main()
and/or IPA Link

Control Statements

IPA Link Step

SYSLIB + Other User-specified DDNAMEs

SYSLIN (or SYSPUNCH)

SYSIN

Object
Module

C User
Libraries

Non-C User
Libraries

Language
Environment

Library

DLL
Definition

Side-Decks

Figure 31. Basic IPA Link Step Processing

284 OS/390 V2R6.0 C/C++ User’s Guide

Specifying IPA Link Options

Use the IPARM parameter to specify the IPA Link options. The format of the
parameter is:
IPARM='"ipa-link-options" '

where ipa-link-options is a list of IPA Link options, separated by commas.

Specifying Region Size

Use the IREGSIZ parameter to specify the IPA Link step region. The format of the
parameter is:
IREGSIZ=region-size

Specifying Secondary Input under OS/390 Batch

Specify the secondary input data sets with the SYSLIB DD statement. Add LIBRARY
and INCLUDE control statements to reference object and load module library data
sets. If you have multiple secondary input data sets, concatenate them as shown in
the following example:
//SYSLIB DD DSNAME=CEE.SCEELKED,DISP=SHR
// DD DSNAME=AREA.SALESLIB,DISP=SHR

To specify additional object modules or libraries, code INCLUDE and LIBRARY
statements after your DD statements as part of your job control procedure, as
follows:

// jobcard
//*
//* IN THE FOLLOWING STEP, THE MEMBERS TESTFILE AND DECODE FROM
//* THE LIBRARIES USERID.WORK.OBJECT AND USERID.LIBRARY.OBJECT ARE
//* IPA LINKED, AND THE GENERATED OBJECT MODULE IS PLACED
//* IN USERID.WORK.IPAOBJ(TEST).
//* AN IPA LINK LISTING IS GENERATED AND DIRECTED TO SYSOUT=*.
//*
//IPALINK EXEC EDCI,
// INFILE='SEE.SYSIN.OVERRIDE',
// OUTFILE='USERID.WORK.IPAOBJ(TEST),DISP=SHR',
// IPARM='IPA(MAP,LIST,DUP,ER,NONCAL)',
// IREGSIZ=64M
//SYSLIB DD DSNAME=CEE.SCEELKED,DISP=SHR
//OBJECT DD DSNAME=USERID.WORK.OBJECT,DISP=SHR
//LIBRARY DD DSNAME=USERID.LIBRARY.OBJECT,DISP=SHR
//SYSOUT DD SYSOUT=*
//SYSCPRT DD SYSOUT=*
//SYSIN DD DATA,DLM=@@
INCLUDE OBJECT(TESTFILE)
INCLUDE LIBRARY(DECODE)

@@

Figure 32. IPA Linking a Program under OS/390 Batch

Chapter 11. Using the IPA Link Step with OS/390 C/C++ Programs 285

Using Your Own JCL

The following example shows sample JCL for running the IPA Link step:

Running the IPA Link Step in OS/390 UNIX

Processing your application under OS/390 UNIX System Services is the same as
processing it under OS/390 batch.

Using JCL

The example JCL, below, uses archive libraries and data sets. INCLUDE files may
be PDS members, sequential files, or HFS files. Libraries may be partitioned data
sets or archive libraries.

...

//SYSIN DD DSNAME=myid.IPAOBJ,DISP=SHR
// DD DSNAME=......

// DD *
INCLUDE ddname(member)

LIBRARY ADDLIB(CPGM10)
/*

Figure 33. IPA Link Control Statements

//jobname JOB acctno,name...
//COMPILE EXEC PGM=CBCDRVR,PARM='/IPA(MAP,LIST,DUP,ER,NONCAL)'
//STEPLIB DD DSNAME=CEE.SCEERUN,DISP=SHR
// DD DSNAME=CBC.SCBCCMP,DISP=SHR
//SYSLIN DD DSNAME=userid.MYPROG.OBJ,DISP=SHR
//SYSLIB DD DSNAME=userid.SECOND.LOAD,DISP=SHR
// DD DSNAME=CEE.SCEELKED,DISP=SHR
//OBJECT DD DSNAME=userid.WORK.OBJECT,DISP=SHR
//LIBRARY DD SYSOUT=userid.LIBRARY.OBJECT,DISP=SHR
//SYSOUT DD SYSOUT=*
//SYSCPRT DD SYSOUT=*
//SYSUT1 DD DSN=...
//SYSUT4 DD DSN=...
...
//SYSIN DD *
INCLUDE OBJECT(TESTFILE)
INCLUDE LIBRARY(DECODE)

/*

Figure 34. JCL for Running the IPA Link Step

286 OS/390 V2R6.0 C/C++ User’s Guide

Invoking IPA from the c89 Utility

The c89 utility supports IPA. You can invoke the IPA Compile step, the IPA Link
step, or both. The step that c89 invokes depends upon the invocation parameters
and type of files you specify. You must specify the I phase indicator along with the
W option of the c89 utility. You can specify IPA suboptions as comma-separated
keywords.

If you invoke c89 with a source file and the -c option, c89 automatically specifies
the IPA(NOLINK) option and invokes the IPA compile step. For example, the
following command invokes the IPA Compile step for source file hello.c:
c89 -c -WI hello.c

If you invoke c89 with an object file, do not specify the -c option and do not specify
any source files, c89 automatically specifies IPA(LINK) and invokes the IPA Link
step, and the binder. For example, the following command invokes the IPA Link step
and the binder to create a program called hello:
c89 -o hello -WI hello.o

If you invoke c89 with at least one source file and any number of object files, and
do not specify the -c option, c89 automatically invokes the IPA Compile step once
for each compilation unit and the IPA Link step once for the entire program. For

// jobcard
//*
//* THE FOLLOWING STEP IPA LINKS THE OBJECT FILES DEFINED BY DDOBJ1,
//* AND DDOBJ2 AND PLACES THE GENERATED OBJECT MODULE IN
//* USERID.WORK.IPAOBJ(TEST). AN IPA LINK LISTING IS GENERATED AND
//* DIRECTED TO SYSOUT=*.
//*
//IPALINK EXEC EDCI,
// INFILE='SEE.SYSIN.OVERRIDE',
// OUTFILE='USERID.WORK.IPAOBJ(TEST),DISP=SHR',
// IPARM='IPA(MAP,LIST,DUP,ER,NONCAL)',
// IREGSIZ=64M
//SYSLIB DD DSNAME=CEE.SCEELKED,DISP=SHR
//* object file
//DDOBJ1 DD PATH='/u/myuserid/callfoogoohoo.o',
// PATHOPTS=(ORDONLY),
// PATHDISP=(KEEP,KEEP)
//* PDS member
//DDOBJ2 DD DISP=SHR,DSN=MYUSERID.QAPARTNR.OBJ(MEM1)
//* archive library
//DDLIB3 DD PATH='/u/myuserid/mylibrary.a',
// PATHOPTS=(ORDONLY),
// PATHDISP=(KEEP,KEEP)
//* PDS Library
//DDLIB4 DD DISP=SHR,DSN=MYUSERID.QAPARTNR.OBJ
//SYSLIN DD DISP=SHR,DSN=USERID.WORK.IPAOBJ(TEST)
//SYSOUT DD SYSOUT=*
//SYSCPRT DD SYSOUT=*
//SYSIN DD *
INCLUDE DDOBJ1
INCLUDE DDOBJ2
LIBRARY DDLIB3
LIBRARY DDLIB4

/*

Figure 35. Using JCL for IPA Linking an OS/390 UNIX Application

Chapter 11. Using the IPA Link Step with OS/390 C/C++ Programs 287

example, the following command invokes the IPA Compile step, the IPA Link step,
and the binder while creating program foo:
c89 -o foo -WI,object foo.c

Specifying Options

When using c89, you can pass options to IPA, as follows:

v If you specify -WI, followed by IPA suboptions, c89 passes those suboptions to
both the IPA Compile step and the IPA Link step.

v If you specify -Wc, followed by compiler options, c89 passes those options only
to the IPA Compile step.

v If you specify -Wl,I, followed by compiler options, c89 passes those options only
to the IPA Link step.

The following is an example of passing options:
c89 -2 -WI,noobject -Wc,source -Wl,I,"maxmem(2048)" file.c

In this example, you pass the IPA(NOOBJECT) option to both the IPA Compile and
IPA Link steps, the SOURCE option only to the IPA Compile step, and the
MAXMEM(2048) option only to the IPA Link step.

Using IPA Link with Archive Files

The IPA Link step supports all archive files, including those which are empty.

Other Considerations

The compiler (which includes IPA) is packaged in MVS load module format, not in
HFS executable format.

Refer to the OS/390 UNIX System Services Command Reference for more
information about the c89 utility.

288 OS/390 V2R6.0 C/C++ User’s Guide

Chapter 12. Binding OS/390 C/C++ Programs

This chapter describes how to bind your programs using the binder (the
DFSMS/MVS program management binder) in the OS/390 batch, OS/390 UNIX
System Services, and TSO environments.

When You Can Use the Binder

The output of the binder is a program object. You can store program objects in a
PDSE member or in an HFS file. Depending on the environment you use, you can
produce binder program objects as follows:

v For c89:

If the targets of your executables are HFS files, you can use the binder. If the
targets of your executables are PDSs, you must use the prelinker, followed by
the binder. If the targets of your executables are PDSEs, you can use the binder
alone.

v For OS/390 batch or TSO:

If you can use PDSEs, you can use the binder. If you want to to use PDSs, you
must use the prelinker for the following:

– C++ code

– C code compiled with the LONGNAME, RENT, or DLL options

For more information on the prelinker, see “Appendix A. Prelinking and Linking
OS/390 C/C++ Programs” on page 403.

When You Cannot Use the Binder

The following are the restrictions to using the binder.

Your Output is a PDS, not a PDSE

If you are using OS/390 batch or TSO, and your output must target a PDS instead
of a PDSE, you cannot use the binder.

CICS

CICS does not support PDSEs. If you have to target CICS, you cannot use the
binder.

MTF

MTF does not support PDSEs. If you have to target MTF, you cannot use the
binder.

IPA

Object files that are generated by the IPA Compile step using the compiler option
IPA(NOLINK,OBJECT) may be given as input to the binder. Such an object file is a

© Copyright IBM Corp. 1996, 1999 289

combination of an IPA object module, and a regular compiler object module. The
binder processes the regular compiler object module, ignores the IPA object
module, and no IPA optimization is done.

Object files that are generated by the IPA Compile step using compiler option
IPA(NOLINK,NOOBJECT) should not be given as input to the binder. These are IPA
only object files, and do not contain a regular compiler object module.

The IPA Link step will not accept a program object as input.

Using Different Methods to Bind

This section shows you how to use different methods to bind your application:

Single Final Bind
Compile all your code and then perform a single final bind of all the object
modules.

Bind Each Compile Unit
Compile and bind each compilation unit, then perform a final bind of all the
partially bound program objects.

Build and Use DLLs
Build DLLs and programs that use those DLLs.

Rebind a Changed Compile Unit
Recompile only changed compile units, and rebind them into a program
object without needing other unchanged compile units.

Single Final Bind

You can use the method that is shown in Figure 36 on page 291 to build your
application’s executable for the first time. With this method, you compile each
source code unit separately, then bind all of the resultant object modules together to
produce an executable program object.

290 OS/390 V2R6.0 C/C++ User’s Guide

Bind Each Compile Unit

If you have changed the source in a compile unit, you can use the method that is
shown in Figure 37 on page 292. With this method, you compile and bind your
changed compile unit into an intermediate program object, which may have
unresolved references. Then you bind all your program objects together to produce
a single executable program object.

source source source

object module

program object

object module object module

OS/390 Binder

compilercompiler compiler

Figure 36. Single Final Bind

Chapter 12. Binding OS/390 C/C++ Programs 291

Build and Use a DLL

You can use the method that is shown in Figure 38 on page 293 to build a DLL. To
build a DLL, the code that you compile must contain symbols which indicate that
they are exported. You can use the compiler option EXPORTALL or the #pragma
export directive to indicate symbols in your C or C++ code that are to be exported.
For C++, you can also use the _Export keyword.

When you build the DLL, the bind step generates a DLL and a file of IMPORT
control statements which lists the exported symbols. This file is known as a
definition side deck. The binder writes one IMPORT control statement for each
exported symbol. The file that contains IMPORT control statements indicates symbol
names which may be imported and the name of the DLL from which they are
imported.

source

program object

program object

program object program object

object module

OS/390 Binder

(intermediate program objects,
may have unresolved references)

(final program object,
references are fully resolved)

compiler

OS/390 Binder

OS/390 Binder

Figure 37. Bind Each Compile Unit

292 OS/390 V2R6.0 C/C++ User’s Guide

You can use the method that is shown in Figure 39 to build an application that uses
a DLL. To build a program which dynamically links symbols from a DLL during
application run time, you must have C++ code, or C code that is compiled with the
DLL option. This allows you to import symbols from a DLL. You must have an
IMPORT control statement for each symbol that is to be imported from a DLL. The
IMPORT control statement controls which DLL will be used to resolve an imported
function or variable reference during execution. The bind step of the program that
imports symbols from the DLL must include the definition side-deck of IMPORT
control statements that the DLL’s build generated.

The binder does not take an incremental approach to the resolution of DLL-linkage
symbols. When binding or rebinding a program that uses a DLL, you must always
specify the DYNAM(DLL) option, and must provide all IMPORT control statements. The
binder does not retain these control statements for subsequent binds.

object module
or program object

Binder

Program Object DLL Definition
side-deck

object module
or program object

object module
or program object

Figure 38. Build a DLL

object
module

Binder

object
module

Program Object

Definition
side-deck

object
module

Figure 39. Build an application that uses a DLL

Chapter 12. Binding OS/390 C/C++ Programs 293

Rebind a Changed Compile Unit

You can use the method shown in Figure 40 to rebind an application after making
changes to a single compile unit. Compile your changed source file and then rebind
the resultant object module with the complete program object of your application.
This will replace the binder sections that are associated with the changed compile
unit in the program.

You can use this method to maintain your application. For example, you can change
a source file and produce a corresponding object module. You can then ship the
object module to your customer, who can bind the new object module with the
application’s complete program object. If you use this method, you have fewer files
to maintain: just the application’s program object and your source code.

Binding Under OS/390 UNIX

The c89 and c++ utilities are the interface to the compiler and the binder for OS/390
UNIX System Services C/C++ applications. You can use c89 and c++, to compile
and bind a OS/390 UNIX System Services C/C++ program in one step, or to bind
application object modules after compilation.

Typically, you invoke the c89 and c++ utilities from the OS/390 shell. For more
information on these utilities, see the OS/390 UNIX System Services Command
Reference .

modified source

program object

original complete program objectobject module

OS/390 Binder

compiler

Figure 40. Rebinding a Changed Compile Unit

294 OS/390 V2R6.0 C/C++ User’s Guide

OS/390 UNIX Example

The example source files unit0.c, unit1.c, and unit2.c that are shown in
Figure 41, are used to illustrate all of the OS/390 UNIX System Services examples
that follow.

Single Final Bind Using c89

Compile each source file, then perform a final single bind of everything as follows:

1. Compile each source file to generate the object modules unit0.o, unit1.o, and
unit2.o as follows:
c89 -c -W c,"CSECT(myprog)" unit0.c
c89 -c -W c,"CSECT(myprog)" unit1.c
c89 -c -W c,"CSECT(myprog)" unit2.c

2. Perform a final single bind to produce the executable program myprog. Use the
c89 utility as follows:
c89 -o myprog unit0.o unit1.o unit2.o

The -o option of the c89 command specifies the name of the output executable.
The c89 utility recognizes from the file extension .o that unit0.o, unit1.o and
unit2.o are not to be compiled but are to be included in the bind step.

The following is an example of a makefile to perform a similar build:

For more information on makefiles, see OS/390 UNIX System Services
Programming Tools.

/* file: unit0.c */
#include <stdio.h>
extern int f1(void);
extern int f4(void);
int main(void) {
int rc1;
int rc4;
rc1 = f1();
rc4 = f4();
if (rc1 != 1) printf("fail rc1 is %d\n",rc1);
if (rc4 != 40) printf("fail rc4 is %d\n",rc4);
return 0;

}

/* file: unit1.c */
int f1(void) { return 1; }

/* file: unit2.c */
int f2(void) { return 20;}
int f3(void) { return 30;}
int f4(void) { return f2()*2; /* 40 */ }

Figure 41. Example Source Files

PGM = myprog
SRCS = unit0.c unit1.c unit2.c
OBJS = $(SRCS:b:+".o")
COPTS = -W c,"CSECT(myprog)"
$(PGM) : ($OBJS)

c89 -o $(PGM) $(OBJS)
%.o : %.c

c89 -c -o $@ $(COPTS) $<

Chapter 12. Binding OS/390 C/C++ Programs 295

Advantage

This method is simple, and is consistent with existing methods of building
applications, such as makefiles.

Bind Each Compile Unit Using c89

Compile each source file and also bind it, then perform a final bind of all the
partially bound units as follows:

1. Compile each source file to its object module (.tmp). Bind each object module
into a partially bound program object (.o), which may have unresolved
references. In this example, references to f1() and f4() in unit0.o are
unresolved. When the partially bound programs are created, remove the object
modules as they are no longer needed. Use c89 to compile each source file, as
follows:
c89 -c -W c,"CSECT(myprog)" -o unit0.tmp unit0.c
c89 -r -o unit0.o unit0.tmp
rm unit0.tmp

c89 -c -W c,"CSECT(myprog)" -o unit1.tmp unit1.c
c89 -r -o unit1.o unit1.tmp
rm unit1.tmp

c89 -c -W c,"CSECT(myprog)" -o unit2.tmp unit2.c
c89 -r -o unit2.o unit2.tmp
rm unit2.tmp

The -r option supports rebindability by disabling autocall processing.

2. Perform the final single bind to produce the executable program myprog by
using c89:
c89 -o myprog unit0.o unit1.o unit2.o

The following is an example of a makefile to perform a similar build:

«1¬ Export the environment variable _C89_EXTRA_ARGS so c89 will process
files with non-standard extensions. Otherwise c89 will not recognize
unit0.tmp, and the makefile will fail

«2¬ name of executable

«3¬ list of source files

«4¬ list of partly bound parts

«5¬ executable depends on parts

«6¬ make .tmp file from .c

_C89_EXTRA_ARGS=1
.EXPORT : _C89_EXTRA_ARGS «1¬
PGM = myprog «2¬
SRCS = unit0.c unit1.c unit2.c «3¬
OBJS = $(SRCS:b:+".o") «4¬
COPTS = -W c,"CSECT(myprog)"
$(PGM) : $(OBJS) «5¬

c89 -o $(PGM) $(OBJS)
%.tmp : %.c «6¬

c89 -c -o $@ $(COPTS) $<
%.o : %.tmp «7¬

c89 -r -o $@ $<

296 OS/390 V2R6.0 C/C++ User’s Guide

«7¬ make .o from .tmp

In this example, make automatically removes the intermediate .tmp files after the
makefile completes, since they are not marked as PRECIOUS. For more
information on makefiles, see OS/390 UNIX System Services Programming Tools.

Advantage

Binding a set of partially bound program objects into a fully bound program object is
faster than binding object modules into a fully bound program object. For example,
a central build group can create the partially bound program objects. Developers
can then use these program objects and their changed object modules to create a
development program object.

Build and Use a DLL Using c89

Build unit1.c and unit2.c into DLL onetwo, which exports functions f1(), f2(), f3(),
and f4(). Then build unit0.c into a program which dynamically links to functions f1()
and f4() defined in the DLL.

1. Compile unit1.c and unit2.c to generate the object modules unit1.o and
unit2.o which have functions to be exported. Use the c89 utility as follows:

c89 -c -W c,"EXPORTALL,CSECT(myprog)" unit1.c
c89 -c -W c,"EXPORTALL,CSECT(myprog)" unit2.c

2. Bind unit1.o and unit2.o to generate the DLL onetwo:
c89 -Wl,dll -o onetwo unit1.o unit2.o

When you bind code with exported symbols, you should specify the DLL binder
option (-W l,dll).

In addition to the DLL onetwo being generated, the binder writes a list of IMPORT
control statements to onetwo.x. This list is known as the definition side-deck.
One IMPORT control statement is written for each exported symbol. These
generated control statements will be included later as input to the bind step of
an application that uses this DLL, so that it can import the symbols.

3. Compile unit0.c with the DLL option -W c,DLL, so that it can import unresolved
symbols. Bind the object module, with the definition side-deck onetwo.x from the
DLL build:

c89 -c -W c,DLL unit0.c
c89 -o dll12usr unit0.o onetwo.x

Advantage

The bind time advantage of using DLLs is that you only need to rebuild the DLL
with the changed code in it. You do not need to rebuild all applications that use the
DLL in order to use the changed code.

Rebind a Changed Compile Unit Using c89

Rebuild an application after making a change to a single source file. Recompile the
single changed source file and make a replacement of its binder sections in the
program.

1. Recompile the single changed source file. Use the compile time option CSECT to
ensure that each section is named for purposes of rebindability. For example,
assume that you have made a change to unit1.c. Recompile unit1.c by using
c89 as follows:

Chapter 12. Binding OS/390 C/C++ Programs 297

c89 -o unit1.o -W c,"CSECT(myprog)" unit1.c

2. Rebind only the changed compile unit into the executable program, which
replaces its corresponding binder sections in the program object:

touch myprog.old
cp -m myprog myprog.old
c89 -o myprog unit1.o myprog.old
rm myprog.old

The touch command creates myprog if it does not exist, because myprog.old is
needed for the rebind step. First myprog is saved under myprog.old; then myprog
is overwritten with the result of the bind of unit1.o and the old executable. Like
named sections in unit1.o replace those in the old executable.

The following is an example of a makefile to perform a similar build:

«1¬ allow non-conventional filenames

«2¬ list of source files

«3¬ do not delete myprog if the make fails

«4¬ compile source files newer than the executable, and bind

«5¬ if any files were compiled, rename myprog.new to myprog

«6¬ remove .o files and old program

The attribute .PRECIOUS ensures that such parts are not deleted if make fails. $?
are the dependencies which are newer than the target.

Note:

v You need the .PRECIOUS attribute to avoid removing the current
executable, since you depend on it as subsequent input.

v If more than one source part changes, and any compiles fail, then on
subsequent makes, all compiles are redone.

For a complete description of all c89 options and make, see OS/390 UNIX System
Services Command Reference . For a make tutorial, see OS/390 UNIX System
Services Programming Tools.

Advantage

Rebinds are fast because most of the program is already bound, and none of the
intermediate object modules are retained.

_C89_EXTRA_ARGS=1
.EXPORT : _C89_EXTRA_ARGS «1¬
SRCS = unit0.c unit1.c unit2.c «2¬
CFLAGS = -W c,"CSECT(myprog)"
.PRECIOUS : myprog «3¬
myprog : $(SRCS)

@if [-e myprog]; then OLD=myprog; \
else OLD=; \
fi; \
CMD="$(CC) -Wc,csect $(CFLAGS) -o myprog.new $? $$OLD";\
echo $$CMD; $$CMD; \ «4¬
if [$$? -eq 0]; then \
mv -f myprog.new myprog; \«5¬
fi;

-@rm -f $(?:b:+".o") myprog.new «6¬

298 OS/390 V2R6.0 C/C++ User’s Guide

Binding under OS/390 Batch

You can use the following procedures, which the OS/390 C/C++ compiler supplies,
to invoke the binder:

Procedure name Description
EDCCB C Compile and Bind steps
EDCCBG C Compile, Bind, and Go steps
CBCB C++ Bind step
CBCBG C++ Bind and Go steps
CBCCB C++ Compile and Bind steps
CBCCBG C++ Compile, Bind, and Go steps

If you want to generate DLL code, you must use the binder DYNAM(DLL) option. All
the OS/390 C/C++ supplied cataloged procedures that invoke the binder use the
DYNAM(DLL) option. For C++, these cataloged procedures use the DLL versions of
the IBM-supplied class libraries by default; the IBM-supplied definition side-deck
data set for class libraries, SCLBSID, is included in the SYSLIN concatenation.

OS/390 Batch Example

Figure 42 shows the example source files USERID.PLAN9.C(UNIT0),
USERID.PLAN9.C(UNIT1), and USERID.PLAN9.C(UNIT2), which are used to illustrate all
of the OS/390 batch examples that follow.

Single Final Bind under OS/390 Batch

Compile each source file, then perform a final single bind of everything as follows:

1. Compile each source file to generate the object modules
USERID.PLAN9.OBJ(UNIT0), USERID.PLAN9.OBJ(UNIT1), and
USERID.PLAN9.OBJ(UNIT2). Use the EDCC procedure as follows:

/* file: USERID.PLAN9.C(UNIT0) */
#include <stdio.h>
extern int f1(void);
extern int f4(void);
int main(void) {
int rc1;
int rc4;
rc1 = f1();
rc4 = f4();
if (rc1 != 1) printf("fail rc1 is %d\n",rc1);
if (rc4 != 40) printf("fail rc4 is %d\n",rc4);
return 0;
}

/* file: USERID.PLAN9.C(UNIT1) */
int f1(void) { return 1; }

/* file: USERID.PLAN9.C(UNIT2) */
int f2(void) { return 20;}
int f3(void) { return 30;}
int f4(void) { return f2()*2; /* 40 */ }

Figure 42. Example Source Files

Chapter 12. Binding OS/390 C/C++ Programs 299

2. Perform a final single bind to produce the executable program
USERID.PLAN9.LOADE(MYPROG). Use the CBCB procedure as follows:

The OUTFILE parameter along with the NAME control statement specify the name
of the output executable to be created.

Advantage

This method is simple, and is consistent with existing methods of building
applications, such as makefiles.

Bind Each Compile Unit under OS/390 Batch

Compile each source file and also bind it, then perform a final bind of all the
partially bound units as follows:

1. Compile and bind each source file to generate the partially bound program
objects USERID.PLAN9.LOADE(UNIT0), USERID.PLAN9.LOADE(UNIT1), and
USERID.PLAN9.LOADE(UNIT2), which may have unresolved references. In this
example, references to f1() and f4() in USERID.PLAN9.LOADE(UNIT0) are
unresolved. Compile and bind each unit by using the EDCCB procedure as
follows:

The CALL(NO) option prevents autocall processing.

//COMP0 EXEC EDCC,
// INFILE='USERID.PLAN9.C(UNIT0)',
// OUTFILE='USERID.PLAN9.OBJ,DISP=SHR',
// CPARM='LONG,RENT'
//COMP1 EXEC EDCC,
// INFILE='USERID.PLAN9.C(UNIT1)',
// OUTFILE='USERID.PLAN9.OBJ,DISP=SHR',
// CPARM='LONG,RENT'
//COMP2 EXEC EDCC,
// INFILE='USERID.PLAN9.C(UNIT2)',
// OUTFILE='USERID.PLAN9.OBJ,DISP=SHR',
// CPARM='LONG,RENT'

//BIND EXEC CBCB,OUTFILE='USERID.PLAN9.LOADE,DISP=SHR'
//OBJECT DD DSN=USERID.PLAN9.OBJ,DISP=SHR
//SYSIN DD *
INCLUDE OBJECT(UNIT0)
INCLUDE OBJECT(UNIT1)
INCLUDE OBJECT(UNIT2)
NAME MYPROG(R)

/*

//COMP0 EXEC EDCCB,
// CPARM='CSECT(MYPROG)',
// BPARM='LET,CALL(NO),ALIASES(ALL)',
// INFILE='USERID.PLAN9.C(UNIT0)',
// OUTFILE='USERID.PLAN9.LOADE(UNIT0),DISP=SHR'
//COMP1 EXEC EDCCB,
// CPARM='CSECT(MYPROG)',
// BPARM='LET,CALL(NO),ALIASES(ALL)',
// INFILE='USERID.PLAN9.C(UNIT1)',
// OUTFILE='USERID.PLAN9.LOADE(UNIT1),DISP=SHR'
//COMP2 EXEC EDCCB,
// CPARM='CSECT(MYPROG)',
// BPARM='LET,CALL(NO),ALIASES(ALL)',
// INFILE='USERID.PLAN9.C(UNIT2)',
// OUTFILE='USERID.PLAN9.LOADE(UNIT2),DISP=SHR'

300 OS/390 V2R6.0 C/C++ User’s Guide

2. Perform the final single bind to produce the executable program MYPROG by using
the CBCB procedure:

You have two methods for building the progam.
a. Explicit include: In this method, when you invoke the CBCB procedure, you

use include cards to explicitly specify all the program objects that make up
this executable. Automatic library call is done only for CEE.SCEELKED and
CEE.SCEELKEX, because those are the only libraries pointed to by DD
SYSLIB. DD SYSLIB does not point to any of your user code. For example:

b. Library search: In this method, you specify the compile unit that contains
your main() function, and allocate your object library to DDname SYSLIB. The
binder performs a library search and includes additional members from your
object library, and generates the output program object. You invoke the
binder as follows:

Advantage

Binding a set of partially bound program objects into a fully bound program object is
faster than binding object modules into a fully bound program object. For example,
a central build group can create the partially bound program objects. Developers
can then use these program objects and their changed object modules to create a
development program object.

Build and Use a DLL under OS/390 Batch

Build USERID.PLAN9.C(UNIT1) and USERID.PLAN9.C(UNIT2) into DLL
USERID.PLAN.LOADE(ONETWO), which exports functions f1(), f2(), f3() and f4(). Build
USERID.PLAN9.C(UNIT0) into a program which dynamically links to functions f1() and
f4() defined in the DLL.

1. Compile USERID.PLAN9.C(UNIT1) and USERID.PLAN9.C(UNIT2) to generate the
object modules USERID.PLAN9.OBJ(UNIT1) and USERID.PLAN9.OBJ(UNIT2), which
define the functions to be exported. Use the EDCC procedure as follows:

//BIND EXEC CBCB,
// OUTFILE='USERID.PLAN9.LOADE,DISP=SHR'
//INPGM DD DSN=USERID.PLAN9.LOADE,DISP=SHR
//SYSIN DD *

INCLUDE INPGM(UNIT0)
INCLUDE INPGM(UNIT1)
INCLUDE INPGM(UNIT2)
NAME MYPROG(R)

/*

//BIND EXEC CBCB,
// OUTFILE='USERID.PLAN9.LOADE,DISP=SHR'
//INPGM DD DSN=USERID.PLAN9.LOADE,DISP=SHR
//SYSLIB DD
// DD
// DD
// DD DSN=USERID.PLAN9.LOADE,DISP=SHR
//SYSIN DD *

INCLUDE INPGM(UNIT0)
NAME MYPROG(R)

/*

Chapter 12. Binding OS/390 C/C++ Programs 301

2. Bind USERID.PLAN9.OBJ(UNIT1) and USERID.PLAN9.OBJ(UNIT2) to generate the
DLL ONETWO:

When you bind code with exported symbols, you must specify the binder option
DYNAM(DLL). You must also allocate the definition side-deck DD SYSDEFSD to define
the definition side-deck where the IMPORT control statements are to be written.

In addition to the DLL being generated, a list of IMPORT control statements is
written to DD SYSDEFSD. One IMPORT control statement is written for each
exported symbol. These generated control statements will be included later as
input to the bind step of an application that uses this DLL, so that it can import
the symbols.

3. Compile USERID.PLAN9.C(UNIT0) so that it may import unresolved symbols, and
bind with the file of IMPORT control statements from the DLL’s build:

//* Compile UNIT1
//CC1 EXEC EDCC,
// CPARM='OPTF(DD:OPTIONS)',
// INFILE='USERID.PLAN9.C(UNIT1)',
// OUTFILE='USERID.PLAN9.OBJ(UNIT1),DISP=SHR'
//COMPILE.OPTIONS DD *

LIST RENT LONGNAME EXPORTALL
*/
//* Compile UNIT2
//CC2 EXEC EDCC,
// CPARM='OPTF(DD:OPTIONS)',
// INFILE='USERID.PLAN9.C(UNIT2)',
// OUTFILE='USERID.PLAN9.OBJ(UNIT2),DISP=SHR'
//COMPILE.OPTIONS DD *

LIST RENT LONGNAME EXPORTALL
*/

//* Bind the DLL
//BIND1 EXEC CBCB,
// BPARM='CALL,DYNAM(DLL)',
// OUTFILE='USERID.PLAN9.LOADE(ONETWO),DISP=SHR'
//INOBJ DD DISP=SHR,DSN=USERID.PLAN9.OBJ
//SYSDEFSD DD DISP=SHR,DSN=USERID.PLAN9.IMP(ONETWO)
//SYSLIN DD *

INCLUDE INOBJ(UNIT1)
INCLUDE INOBJ(UNIT2)
NAME ONETWO(R)

/*

302 OS/390 V2R6.0 C/C++ User’s Guide

Advantage

The bind time advantage of using DLLs is that you only need to rebuild the DLL
with the changed code in it. You do not need to rebuild all applications that use the
DLL in order to use the changed code.

Rebind a Changed Compile Unit under OS/390 Batch

Rebuild an application after making a change to a single source file. Recompile the
single changed source file and make a replacement of its binder sections in the
program.

1. Recompile the single changed source file. Use the compile time option CSECT to
ensure that each section is named for purposes of rebindability. For example,
assume that you have made a change to USERID.PLAN9.C(UNIT1). Recompile
the source file using the EDCC procedure as follows:

2. Rebind only the changed compile unit into the executable program, which
replaces its corresponding binder sections in the program object:

//* Compile the DLL user
//CC1 EXEC EDCC,
// CPARM='OPTF(DD:OPTIONS)',
// INFILE='USERID.PLAN9.C(UNIT0)',
// OUTFILE='USERID.PLAN9.OBJ(UNIT0),DISP=SHR'
//COMPILE.OPTIONS DD *

LIST RENT LONGNAME DLL
/*
//* Bind the DLL user with input IMPORT statements from the DLL build
//BIND1 EXEC CBCB,
// BPARM='CALL,DYNAM(DLL)',
// OUTFILE='USERID.PLAN9.LOADE,DISP=SHR'
//INOBJ DD DISP=SHR,DSN=USERID.PLAN9.OBJ
//IMP DD DISP=SHR,DSN=USERID.PLAN9.IMP
//SYSLIN DD *
INCLUDE INOBJ(UNIT0)
INCLUDE IMP(ONETWO)
ENTRY CEESTART
NAME DLL12USR(R)

/*

//* Compile UNIT1 user
//CC EXEC EDCC,
// CPARM='OPTF(DD:OPTIONS)',
// INFILE='USERID.PLAN9.C(UNIT1)',
// OUTFILE='USERID.PLAN9.OBJ(UNIT1),DISP=SHR'
//COMPILE.OPTIONS DD *

LIST RENT LONGNAME DLL CSECT(MYPROG)
/*

//BIND EXEC CBCB,
// OUTFILE='USERID.PLAN9.LOADE,DISP=SHR'
//OLDPGM DD DSN=USERID.PLAN9.LOADE,DISP=SHR
//NEWOBJ DD DSN=USERID.PLAN9.OBJ,DISP=SHR
//SYSIN DD *

INCLUDE NEWOBJ(UNIT1)
INCLUDE OLDPGM(MYPROG)
NAME NEWPGM(R)

/*

Chapter 12. Binding OS/390 C/C++ Programs 303

Advantage

Rebinds are fast because most of the program is already bound, and none of the
intermediate object modules are retained.

Writing JCL for the binder

You can use cataloged procedures rather than supply all the JCL required for a job
step. However, you can use JCL statements to override the statements of the
cataloged procedure.

Use the EXEC statement in your JCL to invoke the binder. The EXEC statement to
invoke the binder is:

//BIND EXEC PGM=IEWL

Use the EXEC statement’s PARM parameter to select one or more of the optional
facilities that the binder provides. For example, you can specify the OPTIONS option
on the PARM parameter to read binder options from the DD name OPTS, as follows:

In the example above, object module P1 is bound using the IOSTREAM DLL. The
Language Environment runtime libraries SCEELKED and SCEELKEX are statically
bound to produce the program object PROG1.

The binder always requires three standard data sets. You must define these data
sets on DD statements with the DDnames SYSLIN, SYSLMOD, and SYSPRINT.

A typical sequence of job control statements for binding an object module into a
program object is shown below. The binder control statement NAME puts the program
object into the PDSE USER.LOADE with the member name PROGRAM1.

//BIND1 EXEC PGM=IEWL,PARM='OPTIONS=OPTS'
//OPTS DD *

AMODE=31,MAP
RENT,DYNAM=DLL
CASE=MIXED,COMPAT=CURR

/*
//SYSLIB DD DISP=SHR,DSN=CEE.SCEELKEX
// DD DISP=SHR,DSN=CEE.SCEELKED
//SYSLIN DD DISP=SHR,DSN=USERID.PLAN9.OBJ(P1)
// DD DISP=SHR,DSN=CBC.SCLBSID(IOSTREAM)
//SYSLMOD DD DISP=SHR,DSN=USERID.PLAN9.LOADE(PROG1)
//SYSPRINT DD SYSOUT=*

//BIND EXEC PGM=IEWL,PARM='MAP'
//SYSPRINT DD * << out: binder listing
//SYSDEFSD DD DUMMY << out: generated IMPORTs
//SYSLMOD DD DISP=SHR,DSN=USERID.PLAN9.LOADE << out: PDSE of executables
//SYSLIB DD DISP=SHR,DSN=CEE.SCEELKED << in: autocall libraries to search
// DD DISP=SHR,DSN=CEE.SCEELKEX
// DD DISP=SHR,DSN=CEE.SCEECPP
//INOBJ DD DISP=SHR,DSN=USERID.PLAN.OBJ << in: compiler object code
//SYSLIN DD*

INCLUDE INOBJ(UNIT0)
INCLUDE INOBJ(UNIT1)
INCLUDE INOBJ(UNIT2)
ENTRY CEESTART
NAME PROGRAM1(R)

/*

304 OS/390 V2R6.0 C/C++ User’s Guide

You can explicitly include members from a data set like USERID.PLAN.OBJ, as is
done above. If you want to be more flexible and less explicit, include only one
member, typically the one that contains the entry point (e.g. main()). Then you can
add USERID.PLAN.OBJ to the SYSLIB concatenation so that a library search brings in
the remaining members.

Binding Under TSO Using CXXBIND

This section describes how to bind your OS/390 C++ or OS/390 C program in TSO
by invoking the CXXBIND REXX EXEC. This REXX EXEC invokes the binder and
creates an executable program object.

If you specify a data set name in an option, and the high-level qualifier of the data
set is not the same as your user prefix, you must use the fully qualified name of the
data set and place single quotation marks around the entire name.

If you specify an HFS filename in an option, it must be an absolute filename: that is,
it must begin with a slash (/). You can include commas and special characters in
filenames, but you must enclose filenames that contain special characters or
commas in single quotes. If a single quote is part of the filename, you must specify
the quote twice.

The syntax for the CXXBIND EXEC is:

ÊÊ CXXBIND »

,

OBJ (input-object)
'input-object'

Ê

Ê

»

,

OPT (binder_option;)

Ê

Ê

»

,

LIB (search-library-name)
'search-library-name'

Ê

Ê
LOAD (ouput_program_object)

'ouput_program_object'

Ê

Ê
IMP (file_of_generated_imports)

'file_of_generated_imports'

Ê

Chapter 12. Binding OS/390 C/C++ Programs 305

Ê
LIST (output_listing)

'output_listing'

ÊÍ

OBJ You must always specify the input file names by using the OBJ
keyword parameter. Each input file must be one of the following:
v An object module that can be a PDS member, a sequential data

set, or an HFS file
v A load module that is a PDS member
v A program object that can be a PDSE member or an HFS file
v A text file that contains binder statements. The file can be a PDS

member, a sequential data set, or an HFS file

OPT Use the OPT keyword parameter to specify binder options. For
example, if you want the binder to use the MAP option, specify the
following:

CXXBIND OBJ(PLAN9.OBJ(PROG3)) OPT('MAP')...

LIB Use the LIB keyword parameter to specify the PDS and PDSE
libraries that the binder should search to resolve unresolved
external references during a library search of the DD SYSLIB.

The default libraries that are used are the C run-time libraries
CEE.SCEELKED, CEE.SCEELKEX, and the C++ base library,
CEE.SCEECPP. The default library names are added to the DD
SYSLIB concatenation if library names are specified with the LIB
keyword parameter.

LOAD Use the LOAD keyword parameter to specify where the resultant
executable program object (which must be a PDSE member, or an
HFS file) should be stored.

IMP Use the IMP keyword parameter to specify where the generated
IMPORT control statements should be written.

LIST Use the LIST keyword parameter to specify where the binder listing
should be written. If you specify *, the binder directs the listing to
your console.

TSO Example

Figure 43 on page 307 shows the example source files PLAN9.C(UNIT0),
PLAN9.C(UNIT1), and PLAN9.C(UNIT2), that are used to illustrate all of the TSO
examples that follow.

306 OS/390 V2R6.0 C/C++ User’s Guide

Single Final Bind Under TSO

Compile each source file, then perform a final single bind of everything as follows:

1. Compile each unit to generate the object modules PLAN9.OBJ(UNIT0),
PLAN9.OBJ(UNIT1), and PLAN9.OBJ(UNIT2). Use the CC REXX exec as follows:
CC PLAN9.C(UNIT0) OBJECT(PLAN9.OBJ) CSECT(MYPROG)
CC PLAN9.C(UNIT1) OBJECT(PLAN9.OBJ) CSECT(MYPROG)
CC PLAN9.C(UNIT2) OBJECT(PLAN9.OBJ) CSECT(MYPROG)

2. Perform a final single bind to produce the executable program
PLAN9.LOADE(MYPROG). Use the CXXBIND REXX exec as follows:
CXXBIND OBJ(PLAN9.OBJ(UNIT0),PLAN9.OBJ(UNIT1),PLAN9.OBJ(UNIT2))

LOAD(PLAN9.LOADE(MYPROG))

Advantage

This method is simple, and is consistent with existing methods of building
applications, such as makefiles.

Bind Each Compile Unit Under TSO

Compile and bind each source file, then perform a final bind of all the partially
bound units as follows:

1. Compile and bind each source file to generate the partially bound program
objects PLAN9.LOADE(UNIT0), PLAN9.LOADE(UNIT1), and PLAN9.LOADE(UNIT2),
which may have unresolved references. In this example, references to f1() and
f4() in PLAN9.LOADE(UNIT0) are unresolved. Compile and bind each unit by using
the CC and CXXBIND REXX execs as follows:
CC PLAN9.C(UNIT0) OBJECT(PLAN9.OBJ) CSECT(MYPROG)
CXXBIND OBJ(PLAN9.OBJ(UNIT0)) OPT('LET,CALL(NO)')

LOAD(PLAN9.LOADE(UNIT0))

CC PLAN9.C(UNIT1) OBJECT(PLAN9.OBJ) CSECT(MYPROG)
CXXBIND OBJ(PLAN9.OBJ(UNIT1)) OPT('LET,CALL(NO)')

LOAD(PLAN9.LOADE(UNIT1))

/* file: USERID.PLAN9.C(UNIT0) */
#include <stdio.h>
extern int f1(void);
extern int f4(void);
int main(void) {
int rc1;
int rc4;
rc1 = f1();
rc4 = f4();
if (rc1 != 1) printf("fail rc1 is %d\n",rc1);
if (rc4 != 40) printf("fail rc4 is %d\n",rc4);
return 0;
}

/* file: USERID.PLAN9.C(UNIT1) */
int f1(void) { return 1; }

/* file: USERID.PLAN9.C(UNIT2) */
int f2(void) { return 20;}
int f3(void) { return 30;}
int f4(void) { return f2()*2; /* 40 */ }

Figure 43. Example Source Files

Chapter 12. Binding OS/390 C/C++ Programs 307

CC PLAN9.C(UNIT2) OBJECT(PLAN9.OBJ) CSECT(MYPROG)
CXXBIND OBJ(PLAN9.OBJ(UNIT2)) OPT('LET,CALL(NO)')

LOAD(PLAN9.LOADE(UNIT1))

The CALL(NO) option prevents autocall processing.

2. Perform the final single bind to produce the executable program MYPROG by using
the CXXBIND REXX exec:
CXXBIND OBJ(PLAN9.LOADE(UNIT0), PLAN9.LOADE(UNIT1), PLAN9.LOADE(UNIT2))

LOAD(PLAN9.LOADE(MYPROG))

Advantage

Binding a set of partially bound program objects into a fully bound program object is
faster than binding object modules into a fully bound program object. For example,
a central build group can create the partially bound program objects. Developers
can then use these program objects and their changed object modules to create a
development program object.

Build and Use a DLL under TSO

Build PLAN9.C(UNIT1) and PLAN9.C(UNIT2) into DLL PLAN9.LOADE(ONETWO) which
exports functions f1(), f2(), f3() and f4(). Then build PLAN9.C(UNIT0) into a program
which dynamically links to functions f1() and f4() defined in the DLL.

1. Compile PLAN9.C(UNIT1) and PLAN9.C(UNIT2) to generate the object modules
PLAN9.OBJ(UNIT1) and PLAN9.OBJ(UNIT2) which have functions to be exported.
Use the CC REXX exec as follows:
CC PLAN9.C(UNIT1) OBJECT(PLAN9.OBJ) EXPORTALL,LONGNAME,DLL,CSECT(MYPROG)
CC PLAN9.C(UNIT2) OBJECT(PLAN9.OBJ) EXPORTALL,LONGNAME,DLL,CSECT(MYPROG)

2. Bind PLAN9.OBJ(UNIT1) and PLAN9.OBJ(UNIT2) to generate the DLL
PLAN9.LOADE(ONETWO):
CXXBIND OBJ(PLAN9.LOADE(UNIT0), PLAN9.LOADE(UNIT1)) IMP (PLAN9.IMP(ONETWO))

LOAD(PLAN9.LOADE(ONETWO))

When you bind code with exported symbols, you must specify the binder option
DYNAM(DLL). You must also use the CXXBIND IMP option to define the definition
side-deck where the IMPORT control statements are to be written.

3. Compile PLAN9.C(UNIT0) so that it may import unresolved symbols, and bind
with PLAN9.IMP(ONETWO), which is the definition side-deck containing IMPORT
control statements from the DLL’s build:
CC PLAN9.C(UNIT0) OBJECT(PLAN9.OBJ) CSECT(MYPROG),DLL
CXXBIND OBJ(PLAN9.LOADE(UNIT0), PLAN9.IMP(ONETWO)) LOAD(PLAN9.LOADE(DLL12USR))

Advantage

The bind time advantage of using DLLs is that you only need to rebuild the DLL
with the changed code in it. You do not need to rebuild all applications that use the
DLL in order to use the changed code.

Rebind a Changed Compile Unit Under TSO

Rebuild an application after making a change to a single source file. Recompile the
single changed source file and make a replacement of its binder sections in the
program.

308 OS/390 V2R6.0 C/C++ User’s Guide

1. Recompile the single changed source file. Use the compile time option CSECT to
ensure that each section is named for purposes of rebindability. For example,
assume that you have made a change to PLAN9.C(UNIT1). Recompile
PLAN9.C(UNIT1) by using the CC REXX exec as follows:
CC PLAN9.C(UNIT1) OBJECT(PLAN9.OBJ) CSECT(MYPROG)

2. Rebind only the changed source file into the executable program, which
replaces its corresponding binder sections in the program object:
CXXBIND OBJ(PLAN9.OBJ(UNIT1), PLAN9.LOADE(MYPROG))

LOAD(PLAN9.LOADE(NEWPROG)

Advantage

Rebinds are fast because most of the program is already bound, and none of the
intermediate object modules are retained.

Chapter 12. Binding OS/390 C/C++ Programs 309

310 OS/390 V2R6.0 C/C++ User’s Guide

Chapter 13. Binder Processing

You can bind any OS/390 C/C++ object module or program object. You cannot
rebind load modules unless they are naturally reentrant, i.e. C code compiled with
the NODLL, NOLONGNAME, and NORENT compiler options.

Various limits have been increased from the linkage-editor. For example, the binder
supports variable and function names up to 1024 characters long.

For the Writable Static Area (WSA), the binder assigns relative offsets to objects in
the Writable Static Area and manages initialization information for objects in the
Writable Static Area. The Writable Static Area is not loaded with the code.
Language Environment runtime requests it.

For C++, the binder collects constructor calls and destructor calls for static C++
objects across multiple compile units. C++ linkage names appear with the full
signature in the binder listing. A cross reference of mangled versus demangled
names is also provided.

For DLLs, the binder collects static DLL initialization information across multiple
compile units. It then generates a function descriptor in the Writable Static Area for
each DLL- referenced function, and generates a variable descriptor for each
DLL-referenced variable. It accepts IMPORT control statements in its input to resolve
dynamically linked symbols, and generates an IMPORT control statement for each
exported function and variable.

OS/390 UNIX System Services HFS support allows library search of archive
libraries that w ere created with the ar utility. HFS files can be specifed on binder
control statements.

C/C++ code is rebindable, provided all the sections are named. You can use the
CSECT compiler option or the #pragma csect directive to name a section. See
“CSECT | NOCSECT” on page 79.

Note: If you do not name all the sections and you try to rebind, the binder cannot
replace private or unnamed sections. The result is a permanent
accumulation of dead code and of duplicate functions.

The RENAME control statement may rename specified unresolved function references
to a definition of a different name. This is especially helpful when matching function
names that should be case insensitive. The RENAME statement does not apply to
rebinds. If you rebind updated code with the original name, you will need another
RENAME control statment to make references match their definitions.

The binder starts its processing by reading object code from primary input (DD
SYSLIN). It accepts the following inputs:

v Object modules (compiler output from C/C++ and other languages)
v Load modules (previously link-edited by the Linkage-Editor)
v Program Objects (previously bound by the binder)
v Binder control statements
v Generalized Object File Format (GOFF) files

© Copyright IBM Corp. 1996, 1999 311

During the processing of primary input, control statements can control the binder’s
processing. For example, the INCLUDE control statement will cause the binder to
read and include other code.

Among other processing, the binder records whether or not symbols (external
functions and variables) are currently defined. During the processing of primary
input, the AUTOCALL control statement causes a library to be immediately searched
for members that contain an unresolved symbol’s definition. If such a member is
found, the binder reads it as autocall input before it processes more primary or
secondary input.

After the binder processes primary input, it searches the libraries that are included
in DD SYSLIB for definitions of unresolved symbols, unless you specified the options
NOCALL or NORES. This is final autocall processing. The binder may read library
members that contain the sought definition as autocall input.

Final autocall processing drives DD SYSLIB autocall resolution one or two times. After
the first DD SYSLIB autocall resolution is complete, symbols that are still unresolved
are subject to renaming. If renaming is done, DD SYSLIB autocall is driven a second
time to resolve the renamed symbols.

After the binder completes final autocall (if autocall takes place), it processes the
IMPORT control statements that were read in to match unresolved DLL type
references. It then marks those symbols as being resolved from DLLs.

Finally, the binder generates an output program object. It stores the program object
in an HFS file, or as a member of the program library (PDSE) specified on the DD
SYSLMOD statement. The Program Management Loader can load this program object
into virtual storage to be run. The binder can generate a listing. It can also generate
a file of IMPORT control statements for symbols exported from the program that are
to be used to build other applications that use this DLL.

Primary Input Processing

The binder obtains its primary input from the contents of the data sets that are
defined by the DD SYSLIN.

Primary input to the binder can be a sequential data set, a member of a partitioned
data set, or an instream data set. The primary input must consist of one or more
separately compiled program objects, object modules, or binder control statements.

C or C++ Object Module as Input

The binder accepts object modules generated by the C or C++ compiler (as well as
other compilers or assemblers) as input. All initialization information and relocation
information for both code and the Writable Static Area is retained, which makes
each compile unit fully rebindable.

Secondary Input Processing

Secondary input to the binder consists of files that are not part of primary input but
are included as input due to the INCLUDE control statement.

312 OS/390 V2R6.0 C/C++ User’s Guide

The binder obtains its secondary input by reading the members from libraries of
object modules (which may contain control statements), load modules, or program
objects.

Load Module as Input

The binder accepts a load module that was generated by the Linkage-Editor input,
and converts it into program object format on output.

Note: Object modules that define or refer to writable static objects that were
processed by the prelinker and link-edited into a load module do not contain
relocation information. You cannot rebind these compile units, or use them
as input to the IPA Link step. See “Code That Has Been Prelinked” on
page 334 for more information on prelinked code and the binder.

Program Object as input

The binder accepts previously bound program objects as input. This means that you
can recompile only a changed compile unit, and rebind it into a program without
needing other unchanged compile units. See “Rebind a Changed Compile Unit” on
page 294 and “Rebindability” on page 327.

You can compile and bind each compile unit to a program object, possibly with
unresolved references. To build the full application, you can then bind all the
separate program objects into a single executable program object.

Autocall Input Processing (Library Search)

The library search process is also known as automatic library call, or autocall for
short. Unresolved symbols, including unresolved DLL-type references, may have
their definitions within a library member that is searched during library search
processing.

The library member that is expected to contain the definition is read. This may
resolve the expected symbol, and also other symbols which that library member
may define. Reading in the library member may also introduce new unresolved
symbols.

Incremental Autocall Processing (AUTOCALL Control Statement)

Traditionally, autocall has been considered part of the final bind process. However,
through the use of the AUTOCALL control statement, you can invoke autocall at any
time during the include process.

The binder seraches the libraries that occur on AUTOCALL control statements
immediately for unresolved symbols and DLL references, before it processes more
primary or secondary input. See “AUTOCALL Control Statement” on page 211. After
processing the AUTOCALL statement, if new unresolved symbols are found that
cannot be resolved from within the library being processed, the library will not be
searched again. To search the library again, another AUTOCALL statement or SYSLIB
must indicate the same library.

Chapter 13. Binder Processing 313

Final Autocall Processing (SYSLIB)

The binder performs final autocall processing of DD SYSLIB in addition to incremental
autocall. It performs this processing after it completes the processing of DD SYSLIN.

DD SYSLIB defines the libraries of object modules, load modules, or program
objects that the binder will search after it processes primary input (DD SYSLIN).

The binder searches each library (PDS or PDSE) in the DD SYSLIB concatenation in
order. The rules for searching for a symbol definition in a PDS or PDSE are as
follows:
v If the library contains a C370LIB directory (@@DC370$) that was created using

the C/C++ Object Library Utility, and the directory points to a member containing
the symbol’s definition, that member is read.

v If the library has a member or alias with the same name as the symbol that is
being searched, that member of the library is read.

You can use the LIBRARY control statement to suppress the search of SYSLIB for
certain symbols, or to search an alternate library.

For C and C++, you should include CEE.SCEELKEX and CEE.SCEELKED in your
DD SYSLIB concatenation when binding your program. Those libraries contain the
Language Environment resident routines, which include those for callable services,
initialization, and termination. CEE.SCEELKED has the uppercase (NOLONGNAME),
8-byte-or-less versions of the standard C library routines; For example, ’PRINTF’.
CEE.SCEELKEX has the equivalent case-sensitive longnamed routines; For
example ’printf’, ’pthread_create’.

For C++, you should also include the C++ base library in data set CEE.SCEECPP
in your DD SYSLIB concatenation when binding your program. It contains the C++
base routines such as global operator new.

Rename Processing

Rename processing is performed at the end of the first pass of final autocall
processing of DD SYSLIB, when all possible references have been resolved with the
names as they were on input. The binder renaming logic permits the conversion of
unresolved non-DLL external function references and drives the final autocall
process again.

The binder maps names according to the following hierarchy:
1. If the name has ever been mapped due to a pragma map in C++ code, the

name is not renamed.
2. If the name has ever been mapped due to a pragma map in C code that was

compiled with the LONGNAME option, the name is not renamed.
3. If a valid RENAME control statement was read for an unresolved function name,

new-name specified on the applied RENAME statement is chosen, provided that
old-name did not already appear on an applied RENAME statement as either a
new or old name. Syntactically correct RENAME control statements that are not
applied are ignored. See “RENAME Control Statement” on page 214.

4. If the name corresponds to a Language Environment function, the binder maps
the name according to C/C++ run-time library rules.

5. If the UPCASE(YES) option is in effect and the name is 8 bytes or less, and not
otherwise renamed by any of the previous rules, the name chosen is the same
name but with all alphabetic characters mapped to uppercase, and ’_’ mapped

314 OS/390 V2R6.0 C/C++ User’s Guide

to ’@’. The binder maps names with the initial characters IBM, CEE, or PLI to
initial characters of IB$, CE$, and PL$, respectively. All names that are different
only in case will map to the same name.

If renamed, the original name is replaced. The original name and the generated
new name appear in the rename table of the binder listing. See “Renamed Symbol
Cross Reference” on page 320.

Generating Aliases for Automatic Library Call (Library Search)

For library search purposes, a member of a library (PDS, PDSE, or archive) can be
an object module, a load module, or a program object. It has one member name,
but may define multiple symbols (variables or functions) within it. To make library
search successful, you must expose these defined symbols as aliases to the binder.
When the binder searches for an unresolved reference, it can find, through the
member name or an alias, the member which contains the definition. It then reads
that member.

You can create aliases in the following ways:
v ALIAS binder control statement
v ALIASES(ALL) binder option
v ar utility for object module archives
v EDCALIAS utility for object module PDS and PDSEs

Note: Aliases that the EDCALIAS utility generates are supported only for migration
purposes. Use the EDCALIAS utility only if you need to provide autocall
libraries to both prelinker and binder users. Otherwise, you should use the
ALIASES(ALL) option, and bind separate compile units.

Dynamic Link Library (DLL) Processing

The binder supports the code that is generated by C++, and by C with the DLL
compiler option. The binder option DYNAM(DLL) controls DLL processing. You must
specify DYNAM(DLL) if the program object is to be a DLL, or if it contains DLL-type
references. This section assumes that you specified the DYNAM(DLL) option. See
“DYNAM(DLL | NO)” on page 208 for more inormation on the DYNAM(DLL) binder
option.

If you are building an application that imports symbol definitions from a DLL, you
must include an IMPORT control statement for each symbol to which your application
expects to dynamically link. Typically, the input to your application’s bind step
should include the definition side-deck of IMPORT control statements that the binder
generated when the DLL was built. For compatibility, the binder accepts definition
side-decks of IMPORT control statements that the Language Environment Prelinker
generated. To use the defintion-side decks that are distributed with IBM Class
libraries, you must specify the binder option CASE(MIXED).

After final autocall processing of DD SYSLIB is complete, all DLL-type references that
are not statically resolved are compared to IMPORT control statements. Symbols on
IMPORT control statements are treated as definitions, and cause a matching
unresolved symbol to be considered dynamically rather than statically resolved. A
dynamically resolved symbol causes an entry in the binder class B_IMPEXP to be
created. If the symbol is unresolved at the end of DLL processing, it is not
accessible at run time.

Chapter 13. Binder Processing 315

Addresses of statically bound symbols are known at application load time, but
addresses of dynamically bound symbols are not. Instead, the run-time library that
loads the DLL that exports those symbols finds their addresses at application run
time. The run-time library also fixes up the importer’s linkage blocks (descriptors) in
C_WSA during program execution.

The binder builds tables of imported and exported symbols in the class B_IMPEXP,
section IEWBCIE. This element contains the necessary information about imported
and exported symbols to support run-time library dynamic linking and loading.

Statically bound functions

For each DLL-referenced function, the binder will generate a function linkage block
(descriptor) of the same name as a part in the class C_WSA. All C++ code
generates DLL references. C code generates DLL references if you used the DLL
compiler option. If a DLL reference to an external function is resolved at the end of
final autocall processing, the binder generates a function linkage block of the same
name in the Writable Static Area, and initialize it to point to the resolved function. If
the DLL reference is to a static function, the binder generates a function linkage
block with a private name, which is initialized to point to the resolved static function.

Imported Variables

For each DLL-referenced external variable in C_WSA that is unresolved at the end
of final autocall processing (DD SYSLIB), if a matching IMPORT control statement was
read in, the variable is considered to be resolved via dynamic linking from the DLL
named on the IMPORT control statement. The binder will generate a variable linkage
block (descriptor) of the same name, as a part in the class C_WSA.

Imported Functions

For each DLL-referenced external function that is unresolved at the end of final
autocall processing, if a matching IMPORT control statement was read in, the function
is considered to be resolved via dynamic linking from the DLL named on the IMPORT
control statement. The binder will generate a function linkage block (descriptor) of
the same name, as a part in the class C_WSA.

Output Program Object

The DD SYSLMOD defines where the binder stores its output program object. You can
store the output program object in one of the following:

v A PDSE member, where the binder stores a single program object

v A PDSE where the binder stores its output program objects (one program object
for each NAME control statement)

v An HFS file or directory

The PDSE must have the attribute RECFM=U.

316 OS/390 V2R6.0 C/C++ User’s Guide

Output IMPORT Statements

The DD SYSDEFSD defines the output sequential data set where the binder writes out
IMPORT control statements. The binder writes one control statement for each
exported external symbol (function or variable), if you specify the option DYNAM(DLL).
The data set must have the attributes RECFM=F or RECFM=FB, and LRECL=80.

You can mark symbols for export by using the #pragmaexport directive or the
EXPORTALL compiler option, or the C++ _Export keyword.

Output Listing

This section contains an overview of the binder output listing. The binder creates
the listing when you use the LIST binder option. It writes the listing to the data set
that you defined by the DD SYSPRINT.

The listing consist of a number of categories. Some categories always appear in the
listing, and others may appear depending on the options that you selected, or that
were in effect.

Names that the binder generated appear as $PRIVxxxxxx rather than $PRIVATE.
Private names that appear in the binder listing do not actually have that name in the
program object. Their purpose in the listing is to permit association between various
occurrences of the same private name within the listing. For purposes of
rebindability, it is crucial that no sections have private names.

C++ mangled names are demangled when they appear in messages and listings.

For the example listings in this section, the files USERID.PLAN9.OBJ(CU1) and
/u/userid/plan9/cu2.o were bound together using the JCL shown in Figure 45 on
page 318. Figure 44 on page 318 shows the corresponding source files:

Chapter 13. Binder Processing 317

Header

The heading always appears at the top of each page. It contains the product
number, the binder version and release number, the date and the time the bind step
began, and the entry point name. The heading also appears at the top of each
section.

/* file: USERID.PLAN9.C(CU1) */
/* compile with: LONGNAME RENT EXPORTALL CSECT("cu1")*/
#include <stdio.h>
int Ax=10; /* exported */
int ALongNamedThingVVWhichIsExported=11; /* exported */
static int Az=12;
static int A1(void) {

return Ax;
}
int ALongNamedThingFFWhichIsExported(void) { /* exported */
return Ax;

}
int A3(void) { /* exported */
return Ax + Az;

}
extern int b1(void); /* statically bound, defined in plan9/cu2.C */
main() {
int i;
i = b1() + call_a3() + call_b1_in_cu2();
printf("now returning\n"); /* printf statically bound from SCEELKEX */
return i;

}

/* file: cu2.C (C++ file) */
/* compile with: CSECT(PROJ9) */
extern b2(void);
extern "C" c2(void); /* imported from DLLC */
extern c3(void); /* imported from DLLC */
extern "C" int b1(void) { /* called from cu1.c */
return b2();

}
int b2(void) {
return c2() + c3();

}

Figure 44. Source Files for Listing Example

//BIND1 EXEC CBCB,
// BPARM='LIST(ALL),MAP,XREF',
// OUTFILE='USERID.PLAN9.LOADE(HELLO1),DISP=SHR'
//INOBJ DD DISP=SHR,DSN=USERID.PLAN9.OBJ
//SYSDEFSD DD DISP=SHR,DSN=USERID.PLAN9.IMP
//SYSPRINT DD DISP=SHR,DSN=USERID.PLAN9.LISTINGS(CU1CU2R)
//SYSLIN DD *
INCLUDE INOBJ(CU1)
INCLUDE '/u/userid/plan9/cu2.o'
IMPORT CODE,DLLC,c1
IMPORT CODE,DLLC,c2
IMPORT CODE,DLLC,c3__Fv
RENAME 'call_a3' 'A3'
RENAME 'call_b1_in_cu2' 'b1'
ENTRY CEESTART
NAME CU1CU2(R)

/*

Figure 45. Listing Example JCL

318 OS/390 V2R6.0 C/C++ User’s Guide

The following example header was produced using the batch emulator:

Input Event Log

This section is a chronological log of events that took place during the input phase
of binding. The binder LIST option controls its presence. See “LIST(OFF | STMT |
SUMMARY | NOIMP | ALL)” on page 209 for more information on the LIST option.

Module Map

The Module Map is printed only if you specify the binder MAP option. It displays the
attributes of each loadable binder class, along with the storage layout of the parts in
that class.

For C/C++ programmers who use constructed reentrancy, two classes are of
special interest: C_CODE and C_WSA. The C_CODE class exists if C++ code is
encountered or if C code is compiled with LONGNAME or RENT. The C_WSA class
exists if any defined writable static objects are encountered.

DFSMS/MVS V1 R4.0 BINDER 11:13:38 TUESDAY JUNE 3, 1997
BATCH EMULATOR JOB(USERIDXX) STEP(BIND1) PGM= IEWL PROCEDURE(BIND)

IEW2278I B352 INVOCATION PARAMETERS - AMODE=31,MAP,RENT,DYNAM=DLL,CASE=MIXED,
COMPAT=CURR,ALIASES=ALL,LIST(ALL),MAP,XREF
IEW2322I 1220 1 INCLUDE INOBJ(CU1)
IEW2308I 1112 SECTION CEESTART HAS BEEN MERGED.
IEW2308I 1112 SECTION PROJ9#CU1#C HAS BEEN MERGED.
IEW2308I 1112 SECTION ALongNamedThingVVWhichIsExported HAS BEEN MERGED.
IEW2308I 1112 SECTION Ax HAS BEEN MERGED.
IEW2308I 1112 SECTION PROJ9#CU1#S HAS BEEN MERGED.
IEW2308I 1112 SECTION CEEMAIN HAS BEEN MERGED.
IEW2308I 1112 SECTION PROJ9#CU1#T HAS BEEN MERGED.
IEW2322I 1220 2 INCLUDE '/u/userid/plan9/cu2.o'
IEW2308I 1112 SECTION PROJ9#cu2.C#C HAS BEEN MERGED.
IEW2308I 1112 SECTION PROJ9#cu2.C#S HAS BEEN MERGED.
IEW2308I 1112 SECTION PROJ9#cu2.C#T HAS BEEN MERGED.
IEW2322I 1220 3 IMPORT CODE 'DLLC' 'c1'
IEW2322I 1220 4 IMPORT CODE 'DLLC' 'c2'
IEW2322I 1220 5 IMPORT CODE 'DLLC' 'c3__Fv'
IEW2322I 1220 6 RENAME 'call_a3' 'A3'
IEW2322I 1220 7 RENAME 'call_b1_in_cu2' 'b1'
IEW2322I 1220 8 ENTRY CEESTART
IEW2322I 1220 9 NAME CU1CU2(R)
:
:

Chapter 13. Binder Processing 319

Data Set Summary

The Module Map ends with a data set summary table, which associates input files
with a corresponding DD name and concatenation number.

The binder creates a dummy DDname for each unique HFS file when it processes
HFS pathnames from control statements. For example, on an INCLUDE control
statement. The dummy DDname has the format ″/nnnnnnn″, where nnnnnnn is an
integer assigned by binder, and appears in messages and listings in place of the
HFS filename.

Renamed Symbol Cross Reference

The renamed symbol cross reference is printed only if a name was renamed for
library search purposes, and you specified the MAP binder option.

The binder normally processes symbols exactly as received. However, it may
remove certain symbolic references if they are not resolved by the original name

*** M O D U L E M A P ***

CLASS C_CODE LENGTH = 5E4 ATTRIBUTES = CAT, LOAD, RMODE=ANY

SECTION CLASS ------- SOURCE --------
OFFSET OFFSET NAME TYPE LENGTH DDNAME SEQ MEMBER

0 PROJ9#CU1#C CSECT 330 INOBJ 01 CU1
0 0 PROJ9#CU1#C LABEL

D0 D0 ALongName-ported LABEL
190 190 A3 LABEL
248 248 main LABEL

CLASS C_WSA LENGTH = 68 ATTRIBUTES = MRG, DEFER , RMODE=ANY

CLASS
OFFSET NAME TYPE LENGTH

0 c3() DESCRIPTOR 20
20 c2 DESCRIPTOR 20
40 ALongName#000001 PART 4
44 Ax PART 4
48 $PRIV000011 PART 18
60 $PRIV000014 PART 8

*** DATA SET SUMMARY ***

DDNAME CONCAT FILE IDENTIFICATION
/0000001 01 /u/userid/plan9/cu2.o
INOBJ 01 USERID.PLAN9.OBJ
SYSLIB 01 CEE.CEE180.SCEELKEX
SYSLIB 02 CEE.CEE180.SCEELKED
SYSLIB 03 CEE.CEE180.SCEECPP

320 OS/390 V2R6.0 C/C++ User’s Guide

during autocall. See “Rename Processing” on page 314. During renaming, the
original reference is replaced. Such replacements, whether resolved or not, appear
in the Rename Table.

The rename table is a listing of each generated new name and its original old
name.

Cross Reference Table

The listing contains a cross-reference table of the program object if you specify the
XREF binder option. Each line in the table contains one address constant in the
program object. The left half of the table shows the location (OFFSET) and
reference type (TYPE) within a defined part (SECT/PART) where a reference
occurs. The right half of the table describes the symbol being referenced.

Imported and Exported Symbols Listing

The imported and exported symbols listing is part of the Module Summary Report,
and is printed before other module summary information. This section will not
appear if you do not specify the DYNAM(DLL) option, or if you are not importing or
exporting any symbols.

This section follows the cross-reference table in the binder map. The listing shows
the imported or exported symbols, and whether they name code or data. It also
shows the DLL member name for imported symbols.

*** RENAMED SYMBOL CROSS REFERENCE ***

RENAMED SYMBOL

SOURCE SYMBOL

A3
call_a3

b1
call_b1_in_cu2

*** END OF RENAMED SYMBOL CROSS REFERENCE ***

*** E N D O F M O D U L E M A P ***

C R O S S - R E F E R E N C E T A B L E

TEXT CLASS = C_CODE

--------------- R E F E R E N C E -------------------------- T A R G E T -------------------------------
CLASS ELEMENT | ELEMENT
OFFSET SECT/PART(ABBREV) OFFSET TYPE | SYMBOL(ABBREV) SECTION (ABBREV) OFFSET CLASS NAME

|
68 PROJ9#CU1#C 68 Q-CON | Ax $NON-RELOCATABLE 44 C_WSA
70 PROJ9#CU1#C 70 A-CON | CEESTART CEESTART 0 B_TEXT
138 PROJ9#CU1#C 138 Q-CON | Ax $NON-RELOCATABLE 44 C_WSA
204 PROJ9#CU1#C 204 Q-CON | $PRIV000011 $NON-RELOCATABLE 48 C_WSA
208 PROJ9#CU1#C 208 Q-CON | Ax $NON-RELOCATABLE 44 C_WSA
2E4 PROJ9#CU1#C 2E4 Q-CON | $PRIV000011 $NON-RELOCATABLE 48 C_WSA
2E8 PROJ9#CU1#C 2E8 V-CON | b1 PROJ9#cu2.C#C 0 C_CODE
2EC PROJ9#CU1#C 2EC V-CON | A3 PROJ9#CU1#C 190 C_CODE
2F0 PROJ9#CU1#C 2F0 V-CON | b1 PROJ9#cu2.C#C 0 C_CODE
2F4 PROJ9#CU1#C 2F4 V-CON | printf printf 0 B_TEXT
33C CEEMAIN 4 A-CON | main PROJ9#CU1#C 248 C_CODE
340 CEEMAIN 8 A-CON | EDCINPL EDCINPL 0 B_TEXT
3C8 PROJ9#cu2.C#C 78 V-CON | b2() PROJ9#cu2.C#C E0 C_CODE
3D0 PROJ9#cu2.C#C 80 A-CON | CEESTART CEESTART 0 B_TEXT
4CA PROJ9#cu2.C#C 17A Q-CON | $PRIV000014 $NON-RELOCATABLE 60 C_WSA
588 PROJ9#cu2.C#C 238 Q-CON | $PRIV000014 $NON-RELOCATABLE 60 C_WSA
58C PROJ9#cu2.C#C 23C Q-CON | c2 $NON-RELOCATABLE 20 C_WSA
590 PROJ9#cu2.C#C 240 Q-CON | c3() $NON-RELOCATABLE 0 C_WSA

Chapter 13. Binder Processing 321

Descriptors are identified as such in the listing. One of the following generates an
object module that exports symbols:

v Code that is compiled with the C, C++, or COBOL EXPORTALL compiler option

v C/C++ code that contains the #pragma export directive

v C++ code that contains the _Export keyword

The listing format is shown below. All imported symbols appear first, followed by all
exported symbols. Within each group, symbol names appear in alphabetical order.
There are some differences between the two groups:

v The member name or HFS filename for IMPORT is derived from the IMPORT control
statement.

v The member name for exports is always the same as the DLL’s member name
and does not appear in the listing.

v Symbol and member names that are longer than 16 bytes are abbreviated in the
listing, using a hyphen. If there are duplicates, they are abbreviated using a
number sign and a number. The abbreviation table shows the mapping from the
abbreviated names to the actual names. See “Long Symbol Abbreviation Table”
on page 324.

In the example above, you can see that c2 and c3 are to be dynamically linked

from a DLL named DLLC. Also, this program exports variables Ax and
ALongNamedThingVVWhichIsExported, and functions A3 and
ALongNamedThingFFWhichIsExported.

Mangled to Demangled Symbol Cross Reference

The mangled to demangled name table is similar to the rename table. It
cross-references demangled C++ names in object modules to their corresponding
mangled names.

*** I M P O R T E D A N D E X P O R T E D S Y M B O L S ***

IMPORT/EXPORT TYPE NAME MEMBER
------------- ---- ---------------- ----------------

IMPORT CODE c2 DLLC
IMPORT CODE c3() DLLC

EXPORT DATA Ax
EXPORT CODE ALongName-ported
EXPORT DATA ALongName#000001
EXPORT CODE A3

*** END OF IMPORT/EXPORT ***

*** MANGLED TO DEMANGLED SYMBOL CROSS REFERENCE ***

MANGLED NAME

DE-MANGLED NAME

b2__Fv
b2()

c3__Fv
c3()

*** END OF MANGLED TO DEMANGLED CROSS REFERENCE ***

322 OS/390 V2R6.0 C/C++ User’s Guide

Processing Options

The processing options section of the module summary lists values of the binder
options that were in effect during the bind process.

Save Operation Summary

The save summary for a save to a program object lists the blocksize of the target
PDSE. If you specified DYNAM(DLL), and are exporting symbols, the save operation
summary shows the data set name or the HFS pathname of the side file. For
example:

Save Module Attributes

The save module attributes section displays the attributes of the program object.
These attributes are saved in the PDSE directory along with the program name, or
saved in the HFS file.

PROCESSING OPTIONS:

ALIASES ALL
ALIGN2 NO
AMODE 31
CALL YES
CASE MIXED
COMPAT PM3
DCBS NO
DYNAM DLL
:
:
END OF OPTIONS

SAVE OPERATION SUMMARY:

MEMBER NAME CU1CU2
LOAD LIBRARY USERID.PLAN9.LOADE
PROGRAM TYPE PROGRAM OBJECT(FORMAT 3)
VOLUME SERIAL M06001
DISPOSITION REPLACED
TIME OF SAVE 11.13.40 JUN 3, 1997
SIDEFILE USERID.PLAN9.IMP(CU1CU2)

Chapter 13. Binder Processing 323

Entry Point and Alias Summary

The entry point and alias summary will show an entry type of ″HIDDEN″ for hidden
aliases. Hidden aliases may not be visible to some system utilities, and are marked
as ″not executable″, to prevent an unintentional load and execution. They are for
autocall purposes only. If you specify the option ALIASES(ALL), the binder generates
hidden aliases.

Long Symbol Abbreviation Table

The long symbol abbreviation table lists symbol names that do not fit in the space
that is allocated to them in the listing. This is a cross reference of abbreviations to
the actual name. The abbreviation table is printed for symbols greater than 16 bytes
in length, if you specify the MAP(YES) and XREF(YES) binder options.

SAVE MODULE ATTRIBUTES:

AC 000
AMODE 31
DC NO
EDITABLE YES
EXCEEDS 16MB NO
EXECUTABLE YES
MIGRATABLE NO
OL NO
OVLY NO
PACK,PRIME NO,NO
PAGE ALIGN NO
REFR NO
RENT YES
REUS YES
RMODE ANY
SCTR NO
SSI
SYM GENERATED NO
TEST NO
MODULE SIZE (HEX) 00001360

ENTRY POINT AND ALIAS SUMMARY:

NAME: ENTRY TYPE AMODE C_OFFSET CLASS NAME STATUS

CEESTART MAIN_EP 31 00000000 B_TEXT
b1 HIDDEN 00000350 C_CODE REASSIGNED
b2() HIDDEN 00000430 C_CODE REASSIGNED
main HIDDEN 00000248 C_CODE REASSIGNED
Ax HIDDEN 00000044 C_WSA REASSIGNED
ALongName-ported HIDDEN 000000D0 C_CODE REASSIGNED
ALongName#000001 HIDDEN 00000040 C_WSA REASSIGNED
A3 HIDDEN 00000190 C_CODE REASSIGNED
CEEMAIN HIDDEN 00000338 C_CODE REASSIGNED
PROJ9#cu2.C#C HIDDEN 00000350 C_CODE REASSIGNED
PROJ9#cu2.C#S HIDDEN 000005D8 C_CODE REASSIGNED
PROJ9#cu2.C#T HIDDEN 000005E0 C_CODE REASSIGNED
PROJ9#CU1#C HIDDEN 00000000 C_CODE REASSIGNED
PROJ9#CU1#S HIDDEN 00000330 C_CODE REASSIGNED
PROJ9#CU1#T HIDDEN 00000348 C_CODE REASSIGNED

***** E N D O F R E P O R T *****

324 OS/390 V2R6.0 C/C++ User’s Guide

DDname vs Pathname Cross Reference Table

This section appears only if you specified pathnames on control statements.

The binder creates a dummy DDname for each unique HFS file when it processes
HFS pathnames from control statements. For example, on an INCLUDE control
statement. The dummy DDname has the format ″/nnnnnnn″, where nnnnnnn is an
integer assigned by the binder. The integer nnnnnnn appears in messages and
listings in place of the HFS filename.

The DDname vs pathname cross reference table shows the correspondence between
the dummy DDname and its corresponding HFS filename. The table appears only if
there is a generated DDname. Pathnames that you specified on JCL have
user-assigned DDnames, and do not appear in this table. The following is the format
of the DDname vs pathname cross reference table.

Message Summary Report

The binder generates a message summary report at the conclusion of each bind
operation. The summary contains information on the types and severity of the
messages that were issued during the bind process. You can search other parts of
the listing to find where the messages were issued.

*** L O N G S Y M B O L A B B R E V I A T I O N T A B L E ***

ABBREVIATION LONG SYMBOL

ALongName-ported := ALongNamedThingFFWhichIsExported
ALongName#000001 := ALongNamedThingVVWhichIsExported

*** E N D O F L O N G S Y M B O L A B B R E V . T A B L E ***

++
| D D N A M E V S P A T H N A M E C R O S S R E F E R E N C E |
++

DDNAME PATHNAME
-------- --

/0000001 /u/userid/plan9/cu2.o

*** END OF DDNAME VS PATHNAME ***

Chapter 13. Binder Processing 325

Binder Processing of C/C++ Object to Program Object

The binder recognizes C/C++ object modules and performs special processing for
them.

C/C++ categorizes reentrant programs as natural or constructed. The binder
supports both natural reentrancy and C/C++ constructed reentrancy. However,
programs that contain constructed reentrancy need additional run-time library for
support while executing.

C code is naturally reentrant if it contains no data in the Writable Static Area.
Modifiable data can be one of the following:
v External variables
v Static variables
v Writable strings
v DLL linkage blocks (descriptors) for variables
v DLL linkage blocks (descriptors) for functions

C++ code always has DLL type references for all function references that require a
function descriptor in C_WSA. This means that all C++ programs are made
reentrant via constructed reentrancy.

Programs with constructed reentrancy have two areas:
v A modifiable area that contains modifiable objects, seen in the binder class

C_WSA
v A constant or reentrant area that contains executable code and constant data,

seen in the binder classes B_TEXT or C_CODE.

Each user running the program receives a private copy of the C_WSA demand load
class, which is mapped by the binder and is loaded by the run-time library. Multiple
spaces or sessions can share the second part only if it is installed in the link pack
area (LPA) or extended link pack area (ELPA). You must install PDSEs dynamically
in the LPA.

To generate reentrant C/C++ code, follow these steps:
1. Compile your source files to generate code with constructed reentrancy as

follows:
v Compile your C source files with the RENT compiler option to generate code

with constructed reentrancy.

MESSAGE SUMMARY REPORT

SEVERE MESSAGES (SEVERITY = 12)
NONE

ERROR MESSAGES (SEVERITY = 08)
NONE

WARNING MESSAGES (SEVERITY = 04)
NONE

INFORMATIONAL MESSAGES (SEVERITY = 00)
2008 2278 2308 2322

**** END OF MESSAGE SUMMARY REPORT ****

326 OS/390 V2R6.0 C/C++ User’s Guide

v Compile your C++ source files with whatever options you require. The
compiler will generate C++ code with constructed reentrancy.

2. Use the binder to combine all input object modules into a single output program
object.

Each compile unit maps to a number of sections, which belong to the C_CODE,
C_WSA, or B_TEXT binder classes. Named binder sections may be replaced and
make the code potentially rebindable. You can name your C/C++ sections with
either the CSECT compiler option, or with the use of the #pragma csect directive. The
name of a section should not be the same as one of your functions or variables, as
this will cause duplicate symbols.

Each section owns one or more parts. The names of the parts are the names that
resolve references. The names of functions appear as labels, which also resolve
references. Some parts that are owned by a section may be unnamed. Each part
belongs to a binder class.

Each externally named object in the Writable Static Area appears as a part that is
owned by a section of the same name in the program object. Such parts belong to
the C_WSA binder class. The binder section that owns an object also owns the
object’s initialization information in the Writable Static Area. A rebind replaces this
initialization information.

The code parts belong to the binder class of C_CODE or B_TEXT. The code parts
consist of assembly instructions, constants and literals, and potentially read only
variables that are not in the Writable Static Area. The following example will
produce two sections, i and CODE1:

#pragma code(csect,"CODE1")
int i=10;
int foo(void) { return i; }

v The section named i is in class C_WSA, and has associated with it the
initialization information to initialize ’i’ to 10.

v The section named CODE1 is in class C_CODE, and has associated with it the
entry point for function foo() and the machine instructions for the function.

When rebound, both sections i and CODE1 are replaced along with any information
that is associated with them.

The names in the C_WSA class and in the C_CODE class are in the same
namespace. A variable and a function cannot have the same name.

C++ constructor calls and destructor calls that need to be collected across compile
units are collected in the class C_@@STINIT.

DLL initialization information which needs to be collected across compile units is
collected in the class C_@@DLLI.

Rebindability

If the binder processes duplicate sections, it keeps only the first one . This feature
is particularly important when rebinding. You must include the changed parts first
and the old program object second. This is how you replace the changed sections.

Chapter 13. Binder Processing 327

The binder can process each object module separately, so that you only need to
recompile and rebind the modules that you have modified. You do not need to
rebind any unchanged modules.

When the binder replaces a named section, it also replaces all of its parts (named
or unnamed). If a section does not have the name you desire, you can change it
with the #pragma csect directive or with the csect compiler option. Unnamed parts
typically come from the following:
v Unnamed modifiable static parts in C_WSA (static variables, strings)
v Unnamed static parts in C_CODE that may not be modifiable (static variables,

strings)
v Unnamed code, static, or test part in C_CODE

You should name all sections if you want to rebind. If a section is unnamed (has a
private name) and you attempt to replace it on a rebind, the unnamed section is not
replaced by the updated but corresponding unnamed section. Instead, the binder
keeps both the old and new unnamed sections, causing the program module to
grow in size. All references to functions that are defined by both the old section and
the new section are resolved first to functions in the new section. The program may
run correctly, but you will get warnings about duplicate function definitions at bind
time. These duplicates will never go away on future rebinds because you cannot
replace or delete unnamed sections. You will also accumulate dead code in the
duplicate functions which can never be accessed. This is why it is important to
name all sections if you want to rebind your code.

For example, suppose that our DLL consists of two compile units, cu3.c and cu4.c,
that are bound using the JCL in Figure 46:

Later, you discover that func3 is in error and should return 3. Change the source
code in cu3.c and recompile. Rebind as follows:

/* file: cu3.c */
/* compile with: LONGNAME RENT EXPORTALL*/
#pragma csect(code,"CODE3")
func3(void) { return 4; }
int int3 = 3;

/* file: cu4.c */
/* compile with: LONGNAME RENT EXPORTALL */
#pragma csect(code,"CODE4")
func4(void) { return 4; }
int int4 = 4;

//BIND1 EXEC CBCB,
// BPARM='CALL,MAP,DYNAM(DLL)',
// OUTFILE='USERID.PLAN9.LOADE,DISP=SHR'
//INOBJ DD DISP=SHR,DSN=USERID.PLAN9.OBJ
//SYSLIN DD *
INCLUDE INOBJ(CU3)
INCLUDE INOBJ(CU4)
ENTRY CEESTART
NAME BADEXE(R)

/*

Figure 46. JCL to bind cu3.c and cu4.c

328 OS/390 V2R6.0 C/C++ User’s Guide

The input event log in the binder listing shows:

BADEXE defines sections int3, CODE3, int4, and CODE4. If the binder sees duplicate
sections, it uses the first one that it reads. Since CU3 defines sections CODE3 and
int3, and is included before BADEXE, both sections are replaced by the newer ones in
CU3 when program object GOODEXE is created.

Error recovery

This section describes common errors in binding.

Unresolved Symbols

Inconsistent reference vs. definition types

A common error is to compile one part of the code with RENT and another with
NORENT. A RENT type reference (Q-CON in the binder listing) must be resolved by a
Writable Static Area definition of a PART or a DESCRIPTOR in class C_WSA. A
NORENT reference (V-CON or A-CON in the binder listing) must be resolved by
CSECT or a LABEL typically in class C_CODE or B_TEXT.

Check the binder map to ensure that objects appear as parts in the expected
classes (C_CODE, B_TEXT, C_WSA ...).

Inconsistent Name usage

Another problem is the case sensitivity of the symbol names. Objects in the
Writable Static Area cannot be renamed, but unresolved function references may be
renamed to find a definition of a different name. See “Rename Processing” on
page 314

//BIND1 EXEC CBCB,
// BPARM='LIST(ALL),CALL,XREF,LET,MAP,DYNAM(DLL)',
// OUTFILE='USERID.PLAN9.LOADE,DISP=SHR'
//INOBJ DD DISP=SHR,DSN=USERID.PLAN9.OBJ
//INPOBJ DD DISP=SHR,DSN=USERID.PLAN9.LOADE
//SYSLIN DD *
INCLUDE INOBJ(CU3)
INCLUDE SYSLMOD(BADEXE)
ENTRY CEESTART
NAME GOODEXE(R)

/*

IEW2322I 1220 1 INCLUDE INOBJ(CU3)
IEW2308I 1112 SECTION CODE3 HAS BEEN MERGED.
IEW2308I 1112 SECTION int3 HAS BEEN MERGED.
IEW2322I 1220 2 INCLUDE INPOBJ(BADEXE)
IEW2308I 1112 SECTION CODE4 HAS BEEN MERGED.
IEW2308I 1112 SECTION int4 HAS BEEN MERGED.
IEW2308I 1112 SECTION CEESTART HAS BEEN MERGED.
IEW2308I 1112 SECTION CEESG003 HAS BEEN MERGED.
IEW2308I 1112 SECTION CEEBETBL HAS BEEN MERGED.
IEW2308I 1112 SECTION CEEBPUBT HAS BEEN MERGED.
IEW2308I 1112 SECTION CEEBTRM HAS BEEN MERGED.
IEW2308I 1112 SECTION CEEBLLST HAS BEEN MERGED.
IEW2308I 1112 SECTION CEEBINT HAS BEEN MERGED.
IEW2308I 1112 SECTION CEETGTFN HAS BEEN MERGED.
IEW2308I 1112 SECTION CEETLOC HAS BEEN MERGED.
IEW2322I 1220 3 ENTRY CEESTART
IEW2322I 1220 4 NAME GOODEXE(R)

Chapter 13. Binder Processing 329

page 314. Such inconsistencies arise from inconsistent usage of the LONGNAME and
NOLONGNAME compiler options, and from multi-language programs that make symbol
names uppercase. For example, compile the file main.c with the options LONG,
NORENT, and other.c with the options NOLONG, RENT:
/* file: main.c */
/* compile with LONG, NORENT */
extern int I2;
extern int func2(void);
main() {
int i;
i = i2 + func2();
return i;

}

/* file: other.c */
/* compile with NOLONG,RENT */
int I2 = 2;
int func2(void) { return 2; }

When you bind the object modules together, the following errors will occur:

v An inconsistent use of the RENT | NORENT C compiler option causes symbol I2 to
be unresolved. The definition of I2 from other.c is a writable static object
because of the RENT option. But a writable static object cannot resolve the
reference to I2 from main.c because it is a NORENT reference. The binder
messages show:
IEW2308I 1112 SECTION I2 HAS BEEN MERGED.

IEW2456E 9207 SYMBOL I2 UNRESOLVED.

v An inconsistent use of the LONG | NOLONG C compiler option causes the symbol
func2 to be unresolved. The function definition in other.c is in uppercase
because of the NOLONG option. But the reference to func2 from main.c is in
lowercase because of the LONG option. The binder listing shows that ’FUNC2’ is a
LABEL, that is a defined entry point; yet the binder messages show:
IEW2456E 9207 SYMBOL func2 UNRESOLVED.

Significance of Library Search Order

The order in which the libraries in SYSLIB are concatenated is significant. For
example suppose that functions f1() and f4() are resolved from SYSLIB:
/* file: unit0.c */
extern int f1(void); /* from member UNIT1 of library LIB1 */
extern int f4(void); /* from member UNIT2 of library LIB2 */
int main() {
int rc1, rc4;
rc1 = f1();
rc4 = f4();
if (rc1 != 1) printf("fail rc1 is %d-n", rc1);
if (rc4 != 40) printf("fail rc1 is %d-n", rc4);
return 0;

}

SYSLIB defines the libraries USERID.LIB1 with members UNIT1 and UNIT2, and
USERID.LIB2 with members of the same name but different contents.

The library members are compiled from the following:
/* member UNIT1 of library LIB1 */
int f1(void) { return 1; }

/* member UNIT2 of library LIB1 */
int f2(void) { return 2; }

330 OS/390 V2R6.0 C/C++ User’s Guide

/* member UNIT1 of library LIB2 */
int f1(void) { return 10; }

/* member UNIT2 of library LIB2 */
int f2(void) { return 20; }
int f3(void) { return 30; }
int f4(void) { return f2()*2; /* 40 */ }

When bound with ALIASES(ALL), or when the EDCALIAS utility is used, all defined
symbols are seen in a library directory as aliases that indicate the library member
that contains their definition.

There are two definitions of f1(), but library search of SYSLIB for f1 searches library
LIB1 first, and finds alias f1 of member UNIT1. It reads in that member, and the call
to f1() returns 1. Library search of SYSLIB for f4 searches LIB1 first, and does not
find a defintion. It then searches LIB2, and finds alias f4 of member UNIT2 of library
LIB2. So UNIT2 of library LIB2 is read in resolving not only f4, but also f2 and f3,
and the call to f4() returns 40. UNIT2 of library LIB1 is not read by mistake because
an alias indicates not only the member name, but also the library in which that
member resides.

If the order of LIB1 and LIB2 is reversed, LIB2 is searched first, and f1() is obtained
from LIB2 instead.

If changing the library search order cannot work for you, use the LIBRARY control
statement. See “LIBRARY Control Statement” on page 213.

Duplicates

If the binder processes duplicate sections, it keeps the first one and ignores
subsequent ones, without giving a warning. This feature is used to replace named
sections when rebinding by replacing only changed sections.

If the binder processes functions that have duplicate names, it keeps all definitions,
but all references resolve to the first one. An exception is in the case of C++
template instantiation. The binder takes the first user-defined function (if any) of the
same signature rather than the first compiler-generated definition via template
instantiation.

For example, compile the following source files doit1.c and doit2.c:
#include <stdio.h>
/* file: doit1.c */
int int1 = 1;
#pragma csect(code,"DO1")
int func2(void) { return 2; }
int func3(void) { return 3; }
extern int func4(void);
int main() {
int i1,i2,i3,i4;
i1 = int1;
i2 = func2();
i3 = func3();
i4 = func4();
printf("%d %d %d %d\n",i1,i2,i3,i4);
return 0;

}

Chapter 13. Binder Processing 331

/* file: doit2.c */
int int1 = 11;
#pragma csect(code,"DO2")
int func3(void) { return 33; }
int func4(void) { return 44; }

Use the LONGNAME compiler option, and bind. The binder sections are int1, DO1 and
int1, DO2. The binder keeps one of the duplicate sections, int1, and does not issue
a warning. But uniquely named sections contain the functions. Section DO1
contains the functions func2 and func3. Section DO2 contains the functions func3
and func4. The binder retains both sections DO1 and DO2, but because both
sections contain function func3, it issues a warning message as follows:
IEW2480W A711 EXTERNAL SYMBOL func3 OF TYPE LD WAS ALREADY DEFINED AS A
SYMBOL OF TYPE LD IN SECTION DO1.

It is easier to find the object code with the duplicate if you use multiple INCLUDE
statements rather than DD concatenation. For example, if you use:
//INOBJ DD DISP=SHR,DSN=USERID.PLAN9.OBJ
//SYSLIN DD *
INCLUDE INOBJ(DOIT1)
INCLUDE INOBJ(DOIT2)
ENTRY CEESTART

/*

The members in the binder listing are separated logically. The messages in the
binder listing are:

From the informational messages, it is clear that section DO1 is from
INOBJ(DOIT1), and that DO2 is from INOBJ(DOIT2). But if you use DD
concatenation as follows:
//INOBJ DD DISP=SHR,DSN=USERID.PLAN9.OBJ
//SYSLIN DD DISP=SHR,DSN=USERID.PLAN9.OBJ(DOIT1)
// DD DISP=SHR,DSN=USERID.PLAN9.OBJ(DOIT2)
// DD *
ENTRY CEESTART

/*
:
:

Now the messages are:

:
:

IEW2322I 1220 1 INCLUDE INOBJ(DOIT1)
IEW2308I 1112 SECTION CEESTART HAS BEEN MERGED.
IEW2308I 1112 SECTION DO1 HAS BEEN MERGED.
IEW2308I 1112 SECTION int1 HAS BEEN MERGED.
IEW2308I 1112 SECTION CEEMAIN HAS BEEN MERGED.
IEW2322I 1220 2 INCLUDE INOBJ(DOIT2)
IEW2480W A711 EXTERNAL SYMBOL func3 OF TYPE LD WAS ALREADY DEFINED AS A
SYMBOL OF TYPE LD IN SECTION DO1.
IEW2308I 1112 SECTION DO2 HAS BEEN MERGED.

IEW2308I 1112 SECTION CEESTART HAS BEEN MERGED.
IEW2308I 1112 SECTION DO1 HAS BEEN MERGED.
IEW2308I 1112 SECTION int1 HAS BEEN MERGED.
IEW2308I 1112 SECTION CEEMAIN HAS BEEN MERGED.
IEW2480W A711 EXTERNAL SYMBOL func3 OF TYPE LD WAS ALREADY DEFINED AS A
SYMBOL OF TYPE LD IN SECTION DO1.
IEW2308I 1112 SECTION DO2 HAS BEEN MERGED.

332 OS/390 V2R6.0 C/C++ User’s Guide

It is no longer clear which input file defines which section, and this makes tracking
down duplicates to the originating compile unit more difficult.

Duplicate functions from autocall

If a library member that is expected to contain the definition of a symbol is read, it
may resolve the expected symbol. It may also resolve other symbols because the
library member may define multiple functions. These unexpected definitions that are
pulled in through library search may cause duplicates. Since you cannot always be
sure which one of the duplicate symbols you will resolve with, you should remedy
the situation that is causing the duplicate symbols.

Hunting down references to unresolved symbols

Unresolved requests generate error or warning messages in the binder listing. If a
function or variable is unresolved at the end of binder processing, it can be resolved
at a later rebind.

If you did not expect a symbol to remain unresolved, you can look at the binder
listing to see which parts reference the symbol. If your DD: SYSLIN has a large
concatenation, the input is logically concatenated before the binder processes it.
Since the compile units are not logically separated, it is hard to tell which compile
unit defines the part that has the reference. For example:

//SYSLIN DD DISP=SHR,DSN=USERID.PLAN9.OBJ(MEM1)
// DD DISP=SHR,DSN=USERID.PLAN9.OBJ(MEM2)
// DD DISP=SHR,DSN=USERID.PLAN9.OBJ(MEM3)

You should consider using multiple INCLUDE control statements, which will logically
separate the compile units for the binder informational messages in the listing. You
can then find the compile unit with the unresolved reference (similar to finding
duplicate function definitions). For example:

//INOBJ DD DISP=SHR,DSN=USERID.PLAN9.OBJ
//SYSLIN DD *
INCLUDE INOBJ(DOIT1)
INCLUDE INOBJ(DOIT2)
ENTRY CEESTART

/*

Non-reentrant DLL Problems

If you bind a DLL with the option REUS(NONE), each load of the DLL causes a
separate load of the code area and the data area (C_WSA). If you split a statically
bound program into mutually dependent DLLs, you will probably not get the desired
result. Function pointers that used to compare the same may not be the same
anymore, because the multiple loads of a DLL have more than one copy of the
function in memory.

The same is true for data. A separate copy of C_WSA is loaded. So, data objects
that are exported from a DLL and modified are not seen as modified by the new
program that uses the DLL. You should bind all DLLs with REUS(RENT), or
REUS(SERIAL) so that a new C_WSA is loaded only once per enclave.

Chapter 13. Binder Processing 333

Code That Has Been Prelinked

You cannot bind code that refers to objects in the Writable Static Area and has
been prelinked, and code which refers to objects in the Writable Static Area and
has not been prelinked, in the same program object. This is because the OS/390
Prelinker and the binder use different methods to manage the Writable Static Area.
The OS/390 Prelinker removes relocation information about objects in the Writable
Static Area, making them invisible to the binder. The binder keeps relocation
information and manages the Writable Static Area in the binder class C_WSA.

334 OS/390 V2R6.0 C/C++ User’s Guide

Chapter 14. Running an OS/390 C/C++ Application

This chapter gives an overview of how to run an OS/390 C/C++ program under
OS/390 batch, TSO, and the OS/390 Shell.

OS/390 Language Environment provides a common runtime environment for C,
C++, COBOL, PL/I, and FORTRAN. For detailed instructions on running existing
and new OS/390 C/C++ programs under OS/390 Language Environment, refer to
the OS/390 Language Environment Programming Guide. The OS/390 C/C++
Programming Guide also describes how to run an OS/390 C/C++ program in a
CICS environment.

Running an Application Under OS/390 Batch

You must have the Language Environment Library SCEERUN available before you try
to run your application under OS/390 batch. If your application was bound with the
DLL Class Libraries, you must supply SCLBDLL at run time. The DLL data set can be
in the system libraries, your JOBLIB statement, or your STEPLIB statement.

The search sequence for library files is in the following order: STEPLIB, JOBLIB,
LINKPACK, and LINKLIST.

Specifying Runtime Options under OS/390 Batch

When you run an OS/390 C/C++ application, you can override the default values for
a set of OS/390 C/C++ runtime options. These options affect your application’s
execution, including its performance, its error-handling characteristics, and its
production of debugging and tuning information.

For your application to recognize runtime options, either the EXECOPS compiler
option, or the #pragma runopts(execops) directive must be in effect. The default
compiler option is EXECOPS.

You can specify runtime options under OS/390 batch as follows:

v In your JCL; in the PARM parameter of the EXEC statement. For more information,
refer to “Specifying Runtime Options in the EXEC Statement” on page 336.

v On the GPARM parameter of the cataloged procedures that are supplied by IBM.
Refer to “Using Cataloged Procedures” on page 336.

v The #pragma runopts statement in your source code.

v The CEEUOPT facility that is provided by OS/390 Language Environment.

v In the assembler user exit. For more information, refer to the OS/390 C/C++
Programming Guide.

If EXECOPS is in effect, use a slash ’/’ to separate runtime options from arguments
passed to the application. For example:
GPARM='STORAGE(FE,FE,FE)/PARM1,PARM2,PARM3'

Language Environment interprets the character string that precedes the slash as
runtime options. The character string following the slash is passed to your
application’s main() function as arguments. If a slash does not separate the
arguments, Language Environment interprets the entire string as an argument.

© Copyright IBM Corp. 1996, 1999 335

If the NOEXECOPS option is in effect, none of the preceding runtime options will take
effect. In fact, any arguments and options that you specify in the parameter string
(including the slash, if present) are passed as arguments to the main() function. For
a description of runtime options see “Specifying Runtime Options” on page 217.

You should establish the required settings of the options for all OS/390 C/C++
programs that you execute on a production basis. Each time the program is run, the
default runtime options that were selected during OS/390 C/C++ installation apply,
unless you override them by using one of the following:

v Coding a #pragma runopts directive in your source
v Creating a CEEUOPT csect with the CEEXOPT macro and linking this csect into the

program module.
v Specifying runtime options in the EXEC or GPARM statements

The following example shows you how to run your program under OS/390 batch.
Partitioned data set member MEDICAL.ILLNESS.LOAD(SYMPTOMS) contains your
OS/390 C/C++ executable program. The program was compiled with the EXECOPS
compiler option in effect. If you want to use the runtime option RPTOPTS(ON), and to
pass TESTFUNCT as an argument to the function, use the JCL stream as follows:

Specifying Runtime Options in the EXEC Statement

You can specify runtime options in the PARM parameter of the EXEC statement as
follows:
//[stepname] EXEC PGM=program_name,
// PARM='[runtime options/][program parameters]'

For example, if you want to generate a storage report and runtime options report for
the application PROGRAM1, specify the runtime option RPTOPTS(ON) as follows:
//GO1 EXEC PGM=PROGRAM1,PARM='RPTOPTS(ON) / '

Note that the runtime options that are passed to the main routine are followed by a
slash (/) to separate them from program parameters.

Using Cataloged Procedures

You can use one of the following cataloged procedures that are supplied with the
OS/390 C/C++ compiler to run your program. Each procedure listed below includes
an execution step:

For OS/390 C programs:
EDCCBG Compile, bind, and run.

For OS/390 C++ programs:
CBCBG Bind and run.
CBCCBG Compile, bind, and run.

//JOBname JOB...
//STEP1 EXEC PGM=SYMPTOMS,PARM='RPTOPTS(ON)/TESTFUNCT'...

//STEPLIB DD DSN=MEDICAL.ILLNESS.LOAD,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR

Figure 47. Running your program under OS/390 Batch

336 OS/390 V2R6.0 C/C++ User’s Guide

CBCG Run

For more information on these cataloged procedures, see “Appendix D. IBM
Supplied Cataloged Procedures and REXX EXECs” on page 457.

If you are using an IBM-supplied cataloged procedure, you must specify the runtime
options on the GPARM parameter of the EXEC statement. Ensure that the EXECOPS
runtime option is in effect. For example:
//STEP EXEC EDCCBG,INFILE='...',
// GPARM='STACK(10K)/'

You can also use the GPARM parameter to pass arguments to the OS/390 C/C++
main() function. Place the argument, preceded by a slash, after the runtime options.
For example:
//GO EXEC EDCCBG,INFILE=...,
// GPARM='STACK(10K)/ARGUMENT'

If you want to pass an argument without specifying runtime options and EXECOPS is
in effect (this is the default), precede it with a slash. For example:
//GO EXEC EDCCBG,...GPARM='/ARGUMENT'
//GO EXEC EDCCBG,...GPARM='/HFS file:/u/mike/cloudy.C'

If you want to pass parameters which contain slashes, and you are not providing
runtime options, you must precede the parameters with a slash, as follows:
//GO EXEC EDCCBG,...GPARM='/HFS file:/u/mike/cloudy.C'

See also “Specifying Runtime Options” on page 217.

Running an Application under TSO

Before you run your program under TSO, you must have access to the runtime
library CEE.SCEERUN. To ensure that you have access to the runtime library, do one
of the following:

v If you are running under ISPF in the foreground, concatenate the libraries to
ISPLLIB.

v Have your system programmer add the libraries to the LPALST or LPA.

v Have your system programmer add the libraries to the LNKLST.

v Have your system programmer change the LOGON PROC so the libraries are added
to the STEPLIB for the TSO session.

v If you are using IBM Open Class Libraries, concatenate the SCLBDLL data set to
C++ STEPLIB, or add it to the LPA.

The TSO CALL command runs a load module under TSO. If data-set-name is the
partitioned data set member that holds the load module, the command to load and
run a specified load module is:
CALL 'data-set-name' ['parameter-string'];

For example, if the load module is stored in partitioned data set member
’SAMPLE.CPGM.LOAD(TRICKS)’, and the default runtime options are in effect, run
your program as follows:
CALL 'SAMPLE.CPGM.LOAD(TRICKS)'

Chapter 14. Running an OS/390 C/C++ Application 337

If you specify the unqualified name of the data set, the system assumes the
descriptive qualifier LOAD. If you do not specify a member name, the system
assumes the name TEMPNAME.

You do not need to use the CALL command if the STEPLIB DD name includes the
data set that contains your program. For example, you could call a program PROG1
with two required parameters PARM1 and PARM2 from the command line:
PROG1 PARM1 PARM2

See the appropriate manual listed in OS/390 Information Roadmap for more
information on STEPLIB.

Specifying Runtime Options under TSO

You can specify runtime options in a #pragma runopts directive or in the
'parameter-string' of the TSO CALL command. The 'parameter-string' contains two
fields that areseparated by a slash(/), and takes the form:
'[runtime options/][arguments to main]'

The first field is passed to the program initialization routine as a runtime option list;
the second field is passed to the main() function.

To allow your application to recognize runtime options, EXECOPS must be in effect.
You can specify your additional runtime options on the command line as follows:
specify the options followed by a slash (/), followed by the parameters you want to
pass to the main() function.

For example, to run a load module that is stored in the partitioned data set member
GINGER.HOURLY.LOAD(CHECK), with the runtime option RPTOPTS(ON), use the following
command:
CALL 'GINGER.HOURLY.LOAD(CHECK)' 'RPTOPTS(ON)/'

If the NOEXECOPS compiler or runtime option is in effect, what you specify on the
command line (including the slash, if present) is passed as arguments to the main()
function. For a description of runtime options see “Specifying Runtime Options” on
page 217.

If you want to pass your parameters as mixed case, you must use the ASIS runtime
option. See “Passing Arguments to the OS/390 C/C++ Application” for more
information on passing mixed case parameters.

Passing Arguments to the OS/390 C/C++ Application

The arguments passed to main() are argc and argv. argc is an integer whose value
is the number of arguments that are given when the program is run. argv is an
array of pointers to null terminated character strings, which contain the arguments
for the program. The first argument is the name of the program being run on the
TSO command line. For more information on argc, argv, and main() see
“ARGPARSE | NOARGPARSE” on page 74 or the OS/390 C/C++ Language
Reference.

The case of the characters in argv depends on you invoked how your OS/390
C/C++ program, as shown in the following table.

338 OS/390 V2R6.0 C/C++ User’s Guide

Table 35. Case sensitivity of arguments under TSO

How an OS/390 C/C++
program is invoked

Example Case of argument

As TSO command program args Mixed case (However, if you
pass the arguments entirely in
upper case, the argument will
be changed to lower case.)

By CALL command (with or
without ASIS)

CALL program args Lower case

By CALL command with
control arguments ASIS

CALL program Args ASIS Mixed case (However, if you
pass the arguments entirely in
upper case, the argument will
be changed to as lower
case.)

By CALL command with
control ASIS

CALL program ARGS ASIS The arguments will be
changed to lower case
following ANSI/ISO C
standards.

Running an Application under OS/390 UNIX

This section discusses how to run your OS/390 UNIX System Services C/C++
application.

OS/390 UNIX Application Environments

You can run your OS/390 UNIX System Services C/C++ application programs from
the following environments:

v OS/390 shell

v OS/390 ISPF Shell (ISHELL)

v TSO/E

To call a OS/390 UNIX System Services application program that resides in an
HFS file from the TSO/E READY prompt, you must use the BPXBATCH utility.

v OS/390 batch

To run a OS/390 UNIX System Services application program that resides in an
HFS file, you must use the BPXBATCH utility with the JCL EXEC statement.

v OS/390 shell through OS/390 batch or TSO

By using the IBM-supplied BPXBATCH program, you can run a OS/390 UNIX
System Services application program that resides in an HFS file. You supply the
name of the program as an argument to the BPXBATCH program, which invokes
the shell environment. The BPXBATCH runs under the OS/390 batch environment
or under TSO.

Specifying Runtime Options under OS/390 UNIX

When invoking a program from the OS/390 shell, slash-separated runtime options
arguments syntax is not used. All the arguments always go to the main() routine.
Specify runtime options by using the exported environment variable _CEE_RUNOPTS.
The runtime will only use _CEE_RUNOPTS if the EXECOPS option is in effect.

Chapter 14. Running an OS/390 C/C++ Application 339

Restriction on Using 24-bit AMODE Programs

You cannot run a 24-bit AMODE OS/390 C/C++ application program that resides in
an HFS file. Any programs you intend to run from the file system must be 31-bit
AMODE, problem program state, PSW key 8 programs. If you plan to run a 24-bit
AMODE OS/390 C/C++ program from within a OS/390 UNIX System Services
application, ensure that the executable resides in a PDS or PDSE member.

Any new OS/390 UNIX System Services OS/390 C/C++ applications you develop
should be 31-bit AMODE.

Copying Applications between a PDS and HFS

If you have a OS/390 UNIX System Services C/C++ application as a PDS member
and want to place it in the HFS, you can use the OS/390 UNIX System Services
TSO/E command OPUTX to copy the member into an HFS file.

If you have a OS/390 UNIX System Services C/C++ application as an HFS file and
want to place it in a PDS, you can use the OS/390 UNIX System Services TSO/E
command OGETX to copy the HFS file into a PDS.

You can also bind directly into a data set member with the c89 or c++ utility by
specifying a data set member name on the -o option, as in:
c89 -o"//loadlib(foo)"

OS/390 C++ Note: To use the TSO utility OGET to copy a C++ HFS listing file to a
VBA data set, you must add a blank to any null records in the
listing file. Use the awk command as follows:
c++ -cV mypgm.C | awk '/|[|$]/ {print} /|$/ {printf "%s \n", $0}'

> mypgm.lst

For a description of these commands, see the OS/390 UNIX System Services
Command Reference. For examples of using these commands to copy data sets to
HFS files, see OS/390 UNIX System Services User’s Guide .

Running a Data Set Member from the OS/390 Shell

If your OS/390 UNIX System Services C/C++ program resides in data sets and you
must run the executable member from within the shell, you can pass a call to the
program to TSO/E. Type the TSO/E CALL command with the name of the executable
data set member on the shell command line and press the TSO/E function key to
pass the command to TSO/E. Alternatively, you can use the tso command from
under the shell. Just precede the CALL with tso on the command line and press the
ENTER key.

When the program completes, the shell session is restored.

Running an OS/390 UNIX Application under OS/390 Batch

Using the BPXBATCH Utility

Use the IBM-supplied BPXBATCH program to run a OS/390 UNIX System Services
C/C++ application under OS/390 batch from an HFS file. You can invoke the

340 OS/390 V2R6.0 C/C++ User’s Guide

BPXBATCH utility from TSO/E, or by using JCL. The BPXBATCH utility submits a batch
job and performs an initial user login to run a specified program from the shell
environment.

Before you invoke BPXBATCH, you must have the appropriate authority to read from
and write to HFS files. You should also allocate stdout and stderr HFS files for
writing program output such as error messages. Allocate the standard files using
the PATH options on TSO/E ALLOCATE command or the JCL DD statement.

For more information on the BPXBATCH program, refer to “Chapter 22. BPXBATCH
Utility” on page 397.

Invoking BPXBATCH from TSO/E

From TSO/E, you can invoke BPXBATCH several ways:
v From the TSO/E READY prompt
v From a CALL command
v From a REXX exec

Figure 48 shows a REXX EXEC that does the following:

1. runs the application program /myap/base_comp from your user ID

2. directs output to the file /myap/std/my.out

3. writes error messages to the file /myap/std/my.err

4. copies the output and error data to data sets

To invoke BPXBATCH, enter the name of the REXX exec from the TSO/E READY
prompt. When the REXX exec completes, the stdout and stderr allocated files are
deleted.

Invoking BPXBATCH Using JCL

To invoke BPXBATCH using JCL, submit a job that executes an application program
and allocates the standard files using DD statements. For example, to run the
application program /myap/base_comp from your user ID, direct its output to the file
/myap/std/my.out, and write error messages to the file /myap/std/my.err, code the
JCL statements as follows:
//jobname JOB ...
//stepname EXEC PGM=BPXBATCH,PARM='PGM /u/myu/myap/base_comp'
//STDOUT DD PATH='/u/myu/myap/std/my.out',

/* base_comp REXX exec */
"Allocate File(STDOUT) Path('/u/myu/myap/std/my.out') Pathopts(OWRONLY,OCREAT,OTRUNC)

Pathmode(SIRWXU) Pathdisp(DELETE,DELETE)"
"Allocate File(STDERR) Path('/u/myu/myap/std/my.err') Pathopts(OWRONLY,OCREAT,OTRUNC)

Pathmode(SIRWXU) Pathdisp(DELETE,DELETE)"

"BPXBATCH PGM /u/myu/myap/base_comp"

"Allocate File(output1) Dataset
('MYAPPS.STD(BASEOUT)')"
"Ocopy Indd(STDOUT) Outdd(output1) Text Pathopts(OVERRIDE)"

"Allocate File(output2) Dataset('MYAPPS.STD(BASEERR)')"
"Ocopy Indd(STDERR) Outdd(output2) Text Pathopts(OVERRIDE)"

Figure 48. REXX EXEC to Run a Program

Chapter 14. Running an OS/390 C/C++ Application 341

// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU
//STDERR DD PATH='/u/myu/myap/std/my.err',
// PATHOPTS=(OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU

Submitting a non-HFS OS/390 UNIX Executable to Run under
OS/390 Batch

If your program requires OS/390 UNIX System Services, but has been link edited
into a load module (PDS member) or bound into a non-HFS program object (PDSE
member), it may be executed in the OS/390 batch environment. Use the JCL
″EXEC″ statement to submit the executable to run under the batch environment.
You must have the runtime option POSIX in effect, either as #pragma
runopts(POSIX(ON)), or as PARM='POSIX(ON)/'.

342 OS/390 V2R6.0 C/C++ User’s Guide

Part 4. Utilities and Tools

This section contains information about the utilities and tools that you can use
under OS/390.

v “Chapter 15. Model Tool” on page 345

v “Chapter 16. Object Library Utility” on page 351

v “Chapter 17. DLL Rename Utility” on page 357

v “Chapter 18. Filter Utility” on page 365

v “Chapter 19. DSECT Conversion Utility” on page 371

v “Chapter 20. Coded Character Set and Locale Utilities” on page 385

© Copyright IBM Corp. 1996, 1999 343

344 OS/390 V2R6.0 C/C++ User’s Guide

Chapter 15. Model Tool

The OS/390 C/C++ Model Tool provides online help for developers who use the
OS/390 C/C++ compiler and the C/C++ runtime library of OS/390 Language
Environment. You can start the Model Tool from an ISPF edit session. You can
obtain help for library functions and pragma directives. You can also access the
standard menu that provides help for ISPF functions.

About the OS/390 C/C++ Model Tool
v The Model Tool contains library function and #pragma information that is current

as of OS/390 Release 2.

v To use the OS/390 C/C++ Model Tool, you or your system programmer must
customize your OS/390 system. The ISPPLIB and ISPSLIB data sets that are
shipped with OS/390 C/C++ must be installed on your system, and must be
allocated to your TSO session.

v You should keep in mind that not all functions and pragmas are supported under
both C and C++. The versions of the menus that are displayed, and the functions
and pragmas that you can select from, depend upon whether you are developing
a C or a C++ program. The Model Tool determines the language by checking the
low-level qualifier of the data set that you are editing. You can use the MODEL
CLASS command to link a low-level qualifier to a language. For more information
on this command and the MODEL command in general, refer to the OS/390 ISPF
Edit and Edit Macros.

Refer to the OS/390 Program Directory for more information about installing and
customizing the Model Tool.

v If you use the OS/390 C/C++ Model Tool, you cannot invoke ISPF models
directly from the command line. You must select the ISPF menu from the main
Model Tool menu.

v If the data set or data set member that you are editing is not empty when you
request pragma or library function information, you must indicate where to add
the information. To do this, type a or b in the prefix area.

v Functions that are described in the OS/390 C Curses manual are not included in
the Model Tool.

v You cannot invoke the log() function by typing log on the menu of functions
beginning with the letter l. You must enter the option number instead.

v Functions in the xti.h header file are not accessible directly from the command
line or from the main Model Tool menu.

v You can use the UP and DOWN commands to scroll through any menu if ″More″
appears in the upper right corner. You can obtain help for the Model Tool by
selecting PF1 from any menu.

Accessing Library Functions

You can use the Model Tool in several ways to obtain help for library functions. The
following sections describe these methods. Method 1 is the fastest if you already
know the name of the library function that you want.

Note: The following menus are for C applications. There are similar menus for C++
applications. Whether C or C++ help is displayed depends upon the low-level
qualifier of the data set you are editing. Refer to “About the OS/390 C/C++
Model Tool” for more information.

© Copyright IBM Corp. 1996, 1999 345

Method 1

Enter MODEL funcname (where funcname is a function name, such as fopen), on the
command line of your edit session. The Model Tool drops read-only information into
your edit session. For example, if you enter MODEL fopen, information is displayed
as shown in Figure 49:

NOTE in the prefix area marks the information that is read-only. To make it
disappear enter RESET on the command line, or end the edit session. If you want
to keep any of the read-only information, use the MD command in the
corresponding prefix area.

Method 2

Enter MODEL (without a function name) on the command line of your edit session.
The main Model Tool menu is displayed, as shown in Figure 50.

Next, enter F in the option field of the menu. An alphabetical menu is displayed, as
shown in Figure 51 on page 347:

File Edit Confirm Menu Utilities Compilers Test Help

EDIT USERID.C(TEST) Columns 00001 00072
Command ===> _ Scroll ===> PAGE
****** ***************************** Top of Data ******************************
=NOTE= #include <stdio.h>
=NOTE= FILE *fopen(const char *filename, const char *mode);
*********************************** Bottom of Data ****************************

Figure 49. Function information

OPTION ===> _

F LIBRARY FUNCTIONS SUPPORTED BY C

P PRAGMA DIRECTIVES SUPPORTED BY C

I ISPF FUNCTIONS AVAILABLE UNDER C/C++

Enter END command to cancel MODEL command.

Figure 50. Main Model Tool menu

346 OS/390 V2R6.0 C/C++ User’s Guide

From this menu, you can select a menu that contains all of the functions whose
names start with a particular letter. For example, selecting option 1 displays the
menu containing functions whose names begin with the letter a, as shown in
Figure 52:

You can then select an option, or enter the name of a function that appears on the
menu. The Model Tool drops read-only help into your edit session. Proceed as in
method 1.

------------- Functions Supported by C-Select a Menu of Functions ------------
OPTION ===>

Functions are grouped according to the first character of the function
name. Enter a letter to retrieve the menu of functions whose names
begin with that letter. For instance, for a list of functions whose
names start with the letter a, enter letter a in the option field.
For functions whose names begin with a number sign, enter a # sign.

You may also bypass the function menus and access function information
directly by entering the name of the function in the option field. For
instance, for information on the fopen() function, enter fopen in the
option field.

Enter END command to return to previous menu.

Figure 51. Alphabetical menu

------------------------ function names beginning with a ----------------------
OPTION ===> _

More: +
1 abort-Stop a program
2 abs-Calculate integer absolute value
3 accept-Accept a new connection on a socket
4 access-Determine whether a file can be accessed
5 acos-Calculate arccosine
6 acosh-Calculate hyperbolic arccosine
7 advance-Pattern match given a compiled regular expression
8 alarm-Set an alarm
9 asctime-Convert time to character string
10 asin-Calculate arcsine
11 asinh-Calculate hyperbolic arcsine
12 assert-Verify condition
13 atan-Calculate arctangent
14 atan2-Calculate arctangent
15 atanh-Calculate hyperbolic arctangent
16 atexit-Register program termination function
17 __atoe-Perform ISO8859-1 to EBCDIC string conversion
18 __atoe_l-Perform ISO8859-1 to EBCDIC conversion

Enter END command to return to alphabetical menu.

Figure 52. Menu of functions whose names begin with letter a

Chapter 15. Model Tool 347

Method 3

Enter a function name in the option field of the main Model Tool menu. The Model
Tool drops read-only help into your edit session. Proceed as in method 1.

Method 4

Enter a function name in the option field of the alphabetical menu. The Model Tool
drops read-only help into your edit session. Proceed as in method 1.

For complete information about library functions, refer to the OS/390 C/C++
Run-Time Library Reference .

Accessing Pragma Directives

You can obtain help for #pragma statements in one of several ways. Method 1 is the
fastest if you already know the name of the pragma that you want.

Note: The following menus are for C applications. There are similar menus for C++
applications. Whether C or C++ help is displayed depends upon the low-level
qualifier of the data set you are editing. Refer to “About the OS/390 C/C++
Model Tool” on page 345 for more information.

Method 1

Enter MODEL pragname (where pragname is a pragma name such as chars), on the
command line of your edit session. The Model Tool drops modifiable #pragma
statements and read-only help into your edit session, as shown in Figure 53:
Modifiable information is highlighted. You can alter or delete it to suit your program.

You will be given multiple versions of a #pragma statement if different options are
available for the pragma.

File Edit Confirm Menu Utilities Compilers Test Help

EDIT USERID.C(TEST) Columns 00001 00072
Command ===> _ Scroll ===> PAGE
****** ***************************** Top of Data ******************************
=NOTE= The #pragma chars directive specifies that the compiler is to treat
=NOTE= all char objects as signed or unsigned.
=NOTE=
000001 #pragma chars(unsigned)
000002 #pragma chars(signed)
=NOTE=
=NOTE= This pragma must appear before any statements in a file.
=NOTE= Once specified, it applies to the rest of the file and cannot be
=NOTE= turned off.
=NOTE=
=NOTE= If a source file contains any functions that you want to be
=NOTE= compiled without #pragma chars, place these functions in a
=NOTE= different file.
=NOTE=
=NOTE= The default character type behaves like an unsigned char.
****** **************************** Bottom of Data ****************************

Figure 53. #pragma information

348 OS/390 V2R6.0 C/C++ User’s Guide

NOTE in the prefix area marks the information that is read-only. Read-only
information disappears when you enter RESET on the command line, or end the
edit session, as shown in Figure 54:
If you want to keep any of the read-only information, use the MD command in the

corresponding prefix area. The read-only information is not exhaustive; for complete
information about a pragma, refer to the OS/390 C/C++ Language Reference .

Method 2

Enter MODEL (without a pragma name) on the command line of your edit session.
Enter option P in the option field of the main Model Tool menu that appears. A
menu that contains a list of pragmas is displayed, as shown in Figure 55.
From this menu, you can select an option, or enter the name of the pragma. The

Model Tool drops modifiable #pragma statements and read-only help into your edit
session. Proceed as in method 1.

Method 3

Enter a pragma name in the option field of the main Model Tool menu. The Model
Tool drops modifiable #pragma statements and read-only help into your edit session.
Proceed as in method 1.

File Edit Confirm Menu Utilities Compilers Test Help

EDIT USERID.C(TEST) Columns 00001 00072
Command ===> _ Scroll ===> PAGE
****** ***************************** Top of Data ******************************
000001 #pragma chars(unsigned)
000002 #pragma chars(signed)
****** **************************** Bottom of Data ****************************

Figure 54. Saved #pragma information

--------------------------- Pragmas Supported by C ---------------------------
OPTION ===> _

The following #pragma preprocessor directives may be used with the
OS/390 C compiler:

1 chars 15 margins
2 checkout 16 options
3 comment 17 pack
4 csect 18 page
5 environment 19 pagesize
6 export 20 runopts
7 filetag 21 sequence
8 hdrstop 22 skip
9 inline 23 strings
10 langlvl 24 subtitle
11 linkage 25 target
12 longname 26 title
13 map 27 variable
14 margins

Enter END command to cancel MODEL command

Figure 55. pragma menu

Chapter 15. Model Tool 349

350 OS/390 V2R6.0 C/C++ User’s Guide

Chapter 16. Object Library Utility

This chapter describes how to use the Object Library Utility to update libraries of
object modules. On OS/390, a library is a PDS or PDSE with object modules as
members.

Object libraries provide convenient packaging of object modules. With the Object
Library Utility, a library can contain object modules with L-names, S-names, or
writable static data. The Object Library Utility creates information, such as the
members that contain defined L-names, S-names, or writable static data. This
information is stored in a special member of the library that this chapter refers to as
the C370LIB directory.

Commands are available to add object modules to a library, to delete object
modules from a library, or to build the C370LIB directory for a library. Use the DIR
command to build the C370LIB directory for a library of object modules. Use the MAP
command to list the contents of the C370LIB directory.

You can create an object library under OS/390 batch and TSO.

Creating an Object Library Under OS/390 Batch

Under OS/390 batch, the following cataloged procedures include an Object Library
Utility step:
EDCLIB Maintain an object library
EDCCLIB Compile and maintain an object library. (C only)

For more information on the data sets that you use with the Object Library Utility,
see “Description of Data Sets Used” on page 460.

To compile the OS/390 C program WALTER.SOURCE(SUB1) for L-names and add to
WALTER.SOURCE.OBJ(SUB1), use the following JCL. The Object Library Utility directory
for the library, WALTER.SOURCE.OBJ, is updated in the process.
//COMPILE EXEC EDCCLIB,INFILE='WALTER.SOURCE(SUB1)',CPARM='LO',
// LIBRARY='WALTER.SOURCE.OBJ',MEMBER='SUB1'

If you request a map for the library WALTER.SOURCE.OBJ, use the following:
//OBJLIB EXEC EDCLIB,OPARM='MAP',LIBRARY='WALTER.SOURCE.OBJ'

For OS/390 C++, use the EDCLIB cataloged procedure. You can specify options for
the Object Library Utility step. These options can generate a library directory, add
members or delete members of a directory, or generate a map of library members
and defined external symbols. This section shows you how to specify these options
under OS/390 batch.

The following example creates a new C370LIB directory. If the directory already
exists, it is updated.

//DIRDIR EXEC EDCLIB,
// LIBRARY='LUCKY13.CXX.OBJMATH',
// OPARM='DIR'

To create a map:

© Copyright IBM Corp. 1996, 1999 351

//MAPDIR EXEC EDCLIB,
// LIBRARY='LUCKY13.CXX.OBJMATH',
// OPARM='MAP'

To add new members to an object library, use the ADD option to update the directory.
For example, to add a new member named MA191:

//ADDDIR EXEC EDCLIB,
// LIBRARY='LUCKY13.CXX.OBJMATH',
// OPARM='ADD MA191',
// OBJECT='DSNAME=LUCKY13.CXX.OBJ(OBJ191),DISP=SHR'

To delete a member from an object library, use the DEL option to keep the directory
up to date. For example, to delete a member named OLDMEM:

//DELDIR EXEC EDCLIB,
// LIBRARY='LUCKY13.CXX.OBJMATH',
// OPARM='DEL OLDMEM'

Creating and Object Library Under TSO

The Object Library Utility has the following syntax:

ÊÊ C370LIB ADD LIB (libname(membername))
OBJ (objname)

DEL LIB (libname(membername))
MAP LIB (libname)

LIST (map)
DIR LIB (libname)

ÊÍ

where:

ADD Adds (or replaces) an object module to an object
library.

If you use ADD to insert an object module to a
member of a library that already exists, the previous
member is deleted prior to the insert. If the source
data set is the same as the target data set, ADD
does not delete the member, and only updates the
Object Library Utility directory.

DEL Deletes an object module from an object library.

MAP Lists the names (entry points) of object library
members.

DIR Builds the Object Library Utility-directory member.
The Object Library Utility-directory contains the
names (entry points) of library members.

LIB (libname(membername)) Specifies the target data set for the ADD and DEL
functions. The data set name must contain a
member specification to indicate which member
Object Library Utility should create, replace, or
delete.

OBJ(objname) Specifies the source data set that contains the
object module that is to be added to the library. If
you do not specify a data set name, Object Library

352 OS/390 V2R6.0 C/C++ User’s Guide

Utility uses the target data set that you specified in
LIB(libname(membername)) as the source.

LIB(libname) Specifies the object library for which a map is to be
produced or for which a Object Library
Utility-directory is to be built.

LIST(map) Specifies the data set that is to contain the library
map. If you specified an asterisk (*), the library map
is directed to your terminal. If you do not specify a
data set name, a name is generated using the
library name and the qualifier MAP. If TEST.OBJ is the
input library data set, and your user prefix is FRANK,
the map’s data set name is FRANK.TEST.OBJ.MAP.

Under TSO, for OS/390 C you can use either the C370LIB REXX EXEC or the CC
REXX EXEC with the parameter C370LIB. The C370LIB parameter of the CC REXX
EXEC specifies that, if the object module from the compile is directed to a PDS
member, the Object Library Utility-directory is to be updated. This step is the
equivalent to a compile and C370LIB ADD step. If the C370LIB parameter is specified,
and the object module is not directed to a member of a PDS, the C370LIB
parameter is ignored.

Object Library Utility Map

The Object Library Utility produces a listing for a given library when you specify the
MAP command. The listing contains information on each member of the library.

==
| Object Library Utility Map |
|«1¬ |
|C370LIB:5647-A01 V1 R9 M00 IBM Language Environment 1998/06/22 11:46:49|
==
Library Name: MYUSRID.A.OBJECT 1997/07/24 15:46:39

--
* Member Name: ASMSTUFF (D) 1996/02/14 11:46:39 *
* «2¬ 569623400 R01 M01 *
--

(S) External Name: CSECT1
(S) External Name: ENTRY1

Chapter 16. Object Library Utility 353

«1¬ Map Heading
The heading contains the product number, the library version and release
number, and the date and the time the Object Library Utility step began.
The name of the library immediately follows the heading. To the right of the
library name is the start time of the last Object Library Utility step that
updated the Object Library Utility-directory.

«2¬ Member Heading
The product number of the processor that produced the object module
follows the name of the object module member. If the END record in the
object module does not have the processor information in the appropriate
format, the Processor ID field does not appear.

The Timestamp field appears in yyyy/mm/dd format. A letter that is enclosed
in parentheses indicates the meaning of the timestamp. That is, the Object
Library Utility retains a timestamp for each member and selects the time
according to the following hierarchy:
(P) indicates that the timestamp is extracted from the object module

from the date form or the timestamp form of #pragma comment,
whichever comes first.

(D) indicates that the timestamp is based on the time that the Object
Library Utility DIR command was last issued.

(T) indicates that the timestamp is the time that the ADD command was
issued for the member.

«3¬ User Comments
Displays the user form of comments that #pragma comment generated.
These comments are extracted from the END record. You can add such
comments on multiple END records and have them displayed in the listing.
See the OS/390 C/C++ Language Reference for more information on the
END record.

«4¬ Symbol Information
Immediately following Member Heading and user comments is a list of the
defined objects that the member contains. Each symbol is prefixed by Type
information that is enclosed in parentheses and either External Name or
Function Name. Function Name will appear, provided the object module was

--
* Member Name: CSTUFF (D) 1996/03/17 12:37:39 *
* «2¬ 5688216 R32 M00 *
--

(L) Function Name: foo
(WL) External Name: this_int_is_in_writable_static_and_its_name_will

_wrap_because_it_is_too_long

--
* Member Name: CXXSTUFF (D) 1996/01/06 10:21:39 *
* «2¬ 5688216 R32 M00 *
--

«3¬
User Comment: This is a user comment in CXXSTUFF
«4¬

(L) Function Name: testeh()
(L) Function Name: f1()
(L) Function Name: operator++(U&)

(WL) External Name: i1
(WL) External Name: i2

========= E N D O F O B J E C T L I B R A R Y M A P ==========

354 OS/390 V2R6.0 C/C++ User’s Guide

compiled with the LONGNAME option and the symbol is the name of a defined
external function. In all other cases, External Name is displayed. The Type
field gives additional information on each symbol. That is
’L’ indicates that the name is an L-name. An L-name is an external

C++ name in an object module or an external non-C++ name in an
object module produced by compiling with the LONGNAME option.

’S’ indicates that the name is a S-name. A S-name is an external
non-C++ name in an object module produced by compiling with the
NOLONGNAME option. Such a name is up to 8 characters long and
single case.

’W’ indicates that this is a writable static object. If it is not present, then
this is not a writable static object.

Note: WL indicates that the symbol is both an L-name and in writable static.

Chapter 16. Object Library Utility 355

356 OS/390 V2R6.0 C/C++ User’s Guide

Chapter 17. DLL Rename Utility

This chapter describes the DLL Rename utility, which is part of OS/390 Language
Environment. You can use the DLL Rename utility to package and redistribute DLLs
with your application.

As of OS/390 Version 1 Release 3, the C/C++ IBM Open Class Library component
is licensed with the OS/390 base and can be used without enablement of the
C/C++ features. If your application uses C++ Class Library DLLs for execution on
OS/390 Version 1 Release 3 or a later release, you are not required to rename the
IBM-supplied DLLs that are shipped with your application.

If your application uses the C++ Class Library DLLs for execution on a system prior
to OS/390 Version 1 Release 3, you MUST use the DLL Rename utility to rename
the IBM-supplied DLLs, and ship the renamed DLLs with your application.

With the DLL Rename utility, you can modify an executable application or a DLL to
change the names of any DLLs that are loaded at execution time. The DLL Rename
utility also provides a report which you can use to understand the DLL
dependencies of your application.

Note: This utility does not change the names of variables or functions that are
exported by the DLL or imported by your application.

You can use the DLL Rename utility under OS/390 batch, TSO, and OS/390 UNIX
System Services. CICS and IMS do not support it.

Note: If you want to use the DLL Rename Utility, do not specify the Linkage editor
option NE when you link-edit the DLL Rename Utility load module. This
option removes the information the DLL Rename Utility requires to rename
the DLL.

For information on building and using DLLs, see “Using DLLs” on page 413, and the
OS/390 C/C++ Programming Guide.

DLL Redistribution Scenario

Here is an example of a DLL redistribution situation.

Your C++ application is targetted to run on OS/390 Version 1 Release 2 C++, and
references the iostream class library. You do not want your customers to license
the C/C++ feature of OS/390 in order to access IOSTREAM DLL through the C++
Class Library DLLs. The following steps outline the process for renaming the
IBM-supplied IOSTREAM DLL so that you can repackage it with your product. For
details on the exact steps see “Using the DLL Rename Utility under OS/390 Batch”
on page 360 or “Using the DLL Rename Utility under TSO” on page 361.

1. Copy the DLL member IOSTREAM from the IBM-supplied library to your product
library by using the IEBCOPY utility with the COPYMOD command. You should retain
the original version of IOSTREAM DLL, especially if other applications use it.

2. Run the DLL Rename utility and rename references to IOSTREAM to a new name,
PAHZIOST, so that your program will reference the new name. The name
PAHZIOST is an example, you can use any valid PDS member name or a
member in a PDSE built using OS/390 Version 2 Release 4 of the Binder.

© Copyright IBM Corp. 1996, 1999 357

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

//* Assumption is that PAH are the
characters used for your product
//QUERY EXEC PGM=EDCDLLRN
//SYSIN DD *

'userid.product.load(PAHPGM1)'
'userid.product.load(IOSTREAM)' IOSTREAM=PAHZIOST

/*

When the DLL Rename utility has completed, you will notice that member
IOSTREAM has been renamed to PAHZIOST, and all references to IOSTREAM in
your application are changed to PAHZIOST. You can verify this by running the
DLL rename utility again without any rename cards.

Note: If you want to be able to rebuild your application in the future, and you
are required to rename IBM-supplied DLLs, you should copy the
IOSTREAM definition side-deck into a private library, and change the name
of the DLL on the IMPORT cards from IOSTREAM to PAHZIOST. You can
then rebuild your application and bind it with the new definition side-deck.
Otherwise, you will have to run the DLL Rename utility each time you
rebuild.

3. You should also copy the memberse ICLBMSGT, CLB3MSGE, and CLB3MSGK from the
PDS that contains the IBM-supplied class library DLLs. These members are
used to display error messages in the event of failures in the class library code.
You should rename these members to new names starting with PAHZ with an
alias to the old name. For example:

v ICLBMSGT - determines which error message member should be loaded
based on the language level (LANGLVL) run-time option. Rename it to
PAHZMSGT with an alias to ICLBMSGT

v ICLBMSGE - English error messages, rename it to PAHZMSGE with an alias
to ICLBMSGE

v ICLBMSGK - Kanji error messages, rename it to PAHZMSGK with an alias to
ICLBMSGK

4. Ship your product, renamed class library DLLs, and error messages load
modules to your customers.

Inputs and Outputs

Input to the DLL Rename utility is a set of one or more programs or DLLs in either
of the following:

v Any PDS

v A PDSE compiled with OS/390 C/C++ compiler and bound with the binder.

Note: The DLL Rename utility does not support PDSE members built using the
OS/390 Language Environment Prelinker.

The modules can be applications that call DLLs or DLL modules themselves. Your
applications and all the DLLs referenced (either by the application or by another
DLL) can be all modified in a single step. Specify a DLL if it may call other DLLs. If
the DLL does not reference any DLLs being renamed and is not itself being
renamed, no modifications are performed.

Note: If the DLL being renamed is also specified as an input module, the DLL
Rename utility attempts to rename the module itself. Copy the DLL first if it
may be used by other applications using the old name.

358 OS/390 V2R6.0 C/C++ User’s Guide

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|

|
|

|

Restriction

The input and output load-library modules must be PDS or PDSE members with the
following attributes:
RECFM=U, 256<=BLKSIZE<=32760

If you run this utility under OS/390 batch, input comes from the SYSIN data set.

If you run this utility interactively with TSO, the output goes to your terminal. If you
use OS/390 batch or TSO batch, output goes to the first of these data sets for
which there is a definition:
v DD:SYSPRINT
v DD:SYSTERM
v DD:SYSERR

If you have not defined any of these data sets, output goes to SYSOUT = *.

When you specify rename statements, the old DLL name and the new DLL name
must be different. The DLL names must be 8 characters or less in length. You must
ensure that the name is a valid name for a load library.

The DLL Rename utility generates a report. For each program or DLL, it shows a
list of DLLs that may be loaded or referenced. This information may help you
understand the DLL dependencies of your application. The report contains the
following:
v the fully qualified name of the input
v a list of DLLs that the module imports
v any renaming of those DLLs that was performed

The following are examples of the DLL Rename utility reports:

Note: For any input module that does not reference a DLL, the report lists the
module name, but does not list any information about it.

The DLL Rename utility also provides a report when it successfully renames any
DLLs.

DLLRNAME Report: 1997/06/20 15:20:00

USERID.PROJECT.LOAD(PAHZAPP1)
The following is a list of DLLs that are imported:

IOSTREAM

Figure 56. Example of Output from DLLRNAME Utility - Query Only

DLLRNAME Report: 1997/06/20 15:45:00

USERID.PROJECT.LOAD(PAHZAPP1)
The following is a list of DLLs that are imported:

PAHZIOST which was renamed from IOSTREAM

Figure 57. Example of Output from DLLRNAME Utility

Chapter 17. DLL Rename Utility 359

Using the DLL Rename Utility under OS/390 Batch

The following is an example of JCL that you can use to rename a DLL under
OS/390 batch.:
//RENAME EXEC EDCDLLRN,GOPARM='LEopts / options'
//SYSIN DD *

modname1 modname2
modname3 modname4 oldname=newname

/*

where:

EDCDLLRN is an IBM-supplied procedure that runs the DLL rename utility. The
procedure is shipped in the data set CEE.SCEEPROC.

LEopts refers to OS/390 Language Environment runtime options. If you
want to receive messages in Kanji, use the NATLANG option. For
detailed information about OS/390 Language Environment runtime
options, see the OS/390 Language Environment Programming
Reference.

options you can enter valid options in uppercase or lowercase. The
following are valid options:

NOREPORT Does not generate output, unless you are
performing a query.

FORCE If the newname specified for a DLL is the same as
an existing DLL member name, the renamed DLL
erases and replaces the existing DLL.

modname is an existing program or DLL. You can enter more than one value
for modname. The modules can be fully qualified or can assume a
high-level qualifier of the current user prefix.

oldname is the member name of the existing DLL being referenced.

newname is the new DLL member name.

The following list shows the order for determining the default output data set name:
v DD:SYSPRINT, if defined
v DD:SYSTERM, if defined
v DD:SYSERR, if defined
v SYSOUT=* appended to the JOB log.

You can use an input file instead of specifying it in instream JCL. The input file must
contain the module names for each application or DLL and the corresponding
oldname=newname strings. The input file must also be assigned to DD SYSIN.

Notes:

1. If rename statements oldname=newname are not specified in the input, DLL
Rename utility queries the input modnames and lists the DLLs that they load.

2. If you are renaming a DLL that is shared by many applications, you should copy
the DLL (by using the COPYMOD command of IEBCOPY) to preserve the old
DLL and create the new DLL.

360 OS/390 V2R6.0 C/C++ User’s Guide

Example of Renaming a DLL under OS/390 Batch

To rename the DLL described in “DLL Redistribution Scenario” on page 357,

1. Query your application to find all imported DLLs
//QUERY EXEC PGM=EDCDLLRN
//SYSIN DD *
'userid.product.LOAD(PAHPGM1)'

/*

2. Run the DLL Rename utility to rename the class library DLL
//RENAME EXEC PGM=EDCDLLRN
//SYSIN DD *
'userid.product.load(PAHPGM1)' IOSTREAM=PAHZIOST
/*

3. Ship PAHPGM1 to your customers with the PAHZIOST DLL.

Using the DLL Rename Utility under TSO

The following is the syntax diagram for specifying all parameters directly with the
DLL Rename utility

Specifying DLLRNAME Parameters Directly

ÊÊ DLLRNAME

»

,

LEopt /

»

,

modname Ê

Ê »

,

oldname=newname

»

,

(option

ÊÍ

where:

LEopt refers to OS/390 Language Environment runtime options. If you
want to receive messages in Kanji, use the NATLANG option. For
detailed information about OS/390 Language Environment runtime
options, see the OS/390 Language Environment Programming
Reference.

modname is an existing program or DLL. You can enter more than one value
for modname. The modules can be fully qualified or can assume a
high-level qualifier of the current user prefix.

oldname is the member name of the existing DLL being referenced.

newname is the new DLL member name.

options you can enter valid options in uppercase or lowercase. The
following are valid options:

NOREPORT Does not generate output, unless you are
performing a query.

FORCE If the newname specified for a DLL is the same as

Chapter 17. DLL Rename Utility 361

an existing DLL member name, the renamed DLL
erases and replaces the existing DLL.

Specifying DLLRNAME Parameters Using an Input File

The following is the syntax diagram for using an input file to provide parameters to
the DLL Rename utility under TSO.

ÊÊ DLLRENAME

»

,

LEopt /

<infile
>outfile

Ê

Ê

»

,

(option

ÊÍ

where:

LEopt refers to OS/390 Language Environment runtime options. If you
want to receive messages in Kanji, use the NATLANG option. For
detailed information about OS/390 Language Environment runtime
options, see the OS/390 Language Environment Programming
Reference.

infile the name of the file that supplies input parameters to the DLL
Rename utility. It contains the module name for each application or
DLL and the corresponding oldname=newname strings.

If you do not specify an input file, the default is SYSIN.

outfile the file name for the output from the DLL Rename utility. The
following list shows the order for determining the default outfile
under TSO batch:
v DD:SYSPRINT, if defined
v DD:SYSTERM, if defined
v DD:SYSERR, if defined
v SYSOUT=* appended to the JOB log

Under TSO interactive, the default outfile destination is the terminal.

option You can enter valid options in uppercase or lowercase. These are
the valid options:

NOREPORT Does not generate output, unless you are
performing a query.

FORCE If the newname specified for a DLL is the same as
an existing DLL member name, the renamed DLL
erases and replaces the existing DLL.

Note: If there are no oldname=newname strings in the input, DLLRNAME queries the
input modnames and lists the DLLs that they load.

362 OS/390 V2R6.0 C/C++ User’s Guide

The OS/390 Language Environment runtime load library and the load library that
contains DLLRNAME must be allocated to the STEPLIB DD name. This data set is
called CEE.SCEERUN.

If you have not allocated the output load-library module, the data set is allocated
with the attributes of the input load-library module.

Example of Renaming a DLL under TSO

To rename the DLL described in “DLL Redistribution Scenario” on page 357, run the
Utility:
DLLRNAME 'userid.product.load(PAHPGM1)' IOSTREAM=PAHZIOST

Note: If you receive an error, run DLLRNAME as a query (without any
oldname=newname parameters) to see if any DLLs were renamed.

Chapter 17. DLL Rename Utility 363

364 OS/390 V2R6.0 C/C++ User’s Guide

Chapter 18. Filter Utility

This chapter describes how to use the CXXFILT utility to convert mangled names to
demangled names.

When OS/390 C++ compiles a program, it has the ability to encode function names.
It also has the ability to encode other identifiers to include type and scoping
information. This encoding process is called mangling. Mangled names ensure
type-safe linking.

Use the CXXFILT utility to convert these mangled names to demangled names. The
utility copies the characters from either a given file or from standard input, to
standard output. It replaces all mangled names with their corresponding demangled
names.

The CXXFILT utility demangles any of the following classes of mangled names
when the appropriate options are specified.

regular names
Names that appear within the context of a function name or a member
variable. For example, the mangled name __ls__7ostreamFPCc is
demangled as ostream::operator<<(const char*).

class names
Includes stand-alone class names that do not appear within the context of a
function name or a member variable. For example, the stand-alone class
name Q2_1X1Y is demangled as X::Y.

special names
Special compiler-generated class objects. For example, the
compiler-generated symbol name __vft1X is demangled as
X::virtual-fn-table-ptr.

ÊÊ CXXFILT
filename

»

,

(options

ÊÍ

options:

NOSYMMAP

SYMMAP

NOSIDEBYSIDE

SIDEBYSIDE

NOWIDTH

WIDTH(width)

NOREGULARNAME

REGULARNAME
Ê

Ê
NOCLASSNAME

CLASSNAME

NOSPECIALNAME

SPECIALNAME

The filename refers to the files that contain the mangled names to be demangled.
You may specify more than one file name, which can be a sequential file, or a PDS
member. If you specify no file name, CXXFILT reads from stdin.

© Copyright IBM Corp. 1996, 1999 365

The following section describes the options that you can use with the CXXFILT utility.

CXXFILT Options

You can use the following options with CXXFILT.

SYMMAP | NOSYMMAP

Default: NOSYMMAP

Produces a symbol map on standard output. This map contains a list of the
mangled names and their corresponding demangled names. The map only displays
the first 40 bytes of each demangled name; it truncates the rest. Mangled names
are not truncated.

If an input mangled name does not have a demangled version, the symbol mapping
does not display it.

The symbol mapping is displayed after the end of the input stream is encountered,
and after CXXFILT terminates.

SIDEBYSIDE | NOSIDEBYSIDE

Default: NOSIDEBYSIDE

Each mangled name that is encountered in the input stream is displayed beside its
corresponding demangled name. If you do not specify this option, then only the
demangled names are printed. In either case, trailing characters in the input name
that are not part of a mangled name appear next to the demangled name. For
example, if an extraneous xxxx is input with the mangled name pr__3FOOF, then the
SIDEBYSIDE option would produce this result:
FOO::pr() pr__3FOOFvxxxx

WIDTH(width) | NOWIDTH

Default: NOWIDTH

Prints demangled names in fields, width characters wide. If the name is shorter than
width, it is padded on the right with blanks; if longer, it is truncated to width. The
value of width must be greater than 0. If width is greater than the record width, then
the output is wrapped.

REGULARNAME | NOREGULARNAME

Default: REGULARNAME

This option demangles regular names such as pr__3FOOFv.

The mangled name that is supplied to CXXFILT is treated as a regular name by
default. Specifying the NOREGULARNAME option will turn the default off. For
example, specifying the CLASSNAME option without the NOREGULARNAME
option will cause CXXFILT to treat the mangled name as either a regular name or
stand-alone class name.

366 OS/390 V2R6.0 C/C++ User’s Guide

CLASSNAME | NOCLASSNAME

Default: NOCLASSNAME

This option demangles stand—alone class names such as Q2_1X1Y.

To request that the mangled names be treated as stand-alone class names only,
and never as a regular name, use both CLASSNAME and NOREGULARNAME.

SPECIALNAME | NOSPECIALNAME

Default: NOSPECIALNAME

Demangles special names, such as compiler-generated symbol names, for example
__vft1X.

To request that the mangled names be treated as special names only, and never as
regular names, use CXXFILT (SPECIALNAME NOREGULARNAME.

Unknown Type of Name

If you cannot specify the type of name, use CXXFILT (SPECIALNAME CLASSNAME. This
causes CXXFILT to attempt to demangle the name in the following order:
1. Regular name
2. Stand-alone class name
3. Special name

Under OS/390 Batch

The CXXFILT utility accepts input by two methods: from stdin or from a file.

The following example uses the CXXFILT cataloged procedure, from data set
CBC.SCBCPRC. CXXFILT reads from stdin (sysin), treats mangled names as regular
names, produces a symbol mapping, and uses a field width 15 characters. The JCL
follows:
//RUN EXEC CXXFILT,CXXPARM='(SYMMAP WIDTH(15)'...

//SYSIN DD *
pr__3FOOFvxxxx
__ls__7ostreamFPCc
__vft1X
/*

The output is:
FOO::pr() xxxx
ostream::operator<<(const char*)
__vft1X

C++ Symbol Mapping

demangled mangled
--------- -------
FOO::pr() pr__3FOOFv
ostream::operator<<(const char*) __ls__7ostreamFPCs

Chapter 18. Filter Utility 367

Notes:

1. Because the trailing characters xxxx in the input name pr__3FOOFvxxxx are not
part of a valid mangled name, and the SIDEBYSIDE option is not on, the trailing
characters are not demangled.

Note: In the symbol mappings, the trailing characters xxxx are not displayed.

2. The __vft1X input is not demangled and does not appear in the symbol
mapping because it is a special name, and the SPECIALNAME option was not
specified.

The second method of giving input to CXXFILT is to supply it in one or more files.
Fixed and variable file record formats are supported. Each line of a file can have
one or more names separated by space. In the example below, mangled names are
treated either as regular names or as special names (the special names are
compiler-generated symbol names). Demangled names are printed in fields 35
characters wide, and output is in side-by-side format.

The FILE1 contains the following two mangled names:
pr__3FOOFv
__vft1X

You can use the following JCL:
//RUN EXEC CXXFILT,CXXPARM='FILE1 (SPECIALNAME WIDTH(35) SIDEBYSIDE'

The CXXFILT utility terminates when it reads the end-of-file.

Under TSO

The CXXFILT utility accepts input by two methods: from stdin or from a file.

With the first method, enter names after invoking CXXFILT. You can specify one or
more names on one or more lines. The output is displayed after you press Enter.
Names that are successfully demangled, as well as those which are not demangled,
are displayed in the same order as they were entered. To indicate end of input,
enter /*.

In the following example, CXXFILT treats mangled names as regular names,
produces a symbol mapping, and uses a field width 15 characters wide.
user> CXXFILT (SYMMAP WIDTH(15)
user> pr__3FOOFvxxxx
reply< FOO::pr() xxxx
user> __ls__7ostreamFPCc
reply> ostream::operator<<(const char*)
user> __vft1X
reply> __vft1X
user> /*

reply> C++ Symbol Mapping
reply>
reply> demangled mangled
reply> --------- -------
reply> FOO::pr() pr__3FOOFv
reply> ostream::operator<<(const char*) __ls__7ostreamFPCs

368 OS/390 V2R6.0 C/C++ User’s Guide

Notes:

1. Because the trailing characters xxxx in the input name pr__3FOOFvxxxx are not
part of a valid mangled name, and the SIDEBYSIDE option is not on, the trailing
characters are not demangled.

Note: In the symbol mappings, the trailing characters xxxx are not displayed.

2. The __vft1X input is not demangled and does not appear in the symbol
mapping because it is a special name, and the SPECIALNAME option was not
specified.

3. The symbol mapping is displayed only after /* requests CXXFILT termination

The second method of giving input to CXXFILT is to supply it in one or more files.
CXXFILT supports fixed and variable file record formats. Each line of a file can have
one or more names separated by space. In the example below, mangled names are
treated either as regular names or as special names (the special names are
compiler-generated symbol names). Demangled names are printed in fields 35
characters wide, and output is in side-by-side format.

The FILE1 contains the following two mangled names:
pr__3FOOFv
__vft1X

For example, enter the following command:
cxxfilt FILE1 (SPECIALNAME WIDTH(35) SIDEBYSIDE

The above command produces the following output:
FOO::pr() pr__3FOOFv
X::virtual-fn-table-ptr __vft1X

CXXFILT terminates when it reads the end-of-file.

Chapter 18. Filter Utility 369

370 OS/390 V2R6.0 C/C++ User’s Guide

Chapter 19. DSECT Conversion Utility

This chapter describes how to use the DSECT conversion utility, which generates a
structure to map an assembler DSECT. This utility is used when a C or C++
program calls or is called by an Assembler program, and a structure is required to
map the area passed.

You assemble the source for the assembler DSECT by using the High Level
Assembler, and specifying the ADATA option. (See HLASM Programmer’s Guide, for
a description of the ADATA option.) The DSECT utility then reads the SYSADATA file
that is produced by the High Level Assembler and produces a file that contains the
equivalent C structure structure according to the options specified.

DSECT Utility Options

The options that you can use to control the generation of the C or C++ structure are
as follows. You can specify them in uppercase or lowercase, separating them by
spaces or commas.

Table 36. DSECT Utility Options, Abbreviations, and IBM-Supplied Defaults

DSECT Utility Option Abbreviated Name IBM Supplied Default

SECT[(name,...)] None SECT(ALL)

BITF0XL | NOBITF0XL BITF | NOBITF NOBITF0XL

COMMENT[(delim,...)] | NOCOMMENT COM | NOCOM COMMENT

DEFSUB | NODEFSUB DEF | NODEF DEFSUB

EQUATE[(suboptions,...)] | NOEQUATE EQU | NOEQU NOEQUATE

HDRSKIP[(length)] | NOHDRSKIP HDR(length) | NOHDR NOHDRSKIP

LOCALE(name) | NOLOCALE LOC | NOLOC NOLOCALE

INDENT[(count)] | NOINDENT IN(count) | NOIN INDENT(2)

LOWERCASE | NOLOWERCASE LC | NOLC LOWERCASE

OPTFILE(filename) | NOOPTFILE OPTF | NOOPTF NOOPTFILE

PPCOND[(switch)] | NOPPCOND PP(switch) | NOPP NOPPCOND

SEQUENCE | NOSEQUENCE SEQ | NOSEQ NOSEQUENCE

UNNAMED | NOUNNAMED UNN | NOUNN NOUNNAMED

OUTPUT[(filename)] OUT[(filename)] OUTPUT(DD:EDCDSECT)

RECFM[(recfm)] None C/C++ Library defaults

LRECL[(lrecl)] None C/C++ Library defaults

BLKSIZE[(blksize)] None C/C++ Library defaults

SECT

DEFAULT: SECT(ALL)

The SECT option specifies the section names for which structures are to produced.
The section names can be either CSECT or DSECT names. They must exist in the
SYSADATA file that is produced by the Assembler. If you do not specify the SECT

© Copyright IBM Corp. 1996, 1999 371

option or if you specify SECT(ALL), structures are produced for all CSECTs and
DSECTs defined in the SYSADATA file, except for private code and unnamed
DSECTs.

If the High Level Assembler is run with the BATCH option, only the section names
defined within the first program can be specified on the SECT option. If you specify
SECT(ALL) (or select it by default), only the sections from the first program are
selected.

BITF0XL | NOBITF0XL

DEFAULT: NOBITF0XL

Specify the BITF0XL option when the bit fields are mapped into a flag byte as in the
following example:
FLAGFLD DS F

ORG FLAGFLD+0
B1FLG1 DC 0XL(B'10000000')'00' Definition for bit 0 of 1st byte
B1FLG2 DC 0XL(B'01000000')'00' Definition for bit 1 of 1st byte
B1FLG3 DC 0XL(B'00100000')'00' Definition for bit 2 of 1st byte
B1FLG4 DC 0XL(B'00010000')'00' Definition for bit 3 of 1st byte
B1FLG5 DC 0XL(B'00001000')'00' Definition for bit 4 of 1st byte
B1FLG6 DC 0XL(B'00000100')'00' Definition for bit 5 of 1st byte
B1FLG7 DC 0XL(B'00000010')'00' Definition for bit 6 of 1st byte
B1FLG8 DC 0XL(B'00000001')'00' Definition for bit 7 of 1st byte

ORG FLAGFLD+1
B2FLG1 DC 0XL(B'10000000')'00' Definition for bit 0 of 2nd byte
B2FLG2 DC 0XL(B'01000000')'00' Definition for bit 1 of 2nd byte
B2FLG3 DC 0XL(B'00100000')'00' Definition for bit 2 of 2nd byte
B2FLG4 DC 0XL(B'00010000')'00' Definition for bit 3 of 2nd byte

When the bit fields are mapped as shown in the above example, you can use the
following code to test the bit fields:
TM FLAGFLD,L'B1FLG1 Test bit 0 of byte 1
Bx label Branch if set/not set

When you specify the BITF0XL option, the length attribute of the following fields
provides the mapping for the bits within the flag bytes.

The length attribute of the following fields is used to map the bit fields if a field
conforms to the following rules:
v The field does not have a duplication factor of zero.
v The field has a length between 1 and 4 bytes and does not have a bit length.
v The field does not have more than one nominal value.

and the following fields conform to the following rules:
v Has a Type attribute of ’B’, ’C’, or ’X’.
v Has the same offset as the field (or consecutive fields have overlapping offsets).
v Has a duplication factor of zero.
v Does not have more than one nominal value.
v Has a length attribute between 1 and 255 and does not have a bit length.
v The length attribute maps one bit or consecutive bits. for example, B’10000000’

or B’11000000’, but not B’10100000’.

The fields must be on consecutive lines and must overlap a named field. If the
fields above are used to define the bits for a field, EQU statements that follow the
field are not used to define the bit fields.

372 OS/390 V2R6.0 C/C++ User’s Guide

COMMENT | NOCOMMENT

DEFAULT: COMMENT

The COMMENT option specifies whether the comments on the line where the field is
defined will be placed in the structure produced.

If you specify the COMMENT option without a delimiter, the entire comment is placed in
the structure.

If you specify a delimiter, any comments that follow the delimiter are skipped and
are not placed in the structure. You can remove changes that are flagged with a
particular delimiter. The delimiter cannot contain imbedded spaces or commas. The
case of the delimiter and the comment text is not significant. You can specify up to
10 delimiters, and they can contain up to 10 characters each.

DEFSUB | NODEFSUB

DEFAULT: DEFSUB

The DEFSUB option specifies whether #define directives will be built for fields that
are part of a union or substructure.

If the DEFSUB option is in effect, fields within a substructure or union have the field
names prefixed by an underscore. A #define directive is written at the end of the
structure to allow the field name to be specified directly as in the following example.
struct dsect_name {
int field1;
struct {
int _subfld1;
short int _subfld2;
unsigned char _subfld3[4];
} field2;

}
#define subfld1 field2._subfld1
#define subfld2 field2._subfld2
#define subfld3 field2._subfld3

If the DEFSUB option is in effect, the fields that are prefixed by an underscore may
match the name of another field within the structure. No warning is issued.

EQUATE | NOEQUATE

DEFAULT: NOEQUATE

The EQUATE option specifies whether the EQU statements following a field are to be
used to define bit fields, to generate #define directives, or are to be ignored.

The suboptions specify how the EQU statement is used. You can specify one or
more of the suboptions, separating them by spaces or commas. If you specify more
than one suboption, the EQU statements that follow a field are checked to see if they
are valid for the first suboption. If so, they are formatted according to that option.
Otherwise, the subsequent suboptions are checked to see if they are applicable.

Chapter 19. DSECT Conversion Utility 373

If you specify the EQUATE option without suboptions, EQUATE(BIT) is used. If you
specify NOEQUATE (or select it by default), the EQU statements that follow a field are
ignored.

You can specify the following suboptions for the EQUATE option:

BIT Indicates that the value for an EQU statement is used to define the bits for a
field where the field conforms to the following rules:
v The field does not have a duplication factor of zero.
v The field has a length between 1 and 4 bytes and has a bit length that is

a multiple of 8.
v The field does not have more than one nominal value.

and the EQU statements that follow the field conform to the following rules:
v The value for the EQU statements that follow the field mask consecutive

bits (for example, X’80’ followed by X’40’).
v The value for an EQU statement masks one bit or consecutive bits for

example, B’10000000’ or B’11000000’, but not B’10100000’.
v Where the length of the field is greater than 1 byte, the bits for the

remaining bytes can be defined by providing the EQU statements for the
second byte after the EQU statement for the first byte.

v The value for the EQU statement is not a relocatable value.

When you specify EQUATE(BIT), the EQU statements are converted as in the
following example:
FLAGFLD DS H
FLAG21 EQU X'80'
FLAG22 EQU X'40'
FLAG23 EQU X'20'
FLAG24 EQU X'10'
FLAG25 EQU X'08'
FLAG26 EQU X'04'
FLAG27 EQU X'02'
FLAG28 EQU X'01'
FLAG2A EQU X'80'
FLAG2B EQU X'40'
struct dsect_name {
unsigned int flag21 : 1,

flag22 : 1,
flag23 : 1,
flag24 : 1,
flag25 : 1,
flag26 : 1,
flag27 : 1,
flag28 : 1,
flag2a : 1,
flag2b : 1,

: 6;
}

BITL Indicates that the length attribute for an EQU statement is used to define the
bits for a field where the field conforms to the following rules:
v The field does not have a duplication factor of zero.
v The field has a length between 1 and 4 bytes and has a bit length that is

a multiple of 8.
v The field does not have more than one nominal value.

and the EQU statements that follow the field conform to the following rules:
v The value that is specified for the EQU statement has the same or

overlapping offset as the field.
v The length attribute for the EQU statement is between 1 and 255.

374 OS/390 V2R6.0 C/C++ User’s Guide

v The length attribute for the EQU statement masks one bit or consecutive
bits, for example, B’10000000’ or B’11000000’, but not B’10100000’.

v The value for the EQU statement is a relocatable value.

When you specify EQUATE(BITL), the EQU statements are converted as in the
following example:
BYTEFLD DS F
B1FLG1 EQU BYTEFLD+0,B'10000000'
B1FLG2 EQU BYTEFLD+0,B'01000000'
B1FLG3 EQU BYTEFLD+0,B'00100000'
B1FLG4 EQU BYTEFLD+0,B'00010000'
B1FLG5 EQU BYTEFLD+0,B'00001000'
B1FLG6 EQU BYTEFLD+0,B'00000100'
B1FLG7 EQU BYTEFLD+0,B'00000010'
B1FLG8 EQU BYTEFLD+0,B'00000001'
B2FLG1 EQU BYTEFLD+1,B'10000000'
B2FLG2 EQU BYTEFLD+1,B'01000000'
B2FLG3 EQU BYTEFLD+1,B'00100000'
B2FLG4 EQU BYTEFLD+1,B'00010000'
struct dsect_name {
unsigned int b1flg1 : 1,

b1flg2 : 1,
b1flg3 : 1,
b1flg4 : 1,
b1flg5 : 1,
b1flg6 : 1,
b1flg7 : 1,
b1flg8 : 1,
b2flg1 : 1,
b2flg2 : 1,
b2flg3 : 1,
b2flg4 : 1,

: 20;
}

DEF Indicates that the EQU statements following a field are used to build #define
directives to define the possible values for a field. The #define directives
are placed after the end of the structure. The EQU statements should not
specify a relocatable value.

When you specify EQUATE(DEF), the EQU statements are converted as in the
following example:
FLAGBYTE DS X
FLAG1 EQU X'80'
FLAG2 EQU X'20'
FLAG3 EQU X'10'
FLAG4 EQU X'08'
FLAG5 EQU X'06'
FLAG6 EQU X'01'
struct dsect_name {
unsigned char flagbyte;
}

/* Values for flagbyte field */
#define flag1 0x80
#define flag2 0x20
#define flag3 0x10
#define flag4 0x08
#define flag5 0x06
#define flag6 0x01

HDRSKIP | NOHDRSKIP

DEFAULT: NOHDRSKIP

Chapter 19. DSECT Conversion Utility 375

The HDRSKIP option specifies that the fields within the specified number of bytes
from the start of the section are to be skipped. Use this option where a section has
a header that is not required in the structure produced.

The value that is specified on the HDRSKIP option indicates the number of bytes at
the start of the section that are to be skipped. HDRSKIP(0) is equivalent to
NOHDRSKIP.

In the following example, if you specify HDRSKIP(8), the first two fields are skipped
and only the remaining two fields are built into the structure.
SECTNAME DSECT
PREFIX1 DS CL4
PREFIX2 DS CL4
FIELD1 DS CL4
FIELD2 DS CL4
struct sectname {
unsigned char field1[4];
unsigned char field2[4];
}

If the value specified for the HDRSKIP option is greater than the length of the section,
the structure is not be produced for that section.

INDENT | NOINDENT

DEFAULT: INDENT(2)

The INDENT option specifies the number of character positions that the fields,
unions, and substructures are indented. Turn off indentation by specifying INDENT(0)
or NOINDENT. The maximum value that you can specify for the INDENT option is
32767.

LOCALE | NOLOCALE

The LOCALE(name) specifies the name of a locale to be passed to the setlocale()
function. Specifying LOCALE without the name parameter is equivalent to passing the
NULL string to the setlocale() function.

The structure produced contains the left and right brace, and left and right square
bracket, backslash, and number sign which have different code point values for the
different code pages. When the LOCALE option is specified, and these characters are
written to the output file, the code point from the LC_SYNTAX category for the
specified locale is used.

The default is NOLOCALE.

You can abbreviate the option to LOC(name) or NOLOC.

LOWERCASE | NOLOWERCASE

DEFAULT: LOWERCASE

The LOWERCASE option specifies whether the field names within the C structure are to
be converted to lowercase or left as entered. If you specify LOWERCASE, all the field

376 OS/390 V2R6.0 C/C++ User’s Guide

names are converted to lowercase. If you specify NOLOWERCASE, the field names are
built into the structure in the case in which they were entered in the assembler
section.

OPTFILE | NOOPTFILE

The OPTFILE(filename) option specifies the filename that contains the records that
specify the options to be used for processing the sections. The records must be as
follows:

v The lines must begin with the SECT option, and only one section name must be
specified. The options following determine how the structure is produced for the
specified section. The section name must only be specified once.

v The lines may contain the options BITF0XL, COMMENT, DEFSUB, EQUATE, HDRSKIP,
INDENT, LOWERCASE, PPCOND, and UNNAMED, separated by spaces or commas. These
override the options that are specified on the command line for the section.

The OPTFILE option is ignored if the SECT option is also specified on the command
line.

The default is NOOPTFILE.

You can abbreviate the option to OPTF(filename) or NOOPTF.

PPCOND | NOPPCOND

DEFAULT: NOPPCOND

The PPCOND option specifies whether preprocessor directives will be built around the
structure definition to prevent duplicate definitions.

If you specify PPCOND, the following are built around the structure definition.
#ifndef switch
#define switch...

structure definition for section...

#endif

where switch is the switch specified on the PPCOND option or the section name
prefixed and suffixed by two underscores. For example, _ _name_ _.

If you specify a switch, the #ifndef and #endif directives are placed around all
structures that are produced. If you do not specify a switch, the #ifndef and #endif
directives are placed around each structure produced.

SEQUENCE | NOSEQUENCE

DEFAULT: NOSEQUENCE

The SEQUENCE option specifies whether sequence numbers will be placed in columns
73 to 80 of the output record. If you specify the SEQUENCE option, the structure is
built into columns 1 to 72 of the output record, and sequence numbers are placed

Chapter 19. DSECT Conversion Utility 377

in columns 73 to 80. If you specify NOSEQUENCE (or select it by default), sequence
numbers are not generated, and the structure is built within all available columns in
the output record.

If the record length for the output file is less than 80 characters, the SEQUENCE option
is ignored.

UNNAMED | NOUNNAMED

DEFAULT: NOUNNAMED

The UNNAMED option specifies that names are not generated for the unions and
substructures within the main structure.

OUTPUT

DEFAULT: OUTPUT(DD:EDCDSECT)

The structures that are produced are, by default, written to the EDCDSECT DD
statement. You can use the OUTPUT option to specify an alternative DD statement or
data set name to write the structure. You can specify any valid file name up to 60
characters in length. The file name specified will be passed to fopen() as entered.

RECFM

DEFAULT: C/C++ Library default

The RECFM option specifies the record format for the file to be produced. You can
specify up to 10 characters. If it is not specified, the C or C++ library defaults are
used.

LRECL

DEFAULT: C/C++ Library default

The LRECL option specifies the logical record length for the file to be produced. The
logical record length that is specified must not be greater than 32767. If it is not
specified, the C or C++ library defaults will be used.

BLKSIZE

DEFAULT: C/C++ Library default

The BLKSIZE option specifies the block size for the file to be produced. The block
size that is specified must not be greater than 32767. If it is not specified, the C or
C++ library defaults will be used.

Generation of Structures

The structure is produced as follows according to the options in effect.

v The section name is used as the structure name. A #pragma pack(packed) is
generated at the top of the file, and a #pragma pack(reset) is generated at the
end to ensure that the structure matches the assembler section. For example:

378 OS/390 V2R6.0 C/C++ User’s Guide

#pragma pack(packed)
struct dsect_name {...

};
#pragma pack(reset)

v Any nonalphanumeric characters in the section or field names are converted to
underscores. Duplicate names may be generated when the field names are
identical except for the national character. No warning is issued.

v Where fields overlap, a substructure or union is built within the main structure. A
substructure is produced where possible. When substructures and unions are
built, the DSECT utility generates the structure and unions names.

v The substructures and unions within the main structure are indented according to
the INDENT option unless the record length is too small to permit any further
indentation.

v Fillers are added within the structure when required. The DSECT utility generates a
filler name.

v Where there is no direct equivalent for an assembler definition within the C or
C++ language, the field is defined as a character field.

v If a field has a duplication factor of zero, but cannot be used as a structure
name, the field is defined as though the duplication factor of zero was eliminated.

v Where a line within the assembler input consists of an operand with a duplication
factor of zero (for alignment), followed by the field definition, the first operand is
skipped. For example:
FIELDA DS OF,CLB

is treated as though the following was specified.
FIELDA DS CLB

v When the COMMENT option is in effect, the comment on the line that follows the
definition of the field is placed in the structure. The comment is placed on the
same line as the field definition where possible, or on the following line.

/* is removed from the beginning of comments, and */ is removed from the end of
comments. Any remaining instances of */ in the comment are converted to **.

Each field within the section is converted to a field within the structure, as the
following examples show:

v Bit length fields

If the field has a bit length that is not a multiple of 8, it is converted as follows.
Otherwise, it is converted according to the field type.
DS CL.n unsigned int name : n; where n is from 1 to 31.
DS CL.n unsigned char name[x]; where n is greater than 32. x will be the

number of bytes that are required (that is, the bit length / 8 + 1).
DS 5CL.n unsigned char name[x]; where x will be the number of bytes

required (that is, the duplication factor * bit length / 8 + 1).

v Characters
DS C unsigned char name;
DS CL2 unsigned char name[2];
DS 4CL2 unsigned char name[4][2];

v Graphic Characters
DS G wchar_t name;
DS GL1 unsigned char name;
DS GL2 wchar_t name;
DS GL3 unsigned char name[3];

Chapter 19. DSECT Conversion Utility 379

DS 4GL1 unsigned char name[4];
DS 4GL2 wchar_t name[4];
DS 4GL3 unsigned char name[4][3];

v Hexadecimal Characters
DS X unsigned char name;
DS XL2 unsigned char name[2];
DS 4XL2 unsigned char name[4][2];

v Binary fields
DS B unsigned char name;
DS BL2 unsigned char name[2];
DS 4BL2 unsigned char name[4][2];

v Half and Fullword Fixed-point
DS F int name;
DS H short int name;
DS FL1 or HL1 char name;
DS FL2 or HL2 short int name;
DS FL3 or HL3 int name : 24;
DS FLn or HLn unsigned char name[n]; where n is greater than

4.
DS 4F int name[4];
DS 4H short int name[4];
DS 4FL1 or 4HL1 char name[4];
DS 4FL2 or 4HL2 short int name[4];
DS 4FL3 or 4HL3 unsigned char name[4][3];
DS 4FLn or 4HLn unsigned char name[4][n]; where n is greater

than 4.

v Floating Point
DS E float name;
DS D double name;
DS L long double name;
DS 4E float name[4];
DS 4D double name[4];
DS 4L long double name[4];
DS EL4 or DL4 or LL4

float name;
DS EL8 or DL8 or LL8

double name;
DS LL16 long double name;
DS E, D or L unsigned char name[n]; where n is other than 4, 8, or 16.

v Packed Decimal
DS P unsigned char name;
DS PL2 unsigned char name[2];
DS 4PL2 unsigned char name[4][2];

v Zoned Decimal
DS Z unsigned char name;
DS ZL2 unsigned char name[2];
DS 4ZL2 unsigned char name[4][2];

v Address
DS A void *name;
DS AL1 unsigned char name;
DS AL2 unsigned short name;
DS AL3 unsigned int name : 24;
DS 4A void *name[4];
DS 4AL1 unsigned char name[4];

380 OS/390 V2R6.0 C/C++ User’s Guide

DS 4AL2 unsigned short name[4];
DS 4AL3 unsigned char name[4][3];

v Y-type Address
DS Y unsigned short name;
DS YL1 unsigned char name;
DS 4Y unsigned short name[4];
DS 4YL1 unsigned char name[4];

v S-type Address (Base and displacement)
DS S unsigned short name;
DS SL1 unsigned char name;
DS 4S unsigned short name[4];
DS 4SL1 unsigned char name[4];

v External Symbol Address
DS V void *name;
DS VL3 unsigned int name : 24;
DS 4V void *name[4];
DS 4VL3 unsigned char name[4][3];

v External Dummy Section Offset
DS Q unsigned int name;
DS QL1 unsigned char name;
DS QL2 unsigned short name;
DS QL3 unsigned int name : 24;
DS 4Q unsigned int name[4];
DS 4QL1 unsigned char name[4];
DS 4QL2 unsigned short name[4];
DS 4QL3 unsigned char name[4][3];

v Channel Command Words

When a CCW, CCW0, or CCW1 assembler instruction is present within the
section, a typedef ccw0_t or ccw1_t is defined to map the format of the CCW.

The CCW, CCW0, or CCW1 is built into the structure as follows:
CCW cc,addr,flags,count ccw0_t name;
CCW0 cc,addr,flags,count ccw0_t name;
CCW1 cc,addr,flags,count ccw1_t name;

Under OS/390 Batch

You can use the IBM-supplied cataloged procedure EDCDSECT to execute the DSECT
utility as in the following example.

EDCDSECT invokes the High Level Assembler to assemble the source that is provided
with the ADATA option. It then executes the DSECT utility to produce the structure. It
writes the structure to the data set that is specified by the OUTFILE parameter,

KNOWN: - The assembler source name is FRED.SOURCE(TESTASM).
- The structure is to be written to FRED.INCLUDE(TESTASM).
- The required DSECT Utility options are EQU(BIT).

USE THE FOLLOWING JCL:
//DSECT EXEC PROC=EDCDSECT,
// INFILE='FRED.SOURCE(TESTASM)',
// OUTFILE='FRED.INCLUDE(TESTASM)',
// DPARM='EQU(BIT)'

Figure 58. Running the DSECT Utility under OS/390 Batch

Chapter 19. DSECT Conversion Utility 381

unless the OUTPUT option is also specified. A report that indicates the options in
effect and any error messages is written to SYSOUT.

If the assembler source requires macros or copy members from a macro library,
include them on the SYSLIB DD for the ASSEMBLY step.

The parameters to the EDCDSECT procedure are:

Table 37. EDCDSECT Procedure Parameters

Parameter Description

INFILE Input assembler source data set name. This option must be provided.

OUTFILE The data set name for the file into which the structure is written.

If you do not specify an OUTFILE name, a temporary data set is generated.

APARM High Level Assembler options.

DPARM DSECT Utility options.

Under TSO

If you have REXX installed, you can run the DSECT utility under TSO by using the
CDSECT EXEC. The format of the parameters for the CDSECT EXEC is:

ÊÊ CDSECT infile outfile Ê

Ê

»

»

.

(
option .

ASM
asmopts

ÊÍ

where infile specifies the file name of the assembler source program containing the
required section. outfile specifies the file that the structure produced is written to,
and options are any valid DSECT utility options. If you specify ASM, any following
options must be High-Level Assembler options. The ADATA is specified by default.

When the CDSECT command is executed, the High Level Assembler is executed with
the required options. The DSECT utility is then executed with the specified options. A
report of the options and any error messages will be displayed on the terminal.

KNOWN: - The assembler source name is FRED.SOURCE(TESTASM).
- The structure is to be written to FRED.INCLUDE(TESTASM).
- The required DSECT Utility options are EQU(BIT).

USE THE FOLLOWING COMMAND:
CDSECT 'FRED.SOURCE(TESTASM)' 'FRED.INCLUDE(TESTASM)' (EQU(BIT)

Figure 59. Running the DSECT Utility under TSO

382 OS/390 V2R6.0 C/C++ User’s Guide

If the assembler source requires macros or copy members from a macro library,
issue the ALLOCATE command to allocate the required macro libraries to the SYSLIB
DD statement before issuing the CDSECT command.

Chapter 19. DSECT Conversion Utility 383

384 OS/390 V2R6.0 C/C++ User’s Guide

Chapter 20. Coded Character Set and Locale Utilities

This chapter describes the coded character set conversion utilities and the
localedef utility. The coded character set conversion utilities help you to convert a
file from one coded character set to another. The localedef utility allows you to
define the language and cultural conventions that your environment uses.

Coded Character Set Conversion Utilities

These are the Coded Character Set Conversion utilities that you may find useful
prior to compiling:

iconv Converts a file from one coded character set encoding to another. You can
use iconv to convert C source code before compilation or to convert input
files. The standard C library functions such as iconv_open(), iconv(), and
iconv_close() are called from the iconv utility to perform coded character
set translation. Any program that requires coded character set translation
can call these functions. For more information on these functions, refer to
the OS/390 UNIX System Services Command Reference.

genxlt Generates a translate table that the iconv utility and the iconv family of
functions can use to convert coded character sets. It can be used to build
code set converters for code pages that are not supplied with OS/390
C/C++, or to build code set conversions for existing code pages.

The genxlt utility runs under OS/390 batch and TSO. The iconv utility runs under
OS/390 Batch, TSO, and the OS/390 shell. The iconv_open(), iconv(), and
iconv_close() functions can be called under these environments and CICS/ESA.

iconv Utility

The iconv utility converts the characters from the input file from one coded
character set (code set) definition to another code set definition, and writes the
characters to the output file.

The iconv utility uses the iconv_open(), iconv(), and iconv_close() functions to
perform the conversion requested. It creates one character in the output file for
each character in the input file, and does not perform padding or truncation.

When conversions are performed between single-byte code pages, the output files
are the same length as the input files. When conversions are performed between
double-byte code pages, the output files may be longer or shorter than the input
files because the shift-out and shift-in characters may be added or removed. If you
are using the iconv utility under the OS/390 shell, see OS/390 UNIX System
Services Command Reference for details on syntax and uses. For more information
on the iconv() function, refer to the OS/390 C/C++ Run-Time Library Reference.

Under OS/390 Batch

JCL procedure EDCICONV invokes the iconv utility to copy the input data set to the
output data set and convert the characters from the input code page to the output
code page.

The EDCICONV procedure has the following parameters:

INFILE The data set name for the input data set

© Copyright IBM Corp. 1996, 1999 385

OUTFILE The data set name for the output data set

FROMC The name of the code set in which the input data is encoded

TOC The name of the code set to which the output data is to be
converted

For example:
//ICONV EXEC PROC=EDCICONV,
// INFILE='FRED.INFILE',
// OUTFILE='FRED.OUTFILE',
// FROMC='IBM-037',
// TOC='IBM-1047'

The output data set has the record length and record format of the existing data
set. If the data set does not exist, and you have not specified the DCB attributes,
the record format defaults to variable. If the output data set has a fixed record
format, all the records created must have the same length as the output data set.
Otherwise the iconv utility will fail. No padding or truncation is performed. If the
output data set has variable length records, the record length must be large enough
for the longest record created.

For more information, refer to the OS/390 C/C++ Programming Guide.

Under TSO

TSO CLIST ICONV invokes the iconv utility to copy the input data set to the output
data set and convert the characters from the input code page to the output code
page.

The parameters of the ICONV CLIST are as follows:

ÊÊ ICONV infile outfile FROMCODE(fromcode) TOCODE(tocode) ÊÍ

Where:

infile The input data set name.

outfile The output data set name.

fromcode The name of the code set in which the input data is encoded.

tocode The name of the code set to which the output data is to be
converted.

For example,
ICONV INPUT.FILE OUTPUT.FILE FROMCODE(IBM-037) TOCODE(IBM-1047)

The output data set has the record length and record format of the existing data
set. If the data set does not exist, and you have not specified the DCB attributes,
the record format defaults to variable. If the output data set has a fixed record
format, all the records created must have the same length as the output data set.
Otherwise the iconv utility will fail. No padding or truncation is performed. If the
output data set has variable length records, the record length must be large enough
for the longest record created.

For more information, refer to the OS/390 C/C++ Programming Guide.

386 OS/390 V2R6.0 C/C++ User’s Guide

Under the OS/390 Shell

iconv [–sc] –f oldset –t newset [file ...] iconv –l[–v]

iconv converts characters in file (or from stdin if you do not specify a file) from
one code page set to another. It writes the converted text to stdout. See OS/390
C/C++ Programming Guide for more information about the code sets that are
supported for this command.

If the input contains a character that is not valid in the source code set, iconv
replaces it with the byte 0xff and continues, unless the –c option is specified.

If the input contains a character that is not valid in the destination code set,
behavior depends on the system's iconv() function. See OS/390 C/C++ Run-Time
Library Reference for more information about the character that is used for
converting incorrect characters.

See OS/390 C/C++ Programming Guide for a list of code pages that the OS/390
shell supports.

You can use iconv to convert singlebyte data or doublebyte data.

Options:

–c Characters that contain conversion errors are not written to the
output. By default, characters not in the source character set are
converted to the value 0xff and written to the output.

–f oldset oldset can be either the code set name or a pathname to a file that
contains an external code set. Specifies the current code set of the
input.

–l Lists code sets in the internal table. This option is not supported.

–s Suppresses all error messages about faulty encodings.

–t newset Specifies the destination code set for the output. newset can be
either the code set name or a pathname to a file that contains an
external code set.

–v Specifies verbose output.

genxlt Utility

Under TSO, you specify the options on the command line. Under OS/390 batch, the
options are specified on the EXEC PARM, and may be separated by spaces or
commas. If you specify the same option more than once, genxlt uses the last
specification.

DBCS|NODBCS Specifies whether genxlt will convert the DBCS characters within
shift-out and shift-in characters. You should only specify the DBCS
option when you are converting an EBCDIC code page to a
different EBCDIC code page.

If the DBCS option is specified, when a shift-out character is
encountered in the input, the characters up to the shift-in character
are copied to the output, and not converted. There must be an even
number of characters between the shift-out and shift-in characters,
and the characters must be valid DBCS characters.

Chapter 20. Coded Character Set and Locale Utilities 387

If you specify the NODBCS option, genxlt treats all the characters as
a single SBCS character, and does not perform a check of DBCS
characters.

For more information, refer to the OS/390 C/C++ Programming Guide.

Under OS/390 Batch

JCL procedure EDCGNXLT in invokes the genxlt utility to read the character
conversion information and produce the conversion table. It invokes the system
Linkage Editor to build the load module.

The EDCGNXLT procedure has the following parameters:

INFILE The data set name for the file that contains the character
conversion information.

OUTFILE The data set name for the output file that is to contain the
link-edited conversion table.

GOPT Options for the genxlt utility.

For example:
//GENXLT EXEC PROC=GENXLT,
// INFILE='FRED.GENXLT.SOURCE(EDCUEAEY)',
// OUTFILE='FRED.GENXLT.LOADLIB(EDCUEAEY)',
// GOPT='DBCS'

Under TSO

TSO CLIST GENXLT invokes the genxlt utility to read the character conversion
information and produce the conversion table. It then invokes the system Linkage
Editor to build the load module.

The general parameters for GENXLT CLIST are as follows:

ÊÊ GENXLT infile outfile
DBCS NODBCS

ÊÍ

Where:

infile The file name for the file that contains the character conversion information.

outfile The file name for the output file that is to contain the link-edited conversion
table. :edl

For example:
GENXLT GENXLT.SOURCE(EDCUEAEY) GENXLT.LOADLIB(EDCUEAEY) DBCS

localedef Utility

A locale is a collection of data that defines language and cultural conventions.
Locales consist of various categories, that are identified by name, that characterize
specific aspects of your cultural environment.

The localedef utility generates locales according to the rules that are defined in the
locale definition file. A user can create his own customized locale definition file.

388 OS/390 V2R6.0 C/C++ User’s Guide

The localedef utility reads the locale definition file and produces a locale object
that the locale specific library functions can use. You invoke it by either a JCL
procedure or a TSO CLIST, and call the runtime function setlocale() to activate it
during the application’s execution.

The options for the localedef utility are as follows. Spaces or commas can
separate the options. If you specify the same option more than once, localedef
uses the last option that you specified.

Under OS/390 batch, you specify the options on the EXEC PARM and separate
them by spaces or commas.

Under TSO, the you sepcify the options on the command line.

CHARMAP(name) Specifies the member name of the file that contains
the definition of the encoded character set. If you
do not specify this option, the localedef utility
assumes the encoded character set IBM-1047.

The name that is specified for the CHARMAP is the
member name within a partitioned dataset, with the
− (dash) sign converted to an @ (at) sign.

FLAG(W|E) The FLAG option controls whether localedef issues
warning messages. If you specify FLAG(W),
localedef issues warning and error messages. If
you specify FLAG(E), localedef issues only the
error messages.

BLDERR|NOBLDERR If you specify the BLDERR option, localedef
generates the locale even if it detects errors. If you
specify the NOBLDERR option, localedef does not
generate the locale if it detects an error.

The following sections describe how you can invoke the localedef utility. For more
information on locale and code set codes, refer to the OS/390 C/C++ Programming
Guide. For information on using the localedef utility under OS/390 UNIX System
Services, refer to the OS/390 UNIX System Services Command Reference.

Under OS/390 Batch

Under OS/390 batch, JCL procedure EDCLDEF invokes the localedef utility. It does
the following:

1. Invokes the EDCLDEF module to read the locale definition data set and produces
the C code to build the locale

2. Invokes the OS/390 C/C++ compiler to compile the C source generated

3. Invokes the Linkage Editor to build the locale into a loadable module

The EDCLDEF JCL procedure has the following parameters:

INFILE The data set name for the file that contains the locale definition
information.

OUTFILE The data set name for the output partitioned data set and member
that is to contain the link-edited locale

LOPT The options for the localedef utility

For example:

Chapter 20. Coded Character Set and Locale Utilities 389

//LOCALDEF EXEC PROC=EDCLDEF,
// INFILE='FRED.LOCALE.SOURCE(EDC$EUEY)',
// OUTFILE='FRED.LOCALE.LOADLIB(EDC$EUEM)',
// LOPT='CHARMAP(IBM-297)'

Under TSO

Under TSO, LOCALDEF invokes the localedef utility. The name is shortened to 8
characters from LOCALEDEF because of the file naming restrictions. It does the
following:

1. Invokes the EDCLDEF module to read the locale definition data set and produce
the C code to build the locale

2. Invokes the OS/390 C/C++ compiler to compile the C source generated

3. Invokes the Linkage Editor to build the locale into a loadable module

The general form of the LOCALDEF CLIST is as follows:

ÊÊ LOCALDEF infile outfile
LOPT(loptions)

ÊÍ

where:

infile The data set name for the data set that contains the locale
definition information

outfile The data set name for the output partitioned data set and member
that is to contain the link-edited locale.

loptions The options for the localedef utility.

In the following example, the input source is LOCALE.SOURCE(EDC$EUEY), the output
library is LOCALE.LOADLIB(EDC$EUEM) for en_us.IBM-297, and options are
CHARMAP(IBM-297):
LOCALEDEF LOCALE.SOURCE(EDC$EUEY) LOCALE.LOADLIB(EDC$EUEM) LOPT(CHARMAP(IBM-297))

Under the OS/390 Shell

localedef [–c] [–f charmap] [–i sourcefile] name

localedef converts source definitions for locale categories into a format usable by
functions and utilities.

OS/390 C/C++ provides localedef and ships it with the compiler. This command
requires the installation of OS/390 Language Environment. It also requires the
installation of OS/390 UNIX System Services so that you can use the c89 utility. For
more information, refer to OS/390 UNIX System Services Planning.

The C/C++ compiler also includes the TSO/E command LOCALDEF. The OS/390 shell
does not support LOCALDEF. Use >localedef instead.

Options:

–c Creates permanent output even if there were warning messages.
Normally, localedef does not create permanent output when it has
issued warning messages.

390 OS/390 V2R6.0 C/C++ User’s Guide

–f charmap Specifies a charmap file that contains a mapping of character
symbols and collating element symbols to actual character
encodings.

–i sourcefile Specifies the file that contains the source definitions. If there is no
–i, localedef reads the source definitions from the standard input.

name Is the target locale. If it contains no slashes, the locale is public,
and localedef uses the NLSPATH environment variable to convert
name to a full pathname. If name contains one or more slashes,
localedef interprets it as a full pathname of where to store the
created definition.

Chapter 20. Coded Character Set and Locale Utilities 391

392 OS/390 V2R6.0 C/C++ User’s Guide

Part 5. OS/390 UNIX Utilities

This part contains information about the OS/390 UNIX System Services utilities.

v “Chapter 21. Archive and Make Utilities” on page 395

v “Chapter 22. BPXBATCH Utility” on page 397

© Copyright IBM Corp. 1996, 1999 393

394 OS/390 V2R6.0 C/C++ User’s Guide

Chapter 21. Archive and Make Utilities

This chapter describes the OS/390 UNIX System Services archive (ar) and make
utilities. There are several other useful OS/390 UNIX System Services utilities such
as gencat and mkcatdefs. For information on their syntax and use, refer to the
OS/390 UNIX System Services Command Reference.

The OS/390 Shell and Utilities provide two utilities that you can use to simplify the
task of creating and managing OS/390 UNIX System Services C/C++ application
programs: ar and make. Use these utilities with the c89 and c++ utilities to build
application programs into easily updated and maintained executable file.

Archive Libraries

The ar utility allows you to create and maintain a library of OS/390 C/C++
application object files. You can specify the c89 and c++ command strings so that
archive libraries are processed during the IPA Link step or binding.

The archive library file, when created for application program object files, has a
special symbol table for members that are object files. The symbol table is read to
determine which object files should be bound into the application program
executable file. The binder processes archive libraries during the binding process. It
includes any object file in the specified archive library that it can use to resolve
external symbols. Use of this autocall library mechanism is analogous to the use of
Object Libraries for object file for data sets. For more information, see “Chapter 16.
Object Library Utility” on page 351.

By default, the c89 and c++ utilities require that archive libraries end in the suffix .a,
as in file.a. For example; source file dirsum.c is in your working directory’s
subdirectory src, and the archive library symb.a is in your working directory. To
compile dirsum.c and resolve external symbols from symb.a, and create the
executable in exfils/dirsum enter:
c89 -o exfils/dirsum src/dirsum.c symb.a

Creating Archive Libraries

To create the archive library, use the ar -r option. For example, to create an
archive library that is named bin/libbrobompgm.a from your working directory, and
add the member jkeyadd.o to it, specify:
ar -rc ./bin/libbrobompgm.a jkeyadd.o

ar creates the archive library file libbrobompgm.a in the bin subdirectory of your
HFS working directory. The -c option tells ar to suppress the message that it
normally sends when it creates an archive library file.

For control purposes, when working interactively, you can use the -v option to
generate a message as each member is added to the archive:
ar -rv ./bin/libbrobompgm.a jkeyadd.o

To display the object files that are archived in the bin/libbrobompgm.a library from
your working directory, specify:
ar -t ./bin/libbrobompgm.a

© Copyright IBM Corp. 1996, 1999 395

For a detailed discussion of the ar utility, see OS/390 UNIX System Services
Command Reference.

Creating Makefiles

The make utility maintains all the parts of and dependencies for your application
program. It uses a makefile, which you create, to keep your application parts (listed
in it) up to date with one another. If one part changes, make updates all the other
files that depend on the changed part.

A makefile is a normal HFS text file. You can use any text editor to create and edit
the file. It describes the application program files, their locations, dependencies on
other files, and rules for building the files into an executable file. When creating a
makefile, remember that tabbing of information in the file is important and not all
editors support tab characters the same way.

The make utility uses c89 or c++ to call the OS/390 C/C++ compiler, and the binder,
to recompile and rebind an updated application program.

See the OS/390 UNIX System Services Programming Tools, and the OS/390 UNIX
System Services Command Reference for a detailed discussion of the shell make
utility and how to best take advantage of its function.

396 OS/390 V2R6.0 C/C++ User’s Guide

Chapter 22. BPXBATCH Utility

This chapter provides a quick reference for the IBM-supplied BPXBATCH program.
BPXBATCH makes it easy for you to run shell scripts and OS/390 C/C++ executable
files that reside in hierarchical file system (HFS) files through the OS/390 batch
environment. If you do most of your work from TSO/E, use BPXBATCH to avoid going
into the shell to run your scripts and applications.

BPXBATCH Usage

The BPXBATCH program allows you to submit OS/390 batch jobs that run shell
commands, scripts, or OS/390 C/C++ executable files in hierarchical file system
(HFS) files from a shell session. You can invoke BPXBATCH from a JCL job, from
TSO/E (as a command, through a CALL command, from a REXX EXEC).

JCL: Use one of the following:

v EXEC PGM=BPXBATCH,PARM='SH program-name'

v EXEC PGM=BPXBATCH,PARM='PGM program-name'

TSO/E: Use one of the following:

v BPXBATCH SH program-name

v BPXBATCH PGM program-name

BPXBATCH allows you to allocate the OS/390 standard files stdin, stdout, and
stderr as HFS files for passing input, for shell command processing, and writing
output and error messages. If you do allocate standard files, they must be HFS
files. If you do not allocate them, stdin, stdout, and stderr default to /dev/null.
You allocate the standard files by using the options of the data definition keyword
PATH.

Note: The BPXBATCH utility also uses the STDENV file to allow you to pass
environment variables to to the program that is being invoked. This can be
useful when not using the shell, such as when using the PGM parameter.

For JCL jobs, specify PATH keyword options on DD statements. For example:
//jobname JOB ...

//stepname EXEC PGM=BPXBATCH,PARM='PGM program-name parm1 parm2'

//STDIN DD PATH='/stdin-file-pathname',PATHOPTS=(ORDONLY)
//STDOUT DD PATH='/stdout-file-pathname',PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU
//STDERR DD PATH='/stderr-file-pathname',PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
// PATHMODE=SIRWXU...

You can also allocate the standard files dynamically through use of SVC 99.

For TSO/E, you specify PATH keyword options on the ALLOCATE command. For
example:
ALLOCATE FILE(STDIN) PATH('/stdin-file-pathname') PATHOPTS(ORDONLY)
ALLOCATE FILE(STDOUT) PATH('/stdout-file-pathname')

PATHOPTS(OWRONLY,OCREAT,OTRUNC) PATHMODE(SIRWXU)

© Copyright IBM Corp. 1996, 1999 397

ALLOCATE FILE(STDERR) PATH('/stderr-file-pathname')
PATHOPTS(OWRONLY,OCREAT,OTRUNC) PATHMODE(SIRWXU)

BPXBATCH SH program-name

You must always allocate stdin as read. You must always allocate stdout and
stderr as write.

Parameter

BPXBATCH accepts one parameter string as input. At least one blank character must
separate the parts of the parameter string. The total length of the parameter string
must not exceed 100 characters. If neither SH nor PGM is specified as part of the
parameter string, BPXBATCH assumes that it must start the shell to run the shell script
allocated by stdin.

SH | PGM
Specifies whether BPXBATCH is to run a shell script or command or a OS/390
C/C++ executable file that is located in an HFS file.

SH Instructs BPXBATCH to start the shell, and to run shell
commands or scripts that are provided from stdin or the
specified program-name.

Note: If you specify SH with no program-name information,
BPXBATCH attempts to run anything read in from
stdin.

PGM Instructs BPXBATCH to run the specified program-name as a
called program.

If you specify PGM, you must also specify program-name.
BPXBATCH creates a process for the program to run in and
then calls the program. The HOME and LOGNAME environment
variables are set automatically when the program is run,
only if they do not exist in the file that is referenced by
STDENV. You can use STDENV to set these environment
variables, and others.

program-name
Specifies the shell command name or the HFS pathname for the shell script
or OS/390 C/C++ executable file to be run. In addition, program-name can
contain option information.

BPXBATCH interprets the program name as case-sensitive.

Note: When PGM and program-name are specified and the specified
program name does not begin with a slash character (/), BPXBATCH
prefixes the user’s initial working directory information to the program
pathname.

Usage Notes
1. BPXBATCH is an alias for the program BPXMBATC, which resides in the

SYS1.LINKLIB data set.

2. BPXBATCH must be invoked from a user address space running with a program
status word (PSW) key of 8.

3. BPXBATCH does not perform any character translation on the supplied parameter
information. You should supply parameter information, including HFS

398 OS/390 V2R6.0 C/C++ User’s Guide

pathnames, using only the POSIX portable character set. For information on the
POSIX portable character set, see the OS/390 C/C++ Language Reference.

4. A program that is run by BPXBATCH cannot use allocations for any files other than
stdin, stdout, or stderr.

5. BPXBATCH does not close file descriptors other than 0, 1, or 2. Other file
descriptors that are open and not defined as “marked to be closed” remain open
when you call BPXBATCH. BPXBATCH runs the specified script or executable file.

6. BPXBATCH uses write-to-operator (WTO) routing code 11 to write error messages
to either the JCL job log or your TSO/E terminal. Your TSO/E user profile must
specify WTPMSG so that BPXBATCH can display messages to the terminal.

Files
v SYS1.LINKLIB(BPXMBATC) is the BPXBATCH program location.

v The stdin default is /dev/null.

v The stdout default is /dev/null.

v The STDENV default is /dev/null.

v The stderr default is the value of stdout. If all defaults are accepted, stderr is
/dev/null.

Chapter 22. BPXBATCH Utility 399

400 OS/390 V2R6.0 C/C++ User’s Guide

Part 6. Appendixes

© Copyright IBM Corp. 1996, 1999 401

402 OS/390 V2R6.0 C/C++ User’s Guide

Appendix A. Prelinking and Linking OS/390 C/C++ Programs

Instead of using the prelinker and linkage editor, you can use the binder. See
“Chapter 12. Binding OS/390 C/C++ Programs” on page 289 for more information.

This chapter shows how to prelink and link your programs under OS/390 with the
OS/390 Language Environment. The OS/390 Language Environment Prelinker
combines the object modules that comprise a C or C++ application into a single
object module. The linkage editor then processes this object module and generates
a load module that can be retrieved for execution.

You do not need to prelink object modules that:

v do not refer to writable static
v do not contain long names
v do not contain DLL code

You must use the OS/390 Language Environment Prelinker before linking your
application when any of the following are true:
v Your application contains C++ code.
v Your application contains C code that is compiled with the RENT, LONGNAME, DLL, or

IPA compiler options.
v Your application is compiled to run under OS/390 UNIX System Services.

If you do not need to prelink your application, continue to the information in “Linking
an Application” on page 408. For information on creating object libraries in OS/390
C++, refer to “Chapter 16. Object Library Utility” on page 351. For information on
prelinking and linking object modules under OS/390 UNIX System Services, refer to
“Prelinking and Link-Editing under the OS/390 Shell” on page 434.

Prelinking an Application

For object modules with writable static references:
v The prelinker combines writable static initialization information
v The prelinker assigns relative offsets to objects in writable static storage
v The prelinker removes writable static name and relocation information

For object modules that contain long names, the prelinker maps long names to
short names on output. long names are mixed-case external names of up to 1024
characters. short names are eight character, uppercase external names.

For object modules that contain DLL code (C++ code, or C code that wascompiled
with the DLL compiler option), the prelinker does the following:

v It generates a function descriptor (linkage section) in writable static for each DLL
referenced function

v It generates a variable descriptor (linkage section) for each unresolved DLL
referenced variable

v It generates an IMPORT control statement in the SYSDEFSD data set for each
exported function and variable

v It generates internal information for the load module that describes which
symbols are exported and which symbols are imported from other load modules

v It combines static DLL initialization information

© Copyright IBM Corp. 1996, 1999 403

OS/390 Language Environment Library functions are not included as part of
automatic library calls. This omission can result in warning messages about
unresolved references to C library functions or C library objects. These unresolved
C library functions or objects will be resolved in a following link-edit step.

For C or C++ object modules from applications that were compiled with the DLL
compiler option, the prelinker uses longnames to resolve exported and imported
symbols. For information on how to create a DLL or an application that uses DLLs,
see the OS/390 C/C++ Programming Guide .

To prelink multiple object modules and then link with a load module, you must run
the multiple object modules through the prelinker and add the load module in the
link step. For example, when prelinking and linking a CICS program.

Using DD Statements for the Standard Data Sets - Prelinker

The prelinker always requires three standard data sets. You must define these data
sets in DD statements with the ddnames SYSIN, SYSMOD, and SYSMSGS.

You may need five other data sets that are defined by DD statements with the
names STEPLIB, SYSLIB, SYSDEFSD, SYSOUT, and SYSPRINT. For a list of the data sets
and their usage see Table 38. For details on the attributes of specific data sets see
“Description of Data Sets Used” on page 460.

Table 38. Data Sets Used for Prelinking

ddname Type Function

SYSIN Input Primary input data, usually the output of the compiler

SYSMSGS Input Location of prelinker message file

STEPLIB2 Utility Library Location of prelinker and OS/390 Language
Environment runtime data sets

SYSLIB Library Secondary input

SYSDEFSD1 Output Definition side-deck

SYSOUT Output Prelinker Map

SYSMOD Output Output data set for the prelinked object module

SYSPRINT Output Destination of error messages generated by the
prelinker

User-specified1 Input Obtain additional object modules and load modules

Notes:
1 Required output from the prelinker if you are exporting variables or functions.
2 Optional data sets, if the compiler and runtime library are installed in the LPA or

ELPA. To save resources and improve compile time, especially in a OS/390 UNIX
System Services environment, do not unnecessarily specify data sets on the
STEPLIB DD name.

Primary Input (SYSIN)

Primary input to the prelinker consists of a sequential data set, a member of a
partitioned data set, or an in-line object module. The primary input must consist of
one or more separately compiled object modules or prelinker control statements.
(See “INCLUDE Control Statement” on page 438.)

404 OS/390 V2R6.0 C/C++ User’s Guide

If you are prelinking an application that imports symbols from a DLL, you must
include the definition side-deck for that DLL in SYSIN. The prelinker uses the
definition side-deck to resolve external symbols for functions and variables that are
imported by your application. If you call more than one DLL, you need to include a
definition side-deck for each.

Prelinker Message File (SYSMSGS)

With this DD statement name you provide the prelinker with the information it needs
to generate error messages and the prelinker map.

Prelinker and OS/390 Language Environment Library (STEPLIB)

To prelink your program the system must be able to locate the data sets that
contain the prelinker and OS/390 Language Environment runtime library. The DD
statement with the name STEPLIB points to these data sets. If the runtime library is
installed in the LPA or ELPA, it is found automatically. Otherwise, SCEERUN must be
in the JOBLIB or STEPLIB. For information on the search order, see “Chapter 14.
Running an OS/390 C/C++ Application” on page 335.

Secondary Input (SYSLIB)

Secondary input to the prelinker consists of object modules that are not part of the
primary input data set, but are to be included in the output prelinked object module
from the automatic call library. The automatic call library contains object modules
that will be used as secondary input to the prelinker to resolve external symbols left
undefined after all the primary input has been processed. Concatenate multiple
object module libraries by using the DD statement with the name SYSLIB. For more
information on concatenating data sets, see page 232.

Note: SYSLIB data sets that are used as input to the prelinker must be cataloged.

Definition Side-Deck (SYSDEFSD)

The prelinker generates a definition side-deck if you are prelinking an application
that exports external symbols for functions and variables (a DLL). You must provide
this side-deck to any user of your DLL. The users of the DLL must prelink the
side-deck of the DLL with their other object modules.

Listing (SYSOUT)

If you specify the MAP prelinker option, the prelinker writes a map to the SYSOUT data
set. This map provides you with warnings, files that are included in input to the
prelinker, and names of external symbols.

Output (SYSMOD)

The prelinker produces a single prelinked object module, and stores it in the SYSMOD
data set. The linkage editor uses this data set as input.

Prelinker Error Messages (SYSPRINT)

If the prelinker encounters problems in its attempt to prelink your program, it
generates error messages and places them in the SYSPRINT data set.

Appendix A. Prelinking and Linking OS/390 C/C++ Programs 405

Input to the Prelinker

Input to the prelinker can be:

v One or more object modules (not previously prelinked)

v Prelinker control statements (INCLUDE, LIBRARY ...)

v Object module libraries

The process of resolving or including input from these sources depends on the type
of the source and the current input and prelink options.

Unresolved references or undefined writable static objects often result if you give
the prelinker input object modules produced with a mixture of inconsistent compiler
options. For example, RENT | NORENT, LONGNAME | NOLONGNAME, or DLL options.
These options may expose symbol names in different ways in your object file, so
that the prelinker may be unable to find the matching definition of a referenced
symbol if the definition and the reference are exposed differently.

Primary Input

Primary input to the prelinker consists of a sequential data set (file) that contains
one or more separately compiled object modules, possibly with prelinker control
statements. Specify the primary input data set through the SYSIN ddname.

Secondary Input

Secondary input to the prelinker consists of object modules that are not part of the
primary input data set but are to be included as a result of processing of primary
input. Object modules that are brought in because of INCLUDE control statements
are secondary input. Object modules brought in as a result of automatic call library
(library search) processing of currently unresolved symbols through a LIBRARY
control statement or through SYSLIB are also secondary input.

An automatic call library may be in the form of:

v PDS Libraries that contain object modules

v PDSE Libraries that contain object modules

v Archive Libraries that contain object modules (if you used OMVS prelinker
option).

Prelinker Output

Writable static references that are not resolved by the prelinker cannot be resolved
later. Only the prelinker can be used to resolve writable static. The output object
module of the prelinker should not be used as input to another prelink.

Prelinker Map

When you use the MAP prelinker option, the OS/390 Language Environment
Prelinker produces a Prelinker Map. The default is to generate a listing file. The
listing contains several individual sections that are only generated if they are
applicable. Unresolved references generate error or warning messages to the
prelinker map.

406 OS/390 V2R6.0 C/C++ User’s Guide

Mapping long names to S-Names

You can use the output object module of the prelinker as input to a system linkage
editor.

Because system linkage editors accept only short names, the OS/390 Language
Environment Prelinker maps long names to short names on output. It does not
change short names. long names can be up to 1024 characters in length.
Truncation of the long names to the 8 character short name limit is therefore not
sufficient because name collisions may occur.

The OS/390 Language Environment Prelinker maps a given long name to a short
name on output according to the following hierarchy:

1. If any occurrence of the long name is a reserved runtime name, or was caused
by a #pragma map or C #pragma CSECT directive, then that same name is chosen
for all occurrences of the name. This name must not be changed, even if a
RENAME control statement for the name exists. For information on the RENAME
control statement, see “RENAME Control Statement” on page 440.

2. If the long name was found to have a matching short name, the same name is
chosen. For example, DOTOTALS is coded in both a C (or C++) and an assembler
program. This name must not be changed, even if a RENAME statement for the
name exists. This rule binds the long name to its short name.

3. If a valid RENAME statement for the long name is present, then the short name
specified on the RENAME statement is chosen.

4. If the name corresponds to a Language Environment Library function or library
object for which you did not supply a replacement, the name chosen is the
truncated, uppercased version of the long name library name (with _ mapped to
@).

5. If you specify the prelinker OMVS option and the name corresponds to a
POSIX Language Environment Library function for which you did not supply a
replacement, the name chosen is the internal Language Environment Library
short name.

This short name is not chosen, if either:

v A valid RENAME statement renames another long name to this short name. For
example, the RENAME statement RENAME mybigname PRINTF would make the
library function printf() unavailable if mybigname is found in input.

v Another long name is found to have the same name as this short name. For
example, explicitly coding and referencing SPRINTF in the C or C++ source
program would make the library function sprintf() unavailable.

Avoid such practices to ensure that the appropriate Language Environment
Library function is chosen.

6. If the UPCASE option is specified for a C application, names that are 8 characters
or fewer are changed to uppercase, with _ mapped to @. Names that begin
with IBM or CEE will be changed to IB$, and CE$, respectively. Because of this
rule, two different names can map to the same name. You should therefore
exercis care when using the UPCASE option. The prelinker issues a warning
message is issued if it finds a collision, but it still maps the names.

7. If none of the above rules apply, a default mapping is performed. This mapping
is the same as the one the compiler option NOLONGNAME uses for external names,
taking collisions into account. That is, the name is truncated to 8 characters and
changed to uppercase (with _ mapped to @). Names that begin with IBM or CEE
will be changed to IB$ and CE$, respectively. If this name is the same as the

Appendix A. Prelinking and Linking OS/390 C/C++ Programs 407

original name, it is always chosen. This name is also chosen if a name collision
does not occur. A name collision occurs if either

v The short name has already been seen in any input; that is, the name is not
new.

v After applying this default mapping, the same name is generated for at least
two, previously unmapped, names.

If a name collision occurs, a unique name is generated for the output name. For
example, the name @ST00033 is generated.

A C application that is compiled with the NOLONGNAME compiler option and link-edited,
except for collisions, presents the linkage editor with the same names as when the
application is compiled with the LONGNAME option and prelinked.

See the OS/390 Language Environment Debugging Guide and Run-Time Messages
for a list of error messages that the prelinker returns.

Linking an Application

The linkage editor processes your compiled program (object module) and readies it
for loading and execution. The processed object module becomes a load module
which is stored in a program library or HFS directory and can be retrieved for
execution at any time.

Using DD Statements for Standard Data Sets—Linkage Editor

The linkage editor always requires four standard data sets. You must define these
data sets in DD statements with the ddnames SYSLIN, SYSLMOD, SYSUT1, and
SYSPRINT.

A fifth data set, defined by a DD statement with the name SYSLIB, is necessary if
you want to use the automatic call library. Table 39 shows the five data set names
and their characteristics.

Table 39. Data Sets Used for Linking

ddname Type Function

SYSLIN Input Primary input data, normally the output of the prelinker

SYSPRINT Output Diagnostic messages
Informational messages
Module map
Cross-reference list

SYSLMOD Output Output data
set for the linkage editor

SYSUT1 Utility Temporary workspace

SYSLIB1 Library Secondary input

User-specified Input Obtain additional
object modules and load modules

Notes:
1 Required for library runtime routines

408 OS/390 V2R6.0 C/C++ User’s Guide

Primary Input (SYSLIN)

Primary input to the linkage editor consists of a sequential data set, a member of a
partitioned data set, or an in-line object module. The primary input must be
composed of one or more separately compiled object modules or linkage control
statements. A load module cannot be part of the primary input, although the control
statement INCLUDE can introduced it. (See “INCLUDE Control Statement” on
page 438.)

Listing (SYSPRINT)

The linkage editor generates a listing that includes reference tables that are related
to the load modules that it produces. You must define the data set where you want
the linkage editor to store its listing in a DD statement with the name SYSPRINT.

Output (SYSLMOD)

Output (one or more linked load modules) from the linkage editor is always stored
in a partitioned data set that is defined by the DD statement with the name SYSLMOD,
unless you specify otherwise. This data set is known as a library.

Temporary Workspace (SYSUT1)

The linkage editor requires a data set for use as a temporary workspace. The data
set is defined by a DD statement with the name SYSUT1. This data set must be on a
direct access device.

Secondary Input (SYSLIB)

Secondary input to the linkage editor consists of object modules or load modules
that are not part of the primary input data set, but are to be included in the load
module from the automatic call library. The automatic call library contains load
modules or object modules that are to be used as secondary input to the linkage
editor to resolve external symbols that remain undefined after all the primary input
has been processed.

The call library used as input to the linkage editor or loader can be a system library,
a private program library, or a subroutine library.

Input to the Linkage Editor

Input to the linkage editor can be:

v One or more object modules (created through the DECK or OBJECT compiler
options)

v Linkage editor control statements (NAME and ALIAS) that are generated by the
ALIAS compiler option

v Previously link-edited load modules that you want to combine into one load
module

v OS/390 Language Environment library stub routines (SYSLIB)

v Other libraries

Appendix A. Prelinking and Linking OS/390 C/C++ Programs 409

Primary Input

Primary input to the linkage editor consists of a sequential data set that contains
one or more separately compiled object modules, possibly with linkage editor
control statements.

Specify the primary input data set with the SYSLIN statement. For more information
on the data sets that are used with OS/390 C/C++, refer to “Description of Data
Sets Used” on page 460.

Secondary Input

Secondary input to the linkage editor consists of object modules or load modules
that are not part of the primary input data set but are to be included in the load
module as the automatic call library.

The automatic call library contains object modules to be used as secondary input to
the linkage editor to resolve external symbols left undefined after all primary input
has been processed.

The automatic call library may be in the form of:

v Libraries that contain object modules, with or without linkage editor control
statements

v Libraries that contain load modules

v The Language Environment Library, if any of the library functions are needed to
resolve external references.

Secondary input is either all object modules or all load modules, but it cannot
contain both types.

Specify the secondary input data sets with a SYSLIB statement and, if the data sets
are object modules, add the linkage editor LIBRARY and INCLUDE control statements.

Additional Object Modules as Input

You can use the INCLUDE and LIBRARY linkage editor control statements to do the
folowing:

1. Specify additional object modules that you want included in the output load
module (INCLUDE statement).

2. Specify additional libraries to be searched for object modules to be included in
the load module (LIBRARY statement). This statement has the effect of
concatenating any specified member names with the automatic call library.

Linkage editor control statements in the primary input must specify any linkage
editor processing beyond the basic processing that is described above.

Output from the Linkage Editor

The output from the linkage editor can be a single load module, or multiple load
modules, that are generated by using the linkage editor ’s NAME control statement.

For more information on using linkage editor control statements, see DFSMS/MVS
Program Management.

410 OS/390 V2R6.0 C/C++ User’s Guide

SYSLMOD and SYSPRINT are the data sets that are used for link-edit output. The
output from the linkage editor varies, depending on the options you select, as
shown in Table 40.

Table 40. Options for Controlling Link-Edit Output

To Get This Output Use This Option

A map of the load modules generated by the linkage editor. MAP

A cross-reference list of data variables XREF

Informational messages Default

Diagnostic messages Default

Listing of the linkage editor control statements LIST

One or more load modules (which you must assign to a library) Default

By default, you receive diagnostic and informative messages as the result of
link-editing. You can get the other output items by specifying options in the PARM
parameter in the EXEC statement in your link-edit JCL.

The load modules that are created are written in the data set that is defined by the
SYSLMOD DD statement in your link-edit JCL. All diagnostic output to be listed is
written in the data set that is defined by the SYSPRINT DD statement.

Detecting Link-Edit Errors

You receive a listing of diagnostic messages in SYSPRINT. Check the linkage editor
map to make sure that all the object and load modules you expected were included.

You can find a description of link-edit messages in DFSMS/MVS Program
Management .

The instructions for link-edit processing vary, depending on whether you are running
under OS/390 batch or TSO.

Note: For information on link-editing modules for interlanguage calls, refer to the
OS/390 Language Environment Programming Guide.

Library Routine Considerations

The Language Environment Library consists of one runtime component that
contains all Language Environment-enabled languages, such as C, C++, COBOL,
and PL/I. For detailed instructions on linking and running OS/390 C/C++ programs
under OS/390 Language Environment, refer to the OS/390 Language Environment
Programming Guide.

The Language Environment Library is dynamic. This means that many of the
functions, such as library functions, available in OS/390 C/C++ are not physically
stored as a part of your executable program. Instead, only a small portion of code is
stored with your executable program, resulting in a smaller executable module size.
This portion of code is known as a stub routine The stub routine represents each
required library function. Each of these stub routines has:
v The same name as the library function which it represents.
v Enough code to locate the true library function at run time.

Appendix A. Prelinking and Linking OS/390 C/C++ Programs 411

The C stub routines are in the file CEE.SCEELKED, which is part of OS/390 Language
Environment and must be specified as one of the libraries to be searched during
autocall.

Link-Editing Multiple Object Modules

OS/390 C generates a CEESTART CSECT at the beginning of the object module for
any source program that contains the function main() (and for which the START
compiler option was specified) or a function for which a #pragma linkage (name,
FETCHABLE) preprocessor directive applies. When multiple object modules are
link-edited into a single load module, the entry point of the resulting load module is
resolved to the external symbol CEESTART. Runtime errors occur if the load module
entry point is forced to some other symbol by use of the linkage editor ENTRY control
statement.

If a C main() function is link-edited with object modules produced by C, other
language processors or by assembler, the module containing the C main() must be
the first module to receive control. You must also ensure that the entry point of the
resulting load module is resolved to the external symbol CEESTART. To ensure this,
the input to the linkage editor can include the following linkage editor ENTRY control
statement:
ENTRY CEESTART

If you are building a DLL, you may need to use the ENTRY control statement as
described above.

Building DLLs

Note: This section does not describe all of the steps that are required to build a
DLL. It only describes the prelink step. For a complete description of how to
build DLLs, see OS/390 C/C++ Programming Guide.

Except for the object modules you require for creating the DLL, you do not require
additional object modules. The prelinker automatically creates a definition side-deck
that describes the functions and the variables that DLL applications can import.

Note: Although some C applications may need only the linkage editor to link them,
all DLLs require either the use of the binder with the DYNAM(DLL) option, or
the prelinker before the linkage editor.

When you build a DLL, the prelinker creates a definition side-deck, and associates
it with the SYSDEFSD ddname. You must provide the generated definition side-deck to
all users of the DLL. Any DLL application which implicitly loads the DLL must include
the definition side-deck when they prelink.

The following is an example of a definition side-deck generated by the prelinker
when prelinking a C object module:

IMPORT CODE 'BASICIO' bopen
IMPORT DATA 'BASICIO' bclose
IMPORT DATA 'BASICIO' bread
IMPORT DATA 'BASICIO' bwrite
IMPORT DATA 'BASICIO' berror

412 OS/390 V2R6.0 C/C++ User’s Guide

You can edit the definition side-deck to remove any functions or variables that you
do not want to export. For instance, in the above example, if you do not want to
expose function berror, remove the control statement IMPORT DATA 'BASICIO'
berror from the definition side-deck.

Note: You should also provide a header file that contains the prototypes for
exported functions and external variable declarations for exported variables.

The following is an example of a definition side-deck generated by the prelinker
when prelinking a C++ object module:

You can edit the definition side-deck to remove any functions and variables that you
do not want to export. For instance, in the above example, if you do not want to
expose getperim(), remove the control statement IMPORT CODE 'TRIANGLE'
getperim__8triangleFv from the definition side-deck.

The definition side-deck contains mangled names, such as getarea__8triangleFv.
If you want to know what the original function or variable name was in your source
module, look at the compiler listing created. Alternatively, use the CXXFILT utility to
see both the mangled and demangled names. For more information on the CXXFILT
utility, see “Chapter 18. Filter Utility” on page 365.

Note: You should also provide users of your DLL with a header file that contains
the prototypes for exported functions and extern variable declarations for
exported variables.

Linking Your Code

When you link your code, ensure that you specify the RENT or REUS(SERIAL)
options.

Using DLLs

The prelinker is used to build DLLs that export defined external functions and
variables, and to build programs or DLLs that import external functions and
variables from other DLLs.

To assign a name to a DLL, use either the DLLNAME() prelinker option, or the NAME
control statement. If you do not assign a name, and the data set SYSMOD is a PDS
member, the member name is used as the DLL name. Otherwise, the name
TEMPNAME is used.

To build a DLL, you need to compile object code that exports external functions or
variables, then prelink and link that code into a load module. During the prelink step
you need to capture the definition side-deck which is written to the ddname
SYSDEFSD. The definition side-deck is a list of IMPORT control statements that
correspond to the external functions and variables exported by the DLL.

Include the IMPORT statements at prelink time for any program that imports
variables or functions from the DLL.

IMPORT CODE 'TRIANGLE' getarea__8triangleFv
IMPORT CODE 'TRIANGLE' getperim__8triangleFv
IMPORT CODE 'TRIANGLE' __ct__8triangleFv

Appendix A. Prelinking and Linking OS/390 C/C++ Programs 413

In the following C example, EXPONLY is a DLL which only exports a single variable
year:

In the following example, IMPEXP is a DLL that both imports and exports external
functions and variables. It imports the external variable year from DLL EXPONLY, and
exports external functions next_year and get_year.

In the following example, IMPONLY is a program that only imports functions and
variables. It imports the variable ’year’ from DLL EXPONLY, and it imports functions
next_year and get_year from DLL IMPEXP.

The following JCL builds the DLLs EXPONLY, IMPEXP, and the program IMPONLY, and
then runs IMPONLY:

/* EXPONLY.C */
int year = 2001; /* exported from this DLL */

/* IMPEXP.C */
extern int year; /* imported from DLL EXPONLY */

void next_year(void) { /* exported from this DLL */
++year; /* load DLL EXPONLY, modify 'year' in DLL */

}

int get_year(void) { /* exported from this DLL */
return year; /* get value of 'year' from DLL EXPONLY */

}

/* IMPONLY.C */
#include <stdio.h>
extern int get_year(void); /* import from DLL IMPEXP */
extern void next_year(void); /* import from DLL IMPEXP */
extern int year; /* import from DLL EXPONLY */
int main(void)
{
int y;
next_year(); /* load DLL IMPEXP, call function from DLL */
y = get_year(); /* call function in DLL IMPEXP */
if (y == 2002

&& year == 2002) /* get value of 'year' from DLL EXPONLY */
printf("pass\n");

else
printf("fail\n");

return 0;
}

414 OS/390 V2R6.0 C/C++ User’s Guide

v Both EXPONLY and IMPEXP are compiled with the option EXPORTALL because they
export external functions and variables.

v Both IMPEXP and IMPONLY are compiled with the option DLL because they import
functions and variables from other DLLs.

v Step LINK1 generates a definition side-deck USERID.DLL.IMPORTS(EXPONLY) which
is a list of external functions and variables that are exported by DLL EXPONLY.

v Step LINK2 uses the definition side-deck that is generated in step LINK1 as part
of the prelinker input to import the variable year from DLL EXPONLY.

v Step LINK2 generates a definition side-deck USERID.DLL.IMPORTS(IMPEXP) that is
a list of external functions and variables that are exported by DLL IMPEXP.

v Both steps LINK1 and LINK2 use the prelinker DLLNAME option to set the DLL
name seen on IMPORT statements generated in the definition side-decks.

//* ---
//CEXPONLY EXEC EDCC,
// INFILE='USERID.DLL.C(EXPONLY)',
// OUTFILE='USERID.DLL.OBJECT(EXPONLY),DISP=SHR ',
// CPARM='LONG RENT EXPORTALL'
//* ---
//CIMPEXP EXEC EDCC,
// INFILE='USERID.DLL.C(IMPEXP)',
// OUTFILE='USERID.DLL.OBJECT(IMPEXP),DISP=SHR ',
// CPARM='LONG RENT DLL EXPORTALL'
//* ---
//CIMPONLY EXEC EDCC,
// INFILE='USERID.DLL.C(IMPONLY)',
// OUTFILE='USERID.DLL.OBJECT(IMPONLY),DISP=SHR ',
// CPARM='LONG RENT DLL'
//* ---
//LINK1 EXEC CBCL,PPARM='DLLNAME(EXPONLY)',
// OUTFILE='USERID.DLL.LOAD(EXPONLY),DISP=SHR '
//PLKED.SYSIN DD DSN=USERID.DLL.OBJECT(EXPONLY),DISP=SHR
//PLKED.SYSDEFSD DD DSN=USERID.DLL.IMPORTS(EXPONLY),DISP=SHR
//* ---
//LINK2 EXEC CBCL,PPARM='DLLNAME(IMPEXP)',
// OUTFILE='USERID.DLL.LOAD(IMPEXP),DISP=SHR '
//PLKED.SYSIN DD DSN=USERID.DLL.OBJECT(IMPEXP),DISP=SHR
// DD DSN=USERID.DLL.IMPORTS(EXPONLY),DISP=SHR
//PLKED.SYSDEFSD DD DSN=USERID.DLL.IMPORTS(IMPEXP),DISP=SHR

Figure 60. JCL to build DLLs (Part 1 of 2)

//* ---
//LINK3 EXEC CBCL,
// OUTFILE='USERID.DLL.LOAD(IMPONLY),DISP=SHR '
//PLKED.SYSIN DD DSN=USERID.DLL.OBJECT(IMPONLY),DISP=SHR
// DD DSN=USERID.DLL.IMPORTS(EXPONLY),DISP=SHR
// DD DSN=USERID.DLL.IMPORTS(IMPEXP),DISP=SHR
//* ---
//GO EXEC PGM=IMPONLY
//STEPLIB DD DSN=USERID.DLL.LOAD,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*

Figure 60. JCL to build DLLs (Part 2 of 2)

Appendix A. Prelinking and Linking OS/390 C/C++ Programs 415

v Step LINK3 uses the definition side-decks generated in step LINK1 and LINK2 as
part of the prelinker input to import the variable year from DLL EXPONLY and to
import the functions get_year and set_year from DLL IMPEXP.

v Step LINK3 does not specify a definition side-deck; program IMPONLY does not
export any functions or variables.

v If you explicitly specify link-time parameters, be sure to specify the RENT option.
The IBM-supplied cataloged procedure CBCL does this by default.

v The load module name of a DLL must match the DLLNAME seen on the
corresponding IMPORT statements.

v Step GO has the program IMPONLY and the DLLs. EXPONLY and IMPEXP in its
STEPLIB concatenation so that the DLLs can be dynamically loaded at runtime.

To see which functions and variables are imported or exported use the prelinker
map. The following is a portion of the prelinker map from step LINK2:

«1¬ Load Module Map
This section lists the load modules from which functions and variables are
imported. The load module names come from the input IMPORT control
statements processed.

«2¬ Import Symbol Map
This section lists the imported functions and variables. The MODULE ID
indicates the DLL from which the function or variable is imported. The FILE
ID indicates the file in which the IMPORT control statement was processed
that resulted in this import.

«3¬ Export Symbol Map
This section lists the external functions and variables which are exported.
For each symbol that is listed in this section, an IMPORT control statement is
written out to the DDname SYSDEFSD, the definition side-deck.

==
| Load Module Map «1¬ |
==

MODULE ID MODULE NAME

00001 EXPONLY

==
| Import Symbol Map «2¬ |
==

*TYPE FILE ID MODULE ID NAME

D 00001 00001 year

*TYPE: D=imported data C=imported code

==
| Export Symbol Map «3¬ |
==

*TYPE FILE ID NAME

C 00001 get_year
C 00001 next_year

*TYPE: D=exported data C=exported code

416 OS/390 V2R6.0 C/C++ User’s Guide

Prelinking and Linking an Application Under OS/390 Batch and TSO

Figure 61 shows the basic prelinking and linking process for your C or C++
application.

The data set SYSIN, «1¬, that contains your object modules forms the prelinker’s
primary input.

Note: If you are creating an application that imports symbols from DLLs, you must
provide the definition side-deck for each DLL referenced in SYSIN.

The prelinker uses its primary input, and its secondary input, «2¬, from SYSLIB to
produce a prelinked object module and, if you are exporting symbols, a definition
side-deck. SYSLIB points to PDS libraries or PDSE libraries which may contain the
following:

v Object modules with long names

C/C++ Object
Modules

Prelinked
Text Deck

C/C++ Class
Libraries

Non-C++ User
Libraries

Load
Module

Definition
side-decks

Definition
side-deck

Language
Environment
Library

C/C++ User
Libraries

PRELINKER

LINKAGE
EDITOR

SYSLIB & User defined
libaries

SYSLIB & User defined
libaries

SYSLMOD

SYSLIN

SYSMOD

SYSIN

SYSDEFSD (If
exporting symbols)

2

5

43

1

Figure 61. Basic Prelinker and Linkage Editor Processing

Appendix A. Prelinking and Linking OS/390 C/C++ Programs 417

v Object modules with writable static references
v C/C++ object module libraries
v DLL definition side-decks

The prelinked output object module is put in SYSMOD. If a definition side-deck is
generated, it is put in SYSDEFSD, which is a sequential data set or a PDS member.

The linkage editor takes its primary input from SYSLIN which refers to the prelinked
object module data set, «3¬. The linkage editor uses the primary input and
secondary input, «4¬, to produce a load module, «5¬. The secondary input consists
of non-C++ user defined libraries, and the OS/390 Language Environment runtime
library (SCEELKED) specified using SYSLIB.

The load module, «5¬, is put in the SYSLMOD data set. The load module becomes a
permanent member of SYSLMOD. You can be retrieve it at any time to run in the job
that created it, or in any other job.

OS/390 Language Environment Prelinker Map

When you use the MAP prelinker option, the OS/390 Language Environment
Prelinker produces a Prelinker Map. The listing contains several individual sections
that are only generated if they are applicable.

Consider the following example. The data set USERID.DLL.SOURCE(EXPONLY) contains
/* EXPONLY.C */
int year = 2001; /* exported from this DLL */

After step LINK0 in Figure 63 on page 419, the definition side-deck
USERID.DLL.IMPORTS(EXPONLY) contains the record IMPORT DATA 'EXPONLY' year.

The map that is shown in Figure 64 on page 419 was created by compiling the
program that is shown in Figure 62. Figure 64 on page 419 is the corresponding
Prelinker Map from step LINK1 The linkage editor places the resulting load module
in USERID.DLL.LOAD(IMPEXP2).

/* IMPEXP2.C */
#pragma variable(this_int_not_in_writable_static, NORENT)
int this_int_not_in_writable_static = 2001;
extern int year;
int this_int_is_in_writable_static = 1900;
int get_year(void) {
return year;

}
void next_year(void) {
year++;

}
void Name_Collision_In_First8(void) {
}
void Name_Collision_In_First_Eight(void) {
}

Figure 62. OS/390 C++ Source File Used for the Example Prelinker Map

418 OS/390 V2R6.0 C/C++ User’s Guide

//*
//COMP0 EXEC CBCC,CPARM='EXPORTALL',
// INFILE='USERID.DLL.SOURCE(EXPONLY)',
// OUTFILE='USERID.DLL.OBJECT(EXPONLY),DISP=SHR'
//LINK0 EXEC CBCL,PPARM='DLLNAME(EXPONLY) NONCAL MAP',
// OUTFILE='USERID.DLL.LOAD(EXPONLY),DISP=SHR'
//PLKED.SYSIN DD DSN=USERID.DLL.OBJECT(EXPONLY),DISP=SHR
//PLKED.SYSDEFSD DD DSN=USERID.DLL.DEFSD(EXPONLY),DISP=SHR
//*
//COMP1 EXEC CBCC,CPARM='EXPORTALL',
// INFILE='USERID.DLL.SOURCE(IMPEXP2)',
// OUTFILE='USERID.DLL.OBJECT(IMPEXP2),DISP=SHR'
//LINK1 EXEC CBCL,PPARM='DLLNAME(IMPEXP2) NONCAL MAP',
// OUTFILE='USERID.DLL.LOAD(IMPEXP2),DISP=SHR'
//PLKED.SYSIN DD DSN=USERID.DLL.OBJECT(IMPEXP2),DISP=SHR
// DD DSN=USERID.DLL.DEFSD(EXPONLY),DISP=SHR
//PLKED.SYSDEFSD DD DSN=USERID.DLL.DEFSD(IMPEXP2),DISP=SHR

Figure 63. Example of JCL Used to Generate the Example Prelinker Map for an OS/390 C++
program.

==
| Prelinker Map «1¬ |
| |
| CPLINK:5645001 V1 R7 M00 IBM Language Environment 1997/01/20 14:45:28|
==

Command Options. : NONCAL NOMEMORY ER DUP MAP
: NOOMVS NOUPCASE

==
| Object Resolution Warnings «2¬ |
==

WARNING EDC4015: Unresolved references are detected:
CEESTART @@TRGLOR CEESG003

Figure 64. Prelinker Map (Part 1 of 3)

Appendix A. Prelinking and Linking OS/390 C/C++ Programs 419

==
| File Map «3¬ |
==

*ORIGIN FILE ID FILE NAME

P 00001 DD:SYSIN
A 00002 SHARE.CEE160.SCEECPP(EDC400BA)
IN 00003 *** DESCRIPTORS ***

*ORIGIN: P=primary input PI=primary INCLUDE SI=secondary I NCLUDE
A=automatic call R=RENAME card L=C Library

IN=internal

==
| Writable Static Map «4¬ |
==

OFFSET LENGTH FILE ID INPUT NAME

0 4 00001 this_int_is_in_writable_static
8 10 00003 <year>

==
| Load Module Map «5¬ |
==

MODULE ID MODULE NAME

00001 EXPONLY

==
| Import Symbol Map «6¬ |
==

*TYPE FILE ID MODULE ID NAME

D 00001 00001 year

*TYPE: D=imported data C=imported code

Figure 64. Prelinker Map (Part 2 of 3)

420 OS/390 V2R6.0 C/C++ User’s Guide

The numbers in the following text correspond to the numbers that are shown in the
map.

«1¬ Heading
The heading is always generated. It contains the product number, the
library release number, the library version number, and the date and the
time the prelink step began. A list of the prelinker options that are in effect
for the step follow.

«2¬ Object Resolution Warnings
This section is generated if objects remained undefined at the end of the
prelink step, or the IPA Link step, or if duplicate objects were detected
during the step. The names of the applicable objects are listed.

«3¬ File Map
This section lists the object modules that were included in input. An object
module consisting only of RENAME control statements, for example, is not
shown. Also provided in this section are source origin (FILE NAME), and
identifier (FILE ID) information. The object module came from primary input
because of:

v an INCLUDE control statement in primary or secondary input
v a RENAME control statement
v the resolution of long name library references

==
| Export Symbol Map «7¬ |
==

*TYPE FILE ID NAME

C 00001 get_year()
C 00001 next_year()
D 00001 this_int_is_in_writable_static
C 00001 Name_Collision_In_First_Eight()
C 00001 Name_Collision_In_First8()

*TYPE: D=exported data C=exported code

==
| ESD Map of Defined and Long Names «8¬ |
==

OUTPUT
*REASON FILE ID ESD NAME INPUT NAME

P CEESTART CEESTART
D 00001 GET@YEAR get_year()
D 00001 NEXT@YEA next_year()
D 00001 @ST00003 Name_Collision_In_First8()
D 00001 @ST00002 Name_Collision_In_First_Eight()
D 00001 THIS@INT this_int_not_in_writable_static
P @@TRGLOR @@TRGLOR
P CEESG003 CEESG003
P 00002 CBCSG003 CBCSG003

*REASON: P=#pragma or reserved S=matches short name R=RENAME card
L=C Library U=UPCASE option D=Default

============ E N D O F P R E - L I N K A G E M A P =============

Figure 64. Prelinker Map (Part 3 of 3)

Appendix A. Prelinking and Linking OS/390 C/C++ Programs 421

v the object module was internal and self-generated by the prelink step.

The FILE ID may appear in other sections, and is used as a cross
reference to the object module. The FILE NAME can be one of:
v The data set name and, if applicable, the member name
v The ddname and, if applicable, the member name
v The HFS file name and directory

If you are prelinking an application that imports variables or functions from a
DLL, the variable descriptors and function descriptors are defined in a file
called *** DESCRIPTORS ***. This file has an origin of internal.

«4¬ Writable Static Map
This section is generated if an object module was encountered that
contains defined static external data. This area also contains variable
descriptors for any imported variables and, if required, function descriptors.
This section lists the names of such objects, their lengths, their relative
offset within the writable static area, and a FILE ID for the file containing
the object’s definition.

«5¬ Load Module Map
This section is generated if the application imports symbols from other load
modules. This section lists the names of the load modules.

«6¬ Import Symbol Map
This section is generated if symbols are imported from other load modules.
These otherwise unresolved DLL references are resolved through IMPORT
control statements. This section lists those symbols. It describes the type of
symbol; that is, D (variable) or C (function). It also lists the file id of the
object module containing the corresponding IMPORT control statements, the
module id of the load module on that control statement, and the symbol
name.

A DLL application would generate this section.

«7¬ Export Symbol Map
This section is generated if an object module is encountered that exports
symbols. This section lists those symbols. It describes the type of symbol;
that is, D (variable) or C (function). It also lists the file id of the object where
the symbol is defined and the symbol name. Only externally defined data
objects in writable static or externally defined functions can be exported.

Code that is compiled with the EXPORTALL compiler option or code that
contains the #pragma export directive would generate an object module that
exports symbols.

«8¬ ESD Map of Defined and Long Names
This section lists the names of external symbols that are not in writable
static. It also shows a mapping of input long names to output short names.

If the object is defined, the FILE ID indicates the file that contains the
definition. Otherwise, this field is left blank. For any name, the input name
and output short name are listed. If the input name is indeed an long name,
the rule that is used to map the long name to the short name is applied. If
the name is not an long name, this field is left blank.

Note: Although mangled names exist in the object modules, the prelinker’s map
and messages emit the demangled equivalent, which is like the names seen
in the C++ source code.

422 OS/390 V2R6.0 C/C++ User’s Guide

Processing the Prelinker Automatic Library Call

The following hierarchy is used to resolve a referenced and currently undefined
symbol.

v The undefined name is an short name, for example SNAME.

– If the NONCAL command option is in effect, the partitioned data sets that are
concatenated to SYSLIB are searched in order as follows:

- If the data set contains a C370LIB-directory created using the OS/390
C/C++ Object Library Utility, and the C370LIB-directory shows that a defined
symbol by that name exists, the member of the PDS containing that symbol
is read.

- If the data set does not contain a C370LIB-directory created using the
OS/390 C/C++ Object Library Utility and the reference is not to static
external data, the member or alias, with the same name as SNAME is read.

v The undefined name is an long name.

– If the NONCAL command option is in effect, the partitioned data sets that are
concatenated to SYSLIB are searched. If the data set contains a
C370LIB-directory created using the OS/390 C/C++ Object Library Utility, and
the C370LIB-directory shows that a defined symbol by that name exists, the
member of the PDS indicated as containing that symbol is read.

For more information about the OS/390 C/C++ Object Library Utility, see
“Chapter 16. Object Library Utility” on page 351.

References to Currently Undefined Symbols (External References)

If the symbol is undefined after the prelink step, and is not a writable static symbol,
it may be subsequently defined during the link step. However, the definition must be
exactly the same as the output ESD name. For more information, see the Figure 64
on page 419.

If you are writing a C application, and the symbol is an long name that was not
resolved by automatic library call and for which a RENAME statement with the SEARCH
option exists, the symbol is resolved under the short name on the RENAME statement
by automatic library call.

See “RENAME Control Statement” on page 440 for a complete description of the
RENAME control statement.

Unresolved requests generate error or warning messages to the prelinker map.

Prelinking and Linking Under OS/390 Batch

Using IBM-Supplied Cataloged Procedures

The IBM-supplied catalog procedures and REXX EXECs use the DLL versions of
the IBM-supplied class libraries by default. That is, the IBM-supplied Class Libraries
definition side-deck data set, SCLBSID, is included in the SYSIN concatenation.

If you are statically linking the relevant class library object code, you must override
the PLKED.SYSLIB concatenation to include the SCLBCPP data set. You must also
override the PLKED.SYSIN concatenation to exclude the SCLBSID data set.

Appendix A. Prelinking and Linking OS/390 C/C++ Programs 423

Note: Your application cannot use multiple copies of an IBM Open Class library. If
your application consists of multiple modules (for example, a main module
and a DLL) that use the same class library, make sure that all your modules
link dynamically to the class library. Otherwise, the class library will be linked
in multiple times, and there will be multiple copies in use by your application.
You cannot use multiple copies of a class library within a single application. If
you do, you can have unexpected results.

You can use one of the following IBM-supplied cataloged procedures that include a
link-edit step to link-edit your OS/390 C program:
EDCCL Compile and link-edit
EDCCLG Compile, link-edit, and run
EDCCPL Compile, prelink, and link-edit
EDCCPLG

Compile, prelink, link-edit, and run.

Note: By default, the procedures EDCCL, EDCCLG, and EDCCPLG do not save the
compiled object. EDCCLG and EDCCPLG do not save load modules.

See “Appendix D. IBM Supplied Cataloged Procedures and REXX EXECs” on
page 457 for more information on REXX EXECs and their uses.

The following example shows the general job control procedure for link-editing a
program under OS/390 batch using the Language Environment Library.

You can use one of the following IBM-supplied cataloged procedures that include a
prelink and link step to link your C++ program:
CBCCL Compile, prelink, and link
CBCL Prelink and link
CBCCLG Compile, prelink, link, and run
CBCLG Prelink, link, and run.

Specifying Prelinker and Link-Edit Options using Cataloged
Procedures

In the cataloged procedures use the PPARM statement to specify prelinker options
and the LPARM statement to specify link-edit options as follows:

// jobcard
//*
//* THE FOLLOWING STEP LINKS THE MEMBERS TESTFILE AND DECODE FROM
//* THE LIBRARIES USERID.WORK.OBJECT AND USERID.LIBRARY.OBJECT AND
//* PLACES THE LOAD MODULE IN USERID.WORK.LOAD(TEST)
//*
//LKED EXEC PGM=IEWL,REGION=1024K,PARM='AMODE=31,RMODE=ANY,MAP'
//SYSLIB DD DSNAME=CEE.SCEELKED,DISP=SHR
//SYSLIN DD DDNAME=SYSIN
//SYSLMOD DD DSNAME=USERID.WORK.LOAD(TEST),DISP=SHR
//OBJECT DD DSNAME=USERID.WORK.OBJECT,DISP=SHR
//LIBRARY DD DSNAME=USERID.LIBRARY.OBJECT,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD UNIT=VIO,SPACE=(32000,(30,30))
//SYSIN DD DATA,DLM=@@

INCLUDE OBJECT(TESTFILE)
INCLUDE LIBRARY(DECODE)

@@

Figure 65. Link-Editing a Program under OS/390 Batch

424 OS/390 V2R6.0 C/C++ User’s Guide

PPARM='"prelinker-options"'
LPARM='"link-edit-options"'

where prelinker-options is a list of prelinker options and link-edit-options is a list of
link-edit options. Separate link-edit options and prelinker options with commas.

Writing JCL for the Prelinker and Linkage Editor

You can use cataloged procedures rather than supply all of the job control language
(JCL) required for a job step that invokes the prelinker or linkage editor. However,
you should be familiar with these JCL statements. This familiarity enables you to
make the best use of the prelinker and linkage editor and, if necessary, override the
statements of the cataloged procedure.

For a description of the IBM-supplied cataloged procedures that include a prelink
and link step, see “Appendix D. IBM Supplied Cataloged Procedures and REXX
EXECs” on page 457.

The following sections describe the basic JCL statements for prelinking and linking.

Using the EXEC Statement

Use the EXEC job control statement in your JCL to invoke the prelinker. The following
example shows an EXEC statement that invokes the prelinker:
//PLKED EXEC PGM=EDCPRLK

You can also use the EXEC job control statement in your JCL to invoke the linkage
editor. The following is a sample EXEC statement that invokes the linkage editor:
//LKED EXEC PGM=HEWL

Note: If you are using DLLs, you must use the RENT linkage editor option.

Using the PARM Parameter

By using the PARM parameter of the EXEC statement, you can select one or more of
the optional facilities that the prelinker and linkage editor provide.

For example, if you want the prelinker to use the automatic call library to resolve
unresolved references, specify the NONCAL prelinker option using the PARM parameter
on the prelinker EXEC statement:
//PLKED EXEC PGM=EDCPRLK,PARM='NONCAL'

If you want a mapping of the load modules produced by the linkage editor, specify
the MAP option with the PARM parameter on the linkage editor EXEC statement:
//LKED EXEC PGM=HEWL,PARM='MAP'

For a description of prelinker options see “Prelinker Options” on page 445, for
linkage editor options see “Linkage Editor Options” on page 447.

Example of JCL to Prelink and Link

Figure 66 on page 426 shows a typical sequence of job control statements to
link-edit an object module into a load module.

Appendix A. Prelinking and Linking OS/390 C/C++ Programs 425

Note: For an OS/390 C++ application, this JCL uses static class libraries.

Specifying Link-Edit Options through JCL

In your JCL for link-edit processing, use the PARM statement to specify link-edit
options:
PARM=(link-edit-options)
PARM.STEPNAME=('link-edit-options') (If a PROC is used)

where link-edit-options is a list of link-edit options. Separate the link-edit options
with commas.

You can prelink and link C/C++ applications under OS/390 batch by submitting your
own JCL to the operating system or by using the IBM cataloged procedures. See
“Appendix D. IBM Supplied Cataloged Procedures and REXX EXECs” on page 457
for more information on the supplied procedures.

Secondary Input to the Linker

Secondary input is either all object modules or all load modules, but it cannot
contain both types.

Specify the secondary input data sets with a SYSLIB statement and, if the data sets
are object modules, add the linkage editor LIBRARY and INCLUDE control statements.
If you have multiple secondary input data sets, concatenate them as follows:
//SYSLIB DD DSNAME=CEE.SCEELKED,DISP=SHR
// DD DSNAME=AREA.SALESLIB,DISP=SHR

To specify additional object modules or libraries, code INCLUDE and LIBRARY
statements after your DD statements as part of your job control procedure, such as
in Figure 67 on page 427.

//*---
//* PRE-LINKEDIT STEP:
//*---
//PLKED EXEC PGM=EDCPRLK,REGION=2048K,PARM='MAP'
//STEPLIB DD DSN=CEE.SCEERUN,DISP=SHR
//SYSMSGS DD DSN=CEE.SCEEMSGP(EDCPMSGE),DISP=SHR
//SYSLIB DD DSN=CEE.SCEECPP,DISP=SHR
// DD DSN=CBC.SCLBCPP,DISP=SHR
//SYSIN DD DSN=USERID.TEXT(PROG1),DISP=SHR
//SYSMOD DD DSN=&&PLKSET,UNIT=VIO,DISP=(MOD,PASS),
// SPACE=(32000,(30,30)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=32000)
//SYSDEFSD DD DSN=USERID.TEXT(PROG1IMP),DISP=SHR
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//*---
//* LINKEDIT STEP:
//*---
//LKED EXEC PGM=HEWL,REGION=1024K,COND=(8,LE,PLKED),PARM='MAP'
//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR
//SYSLIN DD DSN=*.PLKED.SYSMOD,DISP=(OLD,DELETE)
//SYSLMOD DD DSN=USERID.LOAD(PROG1),DISP=SHR
//SYSUT1 DD UNIT=VIO,SPACE=(32000,(30,30))
//SYSPRINT DD SYSOUT=*

Figure 66. Creating a Load Module under OS/390 Batch

426 OS/390 V2R6.0 C/C++ User’s Guide

A the linkage editor encounters the INCLUDE statement, it incorporates the data sets
that the control statment specifies. In contrast, the linkage editor uses the data sets
that are specified by the LIBRARY statement only when there are unresolved
references after it all the other input is processed.

When you use cataloged procedures or your own JCL to invoke the linkage editor,
external symbol resolution by automatic library call involves a search of the data set
defined by the DD statement with the name SYSLIB.

Using Additional Input Object Modules under OS/390 Batch

When you use cataloged procedures or your own JCL to invoke the prelinker and
linkage editor, external symbol resolution by automatic library call involves a search
of the SYSLIB data set. The prelinker and linkage editor locate the functions in which
the external symbols are defined (if such functions exist), and include them in the
output module.

You can use prelinker and linkage control statements INCLUDE and LIBRARY to do the
following:

1. Specify additional object modules that you want included in the output module
(INCLUDE statement).

2. Specify additional libraries to be searched for modules to be included in the
output module (LIBRARY statement). This statement has the effect of
concatenating any specified member names with the automatic call library.

Code these statements after your DD statements as part of your job control
procedure. For example:

...

//SYSIN DD DSNAME=&&GOFILE,DISP=(SHR,DELETE)
// DD *

INCLUDE ddname(member)
LIBRARY ADDLIB(CPGM10)

/*

Data sets specified by the INCLUDE statement are incorporated as the prelinker and
linkage editor encounter the statement. In contrast, data sets specified by the
LIBRARY statement are used only when there are unresolved references after all the
other input is processed.

Any prelinker and linkage editor processing beyond the basic processing described
above must be specified by linkage editor control statements in the primary input.

...

//SYSLIN DD DSNAME=&&GOFILE,DISP=(SHR,DELETE)
// DD *

INCLUDE ddname(member)
LIBRARY ADDLIB(CPGM10)

/*

Figure 67. Linkage Editor Control Statements

Appendix A. Prelinking and Linking OS/390 C/C++ Programs 427

Under TSO

The OS/390 Language Environment Prelinker is started under TSO through REXX
EXECs. The IBM supplied REXX EXECs that invoke the prelinker and create an
executable module are called CXXMOD and CPLINK. If you want to create a reentrant
load module, you must use these REXX EXECs instead of the TSO LINK command.
It is recommended that you use CXXMOD instead of CPLINK. For a description of the
CXXMOD REXX EXEC see “Prelinking and Linking under TSO”. For a description of the
CPLINK command see “Appendix I. Other OS/390 C Utilities” on page 603.

When using the TSO LINK command processor, the data set defined by the LIB
operand will be used by the command processor for external symbol resolution. The
linkage editor locates the functions in which the external symbols are defined (if
such functions exist), and includes them in the load module.

Any linkage editor processing beyond the basic processing described above must
be specified by linkage editor control statements in the primary input. The
IBM-supplied catalog procedures and REXX EXECs use the DLL versions of the
IBM-supplied class libraries by default.

To link-edit your OS/390 C program under TSO, use either the CXXMOD, CMOD, or the
LINK command. It is recommended that you use CXXMOD, particularly when linking
OS/390 C and OS/390 C++ object decks. For a description of the CXXMOD REXX EXEC
see “Prelinking and Linking under TSO”. For a description of CMOD and the TSO
LINK command see “Appendix I. Other OS/390 C Utilities” on page 603.

Prelinking and Linking under TSO

This section describes how to prelink and link your OS/390 C++ or OS/390 C
program by invoking the CXXMOD REXX EXEC. This REXX EXEC creates an
executable module.

The syntax for the CXXMOD REXX EXEC is:

ÊÊ CXXMOD »

,

OBJ (object)
'object'

Ê

Ê

»

,

POPT (prelink-option)

Ê

Ê

»

,

PLIB (libname)
'libname'

Ê

428 OS/390 V2R6.0 C/C++ User’s Guide

Ê

»

,

LOPT (link-option)

Ê

Ê

»

,

LIB (libname)
'libname'

Ê

Ê
PMOD (prelinked_object)

'prelinked_object'
LOAD (module)

'module'

Ê

Ê
PMAP (prelink-map)

'prelink-map'
LIST (listing)

'listing'

Ê

Ê
PDEF (prelink-object)

'prelink-object'

ÊÍ

CXXMOD

OBJ You must always specify the input file names on the OBJ keyword
parameter. Each input file must be a C, C++ or assembler object module.
Note that the file can be either a PDS member, a sequential file or an HFS
file.

If the high-level qualifier of a file is not the same as your user prefix, you
must use the fully qualified name of the file and place single quotation
marks around the entire name.

For HFS file names: Neither commas nor special characters need to be
escaped. But you must place file names containing
special characters or commas between single
quotes. If a single quote is part of the file name, the
quote must be specified twice. HFS filenames must
be absolute names, that is they must begin with a
slash (/).

POPT Prelinker options can be specified using the POPT keyword parameter. If the
MAP prelink option is specified, a prelink map will be written to the file
specified under the PMAP keyword parameter. For more details on
generating a prelink map, see the information on the PMAP option below.

LOPT Linkage editor options can be specified using the LOPT keyword parameter.
For details on how to generate a linkage editor listing, see the option LIST.

PLIB The library names that are to be used by the automatic call library facility of
the prelinker must be specified on the PLIB keyword parameter. The default
library used is the C++ base library, CEE.SCEECPP.

Appendix A. Prelinking and Linking OS/390 C/C++ Programs 429

If the high-level qualifier of a library data set is not the same as your user
prefix, you must use the fully qualified name of the data set and place
single quotation marks around the entire name.

LIB If you want to specify libraries for the link step to resolve external
references, use the LIB keyword parameter. The default library used is
CEE.SCEELKED.

If the high-level qualifier of a library data set is not the same as your user
prefix, you must use the fully qualified name of the data set and place
single quotation marks around the entire name.

PMOD If you want to keep the output prelinked object module, specify the file that
it should be placed in by using the PMOD keyword parameter. The default
action is to create a file and erase it after the link is complete. The file can
be either a data set or an HFS file.

If the high-level qualifier of the output prelinked object module is not the
same as your user prefix, you must use the fully qualified name of the file
and place single quotation marks around the entire name.

LOAD To specify where the resultant load module should be placed, use the LOAD
keyword parameter. The file can be either a data set or an HFS file.

If the high-level qualifier of the load module is not the same as your user
prefix, you must use the fully qualified name of the file and place single
quotation marks around the entire name.

LIST To specify where the linkage editor listing should be placed, use the LIST
keyword parameter. The file can be either a data set or an HFS file. If you
specify *, the listing will be directed to your console.

If the high-level qualifier of the linkage editor listing is not the same as your
user prefix, you must use the fully qualified name of the file and place
single quotation marks around the entire name.

PMAP To specify where the prelinker map should be placed, use the PMAP keyword
parameter. The file can be either a data set or an HFS file. If you specify *,
the prelinker map will be directed to your console.

If the high-level qualifier of the prelinker map is not the same as your user
prefix, you must use the fully qualified name of the file and place single
quotation marks around the entire name.

PDEF To specify where the generated IMPORT control statements should be
placed by the prelinker. The file can be either a data set or an HFS file.

If the high-level qualifier of the IMPORT control statement listing is not the
same as your user prefix, you must use the fully qualified name of the file
and place single quotation marks around the entire name.

Example of Prelinking and Linking under TSO

In the following example, the user prefix is RYAN and the input object module
members MAIN and FN are in the PDS called 'RYAN.ACCOUNT.OBJ'. A prelink map is
to be generated and placed in 'RYAN.ACCOUNT.MAP(SALES)'. The load module will be
placed in a PDS member called 'GROUP.ACCOUNT.LOAD(SALES)'. The linkage editor
listing will be written to 'RYAN.ACCOUNT.LIST(SALES)'.

CXXMOD OBJ(ACCOUNT.OBJ(MAIN), ACCOUNT.OBJ(FN))
POPT(MAP) LOPT(XREF, MAP)
LOAD('GROUP.ACCOUNT.LOAD(SALES)') MAP(ACCOUNT.MAP(SALES))
LIST(ACCOUNT.LIST(SALES))

430 OS/390 V2R6.0 C/C++ User’s Guide

In this instance, both the OS/390 Language Environment stub library and the
partitioned data set (library) SALESLIB are available as the automatic call libraries.
The linkage editor LIBRARY control statement has the effect of concatenating any
specified member names with the automatic call library.

Using CPLINK

The CPLINK command has the following syntax:

ÊÊ CPLINK OBJ

»

()

,

' object '

Ê

Ê

»

POPT ()

,

' options '

Ê

Ê

»

PLIB ()

,

' libname '

Ê

Ê

»

LOPT ()

,

' options '

Ê

Ê

»

LIB ()

,

' libname '

Ê

Ê

»

LOAD ()

,

' object '

ÊÍ

OBJ specifies an input data set name.

Appendix A. Prelinking and Linking OS/390 C/C++ Programs 431

This is a required parameter. Each input data set must be a C
object module compiled with the RENT or LONGNAME compiler options,
or a compiled program (C or otherwise) having no static external
data.

POPT specifies a string of prelink options.

The prelinker options available for CPLINK are the same as for
OS/390 batch. For example, if you want the prelinker to use the MAP
option, specify the following:
CPLINK file name POPT('MAP')..

When you specify the prelink MAP option (as opposed to the link MAP
option), the prelinker produces a file that shows the mapping of
static external data. This map shows name, length, and address
information. If there are any unresolved references or duplicate
symbols during the prelink step, the map displays them.

PLIB specifies the library names that the prelinker uses for the automatic
library call facility.

LOPT specifies a string of linkage editor options.

For example, if you want the prelink utility to use the MAP option,
and the linkage editor to use the NOMAP option, use the following
CLIST command:
CPLINK file name POPT('MAP') LOPT('NOMAP...')

LIB specifies any additional library or libraries that the TSO LINK
command uses to resolve external references. These libraries are
appended to the default C library functions.

LOAD specifies an output data set name.

If you do not specify an output data set name, a name is generated
for you. The name that the CLIST generates consists of your user
prefix, followed by CPOBJ.LOAD(TEMPNAME). For more information on
the file format for output data, refer to DFSMS/MVS Program
Management.

Examples

In the following example, your user prefix is RYAN, and the data set that contains the
input object module is the partitioned data set RYAN.C.OBJ(INCCOMM). This example
will generate a prelink listing without using the automatic call library. After the call,
the load module is placed in the partitioned data set RYAN.CPOBJ.LOAD(TEMPNAME),
and the prelink listing is placed in the sequential data set RYAN.CPOBJ.RMAP.
CPLINK OBJ('C.OBJ(INCCOMM)')

In the following examples, assume that your user prefix is PAUL, and the data set
that contains the input object module is the partitioned data set
PAUL.C.OBJ(INCPYRL). This example will not generate a prelink listing, and the
automatic call facility will use the library RAINBOW.LIB.SUB. The load module is
placed in the partitioned data set PAUL.TBD.LOAD(MOD).

432 OS/390 V2R6.0 C/C++ User’s Guide

Using LINK

The general form of the TSO LINK command is:

ÊÊ LINK

»

data-set-name
,

(data set name)

Ê

Ê
LOAD (data set name)

LIB

»

data-set-name
,

(data-set-name)

ÊÍ

Input to the LINK Command

You must specify one or more object module names, or load module names, after
the LINK keyword. For example, to link-edit program2.obj, using the Language
Environment Library, you would issue the following:
LINK program2.obj LIB('CEE.SCEELKED')

Notes:

1. You must always specify 'CEE.SCEELKED' in the LIB operand. It is not required
during the execution of a OS/390 C/C++ program.

LIB Operand of the LINK Command

The LIB operand specifies the names of data sets that are to be used to resolve
external references by the automatic library call facility. Language Environment
Library is made available to your program in this manner and must always be
specified on the LIB operand. In the following example, SALESLIB.LIB.SBRT2 is
used to resolve external references used in program2.
LINK program2.obj LIB('CEE.SCEELKED.', 'SALESLIB.LIB.SBRT2')

//*---
//* Prelink and link 'PAUL.C.OBJ(INCPYRL)'
//*---
//P0014001 EXEC EDCPL,
// INFILE='PAUL.C.OBJ(INCPYRL)',
// OUTFILE='PAUL.TBD.LOAD(MOD),DISP=SHR',
// PPARM='NOMAP,NONCAL',
// LPARM='AMODE(31),RMODE(ANY) '
//*--

Figure 68. Example of Prelinking under OS/390 Batch

CPLINK OBJ('''PAUL.C.OBJ(INCPYRL)''')
POPT('NOMAP,NONCAL')
PLIB('''RAINBOW.LIB.SUB''')
LOAD('TBD.LOAD(MOD)')

Figure 69. Example of Prelinking under TSO

Appendix A. Prelinking and Linking OS/390 C/C++ Programs 433

A request coded this way searches CEE.SCEELKED and SALESLIB.LIB.SBRT2 to
resolve external references.

LOAD Operand of the LINK Command

In the LOAD operand, you can specify the name of the data set that is to hold the
load module as follows:
LINK LOAD(load-mod-name(member)) LIB('CEE.SCEELKED')

The load module produced by the linkage editor must be a member in a partitioned
data set.

If you do not specify a data set name for the load module, the system constructs a
name by using the first data set name that appears after the keyword LINK, and it
will be placed in a member of the user-prefix.program-name.LOAD data set. If the
input data set is sequential and you do not specify a member name, TEMPNAME is
used.

The following example shows how to link-edit two object modules and place the
resulting load module in member TEMPNAME of the userid.LM.LOAD data set.

LINK program1,program2 LOAD(lm)

You can also specify link-edit options in the link statement:

LINK program1 LOAD(lm) LET

Options for the linkage editor are discussed in “Output from the Linkage Editor” on
page 410.

For more information about using the TSO command LINK, see OS/390 TSO/E
Command Reference .

Specifying Link-Edit Options through the TSO LINK Command

TSO users specify link-edit options through the LINK command. For example, to use
the MAP, LET, and NCAL options when the object module in SMITH.PROGRAM1.OBJ is
placed in SMITH.PROGRAM1.LOAD(LM), enter:
LINK SMITH.PROGRAM1 'LOAD(LM) MAP LET NCAL'

You can use link-edit-options to display a map listing at your terminal:
LINK PROGRAM1 MAP PRINT(*)

Storing Load Modules in a Load Library

If you want to link C functions, to store them in a load library, and to INCLUDE them
later with main procedures, use the NCAL and LET linkage editor options.

Prelinking and Link-Editing under the OS/390 Shell

You can prelink and link your application under the shell by using the the OMVS
prelinker option. The OMVS option causes the prelinker to change its processing of
INCLUDE and LIBRARY control statements. The search library is pointed to
immediately for any currently unresolved symbols. If the processing of subsequent
INCLUDE or LIBRARY statements results in new or unresolved symbols, a previously

434 OS/390 V2R6.0 C/C++ User’s Guide

encountered library will not be searched again. You may need another LIBRARY
statement that points to the same library to search it again. For more information on
the OMVS prelinker option, see “Appendix B. Prelinker and Linkage Editor Options” on
page 445.

Using your JCL

The example JCL in Figure 70 links to an archive library and to OS/390 data sets.
Include files may be PDS members, sequential files, or HFS files. Libraries may be
partitioned data sets, or archive libraries.

The JCL in Figure 70 produces the following prelinker map:

//jobcard information...
//*--
//*----- prelink --
//RAWPLINK EXEC PGM=EDCPRLK,
// PARM='OMVS,MEMORY,MAP,NONCAL'
//STEPLIB DD DISP=SHR,DSN=CEE.SCEERUN
//SYSMSGS DD DISP=SHR,DSN=CEE.SCEEMSGP(EDCPMSGE)
//SYSLIB DD DUMMY
//* object file
//DDOBJ1 DD PATH='/u/myuserid/callfoogoohoo.o'
//* PDS member
//DDOBJ2 DD DISP=SHR,DSN=MYUSERID.QAPARTNR.OBJ(MEM1)
//* archive library
//DDLIB3 DD PATH='/u/myuserid/mylibrary.a'
//* PDS Library
//DDLIB4 DD DISP=SHR,DSN=MYUSERID.QAPARTNR.OBJ
//SYSIN DD DATA,DLM=@@
INCLUDE DDOBJ1
INCLUDE DDOBJ2
LIBRARY DDLIB3
LIBRARY DDLIB4

@@
//SYSMOD DD DISP=SHR,DSN=MYUSERID.TEMP.OBJ(MEM1)
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSDEFSD DD DUMMY

Figure 70. Using OMVS to prelink and link

Appendix A. Prelinking and Linking OS/390 C/C++ Programs 435

==
| Prelinker Map |
| |
| CPLINK:5645001 V1 R7 M00 IBM Language Environment 1997/01/20 16:28:55|
==

Command Options. : NONCAL MEMORY ER DUP MAP
: OMVS NOUPCASE

==
| Object Resolution Warnings |
==

WARNING EDC4015: Unresolved references are detected:
CEEBETBL CEEROOTA goo CEESG003 EDCINPL

==
| File Map |
==

*ORIGIN FILE ID FILE NAME

PI 00001 /u/myusrd/callfoogoohoo.o
PI 00002 MYUSRID.QAPARTNR.OBJ(MEM1)
A 00003 /u/myusrd/mylibrary.a(foo.o)
A 00004 MYUSRID.QAPARTNR.OBJ(MEMHOO)

*ORIGIN: P=primary input PI=primary INCLUDE SI=secondary INCLUDE
A=automatic call R=RENAME card L=C Library

IN=internal

==
| Writable Static Map |
==

INFORMATIONAL EDC4013: No map displayed as no writable static was found.

==
| ESD Map of Defined and Long Names |
==

OUTPUT
*REASON FILE ID ESD NAME INPUT NAME

P 00001 CEESTART CEESTART
P 00001 CEEMAIN CEEMAIN
D 00001 MAIN main
D 00003 FOO foo
D GOO goo
D 00004 HOO hoo
P CEESG003 CEESG003
P EDCINPL EDCINPL
D 00002 FUNC@IN@ func_in_MEM1

*REASON: P=#pragma or reserved S=matches short name R=RENAME card
L=C Library U=UPCASE option D=Default

============ E N D O F P R E - L I N K A G E M A P =============

Figure 71. Prelinker Map produced when prelinking using OMVS

436 OS/390 V2R6.0 C/C++ User’s Guide

Setting c89 to Invoke the Prelinker

The c89, c++, and cc utilities invoke the binder by default, unless the output file of
the link-editing phase (-o option) is a PDS, in which case they use the Prelinker.

You can set the {_STEPS} environment for each of these utilities to use the
Prelinker for link-edit output files that are PDSEs or HFS files.

Once you set the {_STEPS} environment variable for a utility so that the Prelinker
bit is turned on, that utility will always use the Prelinker. If you want to use the
binder, you must unset the {_STEPS} environment variable.

For a complete description of c89, c++, cc, and the {_STEPS} environment variable,
see OS/390 UNIX System Services Command Reference.

Using the c89 Utility

The c89 utility specifies default values for some prelinker and linkage editor options.
It also passes prelinker options and linkage editor options by using the -W option.

c89 specifies prelinker and linkage editor options in order for it to provide the user
with correct and consistent behavior. In order to determine exactly the prelinker and
linkage editor options that c89 specifies, you should use the c89 -v option.

Some c89 options, such as -V, will change the settings of the prelinker options and
the linkage editor options that c89 specifies. For example, when you do not specify
-V, c89 specifies the Prelinker option NOMAP, and when you specify -V, c89 specifies
the Prelinker option MAP.

To explicitly override the options that c89 specifies, use the c89 -W option. For
example, to use the Prelinker option MAP even when the c89 -V option is not
specified, invoke
c89 -Wl,p,map ...

For a list of prelinker options and their uses, see “Prelinker Options” on page 445.

Prelinker Control Statement Processing

The only control statements that the prelinker processes are IMPORT, INCLUDE,
LIBRARY, and RENAME statements. The remaining control statements remain
unchanged until the link step.

You can place the control statements in the input stream, or store them in a
permanent data set. If you cannot fit all of the information on one control statement,
you can use one or more continuations. The long name, for example, can be split
across more than one statement. You can enable continuations in one of two ways:

v Place a nonblank character in column 72 of the statement that is to be continued.
The continuation must begin in column 16 of the next statement.

v Enclose the name in single quotation marks. When such a name is continued
across statements, it extends up to and includes column 71. Although column 72
is not considered part of the name, it must be nonblank for the name to be
continued. On the following statement, column 1 must be blank (containing the
X'40' character); the name then continues in column 2.

Appendix A. Prelinking and Linking OS/390 C/C++ Programs 437

If you have a name that contains a single quotation mark, and you want to
enclose the whole name in single quotation marks, put two single quotation
marks next to each other where you want the single one to appear in the name.
For example, if you want the name
SymbolNameWithAQuote'InTheMiddle

specify it as follows:
'SymbolNameWithAQuote''InTheMiddle'

If you mix the two style of continuation in one control statement, after you continue
a statement in column 2 due to a quote in the name, all subsequent statements will
continue in column two.

IMPORT Control Statement

The IMPORT control statement has the following syntax:

ÊÊ IMPORT CODE dll-name function
' dll-name ' ' function '

DATA dll-name variable
' dll-name ' ' variable '

ÊÍ

dll-name
The name or alias of the load module for the DLL. The maximum length of
an alias is 8 characters. However, the name itself can be a longname. The
dll-name comes from the value specified on the DLLNAME prelinker option.
For more information, see “Prelinker Options” on page 445.

variable
An exported variable name. It is a mixed case longname. To indicate a
continuation across statements, either use a non-blank character in column
72 of the card and begin the next line in column 16, or enclose the name in
single quotation marks, end the first line in column 71, and put a blank
character in column 1 of the next line.

function
An exported function name. It is a mixed case longname. You can indicate
a continuation the same way you would for a variable.

The prelinker processes IMPORT statements, but does not pass them on to the link
step.

INCLUDE Control Statement

The INCLUDE control statement has the following syntax:

ÊÊ INCLUDE

»

ddname (member)
' ddname ' ,

' member '

ÊÍ

ddname A ddname associated with a file to be included. You can use the same
kinds of continuations that you can for the variable on the IMPORT control
statement.

438 OS/390 V2R6.0 C/C++ User’s Guide

member The member of the DD to be included. You can use the same kinds of
continuations that you can for the variable on the IMPORT control statement.

The prelinker processes INCLUDE statements like the OS/390 linkage editor with the
following exceptions:

An attempt is made to read the DD or member of the DD (whichever is specified).
This request is resolved if the read is successful.
v INCLUDEs of identical member names are not allowed.
v INCLUDEs of both a ddname and a member from the same ddname are not allowed.

The prelinker ignores the second INCLUDE.

Note: The INCLUDE control statement is removed and not placed in the prelinker
output object module; the system linkage editor does not see the INCLUDE
control statement.

For more information on the linkage editor, refer to DFSMS/MVS Program
Management .

LIBRARY Control Statement

The LIBRARY control statement has the following syntax:

NOOMVS

ÊÊ LIBRARY »

»

name (member)
' name ' ' member '

(external)
* ' external '

ÊÍ

OMVS

ÊÊ LIBRARY name ÊÍ

name
the name of a DD that defines a library, under OS/390. This could be a
concatenation of one or more libraries that are created with or without the
Object Library Utility. You can use the same kinds of continuations that you can
for the variable on the IMPORT control statement.

member
the name or alias of a member of the specified library. Because both short
names and long names can be specified, case distinction is significant. If you
use an long name, you can use the same kinds of continuations that you can
for the variable on the IMPORT control statement.

Under OS/390, automatic library calls search the library and each subsequent
library in the concatenation, if necessary, for the name instead of searching the
primary input. If you specify the OMVS option, the only form of the LIBRARY card
the prelinker accepts is LIBRARY ddname statement in SYSLIB.

Appendix A. Prelinking and Linking OS/390 C/C++ Programs 439

external
an external reference that may be unresolved after primary input processing. An
Automatic Library call will not resolve this external reference. Because both
short names and long names can be specified, case distinction is significant. If
you use an long name, you can use the same kinds of continuations that you
can for the variable on the IMPORT control statement.

Note: The LIBRARY control statement is removed and not placed in the prelinker
output object module; the system linkage editor does not see the LIBRARY
control statement.

RENAME Control Statement

The RENAME control statement has the following syntax:

NOOMVS

ÊÊ RENAME long name
' long name '

short name
SEARCH

ÊÍ

OMVS

ÊÊ RENAME long name
' long name '

short name ÊÍ

long name
the name of the long name to be renamed on output. All occurrences of this
long name are renamed. You can use the same kinds of continuations that
you can for the variable on the IMPORT control statement.

short name
the name of the short name to which the long name will be changed. This
name can be at most 8 characters, and case is respected.

SEARCH
an optional parameter specifying that if the short name is undefined, the
prelinker searches by an automatic library call for the definition of the short
name. This is not available with the OMVS option.

The RENAME control statement is processed by the prelinker. You can use this
statement to do the following:

v Explicitly override the default name that is given to an long name when an long
name is mapped to an short name.

You can explicitly control the names that are presented to the system linkage
editor so that external variable and function names are consistent from one
linkage editor run to the next. This consistency makes it easier to recognize
control section and label names that appear in system dumps and linkage editor
listings. Another mapping rule can provide the suitable name, but if you need to
replace the linkage editor control section, you need to maintain consistent
names. See “Mapping long names to S-Names” on page 407 for a description of
this rule.

v Explicitly bind an long name to an short name. This binding may be necessary
when linking with other languages that use a different name for the same object.

440 OS/390 V2R6.0 C/C++ User’s Guide

A RENAME control statement cannot be used to rename a writable static object
because its name is not contained in the output from the prelinker.

You can place RENAME control statements before, between, or after other control
statements or object modules. An object module can contain only RENAME
statements. RENAME statements can also be placed in input that is included because
of other RENAME statements.

Usage Notes
v A RENAME statement is ignored if the long name is not encountered in the input.

v A RENAME statement for an long name is valid provided all of the following are
true:

– The long name was not already mapped because of a rule that preceded the
RENAME statement rule in the hierarchy described in “Mapping long names to
S-Names” on page 407.

– The long name was not already mapped because of a previous valid RENAME
statement for the long name.

– The short name is not itself an long name. This rule holds true even if the
short name has its own RENAME statement.

– A previous valid RENAME statement did not rename another long name to the
same short name.

– Either the long name or the short name is not defined. Either the long name
or the short name can be defined, but not both. This rule holds true even if
the short name has its own RENAME statement.

Reentrancy

This section discusses how to use the prelinker to make your program reentrant.
For detailed information on reentrancy in OS/390 C/C++, see OS/390 C/C++
Programming Guide .

Reentrant programs are structured to allow more than one user to share a single
copy of a load module or to use a load module repeatedly without reloading it.

Natural or Constructed Reentrancy

Reentrant programs can be categorized as having natural or constructed
reentrancy. Programs that contain no references to the writable static objects that
are listed above have natural reentrancy. Programs that refer to writable static
objects must be processed with the IBM Language Environment Prelinker to make
them reentrant; such programs have constructed reentrancy.

If you are using C, you do not need to use the ″RENT″ compiler option if your
program is naturally reentrant.

Because all C++ programs are categorized as having constructed reentrancy, C++
code must be bound by the binder using the DYNAM(DLL) option. Alternatively, the
C++ code must be processed by the prelinker before being processed by the
linkage editor.

Appendix A. Prelinking and Linking OS/390 C/C++ Programs 441

Using the Prelinker to Make Your Program Reentrant

The prelinker concatenates compile-time initialization information (for writable static)
from one or more object modules into a single initialization unit. In the process, the
writable static part is mapped.

If your C program contains writable static, you can use the prelinker to make your
program reentrant. If your C program does not contain writable static, you do not
need to use the prelinker to ensure reentrancy. The prelinker is called automatically
for C++ programs.

If you compile your code and wish to link it using the OS/390 system link
procedures such as IEWL, you must first call the prelinker.

The OS/390 UNIX System Services features require that all OS/390 UNIX System
Services C/C++ application programs be reentrant. If you are using the c89 utility, it
automatically invokes the OS/390 C/C++ compiler with the RENT option and also
invokes the prelinker.

The prelinker is not a post-compiler. That is, you do not prelink the object modules
individually into separate prelinked object modules as if running the prelinker was
an extension of the compile step. Instead, you prelink all the object modules
together in the same job into one output prelinked object module. This is because
the prelinker cannot process each object deck one at a time: it assigns offsets to
each data item in the writable static area for the program, and thus needs all of the
object decks that refer to data items in writable static input in a single step.

The prelinker does all of the following:

v It maps input long names from the object modules to output short names (8
characters maximum)

v It collects compile-time initialization information on static objects

v It collects constructor calls and destructor calls for static objects in C++

v It collects DLL information

v It collects objects that exist in writable static into one area by assigning an offset
within the writable static area to each object

v It removes all relocation and name information of objects in the writable static
area

The output of the prelinker is a single prelinked object module. You can link this
object module only on the same platform where you prelinked it.

Because the prelinker maps names and removes the relocation information, you
cannot use the resulting object module as input for another prelink. Also, you
cannot use the linkage editor to replace a control section (CSECT) that either
defines or references writable static objects.

The prelinker can handle object modules from languages other than C or C++.
Howerver, only C or assembler code using the macros EDCDXD and EDCLA may refer
to writable static objects.

Generating a Reentrant Load Module in C

To use the prelinker to generate a reentrant load module in C, you must follow
these steps:

442 OS/390 V2R6.0 C/C++ User’s Guide

1. Determine whether or not your program contains writable static. If you are
unsure about whether your program contains writable static, compile it with the
RENT option. Invoking the prelinker with the MAP option and the object module as
input produces a prelinker map. Any writable static data in the object module
appears in the writable static section of the map. Unresolved writable static
references may also appear in the map as errors.

If you see the symbol @STATIC defined in the writable static section, your code
contains unnamed writable static such as modifiable literal strings, or variables
with the static qualifier. To ensure that literal strings stay in the code area,
recompile with #pragma strings(readonly), and prelink again.

2. If your program contains no writable static, compile your program as you would
normally (without any special compiler options), and then go directly to step 4.

3. If your program contains writable static, you must compile your C source files
with the RENT compiler option.

4. Use the OS/390 Language Environment prelinker to combine all input object
modules into a single output object module.

Notes:

a. The prelinker can handle compiled programs in languages other than C or
C++. However, only C, C++, OO COBOL, or assembler code using the
macros EDCDXD and EDCLA may refer to writable static.

b. You cannot use the output object module as further input to the OS/390
Language Environment prelinker.

5. Optionally, you can use the output object module to link the program in the LPA
or ELPA area of the system.

6. Under the OS/390 shell, you can run the installed program by invoking it from
the HFS. To do so you must install the program in the HFS, and, from a
superuser ID, enter a chmod Shell command to turn on the sticky bit for the
program. See OS/390 UNIX System Services Planning for more information.

Generating a Reentrant Load Module in C++

To generate a reentrant load module in C++, you must follow these steps:

1. Compile your source code.

2. Use the supplied prelink and link utilities on the module. Under TSO, you can
use the CXXMOD REXX EXEC to both prelink and link your module. Under
OS/390 batch, use these JCL procedures:

v CBCCL: compile and link

v CBCL: link

v CBCCLG: compile, link, and go

v CBCLG: link and go

For all of these, linking involves two steps: invocation of the prelinker, and then
a call to the system linker.

Resolving Multiple Definitions of the Same Template Function

Note: For complete information on using C++ templates, see the OS/390 C/C++
Programming Guide

When the prelinker generates template functions, it resolves multiple function
definitions as follows:

Appendix A. Prelinking and Linking OS/390 C/C++ Programs 443

v If a function has both a specialization and a generalization, the specialization
takes precedence.

v If there is more than one specialization, the prelinker issues a warning message.

Because the link step does not remove unused instantiations from the executable
program, instantiating the same functions in multiple compilation units may generate
very large executable programs.

External Variables

See OS/390 C/C++ Programming Guide for more information on external variables.

The POSIX 1003.1 and X/Open CAE Specification 4.2 (XPG4.2) require that the C
system header files declare certain external variables. Additional variables are
defined for use with POSIX or XPG4.2 functions. If you define one of the POSIX or
XPG4 feature test macros and include one of these headers, the external variables
will be declared in your program. These external variables are treated differently
than other global variables in a multithreaded environment (values are
thread-specific) and across a call to a fetched module (values are propagated). To
access the global variable values (not thread specific), you must use either C with
the RENT compiler option or C++ code. Also, you must specify the SCEEOBJ
autocall library during the prelink. Functions to access the thread-specific values of
these variables are provided for use in a multithreaded environment. The OS/390
C/C++ Language Reference documents these functions.

For a dynamically called DLL module to share access to the POSIX external
variables, with its caller, the DLL module must define the _SHARE_EXT_VARS
feature test macro. You must install APAR PQ03847 in order to use this
functionality. For more information, see the section on feature test macros in the
OS/390 C/C++ Run-Time Library Reference.

444 OS/390 V2R6.0 C/C++ User’s Guide

Appendix B. Prelinker and Linkage Editor Options

This chapter contains the prelink options and link options for your programs under
OS/390 Language Environment. For more information on using the OS/390
Language Environment Prelinker, see “Appendix A. Prelinking and Linking OS/390
C/C++ Programs” on page 403.

Prelinker Options

The following section describes the prelink options available in OS/390 C/C++ by
using OS/390 Language Environment.

DLLNAME(dll-name)

DLLNAME specifies the DLL name that appears on generated IMPORT control
statements, described in “IMPORT Control Statement” on page 438. If you specify
the DLLNAME option, the prelinker sets the DLL name to the value that you listed on
the option.

If you do not specify DLLNAME, the prelinker sets the DLL name to the name that
appeared on the last NAME control statement that it processed. If there are no NAME
control statements, and the output object module of the prelinker is a PDS member,
it sets the DLL name to the name of that member. Otherwise, the prelinker sets the
DLL name to the value TEMPNAME, and issues a warning.

DUP | NODUP

DEFAULT: DUP

DUP specifies that if duplicate symbols are detected, their names should be directed
to the console, and the return code minimally set to a warning level of 4. NODUP
does not affect the return code setting when the prelinker detects duplicates.

ER | NOER

DEFAULT: ER

If there are unresolved symbols, ER instructs the prelinker to write a messages and
a list of unresolved symbols to the console. If there are unresolved references, the
prelinker sets the return code to a minimum warning level of 4. If there are
unresolved writable static references, the prelinker sets the return code to a
minimum error level of 8. If you use NOER, the prelinker does not write the list of
unresolved symbols to the console. If there are unresolved references, the return
code is not affected. If there are unresolved writable static references, prelinker sets
the return code to a minimum warning level of 4.

MAP | NOMAP

DEFAULT: MAP

© Copyright IBM Corp. 1996, 1999 445

The MAP option specifies that the prelinker should generate a prelink listing. See
“OS/390 Language Environment Prelinker Map” on page 418 for a description of the
map.

MEMORY | NOMEMORY

DEFAULT: NOMEMORY

The MEMORY option instructs the prelinker to retain in storage, for the duration of the
prelink step, those object modules that it reads and processes.

You can use the MEMORY option to increase prelinker speed. However, you may
require additional memory to use this option. If you use MEMORY and the prelink fails
because of a storage error, you must increase your storage size or use the
prelinker without the MEMORY option.

NCAL | NONCAL

DEFAULT: NONCAL

The NCAL option specifies that the prelinker should not use the automatic library call
to resolve unresolved references.

The prelinker performs an automatic library call when you specify the NONCAL option.
An automatic library call applies to a library of user routines. For NOOMVS, the data
set must be partitioned, but for OMVS the data set that the prelinker searches can be
either a PDS or an archive library. Automatic library call cannot apply to a library
that contains load modules.

Note: If you are prelinking C++ object modules, you must use the NONCAL option
and include the C++ base library in the CEE.SCEECPP data set in your SYSLIB
concatenation.

OMVS | NOOMVS

DEFAULT: NOOMVS

The OMVS option causes the prelinker to change the way that it processes INCLUDE
and LIBRARY control statements. The c89 utility turns on the OE option (which maps
to the OMVS option) by default. Object files and object libraries from c89 are passed
as primary input to the prelinker. Object files are passed via INCLUDE control
statements, and object libraries via LIBRARY control statements. Only those LIBRARY
control statements that are included in primary input are accepted by the prelinker.
Their syntax is:
LIBRARY libname

where libname is the name of a DD that defines a library. The library may be either
an archive file created through the ar utility or a partitioned data set (PDS) with
object modules as members. The prelinker uses LIBRARY control statements like
SYSLIBs, to resolve symbols through autocalls.

When you specify the OMVS option, the prelinker accepts INCLUDE and LIBRARY
statements which refer to HFS files (PATH=) and data set name (DSNAME=)
allocations.

446 OS/390 V2R6.0 C/C++ User’s Guide

When you use the OMVS option, the order in which object files and object libraries
are passed is significant. The prelinker processes its primary input sequentially. It
searches the library that you specified on the LIBRARY statement only at the point
where it encounters the LIBRARY statement. It does not refer to that library or
processs it again. For example, if you pass your object files and object libraries as
follows:
c89 file1.o lib1.a file2.o lib2.a

The prelinker processes the INCLUDE control statement for file1.o, and
incorporates new symbol definitions and unresolved references from the object file
into the output file. The prelinker then processes the LIBRARY control statement for
lib1.a, and searches the library for currently unresolved symbols. It then processes
file2.o followed by lib2.a. If the processing of file2.o results in unresolved
symbols, the prelinker will not search the library lib1.a again, because it has
already processed it. If you have unresolved symbols that may be defined in a
library that has already been processed, you must specify a new LIBRARY statement
after your INCLUDE statement to resolve those symbols. You can do this on a c89
command line as follows:
c89 file1.o lib1.a file2.o lib1.a lib2.a

RENAME control statements are processed on output from the prelinker, after all of its
input has been processed. Because a library can be processed once only, the
SEARCH option on the RENAME control statement has no effect.

Note: The OE prelinker option maps to the OMVS prelinker option.

UPCASE | NOUPCASE

DEFAULT: NOUPCASE

The UPCASE option enforces the uppercase mapping of long names that are 8
characters or fewer and have not been explicitly mapped by another mechanism.
These long names are uppercased (with _ mapped to @), and names that begin
with IBM or CEE are changed to IB$ and CE$, respectively.

The UPCASE option is useful when calling routines that are written in languages other
than OS/390 C/C++. For example, in COBOL and assembler, all external names are
in uppercase. So, if the names are coded in lowercase in the OS/390 C/C++
program and you use the LONGNAME option, the names will not match by default. You
can use the UPCASE option to enforce this matching. You can also use the RENAME
control statement for this purpose.

Note: Use of this option can be dangerous, since names with a length of 8
characters or less will lose their case sensitivity. A better way to get the
linkage and names correct is through the use of the appropriate pragmas.

Linkage Editor Options

You can specify Link-edit options in either of two ways:
v Through JCL
v Through the TSO LINK command

For a description of link-edit options, see the DFSMS/MVS Program Management
manuals.

Appendix B. Prelinker and Linkage Editor Options 447

448 OS/390 V2R6.0 C/C++ User’s Guide

Appendix C. Diagnosing Problems

This appendix tells you how to diagnose failures in the OS/390 C/C++ compiler.

Problem Checklist

The following list contains suggestions to help you rule out some common sources
of problems.

1. Check that the program has not changed since you last compiled or executed
it successfully. If it has, examine the changes. If the error occurs in the
changed code and you cannot correct it, note the change that caused the
error. Whenever possible, you should retain copies of both the original and the
changed source programs.

2. Be sure to correct all problems that are diagnosed by error messages, and
ensure that the messages that were previously generated have no correlation
to the current problem. Be sure to pay attention to warning messages.

3. The message prefix can identify the system or subsystem that issued the
message. This can help you determine the cause of the problem. Following
are some of the prefixes and their origins.

v CBC - indicates messages from the OS/390 C/C++ compiler, its utility
components, or the OS/390 C/C++ IPA Link step.

v EDC - a numeric portion between 0090 and 0096 indicates a severe error,
and the solution should be self-evident from the accompanying text. If it is
not, contact your Service Representative. If the numeric portion is in the
4000 series, this specifically relates to the prelinker and alias utility.
Otherwise, the message relates to the OS/390 C/C++-specific messages
from the runtime environment.

v CEE - for language-independent messages from the common execution
environment (CEE) library component of OS/390 Language Environment.

v IBM, PLI, IGZ - for language-specific messages from OS/390 Language
Environment.

v EQA - for Debug Tool messages.

v CLB - for messages that relate to class libraries. See the OS/390 C/C++
IBM Open Class Library Reference for more information.

v BPX - messages that relate to OS/390 UNIX System Services.

You can cross reference the prefix to the message manual in most cases by
using the table at the beginning of the OS/390 MVS System Messages
volumes which accompany the OS/390 operating system. For example,
OS/390 MVS System Messages, Vol 1 (ABA-ASA).

4. Ensure that you are compiling the correct version of the source code. It is
possible that you have incorrectly indicated the location of your source file. For
example, check your high-level qualifiers.

5. In any program failure, keep a record of the conditions and options in effect at
the time the problem occurred. The listing file shows the options. To get the
listing, compile with the SOURCE option. The listing only contains options that
appear after the command line is processed, hence #pragma options do not
appear.

Information about some of the options appears as a comment at the bottom of
the object file. If your program is written in OS/390 C, there is always a
comment about the status of the OPTIMIZE option, whether you specify it or not.

© Copyright IBM Corp. 1996, 1999 449

Information about the ALIAS, GONUMBER, INLINE, RENT, or UPCONV options is
included only if you specify the option when you compile. Note any changes
from the previous compilation.

6. Your installation may have received an IBM Program Temporary Fix (PTF) for
the problem. Verify that you have received all issued PTFs and have installed
them, so that your installation is at the current maintenance level.

7. The preventive service planning (PSP) bucket, which is an online database
available to IBM customers through IBM service channels. It gives information
about product installation problems and other problems. See the OS/390
Program Directory for more details.

8. Use the Debug Tool, dbx (for OS/390 UNIX System Services) or some other
debugging aid to determine the statement where the program fails and
possible causes of the failure.

9. If a failing application is communicating with other IBM products, make sure
that it uses the correct interface procedure as documented in the OS/390
C/C++ Programming Guide. In many cases, you can localize the failing
condition by taking out the function calls or making them no-ops.

10. If your application has been developed on a different platform (such as a
microcomputer or workstation) and you try to compile and run using the IBM
OS/390 C/C++ compiler, the following may cause problems:

v The source code does not conform to the applicable following standards:

– American National Standards Institute (ANSI/ISO) C Standard
(X3.159-1989)

– ANSI/ISO draft standard

v The source code includes dependencies on the ASCII character set or the
IEEE floating-point format

v The source code is system dependent

11. If your application was prelinked, make sure that the prelinking was successful
as indicated in “Appendix A. Prelinking and Linking OS/390 C/C++ Programs”
on page 403.

When Does the Error Occur?

Determine when the problem is occurring (at compile time, bind time, prelink time,
link time or run time), and use the procedures in the appropriate list on the following
pages. If the problem occurs when using OS/390 Language Environment, for
prelink-time and run time diagnosis and debugging errors you should use OS/390
Language Environment Customization and the OS/390 Language Environment
Debugging Guide and Run-Time Messages and for bind time and link-time
diagnosis refer to DFSMS/MVS Program Management.

After you identify the failure, you can write a small test case that re-creates the
problem. See the file CBC.SCBCDOC(APAR), for details on constructing a test case
from a failing program.

The Error Occurs at Compile Time
1. If your program uses any of the library routines, insert an #include directive for

the appropriate header files. Also insert an #include directive for any of your
own header files. The compiler uses function prototypes, when present, to help

450 OS/390 V2R6.0 C/C++ User’s Guide

detect type mismatches on function calls. You can use the CHECKOUT option to
find missing prototyping. Note that OS/390 C++ does not allow missing
prototypes.

2. Compile your program with either the CHECKOUT or the INFO (C++ only) option.
These options specify that the compiler is to give informational messages that
indicate possible programming errors. These options will give messages about
such things as variables that are never used, and the tracing of #include files.

3. Compile your program with the PPONLY option to see the results of all #define
and #include statements. This option also expands all macros; a macro may
have a different result from the one you intended.

4. If your program was originally compiled using the OPT(1) or OPT(2) options, try
to recompile it using the NOOPTIMIZE option, and run it. If you can successfully
compile and run the program with NOOPTIMIZE, you have bypassed the problem,
but not solved it. This does not however, exclude the possibility of an error in
your program. You can run the program as a temporary measure, until you find
a permanent solution.

5. If you compiled your program with either the SEQUENCE or the MARGINS option, the
error may be due to a loss of code. If you compiled the source code with the
NOSEQUENCE option, the compiler will try to parse the sequence numbers as code,
often with surprising results. This can happen if you send source files from MVS
to VM or from VM to MVS. This can also happen in a source file that was
meant to be compiled with margins but was actually compiled without margins
or different margins (available in OS/390 C only).

Either oversight could result in syntax errors or unexpected results when your
program runs. Try recompiling the program with either the NOSEQUENCE or the
NOMARGINS option.

6. Your source file may contain characters that are not supported by your terminal.
You have two options at this point:

a. Replace any characters that cannot be displayed in literals with the
corresponding trigraph representation, or the corresponding escape
sequence. Verify that the error did not result from using one of these
incorrectly.

b. You can use the #pragma filetag support and the LOCALE option to allow the
compiler to work with non-standard code pages. See the OS/390 C/C++
Programming Guide for more details.

7. Check for duplicate static constructors and destructors in your C++ source.
Entries for constructors are created in the object and in a table. When a static
constructor is removed, the entry in the object is removed, but the table entry
stays. This will cause the static constructor and destructor to be called multiple
times. If the destructor deletes (or frees) dynamically allocated storage that is
associated with a pointer, it will tend to fail on subsequent invocations.

8. A compile-time abend can indicate an error in the compiler. An unsuccessful
compilation due to an error in the source code or an error from the operating
system should result in error messages, not an abend. However, the cause of
the compiler’s failure may be a syntax error or an error from the operating
system.

The Error Occurs at IPA Link Time
1. Ensure that the region that is used for the IPA Link step is sufficient. In a

number of instances where OPT(2) has been used with IPA Link, more than
256MB was required.

2. Ensure that the object module which defines main() contains IPA object.

Appendix C. Diagnosing Problems 451

3. Ensure that all application program parts (object modules, load modules) and
all necessary interface libraries (Language Environment object modules and
load module, SQL, CICS, etc) are made available to the IPA Link step.

4. Ensure that the IPA Compile step has processed all object modules for which
source is available.

5. Use the IPA(LINK,MAP) option to obtain an IPA Link listing.

6. Do not attempt to IPA Link unsupported file formats, such as GOFF object
modules or Program Objects.

7. Verify that there are no unresolved symbol references.

All user symbols must be resolved before invoking the binder (or prelinker and
linkage editor). Any runtime symbol references generated by IPA Link must be
resolved by the subsequent step to that no unresolved symbols remain.

8. If you have unresolved symbols, make sure that the definition of an object and
all its references are used consistently in both the code area and the writable
static area. Also, make sure that symbol references appear consistently in the
same case.

9. If problems occur during IPA Link processing of DLL code, note that a symbol
can only be imported if all of the following conditions hold true:
v The symbol remains unresolved after autocall.
v Only DLL references were seen for the symbol.
v An IMPORT control statement was encountered for the symbol.

10. If you have unresolved symbols after using autocall, and you are searching for
longnamed or writable static objects, make sure that each object module
library has a current directory generated by the C370LIB utility. Without this
directory, autocall can only be done on the member name of the object module
and not on what is actually defined within the member.

11. A compiler ABEND during IPA Link step processing can indicate an error in the
compiler. An unsuccessful IPA Link due to an error in the program source code,
an invalid object module, an invalid load module, or an error from the operating
system should result in error messages, not an ABEND.

If the compiler ABEND during IPA Link step processing is related to an invalid
IPA object module, it will require further diagnosis:

v Save and recompile any IPA object modules created by a previous release
of OS/390 C/C++ . If the problem is corrected, contact IBM service and be
prepared to supply the relevant source (PPONLY) and IPA object modules.

v Perform a binary search for the invalid IPA object module. To do this,
compile one half of your source files with NOIPA, and the other half with
IPA. When the IPA Link succeeds, reduce the set of NOIPA objects until you
identify the compilation unit which produced the invalid IPA objects.

Note that the object module which defines main() must always contain IPA
object. It may be necessary to break the source file with main() into multiple
pieces to determine the point of failure.

The Error Occurs at Bind Time

For information on bind time errors, see “Error recovery” on page 329.

The Error Occurs at Prelink Time
1. Do not prelink the object modules separately.

2. Use the prelinker option MAP to obtain a full map of input data sets and symbols.

452 OS/390 V2R6.0 C/C++ User’s Guide

3. Use the prelinker options DUP and ER to obtain a full list of duplicate and
unresolved symbols.

4. If you have unresolved symbols, make sure that the definition of an object and
all references to that object are used consistently in both the code area and the
writable static area. Also, make sure that symbol references appear consistently
in the same case.

5. A symbol can only be imported if all of the following conditions hold true:
v The symbol remains unresolved after autocall.
v Only DLL references were seen for the symbol.
v An IMPORT control statement was encountered for the symbol.

For more information on using DLL, see “Using DLLs” on page 413, or the
OS/390 C/C++ Programming Guide.

6. If you have unresolved symbols after using autocall, make sure that the
libraries that are searched contain only object modules and no load modules. If
you are searching for longnamed or writable static objects, make sure that each
library has a current directory member generated by the C370LIB utility. Without
this directory, autocall can only be done on the member name of the object
module and not on what is actually defined within the member.

7. Only naturally reentrant code can be linked with the output of the prelinker. For
more information, see the OS/390 C/C++ Programming Guide.

The Error Occurs at Link Time
1. If you have a link-time error while working with the C/C++ component of OS/390

Language Environment, you can find diagnostics and debugging information in
DFSMS/MVS Program Management .

2. If you have a link time error while working with common execution environment
(CEE) library component of OS/390 Language Environment, you can find
diagnostics and debugging information for link-time errors in OS/390 Language
Environment Customizationand OS/390 Language Environment Debugging
Guide and Run-Time Messages.

The Error Occurs at Run Time
1. If the problem occurs during execution, specify one or more of the following

compiler options, in addition to the options originally specified, to produce the
most diagnostic information:

Option Information produced
AGGREGATE (C only) Aggregate layout.
ATTRIBUTE For C++ compile, cross reference listing with attribute

information. If XREF is specified, the listing also contains
reference, definition and modification information.

For C++ compile and IPA Link, external symbol cross reference
listing.

EXPMAC Macro expansions with the original source.
LIST Listing of the pseudoassembley listing produced by the

compiler.
OFFSET Offset addresses of functions in the listing.
PPONLY Completely expanded OS/390 C or OS/390 C++ source code,

by activating the preprocessor (PP) only. The output shows, for
example, all the #include and #define directives.

SHOWINC All included text in the listing.
SOURCE Listing of the source file.

Appendix C. Diagnosing Problems 453

XREF For C compile, cross reference listing with reference, definition,
and modification information.

For C++ compile, cross reference listing with reference,
definition, and modification information. If you specify ATTRIBUTE,
the listing also contains attribute information.

For C and C++ compile, and IPA Link, external symbol cross
reference listing.

GONUMBER Generates line number information that corresponds to input
source files.

FLAG Specifies the minimum message severity level that you want
returned from the compiler.

TEST To get information about the contents of variables at the point of
the error, and to enable the use of the Debug Tool.

CHECKOUT Indication of possible programming errors.
INLINE (C only) Inline Summary and Detailed Call Structure Reports.

(Specify with the REPORT suboption.)
INLRPT (C++) only Generates a report on status of functions that were

inlined. The OPTIMIZE option must also be specified.
INFO (C++ only) Indication of possible programming errors.
SRCMSG Adds the corresponding source code lines to the diagnostic

messages that are written to stderr.

2. If the failure is in a statement that can be isolated, for example, an if, switch,
for, while, or do-while statement, try placing the failing statement in the
mainline code. If the problem is occurring as a result of a switch statement,
make sure that you have “breaks” on all appropriate statements.

3. If you have used the compiler options RENT or NORENT in #pragma options or
#pragma variable statements, and compiled your program at OPT(2), you can
detect a possible pointer initialization error by compiling your program at
OPT(0).

4. OS/390 Language Environment Customization and OS/390 Language
Environment Debugging Guide and Run-Time Messages describe diagnostics
and debugging information for runtime errors when executing with OS/390
Language Environment.

5. Check if you are running IBM C/370 Version 1 or Version 2 modules. Some IBM
C/370 Version 1 and Version 2 modules may not be compatible with OS/390
Language Environment. In some cases, old and new modules that run
separately may not run together. You may need to recompile or relink the old
modules, or change their source.OS/390 C/C++ Compiler and Run-Time
Migration Guide documents these solutions.

6. If IPA Link processed the program:

a. Ensure that the program functions correctly when compiled NOIPA at the
same OPT level.

b. Subprograms (functions and C++ methods) which are not referenced will be
removed unless appropriate ″retain″ directives are present in the IPA Link
control file.

c. IPA Link may expose existing problems in the program:

v Ensure that any coalesced global variables which are character strings
have sufficient space to contain all characters plus an additional byte for
the terminating null.

v Ensure that there are no dependencies on the order in which data items
or subprograms (functions, C++ methods) are generated.

d. Do the following to check for a code generation problem.:

454 OS/390 V2R6.0 C/C++ User’s Guide

v Specify a different OPT level during IPA Link processing. If the program
executes correctly, contact IBM service and be prepared to supply the
relevant source (PPONLY) and object modules.

v Specify the option NOOPT during IPA Link processing. If the program
executes correctly, contact IBM service and be prepared to supply the
relevant source (PPONLY) and object modules.

If the program executes correctly at a different OPT level or NOOPT,
perform a binary search for the IPA object file which contains the function for
which code is incorrectly generated. Contact IBM service and be prepared to
supply the relevant source (PPONLY) and object modules.

e. Do the following to check for an IPA optimization problem:

v Specify NOINLINE IPA(LEVEL(1)) during IPA Link processing.

If the program executes correctly, perform a binary search using INLINE
IPA(LEVEL(1)) for the IPA object file which contains the function which is
incorrectly optimized. Once you have located the IPA object file with the
problem, use ″noinline″ directives within the IPA Link control file to
determine the functions that are not correctly inlined. Contact IBM service
and be prepared to supply the relevant source (PPONLY) and object
modules and the IPA Link control file.

Functions that are inconsistently prototyped may cause problems of this
type. Verify that all interfaces are consistent and complete.

v Specify IPA(LEVEL(0)) during IPA Link processing.

If the program executes correctly, perform a binary search using INLINE
IPA(LEVEL(1)) for the IPA object file which contains the function which is
incorrectly optimized. Contact IBM service and be prepared to supply the
relevant source (PPONLY) and object modules.

Installation Problems

You can avoid or solve most installation problems if you follow these steps:

1. Review the step-by-step installation procedure that is documented in the
OS/390 Program Directory that is applicable to your environment.

2. Consult the PSP bucket as described on page 7 on page 450.

If you still cannot solve the problem, develop a keyword string and contact your IBM
Support Center.

You may need to reinstall the OS/390 C/C++ product by using the procedure that is
documented in the OS/390 Program Directory. This procedure is tested for each
product release and successfully installs the product.

Appendix C. Diagnosing Problems 455

456 OS/390 V2R6.0 C/C++ User’s Guide

Appendix D. IBM Supplied Cataloged Procedures and REXX
EXECs

This appendix describes the REXX EXECs (TSO) and cataloged procedures that
the OS/390 C/C++ compiler provides in conjunction with OS/390 Language
Environment, to call the various OS/390 C/C++ utilities.

When you specify a data set name without enclosing it in single quotation marks (’),
your user prefix will be added to the beginning of the data set name. If you enclose
the data set name in quotation marks, it is treated as a fully qualified name.

For more information on the REXX EXECs and EXECs that OS/390 Language
Environment provides, and on the catalogued procedures that do not contain a
compile step, see OS/390 Language Environment Programming Guide.

For a description of CXXBIND see “Chapter 12. Binding OS/390 C/C++ Programs” on
page 289. For a description of CXXMOD see “Prelinking and Linking under TSO” on
page 428. For a list of the old syntax REXX EXECs, see “Appendix I. Other OS/390
C Utilities” on page 603.

Name Task Description

REXX EXECs for OS/390 C
and OS/390 C++

C370LIB Maintain an object library
under TSO

CXXBIND Generate an executable
module under TSO

CXXMOD Generate an executable
module under TSO

DLLRNAME Run the DLLRNAME utility

Catalogued Procedures for
OS/390 C and OS/390 C++

EDCDLLRN Rename DLLs with the
DLLRNAME utility

EDCLIB Maintain an object library

REXX EXECs for OS/390 C CC Compile (new syntax -
recommended approach)

CDSECT Run DSECT utility

GENXLT Generate a translate table

ICONV Run the character conversion
utility

LOCALEDEF Produce a locale object

© Copyright IBM Corp. 1996, 1999 457

Name Task Description

Cataloged Procedures for
OS/390 C

CEEWG Run

CEEWL Link

CEEWLG Link and run

EDCC Compile

EDCCB Compile and Bind

EDCCBG Compile, bind and run

EDCCL Compile and link-edit

EDCCLG Compile, link-edit, and run

EDCCLIB Compile and maintain an
object library

EDCI Run IPA Link step

EDCPL Prelink, and link-edit

EDCCPLG Compile, prelink, link-edit,
and run.

EDCDSECT Run the DSECT Conversion
Utility

EDCGNXLT Generate a translate table

EDCICONV Run the character conversion
utility

EDCLDEF Produce a locale object

REXX EXECs for OS/390
C++

CXX Compile under TSO

cataloged procedures for
OS/390 C++

CBCC Compile

CBCCB Compile and bind

CBCCBG Compile, bind and run

CBCB Bind

CBCBG Bind and run

CBCCL Compile, prelink and link

CBCCLG Compile, prelink, link and run

CBCG Run

CBCI Run IPA Link step

CBCL Prelink and link

CBCLG Prelink, link and run

Tailoring PROCs, REXX EXECs, and EXECs

Your system programmer must modify the PROCs, and REXX EXECs before they
are used. For example, the prefix symbolic parameters LIBPRFX and LNGPRFX should
be changed from the defaults supplied by IBM to the high-level qualifier that you
chose to install the OS/390 C/C++ compiler and OS/390 Language Environment.

The following data sets contain the PROCs and REXX EXECs that are to be
modified:

v CBC.SCBCPRC

458 OS/390 V2R6.0 C/C++ User’s Guide

v CBC.SCBCUTL

v CEE.SCEEPROC

v CEE.SCEECLST

The IBM-supplied cataloged procedures provide many parameters to allow each
site to customize them easily. The table below describes the commonly used
parameters. Use only those parameters that apply to the cataloged procedure you
are using. For example, if you are only compiling (EDCC), do not specify any binder
parameters.

Parameter Description

INFILE For procedures other than EDCI or CBCI, the input OS/390 C/C++
source file name or PDS name of source files. For EDCI or CBCI,
primary input (object records).

If you do not specify the input data set name, you must use JCL
statements to override the appropriate SYSIN DD statement in the
cataloged procedure.

OUTFILE Output module name and file characteristics for procedures that do
not have an execution step (EDCC, EDCCL, and EDCPL). For the
cataloged procedures containing a link-edit step, specify the name of
the file where the load module is to be stored. For cataloged
procedures without a link-edit step, specify the name of the file where
the object module is to be stored.

If you do not specify an OUTFILE name, a temporary data set will be
generated.

CPARM Compiler options: If two contradictory options are specified, the last is
accepted and the first ignored.

BPARM Bind utility options: If two contradictory options are specified, the last
is accepted and the first ignored.

IPARM IPA Link step options: If two contradictory options are specified, the
last is accepted and the first ignored.

PPARM Prelink utility options: If two contradictory options are specified, the
last is accepted and the first ignored.

LPARM Linkage-editor options: If two contradictory options are specified, the
last is accepted and the first ignored.

GPARM LE runtime (Go step) options and parameters: If two contradictory
options are specified, the last is accepted and the first ignored.

CRUN Compile step execution runtime parameters for the OS/390 C
compiler.

IRUN IPA Link step runtime parameters: for the OS/390 C compiler.

OPARM Object Library Utility parameters. Required for EDCLIB.

OBJECT Object module to be added to the library. The data-set name
(DSN=...) and any applicable keyword parameters (such as, DCB,
DISP,) can be specified using this parameter. The default is
OBJECT=DUMMY. OBJECT is required for EDCLIB if the ADD function is
selected.

LIBRARY Data-set name for the library for the requested function (ADD, DEL,
MAP, or DIR). An example is LIBRARY='FRED.LIB.OBJ'. LIBRARY is
required for EDCLIB and EDCCLIB in OS/390 C, and EDCLIB in OS/390
C++.

Appendix D. IBM Supplied Cataloged Procedures and REXX EXECs 459

Parameter Description

MEMBER Member of the library to contain the object module. An example is
MEMBER='MYPROG'. In OS/390 C, MEMBER is required for EDCCLIB.

Data Sets Used

The following table gives a cross-reference of the data sets that each job step
requires, and a description of how the data set is used. Refer to the input/output
section of the OS/390 C/C++ Programming Guide for more information about the
attributes that are used when opening different types of files.

Table 41. Cross Reference of Data Set Used and Job Step

DD Statement COMPILE IPA Link BIND PLKED
(Prelink)

LKED
(Link-Edit)

GO
(Run)

EDCALIAS
(Object
Library)

STEPLIB1 X X X X X X

SYSCPRT X X

SYSIN X X X X X X

SYSLIB X X X X X X

SYSLIN X X X X

SYSLMOD X X

SYSMOD X

SYSMSGS X X

SYSOUT X X X X

SYSPRINT X X X X X

SYSUTx X X X (SYSUT1)

IPACNTL X

Note: 1 Optional data sets, if the compiler and runtime library are installed in the
LPA or ELPA. To save resources (especially in OS/390 UNIX System
Services), do not unnecessarily specify data sets on the STEPLIB ddname.

Description of Data Sets Used

The following table lists the data sets that the IBM-supplied cataloged procedures
use. It describes the uses of the data set, and the attributes that it supports. You
require compiler work data sets only if you specified NOMEM at compile time.

Note: You should check the defaults at your site for SYSOUT=*

Table 42. Data Set Descriptions for Cataloged Procedures

In Job Step DD Statement Description and Supported
Attributes (You should check the
defaults at your site for SYSOUT=*)

COMPILE SYSIN For a C++, C, or IPA compilation, the
input data set containing the source
program.

RECFM=VS, V, VB, VBS, F, FB, FBS,
or FS, LRECL≤32760. It can be a PDS.

460 OS/390 V2R6.0 C/C++ User’s Guide

Table 42. Data Set Descriptions for Cataloged Procedures (continued)

In Job Step DD Statement Description and Supported
Attributes (You should check the
defaults at your site for SYSOUT=*)

COMPILE SYSLIB For a C++, C, or IPA compilation, the
data set for OS/390 C/C++ system
header files for a source program.

SYSLIB must be a PDS (DSORG=PO)
and RECFM=VS, V, VB, VBS, F, FB
LRECL≤32760.

For more information on searching
system header files, see “SEARCH |
NOSEARCH” on page 140.

COMPILE SYSLIN Data set for object module.

One of the following:

v RECFM=F or FS
v RECFM=FB or FBS.

It can be a PDS.

COMPILE SYSOUT Data set for displaying compiler error
messages.

LRECL=137, RECFM=VBA, BLKSIZE=882.
(Defaults for SYSOUT=*).

COMPILE STEPLIB Data set for OS/390 C/C++ compiler
runtime library modules.

STEPLIB must be a PDS (DSORG=PO)
with RECFM=U, BLKSIZE≤32760.

COMPILE SYSCPRT Output data set for compiler listing.

LRECL=137, RECFM=VBA, BLKSIZE=882
(default for SYSOUT=*)

COMPILE SYSUT1 and SYSUT4 Work data sets.

LRECL=80 and RECFM=F or FB or FBS.

COMPILE SYSUT5, SYSUT6, SYSUT7,
SYSUT8, and SYSUT14

Work data sets.

LRECL=3200, RECFM=FB, and
BLKSIZE=3200*n (where n is an integer
value).

COMPILE SYSUT9 Work data set.

LRECL=137, RECFM=VB, and
BLKSIZE=137*n (where n is an integer
value) in OS/390 C, or 882 in OS/390
C++.

COMPILE SYSUT10 PPONLY output data set.

72≤LRECL≤32760, RECFM=VS, V, VB,
VBS, F, FB, FBS or FS (if not
pre-allocated, V is the default). It can
be a PDS.

Appendix D. IBM Supplied Cataloged Procedures and REXX EXECs 461

Table 42. Data Set Descriptions for Cataloged Procedures (continued)

In Job Step DD Statement Description and Supported
Attributes (You should check the
defaults at your site for SYSOUT=*)

COMPILE SYSEVENT Events output file. Must be allocated
by the user.

COMPILE TEMPINC C++ only Template instantiation file. Must be a
PDS.

72≤LRECL≤32760, RECFM=VS, V, VB,
VBS, F or FB (default is V).

COMPILE USERLIB User header files. Must be a PDS.

LRECL≤32760, and RECFM=VS, V, VB,
VBS, F or FB.

For more information on searching
user header files, see “SEARCH |
NOSEARCH” on page 140.

IPA Link SYSIN Data set containing object module for
the IPA Link step.

LRECL=80 and RECFM=F or FB.

IPA Link IPACNTL IPA Link control file directives.

RECFM=VS, V, VB, VBS, F, FB, FBS,
or FS, LRECL≤32760. It can be a PDS.

IPA Link SYSLIB IPA Link step secondary input.

SYSLIB can be a mix of two types of
libraries:

v Object module libraries. These can
be PDSs (DSORG=PO) or PDSEs,
with attributes RECFM=F or RECFM=FB,
and LRECL=80.

v Load module libraries. These must
be PDSs (DSORG=PO) with attributes
RECFM=U and BLKSIZE≤32760.

SYSLIB must be cataloged.

IPA Link SYSLIN Data set for object module.

One of the following:
v RECFM=F or FS
v RECFM=FB or FBS

It can be a PDS.

IPA Link SYSOUT Data set for displaying compiler error
messages.

LRECL=137, RECFM=VBA, BLKSIZE=882.
(Defaults for SYSOUT=*).

IPA Link STEPLIB Data set for OS/390 C/C++
compiler/runtime library modules.

STEPLIB must be a PDS (DSORG=PO)
with RECFM=U, BLKSIZE≤32760.

462 OS/390 V2R6.0 C/C++ User’s Guide

Table 42. Data Set Descriptions for Cataloged Procedures (continued)

In Job Step DD Statement Description and Supported
Attributes (You should check the
defaults at your site for SYSOUT=*)

IPA Link SYSCPRT Output data set for IPA Link step
listings.

LRECL=137, RECFM=VBA, BLKSIZE=882
(default for SYSOUT=*).

IPA Link SYSUT1 and SYSUT4 Work data sets.

LRECL=80 and RECFM=F or FB or FBS.

IPA Link SYSUT5, SYSUT6, SYSUT7,
SYSUT8, and SYSUT14

Work data sets.

LRECL=3200, RECFM=FB, and
BLKSIZE=3200*n (where n is an integer
value).

IPA Link SYSUT9 Work data set.

LRECL=137, RECFM=VB, and
BLKSIZE=137*n (where n is an integer
value).

BIND SYSDEFSD Output from binding a DLL (an
application that exports symbols).

LRECL=80 and RECFM=F or FB or FBS

BIND SYSIN Data set containing object module for
the binder.

LRECL=80 and RECFM=F, FB or FBS.

BIND SYSLIB Data set for binder automatic call
library.

BIND SYSPRINT Data set for listing of binder
diagnostic messages.

LRECL=137, RECFM=VBA, BLKSIZE=882.
(Default attributes for SYSOUT=*).

LKED SYSLIB Data set for OS/390 C/C++ autocall
library.

SYSLIB must be a PDS (DSORG=PO)
and have the attributes RECFM=U and
BLKSIZE≤32760.

PLKED STEPLIB Data set containing prelink utility
modules.

STEPLIB must be a PDS (DSORG=PO)
and RECFM=U and BLKSIZE≤32760.

PLKED SYSDEFSD Output from prelinking a DLL (an
application that exports symbols).

LRECL=80 and RECFM=F or FB or FBS

PLKED SYSIN Data set containing object module for
the prelink utility.

LRECL=80 and RECFM=F, FB or FBS.

Appendix D. IBM Supplied Cataloged Procedures and REXX EXECs 463

Table 42. Data Set Descriptions for Cataloged Procedures (continued)

In Job Step DD Statement Description and Supported
Attributes (You should check the
defaults at your site for SYSOUT=*)

PLKED SYSLIB Data set for prelinkage automatic call
library.

SYSLIB must be cataloged and
LRECL=80 and RECFM=F or FB or FBS.
DSORG=PO

PLKED SYSMOD Data set for output of the prelink
utility

LRECL=80 and RECFM=F or FB or FBS.

PLKED SYSMSGS Data set containing prelink utility
messages.

LRECL=150, RECFM=F or FB or FBS and
BLKSIZE=6150.

PLKED SYSOUT Data set for the prelinker map.

LRECL=80 and RECFM=F or FB or FBS

PLKED SYSPRINT Data set for listing of prelink utility
diagnostic messages.

LRECL=137, RECFM=VBA, BLKSIZE=882.
(Default attributes for SYSOUT=*).

LKED SYSLIB Data set for OS/390 C/C++ autocall
library.

SYSLIB must be a PDS (DSORG=PO)
and have the attributes RECFM=U and
BLKSIZE≤32760.

LKED SYSLIN Primary input data set for linkage
editor

One of the following:
v RECFM=F or FS
v RECFM=FB or FBS

LKED SYSLMOD Output load module library.

RECFM=U and BLKSIZE≤32760.

LKED SYSPRINT Data set for listings and diagnostics
produced by the linkage editor.

One of the following:
v LRECL=121, and RECFM=FA
v LRECL=121, RECFM=FBA, and

BLKSIZE=121*n (where n is less
than or equal to 40).

LKED SYSUT1 Work data set.

The data set attributes will be
supplied by the linkage editor.

464 OS/390 V2R6.0 C/C++ User’s Guide

Table 42. Data Set Descriptions for Cataloged Procedures (continued)

In Job Step DD Statement Description and Supported
Attributes (You should check the
defaults at your site for SYSOUT=*)

GO STEPLIB Runtime libraries.

STEPLIB must be a PDS (DSORG=PO)
and have the attributes RECFM=U and
BLKSIZE≤32760.

GO CEEDUMP Data set for error messages
generated by Language Environment
Dump Services. CEEDUMP must be
a sequential data set and it must be
allocated to SYSOUT, a terminal, or a
unit record device, or the data set
must have the attributes RECFM=VBA,
LRECL=125, and BLKSIZE=882.

GO SYSPRINT Data set for listings and diagnostics
from user program.

LRECL=137, RECFM=VBA, BLKSIZE=882.
(default attributes for SYSOUT=*).

OUTILITY SYSIN Input data set for object module to be
added to the library. It can be
sequential or partitioned (with a
member name specified).

LREL=80, RECFM=F or FB or FBS.

OUTILITY SYSLIB Library for which the member name is
to be added (ADD); for which the
member name is to deleted (DEL);
which is to be listed (MAP); for which
the C370LIB-directory is to be built.
It must be partitioned and not
concatenated and member names
must not be specified.

LREL=80, RECFM=F or FB or FBS.

OUTILITY SYSOUT Output data set for the
C370LIB-directory map. It can be
sequential or partitioned (with a
member name specified).

LREL=80, RECFM=F or FB or FBS.

OUTILITY SYSMSGS Data set containing the input
messages.

LRECL=150, RECFM=F or FB or FBS.

OUTILITY SYSPRINT Data set for target error and warning
messages. The default is to SYSOUT=*.

LRECL=137, RECFM=VBA, BLKSIZE=882

Appendix D. IBM Supplied Cataloged Procedures and REXX EXECs 465

Examples Using Cataloged Procedures

//*--
//* Compile a Partitioned Data Set program with various options
//*--
//EXAMPLE1 EXEC EDCC,
// INFILE='PATRICK.TEST.PDSSRC(CPROG1)',
// OUTFILE='PATRICK.TEST.OBJECT(CPROG1),DISP=SHR',
// CPARM='OPT NOSEQ NOMAR LIST'
//COMPILE.USERLIB DD DSNAME=PATRICK.HDR.FILES,DISP=SHR
//*
//*--
//* Compile a Sequential program with various options
//*--
//EXAMPLE2 EXEC EDCC,
// INFILE='PATRICK.TEST.SEQSRC.CPROG2',
// OUTFILE='PATRICK.TEST.OBJECT(CPROG2),DISP=SHR',
// CPARM='OPT SOURCE XREF FLAG(E)'
//COMPILE.USERLIB DD DSNAME=PATRICK.HDR.FILES,DISP=SHR

Figure 72. Example Compilation for OS/390 C Using EDCC

//*
//CCMEM EXEC CBCC, * Compile C++ source member
// INFILE='MIKE.CPP(ONLYONE)',
// OUTFILE='MIKE.SAMPLE.OBJ(ONLYONE),DISP=SHR ',
// CPARM='OPT SOURCE SHOWINC LIST'
//*
//CCPDS EXEC CBCC, * Compile C++ source PDS
// INFILE='MIKE.CPP',
// OUTFILE='MIKE.PROJECT.OBJ,DISP=SHR ',
// CPARM='NOOPT'

Figure 73. Example Compilation for OS/390 C++ Using CBCC

466 OS/390 V2R6.0 C/C++ User’s Guide

Appendix E. Using Assembler Macros

To compile your C/C++ source program dynamically under OS/390, you can use
macro instructions such as ATTACH, LINK, or CALL in an assembler language
program. For complete information on these macro instructions, refer to the list of
manuals in OS/390 Information Roadmap.

The following is the syntax of each macro instruction:
where:

EP Specifies the symbolic name of the OS/390 C/C++ compiler
CBCDRVR. The control program determines the entry point at which
execution is to begin.

PARAM Specifies a list that contains the addresses of the parameters to be
passed to the OS/390 C/C++ compiler

option_list Specifies the address of a list that contains the options that you
want to use for the compilation.

The option list must begin on a halfword boundary. The first 2 bytes
must contain a count of the number of bytes in the remainder of the
list. You specify the options in the same manner as you would on a
JCL job, with spaces between options. If you do not want to specify
any options, the count must be zero.

For C++ compiler invocation, you must include the characters CXX,
and a blank before the list of compiler options. The number of bytes
therefore should be 4 bytes longer.

ddname_list Specifies the address of a list that contains alternative ddnames for
the data sets that are used during the compiler processing. If you
use standard ddnames, you can omit this parameter.

The ddname list must begin on a halfword boundary. The first two
bytes must contain a count of the number of bytes in the remainder
of the list. You must left-justify each name in the list, and pad it with
blanks to a length of 8 bytes.

ÊÊ ATTACH EP=CBCDRVR , PARAM= (
label

Ê

Ê option_list
, ddname_list

Ê

Ê) , VL=1 , DCB=dcb_addr , TASKLIB=dcb_addr ÊÍ

ÊÊ LINK EP=CBCDRVR , PARAM= (
label

Ê

Ê option_list
, ddname_list

) , VL=1 ÊÍ

ÊÊ CALL EP=CBCDRVR , (
label

option_list
, ddname_list

Ê

Ê) , VL ÊÍ

© Copyright IBM Corp. 1996, 1999 467

The sequence of ddnames in the list is:
v SYSIN
v SYSLIN
v SYSMSGS - this ddname is no longer used, but is kept in the list for

compatibility with old assembler macros.
v SYSLIB
v USERLIB
v SYSPRINT
v SYSCPRT
v SYSPUNCH
v SYSUT1
v SYSUT4
v SYSUT5
v SYSUT6
v SYSUT7
v SYSUT8
v SYSUT9
v SYSUT10
v SYSUT14
v SYSUT15
v SYSEVENT
v TEMPINC

You can omit an alternative ddname from the list by entering binary
zeros in its 8-byte entry, or if it is at the end of the list, by
shortening the list. If you omit the ddname, the compiler assumes
the standard ddname.

VL or VL=1 Specifies that the sign bit is to be set to 1 in the last fullword of the
address parameter.

DCB Specifies the address of the control block for the partitioned data
set that contains the compiler.

TASKLIB Specifies the address of the DCB for the library that is to be used
as the attached tasks library.

The return code from the compiler is returned in register 15.

If you code the macro instructions incorrectly, the compiler is not invoked, and the
return code is 32. This error could be caused if the count of bytes in the alternative
ddnames list is not a multiple of 8, or is not between 0 to 128.

If you specify an alternative ddname for SYSPRINT, the stdout stream is redirected
to refer to the alternate ddname.

The following examples show the use of three assembler macros that rename
ddnames completely or partially. Following each macro is the JCL that is used to
invoke it.

468 OS/390 V2R6.0 C/C++ User’s Guide

CBC3UAAP

* *
* This assembler routine demonstrates DD Name renaming *
* (Dynamic compilation) using the Assembler ATTACH macro. *
* *
* In this specific scenario all the DDNAMES are renamed. *
* *
* The TASKLIB option of the ATTACH macro is used *
* to specify the steplib for the ATTACHed command (ie. the compiler) *
* *
* The Compiler and Library should be specified on the DD *
* referred to in the DCB for the TASKLIB if one or both *
* are not already defined in LPA. The compiler and library do not *
* need to be part of the steplib concatenation. *
* *

ATTACH CSECT

STM 14,12,12(13)
BALR 3,0
USING *,3
LR 12,15
ST 13,SAVE+4
LA 15,SAVE
ST 15,8(,13)
LR 13,15

*
* Invoke the compiler using ATTACH macro
*

OPEN (COMPILER)
ATTACH EP=CBCDRVR,PARAM=(OPTIONS,DDNAMES),VL=1,DCB=COMPILER, X

ECB=ECBADDR,TASKLIB=COMPILER
ST 1,TCBADDR
WAIT 1,ECB=ECBADDR
DETACH TCBADDR
CLOSE (COMPILER)
L 13,4(,13)
LM 14,12,12(13)
SR 15,15
BR 14

*
* Constant and save area
*
SAVE DC 18F'0'

ECBADDR DC F'0'
TCBADDR DC F'0'
OPTIONS DC H'12',C'SOURCE EVENT'

Figure 74. Using the Assembler ATTACH Macro (Part 1 of 2)

Appendix E. Using Assembler Macros 469

CBC3UAAQ

* For C++, substitute the above line with
* OPTIONS DC H'10',C'CXX SOURCE'

DDNAMES DC H'152'
DC CL8'NEWIN'
DC CL8'NEWLIN'
DC CL8'DUMMY' PLACEHOLDER - NO LONGER USED
DC CL8'NEWLIB'
DC CL8'NEWRLIB'
DC CL8'NEWPRINT'
DC CL8'NEWCPRT'
DC CL8'NEWPUNCH'
DC CL8'NEWUT1'
DC CL8'NEWUT4'
DC CL8'NEWUT5'
DC CL8'NEWUT6'
DC CL8'NEWUT7'
DC CL8'NEWUT8'
DC CL8'NEWUT9'
DC CL8'NEWUT10'
DC CL8'NEWUT14'
DC CL8'NEWUT15'
DC CL8'NEWEVENT'

COMPILER DCB DDNAME=MYCOMP,DSORG=PO,MACRF=R
END

Figure 74. Using the Assembler ATTACH Macro (Part 2 of 2)

//*---
//* Standard DDname Renaming (ASM ATTACH from driver program)
//* compiles MYID.MYPROG.SOURCE(HELLO)
//* and places the object in MYID.MYPROG.OBJECT(HELLO)
//*
//* User header files come from MYID.MYHDR.FILES
//* using MYCOMP as the compile time steplib.
//*
//* Compilation is controlled by the assembler module named
//* CBC3UAAP which is stored in MYID.ATTACHDD.LOAD
//*
//* This example uses the OS/390 Language Environment Library
//*---
//G001001B EXEC PGM=CBC3UAAP
//STEPLIB DD DSN=MYID.ATTACHDD.LOAD,DISP=SHR
//MYCOMP DD DSN=CBC.SCBCCMP,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR
//NEWIN DD DSN=MYID.MYPROG.SOURCE(HELLO),DISP=SHR
//NEWLIB DD DSN=CEE.SCEEH.H,DISP=SHR
//NEWLIN DD DSN=MYID.MYPROG.OBJECT(HELLO),DISP=SHR
//NEWPRINT DD SYSOUT=*
//NEWCPRT DD SYSOUT=*,DCB=(RECFM=VBA,LRECL=137,BLKSIZE=882)
//NEWPUNCH DD DSN=...
//SYSTERM DD DUMMY
//NEWUT1 DD DSN=...
//NEWUT4 DD DSN=...
//NEWUT5 DD DSN=...
//NEWUT6 DD DSN=...
//NEWUT7 DD DSN=...
//NEWUT8 DD DSN=...
//NEWUT9 DD DSN=...
//NEWUT10 DD SYSOUT=*
//NEWUT14 DD DSN=...
//NEWUT15 DD DSN=...
//NEWEVENT DD DSN=...
//NEWRLIB DD DSN=MYID.MYHDR.FILES,DISP=SHR
//*--

470 OS/390 V2R6.0 C/C++ User’s Guide

Note that the sharing of resources between attached programs is not supported.

CBC3UAAR

* *
* This assembler routine demonstrates DD Name renaming *
* (Dynamic compilation) using the assembler LINK macro. *
* *
* In this specific scenario a subset of all the DDNAMES are *
* renamed. The DDNAMES you do not want to rename are set to zero. *
* *
* The Compiler and the Library should be in the LPA, or should *
* be specified on the STEPLIB DD in your JCL *
* *

*
LINK CSECT

STM 14,12,12(13)
BALR 3,0
USING *,3
LR 12,15
ST 13,SAVE+4
LA 15,SAVE
ST 15,8(,13)
LR 13,15

*
* Invoke the compiler using LINK macro
*

LINK EP=CBCDRVR,PARAM=(OPTIONS,DDNAMES),VL=1
L 13,4(,13)
LM 14,12,12(13)
SR 15,15
BR 14

Figure 76. Using the Assembler LINK Macro (Part 1 of 2)

Appendix E. Using Assembler Macros 471

CBC3UAAS

*
* Constant and save area
*
* This macro will compile for the OS/390 Language Environment Library
*
SAVE DC 18F'0'
OPTIONS DC H'8',C'SO EVENT'
* For C++, substitute the above line with
* OPTIONS DC H'6',C'CXX SO'
DDNAMES DC H'152'

DC CL8'NEWIN'
DC XL8'0000000000000000'
DC XL8'0000000000000000'
DC XL8'0000000000000000'
DC CL8'NEWRLIB'
DC XL8'0000000000000000'
DC CL8'NEWCPRT'
DC XL8'0000000000000000'
DC 2XL8'0000000000000000'
DC 2XL8'0000000000000000'
DC 2XL8'0000000000000000'
DC XL8'0000000000000000'
DC XL8'0000000000000000'
DC XL8'0000000000000000'
DC XL8'0000000000000000'
DC XL8'0000000000000000'
END

Figure 76. Using the Assembler LINK Macro (Part 2 of 2)

//*---
//* Standard DDname Renaming using the assembler LINK macro
//* compiles MYID.MYPROG.SOURCE(HELLO)
//* and places the object in MYID.MYPROG.OBJECT(HELLO)
//*
//* User header files come from MYID.MYHDR.FILES
//*
//* Compilation is controlled by the assembler module named
//* CBC3UAAR that is stored in MYID.LINKDD.LOAD
//*
//* This JCL uses the OS/390 Language Environment Library.
//*
//*---
//G001003A EXEC PGM=CBC3UAAR
//STEPLIB DD DSN=CBC.SCBCCMP,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=MYID.LINKDD.LOAD,DISP=SHR
//NEWIN DD DSN=MYID.MYPROG.SOURCE(HELLO),DISP=SHR
//SYSLIB DD DSN=CEE.SCEEH.H,DISP=SHR
//SYSLIN DD DSN=MYID.MYPROG.OBJECT(HELLO),DISP=SHR
//SYSPRINT DD SYSOUT=*
//NEWCPRT DD SYSOUT=*,DCB=(RECFM=VBA,LRECL=137,BLKSIZE=882)
//SYSPUNCH DD SYSOUT=*
//SYSTERM DD DUMMY
//SYSUT1 DD DSN=...
//SYSUT4 DD DSN=...
//SYSUT5 DD DSN=...
//SYSUT6 DD DSN=...
//SYSUT7 DD DSN=...
//SYSUT8 DD DSN=...
//SYSUT9 DD DSN=...
//SYSUT10 DD SYSOUT=*
//SYSUT14 DD DSN=...
//SYSUT15 DD DSN=...
//SYSEVENT DD DSN=...
//NEWRLIB DD DSN=MYID.MYHDR.FILES,DISP=SHR
//*--

472 OS/390 V2R6.0 C/C++ User’s Guide

CBC3UAAT

* *
* This assembler routine demonstrates DD Name renaming *
* (Dynamic compilation) using the Assembler CALL macro. *
* *
* In this specific scenario, a subset of all the DDNAMES are *
* renamed. This renaming is accomplished by shortening *
* the list of ddnames. *
* *
* The Compiler and the Library should be either be in the LPA or *
* be specified on the STEPLIB DD in your JCL *
* *

*
LINK CSECT

STM 14,12,12(13)
USING LINK,15
LA 3,MODE31
O 3,=X'80000000'
DC X'0B03'

MODE31 DS 0H
USING *,3
LR 12,15
ST 13,SAVE+4
LA 15,SAVE
ST 15,8(,13)
LR 13,15

*
* Invoke the compiler using CALL macro
*

LOAD EP=CBCDRVR
LR 15,0
CALL (15),(OPTIONS,DDNAMES),VL
L 13,4(,13)
LM 14,12,12(13)
SR 15,15
BR 14

Figure 78. Using the Assembler CALL Macro (Part 1 of 2)

Appendix E. Using Assembler Macros 473

CBC3UAAU

*
* Constant and save area
*
SAVE DC 18F'0'
OPTIONS DC H'2',C'SO'
* For C++, substitute the above line with
* OPTIONS DC H'6',C'CXX SO'
DDNAMES DC H'96'

DC CL8'NEWIN'
DC CL8'NEWLIN'
DC CL8'DUMMY' PLACEHOLDER - NO LONGER USED
DC CL8'NEWLIB'
DC CL8'NEWRLIB'
DC CL8'NEWPRINT'
DC CL8'NEWCPRT'
DC CL8'NEWPUNCH'
DC CL8'NEWUT1'
DC CL8'NEWUT4'
DC CL8'NEWUT5'
DC CL8'NEWUT6'
END

Figure 78. Using the Assembler CALL Macro (Part 2 of 2)

//*---
//* Standard DDname Renaming using the assembler CALL macro
//* compiles MYID.MYPROG.SOURCE(HELLO)
//* and places the object in MYID.MYPROG.OBJECT(HELLO)
//*
//* User Header files come from MYID.MYHDR.FILES
//*
//* Compilation is controlled by the assembler module named
//* CBC3UAAT which is stored in MYID.CALLDD.LOAD
//*
//* This JCL uses the OS/390 Language Environment Library.
//*
//*---
//G001004C EXEC PGM=CBC3UAAT
//STEPLIB DD DSN=CBC.SCBCCMP,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR
// DD DSN=MYID.CALLDD.LOAD,DISP=SHR
//NEWIN DD DSN=MYID.MYPROG.SOURCE(HELLO),DISP=SHR
//NEWLIB DD DSN=CEE.SCEEH.H,DISP=SHR
//NEWLIN DD DSN=MYID.MYPROG.OBJECT(HELLO),DISP=SHR
//NEWPRINT DD SYSOUT=*
//NEWCPRT DD SYSOUT=*,DCB=(RECFM=VBA,LRECL=137,BLKSIZE=882)
//NEWPUNCH DD DSN=...
//SYSTERM DD DUMMY
//NEWUT1 DD DSN=...
//NEWUT4 DD DSN=...
//NEWUT5 DD DSN=...
//NEWUT6 DD DSN=...
//SYSUT7 DD DSN=...
//SYSUT8 DD DSN=...
//SYSUT9 DD DSN=...
//SYSUT10 DD SYSOUT=*
//SYSUT14 DD DSN=...
//SYSUT15 DD SYSOUT=*
//NEWRLIB DD DSN=MYID.MYHDR.FILES,DISP=SHR
//*--

Figure 79. JCL for the Assembler CALL Macro

474 OS/390 V2R6.0 C/C++ User’s Guide

Appendix F. OS/390 C/C++ Compiler Return Codes and
Messages

This appendix contains information about the compiler messages and should not be
used as programming interface information.

Return Codes

For every compilation job or job step, the compiler generates a return code that
indicates to the operating system the degree of success or failure it achieved:

Table 43. Return Codes from Compilation of a OS/390 C/C++ Program

Return Code Type of Error Detected Compilation Result

0 No error detected; Informational
messages may have been
issued.

Compilation completed.
Successful execution
anticipated.

4 Warning error detected. Compilation completed.
Execution may not be
successful.

8 Error detected. Compilation may have been
completed. Successful
execution not possible.

12 Severe error detected. Compilation may have been
completed. Successful
execution not possible.

16 Terminating error detected. Compilation terminated
abnormally. Successful
execution not possible.

33 A library level prior to OS/390
Language Environment Release
3 was used.

Compilation terminated
abnormally. Successful
execution not possible.

The return code indicates the highest possible error severity that the compiler may
be detect. Therefore, a particular entry under the Types of Error column includes
all error types above it. For example, return code 12 indicates that the compiler
may have issued a Severe, Error, Warning, or Informational message. But it does
not necessarily mean that all these error types are present in that particular
compile.

Compiler Messages

Message Format: CBCnnnn text <& n> where:

nnnn error message number

text message which appears on the screen

&n compiler substitution variable

© Copyright IBM Corp. 1996, 1999 475

CBC1000 Licensed Materials - Property of IBM
5647-A01 (C) Copyright IBM Corp.
1994, 1998. All Rights Reserved. US
Government Users Restricted Rights -
Use, duplication or disclosure
restricted by GSA ADP Schedule
Contract with IBM Corp.

Explanation: Copyright statement for the message
module (do not translate)

User Response: No action required (do not translate)

CBC1001 ″private ″ assumed for base class ″&1″.
(where &1 is the name of the base
class.)

Explanation: No access specifier has been provided
for a base class. A base class can be declared with the
access specifier ″public″ or ″private″. The C++ language
specification requires that ″private″ becomes the default
when no access specifier is present. It is good coding
practice to explicitly provide the access specifier for the
base class.

User Response: Provide an access specifier or
accept the default.

CBC1002 ″&1″ is not used in function ″&2″.
(where &1 is a C++ symbol name &2 is
a function name)

Explanation: The specified symbol has been declared
within a function but it has not been set or used. This is
only an informational message because you can declare
symbols that are not unused, but it is probably
undesirable.

User Response: Ignore the message, use the symbol,
or remove the symbol.

CBC1003 Ambiguous conversion between ″&1″
and ″&2″. (where &1 is a C++ type &2 is
a C++ type)

Explanation: The compiler was not able to find a
single type common to the two specified types and was
therefore unable to convert from one to the other.

User Response: Explicitly cast the type to an
intermediate type and then convert to requested type.

CBC1004 ″&1″ statement is not allowed in this
scope.

Explanation: The specified statement was found
outside the valid scope for such a statement. This
typically means that it is outside any function.

User Response: Place the statement in the correct
scope or remove it.

CBC1005 Duplicate ″default ″ statement in switch.

Explanation: Only one ″default″ label is allowed in a
″switch″ statement. This ″default″ label is not the first in
the switch statement.

User Response: If you have nested switch
statements, check that the braces match correctly. If
they do not match, remove one of the ″default″ labels.

CBC1006 Duplicate definition of label ″&1″.
(where &1 is a C++ label name)

Explanation: The specified label has already been
defined in the current function. A label can only be
declared once within a function.

User Response: Remove or rename one of the label
definitions.

CBC1008 Source file &1 cannot be opened.
(where &1 is a file name, enclosed in
quotes or angle brackets as specified
in the corresponding ″include ″
directive.)

Explanation: The compiler could not open the
specified source file.

User Response: Ensure the source file name is
correct. Ensure that the correct file is being read and
has not been corrupted. If the file is located on a LAN
drive, ensure the LAN is working properly. Also, the file
may be locked by another process or access may be
denied because of insufficient permission.

CBC1009 An error occurred while reading file
″&1″. (where &1 is a file name)

Explanation: The compiler detected an error while
reading from the specified file.

User Response: Ensure the correct file is being read.
If the file resides on a LAN drive, ensure that the LAN is
working correctly.

CBC1010 Source file name is missing.

Explanation: The name of the source file to be
compiled was missing from the compiler invocation.

User Response: Ensure that you specify the source
file name. Ensure the compiler options are specified
correctly as well; the compiler may misinterpret the
command line if the options are specified incorrectly.

CBC1011 ″&1″ is unmatched at end of file. (where
&1 is a start-comment token or a left
brace.)

Explanation: The end of the source file was reached
and the comment or block was not closed. It is also

476 OS/390 V2R6.0 C/C++ User’s Guide

possible that there was a typographical error earlier in
the source file.

User Response: Check the source file for
typographical errors. End the comment or block before
the end of the file.

CBC1012 A return value is not allowed for this
function.

Explanation: A function with a return type of ″void″
cannot return a value.

User Response: Remove the value or expression
from the return statement, remove the return statement,
or change the return type of the function.

CBC1013 Identifier ″&1″ is undefined. (where &1
is a C++ name)

Explanation: The specified identifier is used but has
not been defined.

User Response: Define the identifier before using it.
Check its spelling. If the identifier has been defined in a
header file, check that any required macros have been
defined.

CBC1014 Wrong number of arguments for macro
″&1″.

Explanation: The specified macro was defined with a
different number of arguments than are used in this
macro call.

User Response: Ensure that the macro call
corresponds to the macro definition. Check the number
and levels of corresponding braces in the macro.

CBC1015 The compiler could not open the
output file ″&1″. (where &1 is a file
name.)

User Response: Ensure the output file name is
correct. Also, ensure that the location of the output file
has sufficient storage available. If using a LAN drive,
ensure that the LAN is working properly and you have
permission to write to the disk.

CBC1016 &1 member ″&2″ cannot be accessed.
(where &1 is the keyword ″private ″ or
″protected ″ &2 is a class member
name)

Explanation: The specified member is private,
protected, or is a member of a private base class and
cannot be accessed from the current scope.

User Response: Check the access specification rules
for the member function and change the access
specifier if necessary. If the member function belongs to
a base class, check the access specifier of the base
class where the current class is defined.

CBC1017 Return value of type ″&1″ is expected.
(where &1 is a C++ type)

Explanation: No value is returned from the current
function, but the function is expecting a non-void return
value. The function was declared with a return type but
the compiler did not detect a return statement. Only
functions with a void return type may have no return
statement or have a return statement with no return
value.

User Response: Return a value from the function or
change the functions’s return type to void.

CBC1018 ″&1″ cannot be made a &2 member.
(where &1 is a class member name &2
is the keyword ″public ″, ″protected ″ or
″private ″)

Explanation: An attempt is made to give private
access to a base class member or to give an access
that is different from the access the member was
declared with. A derived class can only change the
access of a base class member to public or protected if
the access of that member was not private in the base
class.

User Response: Remove the invalid access statement
or change the access specifier in the base class.

CBC1019 Case expression is not an integral
constant expression.

Explanation: The expression in a ″case″ statement
must be an integral constant expression followed by a
colon (:). A constant expression has a value that can be
determined during compilation and does not change
during execution.

User Response: Use an integral constant expression.

CBC1020 Inline assembly code is ignored.

Explanation: The compiler does not emit executable
code from inlined assembly language instructions.

User Response: Ignore the message or replace the
assembly code with C++.

CBC1021 Expected ″end of line ″ and found ″&1″
in preprocessor directive. (where &1 is
the unexpected token found by the
compiler)

Explanation: The compiler detected a preprocessor
directive at the beginning of this line, then found an
error in the directive. The rest of the line in the
preprocessor directive is ignored.

User Response: Remove the unexpected token so
that only the preprocessor directive appears on the line.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 477

CBC1022 ″&1″ was previously declared as ″&2″.
(where &1 is the name being declared
&2 is the conflicting attribute in the
previous declaration)

Explanation: The declaration conflicts with a previous
declaration of the same name.

User Response: Change one of the names or
eliminate one of the declarations.

CBC1023 ″&1″ has already been defined. (where
&1 is a C++ name)

Explanation: An attempt is being made to define a
name that has already been defined.

User Response: Change one of the names or remove
one of the definitions. Check the spelling and the scope
of the two variables.

CBC1024 Declaration of ″&1″ must be a function
definition. (where &1 is a member
function name)

Explanation: A declaration of a member function
outside its member list must be a function definition.
Once you declare a member function inside a class
declaration, you cannot redeclare it outside the class.

User Response: Either remove the member function
declaration outside the member list or change it to a
definition.

CBC1025 ″&1″ conflicts with ″&2″. (where &1 is
keyword &2 is keyword)

Explanation: These two attributes cannot both be
specified in the same declaration.

User Response: Remove one of the specified
attributes.

CBC1026 Keyword ″&1″ is not allowed. (where &1
is a keyword)

Explanation: The specified keyword is not allowed in
this context.

User Response: Remove the keyword.

CBC1027 Preprocessor directive ″#&1″ is not
recognized. (where &1 is a
preprocessor directive)

Explanation: The compiler identified a # character at
the start of a line and did not recognize the
preprocessor directive following it.

User Response: Check the spelling of the
preprocessor directive.

CBC1028 The syntax of the file name in the
″#include ″ directive is not valid.

Explanation: The compiler detected an #include
preprocessor directive but could not parse the file name.
The file name in the #include directive must be within
double quotation marks (″″) or angle brackets (

).

User Response: Correct the syntax of the file name.

CBC1029 Expected integer line number and
found ″&1″. (where &1 is a C++ token)

Explanation: The operand of the ″#line″ directive must
be an integer line number.

User Response: Ensure that the ″#line″ directive
contains an integer line number operand.

CBC1030 The macro ″&1″ has already been
defined. (where &1 is a macro name)

Explanation: An active definition already exists for the
macro name being defined. The last definition will be
used.

User Response: Remove or rename one of the macro
definitions.

CBC1032 Unexpected preprocessor directive
″#&1″. (where &1 is a preprocessor
directive)

Explanation: An ″#else″, ″#elif″ or ″#endif″
preprocessor directive was found out of context.

User Response: Remove or move the preprocessor
directive. Check nesting of #if, #else, #elif, and #endif.

CBC1033 The for-init-statement must be a
declaration or expression.

Explanation: The initializer statement within a ″for″
statement must be a declaration or expression.

User Response: Change the for-init-statement to a
declaration or an expression.

CBC1034 ″&1″ has a function body but is not a
function. (where &1 is a C++ name)

Explanation: The name is not declared as a function;
there may be parentheses missing after the function
name.

User Response: Correct the declaration.

478 OS/390 V2R6.0 C/C++ User’s Guide

CBC1035 The array boundary in ″&1″ is missing.
(where &1 is a C++ type)

Explanation: An array must be defined with at least
one element. Use a pointer if you want to dynamically
allocate memory for the array.

User Response: Add an array bound.

CBC1036 The bit-field length must be an integral
constant expression.

Explanation: The bit-field length, which is the value to
the right of the colon, must be an integer. A constant
expression has a value that can be determined during
compilation and does not change during execution.

User Response: Change the bit-field length to an
integral constant expression.

CBC1037 ″&1″ is not a base class of ″&2″. (where
&1 is a class name &2 is a class name)

Explanation: A derived class attempted to access
elements of a class it did not inherit from. A derived
class can only access elements of its base class or
base classes.

User Response: Ensure the class names are correct
and the classes are derived properly.

CBC1038 The array bound must be a positive
integral constant expression.

Explanation: The compiler detected an array
declaration that did not have a constant that is greater
than 0 for the array bounds. Use pointers if you want to
dynamically allocate storage for arrays.

User Response: Change the array bound to an
integral constant expression or change it to a pointer. A
constant expression has a value that can be determined
during compilation and does not change during
execution.

CBC1039 ″&1″ has the same name as its
containing class. (where &1 is a C++
name)

Explanation: The compiler has detected conflicting
names for objects within a class declaration. Nested
class declarations must have different names.

User Response: Change the name of the conflicting
class.

CBC1040 A destructor can only be used in a
function declaration or in a function
call.

Explanation: The compiler has detected an incorrect
destructor call.

User Response: Check the call to the destructor to
ensure no braces are missing. If the braces are correct,
remove the destructor call.

CBC1041 An initializer is not allowed for ″&1″.
(where &1 is a C++ name or keyword)

Explanation: The compiler detected an initializer
where one is not permitted. For example, a class
member declarator cannot contain an initializer.

User Response: Remove the initializer.

CBC1042 Function ″&1″ is nested within another
function. (where &1 is a function name)

Explanation: You cannot nest functions in C++.

User Response: Ensure that a ″}″ is not missing
before the start of the function. Remove the nested
function.

CBC1043 The string must be terminated before
the end of the line.

Explanation: The compiler detected a string that was
not terminated before an end-of-line character was
found.

User Response: End the string before the end of the
line, or use ″\″ to continue the string on the next line.
The ″\″ must be the last character on the line.

CBC1044 extern ″&1″ is not a recognized
linkage; extern ″C″ is assumed. (where
&1 is a string)

Explanation: The linkage string in a linkage
declaration is not one of the linkages supported by this
compiler.

User Response: Change the linkage string to a valid
value.

CBC1045 Preprocessor error - expected ″&1″ and
found ″&2″. (where &1 is a C++ token
&2 is a C++ token)

Explanation: A syntax error was found during
preprocessing. The message identifies what the
compiler expected and what it actually found.

User Response: Correct the syntax.

CBC1047 An expression of type ″&1″ cannot be
followed by the function call operator
().

Explanation: The compiler detected an expression
followed by the function call operator. The expression
must be of type function, pointer to function, or
reference to function.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 479

User Response: Change the type of expression or
remove the function call operator.

CBC1048 The ″this ″ keyword is only valid in
class scope.

Explanation: An attempt to use the C++ keyword
″this″ was detected outside class scope. The keyword
″this″ cannot be used outside a class member function
body.

User Response: Remove or move the ″this″ keyword.

CBC1049 The option ″&1″ is not supported.
(where &1 is an option)

Explanation: The command line contained an option
that is not supported. Note that some option parameters
must not have spaces between the option and the
parameter.

User Response: Remove the option. Check the
syntax of the options.

CBC1050 A destructor cannot have arguments.

User Response: Remove the arguments from the
destructor.

CBC1051 A declaration has been made without a
type specification.

Explanation: The compiler detected a typedef
specification that did not have a type associated with it.

User Response: Add a type specification to the
declaration.

CBC1052 Return type cannot be specified for
″&1″. (where &1 is a function name)

Explanation: The compiler detected a return type
where one is not permitted. For example, putting a
return type on a constructor is not permitted.

User Response: Remove the return type specification
for the function.

CBC1053 Class qualification for ″&1″ is not
allowed. (where &1 is a C++ name)

Explanation: Explicit class qualification is not allowed
in this context.

User Response: Remove the class qualification.

CBC1054 The ″&1″ operator is not allowed
between ″&2″ and ″&3″. (where &1 is a
C++ operator &2 is a C++ type &3 is a
C++ type)

Explanation: The compiler detected an illegal operator
between two operands. For user-defined types, you

must overload the operator to accept the user-defined
types.

User Response: Change the operator or change the
operands.

CBC1055 ″&1″ cannot be converted to ″&2″.
(where &1 is a C++ type &2 is a C++
type)

Explanation: The type conversion cannot be
performed because there is no conversion between the
types. This can occur in an initialization, assignment, or
expression statement.

User Response: Change one of the types or overload
the operator.

CBC1056 Operand for ″&1″ must be a pointer or
an array. (where &1 is a C++ operator)

Explanation: The specified operator must have an
operand which is a pointer or an array.

User Response: Change the operand to either a
pointer or an array.

CBC1057 Syntax error - ″&1″ is not a class
name. (where &1 is a C++ name)

Explanation: A class name must be specified in this
context.

User Response: Specify a class name. Check the
spelling.

CBC1058 Operand of ″&1″ operator must be an
lvalue. (where &1 is a C++ operator)

Explanation: The compiler detected an operand that
is not an lvalue. An lvalue is an expression that
represents an object. For example, the left hand side of
an assignment statement must be an lvalue.

User Response: Change the operand to an lvalue.

CBC1059 const expression cannot be modified.

Explanation: You can initialize a const object, but its
value cannot change afterwards.

User Response: Eliminate the const type qualifier
from the expression or do not use it with the
increment/decrement operators.

CBC1060 An expression of type ″&1″ is not
allowed on the left side of ″&2&3″.
(where &1 is a C++ type &2 is a C++
operator &3 is a C++ name)

Explanation: The compiler detected a mismatch
between the operands of an operator.

480 OS/390 V2R6.0 C/C++ User’s Guide

User Response: Change the operand type or use a
different operator.

CBC1061 ″&1″ is neither an immediate base
class nor a non-static data member of
class ″&2″. (where &1 is a C++ name)

Explanation: The compiler has detected an element of
the initializer list that is not an element of the member
list. In the constructor initializer list, you can only
initialize immediate base classes and data members not
inherited from a base class.

User Response: Change the constructor initializer list.

CBC1062 Constructor initializer list is not
allowed for non-constructor function.

Explanation: An attempt is being made to give a
constructor initializer list to a non-constructor function. A
constructor initializer list is only allowed for a constructor
function.

User Response: Remove the constructor initializer list.

CBC1063 Variable ″&1″ is not allowed in an
argument initializer. (where &1 is a C++
name)

Explanation: The compiler has detected a default
argument initialized by a parameter.

User Response: Remove the parameter from the
default argument initialization.

CBC1064 There are too many initializers in the
initializer list.

Explanation: The compiler detected more initializers
than were present in the function declaration.

User Response: Remove one or more initializers from
the initializer list. Make sure the number of initializers in
the initializer list corresponds to the number of
arguments in the function declaration.

CBC1065 An initializer is not allowed for an array
allocated by ″new″.

User Response: Remove the initializer or remove the
″new″ allocation.

CBC1066 The bit-field length must not be more
than &1. (where &1 is a number)

Explanation: The bit-field length must not exceed the
maximum bit size of the bit-field type.

User Response: Reduce the bit-field length.

CBC1067 The type of ″&1″ cannot be ″&2″.
(where &1 is a C++ construct &2 is a
C++ type)

Explanation: The compiler detected a conflict in a
type declaration.

User Response: Change the type.

CBC1068 Function overloading conflict between
″&1″ and ″&2″. (where &1 is a function
type &2 is a function type)

Explanation: The compiler detected function argument
types that did not match.

User Response: Change the argument declarations of
the functions.

CBC1069 Declarations of the same &1 must not
specify default initializers for the same
argument. (where &1 is the word
″function ″ or the keyword ″template ″)

Explanation: The compiler has detected a duplicate
default initializer value for the same argument in both
overloaded functions or in both templates.

User Response: Ensure that you wanted to declare
the same function or template. If that is the case,
remove one of the default initializers. Otherwise, remove
one of the declarations or overload the function.

CBC1070 Call does not match any argument list
for ″&1″. (where &1 is a function name)

Explanation: No variant of the overloaded function
matches the argument list. The argument mismatch
could be by type or number of arguments.

User Response: Change the argument list on the call
to the overloaded function or change the argument list
on one of the overloaded function variants so that a
match is found.

CBC1071 Call to ″&1″ matches more than one
function. (where &1 is a function name)

Explanation: More than one variant of the overloaded
function matches equally well with the argument list
specified on the call.

User Response: Change the argument list on the call
to the overloaded function or change the argument list
on one of the overloaded function variants so that only
one match is found.

CBC1072 Linkage for ″&1″ cannot be redefined.
(where &1 is a function name)

Explanation: The specified name has already been
declared with a different linkage than the current
declaration.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 481

User Response: Remove the redefinition or change
one of the names.

CBC1073 The ″operator ″ declaration must
declare a function.

Explanation: The keyword ″operator″ can only be
used to declare an operator function.

User Response: Check the declaration of the operator
and make sure the function declarator () appears after
it. Use the ″operator″ keyword to declare an operator
function or remove it.

CBC1074 Operand for ″&1″ is of type ″&2″ which
is not of type pointer to member.
(where &2 is a C++ type)

Explanation: The specified operator must have an
operand which is of type pointer to member.

User Response: Change the operand to type pointer
to member.

CBC1075 ″&1″ is not allowed as a function return
type. (where &1 is a C++ type)

Explanation: You cannot declare a function with a
function or an array as its return type.

User Response: Declare the function to return a
pointer to the function or the array element type.

CBC1076 ″&1″ is not allowed as an array element
type. (where &1 is a C++ type)

Explanation: The C++ language does not allow the
declaration of an array of functions or references, or an
array of type void.

User Response: Remove the declaration or change
the declaration so that it is an array of pointer to
functions, pointers to references, or pointers to void.

CBC1077 const variable ″&1″ does not have an
initializer. (where &1 is a variable name)

Explanation: You can only assign a value to a const
variable using an initializer. This variable has no
initializer, so it can never be given a value.

User Response: Initialize the variable or remove the
″const″ keyword.

CBC1078 Non-static member ″&1″ must be
associated with an object or a pointer
to an object. (where &1 is a class
member name)

Explanation: The compiler detected a non-static
member making a reference to an object that has not
been instantiated. You can reference only static

members without associating them with an instance of
the containing class.

User Response: Check the spelling and the class
definition. Change the name of the class or function, or
define the function as static in that class.

CBC1079 ″&1″ is not a member of ″&2″. (where
&1 is a C++ name &2 is a class name)

Explanation: The class is used explicitly as the scope
qualifier of the member name, but the class does not
contain a member of that name.

User Response: Check the spelling of the scope
qualifier. Change the scope qualifier to the class
containing that member, or remove it.

CBC1080 Wrong number of arguments for ″&1″.
(where &1 is a function or type name)

Explanation: A function or an explicit cast has been
specified with the wrong number of arguments.

User Response: Use the correct number of
arguments. Ensure that overloaded functions have the
correct number and type of arguments.

CBC1081 ″&1″ must be a class member. (where
&1 is a C++ name)

Explanation: Conversion functions and certain
operator functions must be class members. They cannot
be defined globally.

User Response: Remove the global definition or make
the function a class member.

CBC1082 An argument type of ″&1″ is not
allowed for ″&2″. (where &1 is a C++
type &2 is a function name)

Explanation: The function being declared has
restrictions on what types its arguments can have. The
specified type is not allowed for this argument.

User Response: Change the argument type.

CBC1083 ″&2″ cannot have a return type of ″&1″.
(where &1 is a C++ type &2 is an
operator function)

Explanation: The specified operator function has the
wrong return type.

User Response: Change the return type.

CBC1084 The array operator must have one
operand of pointer type and one of
integral type.

Explanation: This error may result from the incorrect
use of the array operator.

482 OS/390 V2R6.0 C/C++ User’s Guide

User Response: Change the operands of the array
operator.

CBC1085 Wrong number of arguments specified
in the function call.

Explanation: The number of arguments in the function
call does not match the number of arguments in the
function declaration.

User Response: Ensure the function declaration and
function call specify the same number of arguments.

CBC1086 &1 (where &1 is an error message)

Explanation: This message has been generated by
the ″#error″ preprocessor directive, which is a
user-defined error message placed in the source code.

CBC1087 ″&1″ operator is not allowed for type
″&2″. (where &1 is a C++ operator &2 is
a C++ type)

Explanation: The specified operator cannot be used
with operands of this type.

User Response: Change either the operator or the
operands.

CBC1088 Insufficient memory.

Explanation: The compiler ran out of memory during
compilation.

User Response: Increase your storage and recompile.

CBC1089 More than one function ″&1″ has
non-C++ linkage. (where &1 is a
function name)

Explanation: If a function is overloaded, at most one
of its variants can have non-C++ linkage.

User Response: Remove one of the non-C++
linkages or do not overload the function.

CBC1090 Syntax error - expected ″&1″ and found
″&2″. (where &1 is a C++ token &2 is a
C++ token)

Explanation: A syntax error was found while parsing
the program. The message identifies what the compiler
expected and what it actually found. Often the source of
the error is an unmatched parenthesis or a missing
semicolon.

User Response: Correct the syntax.

CBC1091 ″&1″ is not allowed for &2. (where &1 is
a keyword &2 is a C++ construct)

Explanation: The attribute or name cannot be
specified in the given context. The compiler detected
incompatible names that conflict with the language
definition.

User Response: Remove the attribute or name.

CBC1092 ″&1″ conflicts with previous ″&2″
declaration. (where &1 is a keyword &2
is a keyword)

Explanation: The declaration conflicts with a previous
declaration of the same symbol.

User Response: Remove one of the declarations or
make them identical.

CBC1093 Initializer is too long.

Explanation: The string initializer for a character or
wide-character array has more characters than the
array. Note that the trailing null character is treated as
part of the initializer.

User Response: Increase the size of the array or
reduce the size of the initializer.

CBC1094 The ″operator-> ″ function must return
a class type that contains an
″operator-> ″ function.

Explanation: The ″operator->″ function must return
either a class type, a reference to a class type, or a
pointer to class type, and the class type must itself have
an ″operator->″ function.

User Response: Change the return value of the
″operator->″ function.

CBC1095 Unused ″&1″ definition. (where &1 is
the keyword struct or class)

Explanation: An unnamed class or struct definition
was found that has no object associated with it. The
definition can never be referenced. A class can be
unnamed, but it cannot be passed as an argument or
returned as a value. An unnamed class cannot have
any constructors or destructors.

User Response: Create an object for the class or
struct, or remove the definition.

CBC1096 Internal compiler error at line &1 in
module ″&2″: &3.

Explanation: The compiler detected an error within
itself from which it cannot recover. The error was found
within the compiler itself.

User Response: Note the line and module references

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 483

in this message. Contact your IBM Representative or C
SET ++ support.

CBC1097 Reference to member ″&1″ of
undefined class ″&2″. (where &1 is a
member name &2 is a class name)

Explanation: The member has been explicitly given
the specified class as a scope qualifier but the class
(and hence the member) has not been defined.

User Response: Check for a missing #include file.
Define the class and member.

CBC1098 Pointer conversion may be wrong if
the classes are related in a multiple
inheritance hierarchy.

Explanation: The relationship between the classes in
a pointer conversion is not known. If the target class is
later defined as a base class of the source class in a
multiple inheritance, this conversion will be wrong if the
value of the pointer should have been modified by the
conversion.

User Response: Change the ambiguous reference in
the conversion.

CBC1099 ″&1″ is used but not set in function
″&2″. (where &1 is a variable name &2
is a function name)

Explanation: The specified symbol is being used but
has not been assigned a valid value. Its value will be
undefined.

User Response: Define or initialize the symbol before
using it.

CBC1100 ″&1″ is set but not used in function
″&2″. (where &1 is a variable name &2
is a function name)

Explanation: The specified symbol was given a value
but was never used.

User Response: Use the symbol or remove it.

CBC1101 ″&1″ is used before it is set. (where &1
is a variable name)

Explanation: The specified symbol is being used
before it has been assigned a value. The value of the
symbol is undefined.

User Response: Define or initialize the symbol before
using it.

CBC1102 The reference variable ″&1″ is
uninitialized. (where &1 is a variable
name)

Explanation: Reference variables must be initialized.

User Response: Initialize the reference variable or
remove it.

CBC1103 ″&1″ must already be declared. (where
&1 is a class or enum name)

Explanation: The specified class or enum name must
have been declared before this use of the name.

User Response: Declare the class or enum name
before you use it. Check the correct spelling of the
name.

CBC1104 Unrecognized source character ″&1″,
code point &2. (where &1 is a character
&2 is an integer)

Explanation: The specified character is not a valid
character in a C++ program. The code point displayed
represents its hexadecimal value.

User Response: Remove the character.

CBC1105 A local class cannot have a non-inline
member function ″&1″. (where &1 is a
function name)

Explanation: A class declared within a function must
have all of its member functions defined inline, because
the class will be out of scope before non-inline functions
can be defined.

User Response: Define the functions inline, or move
the class definition out of the scope of the function.

CBC1106 The size of ″&1″ is unknown in ″&2″
expression. (where &1 is a C++ type)

Explanation: The operation cannot be performed
because the size of the specified type is not known.

User Response: Ensure the size of the type is known
before this expression.

CBC1107 Assignment in logical expression.

Explanation: The logical expression contains an
assignment (=). An equality comparison (==) may have
been intended.

User Response: Change the operator or the
expression.

484 OS/390 V2R6.0 C/C++ User’s Guide

CBC1108 Conversion from ″&1″ to ″&2″ may
cause truncation. (where &1 is a C++
type &2 is a C++ type)

Explanation: The specified conversion from a wider to
a narrower type may cause the loss of significant data.

User Response: Remove the conversion from a wider
to a narrower type.

CBC1109 ″goto &1 ″ bypasses initialization of
″&2″. (where &1 is the C++ label used
with the goto keyword &2 is the
variable being initialized)

Explanation: Jumping past a declaration with an
explicit or implicit initializer is not valid unless the
declaration is in an inner block or unless the jump is
from a point where the variable has already been
initialized.

User Response: Enclose the initialization in a block
statement.

CBC1110 References to ″&1″ may be ambiguous.
The name is declared in base classes
″&2″ and ″&3″. (where &3 is a C++
class name)

Explanation: The compiler detected the base classes
of a derived class have members with the same names.
This will cause ambiguity when the member name is
used. This is only an informational message because
the declaration of a member with an ambiguous name
in a derived class is not an error. The ambiguity is only
flagged as an error if you use the ambiguous member
name.

User Response: Change one of the names, or always
fully qualify the name.

CBC1111 Ambiguous reference to ″&1″, declared
in base classes ″&2″ and ″&3″. (where
&3 is a C++ class name)

Explanation: The derived class made a reference to a
member that is declared in more than one of its base
classes and the compiler cannot determine which base
class member to choose.

User Response: Change one of the names, or always
fully qualify the name.

CBC1112 Conversion from ″&1″ to ″&2″ is
ambiguous. (where &1 is a C++ type &2
is a C++ type)

Explanation: There is more than one way to perform
the specified conversion. This ambiguity may be caused
by an overloaded function.

User Response: Change or remove the conversion.

CBC1113 ″&1″ is only valid for non-static
member functions. (where &1 is the
keyword const or volatile)

Explanation: const and volatile are only significant for
non-static member functions, since they are applied to
the ″this″ pointer.

User Response: Remove const and volatile from all
static members.

CBC1114 Duplicate case value.

Explanation: Case values must be unique within each
″switch″ statement.

User Response: Change or remove one of the
duplicate case values. Check the braces if you have
nested case statements.

CBC1115 Character literal is null.

Explanation: An empty character literal has been
specified. A string literal may have been intended.

User Response: Remove the character literal, change
it to a string literal, or give it a value.

CBC1116 ″&1″ is given wider scope for
compatibility reasons.

Explanation: A type defined in class scope has been
given the scope of the enclosing function or file
because of a compiler option.

User Response: Ensure this is correct scope.

CBC1117 ″&1″ has more than one base class
″&2″. (where &1 is a class name &2 is a
class name)

Explanation: A derived class has inherited the same
base class in more than one path and the compiler
cannot determine which one to choose.

User Response: Remove one of the inheritances.

CBC1118 ″&1″ is a &2 base class of ″&3″. (where
&1 is a class name &2 is the keyword
″private ″ or ″protected ″ &3 is a class
name)

Explanation: An attempt is being made to convert a
pointer to a derived class into a pointer to a private or
protected base class.

User Response: Remove the pointer conversion.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 485

CBC1119 The statement is unreachable.

Explanation: The flow of control in the program never
allows the statement to be be reached.

User Response: Ensure that the statement is
accessible to the flow of control, or remove the
statement.

CBC1120 &1 ″&2″ is not allowed in a union.
(where &1 is a C++ construct &2 is a
C++ name)

Explanation: Unions must not be declared with base
classes, virtual functions, static data members,
members with constructors, members with destructors,
or members with class copying assignment operators.

User Response: Remove any such members from the
union declaration.

CBC1121 union ″&1″ cannot be used as a base
class. (where &1 is a union name)

Explanation: Unions cannot be used as base classes
for other class declarations.

User Response: Remove the union as a base class
for other class declarations.

CBC1122 Local variable ″&1″ is inaccessible
from ″&2″. (where &1 is a variable
name &2 is a class name)

Explanation: An automatic variable within a function is
not accessible from local classes declared within the
function.

User Response: Remove the reference to the local
variable, or move the variable to a different scope.

CBC1123 Value of enumerator ″&1″ is too large.
(where &1 is an enumerator name)

Explanation: The value of an enumerator must be a
constant expression that is promotable to a signed
integer value.

User Response: Reduce the value of the enumerator.

CBC1124 No path specified for -I option.

Explanation: The option requires a path name to
search but no path was found.

User Response: Supply the name of a directory
containing include files after the option.

CBC1125 Missing macro name after -D or -U
command line option.

Explanation: The option requires the name of a macro
to be defined or undefined, and no name was found.

User Response: Add a macro name after the option.

CBC1126 Argument ″&1″ is not used in function
″&2″. (where &1 is an argument name
&2 is a function name)

Explanation: The argument has been declared in a
function but has not been set or used.

User Response: Use the argument or remove it.

CBC1127 Global symbol ″&1″ is not used. (where
&1 is a C++ name)

Explanation: The specified symbol has been declared
as a global symbol but has not been set or used.

User Response: Use the symbol or remove it.

CBC1129 Default initializers are not allowed in
local friend functions.

Explanation: You cannot use default arguments in the
friend functions of the local class.

User Response: Remove the default initializers from
the local friend function.

CBC1130 A constant is being used as a
conditional expression.

Explanation: The condition to an if, for, or switch is
constant and therefore, that condition will always hold.

User Response: No response is necessary.

CBC1131 The argument to a not (!) operator is
constant.

Explanation: The compiler has detected a constant
after the ! operator which may be a coding error.

User Response: Remove the constant or ignore this
message.

CBC1132 There is more than one character in a
character constant.

Explanation: Using more than one character in a
character constant (for example, ’ab’) may not be
portable across machines.

User Response: Remove the extra character(s) or
change the character constant to a string constant.

486 OS/390 V2R6.0 C/C++ User’s Guide

CBC1133 Possible pointer alignment problem
with the ″&1″ operator. (where &1 is a
C++ operator)

Explanation: A pointer that points to a type with less
strict alignment requirements is being assigned, cast,
returned or passed as a parameter to a pointer that is a
more strictly aligned type. This is a potential portability
problem.

User Response: Remove the pointer reference or
change the alignment.

CBC1134 A constant expression is being cast to
a pointer.

Explanation: Casting a constant value to a pointer is
not portable to other platforms.

User Response: Remove the constant expression
from the cast expression.

CBC1135 Precision will be lost in assignment to
(possibly sign-extended) bit-field ″&1″.

Explanation: A constant is being assigned to a signed
bit field that cannot represent the constant. Precision
may be lost and the stored value will be incorrect.

User Response: Increase the size of the bit field.

CBC1136 Precision will be lost in assignment to
bit-field ″&1″.

Explanation: A constant is being assigned to a bit
field, and because the bit field has a smaller size, the
precision will be lost.

User Response: Change the assignment expression.

CBC1137 Enumeration type clash with the ″&1″
operator. (where &1 is a C++ operator)

Explanation: Operands from two different
enumerations are used in an operation.

User Response: Ensure both operands are from the
same enumeration.

CBC1138 Comparison of an unsigned value with
a negative constant.

Explanation: An unsigned value is being compared to
a negative number. The unsigned value will always
compare greater than the negative number. This may be
a programming error.

User Response: Remove the comparison or change
the type.

CBC1139 Unsigned comparison is always true or
always false.

Explanation: The comparison is either ″unsigned >=
0″, which is always true, or ″unsigned < 0″, which is
always false.

User Response: Remove or change the comparison.

CBC1140 Comparison is equivalent to ″unsigned
value &1 0 ″.

Explanation: The comparison is either ″unsigned > 0″
or ″unsigned <= 0″, and could be written as ″unsigned
!= 0″ or ″unsigned == 0″.

User Response: Change the comparison.

CBC1141 Argument &1 for ″&2″ must be of type
″&3″. (where &1 is an argument number
&2 is a function name &3 is a C++
type)

Explanation: The indicated function requires an
argument of a particular type. However, the argument
specified is of a different type than the type required.

User Response: Ensure that the argument is of the
correct type.

CBC1142 The operand for the ″#line ″ directive
must be an integer in the range 1 to
32767.

Explanation: The operand of the ″#line″ directive must
be an integer in the specified range.

User Response: Ensure that the operand is in the
specified range.

CBC1143 Definition of ″&1″ is not allowed.
(where &1 is the keyword class, struct,
union or enum.)

Explanation: You cannot define a type in a type cast
or a conversion function declaration.

User Response: Move the definition to a new location,
or remove it.

CBC1144 Reference to ″&1″ is not allowed.
(where &1 is a C++ name)

Explanation: The name has a special meaning in a
C++ program and cannot be referenced in this way.

User Response: Remove the reference.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 487

CBC1145 Escape sequence &1 is out of the
range 0-&2. Value is truncated. (where
&2 is the maximum allowed value of
the escape sequence)

User Response: Make the escape sequence small
enough to fit the specified range.

CBC1146 A wide character constant is larger
than the size of a ″wchar_t ″. Only the
last character is used.

Explanation: A wide character constant can only
contain one character. This error may be caused by a
literal containing a multibyte character if the multibyte
character compile option is not used.

User Response: Make the wide character constant
smaller.

CBC1147 A character constant is larger than the
size of an ″int ″. Only the rightmost &1
characters are used. (where &1 is an
integer number)

User Response: Make the character constant smaller.

CBC1148 Linkage specification must be at file
scope.

Explanation: A linkage specification may only be
defined at file scope, that is, outside all functions and
classes.

User Response: Move the linkage specification or
remove it.

CBC1149 Default initializers cannot be followed
by uninitialized arguments.

Explanation: If a default initializer is specified in an
argument list, all following arguments must also have
default initializers.

User Response: Remove the default initializers, or
provide them for the following arguments, or move the
arguments to the end of the list.

CBC1150 Cannot take the address of ″&1″.
(where &1 is a C++ name)

Explanation: You cannot take the address of a
constructor, a destructor or a reference member.

User Response: Remove the address operator (&)
from the expression or remove the expression.

CBC1151 &1 compiler temporary of type ″&2″
has been generated. (where &1 is a
storage class &2 is a C++ type)

Explanation: The compiler has generated a temporary
variable. This variable will be destroyed automatically
when it goes out of scope. This messages is generated
for your information only, it does not necessarily indicate
a problem with your program.

User Response: Ensure that your program does not
attempt to reference the temporary variable outside of
its scope.

CBC1152 An error was detected while writing to
file ″&1″. (where &1 is a file name)

Explanation: The compiler detected an error while
writing to the specified file.

User Response: Ensure the file name is correct.

CBC1153 Duplicate qualifier ″&1″ ignored. (where
&1 is a keyword)

Explanation: The keyword has been specified more
than once. Extra occurrences are ignored.

User Response: Remove one of the duplicate
qualifiers.

CBC1154 ″&1″ operator cannot be overloaded.
(where &1 is an operator name)

Explanation: The specified operator cannot be
overloaded using an operator function. The following
operators cannot be overloaded: . .* :: ?:

User Response: Remove the overloading declaration
or definition.

CBC1155 At least one argument of ″&1″ must be
of class or enum type. (where &1 is an
operator function name)

Explanation: The non-member operator function must
have at least one argument which is of class or enum
type.

User Response: Add an argument of class or enum
type.

CBC1156 Call matches built-in operator.

Explanation: The compiler detected an operator that
is similar to the built-in one, and is providing additional
information.

User Response: Ensure this is the desired match.

488 OS/390 V2R6.0 C/C++ User’s Guide

CBC1157 The divisor for the modulus or division
operator cannot be zero.

User Response: Change the expression used in the
divisor.

CBC1158 The address of the bit-field ″&1″
cannot be taken. (where &1 is a
member name)

Explanation: An expression attempts to take the
address of a bit-field, or to use the bit-field to initialize a
reference variable or argument.

User Response: Remove the expression causing the
error.

CBC1159 ″&1″ must not have default initializers.
(where &1 is an operator function name
or ″template function ″)

Explanation: Default initializers are not allowed within
the declaration of an operator function or a template
function.

User Response: Remove the default initializers.

CBC1160 The &1 ″&2″ cannot be initialized
because it does not have a default
constructor. (where &1 is ’base class’
or ’class member’ &2 is a C++ name)

Explanation: The specified base class or member
cannot be constructed since it is not initialized in the
constructor initializer list and its class has no default
constructor.

User Response: Specify a default constructor for the
class or initialize it in the constructor initializer list.

CBC1163 Template class ″&1″ has the wrong
number of arguments. (where &1 is a
template class name)

Explanation: A template class instantiation has a
different number of template arguments than the
template declaration.

User Response: Ensure that the template class has
the same number of declarations as the template
declaration.

CBC1164 Non-&1 member function ″&2″ cannot
be called for a &1 object. (where &2 is
a function name with arguments)

Explanation: The member function is being called for
a const or volatile object but the member function has
not been declared with the const or volatile qualifier.

User Response: Supply a version of the member
function with the correct set of ″const″ and ″volatile″
qualifiers.

CBC1165 Null statement.

Explanation: Possible extraneous semi-colon has
been specified.

User Response: Check for extra semi-colons in
statement.

CBC1166 Bit-field ″&1″ cannot be used in a
conditional expression that is to be
modified.

Explanation: The bit-field is part of a conditional
expression that is to be modified. Only objects that can
have their address taken are allowed as part of such an
expression, and you cannot take the address of a bit
field.

User Response: Remove the bit-field from the
conditional expression.

CBC1167 The ″&1″ qualifier cannot be applied to
″&2″. (where &2 is a name or a type)

Explanation: The qualifier is being applied to a name
or a type for which it is not valid.

User Response: Remove the qualifier.

CBC1168 Local type ″&1″ cannot be used as a
&2 argument. (where &2 is either the
keyword template or the keyword
function)

Explanation: The type cannot be used as a function
argument or in the instantiation of a template because
the scope of the type is limited to the current function.

User Response: Remove the local type.

CBC1169 Exception specification for function
″&1″ does not match previous
declaration. (where &1 is a function
name)

Explanation: If an exception specification is given in
more than one declaration of a function, it must be the
same in all such declarations.

User Response: Ensure that all exception
specifications match.

CBC1170 Default initializers for non-type
template arguments are only allowed
for class templates.

Explanation: Default initializers have been given for
non-type template arguments, but the template is not
declaring a class.

User Response: Remove the default initializers.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 489

CBC1171 A function argument must not have
type ″void ″.

Explanation: A function argument may be an
expression of any object type. However, ″void″ is not
the type of any object, and cannot be used as an
argument type.

User Response: Change the type of the function
argument.

CBC1172 Insufficient memory in line &1 of file
″&2″. (where &1 is a line number &2 is
a file name)

Explanation: The compiler ran out of memory during
compilation.

User Response: Increase your storage and recompile.

CBC1173 Unable to initialize source conversion
from codepage &1 to codepage &2.
(where &1 is a codepage name i.e.
IBM-1047 &2 is a codepage name i.e.
IBM-1047)

Explanation: An error occurred when attempting to
convert source between the codepages specified.

User Response: Ensure the codepages are correct
and that conversion between these codepages is
supported.

CBC1174 An object of abstract class ″&1″ cannot
be created. (where &1 is a class name)

Explanation: You cannot create instances of abstract
classes. An abstract class is a class that has or inherits
at least one pure virtual function.

User Response: Derive another object from the
abstract class.

CBC1175 Invalid use of an abstract class.

Explanation: An abstract class must not be used as
an argument type, as a function return type, or as the
type of an explicit conversion.

User Response: Derive another class from the
abstract, instantiate it so it becomes a concrete object,
and then use it instead.

CBC1176 ″&1″ has been used more than once in
the same base class list. (where &1 is
base class name)

Explanation: A base class may only be specified once
in the base class list for a derived class.

User Response: Remove one of the specifications.

CBC1177 Template argument &1 of type ″&2″
does not match declared type ″&3″.
(where &1 is an integer number &2 is a
C++ type &3 is a C++ type)

Explanation: A non-type template argument must
have a type that exactly matches the type of the
corresponding argument in the template declaration.

User Response: Ensure that the types match.

CBC1178 Template argument &1 of type ″&2″ is
not an allowable constant value or
address. (where &1 is an integer
number &2 is a C++ type)

Explanation: A non-type template argument must be a
constant value or the address of an object, function, or
static data member that has external linkage. String
literals cannot be used as template arguments because
they have no name, and therefore no linkage.

User Response: Change the template argument.

CBC1179 Template argument list is empty.

Explanation: At least one template argument must be
specified in a template declaration.

User Response: Specify a template argument in the
declaration.

CBC1180 Formal template argument &1 is of
type ″&2″ which is not an allowable
integral, enumeration, or pointer type.
(where &1 is an integer number &2 is a
C++ type)

Explanation: A non-type template argument must be
of integral, or enumeration, or pointer type, so that it
can be matched with a constant integral value.

User Response: Change the template argument.

CBC1181 ″&1″ is defined in a template
declaration but it is not a static
member. (where &1 is a C++ name)

Explanation: A member of a template class defined in
a template declaration must be a static member.

User Response: Make the member static or remove it
from the template declaration.

CBC1182 Template argument ″&1″ is not used in
the declaration of the name or the
argument list of ″&2″. (where &1 is a
template argument name &2 is a C++
name)

Explanation: All template arguments for a non-class
template must be used in the declaration of the name or
the function argument list.

490 OS/390 V2R6.0 C/C++ User’s Guide

User Response: Ensure all template arguments are
used in the declaration of the name or the function
argument list.

CBC1183 Template declaration does not declare
a class, a function, or a template class
member.

Explanation: Following the template argument, a
template declaration must declare a class, a function, or
a static data member of a template class.

User Response: Change the template declaration to
declare a class, a function, or a template class member.

CBC1184 Return type ″&1″ for function ″&2″
differs from previous return type of
″&3″. (where &1 is a C++ type &2 is a
function name &3 is a C++ type)

Explanation: The declaration of the function differs
from a previous declaration in only the return type.

User Response: Change the return type so that it
matches the previous return type.

CBC1185 ″&1″ is a member of ″&2″ and cannot
be used without qualification. (where
&2 is a possibly qualified class name)

Explanation: The specified name is a class member,
but no class qualification has been used to reference it.

User Response: Add a class qualification to the class
member.

CBC1186 The expression is not a valid
preprocessor constant expression.

Explanation: The expression in an ″#if″ or ″#elif″
preprocessor directive is either not a valid expression or
not a constant expression. No keywords are recognized
in such an expression and non-macro identifiers are
replaced by the constant 0.

User Response: Change the expression for the
preprocessor directive.

CBC1187 ″&1″ cannot be initialized multiple
times. (where &1 is a member or base
class name)

Explanation: An initializer was already specified in the
constructor definition.

User Response: Remove the additional initializer.

CBC1188 A macro parameter is expected after
the ″#″ operator.

Explanation: The ″#″ operator in a macro replacement
list must be followed by a macro parameter.

User Response: Add a macro parameter after the ″#″
operator.

CBC1189 ″##″ operator is at the start or end of
the replacement list.

Explanation: The ″##″ operator must be preceded
and followed by valid tokens in the macro replacement
list.

User Response: Move the ″##″ operator in the
replacement list.

CBC1190 One or more ″#endif ″ statements are
missing at end of file.

Explanation: The end of file has been reached and
there are still ″#if″, ″#ifdef″ or ″#ifndef″ statements
without a matching ″#endif″ statement.

User Response: Ensure that all ″#if″, ″#ifdef″, and
″#ifndef″ statements have matching ″#endif″ statements.

CBC1191 No suitable copy assignment operator
exists to perform the assignment.

Explanation: A copy assignment operator exists but it
does not accept the type of the given parameter.

User Response: Change the copy assignment
operator.

CBC1192 Identifier ″&1″ in preprocessor
expression is assigned 0. (where &1 is
an identifier name)

Explanation: Identifiers are not recognized in a
preprocessor expression. The specified identifier has
been treated as a non-macro identifier and assigned the
constant 0.

CBC1193 Explicit call to constructor ″&1″ is not
allowed. (where &1 is a constructor
name)

Explanation: You cannot call a constructor explicitly. It
is called implicitly when an object of the class is
created.

User Response: Remove the call to the constructor.

CBC1194 ″catch(&1) ″ will never be reached
because of previous ″catch(&2) ″.
(where &1 is a C++ type or the token
’...’ &2 is a C++ type or the token ’...’)

Explanation: The catch clause can never be reached
since any exception type that matches it will also be
matched by the specified previous catch clause.

User Response: Change or remove one of the catch
clauses.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 491

CBC1195 No default constructor exists for ″&1″.
(where &1 is a class name)

Explanation: An array of class objects must be
initialized by calling the default constructor, but one has
not been declared.

User Response: Declare a default constructor for the
array.

CBC1196 More than one default constructor
exists for ″&1″. (where &1 is a class
name)

Explanation: An array of class objects must be
initialized by calling the default constructor, but the call
is ambiguous.

User Response: Ensure that only one default
constructor exists.

CBC1197 It is invalid to have a throw expression
with type ″&1″. (where &1 is a C++
type)

Explanation: You cannot throw a function or an
expression of type ″void″.

User Response: Change the type or remove the
throw expression.

CBC1198 The exception specification is ignored
in this declaration.

Explanation: The declaration contains a function
declarator with an exception specification but is not the
declaration of a function. The exception specification is
ignored.

User Response: Change the function declarator so
that it is the declaration of a function.

CBC1199 The compiler cannot generate a default
copy constructor for ″&1″.

Explanation: The default copy constructor cannot be
generated for this class because there exists a member
or base class that has a private copy constructor, or
there are ambiguous base classes, or this class has no
name.

User Response: Ensure that a member or base class
does not have a private copy constructor. If not then
ensure the class is named and there are no ambiguous
references to base classes.

CBC1200 The compiler cannot generate a default
copy assignment operator for ″&1″.

Explanation: The default copy assignment operator
cannot be generated for this class because it has a
const member or a reference member or a member (or
base class) with a private copy assignment operator.

User Response: Ensure there are no const members,
reference members or members with a private copy
assignment operator.

CBC1201 &1 too few non-option arguments.
(where &1 is an integer number)

Explanation: You can generate this message only
when you are running the compiler passes manually.

User Response: Add non-option arguments.

CBC1202 ″&1″ must not be declared inline or
static.

Explanation: Although ″&1″ is not a keyword, it is a
special function that cannot be inlined or declared as
static.

User Response: Remove the inline or static specifier
from the declaration of ″&1″.

CBC1203 Pure virtual function called.

Explanation: A call has been made to a pure virtual
function from a constructor or destructor. In such
functions, the pure virtual function would not have been
overridden by a derived class and a runtime error would
occur.

User Response: Remove the call to the pure virtual
function.

CBC1204 ″&1″ is not allowed as a conversion
function type. (where &1 is a C++ type)

Explanation: A conversion function cannot be
declared with a function or an array as its conversion
type, since the type cannot be returned from the
function.

User Response: Declare the function as converting to
a pointer to the function or the array element type.

CBC1205 Syntax error - ″&1″ is followed by ″&3″
but is not the name of a &2. (where &1
is a C++ name &2 is the keyword class
or template &3 is the token ’::’ or ’<’)

Explanation: The name is not a class or template
name but the context implies that it should be.

User Response: Change the name to a class or
template name.

CBC1206 The previous &1 messages apply to
the definition of template ″&2″. (where
&1 is an integer number &2 is a
template name)

Explanation: The instantiation of the specified
template caused the messages, even though the line

492 OS/390 V2R6.0 C/C++ User’s Guide

numbers in the messages refer to the original template
declaration.

User Response: This message supplies additional
information for previously emitted messages. Refer to
the descriptions of those messages for recovery
information.

CBC1207 The previous message applies to the
definition of template ″&1″. (where &1
is a template name)

Explanation: The instantiation of the specified
template caused the message, even though the line
number in the message refers to the original template
declaration.

User Response: This message supplies additional
information for previously emitted messages. Refer to
the descriptions of those messages for recovery
information.

CBC1208 No suitable constructor exists for
conversion from ″&1″ to ″&2″. (where
&1 is a class name &2 is a C++ type)

Explanation: A constructor is required for the class
but no user-defined constructor exists and the compiler
could not generate one.

User Response: Create a suitable constructor for
conversion.

CBC1209 class ″&1″ does not have a copy
assignment operator. (where &1 is a
class name)

Explanation: A copy assignment operator is required
for the class but no user-defined copy assignment
operator exists and the compiler could not generate
one.

User Response: Create a copy assignment operator.

CBC1210 ″&1″ cannot be used as a template
name since it is already known in this
scope. (where &1 is a C++ name)

Explanation: A template name must not match the
name of an existing template, class, function, object,
value or type.

User Response: Change one of the template names.

CBC1211 ″&1″ is expected for template argument
&2. (where &1 is either ’expression’ or
’type name’ &2 is an integer number)

Explanation: Either the argument is a type and the
template has a non-type argument, or the argument is
an expression and the template has a type argument.

User Response: Ensure the argument matches the
template.

CBC1212 ″&1″ cannot be defined before the
template definition of which it is an
instance. (where &1 is a class template
name)

Explanation: An explicit definition of a template class
cannot be given before the corresponding template
definition.

User Response: Move the template definition so that
it occurs before any template class definitions.

CBC1213 An ellipsis (...) cannot be used in the
argument list of a template function.

Explanation: Since an exact match is needed for
template functions, an ellipsis cannot be used in the
function argument list.

User Response: Remove the ellipsis from the
argument list.

CBC1214 The suffix for the floating point
constant is not valid.

Explanation: You have provided an incorrect suffix for
the floating point constant. Valid suffixes for floating
point constants are L and F.

User Response: Change the suffix for the floating
point constant.

CBC1215 Statement has no effect.

Explanation: The expression has no side effects and
produces a result that is not used.

User Response: Remove the statement or use its
result.

CBC1216 ″/*″ detected in comment.

Explanation: ″/*″ has been detected within a ″/*″ type
comment. Nested comments are not allowed.

User Response: Remove the imbedded ″/*″ and
ensure that you are not missing the end of the other
comment.

CBC1217 Predefined macro name ″&1″ cannot be
redefined or undefined. (where &1 is a
predefined macro name)

Explanation: The specified macro name is predefined
by the compiler and cannot be redefined with #define or
undefined with #undef.

User Response: Remove the definition expression or
change the macro name.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 493

CBC1218 The suffix for the integer constant is
not valid.

Explanation: The integer constant is a suffix letter that
is not recognized as a valid suffix.

User Response: Change the suffix to either ″u″ or ″l″.

CBC1219 The expression contains a division by
zero.

User Response: Remove the division by zero from
the expression.

CBC1220 The expression contains a modulus by
zero.

User Response: Remove the modulus by zero from
the expression.

CBC1221 Static member ″&1″ can only be
defined at file scope.

User Response: Move the static member so that it is
defined at file scope.

CBC1222 ″&1″ needs a constructor because &2
″&3″ needs a constructor initializer.
(where &1 is a class name &2 is ’class
member’ or ’base class’ &3 is the
member or base class name.)

Explanation: You have not provided a constructor for
the class, because the member or base class does not
have a default constructor.

User Response: Add a constructor.

CBC1223 ″&1″ cannot be redeclared since it has
already been used in this scope.
(where &1 is a C++ name)

Explanation: The name is being declared in a
member list but was previously declared outside the
member list and then used in the member list.

User Response: Change or remove one of the
occurrences.

CBC1224 Conversion from ″&1″ to a reference to
a non-const type ″&2″ requires a
temporary. (where &1 is a C++ type &2
is a C++ type)

Explanation: A temporary may only be used for
conversion to a reference type when the reference is to
a const type.

User Response: Change to a const type.

CBC1225 ″&2″ is too small to hold a value of
type ″&1″. (where &1 is a C++ type &2
is a C++ type)

Explanation: A conversion from a pointer type to an
integral type is only valid if the integral type is large
enough to hold the pointer value.

User Response: Remove the conversion from a
pointer type to an integral type or use a larger integral
type.

CBC1226 Object of type ″&1″ cannot be
constructed from ″&2″ expression.
(where &1 is a C++ type &2 is a C++
type)

Explanation: There is no constructor taking a single
argument that can be called using the given expression.

User Response: Change the expression.

CBC1227 The compiler cannot generate a copy
constructor for conversion to ″&1″.
(where &1 is a C++ type)

Explanation: A copy constructor is required for the
conversion. No suitable user-defined copy constructor
exists and the compiler could not generate one.

User Response: Create a copy constructor for the
conversion.

CBC1228 No suitable constructor or conversion
function exists for conversion from
″&1″ to ″&2″. (where &1 is a C++ type
&2 is a C++ type)

Explanation: A constructor or conversion function is
required for the conversion but no such constructor or
function exists.

User Response: Create a constructor or conversion
function for the conversion.

CBC1229 The file is empty.

Explanation: An empty source or include file has been
encountered while reading source. The source file name
or include file name may not be spelled correctly.

User Response: Check the file name.

CBC1230 Syntax error - ″&1″ has been inserted
before ″&2″. (where &1 is a token &2 is
a token)

Explanation: A syntax error was found while parsing
the program. The message identifies what the compiler
expected and what it actually found. The compiler
inserts the expected value and compilation continues.

User Response: Correct the syntax.

494 OS/390 V2R6.0 C/C++ User’s Guide

CBC1231 Call to ″&1″ matches some functions
best in some arguments, but no
function is a best match for all
arguments. (where &1 is a function
name)

Explanation: No function matches each call argument
as well as or better than all other functions.

User Response: Change the function call so that it
matches only one function.

CBC1232 Call matches ″&1″. (where &1 is a
function name and type)

Explanation: The compiler detected an overloaded
function or operator that is similar to another and is
providing additional information.

User Response: Ensure this is the desired match.

CBC1233 Cannot adjust access of ″&1::&2 ″
because a member in ″&3″ hides it.
(where &1 is a class name &2 is a
member name &3 is the name of the
derived class.)

Explanation: You cannot modify the access of the
specified member because a member of the same
name in the specified class hides it.

User Response: Remove the access adjustment
expression or unhide the member.

CBC1234 ″&1″ cannot be redeclared. (where &1
is a C++ name)

Explanation: The specified name cannot be
redeclared because it has already been used.

User Response: Change or remove one of the
declarations.

CBC1235 Syntax error - ″&1″ is not allowed; ″&2″
has already been specified. (where &1
is a keyword &2 is a keyword)

Explanation: You cannot use both of the specified
attributes in the same declaration.

User Response: Remove the attributes.

CBC1236 Missing option to ″#pragma &1 ″; the
directive is ignored. (where &1 is a
pragma name)

Explanation: A required option of the specified
pragma directive is missing.

User Response: Ensure all options for the pragma are
present.

CBC1238 Invalid or out of range pragma
parameter; parameter is ignored.

Explanation: The pragma parameter specified is
either not a valid parameter, or is out of range.

User Response: Remove the parameter or replace it
with one within the range.

CBC1239 Function ″&1″ has internal linkage but
is undefined. (where &1 is the invalid
option)

Explanation: If a static function or inline member
function is referenced in this compilation unit, it must be
defined in the same compilation unit.

User Response: Define the function in the same
compilation unit it is referenced in.

CBC1240 Call to ″&1″ matches more than one
template function. (where &1 is a
function name and type)

Explanation: More than one template for the function
matches equally well with the argument list specified on
the call.

User Response: Change the call so that it matches
only one template function.

CBC1241 ″&1″ is declared inline, but is
undefined. (where &1 is a function
name and type)

Explanation: An inline function must be defined in
every compilation unit in which it is used.

User Response: Define the inline function in this
compilation unit.

CBC1242 Non-&1 member function called for a
&1 object via pointer of type ″&2″.
(where &2 is a pointer or
member-pointer type)

Explanation: The member function is being called
indirectly for a const or volatile object but it has not
been declared with the corresponding const or volatile
attribute.

User Response: Ensure that the function call and the
function declaration match.

CBC1243 ″&1″ cannot be a base of ″&2″ because
″&3″ contains the type name ″&2″.
(where &1 is a class name &2 is both
the derived class name and a type
name &3 is the class containing &2)

Explanation: A class cannot inherit a type name that
is the same as the class name.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 495

User Response: Change the name of either the
derived class or the inherited class.

CBC1244 ″&1″ cannot be a base of ″&2″ because
″&3″ contains the enumerator ″&2″.
(where &1 is a class name &2 is both
the derived class name and the
enumerator name &3 is the class
containing &2)

Explanation: A class cannot inherit an enumerator
with the same name as the class name.

User Response: Change the name of either the
derived class or the inherited enumerator.

CBC1245 compiler doesn’t generate this
message any more

Explanation: n/a

CBC1246 Symbol length of &1 exceeds limit of
&2 bytes. (where &1 is an integer
number &2 is an integer number)

Explanation: The compiler limit for the length of a
symbol has been exceeded.

User Response: Shorten the symbol length.

CBC1247 The result of this pointer to member
operator can be used only as the
operand of the function call operator ().

Explanation: If the result of the .* or ->* is a function,
then that result can be used only as the operand for the
function call operator ().

User Response: Make the result the operand of the
function call operator ().

CBC1248 When ″&1″ is used as an operand to
the arrow or dot operator, the result
must be used with the function call
operator (). (where &1 is a member
name)

Explanation: If the result of the dot or arrow operator
is a function, then that result can be used only as the
operand for the function call operator ().

User Response: Make the result the operand of the
function call operator ().

CBC1249 A class with a reference or const
member needs a constructor.

Explanation: const and reference members must be
initialized in a constructor initializer list.

User Response: Add a constructor to the class.

CBC1250 Base class initializers cannot contain
virtual function calls.

Explanation: The virtual function table pointers are not
set up until after the base classes are initialized.

User Response: Remove the call to a virtual function
in the base class initializer.

CBC1251 The previous declaration of ″&1″ did
not have a linkage specification.

Explanation: If you want to declare a linkage
specification for a function, it must appear in the first
declaration of the function.

User Response: Add a linkage specification to the
first declaration of the function

CBC1252 The destructor for ″&1″ does not exist.
The call is ignored. (where &1 is a C++
type)

Explanation: The destructor call is for a type that
does not have a destructor. The call is ignored.

User Response: Add a destructor to the type.

CBC1253 ″&1″ has been added to the scope of
″&2″. (where &1 is the name on a friend
declaration &2 is a class name)

Explanation: Because the friend class has not been
declared yet, its name has been added to the scope of
the class containing the friend declaration.

User Response: If this is not intended, move the
declaration of the friend class so that it appears before
it is declared as a friend.

CBC1254 The body of friend member function
″&1″ cannot be defined in the member
list of ″&2″. (where &1 is the friend
member function &2 is a class name)

Explanation: A friend function that is a member of
another class cannot be defined inline in the member
list.

User Response: Define the body of the friend function
at file scope.

CBC1255 The initializer list must be complete
because ″&1″ does not have a default
constructor. (where &1 is a class
without a default constructor.)

Explanation: An array of objects of a class with
constructors uses the constructors in initialization. If
there are fewer initializers in the list than elements in
the array, the default constructor is used. If there is no
default constructor the initializer list must be complete.

496 OS/390 V2R6.0 C/C++ User’s Guide

User Response: Complete the initializer list or add a
default constructor to the class.

CBC1256 ″&1″ cannot be opened. The nested
include file limit of &2 has been
exceeded. (where &1 is a file name &2
is an integer number)

Explanation: The compiler limit for nested include files
has been reached.

User Response: Remove the nesting of one or more
of the include files.

CBC1257 An &1 at file scope must have a
storage class of static. (where &1 is
one of TXanonymousclass,
TXanonymousstruct, or
TXanonymousunion)

User Response: Change the storage class of the
anonymous class/struct/union to static.

CBC1258 A pure virtual destructor needs an
out-of-line definition in order for its
class to be a base of another class.

User Response: Move the definition of the pure virtual
destructor so that it is not inline.

CBC1259 The braces in the initializer are
incorrect.

User Response: Correct the braces on the initializer.

CBC1260 Invalid octal integer constant.

Explanation: The octal integer constant contains an
’8’ or a ’9’. Octal numbers include 0 through 7.

User Response: Ensure that the octal integer
constant is valid.

CBC1261 All the arguments must be specified
for ″&1″ because its default arguments
have not been checked yet. (where &1
is a function name and type)

Explanation: For member functions, names in default
argument expressions are bound at the end of the class
declaration. Calling a member function as part of a
second member function’s default argument is an error
if the first member function’s default arguments have not
been checked and the call does not specify all of the
arguments.

User Response: Specify all the arguments for the
function.

CBC1262 Ellipsis (...) cannot be used for ″&1″.
(where &1 is an operator name)

Explanation: An operator function has been specified
with an ellipsis (...), but since the number of operands of
an operator are fixed, an ellipsis is not allowed.

User Response: Remove the ellipsis, and specify the
correct number of operands.

CBC1263 Syntax error - expected ″&1″ or ″&2″
and found ″&3″. (where &1 is a token
&2 is a token &3 is a token)

Explanation: A syntax error was found while parsing
the program. The message identifies what the compiler
expected and what it actually found.

User Response: Correct the syntax error.

CBC1264 A character constant must end before
the end of the line.

Explanation: The compiler detected a character
constant that was not terminated before an end-of-line
character was found.

User Response: End the character constant or use ″\″
to continue it on the next line. The ″\″ must be the last
character on the line.

CBC1265 A pure virtual function initializer must
be 0.

Explanation: To declare a pure virtual function use an
initializer of 0.

User Response: Set the virtual function initializer to 0.

CBC1266 ″&1″ is given ″&2″ access. (where &1 is
a member name &1 is the keyword
public, protected or private)

Explanation: Access of the class has changed.

User Response: Ensure this change is as intended.

CBC1267 ″&1″ has been qualified with the ″this ″
pointer. (where &1 is a member name)

User Response: Ensure this qualification is intended.

CBC1268 Invalid escape sequence; the
backslash is ignored.

Explanation: You have provided invalid character(s)
after the backslash that does not represent an escape
sequence. Therefore, the backslash is ignored and the
rest of the escape sequence is read as is.

User Response: Ensure the escape sequence is
valid.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 497

CBC1269 The result of an address expression is
being deleted.

User Response: Ensure this action is intended.

CBC1270 Conversion from ″&1″ to ″&2″ matches
more than one conversion function.

Explanation: More than one conversion function could
be used to perform the specified conversion.

User Response: Create a new conversion function for
this conversion or change one of the types.

CBC1271 Conversion matches ″&1″. (where &1 is
a function name and type)

User Response: Ensure this is the intended match.

CBC1272 ″&1″ cannot be initialized with an
initializer list. (where &1 is a class
name)

Explanation: Only an object of a class with no
constructors, no private or protected members, no
virtual functions and no base classes can be initialized
with an initializer list.

User Response: Remove the class from the initializer
list.

CBC1273 A pointer to a virtual base ″&1″ cannot
be converted to a pointer to a derived
class ″&2″. (where &1 is a C++ type &2
is a C++ type)

Explanation: A pointer to a class B may be explicitly
converted to a pointer to a class D that has B as a
direct or indirect base class, only if an unambiguous
conversion from D to B exists, and B is not a virtual
base class.

User Response: Remove the conversion of the
pointer.

CBC1274 The arguments passed using the
ellipsis may not be accessible.

Explanation: Arguments passed using an ellipsis are
only accessible if there is an argument preceding the
ellipsis and the preceding argument is not passed by
reference.

User Response: Ensure that there is an argument
preceding the ellipsis and that the preceding argument
is not passed by reference.

CBC1275 Member function ″&1″ has already
been declared. (where &1 is the
member function name)

Explanation: A member function cannot be redeclared
in the class definition.

User Response: Remove one of the declarations.

CBC1276 Assignment to a constant expression
is not allowed.

Explanation: The left hand side of the assignment
operator is an expression referring to a ″const″ location.
For example, in ″a.b″, either ″b″ is a ″const″ member or
″a″ is a ″const″ variable.

User Response: Remove the assignment.

CBC1277 Assignment to const variable ″&1″ is
not allowed. (where &1 is the variable
name)

Explanation: The left hand side of the assignment
operator is a variable with the ″const″ attribute. ″const″
variables may be initialized once at the point where they
are declared, but may not be subsequently assigned
new values.

User Response: Remove the assignment to the const
variable.

CBC1278 Syntax error found while parsing the
bit-field declarator.

Explanation: The part of this member declaration up
to the colon ″:″ appears to be a declaration of a bit-field,
but the constant expression expected after the colon
was either not found or incorrectly formed.

User Response: Correct the syntax error.

CBC1279 The return type for the ″operator-> ″
cannot be the containing class.

Explanation: The return type for the ″operator->″ must
be a pointer to a class type, a class type, or a reference
to a class type. If it is a class or reference, the class
must be previously defined and must contain an
″operator->″ function.

User Response: Change the return type for the
″operator->″.

CBC1280 The virtual function table for ″&1″ is
defined with ″&2″ linkage. (where &1 is
class name &2 is a the keyword extern
or static)

Explanation: The class has one or more virtual
function tables. A definition of each table will be
generated in the current compilation.

498 OS/390 V2R6.0 C/C++ User’s Guide

User Response: Ensure this is the desired result.

CBC1281 The virtual function table for ″&1″ will
be defined where ″&2″ is defined.
(where &1 is class name &2 is a
member function name)

Explanation: The class has one or more virtual
function tables. None will be defined in the current
compilation, but will be defined in the compilation
containing the definition of the specified member
function.

User Response: Ensure this is the desired result.

CBC1282 The virtual function table for ″&1″ will
be defined in a file specified by the
user. (where &1 is class name)

User Response: Ensure this is the desired result.

CBC1283 The previous message applies to
function argument &1. (where &1 is an
integer corresponding to the function
argument number)

Explanation: The previous message applies to the
specified argument number. This message does not
indicate another error or warning, it indicates which
argument of the function call is the subject of the
previous message.

CBC1284 Conversion from ″&1″ to a reference to
a non-const type ″&2″ requires a
temporary. (where &1 is a C++ type &2
is a C++ type)

Explanation: A temporary may only be used for
conversion to a reference type when the reference is to
a const type. This is a warning rather than an error
message because the ″compat″ language level is
active.

User Response: Change the reference so that it is to
a const type.

CBC1285 The address of a local variable or
compiler temporary is being used in a
return expression.

Explanation: The address of a local variable may not
be valid once control is passed out of the function.

User Response: Declare the variable in the calling
function or as a global variable, or change the return
expression to not use the variable.

CBC1286 Keyword ″&1″ cannot be used with a
function definition. (where &1 is a
keyword.)

User Response: Remove the keyword.

CBC1287 The #pragma directive must occur
before the first C++ statement in
program; The directive is ignored.

User Response: Remove the directive or place it
before the first C++ statement in the program.

CBC1288 The pointer to member function must
be bound to an object when it is used
with the function call operator ().

Explanation: The pointer to member function must be
associated with an object or a pointer to an object when
it is used with the function call operator ().

User Response: Remove the pointer or associate it
with an object.

CBC1289 The static data member ″&1″ has
already been declared. (where &1 is the
static data member)

User Response: Remove or change one of the
declarations.

CBC1290 Option ″&1″ must be specified on the
command line or before the first C++
statement in the program. (where &1 is
the option specified with the #pragma
options directive)

User Response: Remove the option or place it before
the first statement in the C++ program.

CBC1291 The direct base ″&1″ of class ″&2″ is
ignored because ″&1″ is also an
indirect base of ″&2″. (where &1 is a
base class name)

Explanation: A reference to a member of ″&1″ will be
ambiguous because it is inherited from two different
paths.

User Response: Remove the indirect inheritance.

CBC1292 The ″&1″ operator cannot be applied to
undefined class ″&2″. (where &1 is a
class type)

Explanation: A class is undefined until the definition of
its tag has been completed. A class tag is undefined
when the list describing the name and type of its
members has not been specified. The definition of the
tag must be given before the operator is applied to the
class.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 499

User Response: Complete the definition of the class
before applying an operator to it.

CBC1293 ″&1″ hides the &2 ″&3″. (where &1 is
the name of the derived class’s
member &2 is ″pure virtual ″ or ″virtual ″
&3 is the name of the hidden virtual
function)

Explanation: A member in the derived class hides a
virtual function member in a base class.

User Response: Ensure the hiding of the virtual
function member is intended.

CBC1294 ″&1″ is not the name of a function.
(where &1 is a C++ name)

Explanation: A function name is required in this
context. The specified name has been declared but it is
not the name of a function.

User Response: Check the spelling. If necessary,
change to a function name.

CBC1296 The virtual functions ″&1″ and ″&2″ are
ambiguous since they override the
same function in virtual base class
″&3″. (where &1 is a function name and
type &2 is a function name and type)

Explanation: The two functions are ambiguous and
the virtual function call mechanism will not be able to
choose the correct one at runtime.

User Response: Remove one of the virtual functions.

CBC1297 The ″this ″ address for ″&1″ is
ambiguous because there are multiple
instances of ″&2″. (where &1 is a
function name and type &2 is a class
name)

Explanation: Two or more ″this″ addresses are
possible for this virtual function. The virtual function call
mechanism will not be able to determine the correct
address at runtime.

User Response: Remove the ″this″ expression or
change the function name.

CBC1298 Conversion from ″&1″ matches more
than one conversion function. (where
&1 is a function name and type)

Explanation: More than one conversion function could
be applied to perform the conversion from the specified
type.

User Response: Create a new conversion function or
remove the conversion.

CBC1299 Function ″&1″ must not be declared as
″&2″. (where &2 is a keyword)

Explanation: The specified function has a storage
class that is not allowed in the context that the function
is declared in.

User Response: Remove the declaration or change
the storage class of the function.

CBC1300 The declaration of ″&1″ must initialize
the const member ″&2″. (where &1 is a
variable name &2 is the member name)

User Response: Initialize the member in the
declaration.

CBC1301 The declaration of ″&1″ must initialize
the reference member ″&2″. (where &1
is a variable name &2 is the member
name)

User Response: Initialize the member in the
declaration.

CBC1302 ″&1″ is not allowed as a function return
type. There may be a ″;″ missing after
a ″}″. (where &1 is the function return
type)

Explanation: A class or enum definition must not be
specified as a function return type. A semicolon may be
missing after the definition.

User Response: Ensure that a semicolon is not
missing after the definition or change the return type.

CBC1303 ″&1″ cannot be a base of ″&2″ because
″&3″ contains a member function
called ″&2″. (where &1 is a class name
&2 is both the derived class name and
the member function &3 is the class
containing &2)

Explanation: A class cannot inherit a function that has
the same as the class.

User Response: Change the name of either the base
class or the inherited function.

CBC1304 Forward declaration of the
enumeration ″&1″ is not allowed.

Explanation: The declaration of an enumeration must
contain its member list.

User Response: Fully declare the enumeration.

500 OS/390 V2R6.0 C/C++ User’s Guide

CBC1305 Unrecognized value ″&1″ specified with
option ″&2″. (where &1 is the value
specified with the option &2 is the
option name)

User Response: Remove the unrecognized value.

CBC1306 The previous message applies to
argument &1 of function ″&2″. (where
&1 is the argument number &2 is the
function name and type)

Explanation: The previous message applies to the
specified argument number. This message does not
indicate another error or warning, it indicates which
argument of the function call is the subject of the
previous message.

CBC1307 Unrecognized pragma ″&1″.

Explanation: The pragma is not supported by this
compiler.

User Response: Change or remove the #pragma
directive.

CBC1308 The nested class object ″&1″ needs a
constructor so that its &2 members
can be initialized. (where &1 is the
nested class name &2 is the word
const or reference)

User Response: Create a constructor for the nested
class object.

CBC1309 The integer constant is out of range.

Explanation: You have provided an integer constant
that is out of range. For the range of integer constants
check limits.h.

User Response: Ensure the integer constant is in
range.

CBC1310 The floating point constant is out of
range.

Explanation: You have provided a floating point
constant that is out of range. For the range of floating
point constants check float.h.

User Response: Ensure the floating point constant is
in range.

CBC1311 The &1 member ″&2″ must be
initialized in the constructor’s initializer
list. (where &1 is the word const or
reference &2 is the member name)

Explanation: Using the constructor’s member
initializer list is the only way to initialize nonstatic const
and reference members.

User Response: Initialize the member in the
constructor’s initializer list.

CBC1312 Unexpected end of file: newline
expected.

Explanation: The file did not end with a new-line
character.

User Response: Ensure the file ends with a new-line
character.

CBC1313 Constructors and conversion functions
are not considered when resolving an
explicit cast to a reference type.

Explanation: You cannot resolve an explicit cast to a
reference type using constructors or conversion
functions.

User Response: Cast the type to a temporary type
and then take the reference to it.

CBC1314 A character string literal cannot be
concatenated with a wide string literal.

Explanation: A string that has a prefix L cannot be
concatenated with a string that is not prefixed.

User Response: Ensure both strings have the same
prefix, or no prefix at all.

CBC1315 All members of type ″&1″ must be
explicitly initialized with all default
arguments specified. (where &1 is a
class name &2 is the member name)

Explanation: Default arguments for member functions
are not checked until the end of the class definition.
Default arguments for member functions of nested
classes are not semantically checked until the
containing class is defined. A call to a member function
must specify all of the arguments before the default
arguments have been checked.

User Response: Specify all default arguments with all
members of the type.

CBC1316 The nested class ″&1″ is undefined and
cannot be defined later. (where &1 is
the nested class name)

Explanation: A class must be defined in the scope
that it was introduced.

User Response: Define the class in the scope in
which it was introduced.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 501

CBC1317 The address of an overloaded function
can be taken only in an initialization or
an assignment.

User Response: Ensure the address of an overloaded
function is used on an initialization or an assignment, or
remove the expression.

CBC1319 The mangled name for ″&1″ contains a
compiler-generated name. It will not be
visible from other compilation units.

Explanation: One of the arguments to the function
was given a compiler-generated name. This name could
be different in offer compilation units.

User Response: Provide a type name for the
argument that the compiler generated a name for.

CBC1320 Syntax error - found ″&1 &2″ : ″&1″ is
not a type name. (where &1 is a token
&2 is a token)

Explanation: The compiler detected a non-type
symbol where a type is required. A type must be used
to declare an object.

User Response: Change to a type name or remove
the expression.

CBC1321 A temporary of type ″&1″ is needed:
″&2″ is an abstract class.

Explanation: The compiler has determined that it must
use a temporary to store the result of the expression,
but the result is an abstract base type. An abstract base
type cannot be used to create an object.

User Response: Change the type of the result.

CBC1322 Nesting level of template class
definitions may cause the compiler to
fail.

Explanation: Template class definitions are nested in
such a way that the compiler may not be able to
continue.

User Response: Reduce the number of nesting levels
of template class definitions.

CBC1323 ″&1″ hides pure virtual function ″&2″ in
the nonvirtual base ″&3″. (where &1 is
the derived member’s name &2 is the
name of the pure virtual function &3 is
the name of the class that contains the
pure virtual)

Explanation: The pure virtual function in a nonvirtual
base cannot be overridden once it has been hidden.

User Response: Make the pure virtual function visible,
or make the base it is derived from virtual.

CBC1324 The class qualifier ″&1″ for ″&2″ must
be a template class that uses the
template arguments. (where &1 is a
(possibly qualified) class name. &2 is a
C++ name.)

Explanation: A non-class template can only declare a
global function or a member of a template class. If it
declares a member of a template class, the template
class arguments must include at least one of the
non-class template arguments.

User Response: Change the template declaration so
that it either declares a global function or a member of a
template class that uses the non-class template
arguments.

CBC1325 The class ″&1″ cannot be passed by
value because it does not have a copy
constructor. (where &1 is a class name)

Explanation: The compiler needs to generate a
temporary to hold the return value of the function. To
generate the temporary object, a copy constructor is
needed to copy the contents of the object being
returned into the temporary object.

User Response: Create a copy constructor for the
class or change the argument to pass by value.

CBC1326 The previous &1 messages show
situations that could arise if the
corresponding template definitions
were instantiated. (where &1 is an
integer number)

Explanation: During the processing of a class
template, possible errors were found in the class
declaration. These errors may occur when the template
is instantiated.

User Response: Ensure that the errors will not occur
when the template is instantiated.

CBC1327 The previous message shows a
situation that could arise if the
corresponding template definition was
instantiated.

Explanation: During the processing of a class
template, a possible error was found in the class
declaration. This error may occur when the template is
instantiated.

User Response: Ensure that the error will not occur
when the template is instantiated.

CBC1328 The output file name ″&1″ cannot be
the same as the input file name.

Explanation: The compiler detected a condition where
the name of the input source file is the same as an
output file being generated by the compiler.

502 OS/390 V2R6.0 C/C++ User’s Guide

User Response: Change either the input file name or
the output file name.

CBC1329 The external variable ″&1″ cannot be
defined at block scope.

Explanation: The compiler has detected the
declaration of an automatic variable that was previously
defined as having external linkage.

User Response: Move, remove, or change the
external variable definition.

CBC1330 ″&1″ cannot have an initializer list.
(where &1 is a function name)

Explanation: A member function that is not a
constructor is defined with an initializer list.

User Response: Remove the initializer list.

CBC1331 Return value of type ″&1″ is expected.
(where &1 is a C++ type)

Explanation: No return value is returned from the
current function but the function is expecting a non-void
return value.

User Response: Ensure a value is returned, or
change the return type of the function to void.

CBC1332 ″&1″ bypasses initialization of ″&2″.
(where &1 is one of the keywords
default, case &2 is the variable being
initialized)

Explanation: It is invalid to jump past a declaration
with an explicit or implicit initializer unless the
declaration is in an inner block that is also jumped past.

User Response: Enclose the initialization in a block
statement.

CBC1333 ″&1″ is being redeclared as a member
function. It was originally declared as a
data member. (where &1 is a variable
name)

Explanation: The template redeclares a data member
of a class template as a member function.

User Response: Change the original declaration of
the variable to a member function, or change the
redeclaration of the variable to a data member.

CBC1334 ″&1″ is being redeclared as a
non-function member or has syntax
errors in its argument list. (where &1 is
a variable name)

Explanation: The template redeclares a member
function of a class template as a data member. There
may be syntax errors in the declaration.

User Response: Change one of the declarations if
necessary.

CBC1335 A string literal cannot be longer than
&1 characters. (where &1 is a number.
This number is system dependent.)

Explanation: The compiler limit for the length of a
string literal has been exceeded. The string literal is too
long for the compiler to handle.

User Response: Specify a shorter string literal.

CBC1336 A wide string literal cannot be longer
than &1 characters. (where &1 is a
number. This number is system
dependent.)

Explanation: The compiler limit for the length of a
wide string literal has been exceeded. The wide string
literal is too long for the compiler to handle.

User Response: Specify a shorter string literal.

CBC1337 The definition of ″&1″ is not contained
in an include file. It may be needed for
automatic generation of template
functions. (where &1 is a class name
with a class keyword, e.g. ″struct S ″.)

Explanation: The definition of the class can only be
used during automatic generation of template functions
if it is contained in an include file.

User Response: Add the definition to an include file.

CBC1338 Invalid ″multibyte character sequence
character ″ (MBCS) character.

Explanation: The compiler has detected a multibyte
character sequence that it does not recognize.

User Response: Replace the ″multibyte character
sequence character″ (MBCS) character.

CBC1339 ″&1″ is an undefined pure virtual
function.

Explanation: The user tried to call a member function
that was declared to be a pure virtual function.

User Response: Remove or define the function as
pure virtual.

CBC1341 Missing value for option ″&1″. (where
&1 is an option name)

Explanation: The option was messing a required
parameter. See the ″Users Guide″ for details on the
option.

User Response: Add a value for the option.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 503

CBC1342 Template ″&1″ cannot be instantiated
because the actual argument for formal
argument ″&2″ has more than one
variant. (where &1 is the name of a
function template. &2 is the name of a
formal template argument.)

Explanation: The argument is a function template or
an overloaded function with two or more variants. The
compiler cannot decide which variant to choose to bind
to the argument type.

User Response: Change the formal template
argument or remove the extra variants.

CBC1343 More than 32760 files in a compilation
unit.

Explanation: The compiler limit has been exceeded
for the number of include files allowed in a compilation
unit.

User Response: Reduce the number of files.

CBC1345 Pointer to a built-in function not
allowed.

Explanation: Because you cannot take the address of
a built-in function, you cannot declare a pointer to a
built-in function.

User Response: Remove the pointer.

CBC1346 Built-in function ″&1″ not recognized.
(where &1 is the name of a function.)

Explanation: The function declared as a built-in is not
recognized by the compiler as being a built-in function.

User Response: Ensure the function is a built-in
function or remove the built-in keyword from the
declaration.

CBC1347 ″&1″ is not supported. (where &1 is a
C++ operator)

User Response: Remove the operator from the
expression.

CBC1348 Function calls are not supported.

Explanation: You can only generate this message in
the debugger, when you use an expression that
includes a function call.

User Response: Remove function calls from the
expression.

CBC1349 The expression is too complicated.

User Response: Simplify the expression.

CBC1350 Evaluation of the expression requires a
temporary.

User Response: Change the expression so that a
temporary object is not required.

CBC1351 ″&1″ is an overloaded function. (where
&1 is the name of a function.)

Explanation: The identifier refers to an overloaded
function with two or more variants. The compiler
requires a prototype argument list to decide which
variant to process.

User Response: Specify a prototype argument list or
remove variants of the overloaded function.

CBC1352 Identifier or function prototype
expected.

Explanation: The symbol must be the name of a data
object, the name of a function with no variants, or a
function or operator name followed by a parenthesized
argument list.

User Response: Ensure the symbol is either the
name of a data object, the name of a function with no
variants, or a function or operator name followed by a
parenthesized argument list.

CBC1353 ″&1″ does not have external linkage.
(where &1 is an identifier.)

Explanation: The pragma directives #map, #import,
and #export can only be applied to objects or functions
that are external.

User Response: Add or remove the #pragma
directive.

CBC1354 ″&1″ has already been mapped.

Explanation: Only one map name may be given to
any object or function.

User Response: Change one of the map names.

CBC1356 Invalid option with #pragma.

Explanation: The option specified for the #pragma
directive is not valid.

User Response: Remove or change the option.

504 OS/390 V2R6.0 C/C++ User’s Guide

CBC1358 The ″&1″ option is not allowed with the
″&2″ option. (where &1 and &2 are both
option names.)

Explanation: The specified options cannot be used
together. The first option specified in the message is
ignored.

User Response: Remove one of the options.

CBC1362 Compiler-generated name ″&1″
overridden, may cause link problems.

Explanation: The specified object has a special
compiler-generated external name, but appears in a
#pragma map directive that would override that name.
Using #pragma map to replace the name may cause
link errors or prevent argument type checking across
compilation units.

User Response: Remove the #pragma map directive
that overrides the compiler-generated external name.

CBC1363 The bit-field length must not be
negative.

Explanation: The bit-field length must be a
non-negative integer value.

User Response: Change the bit-field length to a
non-negative integer value.

CBC1364 A zero-length bit-field must not have a
name.

Explanation: A named bit-field must have a positive
length; a zero-length bit-field is used for alignment only,
and must not be named.

User Response: Remove the name from the
zero-length bit-field.

CBC1365 The bit-field is too small; &1 bits are
needed for ″&2″. (where &2 is a C++
name)

Explanation: The bit-field length is smaller than the
number of bits needed to hold all values of the enum.

User Response: Increase the bit-field length.

CBC1366 The bit-field is larger than necessary;
only &1 bits are needed for ″&2″.
(where &2 is a C++ name)

Explanation: The bit-field length is larger than the
number of bits needed to hold all values of the enum.

User Response: Decrease the bit-field length.

CBC1370 A template friend declaration may only
declare, not define, a class or function.

Explanation: The class or function declared in the
template friend declaration must be defined at file
scope.

User Response: Remove the definition from the
template friend declaration.

CBC1371 The function ″&1″ must not be
declared ″&2″ at block scope. (where
&2 is a C++ keyword.)

Explanation: There can be no static or inline function
declarations at block scope.

User Response: Move the function so that it is not
defined at block scope.

CBC1372 The previous &1 messages apply to
function argument &2. (where &1 is an
integer corresponding to the function
argument number)

Explanation: The previous message applies to the
specified argument number. This message does not
indicate another error or warning, it indicates which
argument of the function call is the subject of the
previous message.

CBC1373 The previous &1 messages apply to
argument &2 of function ″&3″. (where
&1 is the number of messages &2 is
the argument number &3 is the
function name and type)

Explanation: The previous message applies to the
specified argument number. This message does not
indicate another error or warning, it indicates which
argument of the function call is the subject of the
previous message.

CBC1374 ″&1″ is not a static member of ″&2″.
(where &2 is a class name.)

Explanation: Non-static data members cannot be
defined outside the class definition.

User Response: Make the member a static member
or move it into the class definition.

CBC1375 The initializer must be enclosed in
braces.

Explanation: Array element initializers must be
enclosed in braces.

User Response: Put braces around the initializer.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 505

CBC1376 union ″&1″ has multiple initializers
associated with its constructor ″&2″.

Explanation: A union can only contain one member
object at any time, and therefore can be initialized to
only one value.

User Response: Remove all but one of the initializers.

CBC1377 ″&1″ is declared on line &2 of ″&3″.
(where &1 is a C++ name &2 is a line
number &2 is a file name)

Explanation: This is an informational message; no
response is necessary.

CBC1378 ″&1″ is defined on line &2 of ″&3″.
(where &1 is a C++ name &2 is a line
number &2 is a file name)

Explanation: This is an informational message; no
response is necessary.

CBC1379 Maximum number of error messages
exceeded. (where Either the default or
user-defined maximum number of error
messages has been exceeded.)

User Response: Correct the error and recompile.

CBC1380 You cannot override virtual function
″&1″ because ″&3″ is an ambiguous
base class of ″&2″. (where &3 is the
class name of an ambiguous base of
&2)

Explanation: The compiler must generate code to
convert the actual return type into the type that the
overridden function returns (so that calls to the original
overridden function is supported). However, the
conversion is ambiguous.

User Response: Clarify the base class.

CBC1381 The operands have type ″&1″ and ″&2″.

Explanation: This message provides more information
when the array operator was used with invalid types.
The message tells the user what the types were used
with the array operator.

CBC1382 ″&1″ is defined in this compilation and
cannot be imported. (where &1 is a
function name and type.)

Explanation: Only externally-defined functions can be
imported.

User Response: Remove the directive that imports
the function or define the function externally.

CBC1383 ″&1″ is not defined in this compilation
and cannot be exported. (where &1 is a
function name and type.)

Explanation: Only functions defined in this compilation
can be exported.

User Response: Remove the directive that exports
the function or define the function in this compilation
unit.

CBC1385 Macro ″&1″ has been invoked with an
incomplete argument for parameter
″&2″. (where &2 is a macro parameter
name.)

Explanation: The terminating ″,″ or ″)″ for the
argument was not found.

User Response: Ensure the terminating ″,″ or ″)″ is in
the argument.

CBC1386 The enum cannot be packed to the
requested size of &1. (where &1 is 1, 2,
or 4.)

Explanation: The enum type is too large to fit in the
storage requested with the /Su option.

User Response: Redefine the storage to a larger size
by specifying a larger number for /Su option.

CBC1387 ″&1″ is not initialized until after the
base class is initialized. (where &1 is
the class member referenced in the
base class initializer.)

Explanation: First, the base classes are initialized in
declaration order, then the members are initialized in
declaration order, then the body of the constructor is
executed.

User Response: Do not reference the class member
in the base class initializer.

CBC1388 The expression to the left of the ″&1″
operator is a relational expression
(″&2″). The ″&3″ operator may have
been intended. (where &1 is the bitwise
operator | or &. &2 is one of the
relational operators. &3 is either the
operator || or the operator &&.)

Explanation: The compiler has detected the mixing of
relational and bitwise operators in what was determined
to be a conditional expression.

User Response: Ensure the correct operator is being
used.

506 OS/390 V2R6.0 C/C++ User’s Guide

CBC1389 The expression to the left of the ″&1″
operator is a logical expression (″&2″).
The ″&3″ operator may have been
intended. (where &1 is the bitwise
operator | or &. &2 is one of the
relational operators. &3 is either the
operator || or the operator &&.)

Explanation: The compiler has detected the mixing of
relational and bitwise operators in what was determined
to be a conditional expression.

User Response: Ensure the correct operator is being
used.

CBC1390 The expression to the left of the ″&1″
operator is an equality expression
(″&2″). The ″&3″ operator may have
been intended. (where &1 is the bitwise
operator | or &. &2 is one of the
relational operators. &3 is either the
operator || or the operator &&.)

Explanation: The compiler has detected the mixing of
relational and bitwise operators in what was determined
to be a conditional expression.

User Response: Ensure the correct operator is being
used.

CBC1391 The expression to the right of the ″&1″
operator is a relational expression
(″&2″). The ″&3″ operator may have
been intended. (where &1 is the bitwise
operator | or &. &2 is one of the
relational operators. &3 is either the
operator || or the operator &&.)

Explanation: This message is generated by the /Wcnd
option. This option warns of possible redundancies or
problems in conditional expressions involving relational
expressions and bitwise operators.

User Response: Ensure the correct operator is being
used.

CBC1392 The expression to the right of the ″&1″
operator is a logical expression (″&2″).
The ″&3″ operator may have been
intended. (where &1 is the bitwise
operator | or &. &2 is one of the
relational operators. &3 is either the
operator || or the operator &&.)

Explanation: This message will be generated when
/Wcnd option is specified, in order to warn possible
redundancies or problems in conditional expressions
involving logical expressions and bitwise operators.

User Response: Ensure the correct operator is being
used.

CBC1393 The expression to the right of the ″&1″
operator is an equality expression
(″&2″). The ″&3″ operator may have
been intended. (where &1 is the bitwise
operator | or &. &2 is one of the
relational operators. &3 is either the
operator || or the operator &&.)

Explanation: This message will be generated when
/Wcnd option is specified, in order to warn possible
redundancies or problems in conditional expressions
involving equality expressions and bitwise operators.

User Response: Ensure the correct operator is being
used.

CBC1394 Assignment to the ″this ″ pointer is not
allowed.

Explanation: The ″this″ pointer is a const pointer and
cannot be modified.

User Response: Remove the assignment to the ″this″
pointer.

CBC1395 ″&1″ must not have any arguments.
(where &1 is a special member
function.)

User Response: Remove all arguments from the
special member function.

CBC1396 The second operand to the ″offsetof ″
operator is not valid.

Explanation: The second operand to the ″offsetof″
operator must consist only of ″.″ operators and ″[]″
operators with constant bounds.

User Response: Remove or change the second
operand.

CBC1397 ″&1″ is a member of ″&2″ and cannot
be used without qualification. (where
&2 is a possibly qualified class name)

Explanation: The specified name is a class member,
but no class qualification has been used to reference it.

User Response: Use the scope operator (::) to qualify
the name.

CBC1398 ″&1″ is undefined. Every variable of
type ″&2″ will assume ″&1″ has no
virtual bases and no multiple
inheritance. (where &2 is a pointer to
member type)

Explanation: The definition of the class is not given
but the compiler must implement the pointer to member.
It will do so by assuming the class has at most one
nonvirtual base class.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 507

User Response: If this assumption is incorrect, define
the class before declaring the member pointer.

CBC1399 ″&1″ is undefined. The delete operator
will not call a destructor. (where &1 is a
name of a class, struct, or union)

Explanation: The definition of the class is not given so
the compiler does not know whether the class has a
destructor. No destructors will be called.

User Response: Define the class.

CBC1400 Label ″&1″ is undefined. (where &1 is a
C++ name)

Explanation: The specified label is used but is not
defined.

User Response: Define the label before using it.

CBC1401 The initializer for enumerator ″&1″
must be an integral constant
expression. (where &1 is an
enumerator name)

Explanation: The value of an enumerator must be a
constant expression that is promotable to a signed int
value. A constant expression has a value that can be
determined during compilation and does not change
during program execution.

User Response: Change the initializer to an integral
constant expression.

CBC1403 Overriding virtual function ″&1″ may
not return ″&2″ because class ″&3″ has
multiple base classes or a virtual base
class. (where &1 is the name of a
virtual function &2 is an abstract
declarator &3 is the class being
returned)

Explanation: Contravariant virtual functions are
supported only for classes with single inheritance and
no virtual bases.

User Response: Ensure the class has single
inheritance and no virtual bases.

CBC1404 Virtual function ″&1″ is not a valid
virtual function override because ″&3″
is an inaccessible base class of ″&2″.
(where &3 is the class name of an
inaccessible base of &2)

Explanation: The compiler must generate code to
convert the actual return type into the type that the
overridden function returns (so that calls to the original
overridden function is supported). However, the target
type is inaccessible to the overriding function.

User Response: Make the base class accessible.

CBC1405 ″&1″ is a member of &2 classes. To
reference one of these members, ″&3″
must be qualified. (where &1 is a C++
member name &2 is an integer greater
than 1 &3 is a C++ member name)

Explanation: The class member specified is defined in
more than one class nested within the base class and
cannot be referenced from the base class if it is not
qualified. This message is generated by the /Wund
option.

User Response: Use the scope operator (::) to qualify
the name.

CBC1406 ″&1″ is a member of ″&2″. (where &2 is
a C++ class name)

Explanation: This message will be invoked with
/Wund option when UNQUALIFIED_MEMBER message
(about unqualified members) is generated. This
message tells you about the member data and the class
it belongs to.

CBC1407 ″&1″ is not the name of a function.
(where &1 is a name)

Explanation: A function name is required in this
context. The specified name has been declared but it is
not the name of a function.

User Response: Ensure the name is the
correctly-spelled name of a function.

CBC1408 The value given for the ″#pragma
priority ″ is in range reserved for the
system.

Explanation: #pragma priority values less than
-2147482624 are reserved for system purposes.

User Response: Change the #pragma priority value
so that it is greater than -2147482624.

CBC1409 Priority values in successive ″#pragma
priority ″ statements must increase.

Explanation: The current priority cannot be higher
than the priority specified in the previous #pragma
priority statement. As the priority value increases with
each #pragma priority directive, the priority level
decreases.

User Response: Ensure priority values increase with
each #pragma priority statements.

CBC1410 Initialization or termination done before
first ″#pragma priority ″ statement.

Explanation: Static objects should not be initialized or
terminated before the first #pragma priority directive.
before the first #pragma priority.

508 OS/390 V2R6.0 C/C++ User’s Guide

User Response: Ensure initialization or termination
follows the first ″#pragma priority″ statement.

CBC1416 The option ″enum ″ is not allowed in
the middle of a declaration of an enum.
This option is ignored.

Explanation: #pragma options with the option enum
(#pragma options enum=) cannot be specified within an
enumeration declaration.

User Response: Remove the enum option from the
declaration.

CBC1417 Enum type ″&1″ cannot contain both
negative and unsigned values.

Explanation: The enumerator type values should fit
into an integer. Specifying both unsigned and negative
values will exceed this limit.

User Response: Remove the negative or unsigned
values.

CBC1427 Cannot take the address of the
machine-coded function ″&1″.

Explanation: Because the function is machine-coded,
you cannot take its address.

User Response: Remove the reference to that
function.

CBC1429 Incorrect #pragma ignored.

Explanation: The pragma is not supported by this
compiler or the syntax of this pragma is invalid.

User Response: Correct or remove the #pragma.

CBC1431 Invalid pragma name ″&1″ ignored.

Explanation: The pragma specified is not valid. The
compiler ignores it.

User Response: Remove the invalid pragma name.

CBC1433 An initializer is not allowed for the
nonvirtual function ″&1″. (where &1 is a
function name)

Explanation: The declaration of a pure virtual function
must include the keyword virtual.

User Response: Remove the initializer.

CBC1459 An incomplete compile option for ″&1″
has been specified. ″&2″ was expected.
(where &1 is the option name. &2 is the
token that was missing)

Explanation: The command line contained an
incomplete option. The message identifies what the

compiler expected and what it actually found.

User Response: Complete the compile option.

CBC1460 Negative form of option ″&1″ is not
allowed. (where &1 is the option name.)

User Response: Remove the option or change it to
the positive form

CBC1461 ″&1″ is not a valid sub-option for ″&2″.
Option is ignored. (where &1 is the
option name.)

Explanation: The command line contained an option
with an invalid sub-option.

User Response: Remove the sub-option.

CBC1462 ″&1″ must have a sub-option specified.
(where &1 is the option name.)

Explanation: The command line contained an option
that was missing a suboption.

User Response: Specify a sub-option.

CBC1463 Sub-option is not allowed in ″&1″
option. (where &1 is the option name.)

User Response: Remove the sub-option.

CBC1464 ″&1″ requires exactly ″&2″
sub-option(s) to be specified. ″&3″
were given. (where &1 is the option
name. &2 is the number of options
expected.)

Explanation: The command line contained an option
that had an incorrect number of sub-options specified.
The message identifies the number of sub-options the
compiler expected and the number it actually found.

User Response: Ensure the correct number of
sub-option(s) are given.

CBC1465 ″&1″ requires at most ″&2″
sub-option(s) to be specified. ″&3″
were given. (where &1 is the option
name. &2 is the number of options
expected.)

Explanation: The command line contained an option
that more sub-options than is allowed for this options.
The message identifies the most number of sub-options
the compiler expected and the number it actually found.

User Response: Ensure the maximum number of
sub-options is not exceeded.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 509

CBC1466 ″&1″ requires at least ″&2″
sub-option(s) to be specified. ″&3″
were given. (where &1 is the option
name. &2 is the number of options
expected.)

Explanation: The command line contained an option
that fewer sub-options than is allowed for this options.
The message identifies the least number of sub-options
the compiler expected and the number it actually found.

User Response: Ensure the minimum number of
sub-options are specified.

CBC1467 The include path specified was more
than 54 characters.

Explanation: To map cleanly to MVS, path names
have to be limited to 54 chars (max PDS length).

User Response: Shorten the include path.

CBC1468 The include filename has more than 8
characters. It has been truncated to
″&1″.

Explanation: To map cleanly to MVS, file names have
to be limited to 8 chars (max member length).

User Response: Shorten the include file name.

CBC1469 The include file extension was more
than 8 characters. It has been
truncated to ″&1″.

Explanation: To map cleanly to MVS, file extensions
have to be limited to 8 chars.

User Response: Shorten the include file extension.

CBC1470 ″&1″ has extern ″C++″ linkage and can
not be mapped to ″&2″. (where ″&1″ is
the original function name, ″&2″ is the
new name.)

Explanation: Only functions with extern ″C″ linkage
can be mapped using #pragma map.

CBC1471 The linkage specification ″&1″ is not
valid. (where ″&1″ is the linkage the
user specified in pragma linkage)

Explanation: The linkage specified with #pragma
linkage is not valid for this identifier. Check the allowed
linkage specifications.

User Response: Remove the linkage specification.

CBC1472 The identifier ″&1″ has not been
declared yet, so cannot have a ″&2″
specified. (where ″&1″ is the unknown
identifier, ″&2″ is ’linkage’, ’map’, or
’noinline’.)

Explanation: Linkage, map or noinline can only apply
to those identifiers which have been declared.

User Response: Declare the identifier before linkage,
mapping or noinline.

CBC1473 Invalid syntax for pragma ″&1″.
Expected ″&2″.

Explanation: The compiler encountered a pragma with
an invalid syntax. The message identifies what the
compiler expected and what it actually found.

User Response: Correct the syntax.

CBC1474 Argument to va_start must be a
parameter name.

Explanation: va_start initializes the argument to point
to the beginning of the list.

User Response: Ensure the argument to va_start is a
parameter name.

CBC1475 A local variable or compiler temporary
is being used to initialize reference
member ″&1″.

Explanation: The local variable is only active until the
end of the function, but it is being used to initialize a
member reference variable.

User Response: Ensure that no part of your program
depends on the variable or temporary.

CBC1482 ″&1″ must appear inside the member
list for its class. (where &1 is one of
the SOM pragmas, e.g. #pragma
SOMReleaseOrder.)

Explanation: The specified pragma may only appear
within the member list for the class to which it applies.

User Response: Move the pragma inside the
definition of the class.

CBC1483 ″&1″ must be declared to have
non-C++ linkage in order to be
fetchable. (where Change the
declaration of function &1 so that it
does not have C++ linkage.)

Explanation: A fetchable function cannot have C++
linkage.

510 OS/390 V2R6.0 C/C++ User’s Guide

CBC1485 ″&1″ is not the SOM name of a SOM
class.

Explanation: A SOM name that represents a SOM
class is expected, and was not found. The SOM name
of a class may differ from its C++ name.

User Response: Ensure that you use the correct SOM
name for the class.

CBC1486 SOM class version must be an integer
greater than or equal to zero.

Explanation: The major and minor version numbers
supplied in the SOMClassVersion pragma must both be
integers greater than or equal to zero.

User Response: Replace the number with a valid
version number.

CBC1487 ″&1″ must specify the C++ name of a
SOM class. (where &1 is one of the
SOM pragmas, e.g. #pragma
SOMReleaseOrder.)

Explanation: The pragma requires the name of a
SOM class. Some pragmas may also permit an asterisk,
if the pragma appears inside the class definition. The
name you have supplied does not represent a SOM
class visible in the current scope.

User Response: Ensure that you use the correct C++
name of a SOM class. correctly.

CBC1488 ″SOMObject ″ method ″&1″ is missing
or misplaced in the release order.

Explanation: The definition of the special SOM class
″SOMObject″ is not compatible with the use of the
Direct-to-SOM feature. A valid definition is found in the
standard Direct-to-SOM include header ″somobj.hh″.

User Response: Use the valid definition or disable the
Direct-to-SOM feature.

CBC1489 Definition of ″&1″ is only allowed at file
scope. (where &1 is a C++ template
class type)

Explanation: A template class is being defined in a
scope other than file scope. Because all template class
names have file scope this definition is not allowed.

User Response: Move the template class definition to
file scope.

CBC1490 Class template ″&1″ cannot be used
until its containing template has been
instantiated. (where &1 is a C++ class
template type)

Explanation: The class template referenced cannot be
used until the template that contains it has been

instantiated. template cannot be used.

User Response: Declare the class template at file
scope or instantiate the template that contains it.

CBC1491 The data in precompiled header &1
does not have the correct format.
(where &1 is the name of the
precompiled header file)

Explanation: The precompiled header file has been
corrupted or is not actually a precompiled header file.

User Response: Delete the corrupted header file or
use the correct option to regenerate it.

CBC1492 Unable to open precompiled header
&1. The original header will be used.
(where &1 is the name of the
precompiled header file)

Explanation: The specified error occurred when the
compiler attempted to open the precompiled header file.

User Response: Correct the condition that prevented
the open.

CBC1493 Precompiled header &1 was created by
a later release of the compiler. The
original header will be used. (where &1
is the name of the precompiled header
file)

Explanation: The precompiled header cannot be used
because it was created by a later version of the
compiler.

User Response: Delete the header or use the
-genpcomp option to regenerate it.

CBC1494 Unable to write to precompiled header
&1. (where &1 is the name of the
precompiled header file)

Explanation: The specified error occurred when the
compiler attempted to write to the precompiled header
file.

User Response: Correct the condition which
prevented the write operation.

CBC1495 Invalid wchar_t value &1. (where &1 is
the value which is not valid)

Explanation: A multibyte character or escape
sequence in a literal has been converted to an invalid
value for type wchar_t.

User Response: Change the character or escape
sequence.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 511

CBC1496 Macro &1 has been invoked with an
empty argument for parameter &2.
(where &2 is the name of a macro
parameter)

Explanation: The argument corresponding to the
specified parameter has no tokens.

User Response: If necessary, specify an argument.

CBC1498 Precompiled header &1 created. (where
&1 is the name of the precompiled
header file)

Explanation: The precompiled header was
successfully created.

CBC1499 Cannot open precompiled header &1
for output. (where &1 is the name of
the precompiled header file)

Explanation: The specified error occurred when the
compiler attempted to open the precompiled header file.

User Response: Correct the condition which
prevented the compiler from opening the file.

CBC1500 Precompiled header &1 not used
because the header file was modified.
(where &1 is the name of the
precompiled header file)

Explanation: The precompiled header cannot be used
because the header file that created it was modified
after the precompiled header file was generated.

User Response: Delete the header or use the
-genpcomp option to regenerate it.

CBC1501 Precompiled header &1 used. (where
&1 is the name of the precompiled
header file)

Explanation: The compiler is using the precompiled
header file indicated.

CBC1502 ″&1″ was introduced in class ″&2″ and
can only be specified in the
SOMReleaseOrder list for that class.
(where &2 is a C++ class name.)

Explanation: Only those virtual functions or operators
introduced in a class may appear in its release order
list. Virtual functions that override a base class virtual
function should normally only appear in the release
order of the base class. However, under special
circumstances you can use the ″!″ notation to also put it
in the derived class release order; see the description of
the SOMReleaseOrder pragma for details.

User Response: Remove the member from this
release order pragma.

CBC1503 SOM class ″&1″ has a non-SOM base
class ″&2″. (where &2 is a C++ name.)

Explanation: All base classes of a SOM class must
themselves be SOM classes.

User Response: Change the list of base classes so
they are either all SOM or all non-SOM.

CBC1504 Instances of SOM class ″&1″ will
inherit more than one sub-object of
base class ″&2″. (where &2 is a C++
name.)

Explanation: All base classes of a SOM class that
appear more than once in the class hierarchy must be
virtual base classes.

User Response: Make the base class a virtual base
class.

CBC1507 ″&1″ has already been defined as a
SOM class name, metaclass name or
SOM module name. (where &1 is a C++
name.)

Explanation: All SOM names of classes, metaclasses
and modules must be unique in the same scope,
without regard to case sensitivity.

User Response: Change the SOM name of the class,
the metaclass or the module to make it unique.

CBC1508 ″&1″ has already been defined as a
SOM member name in class ″&2″.
(where &2 is a C++ name.)

Explanation: All SOM member names must be unique
within the class, without regard to case sensitivity.

User Response: Change the SOM name of the
member to make it unique.

CBC1509 ″&1″ already has a SOM name ″&2″.
(where &2 is a C++ name.)

Explanation: A SOM class or member is being
assigned a SOM name when it already has one. It may
have already been assigned a SOM name by a
preceding pragma, or it may have assumed a default
SOM name because the pragma occurs too late in the
source. We recommended that you put the pragma
inside the class definition to avoid the latter problem.

User Response: Remove redundant pragmas or move
unique ones into the class definition.

CBC1511 ″&1″ already has a SOM metaclass
name ″&2″. (where &2 is a C++ name.)

Explanation: A SOM class is being assigned a SOM
metaclass name when it already has one.

512 OS/390 V2R6.0 C/C++ User’s Guide

User Response: Remove the redundant pragma.

CBC1512 ″&1″ is not a member of a SOM class.
(where &1 is a C++ name.)

Explanation: The name is not declared as a member
of a SOM class.

User Response: Replace the name with the name of
a member of a SOM class.

CBC1513 ″#pragma SOMAttribute ″ cannot be
applied to ″&1″. (where &1 is a C++
name.)

Explanation: The SOMAttribute pragma can only be
applied to nonstatic data members. In addition, the data
member cannot be a reference to an abstract class
type.

User Response: Remove the SOMAttribute pragma or
change the data member type.

CBC1514 Direct-to-SOM class ″SOMObject ″ must
have a SOMReleaseOrder pragma.

Explanation: The definition of the special SOM class
SOMObject is not compatible with the use of the
Direct-to-SOM feature. A valid definition is found in the
standard Direct-to-SOM include header ″somobj.hh″.

User Response: Use the valid definition or disable the
Direct-to-SOM feature.

CBC1515 Argument ″&1″ of ″#pragma
SOMClassInit ″ is not of the necessary
function type. (where &2 is a C++ type.)

Explanation: Argument ″&1″ of #pragma
SOMClassInit must be a non-member or static member
function taking one argument of type ″SOMClass*″ and
returning void.

User Response: Replace the argument with a function
of the correct type.

CBC1516 Entry ″&1″ in the release order list has
either been specified twice or is not a
member of the class. (where &1 is a
C++ name.)

Explanation: You can only specify a member of a
class in the release order list of that class, and each
member may not appear more than once.

User Response: Remove the entry from the release
order list and recompile or add a corresponding member
to the class and recompile.

CBC1517 Some members did not appear in the
release order list for SOM class ″&1″.
(where &1 is a C++ name.)

Explanation: There are public or protected members
that were not mentioned in the release order list. They
are added to the end of the list.

User Response: Add the missing members to the
release order list.

CBC1518 The string must be terminated before
the end of the line.

Explanation: The compiler detected a string that was
not terminated before an end-of-line character was
found.

User Response: End the string or use ″\″ to continue
the string on the next line. The ″\″ must be the last
character on the line.

CBC1519 A character constant must end before
the end of the line.

Explanation: The compiler detected a character
constant that was not terminated before an end-of-line
character was found.

User Response: End the character constant or use ″\″
to continue it on the next line. The ″\″ must be the last
character on the line.

CBC1520 A matching &1 function named ″&2″
could not be found. (where &1 is one of
’const’, ’volatile’ or ’const volatile’. &2
is the name of the called function
(without the argument list).)

Explanation: The call may have failed because no
member function exists that accepts the ’const/volatile’
qualifications of the object.

User Response: Ensure the type qualifier is correct
and that the function name is spelled correctly.

CBC1521 ″&1″ was previously declared as a
SOM class, but is not being defined as
a SOM class. (where &1 is a C++
name.)

Explanation: The class was expected to be a SOM
class, probably because its name appeared in a
SOMClassName or SOMMetaClass pragma, but it is
being defined as a non-SOM class. It will be defined as
a SOM class only if the SOMAsDefault pragma is ″on″,
or if the class inherits from the SOMObject class.

User Response: Change the class declaration or
definition to make them consistent.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 513

CBC1522 The macro ″&1″ has been redefined.
(where &1 is a macro name)

Explanation: An active definition already exists for the
macro name being defined. The second definition will
be used.

User Response: Remove or rename one of the macro
definitions if necessary.

CBC1523 ″&1″ is a type name being used where
a variable name is expected. (where &1
is a C++ name)

Explanation: The identifier must be a variable name
not a type name.

User Response: Check that the identifier is a variable
name and ensure the variable is not hidden by a type
name.

CBC1524 Template ″&1″ has a missing or
incorrect template argument list.
(where &1 is a C++ name)

Explanation: A template name was found where a
variable name was expected.

User Response: Complete the template argument list
or change the identifier to a variable name.

CBC1526 Template friend declaration does not
declare a class or a function.

Explanation: A template friend declaration must
declare a class or a function following the template
arguments.

User Response: Change the template declaration to
declare a class or a function.

CBC1528 The ’const’ object has been cast to a
non-’const’ object.

Explanation: A cast has been used to possibly modify
a ’const’ object. This may cause undefined behaviour at
run-time.

User Response: Remove the cast or make the object
non-const.

CBC1531 #pragma HasHome must be specified
for ″&1″ before #prama IsHome may be
specified. (where &1 is the name of a
class, struct or union.)

Explanation: You must specify #pragma HasHome for
″&1″ before you can specify #pragma IsHome for it.

User Response: Specify the #pragma HasHome
before the #pragma IsHome or remove the #pragma
IsHome.

CBC1532 &1 may only be used at file scope.
(where &1 is the name of the pragma:
eg. #pragma IsHome)

Explanation: The pragma is only valid at file scope.

User Response: Move the pragma so that it is in file
scope.

CBC1533 Global friend functions may not be
defined in a local class.

Explanation: A local class cannot have a friend
function.

User Response: Make the function a member function
in the local class.

CBC1534 No matching #pragma &1&2 for
#pragma &1(pop) (where &1 is the
name of one of the on|off SOM
pragmas or the ObjectModel pragma
&2 is either (on|off) or
(iom|som|com|native|default))

Explanation: Either a #pragma &1&2 was not
specified or a #pragma &1(pop) has already been
encountered.

User Response: Remove the pop or add on|off or
iom|som|com|native|default to the pragma.

CBC1543 SOM class &1 must not have operator=
functions and somAssign functions.
(where &1 is a class name.)

Explanation: somAssign is an obsolete SOM member
function, introduced by the SOMObject base class, that
performs similar to operator= function. somAssign is still
supported for backward compatibility, but classes may
not have both somAssign member functions and
operator= members. If you define only one, the compiler
will supply a compatible version of the other.

User Response: Remove either the operator=
methods or the somAssign methods.

CBC1544 #pragma argument directive has
already been specified for function
″&1″. This #pragma will be ignored.

Explanation: #pragma argument for a function can
only be defined once. Any subsequent specification will
be ignored.

CBC1545 Function ″&1″ specified within
#pragma argument should not have
any linkage type (except ″C″)
associated with it.

Explanation: Function with linkage type such as ″OS″
or ″built-in″ are not allowed in the #pragma directive.

514 OS/390 V2R6.0 C/C++ User’s Guide

User Response: Remove the linkage type or make it
″C″.

CBC1546 Function specified in #pragma
argument must be defined or declared
before the directive.

Explanation: The function specified within the
#pragma argument is either not defined or defined after
the directive.

User Response: Define the function before the
#pragma argument directive.

CBC1548 The initial #pragma SOMAsDefault(on)
is not at file scope.

Explanation: The SOMAsDefault pragma may not
appear nested inside a class or in a function. If you are
declaring nested classes and wish them to be SOM
classes, you must either use the pragma at file scope,
or explicitly derive the classes from the SOMObject
class.

User Response: Delete the pragma or move it to file
scope.

CBC1549 ″&1″ cannot be converted to ″&2″
because one has SOMCallStyle(oidl)
and the other has SOMCallStyle(idl).

Explanation: The callstyle of a class affects how its
methods are called, and methods of a SOM class must
be invoked using the call style they were constructed to
expect. For this reason, pointers to members of a SOM
class cannot be converted to pointers to members of a
class with an incompatible call style.

User Response: Change the classes to have the
same call style.

CBC1550 Unimplemented SOM feature: &1.

Explanation: You have attempted to use a feature of
SOM that is not supported, or a C++ language construct
that is not supported for SOM objects. This may occur if
you try to use the unsupported construct directly, or if
the compiler needs to use an unsupported construct in
order to implement your code.

User Response: Rewrite your code using different
constructs, to accomplish the same result.

CBC1551 The address of data member ″&1″
cannot be taken because the member
is being referenced through a _get_
function.

Explanation: An attribute is access through a ″_get_″
method if its backing data is not accessible, or if the
SOMNoDataDirect pragma is in effect for the class.
Since the ″__get″ method returns the value of the

member, and not its address, it isn’t possible to use the
address operator ″&″ on the member to create an
ordinary pointer. This error may also be generated if you
haven’t used the ″&″ operator explicitly, but the compiler
needs to use it to implement your code. You can create
a a pointer-to-member that refers to an attribute.

User Response: Rewrite the expression that causes
the address to be taken, or remove the SOMAttribute
pragma.

CBC1552 Local class ″&1″ may not be a SOM
class.

Explanation: A local class is a class defined inside a
function body. Local classes that are SOM classes are
not supported.

User Response: Make the class a non-SOM class or
define it at file scope.

CBC1553 Class ″&1″ has multiple
SOMClassVersion pragmas with
differing values.

Explanation: A single pair of major and minor version
numbers should be associated with the implementation
of each class, and with each client, so that SOM can
detect incompatibilities.

User Response: Remove all but one of the pragmas.

CBC1554 ″&1″ must occur at SOM class scope.

Explanation: Some SOM pragmas must appear within
the class scope, because the compiler must have the
information they supply to correctly process the class
definition. Put these pragmas inside the braces of the
class definition, but not inside any nested classes or
function bodies.

User Response: Move the pragma inside the class
definition.

CBC1555 Using ’*’ to represent the current class
for ″&1″ is only valid at SOM class
scope.

Explanation: Some SOM pragmas that take a SOM
class name as a parameter can also use an asterisk ’*’
to identify the class, but only if the pragma appears in
the definition of the class. The pragma also must not be
inside a nested scope, such as a nested class or
function body.

User Response: Move the pragma inside the class
definition or replace ’*’ with the class name.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 515

CBC1556 ’*’ is not valid for SOM ″&1″.

Explanation: The pragma does not accept ’*’ to
designate the current class. You may achieve the same
effect by turning the pragma ’on’ before the class, and
using the ’pop’ parameter after the class.

User Response: Replace ’*’ with one of ’on’, ’off’, or
’pop’.

CBC1557 Expected one of ’on’/’off’/’pop’ for
″&1″.

Explanation: This pragma toggles a SOM option on or
off when the ’on’ or ’off’ parameters are supplied, and
returns to the previous value when the ’pop’ parameter
is used. No other parameter values are valid.

User Response: Replace the invalid parameter with
one of ’on’, ’off’, or ’pop’.

CBC1558 Expected one of ’on’/’off’/’pop’/’*’ for
″&1″.

Explanation: This pragma toggles a SOM option
default on or off when the ’on’ or ’off’ parameters are
supplied, and returns to the previous value when the
’pop’ parameter is used. In addition, if the parameter
appears inside a SOM class scope, you can use the ’*’
parameter to turn the option on only for the current
class. No other parameter values are valid.

User Response: Replace the invalid parameter with
one of ’on’, ’off’, ’pop’, ’or’ *.

CBC1559 Expected one of ’idl’/’oidl’ for ″&1″.

Explanation: The callstyle of a SOM class determines
how its methods are called, and is specified using the
SOMCallStyle pragma. This pragma takes a single
parameter which must be either ’idl’ or ’oidl’.

User Response: Replace the invalid or missing
parameter with ’idl’ or ’oidl’.

CBC1560 More than one ″&1″ in class &2.

Explanation: Only one instance of this pragma is
permitted in any particular SOM class.

User Response: Remove the extra pragmas.

CBC1561 The address of a dereferenced
pointer-to-member expression may not
be taken because get/set methods are
being used.

Explanation: An attribute is accessed through a
″__get″ method if its backing data is not accessible, or if
the SOMNoDataDirect pragma is in effect for the class.
It is possible to create a pointer-to-member that refers
to an attribute, and the ″__get″ method will be called
when the pointer-to-member is dereferenced. However,

since the ″__get″ method returns the value of the
member and not its address, it isn’t possible to use the
address operator ″&″ on the dereferenced
pointer-to-member to create an ordinary pointer.

User Response: Don’t take the address of the
attribute, or make the attribute’s backing store
accessible, or remove the SOMAttribute pragma so the
data member will not be an attribute.

CBC1562 Alignment is determined at the left
brace of the definition.

Explanation: The alignment has been changed during
a class definition.

User Response: Remove the #pragma align or place
it before the class definition.

CBC1563 ’!’ was specified for ″&1″, which was
introduced in the current class. (where
&1 is a C++ member name.)

Explanation: ’!’ must only be used for names
introduced in a base class.

User Response: Remove the ’!’ from the
SOMReleaseOrder entry.

CBC1564 No assignment operator exists for ″&1″
of class ″&2″. Compiler-generated
″_set_&1 ″ will call SOMError. (where &1
is a C++ member name.)

Explanation: The compiler cannot generate the _set
function for a class member because the member is an
instance of a class that does not have a suitable
operator=.

User Response: Use #pragma SOMAttribute(var,
noset) and write your own _set function.

CBC1565 The #include of <somobj.hh> is not at
file scope.

Explanation: A line containing #pragma SOM was
found nested inside a class or function, but the pragma
is only valid at file scope. Since the pragma is normally
found only within the standard header file somobj.hh, it
is likely that somobj.hh (or another header file that
includes it, such as som.hh) was included inside a class
or function scope.

User Response: Move the #include line to file scope.

CBC1566 SOMMethodName for ″&1″ is not valid
because ″&1″ was introduced in class
″&2″. (where &2 is a C++ class name.)

Explanation: The SOMMethodName pragma cannot
be applied to virtual functions that override a function in
a base class, because the introducing function and all
its overrides must have the same SOM name. The

516 OS/390 V2R6.0 C/C++ User’s Guide

pragma can be applied to virtual functions only in the
introducing class, and to any non-virtual member
functions.

User Response: Remove the SOMMethodName
pragma or make the function not virtual.

CBC1567 #pragma SOMCallStyle may not be
changed more than once per class.

Explanation: The callstyle of a SOM class is
associated with the class and affects all of its member
functions. Callstyle cannot be changed once set, and
cannot have different values for different member
functions.

User Response: Remove the extra #pragma
SOMCallStyle.

CBC1568 ″&1″ may only be used for SOM
classes.

Explanation: This pragma is valid only for SOM
classes. A class is a SOM class if it inherits from
SOMObject, or if the SOMAsDefault pragma is ’on’.

User Response: Remove the pragma.

CBC1569 Option ″&1″ is not supported for &2.

Explanation: The option is not supported by &2
compiler.

User Response: Remove the option.

CBC1570 Syntax error while processing option
″&1″ - expected ″&2″ and found ″&3″.
(where &1 is an option name &2 is a
C++ token &3 is a C++ token)

Explanation: A syntax error was found while parsing
the option. The message identifies what the compiler
expected and what it actually found. Often the source of
the error is an unmatched parenthesis or a missing
semicolon.

User Response: Correct the syntax.

CBC1571 User cast between SOM and non-SOM
pointer types ″&1″ and ″&2″. (where &1
is a C++ type &2 is a C++ type)

Explanation: Either the source or destination type is a
pointer to a SOM object, and the other type is a pointer
to some non-SOM object. This cast could cause
problems because the layout of SOM objects is known
only to SOM, and may change in later versions of the
class or of its base classes.

User Response: If this is the desired cast, cast to
void* first to suppress the warning.

CBC1572 &1 is not valid for &2. (where &1 is a
SOM pragma. &2 is a C++ member
name.)

Explanation: This pragma is valid only for certain
kinds of SOM class members, but has been applied to a
different kind of member. For example, the
SOMMethodName pragma is valid only for functions,
and attempts to use it on data members will generate
this error.

User Response: Remove the pragma.

CBC1573 ″&1″ is not a typename. (where &1 is a
C++ type.)

Explanation: Parameters to #pragma SOMIDLTypes
must be type names, which are either typedef names or
the names of classes, structs, unions, or enums.
Variable names are not valid, nor are the predefined
basic types such as ’int’.

User Response: Do not use variables or basic types
as parameters to pragma SOMIDLTypes.

CBC1588 ″&1″ must have type ″Environment * ″,
not ″&2″.

Explanation: The __SOMEnv variable that you
declared does not have the correct type.

User Response: Correct the declared type.

CBC1590 Address of ″&1″ may not be taken,
because ″&1″ is an indirect attribute.

Explanation: An indirect attribute may not be
converted to a pointer to data member, because the
compiler cannot generate code to correctly dereference
the pointer later. Indirect attributes are for compatibility
with SOM 1.0.

User Response: Remove the indirect attribute from
the #pragma SOMAttribute for the variable.

CBC1596 ″&1″ does not have external linkage.
Pragma export ignored. (where &1 is an
identifier.)

Explanation: The pragmas map, import, and export
can only be applied to objects or functions that are
external.

User Response: Give the identifier external linkage.

CBC1597 ″&1″ is already exported. Duplicate
directive ignored. (where &1 is a
function name and type.)

Explanation: A function may be imported or exported
at most once.

User Response: Remove one of the directives.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 517

CBC1598 The compiler could not open the
output file ″&1″. (where &1 is a file
name.)

Explanation: The open command failed for file ″&1″.

User Response: Ensure the output file name is
correct. Also, ensure that the location of the output file
has sufficient storage available. If using a LAN drive,
ensure that the LAN is working properly and you have
permission to write to the disk.

CBC1599 ″&1″ cannot be exported. Directive
ignored.

Explanation: The function main cannot be exported.

User Response: Remove the directive.

CBC1601 _get/_set routines must not be
declared by users.

Explanation: The compiler will generate _get/_set
declarations for SOM attributes. You must not declare
them. You may define these routines if the
noget/noset/nodata attributes are on.

User Response: Use #pragma SOMAttribute to
declare the _get and _set routines.

CBC1602 Only one of ’nodata’, ’publicdata’,
’protecteddata’, ’privatedata’ may be
specified in a ″#pragma SOMAttribute ″.

Explanation: A SOM attribute must either have no
backing data, or the backing data must be public,
protected or private. It is an error to specify more than
one backing data modifier for a variable.

User Response: Remove the extra modifiers.

CBC1603 Access mode ″&1″ for backing data is
more accessible than mode ″&2″ for
member ″&3″. (where &1 is an access
specifier. &2 is an access specifier. &3
is a variable name.)

Explanation: It is an error for the backing data for a
SOM attribute to be more accessible than the _get/_set
routines. An example of the problem would be a private
attribute with public backing data.

User Response: Change the access of the backing
data or of the member.

CBC1604 #pragma SOMAttribute may only be
given once for data member ″&1″.
(where &1 is a variable name.)

Explanation: The SOMAttribute pragma may only be
specified once for each data member.

User Response: Combine all the attributes into one
#pragma SOMAttribute.

CBC1605 Assignment to read-only variable ″&1″
is not allowed. (where &1 is the
variable name)

Explanation: A SOM readonly variable is similar to a
C++ const variable. It is an error to assign to the
variable using the _set_var procedure call. You can
assign to a read-only attribute only if its backing data is
accessible.

User Response: Remove the assignment to the SOM
read-only variable.

CBC1606 ″&1″ already has a class initializer
function ″&2″. (where &1 is a SOM
class name. &2 is a function name.)

Explanation: Only one class initializer function is
allowed for each SOM class.

User Response: Remove the extra SOMClassInit
pragmas.

CBC1607 The address of compiler-generated
routine ″&1″ may not be taken unless it
appears in a #pragma
SOMReleaseOrder. (where &1 is a
function name.)

Explanation: A compiler-generated operator
assignment function for a SOM class may not be
converted to a pointer-to-function member unless the
routine is mentioned in the release order. The purpose
of this restriction is to ensure binary compatibility if the
class is modified later.

User Response: Add the method to the release order.

CBC1608 ″&1″ is not a SOM attribute. (where &1
is a variable name.)

Explanation: Only data members that are SOM
attributes may be specified in the SOMReleaseOrder
pragma.

User Response: Remove the member from the
release order.

CBC1609 The return type ″&1″ is not valid for a
function of ″&2″ linkage.

Explanation: For example, functions with COBOL
linkage cannot return a value; they must return void.

User Response: Use a valid return type.

518 OS/390 V2R6.0 C/C++ User’s Guide

CBC1610 Invalid or out of range pragma
parameter; pragma is ignored.

Explanation: The pragma parameter specified is
invalid or out of range.

User Response: Remove the parameter or replace it
with one within the range.

CBC1611 Unable to access options file &1.
(where &1 is the options file name
specified on OPTFILE option.)

Explanation: The compiler could not access the
specified options file. It was either unable to open it or
unable to read it.

User Response: Ensure the options file name and
other specifications are correct. Ensure that the access
authority is sufficient. Ensure that the file being
accessed has not been corrupted.

CBC1612 Option &1 specified in an options file
is ignored. (where &1 is an option
name specified in the options file.)

Explanation: Option &1 is not allowed in an options
file.

User Response: Remove the &1 option from the
options file. Option OPTFILE can not be nested.

CBC1613 The continuation character on the last
line of the options file &1 is ignored.

Explanation: The continuation character on the last
line of a file is useless.

User Response: Remove the continuation character
on the last line of the options file. Make sure that it is
not a typo for something else.

CBC1614 Macro name ″&1″ contains characters
not valid on the ″&2″ option.

Explanation: Macro names can contain only
alphanumeric characters and the underscore character
and must not begin with a numeric character.

User Response: Change the macro name.

CBC1615 Semantic function for processing ″&1″
option is missing.

Explanation: Option &1 cannot be processed because
its semantic function is missing.

User Response: Provide the option semantic function.

CBC1616 Cannot adjust access of ″&1″ because
it is not an attribute. (where &1 is a
member name)

Explanation: The access to a SOM class data
member can be adjusted only if the data member is
designated an attribute by use of the SOMAttribute
pragma.

User Response: Remove the access adjustment
expression or use the SOMAttribute pragma.

CBC1617 Precompiled header file cannot be
generated because a declaration was
not complete when the last header file
ended.

Explanation: A declaration may not begin in a header
file and end in the main program file. No precompiled
header file is generated.

User Response: Complete the declaration before the
end of the header file.

CBC1618 Pointer to member does not refer to an
attribute when the SOMNoDataDirect
pragma is in effect for the class. (where
&1 is a member name)

Explanation: A pointer to member is assigned the
address of a data member &1 that is not an attribute
when the SOMNoDataDirect pragma is in effect for the
class. If the pointer is dereferenced, the compiler will
attempt to use ″__get″ and ″__set″ methods to access
the member, which will result in a run-time error,
because these methods do not exist for the data
member.

User Response: Rewrite the expression that causes
the address to be taken, designate the data member as
an attribute using the SOMAttribute pragma, or remove
the SOMNoDataDirect pragma.

CBC1619 Undefined class &1 specified with &2
option. (where &1 is a class name)

Explanation: The class name &1 was specified with
the &2 command line option, but this class is not
defined. A release order will not be generated for the
class.

User Response: Define the class, change the name
specified with the &2 option, or remove the &2 option.

CBC1620 #pragma &1 directive can be specified
only once per source file.

Explanation: You can specify the #pragma directive
indicated only once in each source file.

User Response: Remove one of the #pragma &1
statements.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 519

CBC1622 Option ″&1″ is turned on because
option ″&2″ is specified.

Explanation: If option &2 is on, option &1 is also
required to be on to achieve a better options
combination.

User Response: Also turn on &1 if &2 is specified.

CBC1623 Option ″&1″ ignored because option
″&2″ specified.

Explanation: Specifying the second option indicated
means the first has no effect.

User Response: Remove one of the options.

CBC1624 &1 is not a valid dataset name.

Explanation: The dataset name is not valid because it
is too long.

User Response: Use a shorter dataset name.

CBC1625 &1 does not exist.

Explanation: The dataset does not exist.

User Response: Supply an existing dataset.

CBC1626 There are no members in &1 to
compile.

Explanation: There are no members in the partitioned
dataset to compile.

User Response: Supply a partitioned dataset that
contains members.

CBC1627 &1 should be a partitioned dataset.

Explanation: A partitioned dataset is expected.

User Response: Supply a partitioned dataset.

CBC1628 &1 should not be a partitioned dataset.

Explanation: A non-partitioned dataset is expected.

User Response: Supply a non-partitioned dataset.

CBC1629 &1 has invalid attributes.

Explanation: The attributes of the dataset do not
match the attributes expected by the compiler.

User Response: Check the informational messages
issued with this message and change the dataset
attributes accordingly.

CBC1630 &1 has attributes &2.

Explanation: The dataset has the attributes indicated.

User Response: None.

CBC1631 The attributes should be &1.

Explanation: The dataset should have the attributes
indicated.

User Response: None.

CBC1632 The attributes should be one of the
following:

Explanation: The dataset should have one of the sets
of attributes indicated.

User Response: None.

CBC1633 Unable to allocate &1.

Explanation: Unable to allocate the dataset.

User Response: Check that the dataset has a valid
name and can be accessed.

CBC1634 Unable to load &1. Compilation
terminated.

Explanation: Unable to fetch one of the compiler
phases.

User Response: Check that the compiler is installed
correctly. Make sure there is enough memory in the
region to fetch the module. You may need to specify the
runtime option HEAP(,,,FREE,,) to prevent the compiler
from running out of memory.

CBC1635 Timestamp error on &1.

Explanation: Timestamp error while compiling a
partitioned dataset.

User Response: Check to see if the dataset is
corrupted.

CBC1636 Address of readonly attribute taken
when the SOMNoDataDirect pragma is
in effect for the class. (where &1 is a
member name)

Explanation: The address is taken of a data member
&1 that is a readonly attribute, when the
SOMNoDataDirect pragma is in effect for the class. If
the address is used to modify the member, the compiler
will attempt to use the ″__set″ method to access the
member, which will result in a run-time error, because
this method does not exist for the data member.

User Response: Rewrite the expression that causes
the address to be taken, remove the readonly

520 OS/390 V2R6.0 C/C++ User’s Guide

designation for the attribute, or remove the
SOMNoDataDirect pragma.

CBC1637 Compiler does not supply volatile
operator= functions for SOM classes.
(where &1 is a class name)

Explanation: An assignment was attempted to a
volatile SOM object of type &1 for which no matching
operator= could be found. The compiler supplies four
operator= functions which are not qualified with volatile.
In order to operate on volatile SOM objects, you must
supply volatile versions of the member functions. It is
recommended that you supply volatile versions of all
four assignment operators.

User Response: Rewrite the expression that causes
the assignment, remove the volatile qualifier for the
SOM object, or supply volatile versions of the operator=
functions for the SOM class.

CBC1638 The header file name in the #include
directive cannot be empty.

User Response: Specify a non-empty header file
name in the #include directive.

CBC1641 Direct access to &1 is valid only
through the ″this ″ pointer when
NoDataDirect is in effect for the class.
(where &1 is a member name)

Explanation: A pointer or reference is used to directly
access the instance data for non-attribute member &1
when NoDataDirect is in effect for the class. If the
object is remote, this will result in a run-time error
because the data is not locally accessible. When
NoDataDirect is in effect for the class, direct access to
instance data, even within a member function, is valid
only through the ″this″ pointer, because then the object
is guaranteed to be local.

User Response: Rewrite the expression that
references the data, designate the data member as an
attribute using the SOMAttribute pragma, or remove
NoDataDirect for the class.

CBC1642 #&1 condition evaluates to &2. (where
&2 is an integer value)

Explanation: This message traces preprocessor
expression evaluation.

User Response: No response.

CBC1643 defined(&1) evaluates to &2. (where &2
is an integer value)

Explanation: This message traces preprocessor #ifdef
and #ifndef evaluation.

User Response: No response.

CBC1644 Stop skipping tokens.

Explanation: This messages traces conditional
compilation activity.

User Response: No response.

CBC1645 File &1 has already been #included.
(where &1 is the name of a file)

Explanation: This #include directive is redundant.

User Response: Remove the #include directive.

CBC1646 #include found file &1. (where &1 is the
name of a file)

Explanation: This message traces the activity of the
#include directive.

User Response: No response.

CBC1647 #line directive changing line to &1 and
file to &2. (where &2 is a file name)

Explanation: Traces #line directive evaluation.

User Response: No response.

CBC1648 #line directive changing line to &1.
(where &1 is an integer value)

Explanation: Traces #line directive evaluation.

User Response: No response.

CBC1649 The macro definition will override the
keyword ″&1″. (where &1 is an identifier
name)

Explanation: Overriding a C keyword with a
preprocessor macro may cause unexpected results.

User Response: Change the name of the macro if
necessary.

CBC1650 Some program text not scanned due to
&1 option or #pragma &2. (where &2 is
the name of the margins or sequence
pragma)

Explanation: MARGINS or SEQUENCE option, or
#pragma margins or sequence was used to limit the
valid text region in a source file.

User Response: Remove the MARGINS or
SEQUENCE option, or remove the #pragma margins or
sequence, or specify a more inclusive text region.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 521

CBC1651 Macro &1 redefined with identical
definition. (where &1 is the name of a
macro)

Explanation: Identical macro redefinitions are allowed
but not necessary. The amount of whitespace
separating tokens have no bearing on whether macros
are considered identical.

User Response: Remove the identical definition if
necessary.

CBC1652 #&1 nesting level is &2. (where &2 is an
integer value)

Explanation: Traces conditional compilation activity.

User Response: No response.

CBC1653 Compiler internal name ″&1″ has been
defined as a macro. (where &1 is the
name of a macro)

Explanation: Internal compiler names should not be
redefined.

User Response: Delete the macro definition or
change the name of the macro being defined.

CBC1654 Compiler internal name ″&1″ has been
undefined as a macro. (where &1 is the
name of a macro)

Explanation: Internal compiler names should not be
undefined.

User Response: Delete the undefined macro.

CBC1655 Begin skipping tokens.

Explanation: This messages traces conditional
compilation activity.

User Response: No response.

CBC1656 A trigraph sequence occurred in a
character literal.

Explanation: The trigraph sequence will be converted,
although a literal interpretation may have been desired.

User Response: Change the value of the character
literal if necessary.

CBC1657 A trigraph sequence occurred in a
string literal.

Explanation: The trigraph sequence will be converted,
although a literal interpretation may have been desired.

User Response: Change the value of the string literal
if necessary.

CBC1658 #undef undefining macro name ″&1″.
(where &1 is the name of a macro)

Explanation: Traces #undef preprocessor directive
evaluation.

User Response: No response.

CBC1659 Unknown macro name ″&1″ on #undef
directive. (where &1 is the name of a
macro.)

Explanation: An attempt is being made to undefine a
macro that has not been previously defined.

User Response: Remove the #undef directive.

CBC1660 Header &1 included again because it is
never empty. (where &1 is the name of
a header file.)

Explanation: The referenced header file has already
been #included and will be physically #included again
because there is no conditional compilation path in it
which results in an empty file.

User Response: If desired, at the top of the header,
test a macro name which is defined by the header to
prevent subsequent inclusions.

CBC1661 Header &1 not included again because
it is empty. (where &1 is the name of a
header file.)

Explanation: The referenced header file has already
been #included and will not be physically #included
again because it is empty.

User Response: If desired, do not #include the
header since it is empty.

CBC1662 Header &1 included again because
conditional compilation analysis is
incomplete. (where &1 is the name of a
header file.)

Explanation: The referenced header file has already
been #included and will be physically #included again
because the inclusion is recursive and the conditional
compilation analysis of the header is therefore
incomplete.

User Response: If desired, test a macro name which
is defined by the header at the point of inclusion to
prevent subsequent inclusions.

CBC1663 Header &1 not included again because
it would have no effect due to
conditional compilation. (where &1 is
the name of a header file.)

Explanation: The referenced header file has already
been #included and will not be physically #included

522 OS/390 V2R6.0 C/C++ User’s Guide

again because conditional compilation would expose no
additional source to the compiler.

User Response: If desired, do not #include the
header since it is redundant.

CBC1664 End of precompiled header processing.

Explanation: The compiler has finished processing a
precompiled header.

User Response: No response. This message merely
traces the activity of the precompiled header feature.

CBC1665 Macro ″&1″ is required by the
precompiled header and is defined
differently than when the precompiled
header was created. (where &1 is the
name of a macro)

Explanation: The referenced macro was expanded
during the creation of the precompiled header and is
now defined differently. This prevents the precompiled
header from being used for this compilation.

User Response: If necessary, redefine the macro, or
regenerate the precompiled header

CBC1666 One or more assertions are defined
which were not defined when the
precompiled header was created.
(where &1 is the name of an assertion.)

Explanation: An assertion is defined which was not
defined when the precompiled header was generated.
Since the effect of the new assertion is unknown, the
precompiled header cannot be used for this compilation.

User Response: Do not define the assertion or
regenerate the precompiled header with the new
assertion.

CBC1667 One or more macros are defined which
were not defined when the
precompiled header was created.

Explanation: A macro is defined which was not
defined when the precompiled header was generated.
Since the effect of the new macro is unknown, the
precompiled header cannot be used for this compilation.

User Response: Do not define the macro or
regenerate the precompiled header with the new macro.

CBC1668 Compiler options do not match those
in effect when the precompiled header
was created.

Explanation: The compiler options in use are not
compatible with those used when the precompiled
header was generated. The precompiled header cannot
be used.

User Response: Use the same options as when the
precompiled header was generated or regenerate the
precompiled header with the new options.

CBC1669 Assertion ″&1″ is required by the
precompiled header and is not defined.
(where &1 is the name of an assertion.)

Explanation: The referenced assertion was tested
during the creation of the precompiled header and is not
defined. This prevents the precompiled header from
being used for this compilation.

User Response: If necessary, redefine the assertion,
or regenerate the precompiled header without the
assertion.

CBC1670 Macro ″&1″ is required by the
precompiled header and is not defined.
(where &1 is the name of a macro)

Explanation: The referenced macro was expanded
during the creation of the precompiled header and is not
defined. This prevents the precompiled header from
being used for this compilation.

User Response: If necessary, redefine the macro, or
regenerate the precompiled header without the macro.

CBC1671 Unable to use precompiled header &1.
(where &1 is the name of a header file.)

Explanation: The precompiled header can not be
used for this compilation. A subsequent message will
explain the reason.

User Response: Correct the problem indicated by the
subsequent message.

CBC1672 Expecting &1 and found &2. (where &2
is the name of a header file.)

Explanation: The header file being included is not the
next header in the sequence used to generate the
precompiled header. The precompiled header cannot be
used for this compilation.

User Response: #include the correct header or
regenerate the precompiled header using the new
sequence of #include directives.

CBC1673 Syntax error - the argument list in the
new placement syntax is empty.

Explanation: At least one new placement argument
must be specified.

User Response: Specify an argument in the new
placement syntax or remove the new placement.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 523

CBC1674 Pointer to member declared using
non-SOM class, but accessed through
SOM object.

Explanation: The pointer to member was declared for
a non-SOM class, but is being applied to a SOM object.
This is likely to occur if a forward declaration for the
class as non-SOM occurred, followed by the pointer to
member declaration, followed by the actual class
definition as a SOM class.

User Response: Specify the pointer to member
declaration after the SOM class is defined or use
pragma SOMAsDefault with the forward declaration of
the class.

CBC1675 The __unaligned type qualifier is
applicable only to the types that are
referenced or ″pointed to ″. It is not
valid here and is ignored.

Explanation: The __unaligned type qualifier specifies
that the symbol accessed through a pointer or a
reference is not naturally aligned.

User Response: Remove the __unaligned qualifier.

CBC1676 An expression of type ″&1″ cannot be
an operand for dynamic_cast because
″&2″ is not a class, struct or union.
(where &1 is the type of the operand.
&2 is the class name that the &1 points
to (or is an lvalue of).)

Explanation: The expression operand of a
dynamic_cast operator must be a pointer to or an lvalue
of a complete class.

User Response: Use the static_cast or
reinterpret_cast operator instead of the dynamic_cast
operator.

CBC1677 The operand is not a pointer type.

Explanation: The expression operand of a
dynamic_cast operator must be a pointer when the
target type is a pointer.

User Response: Use the static_cast or
reinterpret_cast operator instead of the dynamic_cast
operator.

CBC1678 The type ″&1″ is not allowed as the
target type of the dynamic_cast
operator. (where &1 is the target type.)

Explanation: The target type of a dynamic_cast
operator must be a pointer or reference to a complete
class or a pointer to void.

User Response: Use the static_cast or
reinterpret_cast operator instead of the dynamic_cast
operator.

CBC1679 The type ″&1″ is not allowed as the
target type of the dynamic_cast
operator. (where &1 is the target type.)

Explanation: The target type of a dynamic_cast
operator must be a pointer to a complete class or a
pointer to void when the operand is a pointer type.

User Response: Use the static_cast or
reinterpret_cast operator instead of the dynamic_cast
operator.

CBC1680 The type ″&1″ is not allowed as the
target type of the dynamic_cast
operator. (where &1 is the target type.)

Explanation: The target type of a dynamic_cast
operator must be a reference to a complete class when
the operand is an lvalue.

User Response: Use the static_cast or
reinterpret_cast operator instead of the dynamic_cast
operator.

CBC1681 The type of the operand is ″&1″ but
″&2″ is not a polymorphic class. (where
&1 is the type of the operand. &2 is the
class name that the &1 points (or
refers) to.)

Explanation: One may only dynamic cast to a
non-base class from a polymorphic class. A polymorphic
class is a class that has a virtual function or that has a
polymorphic base class.

User Response: Use the static_cast or
reinterpret_cast operator instead of the dynamic_cast
operator.

CBC1682 The target type has less qualification
than the source type.

Explanation: The target type must have the same
type qualifiers (or more) as the source type. Note that
dynamic_cast may not used to cast away ’const’.

User Response: Add qualifiers to the target type to
match the source type.

CBC1683 The type ″&1″ is not allowed as the
target type of the dynamic_cast
operator because ″&2″ is incomplete.
(where &1 is the type of the cast. &2 is
the class name that the &1 points (or
refers) to.)

Explanation: The target type of a dynamic_cast
operator must be a pointer or reference to a complete
class.

User Response: Use the static_cast or
reinterpret_cast operator instead of the dynamic_cast
operator.

524 OS/390 V2R6.0 C/C++ User’s Guide

CBC1684 An expression of type ″&1″ cannot be
an operand for dynamic_cast because
″&2″ is incomplete. (where &1 is the
type of the operand. &2 is the class
name that the &1 points (or refers) to.)

Explanation: The expression operand of a
dynamic_cast operator must be a pointer or reference to
a complete class.

User Response: Use the static_cast or
reinterpret_cast operator instead of the dynamic_cast
operator.

CBC1685 The operand is not an lvalue.

Explanation: The expression operand of a
dynamic_cast operator must be an lvalue if the target
type is a reference.

User Response: Use the static_cast or
reinterpret_cast operator instead of the dynamic_cast
operator.

CBC1687 Function ″&1″ does not have any
parameters before the ’...’ parameter.
This is not legal in IDL.

Explanation: Functions in IDL must have at least one
named parameter before a ... parameter.

User Response: Add a named parameter before the
... parameter.

CBC1688 ″&1″ is an IDL keyword or type defined
by <somobj.idl>.

Explanation: The user has a variable or field name
that conflicts with an IDL keyword or type.

User Response: Rename the variable.

CBC1689 Unable to create the type_info objects
because of the improper type_info
class definition.

Explanation: The user has a type_info class definition
that conflicts with the standard.

User Response: Rename the user type_info class
definition.

CBC1690 IDL name ″&1″ conflicts with a variable
or type in the same scope.

Explanation: The name conflicts with a previous IDL
name in this compilation unit.

User Response: Rename at least one name/type.

CBC1691 Expected one of ’on’/’pop’/’*’ for ″&1″.

Explanation: This pragma specifies a SOM option
setting when the ’on’ parameter is supplied, and returns
to the previous value when the ’pop’ parameter is used.
In addition, if the parameter appears inside a SOM
class scope, you can use the ’*’ parameter to specify
the setting only for the current class. No other
parameter values are valid.

User Response: Replace the invalid parameter with
one of ’on’, ’pop’, ’or’ *.

CBC1692 Invalid abistyle parameter specified for
pragma SOMAbiStyle.

Explanation: The abistyle parameter value specified
with the SOMAbiStyle pragma must be one of 2, 3, ″2″,
″2+3″ or ″3″.

User Response: Replace the abistyle parameter with
one of 2, 3, ″2″, ″2+3″ or ″3″.

CBC1693 ″&1″ was specified using
SOMMigratedMethod, but it was
introduced in the current class. (where
&1 is a C++ function member name.)

Explanation: SOMMigratedMethod must only be used
for names introduced in a base class.

User Response: Remove the ″&1″ from the
SOMMigratedMethod .

CBC1694 Cannot specify default function on
PowerPC; #pragma weak ignored.

Explanation: On PowerPc, #pragma weak only takes
one parameter, the weak function.

User Response: Before calling the weak function on
PowerPC, check to be sure it’s there.

CBC1695 Must specify default function on Intel;
#pragma weak ignored.

Explanation: On Intel, #pragma weak takes two
parameters, the weak function and the default one.

User Response: On Intel, a default function must be
provided for use when the weak function is not linked in.

CBC1696 Use option -Fb* to generate browser
information for symbols in system
include files

Explanation: You have definition for a symbol from a
System Include file. If you want browser information for
all symbols, use the -Fb* option.

User Response: Ignore the message, or recompile
using the -Fb* option.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 525

CBC1697 &1 cannot be casted to &2 because &3
is a SOM class but the other type is
not. (where &1 is the type of the source
expression &2 is the cast type &3 is
the name of the SOM class)

Explanation: The source and target class types must
both be SOM classes or they must both be non-SOM
classes.

User Response: Use the static_cast or
reinterpret_cast operator instead of the dynamic_cast
operator.

CBC1698 Both ″main ″ and ″WinMain ″ are defined
in this compilation unit. Only one of
them is allowed.

Explanation: In each compilation unit, only one of
″main″ and ″WinMain″ is allowed.

User Response: Remove either ″main″ or ″WinMain″.

CBC1699 A call to the thread object’s destructor
may not be invoked if the current
process ends before all of its threads
end.

Explanation: You have declared a thread object with a
destructor. Destructor calls of thread local storage
objects are not fully supported on NT.

User Response: Allow enough time to the process so
that its threads can end gracefully before the process
terminates.

CBC1700 ″&1″ keyword is not supported on this
platform. Keyword is ignored.

Explanation: A keyword has been specified on a
platform that does not support it.

User Response: Remove the keyword.

CBC1701 The ″&1″ qualifier cannot be applied to
thread object ″&2″. (where &2 is a
name of a thread object)

Explanation: The qualifier is being applied to an
object with __thread attribute for which the qualifier is
not valid.

User Response: Remove the qualifier.

CBC1702 An error was encountered in accessing
the alternate ddname table. The default
ddnames will be used.

Explanation: The compiler could not access the
alternate ddname table. Compilation will continue, using
the default ddname table.

User Response: Check that the alternate ddname
table was coded correctly.

CBC1703 An error was encountered in a call to
&1 while processing &2. (where &1 is
the name of the library function. &2 is
the name of the file or path.)

Explanation: A library function called by the compiler
encountered an error. The compiler will issue a perror()
message with more specific information on the failure.

User Response: If the file was created by the user,
verify that it was created correctly; See the programmer
response for the accompanying perror() message for
additional information.

CBC1704 There are no files with the default
extension in &1. (where &1 is a
directory name.)

Explanation: There are no files in the given directory
which match the default extension. The compiler
returned without compiling any files.

User Response: Supply a directory which contains
files with the appropriate extension. The default
extension for C is ″.c″ and the default extension for C++
is ″.C″.

CBC1705 The output file &1 is not supported in
combination with source file &2. (where
&1 is an output file specified in a
compiler option, and &2 is the source
file to be compiled.)

Explanation: The output file specified in a compiler
option is of a type which is not supported in combination
with the type of the source file. An informational
message describing supported output file types for the
given source file type follows.

User Response: Supply an output file of one of the
supported types in the compiler sub-option, or let the
compiler generate a default output file name.

CBC1706 The source file is a CMS file. The
suboption should specify a CMS file or
a BFS file in an existing directory.

CBC1707 The source file is a BFS file. The
suboption should specify a CMS file, a
BFS file in an existing directory, or an
existing BFS directory.

CBC1708 The source file is a BFS directory. The
suboption should specify an existing
BFS directory.

526 OS/390 V2R6.0 C/C++ User’s Guide

CBC1709 The source file is a Sequential data
set. The suboption should specify a
sequential data set, a PDS member, or
an HFS file in an existing directory.

CBC1710 The source file is a PDS member. The
suboption should specify a sequential
data set, a PDS member, a PDS, an
HFS file in an existing directory, or an
existing HFS directory.

CBC1711 The source file is a PDS. The
suboption should specify a PDS or an
existing HFS directory.

CBC1712 The source file is a HFS file. The
suboption should specify a sequential
data set, a PDS member, an HFS file in
an existing directory, or an existing
HFS directory.

CBC1713 The source file is a HFS directory. The
suboption should specify an existing
HFS directory.

CBC1714 Detected &1 : &2 (where &1 the LE
message number, &2 is the text of the
CEE message.)

Explanation: An LE informational message was
detected while parsing #pragma runopts options.

CBC1715 Detected &1 : &2 (where &1 the LE
message number, &2 is the text of the
CEE message.)

Explanation: An LE warning message was detected
while parsing #pragma runopts options.

CBC1716 Cannot generate IDL reference to ″&1″
because it is nested within a non-SOM
class. (where &1 is a class name.)

Explanation: C++ classes that are nested within
non-SOM classes are not generated as types in the IDL
file. Such classes cannot be explicitly referenced in the
generated IDL file.

User Response: Remove the reference to the class or
redefine the class so that it is not nested within a
non-SOM class.

CBC1717 Pragma cannot be processed due to
compiler error. Pragma is ignored.

Explanation: The compiler detected an error while
processing pragma directive and cannot recover. The
pragma will be ignored.

User Response: Contact your IBM Representative.

CBC1718 Data members cannot follow zero-sized
array.

Explanation: The zero-sized array must be the last
member in the class.

User Response: Make the zero-sized array the last
member of the class

CBC1719 class ″&1″ cannot be used base class
because it contains a zero-sized array.
(where &1 is a C++ class name)

Explanation: Using a class with a zero-sized array as
a base class will result in members being added after
the array.

User Response: Either remove the zero-sized array
from the base class or re-structure the class hierarchy
so the base class(es) don’t include this base class.

CBC1720 Expected text ″&1″ was not
encountered on option ″&2″.

Explanation: A syntax error was detected while
processing the sub-option. A token was expected but
not found. The suboption is ignored.

User Response: Use the correct syntax for specifying
the option

CBC1721 Option ″&1″ cannot be specified with
option ″&2″. Option ″&3″ is ignored.
(where &1 option name, &2 option
name, &3 option name.)

Explanation: A SEARCH or LSEARCH option cannot
be specified on the same compiler invocation with a
SYSPATH or USERPATH option. All previous
specifications of the conflicting options are ignored.

User Response: Use the correct syntax for specifying
the option

CBC1722 The name in option &1 is not valid. The
option is reset to &2.

Explanation: The name specified as a suboption of
the option is syntactically or semantically incorrect and
thus can not be used.

User Response: Make sure that the suboption
represents a valid name. For example, in option
LOCALE(localename), the suboption ’localename’ must
be a valid locale name which exists and can be used. If
not, the LOCALE option is reset to NOLOCALE.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 527

CBC1723 #pragma &1 is ignored because the
locale compiler option is not specified.
(where &1 pragma name)

Explanation: The locale compiler option is required for
#pragma &1

User Response: Remove all the #pragma &1
directives or specify the locale compiler option.

CBC1724 #pragma filetag is ignored because the
conversion table from &1 to &2 cannot
be opened. (where &1 locale name, &2
locale name.)

Explanation: During compilation, source code is
converted from the code set specified by #pragma
filetag to the code set specified by the locale compiler
option, if they are different. A conversion table form &1
to &2 must be loaded prior to the conversion. No
conversion is done when the conversion table is not
found.

User Response: Create the conversion table from &1
to &2 and ensure it is accessible from the compiler. If
message files are used in the application to read and
write data, a conversion table from &2 to &1 must also
be created to convert data from runtime locale to the
compile time locale.

CBC1725 Error messages are not converted
because the conversion table from &1
to &2 cannot be opened. (where &1
locale name, &2 locale name.)

Explanation: Error messages issued by C/370 are
written in code page 1047. These messages must be
converted to the code set specified by the locale
compiler option because they may contain variant
characters, such as #. Before doing the conversion, a
conversion table from &1 to &2 must be loaded. The
error messages are not converted because the
conversion table cannot be found.

User Response: Make sure the conversion table from
&1 to &2 is accessible from the compiler.

CBC1726 No conversion for character &1
because it does not belong to the input
code set &2. (where &1 a character, &2
locale name.)

Explanation: No conversion has be done for the
character because it does not belong to the input code
set.

User Response: Remove or change the character to
the appropriate character in the input code set.

CBC1727 Incomplete character or shift sequence
was encountered during the
conversion of the source line.

Explanation: Conversion stops because an
incomplete character or shift sequence was
encountered at the end of the source line.

User Response: Remove or complete the incomplete
character or shift sequence at the end of the source
line.

CBC1728 Only conversion tables that map single
byte characters to single byte
characters are supported.

Explanation: Compiler is expecting a single byte to
single byte character mapping during conversion.
Conversion stops when there is insufficient space in the
conversion buffer.

User Response: Make sure the conversion table
contains only single byte to single byte mappings.

CBC1729 Invalid conversion descriptor was
encountered during the conversion of
the source line.

Explanation: No conversion was performed because
conversion descriptor is not valid.

CBC1730 #pragma &1 must appear as the first
directive before any source code.
(where &1 pragma name.)

User Response: Place this #pragma as the first
directive before any code.

CBC1731 Function linkage differs from that of
overridden function ″&1″.

Explanation: The linkage of a virtual function must
agree with the linkage of base class member functions
that it overrides.

User Response: Change the linkage keyword to
agree with the base class method.

CBC1732 ″&1″ linkage cannot be specified for a
virtual function.

Explanation: Virtual functions may not have 16 bit or
Pascal linkage.

User Response: Remove or replace the linkage
modifier.

528 OS/390 V2R6.0 C/C++ User’s Guide

CBC1733 Unexpected end of line encountered.

Explanation: A statement on this line is incomplete.

User Response: Either finish the incomplete
statement or remove it.

CBC1737 The pathname of SYSPATH or
USERPATH compiler option specified
is longer than 44 characters. ″&1″
pathname is ignored.

Explanation: The pathname of the compiler options
SYSPATH or USERPATH must not be longer than 44
characters. (max member length).

User Response: Shorten the pathname.

CBC1738 The pathname of SYSPATH or
USERPATH compiler option specified
is invalid. ″&1″ pathname is ignored.

Explanation: The pathname of the compiler options
SYSPATH or USERPATH is invalid.

User Response: See the ″Users Guide″ for the
restrictions of valid pathname.

CBC1739 Attempting to pop an empty alignment
stack. Current alignment may change.

Explanation: Alignment stack is empty. New packing
value is set to either the alignment specified for this
pragma or the default alignment for this module.

User Response: Remove ’POP’ operation, or ensure
alignment stack has been set up correctly.

CBC1740 Identifier does not exist in the
alignment stack. Current alignment
may change.

Explanation: Identifier does not exist in alignment
stack. New Packing value is set to either the alignment
specified for the pragma or the default alignment for the
module.

User Response: Remove identifier, or ensure
alignment stack has been set up correctly.

CBC1742 Csect option is ignored due to naming
error.

Explanation: The compiler was unable to generate
valid csect names.

User Response: Use the #pragma csect to name the
code and static control sections.

CBC1743 The divisor for the division operator
cannot be zero.

User Response: Change the expression used in the
divisor.

CBC1744 The pragma is accepted by the
compiler. The pragma will have no
effect.

Explanation: The pragma is not supported by this
compiler.

User Response: Change or remove the #pragma
directive.

CBC1745 &1 should be a partitioned dataset or
HFS directory.

Explanation: A partitioned dataset or HFS directory is
expected.

User Response: Supply a partitioned dataset or HFS
directory.

CBC1748 ″&1″ was declared as ″&2″, but is now
declared as ″&3″. Export is assumed.
(where &1 is the name being declared
&2 is either _Import or _Export &3 is
the other one.)

Explanation: The declaration conflicts with a previous
declaration of the same name.

User Response: Change one of the names or
eliminate one of the declarations.

CBC1749 ″&1″ was previously declared as ″&2″,
but is now defined. Export is assumed.

Explanation: Defined symbols cannot be imported.
The compiler will assume that you want to export this
symbol rather than import it.

CBC1750 Suboptions ″&1″ and ″&2″ of option
″&3″ conflict. (where &3 is the option
name. &1 and &2 are the sub-option
names.)

User Response: Change the sub-option.

CBC1751 ″&1″ is not defined in this compilation
and cannot be used in pragma noinline
directive. (where &1 is a function name
and type.)

Explanation: Only functions defined in this compilation
can be used in pragma noinline directive.

User Response: Remove the pragma noinline directve
or define the function in this compilation unit.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 529

CBC1752 The physical size of an array is too
large.

Explanation: The compiler cannot handle any size
which is too large to be represented internally.

User Response: Reduce the size of the array.

CBC1753 The physical size of a struct or union
is too large.

Explanation: The compiler cannot handle any size
which is too large to be represented internally.

User Response: Reduce the size of the struct or
union members.

CBC1754 The static storage is too large.

Explanation: The compiler detected an static storage
declaration that has a constant greater than 16773104.

User Response: Change the storage size to an
integral constant expression less then or equal to
16773104.

CBC1755 #include searching for file &1.

Explanation: The preprocessor is searching for the
specified include file.

CBC1756 The ″&1″ qualifier is not supported on
the target platform.

Explanation: A qualifier has been specified on a
platform that does not support it.

User Response: Remove the qualifier.

CBC1757 The main function, ″&1″, cannot be
overloaded.

Explanation: The user attempted to declare or define
a function that overloads the name of the main function.

User Response: Change the name of the function
being declared or defined.

CBC1758 ″&1″ is an IDL keyword or type already
defined by <somobj.idl>.

Explanation: The user has defined a type name that
conflicts with an IDL keyword or type. Type definition is
ignored for IDL generation.

User Response: Rename or remove the type
definition.

CBC1759 The array bound is too large.

Explanation: The array bound should be a value less
than or equal to max int.

User Response: Reduce the number of elements in
the array.

CBC1760 ″&1″ was not specified in the previous
declaration of ″&2″. (where &1 is an
attribute. &2 is a name.)

Explanation: An attribute has been specified that
conflicts with the previous declaration of a name.

User Response: Remove the attribute.

CBC1761 Record truncated while writing to IDL
file.

Explanation: A record being written to the IDL file has
been truncated because the IDL file (DD:SYSUT15) has
a record length too short to hold the record being
written.

User Response: Redefine DD:SYSUT15 with a longer
record length.

CBC1762 Pragma ″&1″ is not supported on the
target platform. It is ignored.

Explanation: A pragma has been specified on a
platform that does not support it.

User Response: Remove the pragma.

CBC1763 Suboption ″&1″ for option ″&2″ is not
supported for C++ programs.
Suboptions is ignored. (where &1 is a
suboption &2 is an option)

Explanation: The command line has an option with a
suboption that is not supported in the C++ language.

User Response: Change/remove the suboption.

CBC1764 Compiler cannot create temporary
files.

Explanation: The intermediate code files could not be
created. Please verify that the target file system exists,
is writable and is not full.

User Response: Ensure that the designated location
for temporary objects exists, is writable and is not full.

CBC1765 Pragma import is not supported on the
target platform, the _Import keyword
should be used instead.

Explanation: #pragma import is not supported. The
_Import keyword should be used in the symbol
declaration.

530 OS/390 V2R6.0 C/C++ User’s Guide

User Response: Remove #pragma import and add
the _Import keyword to the symbol declaration.

CBC1766 Variable ″&1″ needs an explicit
″__thread ″ specifier if its initializer is
process dependent.

Explanation: This variable was assumed to be
sharable because it was declared ″const″, but it is
dynamically initialized. If that initialization may yield
different values in different processes, the variable
should be declared with the ″__thread″ specifier.

User Response: Add ″__thread″ to the declaration if
required.

CBC1767 The ″&1″ feature of OS/390 is not
enabled. Contact your system
programmer.

Explanation: This feature of OS/390 is not enabled at
your installation. Your system programmer can contact
IBM OS/390 service to have this element enabled. d

CBC1768 Compiling ″&1″.

Explanation: Informational message issued during
PDS or HFS directory compiles to indicate when the
compiler has started compiling the next member.

CBC1769 The path &1 does not exist. Please
create the directory and recompile.

Explanation: The path shown does not exist. The
compiler will only perform output to existing HFS
directories.

CBC1770 The name &1 is invalid. Please correct
and recompile.

Explanation: The name shown is invalid. Please
correct the name and retry.

CBC1771 The memory required for precompiled
header processing is not available.

Explanation: To generate (GENPCH) or use
(USEPCH) a precompiled header, a sufficiently large
and contiguous memory space must be available.
Additionally, to use a precompiled header (USEPCH),
the same memory address range that was obtained
when the precompiled header was generated must be
available. These conditions could not be satisfied and
precompiled header processing has been stopped.
Compilation will continue.

User Response: This situation can be caused by
either insufficient memory or the required memory
address range not being available.

CBC1772 The preprocessor macro ″&1″ was
expanded inside a pragma directive.

Explanation: A preprocessor macro was expanded
inside a pragma directive. Please ensure that this is the
desired result.

User Response: Please ensure that the macro is
intended for expansion.

CBC1773 The ″&1″ keyword is not supported on
the target platform.

Explanation: A keyword has been specified on a
platform that does not support it.

User Response: Remove the keyword.

CBC1774 The ″&1″ keyword is not supported on
the target platform.

Explanation: A keyword has been specified on a
platform that does not support it.

User Response: Remove the keyword.

CBC1775 ″&1″ must specify the name of a C++
class or struct that is not a template.
(where &1 is the SOM pragma
″#pragma SOMModule ″)

Explanation: The supplied name either does not
represent a C++ class or struct visible in the current
scope or represents a template class.

User Response: Ensure that you use the correct C++
class name.

CBC1776 Using ’*’ in ″&1″ is only valid within the
definition of a named C++ class or
struct which is not a template. (where
&1 is the SOM pragma ″#pragma
SOMModule ″)

Explanation: The pragma is specified outside of a
C++ class or struct definition, or the enclosing scope
does not represent a C++ class or struct that is not a
template.

User Response: Move the pragma inside the correct
class definition.

CBC1777 ″&1″ must not be specified for ″&2″.
(where &1 is the SOM pragma
″#pragma SOMModule ″ &2 is class
name.)

Explanation: The pragma can only be specified inside
a class definition.

User Response: Move the pragma inside the correct
class definition.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 531

CBC1778 SOM module class ″&1″ must not have
base classes and it must not be used
as a base class. (where &1 is class
name.)

Explanation: A SOM module class is mapped into an
IDL module. Since an IDL module denotes a scope for
its containing identifiers and is not a class, it must not
be used to build a class hierarchy.

User Response: Change the class to have no bases
and make sure that it has no derived classes.

CBC1779 SOM module class ″&1″ must contain
only nested types and classes. (where
&1 is class name.)

Explanation: A SOM module class is mapped into an
IDL module. An IDL module must not have member
functions, data members, or C++ friend declarations.

User Response: Correct the pragma or the class.

CBC1780 SOM module class ″&1″ must not be
imported or exported. (where &1 is
class name.)

Explanation: A SOM module class is mapped into an
IDL module. IDL modules are significant only in SOM
context. The ″_Import″ and ″_Export″ keywords do not
apply.

User Response: Remove the ″_Import″ or ″_Export″
keyword.

CBC1781 SOM module class ″&1″ must be
nested in another SOM module class
or defined at file scope. (where &1 is
class name.)

Explanation: A SOM module class is mapped into an
IDL module. An IDL module can only be nested inside
another IDL module or defined at file scope.

User Response: Correct the pragma or the nesting of
classes.

CBC1782 SOM module class ″&1″ must not be
used as a type. (where &1 is class
name.)

Explanation: A SOM module class is mapped into an
IDL module. Since an IDL module denotes a scope for
its containing identifiers and is not a class, it cannot be
used as a type.

User Response: Do not use the SOM module class
as a type.

CBC1783 SOM module class ″&1″ must not be
forward declared. (where &1 is class
name.)

Explanation: A SOM module class must not have
been previously forward declared.

User Response: Remove the forward declaration of
the SOM module class.

CBC1784 ″&1″ cannot derive from ″&2″ because
of conflicting object models. (where
″&1″ and ″&2″ are the class names.)

Explanation: A class is derived from another class
whose object model is not the same as the derived
class.

User Response: Change the object model of the base
or the derived class.

CBC1785 Suboption ″&1″ for option ″&2″ is not
supported on the target platform. The
option is ignored. (where ″&1″ is a
suboption ″&2″ is an option)

Explanation: The option has been specified with a
suboption that is not supported on the target platform.

User Response: change the suboption, or remove the
option.

CBC1786 Argument ″&1″ for pragma ″&2″ is not
supported on the target platform.
Pragma is ignored. (where ″&1″ is a
suboption ″&2″ is an option)

Explanation: The pragma has been specified with an
argument that is not supported on the target platform.

User Response: Remove the pragma or ignore this
message.

CBC1787 The ″%%″ and ″%%%%″ digraphs will
be obsolete in the next release of this
product. Please use ″%:″ and ″%:%:″
instead.

Explanation: The ″%%″ and ″%%%%″ digraphs will
not be supported in the next release. Please use the
new digraphs ″%:″ and ″%:%:″.

User Response: Replace the old digraphs with the
new digraphs.

CBC1788 Ambiguous reference to ″&1″, declared
in SOM base classes ″&2″ and ″&3″. In
C++ this is an error. (where &3 is a C++
class name)

Explanation: The derived SOM class made a
reference to a member that is declared in more than
one of its SOM base classes. SOM function call

532 OS/390 V2R6.0 C/C++ User’s Guide

mechanism will choose which function to invoke.

User Response: Change one of the names, or always
fully qualify the name.

CBC1789 The virtual functions ″&1″ and ″&2″ are
ambiguous since they override the
same function in virtual SOM base
class ″&3″. (where &1 is a function
name and type &2 is a function name
and type)

Explanation: The two functions are ambiguous. SOM
function call mechanism will choose which function to
invoke.

User Response: Remove one of the virtual functions.

CBC1790 Instances of SOM class ″&1″ will not
inherit more than one sub-object of
base class ″&2″. (where &2 is a C++
name.)

Explanation: All non virtual base classes of a SOM
class appear only once in the class hierarchy.

User Response: Make the base class a virtual base
class.

CBC1791 Options ″&1″ and ″&2″ are not
compatible. (where &1 and &2 are both
option names.)

Explanation: The specified options cannot be used
together.

User Response: Change option values.

CBC1792 Timestamp information is not available
for #include ″&1″. (where &1 is the
name of an include file from the
#include directive.)

Explanation: Precompiled header processing requires
that include files have timestamp information.
Partitioned datasets can have timestamps although not
all commands and utilities will create or maintain
timestamps. The EDIT command can be used to add
timestamp information to partitioned dataset members
which do have timestamps. Sequential datasets do not
have timestamps and should not be used for include
files when GENPCH or USEPCH options are specified.
When the GENPCH option is specified the timestamp
information of include files is stored in the generated
precompiled header. When the USEPCH option is
specified the stored timestamps are used to determine if
any include files have been modified since the
precompiled header was generated.

User Response: Avoid using sequential datasets for
include files and ensure partitioned dataset members
have timestamp information.

CBC1793 Compilation failed for file &1. Object
file not created. (where &1 is a file
name)

Explanation: The compiler detected an error and
terminated the compilation. Object file was not created.

User Response: Correct the reported errors and
recompile.

CBC1794 The external name &1 must not conflict
with the name in #pragma csect or the
csect name generated by the compiler.

Explanation: A external name is the same as the
name defined in a pragma csect or the csect name
generated by the compiler.

User Response: Change either the external name or
the csect name.

CBC1795 Unable to open existing dataset &1.
(where &1 is a dataset name.)

Explanation: Although the dataset exists, the compiler
was unable to open and/or obtain file information about
it.

User Response: Check the informational messages
issued with this message and correct the corresponding
problems associated with the dataset.

CBC1796 This compiler requires a runtime
environment __librel() value of &1.
(where &1 is the required runtime level
in the __librel() format.)

Explanation: The compiler cannot run with the current
runtime environment because it needs the runtime
release indicated.

User Response: Check the informational message
issued with this message to determine your current
runtime release. Make sure you are running with the
runtime environment required.

CBC1797 You are currently running with the
runtime environment &1. (where &1 is
the current runtime level in the
__librel() format.)

Explanation: The message displays the current
runtime level installed on your system.

User Response: None.

CBC1798 There is more than one #pragma csect
statement.

Explanation: A duplicate #pragma csect is ignored.

User Response: Remove the duplicate #pragma csect
statement.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 533

CBC1799 An error occurred when attempting to
open the &1 file &2. (where &2 a file
name.)

Explanation: The compiler received an error when
attempting to open a file to support the indicated option.
No information will be output to this file.

User Response: Correct the problem and compile
again.

CBC1800 #&1 directive has no effect. (where &1
a preprocessor directive.)

Explanation: A preprocessor directive has been
specified that has no effect.

User Response: Remove the preproccessor directive.

CBC1801 Attempting to pop an empty enum
stack. Pragma is ignored.

Explanation: Enum stack is empty. Size of enum is
set to default value.

User Response: Remove ’pop’ or ’reset’ operation, or
ensure enum stack has been set up correctly.

CBC1810 The suboption specified for the ″&1″
option is not allowed when the ″&2″
option is specified. (where &1 and &2
are option names)

Explanation: The suboption specified in the first
option conflicts with the second option. The first option
is ignored.

User Response: Correct the conflicting option or
suboption.

CBC1811 64-bit portability: possible loss of
digits through conversion of long type
into int type.

Explanation: A long type is assigned into an int type
which may cause truncation in 64-bit mode.

User Response: Check the possible value ranges of
the long type or change the assignment from an int to a
long type.

CBC1812 64-bit portability: possible change of
result through conversion of int type
into long type.

Explanation: An int type is assigned into a long type
which may cause unexpected results in 64-bit mode.

User Response: Check for possible sign extension of
int type into long type.

CBC1813 64-bit portability: possible truncation
of pointer through conversion of
pointer type into int type.

Explanation: A pointer type is assigned into an int
type leading to loss of the high-order bytes of the
pointer in 64-bit mode.

User Response: Use a long type to hold a pointer
type.

CBC1814 64-bit portability: possible incorrect
pointer through conversion of int type
into pointer.

Explanation: An int type is assigned into a pointer
type leading to a possibly invalid address in 64-bit
mode.

User Response: Use a long type to hold the address.

CBC1815 64-bit portability: possible change of
constant value through conversion into
long type.

Explanation: A constant is assigned into long type
leading to possible change of value in 64-bit mode.

User Response: Check the possible value ranges of
the constant when stored in a long type.

CBC1816 64-bit portability: constant which
selected unsigned long int in 32-bit
mode may select long int in 64-bit
mode.

Explanation: A constant selected unsigned long int in
32-bit mode may fit a long int in 64-bit mode.

User Response: Check use of constant for possible
change in usual arithmetic conversion rule as it
propagates through expressions.

CBC1817 64-bit portability: constant which will
overflow in 32-bit mode may select
unsigned long int or long int in 64-bit
mode.

Explanation: A constant is larger than UINT_MAX but
smaller than ULONGLONG_MAX will overflow in 32-bit
mode, but be acceptable in an unsigned long or signed
long in 64-bit mode.

User Response: Make sure you intend this constant
to be acceptable in 64-bit mode.

CBC1818 Incompatible specifications for options
-qarch and -q&1 (or environment
variable OBJECT_MODE)

Explanation: The values specified for the -qarch and
the -q32/64 options (or OBJECT MODE) are not
compatible.

534 OS/390 V2R6.0 C/C++ User’s Guide

User Response: Change option values.

CBC1819 Incompatible specifications for options
-qtune and -q&1 (or environment
variable OBJECT_MODE)

Explanation: The values specified for the -qtune and
the -q32/64 options (or OBJECT MODE) are not
compatible.

User Response: Change option values.

CBC1820 Invalid syntax for pragma ″&1″, ″&2″
assumed.

Explanation: The compiler encountered a pragma with
invalid syntax. The message identifies the compiler’s
recovery action.

User Response: Correct or remove the pragma.

CBC1821 64 bit code generation is not
supported.

Explanation: The C++ compiler does not support
generation of 64 bit code.

User Response: Remove the -q64 option from the
command line.

CBC1822 Option &1 is locked and cannot be
changed.

Explanation: The option has been locked during
system installation. The option settings cannot be
changed.

User Response: Remove the option from the
command line, or ask the system programmer to unlock
the option.

CBC1823 Lock suboption &1 is not supported.

Explanation: The lock suboption specified is not
supported and is ignored.

User Response: The suboption to the lock option
must itself be a valid option. The lock option is set
during compiler installation. Check with the system
programmer.

CBC1824 The dynamic_cast operator is not
supported.

Explanation: The dynamic_cast operator is not
supported in this version of the C++ compiler. The
dynamic_cast operation is ignored.

User Response: Change the program to remove all
uses of or dependencies upon the dynamic_cast
operator.

CBC1825 The parameter type &1 is not valid for
a function of this linkage type.

Explanation: Long long integers are not valid for
COBOL and PLI linkage types.

User Response: Update the parameter to a type that
may be used by this linkage type.

CBC1826 The enum is too large to fit into the
requested type &1.

Explanation: The enum type is too large to fit in the
storage requested with the qenum option.

User Response: Try using a different qenum setting.

CBC1827 Invalid syntax for pragma ″&1″, pragma
ignored.

Explanation: The compiler encountered a pragma with
invalid syntax. The pragma is ignored.

User Response: Correct or remove the pragma.

CBC1828 Long type bitfields may change
behaviour in future 64-bit mode. Long
type bitfields currently default to int.

Explanation: Long type bit fields are not currently
supported in 64-bit mode. Future ABI may change.

User Response: Make sure that the bitfield is not
larger than the length of an integer.

CBC3001 INTERNAL COMPILER ERROR:
Procedure &1.

Explanation: An internal compiler error occurred
during compilation.

User Response: Contact your VisualAge for C++
Service Representative.

CBC3002 COMPILER ERROR: Unimplemented
feature: &1.

Explanation: An error occurred during compilation.

User Response: See the C/C++ Language Reference
for a description of supported features.

CBC3003 Width of a bit field of type ″&1″ cannot
exceed &2.

Explanation: The length of the bit field must not
exceed the maximum bit size of the bit field’s type.

User Response: Define the bit-field length to be less
than or equal to the maximum bit size of the bit-field
type.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 535

CBC3004 #pragma must appear before use of
identifier &1. #pragma ignored.

Explanation: The identifier is modified by the #pragma
after the #pragma is seen.

User Response: Move the #pragma so that it appears
before the identifier is used.

CBC3006 Label &1 is undefined.

Explanation: A label must be visible in the current
function scope if it is used in an expression.

User Response: Declare a label of that name in the
current function scope.

CBC3007 ″&1″ is undefined.

Explanation: A C identifier must be declared before it
is used in an expression.

User Response: Declare an identifier of that name in
the current scope or in a higher scope.

CBC3008 The argument is not valid for the
#pragma directive.

Explanation: #pragma does not recognize the
argument.

User Response: Remove the argument or change its
format.

CBC3009 Bit-field &1 must be of type signed int,
unsigned int or int.

Explanation: The type of the bit-field is not a signed
int, unsigned int nor an int.

User Response: Define the bit-field with a type signed
int or unsigned int.

CBC3010 Macro &1 invoked with a null argument
for parameter &2.

Explanation: No argument was specified for
parameter.

User Response: Specify arguments for all macro
parameters.

CBC3012 Operand of bitwise complement must
be an integral type.

Explanation: The operand of the bitwise complement
operator does not have an integral type. Valid integral
types include: signed and unsigned char; signed and
unsigned short, long, and int; and enum.

User Response: Change the type of the operand, or
use a different operand.

CBC3013 Operand of unary + or - operator must
be an arithmetic type.

Explanation: The operand of the unary + or - operator
does not have an arithmetic type. Valid arithmetic types
include: signed and unsigned char; signed and
unsigned short, long, and int; enum, float, double, and
long double.

User Response: Change the type of the operand, or
use a different operand.

CBC3014 Operand of logical negation must be a
scalar type.

Explanation: The operand of the logical negation
operator (!) does not have a scalar type. Valid scalar
types include: signed and unsigned char; signed and
unsigned short, long, and int; enum, float, double, long
double, and pointers.

User Response: Change the type of the operand, or
use a different operand.

CBC3017 Operand of address operator must be
an lvalue or function designator.

Explanation: The operand of the address operator
(unary &) is not valid. The operand must be either a
function designator or an lvalue that designates an
object that is not a bit-field and is not declared with
register storage class.

User Response: Change the operand.

CBC3018 Operand of indirection operator must
be a pointer expression.

Explanation: The operand of the indirection operator
(unary *) is not a pointer.

User Response: Change the operand to a pointer.

CBC3019 Expecting an array or a pointer to
object type.

Explanation: Index operator ([]) operates only on
arrays or pointer to objects.

User Response: Change the operand.

CBC3020 Expression must be an integral type.

Explanation: The expression does not evaluate to an
integral type. Valid integral types include: signed,
unsigned and plain char, signed and unsigned short, int,
long, and enum.

User Response: Change the type of the operand.

536 OS/390 V2R6.0 C/C++ User’s Guide

CBC3021 Expecting struct or union.

Explanation: The left hand operand of the dot
operator (.) must have a struct or union type.

User Response: Change the operand.

CBC3022 ″&1″ is not a member of ″&2″.

Explanation: The specified member does not belong
to the structure or union given. One of the following has
occurred:

1. The right hand operand of the dot (.) operator is not
a member of the structure or union specified on the
left hand side of the operator.

2. The right hand operand of the arrow (->) operator is
not a member of the structure or union pointed to by
the pointer on the left hand side of the operator.

User Response: Change the identifier.

CBC3023 Expecting function or pointer to
function.

Explanation: The expression is followed by an
argument list but does not evaluate to a function
designator.

User Response: Change the expression to be a
function or a pointer to a function.

CBC3025 Operand must be a modifiable lvalue.

Explanation: A modifiable lvalue is an expression
representing an object that can be changed.

User Response: Change the operand.

CBC3026 Number of initializers cannot be
greater than the number of aggregate
members.

Explanation: Too many initializers were found in the
initializer list for the indicated declaration.

User Response: Check the number of initializers and
change it to correspond to the number of declared
members. Make sure the closing brace at the end of the
initializer list is positioned correctly.

CBC3027 Function &1 cannot be initialized.

Explanation: An attempt was made to assign an initial
value to a function identifier. You can not assign a value
to a function identifier.

User Response: Remove the assignment operator
and the initializer.

CBC3028 Storage class ″&1″ cannot be used
with external data.

Explanation: The storage class is not appropriate for
this declaration. Restrictions include: 1) Storage class
specifier not allowed on aggregate members, casts,
sizeof or offsetof declarations. 2) Declarations at file
scope cannot have ’register’ or ’auto’ storage class.

User Response: Specify a different storage class.

CBC3029 #pragma ignored, identifiers are
already disjoint.

Explanation: The identifiers that are specified in the
pragma are already known to be disjoint so the pragma
is ignored.

User Response: Nothing, or remove the pragma as it
is redundant.

CBC3030 Identifier &1 cannot be redeclared.

Explanation: The identifier has already been declared.

User Response: Remove one of the declarations.

CBC3031 All dimensions except the first must be
specified for a multi-dimensional array.

Explanation: Only the first dimension of an initialized
array can be unspecified. All the other dimensions must
be specified on the declaration.

User Response: Specify all the other dimensions in
the array declaration.

CBC3032 Elements of an array cannot be
functions.

Explanation: An array must be composed of elements
that are an object type. Functions are not object types
and thus cannot be elements of an array.

User Response: Use a pointer to the function, or
change the type of the element.

CBC3033 Function &1 is not valid. Function
cannot return a function.

Explanation: A function cannot have a return type of
function.

User Response: Return a pointer to the function or
specify a different return type.

CBC3034 Function &1 is not valid. Function
cannot return an array.

Explanation: A function cannot return an array and
the specified return type of the function is an array.

User Response: Return a pointer to the array or
specify a different return type.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 537

CBC3035 Storage class ″&1″ cannot be used
with functions.

Explanation: A function can only have a storage class
of extern or static.

User Response: Remove the storage class specifier
for the function identifier, or change it to either extern or
static.

CBC3036 Range error.

Explanation: The value is outside of the valid range.

User Response: Change value to be within the
required limits.

CBC3037 Member of struct or union cannot be a
function.

Explanation: Members of structs or unions must have
object type. Functions do not have object type and
cannot be members of a struct or union.

User Response: Use a pointer to the function or
remove the function from the member list.

CBC3039 Expecting a parameter after # operator.

Explanation: The # preprocessor operator can only be
applied to a macro parameter.

User Response: Place a parameter after the # token,
or remove the token.

CBC3041 The invocation of macro &1 contains
fewer arguments than required by the
macro definition.

Explanation: The number of arguments supplied to
the macro must match the number of parameters in the
macro definition. There are not enough arguments
supplied.

User Response: Complete the specification of the
macro argument list.

CBC3043 The operand of the sizeof operator is
not valid.

Explanation: Sizeof operator cannot be used with
functions, void types, bit fields, incomplete types, or
arrays of unknown size. The sizeof operator cannot be
applied to an expression that has a function type or an
incomplete type, to the parenthesized name of such a
type, or to an lvalue that designates a bit-field object.

User Response: Change the operand.

CBC3044 Expression must be a non-negative
integer constant.

Explanation: The supplied expression must evaluate
to a non-negative integer constant.

User Response: Change the constant expression to
yield a non-negative value.

CBC3045 Undeclared identifier &1.

Explanation: You must declare a C identifier before
you use it in an expression.

User Response: Declare an identifier of that name in
the current scope or in a higher scope.

CBC3046 Syntax error.

Explanation: See the C/C++ Language Reference for
a complete description of C syntax rules.

User Response: Correct the syntax error and compile
again.

CBC3047 Incorrect hexadecimal escape
sequence \x. \ ignored.

Explanation: \x is used to indicate an hexadecimal
escape sequence but the sequence immediately
following is not a valid hexadecimal number.

User Response: Change the sequence to a valid
hexadecimal number.

CBC3048 Unable to initialize source conversion
from codepage &1 to codepage &2.

Explanation: An error occurred when attempting to
convert source between the codepages specified.

User Response: Ensure the codepages are correct
and that conversion between these codepages is
supported.

CBC3049 The object &1 has a size &2 which
exceeds the compiler limit &3.

Explanation: The size of the object is too large for the
compiler to represent internally.

User Response: Reduce the size of the object.

CBC3050 Return type ″&1″ in redeclaration is not
compatible with the previous return
type ″&2″.

Explanation: The second declaration of the function
declares a different return type from the first. The
declaration must be identical. When you redeclare a
function, the return type and parameter types must be
the same in both declarations.

User Response: Change the declaration of one or

538 OS/390 V2R6.0 C/C++ User’s Guide

both functions so that their return types are compatible.

CBC3051 Case expression must be a valid
integral constant.

Explanation: The expression in the case statement
must be a constant integral expression. Valid integral
expressions are: char, signed and unsigned int, and
enum.

User Response: Change the expression.

CBC3052 Duplicate case label for value &1.
Labels must be unique.

Explanation: Two case labels in the same switch
statement cannot evaluate to the same integer value.

User Response: Change one of the labels.

CBC3053 Default label cannot be placed outside
a switch statement.

Explanation: A statement is labeled with default,
which can only be used as a statement label within a
switch statement.

User Response: Remove the default case label, or
place it inside a switch statement. Check for misplaced
braces on a previous switch statement.

CBC3054 Switch statement cannot contain more
than one default label.

Explanation: Only one default label is allowed within a
switch statement. Nested switch statements may each
have one default label. This error may have been
caused by a default label that is not properly placed
within a nested switch statement.

User Response: Remove one of the default labels or
check for misplaced braces on nested switch
statements..

CBC3055 Case label cannot be placed outside a
switch statement.

Explanation: Case labels are only allowed within a
switch statement.

User Response: Remove the case label, or place it
within a switch statement group. Check for misplaced
braces on the previous switch statement.

CBC3056 Break statement cannot be placed
outside a while, do, for, or switch
statement.

User Response: Remove the break statement or
place it inside a while, do, for or switch statement.
Check for misplaced braces on a previous statement.

CBC3057 Continue cannot be placed outside a
while, do, or for statement.

Explanation: Continue is only valid as, or within, a
loop body.

User Response: Remove the continue statement or
place it inside a while, do or for loop. Check for
misplaced braces on a previous loop.

CBC3058 Label &1 has already been defined on
line &2 of ″&3″.

Explanation: You already used the label to identify a
section of code in the file indicated. You cannot redefine
a label.

User Response: Change the name of one of the
labels.

CBC3059 Comment that started on line &1 must
end before the end of file.

Explanation: A comment that was not terminated has
been detected. The comment started on the line
indicated.

User Response: End the comment before the file
ends.

CBC3062 Escape sequence &1 is out of the
range 0-&2. Value is truncated.

Explanation: Character constants specified in an
escape sequence exceeded the decimal value of 255,
or the octal equivalent of 377, or the hexadecimal
equivalent of FF.

User Response: Change the escape sequence so
that the value does not exceed the maximum value.

CBC3067 A struct or union can only be assigned
to a compatible type.

Explanation: The assignment is invalid between the
given aggregate types.

User Response: Change the operands so that they
have the same type.

CBC3068 Operation between types ″&1″ and ″&2″
is not allowed.

Explanation: The operation specified is not valid
between the operands having the given types.

User Response: Either change the operator or the
operands.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 539

CBC3070 Register is the only storage class that
can be used with parameters.

User Response: Remove the storage class specified
in the parameter declaration or use the register storage
class.

CBC3073 Empty character constant.

Explanation: An empty character constant is not valid.
There must be at least one character between the
single quotation marks.

User Response: Put at least one character inside the
pair of single quotation marks.

CBC3076 Character constant &1 has more than
one character. No more than rightmost
4 characters are used.

Explanation: A character constant can only have up to
four bytes.

User Response: Change the character constant to
contain four bytes or less.

CBC3077 The wchar_t value &1 is not valid.

Explanation: The value is not a valid wchar_t value.
See the C/C++ Language Reference for information on
wide characters.

User Response: Change character to a valid wchar_t.
See the C/C++ Language Reference for information
about the wchar_t type.

CBC3078 #&1 directive has no effect.

Explanation: A preprocessor directive has been
specified that has no effect.

User Response: Remove the preproccessor directive.

CBC3085 Predefined macro &1 cannot be
undefined.

Explanation: The macro is predefined. You cannot
undefine predefined macros.

User Response: Remove the statement that
undefines the macro.

CBC3095 Unexpected parameter &1.

Explanation: A parameter was declared in the
parameter declaration list of the K&R function definition.
The parameter did not appear in the parameter identifier
list. It is also possible that the K&R function definition
had more parameters than the function prototype.

User Response: Change the number of parameters.

CBC3098 Missing argument(s).

Explanation: The function call contains fewer
arguments than specified in the parameter list of the
function prototype.

User Response: Make sure the function call has the
same number of arguments as the function prototype
has parameters.

CBC3099 Unexpected argument.

Explanation: The function call contains more
arguments than specified in the parameter list of the
function prototype.

User Response: Change the number of arguments in
the function call or change the function prototype.

CBC3103 Tag &1 requires a complete definition
before it is used.

Explanation: Only pointer declarations can include
incomplete types. A struct or union tag is undefined if
the list describing the name and type of its members
has not been specified.

User Response: Define the tag before it is used in the
declaration of an identifier or complete the declaration.

CBC3104 The value of an enumeration constant
must be an integral constant
expression.

Explanation: If an enum constant is initialized in the
definition of an enum tag, the initial value of the
constant must be an integral expression that has a
value representable as an int.

User Response: Remove the initial value, or ensure
that the initial value is an integral constant expression
with a value representable as an int.

CBC3108 Bit fields with zero width must be
unnamed bit fields.

Explanation: A named bit field must have a positive
length; a zero length bit field is used for alignment only
and must not be named.

User Response: Redefine the bit field with a length
greater than zero or remove the name of the bit-field.

CBC3112 Duplicate type qualifier ″&1″ ignored.

Explanation: The indicated qualifier appears more
than once in the type declaration.

User Response: Remove one of the duplicate
qualifiers.

540 OS/390 V2R6.0 C/C++ User’s Guide

CBC3115 Duplicate type specifier ″&1″ ignored.

Explanation: A duplicate type specifier appears in the
type declaration.

User Response: Remove one of the duplicate type
specifiers.

CBC3117 Operand must be a scalar type.

Explanation: Valid scalar types include: signed and
unsigned char; signed and unsigned short, long, and int;
enum, float, double, long double, and pointers.

User Response: Change the type of the operand, or
use a different operator.

CBC3119 Duplicate storage class specifier &1
ignored.

Explanation: A duplicate storage class specifier
appears in the declaration.

User Response: Remove one of the duplicate storage
class specifiers.

CBC3120 Function cannot return a &1 qualified
type.

Explanation: The const or volatile qualifier cannot be
used to qualify a function’s return type.

User Response: Remove the qualifier or return a
pointer to the qualified type.

CBC3122 Expecting pointer to struct or union.

Explanation: The left hand operand of the arrow
operator (->) must have type pointer to structure or
pointer to union.

User Response: Change the operand.

CBC3127 The second and third operands of the
conditional operator must have
compatible struct or union types.

Explanation: If one operand in the conditional
expression has type struct or union, the other operand
must also have type struct or union.

User Response: Make the operands compatible.

CBC3131 Explicit dimension specification or
initializer required for an auto or static
array.

Explanation: For arrays of automatic or static storage
class, all dimensions of the array must be specified in
the declaration. If the declaration provides an
initialization, the first dimensions may be unspecified
because the initialization will determine the size needed.

User Response: Specify all of the dimensions in the
array declaration.

CBC3134 Array bound is too large.

Explanation: The size of the array is too large for the
compiler to represent internally.

User Response: Reduce the size of the array.

CBC3137 Declaration must declare at least one
declarator, tag, or the members of an
enumeration.

Explanation: The declaration specifier was the only
component of the declaration. eg. int ;

User Response: Specify at least one declarator, tag,
or member of an enumeration.

CBC3152 A register array may only be used as
the operand to sizeof.

Explanation: The only operator that can be applied to
an array declared with storage class specifier register is
sizeof.

User Response: Remove the operation or remove the
register storage class specifier.

CBC3155 Option &1 requires suboption(s).

Explanation: The option is not completely specified; a
suboption is required.

User Response: Add a suboption.

CBC3159 Bit-field type specified for &1 is not
valid. Type &2 assumed.

Explanation: The type of a bit-field must be a
(possibly qualified) version of int, signed int or unsigned
int.

User Response: Define the bit-field with a type signed
int or unsigned int.

CBC3160 Object &1 cannot be declared as type
void.

Explanation: The type void can only be used as the
return type or parameter list of a function, or with a
pointer. No other object can be of type void.

User Response: Ensure that the declaration uses type
void correctly.

CBC3162 No definition was found for function
&1. Storage class changed to extern.

Explanation: A static function was declared and
referenced in this file. The definition of the function was
not found before the end of the file. When a function is

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 541

declared to be static, the function definition must appear
in the same file.

User Response: Change the storage class to extern
or provide a function definition in this file.

CBC3164 Expression must be a scalar type.

Explanation: Valid scalar types include: signed and
unsigned char; signed and unsigned short, long, and int;
enum, float, double, long double, and pointers.

User Response: Change the expression.

CBC3166 Definition of function &1 requires
parentheses.

Explanation: The syntax of the declaration is not
correct. The compiler assumes it is the declaration of a
function in which the parentheses surrounding the
parameters are missing.

User Response: Check the syntax of the declaration.
Ensure the object name and type are properly specified.
Check for incorrect spelling or missing parentheses.

CBC3167 String literal is longer than target array.
Literal is truncated on the right.

Explanation: An attempt was made to initialize an
array with a string that is too long. The largest possible
prefix of the string has been placed in the array.

User Response: Increase the size of the array. Make
sure you include space for the terminating null
character.

CBC3168 Initializer must be enclosed in braces.

Explanation: The initializer list for a declarator must
be enclosed in braces.

User Response: Check for misplaced or missing
braces.

CBC3169 Too many suboptions specified for
option FLAG. Specify only two
suboptions.

Explanation: The FLAG option takes two suboptions
separated by ’:’. The suboptions indicate the level of
errors to be reported in the source listing and in stderr.

User Response: Only specify two suboptions to the
FLAG option.

CBC3170 Parameter &1 has already been defined
on line &2 of ″&3″.

Explanation: A parameter can only be defined once
but more than one definition for the parameter has been
specified. Parameters names must be unique.

User Response: Remove one of the parameter

declarations or change the name of the identifier.

CBC3172 Parameter type list for function &1
contains parameters without
identifiers.

Explanation: In a C function definition, all parameters
must be named in the parameter list. The only
exceptions are parameters of type void.

User Response: Name the parameter or remove it.

CBC3173 Option &1 is not recognized.

Explanation: An invalid option was specified.

User Response: Correct the spelling of the option.

CBC3174 Option &1 must be specified on the
command line.

Explanation: The option can only be specified on the
command line and is not valid as part of an options
pragma.

User Response: Specify option on command line.

CBC3175 Option &1 must be specified on the
command line or before the first C
statement in the program.

Explanation: The option is specified in a pragma
options after the first C token in the compilation unit. It
must be specified before the first token.

User Response: Specify the option on the command
line or move the pragma options before the first token.

CBC3176 Option &1 cannot take more than one
suboption.

Explanation: More than one suboption was specified
for an option that can only accept one suboption.

User Response: Remove the extra suboptions.

CBC3177 Type combination is not valid.

CBC3178 Unexpected argument for built-in
function &1.

Explanation: The function call contains more
arguments than specified in the parameter list of the
built-in function.

User Response: Change the number of arguments in
the function call.

542 OS/390 V2R6.0 C/C++ User’s Guide

CBC3180 Redeclaration of built-in function &1
ignored.

Explanation: Built-in functions are declared by the
compiler and cannot be redeclared.

User Response: Remove the declaration.

CBC3181 Definition of built-in function &1
ignored.

Explanation: Built-in functions are defined by the
compiler and cannot be redefined.

User Response: Remove the function definition.

CBC3182 Arguments missing for built-in function
&1.

Explanation: The function call contains fewer
arguments than specified in the parameter list of the
built-in function.

User Response: Change the number of arguments in
the function call.

CBC3183 Builtin function &1 cannot change a
read-only string literal.

Explanation: Read-only strings cannot be modified.

User Response: Modify a copy of the string or change
the string’s read-only status.

CBC3184 Too few suboptions specified for
option FLAG. Specify two suboptions.

Explanation: The FLAG option takes two suboptions
separated by ’:’. The suboptions indicate the level of
errors to be reported in the source listing and in stderr.

User Response: Specify two suboptions to the FLAG
option.

CBC3185 #line number &1 must be greater than
zero.

Explanation: The #line directive tells the compiler to
treat the following source lines as starting from the
specified line. This number must be a non-negative
offset from the beginning of the file.

User Response: Change line number to a
non-negative integer.

CBC3186 String literal must be ended before the
end of line.

Explanation: String literals must end before the end of
the line. To create a string literal longer than one line,
use the line continuation sequence (a backslash (\) at
the end of the line), or concatenate adjacent string
literal.

User Response: End the string with a quotation mark
before the end of the line or use the continuation
sequence.

CBC3188 Reserved name &1 cannot be defined
as a macro name.

Explanation: The name is reserved for the compiler’s
use.

User Response: Choose another name.

CBC3189 Floating point constant &1 is not valid.

Explanation: See the C/C++ Language Reference for
a description of a floating-point constant.

User Response: Ensure that the floating-point
constant does not contain any characters that are not
valid.

CBC3190 Automatic constant &1 does not have
a value. Zero is being assumed.

Explanation: Const qualified variable declarations
should contain an initializer. Otherwise you cannot
assign the variable a value.

User Response: Initialize the const variable when you
declare it.

CBC3191 The character &1 is not a valid C
source character.

Explanation: Refer to the C/C++ Language Reference
for information on valid characters.

User Response: Change the character.

CBC3192 Cannot take address of built-in
function &1.

Explanation: You cannot take the address of a built-in
function or declare a pointer to a built-in function.

User Response: Remove the operation that takes the
address of the built-in function.

CBC3193 The size of this type is zero.

Explanation: You cannot take the address of an array
of size zero.

User Response: Remove the operation that takes the
address of the zero-sized array.

CBC3194 Incomplete type is not allowed.

Explanation: Except for pointers, you cannot declare
an object of incomplete type.

User Response: Complete the type declaration.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 543

CBC3195 Integral constant expression with a
value greater than zero is required.

Explanation: The size of an array must be an
expression that evaluates to a compile-time integer
constant that is larger than zero.

User Response: Change the expression.

CBC3196 Initialization between types ″&1″ and
″&2″ is not allowed.

Explanation: An attempt was made to initialize a
variable with an incompatible type.

User Response: Ensure types are compatible.

CBC3197 Expecting header file name in #include
directive.

Explanation: There was no header filename after the
#include directive.

User Response: Specify the header file name.
Enclose system header names in angle brackets and
user header names in double quotes.

CBC3198 #if, #else, #elif, #ifdef, #ifndef block
must be ended with #endif.

Explanation: Every #if, #ifdef, and #ifndef must have
a corresponding #endif.

User Response: End the conditional preprocessor
statements with a #endif.

CBC3199 #&1 directive requires a macro name.

Explanation: There must be a macro name after
every #define, #undef, #ifdef or #ifndef.

User Response: Ensure that a macro name follows
the #define, #undef, #ifdef, or #ifndef preprocessor
directive.

CBC3200 #elif can only appear within a #if, #elif,
#ifdef, or #ifndef block.

Explanation: #elif is only valid within a conditional
preprocessor block.

User Response: Remove the #elif statement, or place
it within a conditional preprocessor block.

CBC3201 #else can only appear within a #if,
#elif, #ifdef or #ifndef block.

Explanation: #else is only valid within a conditional
preprocessor block.

User Response: Remove the #else statement, or
place it within a conditional preprocessor block.

CBC3202 #endif can only appear at the end of a
#if, #elif, #ifdef or #ifndef block.

Explanation: Every #endif must have a corresponding
#if, #ifdef, or #ifndef.

User Response: Remove the #endif statement, or
place it after a conditional preprocessor block.

CBC3204 Unexpected end of file.

Explanation: The end of the source file has been
encountered prematurely.

User Response: Check for misplaced braces.

CBC3205 &1

Explanation: The #error directive was encountered.
Compilation terminated.

User Response: Recompile with correct macro
definitions.

CBC3206 Suffix of integer constant &1 is not
valid.

Explanation: Valid integer suffixes are u or U for
unsigned, or l or L for long. Unsuffixed constants are
given the smallest data type that can hold the value.
Refer to the C/C++ Language Reference.

User Response: Change or remove the suffix.

CBC3207 Integer constant &1 out of range.

Explanation: The specified constant is too large to be
represented by an unsigned long int.

User Response: The constant integer must have a
value less than UINT_MAX defined in <limits.h>.

CBC3208 Compilation ended due to an I/O error.

Explanation: A file read or write error occurred.

User Response: Ensure that you have read access to
all source files, and read and write access to the TMP
directory. You also need write access to the object
output directory.

CBC3209 Character constants must end before
the end of a line.

Explanation: Character literals must be terminated
before the end of the line.

User Response: End the character literal before the
end of the line. Check for misplaced quotation marks.

544 OS/390 V2R6.0 C/C++ User’s Guide

CBC3210 The ## operator requires two
operands.

Explanation: The ## operator must be preceded and
followed by valid tokens in the macro replacement list.
Refer to the C/C++ Language Reference for information
on the ## operator.

User Response: Provide both operands for the ##
operator.

CBC3211 Parameter list must be empty, or
consist of one or more identifiers
separated by commas.

Explanation: The macro parameter list must be
empty, contain a single identifier, or contain a list of
identifiers separated by commas.

User Response: Correct the parameter list.

CBC3212 Duplicate parameter &2 in definition of
macro &1.

Explanation: The identifiers in the macro parameter
list must be unique.

User Response: Change the identifier name in the
parameter list.

CBC3213 Macro name &1 cannot be redefined.

Explanation: You can define a macro multiple times
only if the definitions are identical except for white
space separating the tokens.

User Response: Change the macro definition to be
identical to the preceding one, or remove it.

CBC3215 Too many arguments specified for
macro &1.

Explanation: The number of arguments specified in
the macro invocation is different from the number of
parameters specified in the macro definition.

User Response: Make the number of arguments
consistent with the macro definition.

CBC3218 Unknown preprocessing directive #&1.

Explanation: An unrecognized preprocessing directive
has been encountered.

User Response: Check the spelling and syntax or
remove the directive.

CBC3219 #line value &1 too large.

Explanation: The value for a #line directive must not
exceed 32767.

User Response: Ensure that the #line value does not
exceed 32767.

CBC3220 #line value &1 must contain only
decimal digits.

Explanation: A non-numeric character was
encountered in the #line value.

User Response: Check the syntax of the value given.

CBC3221 Initializer must be a valid constant
expression.

Explanation: The initializers for objects of static
storage duration, for elements of an array, or for
members of a structure or union must be valid constant
expressions.

User Response: Remove the initialization or change
the indicated initializer to a valid constant expression.

CBC3224 Incorrect #pragma ignored.

Explanation: An unrecognized #pragma directive was
encountered. See the C/C++ Language Reference for
the list of valid #pragma directives.

User Response: Change or remove the #pragma
directive.

CBC3225 Error reading file &1. (&2)

User Response: Ensure that the file exists and that
the compiler can access it.

CBC3226 The ″:″ operator is not allowed
between ″&1″ and ″&2″.

Explanation: The operands must be of compatible
type.

User Response: Change the type of the operands.

CBC3229 File is empty.

Explanation: The source file contains no code.

User Response: Check that the file name and path
are correct. Add source code to the file.

CBC3231 Error occurred while opening
preprocessor output file.

Explanation: The preprocessor was unsuccessful in
attempting to open the output file.

User Response: Ensure you have write access to the
file.

CBC3232 Divisor for modulus or division
operator cannot be zero.

Explanation: The value of the divisor expression
cannot be zero.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 545

User Response: Change the expression used as the
divisor.

CBC3234 Expecting a new-line character on #&1
directive.

Explanation: A character sequence was encountered
when the preprocessor required a new-line character.

User Response: Add a new-line character.

CBC3235 Incorrect escape sequence &1. \
ignored.

Explanation: An escape sequence that is not valid
has been encountered in a string literal or a character
literal. It is replaced by the character following the
backslash (\).

User Response: Change or remove the escape
sequence.

CBC3236 Macro name &1 has been redefined.

Explanation: You can define a macro multiple times in
extended mode. In ANSI mode macro redefinitions are
ignored.

User Response: Change the language level to
extended (with the /Se compiler option or #pragma
langlvl directive), or remove the macro redefinitions.

CBC3238 Function argument cannot be type
void.

Explanation: The void type cannot appear in the
argument list of a function call. The void type can
appear in a parameter list only if it is a non-variable
argument function. It is the only parameter in the list,
and it is unnamed.

User Response: Correct the argument or remove the
argument.

CBC3242 An object with external linkage
declared at block scope cannot be
initialized.

Explanation: You cannot declare a variable at block
scope with the storage class extern and give it an
explicit initializer.

User Response: Initialize the external object in the
external declaration.

CBC3243 Value of enumeration constant must be
in range of signed integer.

Explanation: If an enum constant is initialized in the
definition of an enum tag, the initial value must be an
integral expression that has a value representable as an
int.

User Response: Remove the initial value, or ensure
that it is an integral constant expression that has a
value representable as an int.

CBC3244 External variable &1 cannot be
redefined.

Explanation: An attempt was made to redefine an
external variable.

User Response: Remove the redefinition.

CBC3245 Incompatible sign adjective ″&1″.

Explanation: Adjectives ″signed″ and unsigned can
only modify integer type specifiers.

User Response: Either remove the sign adjective or
use a different type specifier.

CBC3246 Incompatible length adjective ″&1″.

Explanation: Length adjectives short and long can
only be applied to particular scalar types. See the
C/C++ Language Reference for valid types.

User Response: Either remove the length adjective or
use a different type specifier.

CBC3247 Incompatible type specifier ″&1″.

Explanation: The type specifier is not compatible with
the type adjectives used. See the C/C++ Language
Reference for valid combinations of type specifiers and
adjectives.

User Response: Either remove the adjective or use a
different type specifier.

CBC3248 More than one storage class specifier
&1.

Explanation: A C declaration must only have one
storage class specifier.

User Response: Ensure only one storage class is
specified.

CBC3249 Identifier contain s a $ character.

Explanation: You cannot use the $ character in an
identifier. An identifier can contain alphanumeric
characters and underscores. An identifier must start with
either an underscore or alphabetic character.

User Response: Remove the $ character.

CBC3250 Floating point constant &1 out of
range.

Explanation: The compiler detected a floating-point
overflow either in scanning a floating-point constant, or
in performing constant arithmetic folding.

546 OS/390 V2R6.0 C/C++ User’s Guide

User Response: Change the floating-point constant
so that it does not exceed the maximum value.

CBC3251 Static function &1 is undefined.

Explanation: A static function was declared and
referenced in this file. The definition of the function was
not found before the end of the file. When a function is
declared to be static, the function definition must appear
in the same file.

User Response: Define the function in the file or
remove the static storage class.

CBC3255 #pragma &1 is out of sequence.

Explanation: The #pragma directive was out of
sequence. See the C language Reference Manual for
the restrictions on placement.

User Response: Change or remove the #pragma
directive.

CBC3258 Hexadecimal integer constant &1 is not
valid.

Explanation: An invalid hexadecimal integer constant
was specified. See the C/C++ Language Reference for
details on specifying hexadecimal characters.

User Response: Change the value to a valid
hexadecimal integer constant.

CBC3260 Octal integer constant &1 is not valid.

Explanation: An invalid octal integer constant was
specified. See the C/C++ Language Reference for
details on specifying octal characters.

User Response: Change the value to a valid octal
integer constant.

CBC3261 Suboption &1 is not valid for option
&2.

Explanation: An invalid suboption was specified for
some option.

User Response: Change the suboption.

CBC3262 #pragma &1 must occur before first C
statement in program. #pragma
ignored.

Explanation: This pragma must be specified before
the first C token in the input (including header files).

User Response: Place the #pragma directive in the
file before any C code, or remove it.

CBC3263 #pragma strings directive can be
specified only once per source file.
#pragma ignored.

Explanation: This #pragma specifies whether string
literals are placed in read-only memory. It must appear
only once and before any C code.

User Response: Change the location of the directive
and ensure that it appears only once in the translation
unit.

CBC3264 #pragma comment(copyright) directive
can be specified only once per source
file.

Explanation: There can only be one #pragma
comment(copyright) per source file.

User Response: Ensure that it occurs only once in the
translation unit.

CBC3266 Parameter(s) for #pragma are out of
range.

Explanation: The #pragma parameters were invalid.
See the C/C++ Language Reference for details on valid
#pragma parameters.

User Response: Change the parameter.

CBC3267 Unrecognized #pragma ignored.

Explanation: An invalid pragma was encountered and
ignored.

User Response: Ensure that the #pragma name is
spelled correctly. A #pragma with equivalent function,
but a different name may exist. See the C/C++
Language Reference for a list of #pragma directives.

CBC3268 Macro &1 invoked with an incomplete
argument for parameter &2.

Explanation: The parameter for the macro invocation
must have a complete argument.

User Response: Complete the specification of the
macro argument list. Check for missing commas.

CBC3269 A char array pointer cannot be
assigned to a nonchar pointer.

CBC3270 A wide char array pointer cannot be
assigned to a nonwide char pointer.

CBC3271 The indirection operator cannot be
applied to a void pointer.

Explanation: The indirection operator requires a
pointer to a complete type. A void pointer is an
incomplete type that can never be completed.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 547

User Response: Cast the pointer to a type other than
void before this operation.

CBC3272 Identifier not allowed in cast or sizeof
declarations.

Explanation: Only abstract declarators can appear in
cast or sizeof expressions.

User Response: Remove the identifier from the cast
or sizeof expression and replace it with an abstract
declarator.

CBC3273 Missing type in declaration of &1.

Explanation: A declaration was made without a type
specifier.

User Response: Insert a type specifier into the
declaration.

CBC3274 Missing declarator in structure member
declaration.

Explanation: A struct or union member declaration
must specify a name. A type cannot be followed by a
semicolon.

User Response: Declare the member with a name.

CBC3275 Unexpected text &1 encountered.

Explanation: A syntax error has occurred. This
message lists the tokens that were discarded by the
parser when it tried to recover from the syntax error.

User Response: Correct the syntax error and compile
again.

CBC3276 Syntax error: possible missing &1?

Explanation: A syntax error has occurred. This
message lists the token that the parser expected and
did not find.

User Response: Correct the syntax error and compile
again.

CBC3277 Syntax error: possible missing &1 or
&2?

Explanation: A syntax error has occurred. This
message lists the tokens that the parser expected and
did not find.

User Response: Correct the syntax error and compile
again.

CBC3278 The structure definition must specify a
member list.

Explanation: The declaration of a struct or a union
that includes an empty member list enclosed between
braces is not a valid struct or union definition.

User Response: Specify the members of the struct or
union in the definition or remove the empty braces to
make it a simple struct or union tag declaration.

CBC3279 A function declarator cannot have a
parameter identifier list if it is not a
function definition.

Explanation: A function declarator that is not also a
function definition may not have a K&R style parameter
identifier list. An example is the ″x,y″ in ″int (*fred(a,b))
(x,y) {}″.

User Response: Remove the parameter identifier list.

CBC3280 Function argument assignment
between types ″&1″ and ″&2″ is not
allowed.

Explanation: The type of the argument in the function
call should match the corresponding parameter type in
the function declaration.

User Response: Cast the argument to a different
type, change the type or change the function prototype.

CBC3281 Prefix and postfix increment and
decrement operators cannot be applied
to ″&1″. (where ″&1″ is a type.)

Explanation: Increment and decrement operators
cannot operate on pointers to function or pointers to
void.

User Response: Change the pointer to point to an
object type.

CBC3282 The type of the parameters must be
specified in a prototype.

Explanation: A prototype specifies the number and
the type of the parameters that a function requires. A
prototype that does not specify the type of the
parameters is not correct, for example,

fred(a,b);

User Response: Specify the type of the parameters in
the function prototype.

CBC3283 Functions cannot be declared &1 at
block scope, &2 is ignored.

Explanation: Functions declared at block scope can
only have extern as an explicit storage class specifier
and cannot be inline.

548 OS/390 V2R6.0 C/C++ User’s Guide

User Response: Place the declaration of the function
at file scope, or remove the storage class specifier or
the inline specifier.

CBC3285 The indirection operator cannot be
applied to a pointer to an incomplete
struct or union.

Explanation: A structure or union type is completed
when the definition of its tag is specified. A struct or
union tag is defined when the list describing the name
and type of its members is specified.

User Response: Complete the struct or union
definition.

CBC3286 A struct or union with no named
members cannot be explicitly
initialized.

Explanation: Only aggregates containing named
members can be explicitly initialized.

User Response: Name the members of the struct or
union.

CBC3287 The parameter list on the definition of
macro &1 is not complete.

Explanation: There is a problem with the parameter
list in the definition of the macro.

User Response: Complete the parameter list. Look for
misplaced or extra commas.

CBC3288 Expecting file name or new-line
character on #line directive.

Explanation: The #line directive requires a line
number argument as its first parameter and a file name
as an optional second parameter. No other arguments
are allowed. A new-line character must be present after
the argument list.

User Response: Change the directive syntax.

CBC3289 Macro &1 redefined with identical
definition.

Explanation: Identical macro redefinitions are allowed
but not necessary. The amount of white space
separating the tokens have no bearing on whether
macros are considered identical.

CBC3290 Unknown macro name &1 on #undef
directive.

Explanation: An attempt is being made to undefine a
macro that has not been previously defined.

User Response: Check the spelling of the macro
name or remove the #undef directive.

CBC3291 Expecting decimal constant on #line
directive.

Explanation: The value for a #line directive must be a
decimal constant.

User Response: Specify a line number on the #line
directive.

CBC3292 Multibyte character literal not allowed
on #&1 directive.

Explanation: The directive does not allow a multibyte
character literal.

User Response: Remove the multibyte character
literal.

CBC3293 Identifier &1 assigned default value of
zero on &2 directive.

Explanation: The indicated identifier in a #if or #elif
expression was assigned the default value of zero. The
identifier may have been intended to be expanded as a
macro.

User Response: Add a #define for the macro before
using it in a preprocessor conditional.

CBC3294 Syntax error in expression on #&1
directive.

Explanation: The expression for a preprocessor
directive contains a syntax error.

User Response: Replace the expression that controls
the directive by a constant integral expression.

CBC3295 File ended with a continuation
sequence.

Explanation: The file ended unexpectedly with a
backslash character followed by a new-line character.

User Response: Remove the continuation character
from the last line of the file, or add code after the
continuation character.

CBC3296 #include file &1 not found.

Explanation: The file specified on the #include
directive could not be found. See the C/C++ Language
Reference for file search order.

User Response: Ensure the #include file name and
the search path are correct.

CBC3297 Unable to open input file &1. (&2)

Explanation: The compiler was unable to open the
input file.

User Response: Ensure file exists and is accessible
by compiler.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 549

CBC3298 Unable to read input file &1. (&2)

Explanation: The compiler was unable to read the
input file.

User Response: Ensure file exists and is accessible
by compiler.

CBC3299 Maximum #include nesting depth of &1
has been exceeded.

Explanation: The included files have been nested too
deeply.

User Response: Reduce the number of nested
include files.

CBC3300 Insufficient storage available.

Explanation: The compiler ran out of memory trying to
compile the file. This sometimes happens with large
files or programs with large functions. Note that very
large programs limit the amount of optimization that can
be done.

User Response: Increase your region size on MVS, or
your virtual storage on VM. You can also divide the file
into several small sections or shorten the function.

CBC3301 Redeclaration cannot specify fewer
parameters than previous declaration.

Explanation: The function definition has fewer
parameters than the prototype.

User Response: Modify one of the function
declarations so that the number and types of the
parameters match.

CBC3302 The declarations of the function &1
must be consistent in their use of the
ellipsis.

Explanation: The prototyped redeclaration of the
function is not correct. Fewer parameters appear before
the ellipsis in this function redeclaration than the
previous declaration.

User Response: Ensure that the redeclaration is
consistent with the previous declaration.

CBC3303 The type of the parameter &1 cannot
conflict with the previous declaration
of function &2.

Explanation: Nonprototype function declarations,
popularly known as K&R prototypes, specify only the
function return type. The function parentheses are
empty; no information about the parameters is given.
:p.Nonprototype function definitions specify a list of
parameter names appearing between the function
parentheses followed by a list of declarations (located
between the parentheses and the opening left brace of

the function) that indicates the type of the parameters. A
nonprototype function definition is also known as a K&R
function definition. :p.A prototype function declaration or
definition specifies the type and the number of the
parameters in the parameter declaration list that
appears inside the function parenthesis. A prototype
function declaration is better known as an ANSI
prototype, and a prototype function definition is better
known as an ANSI function definition. :p.When the
nonprototype function declarations/definitions are mixed
with prototype declarations, the type of each prototype
parameter must be compatible with the type that results
from the application of the default argument promotions.
:p.Most types are already compatible with their default
argument promotions. The only ones that aren’t are
char, short, and float. Their promoted versions are,
respectively, int, int, and double. :p.This message can
occur in several situations. The most common is when
mixing ANSI prototypes with K&R function definitions. If
a function is defined using a K&R-style header, then its
prototype, if present, must specify widened versions of
the parameter types. Here is an example.

int fn(short); int fn(x) short x; {}

This is not valid because the function has a K&R-style
definition and the prototype does not specify the
widened version of the parameter. To be correct, the
prototype should be

int fn(int);

because int is the widened version of short. :p.Another
possible solution is to change the function definition to
use ANSI syntax. This particular example would be
changed to

int fn(short); int fn(short x) {}

This second solution is preferable, but either solution is
equally valid.

User Response: Give a promoted type to the
parameter in the prototype function declaration.

CBC3304 No function prototype given for ’&1’.

Explanation: A prototype declaration of the function
specifying the number and type of the parameters was
not found before the function was used. Errors may
occur if the function call does not respect the function
definition.

User Response: Add an appropriate function
prototype before calling the function.

CBC3306 Subscript operator requires an array
operand in the offsetof macro.

Explanation: A subscript was specified in the offsetof
macro but the operand is not an array.

User Response: Either change the operand to be an
array type or remove the subscript operator.

550 OS/390 V2R6.0 C/C++ User’s Guide

CBC3307 Array index must be a constant
expression in the offsetof macro.

Explanation: The offsetof macro is evaluated at
compile time. Thus all arguments must be constant
expressions.

User Response: Change the expression.

CBC3308 Operand of the offsetof macro must be
a struct or a union.

Explanation: The first operand of the offsetof macro
must be a structure or union type.

User Response: Change the operand.

CBC3309 The offsetof macro cannot be used
with an incomplete struct or union.

Explanation: An incomplete struct or union is not a
valid argument to the offsetof macro. A structure or
union type is completed when the definition of its tag is
specified.

User Response: Ensure the struct or union is a
complete type.

CBC3310 The type ″&1 &2″ was introduced in a
parameter list, and will go out of scope
at the end of the function declaration
or definition.

Explanation: The tag will be added to parameter
scope in ANSI mode. Thus it will go out of scope at the
end of the declaration or function definition. In extended
mode, the tag is added to the closest enclosing block
scope.

User Response: If the tag is needed for declarations
outside its scope, move the tag declaration outside of
parameter scope.

CBC3311 Wide character constant &1 has more
than one character. Last character is
used.

Explanation: All but the last character in the constant
will be discarded.

User Response: Remove all but one character or
change the character constant into a string literal.

CBC3312 Compiler internal name &1 has been
defined as a macro.

Explanation: Do not redefine internal compiler names.

User Response: Remove the macro definition or
change the name of the macro being defined.

CBC3313 Compiler internal name &1 has been
undefined as a macro.

Explanation: Do not redefine internal compiler names.

User Response: Remove the macro undefinition.

CBC3314 The tag of this expression’s type has
gone out of scope.

Explanation: The tag used in the type declaration of
the object has gone out of scope, however the object is
still referenced in the expression.

User Response: Either remove the reference to the
object or move the tag’s definition to a scope that
encloses both the referenced object and the object’s
declaration.

CBC3320 Operation is not allowed because the
size of &1 is unknown.

Explanation: The operand must be a complete type
for the compiler to determine its size.

User Response: Provide a complete type definition.

CBC3321 You can specify an initializer only for
the first named member of a union.

Explanation: There can only be an initializer for the
first named member of a union.

User Response: Remove all union initializers other
than the one attached to the first named member.

CBC3322 Illegal multibyte character &1.

Explanation: The multibyte character specified is not
valid.

User Response: Correct the multibyte character.

CBC3323 ″double ″ should be used instead of
″long float ″.

Explanation: The type long float is not valid; it is
treated as a double.

User Response: Remove the long type specifier or
use double instead of float.

CBC3324 ″&1″ cannot be converted to ″&2″.

Explanation: The cast between the two types is not
allowed.

User Response: Remove the cast.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 551

CBC3327 An error occurred while opening the
listing file, &1.

Explanation: The compiler was unable to open the
listing file.

User Response: Ensure the file exists and that the
compiler can access it.

CBC3328 ″″&1″ is not a valid hex digit. ″

Explanation: Valid hex digits are the letters
A,B,C,D,E,F,0,1,2,3,4,5,6,7,8,9.

User Response: Change the digit.

CBC3329 Byte string must have an even length.

Explanation: The byte string for a #pragma mcfunc
must be of even length.

User Response: Ensure that the machine code string
is of even length.

CBC3334 Identifier &1 has already been defined
on line &2 of ″&3″.

Explanation: There is more than one definition of an
identifier.

User Response: Remove one of the definitions or
change the name of the identifier.

CBC3335 Parameter identifier list contains
multiple occurrences of &1.

Explanation: Identifier names in a parameter list must
be unique.

User Response: Change the name of the identifier or
remove the parameter.

CBC3339 A character string literal cannot be
concatenated with a wide string literal.

Explanation: A string that has a prefix L cannot be
concatenated with a string that is not prefixed.
Concatenation requires that both strings be of the same
type.

User Response: Check the syntax of the value given.

CBC3341 #include header must be ended before
the end of the line.

Explanation: A #include directive was specified across
two or more lines.

User Response: Ensure that the #include directive
and its arguments are contained on a single line.

CBC3342 ″″/*″ detected in comment. ″

Explanation: You can ignore this message if you
intended ″/*″ to be part of the comment. If you intended
it to start a new comment, move it out of the enclosing
comment.

User Response: Remove ″/*″ or ensure that ″/*″ was
intended in the comment.

CBC3343 Redeclaration of &1 differs from
previous declaration on line &2 of
″&3″.

Explanation: The redeclaration is not compatible with
the previous declaration.

User Response: Either remove one declaration or
make the types compatible.

CBC3344 Member &1 has already been defined
on line &2 of ″&3″.

Explanation: Member names must be unique within
the same aggregate.

User Response: Change the name.

CBC3345 The data in precompiled header file &1
does not have the correct format.

Explanation: The precompiled header file may have
become corrupt and is ignored.

User Response: Regenerate the precompiled header
files.

CBC3346 Unable to open precompiled header file
&1 for input. The original header will
be used.

Explanation: The compiler was unable to open the
precompiled header file for reading and will use the
original header.

User Response: Regenerate the precompiled header
files.

CBC3347 Precompiled header file &1 was
created by a more recent release of the
compiler. The original header will be
used.

Explanation: The compiler cannot understand the
format of the precompiled header, since it was
generated using a more recent version of the compiler.
The original text version of the header will be used.

User Response: Regenerate the precompiled header
files.

552 OS/390 V2R6.0 C/C++ User’s Guide

CBC3348 Unable to write to precompiled header
file &1.

Explanation: The compiler was unable to write to the
precompiled header files.

User Response: Ensure that the compiler has write
access to the precompiled header files.

CBC3349 Value of enumeration constant must be
in range of unsigned integer.

Explanation: If an enum constant is initialized in the
definition of an enum tag, the value that it is initialized
to must be an integral expression that has a value
representable as an int.

User Response: Remove the initial value, or ensure
that it is an integral constant expression that has a
value representable as an int.

CBC3350 Error writing to intermediate files. &1.

Explanation: An error occurred during compilation.
Ensure the compiler has write access to the work files
and that there is enough space free.

User Response: Recompile compilation unit.

CBC3351 Error opening intermediate files.

Explanation: An error occurred during compilation.
Ensure the compiler has write access to the work files
and that there is enough space free.

User Response: Recompile compilation unit.

CBC3352 Incompatible specifications for options
arch and tune.

Explanation: The values specified for tune option
cannot be smaller than that of arch.

User Response: Change option values.

CBC3356 Compilation unit is empty.

Explanation: There is no code in the compilation unit.

User Response: Ensure the correct source file is
specified. Recompile.

CBC3357 Unable to generate prototype for ″&1″
because one or more enum, struct, or
union specifiers did not have a tag.

Explanation: A prototype could not be generated for
the function because the enum, struct or union
declaration did not have a tag.

User Response: Specify a tag.

CBC3358 ″&1″ is defined on line &2 of &3. (where
&1 is an identifier name. &2 is a line
number. &3 is a file name.)

Explanation: This message indicates where a
previous definition is located.

User Response: Remove one of the definitions or
change the name of the identifier.

CBC3359 Automatic variable &1 contains a const
member and is not initialized. It will be
initialized to zero. (where &1 is an
identifier name.)

Explanation: An automatic variable that has a const
member is not initialized. The compiler is using zero as
the initializer.

User Response: Initialize the const member.

CBC3360 Same #pragma &1 has already been
specified for object ″&2″; this
specification is ignored.

Explanation: The repetition of the #pragma is
redundant and is ignored.

User Response: Remove the duplicate #pragma.

CBC3361 A different #pragma &1 has already
been specified for object ″&2″, this
specification is ignored.

Explanation: A previous #pragma for the object is
taking precedence over this #pragma.

User Response: Remove one of the #pragma
directives.

CBC3362 Identifier ″&1″ was referenced in
#pragma &2, but was never actually
declared.

Explanation: A #pragma refers to an identifier that has
not been declared.

User Response: Declare identifier or remove
#pragma.

CBC3363 Packing boundary must be specified
as one of 1, 2, 4, 8 or 16.

Explanation: Objects must be packed on 1, 2, 4, 8 or
16 byte boundaries.

User Response: Change the packing specifier.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 553

CBC3364 main must have C calling convention.

Explanation: An inappropriate linkage has been
specified for the main function. This function is the
starting point of the program so only C linkage is
allowed.

User Response: Change the calling convention of
main.

CBC3366 Declaration cannot specify multiple
calling convention specifiers.

Explanation: A declaration can specify only one
calling convention. Valid calling conventions include:
OS, COBOL, PLI, FORTRAN

User Response: Remove extra calling convention
specifiers.

CBC3367 Only functions or typedefs of functions
can be given a calling convention.

Explanation: A calling convention protocol keyword
has been applied to an identifier that is not a function
type or a typedef to a function type.

User Response: Check that correct identifier is
specified or remove #pragma.

CBC3369 The function cannot be redeclared with
a different calling convention.

Explanation: The redeclaration of this function cannot
have a different calling convention than the previous
declaration. The function could have been given a
calling convention through a typedef, or via a previous
declaration.

User Response: Make sure all declarations of the
function specify the same calling convention.

CBC3374 Pointer types ″&1″ and ″&2″ are not
compatible.

Explanation: The types pointed to by the two pointers
are not compatible.

User Response: Change the types to be compatible.

CBC3376 Redeclaration of &1 has a different
number of fixed parameters than the
previous declaration.

Explanation: The number of fixed parameters in the
redeclaration of the function does not match the original
number of fixed parameters.

User Response: Change the declarations to have the
same number of parameters, or rename or remove one
of the declarations.

CBC3377 The type ″&1″ of parameter &2 differs
from the previous type ″&3″.

Explanation: The type of the corresponding parameter
in the previous function declaration is not compatible.

User Response: Change the parameter declaration or
rename the function declaration.

CBC3378 Prototype for function &1 cannot
contain ″...″ when mixed with a
nonprototype declaration.

Explanation: A function prototype and a nonprototype
declaration can not be compatible if one contains ″...″.

User Response: Convert nonprototype declaration to
a prototyped one or remove the ″...″.

CBC3379 Prototype for function &1 must contain
only promoted types if prototype and
nonprototype declarations are mixed.

Explanation: Nonprototype declarations have their
parameters automatically promoted. Integral widening
conversions are applied to integral types and float is
converted into double.

User Response: Promote the parameter types in the
prototyped declaration.

CBC3380 Parameter &1 has type ″&2″ which
promotes to ″&3″.

Explanation: Nonprototype declarations have their
parameters automatically promoted. Integral widening
conversions are applied to integral types and float is
converted into double.

User Response: Promote the parameter types in the
prototyped declaration.

CBC3381 The type ″&1″ of parameter &2 in the
prototype declaration is not compatible
with the corresponding parameter type
″&3″ in the nonprototype declaration.

Explanation: The types of the parameters must be
compatible.

User Response: Change the parameters so that they
are compatible.

CBC3382 The type ″&1″ of identifier &2 differs
from previous type ″&3″.

Explanation: The two types are not compatible.

User Response: Change the parameter types so that
they are compatible.

554 OS/390 V2R6.0 C/C++ User’s Guide

CBC3383 Expecting ″&1″ to be an external
identifier.

Explanation: The identifier must have external
linkage.

User Response: Change the storage class to extern.

CBC3384 Expecting ″&1″ to be a function name.

Explanation: ″&1″ should be a function symbol.

User Response: Specify a different name or change
the type of the symbol.

CBC3387 The enum cannot be packed to the
requested size. Change the
enumeration value or change the
#pragma enum().

Explanation: Enums may be 1, 2, or 4 bytes in size.

User Response: Change the enumeration value or
change the #pragma enum().

CBC3388 Value &1 specified in #pragma &2 is
out of range.

Explanation: Refer to the C/C++ Language Reference
for more information about the valid values for the
#pragmas.

User Response: Specify a different value.

CBC3389 Some program text not scanned due to
&1 option or #pragma &2.

Explanation: MARGINS or SEQUENCE option, or
#pragma margins or sequence was used to limit the
valid text region in a source file.

User Response: Remove the MARGINS or
SEQUENCE option, or remove the #pragma margins or
sequence, or specify a more inclusive text region.

CBC3390 The function or variable &1 cannot be
declared as an import in the same
compilation unit in which it is defined.

Explanation: An object or function has both a
definition and an import directive in this compilation unit.
This creates a conflict, since the function or object can
be defined either here or where it is exported from, but
not both.

User Response: Remove the #pragma import
directive or __import keyword or change the definition of
the object or function into an extern declaration.

CBC3393 &1 value must contain only decimal
digits.

Explanation: A non-numeric character was
encountered in the &1 value.

User Response: Check the syntax of the value given.

CBC3394 Ordinal value on #pragma &1 is out of
range.

Explanation: The specified ordinal number should be
between 0 and 65535, inclusive.

User Response: Change the value accordingly.

CBC3395 Variable &1 must be an external object
or a function name for use with
#pragma import.

Explanation: The identifier specified by the pragma is
not a function or external object.

User Response: Declare the object with storage class
″extern″.

CBC3396 Option &1 is incompatible with option
&2 and is ignored.

Explanation: The option is not compatible with
another option so it is ignored.

User Response: Remove one of the options.

CBC3397 Undefined function or variable &1
cannot have a #pragma export.

Explanation: Only defined variables or functions can
be specified as an export.

User Response: Define the function or variable.

CBC3398 Bit-field type specified for &1 is
non-portable. The type should be
signed int, unsigned int or int.

Explanation: The specification of the bit-field type may
cause problems with porting the code to another
system.

User Response: Change the type specifier.

CBC3399 The alignment of a structure/union is
determined at the left brace of the
definition.

Explanation: The alignment of an aggregate is
constant throughout its definition.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 555

CBC3400 #pragma &1 must appear only once in
any C file.

User Response: Remove all but one of the specified
#pragma directives.

CBC3401 Function &1 must be defined for
#pragma entry.

Explanation: The function must be defined for it to be
specified using #pragma entry.

User Response: Define the function.

CBC3402 &1 must be an externally-defined
function for use with #pragma entry.

Explanation: The identifier must be defined as a
function with external linkage for it to be specified using
#pragma entry.

User Response: Define the function.

CBC3408 The linkage protocol is not supported
on the target platform.

Explanation: An attempt to use an unsupported
linkage protocol was made.

User Response: Remove the linkage protocol
keywords.

CBC3409 The static variable ’&1’ is defined but
never referenced.

Explanation: A variable that is defined but never used
probably serves no purpose.

User Response: Remove the variable definition if you
are not going to use the variable.

CBC3410 The automatic variable ’&1’ is defined
but never referenced.

Explanation: A variable that is defined but never used
likely serves no purpose.

User Response: Remove the variable definition.

CBC3411 An array that is not an lvalue cannot
be subscripted.

Explanation: A non-lvalue array is created when a
function returns a structure that contains an array. This
array cannot be dereferenced.

User Response: Remove the subscript.

CBC3412 The variable ’&1’ is referenced before
being initialized.

Explanation: Because the variable has not been
initialized, its value is undefined. The results of using an
undefined variable are unpredictable.

User Response: Initialize the variable before its first
reference.

CBC3413 A goto statement is used.

Explanation: The use of goto statements may result in
code that is more difficult to trace.

User Response: Replace the goto statement with
equivalent structured-programming constructs.

CBC3414 The parameter ’&1’ is never referenced.

Explanation: The parameter is passed to the function,
but is not referenced anywhere within the function body.

User Response: Remove the parameter from the
function prototype.

CBC3415 The external function definition ’&1’ is
never referenced.

Explanation: A function that is defined but never used
likely serves no purpose.

User Response: Remove the function definition,
unless needed in another compilation unit.

CBC3416 Taking the negative of the most
negative value, ’&1’, of a signed type
will cause truncation.

Explanation: The negative of the most negative value
cannot be represented as a positive value of the same
type.

User Response: Change the value or use a larger
data type.

CBC3417 The function &1 is not defined but has
#pragma inline directive specified.

Explanation: A #pragma inline has been applied to an
identifier which does not exist or does not correspond to
a function.

User Response: Check that correct identifier is
specified or remove #pragma.

CBC3418 ’&1’ does not evaluate to a constant
that fits in its signed type.

Explanation: The expression evaluates to a number
that is not within the range that can be stored by the
target.

User Response: Change the expression so it

556 OS/390 V2R6.0 C/C++ User’s Guide

evaluates to a value in the valid range.

CBC3419 Converting &1 to type ″&2″ does not
preserve its value.

Explanation: The user cast converts &1 to a type that
cannot contain the value of the original type.

User Response: Change the cast.

CBC3420 An unsigned comparison is performed
between an unsigned value and a
negative constant.

Explanation: Comparing an unsigned value with a
signed value may produce unexpected results.

User Response: Type-cast the unsigned value to a
signed type if a signed comparison is desired, or
type-cast the negative constant to an unsigned type if
an unsigned comparison is desired.

CBC3421 The comparison is always true.

Explanation: The type specifiers of the values being
compared result in a constant result.

User Response: Simplify or remove the conditional
expression.

CBC3422 The comparison is always false.

Explanation: The type specifiers of the values being
compared result in a constant result.

User Response: Simplify or remove the conditional
expression.

CBC3423 The comparison may be rewritten as
’&1’.

Explanation: The type specifiers of the values being
compared may allow the expression to be simplified.

User Response: Simplify the comparison expression.

CBC3424 The condition is always true.

Explanation: Because the value of the conditional
expression is constant, it may be possible to simplify or
remove the conditional test.

User Response: Change the conditional expression or
remove the conditional test.

CBC3425 The condition is always false.

Explanation: Because the value of the conditional
expression is constant, it may be possible to simplify or
remove the conditional test.

User Response: Change the conditional expression or
remove the conditional test.

CBC3426 An assignment expression is used as a
condition. An equality comparison (==)
may have been intended.

Explanation: A single equal sign ’=’ is often
mistakenly used as an equality comparison operator.

User Response: Ensure an assignment operation was
intended.

CBC3427 A constant expression is used as a
switch condition.

Explanation: The same code path will be taken
through every execution of the switch statement.

User Response: Change the switch expression to be
a non-constant value or remove the unused portions of
the switch structure.

CBC3428 The left-hand side of a shift expression
is an unparenthesized arithmetic
expression which has a higher
precedence.

Explanation: The left-hand expression is evaluated
before the shift operator.

User Response: Place parentheses around the
left-hand expression to make the order of operations
explicit.

CBC3429 The right-hand side of a shift
expression is an unparenthesized
arithmetic expression which has a
higher precedence.

Explanation: The right-hand expression is evaluated
before the shift operator.

User Response: Place parentheses around the
right-hand expression to make the order of operations
explicit.

CBC3430 The result of a comparison is either 0
or 1, and may not be appropriate as
operand for another comparison
operation.

Explanation: The comparison expression may be
malformed.

User Response: Ensure that the resulting value from
the comparison is appropriate for use in the following
comparison.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 557

CBC3431 The left-hand side of a bitwise &&, |, or
* expression is an unparenthesized
relational, shift, or arithmetic
expression which has a higher
precedence.

Explanation: The left-hand expression is evaluated
before the bitwise operator.

User Response: Place parentheses around the
left-hand expression to make the order of operations
explicit.

CBC3432 The right-hand side of a bitwise &&, |,
or * expression is an unparenthesized
relational, shift, or arithmetic
expression which has a higher
precedence.

Explanation: The right-hand expression is evaluated
before the bitwise operator.

User Response: Place parentheses around the
right-hand expression to make the order of operations
explicit.

CBC3433 The right-hand side of a bitwise shift
expression should be positive and less
than the width in bits of the promoted
left operand.

Explanation: This expression may not be portable.

User Response: Change the shift expression.

CBC3434 The left-hand side of a bitwise right
shift expression has a signed
promoted type.

Explanation: This expression may not be portable.

User Response: Change the shift expression.

CBC3435 An expression statement should have
some side effects because its value is
discarded.

Explanation: If an expression statement has no side
effects, then it may be possible to remove the statement
with no change in program behaviour.

User Response: Change or remove the expression
statement.

CBC3436 Left-hand side of comma expression
should have side effects because its
value is discarded.

Explanation: A comma expression evaluates to its
right-hand operand.

User Response: Change the expression.

CBC3437 The init or re-init expression of a for
statement should have some side
effects since its value is discarded.

Explanation: If the init and/or the re-init expression of
a for statement have no side effects, the loop may not
execute as desired.

User Response: Change the init and/or re-init
expressions.

CBC3438 The value of the variable ’&1’ may be
used before being set.

Explanation: Because the variable has not been
initialized, its value is undefined. The results of using an
undefined variable are unpredictable.

User Response: Add an initialization statement or
change the expression.

CBC3439 Assigning enum type ’&1’ to enum
type ’&2’ may not be correct.

Explanation: The values of the enumerated types may
be incompatible.

User Response: Change the types of the values
being assigned.

CBC3440 Cannot assign an invalid enumerator
value to enum type ’&1’.

Explanation: The value being assigned is not a
member of the enumeration.

User Response: Change the value being assigned, or
make it an enumeration member.

CBC3441 The macro definition will override the
keyword ’&1’.

Explanation: Overriding a C keyword with a
preprocessor macro may cause unexpected results.

User Response: Change the name of the macro or
remove it.

CBC3442 A trigraph sequence occurs in a
character literal.

Explanation: The trigraph sequence will be converted.
A literal interpretation may have been desired.

User Response: Change the value of the character
literal.

CBC3443 A trigraph sequence occurs in a string
literal.

Explanation: The trigraph sequence will be converted.
A literal interpretation may have been desired.

User Response: Change the value of the string literal.

558 OS/390 V2R6.0 C/C++ User’s Guide

CBC3444 The opening brace is redundant.

Explanation: The initialization expression contains
extra, possibly unnecessary, braces.

User Response: Remove the extra braces.

CBC3445 The closing brace is redundant.

Explanation: The initialization expression contains
extra, possibly unnecessary, braces.

User Response: Remove the extra braces.

CBC3446 Array element(s) [&1] will be initialized
with a default value of 0.

Explanation: Some array elements were not explicitly
initialized. They will be assigned the default value.

User Response: Add initializations if necessary.

CBC3447 The member(s) starting from ’&1’ will
be initialized with a default value of 0.

Explanation: Some members were not explicitly
initialized. They will be assigned the default value.

User Response: Add initializations if necessary.

CBC3448 Assigning a packed struct to an
unpacked struct, or vice versa,
requires remapping.

Explanation: Assignments between packed/unpacked
structures may produce incorrect results.

User Response: Change the type qualifiers of the
values in the assignment.

CBC3449 Missing return expression.

Explanation: If a function has a non-void return type,
then all return statements must have a return
expression of the correct type.

User Response: Add a return expression.

CBC3450 Obsolete non-prototype-style function
declaration.

Explanation: The K&R-style function declaration is
obsolete.

User Response: Change the function declaration to
the prototyped style.

CBC3451 The target integral type cannot hold all
possible values of the source integral
type.

Explanation: Data loss or truncation may occur
because of the type conversions.

User Response: Change the types of the values in
the expression.

CBC3452 Assigning a floating point type to an
integral type may result in truncation.

Explanation: Data loss or truncation may occur
because of the type conversions.

User Response: Change the types of the values in
the expression.

CBC3453 Assigning a floating point type to
another floating point type with less
precision.

Explanation: Data loss or truncation may occur
because of the type conversions.

User Response: Change the types of the values in
the expression.

CBC3454 &1 condition evaluates to &2.

Explanation: This message traces preprocessor
expression evaluation.

User Response: No response required.

CBC3455 defined(&1) evaluates to &2.

Explanation: This message traces preprocessor #ifdef
and #ifndef evaluation.

User Response: No response required.

CBC3456 Stop skipping tokens.

Explanation: This messages traces conditional
compilation activity.

User Response: No response required.

CBC3457 File &1 has already been included.

Explanation: This #include directive is redundant.

User Response: Remove the #include directive.

CBC3458 #line directive changing line to &1 and
file to &2.

Explanation: This message traces #line directive
evaluation.

User Response: No response required.

CBC3459 #line directive changing line to &1.

Explanation: This message traces #line directive
evaluation.

User Response: No response required.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 559

CBC3460 &1 nesting level is &2.

Explanation: This message traces conditional
compilation activity.

User Response: No response required.

CBC3461 Generating precompiled header file &1.

Explanation: This message traces precompiled
header generation activity.

User Response: No response required.

CBC3462 Precompiled header file &1 is found
but not used because it is not up to
date.

Explanation: This message traces precompiled
header file generation activity.

User Response: No response required.

CBC3463 Using precompiled header file &1.

Explanation: This message traces precompiled
header file generation activity.

User Response: No response required.

CBC3464 Begin skipping tokens.

Explanation: This messages traces conditional
compilation activity.

User Response: No response required.

CBC3465 #undef undefining macro name &1.

Explanation: This message traces #undef
preprocessor directive evaluation.

User Response: No response required.

CBC3466 Unary minus applied to an unsigned
type.

Explanation: The negation operator is inappropriate
for unsigned types.

User Response: Remove the operator or change the
type of the operand.

CBC3467 String literals concatenated.

Explanation: Two string literals, each delimited by
quotation marks, have been combined into a single
literal.

User Response: No response is necessary. This is an
informational message.

CBC3468 Macro name &1 on #define is also an
identifier.

Explanation: The name of the macro has already
been used.

User Response: Change the name of the macro.

CBC3469 The static function ’&1’ is declared or
defined but never referenced.

Explanation: A function that is defined but never used
serves no purpose.

User Response: Remove the function definition.

CBC3470 Function ’main’ should return int, not
void.

Explanation: According to the ANSI/ISO standard,
main should return int not void. Earlier standards (such
as k&R) allowed a void return type for main.

User Response: Change the return type of the
function.

CBC3471 Case label is not a member of enum
type ’&1’

Explanation: Case labels must be members of the
type of the switch expression.

User Response: Change the value of the case label.

CBC3472 Statement is unreachable.

Explanation: The flow of execution causes this
statement to never be reached.

User Response: Change the control flow in the
program, or remove the unreachable statement.

CBC3473 An unintended semi-colon may have
created an empty loop body.

Explanation: The loop body has no statements, and
the conditional expression has no side effects.

User Response: If this is what was intended, use ’{}’
instead of a semi-colon as empty loop body to avoid
this message.

CBC3474 Loop may be infinite.

Explanation: The value of the conditional expression
and/or the lack of exit points may result in an infinite
loop.

User Response: Adjust the conditional expression or
add loop exit statements.

560 OS/390 V2R6.0 C/C++ User’s Guide

CBC3475 The real constant arithmetic
expression folds to positive infinity.

Explanation: Constant folding results in an overflow.

User Response: Change the expression.

CBC3476 The real constant arithmetic
expression folds to negative infinity.

Explanation: Constant folding results in an overflow.

User Response: Change the expression.

CBC3478 The then branch of conditional is an
empty statement.

Explanation: If the condition is true, then no statement
is executed.

User Response: Add a statement to be executed, or
remove the conditional statement.

CBC3479 Both branches of conditional
statement are empty statements.

Explanation: A conditional statement with empty
branches is possibly degenerate.

User Response: Add code to the conditional
branches.

CBC3480 Missing break statement allows
fall-through to this case.

Explanation: The preceding case did not end with a
break, return, or goto statement, allowing the path of
execution to fall-through to the code in this case.

User Response: Add an appropriate terminating
statement to the previous case, unless the fall-through
was intentional.

CBC3481 The end of the function may be
reached without returning a value.

Explanation: A return statement should be used to
exit any function whose return type is non-void.

User Response: Add a return statement, or change
the function to return void.

CBC3482 The opening brace before this point is
redundant.

Explanation: The initialization expression contains
extra, possibly unnecessary, braces.

User Response: Remove the extra braces.

CBC3483 Switch statement contains no cases or
only default case.

Explanation: Code within a switch statement block
that is not preceded by either ’default’ or ’case’ is never
executed, and may be removed. Switch statements with
neither ’default’ or ’case’ are probably incorrect.

User Response: Change the switch statement to
include cases.

CBC3484 External name &1 has been truncated
to &2.

Explanation: The external name exceeds the
maximum length and has been truncated. This may
result in unexpected behavior if two different names
become the same after truncation.

User Response: Reduce the length of the external
name.

CBC3485 Parameter declaration list is
incompatible with declarator for &1.

Explanation: An attempt has been made to attach a
parameter declaration list with a declarator which cannot
have one.

User Response: Change declarator or remove
parameter declaration list.

CBC3486 A pointer to an incomplete type cannot
be indexed.

Explanation: An index has been used with a pointer
to an incomplete type.

User Response: Declare the type that is pointed at or
remove the index.

CBC3487 An argument cannot be an incomplete
struct or union.

Explanation: An incomplete aggregate cannot be
used as an argument to a function.

User Response: Declare the type that is pointed at or
use a pointer to the aggregate.

CBC3489 The incomplete struct or union tag &1
was not completed before going out of
scope.

Explanation: A struct or union tag was declared inside
a parameter list or a function body, but no member
declaration list was provided.

User Response: If the struct or union tag was
declared inside a parameter list, provide a member
declaration list at file scope. If the tag was declared
inside a function body, provide a member declaration list
within that function body.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 561

CBC3490 The static variable ’&1’ is set but never
referenced.

Explanation: A variable that is initialized but never
used serves no purpose.

User Response: Remove the variable definition if you
do not intend to use it.

CBC3491 The automatic variable ’&1’ is set but
never referenced.

Explanation: A variable that is initialized but never
used likely serves no purpose.

User Response: Remove the variable definition if you
do not intend to use it.

CBC3492 Redefinition of &1 hides previous
definition.

Explanation: The definition within the current scope
hides a definition with the same name in an enclosing
scope.

User Response: Change the name to avoid redefining
it.

CBC3493 The external variable ’&1’ is defined
but never referenced.

Explanation: A variable that is defined but never used
likely serves no purpose.

User Response: Remove the variable definition,
unless needed in another compilation unit.

CBC3494 The external variable ’&1’ is set but
never referenced.

Explanation: A variable that is initialized but never
used serves no purpose.

User Response: Remove the variable definition,
unless needed in another compilation unit.

CBC3495 Pointer type conversion found.

Explanation: An attempt is being made to convert a
pointer of one type to a pointer of another type.

User Response: Check the types of the values
involved in the expression, and make them compatible.

CBC3496 Parameter(s) for #pragma &1 are of the
wrong type.

Explanation: The parameter for the pragma is
incorrect and of the wrong type.

User Response: Look up correct type in the C
Language Reference.

CBC3497 Incomplete enum type not allowed.

Explanation: An incomplete enum is being used
where a complete enum type is required.

User Response: Complete the type declaration.

CBC3498 Member of struct or union cannot be
incomplete type.

Explanation: An incomplete aggregate is being used
where a complete struct or union is required.

User Response: Complete the type declaration.

CBC3499 Function ’main’ should return int.

Explanation: A return type other than int was specified
for function main.

User Response: Change the return type to int.

CBC3503 Option ″&1″ is not supported for &2.

Explanation: The option specified is not supported on
this operating system.

User Response: Remove the option.

CBC3505 Type ″&1″ of identifier ″&2″ was
incomplete at the end of its scope.

Explanation: A incomplete declaration was made of
some identifier and it is still incomplete at the end of its
scope.

User Response: Complete the declaration.

CBC3508 Option &1 for #pragma &2 is not
supported.

Explanation: For a list of all valid options for #pragma
directives, see the C/C++ Language Reference.

User Response: Ensure the #pragma syntax and
options are correct.

CBC3509 Symbol &1 on a #pragma &2 was not
found.

Explanation: For a list of all valid options for #pragma
directives, see the C/C++ Language Reference.

User Response: Ensure the #pragma syntax and
options are correct.

CBC3512 An initializer is not allowed for ″&1″.
(where &1 is a C name or keyword)

Explanation: An attempt was made to initialize an
identifier whose type does not permit initialization.

User Response: Remove the initializer.

562 OS/390 V2R6.0 C/C++ User’s Guide

CBC3513 Array element designator exceeds the
array dimension. Designator will be
ignored.

Explanation: The value of the designator was larger
than the dimension declared for the array object.

User Response: Change the expression forming the
array index.

CBC3514 Array element designator cannot be
applied to an object of type ″&1″.

Explanation: An array element designator can only be
applied to an object of array type.

User Response: Remove subscript.

CBC3515 Member designator cannot be applied
to an object of type ″&1″.

Explanation: A member designator can only be
applied to an object of type struct or union.

User Response: Remove member designator.

CBC3517 Option &1 for #pragma is not
supported.

Explanation: For a list of all valid options for #pragma
directives, see the C/C++ Language Reference and
:hdref refid=prag370. of this book.

User Response: Ensure the #pragma syntax and
options are correct.

CBC3518 Option(s) for #pragma &1 are missing
or incorrectly specified.

Explanation: #pragma &1 is not correctly specified.

User Response: Ensure the #pragma syntax and
options are correct.

CBC3519 Index operator ([]) cannot be applied to
pointer to void.

Explanation: Index operator ([]) can only be applied to
arrays or pointers to objects.

User Response: Change the operand.

CBC3520 Switch block begins with declarations
or unlabeled statements that are
unreachable.

Explanation: Code within a switch block must be
labeled with either ’case’ or ’default’ to be reachable.

User Response: Add a label or remove the
unreachable code.

CBC3521 Pointer arithmetic can only be applied
to a arrays that are lvalues.

Explanation: Because the array is
compiler-generated, it is not an lvalue. Therefore, you
cannot apply pointer arithmetic to it.

User Response: Change the expression.

CBC3522 Unable to open precompiled header &1
for output.

Explanation: The compiler was unable to open the
precompiled header file.

User Response: Ensure that the compiler has write
access to the precompiled header files.

CBC3524 The _Packed qualifier can only qualify
a struct or union.

Explanation: The _Packed qualifier is only valid for
structures and unions.

User Response: Remove _Packed qualifier.

CBC3531 End of precompiled header processing.

Explanation: The compiler has finished processing a
precompiled header.

User Response: No response required. This message
merely traces the activity of the precompiled header
processing.

CBC3532 Macro ″&1″ is required by the
precompiled header and is defined
differently than when the precompiled
header was created.

Explanation: The referenced macro was expanded
during the creation of the precompiled header and is
now defined differently. This prevents the precompiled
header from being used for this compilation.

User Response: If necessary, redefine the macro, or
regenerate the precompiled header using the new
macro definition.

CBC3533 One or more assertions are defined
that were not defined when the
precompiled header was created.

Explanation: An assertion is defined that was not
defined when the precompiled header was generated.
Because the effect of the new assertion is unknown, the
precompiled header cannot be used for this compilation.

User Response: Do not define the assertion, or
regenerate the precompiled header with the new
assertion.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 563

CBC3534 One or more macros are defined that
were not defined when the
precompiled header was created.

Explanation: A macro is defined that was not defined
when the precompiled header was generated. Because
the effect of the new macro is unknown, the
precompiled header cannot be used for this compilation.

User Response: Do not define the macro or
regenerate the precompiled header with the new macro.

CBC3535 Compiler options do not match those
in effect when the precompiled header
was created.

Explanation: The compiler options in use are not
compatible with those used when the precompiled
header was generated. The precompiled header cannot
be used.

User Response: Use the same options as when the
precompiled header was generated or regenerate the
precompiled header with the new options.

CBC3536 Assertion ″&1″ is required by the
precompiled header and is not defined.

Explanation: The referenced assertion was tested
during the creation of the precompiled header and is not
defined. This prevents the precompiled header from
being used for this compilation.

User Response: If necessary, redefine the assertion,
or regenerate the precompiled header without the
assertion.

CBC3537 Macro ″&1″ is required by the
precompiled header and is not defined.

Explanation: The referenced macro was expanded
during the creation of the precompiled header and is not
defined. This prevents the precompiled header from
being used for this compilation.

User Response: If necessary, redefine the macro, or
regenerate the precompiled header without the macro.

CBC3538 Unable to use precompiled header &1.

Explanation: The precompiled header cannot be used
for this compilation. A subsequent message will explain
the reason.

User Response: Correct the problem indicated by the
subsequent message.

CBC3539 Expecting &1 and found &2.

Explanation: The header file being included is not the
next header in the sequence used to generate the
precompiled header. The precompiled header cannot be
used for this compilation.

User Response: #include the correct header or
regenerate the precompiled header using the new
sequence of #include directives.

CBC3545 The decimal size is outside the range
of 1 to &1.

Explanation: The specified decimal size should be
between 1 and DEC_DIG.

User Response: Specify the decimal size between 1
and DEC_DIG.

CBC3546 The decimal precision is outside the
range of 0 to &1.

Explanation: The specified decimal precision should
be between 0 and DEC_PRECISION.

User Response: Specify the decimal precision
between 0 and DEC_PRECISION.

CBC3547 The decimal size is not valid.

Explanation: The decimal size must be a positive
constant integral expression.

User Response: Specify the decimal size as a
positive constant integral expression.

CBC3548 The decimal precision is not valid.

Explanation: The decimal precision must be a
constant integral expression.

User Response: Specify the decimal precision as a
constant integral expression.

CBC3549 The decimal precision is bigger than
the decimal size.

Explanation: The specified decimal precision should
be less than or equal to the decimal size.

User Response: Specify the decimal precision less
than or equal to the decimal size.

CBC3550 The decimal constant is out of range.

Explanation: The compiler detected a decimal
overflow in scanning a decimal constant.

User Response: Change the decimal constant so that
it does not exceed the maximum value.

CBC3551 The fraction part of the result was
truncated.

Explanation: Due to limitations on the number of
digits representable, the calculated intermediate result
may result in truncation in the decimal places after the
operation is performed.

564 OS/390 V2R6.0 C/C++ User’s Guide

User Response: Check to make sure that no
significant digit is lost.

CBC3552 The pre- and post- increment and
decrement operators cannot be applied
to type &1.

Explanation: The decimal types with no integral part
cannot be incremented or decremented.

User Response: Reserve at least one digit in the
integral part of the decimal types.

CBC3553 Only decimal types can be used with
the &1 operator.

Explanation: The operand of the digitsof or
precisionof operator is not valid. The digitsof and
precisionof operators can only be applied to decimal
types.

User Response: Change the operand.

CBC3554 Whole-number-part digits in the result
may have been lost.

Explanation: Due to limitations on the number of
digits representable, the calculated intermediate result
may result in loss of digits in the integer portion after
the operation is performed.

User Response: Check to make sure that no
significant digit is lost.

CBC3555 Digits have been lost in the
whole-number part.

Explanation: In performing the operation, some
non-zero digits in the whole-number part of the result
are lost.

CBC3556 Digits may have been lost in the
whole-number part.

Explanation: In performing the operation, some digits
in the whole-number part of the result may have been
lost.

User Response: Check to make sure that no
significant digit is lost.

CBC3557 The name in option &1 is not valid. The
option is reset to &2.

Explanation: The name specified as a suboption of
the option is syntactically or semantically incorrect and
thus can not be used.

User Response: Make sure that the suboption
represents a valid name. For example, in option
LOCALE(localename), the suboption ’localename’ must
be a valid locale name which exists and can be used. If
not, the LOCALE option is reset to NOLOCALE.

CBC3558 #pragma &1 is ignored because the
locale compiler option is not specified.

Explanation: The locale compiler option is required for
#pragma &1

User Response: Remove all the #pragma &1
directives or specify the locale compiler option.

CBC3559 #pragma filetag is ignored because the
conversion table from &1 to &2 cannot
be opened.

Explanation: During compilation, source code is
converted from the code set specified by #pragma
filetag to the code set specified by the locale compiler
option, if they are different. A conversion table form &1
to &2 must be loaded prior to the conversion. No
conversion is done when the conversion table is not
found.

User Response: Create the conversion table from &1
to &2 and ensure it is accessible from the compiler. If
message files are used in the application to read and
write data, a conversion table from &2 to &1 must also
be created to convert data from runtime locale to the
compile time locale.

CBC3560 Error messages are not converted
because the conversion table from &1
to &2 cannot be opened.

Explanation: Error messages issued by C/370 are
written in code page 1047. These messages must be
converted to the code set specified by the locale
compiler option because they may contain variant
characters, such as #. Before doing the conversion, a
conversion table from &1 to &2 must be loaded. The
error messages are not converted because the
conversion table cannot be found.

User Response: Make sure the conversion table from
&1 to &2 is accessible from the compiler.

CBC3561 No conversion on character &1
because it does not belong to the input
code set &2.

Explanation: No conversion has be done for the
character because it does not belong to the input code
set.

User Response: Remove or change the character to
the appropriate character in the input code set.

CBC3562 Incomplete character or shift sequence
was encountered during the
conversion of the source line.

Explanation: Conversion stops because an
incomplete character or shift sequence was
encountered at the end of the source line.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 565

User Response: Remove or complete the incomplete
character or shift sequence at the end of the source
line.

CBC3563 Only conversion table that map single
byte characters to single byte
characters is supported.

Explanation: Compiler is expected single byte to
single byte character mapping during conversion.
Conversion stops when there is insufficient space in the
conversion buffer.

User Response: Make sure the conversion table is in
single byte to single byte mapping.

CBC3564 Invalid conversion descriptor was
encountered during the conversion of
the source line.

Explanation: No conversion was performed because
conversion descriptor is not valid.

CBC3565 #pragma &1 must appear on the first
directive before any C code. (where &1
pragma type *CHAR 100)

User Response: Put this #pragma as the first directive
before any C code.

CBC3566 Option DECK ignored because option
OBJECT specified.

Explanation: The second option must not be specified
for the first to have an effect.

User Response: Remove the first or second option.

CBC3567 Option OFFSET ignored because
option LIST not specified.

Explanation: The second option must be specified for
the first to have an effect.

User Response: Specify the second option, or remove
the first.

CBC3568 The external name &1 in #pragma
csect conflicts with another csect
name.

Explanation: A #pragma csect was specified with a
name which has already been specified as a csect
name.

User Response: Ensure that the two csect names are
unique.

CBC3569 A duplicate #pragma csect(&1) is
ignored.

Explanation: Only one #pragma csect may be
specified for either CODE or STATIC.

User Response: Remove the duplicate #pragma
csect.

CBC3570 The #pragma map name &1 must not
conflict with a #pragma csect name or
the csect name generated by the
compiler.

Explanation: The external name used in the #pragma
map is identical to the external name specified on the
#pragma csect or the name generated by the compiler.

User Response: Change the name on the #pragma
csect or turn off the CSECT option.

CBC3571 The external name &1 must not conflict
with the name in #pragma csect or the
csect name generated by the compiler.

Explanation: The external name specified is identical
to the name specified on a #pragma csect or the name
generated by the CSECT option.

User Response: Change the name on the #pragma
csect or turn off the CSECT option.

CBC3572 Expected text &1 was not encountered
on option &2.

User Response: Use the correct syntax for specifying
the option

CBC3573 To use the builtin form of the &1
function add the #include <&2>
directive.

User Response: Add the specified #include in order to
optimize code.

CBC3574 Unable to open event file &1.

Explanation: The compiler was unable to open the
event file.

User Response: Ensure that there is enough disk
space.

CBC3575 Csect option is ignored due to naming
error.

Explanation: The compiler was unable to generate
valid csect names.

User Response: Use #pragma csect to name the
code and static control sections.

566 OS/390 V2R6.0 C/C++ User’s Guide

CBC3576 Csect name &1 has been truncated to
&2.

Explanation: The static, data and test csect names
have been truncated to 8 characters.

CBC3577 Obsolete option OPTIMIZE(2) defaults
to OPTIMIZE(1).

Explanation: Optimize(2) is no longer supported and
has been defaulted to 1.

CBC3578 The csect name &1 must not conflict
with a csect name generated by the
compiler.

Explanation: The code and static csect names are
identical. Either the compiler is unable to generate
unique names or a #pragma csect is using a duplicate
name.

User Response: Use #pragma csect to name the
code and static control sections.

CBC3585 Obsolete option HWOPTS defaults to
corresponding ARCHITECTURE option.

Explanation: HWOPTS is no longer supported and
has been replaced by ARCHITECTURE.

User Response: Use the ARCHITECTURE option to
take advantage of hardware.

CBC3586 Test csect name &1 has been
truncated to &2.

Explanation: The compiler generated test csect name
has been truncated to 8 characters.

User Response: Use the CSECT() option to allow test
csect names longer than 8 chars.

CBC3600 3600 - 3631 are LE messages.

Explanation: Refer to the LE manuals for further
information about these messages

CBC3671 The header file name in the #include
directive cannot be empty.

User Response: Specify a non-empty header file
name in the #include directive.

CBC3675 The return type is not valid for a
function of this linkage type

Explanation: The linkage type of the function puts
certain restrictions on the return type, on which the
function definition violated.

User Response: Check the linkage type restrictions
and change the return type.

CBC3676 Function ″&1″ which returns a return
code cannot be defined. (where &1 is a
function or type name)

Explanation: The function has FORTRAN linkage type
with the RETURNCODE option. Therefore it should be a
FORTRAN function defined somewhere else and
referenced here (should not be defined in the compile
unit).

User Response: Make sure the function is a
FORTRAN function.

CBC3677 Option LONGNAME is turned on
because option DLL is specified.

Explanation: Option LONGNAME is turned on by the
compiler because DLL option is specified.

CBC3678 Option RENT is turned on because
option DLL is specified.

Explanation: Option RENT is turned on by the
compiler because DLL option is specified.

CBC3679 Option LONGNAME is turned on
because option EXPORTALL is
specified.

Explanation: Option LONGNAME is turned on by the
compiler because EXPORTALL option is specified.

CBC3680 Option RENT is turned on because
option EXPORTALL is specified.

Explanation: Option RENT is turned on by the
compiler because EXPORTALL option is specified.

CBC3681 #pragma export(&1) is ignored; both
LONGNAME and RENT options must
be specified. (where &1 is a function or
variable name)

Explanation: The variable/function is not exported
because both LONGNAME and RENT must be
specified to export functions/variables.

User Response: Make sure both LONGNAME and
RENT options are specified.

CBC3682 ″&1″ will not be exported because
#pragma variable(&2,NORENT) is
specified. (where &1 is a variable
name)

Explanation: Variables with NORENT option cannot
be exported.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 567

CBC3683 ″&1″ will not be exported because it
does not have external storage class.
(where &1 is a variable or function
name)

Explanation: Only objects with external storage class
can be exported.

CBC3684 Exporting function main is not allowed.

Explanation: Main cannot be exported.

User Response: Remove the pragma export for main.

CBC3685 ″&1″ will not be exported because it is
not external defined.

Explanation: The variable cannot be exported
because it is not defined here.

User Response: Remove the pragma export for the
variable.

CBC3686 Unexpected keyword(s). One or more
keywords were found in an invalid
location.

Explanation: One or more keywords were found in an
invalied location.

User Response: Remove the keyword(s) or place
them immediately to the left of the identifier to which
they apply.

CBC3687 The &1 keyword cannot be applied to
the return type of a function.

Explanation: The keyword is being applied to the
return type of a function.

User Response: Remove the keyword.

CBC3688 Declaration cannot specify conflicting
keywords &1 and &2.

Explanation: The keywords conflict and cannot both
be used in the same declaration.

User Response: Remove one of the keywords.

CBC3689 The &1 keyword was specified more
than once in the declaration.

Explanation: The keyword was used more than once
in the same declaration.

User Response: Remove one of the keywords.

CBC3690 Builtin function &1 is unrecognized.
The default linkage convention is used.

Explanation: The function specified in the pragma
linkage builtin is not a builtin function.

User Response: Check the function name and
correct; or remove the pragma if it is not a builtin
function.

CBC3691 The &1 keyword can only be applied to
functions.

Explanation: The keyword has been applied to an
identifier which does not correspond to a function type.

User Response: Check that the correct identifier is
specified or remove the keyword.

CBC3692 Both ″main ″ and ″WinMain ″ are defined
in this compilation unit. Only one of
them is allowed.

Explanation: In each compilation unit, only one of
″main″ and ″WinMain″ is allowed.

User Response: Remove either ″main″ or ″WinMain″.

CBC3693 The &1 keyword conflicts with a
previously specified keyword.

Explanation: The keyword conflicts with another
keyword specified in the same declaration.

User Response: Remove one of the keywords.

CBC3694 Option LONGNAME is turned on
because a qualifier is specified on the
CSECT option.

Explanation: Option LONGNAME is turned on by the
compiler when the CSECT option is specified with a
qualifier.

CBC3708 Only functions or typedefs of functions
can be specified on #pragma linkage
directive.

Explanation: The name specified on #pragma linkage
is not a function.

User Response: Check for typo errors; remove the
#pragma linkage.

CBC3709 Structure members cannot follow
zero-sized array.

Explanation: The zero-sized array must be the last
member in the structure.

User Response: Remove members that occur after
the zero-sized array.

568 OS/390 V2R6.0 C/C++ User’s Guide

CBC3710 Option &1 ignored because option &2
specified.

CBC3711 Option &1 ignored.

CBC3712 Duplicate function specifier ″&1″
ignored. (where ″&1″ is the function
specifier that was duplicated.)

CBC3713 Keyword ″&1″ is not allowed. (where
″&1″ is a keyword which is not allowed
in this context.)

CBC3714 #include searching for file &1. (where
The preprocessor is searching for the
specified include file.)

CBC3715 Storage class &1 cannot be used for
structure members.

Explanation: The storage class is not appropriate for
this declaration. Restrictions include: 1) Storage class
specifier not allowed on aggregate members, casts,
sizeof or offsetof declarations. 2) Declarations at file
scope cannot have ’register’ or ’auto’ storage class.

User Response: Specify a different storage class.

CBC3717 Only external data and functions can
be declared as export or import.

Explanation: Either the _Export or _Import keyword,
or #pragma export or #pragma import was used with
data or a function which is not external.

CBC3721 The ″&1″ qualifier is not supported on
the target platform.

Explanation: The specified qualifier is not supported
on the target platform and will have no effect.

CBC3722 #pragma linkage &1 ignored for
function &2.

Explanation: A conflicting linkage type, or a #pragma
environment, has been specified for this function.

User Response: Check what has been specified
before and remove the conflicts.

CBC3723 #pragma environment is ignored
because function &1 already has
linkage type &2.

Explanation: A pragma linkage has already been
specified and used for this function, and is in conflict
with the pragma environment directive. The latter is
ignored.

User Response: Remove the pragma linkage or
environment directive.

CBC3724 Undefined identifier ″&1″ was
referenced in #pragma &2 directive.

Explanation: A #pragma is referring to an identifier
that has not been defined.

User Response: Define the identifier or remove the
#pragma.

CBC3728 Operation between types ″&1″ and ″&2″
is not recommended.

Explanation: The operation specified is improper
between the operands having the given types.
(Accepted.)

User Response: Either change the operator or the
operands.

CBC3729 ″&1″ must not be declared inline or
static.

Explanation: Although ″&1″ is not a keyword, it is a
special function that cannot be inlined or declared as
static.

User Response: Remove the inline or static specifier
from the declaration of ″&1″.

CBC3730 The pragma is accepted by the
compiler. The pragma will have no
effect.

Explanation: The pragma is not supported by this
compiler.

User Response: The pragma can be removed if
desired.

CBC3731 The &1 keyword is not supported on
the target platform. The keyword is
ignored.

Explanation: The specified keyword is not supported
on the target platform and will have no effect.

CBC3732 #pragma &1 is not supported on the
target platform.

Explanation: The specified #pragma is not supported
on the target platform and will have no effect. See the
C/C++ Language Reference for the list of valid #pragma
directives.

User Response: Change or remove the #pragma
directive.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 569

CBC3733 Processing #include file &1.

Explanation: This message traces #include file
processing.

User Response: No response required.

CBC3735 Suboption &1 of &2 ignored because
&3 is specified.

Explanation: Suboption &1 of &2 cannot be specified
with option &3. &1 is ignored.

User Response: Remove the suboption &1 or the
option &3.

CBC3736 &1 conflicts with previous &2
declaration.

Explanation: The compiler cannot resolve the
conflicting declarations.

User Response: Remove one of the declarations.

CBC3737 The preprocessor macro ″&1″ was
expanded inside a pragma directive.

Explanation: A macro was expanded in the context of
a pragma directive. Please ensure that this is the
desired result.

User Response: Ensure that the macro was intended
for expansion.

CBC3739 Cannot create/use precompiled header
file because of memory address space
conflict. GENPCH/USEPCH options are
ignored.

Explanation: (1) If this a USEPCH compile, the PCH
address space (heap area) is not the same as in the
GENPCH compile. (2) If this is a GENPCH compile, the
persistent heap area is full. In either case, the
compilation will continue by ignoring the GENP/USEP
options.

User Response: (1) If this is a USEP compile, make
sure all the options/pragmas are the same as in
GENPCH compile, and the run time environment of the
compiler is the same (e.g. region size). (2) If this is a
GENP compile, try to reduce the number/size of
#include files in the initial sequence.

CBC3740 Timestamp information is not available
for #include header file. &1

Explanation: Timestamp information must be present
in ALL #include header files when using PCH.
Timestamp is absent in sequential datasets, and maybe
absent PDS.

User Response: Change any sequential dataset
header files into a PDS member. Make sure all PDS

member header files contain timestamp information.

CBC3741 Cannot use precompiled header file
because #pragmas mismatch before
the Initial Sequence.

Explanation: #pragmas appearing before the Initial
Sequence must be the same between the GENP and
USEP compile.

User Response: Make sure the #pragmas before the
Initial Sequence are the same. Use GENPCH to
regenerate the PCH file would also solve the problem.

CBC3750 Value of enumeration constant must be
in range of signed long.

Explanation: If an enum constant is initialized in the
definition of an enum tag, the initial value must be an
integral expression that has a value representable as an
long.

User Response: Remove the initial value, or ensure
that it is an integral constant expression that has a
value representable as an long.

CBC3751 Value of enumeration constant must be
in range of unsigned long.

Explanation: If an enum constant is initialized in the
definition of an enum tag, the value that it is initialized
to must be an integral expression that has a value
representable as an long.

User Response: Remove the initial value, or ensure
that it is an integral constant expression that has a
value representable as an long.

CBC3752 Number of enumerator constants
exceeds &1.

Explanation: The number of enumerator constant
must not exceed the value of &1.

User Response: Remove additional enum constants.

CBC3754 The parameter type is not valid for a
function of this linkage type

Explanation: The linkage type of the function puts
certain restrictions on the parameter type, on which the
function definition violated.

User Response: Check the linkage type restrictions
and change the parameter type.

CBC3755 The &1 option is not supported in this
release.

Explanation: The specified option is not supported in
this release.

User Response: Remove the option.

570 OS/390 V2R6.0 C/C++ User’s Guide

CBC3805 String literal exceeded the compiler
limit of &1.

Explanation: String literal size cannot be larger than
the compiler limit

User Response: Reduce the size of the string literal.

CBC3807 Incompatible specifications for options
-qarch and -q&1 (or environment
variable OBJECT_MODE)

Explanation: The values specified for the -qarch and
the -q32/64 options (or OBJECT MODE) are not
compatible.

User Response: Change option values.

CBC3808 Long type bitfields may change
behaviour in future 64-bit mode. Long
type bitfields currently default to int.

Explanation: Long type bitfields currently default to
int, but may change in future.

User Response: Try to use int type bitfields.

CBC3809 Incompatible specifications for options
-qtune and -q&1 (or environment
variable OBJECT_MODE)

Explanation: The values specified for the -qtune and
the -q32/64 options (or OBJECT MODE) are not
compatible.

User Response: Change option values.

CBC3810 #pragma runopts syntax (&1): &2

Explanation: Syntax error in the pragma. The
suboption syntax is the same as the corresponding LE
runtime option. Please refer to the LE manual for details
of the CEEnnnn message number.

User Response: Correct the syntax error.

CBC3811 Option &1 forces &2 to take effect.

Explanation: The first option in the message forces
the second one to take effect. Specify the second option
explicitly to suppress this message.

User Response: Specifiy the second option explicitly.

CBC3812 Option FLOAT(BFP) may cause slow
execution time when use with ARCH
less than 3.

Explanation: Binary floating point operations (BFP)
needs hardware architecture (ARCH option) of 3 or
higher. For ARCH less than 3, BFP will work on OS
level V2R6 or higher, which provides software

emulation, but will significantly slow down the execution
time.

User Response: If the target hardware architecture is
3 or higher, specify it explicitly in ARCH.

CBC3813 Option FLOAT(AFP) may cause slow
execution time when use with ARCH
less than 3.

Explanation: The AFP suboption needs hardware
architecture (ARCH option) of 3 or higher. For ARCH
less than 3, BFP will work on OS level V2R6 or higher,
which provides software emulation, but will significantly
slow down the execution time.

User Response: If the target hardware architecture is
3 or higher, specify it explicitly in ARCH.

CBC5001 Internal compiler error at procedure
&1.

Explanation: An error occurred during compilation.
See the C/370 Diagnosis Guide for a description of
what to do.

CBC5002 Virtual storage exceeded.

Explanation: The compiler ran out of memory trying to
compile the file. This sometimes happens with large
files or programs with large functions. Note that very
large programs limit the amount of optimization that can
be done.

User Response: Shut down any large processes that
are running, ensure your swap path is large enough,
turn off optimization, and redefine your virtual storage to
a larger size. You can also divide the file into several
small sections or shorten the function.

CBC5003 &1. (where &1 General message *CHAR
100)

Explanation: General error message.

User Response: General error message.

CBC5004 Object cannot be declared as a pointer
to a function.

User Response: Remove or change the declaration.

CBC5005 Parameter cannot be a pointer to a
function.

Explanation: The address of a function is being
passed as a function parameter. Unpredictable results
can occur depending on how this address is used.

User Response: If necessary, remove the function
pointer parameter.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 571

CBC5006 A function call cannot be made using a
function pointer.

User Response: Remove the call.

CBC5007 The reference to external name &1
cannot be resolved.

Explanation: It is invalid to reference a function that is
defined in another file, in an expression other than a
function call.

User Response: Remove the invalid reference.

CBC5008 Function name &1 does not have a
length of four bytes.

Explanation: Function having storage class extern
must have four-character names.

User Response: Change the function, and all
references, to have a four-character name or use
#pragma map to map the name to a four-character
name.

CBC5009 Total program size cannot exceed 4096
bytes. Total program size is &1 bytes.

User Response: Reorganize (split, delete, etc.) the
source program so that the total size does not exceed
4096 bytes.

CBC5010 Storage cannot be statically initialized
to the address of the function &1.

Explanation: It is invalid to statically initialize storage
with the address of a function that is not defined in the
current compilation.

User Response: Correct the invalid initialization.

CBC5011 Variable cannot be defined externally.

Explanation: It is invalid to declare a variable having
the storage class extern.

User Response: Correct the invalid declaration.

CBC5013 Static function &1 cannot have a
#pragma linkage.

Explanation: #pragma linkage cannot be applied to
static functions.

User Response: Remove the #pragma linkage
statement.

CBC5014 Function &1 cannot have a #pragma
linkage type N.

Explanation: #pragma linkage type N cannot apply to
defined C functions.

User Response: Remove the #pragma linkage
statement.

CBC5015 Parameter of type struct might cause
stack space to overflow.

Explanation: A function parameter of type struct adds
to the size of stack and can potentially cause the stack
to overflow.

User Response: Pass the structure by address using
the address (&) operator to reduce stack size.

CBC5016 Size of automatic storage cannot
exceed 4096 bytes. Function &1 has &2
bytes of automatic storage.

Explanation: The 4096 byte limit of automatic storage
has been exceeded in function &1.

User Response: Reduce the number and size of the
auto variables in the function.

CBC5017 Total static size of &1 bytes exceeds
the allowed maximum of 4096 bytes.

Explanation: The 4096 byte limit of static storage has
been exceeded.

User Response: Reduce the number and size of the
static variables.

CBC5018 ’main’ cannot be used as a function
name.

Explanation: The function ’main’ is not supported in
this environment.

User Response: Remove or rename the function
’main’.

CBC5031 Unable to open &1.

User Response: Ensure file exists.

CBC5032 Unable to read &1. (where &1 file
*CHAR 100)

Explanation: The compiler encountered an error while
reading from the specified file.

CBC5033 Unable to write to &1. (where &1 file
*CHAR 100)

User Response: Ensure that the disk drive is not in
an error mode and that there is enough disk space left.

572 OS/390 V2R6.0 C/C++ User’s Guide

CBC5034 Read/write pointer initialization of
read-only object &1 is not valid.

User Response: Modify the code so that the pointer is
initialized with a read-only value or make the pointer
read-write.

CBC5051 Function specified exceeds size limit:

Explanation: The ACU for the function exceeds the
LIMIT specified in the INLINE suboption.

User Response: Increase LIMIT if feasible to do so.

CBC5052 Function specified is (or grows) too
large to be inlined:

Explanation: This occurs when a function is too large
to be itself inlined into another function.

User Response: Use #pragma inline if feasible to do
so.

CBC5053 Some calls to function specified
cannot be inlined:

Explanation: At least one call is either directly
recursive, or the wrong number of parameters were
specified.

User Response: Check all calls to the function
specified and make that number of parameters match
the function definition.

CBC5054 Automatic storage for function
specified increased to over

Explanation: The size of automatic storage for
function increased by at least 4 KB due to inlining.

User Response: If feasible to do so, prevent inlining
functions which have large auto storage on.

CBC5055 Parameter area overflow while
compiling &1. Parameter area size
exceeds the allowable limit of &2.

Explanation: The parameter area for a function
resides in the first 4K of automatic storage for that
function. This message indicates that the parameter
area cannot fit into 4K.

User Response: Reduce the size of the parameter
area by passing fewer parameters or by passing the
address of a large structure rather than the structure
itself.

CBC5057 &1 section size cannot exceed
16777215 bytes. Total section size is
&2 bytes.

Explanation: A Data or Code section cannot exceed
16M in size.

User Response: Partition input source files into
multiple source files which can be compiled separately.

CBC5101 Maximum spill size of &2 is exceeded
in function &1.

Explanation: Spill size is the size of the spill area.
Spill area is the storage allocated if the number of
machine registers is not sufficient for program
translation.

User Response: Reduce the complexity of the
program and recompile.

CBC5102 Spill size for function &1 is not
sufficient. Recompile specifying option
SPILL(n) where & 2 < n <= &3.

Explanation: Spill size is the size of the spill area.
Spill area is the storage allocated if the number of
machine registers is not sufficient for program
translation.

User Response: Recompile using the SPILL(n) option
&2 < n <= &3 or with a different OPT level.

CBC5103 Internal error while compiling function
&1. &2.

Explanation: An internal compiler error of low severity
has occurred.

User Response: Contact IBM support and/or compile
with a different OPT level.

CBC5104 Internal error while compiling function
&1. &2. Compilation ended.

Explanation: An internal compiler error of high
severity has occurred.

User Response: Contact IBM support, prepared to
quote the text of this message.

CBC5105 Constant table overflow compiling
function &1. Compilation ended.

Explanation: Constant table is the table that stores all
the integer and floating point constants.

User Response: Reduce the number of constants in
the program and recompile.

CBC5106 Instruction in function &1 on line &2 is
too complex. Compilation ended.

Explanation: The specified instruction is too complex
to be optimized.

User Response: Reduce the complexity of the
instruction and recompile, or recompile with a different
OPT level.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 573

CBC5107 Program too complex in function &1.

Explanation: The specified function is too complex to
be optimized.

User Response: Reduce the complexity of the
program and recompile, or recompile with a different
OPT level.

CBC5108 Expression too complex in function
&1. Some optimizations not performed.

Explanation: The specified expression is too complex
to be optimized.

User Response: Reduce the complexity of the
expression or compile with a different OPT level

CBC5109 Infinite loop detected in function &1.
Program may not stop.

Explanation: An infinite loop has been detected in the
given function.

User Response: Recode the loop so that it will end if
desired.

CBC5110 Loop too complex in function &1.
Some optimizations not performed.

Explanation: The specified loop is too complex to be
optimized.

User Response: None

CBC5111 Division by zero detected in function
&1. Runtime exception may occur.

Explanation: A division by zero has been detected in
the given function.

User Response: Recode the expression to eliminate
the divide by zero if desired.

CBC5112 Exponent is non-positive with zero as
base in function &1. Runtime exception
may occur.

Explanation: This is a possible floating-point divide by
zero.

User Response: Recode the expression to eliminate
the divide by zero if desired.

CBC5113 Unsigned division by zero detected in
function &1. Runtime exception may
occur.

Explanation: A division by zero has been detected in
the given function.

User Response: Recode the expression to eliminate
the divide by zero if desired.

CBC5114 Internal error while compiling function
&1. &2.

Explanation: An internal compiler error of low severity
has occurred.

User Response: Contact IBM support and/or compile
with a different OPT level.

CBC5115 Control flow too complex in function
&1; number of basic blocks or edges
exceeds &2.

Explanation: Basic blocks are segments of executable
code without control flow. Edges are the possible paths
of control flow between basic blocks.

User Response: Reduce the complexity of the
program and recompile.

CBC5116 Too many expressions in function &1;
number of symbolic registers exceeds
&2.

Explanation: Symbolic registers are the internal
representation of the results of computations.

User Response: Reduce the complexity of the
program and recompile.

CBC5117 Too many expressions in function &1;
number of computation table entries
exceeds &2.

Explanation: The computation table contains all
instructions generated in the translation of a program.

User Response: Reduce the complexity of the
program and recompile.

CBC5118 Too many instructions in function &1;
number of procedure list entries
exceeds &2.

Explanation: The procedure list is the list of all
instructions generated by the translation of each
subprogram.

User Response: Reduce the complexity of the
program and recompile.

CBC5119 Number of labels in function &1
exceeds &2.

User Response: Reduce the complexity of the
program and recompile.

CBC5120 Too many symbols in function &1;
number of dictionary entries exceeds
&2.

User Response: Compile the program at a lower level
of optimization or simplify the program by reducing the

574 OS/390 V2R6.0 C/C++ User’s Guide

number of variables or expressions.

CBC5121 Program is too complex in function &1.
Specify MAXMEM option value greater
than &2.

Explanation: Some optimizations not performed.

User Response: Recompile specifying option
MAXMEM with the suggested value for additional
optimization.

CBC5122 Parameter area overflow while
compiling &1. Parameter area size
exceeds &2.

User Response: Reduce the size of the parameter
area by passing fewer parameters or by passing the
address of a large structure rather than the structure
itself.

CBC5123 Spill size for function &1 is exceeded.
Recompile specifying option SPILL(n)
where & 2 < n <= &3 for faster spill
code.

Explanation: Spill size is the reserved size of the
primary spill area. Spill area is the storage allocated if
the number of machine registers is not sufficient for
program translation.

User Response: Recompile using the SPILL(n) option
&2 < n <= &3 for improved spill code generation.

CBC5124 Source line &1 creates a dependency
on general purpose register 12.

Explanation: The indicated source line has caused
code to be generated which assumes that general
purpose register 12 is loaded with the address of the LE
run-time CAA. The code is using a function which is not
supported in a stand-alone environment. &1 is the
source line number. The code is generated but may
cause unpredictable results.

User Response: Ensure that only functions which are
supported in a stand-alone environment are used.

CBC5125 User-defined prolog/epilog is of 0 size.

Explanation: No code resulted from the assembly of a
user-defined prolog or epilog. The code is generated but
may cause unpredictable results.

User Response: Ensure that the prolog or epilog
macro is coded correctly.

CBC5126 An error occurred while building a
user-defined prolog/epilog.

Explanation: A prolog or epilog macro caused an
error when being assembled by High Level Assembler.
Processing for the prolog or epilog macro is terminated.

User Response: Refer to the message(s) produced by
High Level Assembler for details. These can be found in
the section of the compiler listing generated bu the LIST
option.

CBC5127 Unsupported use of ORG statement in
user-defined prolog/epilog.

Explanation: A prolog or epilog macro contained an
ORG statement which attempted to set the location
counter to a position prior to the current location. Only
ORGs with a value greater than or equal to the current
location counter are supported. Processing for the
prolog or epilog macro is terminated.

User Response: Modify the prolog or epilog macro to
eliminate any ORG statements that attempt to reposition
the location counter to a previous point in the code.

CBC5128 Multiple CSECTs not supported in
user-defined prolog/epilog.

Explanation: A CSECT statement was found in a
prolog or epilog macro with a label other than
@@EDSASM. Processing for the prolog or epilog
macro is terminated.

User Response: Change the label to @@EDSASM or
remove the CSECT statement.

CBC5129 Unsupported use of non-integral
byte-sized data in user-defined
prolog/epilog.

Explanation: A bit field was not a multiple of 8 bits,
resulting in non-integral byte-sized data. Processing for
the prolog or epilog macro is terminated.

User Response: Only bit fields which result in an
integral number of bytes (a multiple of 8 bits) are
supported. Provide padding as necessary.

CBC6000 Option ″&1″ is not recognized. (where
&1 is the option name)

Explanation: An invalid option was specified.

User Response: Correct the spelling of the option.

CBC6001 Suboption ″&1″ of option ″&2″ is not
supported. (where &2 is the option
name. &1 is the suboption name.)

Explanation: The invocation option contained an
unsupported suboption.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 575

User Response: Change the suboption. Check the
syntax of the suboption.

CBC6002 Required parameters for option ″&1″
are not specified. (where &1 is the
option name)

Explanation: This option requires that one or more
parameters be specified.

User Response: Specify appropriate parameters for
the option. Check the option syntax for details.

CBC6003 Parameter ″&1″ of option ″&2″ is not
supported. (where &2 is the option
name. &1 is the option parameter.)

Explanation: The parameter for the specified option
has invalid syntax.

User Response: Change the option parameter. Check
the syntax of the option parameter.

CBC6004 Option ″&1″ parameter error; ″&2″ is
not a digit. (where &1 is the option
name. &2 is invalid character.)

Explanation: A non-numeric character was found in
the option parameter.

User Response: Change the option parameter. Check
the syntax of the option.

CBC6005 ″&1″ is not a decimal number. (where
&1 is the invalid character.)

Explanation: A non-numeric character was found in
the option parameter.

User Response: Change the option parameter. Check
the syntax of the option.

CBC6010 ″&1″ requires ″&2″ suboptions to be
specified. ″&3″ are specified. (where &1
is the option name. &2 is the number
of options expected. &3 is the number
of options specified.)

Explanation: An incorrect number of suboptions was
specified for this option. The message identifies the
number of suboptions the compiler expected and the
number it actually found.

User Response: Ensure the correct number of
suboptions are specified.

CBC6011 At most ″&2″ suboptions must be
specified for &1. ″&3″ are specified.
(where &1 is the option name. &2 is the
number of options expected. &3 is the
number of options specified.)

Explanation: Too many suboptions were specified for
this option.

User Response: Ensure that the maximum number of
suboptions is not exceeded.

CBC6012 ″&1″ requires at least ″&2″ suboptions
to be specified. ″&3″ are specified.
(where &1 is the option name. &2 is the
number of options expected. &3 is the
number of options specified.)

Explanation: Not enough suboptions were specified
for this option.

User Response: Ensure that the minimum number of
suboptions are specified.

CBC6013 Suboptions ″&1″ and ″&2″ of option
″&3″ conflict. (where &3 is the option
name. &1 and &2 are the suboption
names.)

User Response: Determine which suboption is
required. Remove the other suboption to eliminate the
conflict.

CBC6020 Option ″&1″ is turned on because
option ″&2″ is specified. (where &1 and
&2 are both option names.)

Explanation: If you specify option &2, the compiler
turns on option &1 to achieve a better options
combination.

User Response: Specify option &1 to eliminate this
message.

CBC6021 Option ″&1″ is ignored because option
″&2″ was specified. (where &1 and &2
are both option names.)

Explanation: Specifying the second option indicated
means the first has no effect.

User Response: Remove one of the options.

CBC6022 Option ″&1″ is not supported for IPA
processing. (where &1 is an option
name.)

Explanation: The specified option (or corresponding
#pragma) is not supported for an IPA compilation.
Processing is terminated.

User Response: Correct the option or #pragma
specification, as appropriate.

576 OS/390 V2R6.0 C/C++ User’s Guide

CBC6023 Option ″&1″ has been promoted to
″&2″ because option ″&3″ was
specified. (where &1, &2 and &3 are all
option names.)

Explanation: Specifying the &3 option caused
sufficient information to be available to support the &2
option instead of the &1 option.

User Response: None

CBC6030 &1 (where &1 is the detailed message
text.)

Explanation: General informational message.

CBC6031 &1 (where &1 is the detailed message
text.)

Explanation: General warning message.

CBC6032 &1 (where &1 is the detailed message
text.)

Explanation: General error message.

CBC6033 &1 (where &1 is the detailed message
text.)

Explanation: General severe error message.

CBC6050 IPA Link control file: Syntax error.

Explanation: A syntax error was detected in the IPA
Link control file. Processing is terminated.

User Response: Correct the IPA Link control file
syntax.

CBC6051 IPA Link control file: Unmatched quote.

Explanation: A quoted string representing a directive
operand was detected in the IPA Link control file, but
this string was not terminated by a matching quote
before the end of file. Processing is terminated.

User Response: Correct the IPA Link control file
operand syntax.

CBC6052 IPA Link control file: Directive ″&1″ is
incorrect. (where &1 is the directive in
error.)

Explanation: An incorrectly specified directive was
detected in the IPA Link control file. The directive is
ignored, and processing continues.

User Response: Correct the specified directive in the
IPA Link control file.

CBC6053 IPA Link control file: &1. (where &1 is
the detailed message text.)

Explanation: An error was detected in the IPA Link
control file. Processing is terminated.

User Response: Correct the specified IPA Link control
file error.

CBC6059 IPA Link control file: INTERNAL
COMPILER ERROR - &1. (where &1 is
the detailed message text.)

Explanation: An internal compiler error occurred
during processing of the IPA Link control file.

User Response: Contact your Service Representative
and provide the detailed message text.

CBC6060 CSECT name entry &1 (″&2″) is not
unique. It conflicts with entry &3.
(where &1 and &3 are CSECT name
entry numbers, &2 is the CSECT name
entry.)

Explanation: The specified CSECT name prefix entry
in the IPA Link control file duplicates an previous
CSECT name prefix entry.

User Response: Provide a unique value for the
CSECT name prefix that caused the conflict.

CBC6061 A CSECT name prefix is not specified
for partition &1. The CSECT option is
active. (where &1 is the number of the
current partition.)

Explanation: The CSECT option is active, which
requires that a CSECT name prefix entry be specified in
the IPA Link control file for each partition in the
generated object module. A system-generated name
prefix has been provided for the current partition.

User Response: Provide one or more additional
CSECT name prefixes so that each partition will have a
unique name.

CBC6062 A CSECT name prefix is not specified
for partition &1. (where &1 is the
number of the current partition.)

Explanation: One or more CSECT name prefixes
were specified in the IPA Link control file, but there were
insufficient entries for all partitions in the generated
object module. The CSECT option is not active, so
these missing names are not considered an error. A
system-generated name prefix has been provided for
the current partition.

User Response: Provide one or more additional
CSECT name prefixes so that each partition will have a
unique name.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 577

CBC6100 No object files were specified as input
to the IPA Link step.

Explanation: No object files were specified for IPA
Link step processing.

User Response: Specify at least one object file.

CBC6101 No IPA object was found.

Explanation: IPA object information was not found
during IPA Link step processing.

User Response: Ensure that the appropriate object
files include IPA object information.

CBC6102 IPA object information is missing ″&1″
records. (where &1 is an object record
type.)

Explanation: A damaged IPA object file was
encountered during IPA Link step processing.

User Response: Recompile the source file and retry
IPA Link step processing. If the problem persists, call
your Service Representative.

CBC6103 IPA object information has invalid ″&1″
record. (where &1 is an object record
type.)

Explanation: A damaged IPA object file was
encountered during IPA Link step processing.

User Response: Recompile the source file and retry
IPA Link step processing. If the problem persists, call
your Service Representative.

CBC6104 Object information is missing ″&1″
records. (where &1 is an object record
type.)

Explanation: A damaged non-IPA object file was
encountered during IPA Link step processing.

User Response: Recompile the source file and retry
IPA Link step processing. If the problem persists, call
your Service Representative.

CBC6105 Object information has an invalid ″&1″
record. (where &1 is an object record
type.)

Explanation: A damaged non-IPA object file was
encountered during IPA Link step processing.

User Response: Recompile the source file and retry
IPA Link step processing. If the problem persists, call
your Service Representative.

CBC6106 An error was encountered during
object information processing. (where
&1 is an object record type.)

Explanation: A damaged or incompatible object file
was encountered during IPA Link step processing.

User Response: Recompile the source file and retry
IPA Link step processing. If the problem persists, call
your Service Representative.

CBC6107 ″&1″ is not the first symbol on the
object record. (where &1 is an object
record type.)

Explanation: A damaged IPA object file was
encountered during IPA Link step processing.

User Response: Recompile the source file and retry
IPA Link step processing. If the problem persists, call
your Service Representative.

CBC6108 Object information has incorrect
format.

Explanation: An object file with an incorrect format
was encountered during IPA Link step processing.

User Response: Recompile the source file and retry
IPA Link step processing. If the problem persists, call
your Service Representative.

CBC6109 Generated file is too big. Reduce
partition size or turn off IPA.

Explanation: The file generated by IPA exceeds
encoding limits.

User Response: Relink with a reduced partition size
or without IPA.

CBC6110 ″&1″ IPA Link control statement has no
specifications. (where &1 is either
INCLUDE, LIBRARY, or IMPORT.)

Explanation: An IPA Link control statement object
record without any specifications was encountered
during processing. The record is ignored. Processing
continues.

User Response: If the IPA Link control statement is
required, provide appropriate INCLUDE, LIBRARY, or
IMPORT specifications and repeat the step. If the
record is not required, the warning message can be
removed by deleting the invalid record.

CBC6111 Invalid syntax specified on ″&1″ IPA
Link control statement. (where &1 is
either INCLUDE, LIBRARY, IMPORT, or
UNKNOWN.)

Explanation: An IPA Link control statement object
record with invalid syntax was encountered during

578 OS/390 V2R6.0 C/C++ User’s Guide

processing. The record is processed up to the syntax
error and the remainder of the record is ignored.
Processing continues. If unmatched quotes were
encountered, the IPA LINK control statement type will
be listed as ″UNKNOWN″.

User Response: If the IPA Link control statement is
required, correct the syntax errors and repeat the step.
If the record is not required, the warning message can
be removed by deleting the invalid record.

CBC6112 Continuation record missing for ″&1″
IPA Link control statement. (where &1
is the IPA Link control statement type.)

Explanation: An IPA Link control statement object
record of type &1 was encountered with the continuation
column set, but there was no subsequent record or the
subsequent record was not a valid continuation record.
The record is ignored and processing continues.

User Response: Add the appropriate continuation
record, or set continuation column 72 to blank if no
continuation record is required.

CBC6113 Continuation records not allowed for
″&1″ IPA Link control statement. This
statement was ignored. (where &1 is
the IPA Link control statement type.)

Explanation: An IPA Link control statement of type &1
had a nonblank character in column 72. Information for
a statement of this type must be specified in one record,
so continuation of this record is not valid. The statement
is ignored and IPA Link step processing continues.

User Response: Correct the record if necessary, set
continuation column 72 to blank, and repeat the step.

CBC6114 More than one ″&1″ IPA Link control
statement found. (where &1 is the IPA
Link control statement type.)

Explanation: More than one IPA Link control
statement object record of type &1 was encountered
during the processing of &2.

User Response: No recovery is necessary unless the
incorrect IPA Link control statement is selected by IPA
Link error recovery, or incorrect processing was
performed. In this case, remove the offending record
and repeat the step.

CBC6115 ″&1″ IPA Link control statement is
ignored. (where &1 is the control
statement type.)

Explanation: An IPA Link control statement of type &1
was found to be invalid. The record is ignored and
processing continues.

User Response: Correct the record if necessary, set
continuation column 72 to blank, and repeat the step.

CBC6116 An error occurred processing the ″&1″
IPA Link control statement. (where &1
is either INCLUDE, LIBRARY or
IMPORT.)

Explanation: An error was encountered during
processing of the IPA Link control statement. The record
is ignored and processing continues.

User Response: Ensure that the files referenced by
this IPA Link control statement object record are
available and in the correct format. If the problem
persists, call your Service Representative.

CBC6117 ″&1″ IPA Link control statement
specification not supported. (where &1
is either INCLUDE, LIBRARY, or
IMPORT.)

Explanation: An IPA Link control statement with a
specification syntax that is unsupported by IPA Link was
encountered during processing. The record is processed
up to this specification, and the remainder of the record
is ignored. Processing continues.

User Response: Alter the specification to a format
supported by IPA Link, or remove the specification. If
the record is not required, the warning message can be
removed by deleting the invalid record.

CBC6119 Noobject files used in non-IPA link
step.

Explanation: One or more files generated with
″NOOBJECT″ were being linked directly by the linker.

User Response: Recompile and link with ″OBJECT″
or recompile the file containing the entry point with IPA.

CBC6120 IPA Link control statement has invalid
syntax:

Explanation: An IPA Link control statement object
record (related to DLL resolution) with invalid syntax
was encountered during processing.

User Response: Prelink the DLL and generate a valid
definition side-deck file.

CBC6121 IPA Link control statement not properly
continued:

Explanation: An IPA Link control statement object
record (related to DLL resolution) with the continuation
column set was encountered, but there was no
subsequent record or the subsequent record was not a
valid continuation record. The record is ignored and
processing continues.

User Response: Prelink the DLL and generate a valid
definition side-deck file.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 579

CBC6122 Module name ″&1″ chosen for
generated ″IMPORT″ IPA Link control
statements. (where &1 is a module
name.)

Explanation: The default name TEMPNAME was
assigned to the module in the DLL definition side-deck
file.

User Response: Provide a ″NAME″ IPA Link control
statement.

CBC6125 File ″&1″ is sequential format. The
member name ″&2″ can not be
specified on the ″&3″ IPA Link control
statement. (where &1 is a file name. &2
is a member name. &3 is INCLUDE.)

Explanation: An IPA Link control statement
specification is syntactically correct, but is incorrect for
the sequential file which has been allocated. This
specification is ignored, and processing continues.

User Response: Ensure the file allocation
specification is correct. Correct the file allocation or IPA
Link control statement as necessary and repeat the
step.

CBC6126 File ″&1″ is partitioned format. A
member name must be specified on
the ″&2″ IPA Link control statement.
(where &1 is a file name. &2 is
INCLUDE.)

Explanation: An IPA Link control statement
specification is syntactically correct, but is incorrect for
the partitioned file which has been allocated. This
specification is ignored, and processing continues.

User Response: Ensure the file allocation
specification is correct. Correct the file allocation or IPA
Link control statement as necessary and repeat the
step.

CBC6127 File ″&1″ is sequential format. A
partitioned file or OE archive is
required for a ″&2″ IPA Link control
statement. (where &1 is a file name. &2
is LIBRARY.)

Explanation: An IPA Link control statement
specification is syntactically correct, but the
corresponding file is sequential format. This
specification is ignored, and processing continues.

User Response: Ensure the file allocation
specification is correct. Correct the file allocation as
necessary and repeat the step.

CBC6128 File ″&1″ is sequential format. A
partitioned file or OE archive is
required for Autocall processing.
(where &1 is a file name.)

Explanation: The specified file is allocated to a
sequential file, and is unavailable for autocall
processing.

User Response: Ensure the file allocation
specification is correct. Correct the file allocation as
necessary and repeat the step.

CBC6130 A ″RENAME″ IPA Link control
statement can not be used for short
name ″&1″. (where &1 is a short name.)

Explanation: A ″RENAME″ IPA Link control statement
object record that attempted to rename a short name &1
to another name was encountered. ″RENAME″
statements are only valid for long names for which there
are no corresponding short names. The ″RENAME″
statement is ignored and processing continues.

User Response: The warning message can be
removed by deleting the invalid ″RENAME″ statement.

CBC6131 Multiple ″RENAME″ IPA Link control
statements are found for ″&1″. The first
valid one is used. (where &1 is a
name.)

Explanation: More than one ″RENAME″ IPA Link
control statement object record was encountered for
name &1. The first ″RENAME″ statement with a valid
output name is chosen. The ″RENAME″ statement is
ignored and processing continues.

User Response: Specify the IPA(LINK,MAP) option
during processing. Examine the :q.Object File Map:eq.
section of the listing to determine which output name
was chosen. If it was not the intended name, remove
the duplicate ″RENAME″ statements and repeat the
step.

CBC6132 May not ″RENAME″ long name ″&1″ to
another long name ″&2″. (where &1 and
&2 are both long names.)

Explanation: A ″RENAME″ IPA Link control statement
object record that attempted to rename a long name &1
to another long name &2 was encountered. The
″RENAME″ statement is ignored and processing
continues.

User Response: Specify the IPA(LINK,MAP) option
during processing. Examine the :q.Object File Map:eq.
section of the listing to determine which output name
was chosen. If it was not the intended name, replace
the invalid ″RENAME″ statement with a valid output
name and repeat the step. The warning message can
be removed by deleting the invalid RENAME statement.

580 OS/390 V2R6.0 C/C++ User’s Guide

CBC6133 May not ″RENAME″ defined long name
″&1″ to defined name ″&2″. (where &1
is a long name. &2 is a defined name.)

Explanation: A ″RENAME″ IPA Link control statement
object record that attempted to rename a defined long
name &1 to another defined name &2 was encountered.
The ″RENAME″ statement is ignored and processing
continues.

User Response: Specify the IPA(LINK,MAP) option
during processing. Examine the :q.Object File Map:eq.
section of the listing to determine which output name
was chosen. If it was not the intended name, replace
the invalid ″RENAME″ statement with a valid output
name and repeat the step. The warning message can
be removed by deleting the invalid RENAME statement.

CBC6134 ″RENAME″ of ″&1″ to ″&2″ is ignored
since ″&2″ is the target of another
″RENAME″. (where &1 is a long name.
&2 is a defined name.)

Explanation: Multiple ″RENAME″ IPA Link control
statement object records that attempted to rename two
different names to the same name &2 were
encountered. The ″RENAME″ statement is ignored and
processing continues.

User Response: Specify the IPA(LINK,MAP) option
during processing. Examine the :q.Object File Map:eq.
section of the listing to determine which name was
renamed to &2. If it was not the intended name, change
the name and repeat the step. The warning message
can be removed by deleting the extra ″RENAME″
statements.

CBC6140 ″&1″ is mapped to ″&2″ by the
IPA(UPCASE) option. ″&3″ is an
alternative matching definition name.
(where &1, &2 and &3 are names.)

Explanation: ″&1″ is an external symbol reference
that maps to multiple definitions due to the
IPA(UPCASE) option. Definition ″&2″ was selected.
″&3″ is another definition which matches this name, but
was not used.

User Response: If both names (&1 and &2)
correspond to the same object the warning can be
ignored. If the names do not correspond to the same
object or if the warning is to be removed, do one of the
following:

v Change one of the names in the source routine.

v Use #pragma map in the source routine for one of
the names.

CBC6141 ″&1″ is mapped to ″&2″. (where &1 and
&2 are names.)

Explanation: External name ″&1″ has been replaced
by ″&2″. IPA Link processing required a name that was
limited to 8 characters.

User Response: None. If you require a specific
external name for ″&1″, use #pragma map in the
program source. Any additional names that were
mapped to ″&1″ (and hence ″&2″) because of
IPA(UPCASE) will require equivalent #pragma map
statements.

CBC6142 Unable to map ″&1″ and ″&2″ to a
common name during IPA(UPCASE)
processing. (where &1 and &2 are
names.)

Explanation: Due to references by non-IPA objects, a
common external name can not be determined during
IPA(UPCASE) processing. This will occur if both ″&1″
and ″&2″ are referenced by non-IPA objects, or if either
is referenced by non-IPA objects and the common name
is longer than 8 characters.

User Response: Modify the program source so that
the external names are consistent, and 8 characters or
less in length.

CBC6143 Unable to map ″&1″ to ″&2″ within
same Compilation Unit during
IPA(UPCASE) processing. (where &1
and &2 are names.)

Explanation: ″&1″ is an external symbol that maps to
the symbol ″&2″ within the same Compilation Unit due
to the IPA(UPCASE) option. Mapping of symbols in this
manner is not supported.

User Response: Modify the program source so that
the external names are consistent. If IPA(UPCASE)
resolution is desired, split the program source so that
each symbol is defined in a different Compilation Unit.

CBC6150 Invalid C370LIB-directory encountered.

Explanation: The specified library file contains an
invalid or damaged C370LIB-directory.

User Response: Use the C370LIB DIR command to
recreate the C370LIB-directory, and repeat the step.

CBC6151 Library does not contain a
C370LIB-directory.

Explanation: The specified library file does not contain
a C370LIB-directory required to perform the command.

User Response: The library was not created with the
C370LIB command. Use the C370LIB DIR command to
create the C370LIB-directory, and repeat the step.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 581

CBC6152 Member ″&1″ not found in library.
(where &1 is a library member name.)

Explanation: The specified member &1 was not found
in the library. Processing continues.

User Response: Use the C370LIB MAP command to
display the names of library members.

CBC6153 Unable to access library file.

Explanation: An error was encountered during
processing of the specified ″LIBRARY″ IPA Link control
statement. The record is ignored and processing
continues.

User Response: Ensure that the files referenced by
this IPA Link control statement object record are
available and in the correct format. If the problem
persists, call your Service Representative.

CBC6155 &1 sequential files in library ″&2″
allocation were ignored. (where &1 is
the number of sequential files. &2 is a
library DD name.)

Explanation: When the list of files allocated to the
specified DD was extracted, both sequential and
partitioned format files were found. The sequential files
were ignored.

User Response: Correct the library allocation to
eliminate the sequential files.

CBC6160 Invalid symbol table encountered in
archive library.

Explanation: The specified archive library file contains
invalid information in its symbol table. Processing
continues.

User Response: Rebuild the archive library.

CBC6161 Archive library does not contain a
symbol table.

Explanation: The symbol table for the specified
archive library file could not be found.

User Response: Rebuild the archive library.

CBC6170 Unresolved ″IMPORT″ references are
detected.

Explanation: Unresolved objects were encountered at
IPA Link processing termination. Other user objects are
required.

User Response: Specify the IPA(LINK,MAP) option
during processing. Examine the :q.Object Resolution
Warnings:eq. section of the listing to find the objects in
question. To correct unresolved references to user

objects, include the user objects during IPA Link
processing.

CBC6171 Unresolved ″IMPORT″ references are
detected:

Explanation: The listed unresolved objects were
encountered at IPA Link processing termination. Other
user objects are required.

User Response: Specify the IPA(LINK,MAP) option
during processing. Examine the :q.Object Resolution
Warnings:eq. section of the listing to find the objects in
question. To correct unresolved references to user
objects, include the user objects during IPA Link
processing.

CBC6172 Unresolved references could not be
imported.

Explanation: The same symbol was referenced in
both DLL and non-DLL code. The DLL reference could
have been satisfied by an ″IMPORT″ IPA Link control
statement which was processed, but the non-DLL
reference could not.

User Response: Specify the IPA(LINK,MAP) option
during processing. Examine the :q.Object Resolution
Warnings:eq. section of the listing to find the symbols in
question. You must either supply a definition for the
referenced symbol, or use the DLL compiler option to
recompile the code containing the non-DLL reference so
that it becomes a DLL reference.

CBC6173 Unresolved references could not be
imported:

Explanation: The listed symbols were referenced in
both DLL and non-DLL code. The DLL reference could
have been satisfied by an ″IMPORT″ IPA Link control
statement which was processed, but the non-DLL
reference could not.

User Response: You must either supply a definition
for the referenced symbol, or use the DLL compiler
option to recompile the code containing the non-DLL
reference so that it becomes a DLL reference.

CBC6174 Duplicate ″IMPORT″ definitions are
detected.

Explanation: A name referenced in DLL code was not
defined within the application, but more than one
″IMPORT″ IPA Link control statement was detected with
that symbol name. The first one encountered was used.

User Response: Specify the IPA(LINK,MAP) option
during processing. Examine the :q.Object Resolution
Warnings:eq. section of the listing to find the objects in
question, and define these objects once.

582 OS/390 V2R6.0 C/C++ User’s Guide

CBC6175 Duplicate ″IMPORT″ definitions are
detected:

Explanation: The listed objects were defined multiple
times.

User Response: Define these objects once.

CBC6180 Load Module information has invalid
″&1″ record. (where &1 is an Load
Module record type.)

Explanation: A damaged or incompatible Load Module
library member was encountered during IPA Link
processing.

User Response: Recompile the source file and retry
IPA Link processing. If the problem persists, call your
Service Representative.

CBC6181 An error was encountered during Load
Module information processing. (where
&1 is an Load Module record type.)

Explanation: A damaged or incompatible Load Module
library member was encountered during IPA Link
processing.

User Response: Recompile the source file and retry
IPA Link processing. If the problem persists, call your
Service Representative.

CBC6182 Load Module information has incorrect
format.

Explanation: A Load Module library member with an
incorrect format was encountered during IPA Link
processing.

User Response: Recompile the source file and retry
IPA Link processing. If the problem persists, call your
Service Representative.

CBC6183 Program Object file format is not
supported by IPA Link step processing.

Explanation: During the link portion of IPA Link step
processing, an attempt was made to extract object
information from a Program Object file. IPA Link step
processing supports object information in the form of
object modules, and Load Module library members.
Program Object files which are generated by the
Program Management Binder are not supported.

User Response: Repackage the Program Object as
either an object module or a Load Module library
member, and retry IPA Link processing.

CBC6184 IPA Object file ″&1″ has been compiled
with an incompatible version of IPA.

Explanation: The IPA Object format in ″&1″ is
incompatible with the current compiler.

User Response: Recompile the file with the current
compiler.

CBC6185 The correct decryption key for object
file ″&1″ was not specified.

Explanation: The file ″&1″ was encrypted with
different key than the one(s) specified.

User Response: Include the correct key or link without
IPA.

CBC6200 Unresolved references to writable
static objects are detected.

Explanation: Undefined writable static objects were
encountered at IPA Link step processing termination.
Other user objects are required.

User Response: Specify the IPA(LINK,MAP) option
during processing. Examine the :q.Object Resolution
Warnings:eq. section of the listing to find the objects in
question, and include these objects during IPA Link
processing.

CBC6201 Undefined writable static objects are
detected:

Explanation: The listed writable static objects were
undefined at IPA Link processing termination.

User Response: Include these objects during IPA Link
processing.

CBC6202 Unresolved references to writable
static objects are detected:

Explanation: Undefined writable static objects or
unresolved objects referring to writable static objects
were encountered at IPA Link processing termination.
Other user objects are required.

User Response: Include these objects during IPA Link
processing.

CBC6203 Unresolved references to objects are
detected.

Explanation: Unresolved objects were encountered at
IPA Link processing termination. Other user objects are
required.

User Response: Specify the IPA(LINK,MAP) option
during processing. Examine the :q.Object Resolution
Warnings:eq. section of the listing to find the objects in
question. To correct unresolved references to user

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 583

objects, include the required objects during IPA Link
processing.

CBC6204 Unresolved references to objects are
detected:

Explanation: The listed unresolved objects were
encountered at IPA Link processing termination. Other
user objects are required.

User Response: To correct the unresolved references,
include the required objects during IPA Link step
processing.

CBC6205 Unresolved reference to symbol ″&1″.

Explanation: The listed unresolved objects were
encountered at IPA Link processing termination. Other
user objects are required.

User Response: To correct the unresolved references,
include the required objects during IPA Link step
processing.

CBC6206 Unresolved reference to symbol ″&1″.

Explanation: The listed unresolved objects were
encountered at IPA Link processing termination. Other
user objects are required.

User Response: To correct the unresolved references,
include the required objects during IPA Link step
processing.

CBC6210 Duplicate writable static objects are
detected.

Explanation: Writable static objects were defined
multiple times.

User Response: Specify the IPA(LINK,MAP) option
during processing. Examine the :q.Object Resolution
Warnings:eq. section of the listing to find the objects in
question, and define the required objects once.

CBC6211 Duplicate writable static objects are
detected:

Explanation: The listed writable static objects were
defined multiple times.

User Response: Define these objects once.

CBC6212 Duplicate objects are detected.

Explanation: Objects were defined multiple times.

User Response: Specify the IPA(LINK,MAP) option
during processing. Examine the :q.Object Resolution
Warnings:eq. section of the listing to find the objects in
question, and define these objects once.

CBC6213 Duplicate objects are detected:

Explanation: The listed objects were defined multiple
times.

User Response: Define the objects once.

CBC6220 Duplicate writable static object ″&1″ is
detected with different sizes. The
largest size is used. (where &1 is a
writable static object name.)

Explanation: The listed writable static object was
defined multiple times with different sizes. The larger of
the different sizes was used. Incorrect execution could
occur unless the object is defined consistently.

User Response: Define the objects consistently.

CBC6221 Duplicate object ″&1″ is detected with
different sizes. The largest size is
used. (where &1 is an object name.)

Explanation: The listed object was defined multiple
times with different sizes. The larger of the different
sizes is used. Incorrect execution could occur unless
the object is defined consistently.

User Response: Define these objects consistently.

CBC6230 Program entry point not found.

Explanation: After the IPA object files were linked, an
unsuccessful attempt was made to identify the program
entry point (normally the ″main″ function).

User Response: Provide the IPA object file containing
the program entry point.

CBC6231 More than one entry point was found.

Explanation: After the IPA object files were linked,
multiple possible program entry points were found.

User Response: Eliminate the IPA object files
containing the extra program entry points.

CBC6232 Duplicate definition of symbol ″&1″
ignored. (where &1 is the symbol
name.)

Explanation: A duplicate definition of the specified
symbol has been encountered in the specified file. It is
ignored.

User Response: If possible, eliminate the duplicate
symbol definition from the set of input files provided to
the IPA Link step.

584 OS/390 V2R6.0 C/C++ User’s Guide

CBC6233 Duplicate definition of symbol ″&1″ in
import list is ignored. (where &1 is the
symbol name.)

Explanation: A duplicate definition of the specified
symbol has been encountered in an import list in the
specified file. It is ignored.

User Response: Eliminate the duplicate import
definition for the specified symbol.

CBC6240 IPA object files ″&1″ and ″&2″ have
been compiled with differing settings
for the ″&3″ option. (where &1 and &2
are object file names, and &3 is an
option name.)

Explanation: The IPA object files were compiled using
conflicting settings for the specified option. A final
common option setting will be selected. Alternatively, a
common override can be specified during IPA Link
invocation.

User Response: Ensure that the final option setting is
appropriate. The warning message can be removed by
recompiling one or both source files with the same
option setting.

CBC6241 The ″&1″ option will be used. (where &1
is an option name.)

Explanation: This is the final common option setting
selected after IPA object files were found to be in
conflict.

User Response: Ensure that the final option setting is
appropriate. The warning message can be removed by
recompiling one or both source files with the same
option setting.

CBC6242 IPA object files ″&1″ and ″&2″ contain
code targeted for different machine
architectures. (where &1 and &2 are
object file names.)

Explanation: The IPA object files were compiled with
conflicting machine architectures. A final common
machine architecture will be selected.

User Response: Ensure that the final machine
architecture is appropriate. The warning message can
be removed by recompiling one or both source files so
that consistent ARCH options that specify the same
machine architecture are used.

CBC6243 The ″&1″ machine architecture will be
used. (where &1 is a machine
architecture id.)

Explanation: This is the final machine architecture
selected after IPA object files were found to be in
conflict.

User Response: Ensure that the final machine
architecture is appropriate. The warning message can
be removed by recompiling one or both source files so
that consistent ARCH options that specify the same
machine architecture are used.

CBC6244 IPA object files ″&1″ and ″&2″ contain
code targeted for different operating
environments. (where &1 and &2 are
object file names.)

Explanation: The IPA object files were compiled using
conflicting operating environments. A final common
operating environment will be selected.

User Response: Ensure that the final target operating
environment is appropriate. The warning message can
be removed by recompiling one or both source files for
the same operating environment.

CBC6245 The ″&1″ operating environment will be
used. (where &1 is an operating
environment id.)

Explanation: This is the final operating environment
selected after IPA object files were found to be in
conflict.

User Response: Ensure that the final target operating
environment is appropriate. The warning message can
be removed by recompiling one or both source files for
the same operating environment.

CBC6246 IPA object files ″&1″ and ″&2″ were
generated from different source
languages. (where &1 and &2 are
object file names.)

Explanation: The IPA object files were produced by
compilers for different languages. The IPA object has
been transformed as required to handle this situation.

User Response: None.

CBC6247 IPA object files ″&1″ and ″&2″ were
generated by different compiler
versions. (where &1 and &2 are object
file names.)

Explanation: The IPA object files were produced by
different versions of the compiler. The older IPA object
has been transformed to the later version.

User Response: None.

CBC6248 The code page for one or more IPA
object files differs from the code page
″&1″, used during IPA Link processing.
(where &1 is a code page name.)

Explanation: IPA object files contain code page
identification if the LOCALE option is active when they

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 585

are originally compiled. During IPA Link processing with
the LOCALE option active, one or more IPA object files
were encountered that had a code page (specified via
the LOCALE option) which differs from that used during
IPA Link processing. Character data will remain in the
code page in which it was originally compiled.

User Response: None.

CBC6250 Option ″&1″ not available because one
or more IPA object files were compiled
with option ″&2″. (where &1 and &2 are
option names.)

Explanation: The specified option is not available
during code generation for the current partition, because
one or more IPA object files contain insufficient
information to support it. A final common option will be
selected.

CBC6260 Subprogram specified exceeds size
limit: &1 (where &1 is the Subprogram
name.)

Explanation: The ACU for the subprogram exceeds
the LIMIT specified in the INLINE suboption.

User Response: Increase LIMIT if it is feasible to do
so.

CBC6261 Subprogram specified is (or grows) too
large to be inlined: &1 (where &1 is the
subprogram name.)

Explanation: This occurs when a subprogram is too
large to be inlined into another subprogram.

User Response: Use #pragma inline if it is feasible to
do so.

CBC6262 Some calls to subprogram specified
cannot be inlined: &1 (where &1 is the
subprogram name.)

Explanation: At least one call is either directly
recursive, or the wrong number of parameters were
specified.

User Response: Check all calls to the subprogram
specified and make sure that the number of parameters
match the subprogram definition.

CBC6263 Automatic storage for subprogram
specified increased to over &1 bytes:
&2 (where &1 is the automatic storage
limit. &2 is the subprogram name.)

Explanation: The size of automatic storage for
subprogram increased by at least 4 KB due to inlining.

User Response: If feasible to do so, prevent the
inlining of subprograms that have large auto storage.

CBC6265 Inlining of specified subprogram failed
due to the presence of a global label:
&1 (where &1 is the subprogram name.)

Explanation: At least one call could not be inlined due
to the presence of a global label.

User Response: Minimize the use of global labels in
your application. Their presence will inhibit global
inlining.

CBC6266 Inlining of specified subprogram failed
due to the presence of a C++ exception
handler: &1 (where &1 is the
subprogram name.)

Explanation: At least one call could not be inlined due
to the presence of a C++ exception handler.

User Response: Minimize the use of C++ exception
handlers in your application. Their presence will inhibit
global inlining.

CBC6267 Inlining of specified subprogram failed
due to the presence of variable
arguments: &1 (where &1 is the
subprogram name.)

Explanation: At least one call could not be inlined due
to the presence of variable arguments.

User Response: None.

CBC6268 Inlining of subprogram ″&1″ into
subprogram ″&2″ failed due to a
conflict in options settings. (where &1
and &2 are subprogram names.)

Explanation: The specified call could not be inlined
due to incompatible options settings for the IPA object
files that contain the two programs.

User Response: Use compatible options during the
IPA Compile step.

CBC6269 Inlining of subprogram ″&1″ into
subprogram ″&2″ failed due to a type
mismatch in argument ″&3″. (where &1
and &2 are subprogram names. &3 is
the parameter index)

Explanation: The specified call could not be inlined
due to incompatible types for the specified argument
number, where ″&1″ is the first argument.

User Response: Correct the program to use
compatible types for all arguments.

586 OS/390 V2R6.0 C/C++ User’s Guide

CBC6270 Subprogram ″&1″ has been inlined into
subprogram ″&2″. One or more
unexpected extra parameters were
ignored. (where &1 and &2 are
subprogram names.)

Explanation: The specified call was inlined, but one or
more parameters on the call were not required and
were ignored.

User Response: Eliminate the extra parameters.

CBC6271 Subprogram ″&1″ has been inlined into
subprogram ″&2″. One or more
arguments were not supplied, so the
values are undefined. (where &1 and
&2 are subprogram names.)

Explanation: The specified call was inlined, but one or
more parameters were omitted on the call. Values for
these arguments are indeterminate, so the operation of
the subprogram is undefined.

User Response: Specify all parameters actually
required by the called subprogram.

CBC6280 A type mismatch was detected for
symbol ″&1″. (where &1 is a
subprogram name.)

Explanation: An instance of the specified subprogram
was found where one or more parameters were of an
unexpected type.

User Response: Correct the program to use
parameter types compatible with the function definition. .

CBC6281 Function return types ″&1″ and ″&2″
for subprogram ″&3″ do not match.
(where &1 and &2 are return type
names. &3 is a subprogram name.)

Explanation: An instance of the specified subprogram
was found with an unexpected type for the function
return value.

User Response: Correct the program to use a return
type compatible with the function definition.

CBC6299 Some optimizations may be inhibited.

Explanation: During optimization of the IPA object, a
problem was encountered that prevent the use of all
available optimization techniques. These specific
problems are identified in separate messages.

User Response: Correct the problem which inhibits
optimization.

CBC6300 Export symbol ″&1″ not found. (where
&1 is a symbol name.)

Explanation: An ″export″ directive entry for the
specified symbol was present in the IPA Link control file,
but no symbol by this name is present in the application
program.

User Response: Correct the IPA Link control file
directive.

CBC6301 External subprogram ″&1″ not found.
Could not mark as ″pure ″. (where &1 is
a subprogram name.)

Explanation: A ″pure″ directive entry for the specified
subprogram was present in the IPA Link control file, but
no subprogram by this name is present in the
application program.

User Response: Correct the IPA Link control file
directive.

CBC6302 External subprogram ″&1″ not found.
Could not mark as ″isolated ″. (where
&1 is a subprogram name.)

Explanation: A ″isolated″ directive entry for the
specified subprogram was present in the IPA Link
control file, but no subprogram by this name is present
in the application program.

User Response: Correct the IPA Link control file
directive.

CBC6303 External subprogram ″&1″ not found.
Could not mark as ″safe″. (where &1 is
a subprogram name.)

Explanation: A ″safe″ directive entry for the specified
subprogram was present in the IPA Link control file, but
no subprogram by this name is present in the
application program.

User Response: Correct the IPA Link control file
directive.

CBC6304 External subprogram ″&1″ not found.
Could not mark as ″unknown ″. (where
&1 is a subprogram name.)

Explanation: An ″unknown″ directive entry for the
specified subprogram was present in the IPA Link
control file, but no subprogram by this name is present
in the application program.

User Response: Correct the IPA Link control file
directive.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 587

CBC6305 External subprogram ″&1″ not found.
Could not mark as ″low frequency ″.
(where &1 is a subprogram name.)

Explanation: A ″lowfreq″ directive entry for the
specified subprogram was present in the IPA Link
control file, but no subprogram by this name is present
in the application program.

User Response: Correct the IPA Link control file
directive.

CBC6306 External subprogram ″&1″ not found.
Could not mark as ″an exit ″. (where &1
is a subprogram name.)

Explanation: A ″exits″ directive entry for the specified
subprogram was present in the IPA Link control file, but
no subprogram by this name is present in the
application program.

User Response: Correct the IPA Link control file
directive.

CBC6307 EXternal symbol ″&1″ not found. Could
not mark as ″retain ″. (where &1 is a
symbol name.)

Explanation: A ″retain″ directive entry for the specified
symbol was present in the IPA Link control file, but no
symbol by this name is present in the application
program.

User Response: Correct the IPA Link control file
directive.

CBC6310 External subprogram ″&1″ not found.
Could not mark as ″inline ″. (where &1
is a subprogram name.)

Explanation: An ″inline″ directive entry for the
specified subprogram was present in the IPA Link
control file, but no subprogram by this name is present
in the application program.

User Response: Correct the IPA Link control file
directive.

CBC6311 EXternal subprogram ″&1″ not found.
Could not mark as ″do not inline ″.
(where &1 is a subprogram name.)

Explanation: A ″noinline″ directive entry for the
specified subprogram was present in the IPA Link
control file, but no subprogram by this name is present
in the application program.

User Response: Correct the IPA Link control file
directive.

CBC6312 Could not inline calls from ″&1″ to ″&2″
as neither external subprogram was
found. (where &1 and &2 are
subprogram names.)

Explanation: An ″inline″ directive entry for calls
between the specified subprograms was present in the
IPA Link control file, but no subprograms by these
names are present in the application program.

User Response: Correct the IPA Link control file
directive.

CBC6313 Could not inhibit inlining calls from
″&1″ to ″&2″ as neither external
subprogram was found. (where &1 and
&2 are subprogram names.)

Explanation: A ″noinline″ directive entry for calls
between the specified subprograms was present in the
IPA Link control file, but no subprograms by these
names are present in the application program.

User Response: Correct the IPA Link control file
directive.

CBC6314 Could not inline calls from ″&1″ to ″&2″
as external subprogram ″&3″ was not
found. (where &1, &2 and &3 are
subprogram names.)

Explanation: An ″inline″ directive entry for calls
between the specified subprograms was present in the
IPA Link control file, but no subprogram with the
specified name is present in the application program.

User Response: Correct the IPA Link control file
directive.

CBC6315 Could not inhibit inlining calls from
″&1″ to ″&2″ as external subprogram
″&3″ was not found. (where &1, &2 and
&3 are subprogram names.)

Explanation: A ″noinline″ directive entry for calls
between the specified subprograms was present in the
IPA Link control file, but no subprogram with the
specified name is present in the application program.

User Response: Correct the IPA Link control file
directive.

CBC6316 Could not find any calls from ″&1″ to
″&2″ to inline. (where &1 and &2 are
subprogram names.)

Explanation: An ″inline″ directive entry for calls
between the specified subprograms was present in the
IPA Link control file, but no such calls are present in the
application program.

User Response: Delete the IPA Link control file
directive.

588 OS/390 V2R6.0 C/C++ User’s Guide

CBC6317 Could not find any calls from ″&1″ to
″&2″ to inhibit from inlining. (where &1
and &2 are subprogram names.)

Explanation: A ″noinline″ directive entry for calls
between the specified subprograms was present in the
IPA Link control file, but no such calls are present in the
application program.

User Response: Delete the IPA Link control file
directive.

CBC6320 The minimum size of partition &1
exceeds the partition size limit. (where
&1 is the number of the current
partition.)

Explanation: The program information which must be
contained within the current partition is larger than the
current partition size limit. This may be because the
partition contains a single large subprogram.

User Response: Use the IPA Link ″partsize″ directive
to specify a larger partition size limit.

CBC6340 Code generation was not performed
due to previously detected errors.
Object file not created.

Explanation: The completion of the IPA Link step is
not possible due to errors that were previously detected.
The generation of code and data from the IPA object
information will not be performed, and no object file will
be generated.

User Response: Eliminate the cause of the error
conditions.

CBC6341 Code generation for partition &1
terminated due to previous errors.
(where &1 is the number of the current
partition.)

Explanation: The generation of object code and data
for the current partition has been terminated due to
error conditions detected during processing. Processing
continues to allow further errors to be detected, but an
incomplete object file will be generated.

User Response: Eliminate the cause of the error
conditions.

CBC6342 Code generation for partition &1
bypassed due to previous errors.
(where &1 is the number of the current
partition.)

Explanation: The generation of object code and data
for the current partition has been bypassed due to error
conditions detected when processing a previous
partition. Processing continues to allow further errors to
be detected, but an incomplete object file will be
generated.

User Response: Eliminate the cause of the error
conditions.

CBC6345 An error occurred during code
generation. The code generation return
code was &1. (where &1 is the code
generation return code.)

Explanation: During the generation of code for the
current partition, an error was detected. One or more
messages may be issued when this occurs.

User Response: Refer to the responses for these
messages, and perform the suggested error recovery
actions.

CBC6400 File ″&1″ not found. (where &1 is a file
name.)

Explanation: The compiler could not locate the
specified file.

User Response: Ensure the file name is correct. If the
file is located on a LAN drive, ensure the LAN is
working properly. Also, the file may be locked by
another process or access may be denied because of
insufficient permission.

CBC6401 Object file ″&1″ not found. (where &1 is
an object file name.)

Explanation: The compiler could not locate the
specified object file.

User Response: Ensure the file name is correct. If the
file is located on a LAN drive, ensure the LAN is
working properly. Also, the file may be locked by
another process or access may be denied because of
insufficient permission.

CBC6402 Library file ″&1″ not found. (where &1
is a library file name.)

Explanation: The compiler could not locate the
specified library file.

User Response: Ensure the file name is correct. If the
file is located on a LAN drive, ensure the LAN is
working properly. Also, the file may be locked by
another process or access may be denied because of
insufficient permission.

CBC6403 Archive library file ″&1″ not found.
(where &1 is an archive library file
name.)

Explanation: The compiler could not locate the
specified archive library file.

User Response: Ensure the file name is correct. If the
file is located on a LAN drive, ensure the LAN is
working properly. Also, the file may be locked by

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 589

another process or access may be denied because of
insufficient permission.

CBC6404 IPA Link control file ″&1″ not found.
(where &1 is an IPA Link control file
name.)

Explanation: The compiler could not locate the
specified IPA Link control file.

User Response: Ensure the file name is correct. If the
file is located on a LAN drive, ensure the LAN is
working properly. Also, the file may be locked by
another process or access may be denied because of
insufficient permission.

CBC6406 Load Module library member ″&1″ not
found. (where &1 is a Load Module
library member name.)

Explanation: The compiler could not locate the
specified member of the Load Module library.

User Response: Ensure the member name and Load
Module library names are correct. Also, the file may be
locked by another process or access may be denied
because of insufficient permission.

CBC6407 File ″&1″ not found. (where &1 is a file
name.)

Explanation: The compiler could not locate the
specified file.

User Response: Ensure the file name is correct. If the
file is located on a LAN drive, ensure the LAN is
working properly. Also, the file may be locked by
another process or access may be denied because of
insufficient permission.

CBC6408 File ″&1″ not found. (where &1 is a file
name.)

Explanation: The compiler could not locate the
specified file. Processing is terminated.

User Response: Ensure the file name is correct. If the
file is located on a LAN drive, ensure the LAN is
working properly. Also, the file may be locked by
another process or access may be denied because of
insufficient permission.

CBC6420 File ″&1″ has invalid format. (where &1
is a file name.)

Explanation: The specified file was located, but did
not have the correct format.

User Response: Ensure the file name is correct. If the
file is located on a LAN drive, ensure the LAN is
working properly. Correct the file as necessary and
repeat the step.

CBC6421 Library file ″&1″ has invalid format.
(where &1 is a library file name.)

Explanation: The specified file was located, but did
not have the correct format to be recognized as an
object library.

User Response: Ensure the file name is correct. If the
file is located on a LAN drive, ensure the LAN is
working properly. Correct the library as necessary and
repeat the step.

CBC6422 Archive library file ″&1″ has invalid
format. (where &1 is an archive library
file name.)

Explanation: The specified file was located, but did
not have the correct format to be recognized as an
archive library.

User Response: Ensure the file name is correct. If the
file is located on a LAN drive, ensure the LAN is
working properly. Rebuild the archive library as
necessary and repeat the step.

CBC6423 Load Module file ″&1″ has invalid
format. (where &1 is a Load Module file
name.)

Explanation: The specified file was located, but did
not have the correct format to be recognized as a Load
Module.

User Response: Ensure the file name is correct.
Correct the Load Module library as necessary and
repeat the step.

CBC6425 File ″&1″ has invalid attributes. (where
&1 is a file name.)

Explanation: The specified file was located, but did
not have the correct attributes.

User Response: Ensure the file name is correct. If the
file is located on a LAN drive, ensure the LAN is
working properly. Correct the file as necessary and
repeat the step.

CBC6426 Unable to determine attributes for file
″&1″. (where &1 is a file name.)

Explanation: The specified file was located, but the
compiler was unable to determine the file attributes.

User Response: Ensure the file name is correct. If the
file is located on a LAN drive, ensure the LAN is
working properly. Correct the file as necessary and
repeat the step.

590 OS/390 V2R6.0 C/C++ User’s Guide

CBC6430 File ″&1″ is not allocated. (where &1 is
a file name.)

Explanation: The specified file is not allocated, and is
unavailable for processing.

User Response: Ensure the file allocation
specification is correct. Correct the file allocation as
necessary and repeat the step.

CBC6431 File ″&1″ is not allocated. Autocall will
not be performed. (where &1 is a file
name.)

Explanation: The specified file is not allocated, and is
unavailable for autocall processing.

User Response: Ensure the file allocation
specification is correct. Correct the file allocation as
necessary and repeat the step.

CBC6440 Unable to open file ″&1″, for read.
(where &1 is a file name.)

Explanation: The compiler could not open the
specified file. This file was being opened with the intent
of reading the file contents.

User Response: Ensure the file name is correct.
Ensure that the correct file is being read and has not
been damaged. If the file is located on a LAN drive,
ensure the LAN is working properly. Also, the file may
be locked by another process or access may be denied
because of insufficient permission.

CBC6441 Unable to open file ″&1″, for write.
(where &1 is a file name.)

Explanation: The compiler could not open the
specified file. This file was being opened with the intent
of writing new information.

User Response: Ensure the file name is correct.
Ensure that the correct file is specified. If the file is
located on a LAN drive, ensure the LAN is working
properly. Also, the file may be locked by another
process or access may be denied because of
insufficient permission.

CBC6442 An error occurred while reading file
″&1″. (where &1 is a file name.)

Explanation: The compiler detected an error while
reading from the specified file.

User Response: Ensure that the correct file is being
read and has not been damaged. If the file is located on
a LAN drive, ensure the LAN is working properly.

CBC6443 An error occurred while writing to file
″&1″. (where &1 is a file name.)

Explanation: The compiler detected an error while
writing to the specified file.

User Response: Ensure that the correct file is
specified. If the file is located on a LAN drive, ensure
the LAN is working properly.

CBC6444 Unable to close file ″&1″, after read.
(where &1 is a file name.)

Explanation: The compiler could not close the
specified file after reading the file contents.

User Response: Ensure the file name is correct.
Ensure that the correct file is being read and has not
been damaged. If the file is located on a LAN drive,
ensure the LAN is working properly. Also, the file may
be locked by another process or access may be denied
because of insufficient permission.

CBC6445 Unable to close file ″&1″, after write.
(where &1 is a file name.)

Explanation: The compiler could not close the
specified file after writing new information.

User Response: Ensure that sufficient space is
available to contain the file data. Ensure the file name is
correct. Ensure that the correct file is specified. If the
file is located on a LAN drive, ensure the LAN is
working properly. Also, the file may be locked by
another process or access may be denied because of
insufficient permission.

CBC6446 File ″&1″ is empty. (where &1 is a file
name.)

Explanation: The compiler opened the specified file,
but it was empty when an attempt was made to read
the file contents.

User Response: Ensure the file name is correct.
Ensure that the correct file is being read and has not
been damaged. If the file is located on a LAN drive,
ensure the LAN is working properly.

CBC6447 Premature end occurred while reading
file ″&1″. (where &1 is a file name.)

Explanation: The compiler opened the specified file
and began processing the file contents. The end of file
was reached before all data was processed. Processing
continues with the next file.

User Response: Ensure that the correct file is being
read and has not been damaged. If the file is located on
a LAN drive, ensure the LAN is working properly.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 591

CBC6450 Unable to remove file ″&1″. (where &1
is a file name.)

Explanation: The compiler could not remove the
specified file.

User Response: Ensure the file name is correct.
Ensure that the correct file is specified. If the file is
located on a LAN drive, ensure the LAN is working
properly. Also, the file may be locked by another
process or access may be denied because of
insufficient permission.

CBC6451 Unable to create temporary file ″&1″.
(where &1 is a file name.)

Explanation: The compiler could not create the
specified temporary file.

User Response: If the file is located on a LAN drive,
ensure the LAN is working properly. Also, the file may
be locked by another process or access may be denied
because of insufficient permission.

CBC6460 Listing file ″&1″ is full. (where &1 is the
listing file name.)

Explanation: The compiler detected that there is
insufficient free space to continue writing to the listing
file. Compilation continues, without further updates to
the listing file.

User Response: Ensure that the correct listing file is
specified, and that there is sufficient free space. If the
file is located on a LAN drive, ensure the LAN is
working properly.

CBC6461 Listing file ″&1″ closed prematurely.
(where &1 is the listing file name.)

Explanation: The compiler detected an error while
writing to the listing file. Compilation continues, without
further updates to the listing file.

User Response: Ensure that the correct listing file is
specified. If the file is located on a LAN drive, ensure
the LAN is working properly.

CBC6490 COMPILER LIMIT EXCEEDED:
Insufficient virtual storage.

Explanation: The compiler ran out of memory
attempting to compile the file. This sometimes happens
with large files or programs with large functions. Note
that very large programs limit the amount of optimization
that can be done.

User Response: Redefine your virtual storage to a
larger size. If sufficient storage is not available, you can
try various approaches: shut down any large processes
that are running, ensure your swap path is large
enough, try recompiling the program with a lower level
of optimization or without interprocedural analysis.″

CBC6491 COMPILER ERROR: Unimplemented
feature: &1.

Explanation: An error occurred during compilation.

User Response: See the C/C++ Language Reference
for a description of supported features.

CBC6492 INTERNAL COMPILER ERROR: Error
&1 in Procedure &2.

Explanation: An internal compiler error occurred
during compilation.

User Response: Contact your Service Representative.

CBC6493 INTERNAL COMPILER ERROR: &1.

Explanation: An internal compiler error occurred
during compilation.

User Response: Contact your Service Representative.

CBC6494 SYSTEM LIMIT EXCEEDED: Too many
processes are active.

Explanation: The system ran out of processes during
the compilation of the file.

User Response: Try recompiling with fewer competing
processes, or increase the system limit.

Note: The following error messages may be produced by the compiler if the message file is itself invalid.
SEVERE ERROR EDC0090: Unable to open message file &1.
SEVERE ERROR EDC0091: Invalid offset table in message file &1.
SEVERE ERROR EDC0092: Message component &1s not found.
SEVERE ERROR EDC0093: Message file &1 corrupted.
SEVERE ERROR EDC0094: Integrity check failure on msg &1
SEVERE ERROR EDC0095: Bad substitution number in message &1
SEVERE ERROR EDC0096: Virtual storage exceeded
ERROR: Failed to open message file. Reason &1.
ERROR: Unable to read message file. Reason &1.
ERROR: Invalid offset table in message file &1.
ERROR: Message component &1s not found.
ERROR: Message file &1 corrupted.
ERROR: Integrity check failure on msg &1 — retrieved &2.

592 OS/390 V2R6.0 C/C++ User’s Guide

ERROR: Message retrieval disabled. Cannot retrieve &1.
INTERNAL ERROR: Bad substitution number in message &1.

Note: The previous messages are only generated in English.

Appendix F. OS/390 C/C++ Compiler Return Codes and Messages 593

594 OS/390 V2R6.0 C/C++ User’s Guide

Appendix G. Other Return Codes and Messages

See the OS/390 Language Environment Debugging Guide and Run-Time Messages
for messages and return codes for the following:

v Prelinker and Object Library Utility

v Runtime messages and return codes

v localedef utility

v genxlt utility

v iconv utility

v System Programmer C (SP C)

© Copyright IBM Corp. 1996, 1999 595

596 OS/390 V2R6.0 C/C++ User’s Guide

Appendix H. Utility Messages

This appendix contains information about the DSECT, DLLRNAME, and CXXFILT utility
messages, and should not be used as programming interface information. For the
localedef, iconv, and genxlt utility messages, refer to the OS/390 Language
Environment Debugging Guide and Run-Time Messages .

DSECT Utility Messages

The following section describes return codes and messages that are issued by the
DSECT utility.

Return Codes

The DSECT utility issue the following return codes:

Table 44. Return Codes from the DSECT Utility
Return Code Meaning
0 Successful completion.
4 Successful completion, warnings issued.
8 DSECT Utility failed, error messages issued.
12 DSECT Utility failed, severe error messages issued.
16 DSECT Utility failed, insufficient storage to continue processing.

Messages

The messages that the DSECT utility issues have the following format:

EDCnnnns text < s> where:

nnnn error message number

s error severity

00 informational message

10 warning message

30 error message

40 severe error message

&s substitution variable

The DSECT utility issues the following messages

EDC5500 10 Option %s is not valid and is ignored.

Explanation: The option specified in the message is
not valid DSECT Utility option or a valid option has
been specified with an invalid value. The specified
option is ignored.

User Response: Rerun the DSECT Utility with the
correct option.

EDC5501 30 No DSECT or CSECT names were
found in the SYSADATA file.

Explanation: The SECT option was not specified or
SECT(ALL) was specified. The SYSADATA was
searched for all DSECTs and CSECTs but no DSECTs
or CSECTs were found.

User Response: Rerun the DSECT Utility with a
SYSADATA file that contains the required DSECT or
CSECT definition.

© Copyright IBM Corp. 1996, 1999 597

EDC5502 30 Sub option %s for option %s is too
long.

Explanation: The sub option specified for the option
was too long and is ignored.

EDC5503 30 Section name %s was not found in
SYSADATA File.

Explanation: The section name specified with the
SECT option was not found in the External Symbol
records in the SYSADATA file. The C structure is not
produced.

User Response: Rerun the DSECT Utility with a
SYSADATA file that contains the required DSECT or
CSECT definition.

EDC5504 30 Section name %s is not a DSECT or
CSECT.

Explanation: The section name specified with the
SECT option is not a DSECT or CSECT. Only a DSECT
or CSECT names may be specified. The C structure is
not produced.

EDC5505 00 No fields were found for section %s,
structure is not produced.

Explanation: No field records were found in the
SYSADATA file that matched the ESDID of the specified
section name. The C structure is not produced.

EDC5506 30 Record length for file ″%s″ is too small
for the SEQUENCE option, option
ignored.

Explanation: The record length for the output file
specified is too small to enable the SEQUENCE option
to generate the sequence number in columns 73 to 80.
The available record length must be greater than or
equal to 80 characters. The SEQUENCE option is
ignored.

EDC5507 40 Insufficient storage to continue
processing.

Explanation: No further storage was available to
continue processing.

User Response: Rerun the DSECT Utility with a
larger region (MVS).

EDC5508 30 Open failed for file ″%s″: %s

Explanation: This message is issued if the open fails
for any file required by the DSECT Utility. The file name
passed to fopen() and the error message returned by
strerror(errno) is included in the message.

User Response: The message text indicates the
cause of the error. If the file name was specified

incorrectly on the OUTPUT option, rerun the DSECT
Utility with the correct file name.

EDC5509 40 %s failed for file ″%s″: %s

Explanation: This message is issued if any error
occurs reading, writing or positioning on any file by the
DSECT Utility. The name of the function that failed
(Read, Write, fgetpos, fsetpos), file name and text from
strerror(errno) is included in the message.

User Response: This message may be issued if an
error occurs reading or writing to a file. This may be
caused by an error within the file, such as an I/O error
or insufficient disk space. Correct the error and rerun
the DSECT Utility.

EDC5510 40 Internal Logic error in function %s

Explanation: The DSECT Utility has detected that an
error has occurred while generating the C structure.
Processing is terminated and the C structure is not
produced.

User Response: This may be caused by an error in
the DSECT Utility or by incorrect input in the
SYSADATA file. Contact your systems administrator.

EDC5511 10 No matching right parenthesis for %s
option.

Explanation: The option specified had a sub option
beginning with a left parenthesis but no right
parenthesis was present.

User Response: Rerun the DSECT Utility with the
parenthesis for the option correctly paired.

EDC5512 10 No matching quote for %s option.

Explanation: The OUTPUT option has a sub option
beginning with a single quote but no matching quote
was found.

User Response: Rerun the DSECT Utility with the
quotes for the option correctly paired.

EDC5513 10 Record length too small for file ″%s″.

Explanation: The record length for the Output file
specified is less than 10 characters in length. The
minimum available record length must be at least 10
characters.

User Response: Rerun the DSECT Utility with an
output file with a available record length of at least 10
characters.

598 OS/390 V2R6.0 C/C++ User’s Guide

EDC5514 30 Too many sub options were specified
for option %s.

Explanation: More than the maximum number of sub
options were specified for the particular option. The
extra sub options are ignored.

EDC5515 00 HDRSKIP option value greater than
length for section %s, structure is not
produced.

Explanation: The value specified for the HDRSKIP
option was greater than the length of the section. A
structure was not produced for the specified section.

User Response: Rerun the DSECT Utility with a
smaller value for the HDRSKIP option.

EDC5516 10 SECT and OPTFILE options are
mutually exclusive, OPTFILE option is
ignored

Explanation: Both the SECT and OPTFILE options
were specified, but the options are mutually exclusive.

User Response: Rerun the DSECT Utility with either
the SECT or OPTFILE option.

EDC5517 10 Line %i from ″%s″ does not begin with
SECT option

Explanation: The line from the file specified on the
OPTFILE option did not begin with the SECT option.
The line was ignored.

User Response: Rerun the DSECT Utility without
OPTFILE option, or correct the line in the input file.

EDC5518 10 setlocale() failed for locale name ″%s″.

Explanation: The setlocale() function failed with the
locale name specified on the LOCALE option. The
LOCALE option was ignored.

User Response: Rerun the DSECT Utility without
LOCALE option, or correct the locale name specified
with the LOCALE option.

DLLRNAME Utility Messages

Return Codes

The DLLRNAME utility returns the following return codes:

Table 45. Return Codes from the DLLRNAME Utility
Return Code Meaning
0 Processing successful.
8 Invalid input arguments
16 Any other failure

Messages

The DLLRNAME utility issues the following messages:

EDC6200E An invalid argument list was specified.

Explanation: The parameter list specified is not valid.
See the documentation for DLLRNAME in the OS/390
C/C++ User’s Guide.

User Response: Ensure that you have included at
least one application load module or DLL and that you
have specified the options correctly and with the correct
syntax.

EDC6201S A failure occurred accessing &.

Explanation: An unexpected error occurred when
DLLRNAME tried to access the input file.

User Response: Look up the subsequent perror()
message and perform the Programmer Response. For
example, a file not found error may indicate that you

need to fix the input file name. Otherwise, report the
problem to IBM Service.

EDC6202S A DLL name & is already imported

Explanation: You have specified a DLL to rename.
The new name chosen matches a DLL already in the
import list.

User Response: Either change the new name to a
name not already imported or first rename the DLL that
has the chosen name.

EDC6203E A DLL name was specified more than
once for a rename

Explanation: You have specified a DLL more than
once in the oldname=newname list. The following are

Appendix H. Utility Messages 599

examples of invalid input: A=B A=C or A=B B=C or A=A or
A=C B=C.

User Response: Fix the argument list so that the DLL
appears only once.

CXXFILT Utility Messages

Return Codes

The CXXFILT utility returns the following return codes:

Table 46. Return Codes from the CXXFILT Utility
Return Code Meaning
0 Processing successful: CXXFILT processing completed successfully.
4 A warning was issued and a result was generated.
8 CXXFILT Utility failed, possibly due to a read error.
16 CXXFILT Utility failed.

Messages

The CXXFILT utility issues the following messages:

CBC9000 Cannot open the following file: @1 --
ignored.

Explanation: The specified file cannot be opened for
reading or does not exist.

User Response: Ensure that the file exists and is
readable.

CBC9001 Cannot continue reading input.

Explanation: A read error occurred while reading the
input stream.

User Response: Ensure that the input stream is still
available and try again.

CBC9002 No options specified after (.

Explanation: A (indicating start of options was
encountered but no options followed.

User Response: Ensure that the input stream is still
available and try again.

CBC9003 An invalid option (@1) was specified --
ignored.

Explanation: An invalid option was specified.

User Response: Refer to the OS/390 C/C++ User’s
Guide under cxxfilt for valid options.

CBC9004 Option (@1) was specified with too few
suboptions. @2 suboption(s) required
-- ignored.

Explanation: Not all the required suboptions were
supplied.

User Response: Refer to the OS/390 C/C++ User’s

Guide under cxxfilt for the number of required
suboptions.

CBC9005 Option (@1) was specified with too
many suboptions. @2 suboption(s)
required -- ignored.

Explanation: More suboptions were supplied than
what is allowed by this option.

User Response: Refer to the OS/390 C/C++ User’s
Guide under cxxfilt for the number of required
suboptions.

CBC9006 Option (@1) requires a positive
suboption -- ignored.

Explanation: This error occurred because the
specified suboptions for this option is invalid. Only
positive suboptions are allowed.

User Response: Refer to the OS/390 C/C++ User’s
Guide under cxxfilt for the allowed suboptions.

CBC9007 Internal Error. Contact your IBM
representative.

User Response: Please report this problem.

CBC9008 No negative form for option @1 --
ignored.

Explanation: The specified option does not have a
negative form.

User Response: Refer to the OS/390 C/C++ User’s
Guide under cxxfilt for valid options.

600 OS/390 V2R6.0 C/C++ User’s Guide

CBC9009 An incomplete option (@1) has been
specified. -- ignored

Explanation: The specified option is incomplete.

User Response: Refer to the OS/390 C/C++ User’s
Guide under cxxfilt for valid options.

CBC9020 Licensed Materials - Property of IBM
5647-A01 (C) Copyright IBM Corp.
1994, 1998. All Rights Reserved. US
Government Users Restricted Rights -
Use, duplication or disclosure
restricted by GSA ADP Schedule
Contract with IBM Corp.

Explanation: Copyright statement for the message
module (do not translate)

User Response: No action required (do not translate)

Appendix H. Utility Messages 601

602 OS/390 V2R6.0 C/C++ User’s Guide

Appendix I. Other OS/390 C Utilities

Starting with C/C++ for MVS/ESA V3R2, several improvements were made to the
REXX EXECs provided with the C/C++ compiler. The improved REXX EXECs use a
different syntax, which we refer to as the new syntax. The old syntax is the syntax
of the REXX EXECs prior to the C/C++ for MVS/ESA V3R2 release of the compiler.
This section describes the old syntax for these REXX EXECs, which is still
supported. In the following table we indicate the corresponding updated REXX
EXECs which will provide new features and greater flexibility.

For a description of CXXMOD see “Prelinking and Linking under TSO” on page 428.

Using the Old Syntax for CC

The CC command can now be invoked using a new syntax. At installation time,
your system programmer can customize the CC EXEC to accept:
v Only the old syntax (the one supported by compilers prior to C/MVS Version 3

Release 2)
v Only the new syntax
v Both syntaxes

The CC EXEC should be customized to accept only the new syntax. If you customize
the CC EXEC to accept only the old syntax, keep in mind that it does not support
Hierarchical File System (HFS) files. If you customize the CC EXEC to accept both
the old and new syntaxes, you must invoke it using either the old syntax or the new
syntax, but not a mixture of both. If you invoke this EXEC with the old syntax, it will
not support HFS files.

For information on the new syntax, see “Using the CC and CXX REXX EXECs” on
page 233. Refer to the OS/390 C/C++ Program Directory for more information about
installation and customization.

The old syntax for the CC REXX EXEC is:

ÊÊ CC source
OBJ (object)

Ê

Ê

»

,

COPT ()
option

Ê

Name Task Description Substitute

CC (old syntax) Compile CC (new syntax)

CMOD Generate an executable module CXXMOD

Figure 80. Utilities for OS/390 C

© Copyright IBM Corp. 1996, 1999 603

Ê

»

,

USERLIB ()
libname

C370LIB
Ê

Ê
LISTING (listing)

ÊÍ

You can override the default compiler options by specifying the options:

v In the COPT keyword parameter
v In a #pragma OPTIONS directive in your source file
v By specifying them directly on the invocation line

However, any options specified on #pragma options directives are overridden by
options specified on the invocation line.

The following rules apply when you use the old syntax for the CC REXX EXEC:
v When you are specifying a data set name, if the name is not enclosed in single

quotation mark (’), your user prefix will be added to the beginning of the data set
name. If the data set name is enclosed in quotation marks, it will be treated as a
fully qualified name.

v When you need to use spaces, commas, single quotation marks, or parentheses
within a REXX EXEC option, the text must be placed inside a string using single
quotation marks.

v If you want to use a single quotation mark inside a string, you must use two
quotation marks in place of each quotation mark.

The following example demonstrates these rules:
CC TEST.C(STOCK) COPT ('SEARCH(CLOTHES.H ''MARK.SUPPLY.C(ORDER)'')')

Using CMOD

The CMOD REXX EXEC makes a call to LINK with the appropriate library. The syntax of
the CMOD REXX EXEC is:

ÊÊ CMOD OBJ (» object_deck)

»LIB (libname)

Ê

Ê
LOAD (libname)

»LOPT (link_option)

ÊÍ

OBJ Specifies the object decks that you want to link.

LIB Specifies the libraries that are to be used to resolve external
entries.

LOAD Specifies the output library in which the load module is to be stored.

604 OS/390 V2R6.0 C/C++ User’s Guide

LOPT Specifies the options that you want to pass to the linkage editor. All
options are passed to the TSO LINK command.

A non-zero return code indicates that an error has occurred. For diagnostic
information, refer to “Appendix C. Diagnosing Problems” on page 449. CMOD can also
return the return code from LINK. See the appropriate book in your TSO library for
more information on LINK.

Appendix I. Other OS/390 C Utilities 605

606 OS/390 V2R6.0 C/C++ User’s Guide

Appendix J. Layout of the Events File

This appendix specifies the layout of the SYSEVENT file. SYSEVENT is an events
file that contains error information and source file statistics. The SYSEVENT file is
not the same as the binder’s Input Event Log. Use the EVENTS compiler option to
produce the SYSEVENT file. For more information on the EVENTS compiler option,
see “EVENTS | NOEVENTS” on page 85.

In the following example, the source file simple.c is compiled with the
EVENTS(USERID.LIST(EGEVENT)) compiler option. The file err.h is a header file that
is included in simple.c. Figure 83 is the event file that is generated when simple.c
is compiled.

There are three different record types generated in the event file:

v FILEID

v FILEEND

v ERROR

Description of the Fileid Field

The following is an example of the FILEID field from the sample SYSEVENT file
that is shown in Figure 83. Table 47 on page 608 describes the FILEID identifiers.
FILEID 0 1 0 10 ./simple.c

A B C D E

1 #include "./err.h"
2 main() {
3 add some error messages;
4 return(0);
5 here and there;
6 }

Figure 81. simple.c

1 add some;
2 errors in the header file;

Figure 82. Err.h

------- start simple.events ------
FILEID 0 1 0 10 ./simple.c
FILEID 0 2 1 9 ././err.h
ERROR 0 2 0 0 1 1 0 0 CBC1AAA E 12 48 Definition of function add require
FILEEND 0 2 2
ERROR 0 2 0 0 1 5 0 0 CBC1BBB E 12 35 Syntax error: possible missing '{'
ERROR 0 1 0 0 3 3 0 0 CBC1CCC E 12 26 Undeclared identifier add.
ERROR 0 1 0 0 5 8 0 0 CBC1DDD E 12 42 Syntax error: possible missing ';'
ERROR 0 1 0 0 5 3 0 0 CBC1EEE E 12 27 Undeclared identifier here.
FILEEND 0 1 6

------- end simple.events ------

Figure 83. Sample SYSEVENT file

© Copyright IBM Corp. 1996, 1999 607

Table 47. Explanation of the FILEID Field Layout

Column Identifier Description

A Revision Revision number of the event
record.

B File number Increments starting with 1 for
the primary file.

C Line number The line number of the #
include directive. For the
primary source file, this value
is 0.

D File name length Length of file or dataset.

E File name String containing file/dataset
name.

Description of the Filend Field

The following is an example of the FILEND field from the sample SYSEVENT file
that is shown in Figure 83 on page 607. Table 48 describes the FILEND identifiers.
FILEEND 0 1 6

A B C

Table 48. Explanation of the FILEND Field Layout

Column Identifier Description

A Revision Revision number of the event
record

B File number File number that has been
processed to end of file

C Expansion Total number of lines in the
file

Description of the Error Field

The following is an example of the ERROR field from the sample SYSEVENT file
that is shown in Figure 83 on page 607. Table 49 describes the ERROR identifiers.
ERROR 0 1 0 0 3 3 0 0 CBCMMMM E 12 26 Undeclared identifier add.

A B C D E F G H I J K L M

Table 49. Explanation of the ERROR Field Layout

Column Identifier Description

A Revision Revision number of the event
record.

B File number Increments starting with 1 for
the primary file.

C Reserved Do not build a dependency
on this identifier. It is
reserved for future use.

D Reserved Do not build a dependency
on this identifier. It is
reserved for future use.

608 OS/390 V2R6.0 C/C++ User’s Guide

Table 49. Explanation of the ERROR Field Layout (continued)

Column Identifier Description

E Starting line number The source line number for
which the message was
issued. A value of 0 indicates
the message was not
associated with a line
number.

F Starting column number The column number or
position within the source line
for which the message was
issued. A value of 0 indicates
the message is not
associated with a line
number.

G Reserved Do not build a dependency
on this identifier. It is
reserved for future use.

H Reserved Do not build a dependency
on this identifier. It is
reserved for future use.

I Message identifier String Containing the
message identifier.

J Message severity character I=Informational
W=Warning
E=Error
S=Severe
U=Unrecoverable

K Message severity number Return code associated with
the message.

L Message length Length of message text.

M Message text String containing message
text.

Appendix J. Layout of the Events File 609

610 OS/390 V2R6.0 C/C++ User’s Guide

Glossary

This glossary defines terms and abbreviations that
are used in this book. Included are terms and
definitions from the following sources:

v American National Standard Dictionary for
Information Systems, ANSI/ISO X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI/ISO). Copies may be
purchased from the American National
Standards Institute, 1430 Broadway, New York,
New York 10018. Such definitions are indicated
by the symbol ANSI/ISO after the definition.

v IBM Dictionary of Computing, SC20-1699.
These definitions are indicated by the registered
trademark IBM after the definition.

v X/Open CAE Specification, Commands and
Utilities, Issue 4. July, 1992. These definitions
are indicated by the symbol X/Open after the
definition.

v ISO/IEC 9945-1:1990/IEEE POSIX
1003.1-1990. These definitions are indicated by
the symbol ISO.1 after the definition.

v The Information Technology Vocabulary,
developed by Subcommittee 1, Joint Technical
Committee 1, of the International Organization
for Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1). Definitions of published parts of this
vocabulary are identified by the symbol
ISO-JTC1 after the definition; definitions taken
from draft international standards, committee
drafts, and working papers being developed by
ISO/IEC JTC1/SC1 are identified by the symbol
ISO Draft after the definition, indicating that final
agreement has not yet been reached among
the participating National Bodies of SC1.

A
abstract class. (1) A class with at least one pure
virtual function that is used as a base class for other
classes. The abstract class represents a concept;
classes derived from it represent implementations of the
concept. You cannot have a direct object of an abstract
class. See also base class. (2) A class that allows
polymorphism. There can be no objects of an abstract
class; they are only used to derive new classes.

abstract code unit. See ACU.

abstract data type. A mathematical model that
includes a structure for storing data and operations that
can be performed on that data. Common abstract data
types include sets, trees, and heaps.

abstraction (data). A data type with a private
representation and a public set of operations (functions
or operators) which restrict access to that data type to
that set of operations. The C++ language uses the
concept of classes to implement data abstraction.

access. An attribute that determines whether or not a
class member is accessible in an expression or
declaration.

access declaration. A declaration used to restore
access to members of a base class.

access mode. (1) A technique that is used to obtain a
particular logical record from, or to place a particular
logical record into, a file assigned to a mass storage
device. ANSI/ISO. (2) The manner in which files are
referred to by a computer. Access can be sequential
(records are referred to one after another in the order in
which they appear on the file), access can be random
(the individual records can be referred to in a
nonsequential manner), or access can be dynamic
(records can be accessed sequentially or randomly,
depending on the form of the input/output request). IBM.
(3) A particular form of access permitted to a file.
X/Open.

access resolution. The process by which the
accessibility of a particular class member is determined.

access specifier. One of the C++ keywords: public,
private, and protected, used to define the access to a
member.

ACU (abstract code unit). A measurement used by
the OS/390 C/C++ compiler for judging the size of a
function. The number of ACUs that comprise a function
is proportional to its size and complexity.

addressing mode. See AMODE.

address space. (1) The range of addresses available
to a computer program. ANSI/ISO. (2) The complete
range of addresses that are available to a programmer.
See also virtual address space. (3) The area of virtual
storage available for a particular job. (4) The memory
locations that can be referenced by a process. X/Open.
ISO.1.

aggregate. (1) An array or a structure. (2) A
compile-time option to show the layout of a structure or
union in the listing. (3) An array or a class object with
no private or protected members, no constructors, no
base classes, and no virtual functions. (4) In
programming languages, a structured collection of data
items that form a data type. ISO-JTC1.

alert. (1) A message sent to a management services
focal point in a network to identify a problem or an
impending problem. IBM. (2) To cause the user's

© Copyright IBM Corp. 1996, 1999 611

terminal to give some audible or visual indication that an
error or some other event has occurred. When the
standard output is directed to a terminal device, the
method for alerting the terminal user is unspecified.
When the standard output is not directed to a terminal
device, the alert is accomplished by writing the alert
character to standard output (unless the utility
description indicates that the use of standard output
produces undefined results in this case). X/Open.

alert character. A character that in the output stream
should cause a terminal to alert its user via a visual or
audible notification. The alert character is the character
designated by a '\a' in the C and C++ languages. It is
unspecified whether this character is the exact
sequence transmitted to an output device by the system
to accomplish the alert function. X/Open.

This character is named <alert> in the portable
character set.

alias. (1) An alternate label; for example, a label and
one or more aliases may be used to refer to the same
data element or point in a computer program. ANSI/ISO.
(2) An alternate name for a member of a partitioned
data set. IBM. (3) An alternate name used for a
network. Synonymous with nickname. IBM.

alias name. (1) A word consisting solely of
underscores, digits, and alphabetics from the portable
file name character set, and any of the following
characters: ! % , @. Implementations may allow other
characters within alias names as an extension. X/Open.
(2) An alternate name. IBM. (3) A name that is defined
in one network to represent a logical unit name in
another interconnected network. The alias name does
not have to be the same as the real name; if these
names are not the same; translation is required. IBM.

alignment. The storing of data in relation to certain
machine-dependent boundaries. IBM.

alternate code point. A syntactic code point that
permits a substitute code point to be used. For
example, the left brace ({) can be represented by X'B0'
and also by X'C0'.

American National Standard Code for Information
Interchange (ASCII). The standard code, using a
coded character set consisting of 7-bit coded characters
(8 bits including parity check), that is used for
information interchange among data processing
systems, data communication systems, and associated
equipment. The ASCII set consists of control characters
and graphic characters. IBM.

Note: IBM has defined an extension to ASCII code
(characters 128–255).

American National Standards Institute (ANSI/ISO).
An organization consisting of producers, consumers,
and general interest groups, that establishes the

procedures by which accredited organizations create
and maintain voluntary industry standards in the United
States. ANSI/ISO.

AMODE (addressing mode). In MVS, a program
attribute that refers to the address length that a program
is prepared to handle upon entry. In MVS, addresses
may be 24 or 31 bits in length. IBM.

angle brackets. The characters < (left angle bracket)
and > (right angle bracket). When used in the phrase
“enclosed in angle brackets”, the symbol < immediately
precedes the object to be enclosed, and > immediately
follows it. When describing these characters in the
portable character set, the names <less-than-sign> and
<greater-than-sign> are used. X/Open.

anonymous union. A union that is declared within a
structure or class and does not have a name. It must
not be followed by a declarator.

ANSI/ISO. See American National Standards Institute.

API (application program interface). A functional
interface supplied by the operating system or by a
separately orderable licensed program that allows an
application program written in a high-level language to
use specific data or functions of the operating system or
the licensed program. IBM.

application. (1) The use to which an information
processing system is put; for example, a payroll
application, an airline reservation application, a network
application. IBM. (2) A collection of software
components used to perform specific types of
user-oriented work on a computer. IBM.

application generator. An application development
tool that creates applications, application components
(panels, data, databases, logic, interfaces to system
services), or complete application systems from design
specifications.

application program. A program written for or by a
user that applies to the user's work, such as a program
that does inventory control or payroll. IBM.

archive libraries. The archive library file, when
created for application program object files, has a
special symbol table for members that are object files.

argument. (1) A parameter passed between a calling
program and a called program. IBM. (2) In a function
call, an expression that represents a value that the
calling function passes to the function specified in the
call. Also called parameter. (3) In the shell, a parameter
passed to a utility as the equivalent of a single string in
the argv array created by one of the exec functions. An
argument is one of the options, option-arguments, or
operands following the command name. X/Open.

argument declaration. See parameter declaration.

612 OS/390 V2R6.0 C/C++ User’s Guide

arithmetic object. (1) An integral object, a bit field, or
floating-point object. (2) A real object or objects having
the type float, double, or long double.

array. In programming languages, an aggregate that
consists of data objects with identical attributes, each of
which may be uniquely referenced by subscripting. IBM.

array element. A data item in an array. IBM.

ASCII. See American National Standard Code for
Information Interchange.

Assembler H. An IBM licensed program. Translates
symbolic assembler language into binary machine
language.

assembler language. A source language that includes
symbolic language statements in which there is a
one-to-one correspondence with the instruction formats
and data formats of the computer. IBM.

assembler user exit. In the OS/390 Language
Environment a routine to tailor the characteristics of an
enclave prior to its establishment.

assignment expression. An expression that assigns
the value of the right operand expression to the left
operand variable and has as its value the value of the
right operand. IBM.

atexit list. A list of actions specified in the OS/390
C/C++ atexit() function that occur at normal program
termination.

auto storage class specifier. A specifier that enables
the programmer to define a variable with automatic
storage; its scope restricted to the current block.

automatic call library. Contains modules that are
used as secondary input to the prelinker or the binder to
resolve external symbols left undefined after all the
primary input has been processed.

The automatic call library can contain:

v Object modules, with or without binder control
statements

v Load modules

v OS/390 C/C++ run-time routines (SCEELKED)

automatic library call. The process in which control
sections are processed by the binder or loader to
resolve references to members of partitioned data sets.
IBM.

automatic storage. Storage that is allocated on entry
to a routine or block and is freed on the subsequent
return. Sometimes referred to as stack storage or
dynamic storage.

B
background process. (1) A process that does not
require operator intervention but can be run by the
computer while the workstation is used to do other
work. IBM. (2) A mode of program execution in which
the shell does not wait for program completion before
prompting the user for another command. IBM. (3) A
process that is a member of a background process
group. X/Open. ISO.1.

background process group. Any process group,
other than a foreground process group, that is a
member of a session that has established a connection
with a controlling terminal. X/Open. ISO.1.

backslash. The character \. This character is named
<backslash> in the portable character set.

base class. A class from which other classes are
derived. A base class may itself be derived from another
base class. See also abstract class.

based on. The use of existing classes for
implementing new classes.

binary expression. An expression containing two
operands and one operator.

binary stream. (1) An ordered sequence of
untranslated characters. (2) A sequence of characters
that corresponds on a one-to-one basis with the
characters in the file. No character translation is
performed on binary streams. IBM.

bind. To combine one or more control sections or
program modules into a single program module,
resolving references between them, or to assign virtual
storage addresses to external symbols.

binder. The DFSMS/MVS program that processes the
output of language translators and compilers into an
executable program (load module or program object). It
replaces the linkage editor and batch loader in the
MVS/ESA or OS/390 operating system.

bit field. A member of a structure or union that
contains a specified number of bits. IBM.

bitwise operator. An operator that manipulates the
value of an object at the bit level.

blank character. (1) A graphic representation of the
space character. ANSI/ISO. (2) A character that
represents an empty position in a graphic character
string. ISO Draft. (3) One of the characters that belong
to the blank character class as defined via the
LC_CTYPE category in the current locale. In the POSIX
locale, a blank character is either a tab or a space
character. X/Open.

block. (1) In programming languages, a compound
statement that coincides with the scope of at least one

Glossary 613

of the declarations contained within it. A block may also
specify storage allocation or segment programs for
other purposes. ISO-JTC1. (2) A string of data elements
recorded or transmitted as a unit. The elements may be
characters, words or physical records. ISO Draft. (3)
The unit of data transmitted to and from a device. Each
block contains one record, part of a record, or several
records.

block statement. In the C or C++ languages, a group
of data definitions, declarations, and statements
appearing between a left brace and a right brace that
are processed as a unit. The block statement is
considered to be a single C or C++ statement. IBM.

boundary alignment. The position in main storage of
a fixed-length field, such as a halfword or doubleword,
on a byte-level boundary for that unit of information.
IBM.

braces. The characters { (left brace) and } (right
brace), also known as curly braces. When used in the
phrase “enclosed in (curly) braces” the symbol {
immediately precedes the object to be enclosed, and }
immediately follows it. When describing these
characters in the portable character set, the names
<left-brace> and <right-brace> are used. X/Open.

brackets. The characters [(left bracket) and] (right
bracket), also known as square brackets. When used in
the phrase enclosed in (square) brackets the symbol [
immediately precedes the object to be enclosed, and]
immediately follows it. When describing these
characters in the portable character set, the names
<left-bracket> and <right-bracket> are used. X/Open.

break statement. A C or C++ control statement that
contains the keyword “break” and a semicolon. IBM. It is
used to end an iterative or a switch statement by exiting
from it at any point other than the logical end. Control is
passed to the first statement after the iteration or switch
statement.

built-in. (1) A function that the compiler will
automatically inline instead of making the function call,
unless the programmer specifies not to inline. (2) In
programming languages, pertaining to a language
object that is declared by the definition of the
programming language; for example, the built-in function
SIN in PL/I, the predefined data type INTEGER in
FORTRAN. ISO-JTC1. Synonymous with predefined.
IBM.

byte-oriented stream. See orientation of a stream.

C
C library. A system library that contains common C
language subroutines for file access, string operators,
character operations, memory allocation, and other
functions. IBM.

C or C++ language statement. A C or C++ language
statement contains zero or more expressions. A block
statement begins with a { (left brace) symbol, ends with
a } (right brace) symbol, and contains any number of
statements.

All C or C++ language statements, except block
statements, end with a ; (semicolon) symbol.

c89 utility. A utility used to compile and bind an
OS/390 UNIX application program from the OS/390
shell.

C++ class library. A collection of C++ classes.

C++ library. A system library that contains common
C++ language subroutines for file access, memory
allocation, and other functions.

callable services. A set of services that can be
invoked by a OS/390 Language Environment-
conforming high level language using the conventional
OS/390 Language Environment-defined call interface,
and usable by all programs sharing the OS/390
Language Environment conventions.

Use of these services helps to decrease an application's
dependence on the specific form and content of the
services delivered by any single operating system.

call chain. A trace of all active routines and
subroutines.

caller. A routine that calls another routine.

cancelability point. A specific point within the current
thread that is enabled to solicit cancel requests. This is
accomplished using the pthread_testintr() function.

carriage-return character. A character that in the
output stream indicates that printing should start at the
beginning of the same physical line in which the
carriage-return character occurred. The carriage-return
is the character designated by '\r' in the C and C++
languages. It is unspecified whether this character is the
exact sequence transmitted to an output device by the
system to accomplish the movement to the beginning of
the line. X/Open.

case clause. In a C or C++ switch statement, a CASE
label followed by any number of statements.

case label. The word case followed by a constant
expression and a colon. When the selector evaluates
the value of the constant expression, the statements
following the case label are processed.

cast expression. A cast expression explicitly converts
its operand to a specified arithmetic, scalar, or class
type.

cast operator. The cast operator is used for explicit
type conversions.

614 OS/390 V2R6.0 C/C++ User’s Guide

cataloged procedures. A set of control statements
placed in a library and retrievable by name. IBM.

catch block. A block associated with a try block that
receives control when an exception matching its
argument is thrown.

char specifier. A char is a built-in data type. In the
C++ language, char, signed char, and unsigned char
are all distinct data types.

character. (1) A letter, digit, or other symbol that is
used as part of the organization, control, or
representation of data. A character is often in the form
of a spatial arrangement of adjacent or connected
strokes. ANSI/ISO. (2) A sequence of one or more bytes
representing a single graphic symbol or control code.
This term corresponds to the ISO C standard term
multibyte character (multibyte character), where a
single-byte character is a special case of the multibyte
character. Unlike the usage in the ISO C standard,
character here has no necessary relationship with
storage space, and byte is used when storage space is
discussed. X/Open. ISO.1.

character array. An array of type char. X/Open.

character class. A named set of characters sharing
an attribute associated with the name of the class. The
classes and the characters that they contain are
dependent on the value of the LC_CTYPE category in
the current locale. X/Open.

character constant. (1) A constant with a character
value. IBM. (2) A string of any of the characters that can
be represented, usually enclosed in apostrophes. IBM.
(3) In some languages, a character enclosed in
apostrophes. IBM.

character set. (1) A finite set of different characters
that is complete for a given purpose; for example, the
character set in ISO Standard 646, 7-bit Coded
Character Set for Information Processing Interchange.
ISO Draft. (2) All the valid characters for a programming
language or for a computer system. IBM. (3) A group of
characters used for a specific reason; for example, the
set of characters a printer can print. IBM. (4) See also
portable character set.

character special file. (1) A special file that provides
access to an input or output device. The character
interface is used for devices that do not use block I/O.
IBM. (2) A file that refers to a device. One specific type
of character special file is a terminal device file. X/Open.
ISO.1.

character string. A contiguous sequence of
characters terminated by and including the first null
byte. X/Open.

child. A node that is subordinate to another node in a
tree structure. Only the root node is not a child.

child enclave. The nested enclave created as a result
of certain commands being issued from a parent
enclave.

CICS (Customer Information Control System).
Pertaining to an IBM licensed program that enables
transactions entered at remote terminals to be
processed concurrently by user-written application
programs. It includes facilities for building, using, and
maintaining databases. IBM.

CICS destination control table. See DCT.

CICS translator. A routine that accepts as input an
application containing EXEC CICS commands and
produces as output an equivalent application in which
each CICS command has been translated into the
language of the source.

class. (1) A C++ aggregate that may contain functions,
types, and user-defined operators in addition to data.
Classes may be defined hierarchically, allowing one
class to be derived from another, and may restrict
access to its members. (2) A user-defined data type. A
class data type can contain both data representations
(data members) and functions (member functions).

class key. One of the C++ keywords: class, struct and
union.

class library. A collection of classes.

class member operator. An operator used to access
class members through class objects or pointers to
class objects. The class member operators are:

. -> .* ->*

class name. A unique identifier of a class type that
becomes a reserved word within its scope.

class scope. An indication that a name of a class can
be used only in a member function of that class.

class tag. Synonym for class name.

class template. A blueprint describing how a set of
related classes can be constructed.

client program. A program that uses a class. The
program is said to be a client of the class.

CLIST. A programming language that typically
executes a list of TSO commands.

CLLE (COBOL Load List Entry). Entry in the load list
containing the name of the program and the load
address.

COBCOM. Control block containing information about
a COBOL partition.

COBOL (common business-oriented language). A
high-level language, based on English, that is primarily
used for business applications.

Glossary 615

COBOL Load List Entry. See CLLE.

COBVEC. COBOL vector table containing the address
of the library routines.

coded character set. (1) A set of graphic characters
and their code point assignments. The set may contain
fewer characters than the total number of possible
characters: some code points may be unassigned. IBM.
(2) A coded set whose elements are single characters;
for example, all characters of an alphabet. ISO Draft. (3)
Loosely, a code. ANSI/ISO.

code element set. (1) The result of applying a code to
all elements of a coded set, for example, all the
three-letter international representations of airport
names. ISO Draft. (2) The result of applying rules that
map a numeric code value to each element of a
character set. An element of a character set may be
related to more than one numeric code value but the
reverse is not true. However, for state-dependent
encodings the relationship between numeric code
values to elements of a character set may be further
controlled by state information. The character set may
contain fewer elements than the total number of
possible numeric code values; that is, some code
values may be unassigned. X/Open. (3) Synonym for
codeset.

code page. (1) An assignment of graphic characters
and control function meanings to all code points; for
example, assignment of characters and meanings to
256 code points for an 8-bit code, assignment of
characters and meanings to 128 code points for a 7-bit
code. (2) A particular assignment of hexadecimal
identifiers to graphic characters.

code point. (1) A 1-byte code representing one of 256
potential characters. (2) An identifier in an alert
description that represents a short unit of text. The code
point is replaced with the text by an alert display
program.

codeset. Synonym for code element set. IBM.

collating element. The smallest entity used to
determine the logical ordering of character or
wide-character strings. A collating element consists of
either a single character, or two or more characters
collating as a single entity. The value of the
LC_COLLATE category in the current locale determines
the current set of collating elements. X/Open.

collating sequence. (1) A specified arrangement used
in sequencing. ISO-JTC1. ANSI/ISO. (2) An ordering
assigned to a set of items, such that any two sets in
that assigned order can be collated. ANSI/ISO. (3) The
relative ordering of collating elements as determined by
the setting of the LC_COLLATE category in the current
locale. The character order, as defined for the
LC_COLLATE category in the current locale, defines the
relative order of all collating elements, such that each
element occupies a unique position in the order. This is

the order used in ranges of characters and collating
elements in regular expressions and pattern matching.
In addition, the definition of the collating weights of
characters and collating elements uses collating
elements to represent their respective positions within
the collation sequence.

collation. The logical ordering of character or
wide-character strings according to defined precedence
rules. These rules identify a collation sequence between
the collating elements, and such additional rules that
can be used to order strings consisting or multiple
collating elements. X/Open.

collection. (1) An abstract class without any ordering,
element properties, or key properties. All abstract
classes are derived from collection. (2) In a general
sense, an implementation of an abstract data type for
storing elements.

Collection Class Library. A set of classes that
provide basic functions for collections, and can be used
as base classes.

column position. A unit of horizontal measure related
to characters in a line.

It is assumed that each character in a character set has
an intrinsic column width independent of any output
device. Each printable character in the portable
character set has a column width of one. The standard
utilities, when used as described in this document set,
assume that all characters have integral column widths.
The column width of a character is not necessarily
related to the internal representation of the character
(numbers of bits or bytes).

The column position of a character in a line is defined
as one plus the sum of the column widths of the
preceding characters in the line. Column positions are
numbered starting from 1. X/Open.

comma expression. An expression that contains two
operands separated by a comma. Although the compiler
evaluates both operands, the value of the expression is
the value of the right operand. If the left operand
produces a value, the compiler discards this value.
Typically, the left operand of a comma expression is
used to produce side effects.

command. A request to perform an operation or run a
program. When parameters, arguments, flags, or other
operands are associated with a command, the resulting
character string is a single command.

command processor parameter list (CPPL). The
format of a TSO parameter list. When a TSO terminal
monitor application attaches a command processor,
register 1 contains a pointer to the CPPL, containing
addresses required by the command processor.

COMMAREA. A communication area made available
to applications running under CICS.

616 OS/390 V2R6.0 C/C++ User’s Guide

Common Business-Oriented Language. See
COBOL.

common expression elimination. Duplicated
expressions are eliminated by using the result of the
previous expression. This includes intermediate
expressions within expressions.

compilation unit. (1) A portion of a computer program
sufficiently complete to be compiled correctly. IBM. (2) A
single compiled file and all its associated include files.
(3) An independently compilable sequence of high-level
language statements. Each high-level language product
has different rules for what makes up a compilation unit.

complete class name. The complete qualification of a
nested class name including all enclosing class names.

Complex Mathematics library. A C++ class library
that provides the facilities to manipulate complex
numbers and perform standard mathematical operations
on them.

computational independence. No data modified by
either a main task program or a parallel function is
examined or modified by a parallel function that might
be running simultaneously.

concrete class. A class that implements an abstract
data type but does not allow polymorphism.

condition. (1) A relational expression that can be
evaluated to a value of either true or false. IBM. (2) An
exception that has been enabled, or recognized, by the
OS/390 Language Environment and thus is eligible to
activate user and language condition handlers. Any
alteration to the normal programmed flow of an
application. Conditions can be detected by the
hardware/operating system and result in an interrupt.
They can also be detected by language-specific
generated code or language library code.

conditional expression. A compound expression that
contains a condition (the first expression), an expression
to be evaluated if the condition has a nonzero value
(the second expression), and an expression to be
evaluated if the condition has the value zero (the third
expression).

condition handler. A user-written condition handler or
language-specific condition handler (such as a PL/I
ON-unit or OS/390 C/C++ signal() function call)
invoked by the OS/390 C/C++ condition manager to
respond to conditions.

condition manager. Manages conditions in the
common execution environment by invoking various
user-written and language-specific condition handlers.

condition token. In the OS/390 Language
Environment, a data type consisting of 12 bytes (96
bits). The condition token contains structured fields that
indicate various aspects of a condition including the

severity, the associated message number, and
information that is specific to a given instance of the
condition.

const. (1) An attribute of a data object that declares
the object cannot be changed. (2) A keyword that allows
you to define a variable whose value does not change.

constant. (1) In programming languages, a language
object that takes only one specific value. ISO-JTC1. (2)
A data item with a value that does not change. IBM.

constant expression. An expression having a value
that can be determined during compilation and that
does not change during the running of the program.
IBM.

constant propagation. An optimization technique
where constants used in an expression are combined
and new ones are generated. Mode conversions are
done to allow some intrinsic functions to be evaluated at
compile time.

constructed reentrancy. The attribute of applications
that contain external data and require additional
processing to make them reentrant. Contrast with
natural reentrancy.

constructor. A special C++ class member function
that has the same name as the class and is used to
create an object of that class.

control character. (1) A character whose occurrence
in a particular context specifies a control function. ISO
Draft. (2) Synonymous with nonprinting character. IBM.
(3) A character, other than a graphic character, that
affects the recording, processing, transmission, or
interpretation of text. X/Open.

control statement. (1) In programming languages, a
statement that is used to alter the continuous sequential
execution of statements; a control statement may be a
conditional statement, such as IF, or an imperative
statement, such as STOP. ISO Draft. (2) A statement
that changes the path of execution.

controlling process. The session leader that
establishes the connection to the controlling terminal. If
the terminal ceases to be a controlling terminal for this
session, the session leader ceases to be the controlling
process. X/Open. ISO.1.

controlling terminal. A terminal that is associated with
a session. Each session may have at most one
controlling terminal associated with it, and a controlling
terminal is associated with exactly one session. Certain
input sequences from the controlling terminal cause
signals to be sent to all processes in the process group
associated with the controlling terminal. X/Open. ISO.1.

conversion. (1) In programming languages, the
transformation between values that represent the same
data item but belong to different data types. Information

Glossary 617

may be lost because of conversion since accuracy of
data representation varies among different data types.
ISO-JTC1. (2) The process of changing from one
method of data processing to another or from one data
processing system to another. IBM. (3) The process of
changing from one form of representation to another; for
example to change from decimal representation to
binary representation. IBM. (4) A change in the type of a
value. For example, when you add values having
different data types, the compiler converts both values
to a common form before adding the values.

conversion descriptor. A per-process unique value
used to identify an open codeset conversion. X/Open.

conversion function. A member function that
specifies a conversion from its class type to another
type.

coordinated universal time (UTC). Synonym for
Greenwich Mean Time (GMT). See GMT.

copy constructor. A constructor that copies a class
object of the same class type.

Cross System Product. See CSP.

CSP (Cross System Product). A set of licensed
programs designed to permit the user to develop and
run applications using independently defined maps
(display and printer formats), data items (records,
working storage, files, and single items), and processes
(logic). The Cross System Product set consists of two
parts: Cross System Product/Application Development
(CSP/AD) and Cross System Product/Application
Execution (CSP/AE). IBM.

current working directory. (1) A directory, associated
with a process, that is used in path-name resolution for
path names that do not begin with a slash. X/Open.
ISO.1. (2) In the OS/2 operating system, the first
directory in which the operating system looks for
programs and files and stores temporary files and
output. IBM. (3) In the OS/390 UNIX environment, a
directory that is active and that can be displayed.
Relative path name resolution begins in the current
directory. IBM.

cursor. A reference to an element at a specific
position in a data structure.

Customer Information Control System. See CICS.

D
data abstraction. A data type with a private
representation and a public set of operations (functions
or operators) which restrict access to that data type to
that set of operations. The C++ language uses the
concept of classes to implement data abstraction.

DATABASE 2. Pertaining to an IBM relational
database.

data definition (DD). (1) In the C and C++ languages,
a definition that describes a data object, reserves
storage for a data object, and can provide an initial
value for a data object. A data definition appears
outside a function or at the beginning of a block
statement. IBM. (2) A program statement that describes
the features of, specifies relationships of, or establishes
context of, data. ANSI/ISO. (3) A statement that is
stored in the environment and that externally identifies a
file and the attributes with which it should be opened.

data definition name. See ddname.

data definition statement. See DD statement.

data member. The smallest possible piece of
complete data. Elements are composed of data
members.

data object. (1) A storage area used to hold a value.
(2) Anything that exists in storage and on which
operations can be performed, such as files, programs,
classes, or arrays. (3) In a program, an element of data
structure, such as a file, array, or operand, that is
needed for the execution of a program and that is
named or otherwise specified by the allowable character
set of the language in which a program is coded. IBM.

data set. Under MVS, a named collection of related
data records that is stored and retrieved by an assigned
name.

data stream. A continuous stream of data elements
being transmitted, or intended for transmission, in
character or binary-digit form, using a defined format.
IBM.

data structure. The internal data representation of an
implementation.

data type. The properties and internal representation
that characterize data.

Data Window Services (DWS). Services provided as
part of the Callable Services Library that allow
manipulation of data objects such as VSAM linear data
sets and temporary data objects known as
TEMPSPACE.

DBCS (double-byte character set). A set of
characters in which each character is represented by 2
bytes. Languages such as Japanese, Chinese, and
Korean, which contain more symbols than can be
represented by 256 code points, require double-byte
character sets.

Because each character requires 2 bytes, the typing,
display, and printing of DBCS characters requires
hardware and programs that support DBCS. IBM.

618 OS/390 V2R6.0 C/C++ User’s Guide

DCT (destination control table). A table that contains
an entry for each extrapartition, intrapartition, and
indirect destination. Extrapartition entries address data
sets external to the CICS region. Intrapartition
destination entries contain the information required to
locate the queue in the intrapartition data set. Indirect
destination entries contain the information required to
locate the queue in the intrapartition data set.

ddname (data definition name). (1) The logical name
of a file within an application. The ddname provides the
means for the logical file to be connected to the
physical file. (2) The part of the data definition before
the equal sign. It is the name used in a call to fopen or
freopen to refer to the data definition stored in the
environment.

DD statement (data definition statement). (1) In
MVS, serves as the connection between the logical
name of a file and the physical name of the file. (2) A
job control statement that defines a file to the operating
system, and is a request to the operating system for the
allocation of input/output resources.

dead code elimination. A process that eliminates
code that exists for calculations that are not necessary.
Code may be designated as dead by other optimization
techniques.

dead store elimination. A process that eliminates
unnecessary storage use in code. A store is deemed
unnecessary if the value stored is never referenced
again in the code.

decimal constant. (1) A numerical data type used in
standard arithmetic operations. (2) A number containing
any of the digits 0 through 9. IBM.

decimal overflow. A condition that occurs when one
or more nonzero digits are lost because the destination
field in a decimal operation is too short to contain the
results.

declaration. (1) In the C and C++ languages, a
description that makes an external object or function
available to a function or a block statement. IBM. (2)
Establishes the names and characteristics of data
objects and functions used in a program.

declarator. Designates a data object or function
declared. Initializations can be performed in a
declarator.

default argument. An argument that is declared with a
default value in a function prototype or declaration. If a
call to the function omits this argument, the default
value is used. Arguments with default values must be
the trailing arguments in a function prototype argument
list.

default clause. In the C or C++ languages, within a
switch statement, the keyword default followed by a
colon, and one or more statements. When the

conditions of the specified case labels in the switch
statement do not hold, the default clause is chosen.
IBM.

default constructor. A constructor that takes no
arguments, or, if it takes arguments, all its arguments
have default values.

default initialization. The initial value assigned to a
data object by the compiler if no initial value is specified
by the programmer.

default locale. (1) The C locale, which is always used
when no selection of locale is performed. (2) A system
default locale, named by locale-related environmental
variables.

define directive. A preprocessor statement that directs
the preprocessor to replace an identifier or macro
invocation with special code.

define statement. A preprocessor statement that
causes the preprocessor to replace an identifier or
macro call with specified code. IBM.

definition. (1) A data description that reserves storage
and may provide an initial value. (2) A declaration that
allocates storage, and may initialize a data object or
specify the body of a function.

degree. The number of children of a node.

delete. (1) A C++ keyword that identifies a free storage
deallocation operator. (2) A C++ operator used to
destroy objects created by new.

demangling. The conversion of mangled names back
to their original source code names. During C++
compilation, identifiers such as function and static class
member names are mangled (encoded) with type and
scoping information to ensure type-safe linkage. These
mangled names appear in the object file and the final
executable file. Demangling (decoding) converts these
names back to their original names to make program
debugging easier. See also mangling.

denormal. Pertaining to a number with a value so
close to 0 that its exponent cannot be represented
normally. The exponent can be represented in a special
way at the possible cost of a loss of significance.

deque. A queue that can have elements added and
removed at both ends. A double-ended queue.

dequeue. An operation that removes the first element
of a queue.

dereference. In the C and C++ languages, the
application of the unary operator * to a pointer to access
the object the pointer points to. Also known as
indirection.

Glossary 619

derivation. In the C++ language, to derive a class,
called a derived class, from an existing class, called a
base class.

derived class. A class that inherits from a base class.
All members of the base class become members of the
derived class. You can add additional data members
and member functions to the derived class. A derived
class object can be manipulated as if it is a base class
object. The derived class can override virtual functions
of the base class.

descriptor. PL/I control block that holds information
such as string lengths, array subscript bounds, and area
sizes, and is passed from one PL/I routine to another
during run time.

destination control table. See DCT.

destructor. A special member function that has the
same name as its class, preceded by a tilde (˜), and
that "cleans up" after an object of that class, for
example, freeing storage that was allocated when the
object was created. A destructor has no arguments and
no return type.

detach state attribute. An attribute associated with a
thread attribute object. This attribute has two possible
values:

0 Undetached. An undetached thread keeps its
resources after termination of the thread.

1 Detached. A detached thread has its resources
freed by the system after termination.

device. A computer peripheral or an object that
appears to the application as such. X/Open. ISO.1.

difference. For two sets A and B, the difference (A-B)
is the set of all elements in A but not in B. For bags,
there is an additional rule for duplicates: If bag P
contains an element m times and bag Q contains the
same element n times, then, if m>n, the difference
contains that element m-n times. If m≤n, the difference
contains that element zero times.

digraph. A combination of two keystrokes used to
represent unavailable characters in a C++ source
program. Digraphs are read as tokens during the
preprocessor phase.

directory. A type of file containing the names and
controlling information for other files or other directories.
IBM.

Direct-to-SOM (DTS). (1) Term applied to the method
by which the OS/390 C++ compiler converts existing
C++ classes to SOM classes. (2) Term applied to a class
that has been converted to SOM by the OS/390 C++
compiler.

disabled signal. Synonym for enabled signal.

display. To direct the output to the user's terminal. If
the output is not directed to the terminal, the results are
undefined. X/Open.

do statement. In the C and C++ compilers, a looping
statement that contains the keyword “do”, followed by a
statement (the action), the keyword “while”, and an
expression in parentheses (the condition). IBM.

dot. The file name consisting of a single dot character
(.). X/Open. ISO.1.

double-byte character set. See DBCS.

double-precision. Pertaining to the use of two
computer words to represent a number in accordance
with the required precision. ISO-JTC1. ANSI/ISO.

double-quote. The character ", also known as
quotation mark. X/Open.

This character is named <quotation-mark> in the
portable character set.

doubleword. A contiguous sequence of bits or
characters that comprises two computer words and is
capable of being addressed as a unit. IBM.

dynamic. Pertaining to an operation that occurs at the
time it is needed rather than at a predetermined or fixed
time. IBM.

dynamic allocation. Assignment of system resources
to a program when the program is executed rather than
when it is loaded into main storage. IBM.

dynamic binding. The act of resolving references to
external variables and functions at run time.

dynamic link library (DLL). A file containing
executable code and data bound to a program at run
time. The code and data in a dynamic link library can be
shared by several applications simultaneously.
Compiling code with the DLL option does not mean that
the produced executable will be a DLL. To create a
DLL, use #pragma export or the EXPORTALL compiler
option.

DSA (dynamic storage area). An area of storage
obtained during the running of an application that
consists of a register save area and an area for
automatic data, such as program variables. DSAs are
generally allocated within Language
Environment-managed stack segments. DSAs are
added to the stack when a routine is entered and
removed upon exit in a last in, first out (LIFO) manner.
In Language Environment, a DSA is known as a stack
frame.

dynamic storage. Synonym for automatic storage.

dynamic storage area. See DSA

620 OS/390 V2R6.0 C/C++ User’s Guide

E
EBCDIC. See extended binary-coded decimal
interchange code.

effective group ID. An attribute of a process that is
used in determining various permissions, including file
access permissions. This value is subject to change
during the process lifetime, as described in the exec
family of functions and setgid(). X/Open. ISO.1.

effective user ID. (1) The user ID associated with the
last authenticated user or the last setuid() program. It
is equal to either the real or the saved user ID. (2) The
current user ID, but not necessarily the user's login ID;
for example, a user logged in under a login ID may
change to another user's ID. The ID to which the user
changes becomes the effective user ID until the user
switches back to the original login ID. All discretionary
access decisions are based on the effective user ID.
IBM. (3) An attribute of a process that is used in
determining various permissions, including file access
permissions. This value is subject to change during the
process lifetime, as described in exec and setuid().
X/Open. ISO.1.

elaborated type specifier. A specifier typically used in
an incomplete class declaration to qualify types that are
otherwise hidden.

element. The component of an array, subrange,
enumeration, or set.

element equality. A relation that determines if two
elements are equal.

element occurrence. A single instance of an element
in a collection. In a unique collection, element
occurrence is synonymous with element value.

element value. All the instances of an element with a
particular value in a collection. In a nonunique
collection, an element value may have more than one
occurrence. In a unique collection, element value is
synonymous with element occurrence.

else clause. The part of an if statement that contains
the word else, followed by a statement. The else clause
provides an action that is started when the if condition
evaluates to a value of zero (false). IBM.

empty line. A line consisting of only a new-line
character. X/Open.

empty string. (1) A string whose first byte is a null
byte. Synonymous with null string. X/Open. (2) A
character array whose first element is a null character.
ISO.1.

enabled signal. The occurrence of an enabled signal
results in the default system response or the execution
of an established signal handler. If disabled, the
occurrence of the signal is ignored.

encapsulation. Hiding the internal representation of
data objects and implementation details of functions
from the client program. This enables the end user to
focus on the use of data objects and functions without
having to know about their representation or
implementation.

enclave. In the Language Environment for MVS and
VM, an independent collection of routines, one of which
is designated as the main routine. An enclave is roughly
analogous to a program or run unit.

enqueue. An operation that adds an element as the
last element to a queue.

entry point. In assembler language, the address or
label of the first instruction that is executed when a
routine is entered for execution.

enumeration constant. In the C or C++ language, an
identifier, with an associated integer value, defined in an
enumerator. An enumeration constant may be used
anywhere an integer constant is allowed. IBM.

enumeration data type. (1) In the Fortran, C, and
C++ language, a data type that represents a set of
values that a user defines. IBM. (2) A type that
represents integers and a set of enumeration constants.
Each enumeration constant has an associated integer
value.

enumeration tag. In the C and C++ language, the
identifier that names an enumeration data type. IBM.

enumeration type. An enumeration type defines a set
of enumeration constants. In the C++ language, an
enumeration type is a distinct data type that is not an
integral type.

enumerator. In the C and C++ language, an
enumeration constant and its associated value. IBM.

equivalence class. (1) A grouping of characters that
are considered equal for the purpose of collation; for
example, many languages place an uppercase
character in the same equivalence class as its
lowercase form, but some languages distinguish
between accented and unaccented character forms for
the purpose of collation. IBM. (2) A set of collating
elements with the same primary collation weight.

Elements in an equivalence class are typically elements
that naturally group together, such as all accented
letters based on the same base letter.

The collation order of elements within an equivalence
class is determined by the weights assigned on any
subsequent levels after the primary weight. X/Open.

escape sequence. (1) A representation of a character.
An escape sequence contains the \ symbol followed by
one of the characters: a, b, f, n, r, t, v, ', ", x, \, or
followed by one or more octal or hexadecimal digits. (2)
A sequence of characters that represent, for example,

Glossary 621

nonprinting characters, or the exact code point value to
be used to represent variant and nonvariant characters
regardless of code page. (3) In the C and C++
language, an escape character followed by one or more
characters. The escape character indicates that a
different code, or a different coded character set, is
used to interpret the characters that follow. Any member
of the character set used at runtime can be represented
using an escape sequence. (4) A character that is
preceded by a backslash character and is interpreted to
have a special meaning to the operating system. (5) A
sequence sent to a terminal to perform actions such as
moving the cursor, changing from normal to reverse
video, and clearing the screen. Synonymous with
multibyte control. IBM.

exception. (1) Any user, logic, or system error
detected by a function that does not itself deal with the
error but passes the error on to a handling routine (also
called throwing the exception). (2) In programming
languages, an abnormal situation that may arise during
execution, that may cause a deviation from the normal
execution sequence, and for which facilities exist in a
programming language to define, raise, recognize,
ignore, and handle it; for example, (ON-) condition in
PL/I, exception in ADA. ISO-JTC1.

executable. A load module or program object which
has yet to be loaded into memory for execution.

executable file. A regular file acceptable as a new
process image file by the equivalent of the exec family
of functions, and thus usable as one form of a utility.
The standard utilities described as compilers can
produce executable files, but other unspecified methods
of producing executable files may also be provided. The
internal format of an executable file is unspecified, but a
conforming application cannot assume an executable
file is a text file. X/Open.

exception handler. (1) Exception handlers are catch
blocks in C++ applications. Catch blocks catch
exceptions when they are thrown from a function
enclosed in a try block. Try blocks, catch blocks, and
throw expressions are the constructs used to implement
formal exception handling in C++ applications. (2) A set
of routines used to detect deadlock conditions or to
process abnormal condition processing. An exception
handler allows the normal running of processes to be
interrupted and resumed. IBM.

executable file. A regular file acceptable as a new
process image file by the equivalent of the exec family
of functions, and thus usable as one form of a utility.
The standard utilities described as compilers can
produce executable files, but other unspecified methods
of producing executable files may also be provided. The
internal format of an executable file is unspecified, but a
conforming application cannot assume an executable
file is a text file. X/Open.

executable program. A program that has been
link-edited and therefore can be run in a processor.
IBM.

extended binary-coded data interchange code
(EBCDIC). A coded character set of 256 8-bit
characters. IBM.

extension. (1) An element or function not included in
the standard language. (2) File name extension.

external data definition. A description of a variable
appearing outside a function. It causes the system to
allocate storage for that variable and makes that
variable accessible to all functions that follow the
definition and are located in the same file as the
definition. IBM.

extern storage class specifier. A specifier that
enables the programmer to declare objects and
functions that several source files can use.

F
feature test macro (FTM). A macro (#define) used to
determine whether a particular set of features will be
included from a header. X/Open. ISO.1.

FIFO special file. A type of file with the property that
data written to such a file is read on a first-in-first-out
basis. Other characteristics of FIFOs are described in
open(), read(), write(), and lseek(). X/Open. ISO.1.

file access permissions. The standard file access
control mechanism uses the file permission bits. The
bits are set at the time of file creation by functions such
as open(), creat(), mkdir(), and mkfifo() and can be
changed by chmod(). The bits are read by stat() or
fstat(). X/Open.

file descriptor. (1) A small positive integer that the
system uses instead of the file name to identify an open
file. IBM. (2) A per-process unique, non-negative integer
used to identify an open file for the purpose of file
access. ISO.1.

The value of a file descriptor is from zero to
{OPEN_MAX}—which is defined in <limits.h>. A process
can have no more than {OPEN_MAX} file descriptors
open simultaneously. File descriptors may also be used
to implement directory streams. X/Open.

file mode. An object containing the file mode bits and
file type of a file, as described in <sys/stat.h>. X/Open.

file mode bits. A file's file permission bits,
set-user-ID-on-execution bit (S_ISUID) and
set-group-ID-on-execution bit (S_ISGID). X/Open.

file permission bits. Information about a file that is
used, along with other information, to determine if a
process has read, write, or execute/search permission
to a file. The bits are divided into three parts: owner,

622 OS/390 V2R6.0 C/C++ User’s Guide

group, and other. Each part is used with the
corresponding file class of process. These bits are
contained in the file mode, as described in <sys/stat.h>.
The detailed usage of the file permission bits is
described in file access permissions. X/Open. ISO.1.

file scope. A name declared outside all blocks and
classes has file scope and can be used after the point
of declaration in a source file.

filter. A command whose operation consists of reading
data from standard input or a list of input files and
writing data to standard output. Typically, its function is
to perform some transformation on the data stream.
X/Open.

first element. The element visited first in an iteration
over a collection. Each collection has its own definition
for first element. For example, the first element of a
sorted set is the element with the smallest value.

flat collection. A collection that has no hierarchical
structure.

float constant. (1) A constant representing a
nonintegral number. (2) A number containing a decimal
point, an exponent, or both a decimal point and an
exponent. The exponent contains an e or E, an optional
sign (+ or -), and one or more digits (0 through 9). IBM.

for statement. A looping statement that contains the
word for followed by a list of expressions enclosed in
parentheses (the condition) and a statement (the
action). Each expression in the parenthesized list is
separated by a semicolon. You can omit any of the
expressions, but you cannot omit the semicolons.

foreground process. (1) A process that must run to
completion before another command is issued. The
foreground process is in the foreground process group,
which is the group that receives the signals generated
by a terminal. IBM. (2) A process that is a member of a
foreground process group. X/Open. ISO.1.

foreground process group. (1) The group that
receives the signals generated by a terminal. IBM. (2) A
process group whose member processes have certain
privileges, denied to processes in background process
groups, when accessing their controlling terminal. Each
session that has established a connection with a
controlling terminal has exactly one process group of
the session as the foreground process group of that
controlling terminal. X/Open. ISO.1.

foreground process group ID. The process group ID
of the foreground process group. X/Open. ISO.1.

form-feed character. A character in the output stream
that indicates that printing should start on the next page
of an output device. The formfeed is the character
designated by '\f' in the C and C++ language. If the
formfeed is not the first character of an output line, the
result is unspecified. It is unspecified whether this

character is the exact sequence transmitted to an output
device by the system to accomplish the movement to
the next page. X/Open.

forward declaration. A declaration of a class or
function made earlier in a compilation unit, so that the
declared class or function can be used before it has
been defined.

freestanding application. (1) An application that is
created to run without the run-time environment or
library with which it was developed. (2) An OS/390
C/C++ application that does not use the services of the
dynamic OS/390 C/C++ run-time library or of the
Language Environment. Under OS/390 C support, this
ability is a feature of the System Programming C
support.

free store. Dynamically allocated memory. New and
delete are used to allocate and deallocate free store.

friend class. A class in which all the member
functions are granted access to the private and
protected members of another class. It is named in the
declaration of another class and uses the keyword
friend as a prefix to the class. For example, the
following source code makes all the functions and data
in class you friends of class me:

class me {
friend class you;

// ...
};

friend function. A function that is granted access to
the private and protected parts of a class. It is named in
the declaration of the other class with the prefix friend.

function. A named group of statements that can be
called and evaluated and can return a value to the
calling statement. IBM.

function call. An expression that moves the path of
execution from the current function to a specified
function and evaluates to the return value provided by
the called function. A function call contains the name of
the function to which control moves and a
parenthesized list of values. IBM.

function declarator. The part of a function definition
that names the function, provides additional information
about the return value of the function, and lists the
function parameters. IBM.

function definition. The complete description of a
function. A function definition contains an optional
storage class specifier, an optional type specifier, a
function declarator, optional parameter declarations, and
a block statement (the function body).

function prototype. A function declaration that
provides type information for each parameter. It is the
first line of the function (header) followed by a
semicolon (;). The declaration is required by the

Glossary 623

compiler at the time that the function is declared, so that
the compiler can check the type.

function scope. Labels that are declared in a function
have function scope and can be used anywhere in that
function.

function template. Provides a blueprint describing
how a set of related individual functions can be
constructed.

G
Generalization. Refers to a class, function, or static
data member which derives its definition from a
template. An instantiation of a template function would
be a generalization.

generic class. Synonym for class templates.

global. Pertaining to information available to more
than one program or subroutine. IBM.

global scope. Synonym for file scope.

global variable. A symbol defined in one program
module that is used in other independently compiled
program modules.

GMT (Greenwich Mean Time). The solar time at the
meridian of Greenwich, formerly used as the prime
basis of standard time throughout the world. GMT has
been superseded by coordinated universal time (UTC).

graphic character. (1) A visual representation of a
character, other than a control character, that is
normally produced by writing, printing, or displaying.
ISO Draft. (2) A character that can be displayed or
printed. IBM.

Graphical Data Display Manager (GDDM). Pertaining
to an IBM licensed program that provides a group of
routines that allows pictures to be defined and displayed
procedurally through function routines that correspond
to graphic primitives. IBM.

Greenwich Mean Time. See GMT.

group ID. (1) A non-negative integer that is used to
identify a group of system users. Each system user is a
member of at least one group. When the identity of a
group is associated with a process, a group ID value is
referred to as a real group ID, an effective group ID,
one of the supplementary group IDs or a saved
set-group-ID. X/Open. (2) A non-negative integer, which
can be contained in an object of type gid_t, that is used
to identify a group of system users. ISO.1.

H
halfword. A contiguous sequence of bits or characters
that constitutes half a computer word and can be
addressed as a unit. IBM.

hash function. A function that determines which
category, or bucket, to put an element in. A hash
function is needed when implementing a hash table.

hash table. (1) A data structure that divides all
elements into (preferably) equal-sized categories, or
buckets, to allow quick access to the elements. The
hash function determines which bucket an element
belongs in. (2) A table of information that is accessed by
way of a shortened search key (that hash value). Using
a hash table minimizes average search time.

header file. A text file that contains declarations used
by a group of functions, programs, or users.

heap storage. An area of storage used for allocation
of storage whose lifetime is not related to the execution
of the current routine. The heap consists of the initial
heap segment and zero or more increments.

hexadecimal constant. A constant, usually starting
with special characters, that contains only hexadecimal
digits. Three examples for the hexadecimal constant
with value 0 would be '\x00', '0x0', or '0X00'.

hiperspace memory file. An IBM file used under MVS
to deal with memory files as large as 2 gigabytes. IBM.

hooks. Instructions inserted into a program by a
compiler at compile-time. Using hooks, you can set
break-points to instruct the Debug Tool to gain control of
the program at selected points during its execution.

hybrid code. Program statements that have not been
internationalized with respect to code page, especially
where data constants contain variant characters. Such
statements can be found in applications written in older
implementations of MVS, which required syntax
statements to be written using code page IBM-1047
exclusively. Such applications cannot be converted from
one code page to another using iconv().

I
I18N. Abbreviation for internationalization.

identifier. (1) One or more characters used to identify
or name a data element and possibly to indicate certain
properties of that data element. ANSI/ISO. (2) In
programming languages, a token that names a data
object such as a variable, an array, a record, a
subprogram, or a function. ANSI/ISO. (3) A sequence of
letters, digits, and underscores used to identify a data
object or function. IBM.

624 OS/390 V2R6.0 C/C++ User’s Guide

if statement. A conditional statement that contains the
keyword if, followed by an expression in parentheses
(the condition), a statement (the action), and an optional
else clause (the alternative action). IBM.

ILC (interlanguage call). A function call made by one
language to a function coded in another language.
Interlanguage calls are used to communicate between
programs written in different languages.

ILC (interlanguage communication). The ability of
routines written in different programming languages to
communicate. ILC support enables the application writer
to readily build applications from component routines
written in a variety of languages.

implementation-defined behavior. Application
behavior that is not defined by the standards. The
implementing compiler and library defines this behavior
when a program contains correct program constructs or
uses correct data. Programs that rely on
implementation-defined behavior may behave differently
on different C or C++ implementations. Refer to the
OS/390 C/C++ books that are listed in “IBM OS/390
C/C++ and Related Publications” on page 4 for
information about implementation-defined behavior in
the OS/390 C/C++ environment. Contrast with
unspecified behavior and undefined behavior.

IMS (Information Management System). Pertaining
to an IBM database/data communication (DB/DC)
system that can manage complex databases and
networks. IBM.

include directive. A preprocessor directive that
causes the preprocessor to replace the statement with
the contents of a specified file.

include file. See header file.

include statement. In the C and C++ languages, a
preprocessor statement that causes the preprocessor to
replace the statement with the contents of a specified
file. IBM.

incomplete class declaration. A class declaration
that does not define any members of a class. Until a
class is fully declared, or defined, you can only use the
class name where the size of the class is not required.
Typically an incomplete class declaration is used as a
forward declaration.

incomplete type. A type that has no value or meaning
when it is first declared. There are three incomplete
types: void, arrays of unknown size and structures and
unions of unspecified content. A void type can never be
completed. Arrays of unknown size and structures or
unions of unspecified content can be completed in
further declarations.

indirection. (1) A mechanism for connecting objects
by storing, in one object, a reference to another object.

(2) In the C and C++ languages, the application of the
unary operator * to a pointer to access the object to
which the pointer points.

indirection class. Synonym for reference class.

inheritance. A technique that allows the use of an
existing class as the base for creating other classes.

initial heap. The OS/390 C/C++ heap controlled by
the HEAP runtime option and designated by a heap_id
of 0. The initial heap contains dynamically allocated
user data.

initializer. An expression used to initialize data
objects. The C++ language, supports the following types
of initializers:

v An expression followed by an assignment operator
that is used to initialize fundamental data type objects
or class objects that contain copy constructors.

v A parenthesized expression list that is used to
initialize base classes and members that use
constructors.

Both the C and C++ languages support an expression
enclosed in braces ({ }), that used to initialize
aggregates.

inlined function. A function whose actual code
replaces a function call. A function that is both declared
and defined in a class definition is an example of an
inline function. Another example is one which you
explicitly declared inline by using the keyword inline.
Both member and nonmember functions can be inlined.

input stream. A sequence of control statements and
data submitted to a system from an input unit.
Synonymous with input job stream, job input stream.
IBM.

instance. An object-oriented programming term
synonymous with object. An instance is a particular
instantiation of a data type. It is simply a region of
storage that contains a value or group of values. For
example, if a class box is previously defined, two
instances of a class box could be instantiated with the
declaration: box box1, box2;

instantiate. To create or generate a particular instance
or object of a data type. For example, an instance box1
of class box could be instantiated with the declaration:
box box1;

instruction. A program statement that specifies an
operation to be performed by the computer, along with
the values or locations of operands. This statement
represents the programmer's request to the processor
to perform a specific operation.

instruction scheduling. An optimization technique
that reorders instructions in code to minimize execution
time.

Glossary 625

integer constant. A decimal, octal, or hexadecimal
constant.

integral object. A character object, an object having
an enumeration type, an object having variations of the
type int, or an object that is a bit field.

Interactive System Productivity Facility. See ISPF.

interlanguage call. See ILC (interlanguage call).

interlanguage communication. See ILC
(interlanguage communication).

internationalization. The capability of a computer
program to adapt to the requirements of different native
languages, local customs, and coded character sets.
X/Open.

Synonymous with I18N.

interoperability. The capability to communicate,
execute programs, or transfer data among various
functional units in a way that requires the user to have
little or no knowledge of the unique characteristics of
those units.

Interprocedural Analysis. See IPA.

interprocess communication. (1) The exchange of
information between processes or threads through
semaphores, queues, and shared memory. (2) The
process by which programs communicate data to each
other to synchronize their activities. Semaphores,
signals, and internal message queues are common
methods of inter-process communication.

I/O Stream library. A class library that provides the
facilities to deal with many varieties of input and output.

IPA (Interprocedural Analysis). A process for
performing optimizations across compilation units.

ISPF (Interactive System Productivity Facility). An
IBM licensed program that serves as a full-screen editor
and dialogue manager. Used for writing application
programs, it provides a means of generating standard
screen panels and interactive dialogues between the
application programmer and terminal user. (ISPF)

iteration. The process of repeatedly applying a
function to a series of elements in a collection until
some condition is satisfied.

J
JCL (job control language). A control language used
to identify a job to an operating system and to describe
the job's requirement. IBM.

job control. A facility that allows users to selectively
stop (suspend) the execution of a process and continue
(resume) their execution at a later point.

The user typically employs this facility via the interactive
interface jointly supplied by the terminal I/O driver and a
command interpreter. X/Open. ISO.1.

K
keyword. (1) A predefined word reserved for the C
and C++ languages, that may not be used as an
identifier. (2) A symbol that identifies a parameter in
JCL.

kind attribute. An attribute for a mutex attribute
object. This attribute's value determines whether the
mutex can be locked once or more than once for a
thread and whether state changes to the mutex will be
reported to the debug interface.

L
label. An identifier within or attached to a set of data
elements. ISO Draft.

Language Environment. Abbreviated form of IBM
Language Environment for MVS and VM. Pertaining to
an IBM software product that provides a common
runtime environment and runtime services to
applications compiled by Language
Environment-conforming compilers.

last element. The element visited last in an iteration
over a collection. Each collection has its own definition
for last element. For example, the last element of a
sorted set is the element with the largest value.

late binding. Allowing the system to determine the
specific class of the object and invoke the appropriate
function implementations at run time. Late binding or
dynamic binding hides the differences between a group
of related classes from the application program.

leaves. Nodes without children. Synonymous with
terminals.

lexically. Relating to the left-to-right order of units.

library. (1) A collection of functions, calls, subroutines,
or other data. IBM. (2) A set of object modules that can
be specified in a link command.

linkage editor. Synonym for linker. The linkage editor
has been replaced by the binder for the MVS/ESA or
OS/390 operating systems. See binder.

Linkage. Refers to the binding between a reference
and a definition. A function has internal linkage if the
function is defined inline as part of the class, is declared
with the inline keyword, or is a nonmember function
declared with the static keyword. All other functions
have external linkage.

626 OS/390 V2R6.0 C/C++ User’s Guide

linker. A computer program for creating load modules
from one or more object modules by resolving cross
references among the modules and, if necessary,
adjusting addresses. IBM.

link pack area (LPA). In MVS, an area of storage
containing re-enterable routines from system libraries.
Their presence in main storage saves loading time.

literal. (1) In programming languages, a lexical unit
that directly represents a value; for example, 14
represents the integer fourteen, “APRIL” represents the
string of characters APRIL, 3.0005E2 represents the
number 300.05. ISO-JTC1. (2) A symbol or a quantity in
a source program that is itself data, rather than a
reference to data. IBM. (3) A character string whose
value is given by the characters themselves; for
example, the numeric literal 7 has the value 7, and the
character literal CHARACTERS has the value
CHARACTERS. IBM.

loader. A routine, commonly a computer program, that
reads data into main storage. ANSI/ISO.

load module. All or part of a computer program in a
form suitable for loading into main storage for execution.
A load module is usually the output of a linkage editor.
ISO Draft.

local. (1) In programming languages, pertaining to the
relationship between a language object and a block
such that the language object has a scope contained in
that block. ISO-JTC1. (2) Pertaining to that which is
defined and used only in one subdivision of a computer
program. ANSI/ISO.

local customs. The conventions of a geographical
area or territory for such things as date, time, and
currency formats. X/Open.

locale. The definition of the subset of a user's
environment that depends on language and cultural
conventions. X/Open.

localization. The process of establishing information
within a computer system specific to the operation of
particular native languages, local customs, and coded
character sets. X/Open.

local scope. A name declared in a block has scope
within the block, and can therefore only be used in that
block.

Long name. An external name C++ name in an object
module, or and external name in an object module
created by the C compiler when the LONGNAME option is
used. Long names are up to 1024 characters long and
may contain both upper-case and lower-case
characters.

lvalue. An expression that represents a data object
that can be both examined and altered.

M
macro. An identifier followed by arguments (may be a
parenthesized list of arguments) that the preprocessor
replaces with the replacement code located in a
preprocessor #define directive.

macro call. Synonym for macro.

macro instruction. Synonym for macro.

main function. An external function with the identifier
main that is the first user function—aside from exit
routines and C++ static object constructors—to get
control when program execution begins. Each C and
C++ program must have exactly one function named
main.

makefile. A text file containing a list of your
application's parts. The make utility uses makefiles to
maintain application parts and dependencies.

make utility. Maintains all of the parts and
dependencies for your application. The make utility uses
a makefile to keep the parts of your program
synchronized. If one part of your application changes,
the make utility updates all other files that depend on
the changed part. This utility is available under the
OS/390 shell and by default, uses the c89 utility to
recompile and bind your application.

mangling. The encoding during compilation of
identifiers such as function and variable names to
include type and scope information. These mangled
names ensure type-safe linkage. See also demangling.

manipulator. A value that can be inserted into streams
or extracted from streams to affect or query the
behavior of the stream.

member. A data object or function in a structure,
union, or class. Members can also be classes,
enumerations, bit fields, and type names.

member function. (1) An operator or function that is
declared as a member of a class. A member function
has access to the private and protected data members
and member functions of objects of its class. Member
functions are also called methods. (2) A function that
performs operations on a class.

method. In the C++ language, a synonym for member
function.

migrate. To move to a changed operating
environment, usually to a new release or version of a
system. IBM.

module. A program unit that usually performs a
particular function or related functions, and that is
distinct and identifiable with respect to compiling,
combining with other units, and loading.

Glossary 627

multibyte character. A mixture of single-byte
characters from a single-byte character set and
double-byte characters from a double-byte character
set.

multicharacter collating element. A sequence of two
or more characters that collate as an entity. For
example, in some coded character sets, an accented
character is represented by a non-spacing accent,
followed by the letter. Other examples are the Spanish
elements ch and ll. X/Open.

multiple inheritance. An object-oriented programming
technique implemented in the C++ language through
derivation, in which the derived class inherits members
from more than one base class.

multitasking. A mode of operation that allows
concurrent performance, or interleaved execution of two
or more tasks. ISO-JTC1. ANSI/ISO.

mutex. A flag used by a semaphore to protect shared
resources. The mutex is locked and unlocked by
threads in a program. A mutex can only be locked by
one thread at a time and can only be unlocked by the
same thread that locked it. The current owner of a
mutex is the thread that it is currently locked by. An
unlocked mutex has no current owner.

mutex attribute object. Allows the user to manage
the characteristics of mutexes in their application by
defining a set of values to be used for the mutex during
its creation. A mutex attribute object allows the user to
create many mutexes with the same set of
characteristics without redefining the same set of
characteristics for each mutex created.

mutex object. Used to identify a mutex.

N
name space. A category used to group similar types
of identifiers.

named pipe. A FIFO file. Named pipes allow transfer
of data between processes in a FIFO manner and
synchronization of process execution. Allows processes
to communicate even though they do not know what
processes are on the other end of the pipe.

natural reentrancy. A program that contains no
writable static and requires no additional processing to
make it reentrant is considered naturally reentrant.

nested class. A class defined within the scope of
another class.

nested enclave. A new enclave created by an existing
enclave. The nested enclave that is created must be a
new main routine within the process. See also child
enclave and parent enclave.

newline character. A character that in the output
stream indicates that printing should start at the
beginning of the next line. The newline character is
designated by '\n' in the C and C++ language. It is
unspecified whether this character is the exact
sequence transmitted to an output device by the system
to accomplish the movement to the next line. X/Open.

nickname. Synonym for alias.

nonprinting character. See control character.

null character (NUL). The ASCII or EBCDIC character
'\0' with the hex value 00, all bits turned off. It is used to
represent the absence of a printed or displayed
character. This character is named <NUL> in the
portable character set.

null pointer. The value that is obtained by converting
the number 0 into a pointer; for example, (void *) 0.
The C and C++ languages guarantee that this value will
not match that of any legitimate pointer, so it is used by
many functions that return pointers to indicate an error.
X/Open.

null statement. A C or C++ statement that consists
solely of a semicolon.

null string. (1) A string whose first byte is a null byte.
Synonymous with empty string. X/Open. (2) A character
array whose first element is a null character. ISO.1.

null value. A parameter position for which no value is
specified. IBM.

null wide-character code. A wide-character code with
all bits set to zero. X/Open.

number sign. The character #, also known as pound
sign and hash sign. This character is named
<number-sign> in the portable character set.

O
object. (1) A region of storage. An object is created
when a variable is defined. An object is destroyed when
it goes out of scope. (See also instance.) (2) In
object-oriented design or programming, an abstraction
consisting of data and the operations associated with
that data. See also class. IBM. (3) An instance of a
class.

object code. Machine-executable instructions, usually
generated by a compiler from source code written in a
higher level language (such as the C++ language). For
programs that must be linked, object code consists of
relocatable machine code.

object module. (1) All or part of an object program
sufficiently complete for linking. Assemblers and
compilers usually produce object modules. ISO Draft.
(2) A set of instructions in machine language produced
by a compiler from a source program. IBM.

628 OS/390 V2R6.0 C/C++ User’s Guide

object-oriented programming. A programming
approach based on the concepts of data abstraction
and inheritance. Unlike procedural programming
techniques, object-oriented programming concentrates
not on how something is accomplished, but on what
data objects comprise the problem and how they are
manipulated.

octal constant. The digit 0 (zero) followed by any
digits 0 through 7.

open file. A file that is currently associated with a file
descriptor. X/Open. ISO.1.

operand. An entity on which an operation is
performed. ISO-JTC1. ANSI/ISO.

operating system (OS). Software that controls
functions such as resource allocation, scheduling,
input/output control, and data management.

operator function. An overloaded operator that is
either a member of a class or that takes at least one
argument that is a class type or a reference to a class
type.

operator precedence. In programming languages, an
order relation defining the sequence of the application
of operators within an expression. ISO-JTC1.

orientation of a stream. After application of an input
or output function to a stream, it becomes either
byte-oriented or wide-oriented. A byte-oriented stream is
a stream that had a byte input or output function applied
to it when it had no orientation. A wide-oriented stream
is a stream that had a wide character input or output
function applied to it when it had no orientation. A
stream has no orientation when it has been associated
with an external file but has not had any operations
performed on it.

OS/390 UNIX System Services (OS/390 UNIX). An
element of the OS/390 operating system, (formerly
known as OpenEdition). OS/390 UNIX includes a
POSIX system Application Programming Interface for
the C language, a shell and utilities component, and a
dbx debugger. All the components conform to IEEE
POSIX standards (ISO 9945-1: 1990/IEEE POSIX
1003.1-1990, IEEE POSIX 1003.1a, IEEE POSIX
1003.2, and IEEE POSIX 1003.4a).

overflow. (1) A condition that occurs when a portion of
the result of an operation exceeds the capacity of the
intended unit of storage. (2) That portion of an operation
that exceeds the capacity of the intended unit of
storage. IBM.

overlay. The technique of repeatedly using the same
areas of internal storage during different stages of a
program. ANSI/ISO.

overloading. An object-oriented programming
technique that allows you to redefine functions and most

standard C++ operators when the functions and
operators are used with class types.

P
parameter. (1) In the C and C++ languages, an object
declared as part of a function declaration or definition
that acquires a value on entry to the function, or an
identifier following the macro name in a function-like
macro definition. X/Open. (2) Data passed between
programs or procedures. IBM.

parameter declaration. A description of a value that a
function receives. A parameter declaration determines
the storage class and the data type of the value.

parent enclave. The enclave that issues a call to
system services or language constructs to create a
nested or child enclave. See also child enclave and
nested enclave.

parent process. (1) The program that originates the
creation of other processes by means of spawn or exec
function calls. See also child process. (2) A process that
creates other processes.

parent process ID. (1) An attribute of a new process
identifying the parent of the process. The parent
process ID of a process is the process ID of its creator,
for the lifetime of the creator. After the creator's lifetime
has ended, the parent process ID is the process ID of
an implementation-dependent system process. X/Open.
(2) An attribute of a new process after it is created by a
currently active process. ISO.1.

partitioned concatenation. Specifying multiple PDSs
or PDSEs under one ddname. The concatenated data
sets act as one big PDS or PDSE and access can be
made to any member with a unique name. An attempted
access to a member whose name occurs more than
once in the concatenated data sets, returns the first
member with that name found in the entire
concatenation.

partitioned data set (PDS). A data set in direct
access storage that is divided into partitions, called
members, each of which can contain a program, part of
a program, or data. IBM.

partitioned data set extended (PDSE). Similar to
partitioned data set, but with extended capabilities.

path name. (1) A string that is used to identify a file. A
path name consists of, at most, {PATH_MAX} bytes,
including the terminating null character. It has an
optional beginning slash, followed by zero or more file
names separated by slashes. If the path name refers to
a directory, it may also have one or more trailing
slashes. Multiple successive slashes are treated as one
slash. A path name that begins with two successive
slashes may be interpreted in an implementation-
dependent manner, although more than two leading

Glossary 629

slashes are treated as a single slash. The interpretation
of the path name is described in path name resolution.
ISO.1. (2) A file name specifying all directories leading
to the file.

path name resolution. Path name resolution is
performed for a process to resolve a path name to a
particular file in a file hierarchy. There may be multiple
path names that resolve to the same file. X/Open.

pattern. A sequence of characters used either with
regular expression notation or for path name expansion,
as a means of selecting various characters strings or
path names, respectively. The syntaxes of the two
patterns are similar, but not identical. X/Open.

PCH (precompiled header). One or more headers
that have already been compiled.

period. The character (.). The term period is
contrasted against dot, which is used to describe a
specific directory entry. This character is named
<period> in the portable character set.

permissions. Codes that determine how a file can be
used by any users who work on the system. See also
file access permissions. IBM.

persistent environment. A program can explicitly
establish a persistent environment, direct functions to it,
and explicitly terminate it.

pointer. In the C and C++ languages, a variable that
holds the address of a data object or a function. IBM.

pointer class. A class that implements pointers.

pointer to member. An operator used to access the
address of non-static members of a class.

polymorphism. The technique of taking an abstract
view of an object or function and using any concrete
objects or arguments that are derived from this abstract
view.

portable character set. The set of characters
specified in POSIX 1003.2, section 2.4:

<NUL>
<alert>
<backspace>
<tab>
<newline>
<vertical-tab>
<form-feed>
<carriage-return>
<space>
<exclamation-mark> !
<quotation-mark> "
<number-sign> #
<dollar-sign> $
<percent-sign> %
<ampersand> &
<apostrophe> '
<left-parenthesis> (

<right-parenthesis>)
<asterisk> *
<plus-sign> +
<comma> ,
<hyphen> –
<hyphen-minus> –
<period> .
<slash> ⁄
<zero> 0
<one> 1
<two> 2
<three> 3
<four> 4
<five> 5
<six> 6
<seven> 7
<eight> 8
<nine> 9
<colon> :
<semicolon> ;
<less-than-sign> <
<equals-sign> =
<greater-than-sign> >
<question-mark> ?
<commercial-at> @

<A> A
 B
<C> C
<D> D
<E> E
<F> F
<G> G
<H> H
<I> I
<J> J
<K> K
<L> L
<M> M
<N> N
<O> O
<P> P
<Q> Q
<R> R
<S> S
<T> T
<U> U
<V> V
<W> W
<X> X
<Y> Y
<Z> Z

<left-square-bracket> [
<backslash> \
<reverse-solidus> \
<right-square-bracket>]
<circumflex> |
<circumflex-accent> |
<underscore> _
<low-line> _
<grave-accent> v
<a> a
 b
<c> c
<d> d
<e> e
<f> f

630 OS/390 V2R6.0 C/C++ User’s Guide

<g> g
<h> h
<i> i
<j> j
<k> k
<l> l

<m> m
<n> n
<o> o
<p> p
<q> q
<r> r
<s> s
<t> t
<u> u
<v> v
<w> w
<x> x
<y> y
<z> z

<left-brace> {
<left-curly-bracket> {
<vertical-line> |
<right-brace> }
<right-curly-bracket> }
<tilde> ˜

portable file name character set. The set of
characters from which portable file names are
constructed. For a file name to be portable across
implementations conforming to the ISO POSIX-1
standard and to ISO/IEC 9945, it must consists only of
the following characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 . _ -

The last three characters are the period, underscore,
and hyphen characters, respectively. The hyphen must
not be used as the first character of a portable file
name. Upper- and lower-case letters retain their unique
identities between conforming implementations. In the
case of a portable path name, the slash character may
also be used. X/Open. ISO.1.

portability. The ability of a programming language to
compile successfully on different operating systems
without requiring changes to the source code.

positional parameter. A parameter that must appear
in a specified location relative to other positional
parameters. IBM.

precedence. The priority system for grouping different
types of operators with their operands.

precompiled header. See PCH.

predefined macros. Frequently used routines
provided by an application or language for the
programmer.

preinitialization. A process by which an environment
or library is initialized once and can then be used

repeatedly to avoid the inefficiency of initializing the
environment or library each time it is needed.

prelinker. A utility provided with OS/390 Language
Environment that you can use to process application
programs that require DLL support, or contain either
constructed reentrancy or external symbol names that
are longer than 8 characters. You require the prelinker,
or its equivalent function which is provided by the
binder, to process all C++ applications, or C applications
that are compiled with the RENT, DLL, LONGNAME or
IPA options. As of Version 2 Release 4, the prelinker
was superseded by the binder. See also binder.

preprocessor. A phase of the compiler that examines
the source program for preprocessor statements that
are then executed, resulting in the alteration of the
source program.

preprocessor statement. In the C and C++
languages, a statement that begins with the symbol #
and is interpreted by the preprocessor during
compilation. IBM.

primary expression. (1) An identifier, parenthesized
expression, function call, array element specification,
structure member specification, or union member
specification. IBM. (2) Literals, names, and names
qualified by the :: (scope resolution) operator.

printable character. One of the characters included in
the print character classification of the LC_CTYPE
category in the current locale. X/Open.

private. Pertaining to a class member that is only
accessible to member functions and friends of that
class.

process. (1) An instance of an executing application
and the resources it uses. (2) An address space and
single thread of control that executes within that
address space, and its required system resources. A
process is created by another process issuing the
fork() function. The process that issues the fork()
function is known as the parent process, and the new
process created by the fork() function is known as the
child process. X/Open. ISO.1.

process group. A collection of processes that permits
the signaling of related processes. Each process in the
system is a member of a process group that is identified
by the process group ID. A newly created process joins
the process group of its creator. IBM. X/Open. ISO.1.

process group ID. The unique identifier representing
a process group during its lifetime. A process group ID
is a positive integer. (Under ISO only, it is a positive
integer that can be contained in a pid_t.) A process
group ID will not be reused by the system until the
process group lifetime ends. X/Open. ISO.1.

process group lifetime. A period of time that begins
when a process group is created and ends when the

Glossary 631

last remaining process in the group leaves the group,
because either it is the end of the last process' lifetime
or the last remaining process is calling the setsid() or
setpgid() functions. X/Open. ISO.1.

process ID. The unique identifier representing a
process. A process ID is a positive integer. (Under ISO
only, it is a positive integer that can be contained in a
pid_t.) A process ID will not be reused by the system
until the process lifetime ends. In addition, if there exists
a process group whose process group ID is equal to
that process ID, the process ID will not be reused by
the system until the process group lifetime ends. A
process that is not a system process will not have a
process ID of 1. X/Open. ISO.1.

process lifetime. The period of time that begins when
a process is created and ends when the process ID is
returned to the system. After a process is created with a
fork() function, it is considered active. Its thread of
control and address space exist until it terminates. It
then enters an inactive state where certain resources
may be returned to the system, although some
resources, such as the process ID, are still in use.
When another process executes a wait() or waitpid()
function for an inactive process, the remaining
resources are returned to the system. The last resource
to be returned to the system is the process ID. At this
time, the lifetime of the process ends. X/Open. ISO.1.

program object. All or part of a computer program in
a from suitable for loading into main storage for
execution. A program object is the output of the OS/390
Binder and is a newer more flexible format (e.g. longer
external names) than a load module.

protected. Pertaining to a class member that is only
accessible to member functions and friends of that
class, or to member functions and friends of classes
derived from that class.

prototype. A function declaration or definition that
includes both the return type of the function and the
types of its parameters. See function prototype.

public. Pertaining to a class member that is accessible
to all functions.

pure virtual function. A virtual function that has a
function definition of = 0;. See also abstract classes.

Q
qualified class name. Any class name or class name
qualified with one or more :: (scope resolution)
operators.

qualified name. Used to qualify a nonclass type name
such as a member by its class name.

qualified type name. Used to reduce complex class
name syntax by using typedefs to represent qualified
class names.

Query Management Facility (QMF). Pertaining to an
IBM query and report writing facility that enables a
variety of tasks such as data entry, query building,
administration, and report analysis. IBM.

queue. A sequence with restricted access in which
elements can only be added at the back end (or bottom)
and removed from the front end (or top). A queue is
characterized by first-in, first-out behavior and
chronological order.

quotation marks. The characters " and ‘, also known
as double-quote and single-quote respectively. X/Open.

R
radix character. The character that separates the
integer part of a number from the fractional part.
X/Open.

real group ID. The attribute of a process that, at the
time of process creating, identifies the group of the user
who created the process. This value is subject to
change during the process lifetime, as describe in
setgid(). X/Open. ISO.1.

real user ID. The attribute of a process that, at the
time of process creation, identifies the user who created
the process. This value is subject to change during the
process lifetime, as described in setuid(). X/Open.
ISO.1.

reason code. A code that identifies the reason for a
detected error. IBM.

reassociation. An optimization technique that
rearranges the sequence of calculations in a subscript
expression producing more candidates for common
expression elimination.

redirection. In the shell, a method of associating files
with the input or output of commands. X/Open.

reentrant. The attribute of a program or routine that
allows the same copy of a program or routine to be
used concurrently by two or more tasks.

reference class. A class that links a concrete class to
an abstract class. Reference classes make
polymorphism possible with the Collection Classes.
Synonymous with indirection class.

refresh. To ensure that the information on the user's
terminal screen is up-to-date. X/Open.

register storage class specifier. A specifier that
indicates to the compiler within a block scope data
definition, or a parameter declaration, that the object
being described will be heavily used.

632 OS/390 V2R6.0 C/C++ User’s Guide

register variable. A variable defined with the register
storage class specifier. Register variables have
automatic storage.

regular expression. (1) A mechanism to select
specific strings from a set of character strings. (2) A set
of characters, meta-characters, and operators that
define a string or group of strings in a search pattern.
(3) A string containing wildcard characters and
operations that define a set of one or more possible
strings.

regular file. A file that is a randomly accessible
sequence of bytes, with no further structure imposed by
the system. X/Open. ISO.1.

relation. An unordered flat collection class that uses
keys, allows for duplicate elements, and has element
equality.

relative path name. The name of a directory or file
expressed as a sequence of directories followed by a
file name, beginning from the current directory. See path
name resolution. IBM.

reserved word. (1) In programming languages, a
keyword that may not be used as an identifier.
ISO-JTC1. (2) A word used in a source program to
describe an action to be taken by the program or
compiler. It must not appear in the program as a
user-defined name or a system name. IBM.

RMODE (residency mode). In MVS, a program
attribute that refers to where a module is prepared to
run. RMODE can be 24 or ANY. ANY refers to the fact
that the module can be loaded either above or below
the 16M line. RMODE 24 means the module expects to
be loaded below the 16M line.

runtime library. A compiled collection of functions
whose members can be referred to by an application
program during runtime execution. Typically used to
refer to a dynamic library that is provided in object code,
such that references to the library are resolved during
the linking step. The runtime library itself is not statically
bound into the application modules.

S
saved set-group-ID. An attribute of a process that
allows some flexibility in the assignment of the effective
group ID attribute, as described in the exec() family of
functions and setgid(). X/Open. ISO.1.

saved set-user-ID. An attribute of a process that
allows some flexibility in the assignment of the effective
user ID attribute, as described in exec() and setuid().
X/Open. ISO.1.

scalar. An arithmetic object, or a pointer to an object
of any type.

scope. (1) That part of a source program in which a
variable is visible. (2) That part of a source program in
which an object is defined and recognized.

scope operator (::). An operator that defines the
scope for the argument on the right. If the left argument
is blank, the scope is global; if the left argument is a
class name, the scope is within that class. Synonymous
with scope resolution operator.

scope resolution operator (::). Synonym for scope
operator.

semaphore. An object used by multi-threaded
applications for signalling purposes and for controlling
access to serially reusable resources. Processes can be
locked to a resource with semaphores if the processes
follow certain programming conventions.

sequence. A sequentially ordered flat collection.

sequential concatenation. Multiple sequential data
sets or partitioned data-set members are treated as one
long sequential data set. In the case of sequential data
sets, you can access or update the data sets in order.
In the case of partitioned data-set members, you can
access or update the members in order. Repositioning
is possible if all of the data sets in the concatenation
support repositioning.

sequential data set. A data set whose records are
organized on the basis of their successive physical
positions, such as on magnetic tape. IBM.

session. A collection of process groups established for
job control purposes. Each process group is a member
of a session. A process is a member of the session of
which its process group is a member. A newly created
process joins the session of its creator. A process can
alter its session membership; see setsid(). There can
be multiple process groups in the same session.
X/Open. ISO.1.

shell. A program that interprets sequences of text
input as commands. It may operate on an input stream
or it may interactively prompt and read commands from
a terminal. X/Open.

This feature is provided as part of the OS/390 Shell and
Utilities feature licensed program.

Short name. An external non-C++ name in an object
module produced by compiling with the NOLONGNAME
option. Such a name is up to 8 characters long and
single case.

signal. (1) A condition that may or may not be
reported during program execution. For example, SIGFPE
is the signal used to represent erroneous arithmetic
operations such as a division by zero. (2) A mechanism
by which a process may be notified of, or affected by,
an event occurring in the system. Examples of such
events include hardware exceptions and specific actions
by processes. The term signal is also used to refer to

Glossary 633

the event itself. X/Open. ISO.1. (3) A method of
interprocess communication that simulates software
interrupts. IBM.

signal handler. A function to be called when the signal
is reported.

single-byte character set (SBCS). A set of characters
in which each character is represented by a one-byte
code. IBM.

single-precision. Pertaining to the use of one
computer word to represent a number in accordance
with the required precision. ISO-JTC1. ANSI/ISO.

single-quote. The character ‘, also known as
apostrophe. This character is named <quotation-mark>
in the portable character set.

slash. The character /, also known as solidus. This
character is named <slash> in the portable character
set.

socket. (1) A unique host identifier created by the
concatenation of a port identifier with a transmission
control protocol/Internet protocol (TCP/IP) address. (2) A
port identifier. (3) A 16-bit port-identifier. (4) A port on a
specific host; a communications end point that is
accessible though a protocol family's addressing
mechanism. A socket is identified by a socket address.
IBM.

sorted map. A sorted flat collection with key and
element equality.

sorted relation. A sorted flat collection that uses keys,
has element equality, and allows duplicate elements.

sorted set. A sorted flat collection with element
equality.

source module. A file that contains source statements
for such items as high-level language programs and
data description specifications. IBM.

source program. A set of instructions written in a
programming language that must be translated to
machine language before the program can be run. IBM.

space character. The character defined in the
portable character set as <space>. The space character
is a member of the space character class of the current
locale, but represents the single character, and not all of
the possible members of the class. X/Open.

spanned record. A logical record contained in more
than one block. IBM.

specialization. A user-supplied definition which
replaces a corresponding template instantiation.

specifiers. Used in declarations to indicate storage
class, fundamental data type and other properties of the
object or function being declared.

spill area. A storage area used to save the contents of
registers. IBM.

SQL (Structured Query Language). A language
designed to create, access, update and free data
tables.

square brackets. The characters [(left bracket) and]
(right bracket). Also see brackets.

stack frame. The physical representation of the
activation of a routine. The stack frame is allocated and
freed on a LIFO (last in, first out) basis. A stack is a
collection of one or more stack segments consisting of
an initial stack segment and zero or more increments.

stack storage. Synonym for automatic storage.

standard error. An output stream usually intended to
be used for diagnostic messages. X/Open.

standard input. (1) An input stream usually intended
to be used for primary data input. X/Open. (2) The
primary source of data entered into a command.
Standard input comes from the keyboard unless
redirection or piping is used, in which case standard
input can be from a file or the output from another
command. IBM.

standard output. (1) An output stream usually
intended to be used for primary data output. X/Open. (2)
The primary destination of data coming from a
command. Standard output goes to the display unless
redirection or piping is used, in which case standard
output can go to a file or to another command. IBM.

statement. An instruction that ends with the character
; (semicolon) or several instructions that are surrounded
by the characters { and }.

static. A keyword used for defining the scope and
linkage of variables and functions. For internal variables,
the variable has block scope and retains its value
between function calls. For external values, the variable
has file scope and retains its value within the source
file. For class variables, the variable is shared by all
objects of the class and retains its value within the
entire program.

static binding. The act of resolving references to
external variables and functions before run time.

storage class specifier. One of the terms used to
specify a storage class, such as auto, register, static, or
extern.

stream. (1) A continuous stream of data elements
being transmitted, or intended for transmission, in
character or binary-digit form, using a defined format.
(2) A file access object that allows access to an ordered
sequence of characters, as described by the ISO C
standard. Such objects can be created by the fdopen()
or fopen() functions, and are associated with a file

634 OS/390 V2R6.0 C/C++ User’s Guide

descriptor. A stream provides the additional services of
user-selectable buffering and formatted input and
output. X/Open.

string. A contiguous sequence of bytes terminated by
and including the first null byte. X/Open.

string constant. Zero or more characters enclosed in
double quotation marks.

string literal. Zero or more characters enclosed in
double quotation marks.

striped data set. A special data set organization that
spreads a data set over a specified number of volumes
so that I/O parallelism can be exploited. Record n in a
striped data set is found on a volume separate from the
volume containing record n - p, where n > p.

struct. An aggregate of elements having arbitrary
types.

structure. A construct (a class data type) that contains
an ordered group of data objects. Unlike an array, the
data objects within a structure can have varied data
types. A structure can be used in all places a class is
used. The initial projection is public.

structure tag. The identifier that names a structure
data type.

Structured Query Language. See SQL.

stub routine. A routine, within a runtime library, that
contains the minimum lines of code required to locate a
given routine at run time.

subprogram. In the IPA Link version of the Inline
Report listing section, an equivalent term for 'function'.

subscript. One or more expressions, each enclosed in
brackets, that follow an array name. A subscript refers
to an element in an array.

subsystem. A secondary or subordinate system,
usually capable of operating independently of or
asynchronously with, a controlling system. ISO Draft.

subtree. A tree structure created by arbitrarily denoting
a node to be the root node in a tree. A subtree is
always part of a whole tree.

superset. Given two sets A and B, A is a superset of B
if and only if all elements of B are also elements of A.
That is, A is a superset of B if B is a subset of A.

support. In system development, to provide the
necessary resources for the correct operation of a
functional unit. IBM.

switch expression. The controlling expression of a
switch statement.

switch statement. A C or C++ language statement
that causes control to be transferred to one of several
statements depending on the value of an expression.

system default. A default value defined in the system
profile. IBM.

System Object Model (SOM). Defines an IBM
interface between programs, or between libraries and
programs, so that an object's interface is separated
from its implementation. SOM allows classes of objects
to be defined in one programming language and used in
another, and it allows libraries of such classes to be
updated without requiring client code to be recompiled.
IBM.

system process. (1) An implementation-dependent
object, other than a process executing an application,
that has a process ID. X/Open. (2) An object, other than
a process executing an application, that is defined by
the system, and has a process ID. ISO.1.

T
tab character. A character that in the output stream
indicates that printing or displaying should start at the
next horizontal tabulation position on the current line.
The tab is the character designated by '\t' in the C
language. If the current position is at or past the last
defined horizontal tabulation position, the behavior is
unspecified. It is unspecified whether the character is
the exact sequence transmitted to an output device by
the system to accomplish the tabulation. X/Open.

This character is named <tab> in the portable character
set.

task library. A class library that provides the facilities
to write programs that are made up of tasks.

template. A family of classes or functions with variable
types.

template class. A class instance generated by a class
template.

Template Declaration. A prototype of a template
which can optionally include a template definition.

Template Definition. A blueprint the compiler uses to
generate a template instantiation.

template function. A function generated by a function
template.

Template Instantiation. Compiler generated code for
a class or function using the referenced types and the
corresponding class or function template definition.

terminals. Synonym for leaves.

text file. A file that contains characters organized into
one or more lines. The lines must not contain NUL

Glossary 635

characters and none can exceed {LINE_MAX}—which is
defined in limits.h—bytes in length, including the
new-line character. The term text file does not prevent
the inclusion of control or other unprintable characters
(other than NUL). X/Open.

thread. The smallest unit of operation to be performed
within a process. IBM.

throw expression. An argument to the C++ exception
being thrown.

tilde. The character ˜. This character is named <tilde>
in the portable character set.

token. The smallest independent unit of meaning of a
program as defined either by a parser or a lexical
analyzer. A token can contain data, a language
keyword, an identifier, or other parts of language syntax.
IBM.

traceback. A section of a dump that provides
information about the stack frame, the program unit
address, the entry point of the routine, the statement
number, and the status of the routines on the call-chain
at the time the traceback was produced.

trigraph sequence. An alternative spelling of some
characters to allow the implementation of C in character
sets that do not provide a sufficient number of
non-alphabetic graphics. ANSI/ISO.

Before preprocessing, each trigraph sequence in a
string or literal is replaced by the single character that it
represents.

truncate. To shorten a value to a specified length.

try block. A block in which a known C++ exception is
passed to a handler.

type conversion. Synonym for boundary alignment.

type definition. A definition of a name for a data type.
IBM.

type specifier. Used to indicate the data type of an
object or function being declared.

U
ultimate consumer. The target of data in an I/O
operation. An ultimate consumer can be a file, a device,
or an array of bytes in memory.

ultimate producer. The source of data in an I/O
operation. An ultimate producer can be a file, a device,
or an array of byes in memory.

unary expression. An expression that contains one
operand. IBM.

undefined behavior. Action by the compiler and
library when the program uses erroneous constructs or

contains erroneous data. Permissible undefined
behavior includes ignoring the situation completely with
unpredictable results. It also includes behaving in a
documented manner that is characteristic of the
environment, during translation or program execution,
with or without issuing a diagnostic message. It can also
include terminating a translation or execution, while
issuing a diagnostic message. Contrast with unspecified
behavior and implementation-defined behavior.

underflow. (1) A condition that occurs when the result
of an operation is less than the smallest possible
nonzero number. (2) Synonym for arithmetic underflow,
monadic operation. IBM.

union. (1) In the C or C++ language, a variable that
can hold any one of several data types, but only one
data type at a time. IBM. (2) For bags, there is an
additional rule for duplicates: If bag P contains an
element m times and bag Q contains the same element
n times, then the union of P and Q contains that
element m+n times.

union tag. The identifier that names a union data type.

unnamed pipe. A pipe that is accessible only by the
process that created the pipe and its child processes.
An unnamed pipe does not have to be opened before it
can be used. It is a temporary file that lasts only until
the last file descriptor that uses it is closed.

unique collection. A collection in which the value of
an element only occurs once; that is, there are no
duplicate elements.

unrecoverable error. An error for which recovery is
impossible without use of recovery techniques external
to the computer program or run.

unspecified behavior. Action by the compiler and
library when the program uses correct constructs or
data, for which the standards impose no specific
requirements. Such action should not cause compiler or
application failure. You should not, however, write any
programs to rely on such behavior as they may not be
portable to other systems. Contrast with
implementation-defined behavior and undefined
behavior.

user-defined data type. (1) A mathematical model
that includes a structure for storing data and operations
that can be performed on that data. Common abstract
data types include sets, trees, and heaps. (2) See also
abstract data type.

user ID. A nonnegative integer that is used to identify
a system user. (Under ISO only, a nonnegative integer,
which can be contained in an object of type uid_t.)
When the identity of a user is associated with a
process, a user ID value is referred to as a real user ID,
an effective user ID, or (under ISO only, and there
optionally) a saved set-user ID. X/Open. ISO.1.

636 OS/390 V2R6.0 C/C++ User’s Guide

user name. A string that is used to identify a user.
ISO.1.

user prefix. In an MVS environment, the user prefix is
typically the user's logon user identification.

V
value numbering. An optimization technique that
involves local constant propagation, local expression
elimination, and folding several instructions into a single
instruction.

variable. In programming languages, a language
object that may take different values, one at a time. The
values of a variable are usually restricted to a certain
data type. ISO-JTC1.

variant character. A character whose hexadecimal
value differs between different character sets. On
EBCDIC systems, such as S/390, these 13 characters
are an exception to the portability of the portable
character set.

<left-square-bracket> [
<right-square-bracket>]
<left-brace> {
<right-brace> }
<backslash> \
<circumflex> |
<tilde> ˜
<exclamation-mark> !
<number-sign> #
<vertical-line> |
<grave-accent> v
<dollar-sign> $
<commercial-at> @

vertical-tab character. A character that in the output
stream indicates that printing should start at the next
vertical tabulation position. The vertical-tab is the
character designated by '\v' in the C or C++ languages.
If the current position is at or past the last defined
vertical tabulation position, the behavior is unspecified.
It is unspecified whether this character is the exact
sequence transmitted to an output device by the system
to accomplish the tabulation. X/Open. This character is
named <vertical-tab> in the portable character set.

virtual address space. (1) In virtual storage systems,
the virtual storage assigned to a batched or terminal
job, a system task, or a task initiated by a command. (2)
In VSE, a subdivision of the virtual address area
available to the user for the allocation of private,
non-shared partitions.

virtual function. A function of a class that is declared
with the keyword virtual. The implementation that is
executed when you make a call to a virtual function
depends on the type of the object for which it is called,
which is determined at run time.

Virtual Storage Access Method (VSAM). An access
method for direct or sequential processing of fixed and

variable length records on direct access devices. The
records in a VSAM data set or file can be organized in
logical sequence by a key field (key sequence), in the
physical sequence in which they are written on the data
set or file (entry-sequence), or by relative-record
number.

visible. Visibility of identifiers is based on scoping
rules and is independent of access.

volatile attribute. (1) In the C or C++ language, the
keyword volatile, used in a definition, declaration, or
cast. It causes the compiler to place the value of the
data object in storage and to reload this value at each
reference to the data object. IBM. (2) An attribute of a
data object that indicates the object is changeable. Any
expression referring to a volatile object is evaluated
immediately (for example, assignments).

W
while statement. A looping statement that contains
the keyword while followed by an expression in
parentheses (the condition) and a statement (the
action). IBM.

white space. (1) Space characters, tab characters,
form-feed characters, and new-line characters. (2) A
sequence of one or more characters that belong to the
space character class as defined via the LC_CTYPE
category in the current locale. In the POSIX locale,
white space consists of one or more blank characters
(space and tab characters), new-line characters,
carriage-return characters, form-feed characters, and
vertical-tab characters. X/Open.

wide-character. A character whose range of values
can represent distinct codes for all members of the
largest extended character set specified among the
supporting locales.

wide-character code. An integral value corresponding
to a single graphic symbol or control code. X/Open.

wide-character string. A contiguous sequence of
wide-character codes terminated by and including the
first null wide-character code. X/Open.

wide-oriented stream. See orientation of a stream.

working directory. Synonym for current working
directory.

writable static area. See WSA.

write. (1) To output characters to a file, such as
standard output or standard error. Unless otherwise
stated, standard output is the default output destination
for all uses of the term write. X/Open. (2) To make a
permanent or transient recording of data in a storage
device or on a data medium. ISO-JTC1. ANSI/ISO.

Glossary 637

WSA (writable static area). An area of memory in the
program that is modifyable during program execution.
Typically, this area contains global variables and
function and variable descriptors for DLLs.

638 OS/390 V2R6.0 C/C++ User’s Guide

Bibliography

This bibliography lists the publications for IBM products that are related to the
OS/390 C/C++ product. It includes publications covering the application
programming task. The bibliography is not a comprehensive list of the publications
for these products, however, it should be adequate for most OS/390 C/C++ users.
Refer to the OS/390 Information Roadmap, GC28-1727, for a complete list of
publications belonging to the OS/390 product.

Related publications not listed in this section can be found on the IBM Online
Library Omnibus Edition: MVS Collection CD-ROM (SK2T-0710), the IBM Online
Library Omnibus Edition: OS/390 Collection CD-ROM (SK2T-6700), or on a tape
available with OS/390.

OS/390
v OS/390 Printing Softcopy BOOKs, S544-5354

v OS/390 Introduction and Release Guide, GC28-1725

v OS/390 Planning for Installation, GC28-1726

v OS/390 Summary of Message Changes, GC28-1499

v OS/390 Information Roadmap, GC28-1727

VS COBOL II Release 4
v General Information, GC26-4042

v Migration Guide for MVS and CMS, GC26-3151

v Installation and Customization for MVS, SC26-4048

v Application Programming Guide for MVS and CMS, SC26-4045

v Application Programming Language Reference, GC26-4047

v Application Programming Reference Summary, SX26-3721

v Application Programming Debugging, SC26-4049

v Application Programming Diagnosis Guide, LY27-9523

v Application Programming Diagnosis Reference, LY27-9522

COBOL FOR MVS & VM Release 2
v Compiler and Run-Time Migration Guide, GC26-4764

v Programming Guide, SC26-4767

v Language Reference, SC26-4769

v Diagnosis Guide, SC26-3138

v Licensed Program Specifications, GC26-4761

v Installation and Customization under MVS, SC26-4766

COBOL for OS/390 & VM Version 2 Release 1
v Compiler and Run-Time Migration Guide, GC26-4764

v Programming Guide, SC26-9049

v Language Reference, SC26-9046

v Diagnosis Guide, GC26-9047

v Licensed Program Specifications, GC26-9044

© Copyright IBM Corp. 1996, 1999 639

v Installation and Customization under OS/390, GC26-9045

v Program Directory for VM

v Fact Sheet, GC26-9048

PL/I for MVS & VM Release 1 Modification 1
v Language Reference, SC26-3114

v Compiler and Run-Time Migration Guide, SC26-3118

v Programming Guide, SC26-3113

v Compile-Time Messages and Codes, SC26-3229

v Reference Summary, SX26-3821

v Diagnosis Guide, SC26-3149

v Installation and Customization under MVS, SC26-3119

v Licensed Program Specifications, GC26-3116

OS PL/I Version 2 Release 3
v Programming Guide, SC26-4307

v Programming: Language Reference, SC26-4308

v Programming: Messages and Codes, SC26-4309

VS FORTRAN Version 2 Release 6
v Programming Reference, SC26-4221

v Programming Guide, SC26-4222

CICS/ESA Version 4 Release 1
v Application Programming Reference, SC33-1170

v Application Programming Guide, SC33-1169

v Installation Guide, SC33-1163

v System Definition Guide, SC33-1164

v Resource Definition Guide, SC33-1166

v Messages and Codes, SC33-1177

CICS Transaction Server for OS/390 Release 2
v Application Programming Guide, SC33-1687

v Application Programming Reference, SC33-1688

v System Programming Reference, SC33-1689

v Distributed Transaction Programming Guide, SC33-1691

v Front End Programming Interface User’s Guide, SC33-1692

DB2 Version 3 Release 1
v SQL Reference, SC26-4890

v Reference Summary, SX26-3801

v Command and Utility Reference, SC26-4891

v Application Programming and SQL Guide, SC26-4889

640 OS/390 V2R6.0 C/C++ User’s Guide

DB2 Version 4 Release 1
v SQL Reference, SC26-3270

v Reference Summary, SX26-3829

v Command Reference, SC26-3267

v Application Programming and SQL Guide, SC26-3266

v Utility Guide and Reference, SC26-3395

DB2 Version 5 Release 1
v Administration Guide, SC26-8957

v Application Programming and SQL Guide, SC26-8958

v Call Level Interface Guide and Reference, SC26-8959

v Command Reference, SC26-8960

v Data Sharing: Planning and Administration, SC26-8961

v Installation Guide, GC26-8970

v Messages and Codes, GC26-8979

v SQL Reference, SC26-8966

v Reference for Remote DRDA Requesters and Servers, SC26-8964

v Utility Guide and Reference, SC26-8967

IMS/ESA Version 4 Release 1
v Application Programming: Design Guide, SC26-3066

v Application Programming: DL/I Calls, SC26-3062

v Application Programming: Data Communication, SC26-3058

v Application Programming: EXEC DL/I Commands, SC26-3063

IMS/ESA Version 5 Release 1
v Application Programming: Design Guide, SC26-8016

v Application Programming: Transaction Manager, SC26-8017

v Application Programming: Database Manager, SC26-8015

v Application Programming: EXEC DL/I Commands for CICS and IMS, SC26-8018

IMS/ESA Version 6 Release 1
v Application Programming: Design Guide, SC26-8728

v Application Programming: Transaction Manager, SC26-8729

v Application Programming: Database Manager, SC26-8727

v Application Programming: EXEC DL/I Commands for CICS and IMS, SC26-8726

QMF Version 3 Release 2
v Introducing QMF, GC26-4713

v Using QMF, SC26-8078

v Developing QMF Applications, SC26-4722

v Reference, SC26-4716

v Managing QMF for MVS, SC26-8218

v Reference, SC26-4716

Bibliography 641

v Messages and Codes, SC26-4834

v Installing on MVS, SC26-4719

VSAM
v MVS/ESA VSAM Catalog Administration: Access Method Services Reference,

SC26-4501

v MVS/ESA VSAM Administration: Macro Instruction Reference, SC26-4517

v MVS/ESA VSAM Administration Guide for MVS/DFP, SC26-4518

v MVS/ESA Integrated Catalog Administration: Access Method Services Reference,
SC26-4500

v DFSMS/MVS Access Method Services for VSAM, SC26-4905

v MVS/DFP Access Method Services for VSAM Catalogs, SC26-4570

v MVS/Extended Architecture VSAM Catalog Administration: Access Method
Services Reference (Data Facility Product, Version 2), GC26-4136

642 OS/390 V2R6.0 C/C++ User’s Guide

INDEX

Special Characters
_ALL_SOURCE feature test macro 245
_MSE_PROTOS feature test macro 246
_OE_SOCKETS feature test macro 246
_OPEN_DEFAULT feature test macro 245
_OPEN_SOURCE feature test macro 245
_OPEN_SYS feature test macro 245
_OPEN_SYS_IPC_EXTENSIONS feature test

macro 245
_OPEN_SYS_PTY_EXTENSIONS feature test

macro 245
_OPEN_THREADS feature test macro 245
_POSIX_C_SOURCE feature test macro 245
_POSIX_SOURCE feature test macro 244
_POSIX1_SOURCE feature test macro 244
_XOPEN_SOURCE_EXTENDED feature test

macro 245
_XOPEN_SOURCE feature test macro 245

A
abbreviated compiler options 59, 62
Abstract Code Unit (ACU) 101
ACU (Abstract Code Unit) 101
AGGREGATE compiler option 70, 453
aggregate layout 453
alias

hidden 207
ALIAS compiler option 71
ALIASES binder option 207
allocation

standard files with BPXBATCH 397
allocation, standard files with BPXBATCH 397
AMODE 340

restrictions 340
ANSIALIAS compiler option 72
ar utility

creating archive libraries 395
maintaining program objects 395

ARCHITECTURE compiler option 73
archive libraries

ar utility 395
creating 395
displaying the object files in 395
file naming convention for c89 use 395

ARGPARSE compiler option 74
argv (argument vector)

under TSO 338
argv, under TSO 338
assembler

generation of C structures 378
macros 467

ATTACH assembler macro 467
ATTRIBUTE compiler option 75, 453
attributes, for DD statements 460
AUTO|NOAUTO prelinker option 445

automatic library call
CALL binder option 207
library search processing 313
processing 312

automatic library call processing
input to linkage editor 410
prelinking and 423
SYSLIB dataset 409

B
binder

compatibility level 208
DLLs, creating and loading 208
map 209, 210
options file 209
reusability 209
uppercase mapping of symbol names 210

binder options
ALIASES 207
CALL 207
CASE 207
COMPAT 208
DYNAM 208
LET 208
LIST 209
MAP 209
OPTION 209
REUS 209
UPCASE 210
XREF 210

BITF0XL DSECT utility option 372
BLKSIZE DSECT utility option 378
BPARM JCL parameter 459
BPXBATCH program

invoking from OS/390 batch 341
invoking from TSO/E 341
running an executable HFS file 340
syntax 397

C
C++ class libraries 417
C370LIB

directory 351
EXEC 352

c89 utility
compiling and binding application programs 242
compiling source and object files 240
invoked through the make utility 243
linkage editor options 434
run by the make utility 240

CALL
assembler macro 467
command 337
command, under TSO 337

CALL binder option 207

© Copyright IBM Corp. 1996, 1999 643

CALLBACKANY 84
CASE binder option 207
cataloged procedures

for binding 299
for compiling, prelinking, linking and running 423
for compiling, prelinking and linking 423
for prelinking, linking and running 423
for prelinking and linking 423
for specifying prelinker and linkage editor

options 424
specifying runtime options 337
supplied by IBM

CBCB 299, 457
CBCBG 457
CBCCB 299, 457
CBCCBG 299, 457
CBCCL 424
CBCCLG 424
CBCI 457
CBCL 424
CBCLG 424
CEEWG 457
CEEWL 457
CEEWLG 457
data sets used by 460
EDCB 299
EDCC 457
EDCCB 299, 457
EDCCBG 299, 457
EDCCL 457
EDCCLGB 457
EDCCLIB 351, 457
EDCCPLG 457
EDCCSECT 457
EDCGNXLT 388
EDCI 457
EDCICONV 385
EDCLDEF 389
EDCLIB 351, 457
EDCPL 457

CBC message prefix 449
CBCB 299
CBCCB 299
CBCCBG 299
CBCCL cataloged procedure 424
CBCCLG cataloged procedure 424
CBCL cataloged procedure 424
CBCLG cataloged procedure 424
CC REXX EXEC

C370LIB parameter 353
new syntax 233
old syntax 603
using under TSO 236
using with HFS 235

CDSECT EXEC 382
CEE message prefix 449
CEESTART

CSECT 412
START compiler option 152

character
trigraph representation 451

character (continued)
unprintable 451

characters
converting from one code set to another 387

CHECKOUT compiler option 76, 451, 454
class libraries

compiling with 257
input to the prelinker 423

class names used with CXXFILT 365
CLASSNAME option of CXXFILT utility 367
CMOD REXX EXEC, syntax 604
code set conversion utilities

genxlt
OS/390 Batch 388
TS0 388
usage 385

iconv
OS/390 Batch 385
TSO 386
usage 385

COMMENT DSECT utility option 373
COMPAT binder option 208
compile-time error 450
compiler

c89 utility interface to 240
error messages 90, 475
input 223, 231

valid input/output file types 227
listing

include file option (SHOWINC) 145
list inlined functions (INLRPT) 102
object module option (LIST) 110
OS/390 C++ cross reference listing 191
OS/390 C++ error messages 191
OS/390 C++ external symbol cross

reference 193
OS/390 C++ external symbol dictionary 193
OS/390 C++ heading information 190
OS/390 C++ includes section 191
OS/390 C++ inline report 192
OS/390 C++ object code 193
OS/390 C++ prolog 190
OS/390 C++ pseudo assembly listing 193
OS/390 C++ source program 191
OS/390 C cross reference listing 181
OS/390 C error messages 181
OS/390 C external symbol cross reference 183
OS/390 C external symbol dictionary 183
OS/390 C heading information 180
OS/390 C includes section 181
OS/390 C inline report 182
OS/390 C object code 183
OS/390 C prolog 181
OS/390 C pseudo assembly listing 183
OS/390 C source program 181
OS/390 C storage offset listing 183
OS/390 C structure and union maps 181
source program option (SOURCE) 148

object module optimization 131
options to produce debug information

AGGREGATE 453

644 OS/390 V2R6.0 C/C++ User’s Guide

compiler (continued)
ATTRIBUTE 453
CHECKOUT 451, 454
EXPMAC 453
FLAG 454
GONUMBER 454
INFO 454
INLINE 454
INLRPT 454
LIST 453
MARGINS 451
NOMARGINS 451
NOOPTIMIZE 451
NOSEQUENCE 451
OFFSET 453
OPTIMIZE 451
PPONLY 451, 453
SEQUENCE 451
SHOWINC 453
SOURCE 453
SRCMSG 454
TEST 454
XREF 454

output
create listing file 226
create object module 226
create preprocessor output 226
create template instantiation output 226
using compiler options to specify 224
using DD statements to specify 232
valid input/output file types 227

return codes 475
compiler options

#pragma options 58
abbreviations 59, 62
AGGREGATE | NOAGGREGATE 70
ALIAS | NOALIAS 71
ANSIALIAS | NOANSIALIAS 72
ARCHITECTURE 73
ARGPARSE | NOARGPARSE 74
ATTRIBUTE | NOATTRIBUTE 75
CHECKOUT | NOCHECKOUT 76
CONVLIT | NOCONVLIT 78
CSECT | NOCSECT 79
DECK | NODECK 169
defaults 59, 62
DEFINE 82
DIGRAPH |NODIGRAPH 82
DLL | NODLL 84
EVENTS | NOEVENTS 85
EXECOPS | NOEXECOPS 86
EXH|NOEXH 87
EXPMAC | NOEXPMAC 88
EXPORTALL |NOEXPORTALL 88
FASTT | NOFASTT 89
FLAG | NOFLAG 90
FLOAT 91
GENPCH | NOGENPCH 95
GONUMBER | NOGONUMBER 96
HALT 97
HWOPTS | NOHWOPTS 170

compiler options (continued)
INFO | NOINFO 98
INLINE | NOINLINE 99
INLRPT | NOINLRPT 102
IPA | NOIPA 103
IPA considerations 56
LANGLVL 107
LIBANSI | NOLIBANSI 110
LIST | NOLIST 110
LOCALE | NOLOCALE 112
LONGNAME | NOLONGNAME 114
LSEARCH | NOLSEARCH 115
MARGINS | NOMARGINS 121
MAXMEM | NOMAXMEM 123
MEMORY | NOMEMORY 124
NESTINC | NONESTINC 125
OBJECT | NOBJECT 125
OE | NOOE 127
OFFSET | NOOFFSET 128
OMVS | NOOMVS 129
OPTFILE | NOOPTFILE 129
OPTIMIZE | NOOPTIMIZE 131
overriding defaults 55
PHASEID 133
PLIST 134
PORT | NOPORT 134
PPONLY | NOPPONLY 136
pragma options 58
REDIR | NOREDIR 138
RENT | NORENT 139
ROUND 140
SEARCH | NOSEARCH 140
SEQUENCE | NOSEQUENCE 143
SERVICE | NOSERVICE 142
SHOWINC | NOSHOWINC 145
SOM | NOSOM 145
SOMEINIT | NOSOMEINIT 146
SOMGS | NOSOMGS 146
SOMRO | NOSOMRO 147
SOMVOLATTR | NOSOMVOLATTR 148
SOURCE | NOSOURCE 148
specifying under TSO 236
SPILL | SPILL 150
SRCMSG | NOSRCMSG 151
SSCOMM | NOSSCOMM 151
START | NOSTART 152
STRICT | NOSTRICT 153
SYSLIB 170
SYSPATH 171
TARGET 153
TEMPINC | NOTEMPINC 156
TERMINAL | NOTERMINAL 157
TEST | NOTEST 158
TUNE | NOTUNE 161
UNDEFINE 163
UPCONV | NOUPCONV 163
USEPCH | NOUSEPCH 164
USERLIB 172
USERPATH 173
using GENP and USEP together 263
WSIZEOF | NOWSIZEOF 165

INDEX 645

compiler options (continued)
XREF | NOXREF 166
XSOMINC | NOXSOMINC 167

compiling
dynamically with OS/390 macro instructions 467
TSO, under 233
using c89 and c++ to compile and bind 242
using cataloged procedures supplied by IBM 228
using make to compile and bind 243

compiling and binding using c89 and c++ 242
concatenation

multiple libraries 232
concatenation, multiple libraries 232
continuation character

prelinker control statements 437
control statements

AUTOCALL, binder 211
ENTRY, binder 211
IMPORT, binder 212
IMPORT, prelinker 438
INCLUDE 427
INCLUDE, binder 212
INCLUDE, prelinker 438
LIBRARY 427
LIBRARY, binder 213
LIBRARY, prelinker 439
linkage editor 426
NAME, binder 214
processing 437
RENAME, binder 214
RENAME, prelinker 440

convert
characters from one code set to another 387
source definitions for locale categories 390

Convlit 78
CONVLIT compiler option 78
CPARM JCL parameter 459
CPLINK REXX EXEC

example 432
syntax 431

cross reference listing 454
cross reference table

creating with XREF compiler option 166
OS/390 C++ listing 191
OS/390 C listing 181

CSECT (control section)
CEESTART 412
compiler option 79
pragma 407

customizing locales 388
CXX REXX EXEC

syntax 233
using under TSO 236
using with HFS 235

CXXBIND REXX EXEC 305
CXXFILT utility

class names 365
error messages 599, 600
input under OS/390 batch 367
input under TSO 368
options 366

CXXFILT utility (continued)
OS/390 batch 367
overview 365
PROC for OS/390 367
regular names 365
return codes. 600
special names 365
termination 369
termination under OS/390 batch 368
TSO 368
unknown names 367

CXXMOD REXX EXEC
keyword parameters

LIB 430
LIST 430
LOAD 430
LOPT 429
OBJ 429
PLIB 429
PMAP 430
PMOD 430
POPT 429

syntax 428

D
data sets

concatenating 232
for linking 408
for prelinking 404
supported attributes 460
usage 460
user prefixes 37, 43

data types, preserving unsignedness 163
DD statement

for linkage editor data sets 408
for prelinker data sets 404

ddname
alternative 467
defaults 460

debugging
error traceback (GONUMBER compiler option) 96
errors 76, 85
SERVICE compiler option 142
SRCMSG compiler option 151
TEST compiler option 158

DECK compiler option 169
default

compiler options 59, 62
output file names 111
overriding compiler option 55

define
local environments 390

DEFINE compiler option 82
definition side-deck 412, 413
DEFSUB DSECT utility option 373
digraphs, DIGRAPH compiler option 82
disk search sequence

LSEARCH compiler option 115
SEARCH compiler option 140

646 OS/390 V2R6.0 C/C++ User’s Guide

DLLRNAM utility
return codes. 599

DLLRNAME utility 357
input 358
output 358
under OS/390 batch 360
under TSO 361

DLLs (Dynamic Link Libraries)
binding 208
building 413
definition side-deck 417
DLL compiler option 84
DLLNAME() prelinker option 413
DLLRNAME utility 357
EXPORTALL compiler option 88
IMPORT control statement 413
NAME control statement 413
prelinking 404
prelinking a DLL 412
prelinking a DLL application 413
redistributing 357
renaming 357

DMS message prefix 449
doublebyte characters, converting 387
DSECT utility

BITF0XL option 372
BLKSIZE option 378
COMMENT option 373
DEFSUB option 373
EQUATE option 373
error messages 597
HDRSKIP option 375
INDENT option 376
LOCALE option 376
LOWERCASE option 376
LRECL option 378
OS/390 batch 381
OUTPUT option 378
PPCOND option 377
RECFM option 378
return codes 597
SECT option 371
SEQUENCE option 377
structure produced 378
TSO 382
UNNAMED option 378

DUP prelinker option 445
DYNAM binder option 208

E
EDC message prefix 449
EDCB 299
EDCCB 299, 300
EDCCBG 299
EDCCLIB cataloged procedure 351
EDCDSECT cataloged procedure 381
EDCGNXLT cataloged procedure 388
EDCICONV cataloged procedure 385
EDCLDEF cataloged procedure 389
EDCLDEF CLIST 390

EDCLIB cataloged procedure 351
EDCnnnn messages 475
efficiency, object module optimization 131
ENTRY linkage editor control statement 412
environment

defining local 390
EQA message prefix 449
EQUATE DSECT utility option

BIT suboption 374
BITL suboption 374
DEF suboption 375

ER prelinker option 445
error

compile-time 450
determining source of 449
link time 453
messages

compiler 475
CXXFILT utility 600
directing to your terminal 157
DLLRNAME utility 599
DSECT utility 597

re-creating 450
runtime 453

escape sequence 451
escaping special characters 57, 230, 235
EVENTS compiler option 85
example

cbc3uaam 35
cbc3uaan 36
cbc3uaap 469
cbc3uaaq 470
cbc3uaar 471
cbc3uaas 472
cbc3uaat 473
cbc3uaau 474
cbc3ubrc 41
cbc3ubrh.h 40
cbc3uncl 52
clb3aitr.c 47
clb3aitr.h 47
clb3alst.c 46
clb3alst.h 46
clb3amax.c 48
clb3amax.h 47
clb3amin.c 48
clb3amin.h 48
clb3astr.h 49
clb3atmp.cxx 50

examples
machine-readable 9
naming of 9
softcopy 9

Examples
assembler macro 469
compile, link and run 43, 51
OS/390 C++ source 39
OS/390 C source 35
sample program 39
sample template program 45

INDEX 647

exception handling
compiler error message severity levels 90
compiler return codes 475
linkage editor 411

EXEC
JCL statement

GPARM parameter 337
specifying runtime options 336

statement
invoking linkage editor 425
invoking prelinker 425

supplied by IBM
CDSECT 382
DLLRNAME 457
GENXLT 388
ICONV 385

executable
files

invoking OS/390 load modules from the
shell 340

placing OS/390 load modules in the HFS 340
running 340
running, under OS/390 batch 335

EXH compiler option 87
EXPMAC compiler option 88, 453
EXPORTALL compiler option 88
external

entry points 71
names

long name support 114
prelinker 403, 404

references
resolving 433
unresolved 445

variables
exporting 88
importing 88

F
FASTTEMPINC compiler option 89
feature test macro 244
files

names
generated default 111
include files 247
user prefixes 37, 43

searching paths 115, 140
FLAG compiler option 90, 454
FLOAT compiler option 91
foreground compilation

panels in ISPF 236
functions

code set conversion 385
exporting 88
importing 88
linking 411

G
GENPCH compiler option 95

genxlt utility
CLIST 388
OS/390 Batch 388
TSO 388
usage 385

get and set methods 146
GONUMBER compiler option 96, 454
GPARM

JCL parameter 460
parameter of EXEC statement 337

H
HALT compiler option 97
HDRSKIP DSECT utility option 375
header files

system 170, 171, 232
user 172
user-defined 173

heading information
for IPA Link listings 201
for OS/390 C++ listings 190
for OS/390 C listings 180

HFS (Hierarchical File System)
placing OS/390 load modules 340

HWOPTS compiler option 170

I
IBM message prefix 449
iconv shell command 387
iconv utility

CLIST 386
OS/390 Batch 385
TSO 386
usage 385

IGZ message prefix 449
implicit mode 145
IMPORT statement

syntax description 438
IMS

PLIST compiler option 134
INCLUDE control statement

for prelinking and linking 427
linkage editor and 410
OS/390 C/C++ prelinker and 438
syntax description 438

include files
naming 247
nested 125
preprocessor directive

syntax 246
record format 247
SHOWINC compiler option 145
system files and libraries

OPTFILE compiler option 129
SEARCH compiler option 140
using 246

user files and libraries
using 246

INDENT DSECT utility option 376

648 OS/390 V2R6.0 C/C++ User’s Guide

INFILE REXX EXEC parameter 459
INFO compiler option 98, 454
inline

OS/390 C++ report 192
OS/390 C report 182
report for IPA inliner 202

INLINE compiler option 454
description 99

INLRPT compiler option 102, 454
input

compiler 223, 231
linkage editor 409
prelinker 404, 405, 406
record sequence numbers 143

installation
problems 455
PTFs 450

IPA
invoking from the c89 utility 242
IPA Compile step

flow of processing 221
IPA compiler option 103
IPA Link step

automatic library call processing 273
compiler options map listing section 202
control file 277
error source 451
external symbol cross reference listing

section 204
external symbol dictionary listing section 204
flow of processing 222
global symbols map listing section 202
IMPORT IPA Link control statement 276
INCLUDE IPA Link control statement 277
input 271
IPA inliner listing section 202
IPA Link control statements 275
LIBRARY IPA Link control statement 277
library routine considerations 274
listing heading information 201
listing message summary 205
listing messages section 205
listing output 282
listing overview 174, 183, 193
listing prolog 201
object file map listing section 201
object module output 282
object record formats 275
options, specifying under OS/390 batch 285
output 281
overview 267
partition map listing section 204
primary input 271
pseudo assembly listing section 204
region size, specifying under OS/390 batch 285
running in the OS/390 UNIX environment 286
running under OS/390 batch 283
secondary input 272
secondary input, specifying under OS/390

batch 285
source file map listing section 202

IPA (continued)
IPA Link step (continued)

storage offset listing section 204
uppercase name resolution 273
using CBCI 284
using DD statements for the standard data

sets 268
using DLLs 274
using EDCI 284
using the c89 utility with 287
using your own JCL for 286

object modules under IPA 226
overview 221
using catalogued procedures 229

IPACNTL data set 460, 462
IPARM JCL parameter 459
IRUN JCL parameter 459
ISPF (Interactive System Productivity Facility)

batch compile panels 238
foreground compile panels 236
starting the compiler with 236

J
JCL (Job Control Language)

C comments 151
description 231
ENTRY control statement 412
specifying prelinker and linkage editor options 425,

426

L
LANGLVL compiler option 107
LET binder option 208
LIB parameter CXXMOD EXEC 430
LIBANSI compiler option 110
library

archive
creating 395
displaying the object files in 395
file naming convention for c89 use 395
use by application programs 395

OS/390 Language Environment
components 411
required to run the compiler 223
runtime 223

search sequence
with LSEARCH compiler option 115
with SEARCH compiler option 140

LIBRARY control statement
linkage editor and 410
prelinker and 427, 439
using with linkage editor 427

LIBRARY JCL parameter 460
LINK

assembler macro 467
command

input 433
LOAD operand 434
syntax 433

INDEX 649

link time error 453
linkage editor

creating a load module under OS/390 batch 424
errors 411
function of 417
INCLUDE statement and 410
input to 409, 418
LIBRARY statement and 410
options

MAP|NOMAP 405
specifying 424

output 409, 410, 418
requesting options with c89 434
using c89 and c++ to compile and bindt 242
using make to compile and bind 243
using under TSO 428

linking 423
IBM-supplied class libraries 423
multiple object modules 412

LIST binder option 209
LIST compiler option 110, 453
LIST parameter CXXMOD EXEC 430
listings

all included text 453
binder map 209, 210
cross reference 454
from linkage editor 409
from prelinker 405, 418
include file option (SHOWINC) 145
IPA Compile step, using 174, 183
IPA Link step, using 193
IPA Link step compiler options map 202
IPA Link step external symbol cross reference 204
IPA Link step external symbol dictionary 204
IPA Link step global symbols map 202
IPA Link step heading information 201
IPA Link step inliner 202
IPA Link step message summary 205
IPA Link step messages 205
IPA Link step object file map 201
IPA Link step partition map 204
IPA Link step prolog 201
IPA Link step pseudo assembly 204
IPA Link step source file map 202
IPA Link step storage offset 204
message summary, OS/390 C 182
message summary, OS/390 C++ 192
object code 453
object library utility map 351
object module option (LIST) 110
OS/390 C++ cross reference table 191
OS/390 C++ external symbol cross reference 193
OS/390 C++ external symbol dictionary 193
OS/390 C++ includes section 191
OS/390 C++ messages 191
OS/390 C++ object code 193
OS/390 C++ pseudo assembly listing 193
OS/390 C++ source program 191
OS/390 C, using 174
OS/390 C cross reference table 181
OS/390 C external symbol cross reference 183

listings (continued)
OS/390 C external symbol dictionary 183
OS/390 C includes section 181
OS/390 C messages 181
OS/390 C object code 183
OS/390 C pseudo assembly listing 183
OS/390 C source program 181
OS/390 C structure and union maps 181
source file 453
using OS/390 C++ 183

load library
storing object modules 434

load module
creating 408
inputs for 418

LOAD parameter CXXMOD EXEC 430
local environment, defining 390
local variables 150
locale

converting source definitions for categories 390
customizing 388
definition file 388
DSECT utility option 376
object 389

LOCALE
compiler options 112

localedef shell command 390
localedef utility

OS/390 batch 389
TSO 390

logical
string assist (LSA) 170

logical string assist (LSA) 170
long names

definition of 403
LIBRARY control statement and 439
mapping to short names 407
RENAME control statement and 440
resolving undefined 423
support 114
unresolved 423
UPCASE prelink option and 445

LONGNAME compiler option 114
LOPT parameter CXXMOD EXEC 429
LOWERCASE DSECT utility option 376
LPARM parameter 424
LPARM REXX EXEC parameter 459
LRECL (logical record length) parameter

DSECT utility option 378
LRECL DSECT utility option 378
LSEARCH compiler option 115

M
macro

assembler
ATTACH 467
CALL 467
compiling OS/390 C/C++ programs with 467
LINK 467

expanded in source listing 88

650 OS/390 V2R6.0 C/C++ User’s Guide

macro (continued)
expansion 453
feature test 244

maintaining
objects in an archive library 395
programs through makefiles 396
programs with make using c89 243

make utility
compiling and binding application programs 243
compiling source and object files 240
creating makefiles 396
maintaining OS/390 C/C++ application

programs 396
makefiles

creating 396
maintaining application programs 396

mangled name filter utility 365
map

load module 410
pragma 407
prelinker 405, 406, 418

MAP binder option 209
MAP prelinker option 405, 418, 445
mapping

long names to short names
rules for 407

of load modules 425
MARGINS compiler option 121, 451
MAXMEM compiler option 123
MEMBER JCL parameter 460
memory

files, compiler work-files 124
MAXMEM compiler option 123
MEMORY compiler option 124
MEMORY prelinker option 445

message prefixes
CBC 449
CEE 449
DMS 449
EDC 449
EQA 449
IBM 449
IGZ 449
others 449
PLI 449

messages
compiler, list of 475
directing to your terminal 157
generate warning 98
on IPA Link step listings 205
on OS/390 C++ compiler listings 191
on OS/390 C compiler listings 181
specifying severity of 90

mismatches, type 451
MVS (Multiple Virtual System)

batch environment
running shell scripts and OS/390 C/C++

applications 397

N
NAME control statement 405, 410
natural reentrancy

generating 139
linking 453

NCAL prelinker option 445
NESTINC compiler option 125
NOAGGREGATE compiler option 70
NOALIAS compiler option 71
NOANSIALIAS compiler option 72
NOARGPARSE compiler option 74
NOATTRIBUTE compiler option 75
NOCALLBAKANY 84
NOCHECKOUT compiler option 76
NOCLASSNAME option of CXXFILT utility 367
NOCSECT compiler option 79
NODECK compiler option 169
NODIGRAPH compiler option 82
NODLL compiler option 84
NODUP prelinker option 445
NOER prelinker option 445
NOEVENTS compiler option 85
NOEXECOPS compiler option 86
NOEXPMAC compiler option 88
NOEXPORTALL compiler option 88
NOFASTTEMPINC compiler option 89
NOFLAG compiler option 90
NOGENPCH compiler option 95
NOGONUMBER compiler option 96
NOHWOPTS compiler option 170
NOINFO compiler option 98
NOINLINE compiler option 99
NOINLRPT compiler option 102
NOIPA compiler option 103
NOLIBANSI compiler option 110
NOLIST compiler option 110
NOLOCALE compiler option 112
NOLONGNAME compiler option 114
NOLSEARCH compiler option 115
NOMAP prelinker option 445
NOMARGINS compiler option 121, 451
NOMAXMEM compiler option 123
NOMEMORY compiler option 124
NOMEMORY prelinker option 445
NONCAL prelinker option 445
NONESTINC compiler option 125
NOOBJECT compiler option 125
NOOE compiler option 127
NOOFFSET compiler option 128
NOOMVS compiler option 129
NOOPTFILE compiler option 129
NOOPTIMIZE compiler option 131, 451
NOPPONLY compiler option 136
NOREDIR compiler option 138
NOREGULARNAME option of CXXFILT utility 366
NORENT compiler option 139
NOSEARCH compiler option 140
NOSEQUENCE compiler option 143, 451
NOSERVICE compiler option 142
NOSHOWINC compiler option 145
NOSIDEBYSIDE option of CXXFILT utility 366

INDEX 651

NOSOM compiler option 145
NOSOMEINIT compiler option 146
NOSOMGS compiler option 146
NOSOMRO compiler option 147
NOSOMVOLATTR compiler option 148
NOSOURCE compiler option 148
NOSPECIALNAME option of CXXFILT utility 367
NOSPILL compiler option 150
NOSRCMSG compiler option 151
NOSSCOMM compiler option 151
NOSTART compiler option 152
NOSTRICT compiler option 153
NOSYMMAP option of CXXFILT utility 366
NOSYSPATH compiler option 171
NOTEMPINC compiler option 156
NOTERMINAL compiler option 157
NOTEST compiler option 158
NOUPCASE prelinker option 445
NOUPCONV compiler option 163
NOUSEPCH compiler option 164
NOWIDTH option of CXXFILT utility 366
NOWSIZEOF compiler option 165
NOXREF compiler option 166
NOXSOMINC compiler option 167

O
OBJ parameter for CXXMOD EXEC 429
object

code 221
library

adding object modules 351
deleting object modules 351
listing the contents 351
OS/390 batch 351
TSO 353

module
additional object modules as input 410
creating 427
DECK compiler option 169
DLL compiler option 84
EXPORTALL compiler option 88
link-editing multiple modules 412
LIST compiler option 110
OBJECT compiler option 125
optimization 131
OS/390 C++ object listing 193
OS/390 C object listing 183
storing in a load library 434
TARGET compiler option 153

OBJECT
compiler option 125
JCL parameter 460

object code, listing 453
Object Library Utility

example under OS/390 batch 351
long name support 351
map

heading 354
member heading 354
symbol information 354

Object Library Utility (continued)
map (continued)

user comments 354
OE compiler option 127
OFFSET compiler option 128, 453
OGET utility 241, 340
OGETX utility 340
OMVS

compiler option 129
OE compiler option 127

OPARM JCL parameter 460
OPEN_MSGQ_EXT feature test macro 246
OPTFILE compiler option 129
optimization

object module 131
OPTIMIZE compiler option 131
storage requirements 131
TUNE compiler option 161

OPTIMIZE compiler option 131, 451
OPTION binder option 209
options

compiler 59
CXXFILT syntax 365
linkage editor 410
NOSYMMAP, for CXXFILT 366
runtime 217
SYMMAP, for CLASSNAME 367
SYMMAP, for CXXFILT 366
SYMMAP, for NOCLASSNAME 367
SYMMAP, for NOREGULARNAME 366
SYMMAP, for NOSIDEBYSIDE 366
SYMMAP, for NOSPECIALNAME 367
SYMMAP, for NOWIDTH 366
SYMMAP, for REGULARNAME 366
SYMMAP, for SIDEBYSIDE 366
SYMMAP, for SPECIALNAME 367
SYMMAP, for WIDTH 366

OPUTX utility 340
OS/390 batch

compile, ISPF panels 238
compiling under 228
link-editing 427
running shell scripts and OS/390 C/C++

applications 397
running your program 335

OS/390 Program Directory 455
OS/390 UNIX

compiling and binding using c89 240
compiling and binding using c89 and c++ 242
compiling and binding using make 243
maintaining objects in an archive library 395
maintaining through makefiles 396
OE compiler option 127
OMVS compiler option 129
placing OS/390 load modules in the HFS 340

OUTFILE REXX EXEC parameter 459
output

from the linkage editor 409, 410
from the prelinker 405

OUTPUT DSECT utility option 378

652 OS/390 V2R6.0 C/C++ User’s Guide

P
PARM parameter 425
passing

arguments 217
passing arguments 217
PHASEID compiler option 133
PLI message prefix 449
PLIB parameter CXXMOD EXEC 429
PLIST compiler option 134
PMAP parameter CXXMOD EXEC 430
PMOD parameter CXXMOD EXEC 430
POPT parameter CXXMOD EXEC 429
PORT compiler option 134
PPARM

JCL parameter 460
parameter 424

PPCOND DSECT utility option 377
PPONLY compiler option 136, 451, 453
pragmas

csect 407
map 407
options 58
runopts 217

precompiled headers
creating 95
GENP and USEP compiler options 263
initial sequence of headers

determining 259
example of varying 260
long 265
matching 262
reusing 263
short 265
terminating 260
using alternate 264

maintain current 263
organizing source files

a PCH file for each member of the directory 266
common header file 266
global PCH file 266
hints and tips 265

overview 259
restrictions 264
reusing 164
usage 259

prelinker
building and using DLLs 413
error source 452
function of 417
functions of 403
IBM-supplied class libraries 423
IMPORT statement and 438
INCLUDE statement and 438
input 404, 405, 406, 417
LIBRARY statement and 439
load modules 452
map 405, 418
mapping long names to short names 407
messages from 405
options

MAP|NOMAP 418

prelinker (continued)
options (continued)

specifying 424
output from 405, 417, 432
overview 403
RENAME statement and 440
resolving undefined symbols 423
under OS/390 batch 426
usage 403

preprocessor, diagnostic information 453
preprocessor directives

effects of PPONLY compiler option 136
include 246

preventive service planning (PSP) bucket 450, 455
primary data set

specifying input to the compiler 224
specifying input to the linkage editor 410

primary input
compiler 224
linkage editor 410
to the IPA Link step 269, 271
to the linkage editor 409
to the prelinker 404

processing a C program
OS/390 C sample program, under OS/390 Batch 37
OS/390 C sample program, under TSO 37

programming errors 76
PSP (preventive service planning) bucket 450, 455
PTF (Program Temporary Fix)

error solution 450
error source 450
installation 450

R
RECFM DSECT utility option 378
record

margins 121
record margins 121
REDIR compiler option 138
reentrancy

linking 452
RENT compiler option 139

reentrant code
linking 452
RENT compiler option 139

regular names used with CXXFILT 365
REGULARNAME option of CXXFILT utility 366
Release order 147
RENAME control statement

mapping long names to short names 407
syntax 440

RENT compiler option
syntax 139

return
codes

compiler 475
CXXFILT utility 600
DLLRNAME utility 599
DSECT utility 597
severity 475

INDEX 653

return codes
compiler 475
CXXFILT utility 600
DLLRNAME utility 599
DSECT utility 597
severity 475

REUS binder option 209
REXX EXECs

supplied by IBM
C370LIB 457
CC, new syntax 457
CC, old syntax 603
CDSECT 457
CMOD 603, 604
CPLINK 431
CXXBIND 457
CXXMOD 457
EDCLDEF 390
GENXLT 388, 457
ICONV 386, 457
LOCALEDEF 457

ROUND compiler option 140
running programs

OS/390 batch
BPXBATCH 340
example 336
with EXEC JCL statement 335

OS/390 UNIX application 339
TSO

example 337
specifying runtime options 338
with CALL TSO command 337

runtime
errors 453
options

in the EXEC statement 336
recognize at runtime 86
specifying 217
under OS/390 batch 335
under Os/390 UNIX 339

specifying runtime environment 153

S
sample program

OS/390 C++ source 39
OS/390 C source 35
processing OS/390 C under OS/390 Batch 37
processing OS/390 C under TSO 37

SCEECPP library 429
SCEELKED library

prelinker and 418, 430
SEARCH compiler option 140
Search option

using to compile OS/390 C++ code 257
using to compile OS/390 C code 257

search sequence
library files 335
system include files 141
user include files 115

secondary data set
libraries 232
secondary input to the linkage editor 410

secondary input
compiler 224, 232
linkage editor 410
to the IPA Link step 269, 272
to the linkage editor 409
to the prelinker 405

SECT DSECT utility option 371
SEQUENCE compiler option 143, 451
SEQUENCE DSECT utility option 377
sequence numbers on input records 143
SERVICE compiler option 142
severity, compiler return codes. 475
shell

compiling and link-editing within
using the c89 utility 240

invoking load modules 340
using BPXBATCH to run commands or scripts 397

short names
automatic library call processing 423
definition of 403
mapping 407
unresolved 423

SHOWINC compiler option 145, 453
SIDEBYSIDE option of CXXFILT utility 366
singlebyte characters

converting 387
SOM compiler options

SOM | NOSOM 145
SOMEINIT | NOSOMEINIT 146
SOMGS | NOSOMGS 146
SOMRO | NOSOMRO 147
SOMVOLATTR | NOSOMVOLATTR 148
XSOMINC | NOXSOMINC 167

source
file listing 453
program

comment (SSCOMM compiler option) 151
compiler listing options 145, 148
file names in include files 247
generating reentrant code 139
input data set 224
margins 121
SEQUENCE compiler option 143

source code
compiling using c89 239
OS/390 C++ example program 39
OS/390 C sample program 35

SOURCE compiler option 148, 453
source definitions

converting for locale categories 390
special characters, escaping 57, 230, 235
special names used with CXXFILT 365
SPECIALNAME option of CXXFILT utility 367
spill area

changing the size of 150
definition of 150
pragma 150

SPILL compiler option 150

654 OS/390 V2R6.0 C/C++ User’s Guide

SRCMSG compiler option 151, 454
SSCOMM compiler option 151
standard

files, allocation for BPXBATCH 397
standard files, allocation for BPXBATCH 397
standards

ANSI compiler option 107
LIBANSI compiler option 110

START compiler option 152
statement

failure in 454
switch 454

STEPLIB
data set 460, 461, 462
ddname 404
prelinker 405

storage
optimization 131

STRICT compiler option 153
structure and union maps, OS/390 C compiler

listing 181
stub routines

contents of 411
in OS/390 Language Environment 411

switch statement 454
SYMMAP option of CXXFILT utility 366
syntax diagrams, how to read 11
SYSCPRT data set 226, 460, 461, 463
SYSDEFSD data set

description 463
prelinker and 404, 405

SYSEVENT data set
description of 462

SYSIN data set for stdin
description of 460, 462
primary input to prelinker 404, 417
primary input to the compiler 231
usage 460

SYSLIB compiler option 170
SYSLIB data set

description of 461, 462
IPA Link step and 272
linkage editor and 408, 409, 418
prelinker and 404, 405, 417
secondary input to linkage editor 410
specifying 232
usage 460

SYSLIN data set
description of 461, 462
IPA Link step and 270
linkage editor and 408, 409, 417
primary input to linkage editor 410
usage 460
with OBJECT compiler option 226

SYSLMOD data set 408, 409, 418, 460
SYSMOD data set 404, 405, 418, 460
SYSMSGS data set 404, 405, 460
SYSOUT data set

description of 461, 462, 465
prelinker and 404, 405
usage 460

SYSPATH compiler option 171, 224
SYSPRINT data set

linkage editor and 408, 409
prelinker and 404
usage 460

SYSPUNCH data set
with DECK compiler option 226

system
files and libraries 129, 140
programmer

establishing library access 233, 337
system-defined header files 170, 171
system header files 232
SYSUT1 data set 408, 409, 460, 461
SYSUT4-10 data sets 461

T
TARGET compiler option 153
TEMPINC compiler option 156
templates

create template instantiation output 226
program example 45

TERMINAL compiler option 157
test case, creating 450
TEST compiler option 158, 454
TEXT deck 450
trigraph 451
TSO (Time Sharing Option)

compiling under 233
LINK command 434

TUNE compiler option 161
type conversion, preserving unsignedness 163
type conversions 163
type mismatches 451

U
UNDEFINE compiler option 163
unknown names input to CXXFILT utility 367
UNNAMED DSECT utility option 378
unprintable character 451
unsignedness preservation, type conversion 163
UPCASE binder option 210
UPCASE prelinker option 445
UPCONV compiler option 163
USEPCH compiler option 164
user

comments, object library utility map 354
include files

LSEARCH compiler option 115
SEARCH compiler option 140
specifying with #include directive 246

prefix 37, 43
user-defined header files 172, 173
USERLIB compiler option 172
USERPATH compiler option 173, 224
utilities

CXXFILT 365, 600
DLLRNAME 599
DSECT 597

INDEX 655

utilities (continued)
mangled name filter 365
OS/390 C 457
OS/390 C++ 457
OS/390 C, old syntax 603
Symbol is obsolete - use ouss or oux 395

W
WIDTH option of CXXFILT utility 366
work data sets 460
writable static

object library 351
prelinker and 406
relative offsets 403

WSIZEOF compiler option 165

X
XREF binder option 210
XREF compiler option 166, 454
XSOMINC compiler option 167

656 OS/390 V2R6.0 C/C++ User’s Guide

Readers’ Comments — We’d Like to Hear from You

OS/390
C/C++
User’s Guide

Publication No. SC09-2361-04

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC09-2361-04

SC09-2361-04

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR
1150 EGLINTON AVENUE EAST
NORTH YORK ONTARIO CANADA

M3C 1H7

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Printed in the United States of America

SC09-2361-04

	Contents
	Notices
	Standards
	Trademarks

	Part 1. Introduction
	Chapter 1. About This Book
	IBM OS/390 C/C++ and Related Publications
	Hardcopy Books
	Softcopy Books
	Softcopy Examples
	OS/390 C/C++ on the World Wide Web
	C/C++ News...
	How to Read the Syntax Diagrams

	Chapter 2. About IBM OS/390 C/C++
	Changes for Version 2 Release 6
	The C/C++ Compilers
	The C Language
	The C++ Language
	Common Features of the OS/390 C and C++ Compilers
	OS/390 C Compiler Specific Features
	Features That Are Specific to the OS/390 C++ Compiler

	Utilities
	Class Libraries
	Class Library Source

	The Debug Tool
	OS/390 Language Environment
	The Program Management Binder
	OS/390 UNIX System Services (OS/390 UNIX)
	OS/390 C/C++ Applications with OS/390 UNIX C/C++ Functions
	Input and Output
	I/O Interfaces
	File Types
	Additional I/O Features

	The System Programming C Facility
	Interaction with Other IBM Products
	Additional Features of OS/390 C/C++

	Chapter 3. Important Changes to the Prelinker Documentation
	Part 2. User's Reference
	Chapter 4. OS/390 C Example
	Example of an OS/390 C Program
	CBC3UAAM
	CBC3UAAN

	Compiling, Binding, and Running the OS/390 C Example
	Under OS/390 Batch
	Under TSO
	Under the OS/390 Shell

	Chapter 5. OS/390 C++ Examples
	Example of an OS/390 C++ Program
	CBC3UBRH
	CBC3UBRC

	Compiling, Binding, and Running the OS/390 C++ Example
	Under OS/390 Batch
	Under TSO
	Under the OS/390 Shell

	Example of an OS/390 C++ Template Program
	CLB3ALST.C
	CLB3ALST.H
	CLB3AITR.C
	CLB3AITR.H
	CLB3AMAX.H
	CLB3AMAX.C
	CLB3AMIN.H
	CLB3AMIN.C
	CLB3ASTR.H
	CLB3ATMP.CXX

	Compiling, Binding, and Running the C++ Template Example
	Under OS/390 Batch
	CBC3UNCL

	Under TSO
	Under the OS/390 Shell

	Chapter 6. Compiler Options
	Specifying Compiler Options
	IPA Considerations
	Applicability of Compiler Options under IPA
	Interactions between Compiler Options and IPA Suboptions

	Using Special Characters
	Under TSO
	Under the OS/390 Shell
	Under OS/390 Batch

	Specifying OS/390 C Compiler Options Using #pragma Options
	Specifying Compiler Options under OS/390 UNIX

	Compiler Option Defaults
	Summary of Compiler Options
	Compatibility Options
	Compiler Options for File Management
	Options That Control the Compiler Listing
	Options for Debugging and Diagnosing Errors
	Options That Control the Source Code
	Options That Control the Object Code
	Options That Control the Preprocessor
	Options That Control Program Execution
	Options That Control the IPA Object
	Options That Control the IPA Link Step
	Direct-to-SOM Options
	Portability Options
	Description of Compiler Options
	AGGREGATE | NOAGGREGATE
	Effect on IPA Compile Step
	Effect on IPA Link Step

	ALIAS | NOALIAS
	Effect on IPA Compile Step
	Effect on IPA Link Step

	ANSIALIAS | NOANSIALIAS
	Effect on IPA Compile Step
	Effect on IPA Link Step

	ARCHITECTURE
	Effect on IPA Compile Step
	Effect on IPA Link Step

	ARGPARSE | NOARGPARSE
	Effect on IPA Compile Step
	Effect on IPA Link Step

	ATTRIBUTE | NOATTRIBUTE
	Effect on IPA Compile Step
	Effect on IPA Link Step

	CHECKOUT | NOCHECKOUT
	Effect on IPA Compile Step
	Effect on IPA Link Step

	CONVLIT | NOCONVLIT
	Effect on IPA Compile Step
	Effect on IPA Link Step

	CSECT | NOCSECT
	The CSECT option with no qualifier
	The CSECT option with the qualifier suboption
	Effect on IPA Compile Step
	Effect on IPA Link Step

	DEFINE
	Effect on IPA Compile Step
	Effect on IPA Link Step

	DIGRAPH | NODIGRAPH
	Effect on IPA Compile Step
	Effect on IPA Link Step

	DLL | NODLL
	Effect on IPA Compile Step
	Effect on IPA Link Step

	EVENTS | NOEVENTS
	Effect on IPA Compile Step
	Effect on IPA Link Step

	EXECOPS | NOEXECOPS
	Effect on IPA Compile Step
	Effect on IPA Link Step

	EXH | NOEXH
	Effect on IPA Compile Step
	Effect on IPA Link Step

	EXPMAC | NOEXPMAC
	Effect on IPA Compile Step
	Effect on IPA Link Step

	EXPORTALL | NOEXPORTALL
	Effect on IPA Compile Step
	Effect on IPA Link Step

	FASTTEMPINC | NOFASTTEMPINC
	Effect on IPA Compile Step
	Effect on IPA Link Step

	FLAG | NOFLAG
	Effect on IPA Compile Step
	Effect on IPA Link Step

	FLOAT
	Using IEEE Floating-Point
	Effect on IPA Compile Step
	Effect on IPA Link Step

	GENPCH | NOGENPCH
	Effect on IPA Compile Step
	Effect on IPA Link Step

	GONUMBER | NOGONUMBER
	Effect on IPA Compile Step
	Effect on IPA Link Step

	HALT(num)
	Effect on IPA Compile Step
	Effect on IPA Link Step

	INFO | NOINFO
	Effect on IPA Compile Step
	Effect on IPA Link Step

	INLINE | NOINLINE
	Effect on IPA Compile Step
	Effect on IPA Link Step

	INLRPT | NOINLRPT
	Effect on IPA Compile Step
	Effect on IPA Link Step

	IPA | NOIPA
	IPA Compile Step Suboptions
	IPA Link Step Suboptions

	LANGLVL
	Effect on IPA Compile Step
	Effect on IPA Link Step

	LIBANSI | NOLIBANSI
	Effect on IPA Compile Step
	Effect on IPA Link Step

	LIST | NOLIST
	Effect on IPA Compile Step
	Effect on IPA Link Step

	LOCALE | NOLOCALE
	Effect on IPA Compile Step
	Effect on IPA Link Step

	LONGNAME | NOLONGNAME
	Effect on IPA Compile Step
	Effect on IPA Link Step

	LSEARCH | NOLSEARCH
	Searching for PDS or PDSE files
	Searching for HFS Files
	Additional Syntax
	Specifying Hierarchical File System Files
	Specifying Sequential Data Sets and PDSs
	Effect on IPA Compile Step
	Effect on IPA Link Step

	MARGINS | NOMARGINS
	Options for OS/390 C
	Effect on IPA Compile Step
	Effect on IPA Link Step

	MAXMEM | NOMAXMEM
	Effect on IPA Compile Step
	Effect on IPA Link Step

	MEMORY | NOMEMORY
	Effect on IPA Compile Step
	Effect on IPA Link Step

	NESTINC | NONESTINC
	Effect on IPA Compile Step
	Effect on IPA Link Step

	OBJECT | NOOBJECT
	Effect on IPA Compile Step
	Effect on IPA Link Step

	OE | NOOE
	Effect on IPA Compile Step
	Effect on IPA Link Step

	OFFSET | NOOFFSET
	Effect on IPA Compile Step
	Effect on IPA Link Step

	OMVS | NOOMVS
	Effect on IPA Compile Step
	Effect on IPA Link Step

	OPTFILE | NOOPTFILE
	Examples
	Effect on IPA Compile Step
	Effect on IPA Link Step

	OPTIMIZE | NOOPTIMIZE
	Effect on IPA Compile Step
	Effect on IPA Link Step

	PHASEID
	Effect on IPA Compile Step
	Effect on IPA Link Step

	PLIST
	Effect on IPA Compile Step
	Effect on IPA Link Step

	PORT | NOPORT
	Default Error Recovery
	Strict Error Recovery
	Effect on IPA Compile Step
	Effect on IPA Link Step

	PPONLY | NOPPONLY
	Effect on IPA Compile Step
	Effect on IPA Link Step

	REDIR | NOREDIR
	Effect on IPA Compile Step
	Effect on IPA Link Step

	RENT | NORENT
	Effect on IPA Compile Step
	Effect on IPA Link Step

	ROUND
	Effect on IPA Compile Step
	Effect on IPA Link Step

	SEARCH | NOSEARCH
	Effect on IPA Compile Step
	Effect on IPA Link Step

	SERVICE | NOSERVICE
	Effect on IPA Compile Step
	Effect on IPA Link Step

	SEQUENCE | NOSEQUENCE
	Options for OS/390 C
	Effect on IPA Compile Step
	Effect on IPA Link Step

	SHOWINC | NOSHOWINC
	Effect on IPA Compile Step
	Effect on IPA Link Step

	SOM | NOSOM
	Effect on IPA Compile Step
	Effect on IPA Link Step

	SOMEINIT | NOSOMEINIT
	Effect on IPA Compile Step
	Effect on IPA Link Step

	SOMGS | NOSOMGS
	Effect on IPA Compile Step
	Effect on IPA Link Step

	SOMRO | NOSOMRO
	Effect on IPA Compile Step
	Effect on IPA Link Step

	SOMVOLATTR | NOSOMVOLATTR
	Effect on IPA Compile Step
	Effect on IPA Link Step

	SOURCE | NOSOURCE
	Effect on IPA Compile Step
	Effect on IPA Link Step

	SPILL | NOSPILL
	Effect on IPA Compile Step
	Effect on IPA Link Step

	SRCMSG | NOSRCMSG
	Effect on IPA Compile Step
	Effect on IPA Link Step

	SSCOMM | NOSSCOMM
	Effect on IPA Compile Step
	Effect on IPA Link Step

	START | NOSTART
	Effect on IPA Compile Step
	Effect on IPA Link Step

	STRICT | NOSTRICT
	Effect on IPA Compile Step
	Effect on IPA Link Step

	TARGET
	TARGET OS/390 Release Suboptions (CURRENT, OSV1R2)
	TARGET Runtime Environment Suboptions (LE,IMS)

	TEMPINC | NOTEMPINC
	Effect on IPA Compile Step
	Effect on IPA Link Step

	TERMINAL | NOTERMINAL
	Effect on IPA

	TEST | NOTEST
	OS/390 C /C++
	Additional OS/390 C Compile Syntax
	Additional OS/390 C Compile suboptions
	Effect on IPA Compile Step
	Effect on IPA Link Step

	TUNE
	Effect on IPA Compile Step
	Effect on IPA Link Step

	UNDEFINE
	Effect on IPA Compile Step
	Effect on IPA Link Step

	UPCONV | NOUPCONV
	Effect on IPA Compile Step
	Effect on IPA Link Step

	USEPCH | NOUSEPCH
	Effect on IPA Compile Step
	Effect on IPA Link Step

	WSIZEOF | NOWSIZEOF
	Effect on IPA Compile Step
	Effect on IPA Link Step

	XREF | NOXREF
	Effect on IPA Compile Step
	Effect on IPA Link Step

	XSOMINC | NOXSOMINC
	Example 1- set of PDSs, quotes used around qualifiers
	Example 2- set of PDSs, no quotes used around qualifiers
	Example 3-absolute HFS file name
	Example 4-relative HFS file name
	Effect on IPA Compile Step
	Effect on IPA Link Step

	Description of Compatible Compiler Options
	DECK | NODECK
	Effect on IPA Compile Step
	Effect on IPA Link Step

	HWOPTS | NOHWOPTS
	Effect on IPA Compile Step
	Effect on IPA Link Step

	SYSLIB
	Effect on IPA Compile Step
	Effect on IPA Link Step

	SYSPATH | NOSYSPATH
	Effect on IPA Compile Step
	Effect on IPA Link Step

	USERLIB
	Effect on IPA Compile Step
	Effect on IPA Link Step

	USERPATH | NOUSERPATH
	Effect on IPA Compile Step
	Effect on IPA Link Step

	Using the OS/390 C Compiler Listing
	IPA Considerations
	Example of an OS/390 C Compiler Listing
	OS/390 C Compiler Listing Components
	Heading Information
	Prolog Section
	Source Program
	Includes Section
	Cross-Reference Listing
	Structure and Union Maps
	Messages
	Message Summary
	Inline Report
	Pseudo Assembly Listing
	External Symbol Dictionary
	External Symbol Cross Reference Listing
	Storage Offset Listing

	Using the OS/390 C++ Compiler Listing
	IPA Considerations
	Example of an OS/390 C++ Compiler Listing
	OS/390 C++ Compiler Listing Components
	Heading Information
	Prolog Section
	Source Program
	Cross-Reference Listing
	Includes Section
	Messages
	Message Summary
	Inline Report
	Pseudo Assembly Listing
	External Symbol Dictionary
	External Symbol Cross Reference Listing

	Using the IPA Link Step Listing
	Example of an IPA Link Step Listing
	IPA Link Step Listing Components
	Heading Information
	Prolog Section
	Object File Map
	Source File Map
	Compiler Options Map
	Global Symbols Map
	Inline Report for IPA Inliner
	Partition Map
	Pseudo Assembly Listing
	External Symbol Dictionary
	External Symbol Cross Reference Listing
	Storage Offset Listing
	Messages
	Message Summary

	Chapter 7. Binder Options and Control Statements
	Binder Options
	ALIASES(ALL | NO)
	CALL(YES | NO)
	CASE(UPPER | MIXED)
	COMPAT(PM1 | PM2 | PM3 | CURRENT | CURR)
	DYNAM(DLL | NO)
	LET(0 | 4 | 8 | 12)
	LIST(OFF | STMT | SUMMARY | NOIMP | ALL)
	MAP(YES | NO)
	OPTIONS
	REUS(NONE | SERIAL | RENT)
	UPCASE(YES | NO)
	XREF(YES | NO)

	Binder Control Statements
	AUTOCALL Control Statement
	ENTRY Control Statements
	IMPORT Control Statements
	INCLUDE Control Statements
	LIBRARY Control Statement
	NAME control statement
	RENAME Control Statement

	Chapter 8. Runtime Options
	Specifying Runtime Options
	Using the #pragma runopts Preprocessor Directive

	Part 3. Compiling, Binding, and Running OS/390 C/C++Programs
	Chapter 9. Compiling
	Compiling with IPA
	The IPA Compile Step
	The IPA Link Step

	Input to the OS/390 C/C++ Compiler
	Primary Input
	Secondary Input

	Output from the Compiler
	Specifying Output Files
	Listing Output
	Object Module Output
	Preprocessor Output
	Template Instantiation Output

	Valid Input/Output File Types
	Compiling Under OS/390 Batch
	Using Cataloged Procedures for OS/390 C
	IPA Considerations

	Using Cataloged Procedures for OS/390 C++
	IPA Considerations

	Using Special Characters
	Using Your Own JCL
	Specifying Source Files
	Specifying Include Files
	Specifying Output Files
	Compiling Under TSO
	Using the CC and CXX REXX EXECs
	Specifying Sequential and Partitioned Data Sets
	Specifying HFS Files or Directories
	Using Special Characters
	Specifying Compiler Options under TSO

	Using ISPF to Invoke the Compiler
	Foreground Processing
	Batch Processing

	Compiling and Binding under the OS/390 Shell
	Compiling and Binding in One Step with c89 and c++ (or cxx)
	Invoking IPA from the c89 Utility

	Using the make Utility

	Using Feature Test Macros
	Using Include Files
	Specifying Include File Names
	Forming File Names
	Forming Data Set Names with LSEARCH | SEARCH Options
	Forming DDname
	Forming Sequential Data Set Names
	Forming PDS Name with LSEARCH | SEARCH + Specification
	Forming PDS with LSEARCH | SEARCH Options With No +
	Examples Of Forming Data Set Names

	Search Sequence
	Determining whether the File Name is in Absolute Form
	Using SEARCH and LSEARCH

	Search Sequences for Include Files
	With the NOOE option
	With the OE option
	Compiling OS/390 C Source Code Using the SEARCH option
	Compiling OS/390 C++ Source Code Using the SEARCH option

	Chapter 10. Using Precompiled Headers
	Determining the Initial Sequence
	Matching the Initial Sequence
	Example - Reusing Sequences

	Using the GENP and USEP Compiler Options
	Using an Alternative Initial Sequence

	Restrictions
	Organizing Your Source Files
	Common Header File
	Global PCH File for the Entire Directory
	One PCH file for Each Member of the Directory

	Chapter 11. Using the IPA Link Step with OS/390 C/C++Programs
	IPA Linking Your Program
	Using DD Statements for the Standard Data Sets
	Primary Input (SYSIN)
	Location of Compiler and OS/390 Language Environment Library(STEPLIB)
	Secondary Input (SYSLIB)
	Output (SYSLIN or SYSPUNCH)
	Destination of Errors Generated by the IPA Link Step (SYSOUT)
	Listing (SYSCPRT)
	Temporary Workspaces for the IPA Link Step (SYSUTx)

	IPA Link Step Input
	Primary Input
	IPA Linking Multiple Object Modules

	Secondary Input
	Additional Object Modules and Load Modules as Input
	Uppercase Name Resolution with the IPA(UPCASE) Option
	Processing the IPA Link Automatic Library Call
	References to Currently Undefined Symbols (ExternalReferences)
	Library Routine Considerations
	Using DLLs

	Object File Formats
	Object Record Formats
	Binary Object Records
	IPA Link Control Statements

	The IPA Link Step Control File

	Output from the IPA Link Step
	Specifying Output Files
	Listing Output
	Object Module Output

	Mapping Static Symbol Names

	Running the IPA Link Step Under OS/390 Batch
	Using the EDCI and CBCI Cataloged Procedures
	Specifying IPA Link Options
	Specifying Region Size
	Specifying Secondary Input under OS/390 Batch

	Using Your Own JCL

	Running the IPA Link Step in OS/390 UNIX
	Using JCL
	Invoking IPA from the c89 Utility
	Specifying Options
	Using IPA Link with Archive Files
	Other Considerations

	Chapter 12. Binding OS/390 C/C++ Programs
	When You Can Use the Binder
	When You Cannot Use the Binder
	Your Output is a PDS, not a PDSE
	CICS
	MTF
	IPA

	Using Different Methods to Bind
	Single Final Bind
	Bind Each Compile Unit
	Build and Use a DLL
	Rebind a Changed Compile Unit

	Binding Under OS/390 UNIX
	OS/390 UNIX Example
	Single Final Bind Using c89
	Advantage

	Bind Each Compile Unit Using c89
	Advantage

	Build and Use a DLL Using c89
	Advantage

	Rebind a Changed Compile Unit Using c89
	Advantage

	Binding under OS/390 Batch
	OS/390 Batch Example
	Single Final Bind under OS/390 Batch
	Advantage

	Bind Each Compile Unit under OS/390 Batch
	Advantage

	Build and Use a DLL under OS/390 Batch
	Advantage

	Rebind a Changed Compile Unit under OS/390 Batch
	Advantage

	Writing JCL for the binder

	Binding Under TSO Using CXXBIND
	TSO Example
	Single Final Bind Under TSO
	Advantage

	Bind Each Compile Unit Under TSO
	Advantage

	Build and Use a DLL under TSO
	Advantage

	Rebind a Changed Compile Unit Under TSO
	Advantage

	Chapter 13. Binder Processing
	Primary Input Processing
	C or C++ Object Module as Input

	Secondary Input Processing
	Load Module as Input
	Program Object as input

	Autocall Input Processing (Library Search)
	Incremental Autocall Processing (AUTOCALL Control Statement)
	Final Autocall Processing (SYSLIB)
	Rename Processing
	Generating Aliases for Automatic Library Call (Library Search)

	Dynamic Link Library (DLL) Processing
	Statically bound functions
	Imported Variables
	Imported Functions

	Output Program Object
	Output IMPORT Statements
	Output Listing
	Header
	Input Event Log
	Module Map
	Data Set Summary
	Renamed Symbol Cross Reference

	Cross Reference Table
	Imported and Exported Symbols Listing
	Mangled to Demangled Symbol Cross Reference
	Processing Options
	Save Operation Summary
	Save Module Attributes
	Entry Point and Alias Summary
	Long Symbol Abbreviation Table
	DDname vs Pathname Cross Reference Table
	Message Summary Report

	Binder Processing of C/C++ Object to Program Object
	Rebindability

	Error recovery
	Unresolved Symbols
	Inconsistent reference vs. definition types
	Inconsistent Name usage

	Significance of Library Search Order
	Duplicates
	Duplicate functions from autocall
	Hunting down references to unresolved symbols
	Non-reentrant DLL Problems

	Code That Has Been Prelinked

	Chapter 14. Running an OS/390 C/C++ Application
	Running an Application Under OS/390 Batch
	Specifying Runtime Options under OS/390 Batch
	Specifying Runtime Options in the EXEC Statement
	Using Cataloged Procedures

	Running an Application under TSO
	Specifying Runtime Options under TSO
	Passing Arguments to the OS/390 C/C++ Application

	Running an Application under OS/390 UNIX
	OS/390 UNIX Application Environments
	Specifying Runtime Options under OS/390 UNIX
	Restriction on Using 24-bit AMODE Programs
	Copying Applications between a PDS and HFS
	Running a Data Set Member from the OS/390 Shell
	Running an OS/390 UNIX Application under OS/390 Batch
	Using the BPXBATCH Utility
	Invoking BPXBATCH from TSO/E
	Invoking BPXBATCH Using JCL
	Submitting a non-HFS OS/390 UNIX Executable to Run underOS/390 Batch

	Part 4. Utilities and Tools
	Chapter 15. Model Tool
	About the OS/390 C/C++ Model Tool
	Accessing Library Functions
	Method 1
	Method 2
	Method 3
	Method 4

	Accessing Pragma Directives
	Method 1
	Method 2
	Method 3

	Chapter 16. Object Library Utility
	Creating an Object Library Under OS/390 Batch
	Creating and Object Library Under TSO
	Object Library Utility Map

	Chapter 17. DLL Rename Utility
	DLL Redistribution Scenario
	Inputs and Outputs
	Restriction

	Using the DLL Rename Utility under OS/390 Batch
	Example of Renaming a DLL under OS/390 Batch

	Using the DLL Rename Utility under TSO
	Specifying DLLRNAME Parameters Directly
	Specifying DLLRNAME Parameters Using an Input File
	Example of Renaming a DLL under TSO

	Chapter 18. Filter Utility
	CXXFILT Options
	SYMMAP | NOSYMMAP
	SIDEBYSIDE | NOSIDEBYSIDE
	WIDTH(width) | NOWIDTH
	REGULARNAME | NOREGULARNAME
	CLASSNAME | NOCLASSNAME
	SPECIALNAME | NOSPECIALNAME
	Unknown Type of Name

	Under OS/390 Batch
	Under TSO

	Chapter 19. DSECT Conversion Utility
	DSECT Utility Options
	SECT
	BITF0XL | NOBITF0XL
	COMMENT | NOCOMMENT
	DEFSUB | NODEFSUB
	EQUATE | NOEQUATE
	HDRSKIP | NOHDRSKIP
	INDENT | NOINDENT
	LOCALE | NOLOCALE
	LOWERCASE | NOLOWERCASE
	OPTFILE | NOOPTFILE
	PPCOND | NOPPCOND
	SEQUENCE | NOSEQUENCE
	UNNAMED | NOUNNAMED
	OUTPUT
	RECFM
	LRECL
	BLKSIZE

	Generation of Structures
	Under OS/390 Batch
	Under TSO

	Chapter 20. Coded Character Set and Locale Utilities
	Coded Character Set Conversion Utilities
	iconv Utility
	Under OS/390 Batch
	Under TSO
	Under the OS/390 Shell

	genxlt Utility
	Under OS/390 Batch
	Under TSO

	localedef Utility
	Under OS/390 Batch
	Under TSO
	Under the OS/390 Shell

	Part 5. OS/390 UNIX Utilities
	Chapter 21. Archive and Make Utilities
	Archive Libraries
	Creating Archive Libraries
	Creating Makefiles

	Chapter 22. BPXBATCH Utility
	BPXBATCH Usage
	Parameter
	Usage Notes
	Files

	Part 6. Appendixes
	Appendix A. Prelinking and Linking OS/390 C/C++ Programs
	Prelinking an Application
	Using DD Statements for the Standard Data Sets - Prelinker
	Primary Input (SYSIN)
	Prelinker Message File (SYSMSGS)
	Prelinker and OS/390 Language Environment Library (STEPLIB)
	Secondary Input (SYSLIB)
	Definition Side-Deck (SYSDEFSD)
	Listing (SYSOUT)
	Output (SYSMOD)
	Prelinker Error Messages (SYSPRINT)

	Input to the Prelinker
	Primary Input
	Secondary Input

	Prelinker Output
	Prelinker Map

	Mapping long names to S-Names

	Linking an Application
	Using DD Statements for Standard Data Sets—Linkage Editor
	Primary Input (SYSLIN)
	Listing (SYSPRINT)
	Output (SYSLMOD)
	Temporary Workspace (SYSUT1)
	Secondary Input (SYSLIB)

	Input to the Linkage Editor
	Primary Input
	Secondary Input
	Additional Object Modules as Input

	Output from the Linkage Editor
	Detecting Link-Edit Errors
	Library Routine Considerations

	Link-Editing Multiple Object Modules

	Building DLLs
	Linking Your Code

	Using DLLs
	Prelinking and Linking an Application Under OS/390 Batch and TSO
	OS/390 Language Environment Prelinker Map
	Processing the Prelinker Automatic Library Call
	References to Currently Undefined Symbols (External References)
	Prelinking and Linking Under OS/390 Batch
	Using IBM-Supplied Cataloged Procedures
	Specifying Prelinker and Link-Edit Options using CatalogedProcedures

	Writing JCL for the Prelinker and Linkage Editor
	Using the EXEC Statement
	Using the PARM Parameter
	Example of JCL to Prelink and Link
	Specifying Link-Edit Options through JCL

	Secondary Input to the Linker
	Using Additional Input Object Modules under OS/390 Batch
	Under TSO
	Prelinking and Linking under TSO
	Example of Prelinking and Linking under TSO

	Using CPLINK
	Examples

	Using LINK
	Input to the LINK Command
	LIB Operand of the LINK Command
	LOAD Operand of the LINK Command
	Specifying Link-Edit Options through the TSO LINK Command
	Storing Load Modules in a Load Library

	Prelinking and Link-Editing under the OS/390 Shell
	Using your JCL
	Setting c89 to Invoke the Prelinker
	Using the c89 Utility

	Prelinker Control Statement Processing
	IMPORT Control Statement
	INCLUDE Control Statement
	LIBRARY Control Statement
	RENAME Control Statement
	Usage Notes

	Reentrancy
	Natural or Constructed Reentrancy
	Using the Prelinker to Make Your Program Reentrant
	Generating a Reentrant Load Module in C
	Generating a Reentrant Load Module in C++

	Resolving Multiple Definitions of the Same Template Function
	External Variables

	Appendix B. Prelinker and Linkage Editor Options
	Prelinker Options
	DLLNAME(dll-name)
	DUP | NODUP
	ER | NOER
	MAP | NOMAP
	MEMORY | NOMEMORY
	NCAL | NONCAL
	OMVS | NOOMVS
	UPCASE | NOUPCASE

	Linkage Editor Options

	Appendix C. Diagnosing Problems
	Problem Checklist
	When Does the Error Occur?
	The Error Occurs at Compile Time
	The Error Occurs at IPA Link Time
	The Error Occurs at Bind Time
	The Error Occurs at Prelink Time
	The Error Occurs at Link Time
	The Error Occurs at Run Time

	Installation Problems

	Appendix D. IBM Supplied Cataloged Procedures and REXXEXECs
	Tailoring PROCs, REXX EXECs, and EXECs
	Data Sets Used
	Description of Data Sets Used
	Examples Using Cataloged Procedures

	Appendix E. Using Assembler Macros
	CBC3UAAP
	CBC3UAAQ
	CBC3UAAR
	CBC3UAAS
	CBC3UAAT
	CBC3UAAU

	Appendix F. OS/390 C/C++ Compiler Return Codes andMessages
	Return Codes
	Compiler Messages

	Appendix G. Other Return Codes and Messages
	Appendix H. Utility Messages
	DSECT Utility Messages
	Return Codes
	Messages

	DLLRNAME Utility Messages
	Return Codes
	Messages

	CXXFILT Utility Messages
	Return Codes
	Messages

	Appendix I. Other OS/390 C Utilities
	Using the Old Syntax for CC
	Using CMOD

	Appendix J. Layout of the Events File
	Description of the Fileid Field
	Description of the Filend Field
	Description of the Error Field

	Glossary
	Bibliography
	OS/390
	VS COBOL II Release 4
	COBOL FOR MVS & VM Release 2
	COBOL for OS/390 & VM Version 2 Release 1
	PL/I for MVS & VM Release 1 Modification 1
	OS PL/I Version 2 Release 3
	VS FORTRAN Version 2 Release 6
	CICS/ESA Version 4 Release 1
	CICS Transaction Server for OS/390 Release 2
	DB2 Version 3 Release 1
	DB2 Version 4 Release 1
	DB2 Version 5 Release 1
	IMS/ESA Version 4 Release 1
	IMS/ESA Version 5 Release 1
	IMS/ESA Version 6 Release 1
	QMF Version 3 Release 2
	VSAM

	INDEX
	Readers’ Comments — We'd Like to Hear from You

