
OS/390

C/C++
Language Reference

SC09-2360-03

IBM

OS/390

C/C++
Language Reference

SC09-2360-03

IBM

Note!
Before using this information and the product it supports be sure to read the general information under “Notices” on
page ix.

Fourth Edition, September 1998

This edition applies to Version 2 Release 6 of OS/390 C/C++ (5647-A01) and to all subsequent releases and
modifications until otherwise indicated in new editions or other updated documentation. Make sure that you use
the correct edition for the level of the program listed above. Also, ensure that you apply all necessary PTFs for the
program.

Technical changes in the text since the last release of this book are indicated by a vertical line (|) to the left of the
change.

Order publications through your IBM representative or the IBM branch office serving your location. Publications are
not stocked at the address below. Note that the OS/390 C/C++ publications are available through the OS/390
Library page at: http://www.s390.ibm.com/os390/bkserv.

IBM welcomes your comments. You can send your comments electronically to the network ID listed below. Be sure
to include your entire network address if you wish a reply.

Internet: torrcf@ca.ibm.com
IBMLink: toribm(torrcf)
IBM/PROFS: torolab4(torrcf)
IBMMAIL: ibmmail(caibmwt9)

To send your comments by facsimile (attention: RCF coordinator) use the following FAX numbers:

United States and Canada: 416-448-6161
Other Countries: (+1)-416-448-6161

Alternatively, you can use the Reader’s Comment Form that is provided at the back of this publication, or mail
your comments directly to:

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR
1150 Eglinton Avenue East
North York, Ontario, Canada. M3C 1H7

If you send comments, include the title and order number of this book, and the page number or topic related to
your comment. When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 1998. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Notices ix
Standards ix
Trademarks x

Part 1. Introduction 1

Chapter 1. About This Book 3
Who Should Use This Book 3
A Note about Examples. 3
IBM OS/390 C/C++ and Related Publications 4
Hardcopy Books 8
Softcopy Books 9
Softcopy Examples 9
OS/390 C/C++ on the World Wide Web 10
C/C++ News... 10
How to Read the Syntax Diagrams 10

Chapter 2. About IBM OS/390 C/C++ 13
Changes for Version 2 Release 6 13
The C/C++ Compilers 14

The C Language 14
The C++ Language 14
Common Features of the OS/390 C and C++
Compilers 15
OS/390 C Compiler Specific Features 16
Features That Are Specific to the OS/390 C++
Compiler 16

Utilities 17
Class Libraries 17

Class Library Source 18
The Debug Tool 18
OS/390 Language Environment 19
The Program Management Binder 19
OS/390 UNIX System Services (OS/390 UNIX) 20
OS/390 C/C++ Applications with OS/390 UNIX
C/C++ Functions 21
Input and Output. 22

I/O Interfaces 22
File Types 23
Additional I/O Features 23

The System Programming C Facility 24
Interaction with Other IBM Products 24
Additional Features of OS/390 C/C++ 25

Part 2. The C and C++ Languages 29

Chapter 3. Introduction to C and C++ 31
Overview of the C Language 31
C Source Programs 32

CBC3RAAA 33
C Source Files 33

CBC3RAAB - Source File 1 34
CBC3RMAX - Source file 2 34

Program Execution 35

Scope in C 35
Block Scope. 35
Function Scope 36
File Scope 36
Function Prototype Scope 36
Example of Scope in C 36
Related Information 37

Program Linkage 37
Internal Linkage 38
External Linkage 38
No Linkage 39

Storage Duration 39
Name Spaces 39

Related Information 40
Command-Line Arguments 40

Under OS/390 Batch. 41
Under IMS 41
Under CICS 41
Under TSO Command 41
Under TSO Call 41
Under OS/390 UNIX Shell. 41
Related Information 42

Overview of the C++ Language 42
C++ Support for Object-Oriented Programming 42

Data Abstraction 42
Encapsulation 43
Inheritance 43
Dynamic Binding and Polymorphism 44
Other Features of C++ 44

C++ Programs 44
CBC3X02D 46

Scope in C++ 46
Local Scope. 46
Function Scope 47
File Scope 47
Class Scope 47

Simple C++ Input and Output 47
CBC3X02F 48
Output (cout, cerr, and clog) 48
Input (cin) 49

Linkage Specifications — Linking to non-C++
Programs 50

CBC3X02J 50

Chapter 4. Lexical Elements of C and
C++ 51
Tokens 51
Source Program Character Set 51

Trigraph Sequences 53
Digraph Sequences 53
Additional Keywords 54

Comments 54
C++ Comments 56

Identifiers 56
Special Characters in Identifiers 57

© Copyright IBM Corp. 1996, 1998 iii

||

Case Sensitivity in Identifiers 57
Significant Characters in Identifiers 57
Keywords 57
OS/390 C/C++ External Name Mapping . . . 58
OS/390 Long Name Support 59

Constants 60
Integer Constants 60
Floating-Point Constants 62
Fixed-Point Decimal Constants (C Only) . . . 63
Character Constants 64
String Literals 65
Escape Sequences 67

Chapter 5. Declarations 69
Declarations Overview 69
Block Scope Data Declarations 70

Initialization 71
Storage 71
Related Information 71

File Scope Data Declarations 71
Initialization 72
Storage 72
Related Information 72

Objects 72
Storage Class Specifiers 73

auto Storage Class Specifier 73
extern Storage Class Specifier 75
register Storage Class Specifier 81
static Storage Class Specifier 82

typedef 84
Examples of typedef Declarations 84
Related Information 85

Type Specifiers 85
Characters 86
Floating-Point Variables. 87
Fixed-Point Decimal Data Types (C Only). . . 88
Integer Variables 89
Enumerations 90
Pointers 94
void Type 99
Arrays 100
Structures 106
Unions 113
Incomplete Types 119

Declarators 119
volatile and const Qualifiers 120
_Packed Qualifier (C Only) 122
__cdecl Keyword (C++ Only) 123
_Export Keyword 125
Example Declarators 126

Initializers 127
Related Information 128

C/C++ Data Mapping 129
C++ Function Specifiers 129
C++ References 129

Initializing References 130
Related Information 130

Chapter 6. Expressions and Operators 133
Operator Precedence and Associativity. 133

Examples of Expressions and Precedence . . . 135

Operands 135
lvalues 136

Examples of lvalues 136
Related Information 136

Primary Expressions 136
C++ Scope Resolution Operator (::) 137
Parenthesized Expressions () 137
Constant Expressions 138
Function Calls () 139
Array Subscript [] (Array Element
Specification) 140
Dot Operator (.) 141
Arrow Operator (−>) 141

Unary Expressions 142
Increment (++). 142
Decrement (−−) 143
Unary Plus (+). 143
Unary Minus (−) 143
Logical Negation (!) 144
Bitwise Negation (˜) 144
Address (&) 144
Indirection (*) 145
Cast Expressions 145
sizeof (Size of an Object) 146
digitsof and precisionof (C Only) 147
C++ new Operator 147
C++ delete Operator 151
C++ throw Expressions 152

Binary Expressions 152
Multiplication (*) 152
Division (/). 153
Remainder (%). 153
Addition (+) 153
Subtraction (−). 154
Bitwise Left and Right Shift (<< >>) 154
Relational (< > <= >=) 155
Equality (== !=) 156
Bitwise AND (&) 157
Bitwise Exclusive OR (|) 157
Bitwise Inclusive OR (|) 158
Logical AND (&&) 158
Logical OR (||) 159
C++ Pointer-to-Member Operators (.* −>*) . . 160

Conditional Expressions 160
Type of Conditional C Expressions 161
Type of Conditional C++ Expressions 161
Examples of Conditional Expressions 161

Assignment Expressions 162
Simple Assignment (=) 162
Compound Assignment. 164

Comma Expression (,) 165

Chapter 7. Implicit Type Conversions 167
Integral Promotions 167
Standard Type Conversions 167

Signed-Integer Conversions 168
Unsigned-Integer Conversions 168
Floating-Point Conversions 168
Pointer Conversions 168
Reference Conversions 169
Pointer-to-Member Conversions 169

iv OS/390 V2R6.0 C/C++ Language Reference

Function Argument Conversions. 170
Other Conversions 170

Arithmetic Conversions. 170

Chapter 8. Functions 173
Functions Overview 173
C++ Enhancements to C Functions 173
Function Declarations 174

C Function Declarations 174
C++ Function Declarations. 175
Examples of Function Declarations 176
Function Definitions 178
Related Information 184

The main() Function 184
Arguments to main 184
Example of Arguments to main 185

Calling Functions and Passing Arguments . . . 185
Passing Arguments in C++ 187
Examples of Calling Functions 187
Passing Arguments by Reference 188

Default Arguments in C++ Functions 190
CBC3X06B 190
Restrictions on Default Arguments 191
Evaluating Default Arguments 191

Function Return Values 192
Using References as Return Types 193

Pointers to Functions 193
C++ Inline Functions 195

Chapter 9. Statements 197
Labels 197

Examples 197
Related Information 198

Block 198
Initialization within Block Statements 198
Example 199
Related Information 199

break 200
Restrictions 200
Examples 200
Related Information 201

continue 202
Restrictions 202
Examples 202
Related Information 203

do 203
Example 204
Related Information 204

Expression 205
Examples 205
Resolving Ambiguous Statements in C++ . . . 205

for 206
Examples 207
Related Information 208

goto 208
Example 209

if 209
Examples 210

null 210
Example 211

return 211

Value of a return Expression and Function
Value 211
Examples 212
Related Information 212

switch 212
Restrictions 214
Examples 214
Related Information 216

while 216
Example 217
Related Information 217

Chapter 10. Preprocessor Directives 219
Preprocessor Overview 219
Preprocessor Directive Format 220
Phases of Preprocessing. 220
Macro Definition and Expansion (#define) . . . 221

Object-Like Macros 221
Function-Like Macros 222

Scope of Macro Names (#undef) 225
Examples of #undef Directives 225

Single Number Sign Operator (#) 225
Examples of the # Operator 226
Related Information 226

Macro Concatenation with the ## Operator . . . 226
Double Number Sign Operator (##) 227

Preprocessor Error Directive (#error) 228
Related Information 228

File Inclusion (#include) 228
Predefined Macro Names 229

ANSI/ISO Standard Predefined Macro Names 230
OS/390 C/C++ Predefined Macro Names . . 231
Examples of Predefined Macros 236

Conditional Compilation Directives 237
#if, #elif 238
#ifdef 239
#ifndef 239
#else 240
#endif 240
Examples of Conditional Compilation
Directives 240

Line Control (#line) 241
Example of #line Directives 242

Null Directive (#) 242
Pragma Directives (#pragma) 243

Restrictions on #pragma Directives 245
IPA Considerations 247
chars 247
checkout 248
comment 248
convlit 249
csect 250
define (C++ Only) 251
disjoint (C Only) 251
environment (C Only) 252
export 253
filetag 253
hdrstop 254
implementation (C++ Only) 255
info (C++ Only) 255
inline (C Only) - also see noinline 255

Contents v

isolated_call 257
langlvl 259
linkage 260
longname 261
map 262
margins 264
noinline (C and C++) - also see inline 265
options (C Only) 266
pack 267
page (C Only) 270
pagesize (C Only). 270
priority (C++ Only) 270
runopts 271
sequence. 272
skip (C Only) 273
strings 273
subtitle (C Only) 274
target (C Only) 274
title (C Only) 275
variable 275
wsizeof 275

Part 3. C++ Language Elements . .279

Chapter 11. C++ Classes 281
C++ Classes Overview 281

Classes and Structures 281
Aggregate Classes 282

Declaring Class Objects 282
Class Names 283
Using Class Objects 284

Scope of Class Names 286
CBC3X10E 286
Incomplete Class Declarations 287
Nested Classes. 287
Local Classes 288
Local Type Names 289

Chapter 12. C++ Class Members and
Friends 291
Class Member Lists 291
Data Members 292
Class-Type Class Members. 292
Member Functions 293

const and volatile Member Functions 293
Virtual Member Functions 294
Special Member Functions 294
Inline Member Functions 294
Member Function Templates 295

Member Scope. 295
CBC3X11A 295

Pointers to Members. 297
CBC3X11B 297

The this Pointer 298
CBC3X11C 298
CBC3X11D 299

Static Members 300
Using the Class Access Operators with Static
Members 301
Static Data Members. 302

Static Member Functions 303
Member Access 304

Classes and Access Control 304
Access Specifiers 305

Friends 306
CBC3X11I 306
CBC3X11J 307
Friend Scope 308
Friend Access 309

Chapter 13. C++ Overloading 311
Overloading Functions 311

CBC3X12A 311
Declaration Matching 312
Restrictions on Overloaded Functions 312

Argument Matching in Overloaded Functions 312
Sequence of Argument Conversions 313
Trivial Conversions 314

Overloading Operators 315
CBC3X12B 315
General Rules for Overloading Operators . . . 316
Operands of Overloaded Operators 316
Restrictions on Overloaded Operators 317

Overloading Unary Operators 317
Overloading Binary Operators 318
Special Overloaded Operators 319

Overloaded Assignment 319
Overloaded Function Calls. 319
Overloaded Subscripting 320
Overloaded Class Member Access 320
Overloaded Increment and Decrement 321
Overloaded new and delete 322

Chapter 14. Special C++ Member
Functions 325
Constructors and Destructors Overview 325
Constructors 326

Default Constructors. 326
Copy Constructors 327
Construction Order of Class Objects 327
Explicitly Constructing Objects 328

Destructors 328
Free Store 330
Temporary Objects 333

Related Information 334
User-Defined Conversions 334

Conversion by Constructor 335
Conversion Functions 335

Initialization by Constructor 336
Explicit Initialization. 336
Initializing Base Classes and Members 338
Construction Order of Derived Class Objects 339

Copying Class Objects 340
Copy Restrictions 340
Copy by Assignment 341
Copy by Initialization 341

Chapter 15. C++ Inheritance 343
Inheritance Overview 343

Multiple Inheritance 344

vi OS/390 V2R6.0 C/C++ Language Reference

The Inheritance Design Process 345
Direct and Indirect Base Classes 345
Polymorphism 346

Derivation 346
CBC3X14A 347
CBC3X14B 347
CBC3X14C 348
Syntax of a Derived Class Declaration 348

Inherited Member Access 349
Protected Members 350
Derivation Access of Base Classes 350
Access Declarations 351
Access Resolution. 353
Access Summary 355

Multiple Inheritance 356
Virtual Base Classes 357
Multiple Access 357
Accessible Base Classes 358
Ambiguous Base Classes 358

Virtual Functions 359
Ambiguous Virtual Function Calls 361
Virtual Function Access 362

Abstract Classes 363

Chapter 16. C++ Templates 365
Templates Overview 365

CBC3X15A 367
Structuring Your Program Using Templates . . . 367

File stack.h 368
File stackdef.h 368

Class Templates 369
Class Template Declarations and Definitions 370
Reference and Uniqueness 371
Nontype Template Arguments 371
Explicitly Defined Template Classes 373

Function Templates 373
Example of a Function Template 373
Overloading Resolution for Template Functions 374
Defining Template Functions 375
Explicitly Defined Template Functions 375
Function Template Declarations and Definitions 376

Differences between Class and Function Templates 377
CBC3X15B 377

Member Function Templates 377
Friends and Templates 379
Static Data Members and Templates 380

Chapter 17. C++ Exception Handling 381
C++ Exception Handling Overview 381
Formal and Informal Exception Handling. . . . 382
Using Exception Handling 382
Transferring Control 384

CBC3X16A 385
CBC3X16F 386
Catching Exceptions 387
Matching Exceptions Thrown and Exceptions
Caught 387
Order of Catching 388
Nested Try Blocks 388
Rethrowing an Exception 389

Using a Conditional Expression in a Throw
Expression 390

Constructors and Destructors in Exception
Handling 391

CBC3X16D 391
Exception Specifications 393

Exception Specification Syntax 393
Empty Exception Specifications 394
Functions without an Exception Specification 394
Other Exception Specifications 394

Special Exception Handling Functions 395
unexpected() 395
terminate() 395
set_unexpected() and set_terminate() 395
Example of Using the Exception Handling
Functions 396

Part 4. Appendixes399

Appendix A. C and C++ Compatibility 401
C++ Constructs Not Found in ANSI/ISO C . . . 401
Constructs Found in Both C++ and ANSI/ISO C 401

Character Array Initialization 401
Character Constants 402
Class and typedef Names 402
Class and Scope Declarations 402
const Object Initialization 403
Definitions 403
Definitions within Return or Argument Types 403
Enumerator Type 403
Enumeration Type 403
Function Declarations 403
Functions with an Empty Argument List . . . 404
Global Constant Linkage 404
Jump Statements 404
Keywords 404
main() Recursion 404
Names of Nested Classes 404
Pointers to void 405
Prototype Declarations 405
Return without Declared Value 405
__STDC__ Macro 405
typedefs in Class Declarations 405

Interactions with Other Products 406

Appendix B. Common Usage C
Language Level 407

Appendix C. Conforming to POSIX
1003.1 409

Appendix D. Conforming to ANSI/ISO
Standards 411
Implementation-Defined Behavior 411

Identifiers 411
Characters 412
String Conversion 413
Integers 413
Floating-Point 413

Contents vii

Arrays and Pointers 414
Registers. 414
Structures, Unions, Enumerations, Bit Fields 414
Declarators 415
Statements 415
Preprocessing Directives 415
Library Functions. 416
Error Handling 416
Signals 417
Translation Limits 417
Streams, Records, and Files 418
Memory Management 419
Environment 419
Localization 420
Time 420

Glossary 421

Bibliography 449
OS/390 449
VS COBOL II Release 4 449

COBOL FOR MVS & VM Release 2 449
COBOL for OS/390 & VM Version 2 Release 1 450
PL/I for MVS & VM Release 1 Modification 1 450
OS PL/I Version 2 Release 3 450
VS FORTRAN Version 2 Release 6 450
CICS/ESA Version 4 Release 1 450
CICS Transaction Server for OS/390 Release 2 450
DB2 Version 3 Release 1 451
DB2 Version 4 Release 1 451
DB2 Version 5 Release 1 451
IMS/ESA Version 4 Release 1 451
IMS/ESA Version 5 Release 1 451
IMS/ESA Version 6 Release 1 451
QMF Version 3 Release 2 452
VSAM 452

INDEX 453

Readers’ Comments — We’d Like to
Hear from You 463

viii OS/390 V2R6.0 C/C++ Language Reference

||

||

||

||
||

Notices

Any reference to an IBM licensed program in this publication is not intended to
state or imply that only IBM’s licensed program may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY, 10594, USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Canada Ltd.,
Department 071, 1150 Eglinton Avenue East, North York, Ontario M3C 1H7,
Canada. Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

This publication may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

This publication documents intended Programming Interfaces that allow the
customer to write OS/390 C/C++ programs.

Any interfaces, including service component interfaces, that are not documented in
the OS/390 C/C++ publications are not formal interfaces. You should not build
any dependencies on these interfaces, as IBM can change or remove interfaces at
any time, without notice.

Any pointers in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these Web
sites. IBM accepts no responsibility for the content or use of non-IBM Web sites
specifically mentioned in this publication or accessed through an IBM Web site that
is mentioned in this publication.

Standards

Extracts are reprinted from IEEE Std 1003.1—1990, IEEE Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 1: System
Application Program Interface (API) [C language], copyright 1990 by the Institute
of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE P1003.1a Draft 6 July 1991, Draft Revision to
Information Technology—Portable Operating System Interface (POSIX), Part 1:

© Copyright IBM Corp. 1996, 1998 ix

|
|

|
|
|
|
|

System Application Program Interface (API) [C Language], copyright 1992 by the
Institute of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE Std 1003.2—1992, IEEE Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 2: Shells and
Utilities, copyright 1990 by the Institute of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE Std P1003.4a/D6—1992, IEEE Draft Standard
Information Technology—Portable Operating System Interface (POSIX)—Part 1:
System Application Program Interface (API)—Amendment 2: Threads Extension [C
language], copyright 1990 by the Institute of Electrical and Electronic Engineers,
Inc.

Extracts from ISO/IEC 9899:1990 have been reproduced with the permission of the
International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC). The complete standard can be obtained from
any ISO or IEC member or from the ISO or IEC Central Offices, Case postale 56,
CH - 1211 Geneva 20, Switzerland. Copyright remains ISO and IEC.

Extracts from X/Open Specification, Programming Languages, Issue 4 Release 2,
copyright 1988, 1989, February 1992, by the X/Open Company Limited, have been
reproduced with the permission of X/Open Company Limited. No further
reproduction of this material is permitted without the written notice from the
X/Open Company Ltd, UK.

Trademarks

The following terms, which may be denoted by a single asterisk (*), are trademarks
of International Business Machines Corporation in the United States or other
countries or both:

AD/Cycle AFP AIX
AIX/6000 AT AS/400
BookManager C Set ++ C/370
C/MVS C++/MVS Common User Access
CICS CICS/ESA CICSPlex
COBOL/370 CUA CT
DATABASE 2 DB2 DFSMS
DFSMS/MVS DFSMSdfp DRDA
ESCON GDDM Hiperspace
IBM IBMLink IMS
IMS/ESA MVS/DFP MVS/ESA
MVS/SP MVS/XA Open Class
OpenEdition Operating System/2 Operating System/400
OS OPEN OS/2 OS/390
OS/400 PROFS PS/2
QMF RACF RETAIN
S/370 S/390 SAA
SOM SOMobjects SP
SQL/DS System/370 System/390
System Object Model Systems Application

Architecture
VisualAge

VM/ESA VSE/ESA VTAM
3090 3890 400

x OS/390 V2R6.0 C/C++ Language Reference

Microsoft, Windows, Windows NT, and the Windows logo are registered
trademarks of Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

Notices xi

xii OS/390 V2R6.0 C/C++ Language Reference

Part 1. Introduction

This part describes how to use the OS/390 C/C++ Language Reference, and how
to find additional information in the OS/390 C/C++ library. This part introduces
the IBM OS/390 C/C++ product.

Chapter 1. About This Book
Describes how to use this book in relation to the OS/390 C/C++
information library and related OS/390 documentation.

Chapter 2. About IBM OS/390 C/C++
Introduces the OS/390 C/C++ product and its key features, related OS/390
environments such as OS/390 UNIX System Services, and other OS/390
tools that are useful when using OS/390 C/C++.

© Copyright IBM Corp. 1996, 1998 1

2 OS/390 V2R6.0 C/C++ Language Reference

Chapter 1. About This Book

This book describes the IBM C language and C++ language definitions which
comply with the POSIX and XPG4 standards, and which the OS/390 Language
Environment implements. Use this book if you are a programmer who needs to
understand the support that IBM OS/390 C/C++ provides.

Who Should Use This Book

This book is intended for programmers who will write C or C++ applications
under the OS/390 operating system. This book is a reference rather than a tutorial.
It assumes that you have some experience with writing C or C++ programs and
are familiar with the OS/390 operating system.

A Note about Examples

Examples that illustrate the use of the OS/390 C/C++ compiler use a simple style.
They are instructional examples, and do not attempt to minimize run time,
conserve storage, or check for errors. The examples do not demonstrate all the uses
of C/C++ language constructs. Some examples are only code fragments and will
not compile without additional code.

© Copyright IBM Corp. 1996, 1998 3

IBM OS/390 C/C++ and Related Publications

This section summarizes the content of the IBM OS/390 C/C++ publications and
shows where to find related information in other publications.

Table 1. OS/390 C/C++ Publications

Book Title and Number Key Sections/Chapters in the Book

OS/390 C/C++ Programming Guide,
SC09-2362

Guidance information for:

v C/C++ input and output
v Debugging OS/390 C programs that use input/output
v Using linkage specifications in C++
v Combining C and assembler
v Creating and using DLLs
v Using threads in an OS/390 UNIX® application
v Using threads in an OS/390 UNIX application
v Reentrancy
v Using the decimal data type in C and C++
v Handling exceptions, error conditions, and signals
v Optimizing code
v Optimizing your C/C++ code with Interprocedural Analysis
v Network communications under OS/390 UNIX
v Interprocess communications using OS/390 UNIX
v Structuring a program that uses C++ templates
v Using environment variables
v Using System Programming C facilities
v Library functions for the System Programming C facilities
v Using runtime user exits
v Using the OS/390 C multitasking facility
v Using other IBM products with OS/390 C/C++ (CICS*, CSP, DWS, DB2*,

GDDM*, IMS*, ISPF, QMF*)
v Direct-to-SOM support under OS/390 C/C++
v Internationalization: locales and character sets, code set conversion utilities,

mapping variant characters
v POSIX character set
v Code point mappings
v Locales supplied with OS/390 C/C++
v Charmap files supplied with OS/390 C/C++
v Examples of charmap and locale definition source files
v Converting code from code character set IBM-1047
v Using built-in functions
v Programming considerations for OS/390 UNIX C/C++

OS/390 C/C++ User’s Guide, SC09-2361 Guidance information for:
v OS/390 C/C++ examples
v Compiler options
v Binder options and control statements
v Specifying OS/390 Language Environment runtime options
v Compiling, IPA Linking, binding, and running OS/390 C/C++ programs
v Using precompiled headers
v Utilities (Object Library, DLL Rename, CXXFILT, DSECT Conversion, Code

Set and Locale, ar and make, BPXBATCH)
v Diagnosing problems
v Cataloged procedures and REXX EXECs supplied by IBM
v Error messages and return codes

4 OS/390 V2R6.0 C/C++ Language Reference

Table 1. OS/390 C/C++ Publications (continued)

Book Title and Number Key Sections/Chapters in the Book

OS/390 C/C++ Language Reference,
SC09-2360

Reference information for:
v The C and C++ Languages
v Lexical elements of OS/390 C and OS/390 C++
v Declarations, expressions and operators
v Implicit type conversions
v Functions and statements
v Preprocessor directives
v C++ classes, class members, and friends
v C++ overloading, special member functions, and inheritance
v C++ templates and exception handling
v OS/390 C and OS/390 C++ compatibility

OS/390 C/C++ Run-Time Library
Reference, SC28-1663

Reference information for:
v C header files
v C Library functions

OS/390 C Curses, SC28-1907 Reference information for:
v Curses concepts
v Key data types
v General rules for characters, renditions, and window properties
v General rules of operations and operating modes
v Use of macros
v Restrictions on block-mode terminals
v Curses functional interface
v Contents of headers
v The terminfo database

OS/390 C/C++ Compiler and Run-Time
Migration Guide, SC09-2359

Guidance and reference information for:
v Common migration questions
v Application executable program compatibility
v Source program compatibility
v Input and output operations compatibility
v Class library migration considerations
v Changes between releases of OS/390
v C/370* V1 to V2 compiler changes
v Other migration considerations

OS/390 C/C++ Reference Summary,
SX09-1313

Summary tables for:
v Character set, trigraphs, digraphs, and keywords
v Escape sequences, storage classes
v Predefined and derived types, type qualifiers
v Operator precedence, redirection symbols
v fprintf() format, type characters, and flag characters
v fscanf() format and type characters
v __amrc structure
v Hardware exceptions and signals
v Compiler return codes
v Compiler options
v #pragma directives
v Library functions
v Utilities

Chapter 1. About This Book 5

|
|
|

|
|
|
|
|
|
|
|
|
|

Table 1. OS/390 C/C++ Publications (continued)

Book Title and Number Key Sections/Chapters in the Book

OS/390 C/C++ IBM Open Class Library
User’s Guide, SC09-2363

Guidance information for:
v Using the Complex Mathematics Class Library: Review of complex

numbers, header files, constructing complex objects, mathematical
operators for complex, friend functions for complex, handling complex
mathematics errors

v Using the I/O Stream Class Library: Introduction, getting started,
advanced topics, and manipulators

v Using the Collection Class Library: Overview, instantiating and using,
element and key functions, tailoring a collection implementation,
polymorphic use of collections, support for notifications, exception
handling, tutorials, problem solving, compatibility with previous releases,
thread safety

v Using the Application Support Class Library: Introduction, String classes,
Exception and Trace classes, Date and Time classes, controlling threads and
protecting data, the IBM Open Class* notification framework, Binary
Coded Decimal classes

OS/390 C/C++ IBM Open Class Library
Reference, SC09-2364

Reference information for:
v Complex Mathematics Class Library
v I/O Stream Class Library
v Collection Class Library
v Application Support Class Library

OS/390 C/C++ SOM-Enabled Class
Library User’s Guide and Reference,
SC09-2366

Guidance and reference information for:
v C++ SOM (RRBC-enabled) versions of Collection and Application Support

Class Libraries
v Cross-language SOM version of the Collection Class Library

Debug Tool User’s Guide and Reference,
SC09-2137

Guidance and reference information for:
v Preparing to debug programs
v Debugging programs
v Using Debug Tool in different environments
v Language-specific information
v Debug Tool reference

APAR and BOOKS files (Shipped
with Program materials)

Partitioned data set CBC.SCBCDOC on the product tape contains the
members, APAR and BOOKS, which provide additional information for using
the IBM OS/390 C/C++ licensed program, including:
v Isolating reportable problems
v Keywords
v Preparing an Authorized Program Analysis Report (APAR)
v Problem identification worksheet
v Maintenance on OS/390
v Late changes to OS/390 C/C++ publications

Note: For complete and detailed information on linking and running with OS/390 Language Environment and using
the OS/390 Language Environment runtime options, refer to the OS/390 Language Environment Programming Guide,
SC28-1939. For complete and detailed information on using interlanguage calls, refer to OS/390 Language Environment
Writing Interlanguage Applications, SC28-1943.

The following table lists the OS/390 C/C++ and related publications. The table
groups the publications according to the tasks they describe.

6 OS/390 V2R6.0 C/C++ Language Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Table 2. Publications by Task

Tasks Books

Planning, preparing, and migrating to OS/390 C/C++
v OS/390 C/C++ Compiler and Run-Time Migration Guide,

SC09-2359
v OS/390 Language Environment Customization, SC28-1941
v OS/390 UNIX System Services Planning, SC28-1890
v OS/390 Planning for Installation, GC28-1726
v OS/390 Task Atlas, available on the OS/390 Library

page on the World Wide Web
(http://www.s390.ibm.com/os390/bkserv)

Installing v OS/390 Program Directory
v OS/390 Planning for Installation, GC28-1726
v OS/390 Language Environment Customization, SC28-1941

Coding programs v OS/390 C/C++ Run-Time Library Reference, SC28-1663
v OS/390 C/C++ Language Reference, SC09-2360
v OS/390 C/C++ Reference Summary, SX09-1313
v OS/390 C/C++ Programming Guide, SC09-2362
v OS/390 Language Environment Concepts Guide,

GC28-1945
v OS/390 Language Environment Programming Guide,

SC28-1939
v OS/390 Language Environment Programming Reference,

SC28-1940
v OS/390 C/C++ IBM Open Class Library User’s Guide,

SC09-2363
v OS/390 C/C++ IBM Open Class Library Reference,

SC09-2364
v OS/390 C/C++ SOM-Enabled Class Library User’s Guide

and Reference, SC09-2366

Coding and binding programs with interlanguage calls v OS/390 C/C++ Programming Guide, SC09-2362
v OS/390 C/C++ Language Reference, SC09-2360
v OS/390 Language Environment Programming Guide,

SC28-1939
v OS/390 Language Environment Writing Interlanguage

Applications, SC28-1943
v DFSMS/MVS Program Management, SC26-4916

Compiling, binding, and running programs v OS/390 C/C++ User’s Guide, SC09-2361
v OS/390 Language Environment Programming Guide,

SC28-1939
v OS/390 Language Environment Debugging Guide and

Run-Time Messages, SC28-1942
v DFSMS/MVS Program Management, SC26-4916
v OS/390 Messages Database, available on the OS/390

Library page in the World Wide Web
(http://www.s390.ibm.com/os390/bkserv)

Compiling and binding applications in the OS/390 UNIX
environment

v OS/390 C/C++ User’s Guide, SC09-2361
v OS/390 UNIX System Services User’s Guide, SC28-1891
v OS/390 UNIX System Services Command Reference,

SC28-1892
v DFSMS/MVS Program Management, SC26-4916

Compiling and binding SOM applications with OS/390
SOMobjects*

v OS/390 SOMobjects Programmer’s Guide, GC28-1859
v OS/390 C/C++ Programming Guide, SC09-2362
v OS/390 C/C++ User’s Guide, SC09-2361

Chapter 1. About This Book 7

|
|
|

|
|
|

Table 2. Publications by Task (continued)

Tasks Books

Debugging programs v README file
v Debug Tool User’s Guide and Reference, SC09-2137
v OS/390 C/C++ User’s Guide, SC09-2361
v OS/390 C/C++ Programming Guide, SC09-2362
v OS/390 Language Environment Programming Guide,

SC28-1939
v OS/390 Language Environment Debugging Guide and

Run-Time Messages, SC28-1942
v OS/390 UNIX System Services Messages and Codes,

SC28-1908
v OS/390 UNIX System Services User’s Guide, SC28-1891
v OS/390 UNIX System Services Command Reference,

SC28-1892
v OS/390 UNIX System Services Programming Tools,

SC28-1904

Using shells and utilities in the OS/390 UNIX
environment

v OS/390 C/C++ User’s Guide, SC09-2361
v OS/390 UNIX System Services Command Reference,

SC28-1892
v OS/390 UNIX System Services Messages and Codes,

SC28-1908

Using sockets library functions in the OS/390 UNIX
environment

v OS/390 C/C++ Run-Time Library Reference, SC28-1663

Porting a UNIX Application to OS/390 v OS/390 UNIX System Services Porting Guide

This guide contains useful information about
supported header files and C functions, sockets in an
OS/390 UNIX environment, process management,
compiler optimization tips, and suggestions for
improving the application’s performance after it has
been ported. The Porting Guide is available as a PDF
file which you can download, or as web pages which
you can browse, at the following URL:
http://www.s390.ibm.com/unix/bpxa1por.html

Performing diagnosis and submitting an Authorized
Program Analysis Report (APAR)

v OS/390 C/C++ User’s Guide, SC09-2361
v CBC.SCBCDOC(APAR) on OS/390 C/C++ product

tape

Quick reference v OS/390 C/C++ Reference Summary, SX09-1313

Multimedia Tutorial v For a new way of learning C++ programming, you can
order the CD-ROM Experience C++: A Multimedia
Tutorial, SK2T-1158. This tutorial runs in DOS.

Note: For information on using the prelinker, see the appendix on prelinking and linking OS/390 C/C++ programs
in the OS/390 C/C++ User’s Guide. As of Release 4, this appendix contains information that was previously in the
chapter on prelinking and linking OS/390 C/C++ programs in the OS/390 C/C++ User’s Guide. It also contains
prelinker information that was previously in the OS/390 C/C++ Programming Guide.

Hardcopy Books

The following OS/390 C/C++ books are available in hardcopy:
v OS/390 C/C++ Run-Time Library Reference, SC28-1663
v OS/390 C/C++ User’s Guide, SC09-2361
v OS/390 C/C++ Programming Guide, SC09-2362
v OS/390 C/C++ Reference Summary, SX09-1313
v OS/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363

8 OS/390 V2R6.0 C/C++ Language Reference

||

|
|
|
|
|
|
|
|
|

v OS/390 C Curses, SC28-1907
v OS/390 C/C++ Compiler and Run-Time Migration Guide, SC09-2359
v Debug Tool User’s Guide and Reference, SC09-2137

You can purchase these books on their own, or as part of a set. You receive the
OS/390 C/C++ Compiler and Run-Time Migration Guide, SC09-2359 at no charge.
Feature code 8009 includes the remaining books.

Softcopy Books

All of the OS/390 C/C++ publications (except for the OS/390 C/C++ Reference
Summary) are available in softcopy book format. The books are available on the
tape that accompanies the OS/390 product, and on a CD-ROM called the IBM
Online Library Omnibus Edition: OS/390 Collection, SK2T-6700.

To read the softcopy books, the BookManager* Read (Program 5684-062, 5695-046)
licensed program must be available on your operating system. BookManager Read
provides access to online information as an alternative to hard copy documents.
You can read, search, make notes, and select sections of text to print.

Also available are BookManager Read/DOS (Program 73F6-022) for the DOS
operating system, and BookManager Read/2 (Program 73F6-023) for the OS/2
operating system. With these products, you can download online books to your
workstation and read them.

If your system has BookManager Read installed, you can enter the command
BOOKMGR to start BookManager and display a list of books available to you. If
you know the name of the book that you want to view, you can use the OPEN
command to open the book directly.

Note: If your workstation does not have graphics capability, BookManager Read
cannot correctly display some characters, such as arrows and brackets.

You can also browse the books on the World Wide Web by clicking on "The
Library" link on the OS/390 home page. The URL for this page is:
http://www.s390.ibm.com/os390/index.html

Softcopy Examples

Most of the larger examples in the following books are available in
machine-readable form:
v OS/390 C/C++ Language Reference, SC09-2360
v OS/390 C/C++ User’s Guide, SC09-2361
v OS/390 C/C++ Programming Guide, SC09-2362
v OS/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363
v OS/390 C/C++ IBM Open Class Library Reference, SC09-2364
v OS/390 C/C++ SOM-Enabled Class Library User’s Guide and Reference, SC09-2366

In the following books, a label on an example indicates that the example is
distributed in softcopy. The label is the name of a member in the data sets
CBC.SCBCSAM or CBC.SCLBSAM. The labels have the form CBCxyyy or CLBxyyy, where
x refers to a publication:
v R and X refer to the OS/390 C/C++ Language Reference, SC09-2360
v G refers to the OS/390 C/C++ Programming Guide, SC09-2362

Chapter 1. About This Book 9

|
|
|
|
|
|

v U refers to the OS/390 C/C++ User’s Guide, SC09-2361
v A refers to the OS/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363

Examples labelled as CBCxyyy appear in the OS/390 C/C++ Language Reference, the
OS/390 C/C++ Programming Guide, and the OS/390 C/C++ User’s Guide. Examples
labelled as CLBxyyy appear in the OS/390 C/C++ IBM Open Class Library User’s
Guide.

An exception applies to the example names for the Collection Class Library which
do not follow a naming convention. These examples are in the OS/390 C/C++ IBM
Open Class Library Reference, SC09-2364 and in the OS/390 C/C++ SOM-Enabled Class
Library User’s Guide and Reference, SC09-2366. For the OS/390 C/C++ SOM-Enabled
Class Library User’s Guide and Reference, SC09-2366, the label refers to a member
name in the data set CBC.SCLBXSM.

OS/390 C/C++ on the World Wide Web

Additional information on OS/390 C/C++ is available on the World Wide Web.
The URL for the OS/390 C/C++ home page is:
http://www.software.ibm.com/ad/c390/index.html

This page contains late-breaking information about the OS/390 C/C++ product,
including the compiler, the class libraries, and utilities. It also contains a tutorial on
the source level interactive debugger. There are links to other useful information,
such as the OS/390 C/C++ information library and the libraries of other OS/390
elements that are available on the Web. The OS/390 C/C++ home page also
contains information on active Beta programs, samples that you can download,
C/370 product newsletters, and links to other related Web sites.

C/C++ News...

IBM also publishes the C/370 Compiler Newsletter. This free newsletter keeps
subscribers up to date on the latest product releases. It also provides coding hints
and tips, questions and answers, and news about C/370 products and IBM OS/390
C/C++.

To take advantage of this free publication, send your name, full mailing address,
and phone number, as follows:
v Send a message electronically to the following network ID :

– Internet: inetc370@ca.ibm.com
– IBMMAIL: ibmmail(caibmrxz)

v Mail your request to:
EDITOR, C/370 Compiler Newsletter
IBM Canada Ltd. Laboratory
9/604/895/TOR
895 Don Mills Road
NORTH YORK ONTARIO CANADA M3C 1W3

How to Read the Syntax Diagrams

This book describes the syntax for commands, directives, and statements, using the
following structure:

10 OS/390 V2R6.0 C/C++ Language Reference

|
|

|
|
|
|

|
|
|
|
|
|
|

v Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.
A double right arrowhead indicates the beginning of a command, directive, or
statement. A single right arrowhead indicates that it is continued on the next
line. In the following diagrams, "statement" represents a command, directive, or
statement.

ÊÊ statement ÊÍ

The following indicates a continuation; the opposing arrowheads indicate the
end of a command, directive, or statement.

ÊÊ statement ÊÍ

Diagrams of syntactical units other than complete commands, directives, or
statements look like this:

ÊÊ statement ÊÍ

v Required items are on the horizontal line (the main path).

ÊÊ statement required_item ÊÍ

v Optional items are below the main path.

ÊÊ statement
optional_item

ÊÍ

v If you can choose from two or more items, they are vertical in a stack.
If you must choose one of the items, one item of the stack is on the main path.

ÊÊ statement required_choice1
required_choice2

ÊÍ

If choosing one of the items is optional, the entire stack is below the main path.

ÊÊ statement
optional_choice1
optional_choice2

ÊÍ

v An arrow that returns to the left above the main line indicates an item that you
can repeat.

ÊÊ »statement repeatable_item ÊÍ

Chapter 1. About This Book 11

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.

v Keywords are not italicized, and should be entered exactly as shown (for
example, pragma). You must spell keywords exactly as shown in the syntax
diagram. Variables are in lowercase italics (in hardcopy), for example, identifier.
They represent user-supplied names or values.

v If the syntax diagram shows punctuation marks, parentheses, arithmetic
operators, or other nonalphanumeric characters, you must enter them as part of
the syntax.

Note: You do not always require the white space between tokens. You should,
however, include at least one blank space between tokens unless otherwise
specified.

The following syntax diagram example shows the syntax for the #pragma comment
directive.

ÊÊ
(1) (2) (3)

pragma
(4)

comment Ê

Ê
(5) (6) (9) (10)

(compiler)
date
timestamp

copyright
user (7) (8)

, " token_sequence "

ÊÍ

Notes:

1 This is the start of the syntax diagram.

2 The symbol -# must appear first.

3 The keyword -pragma must follow the -# symbol.

4 The keyword -comment must follow the keyword -pragma.

5 An opening parenthesis must follow the keyword -comment.

6 The comment type must be entered only as one of the following: -compiler,
-date, -timestamp, -copyright, or -user.

7 If the comment type is -copyright or -user, and an optional character string
is following, a comma must be present after the comment type.

8 A character string must follow the comma. The character string must be
enclosed in double quotation marks.

9 A closing parenthesis is required.

10 This is the end of the syntax diagram.

The following examples of the #pragma comment directive are syntactically correct
according to the diagram above:

#pragma comment(date)
#pragma comment(user)
#pragma comment(copyright,"This text will appear in the module")

12 OS/390 V2R6.0 C/C++ Language Reference

Chapter 2. About IBM OS/390 C/C++

The C/C++ feature of the IBM OS/390 licensed program provides support for C
and C++ application development on the OS/390 platform. The C/C++ feature is
based on the C/C++ for MVS/ESA* product.

IBM OS/390 C/C++ includes:
v A C compiler (referred to as the OS/390 C compiler)
v A C++ compiler (referred to as the OS/390 C++ compiler)
v A set of C++ class libraries
v Application Support Class and Collection Class Library source
v A mainframe interactive Debug Tool (optional)
v A set of utilities for C/C++ application development

IBM offers the C language on other platforms, such as the AIX*, IBM Operating
System/2* (OS/2*), IBM Operating System/400* Version 3 (OS/400*), Sun Solaris,
VM/ESA*, VSE/ESA*, and Windows® operating systems. The AIX, OS/2, OS/400,
Sun Solaris, and Windows operating systems also offer the C++ language.

Changes for Version 2 Release 6

OS/390 C/C++ has made the following changes for this release:
v Added support for the Institute of Electrical and Electronics Engineers (IEEE)

binary floating-point data type, in conformance with the IEEE 754 standard, as
applicable to the S/390* environment. For details on the OS/390 C/C++
support, see the description of the FLOAT option in the OS/390 C/C++ User’s
Guide. In addition, two related sub-options have been introduced, ARCH(3) and
TUNE(3). The two sub-options support the new G5 processor architecture, and
IEEE binary floating-point data. Refer to the ARCHITECTURE and TUNE compiler
options in the OS/390 C/C++ User’s Guide for details.
Complete IEEE binary floating-point support for OS/390 and its elements
requires that you apply small programming enhancements (SPEs) to OS/390
V2R6.0, and to specific releases of some software. These SPEs are delivered as
program temporary fixes (PTFs). Consult your System Programmer to ensure
that the SPE PTFs you require for IEEE binary floating-point support, as
documented in the OS/390 Planning for Installation publication, are applied to
your system. The OS/390 Planning for Installation publication documents the
complete software requirements for IEEE binary floating-point support on
OS/390.

v Improved the performance of the Binary Coded Decimal (BCD) class library, and
its compatibility with the decimal data type in C, and other S/390 languages.
For details, see Using the C++ Decimal Data Type in the OS/390 C/C++
Programming Guide.

v Added support for the long long integer data type. For more details, see
“Integer Variables” on page 89 and “Integer Constants” on page 60. The run-time
library, including functions such as printf() and scanf(), does not support the
long long data type at this time.

v Added a new compiler option, PORT, that enables you to increase the syntax
checking for the #pragma pack directive in your code. This option is helpful

© Copyright IBM Corp. 1996, 1998 13

|

|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

when porting code that contains #pragma pack directives or packed data from
other platforms. For more information on the PORT option, see the OS/390 C/C++
User’s Guide.

v Added a new compiler option, FASTTEMPINC, that enables you to improve your
compilation time for C++ class templates if you use a large number of recursive
templates in an application. For more information on the FASTTEMPINC option,
see the OS/390 C/C++ User’s Guide.

v Retroactive to OS/390 Version 1 Release 3, the IBM Open Class Library is
licensed with the base operating system. This enables applications to use this
library at run time without having to license the OS/390 C/C++ compiler
feature(s) or to use the DLL Rename Utility.

v The level of optimization you get when you specify the OPT(1), or OPT, compiler
option is the same as when you specify OPT(2). For more information on the
OPTIMIZATION option see the OS/390 C/C++ User’s Guide.

v The OS/390 C++ class library header files are now distributed in the hierarchical
file system (HFS) in directory /usr/lpp/ioclib/include.

v As part of the name change of OpenEdition* to OS/390 UNIX System Services,
occurrences of OpenEdition have been changed to OS/390 UNIX System Services
or its abbreviated name, OS/390 UNIX, throughout the OS/390 C/C++
information library. OpenEdition may continue to appear in messages, panel text,
and other code locations.

The C/C++ Compilers

The following sections describe the C and C++ languages and the OS/390 C/C++
compilers.

The C Language

The C language is a general purpose, versatile, and functional programming
language, which allows a programmer to create applications quickly and easily. C
provides high-level control statements and data types as do other structured
programming languages. It also provides many of the benefits of a low-level
language.

The C++ Language

The C++ language is based on the C language, but incorporates support for
object-oriented concepts. Refer to “Appendix A. C and C++ Compatibility” on
page 401 for a detailed description of the differences between OS/390 C++ and
OS/390 C.

The C++ language introduces classes, which are user-defined data types that may
contain data definitions and function definitions. You can use classes from
established class libraries, develop your own classes, or derive new classes from
existing classes by adding data descriptions and functions. New classes can inherit
properties from one or more classes. Not only do classes describe the data types
and functions available, but they can also hide (encapsulate) the implementation
details from user programs. An object is an instance of a class.

The C++ language also provides templates and other features that include access
control to data and functions, and better type checking and exception handling. It
also supports polymorphism and the overloading of operators.

14 OS/390 V2R6.0 C/C++ Language Reference

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|
|

Common Features of the OS/390 C and C++ Compilers

The C or C++ compilers offer many features to help your work:
v Optimization support.

– Algorithms to take advantage of S/390 architecture to get better optimization
for speed and use of computer resources through the OPTIMIZE and IPA
compile-time options.

– The OPTIMIZE compile-time option to instruct the compiler to optimize the
machine instructions it generates, to produce faster-running object code,
thereby optimizing application performance at run time.

– Interprocedural Analysis (IPA), to perform optimizations across compilation
units, thereby optimizing application performance at run time.

– The precompiled header facility, to save information from one compilation
unit for use in another or to reuse information when re-compiling the source
compilation unit, thereby improving performance at compile time.

v DLLs (dynamic link libraries) to reduce application size, and dynamically link to
exported variables and functions at run time.
IBM OS/390 C/C++ provides support for generating DLLs in a way similar to
the way OS/2 generates DLLs. DLLs allow a function reference or a variable
reference in one executable to use a definition located in another executable at
run time. You can use both load-on-reference and load-on-demand DLLs. When
your program calls a DLL function, or references a DLL, IBM OS/390 C/C++
provides a load-on-reference DLL. Your application code explicitly controls
load-on-demand DLLs at the source level.
You can use DLLs to split applications into smaller modules and improve
system memory usage. DLLs also offer more flexibility for building, packaging,
and redistributing applications.

v Full program reentrancy.
With reentrancy, many users can simultaneously run a program. A reentrant
program uses less storage if it is stored in the LPA (link pack area) or ELPA
(extended link pack area) and simultaneously run by multiple users. It also
reduces processor I/O when the program starts up, and improves program
performance by reducing the transfer of data to auxiliary storage. OS/390 C
programmers can design programs that are naturally reentrant. For those
programs that are not naturally reentrant, C programmers can use constructed
reentrancy. To do this, compile programs with the RENT option and use the
program management binder supplied with OS/390, or the OS/390 Language
Environment Prelinker (prelinker) and program management binder. The
OS/390 C++ compiler always ensures that C++ programs are reentrant.

v Locale-based internationalization support derived from the IEEE POSIX
1003.2-1992 standard. Also derived from the X/Open CAE Specification, System
Interface Definitions, Issue 4 and Issue 4 Version 2. This allows programmers to
use locales to specify language/country characteristics for their applications.

v The ability to call and be called by other languages such as assembler, COBOL,
PL/1, and Fortran, to enable programmers to integrate OS/390 C/C++ code
with existing applications.

v Exploitation of OS/390 and OS/390 UNIX technology.
OS/390 UNIX is an IBM implementation of the open operating system
environment, as defined in the XPG4 and POSIX standards.

v When used with OS/390 UNIX and OS/390 Language Environment, support for
the following standards at the system level:

Chapter 2. About IBM OS/390 C/C++ 15

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

– A subset of the extended multibyte and wide character functions as defined
by the Programming Language C Amendment 1. This is ISO/IEC
9899:1990/Amendment 1:1994(E)

– ISO/IEC 9945-1:1990(E)/IEEE POSIX 1003.1-1990
– A subset of IEEE POSIX 1003.1a, Draft 6, July 1991
– IEEE Portable Operating System Interface (POSIX) Part 2, P1003.2
– A subset of IEEE POSIX 1003.4a, Draft 6, February 1992 (the IEEE POSIX

committee has renumbered POSIX.4a to POSIX.1c)
– X/Open CAE Specification, System Interfaces and Headers, Issue 4 Version 2
– A subset of IEEE 754-1985 (R1990) IEEE Standard for Binary Floating-Point

Arithmetic (ANSI), as applicable to the S/390 environment.
– X/Open CAE Specification, Network Services, Issue 4

v Year 2000 support.

OS/390 C Compiler Specific Features

In addition to the features common to OS/390 C/C++, the OS/390 C compiler
provides you with the following capabilities:
v The ability to write portable code that conforms to the following standards:

– All elements of the ISO standard ISO/IEC 9899:1990 (E)
– ANSI/ISO 9899:1990[1992] (formerly ANSI X3.159-1989 C)
– X/Open Specification Programming Language Issue 3, Common Usage C
– FIPS-160

v System programming capabilities, which allow you to use OS/390 C in place of
assembler

v Additional optimization capabilities through the INLINE compile-time option
v Extensions of the standard definitions of the C language to provide

programmers with support for the OS/390 environment, such as fixed-point
(packed) decimal data support

Features That Are Specific to the OS/390 C++ Compiler

In addition to the features common to OS/390 C/C++, the OS/390 C++ compiler
provides you with the following:
v An implementation based on the definition of the language that is contained in

the Draft Proposal International Standard for Information Systems–
Programming Language C++ (X3J16/92-00091). The OS/390 C++ compiler also
conforms to a subset of the C++ ANSI/ISO (Draft) Standard (X3J16/93-0062).

v System Object Model (SOM) support, through the SOM Interface Definition
Language (IDL) compiler available with OS/390 SOMobjects. You can use the
IDL compiler and associated emitters to create language-specific bindings that
define the interface to a SOM object. This enables OS/390 C++ programs to
share SOM objects with other languages. In addition, SOM enables
release-to-release binary compatibility.
With Direct-to-SOM (DTS) support in the OS/390 C++ compiler, you can
generate SOM objects directly from C++ code. You do not need to create and
process the IDL first. You can write virtually the same code you do when
creating C++ objects.

Note: The OS/390 C++ compiler no longer supports IDL generation through the
IDL compile-time option. This option instructed the compiler to generate

16 OS/390 V2R6.0 C/C++ Language Reference

|
|

|
|
|

IDL. Mixed-language or distributed object applications used IDL. If you
need IDL for your applications, you should now code it yourself instead
of generating it through the IDL compile option.

v C++ template support and exception handling consistent with VisualAge* C++
product implementations.

Utilities

The OS/390 C/C++ compilers provide the following utilities:
v The Object Library Utility to update partitioned data set (PDS) libraries of object

modules and Interprocedural Analysis (IPA) object modules
v The DLL Rename Utility to make selected DLLs a unique component of the

applications with which they are packaged
v The CXXFILT Utility to map OS/390 C++ mangled names to the original source
v The localedef Utility to read the locale definition file and produce a locale object

that the locale-specific library functions can use
v The DSECT Conversion Utility to convert descriptive assembler DSECTs into

OS/390 C/C++ data structures
v The C/C++ Model Tool to provide online help for C/C++ #pragma directives

and runtime library functions. These functions are other than the C Curses
functions, and are at the level that is supplied in OS/390 Release 2

Class Libraries

IBM OS/390 C/C++ provides a base set of class libraries, called C/C++ IBM Open
Class, which is consistent with that available in other members of the VisualAge
C++ product family. These class libraries are:
v The I/O Stream Class Library

The I/O Stream Class Library lets you perform input and output (I/O)
operations independent of physical I/O devices or data types that are used. You
can code sophisticated I/O statements easily and clearly, and define input and
output for your own data types. You can improve the maintainability of
programs that use input and output by using the I/O Stream Class Library.

v The Complex Mathematics Class Library
The Complex Mathematics Class Library lets you manipulate and perform
standard arithmetic on complex numbers. Scientific and technical fields use
complex numbers.

v The Application Support Class Library
The Application Support Class Library provides the basic abstractions that are
needed during the creation of most C++ applications, including String, Date, and
Time.
The Application Support Class library is available in a C++ SOM version as well
as the regular C++ native version.

v The Collection Class Library
The Collection Class Library implements a wide variety of classical data
structures such as stack, tree, list, hash table, and so on. Most programs use
collections. You can develop programs without having to define every collection.
Programmers can start programming by using a high level of abstraction, and
later replace an abstract data type with the appropriate concrete implementation.
Each abstract data type has a common interface for all of its implementations.
The Collection Class Library provides programmers with a consistent set of

Chapter 2. About IBM OS/390 C/C++ 17

|
|
|
|
|

|
|

|
|
|
|
|
|
|

building blocks from which they can derive application objects. The library
design exploits features of the C++ language such as exception handling and
template support.
The Collection Class Library is available in a C++ SOM and a cross-language
SOM version, as well as the regular C++ native version.

All of the libraries that are described above are thread-safe, except the
cross-language SOM version of the Collection Class Library.

All of the libraries that are described above are available in both static and DLL
formats. OS/390 C/C++ packages the Application Support Class and Collection
Class libraries together in a single DLL. For compatibility, separate side-decks are
available for the Application Support Class and Collection Class libraries, in
addition to the side-deck available for the combined library.

Note: Retroactive to OS/390 Version 1 Release 3, the IBM Open Class Library is
licensed with the base operating system. This enables applications to use
this library at run time without having to license the OS/390 C/C++
compiler feature(s) or to use the DLL Rename Utility.

Class Library Source

The Class Library Source consists of the following:
v Application Support Class Library source code
v Collection Class Library source code (C++ native and C++ SOM only)
v Instructions for building the Application Support Class and Collection Class

Libraries in C++ native (static and DLL) versions
v Instructions for building the Application Support Class and Collection Class

Libraries in C++ SOM (static and DLL) versions
v Class Library Language Environment message file source
v Instructions for building the Class Library Language Environment message files

The Debug Tool

IBM OS/390 C/C++ supports program development by using a mainframe
interactive Debug Tool. This optionally available tool allows you to debug
applications in their native host environment, such as CICS/ESA, IMS/ESA*, DB2,
and so on. The Debug Tool provides the following support and function:
v Step mode
v Breakpoints
v Monitor
v Frequency analysis
v Dynamic patching

You can record the debug session in a log file, and replay the session. You can also
use the Debug Tool to help capture test cases for future program validation or to
further isolate a problem within an application.

You can specify either data sets or hierarchical file system (HFS) files as source
files.

18 OS/390 V2R6.0 C/C++ Language Reference

|
|
|

|
|

|

|
|
|
|

|

|
|
|

|
|

OS/390 Language Environment

IBM OS/390 C/C++ exploits the C/C++ runtime environment and library of
runtime services available with OS/390 Language Environment (formerly
Language Environment for MVS & VM, Language Environment/370 and LE/370).

OS/390 Language Environment consists of four language-specific runtime libraries,
and Base Routines and Common Services; see Figure 1. OS/390 Language
Environment establishes a common runtime environment and common runtime
services for language products, user programs, and other products.

The common execution environment is composed of data items and services that
are included in library routines available to an application that runs in the
environment. The OS/390 Language Environment provides a variety of services:
v Services that satisfy basic requirements common to most applications. These

include support for the initialization and termination of applications, allocation
of storage, interlanguage communication (ILC), and condition handling.

v Extended services that are often needed by applications. OS/390 C/C++
contains these functions within a library of callable routines, and include
interfaces to operating system functions and a variety of other commonly used
functions.

v Runtime options that help in the execution, performance, and diagnosis of your
application.

v Access to operating system services; OS/390 UNIX services are available to an
application programmer or program through the OS/390 C/C++ language
bindings.

v Access to language-specific library routines, such as the OS/390 C/C++ library
functions.

The Program Management Binder

The binder provided with OS/390 combines the object modules, load modules, and
program objects comprising an OS/390 application. It produces a single output
program object or load module that you can load for execution. The binder
supports all C and C++ code, provided that you store the output program in a
PDSE (Partitioned Data Set Extended) member or an HFS file.

C/C++
Language
Specific
Library

COBOL
Language
Specific
Library

PL/I
Language
Specific
Library

FORTRAN
Language
Specific
Library

Language Environment Base Routines and Common Services

Figure 1. Libraries in OS/390 Language Environment

Chapter 2. About IBM OS/390 C/C++ 19

If you cannot use a PDSE member or HFS file, and your program contains C++
code, or C code that is compiled with any of the RENT, LONGNAME, DLL or IPA
compile-time options, you must use the prelinker.

Using the binder without using the prelinker has the following advantages:
v Faster rebinds when recompiling and rebinding a few of your source files
v Rebinding at the single compile unit level of granularity (except when you use

the IPA compile-time option)
v Input of object modules, load modules, and program objects
v Improved long name support:

– Long names do not get converted into prelinker generated names
– Long names appear in the binder maps, enabling full cross-referencing
– Variables do not disappear after prelink
– Fewer steps in the process of producing your executable program

The prelinker provided with OS/390 Language Environment combines the object
modules comprising an OS/390 C/C++ application and produces a single object
module. You can link-edit the object module into a load module (which is stored in
a PDS), or bind it into a load module or a program object stored in a PDS, or a
PDSE or HFS file.

OS/390 UNIX System Services (OS/390 UNIX)

OS/390 UNIX provides capabilities under OS/390 to make it easier to implement
or port applications in an open, distributed environment. OS/390 UNIX Services
are available to OS/390 C/C++ application programs through the C/C++ language
bindings available with OS/390 Language Environment.

Together, the OS/390 UNIX Services, OS/390 Language Environment, and OS/390
C/C++ compilers provide an application programming interface that supports
industry standards.

OS/390 UNIX provides support for both existing OS/390 applications and new
OS/390 UNIX applications:
v C programming language support as defined by ISO/ANSI C
v C++ programming language support
v C language bindings as defined in the IEEE 1003.1 and 1003.2 standards; subsets

of the draft 1003.1a and 1003.4a standards; X/Open CAE Specification: System
Interfaces and Headers, Issue 4, Version 2, which provides standard interfaces
for better source code portability with other conforming systems; and X/Open
CAE Specification, Network Services, Issue 4, which defines the X/Open UNIX
descriptions of sockets and X/Open Transport Interface (XTI)

v OS/390 UNIX Extensions that provide OS/390-specific support beyond the
defined standards

v The OS/390 UNIX Shell and Utilities feature, which provides:
– A shell, based on the Korn Shell and compatible with the Bourne Shell
– Tools and utilities that conform to the X/Open Single UNIX Specification, also

known as X/Open Portability Guide (XPG) Version 4, Issue 2, and provide
OS/390 support. The following utilities are included:

ar Creates and maintains library archives

20 OS/390 V2R6.0 C/C++ Language Reference

|

|
|
|

||

BPXBATCH Allows you to submit batch jobs that run shell commands,
scripts, or OS/390 C/C++ executable files in HFS files from a
shell session

c89 Compiles, assembles, and binds OS/390 UNIX C applications

gencat Merges the message text source files Messagefile (usually
*.msg) into a formatted message Catalogfile (usually *.cat)

lex Automatically writes large parts of a lexical analyzer based on
a description that is supplied by the programmer

make Helps you manage projects containing a set of interdependent
files, such as a program with many OS/390 C/C++ source
and object files, keeping all such files up to date with one
another

yacc Allows you to write compilers and other programs that parse
input according to strict grammar rules

– Support for other utilities such as:

c++ Compiles, assembles, and binds OS/390 UNIX C++
applications

mkcatdefs Preprocesses a message source file for input to the gencat
utility

runcat Invokes mkcatdefs and pipes the message catalog source data
(the output from mkcatdefs) to gencat

dspcat Displays all or part of a message catalog

dspmsg Displays a selected message from a message catalog
v The OS/390 UNIX Debugger feature, which provides the dbx interactive

symbolic debugger for OS/390 UNIX applications
v OS/390 UNIX, which provides access to a hierarchical file system (HFS), with

support for the POSIX.1 and XPG4 standards
v OS/390 C/C++ I/O routines, which support using HFS files, standard OS/390

data sets, or a mixture of both
v Application threads (with support for a subset of POSIX.4a)
v Support for OS/390 C/C++ DLLs

OS/390 UNIX offers program portability across multivendor operating systems,
with support for POSIX.1, POSIX.1a (draft 6), POSIX.2, POSIX.4a (draft 6), and
XPG4.2.

To application developers who have worked with other UNIX environments, the
OS/390 UNIX Shell and Utilities are a familiar environment for C/C++ application
development. If you are familiar with existing MVS development environments,
you may find that the OS/390 UNIX environment can enhance your productivity.
Refer to the OS/390 UNIX System Services User’s Guide for more information on the
Shell and Utilities.

OS/390 C/C++ Applications with OS/390 UNIX C/C++ Functions

Most OS/390 UNIX C functions are available at all times. However, to use some
OS/390 UNIX C functions, you must run an OS/390 C/C++ program on a system
where the OS/390 UNIX kernel is available and active. In some situations, you
must also specify the POSIX(ON) runtime option. This is required for the POSIX.4a

Chapter 2. About IBM OS/390 C/C++ 21

||
|
|

||

||
|

||
|

||
|
|
|

||
|

|

|
|

|
|

threading functions, and the system and signal handling functions where the
behavior is different between POSIX/XPG4 and ANSI. Refer to the OS/390 C/C++
Run-Time Library Reference for more information about requirements for each
function.

You can invoke an OS/390 C/C++ program that uses OS/390 UNIX C functions
using the following methods:
v Directly from the OS/390 UNIX Shell.
v From another program, or from the OS/390 UNIX Shell, using one of the exec

family of functions, or the BPXBATCH utility from TSO or MVS batch.
v Using the POSIX system() call.
v Directly through TSO or MVS batch without the use of the intermediate

BPXBATCH utility. In some cases, you may require the POSIX(ON) runtime
option.

Input and Output

The C/C++ runtime library that supports the OS/390 C/C++ compiler supports
different input and output (I/O) interfaces, file types, and access methods. The
C++ I/O Stream Class Library provides additional support.

I/O Interfaces

The C/C++ runtime library supports the following I/O interfaces:

C Stream I/O
This is the default and the ANSI-defined I/O method. This method
processes all input and output by character.

Record I/O
The library can also process your input and output by record. A record is a
set of data that is treated as a unit. It can also process VSAM data sets by
record. Record I/O is an OS/390 C/C++ extension to the ANSI standard.

TCP/IP Sockets I/O
OS/390 UNIX provides support for an enhanced version of an
industry-accepted protocol for client/server communication that is known
as sockets. A set of C language functions provides support for OS/390
UNIX sockets. OS/390 UNIX sockets correspond closely to the sockets that
are used by UNIX applications that use the Berkeley Software Distribution
(BSD) 4.3 standard (also known as OE sockets). The slightly different
interface of the X/Open CAE Specification, Networking Services, Issue 4, is
supplied as an additional choice. This interface is known as X/Open
Sockets.

The OS/390 UNIX socket application program interface (API) provides
support for both UNIX domain sockets and Internet domain sockets. UNIX
domain sockets, or local sockets, allow interprocess communication within
OS/390 independent of TCP/IP. Local sockets behave like traditional UNIX
sockets and allow processes to communicate with one another on a single
system. With Internet sockets, application programs can communicate with
others in the network using TCP/IP.

22 OS/390 V2R6.0 C/C++ Language Reference

In addition, the C++ I/O Stream Library supports formatted I/O in C++. You can
code sophisticated I/O statements easily and clearly, and define input and output
for your own data types. This helps improve the maintainability of programs that
use input and output.

File Types

In addition to conventional files, such as sequential files and partitioned data sets,
the C/C++ runtime library supports the following file types:

Virtual Storage Access Method (VSAM) Data Sets
OS/390 C/C++ has native support for three types of VSAM data
organization:
v Key-sequenced data sets (KSDS). Use KSDS to access a record through a

key within the record. A key is one or more consecutive characters that
are taken from a data record that identifies the record.

v Entry-sequenced data sets (ESDS). Use ESDS to access data in the order
it was created (or in the reverse order).

v Relative-record data sets (RRDS). Use RRDS for data in which each item
has a particular number (for example, a telephone system with a record
associated with each number).

For more information on how to perform I/O operations on these VSAM
file types, see the OS/390 C/C++ Programming Guide.

Hierarchical File System Files
When you are running under MVS, TSO (batch and interactive), or IMS
environments, OS/390 C/C++ recognizes a Hierarchical File System (HFS)
file. The name specified on the fopen() or freopen() call has to conform to
certain rules (described in the OS/390 C/C++ Programming Guide). You can
create regular HFS files, special character HFS files, or FIFO HFS files. You
can also create links or directories.

Memory Files
Memory files are temporary files that reside in memory. For improved
performance, you can direct input and output to memory files rather than
to devices. Since memory files reside in main storage and only exist while
the program is executing, you primarily use them as work files. You can
access memory files across load modules through calls to non-POSIX
system() and C fetch(); they exist for the life of the root program.
Standard streams can be redirected to memory files on a non-POSIX
system() call using command line redirection.

Hiperspace* Expanded Storage
Large memory files can be placed in Hiperspace expanded storage to free
up some of your home address space for other uses. Hiperspace expanded
storage or high performance space is a range of up to 2 gigabytes of
contiguous virtual storage space. A program can use this storage as a
buffer (1 gigabyte = 230 bytes).

Additional I/O Features

IBM OS/390 C/C++ provides additional I/O support through the following
features:
v User error handling for serious I/O failures (SIGIOERR)

Chapter 2. About IBM OS/390 C/C++ 23

|
|
|
|

|
|
|

|
|

|
|
|

v Improved sequential data access performance through enablement of the
DFSMS/MVS support for 31-bit sequential data buffers and sequential data
striping on extended format data sets

v Full support of PDS/Es on OS/390 — including support for multiple members
opened for write

v Overlapped I/O support under OS/390 (NCP, BUFNO)
v Multibyte character I/O functions
v Fixed-point (packed) decimal data type support in formatted I/O functions
v Support for multiple volume data sets that span more than one volume of

DASD or tape
v Support for Generation Data Group I/O

The System Programming C Facility

The System Programming C (SP C) facility allows you to build applications that
require no dynamic loading of OS/390 Language Environment libraries. It also
allows you to tailor your application to better utilize the low-level services
available on your operating system. SP C offers a number of advantages:
v You can develop applications that you can execute in a customized environment

rather than with OS/390 Language Environment services. Note that if you do
not use OS/390 Language Environment services, only some built-in functions
and a limited set of C/C++ runtime library functions are available to you.

v You can substitute the OS/390 C language in place of assembler language when
writing system exit routines, by using the interfaces that are provided by SP C.

v SP C lets you develop applications featuring a user-controlled environment, in
which an OS/390 C environment is created once and used repeatedly for C
function execution from other languages.

v You can utilize co-routines, by using a two-stack model to write application
service routines. In this model, the application calls on the service routine to
perform services independently of the user. The application is then suspended
when control is returned to the user application.

Interaction with Other IBM Products

When you use OS/390 C/C++, you can write programs that utilize the power of
other IBM products and subsystems:
v Cross System Product (CSP)

Cross System Product/Application Development (CSP/AD) is an application
generator that provides ways to interactively define, test, and generate
application programs to improve productivity in application development. Cross
System Product/Application Execution (CSP/AE) takes the generated program
and executes it in a production environment.

Note: You cannot compile CSP applications with the OS/390 C++ compiler.
However, your OS/390 C++ program can use interlanguage calls (ILC) to
call OS/390 C programs that access CSP.

v Customer Information Control System (CICS)
You can use the CICS/ESA Command-Level Interface to write C/C++
application programs. The CICS Command-Level Interface provides data, job,
and task management facilities that are normally provided by the operating
system.

24 OS/390 V2R6.0 C/C++ Language Reference

|

|
|
|

|

Note: Code preprocessed with CICS/ESA versions prior to V4 R1 is not
supported for OS/390 C++ applications. OS/390 C++ code preprocessed
on CICS/ESA V4 R1 cannot run under CICS/ESA V3 R3.

v DATABASE 2 (DB2)
DB2 programs manage data that is stored in relational data bases. The IBM
DATABASE 2 licensed program runs on OS/390.
You can access the data by using a structured set of queries that are written in
Structured Query Language (SQL). The DB2 program uses SQL statements that
are embedded in the program. The SQL translator (DB2 preprocessor) translates
the embedded SQL into host language statements that perform the requested
functions. The OS/390 C/C++ compilers compile the output of the SQL
translator. The DB2 program processes a request, and processing returns to the
application.

v Data Window Services (DWS)
The Data Window Services (DWS) part of the Callable Services Library allows
your OS/390 C or OS/390 C++ program to manipulate temporary data objects
that are known as TEMPSPACE and VSAM linear data sets.

v Information Management System (IMS)
The Information Management System/Enterprise Systems Architecture
(IMS/ESA) product provides support for hierarchical databases.

v Interactive System Productivity Facility (ISPF)
OS/390 C/C++ provides access to the Interactive System Productivity Facility
(ISPF) Dialog Management Services. A dialog is the interaction between a person
and a computer. The dialog interface contains display, variable, message, and
dialog services as well as other facilities that are used to write interactive
applications.

v Graphical Data Display Manager (GDDM)
GDDM provides a comprehensive set of functions to display and print
applications most effectively:
– A windowing system that the user can tailor to display selected information
– Support for presentation and keyboard interaction
– Comprehensive graphics support
– Fonts — including support for double-byte character set (DBCS)
– Business image support
– Saving and restoring graphics pictures
– Support for many types of display terminals, printers, and plotters

v Query Management Facility (QMF)
OS/390 C supports the Query Management Facility (QMF), a query and report
writing facility, which allows you to write applications through a callable
interface. You can create applications to perform a variety of tasks, such as data
entry, query building, administration aids, and report analysis.

Additional Features of OS/390 C/C++

Feature Description

Multibyte Character Support OS/390 C/C++ supports multibyte characters for those national languages such as
Japanese whose characters cannot be represented by a single byte.

Chapter 2. About IBM OS/390 C/C++ 25

Feature Description

Wide Character Support Multibyte characters can be normalized by OS/390 C library functions and encoded in
units of one length. These normalized characters are called wide characters.
Conversions between multibyte and wide characters can be performed by string
conversion functions such as wcstombs(), mbstowcs(), wcsrtombs(), and mbsrtowcs(),
as well as the family of wide-character I/O functions. Wide-character data can be
represented by the wchar_t data type.

Extended Precision
Floating-Point Numbers

OS/390 C/C++ provides three S/370 floating-point number data types: single
precision (32 bits), declared as float; double precision (64 bits), declared as double;
and extended precision (128 bits), declared as long double.

Extended precision floating-point numbers give greater accuracy to mathematical
calculations.

As of Release 6, OS/390 C/C++ also supports IEEE 754 floating-point representation.
By default, float, double, and long double values are represented in IBM S/390
floating point format. However, the IEEE 754 floating-point representation is used if
you specify the FLOAT(IEEE754) compile option. For details on this support, see the
description of the FLOAT option in the OS/390 C/C++ User’s Guide.

Command Line Redirection You can redirect the standard streams stdin, stderr, and stdout from the command
line or when calling programs using the system() function.

National Language Support OS/390 C/C++ provides message text in either American English or Japanese. You can
dynamically switch between the two languages.

Locale Definition Support OS/390 C/C++ provides a locale definition utility that supports the creation of
separate files of internationalization data, or locales. Locales can be used at run time to
customize the behavior of an application to national language, culture, and coded
character set (code page) requirements. Locale-sensitive library functions, such as
isdigit(), use this information.

Coded Character Set (Code
page) Support

The OS/390 C/C++ compiler can compile C/C++ source written in different EBCDIC
code pages. In addition, the iconv utility converts data or source from one code page
to another.

Selected Built-in Library
Functions

Selected library functions, such as string and character functions, are built into the
compiler to improve performance execution. Built-in functions are compiled into the
executable, and no calls to the library are generated.

Multitasking Facility (MTF) Multitasking is a mode of operation where your program performs two or more tasks
at the same time. OS/390 C provides a set of library functions that perform
multitasking. These functions are known as the Multitasking Facility (MTF). MTF uses
the multitasking capabilities of OS/390 to allow a single OS/390 C application
program to use more than one processor of a multiprocessing system simultaneously.

Packed Structures and
Unions

OS/390 C provides support for packed structures and unions. Structures and unions
may be packed to reduce the storage requirements of a OS/390 C program.

Fixed-point (Packed)
Decimal Data

OS/390 C supports fixed-point (packed) decimal as a native data type for use in
business applications. The packed data type is similar to the COBOL data type COMP-3
or the PL/I data type FIXED DEC, with up to 31 digits of precision.

The Application Support Class Library provides the Binary Coded Decimal Class for
C++ programs.

Long Name Support For portability, external names can be mixed case and up to 1024 characters in length.
For C++, the limit applies to the mangled version of the name.

System Calls You can call commands or executable modules using the system() function under
OS/390, OS/390 UNIX, and TSO. You can also use the system() function to call EXECs
on OS/390 and TSO, or Shell scripts using OS/390 UNIX.

Exploitation of ESA Support for OS/390, IMS/ESA, Hiperspace expanded storage, and CICS/ESA allows
you to exploit the features of the ESA.

26 OS/390 V2R6.0 C/C++ Language Reference

|
|
|
|
|

Feature Description

Exploitation of hardware Use the ARCHITECTURE compiler option to select the minimum level of machine
architecture on which your program will run. ARCH(3) enables support for IEEE 754
Binary Floating-Point instructions. ARCH(2) instructs the compiler to generate faster
instruction sequences available only on newer machines.

Use the TUNE compiler option to optimize your application for a selected machine
architecture. Tune(3) optimizes your application for the new G5 processor. TUNE(2)
optimizes your application for other architectures. For information on which machines
and architectures support the above options, refer to the ARCHITECTURE and TUNE
compiler information in the OS/390 C/C++ User’s Guide.

Chapter 2. About IBM OS/390 C/C++ 27

|
|
|
|

|
|
|
|
|

28 OS/390 V2R6.0 C/C++ Language Reference

Part 2. The C and C++ Languages

This part of the Language Reference describes the language elements that are
common to C and C++. It also describes the C++ constructs that support
object-oriented programming.

Chapter 3. Introduction to C and C++
Provides a brief overview of the features of C and C++, including a
description of the C++ constructs that support object-oriented
programming.

Chapter 4. Lexical Elements of C and C++
Describes the basic elements of C and C++.

Chapter 5. Declarations
Describes the declarations and declarators. It also describes program
linkage, storage classes, fundamental data types, and initialization of the
fundamental data types.

Chapter 6. Expressions and Operators
Describes the expressions and standard C and C++ operators used in
computation.

Chapter 7. Implicit Type Conversions
Describes the standard conversions performed on the fundamental data
types.

Chapter 8. Functions
Describes the form and use of functions, including function declarations
and definitions.

Chapter 9. Statements
Describes the statements used to control the execution sequence of
programs.

Chapter 10. Preprocessor Directives
Discusses preprocessor directives and OS/390 C/C++ pragmas.

© Copyright IBM Corp. 1996, 1998 29

30 OS/390 V2R6.0 C/C++ Language Reference

Chapter 3. Introduction to C and C++

This chapter describes the C and C++ programming languages that are
implemented by OS/390 C/C++ and shows you how to structure C and C++
source programs. It also briefly summarizes the differences between C and C++,
and discusses the principles of object-oriented programming. Specifically, it
discusses the following topics:
v “Overview of the C Language”
v “C Source Programs” on page 32
v “C Source Files” on page 33
v “Program Execution” on page 35
v “Scope in C” on page 35
v “Program Linkage” on page 37
v “Storage Duration” on page 39
v “Name Spaces” on page 39
v “Command-Line Arguments” on page 40
v “Command-Line Arguments” on page 40
v “Overview of the C++ Language” on page 42
v “C++ Support for Object-Oriented Programming” on page 42
v “C++ Programs” on page 44
v “Scope in C++” on page 46
v “Simple C++ Input and Output” on page 47
v “Linkage Specifications — Linking to non-C++ Programs” on page 50

Overview of the C Language

C is a programming language that is designed for a wide variety of programming
tasks. You can use it for system-level code, text processing, graphics, and many
other application areas.

The C language described here is consistent with the Systems Application
Architecture Common Programming Interface (also known as the SAA C Level 2
interface). It is also consistent and with the International Standard C
(ANSI/ISO-IEC 9899-1990[1992]). This standard has officially replaced American
National Standard for Information Systems–Programming Language C
(X3.159-1989) and is technically equivalent to the ANSI** C standard.

C supports several data types, including character, packed decimal, integer,
floating-point, and pointer – each in a variety of forms. In addition, C also
supports arrays, structures (records), unions, and enumerations.

The C language contains a concise set of statements, with functionality that is
added through its library. This division enables C to be both flexible and efficient.
An additional benefit is that the language is consistent across different systems.

The C library contains functions for input and output, mathematics, exception
handling, string and character manipulation, dynamic memory management, as

© Copyright IBM Corp. 1996, 1998 31

well as date and time manipulation. Use of this library helps to maintain program
portability, because the underlying implementation details for the various
operations need not concern the programmer.

The OS/390 C/C++ Run-Time Library Reference describes all of the C library
functions.

C Source Programs

A C source program is a collection of one or more directives, declarations, and
statements that is contained in one or more source files. The resulting collection of
files constitutes a compilation unit.

Statements Specify the action the program performs.

Directives Instruct the preprocessor to act on the text of the
program. Pragma directives affect compiler
behavior.

Declarations Establish names and define characteristics such as
scope, data type, and linkage.

Definitions Are declarations that allocate storage for data
objects or define a body for functions. An object
definition allocates storage and may optionally
initialize the object.

A function declaration precedes the function body. The function body is a compound
statement that can contain declarations and statements that define what the
function does. The function declaration declares the function name, its parameters,
and the data type of the value it returns.

A program must contain one, and only one, function called main(). The main()
function is the first function that a program calls when you run the program.

Note: This is not the case for C++ programs. If a C++ program instantiates an
object in file scope, OS/390 C/C++ executes the constructor for that object
first.

By convention, main() is the starting point for running a program. It typically calls
other functions. A program usually stops running at:
v The end of the main() function
v A return statement in the main() function
v An exit function call.

Overview of the C Language

32 OS/390 V2R6.0 C/C++ Language Reference

CBC3RAAA

This is the source code of a simple C program:
/**
** This is an example of a simple C program
**/

#include <stdio.h> /* Standard I/O library header that
contains macros and function declarations
such as printf used below */

#include <math.h> /* Standard math library header that
contains macros and function declarations
such as cos used below */

#define NUM 46.0 /* Preprocessor directive */

double x = 45.0; /* External variable definitions */

double y = NUM;

int main(void) /* Function definition
for main function */

{
double z; /* Local variable definitions */
double w;

z = cos(x); /* cos is declared in math.h as
double cos(double arg) */

w = cos(y);
printf ("cosine of x is %f\n", z); /* Print cosine of x */
printf ("cosine of y is %f\n", w); /* Print cosine of y */

return 0;
}

This source program defines main() and declares a reference to the functions cos
and printf. The program defines the global variables x and y, initializes them, and
declares two local variables z and w.

C Source Files

A C source file is a text file that contains all or part of a C source program. It can
include any of the functions that the program needs. To create an executable
module or program object, you compile the separate source files individually and
then link or bind them as one program. With the #include directive, you can
combine source files into larger source files. The resulting collection of files that are
seen by the compiler in a single compilation is known as a compilation unit. A
compilation unit does not necessarily constitute the entire program.

A source file contains any combination of directives, declarations, and definitions.
You can split items such as function definitions and large data structures between
source files, but you cannot split them between compiled files. Before you compile
the source file, the preprocessor alters the source file in a predictable way. The
preprocessor directives determine what changes the preprocessor makes to the
source text. As a result of the preprocessing stage, OS/390 C/C++ completes the
preprocessor directives and expands macros. It may create a new source file that
contains C statements, processed directives, declarations, and definitions.

C Source Programs

Chapter 3. Introduction to C and C++ 33

It is sometimes useful to gather variable definitions into one source file and declare
references to those variables in any source files that use them. This procedure
makes definitions easy to find and change, if necessary. You can also organize
constants and macros into separate files and include them into source files as
required.

The following example is a C program in two source files. The main() and max()
functions are in separate files. The program starts by running the main() function.

CBC3RAAB - Source File 1
/**
* Source file 1 - main function *
**/

#define ONE 1
#define TWO 2
#define THREE 3

extern int max(int, int); /* Function declaration */

int main(int argc, char * argv[]) /* Function definition */
{

int u, w, x, y, z;

u = 5;
z = 2;
w = max(u, ONE);
x = max(w,TWO);
y = max(x,THREE);
z = max(y,z);
return z;

}

CBC3RMAX - Source file 2
/**
* Source file 2 - max function *
**/
int max (int a,int b) /* Function definition */
{

if (a > b)
return (a);

else
return (b);

}

The first source file declares the function max(), but does not define it. This is an
external declaration, a declaration of a function defined in source file 2. Four
statements in main() are function calls of max().

The lines beginning with a number sign (#) are preprocessor directives. They direct
the preprocessor to replace the identifiers ONE, TWO, and THREE with the digits 1, 2,
and 3. The directives do not apply to the second source file.

The second source file contains the function definition for max(), which the
function main() calls four times. After you compile the source files, you can bind
and run them as a single program.

C Source Files

34 OS/390 V2R6.0 C/C++ Language Reference

|
|
|

Program Execution

Every program must have a function called main() and usually contains other
functions.

The main() function is the starting point for running a program. OS/390 C/C++
executes the statements within the main() function sequentially. There may be calls
to other functions. A program usually stops running at the end of the main()
function, although it can stop at other points in the program.

You can make your program modular by creating separate functions to perform a
specific task or set of tasks. The main() function calls these functions to perform
the tasks. When your program makes a function call, it executes statements
sequentially. It starts with the first statement in the function until it encounters a
statement that alters the flow of control. The function returns control to the calling
function at the return statement or at the end of the function.

You can declare any function to have parameters. When you call functions, they
receive values for their parameters from the arguments that you pass in the calling
functions. You can declare parameters for the main() function so you can pass
values to main() from the command line. The command line processor that starts
the program can pass such values as described in “The main() Function” on
page 184.

Scope in C

An identifier becomes visible with its declaration. The region where an identifier is
visible is the identifier’s scope. The four kinds of scope are:
v Block
v Function
v File
v Function prototype.

The location of the identifier determines where the identifier is declared. See
“Identifiers” on page 56 for more information on identifiers.

Block Scope

The identifier’s declaration is located inside a statement block. A block starts with
an opening brace ({) and ends with a matching closing brace (}). An identifier with
block scope is visible from the point where you declare it to the closing brace that
ends the block. You can also refer to block scope as local scope.

You can nest block visibility. A block that is nested inside a block can contain
declarations that reuses names declared in the outer block. The new declaration
applies to the inner block. OS/390 C/C++ restores the original declaration when
program control returns to the outer block. A name from the outer block is visible
inside inner blocks that do not redefine the name.

Program Execution

Chapter 3. Introduction to C and C++ 35

Function Scope

The only type of identifier with function scope is a label name. You implicitly
declare a label by its appearance in the program text. A label is visible throughout
the function that declares it. A goto statement transfers control to the label that is
specified on the goto statement. The label is visible to any goto statement that
appears in the same function as the label.

File Scope

The identifier’s declaration appears outside of any block or parameter list. It is
visible from the point in the program where you declare it to the end of the source
file. If source files are included by #include preprocessor directives, those files are
considered to be part of the source. The identifier will be visible to all included
files that appear after the declaration of the identifier. You can declare the identifier
again as a block-scope variable. The new declaration replaces the file-scope
declaration until the end of the block.

Function Prototype Scope

The identifier’s declaration appears within the list of parameters in a function
prototype. It is visible from the point where you declare it to the closing
parenthesis of the prototype declaration.

Example of Scope in C

The following example declares the variable x on line 1, which is different from the
x it declares on line 2. The declared variable on line 2 has function prototype scope
and is visible only up to the closing parenthesis of the prototype declaration. The
variable x declared on line 1 resumes visibility after the end of the prototype
declaration.
1 int x = 4; /* variable x defined with file scope */
2 long myfunc(int x, long y); /* variable x has function */
3 /* prototype scope */
4 int main(void)
5 {
6 /* . . . */
7 }

The following program illustrates blocks, nesting, and scope. The example shows
two kinds of scope: file and block. The main() function prints the values 1, 2, 3,
0, 3, 2, 1 on separate lines. Each instance of i represents a different variable.

Scope in C

36 OS/390 V2R6.0 C/C++ Language Reference

Related Information
v “C Source Files” on page 33

v “static Storage Class Specifier” on page 82

v “Chapter 8. Functions” on page 173

v “Labels” on page 197

v “Block” on page 198

v “goto” on page 208

v “Scope in C++” on page 46

Program Linkage

The association, or lack of association, between two identical identifiers is known
as linkage. The kind of linkage that an identifier has depends on the way you
declare it.

A file scope identifier has one of the following kinds of linkage:

Internal Identical identifiers within a single source file refer to the same
data object or function.

External Identical identifiers in separately compiled files refer to the same
data object or function.

No linkage Each identical identifier refers to a unique object.

Note: Program linkage is not the same as a function calling convention, which you
can refer to as linkage. While it relates to program linkage, a calling

#include <stdio.h>
int i = 1; /* i defined at file scope */

int main(int argc, char * argv[])
┌───── {
│
│ printf("%d\n", i); /* Prints 1 */
│
│ ┌─── {
│ │ int i = 2, j = 3; /* i and j defined at
│ │ block scope */
│ │ printf("%d\n%d\n", i, j); /* Prints 2, 3 */
│ │
│ │ ┌── {
│ │ │ int i = 0; /* i is redefined in a nested block */
│ │ │ /* previous definitions of i are hidden */
│ │ │ printf("%d\n%d\n", i, j); /* Prints 0, 3 */
│ │ └── }
│ │
│ │ printf("%d\n", i); /* Prints 2 */
│ │
│ └─── }
│
│ printf("%d\n", i); /* Prints 1 */
│
│ return 0;
│
└────── }

Scope in C

Chapter 3. Introduction to C and C++ 37

convention concerns itself with C++ linkage specifications and the use of
certain keywords. This section only discusses program linkage.

Use linkage specifications to link to non-C++ declarations. In C, the #pragma
linkage directive specifies non-C declarations.

See “Linkage Specifications — Linking to non-C++ Programs” on page 50 for more
information.

Internal Linkage

The following kinds of identifiers have internal linkage:
v All identifiers with file or block scope that have the keyword static in their

declarations. Functions with static storage class are visible only in the source
file in which you define them.

v C++ inline functions.
v C++ identifiers declared at file scope with the specifier const and not explicitly

declared extern. In C, const objects have external linkage by default.

You can define a variable that has static storage class within a block or outside a
function. If the definition occurs within a block, the variable has internal linkage
and is only visible within the block after you can see its declaration. If the
definition occurs outside a function, the variable has internal linkage. It is available
from the point where it is defined to the end of the current source file.

A class is local to its compilation unit if it has no static members or no inline
member functions, and if it has not been used in the declaration of an object,
function, or class.

If the declaration of an identifier has the keyword extern and if a previous
declaration of the identifier is visible at file scope, the identifier has the same
linkage as the first declaration.

External Linkage

The following kinds of identifiers have external linkage:
v Identifiers with file or block scope that have the keyword extern in their

declarations, and the previously visible declaration is not static.
If a previous declaration of the identifier is visible at file scope, the identifier has
the same linkage as the first declaration. For example, a variable or function that
is first declared with the keyword static and later declared with the keyword
extern has internal linkage.

v Function identifiers declared without storage-class specifiers.
v Object identifiers that have file scope declarations without a storage-class

specified. OS/390 C/C++ allocates storage for such object identifiers.
v Static class members and no inline member functions.

You can define identifiers that are declared with the keyword extern in other
compilation units.

Program Linkage

38 OS/390 V2R6.0 C/C++ Language Reference

No Linkage

The following kinds of identifiers have no linkage:
v Identifiers that do not represent an object or a function, including labels,

enumerators, typedef names, type names, and template names
v Identifiers that represent a function argument
v Identifiers declared inside a block without the keyword extern

Storage Duration

Storage duration determines how long storage for an object exists. An object has
either static storage duration or automatic storage duration, but this depends on its
declaration.

Static storage OS/390 allocates this storage at initialization and it
remains available until the program ends. Objects
have static storage duration if they:
v Have file scope OR
v Have external or internal linkage OR
v Contain the static storage class specifier.

Automatic storage OS/390 C/C++ allocates and removes this storage
according to the scope of the identifier. Objects
have automatic storage duration if they are either
one of the following:
v Parameters in a function definition
v Declared at block scope and do not have any

storage class specifier
v Declared at block scope, and contain the

register or auto storage class specifier.

For example, storage for an object declared at block
scope is allocated when the identifier is declared
and removed when the closing brace (}) is reached.

Note: Objects can also have heap storage duration. OS/390 C/C++ creates heap
objects at run time and allocates storage for them by calling a function such
as malloc().

Name Spaces

The compiler sets up name spaces to distinguish among identifiers referring to
different kinds of entities. Identical identifiers in different name spaces do not
interfere with each other, even if they are in the same scope.

You must assign unique names within each name space to avoid conflict. You can
use the same identifier to declare different objects as long as each identifier is
unique within its name space. The syntactic context of an identifier within a
program lets the compiler resolve its name space without ambiguity.

You can redefine identifiers in the same name space but within enclosed program
blocks as described in “Scope in C” on page 35.

Program Linkage

Chapter 3. Introduction to C and C++ 39

Within each of the following four name spaces, the identifiers must be unique.
v Tags of these types must be unique within a single scope:

– Enumerations
– Structures and unions

v Members of structures, unions, and classes must be unique within a single
structure, union, or class type.

v Statement labels have function scope and must be unique within a function.
v All other ordinary identifiers must be unique within a single scope:

– Function names
– Variable names
– Names of function parameters
– Enumeration constants
– typedef names.

Structure tags, structure members, variable names, and statement labels are in four
different name spaces. No conflict occurs among the four items named student in
the following example:
int get_item()
{

struct student /* structure tag */
{

char student[20]; /* structure member */
int section;
int id;

} student; /* structure variable */

goto student;
student:; /* null statement label */
return (0);

}

OS/390 C/C++ interprets each occurrence of student by its context in the
program. For example, when student appears after the keyword struct, it is a
structure tag. When student appears after either of the member selection operators
. or ->, the name refers to the structure member. When student appears after the
goto statement, OS/390 C/C++ passes control to the null statement label. In other
contexts, the identifier student refers to the structure variable.

Related Information
v “Scope in C” on page 35

v “Identifiers” on page 56

v “Type Specifiers” on page 85

v “Chapter 6. Expressions and Operators” on page 133

Command-Line Arguments

The maximum allowable length of a command-line argument for OS/390
Language Environment is 64K.

OS/390 C/C++ treats arguments that you enter on the command line differently in
different environments. The following lists how argv and argc are handled.

Name Spaces

40 OS/390 V2R6.0 C/C++ Language Reference

Under OS/390 Batch
argc Returns the number of strings in the argument line

argv[0] Returns the program name in uppercase

argv[1 to n] Returns the arguments as you enter them

Under IMS
argc Returns 1

argv[0] Is a null pointer

Under CICS
argc Returns 1

argv[0] Returns the transaction ID

Under TSO Command
argc Returns the number of strings in the argument line

argv[0] Returns the program name in uppercase

argv[1 to n] Returns the arguments exactly as you enter them

Under TSO Call

Without the ASIS option:

argc Returns the number of strings in the argument line

argv Returns the program name and arguments in
lowercase

With the ASIS option:

argc Returns the number of strings in the argument line

argv[0] Returns the program name in uppercase

argv[1 to n] Arguments entered in uppercase are returned in
lowercase. Arguments entered in mixed or
lowercase are returned as entered.

Under OS/390 UNIX Shell
argc Returns the number of strings in the argument line

argv[0] Returns the program name as you enter it

argv[1 to n] Returns the arguments exactly as you enter them

The only delimiter for the arguments that are passed to main() is white space.
OS/390 C/C++ uses commas passed to main() by JCL as arguments and not as
delimiters.

The following example appends the comma to the 'one' when passed to main().
//FUNC EXEC PCGO,GPGM='FUNC',
// PARM.GO=('one',
// 'two')

Command-Line Arguments

Chapter 3. Introduction to C and C++ 41

For more information on restrictions of the command-line arguments, refer to the
OS/390 C/C++ User’s Guide.

Related Information
v “Calling Functions and Passing Arguments” on page 185

v “Parameter Declaration List Syntax” on page 181

v “Type Specifiers” on page 85

v “Identifiers” on page 56

v “Block” on page 198

Overview of the C++ Language

C++ is an object-oriented language based on the C programming language. It can
be viewed as a superset of C. Almost all of the features and constructs available in
C are also available in C++. However, C++ is more than just an extension of C. Its
additional features support the programming style known as object-oriented
programming. Several features that are already available in C, such as input and
output may be implemented differently in C++. In C++ you may use the
conventional C input and output routines or you may use object oriented input
and output by using the I/O Stream class library.

C++ was developed by Bjarne Stroustrup of AT&T Bell Laboratories. It was
originally based on the definition of the C language stated in The C Programming
Language by Brian W. Kernighan and Dennis M. Ritchie. This C language definition
is commonly called K&R C. Since then, the International Standards Organization C
language definition (referred to here as ANSI/ISO C) has been approved. It
specifies many features that K&R left unspecified. Some features of ANSI/ISO C
have been incorporated into the current definition of C++, and some parts of the
ANSI/ISO C definition have been motivated by C++.

While there is currently no C++ standard comparable to the ANSI/ISO C
definition, an ISO committee is working on such a definition. The OS/390 C++
compiler implementation is based on the definition of the language contained in
the Draft Proposal International Standard for Information Systems-Programming
Language C++ (X3J16/92-00091). The OS/390 C++ compiler also conforms to a
subset of the C++ ANSI/ISO (Draft) Standard (X3J16/93-0062).

C++ Support for Object-Oriented Programming

Object-oriented programming is based on the concepts of data abstraction,
inheritance, and polymorphism. Unlike procedural programming, it concentrates on
the data objects that are involved in a problem and how they are manipulated, not
on how something is accomplished. Based on the foundation of data abstraction,
object-oriented programming allows you to reuse existing code more efficiently
and increase your productivity.

Data Abstraction

Data abstraction provides the foundation for object-oriented programming. In
addition to providing fundamental data types, object-oriented programming
languages allow you to define your own data types, called user-defined or abstract

Command-Line Arguments

42 OS/390 V2R6.0 C/C++ Language Reference

data types. In the C programming language, related data items can be organized
into structures. These structures can then be manipulated as units of data. In
addition to providing this type of data structure, object-oriented programming
languages allow you to implement a set of operations that can be applied to the
data elements. The data elements and the set of operations applicable to the data
elements together form the abstract data type.

To support data abstraction, a programming language must provide a construct
that can be used to encapsulate the data elements and operations that make up an
abstract data type. In C++, this construct is called a class. An instance of a class is
called an object. Classes are composed of data elements called data members and
member functions that define the operations that can be carried out on the object.
Classes also contain typedefs, enums, and other classes.

Encapsulation

Another key feature of object-oriented programming is encapsulation. Encapsulation
means a class can hide the details of:
v The representation of its data members
v The implementation of the operations that can be performed on these data

members

Application programs manipulate objects of a class using a clearly defined
interface. As long as this interface does not change, you can change the
implementation of a class without having to change the application programs that
use the class. Encapsulation provides the following advantages:
v Users of a class do not have to deal with unnecessary implementation details.
v Programs are easier to debug and maintain.
v Permitted alterations are clearly specified.

In C++, encapsulation is accomplished by specifying the level of access for each
member of a class. Both the data members and member functions of a class can be
declared public, protected, or private depending on the kind of access required.

Note: C++ encapsulation is not a security mechanism. It is possible to circumvent
the class access controls that make encapsulation possible. The language is
not designed to prevent such misuse.

Inheritance

Inheritance lets you reuse existing code and data structures in new applications. In
C++, inheritance is implemented through class derivation. You can extend a library
of existing classes by adding data elements and operations to existing classes to
form derived classes. A derived class has all the members of its parent or base class,
as well as extensions that can provide additional features. When you create a new
derived class, you only have to write the code for the additional features. The
existing features of the base class are already available.

A base class can have more than one class derived from it. In addition, a derived
class can serve as a base class for other derived classes in a hierarchy. Typically, a
derived class is more specialized than its base class.

A derived class can inherit data members and member functions from more than
one base class. Inheritance from more than one base class is called multiple
inheritance.

Object-Oriented Programming

Chapter 3. Introduction to C and C++ 43

Dynamic Binding and Polymorphism

Another key concept that allows you to write generic programs is dynamic or late
binding. Dynamic binding allows a member function call to be resolved at run time,
according to the run-time type of an object reference. This permits each
user-defined class in an inheritance hierarchy to have a different implementation of
a particular function. Application programs can then apply that function to an
object without needing to know the specifics of the class to which the object
belongs.

In C++, dynamic binding hides the differences between members of a group of
classes in an inheritance hierarchy from the application program. At run time, the
system determines the specific class of the object and invokes the appropriate
function implementation for that class.

Dynamic binding is distinguished from static or compile-time binding, which
involves compile-time member function resolution according to the static type of
an object reference.

Other Features of C++

C++ provides several other powerful extensions to the C programming language.
Among these are:
v Constructors and destructors, which are used to initialize and destroy class

objects
v Overloaded functions and operators, which let you extend the operations a

function or operator can perform on different data types
v Inline functions, which can make programs more efficient
v References, which allow a function to modify its arguments in the calling

function
v Template functions and classes, which allow the definition of generic classes and

functions
v Object-Oriented Exception handling, which provides transfer of control and

recovery from errors and other exceptional circumstances

C++ Programs

C++ programs contain many of the same programming statements and constructs
as C programs:
v C++ has many of the same fundamental types (built-in) data types as C, as well

as some types that are not built-in to C. For example, packed decimal is
supported in C but not C++.

v Like ANSI/ISO C, C++ allows you to declare new names for existing (perhaps
complex) types by using the typedef construct. These new type names are not
new types.

v In general, the scope and storage class rules for C also apply in C++.
v C and C++ have the same set of arithmetic and logical operators.

A C++ name can identify any of the following:
v An object
v A function
v A set of functions

Object-Oriented Programming

44 OS/390 V2R6.0 C/C++ Language Reference

v An enumerator
v A type
v A class member
v A template
v A value
v A label

A declaration introduces a name into a program and can define an area of storage
associated with that name.

An expression can be evaluated and is composed of operations and operands. An
expression ending with a ; (semicolon) is called a statement. A statement is the
smallest independent computational unit. Functions are composed of groups of one
or more statements.

A C++ program is composed of one or more functions. These functions can all
reside in a single file or can be placed in different files that are linked to each
other. In C++, a program must have one and only one non-member function called
main().

The following is a simple C++ program containing declarations, expressions,
statements, and two functions:

C++ Programs

Chapter 3. Introduction to C and C++ 45

CBC3X02D
/**
** A simple C++ program containing declarations,
** expressions, statements, and two functions:
**/

#include <math.h> // contains definition of fabs()
const double multiplier=2.2; // variable initialization
const double common_ratio=3.1; // variable initialization
double geo_series(double a, double r) // function definition
{

if (r == 1.0) // if statement
return -1.0; // return statement

else return -2.0;
};
int main() // program execution begins here
{

double sum; // variable declaration
sum = geo_series(multiplier, common_ratio); // function call
// ..

return 0;
}

Scope in C++

The area of the code where an identifier is visible is referred to as the scope of the
identifier. The four kinds of scope are:
v Local
v Function
v File
v Class

The scope of a name is determined by the location of the name’s declaration.

A type name first declared in a function return type has file scope. In the following
example, Y has file scope:

struct Y { int a; int b } foo(int a) { . }

A type name first declared in a function argument list has local scope. In the
following example, X has local scope:
int foo(struct X { int a; int b; } x, int y) {
.

}

A function name that is first declared as a friend of a class is in the first nonclass
scope that encloses the class.

If the friend function is a member of another class, it has the scope of that class.
The scope of a class name first declared as a friend of a class is the first nonclass
enclosing scope. See “Friend Scope” on page 308 for more information.

Local Scope

A name has local scope if it is declared in a block. A name with local scope can be
used in that block and in blocks enclosed within that block, but the name must be
declared before it is used. When the block is exited, the names declared in the
block are no longer available.

C++ Programs

46 OS/390 V2R6.0 C/C++ Language Reference

Formal argument names for a function have the scope of the outermost block of
that function.

If a local variable is a class object with a destructor, the destructor is called when
control passes out of the block in which the class object was constructed.

When one block is nested inside another, the variable names from the outer block
are usually visible in the nested block. However, if an outer block name is
redefined in a nested block, the new declaration is in effect in the inner block. The
original declaration is restored when program control returns to the outer block.
This is called block visibility. See “C++ Scope Resolution Operator (::)” on page 137
for infomation on scope resolution.

Function Scope

The only type of identifier with function scope is a label name. A label is implicitly
declared by its appearance in the program text and is visible throughout the
function that declares it.

File Scope

A name has file scope if its declaration appears outside of all blocks and classes. A
name with file scope is visible from the point where it is declared to the end of the
source file. The name is also made accessible for the initialization of global
variables. If a name is declared extern, it is also visible, at link time, in all object
files being linked. Global names are names declared with file scope.

Class Scope

The name of a class member has class scope and can only be used in the following
cases:
v In a member function of that class
v In a member function of a class derived from that class
v After the . (dot) operator applied to an instance of that class
v After the . (dot) operator applied to an instance of a class derived from that

class
v After the -> operator applied to a pointer to an instance of that class
v After the -> (arrow) operator applied to a pointer to an instance of a class

derived from that class
v After the :: (scope resolution) operator applied to the name of a class
v After the :: (scope resolution) operator applied to a class derived from that

class.

For more information on class scope, see “Scope of Class Names” on page 286.

Simple C++ Input and Output

Like C, the C++ language has no built-in input and output facilities. Instead, input
and output facilities for C++ are provided by the I/O Stream Library. For
compatibility with C, C++ also supports the standard I/O functions of C. The I/O
Stream Library supports a set of I/O operations, written in the C++ language, for
the built-in types. You can extend these facilities to provide input and output
functions for user-defined data types.

Scope in C++

Chapter 3. Introduction to C and C++ 47

For a complete description of the I/O Stream Library, see the OS/390 C/C++ IBM
Open Class Library Reference.

There are four predefined I/O stream objects that you can use to perform standard
I/O:
v cout
v cin
v cerr
v clog

You can use these in conjunction with the overloaded shift operators, << (insertion
or output) and >> (extraction or input). To use streams and operators, you must
include the header file iostream.h. The following example prints Hello World! to
standard output:

CBC3X02F
/**
** Hello World
**/

#include <iostream.h>
void main()
{

cout << "Hello World!" << endl;
}

The manipulator endl acts as a newline character, causing any output following it
to be directed to the next line. Because it also causes any buffered output to be
flushed, endl is preferred over \n to end lines.

Output (cout, cerr, and clog)

The cout stream is associated with standard output. You can use the output
operator in conjunction with cout to direct a value to standard output. The
following example prints out three strings in a row and produces the same result
as the previous example, printing Hello World! to standard output.

CBC3X02G
/**
** Another Hello World, illustrating concatenation with cout
**/

#include <iostream.h>
void main()
{

cout << "Hello "
<< "World"
<< "!"
<< endl;

}

Output operators are defined to accept arguments of any of the fundamental data
types, as well as pointers, references, and array types. You can also overload the
output operator to define output for your own classes.

Input and Output

48 OS/390 V2R6.0 C/C++ Language Reference

The cerr and clog streams direct output to standard error. cerr provides
unbuffered output, while clog provides buffered output. The following example
checks for a division by zero condition. If one occurs, a message is sent to standard
error.

CBC3X02H
/**
** Check for a division by zero condition.
** If one occurs, a message is sent to standard error.
**/

#include <iostream.h>

main()
{

double val1, val2;
cout << "Divide Two Values" << endl;
cout << "Enter two numeric values: " << endl;
cin >> val1 >> val2;
if (val2 == 0)
{ cerr << "The second value must be non-zero" << endl;

return;
}
cout << "The answer is " << val1 / val2 << endl;

}

Input (cin)

The cin class object is associated with standard input. You can use the input
operator in conjunction with cin to read a value from standard input. By default,
white space (including blanks, tabs, and new lines) is disregarded by the input
operator. For example:

CBC3X02I
/**
** This example illustrates the cin operator
**/

#include <iostream.h>
main()
{

double val1, val2;
cout << "Enter two numeric values:" << endl;
cin >> val1 >> val2;
cout << "The first value entered is " << val1

<< " and the second value is "
<< val2 << "." << endl;

}

If the values 1.2 and 3.4 are entered through standard input, the above program
prints the following to standard output:
Enter two numeric values:
1.2
3.4
The first value entered is 1.2 and the second value is 3.4.

Any white space entered between the two numeric values is disregarded by the
input operator.

Input and Output

Chapter 3. Introduction to C and C++ 49

The input operator is defined to accept arguments of any of the fundamental data
types, as well as pointers, references and array types. You can also overload the
input operator to define input for your own class types.

Linkage Specifications — Linking to non-C++ Programs

You can link C++ object modules to object modules produced using other source
languages such as C and Fortran by using a linkage specification.

The syntax is:

ÊÊ

»

extern string-literal declaration

{ }
declaration

ÊÍ

The string-literal is used to specify the linkage associated with a particular function.
For example:

CBC3X02J
/**
** This example illustrates linkage specifications
**/

extern "C" int printf(const char*,...);
void main()
{

printf("hello\n");
}

Here the string-literal, "C", tells the C++ compiler that the routine printf(const
char*,...) is a C library function. Note that string literals used in linkage
specifications are not case-sensitive.

Some valid values for string-literal are:

"C++" Default

"C" C type linkage

For more information on string literals, see “String Literals” on page 65. For linkage
specification information, see the OS/390 C/C++ Programming Guide.

If the value of string-literal is not recognized, C type linkage is used.

Input and Output

50 OS/390 V2R6.0 C/C++ Language Reference

Chapter 4. Lexical Elements of C and C++

This chapter describes the following lexical elements of C and C++:
v “Tokens”
v “Source Program Character Set”
v “Comments” on page 54
v “Identifiers” on page 56
v “Constants” on page 60

Tokens

During preprocessing and compilation, OS/390 C/C++ treats source code as a
sequence of tokens. There are five different types of tokens:
v Identifiers
v Keywords
v Literals
v Operators
v Other separators

You should separate adjacent identifiers, keywords, and literals with white space.
You should separate other tokens by white space to make the source code more
readable. White space includes blanks, horizontal and vertical tabs, new lines, form
feeds, and comments.

Source Program Character Set

The following lists the basic character set that must be available at both compile
and run time:
v The uppercase and lowercase letters of the English alphabet

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

v The decimal digits 0 through 9

0 1 2 3 4 5 6 7 8 9

v The following graphic characters:
! " # % & ' () * + , - . / :
; < = > ? [\] _ { } ˜

v The caret (|) character in ASCII (bitwise exclusive OR symbol), which may be
represented by the equivalent not (¬) character on EBCDIC systems

v The split vertical bar (¦) character in ASCII, which you may represent by the
vertical bar (|) character on EBCDIC systems

v The space character
v The control characters that represent new-line, horizontal tab, vertical tab, and

form feed, and end of string (NULL character).

OS/390 C/C++ uses the number sign (#) character for preprocessing only, and
treats the _ (underscore) character as a normal letter.

© Copyright IBM Corp. 1996, 1998 51

The execution character set also includes control characters that represent alert,
backspace, carriage return, and new-line.

In a source file, a record contains one line of source text; the end of a record
indicates the end of a source line.

The encoding of the following characters from the basic character set may vary
between the source-code generation environment and the runtime environment:
! # ’ [] \ { } ˜ | |

The OS/390 C/C++ compiler normalizes the encoding of source files indicated by
the #pragma filetag directive and the LOCALE compile time option to the encoding
defined by code page 1047.

The compiler uses the character set that is specified for the LOCALE option for any
output. This includes:
v Listings that contain identifier names and source code
v String literals and character constants that are emitted in the object code
v Messages generated by the compiler

However, this does not include the source-code annotation in the pseudo-assembly
listings.

Depending on the EBCDIC encoding that your installation uses, you can express
the | and | characters as ¬ and ¦ respectively. This book refers to the | and |
symbols as the caret and vertical bar, respectively. If you do not specify the NOLOCALE
compile-time option, OS/390 C/C++ does not perform normalization. It assumes
that the character set encoding is the IBM-1047 code page. In this case, it
recognizes both the broken and unbroken vertical bars as the vertical bar. The caret
and logical not sign are recognized as the caret. For a detailed description of the
#pragma filetag directive and the LOCALE option, refer to the description of
internationalization, locales, and character sets in the OS/390 C/C++ Programming
Guide.

The compiler recognizes and supports the additional characters (the extended
character set) which you can meaningfully use in string literals and character
constants. The support for extended characters includes the multibyte character
sets.

OS/390 systems represent multibyte characters by using Shiftout <SO> and Shiftin
<SI> pairs. Strings are of the form:
<SO> x y z <SI>

Or they can be mixed:
<SO> x <SI> y z
x <SO> y <SI> z

In the above, two bytes represent each character between the <SO> and <SI> pairs.
OS/390 C/C++ restricts multibyte characters to character constants, string
constants, and comments.

Refer to the OS/390 C/C++ Run-Time Library Reference for a discussion on strings
that are passed to library routines, and to “Character Constants” on page 64 of this
book for information on character constants. If you specify a lowercase a as part of
an identifier name, you cannot substitute an uppercase A in its place. You must use
the lowercase letter.

Character Set

52 OS/390 V2R6.0 C/C++ Language Reference

Trigraph Sequences

Some characters from the C character set are not available in all environments. You
can enter these characters into a C source program by using a sequence of three
characters that are called a trigraph. The trigraph sequences are:

??= # number sign
??([left bracket
??)] right bracket
??< { left brace
??> } right brace
??/ \ backslash
??’ | caret
??! | vertical bar
??- ˜ tilde

The preprocessor replaces trigraph sequences with the corresponding
single-character representation by using the code page that is indicated by the
LOCALE option. If you do not specify the LOCALE option, the preprocessor uses code
page 1047.

At compile time, the compiler translates the trigraphs found in string literals and
character constants into the appropriate characters they represent. These characters
are in the coded character set you select by using the LOCALE compiler option.

Note: The OS/390 C/C++ compiler will compile source files that were edited
using different encoding of character sets. However, they might not compile
cleanly. OS/390 C/C++ does not compile source files that you edit with the
following:
v A character set that does not support all the characters that are specified

above, even if the compiler can access those characters by a trigraph.
v A character set for which no one-to-one mapping exists between it and

the character set above.

Note: The exclamation mark (!) is a variant character. Its recognition depends on
whether or not the LOCALE option is active. For more information on variant
characters, refer to the OS/390 C/C++ Programming Guide.

Example
some_array??(i??) = n;

Represents:
some_array[i] = n;

Digraph Sequences

You can represent unavailable characters in an C++ source program by using a
combination of two keystrokes that are called a digraph sequence. The preprocessor
reads digraphs as tokens during the preprocessor phase.

Note: OS/390 C/C++ supports digraphs for C++ only.

Character Set

Chapter 4. Lexical Elements of C and C++ 53

The digraph sequences are:

%: # number sign
<: [left bracket
:>] right bracket
<% { left brace
%> } right brace
%:%: ## preprocessor macro concatenation operator

You can create digraphs by using macro concatenation. OS/390 C/C++ does not
replace digraphs in string literals or in character literals. For example:
char *s = "<%%>"; // stays "<%%>"

switch (c)
{

case '<%' : { /* ... */ } // stays '<%'
case '%>' : { /* ... */ } // stays '%>'

}

The NODIGRAPH option disables processing of digraphs. The NODIGRAPH option is on
by default.

The DIGRAPH option is described in the OS/390 C/C++ User’s Guide.

Additional Keywords

If you use the digraph option, you can represent unavailable characters in a C++
source program by using the following keywords:

Keyword Symbol

bitand &

and &&

bitor |

or ||

xor |

compl ˜

and_eq &=

or_eq |=

xor_eq |=

not !

not_eq !=

These keywords are only reserved in C++ programs that are compiled with the
DIGRAPH option. OS/390 C/C++ User’s Guide describes the DIGRAPH option.

Comments

Comments begin with the /* characters. They end with the */ characters, and can
span more than one line. You can put comments anywhere the language allows
white space.

Character Set

54 OS/390 V2R6.0 C/C++ Language Reference

|

|

The preprocessor replaces comments during preprocessing by a single space
character.

Multibyte characters can also be included within a comment.

Note: The /* or */ characters that are found in a character constant or string literal
do not start or end comments.

In the following program, line 6 is a comment:
1 #include <stdio.h>
2
3 int main(void)
4 {
5 printf("This program has a comment.\n");
6 /* printf("This is a comment line and will not print.\n"); */
7 return 0;
8 }

Because the comment on line 6 is equivalent to a space, the output of this program
is:
This program has a comment.

Because the comment delimiters are inside a string literal, line 5 in the following
program is not a comment.
1 #include <stdio.h>
2
3 int main(void)
4 {
5 printf("This program does not have \
6 /* NOT A COMMENT */ a comment.\n");
7 return 0;
8 }

The output of the program is:
This program does not have /* NOT A COMMENT */ a comment.

You cannot nest comments. Each comment ends at the first occurrence of */.

The following example highlights the comments:
1 «/* A program with nested comments. */¬
2
3 #include <stdio.h>
4
5 int main(void)
6 {
7 test_function();
8 return 0;
9 }
10
11 int test_function(void)
12 {
13 int number;
14 char letter;
15 «/*¬
16 «number = 55;¬
17 «letter = 'A';¬
18 «/* number = 44; */¬
19 */
20 return 999;
21 }

Comments

Chapter 4. Lexical Elements of C and C++ 55

In test_function, the compiler reads the /* in line 15 through the */ in line 18 as
a comment. It reads the comment at line 19 as C language code which causes
errors at that line. To avoid commenting over comments already in the source
code, you should use conditional compilation preprocessor directives to cause the
compiler to bypass sections of a program. For example, instead of commenting out
the above statements, change line 2 and lines 15 to 19 in the following way:
2 #define TEST_FUNCTION 0

...
16 #if TEST_FUNCTION
17 number = 55;
18 letter = 'A';
19 /*number = 44;*/
20 #endif /*TEST_FUNCTION */

“Chapter 10. Preprocessor Directives” on page 219 describes conditional
compilation preprocessor directives. You can include multibyte characters with a
comment.

C++ Comments

If the SSCOMM compiler option is in effect when you compile a C program, double
slashes (//) also specify the beginning of a comment. C++ permits double-slash
comments as part of the language definition.

A C++ comment can span more than one physical source line if it is joined into
one logical source line with line-continuation (\) characters. You can represent the
backslash character with a trigraph.

Identifiers

An arbitrary number of letters or digits comprise an identifier. Identifiers provide
names for the following language elements:
v Functions
v Data objects
v Labels
v Tags
v Parameters
v Macros
v Typedefs
v Structure and union members

An identifier has the form:

ÊÊ letter
_
$

» letter
digit
_
$

ÊÍ

Comments

56 OS/390 V2R6.0 C/C++ Language Reference

Special Characters in Identifiers

The first character in an identifier must be a letter or the underscore (_) character.
The compiler reserves identifiers beginning with an underscore, however, for
identifiers at file scope.

Identifiers that begin with two underscores or an underscore that is followed by a
capital letter, are reserved in all contexts.

Avoid creating identifiers that begin with an underscore for function names and
variable names.

At the extended and compatible language levels, C++ identifiers can contain the $
character. At the ANSI language level, identifiers can begin with the underscore but
not with a $ (dollar sign).

Although the names of system calls and library functions are not reserved words if
you do not include the appropriate headers, avoid using them as identifiers.
Duplication of a predefined name can lead to confusion for the maintainers of your
code and can cause errors at link time or run time. If you include a library in a
program, be aware of the function names in that library to avoid name
duplications. You should always include the appropriate headers when using
standard library functions.

Case Sensitivity in Identifiers

The compiler distinguishes between uppercase and lowercase letters in identifiers.
For example, PROFIT and profit represent different objects.

Note: If you do not use the OS/390 C compiler long name support, you may
receive an error message if you use either STOCKONHOLD and stockonhold as
external identifiers. For more information on long name support, see
“longname” on page 261. For more information on the binder and the
prelinker, see the OS/390 C/C++ User’s Guide. Also see “OS/390 C/C++
External Name Mapping” on page 58 and “OS/390 Long Name Support” on
page 59.

Significant Characters in Identifiers

In general, OS/390 C/C++ truncates external and internal identifiers after 1024
characters. However, the C compiler truncates external identifiers after 8 characters
if the NOLONGNAME compile-time option is in effect. Also, the C++ compiler truncates
external identifiers that do not have C++ linkage after 8 characters if the
NOLONGNAME compile-time option is in effect.

Keywords

Keywords are identifiers that are reserved by the language for special use. Although
you can use them for preprocessor macro names, it is poor programming style.
Only the exact spelling of keywords is reserved. For example, auto is reserved ,
but AUTO is not. The following table lists the keywords common to both the C and
C++ languages. The ANSI/ISO C language definition includes these keywords:

Identifiers

Chapter 4. Lexical Elements of C and C++ 57

|
|
|

|
|
|
|
|

Table 3. Keywords Common to C and C++
auto
break
case
char
const
continue
default
do

double
else
enum
extern
float
for
goto
if

int
long
register
return
short
signed
sizeof
static

struct
switch
typedef
union
unsigned
void
volatile
while

The C++ language also reserves the following keywords:

Table 4. C++ Keywords
asm
__cdecl
catch
class
delete

_Export
friend
inline
new
operator

private
protected
public
template
this

throw
try
virtual
wchar_t

Future versions of the C++ compiler may reserve the following keywords, so you
should avoid using them in your applications:

Table 5. C++ Keywords (Future)
bool
const_cast
dynamic_cast
explicit

false
mutable
namespace

reinterpret_cast
static_cast
true

typeid
typename
using

The C compiler reserves the __Packed keyword.

OS/390 C/C++ External Name Mapping

OS/390 C/C++ maps the names of variables or functions that have external
linkages to names that are used in the object module. When you compile an
OS/390 C/C++ program, refer to the following guidance for using names of
variables or functions with external linkage:
v Do not use names of the library functions for user-defined functions.
v Some functions in the C library and C runtime environment begin with two

underscores (_ _). Do not use an underscore as the first letter of an identifier.
v The compiler maps each underscore to an at sign (@) for external names without

C++ linkage, except when you compile a program with the LONGNAME
compile-time option. In that case, the underscore remains as an underscore.

v IBM-provided functions have names that begin with IBM, CEE, and PLI. Avoid
using these names as the OS/390 C/C++ compiler changes these names to
prevent conflicts between runtime functions and user-defined names. It changes
all static or extern variable names that begin with IBM, CEE, and PLI in your
source program to IB$, CE$, and PL$, respectively, in the object module. If you
are using interlanguage calls, avoid using these prefixes. The compiler of the
calling or called language may or may not change these prefixes in the same
manner as the OS/390 C/C++ compiler does. All of this is completely integrated
into the OS/390 C/C++ compiler, Debug Tool, and LE/370.
To call an external program or access an external variable that begins with IBM,
CEE, and PLI, use the #pragma map preprocessor directive. The following is an
example of #pragma map that forces an external name to be IBMENTRY.

#pragma map(ibmentry,"IBMENTRY")

Identifiers

58 OS/390 V2R6.0 C/C++ Language Reference

|

For more information on the #pragma map directive, see “map” on page 262.

OS/390 Long Name Support

If you do not specify the LONGNAME option when you compile your code with the C
compiler, the compiler maps an underscore to an at sign. It also truncates external
names to 8 characters and changes them to uppercase. The C++ compiler makes
the same changes to external identifiers that do not have C++ linkage if you do not
specify the LONGNAME option.

For example, consider if you compile the following C program and do not specify
the LONGNAME option:
int test_name[4] = { 4, 8, 9, 10 };
int test_namesum;

int main(void) {
int i;
test_namesum = 0;

for (i = 0; i < 4; i++)
test_namesum += test_name[i];

printf("sum is %d\n", test_namesum);
}

In the above example, the C compiler displays the following message:
ERROR CBC3244 ./sum.c:2 External name TEST_NAM cannot be redefined.

The compiler changes the external names test_namesum and test_name to
uppercase and truncates them to 8 characters. If you specify the CHECKOUT
compile-time option, the compiler will generate two informational messages to this
effect. Because the truncated names are now the same, the compiler produces an
error message and terminates the compilation.

If you compile the previous program with the LONGNAME compile-time option, the
compiler does not produce any warning or error messages. However, if you specify
the LONGNAME option, you must bind your program with the binder to produce a
program object in a PDSE. Otherwise you must use the prelinker.

The LONGNAME compile-time option supports mixed case, external names of up to
1024 characters for OS/390 C/C++ programs.

Object modules that are produced by compiling with LONGNAME have external
names that are mixed case and up to 1024 characters long. Object modules that are
produced by compiling with NOLONGNAME have uppercase external names that are
limited to a length of 8 characters.

To use external C names that are longer than 8 characters or external C++ names
without C++ linkage that are longer than 8 characters, you can, in your source
code:
v Use the #pragma map directive to map long external names in the source code to

8 or less characters in the object module.
#pragma map(verylongname,"sname")

v Use the long name support that is provided by the compile-time option
LONGNAME. To use the long name support, you must do the following:
– Use the LONGNAME compile-time option when compiling your program.

Identifiers

Chapter 4. Lexical Elements of C and C++ 59

|
|

|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|

– Use the binder to produce a program object in a PDSE, or use the prelinker.
For more information on the binder and on the prelinker, see the OS/390
C/C++ User’s Guide.

Constants

A constant does not change its value while the program is running. The value of
any constant must be in the range of non-negative representable values for its type.

C/C++ contains the following types of constants (also called literals):
v Integer
v Floating-Point
v Fixed-Point Decimal Constants (C Only)
v Character
v String
v Enumeration

“Enumerations” on page 90 discusses enumeration constants, which belong to the
lexical class of identifiers. For more information on data types, see “Type
Specifiers” on page 85.

Integer Constants

Integer constants represent integer values. You can represent integer constants in
decimal, hexadecimal, or octal values.

ÊÊ decimal_constant
octal_constant
hexadecimal_constant

l
l u

L U
L

u
U l

l
L

L

ÊÍ

Note that the suffixes in the above syntax diagram are not case-sensitive; that is, l
and L are the same to the compiler.

An integer constant without a suffix cannot have a value greater than ULONG_MAX.
An integer constant with a suffix that contains LL cannot have a value greater than
ULONGLONG_MAX. In these cases, the compiler will issue an out of range error message.
For information on the ULONG_MAX and the ULONGLONG_MAX macros, see the OS/390
C/C++ Run-Time Library Reference.

Data Types for Integer Constants

OS/390 C/C++ determines the data type of an integer constant by the form, value,
and suffix of the constant. The following lists the integer constants and shows the
possible data types for each constant. The compiler uses the smallest data type that
can represent the constant value to store the constant.

Identifiers

60 OS/390 V2R6.0 C/C++ Language Reference

|
|

|

|

Table 6. Data Types for Integer Constants

Constant Data Type

unsuffixed decimal int, long int, unsigned long int

unsuffixed octal int, unsigned int, long int, unsigned long
int

unsuffixed hexadecimal int, unsigned int, long int, unsigned long
int

suffixed by u or U unsigned int, unsigned long int

suffixed by l or L long int, unsigned long int

suffixed by both u or U, and l or L unsigned long int

suffixed by ll or LL long long int, unsigned long long int

suffixed by both u or U, and ll or LL unsigned long long int

A plus (+) or minus (-) symbol can precede an integer constant. OS/390 C/C++
treats it as a unary operator rather than as part of the constant value.

Decimal Constants

A decimal constant contains any of the digits 0 through 9. The first digit cannot be 0.

ÊÊ »digit_1_to_9 digit_0_to_9 ÊÍ

OS/390 C/C++ interprets integer constants that begin with the digit 0 as an octal
constant, rather than as a decimal constant.

The following are examples of decimal constants:
485976
-433132211
+20
5

Hexadecimal Constants

A hexadecimal constant begins with the 0 digit that is followed by either an x or X.
This is followed by any combination of the digits 0 through 9 and the letters a
through f or A through F. The letters A (or a) through F (or f) represent the values
10 through 15, respectively.

ÊÊ 0x
0X

» digit_0_to_f
digit_0_to_F

ÊÍ

The following are examples of hexadecimal constants:

Constants

Chapter 4. Lexical Elements of C and C++ 61

||

||

0x3b24
0XF96
0x21
0x3AA
0X29b
0X4bD

Octal Constants

An octal constant begins with the digit 0 and contains any of the digits 0 through 7.

ÊÊ 0 » digit_0_to_7 ÊÍ

The following are examples of octal constants:
0
0125
034673
03245

Floating-Point Constants

A floating-point constant consists of following parts:
v An integral part
v A decimal point
v A fractional part
v An exponent part
v An optional suffix

Both the integral and fractional parts are made up of decimal digits. You can omit
either the integral part or the fractional part, but not both. You can omit either the
decimal point or the exponent part, but not both.

ÊÊ » »

»

»

. digit
digit exponent

digit .
exponent

digit exponent

f
F
l
L

ÊÍ

Exponent:

e
E +

-

» digit

Constants

62 OS/390 V2R6.0 C/C++ Language Reference

The representation of a floating-point number on a system is unspecified. If a
floating-point constant is too large or too small, the result is undefined by the
language.

The suffix f or F indicates a type of float, and the suffix l or L indicates a type of
long double. If you do not specify a suffix, the floating-point constant has a type
double.

A plus (+) or minus (-) symbol can precede a floating-point constant. The compiler
treats it as a unary operator rather than as part of the constant value.

The following are examples of floating-point constants:

Floating-Point Constant Value

5.3876e4 53,876

4e-11 0.00000000004

1e+5 100000

7.321E-3 0.007321

3.2E+4 32000

0.5e-6 0.0000005

0.45 0.45

6.e10 60000000000

Fixed-Point Decimal Constants (C Only)

Fixed-point decimal constants are an IBM extension to ANSI/ISO C. This type is
available when you specify the LANGLVL(EXTENDED) compile-time option.

A fixed-point decimal constant has a numeric part and a suffix that specifies its
type. The numeric part can include a digit sequence that represents the
whole-number part, followed by a decimal point (.), followed by a digit sequence
that represents the fraction part. Either the integral part or the fractional part, or
both must be present.

A fixed-point constant has the form:

ÊÊ »

» »

»

»

. digit_0_to_9

digit_0_to_9 . digit_0_to_9

digit_0_to_9 .

digit_0_to_9

D
d

ÊÍ

Constants

Chapter 4. Lexical Elements of C and C++ 63

A fixed-point constant has two attributes:
Number of digits (size)
Number of decimal places (precision).

The suffix D or d indicates a fixed-point constant.

The following are examples of fixed-point decimal constants:

Fixed-Point Constant (size, precision)

1234567890123456D (16, 0)
12345678.12345678D (16, 8)
12345678.d (8, 0)
.1234567890d (10, 10)
12345.99d (7, 2)
000123.990d (9, 3)
0.00D (3, 2)

For more information on fixed-point decimal data types, see the OS/390 C/C++
Programming Guide.

Character Constants

A character constant contains a sequence of characters or escape sequences that are
enclosed in single quotation mark symbols.

ÊÊ »' character '
L escape_sequence

ÊÍ

At least one character or escape sequence must appear in the character constant.
The characters can be any from the source program character set, excluding the
single quotation mark, backslash, and new-line symbols. The prefix L indicates a
wide character constant. A character constant must appear on a single logical
source line.

The value of a character constant that contains a single character is the numeric
representation of the character in the character set that is used at compile time. The
value of a wide character constant containing a single multibyte character is the
code for that character, as defined by the mbtowc() function. If the character
constant contains more than one character, the last 4 bytes represent the character
constant. In C++, a character constant can contain only one character.

In C, a character constant has type int. In C++, a character constant has type char.

A wide character constant has type wchar_t, and is used to represent multibyte
characters. Multibyte characters represent characters that use more than one byte
for their encoding. Each multibyte character requires up to 4 bytes for its encoding.

You can represent the double quotation mark symbol by itself. You must, however,
use the backslash symbol that is followed by a single quotation mark symbol (\')
as an escape sequence to represent the single quotation mark symbol.

Constants

64 OS/390 V2R6.0 C/C++ Language Reference

You can represent the new-line character by the \n new-line escape sequence. You
can represent the backslash character by the \\ backslash escape sequence.

The following are examples of character constants:
'a' '\''
'0' '('
'x' '\n'
'7' '\117'
'C'

String Literals

A string constant or literal contains a sequence of characters or escape sequences
that are enclosed in double quotation mark symbols.

The maximum size of a string literal on OS/390 C/C++ is 32,765 bytes.

ÊÊ »" character "
L escape_sequence

ÊÍ

The prefix L indicates a wide-character string literal.

OS/390 C/C++ appends a null ('\0') character to each string. For a wide character
string (a string prefixed by the letter L), the value ';\0' of type wchar_t is
appended. By convention, programs recognize the end of a string by finding the
null character.

The compiler retains multiple spaces that are contained within a string constant.

To continue a string on the next line, you can use two or more consecutive strings.
The compiler concatenates adjacent string literals to produce a single string. You
cannot concatenate a wide string constant with a character string constant. For
example:
"hello " "there" /* is equivalent to "hello there" */
"hello " L"there" /* is not valid */
"hello" "there" /* is equivalent to "hellothere" */

Another way to continue a string is to use the line continuation sequence (\
symbol that is immediately followed by a new-line character). A carriage return
must immediately follow the backslash. In the following example, the string literal
second causes a compile-time error.
char *first = "This string continues onto the next\
line, where it ends."; /* compiles successfully. */

char *second = "The comment makes the \ /* continuation symbol */
invisible to the compiler."; /* compilation error. */

Characters in concatenated strings remain distinct. For example, the string ″\xab″
occupies 2 bytes of storage. The first byte contains the value X'ab', and the second
byte contains the value X'00' which is the trailing null character. The string
″\xa\xb″ occupies 3 bytes of storage that contains the values X'0a', X'0b', and X'00'.

Constants

Chapter 4. Lexical Elements of C and C++ 65

|

Following any concatenation, OS/390 C/C++ appends a '\0' of type char at the
end of each string. C++ library functions find the end of a string by scanning for
this value. For a wide-character string literal, OS/390 C/C++ appends a '\0' of
type wchar_t. For example:
char *first = "Hello "; /* stored as "Hello \0" */
char *second = "there"; /* stored as "there\0" */
char *third = "Hello " "there"; /* stored as "Hello there\0" */

A character string constant has type array of char and static storage duration. A
wide character string constant has type array of wchar_t and static storage duration.

You should be careful when modifying string literals because the resulting
behavior depends on whether your strings are stored in read/write static memory.
C strings are read/write by default. C++ strings are readonly by default.

Use the #pragma strings directive to change the default storage for string literals.
“strings” on page 273 describes the #pragma strings directive.

OS/390 C/C++ stores string literals in static storage which can be modified like
any other storage location. C/C++ has the concept of readonly and writeable strings.
This deals with how C/C++ stores multiple occurrences of strings, rather than
whether or not you can modify the strings.

When a string literal appears more than once in the program source, how that
string is stored depends on whether strings are readonly or writeable. If strings are
readonly, then OS/390 C/C++ allocates only one location for that string. All
occurrences will refer to that one location. If strings are writeable, then each
occurrence of the string will have a separate, distinct storage location.

By default, the C compiler will consider strings to be writeable. Note that for
readonly #pragma strings, the compiler will put literal strings in an area of storage
that is potentially read only. For writable #pragma strings, it will put them in an
area of storage that is always modifiable.

Use the escape sequence \n to represent a new-line character as part of the string.
Use the escape sequence \\ to represent a backslash character as part of the string.
You can represent the single quotation mark symbol by itself ', but you use the
escape sequence \" to represent the double quotation mark symbol.

For example:

CBC3X02K
/**
** This example illustrates escape sequences in string literals
**/

#include <iostream.h>
void main ()
{

char *s ="Hi there! \n";
cout << s;
char *p = "The backslash character \\.";
cout << p << endl;
char *q = "The double quotation mark \".\n";
cout << q ;

}

This program produces the following output:

Constants

66 OS/390 V2R6.0 C/C++ Language Reference

Hi there!
The backslash character \.
The double quotation mark ".

Escape Sequences

You can represent any member of the execution character set by an escape sequence.
You can use escape sequences to put unprintable characters in character and string
literals. For example, you can use escape sequences to put such characters as tab,
carriage return, and backspace into an output stream.

ÊÊ \ escape_sequence_character
x hexadecimal_digits
octal_digits

ÊÍ

An escape sequence contains a backslash (\) symbol followed by one of the escape
sequence characters or an octal or hexadecimal number. A hexadecimal escape
sequence contains an x followed by one or more hexadecimal digits (0-9, A-F, a-f).
An octal escape sequence uses up to three octal digits (0-7). The value of the
hexadecimal or octal number specifies the value of the desired character or wide
character.

Note: The line continuation sequence (\ followed by a new-line character) is not
an escape sequence. You can use it in character strings to indicate that the
current line continues on the next line.

The escape sequences and the characters they represent are:

Escape Sequence Character Represented

\a Alert (bell, alarm)

\b Backspace

\f Form feed (new page)

\n New-line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\' Single quotation mark

\" Double quotation mark

\? Question mark

\\ Backslash

The value of an escape sequence represents the code point of the code page you
use at run time. OS/390 C/C++ translates escape sequences during preprocessing.
For example, on a system that uses the ASCII character codes, the value of the
escape sequence \x56 is the letter V. On a system that uses EBCDIC character
codes, the value of the escape sequence \xE5 is the letter V.

Use escape sequences only in character constants or in string literals. OS/390
C/C++ issues a message only if it does not recognize an escape sequence.

Constants

Chapter 4. Lexical Elements of C and C++ 67

In string and character sequences, when you want the backslash to represent itself
(rather than the beginning of an escape sequence), you must use a \\ backslash
escape sequence. For example:

cout << "The escape sequence \\n." << endl;

This statement results in the following output:
The escape sequence \n.

The following program prints the character 'a' four times to standard output, and
then prints a new line:

CBC3X02L
/** CBC3X02L
** This example illustrates escape sequences
**/

#include <iostream.h>
void main()
{

char a,b,c,d,e;
a='a';
b=129; // EBCDIC integer value
c='\201'; // EBCDIC octal value
d='\x81'; // EBCDIC hexadecimal value
e='\n';
cout << a << b << c << d << e;

}

Constants

68 OS/390 V2R6.0 C/C++ Language Reference

Chapter 5. Declarations

A declaration establishes the names and characteristics of data objects and functions
used in a program. A definition allocates storage for data objects or specifies the
body for a function. When you define a type, OS/390 C/C++ does not allocate
storage. This chapter discusses the following topics on declarations:
v “Declarations Overview”
v “Block Scope Data Declarations” on page 70
v “File Scope Data Declarations” on page 71
v “Objects” on page 72
v “Storage Class Specifiers” on page 73
v “typedef” on page 84
v “Type Specifiers” on page 85
v “Declarators” on page 119
v “Initializers” on page 127
v “C/C++ Data Mapping” on page 129
v “C++ Function Specifiers” on page 129
v “C++ References” on page 129

Declarations Overview

Declarations determine the following properties of data objects and their
identifiers:
v Scope, which describes the visibility of an identifier in a block or source file. For

a complete description of scope, see “Scope in C” on page 35.
v Linkage, which describes the association between two identical identifiers. See

“Program Linkage” on page 37 for more information.
v Storage duration, which describes when the system allocates and frees storage

for a data object. See “Storage Duration” on page 39 for more information.
v Type, which describes the kind of data the object is to represent.

The lexical order of elements when you declare a data object is as follows:
v Storage duration and linkage specification, that are described in “Storage Class

Specifiers” on page 73
v Type specification, described in “Type Specifiers” on page 85
v Declarators, which introduce identifiers and make use of type qualifiers and

storage qualifiers, described in “Declarators” on page 119
v Initializers, which initialize storage with initial values, described in “Initializers”

on page 127.

“Chapter 8. Functions” on page 173 describes function declarations.

All data declarations have the form:

© Copyright IBM Corp. 1996, 1998 69

ÊÊ » »

,

declarator ;
storage_class_specifier initializer
type_specifier
type_qualifier

ÊÍ

C++ Notes:

1. One of the fundamental differences between C++ and C is the placement of
variable declarations. Although you can declare variables in the same way, in
C++, you can put variable declarations anywhere in the program. In C,
declarations must come before any statements in a block.
In the following C++ example, the variable d is declared in the middle of the
main() function:
#include <iostream.h>
void main()
{

int a, b;
cout << "Please enter two integers" << endl;
cin >> a >> b;
int d = a + b;
cout << "Here is the sum of your two integers:" << d << endl;

}

2. A given function, object, or type can have only one definition. It can have more
than one declaration as long as all of the declarations match. If you never call a
function and never take its address, then you do not have to define it. If you
declare an object, but never use it, or use it only as the operand of sizeof, you
do not have to define it. You can declare a given class or enumerator more than
once.

The following table shows examples of declarations and definitions. The identifiers
that are declared in the first column do not allocate storage; they refer to a
corresponding definition. In the case of a function, the corresponding definition is
the code or body of the function. The identifiers that are declared in the second
column allocate storage; they are both declarations and definitions.

Table 7. Examples of Declarations and Definitions

Declarations Declarations and Definitions

extern double pi; double pi = 3.14159265;

float square(float x); float square(float x) { return x*x; }

struct payroll; struct payroll {
char *name;
float salary;

} employee;

Block Scope Data Declarations

You can only put a block scope data declaration at the beginning of a block. It
describes a variable and makes that variable accessible to the current block. All
block scope declarations that do not have the extern storage class specifier are
definitions and allocate storage for that object.

You can declare a data object with block scope with any one of the following
storage class specifiers:

Declarations Overview

70 OS/390 V2R6.0 C/C++ Language Reference

v auto
v register
v static
v extern

If you do not specify a storage class specifier in a block-scope data declaration,
OS/390 C/C++ uses the default storage class specifier auto. If you specify a
storage class specifier, you can omit the type specifier. If you omit the type
specifier, all variables in that declaration receive type int.

Initialization

You cannot initialize a variable that is declared in a block scope data declaration
that has the extern storage class specifier.

The types of variables you can initialize and the values that uninitialized variables
receive vary for that storage class specifier. See “Storage Class Specifiers” on
page 73 for details on the different storage classes.

Storage

The duration and type of storage vary for each storage class specifier.

Declarations with the auto or register storage class specifier result in automatic
storage duration. Declarations with the extern or static storage class specifier
result in static storage duration.

Related Information
v “Declarators” on page 119

v “Storage Class Specifiers” on page 73

v “auto Storage Class Specifier” on page 73

v “extern Storage Class Specifier” on page 75

v “register Storage Class Specifier” on page 81

v “static Storage Class Specifier” on page 82

v “Initializers” on page 127

v “Type Specifiers” on page 85

File Scope Data Declarations

A file scope data declaration appears outside any function definition. It describes a
variable and makes that variable accessible to all functions that are in the same file
and whose definitions appear after the declaration.

A file scope data definition is a data declaration at file scope that also causes OS/390
C/C++ to allocate storage for that variable. All objects whose identifiers are
declared at file scope have static storage duration.

Use a file scope data declaration to declare variables that you want to have
external linkage.

Block Scope Data Declarations

Chapter 5. Declarations 71

The only storage class specifiers you can put in a file scope data declaration are
static and extern. All file scope variables that are defined with static storage
class have internal linkage; other file scope variables have external linkage. If you
specify the storage class, you can omit the type specifier. If you omit the type
specifier, all variables that are defined in that declaration receive the type int.

Initialization

You can initialize any object with file scope. If you do not initialize a file scope
variable, its initial value is zero of the appropriate type. If you do initialize it, a
constant expression must describe the initializer. Otherwise, it must reduce to the
address of a previously declared variable at file scope, possibly added to a constant
expression. Initialization of all variables at file scope takes place before the main
function begins running.

Storage

All objects with file scope data declarations have static storage duration. OS/390
C/C++ allocates storage at run time which it frees when the program stops
running.

Related Information
v “extern Storage Class Specifier” on page 75

v “static Storage Class Specifier” on page 82

v “Initializers” on page 127

v “Type Specifiers” on page 85

Objects

An object is a region of storage that contains a value or group of values. You can
access each value by using its identifier or by using a complex expression that
refers to the object. In addition, each object has a unique data type. OS/390 C/C++
establishes both the identifier and data type of an object in the object declaration.

The data type of an object determines the initial storage allocation for that object
and the interpretation of the values during subsequent access. You can also use it
in any type-checking operations.

C++ has built-in, or standard, data types, and user-defined data types. Standard
data types include signed and unsigned integers, floating-point numbers, and
characters. User-defined types include enumerations, structures, unions, and
classes.

In C++ code, you reference objects by variables or references. A variable also
represents the location in storage that contains the value of an object.

You commonly refer to an instance of a class type as a class object. The individual
data members of an instantiated class object are also called objects. The set of all
member objects comprises a class object.

File Scope Data Declarations

72 OS/390 V2R6.0 C/C++ Language Reference

Storage Class Specifiers

The storage class specifier you use within the declaration determines whether:
v The object has internal, external, or no linkage.
v The object is stored in memory or in a register, if available.
v The object receives the default initial value 0 or an indeterminate default initial

value.
v The object is referenced throughout a program or only within the function,

block, or source file where you have defined the variable.
v The storage duration for the object is static or automatic. For static, OS/390

C/C++ maintains storage throughout the program run time. For automatic,
OS/390 C/C++ maintains storage only during the execution of the block where
the object is defined.

For a function, the storage class specifier determines the linkage of the function.

Declarations with the auto or register storage-class specifier result in automatic
storage duration. Those with the extern or static storage-class specifier result in
static storage.

Most local declarations that do not include the extern storage-class specifier
allocate storage; however, function declarations and type declarations do not
allocate storage.

The only storage-class specifiers allowed in a global or file scope declaration are
static and extern.

This section describes the following storage class specifiers:
v auto
v extern
v register
v static

auto Storage Class Specifier

The auto storage class specifier lets you define a variable with automatic storage.
OS/390 C/C++ restricts its use and storage to the current or contained block. The
storage class keyword auto is optional in a data declaration. You cannot use it in a
parameter declaration. You must declare a variable that has the auto storage class
specifier within a block. You cannot use it for file scope declarations.

Automatic variables require storage only while the function in which they are
declared is active. Consequently, defining variables with the auto storage class can
decrease the amount of memory that is required to run a program. However,
having many large automatic objects may cause you to run out of stack space.

Declaring variables with the auto storage class can also make code easier to
maintain. A change to an auto variable in one function never affects another
function (unless you pass it as an argument).

Initialization

You can initialize any auto variable except parameters. If you do not initialize an
automatic object, its value is indeterminate. If you provide an initial value, the

Storage Class Specifiers

Chapter 5. Declarations 73

expression that represents the initial value can be any valid C or C++ expression.
For structure and union members, the initial value must be a valid constant
expression if you use an initializer list. Each time an objects definition (auto or
register) is encountered during program execution, its initialization, if any, is done.

Note: If you use the goto statement to jump into the middle of a block, automatic
variables defined before the label that is jumped to are not initialized.

Storage

Objects with the auto storage class specifier have automatic storage duration. Each
time a block is entered, storage for auto objects that are defined in that block is
made available. When the block is exited, the objects are no longer available for
use.

If you define an auto object within a function that you invoke recursively, OS/390
C/C++ allocates memory for the object at each invocation of the block.

Examples of auto Storage Class

The following program shows the scope and initialization of auto variables. The
function main defines two variables, each named auto_var. The first definition
occurs on line 10. The second definition occurs in a nested block on line 13. While
the nested block is running, only the auto_var that is created by the second
definition is available. During the rest of the program, only the auto_var that is
created by the first definition is available.

CBC3RAAF:
1 /**
2 ** Example illustrating the use of auto variables **
3 **/
4
5 #include <stdio.h>
6
7 int main(void)
8 {
9 void call_func(int passed_var);

10 auto int auto_var = 1; /* first definition of auto_var */
11
12 {
13 int auto_var = 2; /* second definition of auto_var */
14 printf("inner auto_var = %d\n", auto_var);
15 }
16 call_func(auto_var);
17 printf("outer auto_var = %d\n", auto_var);
18 return 0;
19 }
20
21 void call_func(int passed_var)
22 {
23 printf("passed_var = %d\n", passed_var);
24 passed_var = 3;
25 printf("passed_var = %d\n", passed_var);
26 }

This program produces the following output:
inner auto_var = 2
passed_var = 1
passed_var = 3
outer auto_var = 1

Storage Class Specifiers

74 OS/390 V2R6.0 C/C++ Language Reference

The following example uses an array that has the storage class auto to pass a
character string to the function sort. The function sort receives the address of the
character string, rather than the contents of the array. The address enables sort to
change the values of the elements in the array.

CBC3RAAG:
/***
** Sorted string program -- this example passes an array name **
** to a function **
***/

#include <stdio.h>
#include <string.h>

int main(void)
{

void sort(char *array, int n);
char string[75];
int length;

printf("Enter letters:\n");
scanf("%74s", string);
length = strlen(string);
sort(string,length);
printf("The sorted string is: %s\n", string);

return(0);
}

void sort(char *array, int n)
{

int gap, i, j, temp;

for (gap = n / 2; gap > 0; gap /= 2)
for (i = gap; i < n; i++)

for (j = i - gap; j >= 0 && array[j] > array[j + gap];
j -= gap)

{
temp = array[j];
array[j] = array[j + gap];
array[j + gap] = temp;

}
}

When you run the program, interaction with the program could produce:

Output Enter letters:

Input zyfab

Output The sorted string is: abfyz

Related Information
v “Block Scope Data Declarations” on page 70

v “register Storage Class Specifier” on page 81

v “Address (&)” on page 144

v “Function Declarator” on page 180

extern Storage Class Specifier

The extern storage class specifier lets you declare objects and functions that
several source files can use. All object declarations that occur outside a function

Storage Class Specifiers

Chapter 5. Declarations 75

and that do not contain a storage class specifier declare identifiers with external
linkage. All function definitions that do not specify a storage class define functions
with external linkage.

You can distinguish an extern declaration from an extern definition by the
presence of the keyword extern and the absence of an initial value. If the keyword
extern is absent or if there is an initial value, the declaration is also a definition;
otherwise, it is just a declaration. An extern definition can appear only at file
scope.

An extern variable, function definition, or declaration also makes the described
variable or function usable by the succeeding part of the current source file. This
declaration does not replace the definition. The declaration describes the variable
that is externally defined.

If a declaration for an identifier already exists at file scope, any extern declaration
of the same identifier that is found within a block refers to that same object. If no
other declaration for the identifier exists at file scope, the identifier has external
linkage.

An extern declaration can appear outside a function or at the beginning of a block.
If the declaration describes a function or appears outside a function and describes
an object with external linkage, the keyword extern is optional.

If you do not specify a storage class specifier, the function has external linkage. It
is an error to include a declaration for the same function with the storage class
specifier static before the declaration with no storage class specifier because of the
incompatible declarations. Including the extern storage class specifier on the
original declaration is valid, and the function has internal linkage.

In OS/390 C++, you can declare functions with the following:

Linkage By specifying

C extern "C"

C++ extern "C++

OS extern "OS"

PLI extern "PLI"

builtin extern "builtin"

COBOL extern "COBOL"

FORTRAN extern "FORTRAN"

There are some limitations to using extern to specify non-C++ linkage for a
function. While the C++ language supports overloading, other languages do not.
The implications of this are:
v You cannot overload a function that has non-C++ linkage:

extern "FORTRAN"{int func(int);}
extern "FORTRAN"{int func(int,int);} // not allowed-compiler

// will issue an error message

v You cannot declare a function with a linkage specification if you have already
used the same function name in a declaration without a linkage specification:
int func(int);
extern "FORTRAN"{int func(int,int);} // not allowed-compiler

// will issue an error message

Storage Class Specifiers

76 OS/390 V2R6.0 C/C++ Language Reference

v You can overload a function as long as it has C++ (default) linkage. Therefore,
OS/390 C/C++ allows the following series of statements:
extern "FORTRAN"{int func(int,int);}
int func(int); // function with C++ linkage
int func(int,int); // overloaded function with C++ linkage

v You cannot redefine a function that has a linkage specification:
extern func(int);
extern "FORTRAN"{int func(int,int);} // not allowed-compiler

// will issue an error message

For more information, see “ Using Linkage Specifications in C++ ” in the OS/390
C/C++ Programming Guide, or refer to OS/390 Language Environment Writing
Interlanguage Applications.

The following fragments illustrate the use of extern "C":
extern "C" int cf(); //declare function cf to have C linkage

extern "C" int (*c_fp)(); //declare a pointer to a function,
// called c_fp, which has C linkage

extern "C" {
typedef void(*cfp_T)(); //create a type pointer to function with C

// linkage
void cfn(); //create a function with C linkage
void (*cfp)(); //create a pointer to a function, with C

// linkage
}

Linkage compatibility affects all C library functions that accept a user function
pointer as a parameter. Use the extern "C" linkage specification to ensure that the
declared linkages are the same. An example of these library functions is qsort();
refer to the OS/390 C/C++ Run-Time Library Reference for more information.

The following example fragment uses extern "C" with qsort().
#include <stdlib.h>

// function to compare table elements
extern "C" int TableCmp(const void *, const void *); // C linkage
extern void * GenTable(); // C++ linkage

void main() {
void *table;

table = GenTable(); // generate table
qsort(table, 100, 15, TableCmp); // sort table, using TableCmp

// and C library routine qsort();
}

C++ Note: In C++, an extern declaration cannot appear in class scope.

Initialization

You can initialize any object with the extern storage class specifier at file scope.
You can initialize an extern object with an initializer that must do either of the
following:
v Appear as part of the definition and the initial value must be described by a

constant expression.
v Reduce to the address of a previously declared object with static storage

duration. You can modify this object by adding or subtracting an integral
constant expression.

Storage Class Specifiers

Chapter 5. Declarations 77

If you do not explicitly initialize an extern variable, its initial value is zero of the
appropriate type. Initialization of an extern object is completed by the time the
program starts running.

Storage

extern objects have static storage duration. OS/390 C/C++ allocates memory for
extern objects before the main function begins running. When the program finishes
running, OS/390 C/C++ frees the storage.

Controlling External Static

Certain program variables with the extern storage class may be constant and never
be updated. If this is the case, it is not necessary to have a copy of these variables
made for every user of the program. In addition, there may be a need to share
constant program variables between C and another language.

Examples of extern Storage Class

The following program fragment shows how to force an external program variable
to be part of a program that includes executable code and constant data. It uses the
#pragma variable(varname, NORENT) directive:
#pragma variable(rates, NORENT)
extern float rates[5] = { 3.2, 83.3, 13.4, 3.6, 5.0 };

extern float totals[5];

int main(void) {...

}

In this example, you compile the source file with the RENT option. The executable
code includes the variable rates as you specify the #pragma variable(rates,
NORENT). The writable static includes the variable totals. Each user has a personal
copy of the array totals, and all users of the program share the array rates. This
sharing may yield a performance and storage benefit.

The #pragma variable(varname, NORENT) does not apply to, and has no effect on,
program variables with the static storage class. OS/390 C/C++ always includes
program variables with the static storage class with the writable static. An
informational message appears if you write to a nonreentrant variable when you
specify the C CHECKOUT compile-time option.

When you specify #pragma variable(varname, NORENT) for a variable, ensure that
your program never writes to this variable. Program exceptions or unpredictable
program behavior may result should this be the case. In addition, you must
include #pragma variable(varname, NORENT) in every source file where you
reference or define the variable.

For more information on the RENT and NORENT compile-time options, refer to the
OS/390 C/C++ User’s Guide.

The following program shows the linkage of extern objects and functions. It
declares the extern object total on line 12 of File 1 and on line 11 of File 2. The
definition of the external object total appears in File 3. The example defines
extern function tally in File 2. The function tally can be in the same file as main
or in a different file. Because main precedes these definitions and main uses both

Storage Class Specifiers

78 OS/390 V2R6.0 C/C++ Language Reference

total and tally, main declares tally on line 11 and total on line 12.

CBC3RAH1 (File 1):
1 /**
2 ** The program receives the price of an item, adds the **
3 ** tax, and prints the total cost of the item. **
5 **/
6
7 #include <stdio.h>
8
9 int main(void)

10 { /* begin main */
11 void tally(void); /* declaration of function tally */
12 extern float total; /* first declaration of total */
13
14 printf("Enter the purchase amount: \n");
15 tally();
16 printf("\nWith tax, the total is: %.2f\n", total);
17
18 return(0);
19 } /* end main */

CBC3RAH2 (File 2):
1 /**
2 ** This file defines the function tally **
3 **/
4 #include <stdio.h>
6 #define tax_rate 0.05
7
8 void tally(void)
9 { /* begin tally */

10 float tax;
11 extern float total; /* second declaration of total */
12
13 scanf("%f", &total);
14 tax = tax_rate * total;
15 total += tax;
16 } /* end tally */

CBC3RAH3 (File 3):
1 float total;

When you run this program and interaction with it, it could produce the following:

Output Enter the purchase amount:

Input 99.95

Output With tax, the total is: 104.95

The following program shows extern variables that are used by two functions.
Both functions main and sort can access and change the values of the extern
variables string and length. Consequently, main does not have to pass parameters
to sort.

Storage Class Specifiers

Chapter 5. Declarations 79

CBC3RAAI:
/***
** Sorted string program -- this example shows extern **
** used by two functions **
***/

#include <stdio.h>
#include <string.h>

char string[75];
int length;

int main(void)
{

void sort(void);

printf("Enter letters:\n");
scanf("%s", string);
length = strlen(string);
sort();
printf("The sorted string is: %s\n", string);

return(0);
}
void sort(void)
{

int gap, i, j, temp;

for (gap = length / 2; gap > 0; gap /= 2)
for (i = gap; i < length; i++)

for (j = i - gap;
j >= 0 && string[j] > string[j + gap];
j -= gap)

{
temp = string[j];
string[j] = string[j + gap];
string[j + gap] = temp;

}
}

When you run this program, interacting with it could produce the following:

Output Enter letters:

Input zyfab

Output The sorted string is: abfyz

The following code fragment shows a static variable var1, which gets defined at
file scope and then declared with the storage class specifier extern. The second
declaration refers to the first definition of var1, and so it has internal linkage.
static int var1;...

extern int var1;

Related Information
v “File Scope Data Declarations” on page 71

v “Constant Expressions” on page 138

v “Function Definitions” on page 178

v “Function Declarator” on page 180

Storage Class Specifiers

80 OS/390 V2R6.0 C/C++ Language Reference

register Storage Class Specifier

The register storage class specifier marks heavily used objects (such as loop
control variables). It indicates that the compiler should try to minimize access time
to the object by placing its value in a machine register, if possible. Because of the
limited size and number of registers available on OS/390 systems, few variables
can actually be put in registers. The object is treated as having the storage class
specifier auto.

OS/390 C/C++ requires the register storage class specifier in a block-scope data
definition. It also requires it in a parameter declaration that describes an object that
has the register storage class. You must define an object that has the register
storage class specifier within a block. Or, you must declare it as a parameter to a
function.

Initialization

You can initialize any register object except parameters. If you do not initialize an
automatic object, its value is indeterminate. If you provide an initial value, the
expression that represents the initial value can be any valid C or C++ expression.
For structure and union members, the initial value must be a valid constant
expression if you use an initializer list. The program then sets the object to that
initial value each time it enters the program block that contains the object’s
definition.

Storage

Objects with the register storage class specifier have automatic storage duration.
Each time a block is entered, storage for register objects that are defined in that
block is made available. When the block is exited, the objects are no longer
available for use.

If a register object is defined within a function that you invoke recursively,
OS/390 C/C++ allocates the memory for the variable at each invocation of the
block.

Restrictions

You cannot use the register storage class specifier in data scope declarations.

C++ Notes: In C programs, you cannot apply the address (&) operator to register
variables. However, C++ lets you take the address of an object with
the register storage class. For example:

register i;
int* b = &i; // valid in C++, but not in C

Related Information
v “Block Scope Data Declarations” on page 70

v “auto Storage Class Specifier” on page 73

v “Address (&)” on page 144

v “Parameter Declaration List Syntax” on page 181

Storage Class Specifiers

Chapter 5. Declarations 81

static Storage Class Specifier

The static storage class specifier lets you define objects with static storage
duration and internal linkage, or to define functions with internal linkage.

You can define an object that has the static storage class specifier within a block
or at file scope. If the definition occurs within a block, the object has no linkage. If
the definition occurs at file scope, the object has internal linkage.

Initialization

You can initialize any static object with a constant expression or an expression
that reduces to the address of a previously declared extern or static object,
possibly modified by a constant expression. If you do not provide an initial value,
the object receives the value of zero of the appropriate type.

Storage

Objects with the static storage class specifier have static storage duration. OS/390
C/C++ allocates the storage for a static variable when the program begins
running. When the program finishes running, it frees the memory.

Usage

You can use static variables when you need an object that retains its value from
one execution of a block to the next execution of that block. Using the static
storage class specifier keeps the system from reinitializing the object each time the
block where the object is defined runs.

If a local static variable is a class object with constructors and destructors,
OS/390 C++ constructs the object when control passes through its definition for
the first time. If a constructor creates a local class object, OS/390 C++ calls its
destructor immediately before, or as part of, the calls of the atexit() function.

Restrictions

You cannot declare a static function at block scope.

Examples of Static Storage Class

The following program shows the linkage of static identifiers at file scope. This
program uses two different external static identifiers named stat_var. The first
definition occurs in file 1. The second definition occurs in file 2. The main()
function references the object defined in file 1. The var_print() function
references the object defined in file 2:

Storage Class Specifiers

82 OS/390 V2R6.0 C/C++ Language Reference

|
|
|
|

CBC3RAJ1 (File 1):
/**
** Program to illustrate file scope static variables **
**/

#include <stdio.h>

extern void var_print(void);
static stat_var = 1;

int main(void)
{

printf("file1 stat_var = %d\n", stat_var);
var_print();
printf("FILE1 stat_var = %d\n", stat_var);

return(0);
}

CBC3RAJ2 (File 2):
/**
** This file contains the second definition of stat_var **
**/

#include <stdio.h>

static int stat_var = 2;

void var_print(void)
{

printf("file2 stat_var = %d\n", stat_var);
}

This program produces the following output:
file1 stat_var = 1
file2 stat_var = 2
FILE1 stat_var = 1

The following program shows the linkage of static identifiers with block scope.
The function test() defines the static variable stat_var. This variable retains its
storage throughout the program, even though test() is the only function that can
refer to stat_var.

CBC3RAAK:
/**
** Program to illustrate block scope static variables **
**/

#include <stdio.h>

int main(void)
{

void test(void);
int counter;
for (counter = 1; counter <= 4; ++counter)

test();

return(0);
}

void test(void)
{

static int stat_var = 0;
auto int auto_var = 0;

Storage Class Specifiers

Chapter 5. Declarations 83

stat_var++;
auto_var++;
printf("stat_var = %d auto_var = %d\n", stat_var, auto_var);

}

This program produces the following output:
stat_var = 1 auto_var = 1
stat_var = 2 auto_var = 1
stat_var = 3 auto_var = 1
stat_var = 4 auto_var = 1

Related Information
v “Block Scope Data Declarations” on page 70

v “File Scope Data Declarations” on page 71

v “Function Definitions” on page 178

v “Function Declarator” on page 180

typedef

A typedef declaration lets you define your own identifiers which you can use in
place of type specifiers such as int, float, and double. A typedef declaration does
not reserve storage. The names you define using typedef are not new data types.
They are synonyms for the data types or combinations of data types they
represent.

The syntax of a typedef declaration is:

ÊÊ typedef type_specifier identifier ; ÊÍ

When an object is defined using a typedef identifier, the properties of the defined
object are exactly the same as if the object were defined by explicitly listing the
data type associated with the identifier.

C++ Note: A C++ class defined in a typedef without being named is given a
dummy name and the typedef name for linkage. Such a class cannot
have constructors or destructors. For example:
typedef class {

Trees();
} Trees;

Here the function Trees() is an ordinary member function of a class
whose type name is unspecified. In the above example, Trees is an
alias for the unnamed class, not the class type name itself.
Consequently, Trees() cannot be a constructor for that class.

Examples of typedef Declarations

The following statements declare LENGTH as a synonym for int and then use this
typedef to declare length, width, and height as integral variables:
typedef int LENGTH;
LENGTH length, width, height;

Storage Class Specifiers

84 OS/390 V2R6.0 C/C++ Language Reference

The following declarations are equivalent to the above declaration:
int length, width, height;

Similarly, you can use typedef to define a class type (structure, union, or C++
class). For example:
typedef struct {

int scruples;
int drams;
int grains;

} WEIGHT;

You can then use the structure WEIGHT in the following declarations:
WEIGHT chicken, cow, horse, whale;

Related Information
v “Characters” on page 86

v “Floating-Point Variables” on page 87

v “Integer Variables” on page 89

v “Enumerations” on page 90

v “Pointers” on page 94

v “void Type” on page 99

v “Arrays” on page 100

v “Structures” on page 106

v “Unions” on page 113

v “Chapter 11. C++ Classes” on page 281

v “Constructors and Destructors Overview” on page 325

Type Specifiers

Type specifiers indicate the type of the object or function you are declaring. The
fundamental data types are:
v Characters
v Floating-Point Numbers
v Integers
v Enumerations
v Void

From these types, you can derive:
v Pointers
v Arrays
v Structures
v Unions
v Functions

The integral types are char, wchar_t(C++ only), and int of all sizes. Floating-point
numbers can have types float, double, or long double. You can collectively refer
to integral and floating-point types as arithmetic types. In C++ only, you can also
derive the following:
v References

Storage Class Specifiers

Chapter 5. Declarations 85

v Classes
v Pointers to Members

In C++, enumerations are not an integral type, but they can be subject to integral
promotion, as described in “Integral Promotions” on page 167.

You can give names to both fundamental and derived types by using the typedef
specifier.

Characters

There are three character data types: char, signed char, and unsigned char. These
three data types are not compatible. If you specify LANGLVL(ANSI), the C compiler
recognizes char, unsigned char, and signed char as distinct types. They are always
distinct types in C++.

The character data types provide enough storage to hold any member of the
character set you program uses at run time. The amount of storage that is allocated
for a char is implementation-dependent. The OS/390 C/C++ compiler represents a
character by 8 bits, as defined in the CHAR_BIT macro in the <limits.h> header.

The default character type behaves like an unsigned char. To change this default,
use #pragma chars, described in “chars” on page 247.

If it does not matter whether a char data object is signed or unsigned, you can
declare the object as having the data type char. Otherwise, explicitly declare signed
char or unsigned char. When a char (signed or unsigned) is widened to an int, its
value is preserved.

To declare a data object that has a character type, use a char type specifier. The
char specifier has the form:

ÊÊ
unsigned
signed

char ÊÍ

The declarator for a simple character declaration is an identifier. You can initialize
a simple character with a character constant or with an expression that evaluates to
an integer.

Use the char specifier in variable definitions to define such variables as follows:
arrays of characters, pointers to characters, and arrays of pointers to characters.
Use signed char or unsigned char to declare numeric variables that occupy a
single byte.

C++ Note: For the purposes of distinguishing overloaded functions, a C++ char is
a distinct type from signed char and unsigned char.

Examples of Character Data Types

The following example defines the identifier end_of_string as a constant object of
type char. It has the initial value \0 (the null character):
const char end_of_string = '\0';

Type Specifiers

86 OS/390 V2R6.0 C/C++ Language Reference

The following example defines the unsigned char variable switches as having the
initial value 3:
unsigned char switches = 3;

The following example defines string_pointer as a pointer to a character:
char *string_pointer;

The following example defines name as a pointer to a character. After initialization,
name points to the first letter in the character string "Johnny":
char *name = "Johnny";

The following example defines a one-dimensional array of pointers to characters.
The array has three elements. Initially they are a pointer to the string "Venus", a
pointer to "Jupiter", and a pointer to "Saturn":
static char *planets[] = { "Venus", "Jupiter",
"Saturn" };

Related Information
v “Character Constants” on page 64

v “Pointers” on page 94

v “Arrays” on page 100

v “Assignment Expressions” on page 162

Floating-Point Variables

There are three types of floating-point variables: float, double, and long double.

The amount of storage that is allocated for a float, a double, or a long double is
implementation-dependent. On all compilers, the storage size of a float variable is
less than or equal to the storage size of a double variable.

To declare a data object that has a floating-point type, use the float specifier.

The float specifier has the form:

ÊÊ float
double
long double

ÊÍ

The declarator for a simple floating-point declaration is an identifier. Initialize a
simple floating-point variable with a float constant or with a variable or expression
that evaluates to an integer or floating-point number. The storage class of a
variable determines how you initialize the variable.

Note that OS/390 C/C++ supports IEEE binary floating-point variables as well as
IBM S/390 hexadecimal floating-point variables. For details, see “Floating-Point”
on page 413, or the section on the FLOAT option in the OS/390 C/C++ User’s Guide.

Type Specifiers

Chapter 5. Declarations 87

|
|
|

Examples of Floating-Point Data Types

The following example defines the identifier pi as an object of type double:
double pi;

The following example defines the float variable real_number with the initial
value 100.55:
static float real_number = 100.55f;

The following example defines the float variable float_var with the initial value
0.0143:
float float_var = 1.43e-2f;

The following example declares the long double variable maximum:
extern long double maximum;

The following example defines the array table with 20 elements of type double:
double table[20];

Related Information
v “Floating-Point Constants” on page 62

v “Assignment Expressions” on page 162

Fixed-Point Decimal Data Types (C Only)

Use the type specifier decimal(n,p) to declare fixed-point decimal variables and to
initialize them with fixed-point decimal constants. For this type specifier, decimal is
a macro that is defined in <decimal.h>. Remember to include <decimal.h> if you
use fixed-point decimals in your program.

Fixed-point decimal types are classified as arithmetic types. The decimal(n,p) type
specifier designates a decimal number with n digits, and p decimal places. n is the
total number of digits for the integral and decimal parts combined. p is the number
of digits for the decimal part only. For example, decimal(5,2) represents a number,
such as, 123.45 where n=5 and p=2. The value for p is optional. If you leave it out,
the default value is 0.

In the type specifier, n and p have a range of allowed values according to the
following rules:
p <= n
1 <= n <= DEC_DIG
0 <= p <= DEC_PRECISION

Note: <decimal.h> defines DEC_DIG (the maximum number of digits n) and
DEC_PRECISION (the maximum precision p). Currently, it uses a maximum of
31 digits for both limits.

The following examples show how to declare a variable as a fixed-point decimal
data type:
decimal(10,2) x;
decimal(5,0) y;
decimal(5) z;
decimal(18,10) *ptr;
decimal(8,2) arr[100];

Type Specifiers

88 OS/390 V2R6.0 C/C++ Language Reference

In the previous example:
v x can have values between -99999999.99D and +99999999.99D.
v y and z can have values between -99999D and +99999D.
v ptr is a pointer to type decimal(18,10).
v arr is an array of 100 elements, where each element is of type decimal(8,2).

The fixed-point decimal type specifier has the form:

ÊÊ decimal (constant_expression)
, constant_expression

ÊÍ

OS/390 C/C++ evaluates the first constant_expression as a positive integral constant
expression. The second constant_expression is optional. If you leave it out, the
default value is 0. The type specifiers, decimal(n,0) and decimal(n) are
type-compatible.

Integer Variables

Integer variables fall into the following categories:
v short int or short or signed short int or signed short
v signed int or int
v long int or long or signed long int or signed long
v long long int or long long or signed long long int or signed long long
v unsigned short int or unsigned short
v unsigned or unsigned int
v unsigned long int or unsigned long
v unsigned long long int or unsigned long long

The default integer type for a bit field is unsigned. The amount of storage that is
allocated for integer data is implementation-dependent.

OS/390 C/C++ provides three sizes of integer data types. Objects that are of type
short have a length of 2 bytes of storage. Objects that are of type long have a
length of 4 bytes of storage. Objects that are of type long long have a length of 8
bytes of storage. An int data type represents the most efficient data storage size on
the system (the word-size of the machine) and receives 4 bytes of storage.

The unsigned prefix indicates that the object is a nonnegative integer. Each
unsigned type provides the same size storage as its signed equivalent. For
example, int reserves the same storage as unsigned int. Because a signed type
reserves a sign bit, an unsigned type can hold a larger positive integer than the
equivalent signed type.

To declare a data object that has an integer data type, use an int type specifier.

The int specifier has the form:

Type Specifiers

Chapter 5. Declarations 89

|
|
|
|

|

|

|
|
|
|
|

ÊÊ int
unsigned short
signed int

long
long int

unsigned

ÊÍ

The declarator for a simple integer definition or declaration is an identifier. You
can initialize a simple integer definition with an integer constant or with an
expression that evaluates to a value that you can assign as an integer. The storage
class of a variable determines how you can initialize the variable.

C++ Note: When the arguments in overloaded functions and overloaded operators
are integer types, two integer types that both come from the same
group are not treated as distinct types. For example, you cannot
overload an int argument against a signed int argument. “Chapter 13.
C++ Overloading” on page 311 describes overloading and argument
matching.

Examples of Integer Data Types

The following example defines the short int variable flag:
short int flag;

The following example defines the int variable result:
int result;

The following example defines the unsigned long int variable ss_number as
having the initial value 438888834:
unsigned long ss_number = 438888834ul;

The following example defines the identifier sum as an object of type int. The
initial value of sum is the result of the expression a + b:
extern int a, b;
auto sum = a + b;

Related Information
v “Integer Constants” on page 60

v “Decimal Constants” on page 61

v “Octal Constants” on page 62

v “Hexadecimal Constants” on page 61

Enumerations

An enumeration data type represents a set of values that you declare. You can
define an enumeration data type and all variables that have that enumeration type
in one statement. You can also declare an enumeration type separately from the
definition of variables of that type. You refer to the identifier that is associated
with the data type (not an object) as an enumeration tag.

Type Specifiers

90 OS/390 V2R6.0 C/C++ Language Reference

C++ Note: In C, an enumeration has an implementation-defined integral type. This
restriction does not apply to C++. In C++, an enumeration has a
distinct type that does not have to be integral.

Declaring an Enumeration Data Type

An enumeration type declaration contains the enum keyword that is followed by an
optional identifier (the enumeration tag) and a brace-enclosed list of enumerators.
Commas separate each enumerator in the enumerator list.

ÊÊ »

,

enum { enumerator } ;
identifier

ÊÍ

The keyword enum, that is followed by the identifier, names the data type (like the
tag on a struct data type). The list of enumerators provides the data type with a
set of values.

C++ Note: In C, each enumerator represents an integer value. In C++, each
enumerator represents a value that you can convert to an integral
value.

An enumerator has the form:

ÊÊ identifier
= integral_constant_expression

ÊÍ

To conserve space, you can store enumerations in spaces smaller than the storage
required by an int data type.

Enumeration Constants

When you define an enumeration data type, you specify a set of identifiers that the
data type represents. Each identifier in this set is an enumeration constant.

The value of the constant is determined in the following way:
1. An equal sign (=) and a constant expression after the enumeration constant

gives an explicit value to the constant. The identifier represents the value of the
constant expression.

2. If you do not assign an explicit value, the leftmost constant in the list receives
the value zero (0).

3. Identifiers with no explicitly assigned values receive the integer value that is
one greater than the value that is represented by the previous identifier.

In C, enumeration constants have type int.

In C++, each enumeration constant has a value that can be promoted to a signed
or unsigned integer value and a distinct type that does not have to be integral. Use
an enumeration constant anywhere an integer constant is allowed, or for C++,
anywhere a value of the enumeration type is allowed.

Type Specifiers

Chapter 5. Declarations 91

Each enumeration constant must be unique within the scope in which the
enumeration is defined. In the following example, the declarations of average on
line 4 and of poor on line 5 cause compiler error messages:
1 func()
2 {
3 enum score { poor, average, good };
4 enum rating { below, average, above };
5 int poor;
6 }

The following data type declarations list oats, wheat, barley, corn, and rice as
enumeration constants. The number under each constant shows the integer value.
enum grain { oats, wheat, barley,
corn, rice };

/* 0 1 2 3 4 */

enum grain { oats=1, wheat, barley, corn, rice };
/* 1 2 3 4 5 */

enum grain { oats, wheat=10, barley, corn=20, rice };
/* 0 10 11 20 21 */

It is possible to associate the same integer with two different enumeration
constants. For example, the following definition is valid. The identifiers suspend
and hold have the same integer value.
enum status { run, clear=5, suspend, resume, hold=6 };

/* 0 5 6 7 6 */

The following example is a different declaration of the enumeration tag status:
enum status { run, create, clear=5, suspend };

/* 0 1 5 6 */

Defining Enumeration Variables

An enumeration variable definition contains an optional storage class specifier, a
type specifier, a declarator, and an optional initializer. The type specifier contains
the keyword enum that is followed by the name of the enumeration data type. You
must declare the enumeration data type before you can define a variable that has
that type.

The initializer for an enumeration variable contains the = symbol that is followed
by an expression.

In C, the initializer expression must evaluate to an int value. In C++, the initializer
must behave the same type as the associated enumeration type.

The first line of the following example declares the enumeration tag grain. The
second line defines the variable g_food and gives g_food the initial value of barley
(2).
enum grain { oats, wheat, barley, corn, rice };
enum grain g_food = barley;

In C, the type specifier enum grain indicates that the value of g_food is a member
of the enumerated data type grain. In C++, the value of g_food has the
enumerated data type grain.

Type Specifiers

92 OS/390 V2R6.0 C/C++ Language Reference

C++ also makes the enum keyword optional in an initialization expression like the
one in the second line of the preceding example. For example, both of the
following statements are valid C++ code:
enum grain g_food = barley;

grain cob_food = corn;

Defining an Enumeration Type and Enumeration Objects

You can define a type and a variable in one statement by using a declarator and an
optional initializer after the type definition. To specify a storage class specifier for
the variable, you must put the storage class specifier at the beginning of the
declaration. For example:
register enum score { poor=1, average, good } rating = good;

C++ also lets you put the storage class immediately before the declarator. For
example:
enum score { poor=1, average, good } register rating = good;

Either of these examples is equivalent to the following two declarations:
enum score { poor=1, average, good };
register enum score rating = good;

Both examples define the enumeration data type score and the variable rating.
Variable rating has the storage class specifier register, the data type enum score,
and the initial value good.

Combining a data type definition with the definitions of all variables which have
that data type lets you leave the data type unnamed. For example:
enum { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,

Saturday } weekday;

The above example defines the variable weekday, which you can assign to any of
the specified enumeration constants.

Example Program Using Enumerations

The following program receives an integer as input. The output is a sentence that
gives the French name for the weekday that is associated with the integer. If the
integer does not correspond with a weekday, the program prints "C'est le
mauvais jour."

CBC3RAAN:
/**
** Example program using enumerations
**/

#include <stdio.h>

enum days {
Monday=1, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday

} weekday;

void french(enum days);

int main(void)
{

int num;

Type Specifiers

Chapter 5. Declarations 93

printf("Enter an integer for the day of the week. "
"Mon=1,...,Sun=7\n");

scanf("%d", &num);
weekday=num;
french(weekday);
return(0);

}

void french(enum days weekday)
{

switch (weekday)
{

case Monday:
printf("Le jour de la semaine est lundi.\n");
break;

case Tuesday:
printf("Le jour de la semaine est mardi.\n");
break;

case Wednesday:
printf("Le jour de la semaine est mercredi.\n");
break;

case Thursday:
printf("Le jour de la semaine est jeudi.\n");
break;

case Friday:
printf("Le jour de la semaine est vendredi.\n");
break;

case Saturday:
printf("Le jour de la semaine est samedi.\n");
break;

case Sunday:
printf("Le jour de la semaine est dimanche.\n");
break;

default:
printf("C'est le mauvais jour.\n");

}
}

Related Information
v “Identifiers” on page 56

v “Enumeration Constants” on page 91

v “Constant Expressions” on page 138

Pointers

A pointer type variable holds the address of a data object or a function. A pointer
can refer to an object of any one data type except to a bit field or a reference.
Additionally, in C, a pointer cannot point to an object with the register storage
class.

Some common uses for pointers are:
v To access dynamic data structures such as linked lists, trees, and queues.
v To access elements of an array, or members of a structure, or members of a C++

class.
v To access an array of characters as a string.
v To pass the address of a variable to a function. (In C++, you can also use a

reference to do this.) By referencing a variable through its address, a function
can change the contents of that variable. “Calling Functions and Passing
Arguments” on page 185 describes passing arguments by reference.

Type Specifiers

94 OS/390 V2R6.0 C/C++ Language Reference

Declaring Pointers

The following example declares pcoat as a pointer to an object that has type long:
extern long *pcoat;

If the keyword volatile appears before the *, the declarator describes a pointer to
a volatile object. If the keyword volatile comes between the * and the identifier,
the declarator describes a volatile pointer. The keyword const operates in the
same manner as the volatile keyword. In the following example, pvolt is a
constant pointer to an object that has type short:
short * const pvolt;

The following example declares pnut as a pointer to an int object that has the
volatile qualifier:
extern int volatile *pnut;

The following example defines psoup as a volatile pointer to an object that has
type float:
float * volatile psoup;

The following example defines pfowl as a pointer to an enumeration object of type
bird:
enum bird *pfowl;

The next example declares pvish as a pointer to a function that takes no
parameters and returns a char object:
char (*pvish)(void);

Assigning Pointers

When you use pointers in an assignment operation, you must ensure that the types
of the pointers in the operation are compatible.

The following example shows compatible declarations for the assignment
operation:

float subtotal;
float * sub_ptr;

.

.

.
sub_ptr = &subtotal;
printf("The subtotal is %f\n", *sub_ptr);

The next example shows incompatible declarations for the assignment operation:
double league;
int * minor;

.

.

.
minor = &league; /* error */

Initializing Pointers

The initializer is an = (equal sign) followed by the expression that represents the
address that the pointer is to contain. The following example defines the variables
time and speed as having type double and amount as having type pointer to a
double. The example initializes pointer amount to point to total:

Type Specifiers

Chapter 5. Declarations 95

double total, speed, *amount = &total;

The compiler converts an unsubscripted array name to a pointer to the first
element in the array. By specifying the name of the array, you can assign the
address of the first element of an array to a pointer. The following two sets of
definitions are equivalent. Both define the pointer student and initialize student to
the address of the first element in section:
int section[80];
int *student = section;

The above example is equivalent to the following:
int section[80];
int *student = §ion[0];

You can assign the address of the first character in a string constant to a pointer by
specifying the string constant in the initializer.

The following example defines the pointer variable string and the string constant
"abcd". The pointer string is initialized to point to the character a in the string
"abcd".
char *string = "abcd";

The following example defines weekdays as an array of pointers to string constants.
Each element points to a different string. The pointer weekdays[2], for example,
points to the string "Tuesday".
static char *weekdays[] =

{
"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"

};

You can also initialize a pointer to NULL by using any integer constant expression
that evaluates to 0. For example, char * a=0;. Such a pointer is a NULL pointer. It
does not point to any object.

Restrictions on C Pointers

The OS/390 C compiler supports only the pointers that are obtained in one of the
following ways:
v Directly from a malloc/calloc/realloc call
v As an address of a data type (that is, &variable)
v From constants
v Received as a parameter from another C function
v Directly from a call to an OS/390 Language Environment service that allocates

storage, such as CEEGTST

Any bitwise manipulation of a pointer can result in undefined behavior.

You cannot use pointers to reference bit fields or objects that have the register
storage class specifier.

Packed and nonpacked objects have different memory layouts. Consequently, a
pointer to a packed structure or union is incompatible with a pointer to a
corresponding nonpacked structure or union. As a result, comparisons and
assignments between pointers to packed and nonpacked objects are not valid.

Type Specifiers

96 OS/390 V2R6.0 C/C++ Language Reference

You can, however, perform these assignments and comparisons with type casts. In
the following example, the cast operation lets you compare the two pointers, but
you must be aware that ps1 still points to a nonpacked object:
int main(void)
{

_Packed struct ss *ps1;
struct ss *ps2;

.

.

.
ps1 = (_Packed struct ss *)ps2;

.

.

.
}

Using Pointers

You can use two operators when you are working with pointers, the address (&)
operator, and the indirection (*) operator. You can use the & operator to refer to the
address of an object. For example, the following statement assigns the address of x
to the variable p_to_x. It defines the variable p_to_x as a pointer.
int x, *p_to_x;

p_to_x = &x;

The * (indirection) operator lets you access the value of the object a pointer refers
to. The following statement assigns to y the value of the object to which p_to_x
points:
float y, *p_to_x;
.
.
.

y = *p_to_x;

The following statement assigns the value of y to the variable that *p_to_x
references:
char y ,

*p_to_x,
.
.
.

*p_to_x = y;

Pointer Arithmetic

You can perform a limited number of arithmetic operations on pointers. These
operations are:
v Increment and decrement
v Addition and subtraction
v Comparison
v Assignment

The increment (++) operator increases the value of a pointer by the size of the data
object the pointer refers to. For example, if the pointer refers to the second element
in an array, the ++ makes the pointer refer to the third element in the array.

Type Specifiers

Chapter 5. Declarations 97

The decrement (--) operator decreases the value of a pointer by the size of the
data object the pointer refers to. For example, if the pointer refers to the second
element in an array, the -- makes the pointer refer to the first element in the array.

You can add a pointer to an integer, but you cannot add a pointer to a pointer.

If the pointer p points to the first element in an array, the following expression
causes the pointer to point to the third element in the same array:
p = p + 2;

If you have two pointers that point to the same array, you can subtract one pointer
from the other. This operation yields the number of elements in the array that
separate the two addresses to which the pointers refer.

You can compare two pointers with the following operators: ==, !=, <, >, <;;=,
and >=. See “Chapter 6. Expressions and Operators” on page 133 for more
information on these operators.

You define pointer comparisons only when the pointers point to elements of the
same array. You can perform pointer comparisons that use the == and != operators
even when the pointers point to elements of different arrays.

You can assign to a pointer the address of a data object, the value of another
compatible pointer or the NULL pointer.

Example Program Using Pointers

The following program contains pointer arrays:

CBC3RAAQ:
/**
** Program to search for the first occurrence of a specified **
** character string in an array of character strings. **
**/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE 20
#define EXIT_FAILURE 999

int main(void)
{

static char *names[] = { "Jim", "Amy", "Mark", "Sue", NULL };
char * find_name(char **, char *);
char new_name[SIZE], *name_pointer;

printf("Enter name to be searched.\n");
scanf("%s", new_name);
name_pointer = find_name(names, new_name);
printf("name %s%sfound\n", new_name,

(name_pointer == NULL) ? " not " : " ");
exit(EXIT_FAILURE);

} /* End of main */

/**
** Function find_name. This function searches an array of **
** names to see if a given name already exists in the array. **
** It returns a pointer to the name or NULL if the name is **
** not found. **

Type Specifiers

98 OS/390 V2R6.0 C/C++ Language Reference

** **
** char **arry is a pointer to arrays of pointers (existing names) **
** char *strng is a pointer to character array entered (new name) **
**/

char * find_name(char **arry, char *strng)
{

for (; *arry != NULL; arry++) /* for each name */
{

if (strcmp(*arry, strng) == 0) /* if strings match */
return(*arry); /* found it! */

}
return(*arry); /* return the pointer */

} /* End of find_name */

Interaction with this program could produce the following sessions:

Output Enter name to be searched.

Input Mark

Output name Mark found

OR:

Output Enter name to be searched.

Input Deborah

Output name Deborah not found

Related Information
v “Declarators” on page 119

v “volatile and const Qualifiers” on page 120

v “Initializers” on page 127

v “Address (&)” on page 144

v “Indirection (*)” on page 145

void Type

The void data type always represents an empty set of values. The only object that
you can declare with the type specifier void is a pointer.

When a function does not return a value, you should use void as the type specifier
in the function definition and declaration. An argument list for a function that
takes no arguments is void.

You cannot declare a variable of type void, but you can explicitly convert any
expression to type void. The resulting expression can only be used as one of the
following:
v An expression statement
v The left operand of a comma expression
v The second or third operand in a conditional expression.

Type Specifiers

Chapter 5. Declarations 99

Example of void Type

Line 7 of the following example declares the function find_max() as having type
void. Lines 15 through 26 contain the complete definition of find_max().

Note: The use of the sizeof operator in line 13 is a standard method of
determining the number of elements in an array.

CBC3RAAM:
1 /**
2 ** Example of void type
3 **/
4 #include <stdio.h>
5
6 /* declaration of function find_max */
7 extern void find_max(int x[], int j);
8
9 int main(void)

10 {
11 static int numbers[] = { 99, 54, -102, 89 };
12
13 find_max(numbers, (sizeof(numbers) / sizeof(numbers[0])));
14
15 return(0);
16 }
17
18 void find_max(int x[], int j)
19 { /* begin definition of function find_max */
20 int i, temp = x[0];
21
22 for (i = 1; i < j; i++)
23 {
24 if (x[i] > temp)
25 temp = x[i];
26 }
27 printf("max number = %d\n", temp);
28 } /* end definition of function find_max */

Arrays

An array is an ordered group of data objects. Refer to each object as an element. All
elements within an array have the same data type.

Use any type specifier in an array definition or declaration. Array elements can be
of any data type, except function or, in C++, a reference. You can, however, declare
an array of pointers to functions.

Declaring Arrays

The array declarator contains an identifier that is followed by an optional subscript
declarator. An identifier that is preceded by an * (asterisk) is an array of pointers.

A subscript declarator has the form:

ÊÊ »[]
constant_expression [constant_expression]

ÊÍ

Type Specifiers

100 OS/390 V2R6.0 C/C++ Language Reference

The subscript declarator describes the number of dimensions in the array and the
number of elements in each dimension. Each bracketed expression, or subscript,
describes a different dimension and must be a constant expression. Note that the [
and] characters can be represented by the trigraphs ??(and ??) respectively.

The following example defines a one-dimensional array that contains four elements
that have type char:
char list[4];

The first subscript of each dimension is 0. The array list contains the elements:
list[0]
list[1]
list[2]
list[3]

The following example defines a two-dimensional array that contains six elements
of type int:
int roster[3][2];

OS/390 C/C++ stores multidimensional arrays in row-major order. When you are
referring to elements in order of increasing storage location, the last subscript
varies the fastest. For example, consider the following elements of array roster:
roster[0][0]
roster[0][1]
roster[1][0]
roster[1][1]
roster[2][0]
roster[2][1]

OS/390 C/C++ stores the elements of roster as:
│ │ │
│ │ │
└────────────────────────┴──────────────────────────┘

│ │ │
│ │ │
│ │ │
roster[0][0] roster[0][1] roster[1][0] ...

You can leave the first, and only the first, set of subscript brackets empty in the
following instances:
v Array definitions that contain initializations
v extern declarations
v Parameter declarations.

In array definitions that leave the first set of subscript brackets empty, the
initializer determines the number of elements in the first dimension. In a
one-dimensional array, the number of initialized elements becomes the total
number of elements. In a multidimensional array, OS/390 C/C++ compares the
initializer to the subscript declarator to determine the number of elements in the
first dimension.

An unsubscripted array name (for example, region instead of region[4])
represents a pointer whose value is the address of the first element of the array,
provided the array has previously been declared. An unsubscripted array name
with square brackets (for example, region[]) is allowed in the following contexts:
v In arrays that are declared at file scope
v In the argument list of a function declaration

Type Specifiers

Chapter 5. Declarations 101

In function declarations and declarations with the extern specifier, the only
dimension you can leave empty is the first one. You must specify the sizes of
additional dimensions.

In extended modes, you can also use unsubscripted array names in the following
contexts:
v In union members
v As the last member of a structure

Whenever an array is used in a context (such as a parameter) where it cannot be
used as an array, the identifier is treated as a pointer. The two exceptions are when
you use an array as an operand of the sizeof or the address (&) operator.

Initializing Arrays

The initializer for an array contains the = symbol that is followed by a
comma-separated list of constant expressions that are enclosed in braces ({ }). You
do not need to initialize all elements in an array. Elements that are not initialized
(in extern and static definitions only) receive the value 0 of the appropriate type.

Note: Array initializations can be either fully braced (with braces around each
dimension) or unbraced (with only one set of braces that enclose the entire
set of initializers). Avoid placing braces around some dimensions and not
around others.

The following definition shows a completely initialized one-dimensional array:
static int number[3] = { 5, 7, 2 };

The array number contains the following values:

Element Value

number[0] 5

number[1] 7

number[2] 2

The following definition shows a partially initialized one-dimensional array:
static int number1[3] = { 5, 7 };

The values of number1 are:

Element Value

number1[0] 5

number1[1] 7

number1[2] 0

Instead of an expression in the subscript declarator that defines the number of
elements, the following one-dimensional array definition defines one element for
each initializer specified:
static int item[] = { 1, 2, 3, 4, 5 };

Type Specifiers

102 OS/390 V2R6.0 C/C++ Language Reference

|
|
|

The compiler gives item the five initialized elements:

Element Value

item[0] 1

item[1] 2

item[2] 3

item[3] 4

item[4] 5

You can initialize a one-dimensional character array by specifying:
v A brace-enclosed, comma-separated, list of constants, each of which can be

contained in a character
v A string constant. (Braces that surround the constant are optional.)

Initializing a string constant places the null character (\0) at the end of the string if
there is room, or if you do not specify the array dimensions.

The following definitions show character array initializations:
static char name1[] = { 'J', 'a', 'n' };
static char name2[] = { "Jan" };
static char name3[4] = "Jan";

These definitions create the following elements:

Element Value Element Value Element Value

name1[0] J name2[0] J name3[0] J
name1[1] a name2[1] a name3[1] a
name1[2] n name2[2] n name3[2] n

name2[3] \0 name3[3] \0

Note that the following definition would result in the null character being lost:
static char name[3]="Jan";

In C, the compiler accepts name[3] with no warning or error messages. In C++, the
compiler generates an error message that states the character array must be at least
4 characters in size to accept the string literal. To initialize this array in C++, use
character-by-character initialization, for example:
static char name[3]={'J','a','n'};

You can initialize a multidimensional array by the following methods:
v Listing the values of all elements you want to initialize, in the order that the

compiler assigns the values. The compiler assigns values by increasing the
subscript of the last dimension fastest. This form of a multidimensional array
initialization looks like a one-dimensional array initialization. The following
definition completely initializes the array month_days:

static month_days[2][12] =
{
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,
31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31

};

v Using braces to group the values of the elements you want initialized. You can
put braces around each element, or around any nesting level of elements. The

Type Specifiers

Chapter 5. Declarations 103

|

following definition contains two elements in the first dimension. (You can
consider these elements as rows.) The initialization contains braces around each
of these two elements:

static int month_days[2][12] =
{
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }

};

v Using nested braces to initialize dimensions and elements in a dimension
selectively.
The following definition explicitly initializes six elements in a 12-element array:
static int matrix[3][4] =

{
{1, 2},
{3, 4},
{5, 6}

};

The initial values of matrix are:

Element Value Element Value

matrix[0][0] 1 matrix[1][2] 0
matrix[0][1] 2 matrix[1][3] 0
matrix[0][2] 0 matrix[2][0] 5
matrix[0][3] 0 matrix[2][1] 6
matrix[1][0] 3 matrix[2][2] 0
matrix[1][1] 4 matrix[2][3] 0

You cannot have more initializers than the number of elements in the array.

C++ Notes:

1. In C++, you can use a zero-sized array in a class definition, but it must be
non-static.

2. In a class definition, the zero-sized array must be the last non-static data
member. You can use members such as functions, static data members, and
typedefs after the zero-sized array.

3. You cannot use a class that contains a zero-sized array as a base class.

Example Programs Using Arrays

The following program defines a floating-point array that is called prices.

The first for statement prints the element values of prices. The second for
statement adds five percent to the value of each element of prices. of total.

Type Specifiers

104 OS/390 V2R6.0 C/C++ Language Reference

CBC3RAAO:
/**
** Example of one-dimensional arrays
**/

#include <stdio.h>
#define ARR_SIZE 5

int main(void)
{
static float const prices[ARR_SIZE] = { 1.41, 1.50, 3.75, 5.00, .86 };
auto float total;
int i;

for (i = 0; i < ARR_SIZE; i++)
{
printf("price = $%.2f\n", prices[i]);

}

printf("\n");

for (i = 0; i < ARR_SIZE; i++)
{
total = prices[i] * 1.05;

printf("total = $%.2f\n", total);
}

return(0);
}

This program produces the following output:
price = $1.41
price = $1.50
price = $3.75
price = $5.00
price = $0.86

total = $1.48
total = $1.57
total = $3.94
total = $5.25
total = $0.90

The following program defines the multidimensional array salary_tbl. A for loop
prints the values of salary_tbl.

Type Specifiers

Chapter 5. Declarations 105

CBC3RAAP:
/**
** Example of a multidimensional array
**/

#include <stdio.h>
#define ROW_SIZE 3
#define COLUMN_SIZE 5

int main(void)
{
static int salary_tbl[ROW_SIZE][COLUMN_SIZE] =
{
{ 500, 550, 600, 650, 700 },
{ 600, 670, 740, 810, 880 },
{ 740, 840, 940, 1040, 1140 }

};
int grade, step;

for (grade = 0; grade < ROW_SIZE; ++grade)
for (step = 0; step < COLUMN_SIZE; ++step)
{
printf("salary_tbl[%d] [%d] = %d\n", grade, step,

salary_tbl[grade] [step]);
}

return(0);
}

This program produces the following output:
salary_tbl[0] [0] = 500
salary_tbl[0] [1] = 550
salary_tbl[0] [2] = 600
salary_tbl[0] [3] = 650
salary_tbl[0] [4] = 700
salary_tbl[1] [0] = 600
salary_tbl[1] [1] = 670
salary_tbl[1] [2] = 740
salary_tbl[1] [3] = 810
salary_tbl[1] [4] = 880
salary_tbl[2] [0] = 740
salary_tbl[2] [1] = 840
salary_tbl[2] [2] = 940
salary_tbl[2] [3] = 1040
salary_tbl[2] [4] = 1140

Related Information
v “Pointers” on page 94

v “Array Subscript [] (Array Element Specification)” on page 140

v “String Literals” on page 65

v “Declarators” on page 119

v “Initializers” on page 127

v “Chapter 7. Implicit Type Conversions” on page 167

Structures

A structure contains an ordered group of data objects. Unlike the elements of an
array, the data objects within a structure can have varied data types. Each data
object in a structure is a member or field.

Type Specifiers

106 OS/390 V2R6.0 C/C++ Language Reference

Use structures to group logically related objects. For example, to allocate storage
for the components of one address, define the following variables:

int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;

To allocate storage for more than one address, group the components of each
address by defining a structure data type and as many variables as you need to
have the structure data type.

In the following example, lines 1 through 7 declare the structure tag address:
1 struct address {
2 int street_no;
3 char *street_name;
4 char *city;
5 char *prov;
6 char *postal_code;
7 };
8 struct address perm_address;
9 struct address temp_address;

10 struct address *p_perm_address = &perm_address;

The variables perm_address and temp_address are instances of the structure data
type address. Both contain the members described in the declaration of address.
The pointer p_perm_address points to a structure of address and is initialized to
point to perm_address.

Refer to a member of a structure by specifying the structure variable name with
the dot operator (.) or a pointer with the arrow operator (->) and the member
name. For example, both of the following assign a pointer to the string "Ontario"
to the pointer prov that is in the structure perm_address:
perm_address.prov = "Ontario";
p_perm_address -> prov = "Ontario";

All references to structures must be fully qualified. In the example, you cannot
reference the fourth field by prov alone. You must reference this field by
perm_address.prov.

Structures with identical members but different names are not compatible and
cannot be assigned to each other. Structures are not intended to conserve storage. If
you need direct control of byte mapping, use pointers. “Dot Operator (.)” on
page 141 and “Arrow Operator (−>)” on page 141 describe structure member
references.

You cannot declare a structure with members of incomplete types. See “Incomplete
Types” on page 119 for more information.

Declaring a Structure

A structure type declaration describes the members that are part of the structure. It
contains the struct keyword that is followed by an optional identifier (the
structure tag), and a brace-enclosed list of members.

A structure declaration has the form:

Type Specifiers

Chapter 5. Declarations 107

ÊÊ
_Packed

struct

»

identifier

{ member ; }
identifier

ÊÍ

The keyword struct followed by the identifier (tag) names the data type. If you do
not provide a tag name to the data type, you must put all variable definitions that
refer to it within the declaration of the data type.

The list of members provides the data type with a description of the values that
you can stored in the structure.

A structure member definition has the form:

ÊÊ »

,

type_specifier declarator
: constant_expression

.declarator

ÊÍ

If a : (colon) and a constant expression follow the member declarator, the member
represents a bit field. A member that does not represent a bit field can be of any
data type and can have the volatile or const qualifier.“Declaring and Using Bit
Fields in Structures” on page 110 describes bit fields.

You can redefine identifiers that are used as structure or member names to
represent different objects in the same scope without conflicting. You cannot use
the name of a member more than once in a structure type. You can, however, use
the same member name in another structure type that is defined within the same
scope.

You cannot declare a structure type that contains itself as a member. You can,
however, declare a structure type that contains a pointer to itself as a member.

Defining a Structure Variable

A structure variable definition contains an optional storage class keyword, the
struct keyword, a structure tag, a declarator, and an optional identifier. The
structure tag indicates the data type of the structure variable.

C++ Note: The keyword struct is optional in C++.

You can declare structures that have any storage class. Most compilers, however,
treat structures that are declared with the register storage class specifier as
automatic structures.

Initializing Structures

The initializer contains an equal sign (=) followed by a brace-enclosed,
comma-separated, list of values. You do not have to initialize all members of a
structure. However, you need to initialize all members in the structure prior to the
member of interest. For example, if you are interested in initializing the fifth

Type Specifiers

108 OS/390 V2R6.0 C/C++ Language Reference

|
|
|
|

member of a structure, you must initialize the first four members, as well. You do
not have to initialize the sixth and subsequent members. You cannot initialize
unnamed bit fields.

The following definition shows a completely initialized structure:
struct address {

int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;

};
static struct address perm_address =

{ 3, "Savona Dr.", "Dundas", "Ontario", "L4B 2A1"};

The values of perm_address are:

Member Value

perm_address.street_no 3

perm_address.street_name address of string "Savona Dr."

perm_address.city Address of string "Dundas"

perm_address.prov Address of string "Ontario"

perm_address.postal_code Address of string "L4B 2A1"

The following definition shows a partially initialized structure:
struct address {

int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;

};
struct address temp_address =

{ 44, "Knyvet Ave.", "Hamilton", "Ontario" };

The values of temp_address are:

Member Value

temp_address.street_no 44

temp_address.street_name address of string "Knyvet Ave."

temp_address.city address of string "Hamilton"

temp_address.prov address of string "Ontario"

temp_address.postal_code value depends on the storage class.

Note: The initial value of uninitialized structure members like
temp_address.postal_code depends on the storage class associated with the
member. See “Storage Class Specifiers” on page 73for details on the
initialization of different storage classes.

Type Specifiers

Chapter 5. Declarations 109

|
|
|

Declaring Structure Types and Variables

To define a structure type and a structure variable in one statement, put a
declarator and an optional initializer after the type definition. To specify a storage
class specifier for the variable, you must put the storage class specifier at the
beginning of the statement.

For example:
static struct {

int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;

} perm_address, temp_address;

Because this example does not name the structure data type, perm_address and
temp_address are the only structure variables that will have this data type. Putting
an identifier after struct, lets you make additional variable definitions of this data
type later in the program.

The structure type (or tag) cannot have the volatile qualifier, but you can define a
member or a structure variable as having the volatile qualifier.

For example:
static struct class1 {

char descript[20];
volatile long code;
short complete;

} volatile file1, file2;
struct class1 subfile;

This example qualifies the structures file1 and file2, and the structure member
subfile.code as volatile.

Declaring and Using Bit Fields in Structures

A structure or a C++ class can contain bit fields that allow you to access individual
bits. You can use bit fields for data that requires just a few bits of storage. A bit
field declaration contains a type specifier followed by an optional declarator, a
colon, a constant expression, and a semicolon. The constant expression specifies
how many bits the field reserves.

Bit fields with a length of 0 must be unnamed. You cannot reference or initialize
unnamed bit fields. A zero-width bit field causes the next field to be aligned on the
next container boundary where the container is the same size as the underlying
type as the bit field. A _Packed structure, a bit field of length 0, causes the next
field to align on the next byte boundary.

The maximum bit-field length is implementation dependent.

For portability, do not use bit fields greater than 32 bits in size.

The following restrictions apply to bit fields. You cannot:
v Define an array of bit fields
v Take the address of a bit field
v Have a pointer to a bit field
v Have a reference to a bit field (C++ only)

Type Specifiers

110 OS/390 V2R6.0 C/C++ Language Reference

In C, you can declare a bit field as type int, signed int, or unsigned int. Bit fields
of the type int are equivalent to those of type unsigned int.

The default integer type for a bit field is unsigned.

A bit field cannot have the const or volatile qualifier.

The following structure has three bit-field members kingdom, phylum, and genus,
occupying 12, 6, and 2 bits respectively:
struct taxonomy {

int kingdom : 12;
int phylum : 6;
int genus : 2;
};

C++ Note: Unlike ANSI/ISO C, C++ bit fields can be any integral type or
enumeration type. When you assign an out-of-range value to a bit field,
OS/390 C/C++ preserves the low-order bit pattern and assigns the
appropriate bits.

If a series of bit fields does not add up to the size of an int, padding can take
place. OS/390 C/C++ determines the amount of padding by the alignment
characteristics of the structure members. In some instances, bit fields can cross
word boundaries.

The following example declares the identifier kitchen to be of type struct on_off:
struct on_off {

unsigned light : 1;
unsigned toaster : 1;
int count; /* 4 bytes */
unsigned ac : 4;
unsigned : 4;
unsigned clock : 1;
unsigned : 0;
unsigned flag : 1;

} kitchen ;

The structure kitchen contains eight members that total 16 bytes. The following
table describes the storage that each member occupies:

Member Name Storage Occupied

light 1 bit

toaster 1 bit

(padding — 30 bits) To next int boundary

count The size of an int

ac 4 bits

(unnamed field) 4 bits

clock 1 bit

(padding — 23 bits) To next int boundary (unnamed field)

flag 1 bit

(padding — 31 bits) To next int boundary

Type Specifiers

Chapter 5. Declarations 111

All references to structure fields must be fully qualified. For instance, you cannot
reference the second field by toaster. You must reference this field by
kitchen.toaster.

The following expression sets the light field to 1:
kitchen.light = 1;

When you assign a value that is out of its range to a bit field, OS/390 C/C++
preserves the bit pattern and assigns the appropriate bits. The following expression
sets the toaster field of the kitchen structure to 0 because it assigns only the least
significant bit to the toaster field:
kitchen.toaster = 2;

Declaring a Packed Structure

To qualify a C structure as packed, use _Packed qualifier on the structure
declaration.

C++ Note: C++ does not support the _Packed qualifier. To change the alignment of
C++ structures, use the #pragma pack directive (supported by both C
and C++). Refer to “pack” on page 267 for information on this directive.

Packed and nonpacked structures cannot be assigned to each other, regardless of
their type.

Example Program Using Structures

The following program finds the sum of the integer numbers in a linked list:

CBC3RAAS:
/**
** Example program illustrating structures using linked lists
**/

#include <stdio.h>

struct record {
int number;
struct record *next_num;

};

int main(void)
{

struct record name1, name2, name3;
struct record *recd_pointer = &name1;
int sum = 0;

name1.number = 144;
name2.number = 203;
name3.number = 488;

name1.next_num = &name2;
name2.next_num = &name3;
name3.next_num = NULL;

while (recd_pointer != NULL)
{

sum += recd_pointer->number;
recd_pointer = recd_pointer->next_num;

}

Type Specifiers

112 OS/390 V2R6.0 C/C++ Language Reference

printf("Sum = %d\n", sum);

return(0);
}

The structure type record contains two members: the integer number and next_num,
which is a pointer to a structure variable of type record.

The example assigns the following values to the record type variables name1,
name2, and name3:

Member Name Value

name1.number 144

name1.next_num The address of name2

name2.number 203

name2.next_num The address of name3

name3.number 488

name3.next_num NULL (Indicating the end of the linked list.)

The variable recd_pointer is a pointer to a structure of type record. OS/390
C/C++ initializes it to the address of name1 (the beginning of the linked list).

The while loop causes the linked list to be scanned until recd_pointer equals NULL.
The following statement advances the pointer to the next object in the list :
recd_pointer = recd_pointer->next_num;

Related Information
v “Declarators” on page 119

v “Initializers” on page 127

v “Incomplete Types” on page 119

v “Dot Operator (.)” on page 141

v “Arrow Operator (−>)” on page 141

Unions

A union is an object that can hold any one of a set of named members. The
members of the named set can be of any data type. OS/390 C/C++ overlays the
members in storage.

The storage allocated for a union is the storage required for the largest member of
the union (plus any padding that is required so that the union will end at a natural
boundary of its strictest member).

C++ Notes:

1. In C++, a union can have member functions, including constructors and
destructors, but not virtual member functions. You cannot use a union as a base
class nor derive it from a base class.

Type Specifiers

Chapter 5. Declarations 113

2. A C++ union member cannot be a class object that has a constructor, destructor,
or overloaded copy assignment operator. In C++, you cannot declare a member
of a union with the keyword static.

Declaring a Union

A union type declaration contains the union keyword followed by an identifier
(optional) and a brace-enclosed list of members.

A union declaration has the form:

ÊÊ »union { member ; }
qualifier identifier

ÊÍ

The identifier is a tag you give to the union that is specified by the member list. If
you specify a tag, you can make any subsequent declaration of the union (in the
same scope) by declaring the tag and omitting the member list. If you do not
specify a tag, you must put all variable definitions that refer to that union within
the statement that defines the data type.

The list of members provides the data type with a description of the objects that
you can store in the union.

A union member definition has the form:

ÊÊ »

,

type_specifier declarator
: constant_expression

.declarator

ÊÍ

You can reference one of the possible union members the same way as you
reference a member of a structure.

For example, the following code assigns '\n' to the first element in the character
array birthday, a member of the union people:
union {

char birthday[9];
int age;
float weight;
} people;

people.birthday[0] = '\n';

A union can represent only one of its members at a time. In the example, the union
people contains either age, birthday, or weight but never more than one of these.
The printf statement in the following example does not give the correct result
because people.age replaces the value that is assigned to people.birthday in the
first line:
1 people.birthday = "03/06/56";
2 people.age = 38;
3 printf("%s\n", people.birthday);

Type Specifiers

114 OS/390 V2R6.0 C/C++ Language Reference

Defining a Union Variable

A union variable definition contains an optional storage class keyword, the union
keyword, a union tag, and a declarator. The union tag indicates the data type of
the union variable.

Type Specifier: The type specifier contains the keyword union that is followed by
the name of the union type. You must declare the union data type before you can
define a union that has that type.

You can define a union data type and a union of that type in the same statement
by placing the variable declarator after the data type definition.

Declarator: The declarator is an identifier, possibly with the volatile or const
qualifier.

Initializer: You can only initialize the first member of a union.

The following example shows how you would initialize the first union member
birthday of the union variable people:
union {

char birthday[9];
int age;
float weight;
} people = {"23/07/57"};

Defining a Union Type and a Union Variable

To define union type and a union variable in one statement, put a declarator after
the type definition. The storage class specifier for the variable must go at the
beginning of the statement.

Defining Packed Unions

To qualify a C union as packed, use _Packed.

C++ Note: C++ does not support the _Packed qualifier. To change the alignment of
C++ unions, use the #pragma pack directive (which both C and C++
support). For more information on this directive, see “pack” on
page 267.

Packed and nonpacked unions cannot be assigned to each other, regardless of their
type.

The #pragma pack does not affect the memory layout of the union members. Each
member starts at offset zero. The #pragma pack directive does affect the total
alignment restriction of the whole union.

In the following example, each of the elements in the nonpacked n_array is of type
union uu:

union uu {
short a;
struct {
char x;
char y;
char z;

} b;
};

Type Specifiers

Chapter 5. Declarations 115

|
|

union uu n_array[2];
/* _Packed union is not supported for C++ */
_Packed union uu p_array[2];

Because it is not packed, each element in the nonpacked n_array has an alignment
restriction of 2 bytes. (The largest alignment requirement among the union
members is that of short a.) There is 1 byte of padding at the end of each element
to enforce this requirement.

In the packed array, p_array, each element is of type _Packed union uu. Because
every element aligned on the byte boundary, each element has a length of only 3
bytes, instead of the 4 bytes in the previous example.

The following equivalent C++ example uses the #pragma pack directive instead of
the _Packed qualifier:

union uu {
short a;
struct {
char x;
char y;
char z;

} b;
};

union uu n_array[2];
#pragma pack(pack)
union uu p_array[2];
#pragma pack(reset)

Anonymous Unions in C

You can declare unions without declarators if they are members of another
structure or union. Refer to unions without declarators as anonymous unions. C
supports anonymous unions only when you use the LANGLVL(COMMONC) compiler
option.

Members of an anonymous union can be accessed as if they were declared directly
in the containing structure or union. For example, given the following structure:

struct s {
int a;
union {
int b;
float c;

}; /* no declarator */
} kurt;

You can make the following statements:
kurt.a = 5;
kurt.b = 36;

Type Specifiers

116 OS/390 V2R6.0 C/C++ Language Reference

You can also declare an anonymous union:
1. By creating a typedef and using the typedef name without a declarator:

typedef union {
int a;
int b;

} UNION_T;

struct s1 {
UNION_T;
int c;

} dave;

2. By using an existing union tag without a declarator:
union u1 {

int a;
int b;

};

struct s1 {
union u1;
int c;

} dave;

In both of the examples, you can access the members as dave.a, dave.b, and
dave.c.

An anonymous union must be a member of, or nested within, another anonymous
union that is a member of a named structure or union. If you declare a union at
file scope without a declarator, its members are not available to the surrounding
scope. For example, the following union only declares the union tag tom:

union tom {
int b;
float c;

};

You cannot use the variables b and c from this union at file scope, and so the
following statements generate errors:

b = 5;
c = 2.5;

Anonymous Unions in C++

A C++ anonymous union is a union without a class name. A declarator cannot
follow an anonymous union. An anonymous union is not a type; it defines an
unnamed object and it cannot have member functions.

The member names of an anonymous union must be distinct from other names
within the scope in which the union is declared. You can use member names
directly in the union scope without any additional member access syntax.

For example, in the following code fragment, you can access the data members i
and cptr directly because they are in the scope that contains the anonymous
union. Because i and cptr are union members and have the same address, you
should only use one of them at a time. The assignment to the member cptr will
change the value of the member i.

Type Specifiers

Chapter 5. Declarations 117

void f()
{
union { int i; char* cptr ; };
// .
// .
// .
i = 5;
cptr = "string_in_union"; // overrides i
}

An anonymous union cannot have protected or private members. You must declare
a global anonymous union with the keyword static.

Examples of Unions

The following example defines a union data type (not named) and a union variable
(named length). The member of length can be a long int, a float, or a double.
union {

float meters;
double centimeters;
long inches;

} length;

The following example defines the union type data as containing one member. The
member can be named charctr, whole, or real. The second statement defines two
data type variables: input and output.
union data {

char charctr;
int whole;
float real;

};
union data input, output;

The following statement assigns a character to input:
input.charctr = 'h';

The following statement assigns a floating-point number to member output:
output.real = 9.2;

The following example defines an array of structures that is named records. Each
element of records contains three members: the integer id_num, the integer
type_of_input, and the union variable input. The variable input has the union data
type defined in the previous example.
struct {

int id_num;
int type_of_input;
union data input;

} records[10];

The following statement assigns a character to the structure member input of the
first element of records:
records[0].input.charctr = 'g';

Related Information
v “Declarators” on page 119

v “Initializers” on page 127

v “Structures” on page 106

v “Dot Operator (.)” on page 141

Type Specifiers

118 OS/390 V2R6.0 C/C++ Language Reference

v “Arrow Operator (−>)” on page 141

Incomplete Types

Incomplete types are the type void, an array of unknown size, or structure, union,
or enumeration tags that have no member lists. For example, the following are
incomplete types:
void *incomplete_ptr;
struct dimension linear; /* no previous definition of dimension */

In the preceding example, void is an incomplete type that you cannot complete.
You must complete structure or union and enumeration tags before using them to
declare an object. You can, however, define a pointer to an incomplete structure or
union.

Related Information
v “void Type” on page 99

v “Arrays” on page 100

v “Structures” on page 106

v “Unions” on page 113

Declarators

A declarator designates a data object or function. Declarators appear in all data
definitions and declarations, and in some type definitions.

In a declarator, you can specify the type of an object to be an array, a pointer, or a
reference. You can specify that the return type of a function is a pointer or a
reference. You can also perform initialization in a declarator.

A declarator has the form:

ÊÊ »

»

»

identifier
* (declarator) ()

subscript_declarator
subdeclarator

qualifier

*

ÊÍ

subdeclarator:

identifier
(subdeclarator) subscript_declarator

A qualifier is one of:

Type Specifiers

Chapter 5. Declarations 119

v const
v volatile

The OS/390 C compiler also implements the _Packed qualifier, and the OS/390
C++ compiler also implements the _Export qualifier.

In C, you cannot declare or define a volatile or const function. C++ class member
functions can be qualified with const or volatile.

A declarator can contain a subdeclarator. A subdeclarator has the form:

ÊÊ

» *
volatile
const

identifier
(subdeclarator)

Ê

Ê
subscript_declarator

ÊÍ

A subscript declarator describes the number of dimensions in an array and the
number of elements in each dimension. A subscript declarator has the form:

ÊÊ []
constant_expression

» [constant_expression]

ÊÍ

A simple declarator consists of an identifier, which names a data object. For
example, the following block scope data declaration uses initial as the declarator:
auto char initial;

The data object initial has the storage class auto and the data type char.

You can define or declare a structure, union, or array. Use a declarator that
contains an identifier which names the data object, and some combination of
symbols and identifiers which describe the type of data that the object represents.

The following declaration uses compute[5] as the declarator:
extern long int compute[5];

volatile and const Qualifiers

The volatile qualifier maintains consistency of memory access to data objects. It
tells the compiler that the variable should always contain its current value even
when optimized. This is necessary so the variable can be queried when an
exception occurs. OS/390 C/C++ reads volatile objects from memory each time it
needs their value, and writes back to memory each time they are changed.

Declarators

120 OS/390 V2R6.0 C/C++ Language Reference

The volatile qualifier is useful for data objects that have values that can change in
ways unknown to your program (such as the system clock). Do not change or
move portions of an expression that reference volatile objects.

The const qualifier explicitly declares a data object as a data item that you cannot
change. OS/390 C/C++ sets its value at initialization. You cannot use const data
objects in expressions that require a modifiable lvalue. For example, a const data
object cannot appear on the left side of an assignment statement. (An lvalue is an
expression whose address you can take; you can examine or change the object that
the lvalue represents. For more information on lvalues, see “lvalues” on page 136.)

These type qualifiers are only meaningful in expressions that are lvalues.

For a volatile or const pointer, you must put the keyword between the * and the
identifier. For example:
int * volatile x; /* x is a volatile pointer to an int */
int * const y = &z; /* y is a const pointer to the int variable z */

For a pointer to a volatile or const data object, the type specifier, qualifier, and
storage class specifier can be in any order. For example:
volatile int *x; /* x is a pointer to a volatile int */

or
int volatile *x; /* x is a pointer to a volatile int */

const int *y; /* y is a pointer to a const int */

or
int const *y; /* y is a pointer to a const int */

In the following example, the pointer to y is a constant. You can change the value
that y points to, but you cannot change the value of y:
int * const y

In the following example, the value to which y points is a constant integer and you
cannot change it. However, you can change the value of y:
const int * y

For other types of volatile and const variables, the position of the keyword
within the definition (or declaration) is less important. For example:
volatile struct omega {

int limit;
char code;

} group;

The above example provides the same storage as:
struct omega {

int limit;
char code;

} volatile group;

In both examples, only the structure variable group receives the volatile qualifier.
Similarly, if you specified the const keyword instead of volatile, only the
structure variable group receives the const qualifier. The const and volatile
qualifiers when applied to a structure, union, or class also apply to the members of
the structure, union, or class.

Declarators

Chapter 5. Declarations 121

|
|
|

Although enumeration, structure, and union variables can receive the volatile or
const qualifier, enumeration, structure, and union tags do not carry the volatile
or const qualifier. For example, the blue structure does not carry the volatile
qualifier:
volatile struct whale {

int weight;
char name[8];

} beluga;
struct whale blue;

The keywords volatile and const cannot separate the keywords enum, struct, and
union from their tags.

You can declare or define a volatile or const function only if it is a C++ member
function. You can define or declare any function to return a pointer to a volatile
or const function.

You can put more than one qualifier on a declaration, but you cannot specify the
same qualifier more than once on a declaration.

_Packed Qualifier (C Only)

OS/390 C/C++ stores data elements of structure and unions in memory on an
address boundary specific for that data type. For example, a double value is stored
in memory on a doubleword (8-byte) boundary. There may be gaps left in memory
between structure and union elements to align elements on their natural
boundaries. You can reduce the padding of bytes within a structure or union by
packing.

The _Packed qualifier removes padding between members of structures and affects
the alignment of unions whenever possible. However, the storage that is saved
using packed structures and unions may come at the expense of run time
performance. Most machines access data more efficiently if the data aligns on
appropriate boundaries. With packed structures and unions, members are generally
not aligned on natural boundaries. The result is that operations using the
class-member access operators (. and ->) are slower.

Note: OS/390 C/C++ aligns pointers on their natural boundaries, 4 bytes, even in
packed structures and unions.

You can only use _Packed with structures or unions. If you use _Packed with other
types, OS/390 C/C++ generates a warning message, and the qualifier has no effect
on the declarator it qualifies. Packed and nonpacked structures and unions have
different storage layouts.

You cannot perform comparisons between packed and nonpacked structures, or
unions of the same type. Packed and nonpacked structures or unions cannot be
assigned to each other, regardless of their type.

You cannot pass a packed union or packed structure as a function parameter if the
function expects a nonpacked version. If the function expects a packed structure or
a packed union, you cannot pass a nonpacked version as a function parameter.

Declarators

122 OS/390 V2R6.0 C/C++ Language Reference

|

|
|

|

If you specify the _Packed qualifier on a structure or union that contains a
structure or union as a member, the qualifier is not passed on to the contained
structure or union. See “Pragma Directives (#pragma)” on page 243 for more
information on #pragma pack.

__cdecl Keyword (C++ Only)

Use the __cdecl keyword to set linkage conventions for function calls in C++
applications. You can use the __cdecl linkage keyword at any language level. The
__cdecl keyword instructs the compiler to read and write a parameter list by using
C linkage conventions.

To set the __cdecl calling convention for a function, place the linkage keyword
immediately before the function name or at the beginning of the declarator. For
example:
void __cdecl f();
char (__cdecl *fp) (void);

OS/390 C/C++ allows the __cdecl keyword on member functions and nonmember
functions. These functions can be static or non-static. It also allows the keyword on
pointer-to-member function types and the typedef specifier.

Note: The compiler accepts both _cdecl and __cdecl (both single and double
underscore).

Following is an example:
// C++ nonmember functions
void __cdecl f1();
static void __cdecl f2();

// pointer to member function type
char (__cdecl *A::mfp) (void);

// typedef
typedef void (* _cdecl void_fcn)(int);
// C++ member functions
class A {
public:
void __cdecl func();
static void __cdecl func1();

}

// Template member functions
template <class T> X {
public:
void __cdecl func();
static void __cdecl func1();

}

// Template functions
template <class T> T __cdecl foo(T i) {return i+1;}
template <class T> T static _cdecl foo2(T i) {return i+1;}

Semantics of __cdecl

The __cdecl linkage keyword only affects parameter passing; it does not prevent
function name mangling. Therefore, you can still overload functions with
non-default linkage. Note that you only acquire linkage by explicitly using the
__cdecl keyword. It overrides the linkage that it inherits from an extern "linkage"
specification.

Declarators

Chapter 5. Declarations 123

Following is an example:
void __cdecl foo(int); // C linkage with name mangled
void __cdecl foo(char); // overload foo() with char is OK

void foo(int(*)()); // overload on linkage of function
void foo(int (__cdecl *)()); // pointer parameter is OK

extern "C++" {
void __cdecl foo(int); // foo() has C linkage with name mangled

}

extern "C" {
void __cdecl foo(int); // foo() has C linkage with name mangled

}

Overrides of a virtual function must have the same linkage as the introducing
function, otherwise an error diagnostic is issued. Following is an example:
class A {

public:
virtual void __cdecl func();

};

class B : public A {
public:
virtual void func(); // error 1731, Function linkage differs

}; // from the overridden function

If the function is redeclared, the linkage keyword must appear in the first
declaration, otherwise OS/390 issues an error diagnostic. Following are two
examples:
int c_cf();
int __cdecl c_cf(); // error 1251, the previous declaration

// did not have a linkage specification

int __cdecl c_cf();
int c_cf(); // OK, the linkage is inherited from

// first declaration

Examples of __cdecl Use

Prior to the Version 2 Release 4 OS/390 C/C++ compiler, the C++ function pointer
could not pass in the C function parameter list as the compiler did not support
__cdecl linkage. The following examples illustrate how you can pass in the C
parameter list by using the __cdecl linkage:

Example 1
/*--*/
/* C++ source file */
/*--*/
//
// C++ Application: passing a C++ function pointer to a C function
//
#include <stdio.h>

void __cdecl callcxx() { // C++ function declares with
printf(" I am a C++ function\n"); // C calling convention

}

void (__cdecl *p1)(); // declare a function pointer
// with __cdecl linkage

extern "C" {
void CALLC(void (__cdecl *pp)()); // declare an extern C function

Declarators

124 OS/390 V2R6.0 C/C++ Language Reference

} // accepting a __cdecl function
// pointer

void main() {
p1 = callcxx; // assign the function pointer

// to a __cdecl function

CALLC(p1); // call the C function with
// the __cdecl function pointer

}

Example 2
/*--*/
/* C source file */
/*--*/

/* */
/* C Routine: receiving a function pointer with C linkage */
/* */
#include <stdio.h>
extern void CALLC(void (*pp)()){

printf(" I am a C function\n");
(*pp)(); // call the function passed in

}

_Export Keyword

Use the _Export keyword (in C++ applications only) with a function name or
external variable to declare that it is be exported (made available to other
modules). For example:

int _Export anthony(float);

The above statement exports the function anthony, if you define the function
within the compilation unit. You must define the function in the same compilation
unit in which you use the _Export keyword.

OS/390 C/C++ allows _Export only at file scope. You cannot use it in a typedef.
You cannot apply the _Export keyword to the return type of a function. For
example, the following declaration causes an error :
int _Export * a(); // error

If the _Export keyword is repeated in a declaration, OS/390 C/C++ issues a
warning when you specify the info(gen) option.

Since _Export is part of the declarator, it affects only the closest identifier. In the
following declaration, _Export only modifies a:
int _Export a, b;

You can use _Export at any language level.

The _Export keyword is an alternative to the #pragma export() directive.

To export member functions, you may apply the _Export keyword to the function
declaration, but the function definition must not be inlined. For example:

Class X {
public:

...
void _Export Print();
...

Declarators

Chapter 5. Declarations 125

};

void X::Print() {
...

}

The above example will cause the function X::Print() to be exported.

C++ Note: It is not possible to export C++ inlined functions even with the #pragma
export() directive.

If the you apply the _Export keyword to a class, then OS/390 C/C++
automatically exports any static members of that class. In the example below, both
X::Print() and X::GetNext() will be exported.

Class _Export X {
public:

...
void Print();
int GetNext();
...

};

void X::Print() {
...

}
int X::GetNext() {

...
}

You can apply the _Export keyword to SOM classes. The function main() cannot be
exported. For a description of #pragma export, see “export” on page 253.

For more information on using DLLs and exporting functions, see the OS/390
C/C++ Programming Guide.

Example Declarators

The following table describes some declarators:

Table 8. Example Declarators
Example Description

int owner owner is an int data object.
int *node node is a pointer to an int data object.
int names[126] names is an array of 126 int elements.
int *action() action is a function returning a pointer to an int.
volatile int min min is an int that has the volatile qualifier.
int * volatile volume volume is a volatile pointer to an int.
volatile int * next next is a pointer to a volatile int.
volatile int * sequence[5] sequence is an array of five pointers to volatile int

objects.
extern const volatile int
op_system_clock

op_system_clock is a constant and volatile integer
with static storage duration and external linkage.

_Packed struct struct_type s s is a packed structure of type struct_type.

Related Information
v “Enumerations” on page 90

v “Pointers” on page 94

Declarators

126 OS/390 V2R6.0 C/C++ Language Reference

v “Arrays” on page 100

v “Structures” on page 106

v “Unions” on page 113

Initializers

An initializer is an optional part of a data declaration that specifies an initial value
of a data object.

An initializer has the form:

ÊÊ »

»

» »

,

(expression)
= expression

,

{ expression }
,

,

{ expression }

ÊÍ

C++ Note: Only C++ allows the form (expression).

The initializer consists of the = symbol that is followed by an initial expression or a
braced list of initial expressions that are separated by commas. The number of
initializers must not be more than the number of elements you will initialize. An
initializer list with fewer initializers than elements, can end with a comma,
indicating that the rest of the uninitialized elements are initialized to zero. The
initial expression evaluates to the first value of the data object.

To assign a value to a scalar object, use the simple initializer: = expression. For
example, the following data definition uses the initializer = 3 to set the initial value
of group to 3:
int group = 3;

For unions, structures, and aggregate classes, the set of initial expressions must be
enclosed in brace brackets ({ }) unless the initializer is a string literal. Aggregate
classes refer to classes with no constructors, base classes, virtual functions, or
private or protected members.

If the initializer of a character string is a string literal, the brace brackets are
optional. You must separate individual expressions by using commas. You can
enclose groups of expressions in braces and separate them by using commas.

In an array, structure, or union that you have initialized using a brace-enclosed
initializer list, OS/390 C/C++ implicitly initializes any members or subscripts that
are not initialized to zero of the appropriate data type.

The section for the data type describes the initialization properties of each data
type.

Declarators

Chapter 5. Declarations 127

C++ Notes:

1. You can use an initializer of the form (expression) to initialize fundamental
types in C++. For example, the following two initializations are identical:
int group = 3;
int group(3);

2. You can also use the (expression) form to initialize C++ classes. See
“Initialization by Constructor” on page 336 for more information on initializing
classes.

3. You can initialize variables at file scope with nonconstant expressions.
ANSI/ISO C does not allow this.

4. If your code jumps over declarations that contain initializations, the compiler
generates an error. For example, the following code is not valid in C++:
goto skiplabel; // error - jumped over declaration
int i = 3; // and initialization of i

skiplabel: i = 4;

5. You can initialize classes in external, static, and automatic definitions. The
initializer contains an equal sign (=) that is followed by a brace-enclosed,
comma-separated, list of values. You do not need to initialize all members of a
class.

The following example explicitly initializes the first eight elements of the array
grid. The remaining four elements that are not explicitly initialized are initialized
as if they were explicitly initialized to zero.
static short grid[3] [4] = {0, 0, 0, 1, 0, 0, 1, 1};

The initial values of grid are:

Element Value Element Value

grid[0] [0] 0 grid[1] [2] 1
grid[0] [1] 0 grid[1] [3] 1
grid[0] [2] 0 grid[2] [0] 0
grid[0] [3] 1 grid[2] [1] 0
grid[1] [0] 0 grid[2] [2] 0
grid[1] [1] 0 grid[2] [3] 0

Related Information
v “Block Scope Data Declarations” on page 70

v “File Scope Data Declarations” on page 71

v “Arrays” on page 100

v “Characters” on page 86

v “Enumerations” on page 90

v “Floating-Point Variables” on page 87

v “Integer Variables” on page 89

v “Pointers” on page 94

v “Structures” on page 106

v “Unions” on page 113

Initializers

128 OS/390 V2R6.0 C/C++ Language Reference

C/C++ Data Mapping

The System/390 architecture has the following boundaries in its memory mapping:
v Byte
v Halfword
v Fullword
v Doubleword

The code that is produced by the C/C++ compiler places data types on natural
boundaries. Some examples are:
v Byte boundary for char
v Byte boundary for decimal(n,p) (C only)
v Halfword boundary for short int
v Fullword boundary for int
v Fullword boundary for long int
v Fullword boundary for pointers
v Fullword boundary for float
v Doubleword boundary for double
v Doubleword boundary for long double

For each external defined variable, the OS/390 C/C++ compiler defines a writeable
static data instance of the same name. The compiler places other external variables,
such as those in programs that you compiled with the NORENT compiler option, in
separate CSECTs that are based on their names.

C++ Function Specifiers

The function specifiers inline and virtual are used only in C++ function
declarations, which are described in “Function Declarations” on page 174.

You can use the function specifier inline to suggest to the compiler that it
incorporate the code of a function into your program code at the point of the call.
For more information, see “C++ Inline Functions” on page 195.

You can only use the function specifier virtual in nonstatic member function
declarations. For more information, see “Virtual Functions” on page 359.

C++ References

A C++ reference is an alias or an alternative name for an object. All operations that
are applied to a reference act on the object the reference refers to. The address of a
reference is the address of the aliased object.

You can define a reference type by placing the & after the type specifier. You must
initialize all references except function parameters when you define them.

Because you pass arguments of a function by value, a function call does not
modify the actual values of the arguments. If a function needs to modify the actual
value of an argument, you must pass the argument by reference. This is as opposed
to being passed by value. You can pass arguments by reference by using either
references or pointers. In C++, this is transparent. Unlike C, C++ does not force
you to use pointers if you want to pass arguments by reference. For example:

C/C+plus; Data Mapping

Chapter 5. Declarations 129

int f(int&);
void main()
{

extern int i;
f(i);

}

You cannot tell from the function call f(i) that it is passing the argument by
reference.

You cannot refer to NULL.

Initializing References

The object that you use to initialize a reference must be of the same type as the
reference. Otherwise, it must be of a type that is convertible to the reference type.
If you initialize a reference to a constant by using an object that requires
conversion, you create a temporary object. The following example creates a
temporary object of type float:
int i;
const float& f = i; // reference to a constant float

Attempting to initialize a nonconstant reference with an object that requires a
conversion is an error.

Once a reference has been initialized, it cannot be modified to refer to another
object. For example:
int num1 = 10;
int num2 = 20;

int &RefOne = num1; // valid
int &RefOne = num2; // error, two definitions of RefOne
RefOne = num2; // assign num2 to num1
int &RefTwo; // error, uninitialized reference
int &RefTwo = num2; // valid

Note that the initialization of a reference is not the same as an assignment to a
reference. Initialization operates on the actual reference by initializing the reference
with the object it is an alias for. Assignment operates through the reference on the
object to which it refers.

You can declare a reference without an initializer:
v When you use it as an argument declaration
v In the declaration of a return type for a function call
v In the declaration of class member within its class declaration
v When you explicitly use the extern specifier.

You cannot have references to any of the following:
v Other references
v Bit fields
v Arrays of references
v Pointers to references

Related Information
v “Passing Arguments by Reference” on page 188

v “Pointers” on page 94

C++ References

130 OS/390 V2R6.0 C/C++ Language Reference

v “Declarators” on page 119

v “Initializers” on page 127

v “Temporary Objects” on page 333

C++ References

Chapter 5. Declarations 131

C++ References

132 OS/390 V2R6.0 C/C++ Language Reference

Chapter 6. Expressions and Operators

Expressions are sequences of operators, operands, and punctuators that specify a
computation. OS/390 C/C++ evaluates expressions based on the operators that the
expressions contain and the context in which they are used.

An expression can result in an lvalue, rvalue, or no value, and can produce side
effects in each case.

C++ Note: You can define C++ operators to behave differently when they are
applied to operands of class type. Refer to this as operator overloading.
This chapter describes the behavior of operators that are not
overloaded. The C language does not permit overloading.

This chapter discusses the following topics:
v “Operator Precedence and Associativity”
v “Operands” on page 135
v “lvalues” on page 136
v “Primary Expressions” on page 136
v “Unary Expressions” on page 142
v “Binary Expressions” on page 152
v “Conditional Expressions” on page 160
v “Assignment Expressions” on page 162
v “Assignment Expressions” on page 162
v “Comma Expression (,)” on page 165

Related Information

v “Chapter 5. Declarations” on page 69

v “Overloading Operators” on page 315

Operator Precedence and Associativity

Two operator characteristics determine how operands group with operators:
precedence and associativity. Precedence is the priority for grouping different types
of operators with their operands. Associativity is the left-to-right or right-to-left
order for grouping operands to operators that have the same precedence.

For example, in the following statements, the value of 5 is assigned to both a and b
because of the right-to-left associativity of the = operator. The value of c is
assigned to b first, and then the value of b is assigned to a.
b = 9;
c = 5;
a = b = c;

Because the above example does not specify the order of subexpression evaluation,
you can explicitly force the grouping of operands with operators by using
parentheses.

© Copyright IBM Corp. 1996, 1998 133

In the following expression, the * and / operations are performed before + because
of precedence. In addition, b is multiplied by c before it is divided by d because of
associativity:
a + b * c / d

The following table lists the C and C++ language operators in order of precedence
and shows the direction of associativity for each operator. In C++, the primary
scope resolution operator (::) has the highest precedence, followed by the other
primary operators. In C, because there is no scope resolution operator, the other
primary operators have the highest precedence. The comma operator has the
lowest precedence. Operators that appear in the same group have the same
precedence.

Operator Name Associativity Operators

Primary scope resolution left to right ::

Primary left to right () [] . ->

Unary right to left ++ -- + - !
˜ & *
(type_name) sizeof new
delete digitsof1

precisionof1

C++ Pointer-to-Member left to right .* −>*

Multiplicative left to right * / %

Additive left to right + -

Bitwise Shift left to right << >>

Relational left to right < > <= >=

Equality left to right == !=

Bitwise Logical AND left to right &

Bitwise Exclusive OR left to right | or ¬

Bitwise Inclusive OR left to right |

Logical AND left to right &&

Logical OR left to right ||

Conditional right to left ? :

Assignment right to left = += -= *= /= <<=
>>= %= &= |= |=

Comma left to right ,

Do not specify the order of evaluation for function call arguments or for the
operands of binary operators. Avoid writing ambiguous expressions such as:
z = (x * ++y) / func1(y);
func2(++i, x[i]);

In the example above, all C language implementations may not evaluate ++y and
func1(y) in the same order. If y had the value of 1 before the first statement, you
will not know whether or not the value of 1 or 2 is passed to func1(). In the
second statement, if i had the value of 1, you will not know whether the first or
second array element of x[] is passed as the second argument to func2().

1. C only

Operator Precedence and Associativity

134 OS/390 V2R6.0 C/C++ Language Reference

The example does not specify the order of grouping operands with operators in an
expression that contains more than one instance of an operator with both
associative and commutative properties. The operators that have the same
associative and commutative properties are: *, +, &, | (or ¦), and | (or ¬). You can
force the grouping of operands by grouping the expression in parentheses.

Examples of Expressions and Precedence

The parentheses in the following expressions explicitly show how the compiler
groups operands and operators. If parentheses do not appear in these expressions,
the compiler groups the operands and operators as indicated by the parentheses.
total = (4 + (5 * 3));
total = (((8 * 5) / 10) / 3);
total = (10 + (5/3));

The above example does not specify the order of grouping operands with
operators that are both associative and commutative. Consequently, the compiler
can group the operands and operators in the following expression:
total = price + prov_tax + city_tax;

It groups them in the following ways:
total = (price + (prov_tax + city_tax));
total = ((price + prov_tax) + city_tax);
total = ((price + city_tax) + prov_tax);

If the values in this expression are integers, the grouping of operands and
operators does not affect the result. Because intermediate values are rounded,
different groupings of floating-point operators may give different results.

In certain expressions, the grouping of operands and operators can affect the result.
For example, in the following expression, each function call might be modifying
the same global variables.
a = b() + c() + d();

This expression can give different results that depend on the order in which the
functions are called.

If the expression contains operators that are both associative and commutative and
the order of grouping operands with operators can affect the result of the
expression, separate the expression into several expressions. For example, the
following expressions could replace the previous expression if the called functions
do not produce any side effects that affect the variable a.
a = b();
a += c();
a += d();

Operands

Most expressions can contain several different, but related, types of operands. The
following type classes describe related types of operands:

Integral Character objects and constants, objects that have
an enumeration type, and objects that have the
type short, int, long, long long, unsigned short,
unsigned int, unsigned long, or unsigned long
long

Operator Precedence and Associativity

Chapter 6. Expressions and Operators 135

|
|
|
|
|

Arithmetic Integral objects and objects that have the type
float, double, and long double.

Scalar Arithmetic objects and pointers to objects of any
type. Also C++ references.

Aggregate Arrays, structures, and unions. Also C++ classes.

Many operators cause conversions from one data type to another. “Chapter 7.
Implicit Type Conversions” on page 167 discusses conversions.

lvalues

An lvalue is an expression whose address you can take. You can examine or change
the object that the lvalue represents. A modifiable lvalue is an expression that
represents an object that you can change. It is typically the left operand in an
assignment expression. For example, array names and const objects are not
modifiable lvalues, but static int objects are.

All assignment operators evaluate their right operand and assign that value to
their left operand. The left operand must evaluate to a reference to an object.

The address operator (&) requires an lvalue as an operand while the increment (++)
and the decrement (--) operators require a modifiable lvalue as an operand.

Examples of lvalues
Expression lvalue

x = 42; x

*ptr = newvalue; *ptr

a++ a

Related Information
v “Dot Operator (.)” on page 141

v “Arrow Operator (−>)” on page 141

v “Assignment Expressions” on page 162

v “Address (&)” on page 144

Primary Expressions

A primary expression can be:
v An identifier
v A qualified class name
v A string literal
v A parenthesized expression
v A constant expression
v A function call
v An array element specification
v A structure or union member specification

Operands

136 OS/390 V2R6.0 C/C++ Language Reference

All primary operators have the same precedence and have left-to-right
associativity.

C++ Scope Resolution Operator (::)

The scope resolution operator (::) is used to qualify hidden names so that you can
still use them. You can use the unary scope operator if an explicit declaration of
the same name in a block or class hides a file scope name, for example:
int i = 10;
int f(int i)
{

return i ? i : :: i; // return global i if local i is zero
}

You can use the class scope operator to qualify class names or class member names.
You can use a hidden class member name by qualifying it with its class name and
the class scope operator. Whenever you follow a class name by a :: operator,
OS/390 C/C++ interprets the name as a class name.

In the following example, the declaration of the variable X hides the class type X.
However, you can still use the static class member count by qualifying it with the
class type X and the scope resolution operator.
#include <iostream.h>
class X
{
public:

static int count;
};
int X::count = 10; // define static data member
void main ()
{

int X = 0; // hides class type X
cout << X::count << endl; // use static member of class X

}

The scope resolution operator is also discussed in “Class Names” on page 283 and
in “Scope of Class Names” on page 286.

Parenthesized Expressions ()

Use parentheses to explicitly force the order of expression evaluation. The
following expression does not contain any parentheses that are used for grouping
operands and operators. The parentheses that surround weight, zipcode form a
function call. Note how the compiler groups the operands and operators in the
expression according to the rules for operator precedence and associativity:
-discount * item + handling(weight, zipcode) < .10 * item

│ | │ │ │ │ │
└───┬───┘ │ └───────────┬───────────┘ └────┬───┘

└────┬─────┘ │ │
└──────────┬──────────┘ │

└───────────────────────────────┘

The following expression is similar to the previous expression, but it contains
parentheses that change the grouping of the operands and operators:

Primary Expressions

Chapter 6. Expressions and Operators 137

(-discount * (item + handling(weight, zipcode))) < (.10 * item)

│ │ | │ │ │ │
└───┬───┘ │ └──────────┬────────────┘ └─────┬────┘

│ └────────┬────────┘ │
└───────┬─────────┘ │

└───┘

In an expression that contains both associative and commutative operators, you
can use parentheses to specify the grouping of operands with operators. The
parentheses in the following expression guarantee the order of grouping operands
with the operators:
x = f + (g + h);

Constant Expressions

A constant expression is an expression with a value that may be determined during
compilation. It cannot be changed at runtime, it can only be evaluated. You can
compose a constant expression with the following:
v Integer constants
v Character constants
v Floating-point constants
v Enumeration constants
v Address constants
v Other constant expressions

Some constant expressions, such as string literals or address constants, are lvalues.

The C and C++ languages require integral constant expressions in the following
places:
v In the subscript declarator, as the description of an array bound
v After the keyword case in a switch statement
v In an enumerator, as the numeric value of an enum constant
v In a bit-field width specifier
v In the preprocessor #if statement (enumeration constants, address constants,

and sizeof cannot be specified in the preprocessor #if statement.)
v In the initializer of a file scope data definition.

In all these contexts, except for an initializer of a file scope data definition, the
constant expression can contain integer, character, and enumeration constants, casts
to integral types, and sizeof expressions. You can initialize function-scope static
and extern declarations.

In a file scope data definition, the initializer must evaluate to a constant or to the
address of a static storage (extern or static) object (plus or minus an integer
constant) that is defined or declared earlier in the file. The constant expression in
the initializer can contain the following:
v integer, character, enumeration, and float constants
v casts to any type
v sizeof expressions
v unary address expressions (static objects only)

OS/390 C/C++ does not allow functions, class objects, pointers, and references
unless they occur in sizeof expressions. Comma operators and assignment
operators cannot appear in constant expressions.

Primary Expressions

138 OS/390 V2R6.0 C/C++ Language Reference

Examples of Constant Expressions

The following examples show constants that are used in expressions.

Expression Constant

x = 42; 42
extern int cost = 1000; 1000
y = 3 * 29; 3 * 29

Function Calls ()

A function call is a primary expression that contains a simple type name and a
parenthesized argument list. The argument list can contain any number of
expressions that are separated by commas. It can also be empty.

For example:
stub()
overdue(account, date, amount)
notify(name, date + 5)
report(error, time, date, ++num)

OS/390 C/C++ evaluates the arguments, and initializes each formal parameter
with the value of the corresponding argument. The semantics of argument passing
are identical to those of assignments. Assigning a value to a formal parameter
within the function body changes the value of the parameter within the function,
but has no effect on the argument.

The type of a function call expression is the return type of the function. The return
statement in the function definition determines the return value. The result of a
function call is an lvalue only if the function returns a reference. A function can
call itself.

If you want a function to change the value of a variable, pass a pointer to the
variable you want changed. When a pointer is passed as a parameter, the pointer is
copied; the object pointed to is not copied. (See “Pointers” on page 94.)

OS/390 C/C++ converts arguments that are arrays and functions to pointers before
passing them as function arguments.

Arguments passed to nonprototyped C functions undergo conversions. OS/390
C/C++ converts short or char parameters to int, and float parameters to double.
Use a cast expression for other conversions. (See “Cast Expressions” on page 145
for more information.)

An implicit declaration of extern int func(); is assumed. Consequently, in C
only, if a function definition has external linkage and a return type of int, you can
make calls to the function before you explicitly declare it. This is not true in C++.

The compiler compares the data types that are provided by the calling function
with the data types that the called function expects. The compiler also performs
type conversions if the declaration of the function is either:
v In function prototype format and the parameters differ from the prototype

OR
v Visible at the point where you call the function.

Primary Expressions

Chapter 6. Expressions and Operators 139

For example, the declaration of funct is a prototype. When you call function funct,
OS/390 C/C++ converts parameter f to a double, and parameter c to an int:
char * funct (double d, int i);

/* ... */
void main(void)
{

float f;
char c;

funct(f, c) /* f is a double, c is an int */
}

The order in which parameters are evaluated is not specified. Avoid such calls as:
method(sample1, batch.process--, batch.process);

In this example, the compiler may evaluate batch.process-- last, causing the last
two arguments to be passed with the same value.

In the following example, main passes func two values: 5 and 7. The function func
receives copies of these values and accesses them by the identifiers: a and b. The
function func changes the value of a. When control passes back to main, the actual
values of x and y are not changed. The called function func only receives copies of
x and y, not the values themselves.

CBC3X06C
/**
** This example illustrates function calls
**/

#include <stdio.h>

void func (int a, int b);
int main(void)
{

int x = 5, y = 7;

func(x, y);
printf("In main, x = %d y = %d\n", x, y);

}
return(0);

void func (int a, int b)
{

a += b;
printf("In func, a = %d b = %d\n", a, b);

}

This program produces the following output:
In func, a = 12 b = 7
In main, x = 5 y = 7

See “Chapter 8. Functions” on page 173 for detailed characteristics of functions.

Array Subscript [] (Array Element Specification)

A primary expression followed by an expression in [] (square brackets) specifies
an element of an array. You can refer to the expression within the square brackets
as a subscript.

The primary expression must have a pointer type, and the subscript must have
integral type. The result of an array subscript is an lvalue.

Primary Expressions

140 OS/390 V2R6.0 C/C++ Language Reference

The first element of each array has the subscript 0. The expression contract[35]
refers to the 36th element in the array contract.

In a multidimensional array, you can reference each element (in the order of
increasing storage locations) by incrementing the rightmost subscript most
frequently.

For example, the following statement gives the value 100 to each element in the
array code[4][3][6]:
for (first = 0; first <= 3; ++first)

for (second = 0; second <= 2; ++second)
for (third = 0; third <= 5; ++third)

code[first][second][third] = 100;

Consider the following expression:
*((exp1) + (exp2))

By definition, the above expression is identical to the following expression:
exp1[exp2]

The above expression is also identical to the following:
exp2[exp1]

“Arrays” on page 100 explains how to define and use an array.

Dot Operator (.)

Use the . (dot) operator to access structure or C++ class members that use a
structure object. Specify the member by using a primary expression, followed by a
. (dot) operator, followed by a name. For example:

roster[num].name
roster[num].name[1]

The primary expression must be an object of type class, struct, or union. The
name must be a member of that object.

The value of the expression is the value of the selected member. If the primary
expression and the name are lvalues, the expression value is also an lvalue.

For more information on class members, see “Chapter 12. C++ Class Members and
Friends” on page 291. See also “Unions” on page 113 and “Structures” on page 106.

Arrow Operator (−>)

Use the -> (arrow) operator to access structure or C++ class members using a
pointer. A primary expression, that is followed by an -> (arrow) operator, that is
followed by a name, designates a member of the object to which the pointer points.
For example:

roster -> name

The primary expression must be a pointer to an object of type class, struct, or
union. The name must be a member of that object.

Primary Expressions

Chapter 6. Expressions and Operators 141

The value of the expression is the value of the selected member. If the name is an
lvalue, the expression value is also an lvalue.

For more information on class members, see “Chapter 12. C++ Class Members and
Friends” on page 291. See also “Unions” on page 113 and “Structures” on page 106.

Unary Expressions

A unary expression contains one operand and a unary operator. All unary operators
have the same precedence and have right-to-left associativity.

As indicated in the following descriptions, you can perform the usual arithmetic
conversions on the operands of most unary expressions. See “Arithmetic
Conversions” on page 170 for more information.

The following table summarizes the operators for unary expressions:

Increment (++) Decrement (--) Unary Plus (+)
Unary Minus (-) Logical Negation (!) Bitwise Negation (˜)
Address (&) Indirection (*) Cast (type_name)
sizeof digitsof precisionof
new delete throw

Increment (++)

The increment operator (++) adds 1 to the value of an operand. If the operand is a
pointer, it increments the operand by the size of the object to which it points. The
operand receives the result of the increment operation. The operand must be a
modifiable lvalue of arithmetic or pointer type.

You can put the ++ before or after the operand. If it appears before the operand,
OS/390 C/C++ increments the operand, and uses the incremented value in the
expression. If you put the ++ after the operand, OS/390 C/C++ uses the value of
the operand in the expression before it increments the operand. For example:
play = ++play1 + play2++;

is equivalent to the following three expressions:
play1 = play1 + 1;
play = play1 + play2;
play2 = play2 + 1;

C++ Note: C++ distinguishes between prefix and postfix forms of the increment
operator: The result of a C++ postfix increment has the same type as
the operand, except for possible integral promotion, but is not an
lvalue. The result of a C++ prefix increment has the same type as the
operand, except for possible integral promotion, and is an lvalue. The C
language makes no such distinction. The result in C has the same type
as the operand, except for possible integral promotion, but is not an
lvalue.

You can perform the usual arithmetic conversions on the operand. See “Arithmetic
Conversions” on page 170.

Primary Expressions

142 OS/390 V2R6.0 C/C++ Language Reference

Decrement (−−)

The decrement operator (--) subtracts 1 from the value of an operand. If the
operand is a pointer, it decreases the operand by the size of the object to which it
points. The operand receives the result of the decrement operation. The operand
must be a modifiable lvalue.

You can put the decrement operator before or after the operand. If it appears
before the operand, OS/390 C/C++ decrements the operand, and uses the
decremented value in the expression. If the -- appears after the operand, the
current value of the operand is used in the expression and the operand is
decremented.

For example:
play = --play1 + play2--;

is equivalent to the following three expressions:
play1 = play1 - 1;
play = play1 + play2;
play2 = play2 - 1;

C++ Note: C++ distinguishes between prefix and postfix forms of the decrement
operator. The result of a C++ postfix decrement has the same type as
the operand, except for possible integral promotion, but is not an
lvalue. The result of a C++ prefix decrement has the same type as the
operand, except for possible integral promotion, and is an lvalue. The C
language makes no such distinction. The result in C has the same type
as the operand, except for possible integral promotion, but is not an
lvalue.

OS/390 C/C++ performs the usual arithmetic conversions on the operand. See
“Arithmetic Conversions” on page 170.

Unary Plus (+)

The unary plus operator (+) maintains the value of the operand. The operand can
have any arithmetic type. The result is not an lvalue.

The result has the same type as the operand, except for possible integral
promotion.

Note: Any plus sign in front of a constant is not part of the constant.

Unary Minus (−)

The unary minus operator (-) negates the value of the operand. The operand can
have any arithmetic type. The result is not an lvalue.

For example, if quality has the value 100, -quality has the value -100.

The result has the same type as the operand, except for possible integral
promotion.

Note: Any minus sign in front of a constant is not part of the constant.

Unary Expressions

Chapter 6. Expressions and Operators 143

Logical Negation (!)

The logical negation operator (!) determines whether the operand evaluates to 0
(false) or nonzero (true). The expression yields the value 1 (true) if the operand
evaluates to 0. It yields the value 0 (false) if the operand evaluates to a nonzero
value. The operand must have a scalar data type, but the result of the operation
has always type int and is not an lvalue.

The following two expressions are equivalent:
!right;
right == 0;

Bitwise Negation (˜)

The bitwise negation operator (˜) yields the bitwise complement of the operand. In
the binary representation of the result, every bit has the opposite value of the same
bit in the binary representation of the operand. The operand must have an integral
type. The result has the same type as the operand, but is not an lvalue.

Suppose a short integer x represents the decimal value 5. The 16-bit binary
representation of x is:
0000000000000101

The expression ˜x yields the following result (that is represented here as a 16-bit
binary number):
1111111111111010

Note that you can represent the ˜ character by the trigraph ??-.

The 16-bit binary representation of ˜0 is:
1111111111111111

Address (&)

The address operator (&) yields a pointer to its operand. The operand must be an
lvalue, a function designator, or a qualified name. It cannot be a bit field, nor can it
have the storage class register.

If the operand is an lvalue or function, the resulting type is a pointer to the
expression type. For example, if the expression has type int, the result is a pointer
to an object that has type int.

If the operand is a qualified name and the member is not static, the result is a
pointer to a member of class. It has the same type as the member. The result is not
an lvalue.

Suppose you define p_to_y as a pointer to an int, and you define y as an int. The
following expression assigns the address of the variable y to the pointer p_to_y:
p_to_y = &y;

Refer to “Pointers” on page 94 for related information.

C++ Note: You can use the & operator with overloaded functions only in an
initialization or assignment where the left side uniquely determines

Unary Expressions

144 OS/390 V2R6.0 C/C++ Language Reference

which version of the overloaded function is used. For more
information, see “Overloading Functions” on page 311.

Indirection (*)

The indirection operator (*) determines the value to which the pointer-type
operand points.

The operand cannot be a pointer to an incomplete type. The operation yields an
lvalue or a function designator if the operand points to a function. OS/390 C/C++
converts arrays and functions to pointers.

The type of the operand determines the type of the result. For example, if the
operand is a pointer to an int, the result has type int.

Do not apply the indirection operator to any pointer that contains an address that
is not valid, such as NULL. The result is not defined.

Suppose you define p_to_y as a pointer to an int, and you define y as an int.
Then, following the expressions cause the variable y to receive the value 3:
p_to_y = &y;
*p_to_y = 3;

See also “Pointers” on page 94.

Cast Expressions

Use the cast operator for explicit type conversions. The cast operator converts the
value of the operand to a specified data type and performs the necessary
conversions to the operand for the type.

For C, the operand must be scalar, and the type must be either scalar or void. For
C++, the operand can have class type. If the operand has class type, you can cast it
to any type for which the class has a user-defined conversion function.
“Conversion Functions” on page 335 describes user-defined conversion functions.

The result of a cast is not an lvalue unless the cast is to a reference type. When you
cast to a reference type, OS/390 C/C++ does not perform user-defined
conversions, and the result is an lvalue.

There are two types of casts that take one argument:
v C-style casts, with the format (X)a. Both C and C++ allow these casts.
v function-style casts with one argument, such as X(a). Only C++ allows these

casts.

Both types of casts convert the argument a to the type X. In C++, they can invoke a
constructor, if the target type is a class, or they can invoke a conversion function, if
the source type is a class. They can be ambiguous if both conditions hold.

A function-style cast with no arguments, such as X(), creates a temporary object of
type X. If X is a class with constructors, the default constructor X::X() is called.

Unary Expressions

Chapter 6. Expressions and Operators 145

A function-style cast with more than one argument, such as X(a,b), creates a
temporary object of type X. This object must be a class with a constructor that takes
two arguments of types compatible with the types of a and b. The constructor is
called with a and b as arguments.
v For more information on implicit conversions that use constructors, see

“Conversion by Constructor” on page 335.

v You can also do explicit conversions using conversion functions. For more
information, see “Conversion Functions” on page 335.

v “Standard Type Conversions” on page 167 describes implicit conversions using
standard types.

sizeof (Size of an Object)

The sizeof operator yields the size in bytes of the operand. You cannot use the
sizeof operation on the following:
v A bit field
v A function
v An undefined structure or class
v An incomplete type (such as void)

The operand can be the parenthesized name of a type or an expression.

The compiler must be able to evaluate the size at compile time. The expression is
not evaluated; there are no side effects. For example, the value of b is 5 from
initialization to the end of program runtime:
#include <stdio.h>

int main(void){
int b = 5;
sizeof(b++);
return(0);

}

The result is an integer constant.

The size of a char object is the size of a byte. For example, if a variable x has type
char, the expression sizeof(x) always evaluates to 1.

The result of a sizeof operation has type size_t. This type is an unsigned integral
type that the <stddef.h> header file defines.

The size of an object is determined on the basis of its definition. The sizeof
operator does not perform any conversions. If the operand contains operators that
perform conversions, the compiler does take these conversions into consideration.
The compiler performs the usual arithmetic conversions due to the following
expression. The result of the expression x + 1 has type int (if x has type char,
short, or int or any enumeration type). It is equivalent to sizeof(int):
sizeof (x + 1);

Except in preprocessor directives, you can use a sizeof expression wherever you
require an integral constant. A very common use for the sizeof operator is to
determine the size of objects that are referred to during storage allocation, input,
and output functions.

Unary Expressions

146 OS/390 V2R6.0 C/C++ Language Reference

Another use of sizeof is in porting code across platforms. You should use the
sizeofoperator to determine the size that a data type represents, for example:
sizeof(int);

Using the sizeof operator with decimal(n,p) results in the total number of bytes
that are occupied by the decimal type. OS/390 C/C++ implements decimal data
types using the native packed decimal format. Each digit occupies half a byte. The
sign occupies an additional half byte. The following example gives you a result of
6 bytes:
sizeof(decimal(10,2));

C++ Notes: The result of a sizeof expression depends on the type to which it is
applied:

An array The result is the total number of bytes
in the array. For example, in an array
with 10 elements, the size is equal to
10 times the size of a single element.
The compiler does not convert the
array to a pointer before evaluating
the expression.

A class The result is always nonzero. It is
equal to the number of bytes in an
object of that class including any
padding required for placing class
objects in an array.

A reference The result is the size of the referenced
object.

digitsof and precisionof (C Only)

The digitsof and precisionof operators yield information about decimal types or
an expressions of the decimal type. The <decimal.h> header file defines the
digitsof and precisionof macros.

The digitsof operator gives the number of significant digits of an object, and
precisionof gives the number of decimal digits. That is,

digitsof(decimal(n,p)) = n
precisionof(decimal(n,p)) = p

The results of the digitsof and precisionof operators are integer constants. See
“Fixed-Point Decimal Constants (C Only)” on page 63 and “Fixed-Point Decimal
Data Types (C Only)” on page 88 for more information about decimal types.

C++ new Operator

The new operator provides dynamic storage allocation. The syntax for an allocation
expression that contains the new operator is:

ÊÊ
::

new
(argument_list)

(type)
new_type

Ê

Unary Expressions

Chapter 6. Expressions and Operators 147

Ê
(initial_value)

ÊÍ

If you prefix new with the scope resolution operator (::), your program uses the
global operator new(). If you specify an argument_list, your program uses the
overloaded new operator that corresponds to that argument_list. The type is an
existing built-in or user-defined type. A new_type is a type that you have not
already defined. It can include type specifiers and declarators.

Use an allocation expression that contains the new operator to find storage in free
store for the object you are creating. The new expression returns a pointer to the
object created. You can use it to initialize the object. If the object is an array, it
returns a pointer to the initial element.

You can use the routine set_new_handler() to change the default behavior of new.
See “set_new_handler() — Set Behavior for new Failure” on page 150 for more
information.

You cannot use the new operator to allocate function types, void, or incomplete
class types because these are not object types. However, you can allocate pointers
to functions with the new operator. You cannot create a reference with the new
operator.

When the created object is an array, only the first dimension can be a general
expression. All subsequent dimensions must be constant integral expressions. The
first dimension can be a general expression even when you are using an existing
type. You can create an array with zero bounds with the new operator. The
following example returns a pointer to a unique object:
char * c = new char[0];

An object created with operator new() or operator new[]() exists until the
program ends, or you call the operator delete() or operator delete[](). These
calls destroy the objects and deallocate the memory pointed to.

If you use parentheses within a new_type, they should also surround the new_type
to prevent syntax errors. In the following example, OS/390 C++ allocates storage
for an array of pointers to functions:
void f();
void g();
void main()
{

void (**p)(), (**q)();
// declare p and q as pointers to pointers to void functions
p = new (void (*[3])());
// p now points to an array of pointers to functions
q = new void(*[3])(); // error
// error - bound as 'q = (new void) (*[3])();'
p[0] = f; // p[0] to point to function f
q[2] = g; // q[2] to point to function g
p[0](); // call f()
q[2](); // call g()

}

However, the second new causes an erroneous binding of:
q = (new void) (*[3])()

Unary Expressions

148 OS/390 V2R6.0 C/C++ Language Reference

The type of the created object cannot contain class declarations, enumeration
declarations, or const or volatile types. It can contain pointers to const or
volatile objects.

For example, you can use const char*, but not char* const.

You can supply additional arguments to new by using the argument_list, also called
the placement syntax. If you use placement arguments, a declaration of operator
new() or operator new[]() with these arguments must exist. For example:
#include <stddef.h>
class X
{
public:

void* operator new(size_t,int, int){ /* ... */ }
};
// .
// .
// .
void main ()
{

X* ptr = new(1,2) X;
}

For more information on the class member operator new() and operator new[]()
function, see “Overloaded new and delete” on page 322 and “Free Store” on
page 330 . For more information on constructing and destructing class objects with
new and delete, see “Constructors and Destructors Overview” on page 325.

Member Functions and the new() and new[]() operators

When an object of a class type is created with the new operator, the member
operator new() function (for objects that are not arrays) or the member operator
new[]() function (for arrays of any number of dimensions) is implicitly called. The
first argument is the amount of space requested.

The following rules determine the storage allocation function that OS/390 C++
uses:
1. If your own operator new[]() exists, the object is an array, and it does not use

the :: (scope resolution) operator, OS/390 C++ uses your operator new[]().
2. If you have not defined an operator new[]() function, the global ::operator

new[]() function defined in <new.h> is used. The allocation expression of the
form ::operator new[]() ensures that the global new operator is called, rather
than your class member operator.

3. If your own operator new() exists, and the object is not an array, and the ::
operator is not used, your operator new() is used.

4. If you have not defined an operator new() function, the global ::operator
new() function defined in <new.h> is used. The allocation expression of the form
::operator new() ensures that the global new operator is called, rather than
your class member operator.

When a nonclass object is created with the new operator, the global ::operator
new() is used.

The order of evaluation of a call to an operator new() is undefined in the
evaluation of arguments to constructors. If operator new() returns 0, the
arguments to a constructor may or may not have been evaluated.

Unary Expressions

Chapter 6. Expressions and Operators 149

Initializing Objects Created with the new Operator

You can initialize objects that are created with the new operator in several ways.
For nonclass objects, or for class objects without constructors, a new initializer
expression can be provided in a new expression by specifying (expression) or ().
For example:
double* pi = new double(3.1415926);
int* score = new int(89);
float* unknown = new float();

If a class has a constructor, you must provide the new initializer when you allocate
any object of that class. The arguments of the new initializer must match the
arguments of a class constructor, unless the class has a default constructor.

You cannot specify an initializer for arrays. You can initialize an array of class
objects only if the class has a default constructor. OS/390 C++ calls the constructor
to initialize each array element (class object).

Initialization using the new initializer is performed only if new successfully
allocates storage.

For more information on the class member operator new() and operator new[]()
function, see “Overloaded new and delete” on page 322 in Special Overloaded
Operators, and “Free Store” on page 330. For more information on constructing and
destructing class objects with new and delete, see “Constructors and Destructors
Overview” on page 325.

set_new_handler() — Set Behavior for new Failure

When the new operator creates a new object, it calls the operator new() or operator
new[]() function to obtain the needed storage.

When new cannot allocate storage to create a new object, it calls a new handler
function if one has been installed by a call to set_new_handler(). The
set_new_handler() function is defined in <new.h>. Use it to call a new handler you
have defined or the default new handler.

The set_new_handler() function has the prototype:
typedef void(*PNH)();
PNH set_new_handler(PNH);

set_new_handler() takes as an argument a pointer to a function (the new handler),
which has no arguments and returns void. It returns a pointer to the previous new
handler function.

If you do not specify your own set_new_handler() function, new returns the NULL
pointer.

The following program fragment shows how you could use set_new_handler() to
return a message if the new operator cannot allocate storage:
#include <iostream.h>
#include <new.h>
void no_storage()
{

cerr << "Operator new failed: no storage is available.\n";
exit(1);

}

Unary Expressions

150 OS/390 V2R6.0 C/C++ Language Reference

main()
{

set_new_handler(&no_storage);
// Rest of program ...

}

If the program fails because new cannot allocate storage, the program exits with the
message:
Operator new failed: no storage is available.

C++ delete Operator

The delete operator destroys the object created with new by deallocating the
memory associated with the object.

The delete operator has a void return type. It has the syntax:

ÊÊ delete object_pointer
::

ÊÍ

The operand of delete must be a pointer returned by new, and cannot be a pointer
to constant. If an attempt to create an object with new fails, the pointer returned by
new will have a zero value. However, it can still be used with delete. Deleting a
null pointer has no effect.

The delete[] operator frees storage allocated for array objects created with new[].
The delete operator frees storage allocated for individual objects created with new.

It has the syntax:

ÊÊ delete [] array
::

ÊÍ

The result of deleting an array object with delete is undefined, as is deleting an
individual object with delete[]. You do not need to specify the array dimensions
with delete[].

The results of attempting to access a deleted object are undefined because the
deletion of an object can change its value.

If you have defined a destructor for a class, delete invokes that destructor.
Whether a destructor exists or not, delete frees the storage pointed to by calling
the function operator delete() of the class if one exists.

The global ::operator delete() is used in the following cases:
v The class has no operator delete().
v The object is of a nonclass type.
v The ::delete expression deletes the object.

The global ::operator delete[]() is used in the following cases:
v The class has no operator delete[]()
v The object is of a nonclass type

Unary Expressions

Chapter 6. Expressions and Operators 151

v The object is deleted with the ::delete[] expression.

The default global operator delete() only frees storage allocated by the default
global operator new(). The default global operator delete[]() only frees storage
allocated for arrays by the default global operator new[]().

For more information on the class member operator new() and operator new[]()
functions, see “Overloaded new and delete” on page 322 in Special Overloaded
Operators, and “Free Store” on page 330. For more information on constructing and
destructing class objects with new and delete, see “Constructors and Destructors
Overview” on page 325.

C++ throw Expressions

A throw expression is used to throw exceptions to C++ exception handlers. It
passes control out of the block enclosing the throw statement to the first C++
exception handler whose catch argument matches the throw expression. A throw
expression is a unary expression of type void.

For more information on the throw expression, see Chapter 17. C++ Exception
Handling.

Binary Expressions

A binary expression contains two operands that are separated by one operator.

Not all binary operators have the same precedence. The table in the section
“Operator Precedence and Associativity” on page 133 shows the order of
precedence among operators. All binary operators have left-to-right associativity.

The order in which the operands of most binary operators are evaluated is not
specified. To ensure correct results, avoid creating binary expressions that depend
on the order in which the compiler evaluates the operands.

As indicated in the following descriptions, OS/390 C++ performs the usual
arithmetic conversions on the operands of most binary expressions. See
“Arithmetic Conversions” on page 170 for more information.

The following table summarizes the operators for binary expressions:

Multiplication (*) Division (/) Remainder (%)
Addition (+) Subtraction (-) Bitwise Shifts (<< >>)
Relational (< > <= >=) Equality (== !=) Bitwise AND (&)
Bitwise Exclusive OR (|) Bitwise Inclusive OR (|) Logical AND (&&)
Logical OR (||) Pointer-to-Member (.* −>*)

Multiplication (*)

The multiplication operator (*) yields the product of its operands. The operands
must have an arithmetic type. The result is not an lvalue. OS/390 C/C++ performs
the usual arithmetic conversions on the operands. See “Arithmetic Conversions” on
page 170.

Unary Expressions

152 OS/390 V2R6.0 C/C++ Language Reference

Because the multiplication operator has both associative and commutative
properties, the compiler can rearrange the operands in an expression that contains
more than one multiplication operator. Consider the following example:
sites * number * cost

The above expression can be interpreted in any of the following ways:
(sites * number) * cost
sites * (number * cost)
(cost * sites) * number

Division (/)

The division operator (/) yields the quotient of its operands. The operands must
have an arithmetic type. The result is not an lvalue.

If both operands are positive integers and the operation produces a remainder,
OS/390 C/C++ ignores the remainder. For example, expression 7 / 4 yields the
value 1 (rather than 1.75 or 2). On all IBM C and C++ compilers, if either operand
is negative, the result is rounded towards zero.

The result is undefined if the second operand evaluates to 0.

OS/390 C/C++ performs the usual arithmetic conversions on the operands. See
“Arithmetic Conversions” on page 170.

Remainder (%)

The remainder operator (%) yields the remainder from the division of the left
operand by the right operand. For example, the expression 5 % 3 yields 2. The
result is not an lvalue.

Both operands must have an integral type. If the right operand evaluates to 0, the
result is undefined. If either operand has a negative value, the result is such that
the following expression always yields the value of a if b is not 0 and a/b is
representable:

(a / b) * b + a % b;

The sign of the remainder is the same as the sign of the quotient.

The usual arithmetic conversions on the operands are performed. See “Arithmetic
Conversions” on page 170.

Addition (+)

The addition operator (+) yields the sum of its operands. Both operands must have
an arithmetic type, or one operand must be a pointer to an object type and the
other operand must have an integral type.

When both operands have an arithmetic type, OS/390 C/C++ performs the usual
arithmetic conversions on the operands. The result has the type produced by the
conversions on the operands and is not an lvalue.

You can add a pointer to an object in an array to a value that has integral type.
The result is a pointer of the same type as the pointer operand. The result refers to

Binary Expressions

Chapter 6. Expressions and Operators 153

another element in the array, offset from the original element by the amount that is
specified by the integral value. If the resulting pointer points to storage that is
outside the array, other than the first location outside the array, the result is
undefined. The compiler does not check the boundary of the pointers. For
example, after the addition, ptr points to the third element of the array:

int array[5];
int *ptr;
ptr = array + 2;

See “Pointer Conversions” on page 168 and “Pointer Arithmetic” on page 97 for
more information about expressions that contain pointers.

Subtraction (−)

The subtraction operator (-) yields the difference of its operands. Both operands
must have an arithmetic type, or the left operand must have a pointer type and the
right operand must have the same pointer type or an integral type. You cannot
subtract a pointer from an integral value.

When both operands have an arithmetic type, OS/390 C/C++ performs the usual
arithmetic conversions on the operands. The result has the type produced by the
conversions on the operands and is not an lvalue.

When the left operand is a pointer and the right operand has an integral type, the
compiler converts the value of the right to an address offset. The result is a pointer
of the same type as the pointer operand.

If both operands are pointers to the same type, the compiler converts the result to
an integral type that represents the number of objects separating the two
addresses. Behavior is undefined if the pointers do not refer to objects in the same
array.

See “Pointer Conversions” on page 168 and “Pointer Arithmetic” on page 97 for
more information about expressions that contains pointers.

Bitwise Left and Right Shift (<< >>)

The bitwise shift operators (<< >>) move the bit values of a binary object. The left
operand specifies the value to shift. The right operand specifies the number of
positions that the bits in the value are shifted. The result is not an lvalue. Both
operands have the same precedence and are left-to-right associative.

Table 9. Bitwise Shift Operators
Operator Usage

<< Indicates the bits are to be shifted to the left.
>> Indicates the bits are to be shifted to the right.

Each operand must have an integral type. The compiler performs integral
promotions on operands with integral type. Then it converts the right operand to
type int. The result has the same type as the left operand (after the arithmetic
conversions).

The right operand should not have a negative value or a value that is greater than
or equal to the width in bits of the expression being shifted. The result of bitwise
shifts on such values is unpredictable.

Binary Expressions

154 OS/390 V2R6.0 C/C++ Language Reference

If the right operand has the value 0, the result is the value of the left operand
(after the usual arithmetic conversions).

The << operator fills vacated bits with zeros. For example, if left_op has the value
4019, the bit pattern (in 16-bit format) of left_op is:
0000111110110011

The expression left_op << 3 yields:
0111110110011000

The following table shows the behavior of the >> operator:

Left Operand Type Result of >>

unsigned type The vacated bits are filled with zeros.

Nonnegative unsigned
type

The integral part of the quotient of the left operand divided by the
quantity 2, raised to the power of the right operand. The vacated
bits of a signed value are filled with a copy of the sign bit of the
unshifted value.

Negative signed type The language does not specify how the vacated bits produced by
the >> operator are filled.

Relational (< > <= >=)

The relational operators (< > <= >=) compare two operands and determine the
validity of a relationship. If the relationship that is stated by the operator is true,
the value of the result is 1. If false, the value of the result is 0. The result is not an
lvalue.

The following table describes the four relational operators:

Table 10. Relational Operators
Operator Usage

< Indicates whether the value of the left operand is less than the value of the
right operand.

> Indicates whether the value of the left operand is greater than the value of
the right operand.

<= Indicates whether the value of the left operand is less than or equal to the
value of the right operand.

>= Indicates whether the value of the left operand is greater than or equal to
the value of the right operand.

Both operands must have arithmetic types or be pointers to the same type. The
result has type int.

If the operands have arithmetic types, OS/390 C/C++ performs the usual
arithmetic conversions on the operands.

When the operands are pointers, the locations of the objects to which the pointer
refer determine the result. If the pointers do not refer to objects in the same array,
the result is not defined.

You can compare a pointer to a constant expression that evaluates to 0. You can
also compare a pointer to a pointer of type void*. OS/390 C/C++ converts the
pointer to a pointer of type void*.

Binary Expressions

Chapter 6. Expressions and Operators 155

If two pointers refer to the same object, you can consider them to be equal. If two
pointers refer to data members of the same union, they have the same address
value.

If two pointers refer to elements of the same array, or to the first element beyond
the last element of an array, the pointer to the element with the higher subscript
value has the higher address value.

You can only compare members of the same object with relational operators.

Relational operators have left-to-right associativity. For example, consider the
following expression:
a < b <= c

OS/390 C/C++ interprets the expression as follows:
(a < b) <= c

If the value of a is less than the value of b, the first relationship is true and yields
the value 1. The compiler then compares the value 1 with the value of c.

Equality (== !=)

The equality operators (== !=), like the relational operators, compare two operands
for the validity of a relationship. The equality operators, however, have a lower
precedence than the relational operators. If the relationship that is stated by an
equality operator is true, the value of the result is 1. Otherwise, the value of the
result is 0.

The following table describes the two equality operators:

Table 11. Equality Operators
Operator Usage

== Indicates whether the value of the left operand is equal to the value of the
right operand.

!= Indicates whether the value of the left operand is not equal to the value of
the right operand.

Both operands must have arithmetic types or be pointers to the same type. Or, one
operand must have a pointer type and the other operand must be a pointer to void
or NULL. The result has type int.

If the operands have arithmetic types, OS/390 C/C++ performs the usual
arithmetic conversions on the operands.

If the operands are pointers, the locations of the objects to which the pointers refer
determines the result.

If one operand is a pointer and the other operand is an integer having the value 0,
the == expression is true only if the pointer operand evaluates to NULL. The !=
operator evaluates to true if the pointer operand does not evaluate to NULL.

You can also use the equality operators to compare pointers to members that are of
the same type but do not belong to the same object. The following expressions
contain examples of equality and relational operators:

Binary Expressions

156 OS/390 V2R6.0 C/C++ Language Reference

time < max_time == status < complete
letter != EOF

Note: Do not confuse the equality operator (==) with the assignment (=) operator.

For example:

if(x == 3) Evaluates to 1 if x is equal to three. You should code
equality tests like this with spaces between the operator and
the operands to prevent unintentional assignments.

while

if(x = 3) OS/390 C/C++ takes this to be true, because (x = 3)
evaluates to a non-zero value (3). The expression also
assigns the value 3 to x.

Bitwise AND (&)

The bitwise AND operator (&) compares each bit of its first operand to the
corresponding bit of the second operand. If both bits are 1’s, OS/390 C/C++ sets
the corresponding bit of the result to 1. Otherwise, it sets the corresponding result
bit to 0.

Both operands must have an integral type. OS/390 C/C++ performs the usual
arithmetic conversions on each operand. The result has the same type as the
converted operands.

Because the bitwise AND operator has both associative and commutative
properties, the compiler can rearrange the operands in an expression that contains
more than one bitwise AND operator.

The following example shows the values of a, b, and the result of a & b
represented as 16-bit binary numbers:

bit pattern of a 0000000001011100
bit pattern of b 0000000000101110
bit pattern of a & b 0000000000001100

Note: Do not confuse the bitwise AND (&) operator with the logical AND (&&)
operator. For example,

1 & 4 evaluates to 0
while

1 && 4 evaluates to 1

Bitwise Exclusive OR (|)

The bitwise exclusive OR operator (|) compares each bit of its first operand to the
corresponding bit of the second operand. If both bits are 1’s or both bits are 0’s,
OS/390 C/C++ sets the corresponding bit of the result to 0. Otherwise, it sets the
corresponding result bit to 1.

Both operands must have an integral type. OS/390 C/C++ performs the usual
arithmetic conversions on each operand. The result has the same type as the
converted operands and is not an lvalue.

Binary Expressions

Chapter 6. Expressions and Operators 157

Because the bitwise exclusive OR operator has both associative and commutative
properties, the compiler can rearrange the operands in an expression that contains
more than one bitwise exclusive OR operator. Note that you can represent the |
character by the trigraph, ??'.

The following example shows the values of a, b, and the result of a | b
represented as 16-bit binary numbers:

bit pattern of a 0000000001011100
bit pattern of b 0000000000101110
bit pattern of a | b 0000000001110010

Note: The bitwise exclusive OR may appear as a ¬ on your screen. For more
information on these symbols, refer to the OS/390 C/C++ Programming Guide.

Bitwise Inclusive OR (|)

The bitwise inclusive OR operator (|) compares the values (in binary format) of
each operand. It yields a value whose bit pattern shows which bits in either of the
operands has the value 1. If both of the bits are 0, the result of that bit is 0;
otherwise, the result is 1.

Both operands must have an integral type. OS/390 C/C++ performs the usual
arithmetic conversions on each operand. The result has the same type as the
converted operands and is not an lvalue.

Because the bitwise inclusive OR operator has both associative and commutative
properties, the compiler can rearrange the operands in an expression that contains
more than one bitwise inclusive OR operator. Note that you can represent the |
character by the trigraph, ??!.

The following example shows the values of a, b, and the result of a | b
represented as 16-bit binary numbers:

bit pattern of a 0000000001011100
bit pattern of b 0000000000101110
bit pattern of a | b 0000000001111110

Note:

v The bitwise OR may appear as a ¦ on your screen. For more information
on these symbols, refer to the OS/390 C/C++ Programming Guide.

v Do not confuse the bitwise OR (|) operator with the logical OR (||)
operator. For example,

1 | 4 evaluates to 5
while

1 || 4 evaluates to 1

Logical AND (&&)

The logical AND operator (&&) indicates whether both operands have a nonzero
value. If both operands have nonzero values, the result has the value 1. Otherwise,
the result has the value 0.

Binary Expressions

158 OS/390 V2R6.0 C/C++ Language Reference

|

|

Both operands must have a scalar type. OS/390 C/C++ performs the usual
arithmetic conversions on each operand. The result has type int and is not an
lvalue.

Unlike the & (bitwise AND) operator, the && operator guarantees left-to-right
evaluation of the operands. If the left operand evaluates to 0, OS/390 C/C++ does
not evaluate the right operand.

The following examples show how the expressions that contain the logical AND
operator are evaluated:

Expression Result

1 && 0 0
1 && 4 1
0 && 0 0

The following example uses the logical AND operator to avoid division by zero:
(y != 0) && (x / y)

The expression x / y is not evaluated when y != 0 evaluates to 0.

Note: The logical AND (&&) should not be confused with the bitwise AND (&)
operator. For example:

1 && 4 evaluates to 1
while

1 & 4 evaluates to 0

Logical OR (||)

The logical OR operator (||) indicates whether either operand has a nonzero value.
If either operand has a nonzero value, the result has the value 1. Otherwise, the
result has the value 0.

Both operands must have a scalar type. The usual arithmetic conversions on each
operand are performed. The result has type int and is not an lvalue.

Unlike the | (bitwise inclusive OR) operator, the || operator guarantees
left-to-right evaluation of the operands. If the left operand has a nonzero value,
OS/390 C/C++ does not evaluate the right operand.

The following examples show how OS/390 C/C++ evaluates expressions that
contain the logical OR operator:

Expression Result

1 || 0 1
1 || 4 1
0 || 0 0

The following example uses the logical OR operator to conditionally increment y:
++x || ++y;

OS/390 C/C++ does not evaluate the expression ++y when the expression ++x
evaluates to a nonzero quantity.

Binary Expressions

Chapter 6. Expressions and Operators 159

Note: The logical OR may appear as a ¦¦ on your screen. For more information on
these symbols, refer to the OS/390 C/C++ Programming Guide.

Note: Do not confuse the logical OR (||) with the bitwise OR (|) operator. For
example:

1 || 4 evaluates to 1
while

1 | 4 evaluates to 5

C++ Pointer-to-Member Operators (.* −>*)

There are two pointer-to-member operators: .* and −>*.

Use the .* operator to dereference pointers to class members. The first operand
must be a class type. If the type of the first operand is class type T, or is a class
that has been derived from class type T, the second operand must be a pointer to a
member of a class type T.

Use the ->* operator to also dereference pointers to class members. The first
operand must be a pointer to a class type. If the type of the first operand is a
pointer to class type T, or is a pointer to a class derived from class type T, the
second operand must be a pointer to a member of class type T.

The .* and ->* operators bind the second operand to the first. This results in an
object or function of the type specified by the second operand.

If the result of .* or ->* is a function, you can only use the result as the operand
for the () (function call) operator. If the second operand is an lvalue, the result of
.* or ->* is an lvalue.

For more information on pointer-to-member operators, see “Pointers to Members”
on page 297.

Conditional Expressions

A conditional expression is a compound expression that contains a condition
(operand1), an expression to be evaluated if the condition has a nonzero value
(operand2), and an expression to be evaluated if the condition has the value 0
(operand3).

Conditional expressions have right-to-left associativity. OS/390 C/C++ evaluates
the left operand first, and then evaluates only one of the remaining two operands.

The conditional expression contains one two-part operator. The ? symbol follows
the condition, and the : symbol appears between the two action expressions.
OS/390 C/C++ treats all expressions that occur between the ? and : as one
expression.

The first operand must have a scalar type. The type of the second and third
operands must be one of the following:
v An arithmetic type
v A compatible pointer, structure, or union type
v void.

Binary Expressions

160 OS/390 V2R6.0 C/C++ Language Reference

The second and third operands can also be a pointer or a null pointer constant.

Two objects are compatible when they have the same type but not necessarily the
same type qualifiers (volatile, or const). Pointer objects are compatible if they
have the same type or are pointers to void.

OS/390 C/C++ evaluates the first operand, and its value determines whether
OS/390 C/C++ evaluates the second or third operand:
v If the value is not equal to 0, it evaluates the second operand.
v If the value is equal to 0, it evaluates the third operand.

The result is the value of the second or third operand.

If the second and third expressions evaluate to arithmetic types, OS/390 C/C++
performs the usual arithmetic conversions on the values. The following tables
show how the types of the second and third operands determine the type of the
result.

Type of Conditional C Expressions

Type of One Operand Type of Other Operand Type of Result

Arithmetic Arithmetic Arithmetic type after usual
arithmetic conversions

Structure or union type Compatible structure or
union type

Structure or union type with
all the qualifiers on both
operands

void void void

Pointer to compatible type Pointer to compatible type Pointer to type with all the
qualifiers specified for the
type

Pointer to type NULL pointer (the constant 0) Pointer to type

Pointer to object or
incomplete type

Pointer to void Pointer to void with all the
qualifiers specified for the
type

Type of Conditional C++ Expressions

Type of One Operand Type of Other Operand Type of Result

Reference to type Reference to type Reference after usual
reference conversions

Class T Class T Class T

Class T Class X Class type for which a
conversion exists. If more
than one possible conversion
exists, the result is
ambiguous.

throw expression Other (type, pointer,
reference)

Type of the expression that is
not a throw expression

Examples of Conditional Expressions

The following expression determines which variable has the greater value, y or z,
and assigns the greater value to the variable x:
x = (y > z) ? y : z;

Conditional Expressions

Chapter 6. Expressions and Operators 161

The following is an equivalent statement:
if (y > z)

x = y;
else

x = z;

The following expression calls the function printf, which receives the value of the
variable c, if c evaluates to a digit. Otherwise, printf receives the character
constant 'x'.
printf(" c = %c\n", isdigit(c) ? c : 'x');

If the last operand of a conditional expression contains an assignment operator, use
parentheses to ensure that the expression evaluates properly. For example, the =
operator has higher precedence than the ?: operator in the following expression:
int i,j,k;
(i == 7) ? j ++ : k = j;

This expression generates an error because OS/390 C/C++ interprets it as if it
were parenthesized this way:
int i,j,k;
((i == 7) ? j ++ : k) = j;

That is, k is treated as the third operand, not the entire assignment expression k =
j. The error arises because a conditional expression is not an lvalue, and the
assignment is not valid.

To make the expression evaluate correctly, enclose the last operand in parentheses:
int i,j,k;
(i == 7) ? j ++ : (k = j);

Assignment Expressions

An assignment expression stores a value in the object that is designated by the left
operand. There are two types of assignment operators: simple assignment and
compound assignment.

The left operand in all assignment expressions must be a modifiable lvalue. The
type of the expression is the type of the left operand. The value of the expression
is the value of the left operand after the assignment has completed.

In C, the result of an assignment expression is not an lvalue. The result of an
assignment expression is an lvalue in C++.

All assignment operators have the same precedence and have right-to-left
associativity.

Simple Assignment (=)

The simple assignment operator (=) stores the value of the right operand in the
object that is designated by the left operand.

Both operands must have arithmetic types, the same structure type, or the same
union type. Otherwise, both operands must be pointers to the same type, or the
left operand must be a pointer and the right operand must be the constant 0 or
NULL.

Conditional Expressions

162 OS/390 V2R6.0 C/C++ Language Reference

If both operands have arithmetic types, the system converts the type of the right
operand to the type of the left operand before the assignment.

If the right operand is a pointer to a type, the left operand can be a pointer to a
const of the same type. If the right operand is a pointer to a const type, the left
operand must also be a pointer to a const type.

If the right operand is a pointer to a type, the left operand can be a pointer to a
volatile of the same type. If the right operand is a pointer to a volatile type, the
left operand must also be a pointer to a volatile type.

If the left operand is a pointer to a member, the right operand must be a pointer to
a member or a constant expression that evaluates to zero. OS/390 C/C++ converts
the right operand to the type of the left operand before assignment.

If the left operand is an object of reference type, the assignment is to the object that
is denoted by the reference.

If the left operand is a pointer and the right operand is the constant 0, the result is
NULL.

Pointers to void can appear on either side of the simple assignment operator.

A packed structure or union can be assigned to a nonpacked structure or union of
the same type. A nonpacked structure or union can be assigned to a packed
structure or union of the same type.

If one operand is packed and the other is not, OS/390 C/C++ remaps the layout of
the right operand to match the layout of the left. This remapping of structures
might degrade performance. For efficiency, when you perform assignment
operations with structures or unions, you should ensure that both operands are
either packed or nonpacked.

Note: If you assign pointers to structures or unions, the objects they point to must
both be either packed or nonpacked. See “Initializing Pointers” on page 95
for more information on assignments with pointers.

You can assign values to operands with the type qualifier volatile. You cannot
assign a pointer of an object with the type qualifier const to a pointer of an object
without the const type qualifier. For example:
const int *p1;
int *p2;
p2 = p1; /* this is NOT allowed */

p1 = p2; /* this IS allowed */

The following example assigns the value of number to the member employee of the
structure payroll:
payroll.employee = number;

The following example assigns in order the value 0 (zero) to strangeness, the
value of strangeness to charm, the value of charm to beauty, and the value of
beauty to truth:
truth = beauty = charm = strangeness = 0;

Assignment Expressions

Chapter 6. Expressions and Operators 163

Note: The assignment (=) operator should not be confused with the equality
comparison (==) operator. For example:

if(x == 3) Evaluates to 1 if x is equal to three

while

if(x = 3) Is true because (x = 3) evaluates to a non-zero value (3).
The expression also assigns the value 3 to x.

Compound Assignment

The compound assignment operators consist of a binary operator and the simple
assignment operator. They perform the operation of the binary operator on both
operands and give the result of that operation to the left operand.

The following table shows the operand types of compound assignment
expressions:

Operator Left Operand Right Operand

+= or -= Arithmetic Arithmetic

+= or -= Pointer Integral type

*=,/=, and %= Arithmetic Arithmetic

<<=, >>=, &=, |=, and |= Integral type Integral type

Note that the expression:
a *= b + c

is equivalent to:
a = a * (b + c)

and not:
a = a * b + c

The following table lists the compound assignment operators and shows an
expression that uses each operator:

Operator Example Equivalent Expression

+= index += 2 index = index + 2

-= *(pointer++) -= 1 *pointer = *(pointer++) - 1

*= bonus *= increase bonus = bonus * increase

/= time /= hours time = time / hours

%= allowance %= 1000 allowance = allowance % 1000

<<= result <<= num result = result << num

>>= form >>= 1 form = form >> 1

&= mask &= 2 mask = mask & 2

|= test |= pre_test test = test | pre_test

|= flag |= ON flag = flag | ON

Although the equivalent expression column shows the left operands (from the
example column) that OS/390 C/C++ evaluates twice, OS/390 C/C++ evaluates
the left operand only once.

Assignment Expressions

164 OS/390 V2R6.0 C/C++ Language Reference

Comma Expression (,)

A comma expression (,) contains two operands that are separated by a comma.
Although the compiler evaluates both operands, the value of the right operand is
the value of the expression. The compiler evaluates the left operand, possibly
producing side effects, and discards the value. The result of a comma expression is
not an lvalue.

Both operands of a comma expression can have any type. All comma expressions
have left-to-right associativity. OS/390 C/C++ fully evaluates the left operand
before the right operand.

In the following example, if omega has the value 11, the expression increments
delta and assigns the value 3 to alpha:
alpha = (delta++, omega % 4);

Any number of expressions separated by commas can form a single expression.
The compiler evaluates the leftmost expression first. The value of the rightmost
expression becomes the value of the entire expression.

For example, the value of the expression:
intensity++, shade * increment, rotate(direction);

is the value of the expression:
rotate(direction)

The primary use of the comma operator is to produce side effects in the following
situations:
v Calling a function
v Entering or repeating an iteration loop
v Testing a condition
v Other situations where you require a side effect, but not the immediate result of

the expression

To use the comma operator in a context where the comma has other meanings,
such as in a list of function arguments or a list of initializers, you must enclose the
comma operator in parentheses. For example, the following function has only three
arguments: the value of a, the value 5, and the value of c.
f(a, (t = 3, t + 2), c);

The value of the second argument is the result of the comma expression in
parentheses, which has the value 5:
t = 3, t + 2

Comma Expression

Chapter 6. Expressions and Operators 165

The following table gives some examples of the uses of the comma operator:

Statement Effects

for (i=0; i<2; ++i, f()); A for statement in which i is incremented and
f() is called at each iteration.

if (f(), ++i, i>1)
{ /* ... */ }

An if statement in which function f() is called,
variable i is incremented, and variable i is tested
against a value. The first two expressions within
this comma expression are evaluated before the
expression i>1. Regardless of the results of the
first two expressions, the third is evaluated and
its result determines whether the if statement is
processed.

func((++a, f(a))); A function call to func() in which a is
incremented, the resulting value is passed to a
function f(), and the return value of f() is
passed to func(). The function func() is passed
only a single argument, because the comma
expression is enclosed in parentheses within the
function argument list.

Comma Expression

166 OS/390 V2R6.0 C/C++ Language Reference

Chapter 7. Implicit Type Conversions

There are two kinds of implicit type conversions: standard conversions and
user-defined conversions. This chapter describes the standard type conversions that
are listed below:
v “Integral Promotions”
v “Standard Type Conversions”
v “Arithmetic Conversions” on page 170

Related Information

v “Chapter 6. Expressions and Operators” on page 133

v “Chapter 8. Functions” on page 173

v “Cast Expressions” on page 145

v “User-Defined Conversions” on page 334.

Integral Promotions

You can use certain fundamental types wherever you can use an integer. You can
convert the following fundamental types through integral promotion:
v char
v wchar_t
v short int
v enumerators
v objects of enumeration type
v integer bit fields (both signed and unsigned)

Except for wchar_t, if you cannot represent the value by an int, OS/390 C/C++
converts the value to an unsigned int. For wchar_t, if an int can represent all the
values of the original type, OS/390 C/C++ converts the value to the type that can
best represent all the values of the original type. For example, if a long can
represent all the values, the value is converted to a long.

Standard Type Conversions

Many C and C++ operators cause implicit type conversions, which change the type
of a value. When you add values that have different data types, OS/390 C/C++
first converts both values to the same type. For example, when you add a short
int value and an int value together, the compiler converts the short int value to
the int type.

Implicit type conversions can occur when you:
v Prepare an operand for an arithmetic or logical operation
v Assign an lvalue that has a different type than the assigned value
v Provide a prototyped function that has a different type than the parameter
v Specify a value in the return statement of a function that has a different type

from the defined return type for the function

© Copyright IBM Corp. 1996, 1998 167

You can perform explicit type conversions by using the cast operator or the
function style cast. For more information on explicit type conversions, see “Cast
Expressions” on page 145.

Signed-Integer Conversions

The compiler converts a signed integer to a shorter integer. It does this by
truncating the high-order bits and converting the variable to a longer signed
integer by sign-extension.

Conversion of signed integers to floating-point values generally takes place
without loss of information. However, when you convert an int, a long int, or a
long long int value to a float, some precision may be lost. When converting a
long long int type to a float, OS/390 C/C++ rounds to the nearest representable
number. When converting a signed integer to an unsigned integer, OS/390 C/C++
converts the signed integer to the size of the unsigned integer. It interprets the
result as an unsigned value.

When converting a long long int type to packed decimal, the resulting size is
decimal(20,0).

Unsigned-Integer Conversions

You can convert an unsigned integer to a shorter unsigned or signed integer by
truncating the high-order bits. OS/390 C/C++ converts an unsigned integer to a
longer unsigned or signed integer by zero-extending. Zero-extending pads the
leftmost bits of the longer integer with binary zeros.

When you convert an unsigned integer to a signed integer of the same size, no
change in the bit pattern occurs. However, the value changes if you set the sign bit.

Floating-Point Conversions

If you convert a float value to a double, it undergoes no change in value. If you
convert a double to a float OS/390 C/C++ represents it exactly, if possible. If the
compiler cannot exactly represent the double value as a float, the value loses
precision. If the value is too large to fit into a float, the result is undefined.

When OS/390 C/C++ converts a floating-point value to an integer value, it
discards the decimal fraction portion of the floating-point value in the conversion.
If the result is too large for the given integer type, the result of the conversion is
undefined.

Pointer Conversions

OS/390 C/C++ performs pointer conversions when you use pointers. These
conversions include pointer assignment, initialization, and comparison.

You can convert a constant expression that evaluates to zero to a pointer. This
pointer will be a null pointer (pointer with a zero value), and is guaranteed not to
point to any object.

Standard Type Conversions

168 OS/390 V2R6.0 C/C++ Language Reference

|
|
|
|

|
|

You can convert any pointer to an object that is not a const or volatile object to a
void*. You can also convert any pointer to a function to a void*, provided that a
void* has sufficient bits to hold it.

You can generally convert an expression with type array of some type to a pointer
to the initial element of the array. You cannot do this conversion when the
expression is used as the operand of the & (address) operator or the sizeof
operator.

Generally, you can convert an expression with a type of function returning T to a
pointer to a function returning T. You cannot perform this conversion when the
expression is used as the operand of the & (address) operator, the () (function call)
operator, or the sizeof operator.

You can convert an integer value to an address offset.

You can convert a pointer to a class A to a pointer to an accessible base class B of
that class, as long as the conversion is not ambiguous. The conversion is
ambiguous if the expression for the accessible base class can refer to more than one
distinct class. The resulting value points to the base class subobject of the derived
class object. A null pointer (pointer with a zero value) is converted into itself.

For more information on pointer conversions, see “Pointer Arithmetic” on page 97.

Reference Conversions

A reference conversion can be performed wherever a reference initialization occurs,
including reference initialization done in argument passing and function return
values. You can convert a reference to a class to a reference to an accessible base
class of that class, as long as the conversion is not ambiguous. The result of the
conversion is a reference to the base class subobject of the derived class object.

You can perform reference conversion if OS/390 C/C++ allows the corresponding
pointer conversion.

Pointer-to-Member Conversions

Pointer-to-member conversion can occur when you initialize, assign, or compare
pointers to members.

A constant expression that evaluates to zero converts to a distinct pointer to a
member.

Note: A pointer to a member is not the same as a pointer to an object or a pointer
to a function.

You can convert a pointer to a member of a base class to a pointer to a member of
a derived class, if the following conditions are true:
v The conversion is not ambiguous. The conversion is ambiguous if multiple

instances of the base class are in the derived class.
v You can convert a pointer to the derived class to a pointer to the base class. If

this is the case, the base class is accessible. See “Derivation Access of Base
Classes” on page 350 for more information.

Standard Type Conversions

Chapter 7. Implicit Type Conversions 169

For more information, see “Pointers to Members” on page 297 and “C++
Pointer-to-Member Operators (.* −>*)” on page 160.

Function Argument Conversions

If no function prototype declaration is visible when you call a function, the
compiler can perform default argument promotions. These promotions consist of
the following:
v Integral promotions.
v Arguments with type float that convert to type double.

Other Conversions

By definition, the void type has no value. Therefore, you cannot convert it to any
other type. No other value can be converted to void by assignment. However, a
value you can explicitly cast to void.

You cannot convert between structure or union types.

When a packed decimal type is converted to a long long int type, OS/390 C/C++
discards the fractional part.

In C, when you define a value by using the enum type specifier, OS/390 C/C++
treats the value as an int. Conversions to and from an enum value proceed as for
the int type.

In C++, you can convert from an enum to any integral type but not from an integral
type to an enum.

There are no standard conversions between class types.

Arithmetic Conversions

Most C++ operators perform type conversions to bring the operands of an
expression to a common type. Or, they extend short values to the integer size used
in OS/390 operations. The conversions depend on the specific operator and the
type of the operand or operands. However, many operators perform similar
conversions on operands of integer and floating-point types. These standard
conversions are known as the arithmetic conversions because they apply to the types
of values that are ordinarily used in arithmetic.

You can use arithmetic conversions to match the operands of arithmetic operators.

Standard Type Conversions

170 OS/390 V2R6.0 C/C++ Language Reference

|
|

Arithmetic conversion proceeds in the following order:

Operand Type Conversion

One operand has long double type The other operand is converted to long
double type.

One operand has double type The other operand is converted to double.

One operand has float type The other operand is converted to float.

One operand has unsigned long long int
type

The other operand is converted to unsigned
long long int.

One operand has long long int type The other operand is converted to long long
int.

One operand has unsigned long int type The other operand is converted to unsigned
long int.

One operand has unsigned int type and the
other operand has long int type and the
value of the unsigned int can be represented
in a long int

The operand with unsigned int type is
converted to long int.

One operand has unsigned int type and the
other operand has long int type and the
value of the unsigned int cannot be
represented in a long int

Both operands are converted to unsigned
long int

One operand has long int type The other operand is converted to long int.

One operand has unsigned int type The other operand is converted to unsigned
int.

Both operands have int type The result is type int.

Note: On OS/390 C/C++, an int type and a long type are the same length, so
unsigned int cannot be represented by a signed long.

Arithmetic Conversions

Chapter 7. Implicit Type Conversions 171

|
|
|
|

||
|

|
|

Arithmetic Conversions

172 OS/390 V2R6.0 C/C++ Language Reference

Chapter 8. Functions

This chapter describes the structure and use of functions in C and C++.
Specifically, it discusses the following topics:
v “Functions Overview”
v “C++ Enhancements to C Functions”
v “Function Declarations” on page 174
v “The main() Function” on page 184
v “Calling Functions and Passing Arguments” on page 185
v “Default Arguments in C++ Functions” on page 190
v “Function Return Values” on page 192
v “Pointers to Functions” on page 193
v “C++ Inline Functions” on page 195

Related Information

v “Member Functions” on page 293

v “Inline Member Functions” on page 294

v “Chapter 13. C++ Overloading” on page 311

v “Chapter 14. Special C++ Member Functions” on page 325

v “Virtual Functions” on page 359

Functions Overview

Functions specify the logical structure of a program and define how particular
operations are to be implemented. A function declaration consists of a return type, a
name, and an argument list. Use the declaration to declare the format and
existence of a function prior to using the function. A function definition contains a
function declaration and the body of the function. A function can only have one
definition.

Both C++ and ANSI/ISO C use the style of declaration that is called prototyping. A
function prototype refers to the return type, name, and argument list components of
a function. The compiler uses the prototype to check argument types and to
convert arguments. Prototypes can appear several times in a program, if the
declarations are compatible. They allow the C compiler to check for mismatches
between the parameters of a function call and those in the function declaration.

C++ Note: C++ functions must use prototypes. Usually, you place them in header
files, while you place function definitions in source files. Only C allows
functions that do not have prototypes.

C++ Enhancements to C Functions

The C++ language provides many enhancements to C functions. These are:
v Reference arguments, described in “Passing Arguments by Reference” on

page 188

© Copyright IBM Corp. 1996, 1998 173

|

v Default arguments, described in “Default Arguments in C++ Functions” on
page 190

v Reference return types, described in “Using References as Return Types” on
page 193

v Inline functions, described in “C++ Inline Functions” on page 195

v Member functions, introduced in “Member Functions” on page 293

v Overloaded functions, introduced in “Overloading Functions” on page 311

v Operator functions, introduced in “Overloading Operators” on page 315

v Constructor functions and destructor functions, introduced in “Constructors and
Destructors Overview” on page 325

v Conversion functions, introduced in “Conversion Functions” on page 335

v Virtual functions, introduced in “Virtual Functions” on page 359

v Function templates, introduced in “Function Templates” on page 373

Function Declarations

A function declaration establishes the name and the parameters of the function.

ÊÊ
extern
static

linkage_specifier type_specifier
Ê

Ê function_declarator »

,

()
parameter const

volatile

ÊÍ

A C function is declared implicitly by its appearance in an expression if it has not
been defined or declared previously. The implicit declaration is equivalent to a
declaration of extern int func_name(). The default return type of a function is
int. Implicit declarations are only valid in C.

To indicate that the function does not return a value, declare it with a return type
of void.

C++ Note: Only C++ supports the use of the const and volatile specifiers.

C Function Declarations

A function cannot be declared as returning a data object having a volatile or
const type. It can, however, return a pointer to a volatile or const object. Also, a
function cannot return a value that has a type of array or function.

If the called function returns a value that has a type other than int, you must
declare the function before the function call. Even if a called function returns a
type int, explicitly declaring the function prior to its call is good programming
practice.

C++ Enhancements to C Functions

174 OS/390 V2R6.0 C/C++ Language Reference

Some declarations do not have parameter lists; the declarations simply specify the
types of parameters and the return values, such as in the following example:

int func(int,long);

C++ Function Declarations

In C++, you can specify the qualifiers volatile and const in member function
declarations. You can also specify exception specifications in function declarations.
You must declare all C++ functions before you can call them.

You cannot define types in return or argument types. For example, the following
declarations are not valid in C++:
void print(struct X { int i; } x);
//error
enum count{one, two, three} counter(); //error

This example attempts to declare a function print() that takes an object x of class
X as its argument. However, you cannot have the class definition within the
argument list. In the attempt to declare counter(), the enumeration type definition
cannot appear in the return type of the function declaration. The two function
declarations and their corresponding type definitions can be rewritten as follows:
struct X { int i; };
void print(X x);
enum count {one, two, three};
count counter();

Multiple Function Declarations

All function declarations for a particular function must have the same number and
type of arguments, and must have the same return type and the same linkage
keywords. These return and argument types are part of the function type, although
the default arguments are not.

For the purposes of argument matching, consider ellipsis and linkage keywords as
a part of the function type. You must use them consistently in all declarations of a
function. If the only difference between the argument types in two declarations is
in the use of typedef names or unspecified argument array bounds, the
declarations are the same. A const or volatile specifier is also part of the function
type, but can only be part of a declaration. Or it can be part of a nonstatic member
function definition.

Declaring two functions that differ only in return type is not valid function
overloading, and the compiler flags it as an error. For example:
void f();
int f(); // error, two definitions differ only in

// return type
int g()
{

return f();
}

Checking Function Calls

The compiler checks C++ function calls by comparing the number and type of the
actual arguments used in the function call with the number and type of the formal
arguments in the function declaration. It performs implicit type conversion when
necessary.

Function Declaration

Chapter 8. Functions 175

Argument Names in Function Declarations

You can supply argument names in a function declaration, but the compiler
ignores them except in the following two situations:
1. If two argument names have the same name within a single declaration, which

is an error.
2. If an argument name is the same as a name outside the function, the program

hides the name outside the function. You cannot use the name in the argument
declaration.

In the following example, the third argument intersects is meant to have
enumeration type subway_line. The name of the first argument, however, hides
this name. The declaration of the function subway() causes a compile-time error
because subway_line is not a valid type name in the context of the argument
declarations.
enum subway_line {yonge, university, spadina, bloor};
int subway(char * subway_line, int stations,

subway_line intersects);

Examples of Function Declarations

The following example defines the function absolute() with the return type
double. Because this is a noninteger return type, the example declares absolute
prior to the function call.

CBC3RAAV
/**
** This example shows how a function is declared and defined
**/

#include <stdio.h>
double absolute(double);

int main(void)
{

double f = -3.0;

printf("absolute number = %lf\n", absolute(f));

return (0);
}

double absolute(double number)
{

if (number < 0.0)
number = -number;

return (number);
}

Specifying a return type of void on a function declaration indicates that the
function does not return a value. The following example defines the function
absolute() with the return type void. The function main(), declares absolute()
with the return type void.

Function Declaration

176 OS/390 V2R6.0 C/C++ Language Reference

CBC3RAAW
/**
** This example uses a function with a void return type
**/

#include <stdio.h>

int main(void)
{
void absolute(float);
float f = -8.7;

absolute(f);

return(0);
}

void absolute(float number)
{
if (number < 0.0)
number = -number;

printf("absolute number = %f\n", number);
}

The following code fragments show several function declarations. The first
fragment declares a function f that takes two integer arguments and has a return
type of void:

void f(int, int);

The following code fragment declares a function f1(). f1() takes an integer
argument, and returns a pointer to a function that takes an integer argument and
returns an integer:

int (*f1(int))(int);

Alternatively, you can use a typedef for the complicated return type of function
f1():

typedef int pf1(int);
pf1* f1(int);

The following code fragment declares a pointer p1 to a function that takes a
pointer to a constant character and returns an integer:

int (*p1) (const char*);

The following example declares an external function f2(). f2() takes a constant
integer as its first argument, and can have variable numbers and types of other
arguments. It returns type int:

int extern f2(const int ...);

Function f3() takes an int argument with a default value. This is the value that is
returned from function f2(), and that has a return type of int:

const int j = 5;
int f3(int x = f2(j));

See “Default Arguments in C++ Functions” on page 190 for more information
about default function arguments.

Function Declaration

Chapter 8. Functions 177

Function f6() is a constant class member function of class X with no arguments,
and with an int return type:
class X
{
public:

int f6() const;
};

See “const and volatile Member Functions” on page 293 for more information
about constant member functions.

Function f4() takes no arguments, has return type void, and can throw class
objects of types X and Y.
class X;
class Y;
// .
// .
// .
void f4() throw(X,Y);

Function f5() takes no arguments, has return type void, and cannot throw an
exception.
void f5() throw();

Related Information:

v “Declarators” on page 119

v “extern Storage Class Specifier” on page 75

Function Definitions

A function definition contains a function declaration and the body of a function. It
specifies the function name, formal parameters, the return type, and storage class
of the function.

ÊÊ
extern
static

linkage_specifier type_specifier
Ê

Ê function_declarator »

parameter_declaration
block_statement ÊÍ

A function definition (either prototype or nonprototype) contains the following:
v An optional storage class specifier, extern or static, which determines the scope

of the function. If you do not specify a storage class specifier, the function has
external linkage.

v An optional linkage specifier, which determines the linkage of the function. If you
do not specify a linkage specifier, the function has the default linkage.

v An optional type specifier, which determines the type of value that the function
returns. If you do not provide a type specifier, the function has type int.

Function Declaration

178 OS/390 V2R6.0 C/C++ Language Reference

|
|

v A function declarator provides the function with a name. It can further describe
the type of the value that the function returns. The declarator can also list any
parameters that the function expects and their types. It encloses the parameters
that the function expects in parentheses.

v A block statement, which contains data definitions and code.

A nonprototype function definition can also have a list of parameter declarations,
which describe the types of arguments that the function can receive. In
nonprototype functions, parameters that are not declared have type int.

A function can call itself. In addition, other functions can call the function. Unless a
function definition has the storage class specifier static, functions that appear in
other files or modules can also call the function. You can directly invoke functions
with a storage class specifier of static from within the same source file only.

Consider a function that has the storage class specifier static, or a return type
other than int. In this case, the function definition or a declaration for the function
must appear before a call to the function, and must be in the same file as the call.

If a C function definition has external linkage and a return type of int, you can
make calls to the function before it is visible. This is because the compiler assumes
an implicit declaration of extern int func();. This is not true for C++.

All declarations for a given function must be compatible; that is, the return type
must be the same, and the parameters must have the same type.

The default type for the return value and parameters of a function is int, and the
default storage class specifier is extern. If the function does not return a value or if
you do not pass any parameters to it, use the keyword void as the type specifier.

A function can return a pointer or reference to a function, array, or to an object
with a volatile or const type. In C, you cannot declare a function as a struct or
union member. (This restriction does not apply to C++.)

A function cannot have a return type of function or array. In C, a function cannot
return any type that has the volatile or const qualifier. (This restriction does not
apply to C++.)

You cannot define an array of functions. You can, however, define an array of
pointers to functions.

In the following example, ary is an array of two function pointers. The example
type casts the values that are assigned to ary for compatibility:

Function Definitions

Chapter 8. Functions 179

CBC3RAAT
/**
** This example uses an array of pointers to functions
**/

#include <stdio.h>

int func1(void);
void func2(double a);

int main(void)
{

double num;
int retnum;
void (*ary[2]) ();
ary[0] = ((void(*)())func1);
ary[1] = ((void(*)())func2);

retnum=((int (*)())ary[0])(); /* calls func1 */
printf("number returned = %i\n", retnum);
((void (*)(double))ary[1])(num); /* calls func2 */

return(0);
}

int func1(void)
{
int number=3;
return number;
}

void func2(double a)
{
a=333.3333;
printf("result of func2 = %f\n", a);
}

The following example is a complete definition of the function sum:
int sum(int x,int y)
{

return(x + y);
}

The function sum has external linkage and returns an object that has type int. It
has two parameters of type int that are declared as x, and y. The function body
contains a single statement that returns the sum of x and y.

Function Declarator

A function declarator contains an identifier that names a function, and a contains a
list of the function parameters. You should always use prototype function
declarators because you can check the function parameters with them. C++
functions must have prototype function declarators.

Function Declarator Syntax:

ÊÊ

»

declarator (parameter_declaration_list)
,

identifier

ÊÍ

Function Definitions

180 OS/390 V2R6.0 C/C++ Language Reference

Parameter Declaration List Syntax:

ÊÊ » »

,

storage_class_specifier
type_specifier declarator
type_qualifier *

abstract_declarator

Ê

Ê
, ...

ÊÍ

Abstract Declarator Syntax:

ÊÊ »

*
(abstract_declarator)
direct_abstract_declarator

ÊÍ

direct_abstract_declarator:

abstract_declarator []
constant_expression

()
parameter_declaration_list

Prototype Function Declarators: You should declare each parameter within the
function declarator. Any calls to the function must pass the same number of
arguments as there are parameters in the declaration.

Nonprototype Function Declarators: You should declare each parameter in a
parameter declaration list following the declarator. If you do not declare a parameter,
it has type int.

The compiler widens char and short parameters to int, and widens float
parameters to double. The compiler performs no type checking between the
argument type and the parameter type for nonprototyped functions. As well, it
does not check to ensure that the number of arguments matches the number of
parameters.

You should declare each value that a function receives in a parameter declaration
list for nonprototype function definitions that follows the declarator.

A parameter declaration determines the storage class specifier and the data type of
the value.

The only storage class specifier that OS/390 C/C++ allows is the register storage
class specifier. It allows any type specifier for a parameter. If you do not specify
the register storage class specifier, the parameter will have the auto storage class

Function Definitions

Chapter 8. Functions 181

specifier. In C only, if you omit the type specifier and you are not using the
prototype form to define the function, the parameter will have type int, as follows:

int func(i,j)
{

/* i and j have type int */
}

In C only, you cannot declare a parameter in the parameter declaration list if it is
not listed within the declarator.

Ellipsis and void

An ellipsis at the end of a parameter declaration indicates that the number of
arguments is equal to, or greater than, the number of specified argument types. At
least one parameter declaration must come before the ellipsis. Where the compiler
permits, an ellipsis that is preceded by a comma is equivalent to a simple ellipsis.
The comma before the ellipsis is optional in C++ only.

int f(int,...);

For information on how to pass multiple arguments, refer to the sections
describing va_arg, va_end(), and va_end() in OS/390 C/C++ Run-Time Library
Reference.

The compiler promotes parameters as needed, but does not check the types of the
variable arguments.

You can declare a function with no arguments in two ways:
int f(void); // ANSI/ISO C Standard

int f(); // C++ enhancement
// Note: In ANSI/ISO C, this declaration means that
// f may take any number or type or parameters

An empty argument declaration list or the argument declaration list of (void)
indicates a function that takes no arguments. You cannot use void as an argument
type, although you can use types that are derived from void (such as pointers to
void).

In the following example, the function f() takes one integer parameter and returns
no value, while g() expects no parameters and returns an integer.
void f(int);
int g(void);

Function Body

The body of a function is a block statement.

The following function body contains a definition for the integer variable big_num,
an if-else control statement, and a call to the function printf():
void largest(int num1, int num2)
{

int big_num;

if (num1 >= num2)
big_num = num1;

else

Function Definitions

182 OS/390 V2R6.0 C/C++ Language Reference

|
|
|

big_num = num2;

printf("big_num = %d\n", big_num);
}

Examples of Function Declarators

The following example contains a function declarator sort with table and length.
The example declares table as a pointer to int, and declares length as type int.
Note that the compiler implicitly converts arrays as parameters to a pointer to the
type.

CBC3RAAU
/**
** This example illustrates function declarators.
** Note that arrays as parameters are implicitly
** converted to a pointer to the type.
**/

#include <stdio.h>

void sort(int table[], int length);

int main(void)
{

int table[]={1,5,8,4};
int length=4;
printf("length is %d\n",length);
sort(table,length);

}

void sort(int table[], int length)
{
int i, j, temp;

for (i = 0; i < length -1; i++)
for (j = i + 1; j < length; j++)

if (table[i] > table[j])
{
temp = table[i];
table[i] = table[j];
table[j] = temp;

}
}

The following examples contain prototype function declarators:
double square(float x);
int area(int x,int y);
static char *search(char);

The following example illustrates how you can use a typedef identifier in a
function declarator:
typedef struct tm_fmt { int minutes;

int hours;
char am_pm;

} struct_t;
long time_seconds(struct_t arrival)

The following function, set_date, declares a pointer to a structure of type date as a
parameter. date_ptr has the storage class specifier register.

Function Definitions

Chapter 8. Functions 183

set_date(register struct date *date_ptr)
{
date_ptr->mon = 12;
date_ptr->day = 25;
date_ptr->year = 87;

}

Related Information
v “Block” on page 198

v “Function Definitions” on page 178

v “Function Declarations” on page 174

The main() Function

When a program begins running, the system automatically calls the function main,
which marks the entry point of the program. Every program must have one
function named main. You cannot call any other function in the program main. A
main function has the form:

ÊÊ
void
int

main ()
void
parameters

block_statement ÊÍ

By default, main has the storage class extern and a return type of int. You can also
declare main to return void.

In C++, you cannot declare main as inline or static. You cannot call main from
within a program or take the address of main.

Arguments to main

You can declare the function main with or without parameters. Although you can
give any name to these parameters, you can refer to them as argc and argv.

The first parameter, argc (argument count), has type int. It indicates how many
arguments you entered on the command line when running the program.

The second parameter, argv (argument vector), has type array of pointers to char
array objects. char array objects are null-terminated strings.

The value of argc indicates the number of pointers in the array argv. If a program
name is available, the first element in argv points to a character array. This array
contains the program name or the invocation name of the program you are
running. If the name cannot be determined, the first element in argv points to a
null character.

The compiler counts this name as one of the arguments to the function main. For
example, if you only enter the program name on the command line, argc has a
value of 1, and argv[0] points to the program name.

Regardless of the number of arguments that are entered on the command line,
argv[argc] always contains NULL.

Function Definitions

184 OS/390 V2R6.0 C/C++ Language Reference

Example of Arguments to main

The following program backward prints the arguments entered on a command line
such that the last argument is printed first:
#include <stdio.h>
int main(int argc, char *argv[])
{
while (--argc > 0)
printf(“%s ”, argv[argc]);

}

Consider invoking this program from a command line with the following:
backward string1 string2

This gives the following output:
string2 string1

The arguments argc and argv would contain the following values:

Object Value

argc 3
argv[0] pointer to string “backward”
argv[1] pointer to string “string1”
argv[2] pointer to string “string2”
argv[3] NULL

Note: Be careful when entering mixed case characters on a command line because
some environments are not case sensitive. Also, the exact format of the
string pointed to by argv[0] is system dependent.

Related Information
v “Calling Functions and Passing Arguments”

v “Parameter Declaration List Syntax” on page 181

v “Type Specifiers” on page 85

v “Identifiers” on page 56

v “Block” on page 198

Calling Functions and Passing Arguments

A function call specifies a function name and a list of arguments. The calling
function passes the value of each argument to the specified function. The argument
list is surrounded by parentheses, and each argument is separated by a comma.
The argument list can be empty. When you call a function, OS/390 C/C++ uses
the actual arguments to initialize the formal arguments.

The type of an actual argument is checked against the type of the corresponding
formal argument in the function prototype. All standard and user-defined type
conversions are applied, as necessary.

main()

Chapter 8. Functions 185

For example:
#include <iostream.h>
#include <math.h>
extern double root(double, double); // declaration
double root(double value, double base) // definition
{

double temp = exp(log(value)/base);
return temp;

}
void main()
{

int value = 144;
int base = 2;
// Call function root and print return value
cout << "The root is: " << root(value,base) << endl;

}

The output is The root is: 12

In the above example, the function root is expecting arguments of type double.
Consequently, the two int arguments, value and base, are implicitly converted to
type double when you call the function.

The arguments to a function are evaluated before the function is called. When a
function call passes an argument, the function receives a copy of the argument
value. If the value of the argument is an address, the called function can use
indirection to change the contents to which the address points. In a case like
f(g(x)), a function is used as an argument. Consequently, OS/390 C/C++
evaluates the function g(x), and uses the result of the evaluation as the argument
for function f.

If you pass an array as an argument, OS/390 C/C++ uses a pointer to the array as
the argument.

OS/390 C/C++ converts arguments that are passed to parameters in prototype
declarations to the declared parameter type. For nonprototype function
declarations, OS/390 C/C++ promotes the char and short arguments to int, and
float to double.

You cannot pass a packed structure argument to a function that expects a
nonpacked structure of the same type and vice versa. (The same applies to packed
and nonpacked unions.)

The order in which arguments are evaluated and passed to the function is
implementation-defined.

For example, the following sequence of statements calls the function tester:
int x;
x = 1;
tester(x++, x);

The call to tester in the example may produce different results on different
compilers. Depending on the implementation, OS/390 C/C++ may evaluate x++
first, or it may evaluate x first. To avoid the ambiguity and have x++ evaluated
first, replace the preceding sequence of statements with the following:
int x, y;
x = 1;
y = x++;
tester(y, x);

Calling Functions and Passing Arguments

186 OS/390 V2R6.0 C/C++ Language Reference

Passing Arguments in C++

In C++, if you pass a nonstatic class member function as an argument, OS/390
C/C++ converts the argument to a pointer-to-the-member.

Consider a class that has a destructor or a copy constructor that does more than a
bitwise copy. Passing a class object by value results in the construction of a
temporary constructor that is actually passed by reference.

It is an error when a function argument is a class object and all of the following
properties hold:
v The class needs a copy constructor
v The class does not have a user-defined copy constructor
v You cannot generate a copy constructor for that class

For more information on copy constructors, see “Constructors” on page 326.

Examples of Calling Functions

The following statement calls the function startup and passes no parameters:
startup();

The following function call causes copies of a and b to be stored in a local area for
the function sum(). The function sum() runs using the copies of a and b.
sum(a, b);

The following function call passes the value 2 and the value of the expression
a + b to sum():
sum(2, a + b);

The following statement calls the functions printf() and sum(). The function
printf() receives a character string and the return value of sum(). The function
sum() receives the values of a and b:
printf("sum = %d\n", sum(a,b));

The following program passes the value of count to the function increment.
increment increases the value of the parameter x by 1.

CBC3RAAX
/**
** This example shows how an argument is passed to a function
**/

#include <stdio.h>

void increment(int);

int main(void)
{
int count = 5;

/* value of count is passed to the function */
increment(count);
printf("count = %d\n", count);

return(0);
}

Calling Functions and Passing Arguments

Chapter 8. Functions 187

void increment(int x)
{
++x;
printf("x = %d\n", x);

}

The output illustrates that the value of count in main remains unchanged:
x = 6
count = 5

In the following example, main passes the address of count to increment. This
example has changed the function increment to handle the pointer. It declares the
parameter x as a pointer. The contents to which x points are then incremented.

CBC3RAAY
/**
** This example shows how an address is passed to a function
**/

#include <stdio.h>

int main(void)
{
void increment(int *x);
int count = 5;

/* address of count is passed to the function */
increment(&count);
printf("count = %d\n", count);

return(0);
}

void increment(int *x)
{
++*x;
printf("*x = %d\n", *x);

}

The output shows that the above example increases the variable count:
*x = 6
count = 6

Passing Arguments by Reference

The term pass-by-reference describes a general method of passing arguments from a
calling routine to a called routine. If you use a reference type as a formal
argument, you can make a pass-by-reference call to a function. In a
pass-by-reference call, you can modify the values of arguments in the calling
function in the called function. In pass-by-value calls, you can only pass copies of
the arguments to the function.

C++ Note: The term reference in the context of C++ refers to a specific way of
declaring objects and functions.

You cannot pass ellipsis arguments as references.

When the actual argument cannot be referenced directly by the formal argument,
the compiler creates a temporary variable that is referenced by the formal

Calling Functions and Passing Arguments

188 OS/390 V2R6.0 C/C++ Language Reference

argument. It is initialized using the value of the actual argument. In this case, the
formal argument must be a const reference.

You can use reference arguments declared const to pass large objects efficiently to
functions. You do not need to make a temporary copy of the object that is passed
to the function. Because you declare the reference as const, the function cannot
change the actual arguments, for example:
void printbig (const bigvar&); // Function prototype

When you call the function printbig, it cannot modify the object of type bigvar
because a constant reference passes the object.

The following example shows how arguments are passed by reference. Note that
OS/390 C/C++ initializes the reference formal arguments with the actual
arguments, when you call the function.

CBC3X06A
/**
** This example shows how arguments are passed by reference
**/

#include <iostream.h>
void swapnum(int &i, int &j)
{

int temp = i;
i = j;
j = temp;

}
// .
// .
// .
main()
{

int a = 10, // a is 10
b = 20; // b is 20

swapnum(a,b); // now a is 20 and b is 10
cout << "A is :" << a

<< "and B is :"
<< b << endl;

}

When the function swapnum() is called, the actual values of the variables a and b
are exchanged because they are passed by reference. The output is:
A is : 20 and B is : 10

For the values of the actual arguments to be modified by the function swapnum(),
you must define the formal arguments of swapnum() as references.

Calling Functions and Passing Arguments

Chapter 8. Functions 189

Default Arguments in C++ Functions

In C++, you can provide default values for function arguments. All default
argument names of a function are bound by declaring the function. OS/390 C/C++
checks the types of all functions at declaration, and evaluates them at each point of
call.

CBC3X06B
/**
** This example illustrates default function arguments
**/

#include <iostream.h>
int a = 1;
int f(int a) {return a;}
int g(int x = f(a)) {return f(a);}

int h()
{

a=2;
{

int a = 3;
return g();

}
}

main()
{

cout << h() << endl;
}

In this example, the a referred to in the declaration of g() is the one at file scope. It
has the value 2 when g() is called. Consequently, this example prints 2 to standard
output. The value of a is determined after entry into function h(), but before the
call to g() is resolved.

A default argument can have any type.

A pointer to a function must have the same type as the function. Attempts to take
the address of a function by reference without specifying the type of the function
produce an error. Arguments with default values do not affect the type of a
function.

The following example shows that a function with default arguments does not
change its type. The default argument allows you to call a function without
specifying all of the arguments. It does not allow you to create a pointer to the
function that does not specify the types of all the arguments. You can call function
f without an explicit argument, but you cannot define the pointer badpointer
without specifying the type of the argument:
int f(int = 0);
void g()
{

int a = f(1); // ok
int b = f(); // ok, default argument used

}
int (*pointer)(int) = &f; // ok, type of f() specified (int)
int (*badpointer)() = &f; // error, badpointer and f have

// different types. badpointer must
// be initialized with a pointer to
// a function taking no arguments.

Default Arguments in C++ Functions

190 OS/390 V2R6.0 C/C++ Language Reference

Restrictions on Default Arguments

Of the operators, only the function call operator and the operator new can have
default arguments when you overloaded them.

Arguments with default values must be the trailing arguments in the function
declaration argument list. For example:
void f(int a, int b = 2, int c = 3); // trailing defaults
void g(int a = 1, int b = 2, int c); // error, leading defaults
void h(int a, int b = 3, int c); // error, default in middle

Once you provide a default argument in a declaration or definition, you cannot
redefine that argument, even to the same value. However, you can add default
arguments that are not given in previous declarations. For example, the last
declaration below attempts to redefine the default values for a and b:
void f(int a, int b, int c=1); // valid
void f(int a, int b=1, int c); // valid, add another default
void f(int a=1, int b, int c); // valid, add another default
void f(int a=1, int b=1, int c=1); // error, redefined defaults

You can supply any default argument values in the function declaration or in the
definition. All subsequent arguments must have default arguments supplied in this
declaration, or a previous declaration of the function.

You cannot use local variables in default argument expressions. For example, the
C++ compiler generates errors for both function g() and function h() below:
void f(int a)
{

int b=4;
void g(int c=a); // Local variable "a" inaccessible
void h(int d=b); // Local variable "b" inaccessible

}

Evaluating Default Arguments

When you call a function that is defined with default arguments with the trailing
arguments missing, OS/390 C/C++ evaluates the default expressions, for example:
void f(int a, int b = 2, int c = 3); // declaration
// ...
int a = 1;
f(a); // same as call f(a,2,3)
f(a,10); // same as call f(a,10,3)
f(a,10,20); // no default arguments

OS/390 C/C++ checks the default arguments against the function declaration and
evaluates them when you call the function. The order of default argument
evaluation is undefined. Default argument expressions cannot use formal
arguments of a function, for example:
int f(int q = 3, int r = q); // error

The value of q may not be known when it is assigned to r. Consequently, the
argument r cannot be initialized with the value of the argument q. Consider
rewriting the above function declaration as follows:
int q=5;
int f(int q = 3, int r = q); // error

Default Arguments in C++ Functions

Chapter 8. Functions 191

In the above example, the value of r in the function declaration still produces an
error because the variable q defined outside of the function is hidden by the
argument q declared for the function. Similarly:
typedef double D;
int f(int D, int z = D(5.3)); // error

Here, the compiler interprets the type D within the function declaration as the
name of an integer. The example hides the type D in the argument D. The cast
D(5.3) is therefore not interpreted as a cast because D is the name of the argument
not a type.

In the following example, you cannot use the nonstatic member a as an initializer.
The member a does not exist until an object of class X is constructed. You can use
the static member b as an initializer, because OS/390 C++ creates b independently
of any objects of class X. You can declare the member b after you use it as a default
argument. The default values are not analyzed until after the final brace, }, of the
class declaration.
class X
{

int a;
f(int z = a) ; // error
g(int z = b) ; // valid
static int b;

};

You must put parentheses around default argument expressions that contain
template references:
class C {

void f(int i = X<int,5>::y);
};

In the above example, the C++ compiler cannot process the default argument
X<int,5>::y until the end of the class. Consequently, it cannot tell that the <
represents the start of a template argument list and not the less than operator.

To avoid error messages, put parentheses around the expression that contains the
default argument:
class C {

void f(int i = (X<int,5>::y));
};

Function Return Values

A value must be returned from a function unless the function has a return type of
void. A return statement specifies the return value. The following code fragment
shows a function definition, including the return statement:
int add(int i, int j)
{
return i + j; // return statement

}

The function add() can be called, as shown in the following code fragment:
int a = 10,

b = 20;
int answer = add(a, b); // answer is 30

Default Arguments in C++ Functions

192 OS/390 V2R6.0 C/C++ Language Reference

In this example, the return statement initializes a variable of the returned type. The
example initializes the variable answer with the int value 30. The compiler checks
the type of the returned expression against the returned type. It performs all
standard and user-defined conversions, as necessary.

The following return statements show different ways of returning values to a
caller:
return; // Returns no value
return result; // Returns the value of result
return 1; // Returns the value 1
return (x * x); // Returns the value of x * x

Other than main(), if a function that does not have type void returns without a
value (as in the first return statement shown in the example above) the result
returned is undefined. In C++, the compiler issues an error message as well.

If main has a return type of int, and does not contain a return expression, it returns
the value zero.

Each time a function is called, new copies of its local variables are created. You can
reuse the storage for a local variable after the function has terminated.
Consequently, the function should not return a pointer to a local variable, or a
reference to a local variable.

If the function returns a class object, you may create a temporary object if the class
has copy constructors or a destructor. For more information, see “Temporary
Objects” on page 333.

Using References as Return Types

References can also be used as return types for functions. The reference returns the
lvalue of the object to which it refers. This allows you to place function calls on the
left side of assignment statements. Use referenced return values when overloading
assignment operators and subscripting. This way, you can use the results of the
overloaded operators as actual values.

Note: Returning a reference to an automatic variable gives unpredictable results.

For more information, see “Special Overloaded Operators” on page 319.

Pointers to Functions

A pointer to a function points to the address of the function’s executable code. You
can use pointers to call functions and to pass functions as arguments to other
functions. You cannot perform pointer arithmetic on pointers to functions. Use the
__cdecl keyword to declare a pointer to a function as a C linkage. For more
information, refer to “__cdecl Keyword (C++ Only)” on page 123.

Both the return type and argument types of the function determine the type of a
pointer to a function.

A declaration of a pointer to a function must have the pointer name in
parentheses. Without them, the compiler interprets the statement as a function that
returns a pointer to a specified return type. For example:

Function Return Values

Chapter 8. Functions 193

int *f(int a); // function f returning an int*
int (*g)(int a); // pointer g to a function returning an int

In the first declaration, OS/390 C/C++ interprets f as a function that takes an int
as argument. It returns a pointer to an int. In the second declaration, OS/390
C/C++ interprets g as a pointer to a function that takes an int argument and that
returns an int.

Under OS/390 C/C++, if you pass a function pointer to a function, or the function
returns a function pointer, the declared or implied linkages must be the same. Use
the extern keyword with declarations in order to specify different linkages. Refer
to “extern Storage Class Specifier” on page 75 for more information.

The following example illustrates the correct and incorrect uses of function
pointers under OS/390 C/C++ :
#include <stdlib.h>

extern "C" int cf();
extern "C++" int cxxf(); // C++ is included here for clarity;

// it is not required; if it is
// omitted, cxxf() will still have
// C++ linkage.

extern "C" int (*c_fp)();
extern "C++" int (*cxx_fp)();
typedef int (*dft_fp_T)();
typedef int (dft_f_T)();

extern "C" {
typedef void (*cfp_T)();
typedef int (*cf_pT)();
void cfn();
void (*cfp)();

}

extern "C++" {
typedef int (*cxxf_pT)();
void cxxfn();
void (*cxxfp)();

}

extern "C" void f_cprm(int (*f)()) {
int (*s)() = cxxf; // error, incompatible linkages-cxxf has

// C++ linkage, s has C linkage as it
// is included in the extern "C" wrapper

cxxf_pT j = cxxf; // valid, both have C++ linkage
int (*i)() = cf; // valid, both have C linkage

}

extern "C++" void f_cxprm(int (*f)()) {
int (*s)() = cf; // error, incompatible linkages-cf has C

// linkage, s has C++ linkage as it is
// included in the extern "C++" wrapper

int (*i)() = cxxf; // valid, both have C++ linkage
cf_pT j = cf; // valid, both have C linkage

}

main() {

c_fp = cxxf; // error - c_fp has C linkage and cxxf has
// C++ linkage

cxx_fp = cf; // error - cxx_fp has C++ linkage and
// cf has C linkage

dft_fp_T dftfpT1 = cf; // error - dftfpT1 has C++ linkage and
// cf has C linkage

Pointers to Functions

194 OS/390 V2R6.0 C/C++ Language Reference

dft_f_T *dftfT3 = cf; // error - dftfT3 has C++ linkage and
// cf has C linkage

dft_fp_T dftfpT5 = cxxf; // valid
dft_f_T *dftfT6 = cxxf; // valid

c_fp = cf; // valid
cxx_fp = cxxf; // valid
f_cprm(cf); // valid
f_cxprm(cxxf); // valid

// The following errors are due to incompatible linkage of function
// arguments, type conversion not possible
f_cprm(cxxf); // error - f_cprm expects a parameter with

// C linkage, but cxxf has C++ linkage
f_cxprm(cf); // error - f_cxprm expects a parameter

// with C++ linkage, but cf has C linkage
}

For OS/390, linkage compatibility affects all C library functions that accept a
function pointer as a parameter. The qsort() function is an example of these
functions (see “extern Storage Class Specifier” on page 75 for a sample program).
Refer to the OS/390 C/C++ Run-Time Library Reference for more information.

For more information on pointers, see “Pointers” on page 94 and “Pointer
Conversions” on page 168.

C++ Inline Functions

Use inline functions to reduce the overhead of a normal function call. Use the
inline function specifier, or define a member function within a class or structure
definition to declare a function.

The inline specifier is a suggestion to the C++ compiler that it can perform an
inline expansion. Instead of transferring control to and from the function code
segment, you may directly substitute a modified copy of the function body for the
function call.

You can declare and simultaneously define an inline function. If you declared the
function with the keyword inline, you can declare it without a definition. The
following code fragment shows an inline function definition. Note that the
definition includes both the declaration and body of the inline function.
inline int add(int i, int j) { return i + j; }

Both member functions and nonmember functions can be inline, and both have
internal linkage.

The use of the inline specifier does not change the meaning of the function. The
inline expansion of a function may not preserve the evaluation order of the actual
arguments.

Pointers to Functions

Chapter 8. Functions 195

C++ Inline Functions

196 OS/390 V2R6.0 C/C++ Language Reference

Chapter 9. Statements

This chapter describes the C and C++ language statements that are listed below:
v “Labels”
v “Block” on page 198
v “break” on page 200
v “continue” on page 202
v “do” on page 203
v “Expression” on page 205
v “for” on page 206
v “goto” on page 208
v “if” on page 209
v “null” on page 210
v “return” on page 211
v “switch” on page 212
v “while” on page 216

Related Information

v “Scope in C” on page 35

v “Scope in C++” on page 46

v “Chapter 5. Declarations” on page 69

v “Chapter 6. Expressions and Operators” on page 133

v “Chapter 8. Functions” on page 173

Labels

A label is an identifier that allows your program to transfer control to other
statements within the same function. It is the only type of identifier that has
function scope. Control is transferred to the statement following the label by means
of the goto or switch statements.

A labelled statement has the form:

ÊÊ identifier : statement ÊÍ

The label is the identifier and the colon (:) character.

The case and default labels can only appear within the body of a switch
statement.

Examples
comment_complete : ; /* null statement label */
test_for_null : if (NULL == pointer)

© Copyright IBM Corp. 1996, 1998 197

Related Information
v “Scope in C” on page 35

v “Scope in C++” on page 46

v “goto” on page 208

v “switch” on page 212

Block

A block statement, or compound statement, lets you group any number of data
definitions, declarations, and statements into one statement. The compiler treats all
definitions, declarations, and statements that are enclosed within a single set of
braces as a single statement. You can use a block wherever a single statement is
allowed.

A block statement has the form:

ÊÊ » »{ }
type_definition statement
file_scope_data_declaration
block_scope_data_declaration

ÊÍ

In C, any definitions and declarations must come before the statements.

Redefining a data object inside a nested block hides the outer object while the
inner block runs. If a data object is usable within a block and your program does
not redefine its identifier, all nested blocks can use that data object.

Initialization within Block Statements

Initialization of an auto or register variable occurs each time the block is run
from the beginning. If you transfer control from one block to the middle of another
block, initializations are not always performed. You cannot initialize an extern
variable within a block.

You only initialize an auto or static local object once, when control passes
through its declaration for the first time. OS/390 C/C++ initializes a static
variable that is initialized with an expression other than a constant expression to 0
before entering its block for the first time.

C++ Note: Unlike ANSI/ISO C, in C++, jumping over a declaration or definition
that contains an initializer is an error. For example, the following code
produces an error in C++:
goto skiplabel;
int i=3 // error, jumped over declaration of i with initializer
skiplabel: i=4;

Labels

198 OS/390 V2R6.0 C/C++ Language Reference

When control exits from a block, all objects with destructors that are defined in the
block are destroyed. Your program calls the destructor for an auto or a static local
object, only if it constructed the object. Your program must call the destructor
before, or as part of, the atexit function.

Your program also destroys local variables that are declared in a block on exit. It
destroys automatic variables defined in a loop at each iteration.

Example

The following program shows how the values of data objects change in nested
blocks:

CBC3RAA1
1 /**
2 ** This example shows how data objects change in nested blocks.
3 **/
4 #include <stdio.h>
5
6 int main(void)
7 {
8 int x = 1; /* Initialize x to 1 */
9 int y = 3;

10
11 if (y > 0)
12 {
13 int x = 2; /* Initialize x to 2 */
14 printf("second x = %4d\n", x);
15 }
16 printf("first x = %4d\n", x);
17
18 return(0);
19 }

The program produces the following output:
second x = 2
first x = 1

The function main defines two variables that are named x. The definition of x on
line 8 retains storage while main is running. However, because the definition of x
on line 13 occurs within a nested block, line 14 recognizes x as the variable defined
on line 13. Because line 16 is not part of the nested block, the compiler recognizes
x as the variable defined on line 8.

Related Information
v “Block Scope Data Declarations” on page 70

v “File Scope Data Declarations” on page 71

v “Storage Class Specifiers” on page 73

v “Type Specifiers” on page 85

Block

Chapter 9. Statements 199

break

A break statement lets you end an iterative statement (do, for, while) or a switch
statement, and exit from it at any point other than the logical end.

A break statement has the form:

ÊÊ break ; ÊÍ

In an iterative statement, the break statement ends the loop and moves control to
the next statement outside the loop. Within nested statements, the break statement
ends only the smallest enclosing do, for, switch, or while statement.

In a switch body, the break passes control out of the switch body to the next
statement outside the switch body.

Restrictions

A break statement can only appear in the body of an iterative statement or a
switch statement.

Examples

The following example shows a break statement in the action part of a for
statement. If the ith element of the array string is equal to '\0', the break
statement causes the for statement to end.
for (i = 0; i < 5; i++)
{

if (string[i] == '\0')
break;

length++;
}

The following is an equivalent for statement, if string does not contain any
embedded null characters:
for (i = 0; (i < 5)&& (string[i] != '\0'); i++)
{

length++;
}

The following example shows a break statement in a nested iterative statement.
The outer loop goes through an array of pointers to strings. The inner loop
examines each character of the string. When OS/390 C/C++ processes the break
statement, the inner loop ends and control returns to the outer loop.

CBC3RAA2
/**
** This program counts the characters in the strings that are
** part of an array of pointers to characters. The count stops
** when one of the digits 0 through 9 is encountered
** and resumes at the beginning of the next string.
**/

#include <stdio.h>
#include <ctype.h>

break

200 OS/390 V2R6.0 C/C++ Language Reference

#define SIZE 3

int main(void)
{

static char *strings[SIZE] = { "ab", "c5d", "e5" };
int i;
int letter_count = 0;
char *pointer;

for (i = 0; i < SIZE; i++) /* for each string */
/* for each character */

for (pointer = strings[i]; *pointer != '\0'; ++pointer)
{ /* if a number */

if (isnum(*pointer))
break;

letter_count++;
}

printf("letter count = %d\n", letter_count);

return(0);
}

The program produces the following output:
letter count = 4

The following example is a switch statement that contains several break
statements. Each break statement indicates the end of a specific clause and ends
the switch statement.

CBC3RAA
/**
** This example shows a switch statement with break statements.
**/

#include <stdio.h>

enum {morning, afternoon, evening} timeofday = morning;

int main(void) {

switch (timeofday) {
case (morning):

printf("Good Morning\n");
break;

case (evening):
printf("Good Evening\n");
break;

default:
printf("Good Day, eh\n");

}
}

Related Information
v “do” on page 203

v “for” on page 206

v “switch” on page 212

v “while” on page 216

break

Chapter 9. Statements 201

continue

A continue statement lets you end the current iteration of a loop. Program control is
passed from the continue statement to the end of the loop body.

A continue statement has the form:

ÊÊ continue ; ÊÍ

The continue statement ends the processing of the action part of an iterative (do,
for, or while) statement. It also moves control to the condition part of the
statement. If the iterative statement is a for statement, control moves to the third
expression in the condition part of the statement. It then moves to the second
expression (the test) in the condition part of the statement.

Within nested statements, the continue statement ends only the current iteration of
the do, for, or while statement immediately enclosing it.

Restrictions

A continue statement can only appear within the body of an iterative statement.

Examples

The following example shows a continue statement in a for statement. The
continue statement causes processing to skip over those elements of the array
rates that have values less than or equal to 1.

CBC3RAA3
/**
** This example shows a continue statement in a for statement.
**/

#include <stdio.h>
#define SIZE 5

int main(void)
{

int i;
static float rates[SIZE] = { 1.45, 0.05, 1.88, 2.00, 0.75 };

printf("Rates over 1.00\n");
for (i = 0; i < SIZE; i++)
{

if (rates[i] <= 1.00) /* skip rates <= 1.00 */
continue;

printf("rate = %.2f\n", rates[i]);
}

return(0);
}

The program produces the following output:
Rates over 1.00
rate = 1.45
rate = 1.88
rate = 2.00

continue

202 OS/390 V2R6.0 C/C++ Language Reference

The following example shows a continue statement in a nested loop. When the
inner loop encounters a number in the array strings, that iteration of the loop
ends. Processing continues with the third expression of the inner loop. The inner
loop ends when it encounters the ’\0’ escape sequence.

CBC3RAA4
/**
** This program counts the characters in strings that are part
** of an array of pointers to characters. The count excludes
** the digits 0 through 9.
**/

#include <stdio.h>
#include <ctype.h>
#define SIZE 3

int main(void)
{

static char *strings[SIZE] = { "ab", "c5d", "e5" };
int i;
int letter_count = 0;
char *pointer;
for (i = 0; i < SIZE; i++) /* for each string */

/* for each character */
for (pointer = strings[i]; *pointer != '\0'; ++pointer)
{ /* if a number */

if (isnum(*pointer))
continue;

letter_count++;
}

printf("letter count = %d\n", letter_count);

return(0);
}

The program produces the following output:
letter count = 5

Compare this program with the program in 200, which shows the use of the break
statement to perform a similar function.

Related Information
v “do”

v “for” on page 206

v “while” on page 216

do

A do statement repeatedly runs a statement until the test expression evaluates to 0.
Because of the order of processing, OS/390 C/C++ runs the statement at least
once.

A do statement has the form:

ÊÊ do statement while (expression) ; ÊÍ

continue

Chapter 9. Statements 203

The body of the loop is run before the controlling while clause is evaluated.
Further processing of the do statement depends on the value of the while clause. If
the while clause does not evaluate to 0, the statement runs again. When the while
clause evaluates to 0, the statement ends. The controlling expression must be
evaluate to a scalar type.

A break, return, or goto statement can end the processing of a do statement, even
when the while clause does not evaluate to 0.

Example

The following statement prompts the user to enter a 1. If the user enters a 1, the
statement ends. If not, it displays another prompt. The example contains
error-checking code to verify that the user entered an integer value and to clear the
input stream if an error occurs.

CBC3X07E
/**
** This example illustrates the do statement.
**/

#include <iostream.h>
void main()
{
int reply1;
char c;
do
{
cout << "Enter a 1: ";
cin >> reply1;
if (cin.fail())

{
cerr << "Not a valid number." << endl;

// Clear the error flag.
cin.clear(cin.rdstate() & ˜ios::failbit);
cin.ignore(cin.rdbuf()->in_avail());
}

}
while (reply1 != 1);

}

Related Information
v “break” on page 200

v “continue” on page 202

v “while” on page 216

do

204 OS/390 V2R6.0 C/C++ Language Reference

Expression

An expression statement contains an expression. The expression can be null.
“Chapter 6. Expressions and Operators” on page 133 describes expressions.

An expression statement has the form:

ÊÊ
expression

; ÊÍ

An expression statement evaluates the given expression. Use it to assign the value
of the expression to a variable or to call a function.

Examples
printf("Account Number: \n"); /* call to the printf */
marks = dollars * exch_rate; /* assignment to marks */
(difference < 0) ? ++losses : ++gain; /* conditional increment */
switches = flags ¦ BIT_MASK; /* assignment to switches */

Resolving Ambiguous Statements in C++

There are situations in C++ where a statement can be parsed as both a declaration
and as an expression. Specifically, a declaration can look like a function call in
certain cases. The compiler resolves these ambiguities by applying the following
rules to the whole statement:
v If the compiler can parse the statement as a declaration but there are no

declaration specifiers, and the statement is inside the body of a function. The
compiler assumes the statement is an expression.
The following statement, for example, is a declaration at file scope of the
function f() that returns type int. There is no declaration specifier and int is
the default, but at function scope this is a call to f():
f();

v In every other case, if the compiler can parse the statement as a declaration, it
assumes the statement is a declaration. The following statement, for example, is
a declaration of x with redundant parentheses around the declarator, not a
function-style cast of x to type int:
int(x);

In some cases, C++ syntax does not distinguish between expression statements and
declaration statements. The ambiguity arises when an expression statement has a
function-style cast as its leftmost subexpression. (Note that, because C does not
support function-style casts, this ambiguity does not occur in C programs.) If the
compiler can interpret the statement both as a declaration and as an expression, it
interprets the statement as a declaration statement.

Note: The ambiguity is resolved only on a syntactic level. The resolution does not
use the meaning of the names, except to assess whether or not they are type
names.

The compiler resolves the following expressions into expression statements because
the ambiguous subexpression is followed by an assignment or an operator. In these
expressions, type_spec can be any type specifier:

Expression

Chapter 9. Statements 205

type_spec(i)++; // expression statement
type_spec(i,3)<<d; // expression statement
type_spec(i)->l=24; // expression statement

In the following examples, the ambiguity cannot be resolved syntactically, and the
compiler interprets the statements as declarations. type_spec is any type specifier:
type_spec(*i)(int); // declaration
type_spec(j)[5]; // declaration
type_spec(m) = { 1, 2 }; // declaration
type_spec(*k) (float(3)); // declaration

The last statement above causes a compile-time error because you cannot initialize
a pointer with a float value.

Any ambiguous statement that is not resolved by the above rules is by default a
declaration statement. All of the following are declaration statements:
type_spec(a); // declaration
type_spec(*b)(); // declaration
type_spec(c)=23; // declaration
type_spec(d),e,f,g=0; // declaration
type_spec(h)(e,3); // declaration

C++ resolves another ambiguity between expression statements and declaration
statements by requiring an explicit return type for function declarations within a
block:
a(); // declaration of a function returning int

// and taking no arguments
void func()
{

int a(); // declaration of a function
int b; // declaration of a variable
a(); // expression-statement calling function a()
b; // expression-statement referring to a variable

}

The last statement above does not produce any action. It is semantically equivalent
to a null statement. However, it is a valid C++ statement.

for

A for statement lets you do the following:
v Evaluate an expression before the first iteration of the statement (initialization)
v Specify an expression to determine whether or not the statement should be

processed (controlling part)
v Evaluate an expression after each iteration of the statement
v Repeatedly process the statement if the controlling part does not evaluate to

zero.

A for statement has the form:

ÊÊ for (
expression1

;
expression2

;
expression3

) Ê

Ê statement ÊÍ

expression1 Is the initialization expression. OS/390 C/C++

Expression

206 OS/390 V2R6.0 C/C++ Language Reference

evaluates it only before it processes the statement
for the first time. You can use this expression to
initialize a variable. If you do not want to evaluate
an expression prior to the first iteration of the
statement, you can omit this expression.

expression2 Is the controlling part. OS/390 C/C++ evaluates it
before each iteration of the statement. It must
evaluate to a scalar type.

If it evaluates to 0 (zero), the statement is not
processed and control moves to the next statement
following the for statement. If expression2 does not
evaluate to 0, OS/390 C/C++ processes the
statement. If you omit expression2, it is as if the
expression had been replaced by a nonzero
constant. In addition, the for statement is not
terminated by failure of this condition.

expression3 OS/390 C/C++ evaluates this after each iteration
of the statement. You can use this expression to
increase, decrease, or reinitialize a variable. This
expression is optional.

A break, return, or goto statement can cause a for statement to end, even when
the second expression does not evaluate to 0. If you omit expression2, you must use
a break, return, or goto statement to end the for statement.

C++ Note: In C++ programs, you can also use expression1 to declare a variable as
well as initialize it. If you declare a variable in this expression, the
variable has the same scope as the for statement and is not local to the
for statement.

Examples

The following for statement prints the value of count 20 times. The for statement
initially sets the value of count to 1. After each iteration of the statement, it
increments count.
for (count = 1; count <= 20; count++)

printf("count = %d\n", count);

The following sequence of statements accomplishes the same task. Note the use of
the while statement instead of the for statement.
count = 1;
while (count <= 20)
{

printf("count = %d\n", count);
count++;

}

The following for statement does not contain an initialization expression:
for (; index > 10; --index)
{

list[index] = var1 + var2;
printf("list[%d] = %d\n", index, list[index]);

}

The following for statement will continue running until scanf receives the letter e:

for

Chapter 9. Statements 207

for (;;)
{

scanf("%c", &letter);
if (letter == '\n')

continue;
if (letter == 'e')

break;
printf("You entered the letter %c\n", letter);

}

The following for statement contains multiple initializations and increments. The
comma operator makes this construction possible. The first comma in the for
expression is a punctuator for a declaration. It declares and initializes two integers,
i, and j. The second comma, a comma operator, allows the program to increment
both i and j at each step through the loop.
for (int i = 0, j = 50; i < 10; ++i, j += 50)
{

cout << "i = " << i << "and j = " << j << endl;
}

The following example shows a nested for statement. It prints the values of an
array that has the dimensions [5][3]:
for (row = 0; row < 5; row++)

for (column = 0; column < 3; column++)
printf("%d\n", table[row][column]);

OS/390 C/C++ processes the outer statement as long as the value of row is less
than 5. Each time the outer for statement is executed, the inner for statement sets
the initial value of column to zero. It executes the statement of the inner for
statement 3 times. The inner statement is executed as long as the value of column is
less than 3.

Related Information
v “break” on page 200

v “continue” on page 202

goto

A goto statement causes your program to unconditionally transfer control to the
statement that is associated with the label that is specified on the goto statement.

A goto statement has the form:

ÊÊ goto label_identifier ; ÊÍ

Because the goto statement can interfere with the normal sequence of processing, it
makes a program more difficult to read and maintain. Often, a break statement, a
continue statement, or a function call can eliminate the need for a goto statement.

If you use a goto statement to transfer control to a statement inside of a loop or
block, initializations of automatic storage for the loop do not take place. Thus, the
result is undefined. The label must appear in the same function as the goto.

for

208 OS/390 V2R6.0 C/C++ Language Reference

If your program exits an active block by using a goto statement, OS/390 C/C++
destroys any local variables when it transfers control from that block.

Example

The following example shows a goto statement that is used to jump out of a
nested loop. You can write this function without using a goto statement.

CBC3RAA6
/**
** This example shows a goto statement that is used to
** jump out of a nested loop.
**/

#include <stdio.h>
void display(int matrix[3][3]);

int main(void)
{

int matrix[3][3]={1,2,3,4,5,2,8,9,10};
display(matrix);
return(0);

}

void display(int matrix[3][3])
{

int i, j;

for (i = 0; i < 3; i++)
for (j = 0; j < 3; j++)
{

if ((matrix[i][j] < 1) ¦¦ (matrix[i][j] > 6))
goto out_of_bounds;

printf("matrix[%d][%d] = %d\n", i, j, matrix[i][j]);
}

return;
out_of_bounds: printf("number must be 1 through 6\n");

}

if

An if statement lets you conditionally process a statement when the specified test
expression evaluates to a nonzero value. The expression must evaluate to a scalar
type. You can optionally specify an else clause on the if statement. If the test
expression evaluates to 0 and an else clause exists, the statement associated with
the else clause runs. If the test expression evaluates to a nonzero value, the
statement following the expression runs and the else clause is ignored.

An if statement has the form:

ÊÊ if (expression) statement
else statement

ÊÍ

When if statements are nested and else clauses are present, a given else is
associated with the closest preceding if statement within the same block.

goto

Chapter 9. Statements 209

Examples

The following example causes grade to receive the value A if the value of score is
greater than or equal to 90.
if (score >= 90)

grade = 'A';

The following example displays Number is positive if the value of number is
greater than or equal to 0. If the value of number is less than 0, it displays Number
is negative.
if (number >= 0)

printf("Number is positive\n");
else

printf("Number is negative\n");

The following example shows a nested if statement:
if (paygrade == 7)

if (level >= 0 && level <= 8)
salary *= 1.05;

else
salary *= 1.04;

else
salary *= 1.06;

cout << "salary is " << salary << endl;

The following example shows a nested if statement that does not have an else
clause. Because an else clause always associates with the closest if statement, you
may have to use braces. The braces force a particular else clause to associate with
the correct if statement. In this example, omitting the braces causes the else
clause to associate with the nested if statement.
if (kegs > 0) {

if (furlongs > kegs)
fpk = furlongs/kegs;

}
else

fpk = 0;

The following example shows an if statement nested within an else clause. This
example tests multiple conditions. OS/390 C/C++ performs the tests in order of
their appearance. If it evaluates one test to a nonzero value, OS/390 C/C++ runs
the statement, and ends the entire if statement.
if (value > 0)

++increase;
else if (value == 0)

++break_even;
else

++decrease;

null

The null statement performs no operation. It has the form:

ÊÊ ; ÊÍ

A null statement can hold the label of a labeled statement or complete the syntax
of an iterative statement.

if

210 OS/390 V2R6.0 C/C++ Language Reference

Example

The following example initializes the elements of the array price. Because the
initializations occur within the for expressions, a statement is only needed to finish
the for syntax; no operations are required.
for (i = 0; i < 3; price[i++] = 0)

;

You can use a null statement when you require a label before the end of a block
statement, for example:
void func(void) {
if (error_detected)
goto depart;

/* further processing */
depart:; /* null statement required */

}

return

A return statement ends the processing of the current function and returns control
to the caller of the function.

A return statement has the form:

ÊÊ return ;
expression

ÊÍ

A return statement in a function is optional. The compiler issues a warning if it
does not find a return statement in a function that is declared with a return type. If
the compiler reaches the end of a function without encountering a return
statement, it passes control to the caller. The compiler passes this control as if it
had encountered a return statement without an expression. A function can contain
multiple return statements.

Value of a return Expression and Function Value

If an expression is present on a return statement, OS/390 C/C++ returns the value
of the expression to the caller. If the data type of the expression is different from
the function return type, OS/390 converts the return value. It performs this
conversion as if the value of the expression was assigned to an object with the
same function return type.

If a return statement does not contain an expression, the value of the return
statement is undefined. If a return statement in a function declared with a return
type that is not void does not contain an expression, an error message is issued.
The result of calling the function is unpredictable, for example:
int func1()
{
return;

}
int func2()
{
return (4321);

}

null

Chapter 9. Statements 211

void main() {
int a=func1(); // result is unpredictable!
int b=func2();
}

You cannot use a return statement with an expression when you declare the
function as returning type void.

C++ Note: In C++, if a function returns a class object with constructors, OS/390
C/C++ may construct a temporary class object. The temporary object is
not in the scope of the function that returns the temporary object, but is
local to the caller of the function.

When OS/390 C/C++ returns a function, it destroys all temporary local variables.
If local class objects with destructors exist, OS/390 C/C++ calls destructors. For
more details, see “Temporary Objects” on page 333.

Examples
return; /* Returns no value */
return result; /* Returns the value of result */
return 1; /* Returns the value 1 */
return (x * x); /* Returns the value of x * x */

The following function searches through an array of integers to determine if a
match exists for the variable number. If a match exists, the function match returns
the value of i. If a match does not exist, the function match returns the value -1
(negative one).
int match(int number, int array[], int n)
{

int i;

for (i = 0; i < n; i++)
if (number == array[i])

return (i);
return(-1);

}

Related Information
v “Chapter 8. Functions” on page 173

v “Expression” on page 205

switch

A switch statement lets you transfer control to different statements within the switch
body depending on the value of the switch expression. The switch expression must
evaluate to an integral value. The body of the switch statement contains case
clauses that consist of:
v A case label
v An optional default label
v A case expression
v A list of statements

If the value of the switch expression equals one of the case expression values,
OS/390 C/C++ processes the statements that follow that case expression. If not, it
processes any default label statements.

return

212 OS/390 V2R6.0 C/C++ Language Reference

A switch statement has the form:

ÊÊ switch (expression) switch_body ÊÍ

You enclose the switch body in braces. The switch body can contain definitions,
declarations, case clauses, and a default clause. Each case clause and default clause
can contain statements.

ÊÊ { »

type_definition
file_scope_data_declaration
block_scope_data_declaration

»

case_clause
Ê

Ê
default_clause

»

case_clause
} ÊÍ

Note: An initializer within a type_definition, file_scope_data_declaration, or
block_scope_data_declaration is ignored.

A case clause contains a case label which is followed by any number of statements. A
case clause has the form:

ÊÊ case_label » statement ÊÍ

A case label contains the word case, followed by an integral constant expression
and a colon. You can put multiple case labels anywhere that you can put one case
label. A case label has the form:

ÊÊ » case integral_constant_expression : ÊÍ

A default clause contains a default label that is followed by one or more statements.
You can put a case label on either side of the default label. A switch statement
can have only one default label. A default_clause has the form:

ÊÊ
case_label

default :
case_label

» statement ÊÍ

switch

Chapter 9. Statements 213

The switch statement passes control to the statement following one of the labels or
to the statement following the switch body. The value of the expression that
precedes the switch body determines which statement receives control. You can
refer to this expression as the switch expression.

OS/390 C/C++ compares the value of the switch expression with the value of the
expression in each case label. If it finds a matching value, it passes control to the
statement following the case label that contains the matching value. If there is no
matching value but there is a default label in the switch body, control passes to
the default labelled statement. If it does not find a matching value, and there is no
default label anywhere in the switch body, it does not process any part of the
switch body.

OS/390 C/C++ passes control to a statement in the switch body. It passes control
out of the switch body only when it encounters a break statement, or encounters
the last statement in the switch body.

If necessary, OS/390 C/C++ performs an integral promotion on the controlling
expression. It also converts all expressions in the case statements to the same type
as the controlling expression.

Restrictions

The switch expression and the case expressions must have an integral type. The
value of each case expression must represent a different value and must be a
constant expression.

Only one default label can occur in each switch statement. You cannot have
duplicate case labels in a switch statement.

You can put data definitions at the beginning of the switch body. However, the
compiler does not initialize auto and register variables at the beginning of a
switch body.

C++ Note: You can have declarations in the body of the switch statement. In C++,
you cannot normally transfer control over a declaration containing an
initializer. However, you can transfer control if the declaration is
located in an inner block that is completely bypassed by the transfer of
control. You must contain all declarations within the body of a switch
statement that contains initializers in an inner block.

Examples

The following switch statement contains several case clauses and one default
clause. Each clause contains a function call and a break statement. The break
statements prevent control from passing down through each statement in the
switch body.

If the switch expression evaluated to '/', the switch statement would call the
function divide. Control would then pass to the statement following the switch
body.
char key;

cout << "Enter an arithmetic operator\n");
cin >> key;

switch

214 OS/390 V2R6.0 C/C++ Language Reference

switch (key)
{

case '+':
add();
break;

case '-':
subtract();
break;

case '*':
multiply();
break;

case '/':
divide();
break;

default:
cout << "The key you pressed is not valid\n";
break;

}

If the switch expression matches a case expression, OS/390 C/C++ processes the
statements following the case expression. It processes these statements until it
encounters a break statement, or reaches the end of the switch body. In the
following example, break statements are not present. If the value of text[i] is
equal to 'A', the compiler increments all three counters. If the value of text[i] is
equal to 'a', lettera and total are increased. Only total is increased if text[i] is
not equal to 'A' or 'a'.
char text[100];
int capa, lettera, total;

for (i=0; i<sizeof(text); i++) {

switch (text[i])
{

case 'A':
capa++;

case 'a':
lettera++;

default:
total++;

}
}

The following switch statement performs the same statements for more than one
case label:

CBC3RABI
/**
** This example contains a switch statement that performs
** the same statement for more than one case label.
**/

#include <stdio.h>

int main(void)
{
int month;

/* Read in a month value */
printf("Enter month: ");
scanf("%d", &month);

switch

Chapter 9. Statements 215

/* Tell what season it falls into */
switch (month)
{

case 12:
case 1:
case 2:

printf("month %d is a winter month\n", month);
break;

case 3:
case 4:
case 5:

printf("month %d is a spring month\n", month);
break;

case 6:
case 7:
case 8:

printf("month %d is a summer month\n", month);
break;

case 9:
case 10:
case 11:

printf("month %d is a fall month\n", month);
break;

case 66:
case 99:
default:

printf("month %d is not a valid month\n", month);
}

return(0);
}

If the expression month has the value 3, OS/390 C/C++ passes control to the
following statement:
printf("month %d is a spring month\n", month);

The break statement passes control to the statement following the switch body.

Related Information
v “break” on page 200.

while

A while statement repeatedly runs the body of a loop until the controlling
expression evaluates to 0.

A while statement has the form:

ÊÊ while (expression) statement ÊÍ

OS/390 C/C++ evaluates the expression to determine whether or not to process
the body of the loop. The expression must be convertible to a scalar type. If the
expression evaluates to 0, the body of the loop never runs. If the expression does

switch

216 OS/390 V2R6.0 C/C++ Language Reference

not evaluate to 0, OS/390 C/C++ processes the loop body. After the body has run,
control passes back to the expression. Further processing depends on the value of
the condition.

A break, return, or goto statement can cause a while statement to end, even when
the condition does not evaluate to 0.

Example

In the following program, item[index] triples each time the value of the expression
++index is less than MAX_INDEX. When ++index evaluates to MAX_INDEX, the while
statement ends.

CBC3RAA7
/**
** This example illustrates the while statement.
**/

#define MAX_INDEX (sizeof(item) / sizeof(item[0]))
#include <stdio.h>

int main(void)
{

static int item[] = { 12, 55, 62, 85, 102 };
int index = 0;

while (index < MAX_INDEX)
{

item[index] *= 3;
printf("item[%d] = %d\n", index, item[index]);
++index;

}

return(0);
}

Related Information
v “break” on page 200

v “goto” on page 208

v “return” on page 211

while

Chapter 9. Statements 217

while

218 OS/390 V2R6.0 C/C++ Language Reference

Chapter 10. Preprocessor Directives

This chapter describes the following topics on C preprocessor directives:
v “Preprocessor Overview”
v “Preprocessor Directive Format” on page 220
v “Phases of Preprocessing” on page 220
v “Macro Definition and Expansion (#define)” on page 221
v “Scope of Macro Names (#undef)” on page 225
v “Single Number Sign Operator (#)” on page 225
v “Macro Concatenation with the ## Operator” on page 226
v “Preprocessor Error Directive (#error)” on page 228
v “File Inclusion (#include)” on page 228
v “Predefined Macro Names” on page 229
v “Conditional Compilation Directives” on page 237
v “Line Control (#line)” on page 241
v “Null Directive (#)” on page 242
v “Pragma Directives (#pragma)” on page 243

Preprocessor Overview

Preprocessing is a step that takes place before compilation that lets you:
v Replace tokens in the current file with specified replacement tokens.
v Imbed files within the current file.
v Conditionally compile sections of the current file.
v Generate diagnostic messages.
v Change the source line number of the next line, and change the file name of the

current file.

A token is a series of characters that are delimited by white space. The only white
space that is allowed on a preprocessor directive is a blank (space), the horizontal
tab, and comments. The new-line character can also separate preprocessor tokens.

The preprocessed source program file must be a valid C or C++ program.

The following directives control the preprocessor:

#define Defines a preprocessor directive.

#undef Removes a preprocessor macro definition.

#error Defines text for a compile-time error message.

#include Inserts text from another source file.

#if Conditionally suppresses portions of source code, depending on
the result of a constant expression.

#ifdef Conditionally includes source text if you define a macro name.

#ifndef Conditionally includes source text if you do not define a macro
name.

© Copyright IBM Corp. 1996, 1998 219

#else Conditionally includes source text if the previous #if, #ifdef,
#ifndef, or #elif test fails.

#elif Conditionally includes source text if the previous #if, #ifdef,
#ifndef, or #elif test fails, depending on the value of a constant
expression.

#endif Ends conditional text.

#line Supplies a line number for compiler messages.

#pragma Specifies implementation-defined instructions to the compiler.

“Preprocessor Directive Format” defines the format of a preprocessor directive .

Preprocessor Directive Format

Preprocessor directives begin with the # token that is followed by a preprocessor
keyword. The # token must appear as the first character that is not white space on
a line. The # is not part of the directive name and you can separate it from the
name with white spaces.

A preprocessor directive ends at the new-line character unless the last character of
the line is the \ (backslash) character. If the \ character appears as the last
character in the preprocessor line, the preprocessor interprets the \ and the
new-line character as a continuation marker. The preprocessor deletes the \ (and
the following new-line character) and splices the physical source lines into
continuous logical lines.

Except for some #pragma directives, preprocessor directives can appear anywhere in
a program.

Phases of Preprocessing

Preprocessing appears as if it occurs in several phases.
1. It introduces new-line characters as needed to replace system-dependent

end-of-line indicators, and performs any other system-dependent character-set
translations. It replaces trigraph (C and C++:) and digraph (C++ only)
sequences with equivalent single characters.

2. It deletes each \ (backslash) that is followed by a new-line character pair. It
appends the next source line to the line that contained the sequence.

3. It decomposes the source text into preprocessing tokens and sequences of white
space. A single white space replaces each comment. A source file cannot end
with a partial token or comment.

4. It executes preprocessing directives, and expands macros.
5. It replaces escape sequences in character constants and string literals by their

equivalent values.
6. It concatenates adjacent string literals.

The rest of the compilation process operates on the preprocessor output, which is
syntactically and semantically analyzed and translated. The compiler output is
then linked as necessary with other programs and libraries.

Preprocessor Overview

220 OS/390 V2R6.0 C/C++ Language Reference

|
|

Macro Definition and Expansion (#define)

A preprocessor define directive directs the preprocessor to replace all subsequent
occurrences of a macro with specified replacement tokens.

A preprocessor #define directive has the form:

ÊÊ # define identifier

»

,

()
identifier

Ê

Ê »

identifier
character

ÊÍ

The #define directive can contain an object-like definition or a function-like
definition.

Object-Like Macros

An object-like macro definition replaces a single identifier with the specified
replacement tokens. The following object-like definition causes the preprocessor to
replace all subsequent instances of the identifier COUNT with the constant 1000:
#define COUNT 1000

Consider the following statement:
int arry[COUNT];

If the above statement appears after this definition and in the same file as the
definition, the preprocessor changes the statement to the following statement, in
the output of the preprocessor:
int arry[1000];

Other definitions can make reference to the identifier COUNT:
#define MAX_COUNT COUNT + 100

The preprocessor replaces each subsequent occurrence of MAX_COUNT with
COUNT + 100. The preprocessor then replaces COUNT + 100 with 1000 + 100.

If a number that is partially built by a macro expansion is produced, the
preprocessor does not consider the result to be a single value. For example, the
following will not result in the value 10.2 but in a syntax error:
#define a 10
a.2

Using the following also results in a syntax error:
#define a 10
#define b a.11

#define

Chapter 10. Preprocessor Directives 221

Identifiers that are partially built from a macro expansion may not be produced.
Therefore, the following example does not produce the identifier abcdefg, and
results in a syntax error:
#define d efg
abcd

Function-Like Macros
Function-like macro definition:

An identifier followed by a parameter list in parentheses and the
replacement tokens. OS/390 C/C++ imbeds the parameters in the
replacement code. White space cannot separate the identifier (which is the
name of the macro) and the left parenthesis of the parameter list. A comma
must separate each parameter. For portability, you should not have more
than 31 parameters for a macro.

Function-like macro invocation:
An identifier followed by a list of arguments in parentheses. A comma
must separate each argument. Once the preprocessor identifies a
function-like macro invocation, it substitutes an argument. It replaces a
parameter in the replacement code by the corresponding argument. The
preprocessor completely replaces any macro invocations that are contained
in the argument itself, before the argument replaces its corresponding
parameter in the replacement code.

The following line defines the macro SUM as having two parameters a and b and
the replacement tokens (a + b):
#define SUM(a,b) (a + b)

This definition would cause the preprocessor to change the following statements (if
the statements appear after the previous definition):
c = SUM(x,y);
c = d * SUM(x,y);

In the output of the preprocessor, these statements would appear as follows:
c = (x + y);
c = d * (x + y);

Use parentheses to ensure correct evaluation of replacement text. For example,
consider the following definition:
#define SQR(c) ((c) * (c))

The above definition requires parentheses around each parameter c in the
definition. This way, it can correctly evaluate an expression such as the following
one:
y = SQR(a + b);

The preprocessor expands this statement as follows:
y = ((a + b) * (a + b));

Without parentheses in the definition, the preprocessor does not preserve the
correct order of evaluation, and its output is:
y = (a + b * a + b);

See “Operator Precedence and Associativity” on page 133, and “Parenthesized
Expressions ()” on page 137 for more information about using parentheses.

#define

222 OS/390 V2R6.0 C/C++ Language Reference

The preprocessor converts the aguments of the single number sign operator (#) and
the double number sign operator ## before it replaces parameters in a function-like
macro.

The number of arguments in a macro invocation must be the same as the number
of parameters in the corresponding macro definition.

Commas in the macro invocation argument list do not act as argument separators
when they are:

v In character constants
v In string literals
v Surrounded by parentheses.

Once defined, a preprocessor identifier remains defined and in scope independent
of the scoping rules of the language. The scope of a macro definition begins at the
definition and it does not end until it encounters a corresponding #undef directive.
If there is no corresponding #undef directive, the scope of the macro definition
lasts until the end of the compilation unit.

The preprocessor does not fully expand a recursive macro. For example, consider
the following definition:

#define x(a,b) x(a+1,b+1) + 4

And assume the following macro definition:
x(20,10)

The above macro definition expands to the following, rather than trying to expand
the macro x over and over, within itself:

x(20+1,10+1) + 4

After the preprocessor expands the macro x, the macro is a call to function x().

You do not require a definition to specify replacement tokens. The following
definition removes all instances of the token debug from subsequent lines in the
current file:
#define debug

You can change the definition of a defined identifier or macro with a second
preprocessor #define directive. However, the second preprocessor #define directive
must be preceded by a preprocessor #undef directive. This is described in “Scope
of Macro Names (#undef)” on page 225. The #undef directive nullifies the first
definition, so that you can use the same identifier in a redefinition.

Within the text of the program, the preprocessor does not scan character constants
or string constants for macro invocations.

#define

Chapter 10. Preprocessor Directives 223

Examples of #define Directives

The following program contains two macro definitions and a macro invocation that
refers to both of the defined macros:

CBC3RAA8:
/**
** This example illustrates #define directives.
** Example CBC3RAA9 shows the effect of preprocessor
** macro replacement on this program.
**/

#include <stdio.h>

#define SQR(s) ((s) * (s))
#define PRNT(a,b) \
printf("value 1 = %d\n", a); \
printf("value 2 = %d\n", b);

int main(void)
{
int x = 2;
int y = 3;

PRNT(SQR(x),y);

return(0);
}

After the preprocessor interprets this program, it is replaced by code that is
equivalent to the following:

CBC3RAA9:
/**
** This example shows the effect of the preprocessor macro
** replacement on the program in example CBC3RAA8.
**/

#include <stdio.h>

int main(void)
{
int x = 2;
int y = 3;

printf("value 1 = %d\n", ((x) * (x)));
printf("value 2 = %d\n", y);

return(0);
}

This program produces the following output:
value 1 = 4
value 2 = 3

#define

224 OS/390 V2R6.0 C/C++ Language Reference

Scope of Macro Names (#undef)

A preprocessor undef directive causes the preprocessor to end the scope of a
preprocessor definition.

A preprocessor #undef directive has the form:

ÊÊ # undef identifier ÊÍ

If you have not currently defined the identifier as a macro, the preprocessor
ignores #undef.

Examples of #undef Directives

The following directives define BUFFER and SQR:
#define BUFFER 512
#define SQR(x) ((x) * (x))

The following directives nullify these definitions:
#undef BUFFER
#undef SQR

The preprocessor does not replace any occurrences of the identifiers BUFFER and
SQR that follow these #undef directives with any replacement tokens. Once the
definition of a macro has been removed by an #undef directive, the identifier can
be used in a new #define directive.

Single Number Sign Operator (#)

The # (single number sign) operator converts a parameter of a function-like macro
into a character string literal. For example, consider defining the macro ABC by
using the following directive:

#define ABC(x) #x

The preprocessor expands all subsequent invocations of the macro ABC into a
character string literal that contains the argument that is passed to ABC. For
example:

Invocation Result of Macro Expansion

ABC(1) "1"
ABC(Hello there) "Hello there"

Note that you can represent the single number sign character # by the trigraph ??=.

Do not confuse the # operator with the null directive documented in “Null
Directive (#)” on page 242.

Use the # operator in a function-like macro definition according to the following
rules:

#undef

Chapter 10. Preprocessor Directives 225

|
|

v The preprocessor converts a parameter that follows the # operator in a
function-like macro into a character string literal that contains the argument that
is passed to the macro.

v The preprocessor deletes white-space characters that appear before or after the
argument that is passed to the macro.

v The preprocessor uses a single space character to replace multiple white-space
characters that are imbedded within the argument that is passed to the macro.

v If the argument that is passed to the macro contains a string literal, and if a \
(backslash) character appears within the literal, the preprocessor inserts a second
\ character before the original one when it expands the macro.

v If the argument passed to the macro contains a " (double quotation mark)
character, a \ character is inserted before the " when the macro is expanded.

v If the argument passed to the macro contains a ' (single quotation mark)
character, a \ character is inserted before the ' when the macro is expanded.

v The conversion of an argument into a string literal occurs before macro
expansion on that argument.

v If more than one ## operator or # operator appears in the replacement list of a
macro definition, the order of evaluation of the operators is not defined.

v If the result of the macro expansion is not a valid character string literal, the
behavior is undefined.

See “Function-Like Macros” on page 222 for more information about function-like
macros.

Examples of the # Operator

The following examples demonstrate the use of the # operator:
#define STR(x) #x
#define XSTR(x) STR(x)
#define ONE 1

Invocation Result of Macro Expansion

STR(\n "\n" '\n') "\n \"\\n\" \'\\n\'"
STR(ONE) "ONE"
XSTR(ONE) "1"
XSTR("hello") "\"hello\""

Related Information
v “Macro Definition and Expansion (#define)” on page 221

v “Scope of Macro Names (#undef)” on page 225

Macro Concatenation with the ## Operator

The double number sign operator (##) concatenates two tokens in a macro
invocation (text or arguments), that a macro definition contains.

Consider a macro, XY, which is defined using the following directive:
#define XY(x,y) x##y

The preprocessor concatenates the last token of the argument for x with the first
token of the argument for y.

Operator

226 OS/390 V2R6.0 C/C++ Language Reference

|

For example,

Invocation Result of Macro Expansion

XY(1, 2) 12
XY(Green, house) Greenhouse

Note that you can represent the # character by the trigraph ??=.

Double Number Sign Operator (##)

Use the double number sign operator (##) according to the following rules:
v The ## operator cannot be the very first or very last item in the replacement list

of a macro definition.
v The preprocessor concatenates the last token of the item in front of the ##

operator with the first token of the item that follows the ## operator.
v Concatenation takes place before the preprocessor expands any macros in

arguments.
v If the result of a concatenation is a valid macro name, the result is available for

further replacement. It is available even if it appears in a context in which it is
not normally available.

v If more than one ## operator or # operator appears in the replacement list of a
macro definition, the order of evaluation of the operators is not defined.

Examples of the ## Operator

The following examples demonstrate the use of the ## operator:
#define ArgArg(x, y) x##y
#define ArgText(x) x##TEXT
#define TextArg(x) TEXT##x
#define TextText TEXT##text
#define Jitter 1
#define bug 2
#define Jitterbug 3

Invocation Result of Macro Expansion

ArgArg(lady, bug) ladybug
ArgText(con) conTEXT
TextArg(book) TEXTbook
TextText TEXTtext
ArgArg(Jitter, bug) 3

Related Information
v “Macro Definition and Expansion (#define)” on page 221

Operator

Chapter 10. Preprocessor Directives 227

Preprocessor Error Directive (#error)

A preprocessor error directive causes the preprocessor to generate an error message
and causes the compilation to fail.

The #error directive has the form:

ÊÊ # error » character ÊÍ

Use the #error directive as a safety check during compilation. For example, if your
program uses preprocessor conditional compilation directives, put #error
directives in the source file. The directives prevent code generation if a section of
the program is reached that should be bypassed.

For example, consider the following directive:
#error Error in TESTPGM1 - This section should not be compiled

The above directive generates the following error message:
Error in TESTPGM1 - This section should not be compiled

Related Information
v “Conditional Compilation Directives” on page 237

File Inclusion (#include)

A preprocessor include directive causes the preprocessor to replace the directive with
the contents of the specified file.

A preprocessor #include directive has the form:

ÊÊ # include " file_name "
//

< file_name >
//

ÊÍ

You can specify an OS/390 data set or an HFS file for filename. Use double slashes
(//) before the filename to indicate that the file is an OS/390 data set. Use a single
slash (/) anywhere in the filename to indicate an HFS file. See the OS/390 C/C++
User’s Guide for more information on specifying include file names.

The preprocessor resolves macros that are contained in an #include directive. After
macro replacement, the resulting token sequence must consist of a file name that is
enclosed in either double quotation marks, or the characters < and >.

For example:
#define MONTH <july.h>
#include MONTH

#error

228 OS/390 V2R6.0 C/C++ Language Reference

If you enclose the file name in double quotation marks ("), the preprocessor
searches the directories or libraries that contain the user source files. It then
searches a standard or specified sequence of places, until it finds the specified file.
For example:
#include "payroll.h"

If you enclose the file name in the characters < and >, the preprocessor searches
only the standard or specified places for the specified file. For example:
#include <stdio.h>

The new-line and > characters cannot appear in a file name that is delimited by <
and >. The new-line and " (double quotation marks) characters cannot appear in a
file name that is delimited by double quotation marks. However, the > character
can appear in such a file name.

For more information about include file search paths and compiler options, see the
OS/390 C/C++ User’s Guide.

Declarations that are used by several files can be placed in one file and included
with #include in each file that uses them. For example, the following file defs.h
contains several definitions and an inclusion of an additional file of declarations:
/* defs.h */
#define TRUE 1
#define FALSE 0
#define BUFFERSIZE 512
#define MAX_ROW 66
#define MAX_COLUMN 80
int hour;
int min;
int sec;
#include "mydefs.h"

You can embed the definitions that appear in defs.h with the following directive:
#include "defs.h"

In the following example, a #define combines several preprocessor macros to
define a macro. This macro represents the name of the C standard I/O header file.
A #include makes the header file available to the program.
#define IO_HEADER <stdio.h>

.

.

.
#include IO_HEADER /* equivalent to specifying #include <stdio.h> */

.

.

.

Predefined Macro Names

OS/390 C/C++ provides the following predefined macro names:
v “ANSI/ISO Standard Predefined Macro Names” on page 230.

v “OS/390 C/C++ Predefined Macro Names” on page 231.

These predefined names cannot be subject to a #define or #undef preprocessor
directive.

#include

Chapter 10. Preprocessor Directives 229

ANSI/ISO Standard Predefined Macro Names

Both C and C++ provide the following predefined macro names as specified in the
ANSI/ISO C language standard:

Macro Name Description

__DATE__ A character string literal that contains the date
when the source file was compiled.

The value of __DATE__ changes as the compiler
processes any include files that are part of your
source program. The date is in the form:

"Mmm dd yyyy"

where:

Mmm Represents the month in an abbreviated
form (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug,
Sep, Oct, Nov, or Dec).

dd Represents the day. If the day is less than
10, the first d is a blank character.

yyyy Represents the year.

__FILE__ A character string literal that contains the name of
the source file.

The value of __FILE__ changes as the compiler
processes include files that are part of your source
program. You can set it with the #line directive,
described in “Line Control (#line)” on page 241.

__LINE__ An integer that represents the current source line
number.

The value of __LINE__ changes during compilation
as the compiler processes subsequent lines of your
source program. You can set it with the #line
directive, described in “Line Control (#line)” on
page 241.

__STDC__ The integer 1 (one) indicates that the C compiler
conforms to the ANSI/ISO standard. For C
programs, the compiler sets this macro to the
integer 1 (one) to indicate that the C compiler
conforms to the ANSI/ISO standard. For C++
programs, the compiler does not define this macro.
The macro has the integer value 0 when you use it
in a #if statement. This indicates that the C++
language is not a proper superset of C, and that
the compiler does not conform to ANSI/ISO C.

For more information on how C++ differs from
ANSI/ISO C, see “Appendix A. C and C++
Compatibility” on page 401. The integer 0 (zero)
indicates that C++ does not conform to the
ANSI/ISO C language standard.

Predefined Macro Names

230 OS/390 V2R6.0 C/C++ Language Reference

Note: If you set the language level to anything
other than ANSI, this macro is undefined.

__TIME__ A character string literal that contains the time
when the source file was compiled.

The value of __TIME__ changes as the compiler
processes any include files that are part of your
source program. The time is in the form:

"hh:mm:ss"

where:

hh Represents the hour.

mm Represents the minutes.

ss Represents the seconds.

Note: The MVS command SET DATE does not affect
the value returned by this macro, or the
value returned by the time() function.

__cplusplus For C++ programs, the preprocessor sets this macro
to the integer 1, which indicates that the compiler
is a C++ compiler. Note that this macro name has
no trailing underscores.

OS/390 C/C++ Predefined Macro Names

OS/390 C/C++ provides the following predefined macros. It defines the value of
all these macros when you use the corresponding #pragma directive or compiler
option.

Macro Name Description

__ANSI__ C Only. This macro allows only language
constructs that conform to ANSI/ISO C standard.
It is defined as 1 by using the #pragma
langlvl(ansi) directive or LANGLVL(ANSI) compile
option.

__BFP__ This macro allows Language Environment headers
to map functions such as sin(x) to appropriate LE
calls. OS/390 C/C++ sets this macro to 1 when
you specify binary floating point (BFP) mode by
using the FLOAT(IEEE) compiler option.

__EXTENDED__ This macro allows additional language constructs
that are provided by the OS/390 C/C++
implementation. It is defined by using the #pragma
langlvl(extended) directive or LANGLVL(EXTENDED)
compile option.

__SAA__ C Only. This macro allows only language
constructs that conform to the most recent level of
SAA C standards. It is defined as 1 by using the
#pragma langlvl(saa) directive or LANGLVL(SAA)
compile option.

__SAA_L2__ C Only. This macro allows only language

Predefined Macro Names

Chapter 10. Preprocessor Directives 231

|
|
|

|

||
|
|
|
|

constructs that conform to SAA Level 2 C
standards. It is defined as 1 by using the #pragma
langlvl(saal2) directive or LANGLVL(SAAL2)
compile option.

__CODESET__ A string literal that represents the character code
set of the LOCALE compile option. If you do not use
the LOCALE compile option, the macro is undefined.

__COMPAT__ C++ Only. The macro is defined as 1 by using the
LANGLVL(COMPAT) compile option or the #pragma
langlvl(compat) directive for C++ language files. It
indicates that the compiler allows language
constructs that are compatible with earlier versions
of the C++ language.

__COMPILER_VER__ The compiler version. The format of the version
number that is provided by the macro is hex
PVRRMMMM:
v P represents the compiler product

– 0 for C/370
– 1 for AD/Cycle C/370 and C/C++ for

MVS/ESA
– 2 for OS/390 C/C++

v V represents the version number
v RR represents the release number
v MMMM represents the modification number

In OS/390 C/C++ Version 2 Release 6, the value of
the macro is X'22060000'.

__COMMONC__ C Only. Allows language constructs that are
defined by XPG. The __EXTENDED__ macro enables
many of the constructs that __COMMONC__ does. The
compiler defines the __COMMONC__ macro as 1 when
you use the #pragma langlvl(commonc) directive or
the LANGLVL(COMMONC) compile-time option.

__DLL__ This macro allows you to write conditional code
that depends upon whether or not you have
compiled your program as DLL code. For C++, the
preprocessor always defines the macro as 1. For C,
the preprocessor defines the macro as 1 if you
specify the DLL compiler option. Otherwise, it is
undefined.

__FILETAG__ A string literal that represents the character code
set of the filetag pragma associated with the
current file. If no filetag pragma is present, the
macro is undefined.

The value of __FILETAG__ changes as the compiler
processes include files that are part of your source
program.

__FUNCTION__ A character string that contains the name of the
function that the OS/390 C/C++ is currently
compiling.

__HHW_370__ Indicates that the host hardware is System/370.

Predefined Macro Names

232 OS/390 V2R6.0 C/C++ Language Reference

|
|

|

The preprocessor predefines this macro to a value
of 1 for C and C++ compilers on System/370.

__HOS_MVS__ Indicates that the host operating system is OS/390.
OS/390 C/C++ predefines this macro to have a
value of 1.

__IBMC__ C only. This macro indicates the version number of
the OS/390 C compiler. The format of the version
number that is provided by the macro is integer
PVRRM:
v P represents the compiler product

– 0 for C/370
– 1 for AD/Cycle C/370 and C/C++ for

MVS/ESA
– 2 for OS/390 C/C++

v V represents the version number
v RR represents the release number
v M represents the modification number

In OS/390 C/C++ Version 2 Release 6, the value of
the macro is 22060.

__IBMCPP__ C++ Only. This macro indicates the version number
of the OS/390 C++ compiler. The format of the
version number that is provided by the macro is
integer PVRRM:
v P represents the compiler product

– 0 for C/370
– 1 for AD/Cycle C/370 and C/C++ for

MVS/ESA
– 2 for OS/390 C/C++

v V represents the version number
v RR represents the release number
v M represents the modification number

In OS/390 C/C++ Version 2 Release 6, the value of
the macro is 22060.

__LOCALE__ This macro contains a string literal that represents
the locale of the LOCALE compile option. If you do
not supply a LOCALE compile option, the macro is
undefined.

The following example illustrates how to set the
runtime locale to the compile-time locale:
main()
{
setlocale(LC_ALL, __LOCALE__);

...

}

__LONGNAME__ For C, the integer 1 indicates that you have
specified the LONGNAME compile option or pragma.
Otherwise the macro is undefined. For C++, the
value of __LONGNAME__ is always 1, even if you
specify NOLONGNAME.

Predefined Macro Names

Chapter 10. Preprocessor Directives 233

|
|

|
|
|

|
|

|
|
|

|
|

C++ Note: In C++, long names are always in the
compilation unit. The LONGNAME compile
option in C++ controls whether
non-C++ names will be truncated and
uppercased, or left alone. You can use
this option to interface with existing C
code that was compiled with
NOLONGNAME, so that the names match.

__MVS__ For OS/390 C/C++ programs, OS/390 C/C++ sets
this macro to 1, which indicates that you are
compiling the program on OS/390.

Note: This macro is the same as __HOS_MVS__.

__SOM_ENABLED__ This macro is defined when you use the SOM
compile options. It indicates that OS/390 C/C++
supports native SOM. This option turns on implicit
SOM mode, and includes the file <som.hh>.

__STRING_CODE_SET__ This macro allows you to change the code page
that the compiler uses for character string literals
(character data enclosed in double quotation
marks). To use this macro, you must specify it with
the DEFINE compiler option. The following example
shows you how to do this:
DEFINE(__STRING_CODE_SET__="ISO8859-1")

This macro affects all source files that are processed
within a compilation unit, including user header
files, and system header files. All string literals
within a compilation unit must use the same code
page. Note that you can also use the CONVLIT
compiler option instead of this macro. For more
information on this option, see the OS/390 C/C++
User’s Guide.

The macro does not affect the following types of
string literals:
v String literals that are used in #include

directives
v String literals that are used in #pragma directives
v String literals that are used to specify linkage,

such as extern "C" (C++ only)

The following restrictions apply to this macro:
v You cannot specify this macro if the SOM compiler

option is in effect.
v You cannot specify this macro if you have also

used predefined macros (such as __TIMESTAMP__)
that return string literals.

__TEMPINC__ C++ Only. This macro indicates that the compiler is
using the template-implementation file method of
resolving template functions. It is defined as 1 if
you are using the TEMPINC compile option.

Predefined Macro Names

234 OS/390 V2R6.0 C/C++ Language Reference

__TARGET_LIB__ The target library version. The format of the
version number provided is hex PVRRMMMM:
v P represents the C or C/C++ library product

– 0 for C/370
– 1 for Language Environment/370 and

Language Environment for MVS & VM
– 2 for OS/390 Release 2 and later

v V represents the version number
v RR represents the release number
v MMMM represents the modification number.

In OS/390 C/C++ Version 2 Release 6, the value of
the macro is X'22060000'.

__THW_370__ This macro indicates that the target hardware is
System/370. OS/390 C/C++ predefines this macro
to have a value of 1 for C and C++ compilers
targeting System/370.

__TIMESTAMP__ A character string literal that contains the date and
time when the source file was last modified.

The value of __TIMESTAMP__ changes as the
compiler processes any include files that are part of
your source program. The date and time are in the
form:

"Day Mmm dd hh:mm:ss yyyy"

where:

Day Represents the day of the week (Mon, Tue,
Wed, Thu, Fri, Sat, or Sun).

Mmm Represents the month in an abbreviated
form (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug,
Sep, Oct, Nov, or Dec).

dd Represents the day. If the day is less than
10, the first d is a blank character.

hh Represents the hour.

mm Represents the minutes.

ss Represents the seconds.

yyyy Represents the year.

This macro is available for Partitioned Data Sets
(PDSs/PDSEs) and HFS source files only. For PDSE
or PDS members, the ISPF timestamp for the
member is used if present. For PDSE/PDS
members with no ISPF timestamp, sequential
datasets, or in stream source in JCL, OS/390
C/C++ returns a dummy timestamp. For HFS files,
OS/390 C/C++ uses the system timestamp on an
HFS source file. Otherwise, it returns a dummy
timestamp, "Mon Jan 1 0:00:01 1990".

Predefined Macro Names

Chapter 10. Preprocessor Directives 235

|

|
|

__TOS_MVS__ This macro indicates that the target operating
system is OS/390. OS/390 C/C++ predefines this
macro to a value of 1.

__370__ This macro indicates that the program is compiled
or targeted to run on System/370. OS/390 C/C++
predefines this macro to a value of 1 for backward
compatibility with earlier releases. For current
programs, use __370__.

Note: OS/390 C/C++ does not provide a _LONG_LONG predefined macro. If your
code requires this macro, you can define it by using the DEFINE option under
TSO or batch, or the -D option in an OS/390 UNIX environment.

Examples of Predefined Macros

CBC3X08A
/**
** This example illustrates the __FUNCTION__ predefined macro
** in a C program.
**/

#include <stdio.h>

int foo(int);

main(int argc, char **argv) {
int k = 1;
printf (" In function %s \n",__FUNCTION__);
foo(k);

}

int foo (int i) {
printf (" In function %s \n",__FUNCTION__);

}

The output of this example is:
In function main
In function foo

CBC3X08B
/**
** This example illustrates the __FUNCTION__ predefined macro
** in a C++ program.
**/

#include <stdio.h>

int foo(int);

main(int argc, char **argv) {
int k = 1;
printf (" In function %s \n",__FUNCTION__);
foo(k);

}

int foo (int i) {
printf (" In function %s \n",__FUNCTION__);

}

The output of this example is:
In function main(int, char **)
In function foo (int)

Predefined Macro Names

236 OS/390 V2R6.0 C/C++ Language Reference

|
|
|
|
|

|
|
|

|

CBC3X08C
/**
** This example illustrates the __FUNCTION__ predefined macro
** in a C++ program with virtual functions.
**/

#include <stdio.h>
class X { public: virtual void func() = 0;};

class Y : public X {
public: void func() { printf("In function %s \n", __FUNCTION__);}

};

main() {
Y aaa;
aaa.func();

}

The output of this example is:
In function Y::func()

Related Information
v “Macro Definition and Expansion (#define)” on page 221

v “Scope of Macro Names (#undef)” on page 225

v “Line Control (#line)” on page 241

Conditional Compilation Directives

A preprocessor conditional compilation directive causes the preprocessor to
conditionally suppress portions of the source code compilation. These directives
test a constant expression or an identifier. They determine which tokens the
preprocessor should pass on to the compiler and which tokens it should bypass
during preprocessing. The directives are:
v #if
v #ifdef
v #ifndef
v #else
v #elif
v #endif

The preprocessor conditional compilation directive spans several lines:
v The condition specification line
v Lines containing code that the preprocessor passes on to the compiler if the

condition evaluates to a nonzero value (optional)
v The #else line (optional)
v Lines containing code that the preprocessor passes on to the compiler if the

condition evaluates to zero (optional)
v The preprocessor #endif directive

For each #if, #ifdef, and #ifndef directive, there are zero or more #elif
directives, zero or one #else directive, and one matching #endif directive. You can
consider all the matching directives to be at the same nesting level.

You can nest conditional compilation directives. The following directives match the
first #else with the #if directive.

Predefined Macro Names

Chapter 10. Preprocessor Directives 237

#ifdef MACNAME
/* tokens added if MACNAME is defined */

if TEST <=10
/* tokens added if MACNAME is defined and TEST <= 10 */

else
/* tokens added if MACNAME is defined and TEST > 10 */

endif
#else

/* tokens added if MACNAME is not defined */
#endif

Each directive controls the block immediately following it. A block consists of all
the tokens that start on the line that follows the directive and ends at the next
conditional compilation directive at the same nesting level.

The preprocessor processes directives in the order in which it encounters them. If
an expression evaluates to zero, the preprocessor ignores the block that follows the
directive.

Consider when the preprocessor ignores a block following a preprocessor directive.
In that case, the tokens are examined only to identify preprocessor directives
within that block so that the preprocessor can determine the conditional nesting
level. It ignores all tokens other than the name of the directive.

The preprocessor processes the first block whose expression is nonzero only. It
ignores the remaining blocks at that nesting level. Consider if the preprocessor has
not processed the blocks at that nesting level and there is a #else directive. In that
case, it processes the block following the #else directive. If it has not processed
any of the blocks at that nesting level and there is no #else directive, the
preprocessor ignores the entire nesting level.

#if, #elif

The #if and #elif directives compare the value of the expression to zero.

If the constant expression evaluates to a nonzero value, the preprocessor passes the
tokens that immediately follow the condition to the compiler.

Consider when the expression evaluates to zero and the conditional compilation
directive contains a preprocessor #elif directive. In that case, the preprocessor
passes the source text located between the #elif and the next #elif or
preprocessor #else directive on to the compiler. The #elif directive cannot appear
after the preprocessor #else directive.

All macros are expanded, any defined expressions are processed and all remaining
identifiers are replaced with the token 0.

ÊÊ # if
elif

constant_expression » token_sequence ÊÍ

The expressions that are tested must be integer constant expressions with the
following properties:
v They must perform arithmetic using long int values.

Conditional Compilation Directives

238 OS/390 V2R6.0 C/C++ Language Reference

v The expression can contain defined macros. No other identifiers can appear in
the expression.

v The constant expression can contain the unary operator defined. This operator
can be used only with the preprocessor keyword #if. The following expressions
evaluate to 1 if you have defined the identifier in the preprocessor; otherwise
they evaluate to 0 (zero):
defined identifier
defined(identifier)

For example:
#if defined(TEST1) || defined(TEST2)

Note: If you have not defined a macro, the preprocessor assigns a value of 0 (zero)
to it. In the following example, TEST must be a macro identifier:
#if TEST >= 1

printf("i = %d\n", i);
printf("array[i] = %d\n", array[i]);

#elif TEST < 0
printf("array subscript out of bounds \n");

#endif

#ifdef

The #ifdef directive checks for the existence of macro definitions.

If you have defined the identifier that is specified as a macro, the preprocessor
passes the tokens that immediately follow the condition on to the compiler.

The preprocessor #ifdef directive has the form:

ÊÊ »# ifdef identifier token_sequence ÊÍ

The following example defines MAX_LEN to be 75 if EXTENDED is defined for the
preprocessor. Otherwise, the example defines MAX_LEN to be 50.
#ifdef EXTENDED
define MAX_LEN 75
#else
define MAX_LEN 50
#endif

#ifndef

The #ifndef directive checks for the existence of macro definitions.

If you have not defined the identifier that is specified as a macro, the preprocessor
passes on the tokens that immediately follow the condition to the compiler.

The preprocessor #ifndef directive has the form:

Conditional Compilation Directives

Chapter 10. Preprocessor Directives 239

ÊÊ »# ifndef identifier token_sequence ÊÍ

An identifier must follow the #ifndef keyword. The following example defines
MAX_LEN to be 50 if EXTENDED is not defined for the preprocessor. Otherwise, the
example defines MAX_LEN to be 75.
#ifndef EXTENDED
define MAX_LEN 50
#else
define MAX_LEN 75
#endif

#else

Consider when the condition specified in the #if, #ifdef, or #ifndef directive
evaluates to 0, and the conditional compilation directive contains a #else directive.
In that case, the preprocessor passes the source text located between the #else
directive and the #endif directive to the compiler.

The preprocessor #else directive has the form:

ÊÊ »# else token_sequence ÊÍ

#endif

The preprocessor #endif directive ends the conditional compilation directive.

It has the form:

ÊÊ # endif ÊÍ

Examples of Conditional Compilation Directives

The following example shows how you can nest preprocessor conditional
compilation directives:
#if defined(TARGET1)
define SIZEOF_INT 16
ifdef PHASE2
define MAX_PHASE 2
else
define MAX_PHASE 8
endif
#elif defined(TARGET2)
define SIZEOF_INT 32
define MAX_PHASE 16
#else
define SIZEOF_INT 32
define MAX_PHASE 32
#endif

Conditional Compilation Directives

240 OS/390 V2R6.0 C/C++ Language Reference

The following program contains preprocessor conditional compilation directives:

CBC3RABC
/**
** This example contains preprocessor
** conditional compilation directives.
**/

#include <stdio.h>

int main(void)
{

static int array[] = { 1, 2, 3, 4, 5 };
int i;

for (i = 0; i <= 4; i++)
{

array[i] *= 2;

#if TEST >= 1
printf("i = %d\n", i);
printf("array[i] = %d\n", array[i]);

#endif

}
return(0);

}

Line Control (#line)

A preprocessor line control directive supplies line numbers for compiler messages. It
causes the compiler to view the line number of the next source line as the specified
number.

A preprocessor #line directive has the form:

ÊÊ # line decimal_constant
" file_name "

characters

ÊÍ

In order for the compiler to produce meaningful references to line numbers in
preprocessed source, the preprocessor inserts #line directives where necessary. For
example, it inserts them at the beginning of and at the end of included text.

A file name specification that is enclosed in double quotation marks can follow the
line number. If you specify a file name, the compiler views the next line as part of
the specified file. If you do not specify a file name, the compiler views the next
line as part of the current source file.

The file_name should be:
v A fully qualified sequential dataset
v A fully qualified PDS or PDSE member
v An HFS path name

The entire string is taken unchanged as the alternate source file name for the
compilation unit (for example, for use by the debugger). Consider if you are using
it to redirect the debugger to source lines from this alternate file. In this case, you

Conditional Compilation Directives

Chapter 10. Preprocessor Directives 241

must ensure the file exists as specified and the line number on the #line directive
matches the file contents. The compiler does not check this.

The token sequence on a #line directive is subject to macro replacement. After
macro replacement, the resulting character sequence must consist of a decimal
constant, optionally followed by a file name that is enclosed in double quotation
marks.

If you do not specify file_name, the preprocessor takes the line number to refer to
the current source file.

Note: The compiler ignores #line directives when the EVENTS compiler option is in
effect.

Example of #line Directives

You can use #line control directives to make the compiler provide more
meaningful error messages. The following program uses #line control directives to
give each function an easily recognizable line number:

CBC3RABD
/**
** This example illustrates #line directives.
**/

#include <stdio.h>
#define LINE200 200

int main(void)
{

func_1();
func_2();

}

#line 100
func_1()
{

printf("Func_1 - the current line number is %d\n",_ _LINE_ _);
}

#line LINE200
func_2()
{

printf("Func_2 - the current line number is %d\n",_ _LINE_ _);
}

This program produces the following output:
Func_1 - the current line number is 102
Func_2 - the current line number is 202

Null Directive (#)

The null directive performs no action. It consists of a single # on a line of its own.

Do not confuse the null directive with the # operator or the character that starts a
preprocessor directive.

#line

242 OS/390 V2R6.0 C/C++ Language Reference

In the following example, if MINVAL is a defined macro name, the preprocessor
takes no action. If MINVAL is not a defined identifier, the preprocessor defines
MINVAL to 1.
#ifdef MINVAL
#

#else
#define MINVAL 1

#endif

Pragma Directives (#pragma)

A pragma is an implementation-defined instruction to the compiler. It has the
general form:

ÊÊ »# pragma character_sequence ÊÍ

In the above syntax diagram, character_sequence is a series of characters that gives a
specific compiler instruction and arguments, if any.

The character_sequence on a pragma is not subject to macro substitutions, unless
otherwise stated.

You can specify more than one pragma construct on a single #pragma directive. The
compiler ignores unrecognized pragmas.

The OS/390 C/C++ compiler recognizes the following pragmas:

chars Sets the sign type of character data.

checkout Controls the diagnostic messages that are
generated by the C compiler CHECKOUT option, and
the C++ compiler INFO option.

comment Places a comment into the object module. Under
some circumstances it places the comment in the
load module as well. This pragma must appear
before any C or C++ code.

convlit Provides a means for changing the assumed code
page for character string literals.

csect Identifies the name for either the code, static, or
test control section (CSECT). The IPA Link step
does not use this name; it uses CSECT names that
are specified in the IPA control file.

define C++ Only. This pragma forces the definition of a
template class without actually defining an object
of the class.

disjoint C Only. This pragma lists the identifiers that are
not aliased to each other within the scope of their
use.

environment C Only. Use OS/390 C code as an assembler
substitute.

(Null Directive)

Chapter 10. Preprocessor Directives 243

export Declares that an external function or variable is to
be exported.

filetag Specifies the code set in which the source code was
entered.

hdrstop Manually terminates the initial sequence of
#include directives that are being considered for
precompilation. This pragma must appear before
any code.

implementation C++ Only. This pragma tells the compiler the name
of the file that contains the function template
definitions. These definitions correspond to the
template declarations in the include file that
contains the pragma.

info C++ Only. This pragma controls the diagnostic
messages that are generated by the INFO compiler
option.

inline C Only. This pragma specifies that a C function is
to be inlined.

isolated_call Lists functions that do not alter data objects visible
at the time of the function call.

langlvl Selects the C or C++ language level for
compilation.

linkage C Only. This pragma identifies the linkage or
calling convention that is used on a function call.

longname Specifies that the compiler is to generate
not-truncated and mixed case names in the object
module that is produced by the compiler. It must
appear before any code.

map Tells the compiler to convert all references to an
identifier to a new name.

margins Specifies the columns in the input line to scan for
input to the compiler.

noinline Specifies that a C or C++ function is not to be
inlined.

options C Only. This pragma specifies options to the
compiler in your source program.

pack Specifies the alignment rules to use for the
structures, unions, and classes that follow it.

page C Only. This pragma skips pages of the generated
source listing.

pagesize C Only. This pragma sets the number of lines per
page for the generated source listing.

priority C++ Only. This pragma specifies the order in
which OS/390 C/C++ initializes static objects at
run time.

runopts Specifies a list of run-time options for OS/390
C/C++ to use at execution time.

#pragma

244 OS/390 V2R6.0 C/C++ Language Reference

sequence Defines the section of the input line that is to
contain sequence numbers.

skip C Only. This pragma skips lines of the generated
source listing.

strings Sets storage type for strings.

subtitle C Only. This pragma places text on generated
source listings.

target C Only. This pragma specifies the operating system
or run-time environment for which OS/390 C/C++
creates the object module. It must appear before
any C code.

title C Only. This pragma places text on generated
source listings.

variable Specifies that OS/390 C/C++ is to use the named
object in a reentrant or non-reentrant fashion.

wsizeof Specifies the behavior of the sizeof operator either
to that prior to the C/C++ Version 1 Release 3
compilers, or to the OS/390 C/C++ compiler.

The following pragmas are used in Direct-to-SOM applications and are valid in
OS/390 C++ only. Refer to the OS/390 C/C++ Programming Guide for information
about these pragmas.
v SOM
v SOMAsDefault
v SOMAttribute
v SOMCallStyle
v SOMClassInit
v SOMClassName
v SOMClassVersion
v SOMDataName
v SOMDefine
v SOMMetaClass
v SOMMethodAppend
v SOMMethodName
v SOMNoDataDirect
v SOMNoMangling
v SOMNonDTS
v SOMReleaseOrder

Restrictions on #pragma Directives

The following table lists the restrictions on using #pragma directives, and shows
whether a directive is valid in C, C++, or both. A blank entry in the table indicates
no restrictions.

Table 12. Restrictions on #pragmas

#pragma Restriction on Number of
Occurrences

Restriction on Placement C C++

chars Once. On the first #pragma directive, and before
any code or directive, except for the
pragmas filetag, longname, langlvl or
target, which may precede this directive.

yes yes

#pragma

Chapter 10. Preprocessor Directives 245

|
|
|

Table 12. Restrictions on #pragmas (continued)

#pragma Restriction on Number of
Occurrences

Restriction on Placement C C++

checkout yes yes

comment The copyright directive can
appear only once.

The copyright directive must appear
before any C or C++ code.

yes yes

csect Three times. Once for code,
once for static data, and once
for debug information.

yes yes

convlit yes yes

define Wherever a declaration is allowed. yes

disjoint Wherever a declaration is allowed. yes

environment yes

export Cannot export the main() function. yes yes

filetag Once per file scope. On the first #pragma directive, and before
any code or directive, except for all
conditional compilation directives (such
as #if or #ifdef) which may precede this
directive.

yes yes

hdrstop yes yes

implementation Wherever a declaration is allowed. yes

info yes

inline At file scope. yes

isolated_call Wherever a declaration is allowed. yes yes

noinline At file scope. yes yes

langlvl Once. On the first #pragma directive, and before
any code or directive, except for the
pragmas filetag, longname, chars or
target, which may precede this directive.

yes yes

linkage Can appear more than once for
each function, as long as one
#pragma does not contradict
another #pragma.

yes

longname Once. On the first #pragma directive, except for
pragmas filetag, chars, langlvl or
target, which may precede this directive.

yes yes

map yes yes

margins yes yes

options Before any C code. yes

pack yes yes

page yes

pagesize yes

priority yes

runopts yes yes

sequence yes yes

skip yes

strings Once. Before any C or C++ code. yes yes

#pragma

246 OS/390 V2R6.0 C/C++ Language Reference

|
|

Table 12. Restrictions on #pragmas (continued)

#pragma Restriction on Number of
Occurrences

Restriction on Placement C C++

subtitle yes

target Once. On the first #pragma directive, and before
any code or directive, except for pragmas
filetag, chars, langlvl, or longname,
which may precede this directive.

yes

title yes

variable yes yes

wsizeof yes yes

IPA Considerations

Interprocedural Analysis (IPA), through the IPA compiler option, is a mechanism
for performing optimizations across the compilation units of your OS/390 C or
C++ program. IPA also performs optimizations not otherwise available with the
C/C++ compiler. Refer to the OS/390 C/C++ Programming Guide for an overview of
IPA.

Many #pragma directives do not have any special behavior under IPA. They have
the same effect on a program compiled with or without the IPA option.

You may see changes during the IPA Link step, due to the effect of a #pragma
directive. The IPA Link step detects and resolves the conflicting effects of #pragma
directives, and the conflicting effects of #pragma directives and compiler options
that you specified for different compilation units. There may also be conflicting
effects between #pragma directives and equivalent compiler options that you
specified for the IPA Link step.

IPA resolves these conflicts similar to the way it resolves conflicting effects of
compiler options that are specified for the IPA Compile step and the IPA Link step.
The Compiler Options Map section of the IPA Link step listing shows the
conflicting effects between compiler options and #pragma directives, along with the
resolutions.

For those #pragma directives where there are special considerations for IPA, the
following #pragma descriptions include IPA-related information.

chars

The #pragma chars directive specifies that the compiler is to treat all char objects as
signed or unsigned.

ÊÊ # pragma chars (unsigned)
signed

ÊÍ

This pragma must appear on the first #pragma directive. It must also appear before
any code or directive, except for the pragmas filetag, longname, langlvl or
target. These pragmas may precede this directive. Once specified, it applies to the

#pragma

Chapter 10. Preprocessor Directives 247

rest of the file and you cannot turn it off. If a source file contains any functions
that you want to compile without #pragma chars, place these functions in a
different file.

The default character type behaves like an unsigned char.

checkout

The #pragma checkout directive is a OS/390 C/C++ directive and an addition to
the SAA Standard.

This pragma can appear anywhere that a preprocessor directive is valid.

ÊÊ # pragma checkout (resume)
suspend

ÊÍ

With #pragma checkout, you can suspend the diagnostics that the CHECKOUT C
compiler option or the INFO C++ compiler option performs during specific portions
of your program. You can then resume the same level of diagnostics later in the
file.

Nested #pragma checkout directives are allowed and behave as the following
example demonstrates:
/* Assume CHECKOUT(PPTRACE) had been specified */
#pragma checkout(suspend) /* No CHECKOUT diagnostics are performed */

...
#pragma checkout(suspend) /* No effect */ ──┐

... │
#pragma checkout(resume) /* No effect */ ──┘

...
#pragma checkout(resume) /* CHECKOUT(PPTRACE) diagnostics continue */

comment

The #pragma comment directive places a comment into the object module. This
pragma must appear before any C or C++ code or directive in a source file. The
"token_sequence" field in this pragma has a 1024-byte limit.

ÊÊ # pragma comment Ê

Ê (compiler)
date
timestamp

copyright
user , " token_sequence "

ÊÍ

The comment type can be:

compiler The compiler appends its name and version in an END
information record at the end of the generated object module.
OS/390 C/C++ does not include the name and version when it
generates an executable, nor does it load the name and version into

#pragma

248 OS/390 V2R6.0 C/C++ Language Reference

|
|

|
|
|
|

memory when it runs the program. This information can be
printed out using the C370LIB utility with the MAP option.

date The compiler appends the date and time of compilation in an END
information record at the end of the generated object module.
OS/390 C/C++ does not include the date and time when it
generates an executable nor does it load the date and time into
memory when it runs the program. This information can be
printed out using the C370LIB utility with the MAP option.

timestamp The compiler appends the date and time of the last modication of
the source in an END information record at the end of the
generated object module. OS/390 C/C++ does not include the date
and time when it generates an executable nor does it load the date
and time into memory when it runs the program. This information
can be printed out using the C370LIB utility with the MAP option.

If OS/390 C/C++ cannot find the timestamp for a source file, the
#pragma comment directive returns Mon Jan 1 0:00:01 1990.

copyright The compiler places text that is specified by the token_sequence, if
any, into the generated object module. When OS/390 C/C++
creates an executable, it includes the token_sequence in the load
module. The module is loaded into memory when OS/390 C/C++
runs the program.

user The compiler places the text that is specified by the token_sequence,
if any, into the generated object module. When OS/390 C/C++
creates an executable, the token_sequence is included in the load
module. Note that OS/390 C/C++ does not necessarily load it into
memory when it runs the program. OS/390 C/C++ places the
token_sequence on END records in columns 34 to 71.

The characters in the token_sequence field, if specified, must be enclosed in double
quotation marks (").

You can display the object-file comments by using the MAP option for the C370LIB
utility.

IPA Considerations

The #pragma comment directive affects the IPA Compile step only if the OBJECT
suboption of the IPA compile option is in effect.

During the partitioning process in the IPA Link step, the compiler places the text
string information #pragma comment at the beginning of partition 0. Partition 0 is
the initialization partition.

convlit

The #pragma convlit directive allows you to suspend the string literal conversion
that the convlit compiler option performs during specific portions of your
program. You can then resume the conversion at some later point in the file.

ÊÊ # pragma convlit (resume)
suspend

ÊÍ

#pragma

Chapter 10. Preprocessor Directives 249

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|

The pragma is effective only when you specify the CONVLIT compile option.

If you select the PPONLY option, OS/390 C/C++ echoes the convlit pragma to the
expanded source file.

You can nest #pragma convlit directives. They behave as the following example
demonstrates:
/* Assume CONVLIT (<codepage>) had been specified */
#pragma convlit(suspend) /* No string literal conversion */

...
#pragma convlit(suspend) /* No effect */ ──┐

... │
#pragma convlit(resume) /* No effect */ ──┘

...
#pragma convlit(resume) /* String literal conversion continues */

Macros, user-defined and pre-defined, are replaced before tokenization; therefore,
using #pragma convlit(suspend) and #pragma convlit(resume) around a macro
definition would have no effect.

For example:
/* No effect on macro definition when using #pragma convlit(suspend)

and #pragma convlit(resume)*/

main() {
#pragma convlit (suspend)

#define str "Hello World!"
puts(str); /* macro str is not converted */

#pragma convlit(resume)

puts(str); /* macro str is converted */
}

csect

The #pragma csect directive identifies the name for either the code, static, or
debug control section (CSECT).

ÊÊ # pragma csect (CODE , " name ")
STATIC
TEST

ÊÍ

It is a OS/390 C/C++ specific pragma, and an addition to the SAA Standard.

code Specifies the CSECT that contains the executable code (C functions) and
constant data.

static Designates the CSECT that contains all program variables with the static
storage class and all character strings.

test Designates the CSECT that contains debug information. You must specify
the TEST option.

The above syntax encloses the name in double quotation marks. This is the name
that is used for the applicable CSECT (code, static, or test). OS/390 C/C++ does
not map the name in any way, including uppercasing. If the name is greater than 8

#pragma

250 OS/390 V2R6.0 C/C++ Language Reference

characters, you must turn on the LONGNAME option. The name must not conflict with
the name of an exposed name (external function or object) in a source file. In
addition, it must not conflict with another #pragma csect directive or #pragma map
directive. For example, the name of the code CSECT must differ from the name of
the static and test CSECTs.

At most, three #pragma csect directives can appear in a source program as follows:
v One for the code CSECT
v One for the static CSECT
v One for the debug CSECT

Consider when there is no #pragma csect directive in the source file and you
specify the CSECT compile option. In this case, OS/390 C/C++ automatically
generates CSECT names from the source file name. For examples that show the file
names that are generated when using either the #pragma csect or the CSECT
compile option, see the section that describes the CSECT option in the OS/390 C/C++
User’s Guide.

Private code has a disadvantage. When new code is linked to an executable
containing old code, the new code replaces the old. The old code, however, is not
discarded from the executable. The size of the executable will grow, and you may
get duplicates of functions. Naming the CSECTs with this directive replaces the old
code with the new, and removes the old code from the executable. If you want
replacement and removal, name the code, static, and test CSECT.

IPA Considerations

Use the #pragma csect directive when naming regular objects only if the OBJECT
suboption of the IPA compile option is in effect. Otherwise, the compiler discards
the CSECT names that #pragma csect generated.

Refer to the IPA Link Step chapter in the OS/390 C/C++ User’s Guide for
information on how the IPA Link step sets CSECT names.

define (C++ Only)

The #pragma define directive forces the definition of a template class without
actually defining an object of the class.

ÊÊ # pragma define (template_class_name) ÊÍ

The pragma can appear anywhere that a declaration is allowed. Use the pragma to
organize your program to efficiently or automatically generate template functions.

disjoint (C Only)

The #pragma disjoint directive lists the identifiers that are not aliased to each
other within the scope of their use. In the following syntax diagram, identifier is the
name of a variable:

ÊÊ #pragma disjoint Ê

#pragma

Chapter 10. Preprocessor Directives 251

|
|
|
|
|
|

Ê »

» »

(identifier , identifier)

* *

ÊÍ

The directive informs the compiler that none of the identifiers listed shares the
same physical storage, which provides more opportunity for optimizations. If any
identifiers actually share physical storage, the pragma may give incorrect results.

The pragma can appear anywhere in the source program that a declaration is
allowed. An identifier in the directive must be visible at the point in the program
where the pragma appears. The identifiers in the disjoint name list cannot refer to
any of the following:
v A member of a class, structure, or union
v A structure, union, or enumeration tag
v An enumeration constant
v A typedef name
v A label

You must declare the identifiers before using them in the pragma. Your program
must not dereference a pointer in the identifier list nor use it as a function
argument before it appears in the directive.

The following example shows the use of #pragma disjoint.
int a, b, *ptr_a, *ptr_b;

#pragma disjoint(*ptr_a, b) /* *ptr_a never points to b */
#pragma disjoint(*ptr_b, a) /* *ptr_b never points to a */
one_function()
{

b = 6;
ptr_a = 7; / Assignment will not change the value of b */

another_function(b); /* Argument "b" has the value 6 */
}

External pointer ptr_a does not share storage with and never points to the external
variable b. Consequently, assigning 7 to the object to which ptr_a points will not
change the value of b. Likewise, external pointer ptr_b does not share storage with
and never points to the external variable a. The compiler can assume that the
argument to another_function has the value 6 and will not reload the variable
from memory.

environment (C Only)

The #pragma environment directive is an OS/390 C directive, and an addition to
the SAA Standard.

ÊÊ # pragma environment (function)
,nolib

ÊÍ

#pragma

252 OS/390 V2R6.0 C/C++ Language Reference

With the #pragma environment directive, you can use OS/390 C code as an
assembler substitute. See the OS/390 C/C++ Programming Guide for more
information on this use. The directive allows you to do the following:
v Specify entry points other than main
v Omit setting up an OS/390 C environment on entry to this function
v Specify several system exits that are written in OS/390 C code in the same

executable

If you specify nolib, the environment is established, and the library is not loaded
at run time. If you do not specify anything, the library is loaded.

Note: If you specify any other value than nolib after the function name, behavior
is not defined.

export

The #pragma export directive declares that a function or variable is to be exported.
It also specifies the name of the function or variable to be referenced outside the
module. You can use this #pragma to export functions or variables from a DLL
module.

ÊÊ # pragma export (function)
variable

ÊÍ

#pragma export is an OS/390 C/C++ specific directive and an addition to the SAA
standard.

With the #pragma export directive, you can export specific functions and variables
to the users of your DLL. See the OS/390 C/C++ Programming Guide for more
information on creating and using DLLs.

You can specify this pragma anywhere in the DLL source code, on its own line, or
with other pragmas. You can also specify it before or after the definition of the
variable or function. You must externally define the exported function or variable.

Note: You cannot export the main() function. You can also use the _Export
keyword to export a function.

IPA Considerations

If you specify this #pragma in your source code in the IPA Compile step, you
cannot override the effects of this #pragma on the IPA Link step.

filetag

The #pragma filetag directive specifies the code set in which the source code was
entered.

ÊÊ # pragma filetag ("code set name") ÊÍ

Since the # character is variant between code sets, use the trigraph representation
??= instead of # as illustrated below.

#pragma

Chapter 10. Preprocessor Directives 253

The #pragma filetag directive must appear at most once per source file. It must
appear before the first statement or directive, except for all conditional compilation
directives, which may precede this directive. For example:
??=ifdef COMPILER_VER /* This is allowed. */
??=pragma filetag ("code set")

??=endif

It should not appear in combination with any other #pragma directives. For
example, the directive is incorrect:

??=pragma filetag ("IBM-1047") export (baffle_1)

If there are comments before the pragma, OS/390 C/C++ does not translate them
to the code page that is associated with the LOCALE option.

See the OS/390 C/C++ Programming Guide for details on using this directive with
the LOCALE option.

hdrstop

The #pragma hdrstop directive manually terminates the initial sequence of
#include directives that are being considered for precompilation.

ÊÊ # pragma hdrstop ÊÍ

It has no effect under the following conditions:
v The initial sequence of #include directives has already ended
v You do not specify either the GENPCH option or the USEPCH option
v It does not appear in the primary source file

The OS/390 C/C++ User’s Guide describes how to structure your files so the
compiler can take full advantage of the precompiled headers.

Examples

The following example only precompiles the header h1.h by using the file
default.pch (provided you specify USEPCH or GENPCH). If you specify
USEPCH(dave.pch) GENPPCH(john.pch), the compiler will look for the precompiled
headers in john.pch and will regenerate them if they are not found or not usable.

#include "h1.h"
#pragma hdrstop
#include "h2.h"
main () {}

The following example does not use nor does it generate precompiled headers for
the compilation, even if you specify GENPCH or USEPCH.

#pragma hdrstop
#include "h1.h"
#include "h2.h"
main () {}

#pragma

254 OS/390 V2R6.0 C/C++ Language Reference

implementation (C++ Only)

The #pragma implementation directive tells the compiler the name of the file
containing the function-template definitions. These definitions correspond to the
template declarations in the include file which contains the pragma.

ÊÊ # pragma implementation (string_literal) ÊÍ

This pragma can appear anywhere that a declaration is allowed. Use this pragma
to organize your program to efficiently or automatically generate template
functions.

Note: #pragma implementation is only effective if the TEMPINC option is in effect. If
the NOTEMPINC option is in effect, you must test the value of the __TEMPINC__
macro, and conditionally include the required source.

info (C++ Only)

The #pragma info directive controls the diagnostic messages that are generated by
the INFO compile option.

ÊÊ # pragma info (suspend)
resume

ÊÍ

You can use this pragma directive in place of the INFO option.

Use #pragma info suspend to suspend the diagnostics that the INFO compiler
option performs during specific portions of your program. You can then use
#pragma info resume to resume the same level of diagnostics later in the file.

You can also use #pragma checkout to suspend or resume diagnostics.

The OS/390 C/C++ User’s Guide describes the INFO option.

inline (C Only) - also see noinline

The #pragma inline directive specifies whether or not the function is to be inlined.
The pragma can be anywhere in the source, but must be at file scope. #pragma
inline has no effect if you have not specified the INLINE or the OPT compiler
option.

ÊÊ # pragma inline (function)
noinline

ÊÍ

The #pragma inline directive is an OS/390 C directive and is an addition to the
SAA Standard.

The #pragma noinline directive is an OS/390 C/C++ directive and is an addition
to the SAA Standard.

#pragma

Chapter 10. Preprocessor Directives 255

|

If you specify #pragma inline, the function is inlined on every call. The function is
inlined in both selective (NOAUTO) and automatic (AUTO) mode. For OS/390 C++, you
can inline functions using the inline keyword.

If you specify #pragma noinline in your C or C++ program, the function is never
inlined when you call it. This pragma has no effect when you specify NOAUTO with
the OS/390 C INLINE compile option.

The default when compiling with the OPTIMIZE option is to inline functions even if
the OS/390 C++ inline keyword has not been specified. The default when
compiling with the NOOPTIMIZE option is to only inline C++ functions that are:
v Implicitly inlined; that is when the code for a member function is included

inside a class definition
v Explicitly inlined; that is when the inline keyword is used when declaring a

function

For OS/390 C++, you can place the #pragma noinline directive anywhere in the
source. For OS/390 C it must be at file scope.

The #pragma noinline directive is the only way to turn off inlining of functions
that have been implicitly or explicitly inlined. It also takes precedence over the
OS/390 C++ inline keyword.

IPA Considerations

The compiler uses the IPA Link control file directive in the following cases:
v If you specify both the #pragma noinline directive and the IPA Link control file

inline directive for a function
v If you specify both the #pragma inline directive and the IPA Link control file

noinline directive for a function

Example

CBC3RABE:
/* this example shows how #pragma inline may be used */

#pragma csect(code,"MYCFILE")
#pragma csect(static,"MYSFILE")
#pragma options(INLINE)

#include <stdio.h>
#include <stdlib.h>

static int (writerecord) (int, char *);

#pragma inline (writerecord)

int main()
{

int chardigit;
int digit;

printf("Enter a digit\n");
chardigit = getchar();

digit = chardigit - '0';

if (digit < 0 || digit > 9)
{
printf("The digit you entered is not between 1 and 8\n");
exit(99);

#pragma

256 OS/390 V2R6.0 C/C++ Language Reference

}

switch(digit)
{
case 0:

writerecord(0, "entered 0");
break;

case 1:
writerecord(1, "entered 1");
break;

default:
writerecord(9, "entered other");

}
}

static int writerecord (int digit, char *phrase)
{

switch (digit)
{
case 0:

printf("writerecord 0: ");
printf("%s\n", phrase);
break;

case 1:
printf("writerecord 1: ");
printf("%s\n", phrase);
break;

case 2:
printf("writerecord 2: ");
printf("%s\n", phrase);
break;

case 3:
printf("writerecord 3: ");
printf("%s\n", phrase);
break;

default:
printf("writerecord X: ");
printf("%s\n", phrase);

}

return 0;
}

isolated_call

The #pragma isolated_call directive lists functions that do not alter data objects
visible at the time of the function call. In the following syntax diagram, identifier is
a primary expression that can be an identifier, operator function, conversion
function, or qualified name:

ÊÊ # pragma isolated_call »

,

(identifier) ÊÍ

The pragma must appear before calls to the functions in the identifier list. You
must declare the identifiers that are listed before using them in the pragma. They
must be of type function, or a typedef of function. If a name refers to an
overloaded function, all variants of that function declared before the pragma are
marked as isolated calls.

#pragma

Chapter 10. Preprocessor Directives 257

The pragma informs the compiler that none of the functions listed has side effects.
For example:
v Accessing a volatile object
v Modifying an external object
v Modifying a file

Otherwise, you can consider calling a function that does any of the above to be
side effects.

Consider any change in the state of the run-time environment a side effect. Passing
function arguments by reference is one side effect that OS/390 C/C++ allows. In
general, however, functions with side effects can give incorrect results when listed
in #pragma isolated_call directives.

Marking a function as isolated indicates to the optimizer that external and static
variables cannot be changed by the called function. It also indicates that references
to storage can be deleted from the calling function where appropriate. Do not
specify a function that calls itself or relies on local static storage. Listing such
functions in the #pragma isolated_call directive can give unpredictable results.

When a function is marked as isolated, the compiler can make more optimistic
assumptions about what variables the function modifies. The compiler may move
function calls to functions that are flagged as isolated to a different location in the
code or even remove them entirely.

The following example routines shows you when to use the #pragma
isolated_call directive (routine addmult). It also shows you when not to use it
(routines same and check):
#include <stdio.h>
#include <math.h>

int addmult(int op1, int op2);
#pragma isolated_call(addmult)

/* This routine is a good candidate to be flagged as isolated as its */
/* result is constant with constant input and it has no side effects. */
int addmult(int op1, int op2) {
int rslt;

rslt = op1*op2 + op2;
return rslt;

}

/* The routine 'same' should not be flagged as isolated as its state */
/* (the static variable delta) can change when it is called. */
int same(double op1, double op2) {
static double delta = 1.0;
double temp;

temp = (op1-op2)/op1;
if (fabs(temp) < delta)
return 1;

else {
delta = delta / 2;
return 0;

}
}

/* The routine 'check' should not be flagged as isolated as it has a */
/* side effect of possibly emitting output. */
int check(int op1, int op2) {

#pragma

258 OS/390 V2R6.0 C/C++ Language Reference

if (op1 < op2)
return -1;

if (op1 > op2)
return 1;

printf("Operands are the same.\n");
return 0;

}

IPA Considerations

If you specify this #pragma in your source code in the IPA Compile step, you
cannot override the effects of this #pragma on the IPA Link step.

langlvl

The #pragma langlvl directive selects the C or C++ language level for compilation.

ÊÊ # pragma langlvl (ansi)
commonc
extended
saa
saal2
compat

ÊÍ

You can only specify this pragma only once in a source file. It must appear before
any statements in a source file. The compiler uses predefined macros in the header
files to make declarations and definitions available that define the specified
language level.

The default language level is EXTENDED.

ansi Defines the predefined macros __ANSI__ and __STDC__ and
undefines other langlvl variables. It allows only language
constructs that conform to ANSI/ISO C standards.

extended Defines the predefined macro __EXTENDED__ and undefines other
langlvl variables. The default language level is EXTENDED. OS/390
C/C++ defines the __EXTENDED__ macro as 1. Note that #pragma
langlvl(EXTENDED) has no effect in the OS/390 UNIX environment.
In OS/390 UNIX, you must use the compile option
LANGLVL(EXTENDED) instead of the pragma.

commonc Defines the predefined macro __COMMONC__ and __EXTENDED__ and
undefines other langlvl variables. This language level allows
compilation of code that contains constructs defined by the
X/Open Portability Guide (XPG) Issue 3 C language (referred to as
Common Usage C). It is roughly equivalent to what is commonly
known as K&R C. See “Appendix B. Common Usage C Language
Level” on page 407 for more information about the OS/390 C/C++
implementation of Common Usage C.

OS/390 C/C++ does not support this macro for C++.

saa Defines the predefined macro __SAA__ and undefines other langlvl
variables. OS/390 C/C++ does not support this macro for C++.

#pragma

Chapter 10. Preprocessor Directives 259

|
|
|
|
|
|

saal2 Defines the predefined macro __SAA_L2__ and undefines other
langlvl variables. OS/390 C/C++ does not support this macro for
C++.

compat Defines the predefined macro __COMPAT__ and undefines other
langlvl variables. This macro is not supported for C. It is provided
for cfront compatibility.

The #pragma langlvl(extended) permits packed decimal types and it issues a
warning message when it detects assignment between integral types and pointer
types.

The #pragma langlvl(ansi) does not permit packed decimal types and issues an
error message when it detects assignment between integral types and pointer
types. Packed decimal applies to C only.

If you specify #pragma langlvl(ansi), OS/390 C/C++ does not allow the NOEXH
compile option, since NOEXH breaks ANSI conformance. The EXH and NOEXH compile
options apply to C++ only.

The LANGLVL compile option has the same effect as this pragma. The OS/390 C/C++
User’s Guide describes this option.

linkage

The #pragma linkage directive identifies the entry point of modules that are used
in interlanguage calls.

ÊÊ # pragma linkage (identifier, OS)
FETCHABLE
PLI
COBOL
FORTRAN

, RETURNCODE

ÊÍ

The identifier either identifies the name of the function that is to be the entry point
of the module. Or, it identifies a typedef that will be used to define the entry
point.

In C++, you accomplish this by using extern "linkage-type" when declaring an
identifier, for example,

extern "FORTRAN" void f();
extern "COBOL" void g();

The #pragma linkage directive also designates other entry points within a program
that you can use in a fetch operation.

The following are the linkage entry points:

FETCHABLE Specifies a name, other than main, as an entry point within the
program. This pragma also indicates that this name (identifier in the
syntax diagram) can be used in a fetch() operation. See the
OS/390 C/C++ Run-Time Library Reference for more information on
the use of the fetch() library function.

#pragma

260 OS/390 V2R6.0 C/C++ Language Reference

|
|
|

|
|
|

OS Designates an entry point (identifier in the syntax diagram) as an OS
linkage entry point. OS linkage is the basic linkage convention that
is used by the operating system.

PLI Designates an entry point (identifier in the syntax diagram) as a
PL/I linkage entry point.

COBOL Designates an entry point (identifier in the syntax diagram) as a
COBOL linkage entry point.

FORTRAN Designates an entry point (identifier in the syntax diagram) as a
FORTRAN linkage entry point.

You can specify the RETURNCODE keyword with the FORTRAN keyword
for C programs only. OS/390 C/C++ does not support it for C++.
RETURNCODE indicates to the compiler that the routine named by
identifier is a FORTRAN routine, which returns an alternate return
code. It also indicates that the routine is defined outside the
compilation unit. You can retrieve the return code by using the
fortrc() function (refer to the OS/390 C/C++ Run-Time Library
Reference for more information). If the compiler finds the function
definition inside the compilation unit, it issues an error message.
Note that you can define functions outside the compilation unit,
even if you do not specify the RETURNCODE keyword.

You can use a typedef in a #pragma linkage directive to associate a specific linkage
convention with the typedef of a function.
typedef void func_t(void);
#pragma linkage (func_t,OS)

In the example, the #pragma linkage directive associates the OS linkage convention
with the typedef func_t. This typedef can be used in C declarations wherever a
function type specifies the type function of OS linkage type.

Refer to OS/390 Language Environment Writing Interlanguage Applications for more
information about interlanguage calls.

longname

The #pragma longname directive specifies that the compiler is to generate
not-truncated and mixed case names in the object module that is produced by the
compiler. These names can be up to 1024 characters in length.

ÊÊ # pragma longname
nolongname

ÊÍ

If you use the #pragma longname directive for an OS/390 C or C++ program, you
must either use the binder to produce a program object in a PDSE, or you must
use the prelinker. The binder, IPA Link step, and prelinker support the long name
directory that is generated by the Object Library utility for autocall.

If you specify the NOLONGNAME compile option, the compiler ignores the #pragma
longname directive. If you specify the LONGNAME compile option, the compiler
ignores the #pragma nolongname.

#pragma

Chapter 10. Preprocessor Directives 261

Note: The OS/390 C compiler defaults to the NOLONGNAME compile option, and the
OS/390 C++ compiler defaults to the LONGNAME compile option.

Under OS/390 C, if you specify the ALIAS compile option, the compiler creates a
NAME control statement, but no ALIAS control statements. You can use the OS/390 C
Object Library Utility to create a library of object modules with a long name
directory which supports autocall of long name symbols.

If you have more than one preprocessor directive, #pragma longname may be
preceded only by #pragma filetag, #pragma chars, #pragma langlvl, and #pragma
target. Some directives, such as #pragma variable and #pragma linkage are
sensitive to the name handling.

For OS/390 C++, you must specify #pragma longname and #pragma nolongname
before any code. Otherwise, the compiler issues a warning message.

If you use #pragma map to associate an external name with an identifier, the
external name is produced in the object module. That is, #pragma map has the same
behavior with or without the #pragma longname directive.

The #pragma nolongname directive directs the compiler to generate truncated and
uppercase names in the object module produced by the compiler. When the
#pragma nolongname directive is specified, only functions that do not have C++
linkage are given truncated and uppercase names. More details on external name
mapping are provided in the section, “map”. Also, if you have more than one
preprocessor directive, #pragma nolongname must be the first one.

If you specify either #pragma nolongname or the NOLONGNAME option, and this results
in mapping of two different source code names to the same object code name, the
compiler will not issue an error message.

IPA Considerations

You must specify either the LONGNAME compile option or the #pragma longname
preprocessor directive for the IPA Compile step (unless you are using the c89
utility). Otherwise, you receive an unrecoverable compiler error.

map

The #pragma map directive tells the compiler to convert all references to an
identifier to ″name″.

#pragma map is a OS/390 C/C++ directive and an addition to SAA standard. If you
use the #pragma map directive, the C/C++ name in the source file is not visible in
the object deck. The map name represents the object in the object deck.

#pragma map for OS/390 C

For C, #pragma map has the form:

ÊÊ # pragma map (identifier , ″name″) ÊÍ

identifier A name of a data object or function with external linkage.

#pragma

262 OS/390 V2R6.0 C/C++ Language Reference

name The external name that the compiler binds to the given object or
function.

The directive can appear anywhere within a single compilation unit. It can appear
before any declaration or definition of the named object or function.

You should enclose name in double quotation marks. The maximum length for
external names is 8 characters. This is because external names in object modules
can be 8 characters at most without the LONGNAME compile option. The compiler
keeps it as specified on the #pragma map directive in mixed case. It must not
conflict with the name in another #pragma map or #pragma csect directive.

The map name is an external name, thus you must not use it in the source file to
reference the object. If you use the map name in the source file to access the
corresponding object, the compiler treats it as a new identifier.

The compiler produces an error message if you give more than one map name to
an identifier. Two different identifiers can have the same map name.

The compiler resolves the identifiers appearing in the directive, including any type
names used in the prototype argument list. The compiler resolves them as though
the directive had appeared at file scope, independent of its actual point of
occurrence.

For example:
extern "C" int func(int);
#pragma map(func, "funcname1") // maps ::func

#pragma map for OS/390 C++

For OS/390 C++, #pragma map has the form:

ÊÊ # pragma map Ê

Ê (identifier , ″name″)
func_or_op_identifier (argument_list)

ÊÍ

identifier A name of a data object or a nonoverloaded
function with external linkage.

func_or_op_identifier A name of a function or operator with external
linkage. The name can be qualified.

argument_list A prototype list for the named function or operator.

name The external name that is bound to the given
object, function, or operator.

The directive can appear anywhere within a single compilation unit. It can appear
before any declaration or definition of the named object, function, or operator. The
compiler resolves the identifiers appearing in the directive, including any type
names used in the prototype argument list. It resolves them as though the directive
had appeared at file scope, independent of its actual point of occurrence.

#pragma

Chapter 10. Preprocessor Directives 263

For example:
int func(int);

class X
{
public:

void func(void);
#pragma map(func, "funcname1") // maps ::func
#pragma map(X::func, "funcname2") // maps X::func
};

In C++, you should not use #pragma map to map the following:
v C++ Member functions
v Overloaded functions
v Objects generated from templates
v Functions with C++ linkage, or builtin linkage

Such mappings override the compiler-generated names, which could cause IPA
Link or binder errors.

IPA Considerations

The use of the #pragma map directive for variables will inhibit the global coalescing
optimization of these variables during the IPA Link step.

margins

The #pragma margins directive specifies the margins in the source file that are to be
scanned for input to the compiler. You cannot specify columns (m,n) for OS/390
C++. The #pragma nomargins directive specifies that the entire input source record
is to be scanned for input to the compiler.

#pragma margins is a OS/390 C/C++ directive and an addition to the SAA
Standard.

#pragma margins for OS/390 C

ÊÊ # pragma margins (m , n)
nomargins

ÊÍ

#pragma margins for OS/390 C++

ÊÊ # pragma margins
nomargins

ÊÍ

In the syntax diagram, you can specify the following parameters for OS/390 C:

m The first column of the source input that contains a valid C program. The
value of m must be greater than 0, and less than 32761.

Also, m must be less than or equal to the value of n.

n The last column of the source input that contains a valid C program. The
value of n must be greater than 0, and less than 32761.

#pragma

264 OS/390 V2R6.0 C/C++ Language Reference

|
|

|
|

|
|

You can assign an asterisk (*) to n. The asterisk indicates the last column of
the input record. For example, if you specify #pragma margins(8,*), the
compiler scans from column 8 to the end of the record for input source
statements.

You can use #pragma margins and #pragma sequence together. If they
reserve the same columns, #pragma sequence has priority and it reserves
the columns for sequence numbers. For example, assume columns 1 to 20
are reserved for the margin, and columns 15 to 25 are reserved for
sequence numbers. In this case, the margin will be from column 1 to 14,
and the columns reserved for sequence numbers will be from 15 to 25.

For more information on the #pragma sequence directive, refer to
“sequence” on page 272.

The margin setting specified by the #pragma margins directive applies only to the
source file or include file in which it is found. It has no effect on other #include
files. The #pragma margins and the #pragma nomargins directives come into effect on
the line following the directive. They remain in effect until the compiler encounters
another #pragma margins or #pragma nomargins directive, or until the compiler
reaches the end of the file.

If you use the compile options MARGINS or NOMARGINS with the #pragma margins or
#pragma nomargins directives, the #pragma directives override the compile options.
The compile option specified will be in effect up to, and including, the #pragma
margins or #pragma nomargins directive.

For OS/390 C++, the #pragma margins specifies that columns 1 through 72 in the
input record are to be scanned for input to the compiler. The input file can have
fixed or variable record length. The compiler ignores any text in the source input
that does not fall within the range.

For OS/390 C, the default setting is MARGINS(1,72) for fixed-length records, and
NOMARGINS for variable-length records. For OS/390 C++, the default is NOMARGINS.

noinline (C and C++) - also see inline

The #pragma noinline directive is an OS/390 C/C++ directive and is an addition to
the SAA Standard.

The #pragma noinline specifies that the function is never inlined when you call it.
This pragma has no effect when you specify NOAUTO with the OS/390 C INLINE
compile option.

You can place the #pragma noinline directive anywhere in a C++ program. The
directive must be at file scope in a C program.

The #pragma noinline directive is the only way to turn off inlining of functions
that have been implicitly or explicitly inlined at compile time. It also takes
precedence over the OS/390 C/C++ inline keyword.

See “inline (C Only) - also see noinline” on page 255 for more information. For
more information on how to use #pragma noinline, refer to the OS/390 C/C++
User’s Guide.

#pragma

Chapter 10. Preprocessor Directives 265

IPA Considerations

If you use either the #pragma inline or the #pragma noinline directive in your
source, you can later override them with an appropriate IPA Link control file
directive during the IPA Link step. For example:
v If you specify both the #pragma noinline directive and the IPA Link control file

inline directive for a function.
v If you specify both the #pragma inline directive and the IPA Link control file

noinline directive for a function.

options (C Only)

The #pragma options directive specifies a list of compile options that are to be
processed as if you had typed them on the command line or on the CPARM
parameter of the IBM-supplied cataloged procedures.

ÊÊ # pragma options » »

,

(option) ÊÍ

The only compile options that are allowed on a #pragma options directive are:

AGGREGATE|NOAGGREGATE ALIAS|NOALIAS ANS|NOANS
ARCH CHECKOUT|NOCHECKOUT DECK|NODECK
GONUMBER|NOGONUMBER HWOPTS|NOHWOPTS1 INLINE|NOINLINE
LIBANSI|NOLIBANSI MAXMEM|NOMAXMEM OBJECT|NOOBJECT
OPTIMIZE|NOPTIMIZE RENT|NORENT SERVICE|NOSERVICE
SPILL|NOSPILL START|NOSTART TEST|NOTEST
UPCONV|NOUPCONV TUNE|NOTUNE XREF|NOXREF

Note: 1 The compiler accepts the HWOPTS|NOHWOPTS option, but you should use the
ARCHITECTURE option instead.

For a detailed description of these options refer to the OS/390 C/C++ User’s Guide.

If you use a compile option that contradicts the options that are specified on the
#pragma options directive, the compile option overrides the options on the #pragma
options directive.

If you specify an option more than once, the compiler uses the last one you
specified.

If you use one of the following compile options, the compiler inserts the option
name at the bottom of your object module to indicate that it used the option:

ALIAS ANSIALIAS ARCHITECTURE
GONUMBER HWOPTS INLINE
LIBANSI MAXMEM OPTIMIZE (all levels)
RENT SPILL START
TARGET (all targets) TEST TUNE
UPCONV

#pragma

266 OS/390 V2R6.0 C/C++ Language Reference

|
|
|

|
|

|
|

|

|

|

IPA Considerations

You cannot specify the IPA compile-time option for #pragma options.

Refer to the OS/390 C/C++ User’s Guide for descriptions of how different compile
options affect IPA processing.

pack

The #pragma pack directive specifies the alignment rules to use for the structures,
unions, and classes that follow it. The C compiler performs packing on definitions if
you specify _Packed and on declarations if you specify #pragma pack. The C++
compiler does not support _Packed, so it can only perform packing on declarations.
This means that the packing applies to type-specifiers and not declarators.

ÊÊ # pragma pack ()
1
2
4
full
packed
twobyte
reset

ÊÍ

where:

full Is 4-byte boundary alignment. It is the system default boundary
alignment. This is the same as #pragma pack()and #pragma
pack(4).

packed Is 1-byte boundary alignment. This is the same as #pragma pack(1).

twobyte Is 2-byte boundary alignment. This is the same as #pragma pack(2).

reset Returns the alignment to the previous alignment rule.

The #pragma pack directive packs all structures and unions that follow it in the
program along a boundary specified in the directive. It continues to pack until
another #pragma pack directive changes the packing boundary. The #pragma pack
directive does not apply to forward declarations of structures or unions. For
example, in the following code fragment, the alignment for struct S is full. This is
the rule when the declaration list is declared:
#pragma pack(packed)
struct S;
#pragma pack(full)
struct S { int i, j, k; };

The compiler packs declarations or types. This is different from the _Packed
keyword in OS/390 C, where packing is also performed on definitions. For
portability, you should use #pragma pack instead of the _Packed keyword.

The #pragma pack directive does not have the same effect as declaring a structure
as _Packed. The _Packed keyword removes all padding between structure members,
while the #pragma pack directive only specifies the boundaries to align the
members.

Normal structure alignment aligns the structure members on their natural
boundaries and ends the structure on its natural boundary. The alignment of the

#pragma

Chapter 10. Preprocessor Directives 267

structure is that of its strictest member. The compiler performs normal alignment
when your program meets one of the following conditions:
v It does not specify the #pragma pack directive
v It specifies #pragma pack() before the structure declaration
v It specifies #pragma pack(full) before the structure declaration

To change the alignment back to what it was before the last #pragma pack, use the
reset option.

Consider if, by default, the compiler packs data types along boundaries smaller
than those specified by #pragma pack. The compiler still aligns them along the
smaller boundaries. For example, the compiler always aligns type char along a
1-byte boundary, regardless of the value of #pragma pack.

Consider when more than one #pragma pack directive appears in a structure
defined in an inlined function. In that case, the #pragma pack directive that is in
effect at the beginning of the structure takes precedence.

If you are porting code from other platforms that contain #pragma pack directives
or packed data, consider using the PORT compiler option to increase the syntax
checking for the #pragma pack directive in your code. This option will allow you to
adjust the error recovery action the compiler takes if the # pragma pack is
incompatible with the OS/390 C/C++ # pragma pack. For more information on
using the PORT option, see the OS/390 C/C++ User’s Guide.

Alignment of Nested Structures

A nested structure has the alignment that precedes its declaration, not the
alignment of the structure in which it is contained.

#pragma pack () // full alignment
struct nested {
int x;
char y;
int z;

};

#pragma pack(1) // 1-byte alignment
struct packedcxx{

char a;
short b;
struct nested s1; // full alignment

};

Alignment of Unions

You can also perform packing in a union. Each member starts at offset zero, and
the entire union spans as many bytes as its largest element. The #pragma pack
affects the total alignment restriction of the whole union. Consider the following
example:

Without Packing:
union uu {
short a;
struct {
char x;
char y;
char z;

#pragma

268 OS/390 V2R6.0 C/C++ Language Reference

|
|
|
|
|
|

} b;
};

union uu array[2];

First, consider the non-packed array. Each of its elements is of type union uu.
Since it is non-packed, every element has an alignment restriction of 2 bytes. The
largest alignment requirement among the union members is that of short a. There
is one byte of padding at the end of each element to enforce this requirement.

┌────── array[0] ───────┬────── array[1] ───────┐

│ │ │
│ a │ │ a │ │
│ x │ y │ z │ │ x │ y │ z │ │
└─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┘
0 1 2 3 4 5 6 7 8

With #pragma pack(packed):
#pragma pack(packed)

union uu {
short a;
struct {
char x;
char y;
char z;

} b;
};

union uu p1_array[2];

Now consider the packed array p1_array. Since the example specifies #pragma
pack(packed), the alignment restriction of every element is the byte boundary.
Therefore, each element has a length of only 3 bytes, as opposed to the 4 bytes of
the previous case.

┌── p_array[0] ───┬─── p_array[1] ──┐

│ │ │
│ a │ │ a │ │
│ x │ y │ z │ x │ y │ z │
└─────┴─────┴─────┴─────┴─────┴─────┘
0 1 2 3 4 5 6

For information on calling C packed structures or unions from C++, see the OS/390
C/C++ Programming Guide.

For information on packing C structures, see “_Packed Qualifier (C Only)” on
page 122.

Examples

In a header file, file.h:
#pragma pack(packed)

struct jeff{ /* this structure is packed */
float bill; /* along 1-byte boundaries */
int *chris;

}
#pragma pack(reset) /* reset to previous alignment rule*/

#pragma

Chapter 10. Preprocessor Directives 269

...

In a source file, file.cxx:
#pragma pack(full)

#include "file.h" // inside the header file,
// the alignment rule is set to 1-byte
// and then reset to the system default

struct dor{ // this structure is packed
double stephen; // using the system default alignment
long alex;

}

page (C Only)

The #pragma page directive skips the number of pages that are specified by pages of
the generated source listing. If you do not specify pages, it starts the next page.

ÊÊ # pragma page ()
pages

ÊÍ

pagesize (C Only)

The #pragma pagesize directive sets the number of lines per page to n for the
generated source listing.

ÊÊ # pragma pagesize ()
n

ÊÍ

The default page size is 60 lines. The minimum page size that you should set is 25.

IPA Considerations

This #pragma has the same effect on the IPA Compile step as it does on a regular
compilation. It has no effect on the IPA Link step.

priority (C++ Only)

The #pragma priority directive specifies the order in which OS/390 C/C++
initializes static objects at run time.

ÊÊ # pragma priority (n) ÊÍ

n is an integer literal in the range of INT_MIN to INT_MAX. The default value is 0. A
negative value indicates a higher priority; a positive value indicates a lower
priority.

OS/390 C/C++ reserves the first 1024 priorities (INT_MIN to INT_MIN + 1023) for use
by the compiler and its libraries. The priority value that is specified applies to all
run-time static initialization in the current compilation unit.

#pragma

270 OS/390 V2R6.0 C/C++ Language Reference

OS/390 C/C++ constructs any global object declared before another object in a file
first. Use #pragma priority to specify the construction order of objects across files.

To ensure that the objects are always constructed from top to bottom in a file, the
compiler enforces a restriction. This restriction ensures that the priority specified
for all objects before and all objects after it is at that priority until the next #pragma.

runopts

The #pragma runopts directive specifies a list of runtime options that OS/390
C/C++ uses at execution time.

ÊÊ # pragma runopts » »

,

(option) ÊÍ

Specify your #pragma runopts directive in the compilation unit that contains main.
If more than one compilation unit contains a #pragma runopts directive,
unpredictable results can occur. The #pragma runopts directive only affects primary
modules, and has no affect on a DLL.

If a sub-option to #pragma runopts is not a valid C token, you can surround the
sub-options to #pragma runopts in double quotes. For example, use:
#pragma runopts (" RPTSTG(ON) TEST(,,,VADTCPIP&1.2.3.4:*) ")

instead of:
#pragma runopts (RPTSTG(ON) TEST(,,,VADTCPIP&1.2.4.3:*))

Refer to “target (C Only)” on page 274 and the OS/390 C/C++ User’s Guide for
information about how #pragma target and the TARGET compile-time option affect
#pragma runopts. Refer to the OS/390 Language Environment Programming Guide for
descriptions of specific run-time options.

IPA Considerations

This #pragma only affects the IPA Compile step if you specify the OBJECT suboption
of the IPA compiler option.

The IPA Compile step passes the effects of this directive to the IPA Link step.

Consider if you specify ARGPARSE|NOARGPARSE, EXECOPS|NOEXECOPS, PLIST, or
REDIR|NOREDIR either on the #pragma runopts directive or as a compile-time option
on the IPA Compile step, and then specify the compile-time option on the IPA Link
step. In this case, you override the value that you specified on the IPA Compile
step.

If you specify the TARGET compile-time option on the IPA Link step, it has the
following effects on #pragma runopts:
v It overrides the value you specified for #pragma runopts(ENV). If you specify

TARGET(LE) or TARGET(), the compiler sets the value of #pragma runopts(ENV) to
MVS. If you specify TARGET(IMS), the compiler sets the value of #pragma
runopts(ENV) to IMS.

#pragma

Chapter 10. Preprocessor Directives 271

v It may override the value you specified for #pragma runopts(PLIST). If you
specify TARGET(LE) or TARGET(), and you specified something other than HOST for
#pragma runopts(PLIST), the compiler sets the value of #pragma runopts(PLIST)
to HOST. If you specify TARGET(IMS), the compiler sets the value of #pragma
runopts(PLIST) to IMS.

For #pragma runopts options other than those that are listed above, the IPA Link
step follows these steps to determine which #pragma runopts value to use:
1. The IPA Link step uses the #pragma runopts specification from the main()

routine, if the routine exists.
2. If no main() routine exists, the IPA Link step follows these steps:

a. If you define the CEEUOPT variable, the IPA Link step uses the #pragma
runopts value from the first compilation unit that it finds that contains
CEEUOPT.

b. If you have not defined the CEEUOPT variable in any compilation unit, the
IPA Link step uses the #pragma runopts value from the first compilation
unit that it processes.

The sequence of compilation unit processing is arbitrary.

To avoid problems, you should specify #pragma runopts only in your main()
routine. If you do not have a main() routine, specify it in only one other module.

sequence

The #pragma sequence directive specifies the section of the input record that is to
contain sequence numbers. The #pragma nosequence directive specifies that the
input record does not contain sequence numbers.

#pragma sequence is an OS/390 C/C++ directive and an addition to the SAA
Standard.

#pragma sequence for OS/390 C

ÊÊ # pragma sequence (m , n)
nosequence

ÊÍ

#pragma sequence for OS/390 C++

ÊÊ # pragma sequence
nosequence

ÊÍ

In the syntax diagram you can specify the following parameters for OS/390 C:

m The column number of the left-hand margin. The value of m must be
greater than 0, and less than 32761.

Also, m must be less than or equal to the value of n.

n The column number of the right-hand margin. The value of n must be
greater than 0, and less than 32761.

#pragma

272 OS/390 V2R6.0 C/C++ Language Reference

|
|

|
|

You can assign an asterisk (*) to n that indicates the last column of the
input record. For example, SEQUENCE(74,*) indicates that sequence
numbers are between column 74 and the end of the input record.

You can use #pragma sequence and #pragma margins together. If they
reserve the same columns, #pragma sequence has priority, and OS/390
C/C++ reserves the columns for sequence numbers. For example, consider
if the columns reserved for the margin are 1 to 20 and the columns
reserved for sequence numbers are 15 to 25. In this case, the margin will be
from column 1 to 14, and the columns reserved for sequence numbers will
be from 15 to 25. For more information on the #pragma margins directive,
refer to “margins” on page 264.

The sequence setting specified by the #pragma sequence directive applies only to
the file (source file or include file) that contains it. The setting has no effect on
other #include files in the file. The sequence number area specified on the #pragma
sequence directive comes into effect on the line following the directive. It remains
in effect until it encounters another #pragma sequence or a #pragma nosequence
directive or until it reaches the end of the file.

If you use the compile-time options SEQUENCE|NOSEQUENCE with the #pragma
sequence or #pragma nosequence directives, the #pragma directive overrides the
compile options. The compile option is in effect up to, and including, the #pragma
sequence or the #pragma nosequence directive.

For OS/390 C++, the #pragma sequence directive defines that columns 73 through
80 of the input record (fixed or variable length) contain sequence numbers. You
cannot specify columns (m,n). The default compile option for OS/390 C++ is
NOSEQUENCE.

For OS/390 C, the default setting is SEQUENCE(73,80) for fixed-length records, and
NOSEQUENCE for variable length records.

skip (C Only)

The #pragma skip directive skips the specified number of lines in the generated
source listing. The value of lines must be a positive integer less than 255. If you
omit lines, the compiler skips one line.

ÊÊ # pragma skip ()
lines

ÊÍ

strings

The #pragma strings directive sets the storage type for strings. It specifies that the
compiler can place strings into read-only memory or must place strings into
read/write memory.

ÊÊ # pragma strings (writable)
writeable
readonly

ÊÍ

#pragma

Chapter 10. Preprocessor Directives 273

|
|
|
|

|
|

This pragma must appear before any C or C++ code in a file.

C strings are read/write by default. C++ strings are read-only by default.

IPA Considerations

During the IPA Link step, the compiler compares the #pragma strings
specifications for individual compilation units. If it finds differences, it treats the
strings as if you specified #pragma strings(writeable) for all compilation units.

subtitle (C Only)

The #pragma subtitle directive places the text that is specified by subtitle on all
subsequent pages of the generated source listing.

ÊÊ # pragma subtitle (" subtitle ") ÊÍ

target (C Only)

The #pragma target directive specifies the operating system or run-time
environment for which OS/390 C/C++ creates the object.

ÊÊ # pragma target ()
LE
IMS

ÊÍ

The compiler generates code to run under these options:

LE Generates code to run under the OS/390 Language Environment run-time
library. This is the default behavior.

IMS Generates object code to run under IMS.

If you have more than one preprocessor directive, the only #pragma directives that
can precede #pragma target are #pragma filetag, #pragma chars, #pragma langlvl,
and #pragma longname.

Specifying #pragma target() or #pragma target(LE) has the following effects on
#pragma runopts(ENV) and #pragma runopts(PLIST):
v If you did not specify values for #pragma runopts(ENV) or #pragma

runopts(PLIST), the compiler sets the #pragmas to #pragma runopts(ENV(MVS))
and #pragma runopts(PLIST(HOST)).

v If you did specify values for #pragma runopts(ENV) or #pragma runopts(PLIST),
the values do not change.

Specifying #pragma target(IMS) has the following effects on #pragma runopts(ENV)
and #pragma runopts(PLIST):
v If you did not specify values for #pragma runopts(ENV) or #pragma

runopts(PLIST), the compiler sets the #pragmas to #pragma runopts(ENV(IMS))
and #pragma runopts(PLIST(OS)).

v If you did specify values for #pragma runopts(ENV) or #pragma runopts(PLIST),
the values do not change.

#pragma

274 OS/390 V2R6.0 C/C++ Language Reference

|

||
|

||

|

IPA Considerations

This #pragma only affects the IPA Compile step if you specify the OBJECT suboption
of the IPA compiler option.

The IPA Compile step passes the effects of this #pragma directive to the IPA Link
step.

If you specify different #pragma target directives for different compilation units,
the IPA Link step uses the ENV and PLIST information from the compilation unit
containing main(). If there is no main(), it uses information from the first
compilation unit it finds. If you specify the TARGET compile option for the IPA Link
step, it overrules the #pragma target directive.

title (C Only)

The #pragma title directive places the text that is specified by title on all
subsequent pages of the generated source listing.

ÊÊ # pragma title (" title ") ÊÍ

variable

The #pragma variable directive specifies that OS/390 C/C++ is to use the named
external object in either a reentrant or non-reentrant fashion. If an object is marked
as RENT, its references or its definition will be in the writable static area that is in
modifiable storage. If an object is marked as NORENT, its references or definition is
in the code area and is in potentially read-only storage.

ÊÊ # pragma variable (identifier , RENT)
NORENT

ÊÍ

NORENT does not apply to, and has no affect on, program variables with static
storage class. OS/390 C/C++ always includes these variables with the writable
static variables. Variables are reentrant by default for C++ so that RENT has no
affect.

The #pragma variable directive is an OS/390 C/C++ directive and an addition to
the SAA Standard.

Refer to the section on Reentrancy in OS/390 C/C++ in the OS/390 C/C++
Programming Guide for more information about reentrancy.

wsizeof

The #pragma wsizeof directive toggles the behavior of the sizeof operator between
that of the C and C++ compilers prior to and including the C/C++ MVS/ESA
Version 3 Release 1 product, and the OS/390 C/C++ feature. As explained below,
the difference occurs only when using sizeof on function return types. Other
behaviors of sizeof remain the same.

#pragma

Chapter 10. Preprocessor Directives 275

Specify the pragma as follows:

ÊÊ #pragma wsizeof (ON)
RESUME

ÊÍ

When using the sizeof operator, the C and C++ compilers prior to and including
C/C++ MVS/ESA Version 3 Release 1, returned the size of the widened type
instead of the original type for function return types. For example, in the following
code fragment, using the older compilers, i has a value of 4.
char foo();
i = sizeof foo();

Using the OS/390 C/C++ compiler, i has a the value of 1, which is the size of the
original type, char.

After a #pragma wsizeof(on) is encountered in a source program, all subsequent
sizeof operators return the widened size for function return types. The behavior
prior to the #pragma wsizeof(on), which can be the old or current behavior, is
saved. OS/390 C/C++ reinstates this saved behavior when it encounters a
matching #pragma wsizeof(resume). The saving action works on a stack. That is, a
resume reinstates the most recently saved state as the following example
demonstrates:

/* Normal behavior of sizeof to start with. */
/* ... some code here ... */

#pragma wsizeof(on) /* (1) old behavior of sizeof */
...

#pragma wsizeof(on) /* (2) old behavior of sizeof */
...

#pragma wsizeof(resume) /* matches (2) */
/* still old behavior of sizeof */

...
#pragma wsizeof(resume) /* matches (1) */

/* normal behavior of sizeof */

The compiler will match on and resume throughout the entire compile unit. That is,
the effect of a #pragma wsizeof(on) can extend beyond a header file. Ensure the on
and resume pragmas are matched in your compile unit.

Note: Dangling the resume pragma leads to undefined behavior. The effect of an
unmatched on pragma can extend to the end of the source file.

Use the wsizeof pragma in old header files, where you require the old behavior of
the sizeof operator. By guarding the header file with a #pragma wsizeof(on) at the
start of the header, and a #pragma wsizeof(resume) at the end, you can use the old
header file with new applications.

Using the WSIZEOF compile option and #pragma wsizeof

The WSIZEOF compile option has exactly the same effect as inserting a #pragma
wsizeof(on) at the beginning of the source file. If another #pragma wsizeof exists
in the source code, OS/390 C/C++ toggles the behavior of the sizeof operator, as
decribed above.

#pragma

276 OS/390 V2R6.0 C/C++ Language Reference

You can use the WSIZEOF compile option to save editing your source when you
want the old behavior of the sizeof operator for your entire source file.

Refer to the OS/390 C/C++ User’s Guide for information on the WSIZEOF compile
option.

IPA Considerations

During the IPA Compile step, the size of each function return value is resolved
during source processing. The IPA Compile and Link steps do not alter these sizes.
The IPA object code from compilation units with different wsizeof settings is
merged together during the IPA Link step.

#pragma

Chapter 10. Preprocessor Directives 277

|

|

|
|
|
|

#pragma

278 OS/390 V2R6.0 C/C++ Language Reference

Part 3. C++ Language Elements

This part of the Language Reference describes the language elements of C++.

Chapter 11. C++ Classes
Describes the concept of classes in C++, including a description of the
different types of classes, how to declare class objects, and the scoping
rules for class objects.

Chapter 12. C++ Class Members and Friends
Describes the scoping rules for class members and member access rules.

Chapter 13. C++ Overloading
Describes the form and use of overloaded functions and overloaded
operators.

Chapter 14. Special C++ Member Functions
Describes the member functions that are used to create, destroy, convert,
initialize, and copy class objects.

Chapter 15. C++ Inheritance
Describes the concept of inheritance, including a description of access
control for derived and base classes.

Chapter 16. C++ Templates
Describes class templates and function templates.

Chapter 17. C++ Exception Handling
Describes the facilities C++ provides for handling errors and other
exceptions.

© Copyright IBM Corp. 1996, 1998 279

280 OS/390 V2R6.0 C/C++ Language Reference

Chapter 11. C++ Classes

This chapter discusses the following topics:.
v “C++ Classes Overview”
v “Declaring Class Objects” on page 282
v “Scope of Class Names” on page 286

Related Information

v “C++ Support for Object-Oriented Programming” on page 42

v “Chapter 12. C++ Class Members and Friends” on page 291

v “Chapter 15. C++ Inheritance” on page 343

C++ Classes Overview

A C++ class is a mechanism for creating user-defined data types. It is similar to the
C-language structure data type. A set of data members constitute a structure. In
C++, a class type is like a C structure, except that a set of data members make up
a class. In addition, in C++, you can perform an optional set of operations on the
class.

In C++, you can declare a class type with the keywords union, struct, or class. A
union object can hold any one of a named member set. Structure and class objects
hold a complete set of members. Each class type represents a unique set of class
members that includes data members, member functions, and other type names.
The default access for members depends on the class key:
v The members of a class that is declared with the class key class are private by

default. A class is inherited privately by default.
v The members of a class declared with the class key struct are public by default.

A structure is inherited publicly by default.
v The members of a union that are declared with the class key union are public by

default. You cannot use a union as a base class in derivation. “Chapter 15. C++
Inheritance” on page 343 describes base classes and derivation.

Once you create a class type, you can declare one or more objects of that class
type.

For example:
class X
{ /* define class members here */ };
void main()
{

X xobject1; // create an object of class type X
X xobject2; // create another object of class type X

}

Classes and Structures

The C++ class is an extension of the C-language structure. The only difference
between a structure and a class is that structure members have public access by

© Copyright IBM Corp. 1996, 1998 281

default and class members have private access by default. Consequently, you can
use the keywords class or struct to define equivalent classes.

For example, in the following code fragment, the class X is equivalent to the
structure Y:

CBC3X10C
// In this example, class X is equivalent to struct Y

class X
{
int a; // private by default
public:

int f() { return a = 5; }; // public member function
};
struct Y
{
int f() { return a = 5; }; // public by default
private:

int a; // private data member
};

If you define a structure and then declare an object of that structure using the
keyword class, the members of the object are still public by default. In the
following example, main() has access to the members of X even though X is
declared as using the keyword class:

CBC3X10D
// This example declares a structure, then declares a class
// that is an object of the structure.

#include <iostream.h>

struct x {
int a;
int b;
} ;

class x X;

void main() {
X.a = 0;
X.b = 1;
cout << "Here are a and b " << X.a << " " << X.b << endl;
}

Aggregate Classes

An aggregate class is a class that has no user-defined constructors, no private or
protected members, no base classes, and no virtual functions.

“Initializers” on page 127 describes the initialization of aggregate classes.

Declaring Class Objects

A class declaration creates a unique type.

C++ Classes Overview

282 OS/390 V2R6.0 C/C++ Language Reference

A class specifier is a type specifier that is used to declare a class. Once a class
specifier has been seen and its members declared, a class is considered to be
defined. This is so, even if the member functions of that class are not yet defined.
A class specifier has the following form:

ÊÊ class
struct
union

class_name
:base_class

{ }
member_list

ÊÍ

The member_list is optional. It specifies the class members, both data and
functions, of the class class_name. If the member_list of a class is empty, objects of
that class have a nonzero size. You can use a class_name within the member_list of
the class specifier itself, as long as you do not require the size of the class. For
more information, see “Chapter 12. C++ Class Members and Friends” on page 291.

The base_class is optional. It specifies the base class or classes from which the class
class_name inherits members. If the base_class is not empty, call the class
class_name a derived class. See “Derivation” on page 346 for more information
about derived classes.

The declarator for a class variable that is declared with the class, struct, or union
keyword is an identifier. If the symbol * precedes the identifier, the identifier
names a pointer to a class of the specified data type. If ** precedes the identifier,
the identifier names a pointer to a pointer to a class of the specified data type.

If a constant expression enclosed in [] (brackets) follows the identifier, the
identifier names an array of classes of the specified data type. Consider if *
precedes the identifier and a constant expression enclosed in [] follows the
identifier. In that case, the identifier names an array of pointers to classes of the
specified data type.

Class Names

A class name is a unique identifier that becomes a reserved word within its scope.
Once a class name is declared, it hides other declarations of the same name within
the enclosing scope.

Consider a class name that is declared in the same scope as a function, enumerator,
or object with the same name. You can refer to that class by using an elaborated type
specifier. In the following example, the elaborated type specifier is used to refer to
the class print. This class is hidden by the later definition of the function print():
class print
{

/* definition of class print */
};
void print (class print*); // redefine print as a function
// . // prefix class-name by class-key
// . // to refer to class print
// .
void main ()
{

class print* paper; // prefix class-name by class-key
// to refer to class print

print(paper); // call function print
}

Declaring Class Objects

Chapter 11. C++ Classes 283

You can use an elaborated type specifier with a class name to declare a class.

For more information on elaborated type specifiers, see “Incomplete Class
Declarations” on page 287.

You can also qualify type names to refer to hidden type names in the current
scope. You can reduce complex class name syntax by using a typedef to represent
a nested class name.

The following example uses a typedef so that it can use the simple name nested in
place of outside::middle::inside.

CBC3X10B
// This example illustrates a typedef used to simplify
// a nested class name.

#include <iostream.h>

class outside {
public:

class middle {
public:

class inside {
private:

int a;
public:

inside(int a_init = 0): a(a_init) {}
void printa();

};
};

};

typedef outside::middle::inside nested;

void nested::printa() {
cout << "Here is a " << this->a << endl;
}

void main() {
nested n(9);
n.printa();
}

For more information on nested classes, see “Nested Classes” on page 287

Using Class Objects

You can use a class type to create instances or objects of that class type. For
example, you can declare a class, structure, and union with class names X, Y, and Z
respectively:
class X { /* definition of class X */ };
struct Y { /* definition of struct Y */ };
union Z { /* definition of union Z */ };

Then you can declare objects of each class type. Remember that classes, structures,
and unions are all types of C++ classes.

Declaring Class Objects

284 OS/390 V2R6.0 C/C++ Language Reference

void main()
{

X xobj; // declare a class object of class type X
Y yobj; // declare a struct object of class type Y
Z zobj; // declare a union object of class type Z

}

In C++, unlike C, you do not need to precede declarations of class objects with the
keywords union, struct, and class unless the name of the class is hidden. For
example:
struct Y { /* ... */ };
class X { /* ... */ };
void main ()
{

int X; // hides the class name X
Y yobj; // valid
X xobj; // error, class name X is hidden
class X xobj; // valid

}

For more information on hidden names, see “Scope of Class Names” on page 286.

When you declare more than one class object in a declaration, the declarators are
treated as if declared individually. For example, if you declare two objects that are
of class S in a single declaration:
class S { /* ... */ };
// .
// .
// .
void main()
{

S S,T; // declare two objects of class type S
}

The above declaration is equivalent to the following:
class S { /* ... */ };
void main()
{

S S;
class S T; // keyword class is required

// since variable S hides class type S
}

However, the above declaration is not equivalent to the following declaration:
class S { /* ... */ };
// .
// .
// .
void main()
{

S S;
S T; // error, S class type is hidden

}

Declaring Class Objects

Chapter 11. C++ Classes 285

You can also declare references to classes, pointers to classes, and arrays of classes.
For example:
class X { /* ... */ };
struct Y { /* ... */ };
union Z { /* ... */ };
void main()
{

X xobj;
X &xref = xobj; // reference to class object of type X
Y *yptr; // pointer to struct object of type Y
Z zarray[10]; // array of 10 union objects of type Z

}

You can assign or pass objects of class types that are not copy restricted as
arguments to functions. Functions can also return these objects. For more
information, see “Copy Restrictions” on page 340.

For more information on objects, see “Objects” on page 72. “Initialization by
Constructor” on page 336 discusses initialization of classes.

Scope of Class Names

A class declaration introduces the class name into the scope where it is declared.
Any class, object, function or other declaration of that name in an enclosing scope
is hidden. Consider a class name is declared in a scope where an object, function,
or enumerator of the same name is also declared. In this case, you can only refer to
the class by using the elaborated type specifier. The class key (class, struct, or
union) must precede the class name to identify it.

For example:

CBC3X10E
// This example shows the scope of class names.

class x { int a; }; // declare a class type class-name

x xobject; // declare object of class type x

int x(class x*) // redefine x to be a function
{return 0;} // use class-key class to define

// a pointer to the class type x
// as the function argument

void main()
{

class x* xptr; // use class-key class to define
// a pointer to class type x

xptr = &xobject; // assign pointer
x(xptr); // call function x with pointer to class x

}

You can use an elaborated type specifier in the declaration of objects and functions.
See “Class Names” on page 283 for an example.

You can also use an elaborated type specifier in the incomplete declaration of a
class type to reserve the name for a class type within the current scope.

Declaring Class Objects

286 OS/390 V2R6.0 C/C++ Language Reference

Incomplete Class Declarations

An incomplete class declaration is a class declaration that does not define any class
members. You cannot declare any objects of the class type or refer to the members
of a class until the declaration is complete. However, an incomplete declaration
allows you to make specific references to a class prior to its definition as long as
you do not require the size of the class.

For example, you can define a pointer to the structure first in the definition of the
structure second. The following example declares the structure first in an
incomplete class declaration prior to the definition of second. The definition of
oneptr in structure second does not require the size of first:
struct first; // incomplete declaration of struct first

struct second // complete declaration of struct second
{

first* oneptr; // pointer to struct first refers to
// struct first prior to its complete
// declaration

first one; // error, you cannot declare an object of
// an incompletely declared class type

int x, y;
};

struct first // complete declaration of struct first
{

second two; // define an object of class type second
int z;

};

If you declare a class with an empty member list, it is a complete class declaration.
For example:
class X; // incomplete class declaration
class Z {}; // empty member list
class Y
{
public:

X yobj; // error, cannot create an object of an
// incomplete class type

Z zobj; // valid
};

“Chapter 12. C++ Class Members and Friends” on page 291 describes class member
lists.

Nested Classes

You declare a nested class within the scope of another class. The name of a nested
class is local to its enclosing class. Unless you use explicit pointers, references, or
object names, declarations in a nested class can only use visible constructs. This
includes type names, static members, and enumerators from the enclosing class
and global variables.

Member functions of a nested class follow regular access rules and have no special
access privileges to members of their enclosing classes. Member functions of the
enclosing class have no special access to members of a nested class.

Scope of Class Names

Chapter 11. C++ Classes 287

You can define member functions and static data members of a nested class in the
global scope. For example, in the following code fragment, you can access the
static members x and y by using a qualified type name. You can also access
member functions f() and g() of the nested class nested. Qualified type names
allow you to define a typedef to represent a qualified class name. Then you can
use the typedef with the :: (scope resolution) operator to refer to a nested class or
class member.

The following example demonstrates this:
class outside
{
public:

class nested
{
public:

static int x;
static int y;
int f();
int g();

};
};
int outside::nested::x = 5;
int outside::nested::f() { return 0; };

typedef outside::nested outnest; // define a typedef
int outnest::y = 10; // use typedef with ::
int outnest::g() { return 0; };// . . .

Local Classes

You declare a local class within a function definition. The local class is in the scope
of the enclosing function scope. Declarations in a local class can only use type
names, enumerations, static variables from the enclosing scope, as well as external
variables and functions.

For example:
int x; // global variable
void f() // function definition
{

static int y; // static variable y can be used by
// local class

int x; // auto variable x cannot be used by
// local class

extern int g(); // extern function g can be used by
// local class

class local // local class
{

int g() { return x; } // error, local variable x
// cannot be used by g

int h() { return y; } // valid,static variable y
int k() { return ::x; } // valid, global x
int l() { return g(); } // valid, extern function g

};
}

void main()
{

local* z; // error, local is undefined

Scope of Class Names

288 OS/390 V2R6.0 C/C++ Language Reference

// .
// .
// .
}

Define member functions of a local class within their class definition. Member
functions of a local class must be inline functions. Like all member functions, those
defined within the scope of a local class do not need the keyword inline.

For more information about inline functions, see “Inline Member Functions” on
page 294.

A local class cannot have static data members. In the following example, an
attempt to define a static member of a local class causes an error:
void f()
{

class local
{

int f(); // error, local class has noinline
// member function

int g() {return 0;} // valid, inline member function
static int a; // error, static is not allowed for

// local class
int b; // valid, nonstatic variable

};
}
// . . .

An enclosing function has no special access to members of the local class.

Local Type Names

Local type names follow the same scope rules as other names. “Scope in C++” on
page 46 describes scope rules. Type names that are defined within a class
declaration have class scope. You cannot use them outside their class without
qualification.

Consider if you use a class name, typedef name, or a constant name that is used in
a type name, in a class declaration. You cannot redefine that name after the class
declaration uses it.

For example:
void main ()
{

typedef double db;
struct st
{

db x;
typedef int db; // error
db y;

};
}

The following declarations are valid:
typedef float T;
class s {

typedef int T;
void f(const T);

};

Scope of Class Names

Chapter 11. C++ Classes 289

Here, function f() takes an argument of type s::T. However, the following
declarations, which reverse the member order of s, cause an error:
typedef float T;
class s {

void f(const T);
typedef int T;

};

In a class declaration, you cannot redefine a name that is not a class name, or a
typedef name to a class name or typedef name once you have used that name in
the class declaration.

Scope of Class Names

290 OS/390 V2R6.0 C/C++ Language Reference

Chapter 12. C++ Class Members and Friends

This chapter describes class members and friends, and includes the topics that are
listed below:
v “Class Member Lists”
v “Data Members” on page 292
v “Class-Type Class Members” on page 292
v “Member Functions” on page 293
v “Member Scope” on page 295
v “Pointers to Members” on page 297
v “The this Pointer” on page 298
v “Static Members” on page 300
v “Member Access” on page 304
v “Friends” on page 306

Related Information

v “Chapter 11. C++ Classes” on page 281

v “Chapter 15. C++ Inheritance” on page 343

v “Chapter 14. Special C++ Member Functions” on page 325

Class Member Lists

An optional member list declares sub-objects called class members. Class members
can be data, functions, classes, enumeration, bit fields, and typedef names. A
member list is the only place you can declare class members. Friend declarations
are not class members but must appear in member lists.

The member list follows the class name and is placed between braces. It can
contain access specifiers, member declarations, and member definitions.

You can access members by using the class access . (dot) and -> (arrow) operators.
The class access operators are described in “Dot Operator (.)” on page 141 and
“Arrow Operator (−>)” on page 141.

A member declaration declares a class member for the class that contains the
declaration. For more information on declarations, see “Chapter 5. Declarations” on
page 69, and “Declaring Class Objects” on page 282.

An access specifier is one of the following:
v public

v private

v protected

“Member Access” on page 304 describes access specifiers.

© Copyright IBM Corp. 1996, 1998 291

You can use a member declaration that is a qualified name followed by a ;
(semicolon) to restore access to members of base classes. “Access Declarations” on
page 351 describes how you do this.

A member declarator declares an object, function, or type within a declaration. It
cannot contain an initializer. You can initialize a member by using a constructor. If
the member belongs to an aggregate class, you can initialize it by using a brace
initializer list in the declarator list. A brace initializer list is one that is surrounded
by braces ({ }). You must explicitly initialize a class that contains constant or
reference members with a brace initializer list. Or you can initialize it explicitly
with a constructor.

A member declarator has the following form:
[identifier] : constant-expression

The above form specifies a bit field.

A pure specifier (= 0) indicates that a function has no definition. You can only use it
with virtual member functions. It replaces the function definition of a member
function in the member list. “Virtual Functions” on page 359 describes pure
specifiers.

You can use the storage-class specifier static (but not extern, auto, or register) in
a member list. For more information, see “Static Members” on page 300.

The order of class member mapping in a member list depends on the
implementation. For the OS/390 C/C++ compiler, class members are allocated in
the order they are declared.

Data Members

Data members include members that are declared with any of the fundamental
types, as well as other types, including pointer, reference, array types, and
user-defined types. You can declare a data member the same way as a variable.
However, you cannot place explicit initializers inside the class definition.

If you declare an array as a nonstatic class member, you must specify all the array
dimensions.

Class-Type Class Members

A class can have members that are of a class type or are pointers or references to a
class type. Members that are of a class type must be of a class type that is
previously declared. You can use an incomplete class type in a member declaration
as long as you do not require the size of the class. For example, a member can be
declared that is a pointer to an incomplete class type. For more information, see
“Incomplete Class Declarations” on page 287.

A class X cannot have a member that is of type X. It can, however, contain pointers
to X, references to X, and static objects of X. Member functions of X can take
arguments of type X and have a return type of X. For example:
class X
{

X();

Class Member Lists

292 OS/390 V2R6.0 C/C++ Language Reference

X *xptr;
X &xref;
static X xcount;
X xfunc(X);

};

OS/390 C++ always processes the bodies of member functions after the definition
of their class is complete. Consequently, the body of a member function can refer
to the name of the class that owns it, even if this requires information about the
class definition.

The language allows member functions to refer to any class member even if the
member function definition appears before the declaration of that member in the
class member list. For example,
class Y
{
public:

int a;
Y ();

private:
int f() {return sizeof(Y);};
void g(Y yobj);
Y h(int a);

};

In this example, the inline function f() is permitted to make use of the size of class
Y. See “Inline Member Functions” on page 294 for more information.

Member Functions

Member functions are operators and functions that are declared as members of a
class. Member functions do not include operators and functions that are declared
with the friend specifier. Refer to these as friends of a class. For more information,
see “Friends” on page 306.

The definition of a member function is within the scope of its enclosing class.
OS/390 C++ analyzes the body of a member function after the class declaration so
that the member function body can use members of that class. When the function
add() is called in the following example, the data variables a, b, and c can be used
in the body of add().
class x
{
public:

int add() // inline member function add
{return a+b+c;};

private:
int a,b,c;

};

For information on static member functions, see “Static Member Functions” on
page 303. For more general information on functions, see “Chapter 8. Functions” on
page 173.

const and volatile Member Functions

You can call a member function that is declared with the const qualifier for
constant and nonconstant objects. You can call a nonconstant member function, but

Class-Type Class Members

Chapter 12. C++ Class Members and Friends 293

only for a nonconstant object. Similarly, you can call a member function that is
declared with the volatile qualifier for volatile and nonvolatile objects. You can
call a nonvolatile member function, but only for a nonvolatile object.

Virtual Member Functions

Declare virtual member functions with the keyword virtual. They allow dynamic
binding of member functions. Because all virtual functions must be member
functions, you can refer to virtual member functions as virtual functions.

If the definition of a virtual function is replaced by a pure specifier in the
declaration of the function, the function is said to be declared pure. An abstract
class is one that contains at least one pure virtual function.

“Virtual Functions” on page 359 describes virtual functions in more detail.
“Abstract Classes” on page 363 describes pure virtual functions.

Special Member Functions

You can use special member functions to create, destroy, initialize, convert, and copy
class objects. These include:
v Constructors
v Destructors
v Conversion constructors
v Conversion functions
v Copy constructors

Chapter 14. Special C++ Member Functions describes special member functions.

Inline Member Functions

A member function that is both declared and defined in the class member list is
called an inline member function. Usually, you declare member functions that
contain a few lines of code as inline.

An equivalent way to declare an inline member function is to declare it outside of
the class declaration using the keyword inline and the :: (scope resolution)
operator. These operators identify the class to which the member function belongs.
For example consider the following class:
class Y
{

char* a;
public:

char* f() {return a;};
};

The above class is equivalent to the following class:
class Z
{

char* a;
public:

char* f();
};
// .
// .
// .
inline char* Z::f() {return a;}

Member Functions

294 OS/390 V2R6.0 C/C++ Language Reference

Consider when you declare an inline function without the inline keyword and do
not define it in the class member list. In this case, you cannot call the function
before you define it. In the above example, you cannot call f() until after its
definition.

Inline member functions have internal linkage. Noinline member functions have
external linkage.

For more information, see “C++ Inline Functions” on page 195.

Member Function Templates

Any member function (inline or not inline) that is declared within a class template
is implicitly a function template. When you declare a template class, the
declaration implicitly generates template functions for each function that is defined
in the class template. If instantiating a class template, OS/390 C++ only instantiates
the function templates whose instantiations will be used by the resulting template
class.

For more information about member function templates, see “Member Function
Templates” on page 377.

Member Scope

You can define member functions and static members outside their class
declaration if you have already declared but not defined them in the class member
list. By instantiating the class for nonstatic data members, you define the members.
The declaration of a static data member is not a definition. The declaration of a
member function is a definition if you also provide the body of the function.

Whenever the definition of a class member appears outside of the class declaration,
you must qualify the member name by the class name. Use the :: (scope
resolution) operator.

The following example defines a member function outside of its class declaration.

CBC3X11A
// This example illustrates member scope.

#include <iostream.h>
class X
{
public:

int a, b; // public data members
int add(); // member function declaration only

};
int a = 10; // global variable
// define member function outside its class declaration
int X::add() {return a + b;};
// .
// .
// .
void main()
{

int answer;
X xobject;

Member Functions

Chapter 12. C++ Class Members and Friends 295

xobject.a = 1;
xobject.b = 2;
answer = xobject.add();
cout << xobject.a << " + " << xobject.b << " = " << answer<<endl;

}

The output for this example is: 1 + 2 = 3

All member functions are in class scope even if you define them outside their class
declaration. In the above example, the member function add() returns the data
member a, not the global variable a.

The name of a class member is local to its class. The class access operators are .
(dot), -> (arrow), or :: (scope resolution). Unless you use one of the class access
operators, you can only use a class member in a member function of its class and
in nested classes. You can only use types, enumerations, and static members in a
nested class without qualification with the :: operator.

The order of search for a name in a member function body is:
1. Within the member function body itself
2. Within all the enclosing classes, including inherited members of those classes
3. Within the lexical scope of the body declaration

The search of the enclosing classes, including inherited members, is demonstrated
in the following example:
class A { /* ... */ };
class B { /* ... */ };
class C { /* ... */ };
class Z : A {

class Y : B {
class X : C { int f(); /* ... */ };

};
};
int Z::Y::X f()

{
// .
// .
// .

j();
// .
// .
// .
}

In this example, the search for the name j in the definition of the function f
follows this order:
1. In the body of the function f
2. In X and in its base class C
3. In Y and in its base class B
4. In Z and in its base class A
5. In the lexical scope of the body of f (in this case, this is global scope)

Note: When OS/390 C++ searches the containing classes, it only searches the
definitions of the containing classes and their base classes. It does not search
the scope that contains the base class definitions (global scope, in this
example).

Member Scope

296 OS/390 V2R6.0 C/C++ Language Reference

|

Pointers to Members

Pointers to members allow you to refer to nonstatic members of class objects. You
cannot use a pointer to member to point to a static class member because the
address of a static member does not associate with any particular object. To point
to a static class member, you must use a normal pointer.

You can use pointers to member functions in the same manner as pointers to
functions. You can compare pointers to member functions, assign values to them,
and use them to call member functions. Note that a member function does not
have the same type as a nonmember function that has the same number and type
of arguments and the same return type.

You can use pointers to members that are used as the following example
demonstrates:

CBC3X11B
// This example illustrates pointers to members.

#include <iostream.h>
class X
{
public:

int a;
void f(int b)
{

cout << "The value of b is "<< b << endl;
}

};
// .
// .
// .
void main ()
{

// declare pointer to data member
int X::*ptiptr = &X::a;

// declare a pointer to member function
void (X::* ptfptr) (int) = &X::f;
X xobject; // create an object of class type X
xobject.*ptiptr = 10; // initialize data member

cout << "The value of a is " << xobject.*ptiptr << endl;
(xobject.*ptfptr) (20); // call member function

}

The output for this example is:
The value of a is 10
The value of b is 20

Pointers to Members

Chapter 12. C++ Class Members and Friends 297

To reduce complex syntax, you can declare a typedef to be a pointer to a member.
You can declare and use a pointer to a member as the following code fragment
demonstrates:
typedef void (X::*ptfptr) (int); // declare typedef

void main ()
{
// .
// .
// .
ptfptr ptf = &X::f;
// use typedef

X xobject; (xobject.*ptf) (20);
// call function

}

Use the pointer to member operators, .* and ->*, to bind a pointer to a member of
a specific class object. Because the precedence of () (function call operator) is
higher than .* and ->*, you must use parentheses to call the function pointed to
by ptf.

For more information, see “C++ Pointer-to-Member Operators (.* −>*)” on
page 160.

The this Pointer

The keyword this identifies a special type of pointer. When a nonstatic member
function is called, the this pointer identifies the class object which the member
function is operating on. You cannot declare the this pointer or make assignments
to it.

The type of the this pointer for a member function of a class type X, is X* const. If
the member function is declared with the constant qualifier, the type of the this
pointer for that member function for class X, is const X* const. If the member
function is declared with the volatile qualifier, the type of the this pointer for that
member function for class X is volatile X* const.

The this pointer is passed as a hidden argument to all nonstatic member function
calls. It is available as a local variable within the body of all nonstatic functions.

For example, you can refer to the particular class object that a member function is
called by using the this pointer in the body of the member function. The
following code example produces the output a = 5:

CBC3X11C
// This example illustrates the this pointer

#include <iostream.h>
class X
{

int a;
public:

// The 'this' pointer is used to retrieve 'xobj.a' hidden by
// the automatic variable 'a'
void Set_a(int a) { this->a = a; }
void Print_a() { cout << "a = " << a << endl; }

Pointers to Members

298 OS/390 V2R6.0 C/C++ Language Reference

};
void main()
{

X xobj;
int a = 5;
xobj.Set_a(a);
xobj.Print_a();

}

Unless a class member name is hidden, using the class member name is equivalent
to using the class member name qualified with the this pointer.

The following example shows code using class members without the this pointer.
The comments on each line show the equivalent code with the hidden use of the
this pointer.

CBC3X11D
// This example uses class members without the this pointer.

#include <string.h>
#include <iostream.h>
#define BUFLN 100 // length of buffer to hold string
class X
{

int len;
char *ptr;

public:
int GetLen() // int GetLen (X* const this)
{ return len; } // { return this->len; }
char * GetPtr() // char * GetPtr (X* const this)
{ return ptr; } // { return this->ptr; }
X& Set(char *);
X& Cat(char *);
X& Copy(X&);
void Print();

};

X& X::Set(char *pc) // X& X::Set(X* const this, char *pc)

{
len = strlen(pc); // this->len = strlen(pc);
ptr = new char[BUFLN]; // allocate sufficient storage to hold

// strings in this example
strcpy(ptr, pc); // strcpy(this->ptr, pc);
return *this;

}

X& X::Cat(char *pc) // X& X::Cat(X* const this, char *pc)

{
len += strlen(pc); // this->len += strlen(pc);
strcat(ptr,pc); // strcat(this->ptr,pc);
return *this;

}

X& X::Copy(X& x) // X& X::Copy(X* const this, X& x)

{
Set(x.GetPtr()); // this->Set(x.GetPtr(&x));
return *this;

}

void X::Print() // void X::Print(X* const this)

{
cout << ptr << endl; // cout << this->ptr << endl;

}

The this Pointer

Chapter 12. C++ Class Members and Friends 299

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

void main()
{

X xobj1;
xobj1.Set("abcd").Cat("efgh");
// xobj1.Set(&xobj1, "abcd").Cat(&xobj1, "efgh");

xobj1.Print(); // xobj1.Print(&xobj1);
X xobj2;
xobj2.Copy(xobj1).Cat("ijkl");
// xobj2.Copy(&xobj2, xobj1).Cat(&xobj2, "ijkl");

xobj2.Print(); // xobj2.Print(&xobj2);
}

This example produces the following output:
abcdefgh
abcdefghijkl

Static Members

You can declare class members by using the storage-class specifier static in the
class member list. All the objects of a class in a program share only one copy of the
static member. When you declare an object of a class that contains a static member,
the static member is not part of the class object.

A typical use of static members is for recording data common to all objects of a
class. For example, you can use a static data member as a counter to store the
number of objects of a particular class type that are created. Each time a new object
is created, this static data member can be incremented to track the total number of
objects.

The declaration of a static member in the member list of a class is not a definition.
The definition of a static member is equivalent to an external variable definition.
You must define the static member outside of the class declaration.

For example:
class X
{
public:

static int i;
};
int X::i = 0; // definition outside class declaration
// .
// .
// .

You can access a static member from outside of its class only if you declare it with
the keyword public. You can then access the static member by qualifying the class
name by using the :: (scope resolution) operator. In the following example, you
can refer to the static member f() of class type X as X::f():
class X
{
public:

static int f();
};
// .
// .
// .
void main ()
{

The this Pointer

300 OS/390 V2R6.0 C/C++ Language Reference

X::f();

}

For more information on the storage-class specifier static, see “static Storage Class
Specifier” on page 82.

Using the Class Access Operators with Static Members

You can also access a static member from a class object by using the class access
operators . (dot) and -> (arrow).

The following example uses the class access operators to access static members.

CBC3X11E
// This example illustrates access to static
// members with class access operators.

#include <iostream.h>
class X
{

static int cnt;
public:

// The following routines all set X's static variable cnt
// and print its value.
void Set_Show (int i)
{ X::cnt = i;

cout << "X::cnt = " << X::cnt << endl; }
void Set_Show (int i, int j)
{ this->cnt = i+j;

cout << "X::cnt = " << X::cnt << endl; }
void Set_Show (X& x, int i)
{ x.cnt = i;

cout << "X::cnt = " << X::cnt << endl; }
};
int X::cnt;
void main()
{

X xobj1, xobj2;
xobj1.Set_Show(11);
xobj1.Set_Show(11,22);
xobj1.Set_Show(xobj2, 44);

}

The above example produces the following output:
X::cnt = 11
X::cnt = 33
X::cnt = 44

When you access a static member through a class access operator, OS/390 C++
does not evaluate the expression to the left of the . or -> operator.

You can refer to a static member independently of any association with a class
object because there is only one static member that is shared by all objects of a
class. A static member can exist, even if you have not declared any objects of its
class.

When you access a static member, OS/390 C++ does not evaluate the expression
that you use to access the member. In the following example, the external function
f() returns class type X. The function f() can be used to access the static member

Static Members

Chapter 12. C++ Class Members and Friends 301

i of class X. The function f() itself is not called.

CBC3X11F
// This example shows that the expression used to
// access a static member is not evaluated.

class X
{
public:

static int i;
};
int X::i = 10;
X f() { /* ... */ }
void main ()
{

int a;
a = f().i; // f().i does not call f()

}

Static Data Members

Static data members of global classes have external linkage. You can initialize them
in file scope, like other global objects. Static data members follow the usual class
access rules; except that you can initialize them in file scope. Static data members
and their initializers can access other static private and protected members of their
class. The initializer for a static data member is in the scope of the class that
declares the member.

The following example shows how you can initialize static members using other
static members, even though these members are private:
class C {

static int i;
static int j;
static int k;
static int l;
static int m;
static int n;
static int p;
static int q;
static int r;
static int s;
static int f() { return 0; }
int a;

public:
C() { a = 0; }
};

C c;
int C::i = C::f(); // initialize with static member function
int C::j = C::i; // initialize with another static data member
int C::k = c.f(); // initialize with member function from an object
int C::l = c.j; // initialize with data member from an object
int C::s = c.a; // initialize with nonstatic data member
int C::r = 1; // initialize with a constant value

class Y : private C {} y;

int C::m = Y::f();
int C::n = Y::r;
int C::p = y.r; // error
int C::q = y.f(); // error

The initializations of C::p and C:: cause errors because y is an object of a class that
is derived privately from C. Its members are not accessible to members of C.

Static Members

302 OS/390 V2R6.0 C/C++ Language Reference

You can only have one definition of a static member in a program. If you do not
initialize a static data member, OS/390 C++ assigns a zero default value to it.

Local classes cannot have static data members.

The following example shows the declaration, initialization, use, and scope of the
static data member si and static member functions Set_si(int) and Print_si().

CBC3X11G
// This example shows the declaration, initialization,
// use, and scope of a static data member.

#include <iostream.h>
class X
{

int i;
static int si;

public:
void Set_i(int i) { this->i = i; }
void Print_i() { cout << "i = " << i << endl; }
// Equivalent to:
// void Print_i(X* this)
// { cout << "X::i = " << this->i << endl; }
static void Set_si(int si) { X::si = si; }

static void Print_si()
{

cout << "X::si = " << X::si << endl;
}
// Print_si doesn't have a 'this' pointer

};
int X::si = 77; // Initialize static data member

void main()
{

X xobj;
// Non-static data members and functions belong to specific
// instances (here xobj) of class X
xobj.Set_i(11);
xobj.Print_i();

// static data members and functions belong to the class and
// can be accessed without using an instance of class X
X::Print_si();
X::Set_si(22);
X::Print_si();

}

This example produces the following output:
i = 11
X::si = 77
X::si = 22

Static Member Functions

You cannot have static member functions and nonstatic member functions with the
same names and with the same number and type of arguments.

A static member function does not have a this pointer. You can call a static
member function using the this pointer of a nonstatic member function. In the
following example, the nonstatic member function printall() calls the static
member function f() using the this pointer:

Static Members

Chapter 12. C++ Class Members and Friends 303

CBC3X11H
// This example illustrates a static member function f().

#include <iostream.h>
class c {

static void f() { cout << "Here is i"
<< i << endl;}

static int i;
int j;

public:
c(int firstj): j(firstj) {}
void printall();
};

void c::printall() {
cout << "Here is j " << this->j << endl;
this->f();
}

int c::i = 3;
void main() {

class c C(0);
C.printall();
}

You cannot declare a static member function with the keyword virtual.

A static member function can access only the names of static members,
enumerators, and nested types of the class in which it is declared.

Member Access

Member access determines if a class member is accessible in an expression or
declaration. Note that accessibility and visibility are independent. The scoping
rules of C++ determines visibility. A class member can be visible and inaccessible
at the same time. This section describes how you control the access to the
individual underived class members by using access specifiers when you declare
class members in a member list.

Classes and Access Control

C++ facilitates data abstraction and encapsulation by providing access control for
members of class types.

For example, consider if you declare private data members and public member
functions. As a consequence, a client program can only access the private members
through the public member functions and friends of that class. Such a class has
data hiding because client programs do not have access to implementation details.
They are forced to use a public interface to manipulate objects of the class.

You can control access to class members by using access specifiers. In the following
example, the class abc has three private data members a, b, and c, and three public
member functions add(), mult(), and the constructor abc(). The main() function
creates an object danforth of the abc class and then attempts to print the value of
the member a for this object:

Static Members

304 OS/390 V2R6.0 C/C++ Language Reference

CBC3X10A
// This example illustrates class member access specifiers

#include <iostream.h>

class abc
{
private:

int a, b, c;
public:

abc(int p1, int p2, int p3): a(p1), b(p2), c(p3) {}
int add() { return a + b + c ; }
int mult() { return a * b * c; }

};

void main() {
abc danforth(1,2,3);
cout << "Here is the value of a " << danforth.a << endl;

// This causes an error because a is not
// a public member and cannot be accessed
// directly

}

Because class members are private by default, you can omit the keyword private
in the definition of abc. Because a is not a public member, the attempt to access its
value directly causes an error.

Access Specifiers

The three class member access specifiers have the following effect:

public class members
You can access them by any function, file, or class.

private class members
You can access them only by member functions and friends of the class in
which the member is declared.

protected class members
You can only access them by member functions and friends of the class in
which they are declared. You can also access them by member functions
and friends of classes derived with public or protected access from the
class in which you have declared the protected members. You can use the
access specifier, protected, for class members that are not base members. It
is, however, equivalent to private unless it is used in a base class member
declaration, or in a base list. For more information, see “Protected
Members” on page 350.

The default access for an individual class member depends on the class key that is
used in the class declaration. Members of classes that are declared with the
keyword class are private by default. Members of classes that are declared with
the keyword struct or union are public by default.

The access specifier protected is meaningful only in the context of derivation. You
can control the access to inherited members (that is, base class members) by
including access specifiers in the base list of the derived class declaration. You can
also restore the access to an inherited member from a derived class by using an
access declaration.

“Inherited Member Access” on page 349 describes access for inherited members.

Member Access

Chapter 12. C++ Class Members and Friends 305

Member lists can include access specifiers as labels. Members that are declared
after these labels have access as specified by the label they follow. An access
specifier determines the access for members until another access specifier is used
or until the end of the class declaration. You can use any number of access
specifiers in any order.

The following example shows access specifiers in member lists.
class X
{

int a; // private data by default
public:

void f(int); // public function
int b; // public data

private:
int c; // private data

protected:
void g(int); // protected function

};
struct Y
{

int a; // public data by default
public:

int b; // public data
private:

void g(int); // private function
int c; // private data

};

Friends

A friend of a class X is a function or class that is granted the same access to X as
the members of X. Refer to functions that are declared with the friend specifier in
a class member list as friend functions of that class. Refer to classes that are declared
with the friend specifier in the member list of another class as friend classes of that
class.

You must define a class Y before you can declare any member of Y as a friend of
another class.

In the following example, the friend function print is a member of class Y. It
accesses the private data members a and b of class X.

CBC3X11I
// This example illustrates a friend function.

#include <iostream.h>
class X;
class Y
{
public:

void print(X& x);
};
class X
{
public:

X() {a=1; b=2;}
private:

int a, b;
friend void Y::print(X& x);

Member Access

306 OS/390 V2R6.0 C/C++ Language Reference

};
void Y::print(X& x)
{

cout << "A is "<< x.a << endl;
cout << "B is " << x.b << endl;

}
void main ()
{

X xobj;
Y yobj;
yobj.print(xobj);

}

You can declare an entire class as a friend.

In the following example, the friend class F has a member function print that
accesses the private data members a and b of class X. It performs the same task as
the friend function print in the above example. Any other members that are
declared in class F also have access to all members of class X. In the example, you
have not previously declared the friend class F, so the example uses an elaborated
type specifier and a qualified type specifier to specify the class name.

CBC3X11J
// This example illustrates a friend class.

#include <iostream.h>
class X
{
public:

X() {a=1; b=2;} // constructor
private:

int a, b;
friend class F; // friend class

};
class F
{
public:

void print(X& x)
{

cout << "A is " << x.a << endl;
cout << "B is " << x.b << endl;

}
// .
// .
// .
};
void main ()
{

X xobj;
F fobj;
fobj.print(xobj);

}

Both the above examples produce the following output:
A is 1
B is 2

If the you have not previously declared the class, use an elaborated type specifier
and a qualified type specifier to specify the class name.

Friends

Chapter 12. C++ Class Members and Friends 307

If the friend class has been previously declared, you can omit the keyword class,
as shown in the following example:
class F;
class X
{
public:

X() {a=1; b=2;}
private:

int a, b;
friend F; // elaborated-type-specifier not required

};
// .
// .
// .

Friend Scope

The name of a friend function or class first introduced in a friend declaration is not
in the scope of the class granting friendship (also called the enclosing class) and is
not a member of the class granting friendship.

The name of a function first introduced in a friend declaration is in the scope of
the first nonclass scope that contains the enclosing class. The body of a function
that is provided in a friend declaration is handled in the same way as a member
function defined within a class. Processing of the definition does not start until the
end of the outermost enclosing class. In addition, OS/390 C++ searches the body
of the function definition for unqualified names starting from the class that
contains the function definition.

A class that is first declared in a friend declaration is equivalent to an extern
declaration. For example:
class B {};
class A
{

friend class B; // global class B is a friend of A
};

Consider when the name of a friend class has been introduced before the friend
declaration. Then, the compiler searches for a class name that matches the name of
the friend class, beginning at the scope of the friend declaration. When the
declaration of a nested class is followed by the declaration of a friend class with
the same name, the nested class is a friend of the enclosing class.

The scope of a friend class name is the first nonclass enclosing scope. Consider the
following example:
class A {

class B { // arbitrary nested class definitions
friend class C;

};
};

The above example is equivalent to the following:
class C;
class A {

class B { // arbitrary nested class definitions
friend class C;

};
};

Friends

308 OS/390 V2R6.0 C/C++ Language Reference

If the friend function is a member of another class, you need to use the class
member access operators. For example:
class A
{
public:

int f() { /* ... */ }
};
class B
{

friend int A::f();
};

Any classes you derive from a base class do not inherit friends of that base class.

For more information about friend scope, see “Scope of Class Names” on page 286.

Friend Access

A friend of a class can access the private and protected members of that class.
Normally, you can only access the private members of a class through member
functions of that class. In addition, you can only access the protected members of a
class through member functions of a class, or classes that are derived from that
class.

Access specifiers do not affect friend declarations.

For more information on access, see “Member Access” on page 304.

Friends

Chapter 12. C++ Class Members and Friends 309

Friends

310 OS/390 V2R6.0 C/C++ Language Reference

Chapter 13. C++ Overloading

Overloading enables you to redefine functions and most standard C++ operators.
Typically, you overload a function or operator if you want to extend the operations
the function or operator performs to different data types. This chapter discusses
the following topics on overloading:
v “Overloading Functions”
v “Argument Matching in Overloaded Functions” on page 312
v “Overloading Operators” on page 315
v “Overloading Unary Operators” on page 317
v “Overloading Binary Operators” on page 318
v “Special Overloaded Operators” on page 319

Related Information

v “Chapter 6. Expressions and Operators” on page 133

v “Chapter 8. Functions” on page 173

v “Chapter 11. C++ Classes” on page 281

Overloading Functions

You can overload a function by having multiple declarations of the same function
name in the same scope. The declarations differ in the type and number of
arguments in the argument list. When you call an overloaded function, OS/390
C++ compares the types of the actual arguments with the types of the formal
arguments. Thus, it selects the correct function.

Consider a function print, which displays an int. The following example
demonstrates that you can overload this function to display other types, for
example, double, and char*. You can have three functions with the same name,
each performing a similar operation on a different data type.

CBC3X12A
// This example illustrates function overloading.

#include <iostream.h>

void print(int i) { cout << " Here is int " << i << endl; }
void print(double f) { cout << " Here is float "

<< f << endl; }
void print(char* c) { cout << " Here is char* " << c << endl; }
void main() {

print(10); // calls print(int)
print(10.10); // calls print(double)
print("ten"); // calls print(char*)

}

© Copyright IBM Corp. 1996, 1998 311

Declaration Matching

Two function declarations are identical if all of the following are true:
v They have the same function name
v They are declared in the same scope
v They have identical argument lists

When you declare a function name more than once in the same scope, the compiler
interprets the second declaration of the function name as follows:
v If the return type, argument types, and number of arguments are identical for

the two declarations, the compiler considers that the second declaration is the
same as the first.

v If only the return types of the two function declarations differ, the second
declaration is an error.

v If either the argument types or number of arguments of the two declarations
differ, the function is an overloaded function.

Restrictions on Overloaded Functions
v Functions that differ only in return type cannot have the same name.
v Two member functions that differ only in that one is declared with the keyword

static cannot have the same name.
v A typedef is a synonym for another type, not a separate type. The following two

declarations of spadina() are declarations of the same function:
typedef int I;
void spadina(float, int);
void spadina(float, I);

v A member function of a derived class is not in the same scope as a member
function in a base class with the same name. A derived class member hides a
base class member with the same name.

v Argument types that differ only in that one is a pointer * and the other is an
array [] are identical. The following two declarations are equivalent:

f(char*);
f(char[10]);

Only the second and subsequent array dimensions are significant.
v The const and volatile type-specifiers on are ignored in distinguishing

argument types when they appear at the outermost level of the argument type
specification. The following declarations are equivalent:

int f (int);
int f (const int);
int f (volatile int);

Pointers and references to types are considered distinct parameter types.

For more information on functions, see “Chapter 8. Functions” on page 173.

Argument Matching in Overloaded Functions

When you call an overloaded function or overloaded operator, the compiler
chooses the function declaration with the best match. This match is based on all
arguments from all the visible function declarations. The compiler compares the
actual arguments of a function call with the formal arguments of all visible
declarations of the function. For a best match to occur, the compiler must be able
to distinguish a function that:

Overloading Functions

312 OS/390 V2R6.0 C/C++ Language Reference

v Has at least as good a match on all arguments as any other function with the
same name

v Has at least one better argument match than any other function with the same
name

If no such function exists, OS/390 C++ does not allow the call. A call to an
overloaded function has three possible outcomes. The compiler can find:
v An exact match
v No match
v An ambiguous match

An ambiguous match occurs when the actual arguments of the function call match
more than one overloaded function.

The matching of arguments includes performing standard and user-defined
conversions on the arguments in order to match the actual arguments with the
formal arguments. OS/390 C++ only performs a single user-defined conversion in
a sequence of conversions on an actual argument. In addition, OS/390 C++
performs the best-matching sequence of standard conversions on an actual
argument. The best-matching sequence is the shortest sequence of conversions
between two standard types. For example, you can shorten the following
conversion:
int -> float -> double

to the best-matching conversion sequence:
int -> double

In the above example, the compiler allows the conversion from int to double.

Trivial conversions, that are described in “Trivial Conversions” on page 314, do not
affect the choice of conversion sequence.

Sequence of Argument Conversions

Argument-matching conversions occur in the following order:
1. An exact match, in which the actual arguments exactly match the type and

number of formal arguments of one declaration of the overloaded function.
This includes a match with one or more trivial conversions.

2. A match with promotions in which a match is found when one or more of the
actual arguments is promoted

3. A match with standard conversions in which a match is found when one or
more of the actual arguments is converted by a standard conversion

4. A match with user-defined conversions in which a match is found when one or
more of the actual arguments is converted by a user-defined conversion

5. A match with ellipses

A match through promotion follows the rules for Integral Promotions and
“Standard Type Conversions” on page 167.

You can override an exact match by using an explicit cast. In the following
example, the second call to f() matches with f(void*):
void f(int);
void f(void*);
// .

Argument Matching

Chapter 13. C++ Overloading 313

// .
// .
void main()
{

f(0xaabb); // matches f(int);
f((void*) 0xaabb); // matches f(void*)

}

The implicit first argument for a nonstatic member function or operator is the this
pointer. It refers to the class object for which the member function is called. When
you overload a nonstatic member function, the first implicit argument, the this
pointer, is matched with the object or pointer used in the call to the member
function. User-defined conversions are not applied in this type of matching of
arguments for overloaded functions or operators.

When you call an overloaded member function of class X using the . (dot) or ->
(arrow) operator, the this pointer has type X* const. The type of the this pointer
for a constant object is const X* const. The type of the this pointer for a volatile
object is volatile X* const.

See “The this Pointer” on page 298 for information on the this pointer. See “Dot
Operator (.)” on page 141 and “Arrow Operator (−>)” on page 141 for information
on the class-member access operators.

Trivial Conversions

The compiler cannot distinguish between functions if they have the same name
and arguments which differ only in that one is declared as a reference to a type,
and the other is that type. You cannot have two functions with the same name and
with arguments that differ only in this respect. Because the following two
declarations cannot be distinguished, the second one causes an error:
double f(double i); // declaration
// .
// .
// .
double f(double &i); // error

Functions with the same name and arguments can be distinguished only if they
have following differences::
v One is a pointer or reference, and the other is a pointer to const or const

reference.
v One is a pointer or reference, and the other is a pointer to volatile or volatile

reference.

To find a best match of arguments, functions with a volatile or const match (not
requiring a trivial conversion) are better than those that have a volatile or const
mismatch.

For more information on conversions, see “Standard Type Conversions” on
page 167 and “User-Defined Conversions” on page 334.

Argument Matching

314 OS/390 V2R6.0 C/C++ Language Reference

Overloading Operators

You can overload one of the standard C++ operators by redefining it to perform a
particular operation when you apply it to an object of a particular class.
Overloaded operators must have at least one argument that has class type. OS/390
C++ calls an overloaded operator an operator function. You declare it with the
keyword operator that precedes the operator itself. Overloaded operators are
distinct from overloaded functions. Like overloaded functions however, you
distinguish them by the number and types of operands you used with the
operator.

You can overload any of the following operators:

+ − * / % | & | ˜
! = < > += −= *= /= %=
|= &= |= << >> <<= >>= == !=
<= >= && || ++ −− , −>* −>
() [] new delete

where () is the function call operator and [] is the subscript operator.

Consider the standard + (plus) operator. When you use this operator with
operands of different standard types, the operators have slightly different
meanings. For example, C++ does not implement the addition of two integers in
the same way as the addition of two floating-point numbers. C++ allows you to
define your own meanings for the standard C++ operators when you apply them
to class types. The following example defines a class that is called complx to model
complex numbers. The example redefines the + (plus) operator in this class to add
two complex numbers.

CBC3X12B
// This example illustrates overloading the plus (+) operator.

#include <iostream.h>
class complx
{

double real,
imag;

public:
complx(double real = 0., double imag = 0.); // constructor
complx operator+(const complx&) const; // operator+()

};
// define constructor
complx::complx(double r, double i)
{

real = r; imag = i;
}
// define overloaded + (plus) operator
complx complx::operator+ (const complx& c) const
{

complx result;
result.real = (this->real + c.real);
result.imag = (this->imag + c.imag);
return result;

}

Overloading Operators

Chapter 13. C++ Overloading 315

void main()
{

complx x(4,4);
complx y(6,6);
complx z = x + y; // calls complx::operator+()

}

General Rules for Overloading Operators

You can overload both the unary and binary forms of:
+ − * &

When an overloaded operator is a member function, C++ matches the first operand
against the class type of the overloaded operator. It matches the second operand, if
one exists, against the argument in the overloaded operator call.

When an overloaded operator is a nonmember function, at least one operand must
have class or enumeration type. OS/390 C++ matches the first operand against the
first argument in the overloaded operator call. It matches the second operand, if
one exists, against the second argument in the overloaded operator call.

The argument-matching conventions and rules that are described in “Argument
Matching in Overloaded Functions” on page 312 apply to overloaded operators.

Operands of Overloaded Operators

An overloaded operator must be a member function, or take at least one argument
of class, a reference to a class, an enumeration, or a reference to an enumeration.
The following example demonstrates the operator as a member function:
class X
{
public:

X operator!();
X& operator =(X&);
X operator+(X&);

};
X X::operator!() { /* ... */ }
X& X::operator=(X& x) { /* ... */ }
X X::operator+(X& x) { /* ... */ }

The following example shows the other case:
class Y;
{
// .
// .
// .
};
class Z;
{
// .
// .
// .
};
Y operator!(Y& y);
Z operator+(Z& z, int);

Usually, you invoke overloaded operators by using the normal operator syntax.
You can also call overloaded operators explicitly by qualifying the operator name.

Overloading Operators

316 OS/390 V2R6.0 C/C++ Language Reference

For example, for the class complx, as described above, you can call the overloaded
+ (plus) operator either implicitly or explicitly. The following example
demonstrates this:

CBC3X12C
// This example shows implicit and explicit calls
// to an overloaded plus (+) operator.

class complx
{

double real,
imag;

public:
complx(double real = 0., double imag = 0.);
complx operator+(const complx&) const;

};
// .
// .
// .
void main()
{

complx x(4,4);
complx y(6,6);
complx u = x.operator+(y); // explicit call
complx z = x + y; // implicit call to complx::operator+()

}

Restrictions on Overloaded Operators
v You cannot overload the following C++ operators:

. .* :: ?:
v You cannot overload the preprocessing symbols # and ##.
v You cannot change the precedence, grouping, or number of operands of the

standard C++ operators.
v An overloaded operator (except for the function call operator) cannot have

default arguments or an ellipsis in the argument list.
v You must declare the overloaded =, [], (), and −> operators as nonstatic member

functions to ensure that they receive lvalues as their first operands.
v The operators new and delete do not follow the general rules described in this

section. Overloading new and delete is described in “Overloaded new and
delete” on page 322.

v All operators except the = operator are inherited. “Copy by Assignment” on
page 341 describes the behavior of the assignment operator.

v Unless explicitly mentioned in “Special Overloaded Operators” on page 319,
overloaded unary, and binary operators follow the rules that are outlined in
“Overloading Unary Operators” and “Overloading Binary Operators” on
page 318.

For more information on standard C and C++ operators, see “Overloading Unary
Operators”.

Overloading Unary Operators

You can overload a prefix unary operator by declaring a nonmember function that
takes one argument, or a nonstatic member function that takes no arguments.

When you prefix a class object with an overloaded unary operator, you can
interpret the function call !x as: x.operator!() or operator!(x). For example:

Overloading Operators

Chapter 13. C++ Overloading 317

class X
{
// .
// .
// .
};
void main ()
{

X x;
!x; // overloaded unary operator

}

However, this depends on the declarations of the operator function. If you have
declared both forms of the operator function, argument matching determines
which interpretation OS/390 C++ uses.

For more information on standard unary operators, see “Unary Expressions” on
page 142.

Overloading Binary Operators

You can overload a binary operator by declaring a nonmember function that takes
two arguments, or a nonstatic member function that takes one argument.

When you use a class object with an overloaded binary operator, for example:
class X
{
// .
// .
// .
};
void main ()
{

X x;
int y=10;
x*y; // overloaded binary operator

}

you can interpret the operator function call x*y as:
x.operator*(y)

or
operator*(x,y)

depending on the declarations of the operator function. If you have declared both
forms of the operator function, argument matching determines which
interpretation OS/390 C++ uses.

For more information on standard binary operators, see “Binary Expressions” on
page 152.

Overloading Unary Operators

318 OS/390 V2R6.0 C/C++ Language Reference

Special Overloaded Operators

The following overloaded operators do not fully follow the rules for unary or
binary overloaded operators:
v Assignment
v Function call
v Subscripting
v Class member access
v Increment and decrement
v new and delete

Overloaded Assignment

You can only overload an assignment operator by declaring a nonstatic member
function. The following example shows how you can overload the assignment
operator for a particular class:
class X
{
public:

X();
X& operator=(X&);
X& operator=(int);

// .
// .
// .
};
X& X::operator=(X& x) { /* ... */ }
X& X::operator=(int i) { /* ... */ }
// .
// .
// .
void main()
{

X x1, x2;
x1 = x2; // call x1.operator=(x2)
x1 = 5; // call x1.operator=(5)

}

You cannot declare an overloaded assignment operator that is a nonmember
function.

Overloaded assignment operators are not inherited.

If you do not define a copy assignment operator function for a class, OS/390 C++
defines the function by default as a memberwise assignment of the class members.
The compiler uses these operators when it generates default copy assignment
operators, if assignment operator functions exist for the base classes or class
members. See “Copy by Assignment” on page 341 for more information.

For more information on standard assignment operators, see “Assignment
Expressions” on page 162.

Overloaded Function Calls

The operands are function_name and an optional expression_list. The operator
function operator() must be defined as a nonstatic member function. You cannot
declare an overloaded function call operator that is a nonmember function.

Special Overloaded Operators

Chapter 13. C++ Overloading 319

If you make the following call for the class object x:
x (arg1, arg2, arg3)

OS/390 C++ interprets it as:
x.operator()(arg1, arg2, arg3)

You can provide default arguments and ellipses in the argument list for the
function call operator, unlike all other overloaded operators. For example:
class X
{
public:

X& operator() (int = 5);
};
// .
// .
// .

For more information on the standard function call operator, see “Function
Calls ()” on page 139.

Overloaded Subscripting

An expression that contains the subscripting operator has the following syntax of
the form, and OS/390 C++ considers it a binary operator.:

identifier[expression]

The operands are identifier and expression. The operator function operator[] must
be defined as a nonstatic member function. You cannot declare an overloaded
subscript operator that is a nonmember function.

A subscripting expression for the class object x:
x [y]

is interpreted as x.operator[](y). It is not interpreted as operator[](x,y) because
it is defined as a nonstatic member function.

For more information on the standard subscripting operator, see “Array Subscript [
] (Array Element Specification)” on page 140.

Overloaded Class Member Access

An expression containing the class member access -> (arrow) operator has the
following syntax, and is considered a unary operator:

identifier−> name-expression

The operator function operator->() must be defined as a nonstatic member
function.

The following restrictions apply to class member access operators:
v You cannot declare an overloaded arrow operator that is a nonmember function.
v You cannot overload the class member access . (dot) operator.

Consider the following example of overloading the -> (arrow) operator:

Special Overloaded Operators

320 OS/390 V2R6.0 C/C++ Language Reference

class Y
{
public:

void f();
};
class X
{
public:

Y* operator->();
};
X x;
// .
// .
// .
x->f();

Here x->f() is interpreted as:
(x.operator->())-> f()

x.operator->() must return either a reference to a class object, or a class object for
which the overloaded operator-> function is defined, or a pointer to any class. If
the overloaded operator-> function returns a class type, the class type must not be
the same as the class that declares the function. The class type that is returned
must contain its own definition of an overloaded -> operator function.

For more information on the standard class member access arrow operator, see
“Arrow Operator (−>)” on page 141.

Overloaded Increment and Decrement

You can overload the prefix increment operator (++) for a class type by declaring a
nonmember function operator with one argument of class type or a reference to
class type. You can also overload it by declaring a member function operator with
no arguments.

The following example illustrates both ways of overloading the increment operator:

CBC3X12D
// This example illustrates an overloaded prefix increment operator.

class X
{

int a;
public:

operator++(); // member prefix increment operator
};
class Y { /* ... */ };
operator++(Y& y); // nonmember prefix increment operator
// .
// .
// .
// Definitions of prefix increment operator functions
// .
// .
// .

void main()
{

X x;
Y y;
++x; // x.operator++

Special Overloaded Operators

Chapter 13. C++ Overloading 321

|
|
|
|

x.operator++(); // x.operator++
operator++(y); // nonmember operator++
++y; // nonmember operator++

}

You can overload the postfix increment operator ++ for a class type by declaring a
nonmember function operator operator++() with two arguments. The first
argument has class type, and the second has type int. Alternatively, you can
declare a member function operator operator++() with one argument having type
int. The compiler uses the int argument to distinguish between the prefix and
postfix increment operators. For implicit calls, the default value is zero.

For example:

CBC3X12E
// This example illustrates an overloaded postfix increment operator.

class X
{

int a;
public:

operator++(int); // member postfix increment operator
};
operator++(X x, int i); // nonmember postfix increment operator
// .
// .
// .
// Definitions of postfix increment operator functions
// .
// .
// .

void main()
{

X x;
x++; // x.operator++

// default zero is supplied by compiler
x.operator++(0); // x.operator++
operator++(x,0); // nonmember operator++

}

The prefix and postfix decrement operators follow the same rules as their
increment counterparts.

For more information on the standard postfix and prefix increment operators, see
“Increment (++)” on page 142. For more information on the standard postfix and
prefix decrement operators, see “Decrement (−−)” on page 143.

Overloaded new and delete

You can implement your own memory management scheme for a class by
overloading the operators new and delete. The overloaded operator new must
return a void*, and its first argument must have type size_t. The overloaded
operator delete must return a void type, and its first argument must be void*. The
second argument for the overloaded delete operator is optional, and if present, it
must have type size_t. You can only define one delete operator function for a
class.

Type size_t is an implementation dependent unsigned integral type defined in
<stddef.h>.

Special Overloaded Operators

322 OS/390 V2R6.0 C/C++ Language Reference

This example requires a size argument because a class can inherit an overloaded
new operator. The derived class can be a different size than the base class. The size
argument ensures that OS/390 C++ allocates or deallocates the correct amount of
storage space for the object.

When new and delete are overloaded within a class declaration, they are static
member functions whether they are declared with the keyword static or not.
They cannot be virtual functions.

You can access the standard, nonoverloaded versions of new and delete within a
class scope containing the overloading new and delete operators by using the ::
(scope resolution) operator to provide global access.

For more information on the class member operators new and delete, see “Free
Store” on page 330. For more information on the standard new and delete
operators, see “C++ new Operator” on page 147 and “C++ delete Operator” on
page 151.

Special Overloaded Operators

Chapter 13. C++ Overloading 323

Special Overloaded Operators

324 OS/390 V2R6.0 C/C++ Language Reference

Chapter 14. Special C++ Member Functions

This chapter introduces the special member functions that are used to create,
destroy, convert, initialize, and copy class objects. It includes the following topics:
v “Constructors and Destructors Overview”
v “Constructors” on page 326
v “Destructors” on page 328
v “Free Store” on page 330
v “Temporary Objects” on page 333
v “User-Defined Conversions” on page 334
v “Initialization by Constructor” on page 336
v “Copying Class Objects” on page 340

Related Information

v “Chapter 8. Functions” on page 173

v “Chapter 11. C++ Classes” on page 281

v “Chapter 12. C++ Class Members and Friends” on page 291

v “Chapter 13. C++ Overloading” on page 311

v “Chapter 15. C++ Inheritance” on page 343

Constructors and Destructors Overview

Because classes have complicated internal structures, including data and functions,
object initialization, and cleanup for classes is much more complicated than it is for
simple data structures. Constructors and destructors are special member functions
of classes that are used to construct and destroy class objects. Construction may
involve memory allocation and initialization for objects. Destruction may involve
cleanup and deallocation of memory for objects.

Like other member functions, constructors and destructors are declared within a
class declaration. They can be defined inline or external to the class declaration.
Constructors can have default arguments. Constructors can have member
initialization lists, unlike other member functions. The following restrictions apply
to constructors and destructors:
v Constructors and destructors do not have return types nor can they return

values.
v You cannot use references and pointers on constructors and destructors because

you cannot take their addresses.
v You cannot declare constructors with the keyword virtual.
v You cannot declare constructors and destructors as static, const, or volatile.
v Unions cannot contain class objects that have constructors or destructors.

Constructors and destructors obey the same access rules as member functions. For
example, if you declare a constructor with the keyword protected, only derived
classes and friends can use it to create class objects. “Member Access” on page 304
describes class member access.

© Copyright IBM Corp. 1996, 1998 325

The compiler automatically calls constructors when defining class objects and calls
destructors when class objects go out of scope. A constructor does not allocate
memory for the class object to which its this pointer refers. It may, however,
allocate storage for more objects than its class object refers to. If objects require
memory allocation, constructors can explicitly call the new operator. During
cleanup, a destructor may release objects that are allocated by the corresponding
constructor. To release objects, use the delete operator. The global new and delete
operators are described in “C++ new Operator” on page 147 and “C++ delete
Operator” on page 151.

Derived classes do not inherit constructors or destructors from their base classes,
but they do call the constructor and destructor of base classes. You can declare
destructors with the keyword virtual.

Constructors are also called when local or temporary class objects are created.
Destructors are called when local or temporary objects go out of scope.

You can call member functions from constructors or destructors. You can call a
virtual function, either directly or indirectly, from a constructor or destructor. In
this case, the function that you call is the one defined in the class or base class
containing the constructor (or destructor). However, it is not a function defined in
any class derived from the class you are constructing. Therefore, you cannot access
an object from a constructor or destructor, if that object is not constructed.

Constructors

A constructor is a member function with the same name as its class. For example:
class X
{
public:

X(); // constructor for class X
// .
// .
// .
};

You can use constructors to create and initialize objects of their class type.
“Initialization by Constructor” on page 336 describes the initialization of class
objects using constructors.

Default Constructors

A default constructor is a constructor that either has no arguments, or, if it has
arguments, all the arguments have default values. If no user-defined constructor
exists for a class and your program needs one, the compiler creates a default
constructor, with public access, for that class. The compiler does not create a
default constructor for a class that has any constant members or reference type
members.

A constructor can have default arguments, like all functions. You can use them to
initialize member objects. If the call to the constructor supplies default values, you
can omit the trailing arguments in the expression list of the constructor. For more
information, see “Default Arguments in C++ Functions” on page 190. Note that if a
constructor has any arguments that do not have default values, it is not a default
constructor.

Constructors and Destructors Overview

326 OS/390 V2R6.0 C/C++ Language Reference

|
|

Copy Constructors

Use a copy constructor to make a copy of one class object from another class object
of the same class type. You call a copy constructor with a single argument that is a
reference to its own class type. You cannot use a copy constructor with an
argument of the same type as its class; you must use a reference. You can provide
copy constructors with additional default arguments. If a user-defined copy
constructor does not exist for a class and your program needs one, the compiler
creates a copy constructor, with public access, for that class. The compiler does not
create a copy constructor for a class if any of its members or base classes have an
inaccessible copy constructor.

The following code fragment shows two classes with constructors, default
constructors, and copy constructors:
class X
{
public:

X(); // default constructor, no arguments
X(int, int , int = 0); // constructor
X(const X&); // copy constructor
X(X); // error, incorrect argument type

};
class Y
{
public:

Y(int = 0); // default constructor with one
// default argument

Y(const Y&, int = 0); // copy constructor
};

Construction Order of Class Objects

If a class contains a base class or members with constructors when it is
constructed, OS/390 C++ calls the constructor for the base class. Next, it calls any
constructors for members. It calls the constructor for the derived class last. The
compiler constructs virtual base classes before nonvirtual base classes. When more
than one base class exists, the compiler calls base class constructors in the order
that their classes appear in the base list, as the following example demonstrates.
class B1 { public: B1(); };
class B2
{
public:

B2();
B1 b1obj;

};
class B3 { public: B3(); };
// .
// .
// .
class D : public B1, public B2, public B3
{
public:

D();
˜D();

};
// .
// .
// .

Constructors

Chapter 14. Special C++ Member Functions 327

void main ()
{

D object;
}

In the above example, the compiler calls constructors for object in the following
order:
B1(); // first base constructor declared
B1(); // member constructor for B2::b1obj
B2(); // second base constructor declared
B3(); // last base constructor declared
D(); // derived constructor called last

Note that the construction of class D involves construction of the base classes B1,
B2, and B3. The construction of base class B2 involves the construction of its class
B1 member object. When OS/390 C++ constructs class B2, it calls the constructor
for class B1 in addition to B2’s own constructor.

The second call to the constructor of B1 followed by the call to the constructor of
B2 is part of the construction of B2.

For more information, see “Construction Order of Derived Class Objects” on
page 339.

Explicitly Constructing Objects

You cannot call constructors directly. Use a function style cast to explicitly
construct an object of the specified type. The following example uses a constructor
as an initializer to create a named object.
#include <iostream.h>
class X
{
public:

X (int, int , int = 0); // constructor with default argument
private:

int a, b, c;
int f();

};
X::X (int i, int j, int k) { a = i; b = j; c = k; }
// .
// .
// .
void main ()
{
X xobject = X(1,2,3); // explicitly create and initialize

// named object with constructor call
}

Destructors

A destructor is a member function with the same name as its class that is prefixed
by a ˜ (tilde).

Constructors

328 OS/390 V2R6.0 C/C++ Language Reference

For example:
class X
{
public:

X(); // constructor for class X
˜X(); // destructor for class X

// .
// .
// .
};

A destructor takes no arguments and has no return type. You cannot take its
address. You cannot declare destructors as const, volatile, or static. You can
declare a destructor as virtual or pure virtual. A union cannot have as a member
an object of a class with a destructor.

Use destructors to deallocate memory and do other cleanup for a class object and
its class members when you destroy the object. OS/390 C++ calls a destructor for a
class object when that object passes out of scope or you explicitly delete it.

Class members that are class types can have their own destructors. Both base and
derived classes can have destructors, although destructors are not inherited.
Consider that a base class or a member of a base class has a destructor and a class
derived from that base class does not declare a destructor. In that case, OS/390
C++ generates a default destructor. The default destructor calls the destructors of
the base class and the members of the derived class. OS/390 C++ generates default
destructors with default public access.

The compiler calls destructors in the reverse order to which it calls constructors:
1. It calls the destructor for a class object before it calls destructors for members

and bases.
2. It calls destructors for nonstatic members before calling destructors for base

classes.
3. It calls destructors for nonvirtual base classes before calling destructors for

virtual base classes.

When your program throws an exception for a class object with a destructor,
OS/390 C++ does not call the destructor for the temporary object that it throws
until your program passes control out of the catch block. For more information, see
“Constructors and Destructors in Exception Handling” on page 391.

OS/390 C++ calls destructors implicitly when an automatic or temporary object
passes out of scope. It also calls them implicitly at program termination for
constructed external and static objects. Destructors are invoked when you use the
delete operator for objects that are created with the new operator.

Destructors

Chapter 14. Special C++ Member Functions 329

For example:
#include <string.h>
class Y
{
private:

char * string;
int number;

public:
Y(const char* n,int a); // constructor
˜Y() { delete[] string; } // destructor

};
Y::Y(const char* n, int a) // define class Y constructor
{

string = strcpy(new char[strlen(n) + 1], n);
number = a;

}
void main ()
{

Y yobj = Y("somestring", 10); // create and initialize
// object of class Y

// .
// .
// .
// destructor ˜Y is called before control returns from main()
}

Although you can use a destructor explicitly to destroy objects, you should not use
this method. If an object has been placed at a specific address by the new operator,
you can call the destructor of the object to destroy it. An explicitly called
destructor cannot delete storage.

Note: You can only call destructors for class types. You cannot call destructors for
simple types. The call to the destructor in the following example causes the
compiler to issue a warning:

int * ptr;
ptr -> int::˜int(); // warning

Free Store

Use free store to dynamically allocate memory. The new and delete operators are
used to allocate and deallocate free store, respectively. You can define your own
versions of new and delete for a class by overloading them. You can supply the
new and delete operators with additional arguments. When new and delete operate
on class objects, the class member operator functions new and delete are called, if
they have been declared.

If you create a class object with the new operator, one of the operator functions
operator new() or operator new[]() (if they have been declared) is called to create
the object. An operator new() or operator new[]() for a class is always a static
class member, even if it is not declared with the keyword static. It has a return
type void*, and its first argument must be the size of the object type and have type
size_t. It cannot be virtual.

Type size_t is an implementation dependent unsigned integral type defined in
<stddef.h>.

When you overload the new operator, you must declare it as a class member, that
returns type void*, with first argument size_t, as described above. You supply

Destructors

330 OS/390 V2R6.0 C/C++ Language Reference

additional arguments in the declaration of operator new() or operator new[]().
Use the placement syntax to specify values for these arguments in an allocation
expression.

The following example shows how to use the overloaded new and delete operators
and the overloaded new and delete vector operators.
#include <new.h>
#include <stdio.h>

char buff[10000];
char* cur=buff;

void* operator new(size_t bytes) { // allocate storage for object
printf(" In new\n");
char* prv = cur;
cur += bytes;
return(prv);

}

void operator delete(void* ptr) { // free storage for object
printf(" In delete\n");

}

void* operator new[](size_t bytes) { // allocate storage for array
printf(" In new[]\n"); // objects
char* prv = cur;
cur += bytes;
return(prv);

}

void operator delete[](void* ptr) { // free storage for array of
printf(" In delete[]\n"); // objects

}
class X {
public:
X() { printf("X constructed\n"); } // default constructor for X
˜X() { printf("X destroyed\n"); } // default destructor for X

};

main() {
// create, then delete different types of objects and
// arrays-of-objects

printf("New int\n");
int* flat = new int;
printf("New array-of-int\n");
int* arr = new int[2];

printf("New X\n");
X* x = new X;
printf("New array-of-X\n");
X* xArr = new X[2];

printf("Delete array-of-X\n");
delete[] xArr;
printf("Delete X\n");
delete x;
printf("Delete array-of-int\n");
delete[] arr;
printf("Delete int\n");
delete flat;

return(0);
}

Free Store

Chapter 14. Special C++ Member Functions 331

The example produces the following output:
New int
In new

New array-of-int
In new[]

New X
In new

X constructed
New array-of-X
In new[]

X constructed
X constructed
Delete array-of-X
X destroyed
X destroyed
In delete[]

Delete X
X destroyed
In delete

Delete array-of-int
In delete[]

Delete int
In delete

The delete operator destroys an object that is created by the new operator. The
operand of delete must be a pointer returned by new. If you call delete for an
object with a destructor, OS/390 C++ invokes the destructor before it deallocates
the object.

If you destroy a class object with the delete operator, the operator function
operator delete() or operator delete[]() (if they have been declared) is called to
destroy the object. An operator delete() or operator delete[]() for a class is
always a static member, even if it is not declared with the keyword static. Its first
argument must have type void*. Because operator delete() and operator
delete[]() have a return type void, they cannot return a value. They cannot be
virtual.

When you overload the delete operator, you must declare it as a class member,
returning type void. Its first argument must be type void*, as described above. You
can add a second argument of type size_t to the declaration. You can only have
one operator delete() or operator delete[]() for a single class.

Overloading new and delete is described in “Overloaded new and delete” on
page 322.

Free Store

332 OS/390 V2R6.0 C/C++ Language Reference

The following example shows the declaration and use of the operator functions
operator new() and operator delete():
#include <stddef.h>
class X
{
public:

void* operator new(size_t);
void operator delete(void*); // single argument

};
class Y
{
public:

void operator delete(void*, size_t); // two arguments
};
// .
// .
// .
void main ()
{

X* ptr = new X;
delete ptr; // call X::operator delete(void*)
Y* yptr;

// .
// .
// .

delete yptr; // call Y::operator delete(void*, size_t)
// with size of Y as second argument

}

The result of trying to access a deleted object is undefined because the value of the
object can change after deletion.

Consider if you call new and delete for a class object that does not declare the
operator functions new and delete. Or, consider if you call them for a nonclass
object. In these cases, OS/390 C++ uses the global operators new and delete. The
global operators new and delete are provided in the C++ library.

Note: The C++ operators for allocating and deallocating arrays of class objects are
operator new[]()and operator delete[](). They are described in “C++
new Operator” on page 147 and “C++ delete Operator” on page 151.

Temporary Objects

It is sometimes necessary for the compiler to create temporary objects. It uses these
objects during reference initialization and during evaluation of expressions that
includes standard type conversions, argument passing, function returns, and
evaluation of the throw expression.

When the compiler creates a temporary object to initialize a reference variable, the
name of the temporary object has the same scope as that of the reference variable.
When it creates a temporary object during the evaluation of an expression, the
object exists until there is a break in the control flow of the program. If the
compiler creates a temporary object for a class with constructors, it calls the
appropriate (matching) constructor to create the temporary object.

When it destroys a temporary object and a destructor is available, the compiler
calls the destructor to destroy the temporary object. When you exit from the scope
in which the temporary object was created, the object is destroyed. If a reference is

Free Store

Chapter 14. Special C++ Member Functions 333

bound to a temporary object, the temporary object is destroyed when the reference
passes out of scope unless it was destroyed earlier by a break in the flow of
control. For example, a temporary object that is created by a constructor initializer
for a reference member is destroyed on leaving the constructor.

The following example shows two expressions in which temporary objects are
constructed:
class Y
{
public:

Y(int)={ };
Y(Y&)={ };
˜Y()={ };

};
Y add(Y y) { return y; }
// .
// .
// .
void main ()
{

Y obj1(10);
Y obj2 = add(Y(5)); // one temporary created
obj1 = add(obj1); // two temporaries created

}

The above example created a temporary object of class type Y to construct Y(5)
before passing it to the function add(). Because obj2 is being constructed, the
function add() can construct its return value directly into obj2, so another
temporary object is not created. OS/390 C++ creates a temporary object of class
type Y when the example passes obj1 to the function add(). Because obj1 has
already been constructed, the function add() constructs its return value into a
temporary object. The example then assigns this second temporary object to obj1
by using an assignment operator.

Related Information
v “Initializing References” on page 130

v “Chapter 6. Expressions and Operators” on page 133

v “Standard Type Conversions” on page 167

v “Chapter 8. Functions” on page 173

v “User-Defined Conversions”

User-Defined Conversions

User-defined conversions allow you to specify object conversions with constructors or
with conversion functions. OS/390 C++ implicitly uses user-defined conversions in
addition to standard conversions for conversion of initializers, functions
arguments, function return values, expression operands, expressions controlling
iteration, selection statements, and explicit type conversions.

There are two types of user-defined conversions:
v Conversion by constructor
v Conversion functions.

For more information, see “Standard Type Conversions” on page 167.

Temporary Objects

334 OS/390 V2R6.0 C/C++ Language Reference

Conversion by Constructor

You can call a class constructor with a single argument to convert from the
argument type to the type of the class.

For example:
class Y
{

int a,b;
char* name;

public:
Y(int i);
Y(const char* n, int j = 0);

};
void add(Y);
// .
// .
// .
void main ()
{

// code equivalent code
Y obj1 = 2; // obj1 = Y(2)
Y obj2 = "somestring"; // obj2 = Y("somestring",0)
obj1 = 10; // obj1 = Y(10)
add(5); // add(Y(5))

}

OS/390 C++ applies, at most, one user-defined conversion, either a constructor or
conversion function, to a class object. Assume you call a constructor with an
argument, and you have not defined a constructor that accepts that argument type.
OS/390 C++ only uses standard conversions to convert the argument to another
argument type that is acceptable to a constructor for that class. It does not call
other constructors or conversion functions to convert the argument to a type that is
acceptable to a constructor that is defined for that class.

Conversion Functions

You can define a member function of a class that is called a conversion function. A
conversion function converts from the type of its class to another specified type.

ÊÊ
class ::

operator
const
volatile

conversion_type
*
&

() Ê

Ê
{ function_body }

ÊÍ

The conversion function specifies a conversion from the class type of which the
conversion function is a member, to the type specified by the name of the
conversion function. Classes, enumerations, and typedef names cannot be declared
or defined as part of the function name.

The following code fragment shows a conversion function called operator int():
class Y
{

int b;

User-Defined Conversions

Chapter 14. Special C++ Member Functions 335

public:
operator int();

};
Y::operator int() {return b;}

void f(Y obj)
{

// each value assigned is converted by Y::operator int()
int i = int(obj);
int j = (int)obj;
int k = i + obj;

}

Conversion functions have no arguments, and the return type is implicitly the
conversion type. Conversion functions can be inherited. You can have virtual
conversion functions, but not static ones.

OS/390 C++ implicitly applies only one user-defined conversion to a single value.
User-defined conversions must be unambiguous, or OS/390 C++ does not call
them.

If you declare a conversion function with the keyword const, the keyword does
not affect the function. Except, it does act as a tiebreaker when there is more than
one conversion function that you could apply. Specifically, if more than one
conversion function could be applied, OS/390 C++ compares all of these functions.
If you declare any of these functions with the keyword const, OS/390 C++ ignores
const for the purposes of this comparison. If one of these functions is a best match,
it is applied. If there is no best match, OS/390 C++ compares the functions again,
but this time it does not ignore const.

Initialization by Constructor

You must explicitly initialize a class object with a constructor or it must have a
default constructor. Explicit initialization by using a constructor is the only way,
except for aggregate initialization, to initialize nonstatic constant and reference
class members.

An aggregate is a class object that has no constructors, no virtual functions, no
private or protected members, and no base classes. “Structures” on page 106 and
“Unions” on page 113 describes aggregates.

Explicit Initialization

You can initialize class objects with constructors by using a parenthesized
expression list. The call to a constructor uses this list as an argument list to
initialize the class. You can also call a constructor with a single initialization value
by using the = operator. Because this type of expression is an initialization, not an
assignment, OS/390 C++ does not call the assignment operator function if one
exists. It uses this value as a single argument for the call of a constructor. The type
of the single argument must match the type of the first argument to the
constructor. If the constructor has remaining arguments, these arguments must
have default values.

The syntax for an initializer that explicitly initializes a class object with a
constructor is:

User-Defined Conversions

336 OS/390 V2R6.0 C/C++ Language Reference

ÊÊ

»

(expression)
= expression

,

{ expression }
,

ÊÍ

The following example shows the declaration and use of several constructors that
explicitly initialize class objects:

CBC3X13A
// This example illustrates explicit initialization
// by constructor.

#include <iostream.h>
class complx
{

double re, im;
public:

complx(); // default constructor
complx(const complx& c) {re = c.re; im = c.im;}

// copy constructor
complx(double r, double i = 0.0) {re = r; im = i;}

// constructor with default trailing argument
void display()
{

cout << "re = "<< re << " im = " << im << endl;
}

};
// .
// .
// .

void main ()
{

complx one(1); // initialize with complx(double, double)
complx two = one; // initialize with a copy of one

// using complx::complx(const complx&)
complx three = complx(3,4); // construct complx(3,4)

// directly into three
complx four; // initialize with default constructor
complx five = 5; // complx(double, double) & construct

// directly into five
one.display();
two.display();
three.display();
four.display();
five.display();

}

The previous example produces the following output:
re = 1 im = 0
re = 1 im = 0
re = 3 im = 4
re = 0 im = 0
re = 5 im = 0

Constructors can initialize their members in two ways. A constructor can use the
arguments you pass to it to initialize member variables in the constructor
definition:
complx(double r, double i = 0.0) {re = r; im = i;}

Initialization by Constructor

Chapter 14. Special C++ Member Functions 337

A constructor can have an initializer list within the definition but prior to the
function body:
complx (double r, double i = 0) : re(r), im(i) { /* ... */ }

Both methods assign the argument values to the appropriate data members of the
class. You must use the second method to initialize base classes from within a
derived class to initialize constant and reference members, and members with
constructors.

Initializing Base Classes and Members

You can initialize immediate base classes and derived class members that are not
inherited from base classes. To do this, specify initializers in the constructor
definition prior to the function body. The syntax for a constructor initializer is:

ÊÊ : » »

,

identifier ()
class_name assignment_expression

ÊÍ

In a constructor that is not inline, include the initialization list as part of the
function definition, not as part of the class declaration.

For example:
class B1
{

int b;
public:

B1();
B1(int i) : b(i) { /* ... */ } // inline constructor

};
class B2
{

int b;
protected:

B2();
B2(int i); // noinline constructor

};
// B2 constructor definition including initialization list
B2::B2(int i) : b(i) { /* ...*/ }
// .
// .
// .
class D : public B1, public B2
{

int d1, d2;
public:

D(int i, int j) : B1(i+1), B2(), d1(i) {d2 = j;}
};

If you do not explicitly initialize a base class or member that has constructors by
calling a constructor, the compiler automatically initializes the base class or
member with a default constructor. Consider in the above example, if you leave
out the call B2() in the constructor of class D (as shown below). In that case, a
constructor initializer with an empty expression list is automatically created to
initialize B2. The constructors for class D, that is shown above and below, result in
the same construction of a class D object.

Initialization by Constructor

338 OS/390 V2R6.0 C/C++ Language Reference

class D : public B1, public B2
{

int d1, d2;
public:

// call B2() generated by compiler
D(int i, int j) : B1(i+1), d1(i) {d2 = j;}

};

Note: You must declare base constructors with the access specifiers public or
protected to enable a derived class to call them.

For example:
class B1
{

int b;
public:

B1();
B1(int i) : b(i) { /* ... */ }

};
class B2
{

int b;
protected:

B2();
B2(int i);

};
B2::B2(int i) : b(i) { /* ... */ }
class B4
{
public:

B4(); // public constructor for B4
int b;

private:
B4(int); // private constructor for B4

};
// .
// .
// .

class D : public B1, public B2, public B4
{

int d1, d2;
public:

D(int i, int j) : B1(i+1), B2(i+2) ,
B4(i) {d1 = i; d2 = j; }

// error, attempt to access private constructor B4()
};

To ensure a valid call, you can change the code as follows:
public:

D(int i, int j) : B1(i+1), B2(i+2) {d1 = i; d2 = j;}
// valid, calls public constructor for B4

Construction Order of Derived Class Objects

When you create a derived class object using constructors, OS/390 C++ creates it
in the following order:
1. It initializes the virtual base classes in the order they appear in the base list.
2. It initializes nonvirtual base classes in the order of declaration.
3. It initializes class members in the order of declaration (regardless of their order

in the initialization list).

Initialization by Constructor

Chapter 14. Special C++ Member Functions 339

4. It executes the body of the constructor.

The following code fragment calls the constructor for class B1, before it initializes
the member d1. The value it passes to the constructor for class B1 is undefined.
class B1
{

int b;
public:

B1();
B1(int i) {b = i;}

};
// .
// .
// .
class D : public B1
{

int d1, d2;
public:

D(int i, int j) : d1(i), B1(d1) {d2 = j;}
// d1 is not initialized in call B1::B1(d1)

};

Copying Class Objects

You can copy one class object to another object of the same type by either
assignment or initialization.

Copy by assignment is implemented with an assignment operator function. If you
do not define the assignment operator, the compiler defines it as a memberwise
assignment.

Copy by initialization is implemented with a copy constructor. If you do not define
a copy constructor, OS/390 C++ defines it as a memberwise initialization of its class
members.

Memberwise assignment and memberwise initialization mean the following. If a
class has a member that is a class object, the assignment operator and copy
constructor of that class object are used to implement assignment and initialization
of the member.

Copy Restrictions

You cannot generate a default assignment operator for a class that has the
following:
v A nonstatic constant or a reference data member
v A nonstatic data member or base class whose assignment operator is not

accessible
v A nonstatic data member or base class with no assignment operator and for

which a default assignment operator cannot be generated

You cannot generate a default copy constructor for a class that has:
v A nonstatic data member or base class, whose copy constructor is not accessible
v A nonstatic data member or base class with no copy constructor and for which a

default copy constructor cannot be generated

Initialization by Constructor

340 OS/390 V2R6.0 C/C++ Language Reference

Copy by Assignment

If you do not define an assignment operator and your code requires one, the
compiler defines a default assignment operator. If you do not define an assignment
operator and your code does not require one, the compiler declares a default
assignment operator, but does not define it. If an assignment operator that takes a
single argument of a class type exists for a class, the compiler does not generate a
default assignment operator.

You can use copy by assignment only in an assignment expression.

You can define an assignment operator for a class with a single argument that is a
constant reference to that class type. However, all its base classes and members
must have assignment operators that accept constant arguments.

For example:
class B1
{
public:

B1& operator=(const B1&);
};
class D: public B1
{
public:

D& operator=(const D&);
};
D& D::operator=(const D& dobj) {D dobj2 = dobj;

return dobj2;}

Otherwise, you can define an assignment operator for a class with a single
argument that is a reference to that class type. For example:
class Z
{
public:

Z& operator=(Z&);
};
Z& Z::operator=(Z& zobj) {Z zobj2 = zobj;

return zobj2;}

The default assignment operator for a class is a public class member. The return
type is a reference to which the class type it is a member.

For more information on standard C and C++ assignment operators, see
“Assignment Expressions” on page 162. For more information on assignment
operator functions, see “Overloaded Assignment” on page 319.

Copy by Initialization

If you do not define a copy constructor and your program requires one, the
compiler creates a default copy constructor. If you do not define a copy
constructor, and your program does not require one, the compiler declares a
default copy constructor but does not define it. If a class defines a copy
constructor, the compiler does not generate a default copy constructor.

Use copy by initialization only in initialization.

Copying Class Objects

Chapter 14. Special C++ Member Functions 341

|

You can define a copy constructor for a class with a single argument that is a
constant reference to a class type. However, all of its base classes and members
must have copy constructors that accept constant arguments, for example:
class B1
{
public:

B1(const B1&) { /* ... */ }
};

class D: public B1
{
public:

D(const D&);
};
D::D(const D& dobj):B1(dobj) { /* ... */ }

Otherwise, you can define a copy constructor with a single reference to a class type
argument. For example:
class Z
{
public:

Z(Z&);
};
Z::Z(Z&) { /* ...*/ }

The default copy constructor for a class is a public class member. For more
information on copy constructors, see “Constructors” on page 326, and
“Initialization by Constructor” on page 336.

Copying Class Objects

342 OS/390 V2R6.0 C/C++ Language Reference

Chapter 15. C++ Inheritance

In C++, you can create classes from existing classes by using the object-oriented
programming technique that is called inheritance. Inheritance allows you to define
an is a relationship between classes. When members are inherited, you can use
them as if they are members of the class that inherits them. This chapter discusses
the following topics on inheritance:
v “Inheritance Overview”
v “Derivation” on page 346
v “Inherited Member Access” on page 349
v “Multiple Inheritance” on page 356
v “Virtual Functions” on page 359
v “Abstract Classes” on page 363

Related Information

v “Chapter 8. Functions” on page 173

v “Chapter 11. C++ Classes” on page 281

v “Chapter 12. C++ Class Members and Friends” on page 291

Inheritance Overview

C++ implements inheritance through the mechanism of derivation. Derivation
allows you to reuse code by creating new classes, called derived classes, that inherit
properties from one or more existing classes, called base classes. A derived class
inherits the properties, that includes data and function members, of its base class.
You can also add new data members and member functions to the derived class.
You can modify the implementation of existing member functions or data by
overriding base class member functions or data in the newly derived class.

Suppose that you have defined a shape class to describe and operate on geometric
shapes. Now suppose that you want to define a circle class. Because you have
existing code that operates on the shape class, you can use inheritance to create the
circle class. You can redefine operations in the derived circle class that were
originally defined in the shape base class. When you manipulate an object of the
circle class, OS/390 C++ uses these redefined function implementations.

© Copyright IBM Corp. 1996, 1998 343

For example:
class shape
{

char* name;
int xpoint, ypoint;

public:
virtual void rotate(int);
virtual void draw();
void display() const;

};

class circle: public shape // derive class circle from class shape
{

int xorigin, yorigin;
int radius;

public:
void rotate(int);
void draw();
void display() const;

};
// .
// .
// .

In the above example, class circle inherits the data members name, xpoint, and
ypoint, as well as the member functions display(), rotate(), and draw() from
class shape. The example declares member functions rotate() and draw() in class
shape with the keyword virtual. Consequently, you can provide an alternative
implementation for the member functions in class circle.

You can also provide an alternative implementation for the nonvirtual member
function display() in class circle. Suppose you manipulate an argument of type
circle using a pointer to shape, and you call a virtual member function. The
member function defined in the derived class overrides the base-class member
function. A similar call to a nonvirtual member function calls the member function
that is defined in the base class. In addition to inheriting the members of class
shape, class circle has declared its own data members, xorigin, yorigin, and
radius.

The key difference between virtual and nonvirtual member functions is as follows.
When you treat the circle class as if it were a shape, the program uses the
implementations of the virtual functions rotate() and draw() that are defined in
class circle rather than those originally defined in class shape. Because display()
is a nonvirtual member function, the original implementation of display() defined
in class shape is used.

Multiple Inheritance

Multiple inheritance allows you to create a derived class that inherits properties
from more than one base class.

For example, in addition to the above shape class, you could also have a symbol
class. Because a circle is both a shape and a symbol, you can use multiple
inheritance to reflect this relationship. If your program derives the circle class
from both the shape and symbol classes, the circle class inherits properties from
both classes.

Inheritance

344 OS/390 V2R6.0 C/C++ Language Reference

|

class symbol
{

char* language;
char letter;
int number;

public:
virtual void write();
virtual void meaning();

};
class shape
{

char* name;
int xpoint, ypoint;

public:
virtual void rotate(int);
virtual void draw();
void display() const;

};
class circle: public symbol, public shape
{

int xorigin, yorigin;
int radius;

public:
void rotate(int);
void draw ();
void write();
void meaning();
void display() const;

};
// .
// .
// .

In the previous example, class circle inherits the members name, xpoint, ypoint,
display(), rotate(), and draw() from class shape. It also inherits the members
language, letter, number, write(), and meaning() from class symbol.

Because a derived class inherits members from all its base classes, ambiguities can
result. For example, if two base classes have a member with the same name, the
derived class cannot implicitly differentiate between the two members. Note that,
when you are using multiple inheritance, the access to names of base classes may
be ambiguous.

The Inheritance Design Process

Multiple inheritance allows you to have more than one base class for a single
derived class. You can create an interconnected inheritance graph of inherited classes
by using derived classes as base classes for other derived classes. You can build an
inheritance graph through the process of specialization in which derived classes
are more specialized than their base classes. You can also work in the reverse
direction and build an inheritance graph through generalization. If you have a
number of related classes that share a group of properties, you can generalize and
build a base class to embody them. The group of related classes becomes the
derived classes of the new base class.

Direct and Indirect Base Classes

A direct base class is a base class that appears directly as a base specifier in the
declaration of its derived class. A direct base class is analogous to a parent in a
hierarchical graph. In the above example, both shape, and symbol, are direct base
classes of class circle.

Inheritance

Chapter 15. C++ Inheritance 345

An indirect base class is a base class that does not appear directly in the declaration
of the derived class but is available to the derived class through one of its base
classes. An indirect base class is analogous to a grandparent or great grandparent
or great-great grandparent in a hierarchical graph. For a given class, all base
classes that are not direct base classes are indirect base classes.

Polymorphism

Polymorphic functions are functions that you can apply to objects of more than
one type. C++ implements polymorphic functions in two ways:
v Overloaded functions are statically bound at compile time, as discussed in

“Overloading Functions” on page 311.

v C++ provides virtual functions. A virtual function is a function that you can call
for a number of different user-defined types that are related through derivation.
Virtual functions are bound dynamically at run time.

Typically, a base class has several derived classes, each requiring its own
customized version of a particular operation. It is difficult for a base class to
implement member functions that are useful for all of its derived classes. A base
class would have to determine which derived class an object belonged to before it
could execute the applicable code for that object. When you call a virtual function,
the compiler executes the function implementation that is associated with the
object for which you call the function. The implementation of the base class is only
a default that is used when the derived class does not contain its own
implementation.

Derivation

C++ implements inheritance through the mechanism of derivation. Derivation
allows you to derive a class, called a derived class, from another class, called a base
class.

In the declaration of a derived class, you list the base classes of the derived class.
The derived class inherits its members from these base classes. All classes that
appear in the list of base classes must be previously defined classes.

Base lists do not allow incompletely declared classes.

For example:
class X; // incomplete declaration of class X
class Y: public X // error
{
// .
// .
// .
};

When you derive a class, the derived class inherits class members of the base class.
You can refer to inherited members (base class members) as if they were members
of the derived class.

Consider the following example.

Inheritance

346 OS/390 V2R6.0 C/C++ Language Reference

CBC3X14A
// This example illustrates references
// to base class members.

class base
{
public:

int a,b;
};
class derived : public base
{
public:

int c;
};
void main()
{

derived d;
d.a = 1; // base::a
d.b = 2; // base::b
d.c = 3; // derived::c}

The derived class can also add new class members and redefine existing base class
members. In the above example, the two inherited members, a and b, of the
derived class d, in addition to the derived class member c, are assigned values. If
you redefine base class members in the derived class, you can still refer to the base
class members by using the :: (scope resolution) operator.

Consider the following example.

CBC3X14B
// This example illustrates references to base class
// members with the scope resolution (::) operator.
#include <iostream.h>
class base
{
public:

char* name;
void display(char* i) {cout << i << endl;}

};
class derived : public base
{
public:

char* name;
void display(char* i){cout << i << endl;}

};
void main()
{

derived d; // create derived class object
d.name = "Derived Class"; // assignment to derived::name
d.base::name = "Base Class"; // assignment to base::name

// call derived::display(derived::name)
d.display(d.name);

// call base::display(base::name)
d.base::display(d.base::name);
}

“C++ Scope Resolution Operator (::)” on page 137 describes the :: (scope
resolution) operator.

Derivation

Chapter 15. C++ Inheritance 347

You can manipulate a derived class object as if it was a base class object. You can
use a pointer or a reference to a derived class object in place of a pointer or
reference to its base class. For example, you can pass a pointer or reference to a
derived class object D to a function that expects a pointer or reference to the base
class of D. You do not need to use an explicit cast to achieve this; the compiler
performs a standard conversion. You can implicitly convert a pointer to a derived
class to point to a base class. You can also implicitly convert a reference to a
derived class to a reference to a base class.

The following example assigns d, a pointer to a derived class object, to bptr, a
pointer to a base class object. A call is made to display() using bptr. Even though
bptr has a type of pointer to base, in the body of display() the name member of
derived is manipulated.

CBC3X14C
// This example illustrates how to make a pointer
// to a derived class point to a base class.

#include <iostream.h>
class base
{
public:

char* name;
void display(char* i) {cout << i << endl;}

};
class derived : public base
{
public:

char* name;
void display(char* i){cout << i << endl;}

};
void main()
{

derived d;

// standard conversion from derived* to base*
base* bptr = &d;

// call base::display(base::name;)
bptr->display(bptr->name);

}

You cannot implicitly convert a pointer or a reference to a base class object, to a
pointer or reference to a derived class.

If a member of a derived class and a member of a base class have the same name,
the base class member is hidden in the derived class. If a member of a derived
class has the same name as a base class, the program hides the base class name in
the derived class. In both cases, refer to the name of the derived class member as
the dominant name.

Syntax of a Derived Class Declaration

The syntax for the list of base classes is:

ÊÊ derived_class : Ê

Derivation

348 OS/390 V2R6.0 C/C++ Language Reference

Ê »

,

qualified_class_specifier
virtual

public
private
protected

public virtual
private
protected

ÊÍ

The qualified class specifier must be a class that you have previously declared in a
class declaration, as “Class Names” on page 283 describes. The access specifiers
(public, private, and protected) are described in “Member Access” on page 304.

You can use the virtual keyword to declare virtual base classes. For more
information, see “Virtual Base Classes” on page 357.

The following example shows the declaration of the derived class D and the base
classes V, B1, and B2. The class B1 is derived from class V and is a base class for D.
Consequently, it is both a base class and a derived class.
class V { /* ... */ };
class B1 : virtual public V { /* ... */ };
class B2 { /* ... */ };
class D : public B1, private B2 { /* ... */ };

Inherited Member Access

Access specifiers, as described in “Access Specifiers” on page 305, control the level
of access to noninherited class members. The access for an inherited member is
controlled in three ways:

v When you declare a member in a base class, you can specify a level of access
using the keywords public, private, and protected.

v When you derive a class, you can specify the access level for the base class in
the base list.

v You can also restore the access level of inherited members. See “Derivation
Access of Base Classes” on page 350 for an example.

Resolution of member names does not depend on the level of access that is
associated with each class member. Consider the following example:
class A {

private:
int a;

};
class B {

public:
int a;

};
class C : public A, public B {

void f() { a = 0; } // ambiguous - is it A::a or B::a?
};

In this example, class A has a private member a, and class B has a public member
a. The example derives class C from both A and B. C does not have access to A::a,

Derivation

Chapter 15. C++ Inheritance 349

but a in the body of f() or B:: can still resolve to either A::a or B::a. For this
reason, a is ambiguous in the body of f().

Protected Members

If you publicly derive a class from a base class, members and friends of any classes
that are derived from that class can access a protected static base class member.
Members and friends of any classes derived from that base class can access a
protected nonstatic base class member by using one of the following items:
v A pointer to a directly or indirectly derived class
v A reference to a directly or indirectly derived class
v An object of a directly or indirectly derived class

If you derive a class privately from a base class, all protected base class members
become private members of the derived class.

The access specifier protected is also described in “Access Specifiers” on page 305.

Derivation Access of Base Classes

When you declare a derived class, an access specifier can precede each base class
in the base list of the derived class. This does not alter the access attributes of the
individual members of a base class as seen by the base class. Instead, it but allows
the derived class to restore the access attributes of the members of a base class.

You can derive classes by using any of the following three access specifiers:
v In a public base class, public and protected members of the base class remain

public and protected members of the derived class.
v In a private base class, public and protected members of the base class become

private members of the derived class.
v In a protected base class, public and protected members of the base class are

protected members of the derived class.

In all cases, private members of the base class remain private. The derived class
cannot use private members of the base class unless friend declarations within the
base class explicitly grant access to them.

The following example derives class d publicly from class b:
class b
{
// .
// .
// .
};
class d : public b // public derivation
{
// .
// .
// .
};

You can use both a structure and a class as base classes in the base list of a derived
class declaration. If you declare the base class with the keyword class, its default
access specifier in the base list of a derived class is private. If you declare the base
class with the keyword struct, its default access specifier in the base list of a
derived class is public.

Inherited Member Access

350 OS/390 V2R6.0 C/C++ Language Reference

|

|
|
|
|
|
|
|
|
|
|
|
|

|

The following example uses private derivation by default because it does not use
an access specifier in the base list:
struct bb
{
// .
// .
// .
};
class dd : bb // private derivation
{
// .
// .
// .
};

Members and friends of a class can implicitly convert a pointer to an object of that
class to a pointer to either:
v A direct private base class
v A protected base class (either direct or indirect)

Access Declarations

You can restore access to members of a base class by using an access declaration. It
allows you to change the access to a public member in a private or protected base
class back to public. You can also change the access to a protected member in a
private base class back to protected. Use the base class member qualified name in
the public or protected declarations of the derived class to adjust access.

You only use access declarations to restore base class access. You cannot use them
to do the following tasks:
v Give more access to a member than originally declared
v Change the access of a private member to public or to protected
v Change the access of a protected member to public
v Restrict access to a member that is accessible in a base class

Using an access declaration to change the access to a public member of a public
base class to public is redundant. Using an access declaration to change the access
to a protected member of a protected base class to protected is also redundant.

The following example declares the member b of the base class base as public in its
base class declaration. The example derives the class, derived, privately from class
base. The access declaration in the public section of the class, derived, restores the
access level of the member b back to public.

Inherited Member Access

Chapter 15. C++ Inheritance 351

CBC3X14D
// This example illustrates using access declarations
// to restore base class access.

#include <iostream.h>
class base
{

char a;
public:

char c, b;
void bprint();

};

class derived: private base
{

char d;
public:

char e;
base::b; // restore access to b in derived
void dprint();
derived(char ch) { base::b = ch; }

};

void print(derived& d)
{

cout << " Here is d " << d.b << endl;
}

void main()
{

derived obj('c');
print(obj);

}

The external function print(derived&) can use the member b of base because
OS/390 C++ restores the access of b to public. The external function
print(derived&) can also use the members e and dprint() because they are
declared with the keyword public in the derived class. The derived class member
dprint() can use the members of its own class, d and e. This is in addition to the
inherited members, b, c, and bprint() that the example declares with the keyword
public in the base class. The base class member bprint() can use all the members
of its own class, a, b, and c.

Use access declarations only to adjust the access to a member in a base class. The
derived class can directly or indirectly inherit the base class in which an access
declaration appears.

You can also use an access declaration in a nested class. For example:
class B
{
public:

class N // nested class
{
public:

int i; // public member
};

};
class D: private B::N // derive privately
{
public:

B::N::i; // restores access to public
};

Inherited Member Access

352 OS/390 V2R6.0 C/C++ Language Reference

You cannot adjust the access to a base class member if a member with the same
name exists in a class that is derived from that base class.

You cannot convert a pointer to a derived class object to a pointer to a base class
object if the base class is private or protected. For example:
class B { /* ... */ };
class D : private B { /* ... */ }; // private base class

void main ()
{

D d;
B* ptr;
ptr = &d; // error

}

If you use an access declaration to adjust the access to an overloaded function, the
function adjusts the access for all functions with that name in the base class.

Access Resolution

Access resolution is the process by which the accessibility of a particular class
member is determined. Accessibility is dependent on the context. For example, a
class member can be accessible in a member function but inaccessible at file scope.
The following describes the access resolution procedure that is used by the
compiler.

In general, two scopes must be established before access resolution is applied. These
scopes reduce an expression or declaration into a simplified construct to which the
access rules are applied. “Member Access” on page 304 describes access rules.
These scopes are:

Call scope The scope that encloses the expression or
declaration that uses the class member.

Reference scope The scope that identifies the class.

For example, in the following code the reference scope for member is the type of
aobject, that is class type A:

CBC3X14E
// This example illustrates access resolution.

class B { public: int member; }; // declaration
class A : B {} // declaration
void main()
{

A aobject; // declaration
aobject.member = 10; // expression

}

Choose reference scope by simplifying the expression (or declaration) that contains
the member. An expression can be thought of as being reduced to a simple
expression of the form obj.member where obj is the reference scope. Select
reference scope as follows:
1. Consider if the member is qualified with . (dot) or -> (arrow). If it is, the

reference scope is the type of the object that is immediately to the left of the .
or -> operator closest to the member. OS/390 C++ treats unqualified members
as if they are qualified with this->.

Inherited Member Access

Chapter 15. C++ Inheritance 353

2. Consider if the member is a type member or a static member and is qualified
with :: (the scope resolution operator). Then, the reference scope is the type
immediately to the left of the :: operator closest to the member.

3. Otherwise, the reference scope is the call scope.

The call scope and the reference scope determine the accessibility of a class
member. Once these scopes are resolved, the effective access of the member is
determined. Effective access is the access of the member as you see it from the
reference scope. You can determine effective access. Take the original access of the
member in its scope as the effective access, and change it as you traverse the class
hierarchy from the member’s class to the reference scope. Traversing the class
hierarchy for each derivation by the following, alters effective access:
v The derivation access of a base class (see “Derivation Access of Base Classes” on

page 350)

v Access declarations that are applied to the members (see “Access Declarations”
on page 351)

v Friendships that are granted to the call scope (see “Member Access” on page 304)

After effective access is determined for a member, the access rules are applied as if
the effective access was the original access of the member. A member is only
accessible if the access rules say that it is.

The following example demonstrates the access resolution procedure.
class A
{
public:

int a;
};
class B : private A
{

friend void f (B*);
};
void f(B* b)
{

b->a = 10; // is 'a' accessible to f(B*) ?
}
// .
// .
// .

The following steps occur to determine the accessibility of A::a in f(B*):
1. The call scope and reference scope of the expression b->a are determined:

a. The call scope is the function f(B*).
b. The reference scope is class B.

2. The effective access of member a is determined:
a. Because the original access of the member a is public in class A, the initial

effective access of a is public.
b. Because B inherits from A privately, the effective access of a inside class B is

private.
c. Because class B is the reference scope, the effective access procedure stops

here. The effective access of a is private.
3. The access rules are applied. The rules state that a friend or a member of the

member’s class can access a private member. Because f(B*) is a friend of class
B, f(B*) can access the private member a.

Inherited Member Access

354 OS/390 V2R6.0 C/C++ Language Reference

Access Summary

The following example demonstrates inherited member access rules.

CBC3X14F
// This example illustrates inherited member access rules.

class B
{

int a;
public:

int b,c;
void f(int) {}

protected:
int d;
void g(int) {}

};

class D1 : public B
{

int a;
public:

int b;
void h(int i)
{

g(i); // valid, protected B::g(int)
B::b = 10; // valid, B::b (not local b)
d = 5 ; // valid, protected B::d

}
};

class D2 : private B
{

int e;
public:

B::c; // modify access to B::c
void h(int i) { d = 5; } // valid,protected B::d

};

void main()
{

int i= 1; // declare and initialize local variable
D1 d1; // create object of class d1
D2 d2; // create object of class d2

d1.a = 5; // error, D1::a is private in class D1
d2.b = 10; // error, B::b is inherited private to

// derived class D2
d2.c = 5; // valid, modified access from private to public
d2.B::c = 5; // valid, public B::c
d1.c = 5; // valid, B::c is inherited publicly
d1.d = 5; // error, B::d is protected in base class
d2.e = 10; // error, private D2::e
d1.g(i); // error, g(int) is protected in base class
d1.h(i); // valid
d2.h(i); // valid

}

Inherited Member Access

Chapter 15. C++ Inheritance 355

Multiple Inheritance

You can derive a class from more than one base class. Multiple inheritance means to
derive a class from more than one direct base class.

In the following example, classes A, B, and C are direct base classes for the derived
class X:

class A { /* ... */ };
class B { /* ... */ };
class C { /* ... */ };
class X : public A, private B, public C { /* ... */ };

The order of derivation is relevant only to determine the order of default
initialization by constructors and cleanup by destructors. For more information, see
“Initialization by Constructor” on page 336.

A direct base class cannot appear in the base list of a derived class more than once:
class B1 { /* ... */ }; // direct
base class
class D : public B1, private B1 { /* ... */ }; // error

However, a derived class can inherit an indirect base class more than once, as
shown in the following example:

class L { /* ... */ }; // indirect base class
class B2 : public L { /* ... */ };
class B3 : public L { /* ... */ };
class D : public B2, public B3 { /* ... */ }; // valid

In the above example, class D inherits the indirect base class L once through class
B2 and once through class B3. However, this may lead to ambiguities because two
objects of class L exist, and both are accessible through class D. You can avoid this
ambiguity by referring to class L by using a qualified class name, for example,
B2::L or B3::L.

You can also avoid this ambiguity by using the base specifier virtual to declare a
base class.

BA C

X

LL

B2 B3

D

Multiple Inheritance

356 OS/390 V2R6.0 C/C++ Language Reference

Virtual Base Classes

If you have an inheritance graph in which two or more derived classes have a
common base class, you can use a virtual base class to ensure that the two classes
share a single instance of the base class.

In the following example, an object of class D has two distinct objects of class L,
one through class B1, and another through class B2. You can use the keyword
virtual in front of the base class specifiers in the base lists of classes B1 and B2.
This indicates that only one class L, shared by class B1 and class B2, exists.

For example:

class L { /* ... */ }; // indirect base class
class B1 : virtual public L { /* ... */ };
class B2 : virtual public L { /* ... */ };
class D : public B1, public B2 { /* ... */ }; // valid

Using the keyword virtual in this example ensures that an object of class D
inherits only one object of class L.

A derived class can have both virtual and nonvirtual base classes. For example:

class V { /* ... */ };
class B1 : virtual public V { /* ... */ };
class B2 : virtual public V { /* ... */ };
class B3 : public V { /* ... */ };
class D : public B1, public B2, public B3 { /* ... */ };

In the above example, class D has two objects of class V. One is shared by classes B1
and B2, and one is shared through class B3.

Multiple Access

If an inheritance graph contains virtual base classes, you can access a name that
can be reached through more than one path, through the path that gives the most
access.

L

B1 B2

D

VV

B1 B3

B2

D

Multiple Inheritance

Chapter 15. C++ Inheritance 357

For example:
class L { public: void f(); };
class B1 : private virtual L { /* ... */ };
class B2 : public virtual L { /* ... */ };
class D : public B1, public B2
{
public:

void f() {L::f();} // L::f() is accessed through B2 and is public

};

In the above example, the function f() is accessed through class B2. Because class
B2 is inherited publicly and class B1 is inherited privately, class B2 offers more
access.

Accessible Base Classes

An accessible base class is a publicly derived base class that is neither hidden nor
ambiguous in the inheritance hierarchy.

Ambiguous Base Classes

When you derive classes, ambiguities can result if base and derived classes have
members with the same names. Access to a base class member is ambiguous if you
use a name or qualified name that does not refer to a unique function, object, type,
or enumerator. The declaration of a member with an ambiguous name in a derived
class is not an error. OS/390 C++ flags the ambiguity as an error if you use the
ambiguous member name.

For example, if two base classes have a member of the same name, an attempt to
access the member by the derived class is ambiguous. You can resolve ambiguity
by qualifying a member along with its class name by using the :: (scope
resolution) operator.

CBC3X14G
// This example illustrates ambiguous base classes.

class B1
{
public:

int i;
int j;
int g();

};
class B2
{
public:

int j;
int g();

};
// .
// .
// .
class D : public B1, public B2
{
public:

int i;
};

Multiple Inheritance

358 OS/390 V2R6.0 C/C++ Language Reference

void main ()
{

D dobj;
D *dptr = &dobj;
dptr -> i = 5; // valid, D::i
dptr -> j = 10; // error, ambiguous reference to j
dptr->B1::j = 10; // valid, B1::j
dobj.g(); // error, ambiguous reference to g()
dobj.B2::g(); // valid, B2::g()

}

The compiler checks for ambiguities at compile time. Because ambiguity checking
occurs before access control or type checking, ambiguities may result even if only
one of several members with the same name is accessible from the derived class.

Conversions (either implicit or explicit) from a derived class pointer or reference to
a base class pointer or reference must refer unambiguously to the same accessible
base class object. For example:
class W { /* ... */ };
class X : public W { /* ... */ };
class Y : public W { /* ... */ };
class Z : public X, public Y { /* ... */ };
void main ()
{

Z z;
X* xptr = &z; // valid
Y* yptr = &z; // valid
W* wptr = &z; // error, ambiguous reference to class W

// X's W or Y's W ?
}

You can use virtual base classes to avoid ambiguous reference. For example:
class W { /* ... */ };
class X : public virtual W { /* ... */ };
class Y : public virtual W { /* ... */ };
class Z : public X, public Y { /* ... */ };
void main ()
{

Z z;
X* xptr = &z; // valid
Y* yptr = &z; // valid
W* wptr = &z; // valid, W is virtual therefore only one

// W subobject exists
}

For more information, see “Virtual Base Classes” on page 357.

Virtual Functions

In C++, the mechanism of virtual functions supports dynamic binding. Virtual
functions must be members of a class. Use virtual functions when you expect a
class to be used as a base class in a derivation and the derived class may override
the function implementation. You can declare a member function with the keyword
virtual in its class declaration.

Multiple Inheritance

Chapter 15. C++ Inheritance 359

For example:
class B
{

int a,b,c;
public:

virtual int f();
};
// .
// .
// .

You can re-implement a virtual member function, like any member function, in any
derived class. When you make a call to a virtual function, the implementation that
OS/390 C++ executes depends on the type of the object for which it is called. If
you call a virtual member function for a derived class object and the function is
redefined in the derived class, your program executes the definition in the derived
class. In this case, the redefined derived class function overrides the base class
function.

Overriding occurs even if the access to the function is through a pointer or
reference to the base class. Calling a virtual function with a pointer that has base
class type but points to a derived class object, calls the member function of the
derived class. However, calling a nonvirtual function with a pointer that has base
class type calls the member function of the base class, regardless of whether or not
the pointer points to a derived class object.

For example:
class B
{
public:

virtual int f();
virtual int g();
int h();

};
class D : public B
{
public:

int f();
int g(char*); // hides B::g()
int h();

};
// .
// .
// .
void main ()
{

D d;
B* bptr = &d;

bptr->f(); // calls D::f() because f() is virtual
bptr->h(); // calls B::h() because h() is nonvirtual
bptr->g(); // calls B::g()
d.g(); // error, wrong number and type of arguments
d.g("string"); // calls D::g(char*)

}

If the argument types or the number of arguments of the two functions are
different, the functions are considered different. In addition, the function in the
derived class does not override the function in the base class. The function in the
derived class hides the function in the base class.

Virtual Functions

360 OS/390 V2R6.0 C/C++ Language Reference

The return type of an overriding virtual function can differ from the return type of
the overridden virtual function. However, the following restrictions apply:
v The return type of the overridden virtual function must be a pointer or a

reference to a class B.
v The return type of the overriding virtual function must be a pointer or a

reference to a class D.
v The return types of the overridden and overriding virtual functions must both

be pointers to classes B and D respectively. Or, they must both be references to
classes B and D respectively.

v Class B must be an accessible base class of class D. Also, with the OS/390 C++
compiler, class D must not have multiple or virtual inheritance.

For more information, see “Function Return Values” on page 192.

A virtual function cannot be global or static. By definition, a virtual function is a
member function of a base class and relies on a specific object to determine which
implementation of the function is called. You can declare a virtual function to be a
friend of another class. “Friends” on page 306 describes friends.

If you declare a function as virtual in its base class, you can still access it directly
by using the :: (scope resolution) operator. In this case, OS/390 C++ suppresses
the virtual function call mechanism, and uses the function implementation that is
defined in the base class. If you do not redefine a virtual member function in a
derived class, a call to that function uses the function implementation that is
defined in the base class.

A virtual function must be one of the following:

v Defined
v Declared pure
v Defined and declared pure

A base class that contains one or more pure virtual member functions is an abstract
class. For more information, see “Abstract Classes” on page 363.

Ambiguous Virtual Function Calls

It is an error to override one virtual function with two or more ambiguous virtual
functions. This can happen in a derived class that inherits from two nonvirtual
bases that are derived from a virtual base class.

For example:
class V
{
public:

virtual void f() { /* ... */ };
};
class A : virtual public V
{

void f() { /* ... */ };
};
class B : virtual public V
{

void f() { /* ... */ };
};
class D : public B, public A { /* ... */ }; // error
void main ()
{

Virtual Functions

Chapter 15. C++ Inheritance 361

D d;
V* vptr = &d;
vptr->f(); // which f(), A::f() or B::f()?

}

In class A, only A::f() will override V::f(). Similarly, in class B, only B::f() will
override V::f(). However, in class D, both A::f() and B::f() attempt to override
V::f(). The compiler does not allow this attempt because it is not possible to
decide which function to call if a D object is referenced with a pointer to class V.
The above example illustrates this point. The compiler flags this situation as an
error, as only one function can override a virtual function.

A special case occurs when the ambiguous overriding virtual functions come from
separate instances of the same class type. In the following example, there are two
objects (instances) of class L. There are two data members L::count, one in class A
and one in class B. If the compiler allows the declaration of class D, incrementing
L::count in a call to L::f() with a pointer to class V is ambiguous.
class V
{
public:

virtual void f();
};
class L : virtual public V
{

int count;
void f();

};
void L::f() {++count;}
class A : public L
{ /* ... */ };
class B : public L
{ /* ... */ };
class D : public A, public B { /* ... */ }; // error
void main ()
{

D d;
V* vptr = &d;
vptr->f();

}

In the above example, the function L::f() is expecting a pointer to an L object; that
is, the this pointer for class L, as its first implicit argument. Because there are two
objects of class L in a D object, there are two this pointers that could be passed to
L::f(). Because the compiler cannot decide which this pointer to pass to L::f(),
the declaration of class D is flagged as an error.

Virtual Function Access

You specify the access for a virtual function when you declare it. The access rules
for the function that later overrides the virtual function do not affect the access
rules for a virtual function. In general, the access of the overriding member
function is not known.

If you call a virtual function with a pointer or reference to a class object, the
compiler does not use the type of the class object to determine the access of the
virtual function. Instead, it uses the type of the pointer or reference to the class
object.

Consider the following example. When you call the function f() using a pointer
having type B*, OS/390 C++ uses bptr to determine the access to the function.

Virtual Functions

362 OS/390 V2R6.0 C/C++ Language Reference

Although the definition of f(), which is defined in class D is executed, the access of
the member function f() in class B is used. When the function f() is called using a
pointer having type D*, dptr is used to determine the access to the function f().
This call produces an error because f() is declared private in class D.
class B
{
public:

virtual void f();
};
class D : public B
{
private:

void f();
};
// .
// .
// .
void main ()
{

D dobj;
B *bptr = &dobj;
D *dptr = &dobj;
bptr->f(); // valid, virtual B::f() is public,

// D::f() is called
dptr->f(); // error, D::f() is private

}

Abstract Classes

An abstract class is a class that is designed to be specifically used as a base class.
An abstract class contains at least one pure virtual function. Pure virtual functions
are inherited. You can declare a function to be pure by using a pure specifier in the
declaration of the member function in the class declaration.

For example:
class AB // abstract class
{
public:

virtual void f()= 0; // pure virtual member function
};
class D: public AB
{
public:

void f();
};
// .
// .
// .
void main ()
{

D d;
d.f(); // calls D::f()
AB ab; // error, cannot create an object of an

// abstract class type
}

A function that is declared pure typically has no definition and cannot be executed.
Attempting to call a pure virtual function that has no implementation is undefined;
however, such a call does not cause an error. You cannot create objects of an
abstract class, as the above example demonstrates.

Virtual Functions

Chapter 15. C++ Inheritance 363

Note: Because destructors are not inherited, a virtual destructor that is declared
pure must have a definition.

Virtual member functions are inherited. Consider if a base class contains a pure
virtual member function and a class derived from that base class does not redefine
that pure virtual member function. In that case, the derived class itself is an
abstract class. Any attempt to create an object of the derived class type produces
an error.

For example:
class AB // abstract class
{
public:

virtual void f()= 0; // pure virtual member function
};
class D2: public AB
{

int a,b,c;
public:

void g();
};
// .
// .
// .
void main ()
{

D2 d;
// error, cannot declare an object of abstract class D2

}

To avoid the error in the above example, provide a declaration of D2::f().

You cannot use an abstract class as the type of an explicit conversion, as an
argument type, or as the return type for a function. You can declare a pointer or
reference to an abstract class.

Abstract Classes

364 OS/390 V2R6.0 C/C++ Language Reference

Chapter 16. C++ Templates

This chapter describes the C++ template facility. A template specifies how you can
construct an individual class, function, or static data member by providing a
blueprint description of classes or functions within the template.

Unlike an ordinary class or function definition, a template definition contains the
template keyword. It uses a type argument, instead of a type, in one or more of the
constructs used to define the class or function template. You can then generate
individual classes or functions simply by specifying the template name and by
naming the type for the particular class or function as the type argument of the
template. You can use templates to define a family of types or functions.

See the OS/390 C/C++ Programming Guide for programming hints on using
templates in C++ programs.

This chapter describes the following topics:
v “Templates Overview”
v “Structuring Your Program Using Templates” on page 367
v “Class Templates” on page 369
v “Function Templates” on page 373
v “Differences between Class and Function Templates” on page 377
v “Member Function Templates” on page 377
v “Friends and Templates” on page 379
v “Static Data Members and Templates” on page 380

Related Information

v “Chapter 8. Functions” on page 173

v “Chapter 11. C++ Classes” on page 281

v “Type Specifiers” on page 85

v “define (C++ Only)” on page 251

v “implementation (C++ Only)” on page 255

Templates Overview

The syntax for a template is:

ÊÊ template < » argument declaration
StaticDataMember

> ÊÍ

© Copyright IBM Corp. 1996, 1998 365

The declaration in a template declaration must define or declare one of the
following:
v A class
v A function
v A static member of a template class

The identifier of a type is a type_name in the scope of the template declaration. A
template declaration can appear as a global declaration only.

The template arguments (within the < and > delimiters) specify the types and the
constants within the template that you must specify when the template is
instantiated.

Given the following template:
template<class L> class Key
{

L k;
L* kptr;
int length;

public:
Key(L);
// ...

};

The following table shows what the classes Key<int>, Key<char*>, and Key<mytype>
look like:

class Key<int> i; class Key<char*> c; class Key<mytype> m;

class Key<int>{
int k;
int * kptr;
int length; public:
Key(int);
// ... };

class Key<char*> {
char* k;
char** kptr;
int length;

public:
Key(char*);
// ... };

Class Key<mytype> {
mytype k;
mytype* kptr;
int length; public:
Key(mytype);
// ... };

The declarations create the following objects:
v i of type Key<int>
v c of type Key<char*>
v m of type Key<mytype>

Note that these three classes have different names. The types that are contained
within the angle braces are not arguments to the class names, but part of the class
names themselves. Key<int> and Key<char*> are class names. Within the context of
the example, a class that is called Key (with no template argument list) is
undefined.

OS/390 C++ permits default initializers in template arguments under the following
conditions:
v They only apply to nontype template arguments.
v They only apply to trailing arguments, like functions.
v Subsequent template declarations can add default initializers, but cannot

redefine existing default initializers.
v They only apply to class template declarations, not to function template

declarations.

Templates Overview

366 OS/390 V2R6.0 C/C++ Language Reference

Note: OS/390 C++ treats a template that defines a member function of a class
template as a function template. Such a template cannot have default
initializers.

The following example shows a valid template declaration with default initializers:

CBC3X15A
// This example shows a template declaration
// with default initializers.

#include <stdio.h>

template <class T, int i=1> class X
{
public:

T s;
X(int j=4);
int val(T&)
{
return i;

};
};

template <class T, int i> X<T,i>::X(int j):s(i){
printf("i=%d j=%d\n",i,j);

}

void main()
{
X<int> myX(2);
X<int,3> myX2(4);

}

Structuring Your Program Using Templates

You can structure your program three ways, by using templates:
v Include the function template definition (both the .h and .c files) in all files that

may reference the corresponding template functions.
v Include the function template declaration (the .h file only) in all files that may

reference the corresponding template functions. However, include the function
definition (both the .h and .c files) in one file only.

v Include the declaration of the function templates in a header file and the
definition in a source file that has the same name. When you include the header
file in your source, the compiler automatically generates the template functions.

The following examples use two files to illustrate all three methods:

Templates Overview

Chapter 16. C++ Templates 367

File stack.h
#ifndef _STACK_TPL_H

#define _STACK_TPL_H

template<class T>
class stack
{
private:

T* v;
T* p;
int sz;

public:
stack(int);
˜stack();
void push(T);

};
#endif

File stackdef.h
#include "stack.h"

template<class T> stack<T>::stack(int s)
{

v = p = new T[sz=s];
}

template<class T> stack<T>::˜stack()
{

delete [] v;
}

template<class T> void stack<T>::push(T a)
{

*p++ = a;
}

To instantiate a stack of 50 ints, you would declare the following in each source file
that requires it:
stack<int> intStack(50);

For method 1, each source file that uses the template should include both stack.h
and stackdef.h.

For method 2, every source file should include stack.h. However, only one of the
files needs to include stackdef.h.

For method 3, every source file should include stack.h. The compiler
automatically generates the template functions in the TEMPINC PDS. You can use the
TEMPINC option to set your own TEMPINC PDS.

You should use the LSEARCH option to include the two PDSs, USR.INCLUDE.C and
USR.INCLUDE.H, which contain the stack.c and stack.h files, respectively. The
syntax for this is:
LSEARCH('USR.INCLUDE.+')

For information about include files, and the TEMPINC and LSEARCH options, see the
OS/390 C/C++ User’s Guide.

Structuring Your Program Using Templates

368 OS/390 V2R6.0 C/C++ Language Reference

Class Templates

The relationship between a class template and an individual class is like the
relationship between a class and an individual object. An individual class defines
how a group of objects can be constructed, while a class template defines how a
group of classes can be generated.

Note the distinction between the terms class template and template class:

Class template Is a template used to generate template classes. A
class template can be only a declaration, or it can
be a definition of the class.

Template class Is an instance of a class template.

A template definition is identical to any valid class definition that the template
might generate, except for the following:
v The following syntax precedes the class template definition:

template < template-argument-list >

In the above syntax, template-argument-list can include zero or more
type-arguments, and zero or more argument-declarations. The template-argument-list
must contain at least one argument.

v Types, variables, constants and objects within the class template can be declared
with arguments of user-defined type as well as with explicit types (for example,
int or char).

v The template-argument-list can include argument-declarations (for example, int a or
char* b), which are generally used to define constant values within the created
class.

A class template can declare a class without defining it by using an elaborated type
specifier, for example:
template <class L,class T> class key;

Using the type specifier reserves the name as a class template name. All template
declarations for a class template must have the same types and number of
template arguments. OS/390 C++ allows only one template declaration that
contains the class definition.

You can instantiate the class template by declaring a template class. If the template
class member function definitions are not inline, you have to define them. When
you instantiate a template class, its argument list must match the argument list in
the class template declaration.
template <class L,class T> class key
{
// .
// .
// .
};

template <class L> class vector
{
// .
// .
// .
};

Class Templates

Chapter 16. C++ Templates 369

void main ()
{
class key <int, vector<int> >; // instantiate template
}

Note: When you have nested template argument lists as in the above example,
you must have a separating space between the > at the end of the inner list
and the one at the end of the outer list. Otherwise, there is an ambiguity
between the output operator >> and two template list delimiters >.

Any of the techniques that are used to access ordinary class member objects and
functions can access objects and functions of individual template classes. For
example, assume you have this class template:
template<class T> class vehicle
{
public:

vehicle() { /* ... */ } // constructor
˜vehicle() {}; // destructor
T kind[16];
T* drive();
static void roadmap();
// ...

};

And you have the following declaration:
vehicle<char> bicycle; // instantiates the template

In the above example, the constructor, the constructed object, and the member
function drive() can be accessed with any of the following. (This assumes the
standard header file <string.h> is included in the program file.)

constructor vehicle<char> bicycle;
// constructor called automatically
// object bicycle created

object bicycle strcpy (bicycle.kind, "10 speed");
bicycle.kind[0] = '2';

function drive() char* n = bicycle.drive();

function roadmap() vehicle<char>::roadmap();

Class Template Declarations and Definitions

You must declare a class template before declaring a corresponding template class.
A class template definition can only appear once in any single compilation unit.
You must define a class template before using a template class that requires the
size of the class, or refers to members of the class.

The following example declares the class template key before defining it. The
declaration of the pointer keyiptr is valid because the example does not need the
size of the class. The declaration of keyi, however, causes an error.
template <class L> class key; // class template declared,

// not defined yet
//

class key<int> *keyiptr; // declaration of pointer
//

class key<int> keyi; // error, cannot declare keyi
// without knowing size
//

template <class L> class key // now class template defined

Class Templates

370 OS/390 V2R6.0 C/C++ Language Reference

{
// .
// .
// .
};

If you use a template class before defining the corresponding class template, the
compiler issues an error. The compiler considers a class name, with the appearance
of a template class name, to be a template class. In other words, angle brackets are
valid in a class name only if that class is a template class.

The compiler does not compile the definition of a class template until it requires
the definition of a template class. At that point, it compiles the class template
definition by using the argument list of the template class to instantiate the
template arguments. The compiler flags any errors in the class definition at this
time. If the compiler never requires the definition of a class template, it does not
compile it. In this case, the compiler will not flag any errors in the definition.

Reference and Uniqueness

You can only define a class template once within a compilation unit. You cannot
declare the class template name to refer to any other template, class, object,
function, value, or type in the same scope.

Nontype Template Arguments

A nontype template argument that is provided within a template argument list is
an expression whose value can be determined at compile time. Such arguments
must be constant expressions, addresses of functions, objects with external linkage,
or addresses of static class members. You normally use nontype template
arguments to initialize a class or to specify the sizes of class members.

For nontype integral arguments, the instance argument matches the corresponding
template argument as long as the instance argument has a value and sign
appropriate to the argument type.

For nontype address arguments, the type of the instance argument must be of the
form identifier or &identifier. The type of the instance argument must match
the template argument exactly, except that a function name is changed to a pointer
to function type before matching.

The resulting values of nontype template arguments within a template argument
list form part of the template class’s type. If two template class names have the
same template name and if their arguments have identical values, they are the
same class.

In the following example, a class template is defined that requires a nontype
template int argument as well as the type argument:
template<class T, int size> class myfilebuf
{

T* filepos;
static int array[size];

public:
myfilebuf() { /* ... */ }
˜myfilebuf();
advance(); // function defined elsewhere in program

};

Class Templates

Chapter 16. C++ Templates 371

In this example, the template argument size becomes a part of the template class
name. It creates an object of such a template class with both the type arguments of
the class and the values of any additional template arguments.

From this template, you can create an object x and its corresponding template class
with arguments double and size=200. Use a value as the second template
argument:
myfilebuf<double,200> x;

You can also create x by using an arithmetic expression:
myfilebuf<double,10*20> x;

The objects that are created by these expressions are identical because the template
arguments evaluate identically. The value 200 in the first expression could have
been represented by an expression whose result at compile time is known to be
equal to 200, as shown in the second construction.

Note: Arguments that contain the < symbol or the > symbol must be enclosed in
parentheses. This prevents it from being parsed as a template argument list
delimiter when you use it as a relational operator or a nested template
delimiter. For example, the arguments in the following definition are valid:
myfilebuf<double, (20>10)> x; // valid

The following definition, however, is not valid because it interprets the
greater than operator (>) as the closing delimiter of the template argument
list:
myfilebuf<double, 20>10> x; // error

If the template arguments do not evaluate identically, the objects that are created
are of different types:
myfilebuf<double,200> x; // create object x of class

// myfilebuf<double,200>
myfilebuf<double,200.0> y; // error, 200.0 is a double,

// not an int

The instantiation of y fails because the value 200.0 is of type double, and the
template argument is of type int.

Consider the following two objects:
myfilebuf<double, 128> x
myfilebuf<double, 512> y

These two objects belong to separate template classes, and referencing either of
these objects later with myfilebuf<double> is an error.

A class template does not need to have a type argument if it has nontype
arguments. For example, the following template is a valid class template:
template<int i> class C
{

public:
int k;
C() { k = i; }

};

Declarations such as the following can instantiate this class template:

Class Templates

372 OS/390 V2R6.0 C/C++ Language Reference

class C<100>;
class C<200>;

Again, these two declarations refer to distinct classes because the values of their
nontype arguments differ.

Explicitly Defined Template Classes

You can override the class template definition of a particular template class by
providing a class definition for the type of class required. For example, the
following class template creates a class for each type that it references, but that
class may be inappropriate for a particular type:
template<class M> class portfolio
{

double capital;
M arr;
// ...

} ;

Using the applicable template class name can define the type for which the
template class is inappropriate. Assuming the inappropriately defined type is
stocks, you can redefine the class portfolio<stocks> as follows:
class portfolio<stocks>
{

double capital;
stocks yield;
// ...

};

You can define an explicit specialization of a template class before declaring the
class template. In particular, you can define a template class such as
portfolio<stocks> before defining its class template.

Function Templates

A function template allows you to define a group of functions that are the same,
except for the types of one or more of their arguments or objects. You must use all
type arguments in a function template in the argument list, or in the class qualifier
for the function name. You do not need to explicitly specify the type of a template
function argument when you call the template function. In this respect, a template
function differs from a template class.

Note the distinction between the terms function template and template function:

Function template Is a template used to generate template functions.
A function template can be only a declaration, or it
can define the function.

Template function Is a function generated by a function template.

Example of a Function Template

If you want to create a function approximate(), which determines whether two
values are within 5% of each other, you can define the following template:

Class Templates

Chapter 16. C++ Templates 373

#include <math.h>
template <class T> int approximate (T first, T second)
{

double aptemp=double(first)/double(second);
return int(abs(aptemp-1.0) <= .05);

};

Assuming that you have two values of type float you want to compare. You can
use the approximate function template:

float a=3.24, b=3.35;
if (approximate(a,b))

cout << "a and b are pretty close" << endl;

The above example generates the following template function to resolve the call:
int approximate(float,float)

Overloading Resolution for Template Functions

OS/390 C++ resolves overloaded template functions in the following order:
1. Looks for a function with an exact type match. It does not include template

functions, unless you explicitly declare such functions by using a function
declaration. OS/390 C++ performs trivial conversions if they produce an exact
type match.

2. Looks for a function template that allows generation of a function with an exact
type match. OS/390 C++ performs trivial conversions if they produce an exact
type match.

3. Tries ordinary overloading resolution for functions already present. This does
not include template functions, unless you have explicitly declared such
functions by using a function declaration.

A call to a template function causes an error, and OS/390 C++ does no overloading
if the following conditions are true:
v The only available functions for a call are template functions.
v These functions would require nontrivial conversions for the call to succeed.
v You have not explicitly declared these functions.

In the case of the approximate() function template, if the two input values are of
different types, overloading resolution does not take place:

float a=3.24;
double b=3.35;
if (approximate(a,b)) // error, different types
{ /* ... */ }

The solution is to force a conversion to one of the available function types by
explicitly declaring the function for the chosen type. To resolve the above example,
include the following function declaration:

int approximate(double a, double b);
// force conversion of the float to double

This declaration creates a function, approximate() that expects two arguments of
type double. When you call approximate(a,b), the overloading is resolved by
converting variable a to type double.

For more information on argument matching and conversions, see“Trivial
Conversions” on page 314, “Standard Type Conversions” on page 167, and “Integral
Promotions” on page 167.

Function Templates

374 OS/390 V2R6.0 C/C++ Language Reference

Defining Template Functions

You can generate template functions in all compilation units that contain function
template definitions. Consequently, you may want to group function template
definitions into one or two compilation units.

Explicitly Defined Template Functions

In some situations, a function template can define a group of functions in which,
for one function type, the function definition would be inappropriate. For instance,
consider the following function template:

template<class T> int approximate(T first, T second);

It is defined in “Example of a Function Template” on page 373, and determines
whether two values are within 5% of each other. The algorithm used for this
function template is appropriate for numerical values. However, for char* values,
it indicates whether the pointers to two character strings are within 5% of one
another. It does not indicate whether the strings themselves are approximately
equal. Whether two pointers are within 5% of each other is not useful information.
You can define an explicit template function for char* values to compare the two
strings themselves, character by character.

The following explicitly defined template function compares two strings and
returns a value that indicates whether more than 5% of the characters differ
between the two strings:
#include <string.h>
int approximate(char *first, char *second)
{

if (strcmp(first,second) == 0)
return 1; // strings are identical

double difct=0;
int maxlen=0;

if (strlen(first)>strlen(second))
maxlen=strlen(first);

else maxlen=strlen(second);
for (int i=0; i<=maxlen ; ++i)

if (first[i] != second[i]) difct++;
return int((difct / maxlen) <= .05);

}

Given this definition, the following function call invokes the above explicitly
defined function, and no template function is generated:
approximate("String A","String B");

Explicit definition has the same effect on template overloading resolution as
explicit declaration. (See “Overloading Resolution for Template Functions” on
page 374 for more information.) Assume that you explicitly define a template
function as follows:
int approximate(double a, double b) { /* ... */ }

Then, consider the following call:
double a=3.54;
float b=3.5;
approximate(a,b);

Function Templates

Chapter 16. C++ Templates 375

The above call resolves to the following call:
approximate(double a, double b)

OS/390 C++ converts variable b to type double.

Function Template Declarations and Definitions

When you define a template function explicitly within a compilation unit, the
compiler uses this definition in preference to any instantiation from the function
template. For example, if one compilation unit contains the code:
#include <iostream.h>
template <class T> T f(T i) {return i+1;}
void main()
{

cout << f(2) << endl;
}

And another compilation unit contains the following:
int f(int i) {return i+2;}

When compiled and run, the program prints the number 4 to standard output.
This indicates that the compiler uses the explicitly defined function to resolve the
call to f().

You must define each template, whether of a class or of a function, at most once
within a compilation unit. The same applies to an explicitly defined template class
or function. You can declare function templates and class templates many times.

You declare a template class by using its name. You declare a template function if
any of the following situations apply:
v A function whose name matches a function template’s name you have declared,

and the compiler can generate an appropriate template function.
v A function whose name matches a function template’s name you have called, and

the compiler can generate an appropriate template function.
v A function whose name matches a function template’s name you have called,

and you have explicitly defined the template function.
v You take the address of a template function in such a way that instantiation can

occur. This means that the pointer to function must supply a return type and
supply argument types that can be used to instantiate the template function.

OS/390 C++ instantiates or generates a template function provided the function is
not explicitly defined elsewhere in the program, if you reference the function in the
following ways:
v Your program declares the function.
v It calls the function.
v It takes the the address of the function.

When your program instantiates a template function, OS/390 C++ compiles the
body of the function template by using the template argument list of the template
class to instantiate the template arguments. The compiler flags any errors in the
function definition at this time. If the function template never generates a template
function, OS/390 C++ does not compile it. In this case, the compiler will not flag
any errors in the function definition.

Function Templates

376 OS/390 V2R6.0 C/C++ Language Reference

Differences between Class and Function Templates

The name of a template class is a compound name that consists of the template
name and the full template argument list that is enclosed in angle braces. Any
references to a template class must use this complete name. For example:
template <class T, int range> class ex
{

T a;
int r;

// ...
};
//...
ex<double,20> obj1; // valid
ex<double> obj2; // error
ex obj3; // error

C++ requires this explicit naming convention to ensure that it can generate the
appropriate class.

A template function chooses the name of its function template, and the particular
function to resolve a given template function call. It determines the name and the
function by the type of the calling arguments. In the following example, the call
min(a,b) is effectively a call to min(int a, int b). The call, min(af, bf), is
effectively a call to min(float a, float b):

CBC3X15B
// This example illustrates a template function.

template<class T> T min(T a, T b)
{

if (a < b)
return a;

else
return b;

}
void main()
{

int a = 0;
int b = 2;
float af = 3.1;
float bf = 2.9;
cout << "Here is the smaller int " << min(a,b) << endl;
cout << "Here is the smaller float " << min(af, bf) << endl;

}

Member Function Templates

“Function Templates” on page 373, defines a function template outside of any
template class. However, functions in C++ are often member functions of a class.
Consider if you want to create a class template, and a set of function templates to
go with that class template. If so, you do not have to create the function templates
explicitly as long as the function definitions are contained within the class
template. Any member function (inline or not inline) that is declared within a class
template is implicitly a function template. When you declare a template class, it
implicitly generates template functions for each function that is defined in the class
template.

You can define template member functions three ways:

Differences between Class and Function Templates

Chapter 16. C++ Templates 377

v Explicitly at file scope for each type used to instantiate the template class. For
example:

template <class T> class key
{
public:

void f(T);
};
void key<char>::f(char) { /* ... */ }
void key<int>::f(int) { /* ... */ }

void main()
{

int i = 9;
key< int> keyobj;
keyobj.f(i);

}
v At file scope with the template arguments. For example:

template <class T> class key
{
public:

void f(T);
};
template <class T> void key <T>::f(T) { /* ... */ }

void main()
{

int i = 9;
key< int> keyobj;
keyobj.f(i);

}
v Inlined in the class template itself. For example:

template <class T> class key
{
public:

void f(T) { /* ... */ }
};

void main()
{

int i = 9;
key< int> keyobj;
keyobj.f(i);

}

Use member function templates to instantiate any functions that are not explicitly
generated. If you have both a member function template and an explicit definition,
OS/390 C++ uses the explicit definition.

Do not use the template argument in a constructor name. For example:
template<class L> class Key
{

Key(); // default constructor
Key(L); // constructor taking L by value
Key<L>(L); // error, <L> implicit within class template

};

The declaration Key<L>(L) is an error because the constructor does not use the
template argument. Assuming that removing the offending line corrected this class
template, you can define a function template for the class template’s constructor:
// Constructor contained in function template:
template<class L>

Key<L>::Key(int) { /* ... */ }

Member Function Templates

378 OS/390 V2R6.0 C/C++ Language Reference

// valid, constructor template argument assumed template<class L>

Key<L>::Key<L>(int) { /* ... */ }
/* error, constructor template argument <L> implicit

in class template argument */

A template function name does not include the template argument. The template
argument does, however, appear in the template class name if a member function
of a template class is defined or declared outside of the class template. Consider
the following definition:
Key<L>::Key(int) { /* ... */ }

The above definition is valid because Key<L> (with template argument) refers to the
class, while Key(int) { /* ... */ } refers to the member function.

Friends and Templates

You can declare a friend function in a class template as a single function shared by
all classes created by the template. Or, you can declare it as a template function
that varies from class to class within the class template. For example:
template<class T> class portfolio
{

//...
friend void taxes();
friend void transact(T);
friend portfolio<T>* invest(portfolio<T>*);
friend portfolio* divest(portfolio*); //error
// ...

};

In this example, each declaration has the following characteristics:

taxes()
Is a single function that can access private and protected members of any
template class generated by the class template. Note that taxes() is not a
template function.

transact(T)
Is a function template that declares a distinct function for each class
generated by the class template. The only private and protected members
that functions that are generated from this template can access, are the
private and protected members of their template class.

invest(portfolio<T>*)
Is a function template whose return and argument types are pointers to
objects of type portfolio<T>. Each class that is generated by the class
template will have a friend function of this name. And, each such function
will have a pointer to an object of its own class as both its return type and
its argument type.

divest(portfolio*)
Is an error because portfolio* attempts to point to a class template. A
pointer to a class template is undefined and produces an error. This
statement can be corrected by using the syntax of the invest() function
template instead.

All friend functions in this example are declared but not defined. Consequently,
you could create a set of function templates to define those functions that are

Member Function Templates

Chapter 16. C++ Templates 379

implicitly template functions. (That is, all the valid functions except taxes().)
OS/390 C++ then uses the function templates to instantiate the template functions
as required.

Static Data Members and Templates

A static declaration within a class template declares a static data member for each
template class generated from the template. The static declaration can be of
template argument type or of any defined type.

Like member function templates, you can explicitly define a static data member of
a template class at file scope for each type used to instantiate a template class. For
example:
template <class T> class key
{
public:

static T x;
};
int key<int>::x;
char key<char>::x;
void main()
{

key<int>::x = 0;
}

You can also define a static data member of a template class using a template
definition at file scope. For example:
template <class T> class key
{
public:

static T x;
};
template <class T> T key<T> ::x; // template definition
void main()
{

key<int>::x = 0;
}

In the following example:
template<class L> class Key
{

static L k;
static L* kptr;
static int length;
// ...

}

The definitions of static variables and objects must be instantiated at file scope. If
the classes Key<int> and Key<double> are instantiated from this template, and no
template definitions exist, the following static data members must be explicitly
defined at file scope, or an error occurs:
int Key<int>::k, Key<int>::length, Key<double>::length
int* Key<int>::kptr;
double Key<double>::k;
double* Key<double>::kptr = 0;

Friends and Templates

380 OS/390 V2R6.0 C/C++ Language Reference

Chapter 17. C++ Exception Handling

This chapter describes the OS/390 C/C++ implementation of C++ exception
handling. It discusses the following topics:
v “C++ Exception Handling Overview”
v “Formal and Informal Exception Handling” on page 382
v “Using Exception Handling” on page 382
v “Transferring Control” on page 384
v “Constructors and Destructors in Exception Handling” on page 391
v “Exception Specifications” on page 393
v “Special Exception Handling Functions” on page 395

Related Information

v “Chapter 6. Expressions and Operators” on page 133

v “Chapter 14. Special C++ Member Functions” on page 325

C++ Exception Handling Overview

Exception handling enables a function that encounters an unusual situation to throw
an exception and pass control to a direct or indirect caller of that function. The
caller may or may not be able to handle the exception. A handler is code that
intercepts an exception. Regardless of whether or not the caller can handle an
exception, it may rethrow the exception so it can be intercepted by another
handler.

C++ provides three language constructs to implement exception handling:
v Try blocks
v Catch blocks
v Throw expressions

Within a function, a throw expression can flag any unusual situation. The throw
expression is of type void. Your program can throw an object to pass information
back to the caller. It can throw any object, including the object that caused the
exception, or an object that was constructed when the exception occurred.

You should enclose a throw expression, or a call to a function that may throw an
exception, within a try block. If the called function throws an exception and you
have defined an exception handler to catch the type of the object that is thrown,
your program executes the exception handler. In C++, a catch block implements an
exception handler. One or more catch clauses must accompany a try block;
otherwise the compiler flags an error.

A catch block follows immediately after a try statement or immediately after
another catch block. A catch block includes a parenthesized exception declaration
that contains optional qualifiers, a type, and an optional variable name. The
declaration specifies the type of object that the exception handler may catch. Once
the exception handler catches an exception, it executes the body of the catch block.
If no handler catches an exception, OS/390 C/C++ terminates the program.

© Copyright IBM Corp. 1996, 1998 381

Exception handling is not strictly synonymous with error handling, because the
implementation allows the passing of an exception whether or not an error actually
occurred. You can use exception handlers for things other than handling errors. For
example, you can transfer control back to the original caller of a function. You
might use this feature if you wanted to process the Quit key in a program and
transfer control back to the driver program when the user types Quit. To do this,
you could use exception handlers to throw an object back to the driver.

Formal and Informal Exception Handling

While the exception handling features of C++ offer a formal mechanism for
handling exceptions (language implemented), in many situations informal
exception handling (logic implemented) is more appropriate.

Generally, you should implement formal exception handling in libraries, classes,
and functions that are likely to be accessed by several programs or programmers.
It should also be used in classes and functions that are repeatedly accessed within
a program but are not well-suited to handling their exceptions themselves. Formal
exception handling is designed for exceptional circumstances, and it is not
guaranteed to be efficient. Program performance is usually not affected when you
do not invoke formal exception handling, although it can inhibit some
optimizations.

Informal exception handling, in which an appropriate action is defined if an error
or exception occurs, is often more suitable for handling errors. For example, you
can easily and clearly handle a simple error by testing the input for validity by
entering incorrect input. You can also request the input again if the original input
is incorrect.

Using Exception Handling

The three keywords that are designed for exception handling in C++ are try,
catch, and throw.

ÊÊ try { » statement } catch { Ê

Ê

»

...

type specifier
declarator
abstract declarator

) { » statement Ê

Ê } ÊÍ

The syntax for the keyword throw is:

C++ Exception Handling Overview

382 OS/390 V2R6.0 C/C++ Language Reference

ÊÊ throw
assignment expression

ÊÍ

To implement an exception handler, following these steps:
1. If functions will be used by many programs, code them so that error detection

throws an exception. The throw expression generally throws an object. You may
create the expression explicitly for exception handling, or it may be the object
that causes the exception handler to detect the error. The following example
throws a problem object:

...

int input=0;
cout << "Enter a number between 1 and 10:";
cin >> input;

if (input < 1 || input >> 10);
throw(input); //throw the actual problem object...

The following example throws an object for the purpose of exception handling:
...

int input=0;
cout << "Enter a number between 1 and 10:";
cin >> input;

if (input < 1 || input >> 10)
throw(out_of_range_object); //throw object to tell handler

//what happened

2. Function calls that you anticipate might produce an exception must be enclosed
in braces and preceded by the keyword try. A try statement in a caller
anticipates exceptions.

3. You must code one or more catch blocks immediately following the try block.
Each catch block identifies what type or class of objects it can catch:
a. If the object that is thrown matches the type of a catch expression, OS/390

C/C++ passes control to that catch block.
b. If the object that is thrown does not match the first catch block, OS/390

C/C++ searches subsequent catch blocks for a matching type.
c. If it cannot find a match, OS/390 C/C++ continues the search in all

enclosing try blocks, and then in the code that called the current function.
d. If no match is found after all try blocks are searched, a call to terminate()

is made.

For information on the default handlers of uncaught exceptions, see “Special
Exception Handling Functions” on page 395.

Notes:

1. You can throw any object if you can copy and destroy it in the function from
which the throw occurs.

2. You should never throw exceptions from a C language signal handler. The
result is undefined, and can cause program termination.

Using Exception Handling

Chapter 17. C++ Exception Handling 383

A catch argument causes an error if it is a value argument and if OS/390 C/C++
cannot generate a copy of it. For example:
class B {
public:

B();
B(B&);

};
// the following catch block will cause an error
//

catch(const B x)
{
// .
// .
// .
}

The catch block causes an error because the compiler does not know the type of
the object that is thrown at compile time. It assumes that the type of the thrown
object is the same as the type of the catch argument. In the above example, the
compiler assumes the thrown object is type const B. The compiler uses a copy
constructor on the thrown argument to create the catch argument. Because there is
no copy constructor for class B that accepts const B as an input argument, the
compiler cannot perform the construction, and an error occurs. Similarly, a throw
expression causes an error if OS/390 C/C++ cannot generate a copy of the value
of the expression that the handler throws.

Transferring Control

C++ implements the termination model of exception handling. In the termination
model, when your program throws an exception, control never returns to the throw
point. The throw point is the point in program execution where the exception
occurred.

C++ exception handling does not implement the resumption model of exception
handling, which allows an exception handler to correct the exception and then
return to the throw point.

When your program throws an exception, it passes control ou of the throw
expression, and out of the try block that anticipated the exception. It passes control
to the catch block whose exception type matches the object that is thrown. The
catch block handles the exception as appropriate. If the catch block ends normally,
the flow of control passes over all subsequent catch blocks.

When an exception is not thrown from within a try block, the flow of control
continues normally through the block. It passes over all catch blocks following the
try block.

An exception handler cannot return control to the source of the error by using the
return statement. A return issued in this context returns from the function that
contains the catch block.

Consider if your program throws an exception, and no try block is active, or if a
try block is active and the catch block exception declaration does not match the
object thrown. In this case, OS/390 C/C++ issues a call to terminate(), which in
turn calls abort to terminate the program. The abort C library function is defined
in the standard header file <stdlib.h>.

Using Exception Handling

384 OS/390 V2R6.0 C/C++ Language Reference

For more information on terminate(), see “Special Exception Handling Functions”
on page 395.

The following example illustrates the basic use of try, catch, and throw. The
program prompts for numerical input and determines the input’s reciprocal. Before
it attempts to print the reciprocal to standard output, it checks that the input value
is nonzero to avoid a division by zero. If the input is zero, the program throws an
exception, and the catch block catches the exception. If the input is nonzero, the
reciprocal is printed to standard output.

CBC3X16A
// This example illustrates the basic use of
// try, catch, and throw.

#include <iostream.h>
#include <stdlib.h>
class IsZero { /* ... */ };
void ZeroCheck(int i)
{

if (i==0)
throw IsZero();

}
void main()
{

double a;

cout << "Enter a number: ";
cin >> a;
try
{

ZeroCheck(a);
cout << "Reciprocal is " << 1.0/a << endl;

}
catch (IsZero)
{

cout << "Zero input is not valid" << endl;
exit(1);

}
exit(0);

}

This example provides a simple illustration of formal exception handling. You
could make it more efficient by using informal exception handling.

Another example of exception handling under C++ is shown below. The testeh()
routine is called from the mainfunction. testeh() first throws the integer 6, which
is handled by a catch clause within testeh().

Next, it throws a short int, k. There are no catch clauses in testeh() which can
handle a short int. The testeh() routine ends, and destructors are called for the
objects it created. Control passes back to the main function. It contains a catch
clause which can handle the thrown short int. The example calls destructors for
the remaining objects as the program ends.

Transferring Control

Chapter 17. C++ Exception Handling 385

CBC3X16F
// This is a more extensive example of
// C++ exception handling.

#include <iostream.h>

int testeh(void);
class A {

int i;
public:

A(int j) { i = j; cout << "A ctor: i=" << i << '\n';}
˜A() { cout << "A dtor: i=" << i << '\n';}

};
class B {

char c;
public:

B(char d) { c = d; cout << "B ctor: c=" << c << '\n'; }
˜B() { cout << "B dtor: c=" << c << '\n'; }

};
A globA(1);
B globB('a');

main()
{

int rc = 55;
A a(1001);

try {
cout << "calling testeh\n";
testeh();

}
catch(char c) { cout << "caught char\n"; }
catch(short s) { cout << "caught short s = " << s << '\n'; }
catch(int i) { cout << "caught int i = " << i << '\n'; }
cout << "rc = " << rc << '\n';
return(rc);

}

testeh() throw(int,short)
{

A a(2001);
B b('k');
short k=12;

try {
cout << "testeh running\n";
throw (6);

}
catch(char c) { cout << "testeh caught char\n";}
catch(int j) { cout << "testeh caught int j = " << j << '\n';

try {
cout << "testeh throwing a short\n";
throw(k);

}
catch(char d) { cout << "char d caught\n"; }

}
cout << "this line should not be printed\n";
return(0);

}

Transferring Control

386 OS/390 V2R6.0 C/C++ Language Reference

The expected output from this program is:
A ctor: i=1
B ctor: c=a
A ctor: i=1001
calling testeh
A ctor: i=2001
B ctor: c=k
testeh running
testeh caught int j = 6
testeh again throwing a short
B dtor: c=k
A dtor: i=2001
caught short s = 12
rc = 55
A dtor: i=1001
B dtor: c=a
A dtor: i=1

Catching Exceptions

You can declare a handler to catch many types of exceptions. You declare the
allowable objects that a function can catch in the parentheses that follow the catch
keyword (the catch argument). You can catch objects of the fundamental types, base
and derived class objects, references, and pointers to all of these types. You can
also catch const and volatile types.

You can also use the catch(...) form of the handler to catch all thrown exceptions
that have not been caught by a previous catch block. The ellipsis in the catch
argument indicates that this handler can handle any exception that is thrown.

If an exception is caught by a catch(...) block, there is no direct way to access the
object thrown. Information about an exception caught by catch(...)is very
limited.

You can declare an optional variable name if you want to access the thrown object
in the catch block.

A catch block can only catch accessible objects. The object that is caught must have
an accessible copy constructor. For more information on access, see “Member
Access” on page 304; on copy constructors, see “Copy by Initialization” on
page 341.

Matching Exceptions Thrown and Exceptions Caught

An argument in the catch argument of a handler matches an argument in the
expression of the throw expression (throw argument) if any of the following
conditions is met:
v The catch argument type matches the type of the thrown object.
v The catch argument is a public base class of the thrown class object.
v The catch specifies a pointer type, and the thrown object is a pointer type that

OS/390 C/C++ can convert to the pointer type of the catch argument by
standard pointer conversion. “Pointer Conversions” on page 168 describes
pointer conversion.

Note: If the type of the thrown object is const or volatile, the catch argument
must also be a const or volatile for a match to occur. However, a const,
volatile, or reference type catch argument can match a nonconstant,

Transferring Control

Chapter 17. C++ Exception Handling 387

nonvolatile, or nonreference object type. A nonreference catch argument type
matches a reference to an object of the same type.

Order of Catching

Always place a catch block that catches a derived class before a catch block that
catches the base class of that derived class (that follows a try block). Consider if a
catch block for objects of a base class is followed by a catch block for objects of a
derived class of that base class. Then, the latter block is flagged as an error.

A catch block of the form catch(...) must be the last catch block following a try
block or an error occurs. This placement ensures that the catch(...) block does
not prevent more specific catch blocks from catching exceptions intended for them.

Nested Try Blocks

Consider when try blocks are nested and a throw occurs in a function called by an
inner try block. In that case, your program transfers control outward through the
nested try blocks until it finds the first catch block whose argument matches the
argument of the throw expression.

For example:
try
{

func1();
try
{

func2();
}
catch (spec_err) { /* ... */ }
func3();

}
catch (type_err) { /* ... */ }
// if no throw is issued, control resumes here.

If the above example throws spec_err within the inner try block (in this case, from
func2(), the inner catch block catches the exception. Assuming this catch block
does not transfer control, it calls func3(). If the example throws spec_err after the
inner try block (for instance, by func3()), the handler does not catch it, and
OS/390 C/C++ calls the function terminate().

If the exception thrown from func2() in the inner try block is type_err, the
program skips out of both try blocks to the second catch block without invoking
func3(). No appropriate catch block exists following the inner try block.

If the entire try block in the example is in a function that has a throw list and does
not include spec_err on its throw list, OS/390 C/C++ calls unexpected(). The
function unexpected() is discussed in “Special Exception Handling Functions” on
page 395.

You can also nest a try block within a catch block.

Transferring Control

388 OS/390 V2R6.0 C/C++ Language Reference

Rethrowing an Exception

If a catch block cannot handle the particular exception it has caught, you can
rethrow the exception. The rethrow expression, throw with no argument, causes the
originally thrown object to be rethrown.

The handler has already caught the exception at the scope in which the rethrow
expression occurs. Consequently, the exception is rethrown to the next dynamically
enclosing try block. Therefore, catch blocks at the scope in which the rethrow
expression occurred cannot handle it. Any catch blocks following the dynamically
enclosing try block have an opportunity to catch the exception.

In the following example, catch(FileIO) catches any object of type FileIO, and
any objects that are public base classes of the FileIO class. The example then
checks for those exceptions it can handle. For any exception it cannot handle, it
issues a rethrow expression to rethrow the exception. This allows another handler
in a dynamically enclosing try block to handle the exception.

CBC3X16B
// This example illustrates rethrowing an exception.

#include <iostream.h>
class FileIO
{
public:

int notfound;
int endfile;
FileIO(); // initialize data members
// the following member functions throw an exception
// if an input error occurs
void advance(int x);
void clear();
void put(int x, int y);

};
// .
// .
// .
void f()
{

FileIO fio;
try
{

// call member functions of FileIO class
fio.advance (1);
fio.clear();
fio.put(1,-1);

}

catch(FileIO fexc)
{

if (fexc.notfound)
cout << "File not Found" << endl;

else if (fexc.endfile)
cout << "End of File" << endl;

else
throw; // rethrow to outer handler

}
catch(...) { /* ... */ } // catch other exceptions

}

Transferring Control

Chapter 17. C++ Exception Handling 389

main()
{

try
{

f();
}
catch(FileIO) { cout << "Outer Handler" << endl; }

}

The rethrow expression can be caught by any catch whose argument matches the
argument of the exception originally thrown. Note that in this example, the
catch(...) will not catch the rethrow expression. When the example issues a
rethrow expression, it passes control out of the scope of the function f() into the
next dynamically enclosing block.

Using a Conditional Expression in a Throw Expression

You can use a conditional expression as a throw expression, as the following
example demonstrates:

CBC3X16C
// This example illustrates a conditional expression
// used as a throw expression.

#include <iostream.h>
void main() {

int doit = 1;
int dont = 0;
float f = 8.9;
int i = 7;
int j = 6;
try { throw(doit ? i : f); }
catch (int x)
{

cout << "Caught int " << x << endl;
}
catch (float x)
{

cout << "Caught float " << x << endl;
}
catch (double x)
{

cout << "Caught double " << x << endl;
}
catch (...)
{

cout << "Caught something " << endl;
}

}

This example produces the following output because i is of type int:
Caught float 7

At first glance, it looks as if the block that catches integer values should do the
catch. However, the example converts i to a float value in the try block because it
is in a conditional expression with the float value f. Consider replacing the try
block in the example with the following try block:

try { throw doit ? i : j; }

The following output is produced:

Transferring Control

390 OS/390 V2R6.0 C/C++ Language Reference

Caught int 7

Constructors and Destructors in Exception Handling

Suppose your program throws an exception and passes control to a catch block
that follows a try block. Then, OS/390 C/C++ calls destructors for all automatic
objects constructed since the beginning of the try block that is directly associated
with that catch block. Suppose your program throws an exception during
construction of an object that consists of subobjects or array elements. Then,
OS/390 C/C++ calls destructors only for those subobjects or array elements that
are successfully constructed before the program throws the exception. OS/390
C/C++ calls a destructor for a local static object only if your program has
successfully constructed the object.

For more information on constructors and destructors, see “Constructors and
Destructors Overview” on page 325.

Suppose a destructor detects and then throws an exception. You can catch the
exception if the caller of the destructor is contained within a try block and you
have coded an appropriate catch.

Suppose a function that is called from an inner try block throws an exception that
is caught by an outer try block, because the inner try block did not have an
appropriate handler. All objects constructed within the outer and all inner try
blocks are destroyed. If the thrown object has a destructor, OS/390 C/C++ does
not call the destructor until the handler catches and handles the exception.

A throw expression throws an object, and a catch statement can catch an object.
Consequently, the object that is thrown enables error-related information to be
transferred from the point at which an exception is detected to the exception’s
handler. If you throw an object with a constructor, you can construct an object that
contains information relevant to the catch expression.

In the following example, the function divide() throws an object of class
DivideByZero. The constructor copies the string "Division by zero" into the char
array errname. Because DivideByZero is a derived class of class Matherr, the catch
block for Matherr catches the thrown exception. The catch block can then access
information that is provided by the thrown object, (in this case, the text of an error
message).

CBC3X16D
// This example illustrates constructors and
// destructors in exception handling.

#include <string.h> // needed for strcpy
#include <iostream.h>
class Matherr { public: char errname[30]; };
class DivideByZero : public Matherr
{
public:

DivideByZero() {strcpy (errname, "Division by zero");}
};
double divide(double a, double b)

Transferring Control

Chapter 17. C++ Exception Handling 391

{
if (b == 0) throw DivideByZero();
return a/b;

}

void main()
{

double a=7,b=0;
try {divide (a,b);}
catch (Matherr xx)
{

cout << xx.errname << endl;
}

}

You can use exception handling in conjunction with constructors and destructors to
provide resource management. This resource managment ensures that all locked
resources are unlocked when your program throws an exception.
class data
{

public:
void lock(); // prevent other users from

// changing the object
void unlock(); // allow other users to change

// the object
};
void q(data&), bar(data&);
// .
// .
// .
main()
{

data important;
important.lock();
q(important);
bar(important);
important.unlock();

}

If q() or bar() throw an exception, important.unlock() will not be called and the
data will stay locked. Use a helper class to write an exception-aware program for
resource management to correct this problem.
class data
{

public:
void lock(); // prevent other users from

// changing the object
void unlock(); // allow other users to change

// the object
};
class locked_data // helper class
{

data& real_data;
public:

locked_data(data& d) : real_data(d)
{real_data.lock();}

˜locked_data() {real_data.unlock();}
};
void q(data&), bar(data&);
// .
// .
// .
main()
{

data important;

Constructors and Destructors

392 OS/390 V2R6.0 C/C++ Language Reference

locked_data my_lock(important);
q(important);
bar(important);

}

In this case, if q() or bar() throws an exception, the destructor for my_lock will be
called, and the data will be unlocked.

Exception Specifications

C++ provides a mechanism that limits a given function to throwing only a
specified list of exceptions. An exception specification at the beginning of any
function acts as a guarantee to the function’s caller that the function will not
directly or indirectly throw any exception not contained in the exception
specification. For example, consider the following function:
void translate() throw(unknown_word,bad_grammar) { /* ... */ }

The above function explicitly states that it will not throw any exception other than
unknown_word or bad_grammar. The function translate() must handle any
exceptions thrown by functions it might call, unless those exceptions are specified
in the exception specification of translate(). Consider if an exception is thrown by
a function called by translate() and the exception is not handled by translate()
or contained in the exception specification of translate(). Then, OS/390 C/C++
calls unexpected(). The function unexpected() is discussed in “Special Exception
Handling Functions” on page 395.

There are qualifications to the rule about throwing only a specified list of
exceptions. If a class A is included in the exception specification of a function, the
function will also allow exception objects of any classes that are publicly derived
from class A. Also, if a pointer type B* is included in the exception specification of
a function, the function will allow exceptions of type B* or of pointers to any type
publicly derived from B*.

Exception Specification Syntax

The syntax of the exception specification is:

ÊÊ throw (»

,

type) ÊÍ

The syntax of a function definition that includes an exception specification is:

ÊÊ return_type function_name »

,

()
argument

throw Ê

Constructors and Destructors

Chapter 17. C++ Exception Handling 393

Ê »

,

()
type

{ function_body } ÊÍ

An exception specification is not part of a function’s type. If an exception is thrown
from a function that has not specified the thrown exception in its exception
specification, the result is a call to the function unexpected(), which is discussed in
“Special Exception Handling Functions” on page 395.

Empty Exception Specifications

A function with an empty throw() specification guarantees that the function will
not throw any exceptions.

Functions without an Exception Specification

A function without an exception specification allows any object to be thrown from
the function.

Other Exception Specifications

The compiler does not prevent an exception specification from defining more valid
exceptions than the set of exceptions the function may actually throw. Such an
error is detected only at run time, and only if the unspecified exception is thrown.

In the following example, NameTooShort is thrown from within a function that
explicitly states that it will only throw NameTooLong. This is a valid function,
although at run time, if NameTooShort is thrown, a call to unexpected() will be
made.
#include <string.h> // needed for strlen
class NameTooLong {};
class NameTooShort {};

void check(char* fname) throw (NameTooLong)
{

if (strlen(fname)<4) throw NameTooShort();
}

If a function with an exception specification calls a subfunction with a less
restrictive exception specification (one that contains more objects than the calling
function’s exception specification), any thrown objects from within the subfunction
that are not handled by the subfunction, and that are not part of the outer
function’s specification list, must be handled within the outer function. If the outer
function fails to handle an exception not in its exception specification, a call to
unexpected() is made.

Exception Specifications

394 OS/390 V2R6.0 C/C++ Language Reference

|
|
|

Special Exception Handling Functions

Not all thrown errors can be caught and successfully dealt with by a catch block.
In some situations, the best way to handle an exception is to terminate the
program. Two special library functions are implemented in C++ to process
exceptions not properly handled by catch blocks or exceptions thrown outside of a
valid try block. These functions are unexpected() and terminate().

unexpected()

When a function with an exception specification throws an exception that is not
listed in its exception specification, the function void unexpected() is called. Next,
unexpected() calls a function specified by the set_unexpected() function. By
default, unexpected() calls the function terminate(). In turn, terminate() calls
abort by default, terminating the program.

Although unexpected() cannot return, it may throw an exception. The search for a
handler starts at the call of the function whose exception specification was
violated. For more information, see “set_unexpected() and set_terminate()”.

terminate()

In some cases, the exception handling mechanism fails and a call to void
terminate() is made. This terminate() call occurs in any of the following
situations:
v When terminate() is explicitly called
v When no catch can be matched to a thrown object
v When the stack becomes corrupted during the exception-handling process
v When a system defined unexpected() is called

The terminate() function calls a function specified by the set_terminate()
function. By default, terminate calls abort, which exits from the program.

A terminate function cannot return to its caller, either by using return or by
throwing an exception.

set_unexpected() and set_terminate()

When invoked, the function unexpected() calls the function most recently supplied
as an argument to set_unexpected(). If set_unexpected() has not been called yet,
unexpected() calls terminate().

The function terminate(), when invoked, calls the function most recently supplied
as an argument to set_terminate(). If set_terminate() has not yet been called,
terminate() calls abort, which ends the program.

You can use set_unexpected() and set_terminate() to register functions you
define to be called by unexpected() and terminate(). set_unexpected() and
set_terminate() are included in the standard header files <terminate.h> and
<unexpect.h>. Each of these functions has as its return type and its argument type
a pointer to function with a void return type and no arguments. The pointer to
function you supply as the argument becomes the function called by the

Special Exception Handling Functions

Chapter 17. C++ Exception Handling 395

corresponding special function: the argument to set_unexpected() becomes the
function called by unexpected(), and the argument to set_terminate() becomes
the function called by terminate().

Both set_unexpected() and set_terminate() return a pointer to the function that
was previously called by their respective special functions (unexpected() and
terminate()). By saving the return values, you can restore the original special
functions later so that unexpected() and terminate() will once again call
terminate() and abort.

If you use set_terminate() to register your own function, the final action of that
program should be to exit from the program. If you attempt to return from the
function called by terminate(), abort is called instead and the program ends.

Note: Providing a call to longjmp() inside a user-defined terminate function can
transfer execution control to some other desired point. When you call
longjmp, objects existing at the time of a setjmp call will still exist, but some
objects constructed after the call to setjmp might not be destructed.

The longjmp and setjmp functions are described in the OS/390 C/C++ Run-Time
Library Reference.

Example of Using the Exception Handling Functions

The following example shows the flow of control and special functions used in
exception handling:
#include <terminate.h>
#include <unexpect.h>
#include <iostream.h>
class X { /* ... */ };
class Y { /* ... */ };
class A { /* ... */ };
// pfv type is pointer to function returning void
typedef void (*pfv)();
void my_terminate()
{ cout << "Call to my terminate" << endl; }
void my_unexpected()
{ cout << "Call to my unexpected" << endl; }
void f() throw(X,Y) // f() is permitted to throw objects of class

// types X and Y only
{

A aobj;
throw(aobj); // error, f() throws a class A object

}
main()
{

pfv old_term = set_terminate(my_terminate);
pfv old_unex = set_unexpected(my_unexpected);
try{ f(); }
catch(X) { /* ... */ }
catch(Y) { /* ... */ }
catch (...) { /* ... */ }

set_unexpected(old_unex);
try { f();}
catch(X) { /* ... */ }
catch(Y) { /* ... */ }
catch (...) { /* ... */ }

}

At run time, this program behaves as follows:

Special Exception Handling Functions

396 OS/390 V2R6.0 C/C++ Language Reference

1. The call to set_terminate() assigns to old_term the address of the function last
passed to set_terminate() when set_terminate() was previously called.

2. The call to set_unexpected() assigns to old_unex the address of the function
last passed to set_unexpected() when set_unexpected() was previously called.

3. Within a try block, function f() is called. Because f() throws an unexpected
exception, a call to unexpected() is made. unexpected() in turn calls
my_unexpected(), which prints a message to standard output and returns.

4. The second call to set_unexpected() replaces the user-defined function
my_unexpected() with the saved pointer to the original function (terminate())
called by unexpected().

5. Within a second try block, function f() is called once more. Because f() throws
an unexpected exception, a call to unexpected() is again made. unexpected()
automatically calls terminate(), which calls the function my_terminate().

6. my_terminate() displays a message. It returns, and the system calls abort,
which terminates the program.

At run time, the following information is displayed, and the program ends:
Call to my_unexpected
Call to my_terminate

Note: The catch blocks following the try block are not entered, because the
exception was handled by my_unexpected()as an unexpected throw, not as a
valid exception.

Special Exception Handling Functions

Chapter 17. C++ Exception Handling 397

Special Exception Handling Functions

398 OS/390 V2R6.0 C/C++ Language Reference

Part 4. Appendixes

© Copyright IBM Corp. 1996, 1998 399

400 OS/390 V2R6.0 C/C++ Language Reference

Appendix A. C and C++ Compatibility

The differences between ANSI/ISO C and C++ fall into three categories:
v Constructs found in C++ but not in ANSI/ISO C
v Constructs found in both C++ and ANSI/ISO C, but treated differently in the

two languages
v Interactions with other products that do not support C++

C++ Constructs Not Found in ANSI/ISO C

C++ contains many constructs that are not found in ANSI/ISO C:
v Single-line comments beginning with // (See “Comments” on page 54)

v Scope operator (See “C++ Scope Resolution Operator (::)” on page 137)

v Free store management using the operators new and delete (See “C++ new
Operator” on page 147 and “C++ delete Operator” on page 151)

v Linkage specification for functions (See “Linkage Specifications — Linking to
non-C++ Programs” on page 50)

v Reference types (See “C++ References” on page 129)

v Default arguments for functions (See “Default Arguments in C++ Functions” on
page 190)

v Inline functions (See “C++ Inline Functions” on page 195)

v Classes (See “Chapter 11. C++ Classes” on page 281)

v Anonymous unions (See “Anonymous Unions in C++” on page 117)

v Overloaded operators and functions (See “Chapter 13. C++ Overloading” on
page 311)

v Class templates and function templates (See “Class Templates” on page 369 and
“Function Templates” on page 373)

v Exception handling (See “Chapter 17. C++ Exception Handling” on page 381)

Note: The OS/390 C/C++ compiler also supports anonymous unions in C, but the
implementation is slightly different from C++. For more information, see
“Anonymous Unions in C” on page 116.

Constructs Found in Both C++ and ANSI/ISO C

Because C++ is based on ANSI/ISO C, the two languages have many constructs in
common. The use of some of these shared constructs differs, as shown here.

Character Array Initialization

In C++, when you initialize character arrays, a trailing '\0' (zero of type char) is
appended to the string initializer. You cannot initialize a character array with more
initializers than there are array elements.

© Copyright IBM Corp. 1996, 1998 401

In ANSI/ISO C, space for the trailing '\0' can be omitted in this type of
initialization.

The following initialization, for instance, is not valid in C++:
char v[3] = "asd"; // not valid in C++, valid in ANSI/ISO C

because four elements are required. This initialization produces an error because
there is no space for the implied trailing '\0' (zero of type char).

For more information, see “Initializing Arrays” on page 102.

Character Constants

A character constant has type char in C++ and int in ANSI/ISO C.

For more information, see “Character Constants” on page 64.

Class and typedef Names

In C++, a class and a typedef cannot both use the same name to refer to a different
type within the same scope (unless the typedef is a synonym for the class name).
In C, a typedef name and a struct tag name declared in the same scope can have
the same name because they have different name spaces. For example:
void main ()
{

typedef double db;
struct db; // error in C++, valid in ANSI/ISO C

typedef struct st st; // valid ANSI/ISO C and C++
}

For more information on typedef, see “typedef” on page 84. For information on
class types, see “Chapter 11. C++ Classes” on page 281. For information on
structures, see “Structures” on page 106.

Class and Scope Declarations

In C++, a class declaration introduces the class name into the scope where it is
declared and hides any object, function, or other declaration of that name in an
enclosing scope. In ANSI/ISO C, an inner scope declaration of a struct name does
not hide an object or function of that name in an outer scope. For example:
double db;
void main ()
{

struct db // hides double object db in C++
{ char* str; };
int x = sizeof(db); // size of struct in C++

// size of double in ANSI/ISO C
}

For more information, see “Scope of Class Names” on page 286. For general
information about scope, see “Scope in C++” on page 46.

Constructs Found in Both C++ and ISO/ANSI C

402 OS/390 V2R6.0 C/C++ Language Reference

const Object Initialization

In C++, const objects must be initialized. In ANSI/ISO C, they can be left
uninitialized.

For more information, see “volatile and const Qualifiers” on page 120.

Definitions

An object declaration is a definition in C++. In ANSI/ISO C, it is a tentative
definition. For example:
int i;

In C++, a global data object must be defined only once. In ANSI/ISO C, a global
data object can be declared several times without using the extern keyword.

In C++, multiple definitions for a single variable cause an error. A C compilation
unit can contain many identical tentative definitions for a variable.

For more information, see “Chapter 5. Declarations” on page 69.

Definitions within Return or Argument Types

In C++, types may not be defined in return or argument types. ANSI/ISO C allows
such definitions. For example, the following declarations produce errors in C++,
but are valid declarations in ANSI/ISO C:
void print(struct X { int i;} x); // error in C++
enum count{one, two, three} counter(); // error in C++

For more information, see “Function Declarations” on page 174 and “Calling
Functions and Passing Arguments” on page 185.

Enumerator Type

An enumerator has the same type as its enumeration in C++. In ANSI/ISO C, an
enumeration has type int.

For more information on enumerators, see “Enumerations” on page 90.

Enumeration Type

The assignment to an object of enumeration type with a value that is not of that
enumeration type produces an error in C++. In ANSI/ISO C, an object of
enumeration type can be assigned values of any integral type.

For more information, see “Enumerations” on page 90.

Function Declarations

In C++, all declarations of a function must match the unique definition of a
function. ANSI/ISO C has no such restriction.

For more information, see “Function Declarations” on page 174.

Constructs Found in Both C++ and ISO/ANSI C

Appendix A. C and C++ Compatibility 403

Functions with an Empty Argument List

Consider the following function declaration:
int f();

In C++, this function declaration means that the function takes no arguments. In
ANSI/ISO C, it could take any number of arguments, of any type.

For more information, see “Function Declarations” on page 174.

Global Constant Linkage

In C++, an object declared const has internal linkage, unless it has previously been
given external linkage. In ANSI/ISO C, it has external linkage.

For more information, see “Program Linkage” on page 37.

Jump Statements

C++ does not allow you to jump over declarations containing initializations.
ANSI/ISO C does allow you to use jump statements for this purpose.

For more information, see “Initializers” on page 127.

Keywords

C++ contains some additional keywords not found in ANSI/ISO C. C programs
that use these keywords as identifiers are not valid C++ programs:

Table 13. C++ Keywords
asm inline public virtual
catch new template wchar_t
class operator this
delete friend private
protected throw try

For more information, see “Keywords” on page 57.

main() Recursion

In C++, main() cannot be called recursively and cannot have its address taken.
ANSI/ISO C allows recursive calls and allows pointers to hold the address of
main().

For more information, see “The main() Function” on page 184.

Names of Nested Classes

In C++, the name of a nested class is local to its enclosing class. In ANSI/ISO C,
the name of the nested structure belongs to the same scope as the name of the
outermost enclosing structure.

For more information, see “Nested Classes” on page 287.

Constructs Found in Both C++ and ISO/ANSI C

404 OS/390 V2R6.0 C/C++ Language Reference

Pointers to void

C++ allows void pointers to be assigned only to other void pointers. In ANSI/ISO
C, a pointer to void can be assigned to a pointer of any other type without an
explicit cast.

For more information, see “void Type” on page 99 and “Pointers” on page 94.

Prototype Declarations

C++ requires full prototype declarations. ANSI/ISO C allows nonprototyped
functions.

For more information, see “Function Declarator” on page 180.

Return without Declared Value

In C++, a return (either explicit or implicit) from main() that is declared to return a
value results in an error if no value is returned. A return (either explicit or implicit)
from all other functions that is declared to return a value must return a value. In
ANSI/ISO C, a function that is declared to return a value can return with no
value, with unspecified results.

For more information, see “Function Return Values” on page 192.

__STDC__ Macro

The predefined macro variable __STDC__ is not defined for C++. It has the integer
value 0 when it is used a #if statement, indicating that the C++ language is not a
proper superset of C, and that the compiler does not conform to ANSI/ISO C. In
ANSI/ISO C, __STDC__ has the integer value 1.

For more information on macros, see “Predefined Macro Names” on page 229.

typedefs in Class Declarations

In C++, a typedef name may not be redefined in a class declaration after being
used in the declaration. ANSI/ISO C allows such a declaration. For example:
void main ()
{

typedef double db;
struct st
{

db x;
double db; // error in C++, valid in ANSI/ISO C

};
}

For more information, see “typedef” on page 84.

Constructs Found in Both C++ and ISO/ANSI C

Appendix A. C and C++ Compatibility 405

Interactions with Other Products

You cannot write a C++ program that includes interfaces to Cross-System Product
(CSP). However, you can write a C program to access CSP and call the C program
from a C++ program.

In general, application libraries that provide C interfaces may not support
applications written in C++ if their header files do not conform to C++ syntax.

Not all OS/390 C pragmas are supported by OS/390 C++. If you have any OS/390
C pragmas in C source to be compiled with C++, you should add conditional
compilation directives around the pragmas that are not recognized for C++.

For example, the following directive is not supported in OS/390 C++, and would
generate an error message because the C++ compiler interprets the K as an integer
constants suffix:

#pragma runopts(stack(100K))

To avoid the error, place conditional compilation directives around the
unsupported pragma:
#ifndef __cplusplus
pragma runopts(stack(100K))
#endif

Interactions with Other Products

406 OS/390 V2R6.0 C/C++ Language Reference

Appendix B. Common Usage C Language Level

The X/Open Portability Guide (XPG) Issue 3 describes a C language definition
referred to as Common Usage C. This language definition is roughly equivalent to
K&R C, and differs from the ANSI/ISO C language definition. It is based on
various C implementations that predate the ANSI/ISO standard.

Common Usage C is supported with the LANGLVL(COMMONC) compiler option or the
#pragma langlvl(commonc) directive. These cause the compiler to accept C source
code containing Common Usage C constructs.

Many of the Common Usage C constructs are already supported by #pragma
langlvl(extended). The following language elements are different from those
accepted by #pragma langlvl(extended).
v Standard integral promotions preserve sign. For example, unsigned char or

unsigned short are promoted to unsigned int. This is functionally equivalent to
specifying the UPCONV compiler option.

v Trigraphs are not processed in string or character literals. For example, consider
the following source line:

??=define STR "??= not processed"

The above line gets preprocessed to:
#define STR "??= not processed"

v The sizeof operator is permitted on bitfields. The result is the size of an
unsigned int (4).

v Bitfields other than type int are permitted. The compiler issues a warning and
changes the type to unsigned int.

v Macro parameters found within single or double quotation marks are expanded.
For example, consider the following source lines:

#define STR(AAA) "String is: AAA"
#define ST STR(BBB)

The above lines are preprocessed to:
#define STR(AAA) "String is: AAA"
#define ST "String is: BBB"

v Macros can be redefined without first being undefined (that is, without an
intervening #undef). An informational message is issued saying that the second
definition is used.

v The empty comment (/**/) in a function-like macro is equivalent to the
ANSI/ISO token concatenation operator ##.

The LANGLVL compiler option is described in the OS/390 C/C++ User’s Guide.
#pragma langlvl is described in “langlvl” on page 259.

© Copyright IBM Corp. 1996, 1998 407

408 OS/390 V2R6.0 C/C++ Language Reference

Appendix C. Conforming to POSIX 1003.1

The implementation resulting from the combination of OS/390 UNIX and the
OS/390 Language Environment conforms to the ISO/IEC 9945-1:1990/IEEE POSIX
1003.1-1990 standard. POSIX stands for Portable Operating System Interface.

See the OpenEdition POSIX.1 Conformance Document for POSIX on MVS/ESA: IEEE
Standard 1003.1-1990, GC23-3011, for a description of how the OS/390 UNIX
implementation meets the criteria.

© Copyright IBM Corp. 1996, 1998 409

|
|
|

410 OS/390 V2R6.0 C/C++ Language Reference

Appendix D. Conforming to ANSI/ISO Standards

This appendix describes changes made to the OS/390 C/C++ Compiler and
Library for conformance to the American National Standard for Information Systems -
Programming Language C standard. It also describes implementation-defined
behavior of the OS/390 C/C++ compiler which is not defined by ANSI/ISO.

Implementation-Defined Behavior

The following sections describe how the OS/390 C compiler defines some of the
implementation-defined behavior from the ANSI/ISO C Standard.
v “Identifiers”

v “Characters” on page 412

v “String Conversion” on page 413

v “Integers” on page 413

v “Floating-Point” on page 413

v “Arrays and Pointers” on page 414

v “Registers” on page 414

v “Structures, Unions, Enumerations, Bit Fields” on page 414

v “Declarators” on page 415

v “Statements” on page 415

v “Preprocessing Directives” on page 415

v “Library Functions” on page 416

v “Error Handling” on page 416

v “Signals” on page 417

v “Translation Limits” on page 417

v “Streams, Records, and Files” on page 418

v “Memory Management” on page 419

v “Environment” on page 419

v “Localization” on page 420

v “Time” on page 420

Identifiers

The number of significant characters in an identifier with no external linkage:
v 1024

The number of significant characters in an identifier with external linkage:
v 1024 with the compile-time option LONGNAME specified
v 8 otherwise

The C++ compiler truncates external identifiers without C++ linkage after 8
characters if the NOLONGNAME compiler option or #pragma is in effect.

© Copyright IBM Corp. 1996, 1998 411

Case sensitivity of external identifiers:
v The linkage editor accepts all external names up to 8 characters, and may not be

case sensitive. The binder accepts all external names up to 1024 characters, and
is optionally case sensitive. The linkage editor accepts all external names up to 8
characters, and may not be case sensitive, depending on whether you use the
NOLONGNAME compiler option or #pragma. When using the OS/390 C compiler
with the NOLONGNAME option, all external names are truncated to 8 characters. As
an aid to portability, identifiers that differ only in case after truncation are
flagged as an error.

Characters

Source and execution characters which are not specified by the ANSI/ISO
standard:
v The caret (|) character in ASCII (bitwise exclusive OR symbol) or the equivalent

not (¬) character in EBCDIC.
v The vertical broken line (¦) character in ASCII which may be represented by the

vertical line (|) character on EBCDIC systems.

Shift states used for the encoding of multibyte characters:
v The shift states are indicated with the SHIFTOUT (hex value x0E) characters and

SHIFTIN (hex value x0F). Refer to the OS/390 C/C++ Run-Time Library Reference
for more information on wide character strings.

The number of bits that represent a character:
v 8 bits

The mapping of members of the source character set (characters and strings) to the
execution character set:
v The same code page is used for the source and execution character set.

The value of an integer character constant that contains a character/escape
sequence not represented in the basic execution character set:
v A warning is issued for an unknown character/escape sequence and the char is

assigned the character following the back slash.

The value of a wide character constant that contains a character/escape sequence
not represented in the extended execution character set:
v A warning is issued for the unknown character/escape sequence and the

wchar_t is assigned the wide character following the back slash.

The value of an integer character constant that contains more than one character:
v The lowest four bytes represent the character constant.

The value of a wide character constant that contains more than one multibyte
character:
v The lowest four bytes of the multibyte characters are converted to represent the

wide character constant.

Equivalent type of char: signed char, unsigned char, or user-defined:
v The default for char is unsigned

Is each sequence of white-space characters (excluding the new-line) retained or
replaced by one space character?
v Any spaces or comments in your source program will be interpreted as one

space.

Implementation-Defined Behavior

412 OS/390 V2R6.0 C/C++ Language Reference

String Conversion

Additional implementation-defined sequence forms that can be accepted by
strtod(), strtol() and strtoul() functions in other than the C locale:
v None

Integers
Table 14. Integers

Type Amount of
Storage

Range (in limits.h)

signed short 2 bytes -32,768 to 32,767

unsigned short 2 bytes 0 to 65,535

signed int 4 bytes -2,147,483,647 minus 1 to 2,147,483,647

unsigned int 4 bytes 0 to 4,294,967,295

signed long 4 bytes -2,147,483,647 minus 1 to 2,147,483,647

unsigned long 4 bytes 0 to 4,294,967,295

signed long long 8 bytes -9,223,372,036,854,775,807 minus 1 to
9,223,372,036,854,775,807

unsigned long long 4 bytes 0 to 18,446,744,073,709,551,615

The result of converting an integer to a signed char:
v The lowest 1 byte of the integer is used to represent the char. See the OS/390

C/C++ Run-Time Library Reference for more information on data conversions.

The result of converting an integer to a shorter signed integer:
v The lowest 2 bytes of the integer are used to represent the short int.

The result of converting an unsigned integer to a signed integer of equal length, if
the value cannot be represented:
v The bit pattern is preserved and the sign bit has no significance.

The result of bitwise operations (|, &, |) on signed int:
v The representation is treated as a bit pattern and 2’s complement arithmetic is

performed.

The sign of the remainder of integer division if either operand is negative:
v The remainder is negative if exactly one operand is negative.

The result of a right shift of a negative-valued signed integral type:
v The result is sign extended and the sign is propagated.

Floating-Point
Table 15. Floating Point

Type Amount of
Storage

Range (approximate)

IBM S/390 Hexadecimal
Format

IEEE Binary Format

float 4 bytes 5.5x10-79 to 7.2x1075 1.2x10-38 to 3.4x1038

double 8 bytes 5.5x10-79 to 7.2x1075 2.2x10-308 to 1.8x10308

long double 16 bytes 5.5x10-79 to 7.2x1075 3.4x10-4932 to 1.2x104932

Implementation-Defined Behavior

Appendix D. Conforming to ANSI/ISO Standards 413

|||
|

|||

||

||
|
|

|
|
|

||||

||||

||||

The following is the direction of truncation (or rounding) when you convert an
integer number to an IBM S/390 hexadecimal floating-point number, or to an IEEE
binary floating-point number:
v IBM S/390 hexadecimal format:

When the floating-point cannot exactly represent the original value, the value is
truncated.
When a floating-point number is converted to a narrower floating-point number,
the floating-point number is truncated.

v IEEE binary format:
The rounding direction is determined by the ROUND compiler option. The ROUND
option only affects the rounding of floating-point values that the OS/390 C/C++
compiler can evaluate at compile time. It has no effect on rounding at run time.

Arrays and Pointers

The type of size_t:
v unsigned int

The type of ptrdiff_t:
v int

The result of casting a pointer to an integer:
v The bit patterns are preserved.

The result of casting an integer to a pointer:
v The bit patterns are preserved.

Registers

The effect of the register storage class specifier on the storage of objects in
registers:
v If there is a register available, the object is stored in a register.

Structures, Unions, Enumerations, Bit Fields

The result when a member of a union object is accessed using a member of a
different type:
v The result is undefined.

The alignment/padding of structure members:
v If the structure is not packed, then padding is added to align the structure

members on their natural boundaries. If the structure is packed, no padding is
added. Refer to “C/C++ Data Mapping” on page 129 for more information on C
data mapping.

The padding at the end of structure/union:

v Padding is added to end the structure on its natural boundary. The alignment of
the struct or union is that of its strictest member. Refer to “C/C++ Data
Mapping” on page 129 for more information on C data mapping.

The type of an int bit field (signed int, unsigned int, user defined):

v The default is unsigned.

Implementation-Defined Behavior

414 OS/390 V2R6.0 C/C++ Language Reference

|
|
|

|

|
|

|
|

|

|
|
|

The order of allocation of bit fields within an int:
v Bit fields are allocated from low memory to high memory. For example,

0x12345678 would be stored with byte 0 containing 0x12, and byte 3 containing
0x78.

The rule for bit fields crossing a storage unit boundary:
v Bit fields can cross storage unit boundaries.

The integral type that represents the values of an enumeration type:
v Enumerations can have the type char, short, or long and be either signed or

unsigned depending on their smallest and largest values.

Declarators

The maximum number of declarators (pointer, array, function) that can modify an
arithmetic, structure, or union type:
v The only constraint is the availability of system resources.

Statements

The maximum number of case values in a switch statement:
v Because the case values must be integers and cannot be duplicated, the limit is

INT_MAX.

Preprocessing Directives

Does the value of a single-character constant in a constant expression that controls
conditional inclusion match the value of the character constant in the execution
character set?
v Yes

Can such a constant have a negative value?
v Yes

The method of searching include source files (< >):
v See the OS/390 C/C++ User’s Guide.

Is the search for quoted source file names supported (″...″)?
v User include files can be specified in double quotes. See the OS/390 C/C++ User’s

Guide.

The mapping between the name specified in the include directive and the external
source file name:
v See the OS/390 C/C++ User’s Guide.

The behavior of each pragma directive:
v See “Pragma Directives (#pragma)” on page 243.

The definitions of __DATE__ and __TIME__ when date and time of translation is not
available:

v For OS/390 C/C++, the date and time of translation are always available.

Implementation-Defined Behavior

Appendix D. Conforming to ANSI/ISO Standards 415

|

Library Functions

The definition of NULL macro:
v NULL is defined to be a ((void *)0).

The format of diagnostic printed by the assert macro, and the termination
behavior (abort behavior):
v When assert is executed, if the expression is false, the diagnostic message

written by the assert macro has the format:
Assertion failed: expression, file filename, line line-number

Set of characters tested by the isxxxx functions:
v To create a table of the characters set up by the ctype functions use the program

in the following example.

CBC3RABG
/* this example prints out ctest characters */

#include <stdio.h>
#include <ctype.h>

int main(void)
{

int ch;

for (ch = 0; ch <= 0xff; ch++)
{
printf("%#04X ", ch);
printf("%3s ", isalnum(ch) ? "AN" : " ");
printf("%2s ", isalpha(ch) ? "A" : " ");
printf("%2s", iscntrl(ch) ? "C" : " ");
printf("%2s", isdigit(ch) ? "D" : " ");
printf("%2s", isgraph(ch) ? "G" : " ");
printf("%2s", islower(ch) ? "L" : " ");
printf("%c", isprint(ch) ? ch : ' ');
printf("%3s", ispunct(ch) ? "PU" : " ");
printf("%2s", isspace(ch) ? "S" : " ");
printf("%3s", isprint(ch) ? "PR" : " ");
printf("%2s", isupper(ch) ? "U" : " ");
printf("%2s", isxdigit(ch) ? "X" : " ");

putchar('\n');
}

}

The result of calling fmod() function with the second argument zero (return zero,
domain error):
v fmod() returns a 0.

Error Handling

The format of the message generated by the perror() and strerror() functions:
v See the OS/390 Language Environment Debugging Guide and Run-Time Messages for

the messages emitted for perror() and strerror().

Note: errno is not emitted with the message.

How diagnostic messages are recognized:

Implementation-Defined Behavior

416 OS/390 V2R6.0 C/C++ Language Reference

v Refer to the OS/390 C/C++ User’s Guide and the OS/390 Language Environment
Debugging Guide and Run-Time Messages for the lists of OS/390 C/C++ messages
provided.

The different classes of messages:
v In general, messages are classified as shown by the following table.

Type of Message Numeric Severity Level Return Code

Information 00 0

Warning 10 4

Error 30 12

Severe error > 30 16

How the level of diagnostics can be controlled:
v Use the compile-time option FLAG to control the level of diagnostics. There is

also a compile-time option CHECKOUT which provides programming style
diagnostics to aid you in determining possible programming errors.

Signals

The set of signals for the signal() function:
v See the OS/390 C/C++ User’s Guide.

The parameters and the usage of each signal recognized by the signal() function:
v See the OS/390 C/C++ Programming Guide.

The default handling and the handling at program start-up for each signal
recognized by signal() function:
v SIG_DFL is the default signal. See the OS/390 C/C++ Programming Guide for more

information on signal handling.

The signal blocking performed if the equivalent of signal(sig, SIG_DFL) is not
executed at the beginning of signal handler:
v See the OS/390 C/C++ Programming Guide.

Is the default handling reset if a SIGKILL is received by a signal handler?
v Whenever you enter the signal handler, SIG_DFL becomes the default.

Translation Limits

System-determined means that the limit is determined by your system resources.

Table 16. Translation Limits
Nesting levels of:

v Compound statements
v Iteration control
v Selection control
v Conditional inclusion
v Parenthesized declarators
v Parenthesized expression

v System-determined
v System-determined
v System-determined
v System-determined
v System-determined
v System-determined

Number of pointer, array and function declarators modifying an arithmetic a
structure, a union, and incomplete type declaration

v System-determined

Implementation-Defined Behavior

Appendix D. Conforming to ANSI/ISO Standards 417

Table 16. Translation Limits (continued)
Significant initial characters in:
v Internal identifiers
v Macro names
v C external identifiers (without LONGNAME)
v C external identifiers (with LONGNAME)
v C++ external identifiers

v 1024
v 1024
v 8
v 1024
v 1024

Number of:
v External identifiers in a translation unit
v Identifiers with block scope in one block
v Macro identifiers simultaneously declared in a translation unit
v Parameters in one function definition
v Arguments in a function call
v Parameters in a macro definition
v Parameters in a macro invocation
v Characters in a logical source line
v Characters in a string literal
v Bytes in an object
v Nested include files
v Enumeration constants in an enumeration
v Levels in nested structure or union

v System-determined
v System-determined
v System-determined
v System-determined
v System-determined
v System-determined
v System-determined
v 32760 under MVS
v 32K minus 1
v LONG_MAX (See 1)
v SHRT_MAX
v System-determined
v System-determined

Note:

1 LONG_MAX is the limit for automatic variables only. For all other variables,
the limit is 16 Megabytes.

Streams, Records, and Files

Does the last line of a text stream require a terminating new-line character?
v No, the last new-line character is defaulted.

Do space characters, that are written out to a text stream immediately before a
new-line character, appear when read?
v White space characters written to fixed record format text streams before a

new-line do not appear when read. However, white space characters written to
variable record format text streams before a new-line character appear when
read.

The number of null characters that can be appended to the end of the binary
stream:
v No limit

Where is the file position indicator of an append-mode stream initially positioned?
v The file position indicator is positioned at the end of the file.

Does a write on a text stream cause the associated file to be truncated?
v Yes

Does a file of zero length exist?
v Yes

The rules for composing a valid file name:
v See the OS/390 C/C++ Programming Guide.

Can the same file be simultaneously opened multiple times?

Implementation-Defined Behavior

418 OS/390 V2R6.0 C/C++ Language Reference

|

v For reading, the file can be opened multiple times; for writing/appending, the
file can be opened once. Once a file is opened for reading, it cannot be opened
for writing.

The effect of the remove() function on an open file:
v remove() fails.

The effect of the rename() function on file to a name that exists prior to the
function call:
v The rename() fails.

Are temporary files removed if the program terminates abnormally?
v Yes

The effect of calling the tmpnam() function more than TMP_MAX times:
v tmpnam() fails and returns NULL.

The output of %p conversion in the fprintf() function:
v It is equivalent to %X.

The input of %p conversion in the fscanf() function:
v The value is treated as an integer.

The interpretation of a - character that is neither the first nor the last in the scanlist
for %[conversion in the fscanf() function:
v The sequence of characters on either side of the - are used as delimiters. For

example, %[a-f] will read in characters between 'a' and 'f'.

The value of errno on failure of fgetpos() and ftell() functions:
v This depends on the failure. For a list of the messages associated with errno, see

the OS/390 Language Environment Debugging Guide and Run-Time Messages.

Memory Management

The behavior of calloc(), malloc() and realloc() functions if the size requested
is zero:
v Nothing is performed for calloc() and malloc(); realloc() frees the storage.

Environment

The arguments of main function:
v You can pass arguments to main through argv and argc.

What happens with open files when the abort() function is called?
v The files are closed.

What is returned to the host environment when the abort() function is called?
v The return code of 2000 is returned.

The form of successful termination when the exit function is called with argument
zero or EXIT_SUCCESS:
v All files are closed, all storage is released and the return code of 0 is returned.

The form of unsuccessful termination when the exit function is called with
argument EXIT_FAILURE:

Implementation-Defined Behavior

Appendix D. Conforming to ANSI/ISO Standards 419

v All files are closed, all storage is released and the return code of EXIT_FAILURE is
returned.

What status is returned by the exit function if the argument is other than zero,
EXIT_FAILURE and EXIT_SUCCESS?
v The return code 4096 is returned.

The set of environmental names:
v There are no environmental names.

The method of altering the environment list obtained by a call to the getenv()
function:
v See how to execute a command in the OS/390 C/C++ Run-Time Library Reference.

The format and a mode of execution of a string on a call to the system() function:
v See the OS/390 C/C++ Run-Time Library Reference.

Localization

The environment specified by the "" locale on a setlocale() call:
v EDC$SAAC

The supported locales:
v See the OS/390 C/C++ Programming Guide.

Time

The local time zone and Daylight Saving Time:
v This is specified in the locale.

The era for the clock() function:
v The era starts when the program is started by either a call from the operating

system, or a call to system(). Under TSO, the era starts when you log on to the
system. To measure the time spent in a program, call the clock() function at the
start of the program, and subtract its return value from the value returned by
subsequent calls to clock().

Implementation-Defined Behavior

420 OS/390 V2R6.0 C/C++ Language Reference

|

Glossary

This glossary defines terms and abbreviations that
are used in this book. Included are terms and
definitions from the following sources:
v American National Standard Dictionary for

Information Systems, ANSI/ISO X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI/ISO). Copies may be
purchased from the American National
Standards Institute, 1430 Broadway, New York,
New York 10018. Such definitions are indicated
by the symbol ANSI/ISO after the definition.

v IBM Dictionary of Computing, SC20-1699. These
definitions are indicated by the registered
trademark IBM after the definition.

v X/Open CAE Specification, Commands and
Utilities, Issue 4. July, 1992. These definitions are
indicated by the symbol X/Open after the
definition.

v ISO/IEC 9945-1:1990/IEEE POSIX 1003.1-1990.
These definitions are indicated by the symbol
ISO.1 after the definition.

v The Information Technology Vocabulary, developed
by Subcommittee 1, Joint Technical Committee
1, of the International Organization for
Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1). Definitions of published parts of
this vocabulary are identified by the symbol
ISO-JTC1 after the definition; definitions taken
from draft international standards, committee
drafts, and working papers being developed by
ISO/IEC JTC1/SC1 are identified by the
symbol ISO Draft after the definition, indicating
that final agreement has not yet been reached
among the participating National Bodies of
SC1.

A
abstract class. (1) A class with at least one pure virtual
function that is used as a base class for other classes.
The abstract class represents a concept; classes derived
from it represent implementations of the concept. You
cannot have a direct object of an abstract class. See also
base class. (2) A class that allows polymorphism. There
can be no objects of an abstract class; they are only
used to derive new classes.

abstract code unit. See ACU.

abstract data type. A mathematical model that
includes a structure for storing data and operations that
can be performed on that data. Common abstract data
types include sets, trees, and heaps.

abstraction (data). A data type with a private
representation and a public set of operations (functions
or operators) which restrict access to that data type to
that set of operations. The C++ language uses the
concept of classes to implement data abstraction.

access. An attribute that determines whether or not a
class member is accessible in an expression or
declaration.

access declaration. A declaration used to restore
access to members of a base class.

access mode. (1) A technique that is used to obtain a
particular logical record from, or to place a particular
logical record into, a file assigned to a mass storage
device. ANSI/ISO. (2) The manner in which files are
referred to by a computer. Access can be sequential
(records are referred to one after another in the order in
which they appear on the file), access can be random
(the individual records can be referred to in a
nonsequential manner), or access can be dynamic
(records can be accessed sequentially or randomly,
depending on the form of the input/output request).
IBM. (3) A particular form of access permitted to a file.
X/Open.

access resolution. The process by which the
accessibility of a particular class member is determined.

access specifier. One of the C++ keywords: public,
private, and protected, used to define the access to a
member.

ACU (abstract code unit). A measurement used by the
OS/390 C/C++ compiler for judging the size of a
function. The number of ACUs that comprise a function
is proportional to its size and complexity.

addressing mode. See AMODE.

address space. (1) The range of addresses available to
a computer program. ANSI/ISO. (2) The complete range
of addresses that are available to a programmer. See
also virtual address space. (3) The area of virtual storage
available for a particular job. (4) The memory locations
that can be referenced by a process. X/Open. ISO.1.

aggregate. (1) An array or a structure. (2) A
compile-time option to show the layout of a structure
or union in the listing. (3) An array or a class object
with no private or protected members, no constructors,
no base classes, and no virtual functions. (4) In

© Copyright IBM Corp. 1996, 1998 421

|
|
|
|
|

|
|
|
|
|
|

programming languages, a structured collection of data
items that form a data type. ISO-JTC1.

alert. (1) A message sent to a management services
focal point in a network to identify a problem or an
impending problem. IBM. (2) To cause the user's
terminal to give some audible or visual indication that
an error or some other event has occurred. When the
standard output is directed to a terminal device, the
method for alerting the terminal user is unspecified.
When the standard output is not directed to a terminal
device, the alert is accomplished by writing the alert
character to standard output (unless the utility
description indicates that the use of standard output
produces undefined results in this case). X/Open.

alert character. A character that in the output stream
should cause a terminal to alert its user via a visual or
audible notification. The alert character is the character
designated by a '\a' in the C and C++ languages. It is
unspecified whether this character is the exact sequence
transmitted to an output device by the system to
accomplish the alert function. X/Open.

This character is named <alert> in the portable
character set.

alias. (1) An alternate label; for example, a label and
one or more aliases may be used to refer to the same
data element or point in a computer program.
ANSI/ISO. (2) An alternate name for a member of a
partitioned data set. IBM. (3) An alternate name used
for a network. Synonymous with nickname. IBM.

alias name. (1) A word consisting solely of
underscores, digits, and alphabetics from the portable
file name character set, and any of the following
characters: ! % , @. Implementations may allow other
characters within alias names as an extension. X/Open.
(2) An alternate name. IBM. (3) A name that is defined
in one network to represent a logical unit name in
another interconnected network. The alias name does
not have to be the same as the real name; if these
names are not the same; translation is required. IBM.

alignment. The storing of data in relation to certain
machine-dependent boundaries. IBM.

alternate code point. A syntactic code point that
permits a substitute code point to be used. For
example, the left brace ({) can be represented by X'B0'
and also by X'C0'.

American National Standard Code for Information
Interchange (ASCII). The standard code, using a
coded character set consisting of 7-bit coded characters
(8 bits including parity check), that is used for
information interchange among data processing
systems, data communication systems, and associated
equipment. The ASCII set consists of control characters
and graphic characters. IBM.

Note: IBM has defined an extension to ASCII code
(characters 128–255).

American National Standards Institute (ANSI/ISO).
An organization consisting of producers, consumers,
and general interest groups, that establishes the
procedures by which accredited organizations create
and maintain voluntary industry standards in the
United States. ANSI/ISO.

AMODE (addressing mode). In MVS, a program
attribute that refers to the address length that a
program is prepared to handle upon entry. In MVS,
addresses may be 24 or 31 bits in length. IBM.

angle brackets. The characters < (left angle bracket)
and > (right angle bracket). When used in the phrase
“enclosed in angle brackets”, the symbol < immediately
precedes the object to be enclosed, and > immediately
follows it. When describing these characters in the
portable character set, the names <less-than-sign> and
<greater-than-sign> are used. X/Open.

anonymous union. A union that is declared within a
structure or class and does not have a name. It must
not be followed by a declarator.

ANSI/ISO. See American National Standards Institute.

API (application program interface). A functional
interface supplied by the operating system or by a
separately orderable licensed program that allows an
application program written in a high-level language to
use specific data or functions of the operating system
or the licensed program. IBM.

application. (1) The use to which an information
processing system is put; for example, a payroll
application, an airline reservation application, a
network application. IBM. (2) A collection of software
components used to perform specific types of
user-oriented work on a computer. IBM.

application generator. An application development
tool that creates applications, application components
(panels, data, databases, logic, interfaces to system
services), or complete application systems from design
specifications.

application program. A program written for or by a
user that applies to the user's work, such as a program
that does inventory control or payroll. IBM.

archive libraries. The archive library file, when
created for application program object files, has a
special symbol table for members that are object files.

argument. (1) A parameter passed between a calling
program and a called program. IBM. (2) In a function
call, an expression that represents a value that the
calling function passes to the function specified in the
call. Also called parameter. (3) In the shell, a parameter
passed to a utility as the equivalent of a single string in

422 OS/390 V2R6.0 C/C++ Language Reference

|
|

|

the argv array created by one of the exec functions. An
argument is one of the options, option-arguments, or
operands following the command name. X/Open.

argument declaration. See parameter declaration.

arithmetic object. (1) An integral object, a bit field, or
floating-point object. (2) A real object or objects having
the type float, double, or long double.

array. In programming languages, an aggregate that
consists of data objects with identical attributes, each of
which may be uniquely referenced by subscripting.
IBM.

array element. A data item in an array. IBM.

ASCII. See American National Standard Code for
Information Interchange.

Assembler H. An IBM licensed program. Translates
symbolic assembler language into binary machine
language.

assembler language. A source language that includes
symbolic language statements in which there is a
one-to-one correspondence with the instruction formats
and data formats of the computer. IBM.

assembler user exit. In the OS/390 Language
Environment a routine to tailor the characteristics of an
enclave prior to its establishment.

assignment expression. An expression that assigns the
value of the right operand expression to the left
operand variable and has as its value the value of the
right operand. IBM.

atexit list. A list of actions specified in the OS/390
C/C++ atexit() function that occur at normal program
termination.

auto storage class specifier. A specifier that enables
the programmer to define a variable with automatic
storage; its scope restricted to the current block.

automatic call library. Contains modules that are used
as secondary input to the prelinker or the binder to
resolve external symbols left undefined after all the
primary input has been processed.

The automatic call library can contain:

v Object modules, with or without binder control
statements

v Load modules

v OS/390 C/C++ run-time routines (SCEELKED)

automatic library call. The process in which control
sections are processed by the binder or loader to
resolve references to members of partitioned data sets.
IBM.

automatic storage. Storage that is allocated on entry to
a routine or block and is freed on the subsequent
return. Sometimes referred to as stack storage or dynamic
storage.

B
background process. (1) A process that does not
require operator intervention but can be run by the
computer while the workstation is used to do other
work. IBM. (2) A mode of program execution in which
the shell does not wait for program completion before
prompting the user for another command. IBM. (3) A
process that is a member of a background process
group. X/Open. ISO.1.

background process group. Any process group, other
than a foreground process group, that is a member of a
session that has established a connection with a
controlling terminal. X/Open. ISO.1.

backslash. The character \. This character is named
<backslash> in the portable character set.

base class. A class from which other classes are
derived. A base class may itself be derived from
another base class. See also abstract class.

based on. The use of existing classes for implementing
new classes.

binary expression. An expression containing two
operands and one operator.

binary stream. (1) An ordered sequence of
untranslated characters. (2) A sequence of characters
that corresponds on a one-to-one basis with the
characters in the file. No character translation is
performed on binary streams. IBM.

bind. To combine one or more control sections or
program modules into a single program module,
resolving references between them, or to assign virtual
storage addresses to external symbols.

binder. The DFSMS/MVS program that processes the
output of language translators and compilers into an
executable program (load module or program object). It
replaces the linkage editor and batch loader in the
MVS/ESA or OS/390 operating system.

bit field. A member of a structure or union that
contains a specified number of bits. IBM.

bitwise operator. An operator that manipulates the
value of an object at the bit level.

blank character. (1) A graphic representation of the
space character. ANSI/ISO. (2) A character that
represents an empty position in a graphic character
string. ISO Draft. (3) One of the characters that belong
to the blank character class as defined via the

Glossary 423

|
|

|
|
|
|

LC_CTYPE category in the current locale. In the POSIX
locale, a blank character is either a tab or a space
character. X/Open.

block. (1) In programming languages, a compound
statement that coincides with the scope of at least one
of the declarations contained within it. A block may
also specify storage allocation or segment programs for
other purposes. ISO-JTC1. (2) A string of data elements
recorded or transmitted as a unit. The elements may be
characters, words or physical records. ISO Draft. (3) The
unit of data transmitted to and from a device. Each
block contains one record, part of a record, or several
records.

block statement. In the C or C++ languages, a group
of data definitions, declarations, and statements
appearing between a left brace and a right brace that
are processed as a unit. The block statement is
considered to be a single C or C++ statement. IBM.

boundary alignment. The position in main storage of
a fixed-length field, such as a halfword or doubleword,
on a byte-level boundary for that unit of information.
IBM.

braces. The characters { (left brace) and } (right brace),
also known as curly braces. When used in the phrase
“enclosed in (curly) braces” the symbol { immediately
precedes the object to be enclosed, and } immediately
follows it. When describing these characters in the
portable character set, the names <left-brace> and
<right-brace> are used. X/Open.

brackets. The characters [(left bracket) and] (right
bracket), also known as square brackets. When used in
the phrase enclosed in (square) brackets the symbol [
immediately precedes the object to be enclosed, and]
immediately follows it. When describing these
characters in the portable character set, the names
<left-bracket> and <right-bracket> are used. X/Open.

break statement. A C or C++ control statement that
contains the keyword “break” and a semicolon. IBM. It
is used to end an iterative or a switch statement by
exiting from it at any point other than the logical end.
Control is passed to the first statement after the
iteration or switch statement.

built-in. (1) A function that the compiler will
automatically inline instead of making the function call,
unless the programmer specifies not to inline. (2) In
programming languages, pertaining to a language
object that is declared by the definition of the
programming language; for example, the built-in
function SIN in PL/I, the predefined data type
INTEGER in FORTRAN. ISO-JTC1. Synonymous with
predefined. IBM.

byte-oriented stream. See orientation of a stream.

C
C library. A system library that contains common C
language subroutines for file access, string operators,
character operations, memory allocation, and other
functions. IBM.

C or C++ language statement. A C or C++ language
statement contains zero or more expressions. A block
statement begins with a { (left brace) symbol, ends with
a } (right brace) symbol, and contains any number of
statements.

All C or C++ language statements, except block
statements, end with a ; (semicolon) symbol.

c89 utility. A utility used to compile and bind an
OS/390 UNIX application program from the OS/390
shell.

C++ class library. A collection of C++ classes.

C++ library. A system library that contains common
C++ language subroutines for file access, memory
allocation, and other functions.

callable services. A set of services that can be invoked
by a OS/390 Language Environment-conforming high
level language using the conventional OS/390
Language Environment-defined call interface, and
usable by all programs sharing the OS/390 Language
Environment conventions.

Use of these services helps to decrease an application's
dependence on the specific form and content of the
services delivered by any single operating system.

call chain. A trace of all active routines and
subroutines.

caller. A routine that calls another routine.

cancelability point. A specific point within the current
thread that is enabled to solicit cancel requests. This is
accomplished using the pthread_testintr() function.

carriage-return character. A character that in the
output stream indicates that printing should start at the
beginning of the same physical line in which the
carriage-return character occurred. The carriage-return
is the character designated by '\r' in the C and C++
languages. It is unspecified whether this character is
the exact sequence transmitted to an output device by
the system to accomplish the movement to the
beginning of the line. X/Open.

case clause. In a C or C++ switch statement, a CASE
label followed by any number of statements.

case label. The word case followed by a constant
expression and a colon. When the selector evaluates the
value of the constant expression, the statements
following the case label are processed.

424 OS/390 V2R6.0 C/C++ Language Reference

|
|
|

cast expression. A cast expression explicitly converts
its operand to a specified arithmetic, scalar, or class
type.

cast operator. The cast operator is used for explicit
type conversions.

cataloged procedures. A set of control statements
placed in a library and retrievable by name. IBM.

catch block. A block associated with a try block that
receives control when an exception matching its
argument is thrown.

char specifier. A char is a built-in data type. In the
C++ language, char, signed char, and unsigned char are
all distinct data types.

character. (1) A letter, digit, or other symbol that is
used as part of the organization, control, or
representation of data. A character is often in the form
of a spatial arrangement of adjacent or connected
strokes. ANSI/ISO. (2) A sequence of one or more bytes
representing a single graphic symbol or control code.
This term corresponds to the ISO C standard term
multibyte character (multibyte character), where a
single-byte character is a special case of the multibyte
character. Unlike the usage in the ISO C standard,
character here has no necessary relationship with
storage space, and byte is used when storage space is
discussed. X/Open. ISO.1.

character array. An array of type char. X/Open.

character class. A named set of characters sharing an
attribute associated with the name of the class. The
classes and the characters that they contain are
dependent on the value of the LC_CTYPE category in
the current locale. X/Open.

character constant. (1) A constant with a character
value. IBM. (2) A string of any of the characters that
can be represented, usually enclosed in apostrophes.
IBM. (3) In some languages, a character enclosed in
apostrophes. IBM.

character set. (1) A finite set of different characters
that is complete for a given purpose; for example, the
character set in ISO Standard 646, 7-bit Coded
Character Set for Information Processing Interchange.
ISO Draft. (2) All the valid characters for a
programming language or for a computer system. IBM.
(3) A group of characters used for a specific reason; for
example, the set of characters a printer can print. IBM.
(4) See also portable character set.

character special file. (1) A special file that provides
access to an input or output device. The character
interface is used for devices that do not use block I/O.
IBM. (2) A file that refers to a device. One specific type
of character special file is a terminal device file. X/Open.
ISO.1.

character string. A contiguous sequence of characters
terminated by and including the first null byte. X/Open.

child. A node that is subordinate to another node in a
tree structure. Only the root node is not a child.

child enclave. The nested enclave created as a result of
certain commands being issued from a parent enclave.

CICS (Customer Information Control System).
Pertaining to an IBM licensed program that enables
transactions entered at remote terminals to be
processed concurrently by user-written application
programs. It includes facilities for building, using, and
maintaining databases. IBM.

CICS destination control table. See DCT.

CICS translator. A routine that accepts as input an
application containing EXEC CICS commands and
produces as output an equivalent application in which
each CICS command has been translated into the
language of the source.

class. (1) A C++ aggregate that may contain functions,
types, and user-defined operators in addition to data.
Classes may be defined hierarchically, allowing one
class to be derived from another, and may restrict
access to its members. (2) A user-defined data type. A
class data type can contain both data representations
(data members) and functions (member functions).

class key. One of the C++ keywords: class, struct and
union.

class library. A collection of classes.

class member operator. An operator used to access
class members through class objects or pointers to class
objects. The class member operators are:

. -> .* ->*

class name. A unique identifier of a class type that
becomes a reserved word within its scope.

class scope. An indication that a name of a class can
be used only in a member function of that class.

class tag. Synonym for class name.

class template. A blueprint describing how a set of
related classes can be constructed.

client program. A program that uses a class. The
program is said to be a client of the class.

CLIST. A programming language that typically
executes a list of TSO commands.

CLLE (COBOL Load List Entry). Entry in the load list
containing the name of the program and the load
address.

Glossary 425

|
|

|

COBCOM. Control block containing information
about a COBOL partition.

COBOL (common business-oriented language). A
high-level language, based on English, that is primarily
used for business applications.

COBOL Load List Entry. See CLLE.

COBVEC. COBOL vector table containing the address
of the library routines.

coded character set. (1) A set of graphic characters
and their code point assignments. The set may contain
fewer characters than the total number of possible
characters: some code points may be unassigned. IBM.
(2) A coded set whose elements are single characters;
for example, all characters of an alphabet. ISO Draft. (3)
Loosely, a code. ANSI/ISO.

code element set. (1) The result of applying a code to
all elements of a coded set, for example, all the
three-letter international representations of airport
names. ISO Draft. (2) The result of applying rules that
map a numeric code value to each element of a
character set. An element of a character set may be
related to more than one numeric code value but the
reverse is not true. However, for state-dependent
encodings the relationship between numeric code
values to elements of a character set may be further
controlled by state information. The character set may
contain fewer elements than the total number of
possible numeric code values; that is, some code values
may be unassigned. X/Open. (3) Synonym for codeset.

code page. (1) An assignment of graphic characters
and control function meanings to all code points; for
example, assignment of characters and meanings to 256
code points for an 8-bit code, assignment of characters
and meanings to 128 code points for a 7-bit code. (2) A
particular assignment of hexadecimal identifiers to
graphic characters.

code point. (1) A 1-byte code representing one of 256
potential characters. (2) An identifier in an alert
description that represents a short unit of text. The
code point is replaced with the text by an alert display
program.

codeset. Synonym for code element set. IBM.

collating element. The smallest entity used to
determine the logical ordering of character or
wide-character strings. A collating element consists of
either a single character, or two or more characters
collating as a single entity. The value of the
LC_COLLATE category in the current locale determines
the current set of collating elements. X/Open.

collating sequence. (1) A specified arrangement used
in sequencing. ISO-JTC1. ANSI/ISO. (2) An ordering
assigned to a set of items, such that any two sets in
that assigned order can be collated. ANSI/ISO. (3) The

relative ordering of collating elements as determined by
the setting of the LC_COLLATE category in the current
locale. The character order, as defined for the
LC_COLLATE category in the current locale, defines
the relative order of all collating elements, such that
each element occupies a unique position in the order.
This is the order used in ranges of characters and
collating elements in regular expressions and pattern
matching. In addition, the definition of the collating
weights of characters and collating elements uses
collating elements to represent their respective positions
within the collation sequence.

collation. The logical ordering of character or
wide-character strings according to defined precedence
rules. These rules identify a collation sequence between
the collating elements, and such additional rules that
can be used to order strings consisting or multiple
collating elements. X/Open.

collection. (1) An abstract class without any ordering,
element properties, or key properties. All abstract
classes are derived from collection. (2) In a general
sense, an implementation of an abstract data type for
storing elements.

Collection Class Library. A set of classes that provide
basic functions for collections, and can be used as base
classes.

column position. A unit of horizontal measure related
to characters in a line.

It is assumed that each character in a character set has
an intrinsic column width independent of any output
device. Each printable character in the portable
character set has a column width of one. The standard
utilities, when used as described in this document set,
assume that all characters have integral column widths.
The column width of a character is not necessarily
related to the internal representation of the character
(numbers of bits or bytes).

The column position of a character in a line is defined
as one plus the sum of the column widths of the
preceding characters in the line. Column positions are
numbered starting from 1. X/Open.

comma expression. An expression that contains two
operands separated by a comma. Although the
compiler evaluates both operands, the value of the
expression is the value of the right operand. If the left
operand produces a value, the compiler discards this
value. Typically, the left operand of a comma
expression is used to produce side effects.

command. A request to perform an operation or run a
program. When parameters, arguments, flags, or other
operands are associated with a command, the resulting
character string is a single command.

command processor parameter list (CPPL). The
format of a TSO parameter list. When a TSO terminal
monitor application attaches a command processor,

426 OS/390 V2R6.0 C/C++ Language Reference

register 1 contains a pointer to the CPPL, containing
addresses required by the command processor.

COMMAREA. A communication area made available
to applications running under CICS.

Common Business-Oriented Language. See COBOL.

common expression elimination. Duplicated
expressions are eliminated by using the result of the
previous expression. This includes intermediate
expressions within expressions.

compilation unit. (1) A portion of a computer
program sufficiently complete to be compiled correctly.
IBM. (2) A single compiled file and all its associated
include files. (3) An independently compilable sequence
of high-level language statements. Each high-level
language product has different rules for what makes up
a compilation unit.

complete class name. The complete qualification of a
nested class name including all enclosing class names.

Complex Mathematics library. A C++ class library
that provides the facilities to manipulate complex
numbers and perform standard mathematical
operations on them.

computational independence. No data modified by
either a main task program or a parallel function is
examined or modified by a parallel function that might
be running simultaneously.

concrete class. A class that implements an abstract
data type but does not allow polymorphism.

condition. (1) A relational expression that can be
evaluated to a value of either true or false. IBM. (2) An
exception that has been enabled, or recognized, by the
OS/390 Language Environment and thus is eligible to
activate user and language condition handlers. Any
alteration to the normal programmed flow of an
application. Conditions can be detected by the
hardware/operating system and result in an interrupt.
They can also be detected by language-specific
generated code or language library code.

conditional expression. A compound expression that
contains a condition (the first expression), an expression
to be evaluated if the condition has a nonzero value
(the second expression), and an expression to be
evaluated if the condition has the value zero (the third
expression).

condition handler. A user-written condition handler
or language-specific condition handler (such as a PL/I
ON-unit or OS/390 C/C++ signal() function call)
invoked by the OS/390 C/C++ condition manager to
respond to conditions.

condition manager. Manages conditions in the
common execution environment by invoking various
user-written and language-specific condition handlers.

condition token. In the OS/390 Language
Environment, a data type consisting of 12 bytes (96
bits). The condition token contains structured fields that
indicate various aspects of a condition including the
severity, the associated message number, and
information that is specific to a given instance of the
condition.

const. (1) An attribute of a data object that declares
the object cannot be changed. (2) A keyword that
allows you to define a variable whose value does not
change.

constant. (1) In programming languages, a language
object that takes only one specific value. ISO-JTC1. (2)
A data item with a value that does not change. IBM.

constant expression. An expression having a value
that can be determined during compilation and that
does not change during the running of the program.
IBM.

constant propagation. An optimization technique
where constants used in an expression are combined
and new ones are generated. Mode conversions are
done to allow some intrinsic functions to be evaluated
at compile time.

constructed reentrancy. The attribute of applications
that contain external data and require additional
processing to make them reentrant. Contrast with
natural reentrancy.

constructor. A special C++ class member function that
has the same name as the class and is used to create an
object of that class.

control character. (1) A character whose occurrence in
a particular context specifies a control function. ISO
Draft. (2) Synonymous with nonprinting character. IBM.
(3) A character, other than a graphic character, that
affects the recording, processing, transmission, or
interpretation of text. X/Open.

control statement. (1) In programming languages, a
statement that is used to alter the continuous sequential
execution of statements; a control statement may be a
conditional statement, such as IF, or an imperative
statement, such as STOP. ISO Draft. (2) A statement that
changes the path of execution.

controlling process. The session leader that establishes
the connection to the controlling terminal. If the
terminal ceases to be a controlling terminal for this
session, the session leader ceases to be the controlling
process. X/Open. ISO.1.

controlling terminal. A terminal that is associated
with a session. Each session may have at most one

Glossary 427

controlling terminal associated with it, and a
controlling terminal is associated with exactly one
session. Certain input sequences from the controlling
terminal cause signals to be sent to all processes in the
process group associated with the controlling terminal.
X/Open. ISO.1.

conversion. (1) In programming languages, the
transformation between values that represent the same
data item but belong to different data types.
Information may be lost because of conversion since
accuracy of data representation varies among different
data types. ISO-JTC1. (2) The process of changing from
one method of data processing to another or from one
data processing system to another. IBM. (3) The process
of changing from one form of representation to another;
for example to change from decimal representation to
binary representation. IBM. (4) A change in the type of
a value. For example, when you add values having
different data types, the compiler converts both values
to a common form before adding the values.

conversion descriptor. A per-process unique value
used to identify an open codeset conversion. X/Open.

conversion function. A member function that specifies
a conversion from its class type to another type.

coordinated universal time (UTC). Synonym for
Greenwich Mean Time (GMT). See GMT.

copy constructor. A constructor that copies a class
object of the same class type.

Cross System Product. See CSP.

CSP (Cross System Product). A set of licensed
programs designed to permit the user to develop and
run applications using independently defined maps
(display and printer formats), data items (records,
working storage, files, and single items), and processes
(logic). The Cross System Product set consists of two
parts: Cross System Product/Application Development
(CSP/AD) and Cross System Product/Application
Execution (CSP/AE). IBM.

current working directory. (1) A directory, associated
with a process, that is used in path-name resolution for
path names that do not begin with a slash. X/Open.
ISO.1. (2) In the OS/2 operating system, the first
directory in which the operating system looks for
programs and files and stores temporary files and
output. IBM. (3) In the OS/390 UNIX environment, a
directory that is active and that can be displayed.
Relative path name resolution begins in the current
directory. IBM.

cursor. A reference to an element at a specific position
in a data structure.

Customer Information Control System. See CICS.

D
data abstraction. A data type with a private
representation and a public set of operations (functions
or operators) which restrict access to that data type to
that set of operations. The C++ language uses the
concept of classes to implement data abstraction.

DATABASE 2. Pertaining to an IBM relational
database.

data definition (DD). (1) In the C and C++ languages,
a definition that describes a data object, reserves
storage for a data object, and can provide an initial
value for a data object. A data definition appears
outside a function or at the beginning of a block
statement. IBM. (2) A program statement that describes
the features of, specifies relationships of, or establishes
context of, data. ANSI/ISO. (3) A statement that is
stored in the environment and that externally identifies
a file and the attributes with which it should be
opened.

data definition name. See ddname.

data definition statement. See DD statement.

data member. The smallest possible piece of complete
data. Elements are composed of data members.

data object. (1) A storage area used to hold a value.
(2) Anything that exists in storage and on which
operations can be performed, such as files, programs,
classes, or arrays. (3) In a program, an element of data
structure, such as a file, array, or operand, that is
needed for the execution of a program and that is
named or otherwise specified by the allowable
character set of the language in which a program is
coded. IBM.

data set. Under MVS, a named collection of related
data records that is stored and retrieved by an assigned
name.

data stream. A continuous stream of data elements
being transmitted, or intended for transmission, in
character or binary-digit form, using a defined format.
IBM.

data structure. The internal data representation of an
implementation.

data type. The properties and internal representation
that characterize data.

Data Window Services (DWS). Services provided as
part of the Callable Services Library that allow
manipulation of data objects such as VSAM linear data
sets and temporary data objects known as
TEMPSPACE.

DBCS (double-byte character set). A set of characters
in which each character is represented by 2 bytes.

428 OS/390 V2R6.0 C/C++ Language Reference

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

Languages such as Japanese, Chinese, and Korean,
which contain more symbols than can be represented
by 256 code points, require double-byte character sets.

Because each character requires 2 bytes, the typing,
display, and printing of DBCS characters requires
hardware and programs that support DBCS. IBM.

DCT (destination control table). A table that contains
an entry for each extrapartition, intrapartition, and
indirect destination. Extrapartition entries address data
sets external to the CICS region. Intrapartition
destination entries contain the information required to
locate the queue in the intrapartition data set. Indirect
destination entries contain the information required to
locate the queue in the intrapartition data set.

ddname (data definition name). (1) The logical name
of a file within an application. The ddname provides
the means for the logical file to be connected to the
physical file. (2) The part of the data definition before
the equal sign. It is the name used in a call to fopen or
freopen to refer to the data definition stored in the
environment.

DD statement (data definition statement). (1) In
MVS, serves as the connection between the logical
name of a file and the physical name of the file. (2) A
job control statement that defines a file to the operating
system, and is a request to the operating system for the
allocation of input/output resources.

dead code elimination. A process that eliminates code
that exists for calculations that are not necessary. Code
may be designated as dead by other optimization
techniques.

dead store elimination. A process that eliminates
unnecessary storage use in code. A store is deemed
unnecessary if the value stored is never referenced
again in the code.

decimal constant. (1) A numerical data type used in
standard arithmetic operations. (2) A number
containing any of the digits 0 through 9. IBM.

decimal overflow. A condition that occurs when one
or more nonzero digits are lost because the destination
field in a decimal operation is too short to contain the
results.

declaration. (1) In the C and C++ languages, a
description that makes an external object or function
available to a function or a block statement. IBM. (2)
Establishes the names and characteristics of data objects
and functions used in a program.

declarator. Designates a data object or function
declared. Initializations can be performed in a
declarator.

default argument. An argument that is declared with
a default value in a function prototype or declaration. If
a call to the function omits this argument, the default

value is used. Arguments with default values must be
the trailing arguments in a function prototype
argument list.

default clause. In the C or C++ languages, within a
switch statement, the keyword default followed by a
colon, and one or more statements. When the
conditions of the specified case labels in the switch
statement do not hold, the default clause is chosen.
IBM.

default constructor. A constructor that takes no
arguments, or, if it takes arguments, all its arguments
have default values.

default initialization. The initial value assigned to a
data object by the compiler if no initial value is
specified by the programmer.

default locale. (1) The C locale, which is always used
when no selection of locale is performed. (2) A system
default locale, named by locale-related environmental
variables.

define directive. A preprocessor statement that directs
the preprocessor to replace an identifier or macro
invocation with special code.

define statement. A preprocessor statement that
causes the preprocessor to replace an identifier or
macro call with specified code. IBM.

definition. (1) A data description that reserves storage
and may provide an initial value. (2) A declaration that
allocates storage, and may initialize a data object or
specify the body of a function.

degree. The number of children of a node.

delete. (1) A C++ keyword that identifies a free
storage deallocation operator. (2) A C++ operator used
to destroy objects created by new.

demangling. The conversion of mangled names back
to their original source code names. During C++
compilation, identifiers such as function and static class
member names are mangled (encoded) with type and
scoping information to ensure type-safe linkage. These
mangled names appear in the object file and the final
executable file. Demangling (decoding) converts these
names back to their original names to make program
debugging easier. See also mangling.

denormal. Pertaining to a number with a value so
close to 0 that its exponent cannot be represented
normally. The exponent can be represented in a special
way at the possible cost of a loss of significance.

deque. A queue that can have elements added and
removed at both ends. A double-ended queue.

dequeue. An operation that removes the first element
of a queue.

Glossary 429

dereference. In the C and C++ languages, the
application of the unary operator * to a pointer to
access the object the pointer points to. Also known as
indirection.

derivation. In the C++ language, to derive a class,
called a derived class, from an existing class, called a
base class.

derived class. A class that inherits from a base class.
All members of the base class become members of the
derived class. You can add additional data members
and member functions to the derived class. A derived
class object can be manipulated as if it is a base class
object. The derived class can override virtual functions
of the base class.

descriptor. PL/I control block that holds information
such as string lengths, array subscript bounds, and area
sizes, and is passed from one PL/I routine to another
during run time.

destination control table. See DCT.

destructor. A special member function that has the
same name as its class, preceded by a tilde (˜), and that
"cleans up" after an object of that class, for example,
freeing storage that was allocated when the object was
created. A destructor has no arguments and no return
type.

detach state attribute. An attribute associated with a
thread attribute object. This attribute has two possible
values:

0 Undetached. An undetached thread keeps its
resources after termination of the thread.

1 Detached. A detached thread has its resources
freed by the system after termination.

device. A computer peripheral or an object that
appears to the application as such. X/Open. ISO.1.

difference. For two sets A and B, the difference (A-B)
is the set of all elements in A but not in B. For bags,
there is an additional rule for duplicates: If bag P
contains an element m times and bag Q contains the
same element n times, then, if m>n, the difference
contains that element m-n times. If m≤n, the difference
contains that element zero times.

digraph. A combination of two keystrokes used to
represent unavailable characters in a C++ source
program. Digraphs are read as tokens during the
preprocessor phase.

directory. A type of file containing the names and
controlling information for other files or other
directories. IBM.

Direct-to-SOM (DTS). (1) Term applied to the method
by which the OS/390 C++ compiler converts existing

C++ classes to SOM classes. (2) Term applied to a class
that has been converted to SOM by the OS/390 C++
compiler.

disabled signal. Synonym for enabled signal.

display. To direct the output to the user's terminal. If
the output is not directed to the terminal, the results
are undefined. X/Open.

do statement. In the C and C++ compilers, a looping
statement that contains the keyword “do”, followed by
a statement (the action), the keyword “while”, and an
expression in parentheses (the condition). IBM.

dot. The file name consisting of a single dot character
(.). X/Open. ISO.1.

double-byte character set. See DBCS.

double-precision. Pertaining to the use of two
computer words to represent a number in accordance
with the required precision. ISO-JTC1. ANSI/ISO.

double-quote. The character ", also known as quotation
mark. X/Open.

This character is named <quotation-mark> in the
portable character set.

doubleword. A contiguous sequence of bits or
characters that comprises two computer words and is
capable of being addressed as a unit. IBM.

dynamic. Pertaining to an operation that occurs at the
time it is needed rather than at a predetermined or
fixed time. IBM.

dynamic allocation. Assignment of system resources
to a program when the program is executed rather than
when it is loaded into main storage. IBM.

dynamic binding. The act of resolving references to
external variables and functions at run time.

dynamic link library (DLL). A file containing
executable code and data bound to a program at run
time. The code and data in a dynamic link library can
be shared by several applications simultaneously.
Compiling code with the DLL option does not mean that
the produced executable will be a DLL. To create a
DLL, use #pragma export or the EXPORTALL compiler
option.

DSA (dynamic storage area). An area of storage
obtained during the running of an application that
consists of a register save area and an area for
automatic data, such as program variables. DSAs are
generally allocated within Language
Environment-managed stack segments. DSAs are added
to the stack when a routine is entered and removed
upon exit in a last in, first out (LIFO) manner. In
Language Environment, a DSA is known as a stack
frame.

430 OS/390 V2R6.0 C/C++ Language Reference

|
|
|
|
|
|
|
|

dynamic storage. Synonym for automatic storage.

dynamic storage area. See DSA

E
EBCDIC. See extended binary-coded decimal interchange
code.

effective group ID. An attribute of a process that is
used in determining various permissions, including file
access permissions. This value is subject to change
during the process lifetime, as described in the exec
family of functions and setgid(). X/Open. ISO.1.

effective user ID. (1) The user ID associated with the
last authenticated user or the last setuid() program. It
is equal to either the real or the saved user ID. (2) The
current user ID, but not necessarily the user's login ID;
for example, a user logged in under a login ID may
change to another user's ID. The ID to which the user
changes becomes the effective user ID until the user
switches back to the original login ID. All discretionary
access decisions are based on the effective user ID.
IBM. (3) An attribute of a process that is used in
determining various permissions, including file access
permissions. This value is subject to change during the
process lifetime, as described in exec and setuid().
X/Open. ISO.1.

elaborated type specifier. A specifier typically used in
an incomplete class declaration to qualify types that are
otherwise hidden.

element. The component of an array, subrange,
enumeration, or set.

element equality. A relation that determines if two
elements are equal.

element occurrence. A single instance of an element in
a collection. In a unique collection, element occurrence
is synonymous with element value.

element value. All the instances of an element with a
particular value in a collection. In a nonunique
collection, an element value may have more than one
occurrence. In a unique collection, element value is
synonymous with element occurrence.

else clause. The part of an if statement that contains
the word else, followed by a statement. The else clause
provides an action that is started when the if condition
evaluates to a value of zero (false). IBM.

empty line. A line consisting of only a new-line
character. X/Open.

empty string. (1) A string whose first byte is a null
byte. Synonymous with null string. X/Open. (2) A
character array whose first element is a null character.
ISO.1.

enabled signal. The occurrence of an enabled signal
results in the default system response or the execution
of an established signal handler. If disabled, the
occurrence of the signal is ignored.

encapsulation. Hiding the internal representation of
data objects and implementation details of functions
from the client program. This enables the end user to
focus on the use of data objects and functions without
having to know about their representation or
implementation.

enclave. In the Language Environment for MVS and
VM, an independent collection of routines, one of
which is designated as the main routine. An enclave is
roughly analogous to a program or run unit.

enqueue. An operation that adds an element as the
last element to a queue.

entry point. In assembler language, the address or
label of the first instruction that is executed when a
routine is entered for execution.

enumeration constant. In the C or C++ language, an
identifier, with an associated integer value, defined in
an enumerator. An enumeration constant may be used
anywhere an integer constant is allowed. IBM.

enumeration data type. (1) In the Fortran, C, and C++
language, a data type that represents a set of values
that a user defines. IBM. (2) A type that represents
integers and a set of enumeration constants. Each
enumeration constant has an associated integer value.

enumeration tag. In the C and C++ language, the
identifier that names an enumeration data type. IBM.

enumeration type. An enumeration type defines a set
of enumeration constants. In the C++ language, an
enumeration type is a distinct data type that is not an
integral type.

enumerator. In the C and C++ language, an
enumeration constant and its associated value. IBM.

equivalence class. (1) A grouping of characters that
are considered equal for the purpose of collation; for
example, many languages place an uppercase character
in the same equivalence class as its lowercase form, but
some languages distinguish between accented and
unaccented character forms for the purpose of collation.
IBM. (2) A set of collating elements with the same
primary collation weight.

Elements in an equivalence class are typically elements
that naturally group together, such as all accented
letters based on the same base letter.

The collation order of elements within an equivalence
class is determined by the weights assigned on any
subsequent levels after the primary weight. X/Open.

Glossary 431

|
|

escape sequence. (1) A representation of a character.
An escape sequence contains the \ symbol followed by
one of the characters: a, b, f, n, r, t, v, ', ", x, \, or
followed by one or more octal or hexadecimal digits.
(2) A sequence of characters that represent, for example,
nonprinting characters, or the exact code point value to
be used to represent variant and nonvariant characters
regardless of code page. (3) In the C and C++ language,
an escape character followed by one or more
characters. The escape character indicates that a
different code, or a different coded character set, is
used to interpret the characters that follow. Any
member of the character set used at runtime can be
represented using an escape sequence. (4) A character
that is preceded by a backslash character and is
interpreted to have a special meaning to the operating
system. (5) A sequence sent to a terminal to perform
actions such as moving the cursor, changing from
normal to reverse video, and clearing the screen.
Synonymous with multibyte control. IBM.

exception. (1) Any user, logic, or system error detected
by a function that does not itself deal with the error
but passes the error on to a handling routine (also
called throwing the exception). (2) In programming
languages, an abnormal situation that may arise during
execution, that may cause a deviation from the normal
execution sequence, and for which facilities exist in a
programming language to define, raise, recognize,
ignore, and handle it; for example, (ON-) condition in
PL/I, exception in ADA. ISO-JTC1.

executable. A load module or program object which
has yet to be loaded into memory for execution.

executable file. A regular file acceptable as a new
process image file by the equivalent of the exec family
of functions, and thus usable as one form of a utility.
The standard utilities described as compilers can
produce executable files, but other unspecified methods
of producing executable files may also be provided.
The internal format of an executable file is unspecified,
but a conforming application cannot assume an
executable file is a text file. X/Open.

exception handler. (1) Exception handlers are catch
blocks in C++ applications. Catch blocks catch
exceptions when they are thrown from a function
enclosed in a try block. Try blocks, catch blocks, and
throw expressions are the constructs used to implement
formal exception handling in C++ applications. (2) A
set of routines used to detect deadlock conditions or to
process abnormal condition processing. An exception
handler allows the normal running of processes to be
interrupted and resumed. IBM.

executable file. A regular file acceptable as a new
process image file by the equivalent of the exec family
of functions, and thus usable as one form of a utility.
The standard utilities described as compilers can
produce executable files, but other unspecified methods
of producing executable files may also be provided.

The internal format of an executable file is unspecified,
but a conforming application cannot assume an
executable file is a text file. X/Open.

executable program. A program that has been
link-edited and therefore can be run in a processor.
IBM.

extended binary-coded data interchange code
(EBCDIC). A coded character set of 256 8-bit
characters. IBM.

extension. (1) An element or function not included in
the standard language. (2) File name extension.

external data definition. A description of a variable
appearing outside a function. It causes the system to
allocate storage for that variable and makes that
variable accessible to all functions that follow the
definition and are located in the same file as the
definition. IBM.

extern storage class specifier. A specifier that enables
the programmer to declare objects and functions that
several source files can use.

F
feature test macro (FTM). A macro (#define) used to
determine whether a particular set of features will be
included from a header. X/Open. ISO.1.

FIFO special file. A type of file with the property that
data written to such a file is read on a first-in-first-out
basis. Other characteristics of FIFOs are described in
open(), read(), write(), and lseek(). X/Open. ISO.1.

file access permissions. The standard file access
control mechanism uses the file permission bits. The
bits are set at the time of file creation by functions such
as open(), creat(), mkdir(), and mkfifo() and can be
changed by chmod(). The bits are read by stat() or
fstat(). X/Open.

file descriptor. (1) A small positive integer that the
system uses instead of the file name to identify an open
file. IBM. (2) A per-process unique, non-negative
integer used to identify an open file for the purpose of
file access. ISO.1.

The value of a file descriptor is from zero to
{OPEN_MAX}—which is defined in <limits.h>. A
process can have no more than {OPEN_MAX} file
descriptors open simultaneously. File descriptors may
also be used to implement directory streams. X/Open.

file mode. An object containing the file mode bits and
file type of a file, as described in <sys/stat.h>. X/Open.

file mode bits. A file's file permission bits,
set-user-ID-on-execution bit (S_ISUID) and
set-group-ID-on-execution bit (S_ISGID). X/Open.

432 OS/390 V2R6.0 C/C++ Language Reference

file permission bits. Information about a file that is
used, along with other information, to determine if a
process has read, write, or execute/search permission
to a file. The bits are divided into three parts: owner,
group, and other. Each part is used with the
corresponding file class of process. These bits are
contained in the file mode, as described in <sys/stat.h>.
The detailed usage of the file permission bits is
described in file access permissions. X/Open. ISO.1.

file scope. A name declared outside all blocks and
classes has file scope and can be used after the point of
declaration in a source file.

filter. A command whose operation consists of reading
data from standard input or a list of input files and
writing data to standard output. Typically, its function
is to perform some transformation on the data stream.
X/Open.

first element. The element visited first in an iteration
over a collection. Each collection has its own definition
for first element. For example, the first element of a
sorted set is the element with the smallest value.

flat collection. A collection that has no hierarchical
structure.

float constant. (1) A constant representing a
nonintegral number. (2) A number containing a decimal
point, an exponent, or both a decimal point and an
exponent. The exponent contains an e or E, an optional
sign (+ or -), and one or more digits (0 through 9). IBM.

for statement. A looping statement that contains the
word for followed by a list of expressions enclosed in
parentheses (the condition) and a statement (the
action). Each expression in the parenthesized list is
separated by a semicolon. You can omit any of the
expressions, but you cannot omit the semicolons.

foreground process. (1) A process that must run to
completion before another command is issued. The
foreground process is in the foreground process group,
which is the group that receives the signals generated
by a terminal. IBM. (2) A process that is a member of a
foreground process group. X/Open. ISO.1.

foreground process group. (1) The group that receives
the signals generated by a terminal. IBM. (2) A process
group whose member processes have certain privileges,
denied to processes in background process groups,
when accessing their controlling terminal. Each session
that has established a connection with a controlling
terminal has exactly one process group of the session as
the foreground process group of that controlling
terminal. X/Open. ISO.1.

foreground process group ID. The process group ID
of the foreground process group. X/Open. ISO.1.

form-feed character. A character in the output stream
that indicates that printing should start on the next

page of an output device. The formfeed is the character
designated by '\f' in the C and C++ language. If the
formfeed is not the first character of an output line, the
result is unspecified. It is unspecified whether this
character is the exact sequence transmitted to an output
device by the system to accomplish the movement to
the next page. X/Open.

forward declaration. A declaration of a class or
function made earlier in a compilation unit, so that the
declared class or function can be used before it has
been defined.

freestanding application. (1) An application that is
created to run without the run-time environment or
library with which it was developed. (2) An OS/390
C/C++ application that does not use the services of the
dynamic OS/390 C/C++ run-time library or of the
Language Environment. Under OS/390 C support, this
ability is a feature of the System Programming C
support.

free store. Dynamically allocated memory. New and
delete are used to allocate and deallocate free store.

friend class. A class in which all the member
functions are granted access to the private and
protected members of another class. It is named in the
declaration of another class and uses the keyword
friend as a prefix to the class. For example, the
following source code makes all the functions and data
in class you friends of class me:

class me {
friend class you;

// ...
};

friend function. A function that is granted access to
the private and protected parts of a class. It is named
in the declaration of the other class with the prefix
friend.

function. A named group of statements that can be
called and evaluated and can return a value to the
calling statement. IBM.

function call. An expression that moves the path of
execution from the current function to a specified
function and evaluates to the return value provided by
the called function. A function call contains the name of
the function to which control moves and a
parenthesized list of values. IBM.

function declarator. The part of a function definition
that names the function, provides additional
information about the return value of the function, and
lists the function parameters. IBM.

function definition. The complete description of a
function. A function definition contains an optional
storage class specifier, an optional type specifier, a
function declarator, optional parameter declarations,
and a block statement (the function body).

Glossary 433

|
|
|
|
|

|
|
|
|
|
|

function prototype. A function declaration that
provides type information for each parameter. It is the
first line of the function (header) followed by a
semicolon (;). The declaration is required by the
compiler at the time that the function is declared, so
that the compiler can check the type.

function scope. Labels that are declared in a function
have function scope and can be used anywhere in that
function.

function template. Provides a blueprint describing
how a set of related individual functions can be
constructed.

G
Generalization. Refers to a class, function, or static
data member which derives its definition from a
template. An instantiation of a template function would
be a generalization.

generic class. Synonym for class templates.

global. Pertaining to information available to more
than one program or subroutine. IBM.

global scope. Synonym for file scope.

global variable. A symbol defined in one program
module that is used in other independently compiled
program modules.

GMT (Greenwich Mean Time). The solar time at the
meridian of Greenwich, formerly used as the prime
basis of standard time throughout the world. GMT has
been superseded by coordinated universal time (UTC).

graphic character. (1) A visual representation of a
character, other than a control character, that is
normally produced by writing, printing, or displaying.
ISO Draft. (2) A character that can be displayed or
printed. IBM.

Graphical Data Display Manager (GDDM).
Pertaining to an IBM licensed program that provides a
group of routines that allows pictures to be defined and
displayed procedurally through function routines that
correspond to graphic primitives. IBM.

Greenwich Mean Time. See GMT.

group ID. (1) A non-negative integer that is used to
identify a group of system users. Each system user is a
member of at least one group. When the identity of a
group is associated with a process, a group ID value is
referred to as a real group ID, an effective group ID,
one of the supplementary group IDs or a saved
set-group-ID. X/Open. (2) A non-negative integer, which
can be contained in an object of type gid_t, that is used
to identify a group of system users. ISO.1.

H
halfword. A contiguous sequence of bits or characters
that constitutes half a computer word and can be
addressed as a unit. IBM.

hash function. A function that determines which
category, or bucket, to put an element in. A hash
function is needed when implementing a hash table.

hash table. (1) A data structure that divides all
elements into (preferably) equal-sized categories, or
buckets, to allow quick access to the elements. The
hash function determines which bucket an element
belongs in. (2) A table of information that is accessed
by way of a shortened search key (that hash value).
Using a hash table minimizes average search time.

header file. A text file that contains declarations used
by a group of functions, programs, or users.

heap storage. An area of storage used for allocation of
storage whose lifetime is not related to the execution of
the current routine. The heap consists of the initial heap
segment and zero or more increments.

hexadecimal constant. A constant, usually starting
with special characters, that contains only hexadecimal
digits. Three examples for the hexadecimal constant
with value 0 would be '\x00', '0x0', or '0X00'.

hiperspace memory file. An IBM file used under MVS
to deal with memory files as large as 2 gigabytes. IBM.

hooks. Instructions inserted into a program by a
compiler at compile-time. Using hooks, you can set
break-points to instruct the Debug Tool to gain control
of the program at selected points during its execution.

hybrid code. Program statements that have not been
internationalized with respect to code page, especially
where data constants contain variant characters. Such
statements can be found in applications written in older
implementations of MVS, which required syntax
statements to be written using code page IBM-1047
exclusively. Such applications cannot be converted from
one code page to another using iconv().

I
I18N. Abbreviation for internationalization.

identifier. (1) One or more characters used to identify
or name a data element and possibly to indicate certain
properties of that data element. ANSI/ISO. (2) In
programming languages, a token that names a data
object such as a variable, an array, a record, a
subprogram, or a function. ANSI/ISO. (3) A sequence of
letters, digits, and underscores used to identify a data
object or function. IBM.

434 OS/390 V2R6.0 C/C++ Language Reference

if statement. A conditional statement that contains the
keyword if, followed by an expression in parentheses
(the condition), a statement (the action), and an
optional else clause (the alternative action). IBM.

ILC (interlanguage call). A function call made by one
language to a function coded in another language.
Interlanguage calls are used to communicate between
programs written in different languages.

ILC (interlanguage communication). The ability of
routines written in different programming languages to
communicate. ILC support enables the application
writer to readily build applications from component
routines written in a variety of languages.

implementation-defined behavior. Application
behavior that is not defined by the standards. The
implementing compiler and library defines this
behavior when a program contains correct program
constructs or uses correct data. Programs that rely on
implementation-defined behavior may behave
differently on different C or C++ implementations.
Refer to the OS/390 C/C++ books that are listed in
“IBM OS/390 C/C++ and Related Publications” on
page 4 for information about implementation-defined
behavior in the OS/390 C/C++ environment. Contrast
with unspecified behavior and undefined behavior.

IMS (Information Management System). Pertaining
to an IBM database/data communication (DB/DC)
system that can manage complex databases and
networks. IBM.

include directive. A preprocessor directive that causes
the preprocessor to replace the statement with the
contents of a specified file.

include file. See header file.

include statement. In the C and C++ languages, a
preprocessor statement that causes the preprocessor to
replace the statement with the contents of a specified
file. IBM.

incomplete class declaration. A class declaration that
does not define any members of a class. Until a class is
fully declared, or defined, you can only use the class
name where the size of the class is not required.
Typically an incomplete class declaration is used as a
forward declaration.

incomplete type. A type that has no value or meaning
when it is first declared. There are three incomplete
types: void, arrays of unknown size and structures and
unions of unspecified content. A void type can never be
completed. Arrays of unknown size and structures or
unions of unspecified content can be completed in
further declarations.

indirection. (1) A mechanism for connecting objects by
storing, in one object, a reference to another object. (2)

In the C and C++ languages, the application of the
unary operator * to a pointer to access the object to
which the pointer points.

indirection class. Synonym for reference class.

inheritance. A technique that allows the use of an
existing class as the base for creating other classes.

initial heap. The OS/390 C/C++ heap controlled by
the HEAP runtime option and designated by a heap_id
of 0. The initial heap contains dynamically allocated
user data.

initializer. An expression used to initialize data
objects. The C++ language, supports the following
types of initializers:

v An expression followed by an assignment operator
that is used to initialize fundamental data type
objects or class objects that contain copy constructors.

v A parenthesized expression list that is used to
initialize base classes and members that use
constructors.

Both the C and C++ languages support an expression
enclosed in braces ({ }), that used to initialize
aggregates.

inlined function. A function whose actual code
replaces a function call. A function that is both declared
and defined in a class definition is an example of an
inline function. Another example is one which you
explicitly declared inline by using the keyword inline.
Both member and nonmember functions can be inlined.

input stream. A sequence of control statements and
data submitted to a system from an input unit.
Synonymous with input job stream, job input stream.
IBM.

instance. An object-oriented programming term
synonymous with object. An instance is a particular
instantiation of a data type. It is simply a region of
storage that contains a value or group of values. For
example, if a class box is previously defined, two
instances of a class box could be instantiated with the
declaration: box box1, box2;

instantiate. To create or generate a particular instance
or object of a data type. For example, an instance box1
of class box could be instantiated with the declaration:
box box1;

instruction. A program statement that specifies an
operation to be performed by the computer, along with
the values or locations of operands. This statement
represents the programmer's request to the processor to
perform a specific operation.

instruction scheduling. An optimization technique
that reorders instructions in code to minimize execution
time.

Glossary 435

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

integer constant. A decimal, octal, or hexadecimal
constant.

integral object. A character object, an object having an
enumeration type, an object having variations of the
type int, or an object that is a bit field.

Interactive System Productivity Facility. See ISPF.

interlanguage call. See ILC (interlanguage call).

interlanguage communication. See ILC (interlanguage
communication).

internationalization. The capability of a computer
program to adapt to the requirements of different
native languages, local customs, and coded character
sets. X/Open.

Synonymous with I18N.

interoperability. The capability to communicate,
execute programs, or transfer data among various
functional units in a way that requires the user to have
little or no knowledge of the unique characteristics of
those units.

Interprocedural Analysis. See IPA.

interprocess communication. (1) The exchange of
information between processes or threads through
semaphores, queues, and shared memory. (2) The
process by which programs communicate data to each
other to synchronize their activities. Semaphores,
signals, and internal message queues are common
methods of inter-process communication.

I/O Stream library. A class library that provides the
facilities to deal with many varieties of input and
output.

IPA (Interprocedural Analysis). A process for
performing optimizations across compilation units.

ISPF (Interactive System Productivity Facility). An
IBM licensed program that serves as a full-screen editor
and dialogue manager. Used for writing application
programs, it provides a means of generating standard
screen panels and interactive dialogues between the
application programmer and terminal user. (ISPF)

iteration. The process of repeatedly applying a
function to a series of elements in a collection until
some condition is satisfied.

J
JCL (job control language). A control language used
to identify a job to an operating system and to describe
the job's requirement. IBM.

job control. A facility that allows users to selectively
stop (suspend) the execution of a process and continue
(resume) their execution at a later point.

The user typically employs this facility via the
interactive interface jointly supplied by the terminal
I/O driver and a command interpreter. X/Open. ISO.1.

K
keyword. (1) A predefined word reserved for the C
and C++ languages, that may not be used as an
identifier. (2) A symbol that identifies a parameter in
JCL.

kind attribute. An attribute for a mutex attribute
object. This attribute's value determines whether the
mutex can be locked once or more than once for a
thread and whether state changes to the mutex will be
reported to the debug interface.

L
label. An identifier within or attached to a set of data
elements. ISO Draft.

Language Environment. Abbreviated form of IBM
Language Environment for MVS and VM. Pertaining to
an IBM software product that provides a common
runtime environment and runtime services to
applications compiled by Language
Environment-conforming compilers.

last element. The element visited last in an iteration
over a collection. Each collection has its own definition
for last element. For example, the last element of a
sorted set is the element with the largest value.

late binding. Allowing the system to determine the
specific class of the object and invoke the appropriate
function implementations at run time. Late binding or
dynamic binding hides the differences between a group
of related classes from the application program.

leaves. Nodes without children. Synonymous with
terminals.

lexically. Relating to the left-to-right order of units.

library. (1) A collection of functions, calls, subroutines,
or other data. IBM. (2) A set of object modules that can
be specified in a link command.

linkage editor. Synonym for linker. The linkage editor
has been replaced by the binder for the MVS/ESA or
OS/390 operating systems. See binder.

Linkage. Refers to the binding between a reference
and a definition. A function has internal linkage if the
function is defined inline as part of the class, is
declared with the inline keyword, or is a nonmember
function declared with the static keyword. All other
functions have external linkage.

436 OS/390 V2R6.0 C/C++ Language Reference

|
|
|
|
|

|
|
|

|
|
|

linker. A computer program for creating load modules
from one or more object modules by resolving cross
references among the modules and, if necessary,
adjusting addresses. IBM.

link pack area (LPA). In MVS, an area of storage
containing re-enterable routines from system libraries.
Their presence in main storage saves loading time.

literal. (1) In programming languages, a lexical unit
that directly represents a value; for example, 14
represents the integer fourteen, “APRIL” represents the
string of characters APRIL, 3.0005E2 represents the
number 300.05. ISO-JTC1. (2) A symbol or a quantity in
a source program that is itself data, rather than a
reference to data. IBM. (3) A character string whose
value is given by the characters themselves; for
example, the numeric literal 7 has the value 7, and the
character literal CHARACTERS has the value
CHARACTERS. IBM.

loader. A routine, commonly a computer program,
that reads data into main storage. ANSI/ISO.

load module. All or part of a computer program in a
form suitable for loading into main storage for
execution. A load module is usually the output of a
linkage editor. ISO Draft.

local. (1) In programming languages, pertaining to the
relationship between a language object and a block
such that the language object has a scope contained in
that block. ISO-JTC1. (2) Pertaining to that which is
defined and used only in one subdivision of a
computer program. ANSI/ISO.

local customs. The conventions of a geographical area
or territory for such things as date, time, and currency
formats. X/Open.

locale. The definition of the subset of a user's
environment that depends on language and cultural
conventions. X/Open.

localization. The process of establishing information
within a computer system specific to the operation of
particular native languages, local customs, and coded
character sets. X/Open.

local scope. A name declared in a block has scope
within the block, and can therefore only be used in that
block.

Long name. An external name C++ name in an object
module, or and external name in an object module
created by the C compiler when the LONGNAME option is
used. Long names are up to 1024 characters long and
may contain both upper-case and lower-case characters.

lvalue. An expression that represents a data object
that can be both examined and altered.

M
macro. An identifier followed by arguments (may be a
parenthesized list of arguments) that the preprocessor
replaces with the replacement code located in a
preprocessor #define directive.

macro call. Synonym for macro.

macro instruction. Synonym for macro.

main function. An external function with the
identifier main that is the first user function—aside
from exit routines and C++ static object
constructors—to get control when program execution
begins. Each C and C++ program must have exactly
one function named main.

makefile. A text file containing a list of your
application's parts. The make utility uses makefiles to
maintain application parts and dependencies.

make utility. Maintains all of the parts and
dependencies for your application. The make utility
uses a makefile to keep the parts of your program
synchronized. If one part of your application changes,
the make utility updates all other files that depend on
the changed part. This utility is available under the
OS/390 shell and by default, uses the c89 utility to
recompile and bind your application.

mangling. The encoding during compilation of
identifiers such as function and variable names to
include type and scope information. These mangled
names ensure type-safe linkage. See also demangling.

manipulator. A value that can be inserted into streams
or extracted from streams to affect or query the
behavior of the stream.

member. A data object or function in a structure,
union, or class. Members can also be classes,
enumerations, bit fields, and type names.

member function. (1) An operator or function that is
declared as a member of a class. A member function
has access to the private and protected data members
and member functions of objects of its class. Member
functions are also called methods. (2) A function that
performs operations on a class.

method. In the C++ language, a synonym for member
function.

migrate. To move to a changed operating
environment, usually to a new release or version of a
system. IBM.

module. A program unit that usually performs a
particular function or related functions, and that is
distinct and identifiable with respect to compiling,
combining with other units, and loading.

Glossary 437

|
|
|
|
|
|
|
|

multibyte character. A mixture of single-byte
characters from a single-byte character set and
double-byte characters from a double-byte character set.

multicharacter collating element. A sequence of two
or more characters that collate as an entity. For
example, in some coded character sets, an accented
character is represented by a non-spacing accent,
followed by the letter. Other examples are the Spanish
elements ch and ll. X/Open.

multiple inheritance. An object-oriented
programming technique implemented in the C++
language through derivation, in which the derived class
inherits members from more than one base class.

multitasking. A mode of operation that allows
concurrent performance, or interleaved execution of
two or more tasks. ISO-JTC1. ANSI/ISO.

mutex. A flag used by a semaphore to protect shared
resources. The mutex is locked and unlocked by
threads in a program. A mutex can only be locked by
one thread at a time and can only be unlocked by the
same thread that locked it. The current owner of a
mutex is the thread that it is currently locked by. An
unlocked mutex has no current owner.

mutex attribute object. Allows the user to manage the
characteristics of mutexes in their application by
defining a set of values to be used for the mutex
during its creation. A mutex attribute object allows the
user to create many mutexes with the same set of
characteristics without redefining the same set of
characteristics for each mutex created.

mutex object. Used to identify a mutex.

N
name space. A category used to group similar types of
identifiers.

named pipe. A FIFO file. Named pipes allow transfer
of data between processes in a FIFO manner and
synchronization of process execution. Allows processes
to communicate even though they do not know what
processes are on the other end of the pipe.

natural reentrancy. A program that contains no
writable static and requires no additional processing to
make it reentrant is considered naturally reentrant.

nested class. A class defined within the scope of
another class.

nested enclave. A new enclave created by an existing
enclave. The nested enclave that is created must be a
new main routine within the process. See also child
enclave and parent enclave.

newline character. A character that in the output
stream indicates that printing should start at the

beginning of the next line. The newline character is
designated by '\n' in the C and C++ language. It is
unspecified whether this character is the exact sequence
transmitted to an output device by the system to
accomplish the movement to the next line. X/Open.

nickname. Synonym for alias.

nonprinting character. See control character.

null character (NUL). The ASCII or EBCDIC character
'\0' with the hex value 00, all bits turned off. It is used
to represent the absence of a printed or displayed
character. This character is named <NUL> in the
portable character set.

null pointer. The value that is obtained by converting
the number 0 into a pointer; for example, (void *) 0.
The C and C++ languages guarantee that this value
will not match that of any legitimate pointer, so it is
used by many functions that return pointers to indicate
an error. X/Open.

null statement. A C or C++ statement that consists
solely of a semicolon.

null string. (1) A string whose first byte is a null byte.
Synonymous with empty string. X/Open. (2) A character
array whose first element is a null character. ISO.1.

null value. A parameter position for which no value is
specified. IBM.

null wide-character code. A wide-character code with
all bits set to zero. X/Open.

number sign. The character #, also known as pound
sign and hash sign. This character is named
<number-sign> in the portable character set.

O
object. (1) A region of storage. An object is created
when a variable is defined. An object is destroyed
when it goes out of scope. (See also instance.) (2) In
object-oriented design or programming, an abstraction
consisting of data and the operations associated with
that data. See also class. IBM. (3) An instance of a class.

object code. Machine-executable instructions, usually
generated by a compiler from source code written in a
higher level language (such as the C++ language). For
programs that must be linked, object code consists of
relocatable machine code.

object module. (1) All or part of an object program
sufficiently complete for linking. Assemblers and
compilers usually produce object modules. ISO Draft.
(2) A set of instructions in machine language produced
by a compiler from a source program. IBM.

object-oriented programming. A programming
approach based on the concepts of data abstraction and

438 OS/390 V2R6.0 C/C++ Language Reference

|
|
|
|

inheritance. Unlike procedural programming
techniques, object-oriented programming concentrates
not on how something is accomplished, but on what
data objects comprise the problem and how they are
manipulated.

octal constant. The digit 0 (zero) followed by any
digits 0 through 7.

open file. A file that is currently associated with a file
descriptor. X/Open. ISO.1.

operand. An entity on which an operation is
performed. ISO-JTC1. ANSI/ISO.

operating system (OS). Software that controls
functions such as resource allocation, scheduling,
input/output control, and data management.

operator function. An overloaded operator that is
either a member of a class or that takes at least one
argument that is a class type or a reference to a class
type.

operator precedence. In programming languages, an
order relation defining the sequence of the application
of operators within an expression. ISO-JTC1.

orientation of a stream. After application of an input
or output function to a stream, it becomes either
byte-oriented or wide-oriented. A byte-oriented stream
is a stream that had a byte input or output function
applied to it when it had no orientation. A
wide-oriented stream is a stream that had a wide
character input or output function applied to it when it
had no orientation. A stream has no orientation when it
has been associated with an external file but has not
had any operations performed on it.

OS/390 UNIX System Services (OS/390 UNIX). An
element of the OS/390 operating system, (formerly
known as OpenEdition). OS/390 UNIX includes a
POSIX system Application Programming Interface for
the C language, a shell and utilities component, and a
dbx debugger. All the components conform to IEEE
POSIX standards (ISO 9945-1: 1990/IEEE POSIX
1003.1-1990, IEEE POSIX 1003.1a, IEEE POSIX 1003.2,
and IEEE POSIX 1003.4a).

overflow. (1) A condition that occurs when a portion
of the result of an operation exceeds the capacity of the
intended unit of storage. (2) That portion of an
operation that exceeds the capacity of the intended unit
of storage. IBM.

overlay. The technique of repeatedly using the same
areas of internal storage during different stages of a
program. ANSI/ISO.

overloading. An object-oriented programming
technique that allows you to redefine functions and
most standard C++ operators when the functions and
operators are used with class types.

P
parameter. (1) In the C and C++ languages, an object
declared as part of a function declaration or definition
that acquires a value on entry to the function, or an
identifier following the macro name in a function-like
macro definition. X/Open. (2) Data passed between
programs or procedures. IBM.

parameter declaration. A description of a value that a
function receives. A parameter declaration determines
the storage class and the data type of the value.

parent enclave. The enclave that issues a call to
system services or language constructs to create a
nested or child enclave. See also child enclave and nested
enclave.

parent process. (1) The program that originates the
creation of other processes by means of spawn or exec
function calls. See also child process. (2) A process that
creates other processes.

parent process ID. (1) An attribute of a new process
identifying the parent of the process. The parent
process ID of a process is the process ID of its creator,
for the lifetime of the creator. After the creator's lifetime
has ended, the parent process ID is the process ID of an
implementation-dependent system process. X/Open. (2)
An attribute of a new process after it is created by a
currently active process. ISO.1.

partitioned concatenation. Specifying multiple PDSs
or PDSEs under one ddname. The concatenated data
sets act as one big PDS or PDSE and access can be
made to any member with a unique name. An
attempted access to a member whose name occurs
more than once in the concatenated data sets, returns
the first member with that name found in the entire
concatenation.

partitioned data set (PDS). A data set in direct access
storage that is divided into partitions, called members,
each of which can contain a program, part of a
program, or data. IBM.

partitioned data set extended (PDSE). Similar to
partitioned data set, but with extended capabilities.

path name. (1) A string that is used to identify a file.
A path name consists of, at most, {PATH_MAX} bytes,
including the terminating null character. It has an
optional beginning slash, followed by zero or more file
names separated by slashes. If the path name refers to
a directory, it may also have one or more trailing
slashes. Multiple successive slashes are treated as one
slash. A path name that begins with two successive
slashes may be interpreted in an implementation-
dependent manner, although more than two leading
slashes are treated as a single slash. The interpretation

Glossary 439

|
|
|
|
|
|
|
|
|

|
|
|
|

of the path name is described in path name resolution.
ISO.1. (2) A file name specifying all directories leading
to the file.

path name resolution. Path name resolution is
performed for a process to resolve a path name to a
particular file in a file hierarchy. There may be multiple
path names that resolve to the same file. X/Open.

pattern. A sequence of characters used either with
regular expression notation or for path name
expansion, as a means of selecting various characters
strings or path names, respectively. The syntaxes of the
two patterns are similar, but not identical. X/Open.

PCH (precompiled header). One or more headers that
have already been compiled.

period. The character (.). The term period is contrasted
against dot, which is used to describe a specific
directory entry. This character is named <period> in the
portable character set.

permissions. Codes that determine how a file can be
used by any users who work on the system. See also
file access permissions. IBM.

persistent environment. A program can explicitly
establish a persistent environment, direct functions to
it, and explicitly terminate it.

pointer. In the C and C++ languages, a variable that
holds the address of a data object or a function. IBM.

pointer class. A class that implements pointers.

pointer to member. An operator used to access the
address of non-static members of a class.

polymorphism. The technique of taking an abstract
view of an object or function and using any concrete
objects or arguments that are derived from this abstract
view.

portable character set. The set of characters specified
in POSIX 1003.2, section 2.4:

<NUL>
<alert>
<backspace>
<tab>
<newline>
<vertical-tab>
<form-feed>
<carriage-return>
<space>
<exclamation-mark> !
<quotation-mark> "
<number-sign> #
<dollar-sign> $
<percent-sign> %
<ampersand> &
<apostrophe> '
<left-parenthesis> (
<right-parenthesis>)

<asterisk> *
<plus-sign> +
<comma> ,
<hyphen> –
<hyphen-minus> –
<period> .
<slash> ⁄
<zero> 0
<one> 1
<two> 2
<three> 3
<four> 4
<five> 5
<six> 6
<seven> 7
<eight> 8
<nine> 9
<colon> :
<semicolon> ;
<less-than-sign> <
<equals-sign> =
<greater-than-sign> >
<question-mark> ?
<commercial-at> @

<A> A
 B
<C> C
<D> D
<E> E
<F> F
<G> G
<H> H
<I> I
<J> J
<K> K
<L> L
<M> M
<N> N
<O> O
<P> P
<Q> Q
<R> R
<S> S
<T> T
<U> U
<V> V
<W> W
<X> X
<Y> Y
<Z> Z

<left-square-bracket> [
<backslash> \
<reverse-solidus> \
<right-square-bracket>]
<circumflex> |
<circumflex-accent> |
<underscore> _
<low-line> _
<grave-accent> v
<a> a
 b
<c> c
<d> d
<e> e
<f> f
<g> g

440 OS/390 V2R6.0 C/C++ Language Reference

<h> h
<i> i
<j> j
<k> k
<l> l

<m> m
<n> n
<o> o
<p> p
<q> q
<r> r
<s> s
<t> t
<u> u
<v> v
<w> w
<x> x
<y> y
<z> z

<left-brace> {
<left-curly-bracket> {
<vertical-line> |
<right-brace> }
<right-curly-bracket> }
<tilde> ˜

portable file name character set. The set of characters
from which portable file names are constructed. For a
file name to be portable across implementations
conforming to the ISO POSIX-1 standard and to
ISO/IEC 9945, it must consists only of the following
characters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 . _ -

The last three characters are the period, underscore,
and hyphen characters, respectively. The hyphen must
not be used as the first character of a portable file
name. Upper- and lower-case letters retain their unique
identities between conforming implementations. In the
case of a portable path name, the slash character may
also be used. X/Open. ISO.1.

portability. The ability of a programming language to
compile successfully on different operating systems
without requiring changes to the source code.

positional parameter. A parameter that must appear
in a specified location relative to other positional
parameters. IBM.

precedence. The priority system for grouping different
types of operators with their operands.

precompiled header. See PCH.

predefined macros. Frequently used routines provided
by an application or language for the programmer.

preinitialization. A process by which an environment
or library is initialized once and can then be used
repeatedly to avoid the inefficiency of initializing the
environment or library each time it is needed.

prelinker. A utility provided with OS/390 Language
Environment that you can use to process application
programs that require DLL support, or contain either
constructed reentrancy or external symbol names that
are longer than 8 characters. You require the prelinker,
or its equivalent function which is provided by the
binder, to process all C++ applications, or C
applications that are compiled with the RENT, DLL,
LONGNAME or IPA options. As of Version 2 Release 4,
the prelinker was superseded by the binder. See also
binder.

preprocessor. A phase of the compiler that examines
the source program for preprocessor statements that are
then executed, resulting in the alteration of the source
program.

preprocessor statement. In the C and C++ languages,
a statement that begins with the symbol # and is
interpreted by the preprocessor during compilation.
IBM.

primary expression. (1) An identifier, parenthesized
expression, function call, array element specification,
structure member specification, or union member
specification. IBM. (2) Literals, names, and names
qualified by the :: (scope resolution) operator.

printable character. One of the characters included in
the print character classification of the LC_CTYPE
category in the current locale. X/Open.

private. Pertaining to a class member that is only
accessible to member functions and friends of that
class.

process. (1) An instance of an executing application
and the resources it uses. (2) An address space and
single thread of control that executes within that
address space, and its required system resources. A
process is created by another process issuing the fork()
function. The process that issues the fork() function is
known as the parent process, and the new process
created by the fork() function is known as the child
process. X/Open. ISO.1.

process group. A collection of processes that permits
the signaling of related processes. Each process in the
system is a member of a process group that is
identified by the process group ID. A newly created
process joins the process group of its creator. IBM.
X/Open. ISO.1.

process group ID. The unique identifier representing a
process group during its lifetime. A process group ID is
a positive integer. (Under ISO only, it is a positive
integer that can be contained in a pid_t.) A process group
ID will not be reused by the system until the process
group lifetime ends. X/Open. ISO.1.

process group lifetime. A period of time that begins
when a process group is created and ends when the
last remaining process in the group leaves the group,

Glossary 441

|
|
|
|
|
|
|
|
|
|
|

because either it is the end of the last process' lifetime
or the last remaining process is calling the setsid() or
setpgid() functions. X/Open. ISO.1.

process ID. The unique identifier representing a
process. A process ID is a positive integer. (Under ISO
only, it is a positive integer that can be contained in a
pid_t.) A process ID will not be reused by the system
until the process lifetime ends. In addition, if there
exists a process group whose process group ID is equal
to that process ID, the process ID will not be reused by
the system until the process group lifetime ends. A
process that is not a system process will not have a
process ID of 1. X/Open. ISO.1.

process lifetime. The period of time that begins when
a process is created and ends when the process ID is
returned to the system. After a process is created with a
fork() function, it is considered active. Its thread of
control and address space exist until it terminates. It
then enters an inactive state where certain resources
may be returned to the system, although some
resources, such as the process ID, are still in use. When
another process executes a wait() or waitpid()
function for an inactive process, the remaining
resources are returned to the system. The last resource
to be returned to the system is the process ID. At this
time, the lifetime of the process ends. X/Open. ISO.1.

program object. All or part of a computer program in
a from suitable for loading into main storage for
execution. A program object is the output of the
OS/390 Binder and is a newer more flexible format
(e.g. longer external names) than a load module.

protected. Pertaining to a class member that is only
accessible to member functions and friends of that
class, or to member functions and friends of classes
derived from that class.

prototype. A function declaration or definition that
includes both the return type of the function and the
types of its parameters. See function prototype.

public. Pertaining to a class member that is accessible
to all functions.

pure virtual function. A virtual function that has a
function definition of = 0;. See also abstract classes.

Q
qualified class name. Any class name or class name
qualified with one or more :: (scope resolution)
operators.

qualified name. Used to qualify a nonclass type name
such as a member by its class name.

qualified type name. Used to reduce complex class
name syntax by using typedefs to represent qualified
class names.

Query Management Facility (QMF). Pertaining to an
IBM query and report writing facility that enables a
variety of tasks such as data entry, query building,
administration, and report analysis. IBM.

queue. A sequence with restricted access in which
elements can only be added at the back end (or bottom)
and removed from the front end (or top). A queue is
characterized by first-in, first-out behavior and
chronological order.

quotation marks. The characters " and ‘, also known
as double-quote and single-quote respectively. X/Open.

R
radix character. The character that separates the
integer part of a number from the fractional part.
X/Open.

real group ID. The attribute of a process that, at the
time of process creating, identifies the group of the user
who created the process. This value is subject to change
during the process lifetime, as describe in setgid().
X/Open. ISO.1.

real user ID. The attribute of a process that, at the
time of process creation, identifies the user who created
the process. This value is subject to change during the
process lifetime, as described in setuid(). X/Open.
ISO.1.

reason code. A code that identifies the reason for a
detected error. IBM.

reassociation. An optimization technique that
rearranges the sequence of calculations in a subscript
expression producing more candidates for common
expression elimination.

redirection. In the shell, a method of associating files
with the input or output of commands. X/Open.

reentrant. The attribute of a program or routine that
allows the same copy of a program or routine to be
used concurrently by two or more tasks.

reference class. A class that links a concrete class to
an abstract class. Reference classes make polymorphism
possible with the Collection Classes. Synonymous with
indirection class.

refresh. To ensure that the information on the user's
terminal screen is up-to-date. X/Open.

register storage class specifier. A specifier that
indicates to the compiler within a block scope data
definition, or a parameter declaration, that the object
being described will be heavily used.

register variable. A variable defined with the register
storage class specifier. Register variables have
automatic storage.

442 OS/390 V2R6.0 C/C++ Language Reference

regular expression. (1) A mechanism to select specific
strings from a set of character strings. (2) A set of
characters, meta-characters, and operators that define a
string or group of strings in a search pattern. (3) A
string containing wildcard characters and operations
that define a set of one or more possible strings.

regular file. A file that is a randomly accessible
sequence of bytes, with no further structure imposed
by the system. X/Open. ISO.1.

relation. An unordered flat collection class that uses
keys, allows for duplicate elements, and has element
equality.

relative path name. The name of a directory or file
expressed as a sequence of directories followed by a file
name, beginning from the current directory. See path
name resolution. IBM.

reserved word. (1) In programming languages, a
keyword that may not be used as an identifier.
ISO-JTC1. (2) A word used in a source program to
describe an action to be taken by the program or
compiler. It must not appear in the program as a
user-defined name or a system name. IBM.

RMODE (residency mode). In MVS, a program
attribute that refers to where a module is prepared to
run. RMODE can be 24 or ANY. ANY refers to the fact
that the module can be loaded either above or below
the 16M line. RMODE 24 means the module expects to
be loaded below the 16M line.

runtime library. A compiled collection of functions
whose members can be referred to by an application
program during runtime execution. Typically used to
refer to a dynamic library that is provided in object
code, such that references to the library are resolved
during the linking step. The runtime library itself is not
statically bound into the application modules.

S
saved set-group-ID. An attribute of a process that
allows some flexibility in the assignment of the
effective group ID attribute, as described in the exec()
family of functions and setgid(). X/Open. ISO.1.

saved set-user-ID. An attribute of a process that
allows some flexibility in the assignment of the
effective user ID attribute, as described in exec() and
setuid(). X/Open. ISO.1.

scalar. An arithmetic object, or a pointer to an object
of any type.

scope. (1) That part of a source program in which a
variable is visible. (2) That part of a source program in
which an object is defined and recognized.

scope operator (::). An operator that defines the scope
for the argument on the right. If the left argument is
blank, the scope is global; if the left argument is a class
name, the scope is within that class. Synonymous with
scope resolution operator.

scope resolution operator (::). Synonym for scope
operator.

semaphore. An object used by multi-threaded
applications for signalling purposes and for controlling
access to serially reusable resources. Processes can be
locked to a resource with semaphores if the processes
follow certain programming conventions.

sequence. A sequentially ordered flat collection.

sequential concatenation. Multiple sequential data
sets or partitioned data-set members are treated as one
long sequential data set. In the case of sequential data
sets, you can access or update the data sets in order. In
the case of partitioned data-set members, you can
access or update the members in order. Repositioning is
possible if all of the data sets in the concatenation
support repositioning.

sequential data set. A data set whose records are
organized on the basis of their successive physical
positions, such as on magnetic tape. IBM.

session. A collection of process groups established for
job control purposes. Each process group is a member
of a session. A process is a member of the session of
which its process group is a member. A newly created
process joins the session of its creator. A process can
alter its session membership; see setsid(). There can
be multiple process groups in the same session. X/Open.
ISO.1.

shell. A program that interprets sequences of text
input as commands. It may operate on an input stream
or it may interactively prompt and read commands
from a terminal. X/Open.

This feature is provided as part of the OS/390 Shell
and Utilities feature licensed program.

Short name. An external non-C++ name in an object
module produced by compiling with the
NOLONGNAME option. Such a name is up to 8
characters long and single case.

signal. (1) A condition that may or may not be
reported during program execution. For example,
SIGFPE is the signal used to represent erroneous
arithmetic operations such as a division by zero. (2) A
mechanism by which a process may be notified of, or
affected by, an event occurring in the system. Examples
of such events include hardware exceptions and
specific actions by processes. The term signal is also
used to refer to the event itself. X/Open. ISO.1. (3) A
method of interprocess communication that simulates
software interrupts. IBM.

Glossary 443

|
|

|
|
|

signal handler. A function to be called when the
signal is reported.

single-byte character set (SBCS). A set of characters
in which each character is represented by a one-byte
code. IBM.

single-precision. Pertaining to the use of one
computer word to represent a number in accordance
with the required precision. ISO-JTC1. ANSI/ISO.

single-quote. The character ‘, also known as
apostrophe. This character is named <quotation-mark> in
the portable character set.

slash. The character /, also known as solidus. This
character is named <slash> in the portable character
set.

socket. (1) A unique host identifier created by the
concatenation of a port identifier with a transmission
control protocol/Internet protocol (TCP/IP) address. (2)
A port identifier. (3) A 16-bit port-identifier. (4) A port
on a specific host; a communications end point that is
accessible though a protocol family's addressing
mechanism. A socket is identified by a socket address.
IBM.

sorted map. A sorted flat collection with key and
element equality.

sorted relation. A sorted flat collection that uses keys,
has element equality, and allows duplicate elements.

sorted set. A sorted flat collection with element
equality.

source module. A file that contains source statements
for such items as high-level language programs and
data description specifications. IBM.

source program. A set of instructions written in a
programming language that must be translated to
machine language before the program can be run. IBM.

space character. The character defined in the portable
character set as <space>. The space character is a
member of the space character class of the current
locale, but represents the single character, and not all of
the possible members of the class. X/Open.

spanned record. A logical record contained in more
than one block. IBM.

specialization. A user-supplied definition which
replaces a corresponding template instantiation.

specifiers. Used in declarations to indicate storage
class, fundamental data type and other properties of
the object or function being declared.

spill area. A storage area used to save the contents of
registers. IBM.

SQL (Structured Query Language). A language
designed to create, access, update and free data tables.

square brackets. The characters [(left bracket) and]
(right bracket). Also see brackets.

stack frame. The physical representation of the
activation of a routine. The stack frame is allocated and
freed on a LIFO (last in, first out) basis. A stack is a
collection of one or more stack segments consisting of
an initial stack segment and zero or more increments.

stack storage. Synonym for automatic storage.

standard error. An output stream usually intended to
be used for diagnostic messages. X/Open.

standard input. (1) An input stream usually intended
to be used for primary data input. X/Open. (2) The
primary source of data entered into a command.
Standard input comes from the keyboard unless
redirection or piping is used, in which case standard
input can be from a file or the output from another
command. IBM.

standard output. (1) An output stream usually
intended to be used for primary data output. X/Open.
(2) The primary destination of data coming from a
command. Standard output goes to the display unless
redirection or piping is used, in which case standard
output can go to a file or to another command. IBM.

statement. An instruction that ends with the character
; (semicolon) or several instructions that are
surrounded by the characters { and }.

static. A keyword used for defining the scope and
linkage of variables and functions. For internal
variables, the variable has block scope and retains its
value between function calls. For external values, the
variable has file scope and retains its value within the
source file. For class variables, the variable is shared by
all objects of the class and retains its value within the
entire program.

static binding. The act of resolving references to
external variables and functions before run time.

storage class specifier. One of the terms used to
specify a storage class, such as auto, register, static, or
extern.

stream. (1) A continuous stream of data elements
being transmitted, or intended for transmission, in
character or binary-digit form, using a defined format.
(2) A file access object that allows access to an ordered
sequence of characters, as described by the ISO C
standard. Such objects can be created by the fdopen()
or fopen() functions, and are associated with a file
descriptor. A stream provides the additional services of
user-selectable buffering and formatted input and
output. X/Open.

444 OS/390 V2R6.0 C/C++ Language Reference

|
|
|
|

string. A contiguous sequence of bytes terminated by
and including the first null byte. X/Open.

string constant. Zero or more characters enclosed in
double quotation marks.

string literal. Zero or more characters enclosed in
double quotation marks.

striped data set. A special data set organization that
spreads a data set over a specified number of volumes
so that I/O parallelism can be exploited. Record n in a
striped data set is found on a volume separate from the
volume containing record n - p, where n > p.

struct. An aggregate of elements having arbitrary
types.

structure. A construct (a class data type) that contains
an ordered group of data objects. Unlike an array, the
data objects within a structure can have varied data
types. A structure can be used in all places a class is
used. The initial projection is public.

structure tag. The identifier that names a structure
data type.

Structured Query Language. See SQL.

stub routine. A routine, within a runtime library, that
contains the minimum lines of code required to locate a
given routine at run time.

subprogram. In the IPA Link version of the Inline
Report listing section, an equivalent term for 'function'.

subscript. One or more expressions, each enclosed in
brackets, that follow an array name. A subscript refers
to an element in an array.

subsystem. A secondary or subordinate system,
usually capable of operating independently of or
asynchronously with, a controlling system. ISO Draft.

subtree. A tree structure created by arbitrarily
denoting a node to be the root node in a tree. A subtree
is always part of a whole tree.

superset. Given two sets A and B, A is a superset of B
if and only if all elements of B are also elements of A.
That is, A is a superset of B if B is a subset of A.

support. In system development, to provide the
necessary resources for the correct operation of a
functional unit. IBM.

switch expression. The controlling expression of a
switch statement.

switch statement. A C or C++ language statement that
causes control to be transferred to one of several
statements depending on the value of an expression.

system default. A default value defined in the system
profile. IBM.

System Object Model (SOM). Defines an IBM
interface between programs, or between libraries and
programs, so that an object's interface is separated from
its implementation. SOM allows classes of objects to be
defined in one programming language and used in
another, and it allows libraries of such classes to be
updated without requiring client code to be
recompiled. IBM.

system process. (1) An implementation-dependent
object, other than a process executing an application,
that has a process ID. X/Open. (2) An object, other than
a process executing an application, that is defined by
the system, and has a process ID. ISO.1.

T
tab character. A character that in the output stream
indicates that printing or displaying should start at the
next horizontal tabulation position on the current line.
The tab is the character designated by '\t' in the C
language. If the current position is at or past the last
defined horizontal tabulation position, the behavior is
unspecified. It is unspecified whether the character is
the exact sequence transmitted to an output device by
the system to accomplish the tabulation. X/Open.

This character is named <tab> in the portable character
set.

task library. A class library that provides the facilities
to write programs that are made up of tasks.

template. A family of classes or functions with
variable types.

template class. A class instance generated by a class
template.

Template Declaration. A prototype of a template
which can optionally include a template definition.

Template Definition. A blueprint the compiler uses to
generate a template instantiation.

template function. A function generated by a function
template.

Template Instantiation. Compiler generated code for a
class or function using the referenced types and the
corresponding class or function template definition.

terminals. Synonym for leaves.

text file. A file that contains characters organized into
one or more lines. The lines must not contain NUL
characters and none can exceed {LINE_MAX}—which is
defined in limits.h—bytes in length, including the

Glossary 445

new-line character. The term text file does not prevent
the inclusion of control or other unprintable characters
(other than NUL). X/Open.

thread. The smallest unit of operation to be performed
within a process. IBM.

throw expression. An argument to the C++ exception
being thrown.

tilde. The character ˜. This character is named <tilde>
in the portable character set.

token. The smallest independent unit of meaning of a
program as defined either by a parser or a lexical
analyzer. A token can contain data, a language
keyword, an identifier, or other parts of language
syntax. IBM.

traceback. A section of a dump that provides
information about the stack frame, the program unit
address, the entry point of the routine, the statement
number, and the status of the routines on the call-chain
at the time the traceback was produced.

trigraph sequence. An alternative spelling of some
characters to allow the implementation of C in
character sets that do not provide a sufficient number
of non-alphabetic graphics. ANSI/ISO.

Before preprocessing, each trigraph sequence in a string
or literal is replaced by the single character that it
represents.

truncate. To shorten a value to a specified length.

try block. A block in which a known C++ exception is
passed to a handler.

type conversion. Synonym for boundary alignment.

type definition. A definition of a name for a data
type. IBM.

type specifier. Used to indicate the data type of an
object or function being declared.

U
ultimate consumer. The target of data in an I/O
operation. An ultimate consumer can be a file, a device,
or an array of bytes in memory.

ultimate producer. The source of data in an I/O
operation. An ultimate producer can be a file, a device,
or an array of byes in memory.

unary expression. An expression that contains one
operand. IBM.

undefined behavior. Action by the compiler and
library when the program uses erroneous constructs or
contains erroneous data. Permissible undefined
behavior includes ignoring the situation completely

with unpredictable results. It also includes behaving in
a documented manner that is characteristic of the
environment, during translation or program execution,
with or without issuing a diagnostic message. It can
also include terminating a translation or execution,
while issuing a diagnostic message. Contrast with
unspecified behavior and implementation-defined behavior.

underflow. (1) A condition that occurs when the result
of an operation is less than the smallest possible
nonzero number. (2) Synonym for arithmetic underflow,
monadic operation. IBM.

union. (1) In the C or C++ language, a variable that
can hold any one of several data types, but only one
data type at a time. IBM. (2) For bags, there is an
additional rule for duplicates: If bag P contains an
element m times and bag Q contains the same element
n times, then the union of P and Q contains that
element m+n times.

union tag. The identifier that names a union data
type.

unnamed pipe. A pipe that is accessible only by the
process that created the pipe and its child processes. An
unnamed pipe does not have to be opened before it can
be used. It is a temporary file that lasts only until the
last file descriptor that uses it is closed.

unique collection. A collection in which the value of
an element only occurs once; that is, there are no
duplicate elements.

unrecoverable error. An error for which recovery is
impossible without use of recovery techniques external
to the computer program or run.

unspecified behavior. Action by the compiler and
library when the program uses correct constructs or
data, for which the standards impose no specific
requirements. Such action should not cause compiler or
application failure. You should not, however, write any
programs to rely on such behavior as they may not be
portable to other systems. Contrast with
implementation-defined behavior and undefined behavior.

user-defined data type. (1) A mathematical model that
includes a structure for storing data and operations that
can be performed on that data. Common abstract data
types include sets, trees, and heaps. (2) See also abstract
data type.

user ID. A nonnegative integer that is used to identify
a system user. (Under ISO only, a nonnegative integer,
which can be contained in an object of type uid_t.)
When the identity of a user is associated with a
process, a user ID value is referred to as a real user ID,
an effective user ID, or (under ISO only, and there
optionally) a saved set-user ID. X/Open. ISO.1.

user name. A string that is used to identify a user.
ISO.1.

446 OS/390 V2R6.0 C/C++ Language Reference

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

user prefix. In an MVS environment, the user prefix is
typically the user's logon user identification.

V
value numbering. An optimization technique that
involves local constant propagation, local expression
elimination, and folding several instructions into a
single instruction.

variable. In programming languages, a language
object that may take different values, one at a time. The
values of a variable are usually restricted to a certain
data type. ISO-JTC1.

variant character. A character whose hexadecimal
value differs between different character sets. On
EBCDIC systems, such as S/390, these 13 characters are
an exception to the portability of the portable character
set.

<left-square-bracket> [
<right-square-bracket>]
<left-brace> {
<right-brace> }
<backslash> \
<circumflex> |
<tilde> ˜
<exclamation-mark> !
<number-sign> #
<vertical-line> |
<grave-accent> v
<dollar-sign> $
<commercial-at> @

vertical-tab character. A character that in the output
stream indicates that printing should start at the next
vertical tabulation position. The vertical-tab is the
character designated by '\v' in the C or C++ languages.
If the current position is at or past the last defined
vertical tabulation position, the behavior is unspecified.
It is unspecified whether this character is the exact
sequence transmitted to an output device by the system
to accomplish the tabulation. X/Open. This character is
named <vertical-tab> in the portable character set.

virtual address space. (1) In virtual storage systems,
the virtual storage assigned to a batched or terminal
job, a system task, or a task initiated by a command. (2)
In VSE, a subdivision of the virtual address area
available to the user for the allocation of private,
non-shared partitions.

virtual function. A function of a class that is declared
with the keyword virtual. The implementation that is
executed when you make a call to a virtual function
depends on the type of the object for which it is called,
which is determined at run time.

Virtual Storage Access Method (VSAM). An access
method for direct or sequential processing of fixed and
variable length records on direct access devices. The
records in a VSAM data set or file can be organized in

logical sequence by a key field (key sequence), in the
physical sequence in which they are written on the data
set or file (entry-sequence), or by relative-record
number.

visible. Visibility of identifiers is based on scoping
rules and is independent of access.

volatile attribute. (1) In the C or C++ language, the
keyword volatile, used in a definition, declaration, or
cast. It causes the compiler to place the value of the
data object in storage and to reload this value at each
reference to the data object. IBM. (2) An attribute of a
data object that indicates the object is changeable. Any
expression referring to a volatile object is evaluated
immediately (for example, assignments).

W
while statement. A looping statement that contains
the keyword while followed by an expression in
parentheses (the condition) and a statement (the
action). IBM.

white space. (1) Space characters, tab characters,
form-feed characters, and new-line characters. (2) A
sequence of one or more characters that belong to the
space character class as defined via the LC_CTYPE
category in the current locale. In the POSIX locale,
white space consists of one or more blank characters
(space and tab characters), new-line characters,
carriage-return characters, form-feed characters, and
vertical-tab characters. X/Open.

wide-character. A character whose range of values can
represent distinct codes for all members of the largest
extended character set specified among the supporting
locales.

wide-character code. An integral value corresponding
to a single graphic symbol or control code. X/Open.

wide-character string. A contiguous sequence of
wide-character codes terminated by and including the
first null wide-character code. X/Open.

wide-oriented stream. See orientation of a stream.

working directory. Synonym for current working
directory.

writable static area. See WSA.

write. (1) To output characters to a file, such as
standard output or standard error. Unless otherwise
stated, standard output is the default output
destination for all uses of the term write. X/Open. (2) To
make a permanent or transient recording of data in a
storage device or on a data medium. ISO-JTC1.
ANSI/ISO.

WSA (writable static area). An area of memory in the
program that is modifyable during program execution.

Glossary 447

|
|
|
|

|
|
|
|

Typically, this area contains global variables and
function and variable descriptors for DLLs.

448 OS/390 V2R6.0 C/C++ Language Reference

Bibliography

This bibliography lists the publications for IBM products that are related to the
OS/390 C/C++ product. It includes publications covering the application
programming task. The bibliography is not a comprehensive list of the publications
for these products, however, it should be adequate for most OS/390 C/C++ users.
Refer to the OS/390 Information Roadmap, GC28-1727, for a complete list of
publications belonging to the OS/390 product.

Related publications not listed in this section can be found on the IBM Online
Library Omnibus Edition: MVS Collection CD-ROM (SK2T-0710), the IBM Online
Library Omnibus Edition: OS/390 Collection CD-ROM (SK2T-6700), or on a tape
available with OS/390.

OS/390
v OS/390 Printing Softcopy BOOKs, S544-5354
v OS/390 Introduction and Release Guide, GC28-1725
v OS/390 Planning for Installation, GC28-1726
v OS/390 Summary of Message Changes, GC28-1499
v OS/390 Information Roadmap, GC28-1727

VS COBOL II Release 4
v General Information, GC26-4042
v Migration Guide for MVS and CMS, GC26-3151
v Installation and Customization for MVS, SC26-4048
v Application Programming Guide for MVS and CMS, SC26-4045
v Application Programming Language Reference, GC26-4047
v Application Programming Reference Summary, SX26-3721
v Application Programming Debugging, SC26-4049
v Application Programming Diagnosis Guide, LY27-9523
v Application Programming Diagnosis Reference, LY27-9522

COBOL FOR MVS & VM Release 2
v Compiler and Run-Time Migration Guide, GC26-4764
v Programming Guide, SC26-4767
v Language Reference, SC26-4769
v Diagnosis Guide, SC26-3138
v Licensed Program Specifications, GC26-4761
v Installation and Customization under MVS, SC26-4766

© Copyright IBM Corp. 1996, 1998 449

|
|
|
|
|
|

COBOL for OS/390 & VM Version 2 Release 1
v Compiler and Run-Time Migration Guide, GC26-4764
v Programming Guide, SC26-9049
v Language Reference, SC26-9046
v Diagnosis Guide, GC26-9047
v Licensed Program Specifications, GC26-9044
v Installation and Customization under OS/390, GC26-9045
v Program Directory for VM

v Fact Sheet, GC26-9048

PL/I for MVS & VM Release 1 Modification 1
v Language Reference, SC26-3114
v Compiler and Run-Time Migration Guide, SC26-3118
v Programming Guide, SC26-3113
v Compile-Time Messages and Codes, SC26-3229
v Reference Summary, SX26-3821
v Diagnosis Guide, SC26-3149
v Installation and Customization under MVS, SC26-3119
v Licensed Program Specifications, GC26-3116

OS PL/I Version 2 Release 3
v Programming Guide, SC26-4307
v Programming: Language Reference, SC26-4308
v Programming: Messages and Codes, SC26-4309

VS FORTRAN Version 2 Release 6
v Programming Reference, SC26-4221
v Programming Guide, SC26-4222

CICS/ESA Version 4 Release 1
v Application Programming Reference, SC33-1170
v Application Programming Guide, SC33-1169
v Installation Guide, SC33-1163
v System Definition Guide, SC33-1164
v Resource Definition Guide, SC33-1166
v Messages and Codes, SC33-1177

CICS Transaction Server for OS/390 Release 2
v Application Programming Guide, SC33-1687
v Application Programming Reference, SC33-1688
v System Programming Reference, SC33-1689
v Distributed Transaction Programming Guide, SC33-1691
v Front End Programming Interface User’s Guide, SC33-1692

450 OS/390 V2R6.0 C/C++ Language Reference

|
|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

DB2 Version 3 Release 1
v SQL Reference, SC26-4890
v Reference Summary, SX26-3801
v Command and Utility Reference, SC26-4891
v Application Programming and SQL Guide, SC26-4889

DB2 Version 4 Release 1
v SQL Reference, SC26-3270
v Reference Summary, SX26-3829
v Command Reference, SC26-3267
v Application Programming and SQL Guide, SC26-3266
v Utility Guide and Reference, SC26-3395

DB2 Version 5 Release 1
v Administration Guide, SC26-8957
v Application Programming and SQL Guide, SC26-8958
v Call Level Interface Guide and Reference, SC26-8959
v Command Reference, SC26-8960
v Data Sharing: Planning and Administration, SC26-8961
v Installation Guide, GC26-8970
v Messages and Codes, GC26-8979
v SQL Reference, SC26-8966
v Reference for Remote DRDA Requesters and Servers, SC26-8964
v Utility Guide and Reference, SC26-8967

IMS/ESA Version 4 Release 1
v Application Programming: Design Guide, SC26-3066
v Application Programming: DL/I Calls, SC26-3062
v Application Programming: Data Communication, SC26-3058
v Application Programming: EXEC DL/I Commands, SC26-3063

IMS/ESA Version 5 Release 1
v Application Programming: Design Guide, SC26-8016
v Application Programming: Transaction Manager, SC26-8017
v Application Programming: Database Manager, SC26-8015
v Application Programming: EXEC DL/I Commands for CICS and IMS, SC26-8018

IMS/ESA Version 6 Release 1
v Application Programming: Design Guide, SC26-8728
v Application Programming: Transaction Manager, SC26-8729
v Application Programming: Database Manager, SC26-8727
v Application Programming: EXEC DL/I Commands for CICS and IMS, SC26-8726

Bibliography 451

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

QMF Version 3 Release 2
v Introducing QMF, GC26-4713
v Using QMF, SC26-8078
v Developing QMF Applications, SC26-4722
v Reference, SC26-4716
v Managing QMF for MVS, SC26-8218
v Reference, SC26-4716
v Messages and Codes, SC26-4834
v Installing on MVS, SC26-4719

VSAM
v MVS/ESA VSAM Catalog Administration: Access Method Services Reference,

SC26-4501
v MVS/ESA VSAM Administration: Macro Instruction Reference, SC26-4517
v MVS/ESA VSAM Administration Guide for MVS/DFP, SC26-4518
v MVS/ESA Integrated Catalog Administration: Access Method Services Reference,

SC26-4500
v DFSMS/MVS Access Method Services for VSAM, SC26-4905
v MVS/DFP Access Method Services for VSAM Catalogs, SC26-4570
v MVS/Extended Architecture VSAM Catalog Administration: Access Method Services

Reference (Data Facility Product, Version 2), GC26-4136

452 OS/390 V2R6.0 C/C++ Language Reference

|

|

|

|

|

|

INDEX

Special Characters
[] array subscript operators 140
−− decrement operator 143
? : conditional operators 160
/= compound assignment operator 164
*= compound assignment operator 164
&= compound assignment operator 164
+= compound assignment operator 164
\ continuation character 65, 220
== equal to operator 156
\ escape character 67
++ increment operator 142
&& logical AND operator 158
!= not equal to operator 156
?? trigraphs 53
+ addition operator 153
& address operator 144
__ANSI__ macro 231
__BFP__ macro 231
& bitwise AND operator 157
__cdecl 123
, comma operator 165
/ division operator 153
″ double quotation mark 65
__EXTENDED__ macro 231
* indirection operator 145
! logical negation operator 144
* multiplication operator 152
preprocessor directive character 220
preprocessor operator 225
= simple assignment operator 162
˜ bitwise negation operator 144
| (caret)

locale 52
|= compound assignment operator 164
| bitwise exclusive OR operator 157
>= greater than or equal to operator 155
>>= compound assignment operator 164
>> right-shift operator 154
> greater than operator 155
<= less than or equal to operator 155
<<= compound assignment operator 164
<< left-shift operator 154
< less than operator 155
_LONG_LONG macro 236
| (vertical bar)

locale 52

Numerics
370 macro 236

A
abort function 395
abstract classes 363
access

base classes 350
constructors 325
declarations 291, 351

access (continued)
derived class 349
effective 354
exception handling 387
friends 309
inherited member 349
members 304
multiple 357
private 350
protected members 350
public 350
resolution 353
specifiers 305, 348, 350
summary example 355
virtual function 362

accessibility 304, 353, 357
additive operators

addition + 153
subtraction − 154

address operator & 144
aggregate classes

constructors and destructors 325
description 282

aggregate operands 135
ALIAS compile option 262
alignment rules

changing with #pragma pack 267
allocation expressions 147
ambiguities

base classes 356, 358
conversions 169
resolving 205
virtual functions 361

AND operator (bitwise) & 157
AND operator (logical) && 158
anonymous

unions 117
unions in C 116

ANSI
implementation-defined behavior 411

ANSI flagging 259
ANSI/ISO 411
ANSI macro 231
argc (argument count) 184

argument to main 184
in different environments 40

argument count (argc) 184
argument-matching conversions 313
argument vector (argv) 184
arguments

best-matching 313
command line 35
const 314
default 190, 326
default initializers in templates 366
matching 312
pass by reference 188
passing 40
template

matching 374, 376
nontype 371

arguments (continued)
template (continued)

type 369
to main function 35
trivial conversions 314, 374
virtual functions 360
volatile 314

arguments in a function call 185
arguments to main

envp (environment pointer) 184
argv (argument vector) 184

argument to main 184
in different environments 40
restriction 40

arithmetic
conversions 170
operands 135

arrays
ANSI/ISO conformance 414
class members 292
declaring 100
operands 135
subscripting operator

overloading 320
subscripting operators 140

arrow operator 141
ASCII character codes 67
assignment

memberwise 319
operators

copying classes 341
default for classes 340
overloading 319

assignment expression
compound 164
description 162
simple 162

associativity of operators 133
auto storage class specifier 73

B
base classes

abstract 363
access 349, 350
ambiguities 356, 358
description 346
direct 345, 356
indirect 345, 356
initialization 336, 338
multiple 356
multiple access 357
pointers to 348, 353, 360
virtual 357, 359

base list 346, 348, 356
base specifier 348
best-matching arguments 313
BFP macro 231
binary expression 152
binary operators

addition operator + 153

© Copyright IBM Corp. 1996, 1998 453

binary operators (continued)
bitwise AND operator & 157
bitwise inclusive OR operator | 158
bitwise OR operator | 157
description 152
division operator / 153
equality operator == 156
greater than operator > 155
inequality operator != 156
left-shift operator << 154
less than operator < 155
logical AND operator && 158
logical OR operator || 159
multiplication operator * 152
overloading 318
remainder operator % 153
right-shift operator >> 154
subtraction operator (−) 154

binding
dynamic 346
static 346
virtual functions 359

bit fields 110, 292
ANSI/ISO conformance 414

bitwise operators
AND & 157
exclusive OR | 157
inclusive OR | 158
left-shift << 154
negation operator ˜ 144
right-shift >> 154

block
scope 46
visibility 47

block scope
in C 35

block scope data declarations
auto 73
description 70
register 81
static 82

block statement 198
boundaries, data 129
brackets [] 140
break statement 200

C
C and C++ differences 401
call, function 185
call scope 353
carriage return escape sequence \r 67
case label 213
cast

argument-matching conversions 313
expressions 145
function style 328

catch
argument matching 387
exceptions 387
keyword 382
no match 395

char constant 64
char type specifier 86
character

constant 64
constants 64

character (continued)
data types 86
set 51
string constant 65

characters
escape sequence 67

chars pragma 247
checkout pragma 248
class key 282
class member access operators

argument-matching conversions 314
description 141
overloading 320

class member lists 291
class members 291
class names

description 283
scope 286

class object 72
class operands 135
class scope 47
class templates

declarations 370
definitions 370
description 369
friends 379
instantiation 369
member functions 377
static members 380

classes 343, 345
abstract 363
aggregate 282, 325
class templates 369
class-type members 292
constructors 325
conversions 334
copying

by assignment 341
by initialization 341
restrictions 340

declarations 282
derivation 346
destructors 325
friends 306
incomplete declarations 287, 292, 346
inheritance 343
initialization 336
local 288
member access 304
member functions 293
member lists 291
member scope 295
members 291
nested 287, 308, 352
objects 72
overloading

functions 311
operators 315, 317

overview 281
packing

using #pragma pack 267
scope 286
special member functions 325
static members 300
this pointer 298
virtual 359
virtual base 357

classes 343, 345 (continued)
virtual member functions 359

COBOL linkage 261
CODESET macro 232
comma operator 165
command-line arguments

main function 35
passing 40

comment pragma 248
comments 54
COMMONC macro 232
COMPAT macro 232
compatible types 161
COMPILER_VER macro 232
complete class name 348
compound statement 198
conditional compilation

description 237
elif preprocessor directive 238
if preprocessor directive 238
ifdef preprocessor directive 239
ifndef preprocessor directive 239

conditional expression ? : 160
conditional statements

if 209
switch 213

conforming to ANSI/ISO 411
conforming to POSIX 409
const

arguments 314
qualifier 120

constant
character 64
member functions 293
string 65

constant expression 138
constants

character 64
description 60
enumeration 91
escape sequence 67
escape sequences 67
fixed-point decimal 63
floating-point 62
integer 60
string 65

construction order
of class objects 327
of derived class objects 339

constructors
construction order 327, 339
conversion by 335
copy 327, 340, 341
default 326, 338
derived class objects 339
description 326
exception handling 391
explicitly constructing objects 328
initialization by 336
initializer 338
overview 325
templates 370, 378
temporary objects 333
virtual 325

continuation character 65, 220
continue statement 202

454 OS/390 V2R6.0 C/C++ Language Reference

control statements
break 200
continue 202
goto 208
return 211

conversion functions 335
conversions

ambiguous 169
arguments 313
arithmetic 170
cast 145
derived class 359
sequence 313
standard 167
trivial 314
user-defined

by constructor 335
conversion functions 335

convlit pragma 249
copy constructors 327, 340, 341
copy restrictions 340
copying

class objects 340
copying class objects 340
csect pragma 250

D
data

abstraction 42
hiding 43

data members
description 292
scope 295
static 302

DATE macro 230
deallocation expression 151
decimal

data type operators 147
decimal constant 61
decimal data type

operators 147
declarations

access 351
class

description 282
incomplete 287, 292, 346
syntax 282

class member 291
class templates 370
description 69
file scope 70, 71
friend 306, 309
function 174

matching 312
resolving ambiguities 205

function templates 376
in source files 32
matching 312
parameter 181
pointers to members 297
resolving ambiguous statements 205
template functions 376

declarators
array 100
character 86
description 119

declarators (continued)
floating-point 87
integer 90
member 291
pointer 95
restrictions 415
union 115

decrement operator −− 321
decrement operator (−−) 143
default

arguments 325, 326
assignment operator 340
constructors 326, 338
copy constructors 341
initializers in templates 366
member access 305

default clause 213
default label 213
define pragma 251
define preprocessor directive 221
defined, preprocessor operator 238
defined unary operator 238
definitions

class templates 370
function templates 376
in source files 32
macro 221
member function 293
template classes 370
template functions 376

delete operator
description 151
free store 330
overloading 322

dereferencing operator 145
derived classes

access 349
access declarations 351
base list 346, 348
catch block 388
construction order 339
description 346
initialization 336
pointers to 348, 353, 360
syntax 348

destructors
description 328
destruction order 329
exception handling 391
overview 325
thrown objects 329
virtual 325, 329

diagnostic messages 416
differences between C and C++ 401
digitsof operator 147
digraph sequences 53
direct base class 345, 356
directives 32
disjoint pragma 251
division operator (/) 153
DLL macro 232
DLLs (Dynamic Link Libraries)

#pragma export 253
do statement 203
dominant names 348
dot operator 141

double byte character set (DBCS)
comments 55

double precision
constants 62
variables 87

double type specifier 87
dynamic binding

in object-oriented programming 44
virtual functions 346

E
EBCDIC character codes 67
effective access 354
elaborated type specifier 286
elif preprocessor directive 238
ellipsis

argument-matching conversions 313
function call operator 320
in overloaded operator 317
type checking 182
user-defined conversions 313

else clause 209
else preprocessor directive 240
empty argument list 182
encapsulation 43
end of string 65
endif preprocessor directive 240
enum 90
enumeration

ANSI/ISO conformance 414
enum data types 90
enumeration constant 91

enumeration operands 135
enumerator 91
environment

implementation-defined
behavior 419

pragma 252
environment pointer argument

(envp) 184
envp (environment pointer

argument) 184
equal to operator == 156
equality operators

equal to == 156
not equal to != 156

error
message classes 416

error handling
ANSI/ISO conformance 416

error message classes 416
error messages 242
error preprocessor directive 228
escape character \ 67
escape sequence 67, 412
evaluation, expression 133
examples

cbc3raa 201
cbc3raa1 199
cbc3raa2 200
cbc3raa3 202
cbc3raa4 203
cbc3raa6 209
cbc3raa7 217
cbc3raa8 224
cbc3raa9 224

INDEX 455

examples (continued)
cbc3raaa 33
cbc3raab 34
cbc3raaf 74
cbc3raag 75
cbc3raai 80
cbc3raak 83
cbc3raam 100
cbc3raan 93
cbc3raao 105
cbc3raap 106
cbc3raaq 98
cbc3raas 112
cbc3raat 180
cbc3raau 183
cbc3raav 176
cbc3raaw 177
cbc3raax 187
cbc3raay 188
cbc3rabc 241
cbc3rabd 242
cbc3rabe 256
cbc3rabg 416
cbc3rabi 215
cbc3rah1 79
cbc3rah2 79
cbc3rah3 79
cbc3raj1 83
cbc3raj2 83
cbc3rmax 34
cbc3x02d 46
cbc3x02f 48
cbc3x02g 48
cbc3x02h 49
cbc3x02i 49
cbc3x02j 50
cbc3x02k 66
cbc3x02l 68
cbc3x06a 189
cbc3x06b 190
cbc3x06c 140
cbc3x07e 204
cbc3x08a 236
cbc3x08b 236
cbc3x08c 237
cbc3x10a 305
cbc3x10b 284
cbc3x10c 282
cbc3x10d 282
cbc3x10e 286
cbc3x11a 295
cbc3x11b 297
cbc3x11c 298
cbc3x11d 299
cbc3x11e 301
cbc3x11f 302
cbc3x11g 303
cbc3x11h 304
cbc3x11i 306
cbc3x11j 307
cbc3x12a 311
cbc3x12b 315
cbc3x12c 317
cbc3x12d 321
cbc3x12e 322
cbc3x13a 337
cbc3x14a 347

examples (continued)
cbc3x14b 347
cbc3x14c 348
cbc3x14d 352
cbc3x14e 353
cbc3x14f 355
cbc3x14g 358
cbc3x15a 367
cbc3x15b 377
cbc3x16a 385
cbc3x16b 389
cbc3x16c 390
cbc3x16d 391
cbc3x16f 386
machine-readable 9
naming of 9
softcopy 9

exception handling
access 387
catching exceptions 387
constructors 391
destructors 391
exception specifications

empty 394
unexpected 394

order of catching 388
overview 381
resumption model 384
rethrowing exceptions 389
special functions 395
syntax 382
termination model 384
throw 329
transferring control 384

exception specification syntax 393
exclusive OR operator (bitwise) | 157
explicit definitions

member function templates 377
template classes 373, 380
template functions 375

explicit initialization 336
explicit type conversions 145
exponent 63
export1 125
exporting functions

with #pragma export 253
expressions

allocation 147
assignment 162
binary 152
cast 145
comma 165
conditional 160
constant 138
deallocation 151
description 133
evaluation of 133
list 336
lvalue 136
parenthesized 137
pointer-to-member 160
primary 136
resolving ambiguous statements 205
statement 205
throw 152
unary 142

EXTENDED macro 231

extern declaration 76
extern storage class specifier 75
external

linkage 38
names

length of 59
long name support 59
mapping 58

static 78
external declaration 34
external linkage 38
extraction operator 48

F
FETCHABLE preprocessor directive 260
field, bit 110
file inclusion 228
FILE macro 230
file scope 47, 377

in C 36
file scope data declarations

description 71
extern 75
static 82

files
implementation defined

behavior 418
FILETAG macro 232
filetag pragma 253
fixed-point decimal

constant 63
data type 88

float type specifier 87, 90
floating point

constant 62
floating-point

conversions 168
range 413
storage 413

floating-point variables
double 87
float 87
long double 87

for statement 206
formal exception handling 382
FORTRAN linkage 261
free store

delete operator 151
description 330
new operator 147

friends
access 309
description 306
member functions 293
nested classes 308
scope 308
templates 379
virtual functions 361

function call operator 319
function declarator 180
function-like macro 222
FUNCTION macro 232
function scope 47

in C 36
function style cast

constructing an object 328

456 OS/390 V2R6.0 C/C++ Language Reference

function templates
description 373
friends 379
members 377

functions
argument conversions 314
arguments 313
body 182
calling functions 139, 185
conversion 335
declarations 174
declarator 180
default arguments 190
definitions 178
exception specifications 393
friend 306
inline 195
main 184
operator delete() 330
operator new() 330
overloading 311
overview 173
parameter 185
pointers to 193
polymorphic 346
prototypes 178
return statements 211
return values 192
specifiers 129, 195
template 373
virtual 294, 346, 359, 361
void 176

functions, main 35

G
global variables 75
goto statement 208
greater than operator > 155
greater than or equal to operator >= 155

H
handler list 382
hdrstop pragma 254
hexadecimal constant 61
hexadecimal numbers as escape

sequences 67
HHW370 macro 233
hidden

names 137, 285, 286
virtual functions 360

HOSMVS macro 233

I
IBMC macro 233
IBMCPP macro 233
identifier linkage 37
identifier names

limit 59
identifiers 56

ANSI/ISO conformance 411
identifiers in OS/390 C/C++

external names 58
if preprocessor directive 238

if statement 209
ifdef preprocessor directive 239
ifndef preprocessor directive 239
implementation-defined behavior 411
implementation dependency

allocation of floating-point types 87
allocation of integral types 89
bit field length 110
class member allocation 292
order of argument passing 186
sign of char 86
size_t 322, 330

implementation pragma 255
implicit conversions 167
implicit declaration 174
include preprocessor directive 228
inclusive OR operator (bitwise) | 158
incomplete class declarations 287, 292,

346
increment operator ++ 142, 321
indentation of code 220
indirect base class 345, 356
indirection operator * 145
info pragma 255
inheritance

design using 345
graph 345, 357
in object-oriented programming 43
multiple 344, 356
overview 343
single 343

initial expression 127
initialization

by constructor
base classes 338
explicit 336
members 338

by copying 341
member lists 325
members 292
static data members 303

initializers
array 102
character 86
constructors 336
description 127
floating 87
integer 90
structure 108

inline
functions

constructors 325
description 195
specifiers 129

keyword 195
member functions

description 294
template 378

pragma 255
inline pragma 255
inlining functions 255
input

operator 48
record 272

input operator 48
input/output overview 47
insertion operator 48

instantiation
member function templates 377
template classes 369, 380
template functions 376

int constant 60
int type specifier 90
integer

ANSI/ISO conformance 413
conversions 168
data types 89
floating-point constant 62
integer constants 60

integral
operands 135
promotions 167, 313

internal linkage 38
isolated_call pragma 257

K
keywords

__cdecl 123
description 57
export2 125

L
label statement 197
langlvl pragma 259
left-shift operator << 154
less than operator < 155
less than or equal to operator <= 155
library functions 416
limits

floating-point 413
integer 413

line continuation
escape sequence, as an 67
preprocessor directives, in 220
string constants, in 65

LINE macro 230
line preprocessor directive 241
linkage of identifiers 37
linkage pragma for interlanguage

calls 260
linkage specifications 50
linking to non-C++ programs 50
literal 65
local

classes 288
scope 35, 46
type names 289
variables 35, 70

LOCALE macro 233
localization 420
logical AND operator && 158
logical negation operator ! 144
logical OR operator || 159
long double type specifier 87
long long

conversions 168
long long type specifier 89
long name support 59
long type specifier 89
LONGNAME compiler option 59
LONGNAME macro 234

INDEX 457

longname pragma 261
loop statements

do 203
for 206
while 216

lvalue 136

M
macro

definition 221, 222
invocation 222

main function 35, 184
main function, parameters 35
map pragma 262
margins pragma 264
matching arguments

description 312
exception handling 387
template functions 374, 376

member functions
constant 293
constructors 325
definition 293
description 293
destructors 325
inline 294
local classes 289
overloading operators 316
special 294, 325
static 303
templates 377
this pointer 298, 362
volatile 293

member lists 283, 291
member of a structure 108
members

access
default 305
inherited 349
public, private, and protected 305

arrays 292
class member access operators 141
class type 292
data 292
declaration 291
declarator 291
inherited 346
initialization 336, 338
initializer list 325
of classes 291
overloading class access

operators 320
pointers to 160, 297
protected 350
scope 295
static 288, 300
virtual functions 294

memberwise assignment 319
memory

data mapping 129
management 419

minus, unary operator 143
modifying access 351
modulo operator % 153
multibyte characters

ANSI/ISO conformance 412

multibyte characters (continued)
overview 412

multiple
access 357
inheritance 344, 356

multiplicative operators
division / 153
multiplication * 152
remainder % 153

MVS (Multiple Virtual System)
variable names 58

MVS macro 234
MVS variable names 58

N
name spaces 39
names

class 283, 286
dominant 348
hidden 137, 285, 286
local type 289
types 394

naming
classes 39
external names 58
long names 59

negation operators
bitwise ˜ 144
logical ! 144

nested classes
access declarations 352
friend scope 308
scope 287

nested template arguments 369
nested try blocks 388
nested visibility 35
nesting level limits 417
new-line character

escape sequence \n 66, 67
white space, as 220

new operator
description 147
free store 330
overloading 322

noinline pragma 255, 265
NOLONGNAME compiler option 59
nolongname pragma 261
nomargins pragma 264
nosequence pragma 272
not equal to operator != 156
null character \0 65
null pointer 168
NULL pointer 96
null statement 210
number sign (#)

preprocessor directive character 220
preprocessor operator 225

O
object-like macro 221
objects

base class 357
class

copying 340

objects (continued)
class (continued)

declarations 284
initialization 336

construction order 327
of class objects 327
of derived classes 339

constructors 326
conversion to 334
data abstraction 42
description 72
destruction order 329
destructors 326
explicitly constructing 328
temporary 193, 326, 330, 333

octal constant 62
octal numbers as escape sequences 67
one’s complement operator ˜ 144
operator 225
operator delete() function 330
operator new() function 330
operators 225

.* (pointer-to-member) 160
:: (scope resolution) 137
. (dot) 141
->* (pointer-to-member) 160
-> (arrow) 141
additive

addition operator + 153
subtraction − 154

assignment
compound 164
copying classes 341
default 340
description 162
overloading 319
simple = 162

associativity 133
binary 152, 318
bitwise AND & 157
bitwise exclusive OR | 157
bitwise inclusive OR | 158
bitwise shift

left-shift << 154
right-shift >> 154

comma 165
conditional ? : 160
delete

description 151
free store 330
overloading 322

digitsof 147
equality

equal to == 156
not equal to != 156

equality operators 156
logical AND && 158
logical OR || 159
multiplicative

division / 153
multiplication * 152
remainder % 153

new
description 147
free store 330
overloading 322

458 OS/390 V2R6.0 C/C++ Language Reference

operators 225 (continued)
overloading

arrow 320
binary 318
description 315
dot 320
general rules 316
increment 321
restrictions 317
subscripting 320
unary 317

pointer to member 297
pointer-to-member 160
precedence and associativity 133
precisionof 147
preprocessor

225
226

primary 136
array subscripting [] 140

relational
greater than > 155
greater than or equal to >= 155
less than < 155
less than or equal to <= 155

relational operators 155
scope resolution 347, 354, 358, 361
unary 142

address operator & 144
bitwise negation operator ˜ 144
decrement operator −− 143
increment operator (++) 142
indirection operator * 145
logical negation operator ! 144
overloading 317
sizeof operator 146
unary minus operator (−) 143
unary plus operator (+) 143

optimization
inlining 255

options
compiler

overriding defaults 266
specifying 266

pragma 266
run-time 271

OR operator (logical) || 159
order

of catching exceptions 388
template declaration 370, 376

OS linkage 261
output

operator 48
output operator 48
overloading

functions
access declarations 353
argument matching 312
arguments 313
declaration matching 312
restrictions 312

operators
argument matching 312
assignment 319
class member access 320
decrement 321
delete 322, 331, 332

overloading (continued)
operators (continued)

description 315
function call 319
general rules 316
increment 321
member functions 316
new 322, 331
operands 316
restrictions 317
subscript 320

resolution for template functions 374
special operators 319

overriding virtual functions 360, 362

P
pack pragma 267
packed

assignments and comparisons 163
structures 112, 186
unions 115, 186

Packed qualifier 122
page pragma 270
pagesize pragma 270
parameter declaration list 181
parameter passing 185
parameters, to main function 35
parenthesis

for calling functions 139
for grouping expressions 137

pass by reference 188
passing a value 187
passing an address 187
phases of preprocessing 220
PL/I linkage 261
placement syntax 149, 331
plus, unary operator 143
pointer to member

conversions 169
declarations 297

pointer-to-member
operators 160

pointers
arrays 414
conversions 168
description 94
this 298
to functions 193
to members 160, 297

polymorphism 346, 348
in object-oriented programming 44

portability issues 411
POSIX 409
pound sign (#)

preprocessor directive character 220
preprocessor operator 225

pragma definitions
define 251
implementation 255
info 255
noinline 265
priority 270

pragma directives
csect 250
exporting functions and

variables 253

pragma directives (continued)
linkage 260
runopts 271
variable 275
wsizeof 275

pragmas
chars 247
checkout 248
comment 248
convlit 249
csect 250
define 251
disjoint 251
environment 252
filetag 253
hdrstop 254
implementation 255
info 255
inline 255
IPA considerations 247
isolated_call 257
langlvl 259
longname 261
map 262
margins 264
noinline 255, 265
nolongname 261
nomargins 264
nosequence 272
options 266
pack 267
page 270
pagesize 270
priority 270
runopts 271
sequence 272
skip 273
strings 273
subtitle 274
target 274
title 275
variable 275
wsizeof 275

precedence of operators 133
precisionof operator 147
predefined macros

370 236
ANSI 231
BFP 231
CODESET 232
COMMONC 232
COMPAT 232
COMPILER_VER 232
DATE 230
DLL 232
EXTENDED 231
FILE 230
FILETAG 232
FUNCTION 232
HHW370 233
HOSMVS 233
IBMC 233
IBMCPP 233
LINE 230
LOCALE 233
LONGNAME 234
MVS 234

INDEX 459

predefined macros (continued)
SAA 231
SAAL2 231
SOM_ENABLED 234
STDC 230
STRING_CODE_SET 234
TARGET_LIB 235
TEMPINC 234
THW370 235
TIME 231
TIMESTAMP 235
TOSMVS 236

preprocessing, phases of 220
preprocessing directives

ANSI/ISO conformance 415
preprocessor directive character 220
preprocessor directives

operator 226
operator 225
conditional compilation 237
define 221
else 240
endif 240
error 228
format of 220
include 228
line control 241
pragma 243
undef 225

preprocessor operator
225
226

primary expression 136
priority pragma 270
private keyword 305, 350
program, running 35
program entry point 184
program linkage 37
promotions (integral) 167, 313
protected keyword 305, 339
protected member access 350
prototype 178
public derivation 350
public keyword 305, 339, 350
pure specifier 292, 294, 329, 361, 363

Q
qualified

class name 137
type name 288

qualifiers
_Packed 122
const 120
volatile 120

R
record

margins 264
sequence numbers 272

recursive
function calls 139

reentrancy
variables 275

reentrant variables 275

reference scope 353
references

conversions 169
description 129
initialization 130
pass by reference 188
return types 193
temporary objects 333

register
storage class specifier 81

register storage class specifier 81
registers

ANSI/ISO conformance 414
relational operators

greater than > 155
greater than or equal to >= 155
less than < 155
less than or equal to <= 155

remainder operator % 153
restoring access 351
resumption model 384
rethrowing exceptions 389
return statement 192, 211
return types

description 192
references 193

return values 176, 192
right-shift operator >> 154
running, starting point 35
runopts pragma 271
runtime

options 271

S
SAA macro 231
SAAL2 macro 231
scalar operands 135
scope

block 35
call 353
class names 286
description 35, 46
file 36
friend 308
function 36
local classes 288
member 295
nested classes 287
reference 353

scope resolution operator
ambiguous base classes 358
class member access 354
description 137
inheritance 347
virtual functions 361

sequence pragma 272
set_new_handler() library function 150
set_terminate() library function 395
set_unexpected() library function 395
shift operators (<< and >>) 154
shift states 412
short type specifier 89
signal

function 417
handler 383

signal handler 383

signed char type specifier 86
signed int 89
signed long 89
signed long long 89
simple assignment operator = 162
simple I/O 47
single inheritance 343
sizeof operator 146
skip pragma 273
SOM_ENABLEDmacro 234
source

files 33
program 32

margins 264
variable names 58

space character 220
special functions

member functions 325
used in exception handling 395

special member functions 294
specifications

exception 393
linkage 50

specifiers
access 305, 348, 350
base 348
class 282
declaration 291
inline 129, 195
pure 292, 294
virtual 129

splice preprocessor directive ## 226
standard conversions 167
statements

ANSI/ISO conformance 415
block 198
break 200
continue 202
do 203
expression 205
for 206
goto 208
if 209
labels 197
null 210
overview 197
resolving ambiguities 205
return 192, 211
switch 213
while 216

static
binding 44, 346
data members 302
initialization of data members 303
member functions 303
members 288, 300
storage class specifier 82

STDC macro 230
storage class specifiers

auto 73
extern 75
register 81
static 82

storage duration 39
storage of variables 129
streams 418

460 OS/390 V2R6.0 C/C++ Language Reference

string
constants 65
literals 65

STRING_CODE_SET macro 234
strings

conversion 413
strings pragma 273
struct type specifier 107
structures

ANSI/ISO conformance 414
packing

using _Packed qualifier 112
using #pragma pack 267

subdeclarator 120
subscript declarator

description 120
in arrays 101

subscript operator
overloading 320

subscripts 140
subtitle pragma 274
subtraction operator − 154
switch statement 212
syntax diagrams, how to read 10

T
tab character

horizontal escape sequence \t 67
vertical escape sequence \v 67
white space, as 220

TARGET_LIB macro 235
target pragma 274
TEMPINC macro 234
template classes

declaration 370
definition 370
description 369
explicit definition 373, 380
instantiation 380

template functions
declarations 376
definitions 376
description 373
explicit definition 375
grouping definitions of 375
instantiation 376
overloading resolution 374

templates
#pragma define 251
#pragma implementation 255
argument

list 366, 369
nested list 370
nontype 371

class templates 369
constructors 370, 378
declaration 366
default initializers 366
friends 379
function templates 373
identifier 366
member functions 377
pragma define 251
pragma implementation 255
static data members 380
syntax 365

temporary objects 193, 326, 330, 333
terminate function 395
termination model 384
this pointer 298, 314, 362
throw

argument matching 387
expression 152, 382, 388
keyword 382
point 384
rethrowing exceptions 389

THW370 macro 235
time 420
TIME macro 231
TIMESTAMP macro 235
title pragma 275
TMP_MAX macro 419
tmpnam() library function 419
tokens 51, 219
TOSMVS macro 236
translation

limits 417
translation limits 417
trigraphs 53
trivial conversions 314
try

blocks 382
keyword 382
nested blocks 388

type
data mapping 129

type checking 182
type conversions 167
type declarations

array 100
character 86
enumerations 90
fixed-point decimal 88
floating-point 87
functions 178
integer 89
pointer 94
scalar 85
structure 106
typedef 84
union 113
void 99

type names
exception specification syntax 394
local 289
scope 46

type qualifiers
_Packed 122
const 120
volatile 120

type specifier
(long) double 87
char 86
enumeration 90
float 87
int 89, 90
long 89
long long 89
short 89
union 115
unsigned 89

typedef 261

typedef specifier
class declaration 289
description 84
local type names 289
pointers to members 297
qualified type name 288
restrictions on overloaded

functions 312
types

aggregate classes 282
conversions 145
data abstraction 42

U
unary expression 142
unary minus operator − 143
unary operators

address operator (&) 144
bitwise negation operator ˜ 144
decrement operator (−−) 143
increment operator ++ 142
indirection operator * 145
logical negation operator ! 144
minus 143
overloading 317
plus 143
sizeof operator 146

unary plus operator (+) 143
undef preprocessor directive 225
underscores in identifiers 58
unexpected() library function 393
unexpected function 395
union specifier 114
unions

anonymous in C 116
anonymous in C++ 117
ANSI/ISO conformance 414
constructors and destructors 325
member destructors 329
packing

using _Packed qualifier 115
using #pragma pack 267

unsigned char type specifier 86
unsigned int type specifier 89
unsigned long long type specifier 89
unsigned long type specifier 89
unsigned short type specifier 89
unsigned type specifier 89
user-defined

conversions 313, 334
types 281

V
variable arguments 182
variable pragma 275
variables

array 100
block scope data declarations 70
character 86
enumeration 90
file scope data declarations 71
floating-point 87
integer 89
local 35

INDEX 461

variables (continued)
names 58
pointer 94
storage of 129
structure 106
union 113

virtual
base classes 357, 359
destructors 325
function specifier 129
functions

access 362
ambiguous calls to 361
description 359
dynamic binding 346
hidden 360
overriding 360, 362
pure 363

keyword 348
member functions 294

visibility
block 35, 47
class members 304
description 35
nested 35

void 99
void function 176
volatile

keyword 314
member functions 293
qualifier 120

W
wchar_t 64
while statement 216
white space 54, 219, 220, 225
wide character constant 64
wide characters

ANSI/ISO conformance 412
wsizeof pragma 275

462 OS/390 V2R6.0 C/C++ Language Reference

Readers’ Comments — We’d Like to Hear from You

OS/390
C/C++
Language Reference

Publication No. SC09-2360-03

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SC09-2360-03

SC09-2360-03

IBM
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR
1150 EGLINTON AVENUE EAST
NORTH YORK ONTARIO CANADA

M3C 1H7

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBM

Printed in the United States of America

SC09-2360-03

	Contents
	Notices
	Standards
	Trademarks

	Part 1. Introduction
	Chapter 1. About This Book
	Who Should Use This Book
	A Note about Examples
	IBM OS/390 C/C++ and Related Publications
	Hardcopy Books
	Softcopy Books
	Softcopy Examples
	OS/390 C/C++ on the World Wide Web
	C/C++ News...
	How to Read the Syntax Diagrams

	Chapter 2. About IBM OS/390 C/C++
	Changes for Version 2 Release 6
	The C/C++ Compilers
	The C Language
	The C++ Language
	Common Features of the OS/390 C and C++ Compilers
	OS/390 C Compiler Specific Features
	Features That Are Specific to the OS/390 C++ Compiler

	Utilities
	Class Libraries
	Class Library Source

	The Debug Tool
	OS/390 Language Environment
	The Program Management Binder
	OS/390 UNIX System Services (OS/390 UNIX)
	OS/390 C/C++ Applications with OS/390 UNIX C/C++ Functions
	Input and Output
	I/O Interfaces
	File Types
	Additional I/O Features

	The System Programming C Facility
	Interaction with Other IBM Products
	Additional Features of OS/390 C/C++

	Part 2. The C and C++ Languages
	Chapter 3. Introduction to C and C++
	Overview of the C Language
	C Source Programs
	CBC3RAAA

	C Source Files
	CBC3RAAB - Source File 1
	CBC3RMAX - Source file 2

	Program Execution
	Scope in C
	Block Scope
	Function Scope
	File Scope
	Function Prototype Scope
	Example of Scope in C
	Related Information

	Program Linkage
	Internal Linkage
	External Linkage
	No Linkage

	Storage Duration
	Name Spaces
	Related Information

	Command-Line Arguments
	Under OS/390 Batch
	Under IMS
	Under CICS
	Under TSO Command
	Under TSO Call
	Under OS/390 UNIX Shell
	Related Information

	Overview of the C++ Language
	C++ Support for Object-Oriented Programming
	Data Abstraction
	Encapsulation
	Inheritance
	Dynamic Binding and Polymorphism
	Other Features of C++

	C++ Programs
	CBC3X02D

	Scope in C++
	Local Scope
	Function Scope
	File Scope
	Class Scope

	Simple C++ Input and Output
	CBC3X02F
	Output (cout, cerr, and clog)
	CBC3X02G
	CBC3X02H

	Input (cin)
	CBC3X02I

	Linkage Specifications — Linking to non-C++ Programs
	CBC3X02J

	Chapter 4. Lexical Elements of C and C++
	Tokens
	Source Program Character Set
	Trigraph Sequences
	Example

	Digraph Sequences
	Additional Keywords

	Comments
	C++ Comments

	Identifiers
	Special Characters in Identifiers
	Case Sensitivity in Identifiers
	Significant Characters in Identifiers
	Keywords
	OS/390 C/C++ External Name Mapping
	OS/390 Long Name Support

	Constants
	Integer Constants
	Data Types for Integer Constants
	Decimal Constants
	Hexadecimal Constants
	Octal Constants

	Floating-Point Constants
	Fixed-Point Decimal Constants (C Only)
	Character Constants
	String Literals
	CBC3X02K

	Escape Sequences
	CBC3X02L

	Chapter 5. Declarations
	Declarations Overview
	Block Scope Data Declarations
	Initialization
	Storage
	Related Information

	File Scope Data Declarations
	Initialization
	Storage
	Related Information

	Objects
	Storage Class Specifiers
	auto Storage Class Specifier
	Initialization
	Storage
	Examples of auto Storage Class
	Related Information

	extern Storage Class Specifier
	Initialization
	Storage
	Controlling External Static
	Examples of extern Storage Class
	Related Information

	register Storage Class Specifier
	Initialization
	Storage
	Restrictions
	Related Information

	static Storage Class Specifier
	Initialization
	Storage
	Usage
	Restrictions
	Examples of Static Storage Class
	Related Information

	typedef
	Examples of typedef Declarations
	Related Information

	Type Specifiers
	Characters
	Examples of Character Data Types
	Related Information

	Floating-Point Variables
	Examples of Floating-Point Data Types
	Related Information

	Fixed-Point Decimal Data Types (C Only)
	Integer Variables
	Examples of Integer Data Types
	Related Information

	Enumerations
	Declaring an Enumeration Data Type
	Enumeration Constants
	Defining Enumeration Variables
	Defining an Enumeration Type and Enumeration Objects
	Example Program Using Enumerations
	Related Information

	Pointers
	Declaring Pointers
	Assigning Pointers
	Initializing Pointers
	Restrictions on C Pointers
	Using Pointers
	Pointer Arithmetic
	Example Program Using Pointers
	Related Information

	void Type
	Example of void Type

	Arrays
	Declaring Arrays
	Initializing Arrays
	Example Programs Using Arrays
	Related Information

	Structures
	Declaring a Structure
	Defining a Structure Variable
	Initializing Structures
	Declaring Structure Types and Variables
	Declaring and Using Bit Fields in Structures
	Declaring a Packed Structure
	Example Program Using Structures
	Related Information

	Unions
	Declaring a Union
	Defining a Union Variable
	Defining a Union Type and a Union Variable
	Defining Packed Unions
	Anonymous Unions in C
	Anonymous Unions in C++
	Examples of Unions
	Related Information

	Incomplete Types
	Related Information

	Declarators
	volatile and const Qualifiers
	_Packed Qualifier (C Only)
	__cdecl Keyword (C++ Only)
	Semantics of __cdecl
	Examples of __cdecl Use

	_Export Keyword
	Example Declarators
	Related Information

	Initializers
	Related Information

	C/C++ Data Mapping
	C++ Function Specifiers
	C++ References
	Initializing References
	Related Information

	Chapter 6. Expressions and Operators
	Operator Precedence and Associativity
	Examples of Expressions and Precedence

	Operands
	lvalues
	Examples of lvalues
	Related Information

	Primary Expressions
	C++ Scope Resolution Operator (::)
	Parenthesized Expressions ()
	Constant Expressions
	Examples of Constant Expressions

	Function Calls ()
	CBC3X06C

	Array Subscript [] (Array Element Specification)
	Dot Operator (.)
	Arrow Operator (−>)

	Unary Expressions
	Increment (++)
	Decrement (−−)
	Unary Plus (+)
	Unary Minus (−)
	Logical Negation (!)
	Bitwise Negation (˜)
	Address (&)
	Indirection (*)
	Cast Expressions
	sizeof (Size of an Object)
	digitsof and precisionof (C Only)
	C++ new Operator
	Member Functions and the new() and new[]() operators
	Initializing Objects Created with the new Operator
	set_new_handler() — Set Behavior for new Failure

	C++ delete Operator
	C++ throw Expressions

	Binary Expressions
	Multiplication (*)
	Division (/)
	Remainder (%)
	Addition (+)
	Subtraction (−)
	Bitwise Left and Right Shift (<< >>)
	Relational (< > <= >=)
	Equality (== !=)
	Bitwise AND (&)
	Bitwise Exclusive OR ()
	Bitwise Inclusive OR (|)
	Logical AND (&&)
	Logical OR (||)
	C++ Pointer-to-Member Operators (.* −>*)

	Conditional Expressions
	Type of Conditional C Expressions
	Type of Conditional C++ Expressions
	Examples of Conditional Expressions

	Assignment Expressions
	Simple Assignment (=)
	Compound Assignment

	Comma Expression (,)

	Chapter 7. Implicit Type Conversions
	Integral Promotions
	Standard Type Conversions
	Signed-Integer Conversions
	Unsigned-Integer Conversions
	Floating-Point Conversions
	Pointer Conversions
	Reference Conversions
	Pointer-to-Member Conversions
	Function Argument Conversions
	Other Conversions

	Arithmetic Conversions

	Chapter 8. Functions
	Functions Overview
	C++ Enhancements to C Functions
	Function Declarations
	C Function Declarations
	C++ Function Declarations
	Multiple Function Declarations
	Checking Function Calls
	Argument Names in Function Declarations

	Examples of Function Declarations
	CBC3RAAV
	CBC3RAAW

	Function Definitions
	CBC3RAAT
	Function Declarator
	Ellipsis and void
	Function Body
	Examples of Function Declarators
	CBC3RAAU

	Related Information

	The main() Function
	Arguments to main
	Example of Arguments to main
	Related Information

	Calling Functions and Passing Arguments
	Passing Arguments in C++
	Examples of Calling Functions
	CBC3RAAX
	CBC3RAAY

	Passing Arguments by Reference
	CBC3X06A

	Default Arguments in C++ Functions
	CBC3X06B
	Restrictions on Default Arguments
	Evaluating Default Arguments

	Function Return Values
	Using References as Return Types

	Pointers to Functions
	C++ Inline Functions

	Chapter 9. Statements
	Labels
	Examples
	Related Information

	Block
	Initialization within Block Statements
	Example
	CBC3RAA1

	Related Information

	break
	Restrictions
	Examples
	CBC3RAA2
	CBC3RAA

	Related Information

	continue
	Restrictions
	Examples
	CBC3RAA3
	CBC3RAA4

	Related Information

	do
	Example
	CBC3X07E

	Related Information

	Expression
	Examples
	Resolving Ambiguous Statements in C++

	for
	Examples
	Related Information

	goto
	Example
	CBC3RAA6

	if
	Examples

	null
	Example

	return
	Value of a return Expression and Function Value
	Examples
	Related Information

	switch
	Restrictions
	Examples
	CBC3RABI

	Related Information

	while
	Example
	CBC3RAA7

	Related Information

	Chapter 10. Preprocessor Directives
	Preprocessor Overview
	Preprocessor Directive Format
	Phases of Preprocessing
	Macro Definition and Expansion (#define)
	Object-Like Macros
	Function-Like Macros
	Examples of #define Directives

	Scope of Macro Names (#undef)
	Examples of #undef Directives

	Single Number Sign Operator (#)
	Examples of the # Operator
	Related Information

	Macro Concatenation with the ## Operator
	Double Number Sign Operator (##)
	Examples of the ## Operator
	Related Information

	Preprocessor Error Directive (#error)
	Related Information

	File Inclusion (#include)
	Predefined Macro Names
	ANSI/ISO Standard Predefined Macro Names
	OS/390 C/C++ Predefined Macro Names
	Examples of Predefined Macros
	CBC3X08A
	CBC3X08B
	CBC3X08C
	Related Information

	Conditional Compilation Directives
	#if, #elif
	#ifdef
	#ifndef
	#else
	#endif
	Examples of Conditional Compilation Directives
	CBC3RABC

	Line Control (#line)
	Example of #line Directives
	CBC3RABD

	Null Directive (#)
	Pragma Directives (#pragma)
	Restrictions on #pragma Directives
	IPA Considerations
	chars
	checkout
	comment
	IPA Considerations

	convlit
	csect
	IPA Considerations

	define (C++ Only)
	disjoint (C Only)
	environment (C Only)
	export
	IPA Considerations

	filetag
	hdrstop
	Examples

	implementation (C++ Only)
	info (C++ Only)
	inline (C Only) - also see noinline
	IPA Considerations
	Example

	isolated_call
	IPA Considerations

	langlvl
	linkage
	longname
	IPA Considerations

	map
	#pragma map for OS/390 C
	#pragma map for OS/390 C++
	IPA Considerations

	margins
	#pragma margins for OS/390 C
	#pragma margins for OS/390 C++

	noinline (C and C++) - also see inline
	IPA Considerations

	options (C Only)
	IPA Considerations

	pack
	Alignment of Nested Structures
	Alignment of Unions
	Examples

	page (C Only)
	pagesize (C Only)
	IPA Considerations

	priority (C++ Only)
	runopts
	IPA Considerations

	sequence
	#pragma sequence for OS/390 C
	#pragma sequence for OS/390 C++

	skip (C Only)
	strings
	IPA Considerations

	subtitle (C Only)
	target (C Only)
	IPA Considerations

	title (C Only)
	variable
	wsizeof
	Using the WSIZEOF compile option and #pragma wsizeof
	IPA Considerations

	Part 3. C++ Language Elements
	Chapter 11. C++ Classes
	C++ Classes Overview
	Classes and Structures
	CBC3X10C
	CBC3X10D

	Aggregate Classes

	Declaring Class Objects
	Class Names
	CBC3X10B

	Using Class Objects

	Scope of Class Names
	CBC3X10E
	Incomplete Class Declarations
	Nested Classes
	Local Classes
	Local Type Names

	Chapter 12. C++ Class Members and Friends
	Class Member Lists
	Data Members
	Class-Type Class Members
	Member Functions
	const and volatile Member Functions
	Virtual Member Functions
	Special Member Functions
	Inline Member Functions
	Member Function Templates

	Member Scope
	CBC3X11A

	Pointers to Members
	CBC3X11B

	The this Pointer
	CBC3X11C
	CBC3X11D

	Static Members
	Using the Class Access Operators with Static Members
	CBC3X11E
	CBC3X11F

	Static Data Members
	CBC3X11G

	Static Member Functions
	CBC3X11H

	Member Access
	Classes and Access Control
	CBC3X10A

	Access Specifiers

	Friends
	CBC3X11I
	CBC3X11J
	Friend Scope
	Friend Access

	Chapter 13. C++ Overloading
	Overloading Functions
	CBC3X12A
	Declaration Matching
	Restrictions on Overloaded Functions

	Argument Matching in Overloaded Functions
	Sequence of Argument Conversions
	Trivial Conversions

	Overloading Operators
	CBC3X12B
	General Rules for Overloading Operators
	Operands of Overloaded Operators
	CBC3X12C

	Restrictions on Overloaded Operators

	Overloading Unary Operators
	Overloading Binary Operators
	Special Overloaded Operators
	Overloaded Assignment
	Overloaded Function Calls
	Overloaded Subscripting
	Overloaded Class Member Access
	Overloaded Increment and Decrement
	CBC3X12D
	CBC3X12E

	Overloaded new and delete

	Chapter 14. Special C++ Member Functions
	Constructors and Destructors Overview
	Constructors
	Default Constructors
	Copy Constructors
	Construction Order of Class Objects
	Explicitly Constructing Objects

	Destructors
	Free Store
	Temporary Objects
	Related Information

	User-Defined Conversions
	Conversion by Constructor
	Conversion Functions

	Initialization by Constructor
	Explicit Initialization
	CBC3X13A

	Initializing Base Classes and Members
	Construction Order of Derived Class Objects

	Copying Class Objects
	Copy Restrictions
	Copy by Assignment
	Copy by Initialization

	Chapter 15. C++ Inheritance
	Inheritance Overview
	Multiple Inheritance
	The Inheritance Design Process
	Direct and Indirect Base Classes
	Polymorphism

	Derivation
	CBC3X14A
	CBC3X14B
	CBC3X14C
	Syntax of a Derived Class Declaration

	Inherited Member Access
	Protected Members
	Derivation Access of Base Classes
	Access Declarations
	CBC3X14D

	Access Resolution
	CBC3X14E

	Access Summary
	CBC3X14F

	Multiple Inheritance
	Virtual Base Classes
	Multiple Access
	Accessible Base Classes
	Ambiguous Base Classes
	CBC3X14G

	Virtual Functions
	Ambiguous Virtual Function Calls
	Virtual Function Access

	Abstract Classes

	Chapter 16. C++ Templates
	Templates Overview
	CBC3X15A

	Structuring Your Program Using Templates
	File stack.h
	File stackdef.h

	Class Templates
	Class Template Declarations and Definitions
	Reference and Uniqueness
	Nontype Template Arguments
	Explicitly Defined Template Classes

	Function Templates
	Example of a Function Template
	Overloading Resolution for Template Functions
	Defining Template Functions
	Explicitly Defined Template Functions
	Function Template Declarations and Definitions

	Differences between Class and Function Templates
	CBC3X15B

	Member Function Templates
	Friends and Templates
	Static Data Members and Templates

	Chapter 17. C++ Exception Handling
	C++ Exception Handling Overview
	Formal and Informal Exception Handling
	Using Exception Handling
	Transferring Control
	CBC3X16A
	CBC3X16F
	Catching Exceptions
	Matching Exceptions Thrown and Exceptions Caught
	Order of Catching
	Nested Try Blocks
	Rethrowing an Exception
	CBC3X16B

	Using a Conditional Expression in a Throw Expression
	CBC3X16C

	Constructors and Destructors in Exception Handling
	CBC3X16D

	Exception Specifications
	Exception Specification Syntax
	Empty Exception Specifications
	Functions without an Exception Specification
	Other Exception Specifications

	Special Exception Handling Functions
	unexpected()
	terminate()
	set_unexpected() and set_terminate()
	Example of Using the Exception Handling Functions

	Part 4. Appendixes
	Appendix A. C and C++ Compatibility
	C++ Constructs Not Found in ANSI/ISO C
	Constructs Found in Both C++ and ANSI/ISO C
	Character Array Initialization
	Character Constants
	Class and typedef Names
	Class and Scope Declarations
	const Object Initialization
	Definitions
	Definitions within Return or Argument Types
	Enumerator Type
	Enumeration Type
	Function Declarations
	Functions with an Empty Argument List
	Global Constant Linkage
	Jump Statements
	Keywords
	main() Recursion
	Names of Nested Classes
	Pointers to void
	Prototype Declarations
	Return without Declared Value
	__STDC__ Macro
	typedefs in Class Declarations

	Interactions with Other Products

	Appendix B. Common Usage C Language Level
	Appendix C. Conforming to POSIX 1003.1
	Appendix D. Conforming to ANSI/ISO Standards
	Implementation-Defined Behavior
	Identifiers
	Characters
	String Conversion
	Integers
	Floating-Point
	Arrays and Pointers
	Registers
	Structures, Unions, Enumerations, Bit Fields
	Declarators
	Statements
	Preprocessing Directives
	Library Functions
	CBC3RABG

	Error Handling
	Signals
	Translation Limits
	Streams, Records, and Files
	Memory Management
	Environment
	Localization
	Time

	Glossary
	Bibliography
	OS/390
	VS COBOL II Release 4
	COBOL FOR MVS & VM Release 2
	COBOL for OS/390 & VM Version 2 Release 1
	PL/I for MVS & VM Release 1 Modification 1
	OS PL/I Version 2 Release 3
	VS FORTRAN Version 2 Release 6
	CICS/ESA Version 4 Release 1
	CICS Transaction Server for OS/390 Release 2
	DB2 Version 3 Release 1
	DB2 Version 4 Release 1
	DB2 Version 5 Release 1
	IMS/ESA Version 4 Release 1
	IMS/ESA Version 5 Release 1
	IMS/ESA Version 6 Release 1
	QMF Version 3 Release 2
	VSAM

	INDEX
	Readers’ Comments — We'd Like to Hear from You

