<|ll

05/390

C/C++
Language Reterence

000000000000

<|ll

05/390

C/C++
Language Reterence

000000000000

Note!
Before using this information and the product it supports be sure to read the general information under Natices” an

Fourth Edition, September 1998

This edition applies to Version 2 Release 6 of OS/390 C/C++ (5647-A01) and to all subsequent releases and
modifications until otherwise indicated in new editions or other updated documentation. Make sure that you use
the correct edition for the level of the program listed above. Also, ensure that you apply all necessary PTFs for the
program.

Technical changes in the text since the last release of this book are indicated by a vertical line (1) to the left of the
change.

Order publications through your IBM representative or the IBM branch office serving your location. Publications are
not stocked at the address below. Note that the OS/390 C/C++ publications are available through the OS/390
Library page at: http://www.s390.1ibm.com/0s390/bkserv.

IBM welcomes your comments. You can send your comments electronically to the network ID listed below. Be sure
to include your entire network address if you wish a reply.

Internet: torrcf@ca.ibm.com
IBMLink: toribm(torrcf)
IBM/PROFS: torolab4(torrcf)
IBMMAIL: ibmmail(caibmwt9)

To send your comments by facsimile (attention: RCF coordinator) use the following FAX numbers:

United States and Canada: 416-448-6161
Other Countries: (+1)-416-448-6161

Alternatively, you can use the Reader’s Comment Form that is provided at the back of this publication, or mail
your comments directly to:

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR

1150 Eglinton Avenue East

North York, Ontario, Canada. M3C 1H7

If you send comments, include the title and order number of this book, and the page number or topic related to
your comment. When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1996, 1998. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Notices iX
Standards ix
Trademarks. X
Part 1. Introduction 1
Chapter 1. About This Book 3
Who Should Use This Book 3
A Note about Examples. . 3
IBM 0OS/390 C/C++ and Related Pubhcatrons 4
Hardcopy Books . 8
Softcopy Books 9
Softcopy Examples . 9
0S/390 C/C++ on the World W1de Web 10
C/C++ News... 10
How to Read the Syntax Dlagrams 10
Chapter 2. About IBM OS/390 C/C++ 13
Changes for Version 2 Release 6 . 13
The C/C++ Compilers . 14
The C Language . 14
The C++ Language . 14
Common Features of the OS / 390 C and C++
Compilers . . . 15
0S/390 C Compiler Spec1f1c Features . .. 16
Features That Are Specific to the OS/390 C++
Compiler e 16
Utilities . 17
Class Libraries. 17
Class Library Source 18
The Debug Tool 18
0S/390 Language Env1r0nment 19
The Program Management Binder . . 19
0S/390 UNIX System Services (OS/390 UNIX) 20
0S/390 C/C++ Apphcatlons with OS/390 UNIX
C/C++ Functions. . 21
Input and Output. 22
1/0 Interfaces . 22
File Types 23
Additional I/O Features 23
The System Programming C Facrhty 24
Interaction with Other IBM Products 24
Additional Features of OS/390 C/C++ 25
Part 2. The C and C++ Languages 29
Chapter 3. Introduction to C and C++ 31
Overview of the C Language . 31
C Source Programs . 32
CBC3RAAA 33
C Source Files . 33
CBC3RAAB - Source F11e 1 34
CBC3RMAX - Source file 2 34
Program Execution . 35

© Copyright IBM Corp. 1996, 1998

Scope in C .
Block Scope.
Function Scope
File Scope .
Function Prototype Scope .
Example of Scope in C .
Related Information .
Program Linkage .
Internal Linkage .
External Linkage .
No Linkage.
Storage Duration .
Name Spaces . .
Related Information .
Command-Line Arguments
Under OS/390 Batch.
Under IMS .
Under CICS .
Under TSO Command .
Under TSO Call .
Under OS/390 UNIX Shell.
Related Information . .
Overview of the C++ Language .

C++ Support for Object-Oriented Programmmg

Data Abstraction .
Encapsulation .
Inheritance . . .
Dynamic Binding and Polymorphlsm .
Other Features of C++ . .
C++ Programs .
CBC3X02D .
Scope in C++ .
Local Scope.
Function Scope
File Scope
Class Scope.
Simple C++ Input and Output
CBC3X02F . .
Output (cout, cerr, and clog)
Input (cin) .
Linkage Specifications — Lmkmg to non—C++
Programs
CBC3X02J

Chapter 4. Lexical Elements of C and
C++.
Tokens
Source Program Character Set
Trigraph Sequences .
Digraph Sequences .
Additional Keywords
Comments . .o
C++ Comments
Identifiers
Special Characters in Identrﬁers .

35
35
36
36
36
36
37
37
38
38
39
39
39
40
40
41
41
41
41
41
41
42
42
42
42
43
43
44
44
44
46
46
46
47
47
47
47
48
48
49

50
50

51
51
51
53
53
54
54
56
56
57

iii

Case Sensitivity in Identifiers .
Significant Characters in Identifiers .
Keywords

0S/390 C/C++ External Name Mappmg .

0S/390 Long Name Support

Constants .
Integer Constants
Floating-Point Constants

Fixed-Point Decimal Constants (C Only) .

Character Constants .
String Literals .
Escape Sequences.

Chapter 5. Declarations
Declarations Overview . .
Block Scope Data Declarations
Initialization
Storage . .
Related lnformatlon
File Scope Data Declarations .
Initialization
Storage . .
Related lnformat1on
Objects
Storage Class Spec1f1ers
auto Storage Class Specifier
extern Storage Class Specifier.
register Storage Class Specifier
static Storage Class Specifier .
typedef .
Examples of typedef Declarat1ons
Related Information .
Type Specifiers
Characters .
Floating-Point Varlables

Fixed-Point Decimal Data Types (C Only).

Integer Variables .
Enumerations .
Pointers .
void Type
Arrays
Structures
Unions
Incomplete Types
Declarators . .
volatile and const Qual1f1ers .
_Packed Qualifier (C Only)
__cdecl Keyword (C++ Only)
_Export Keyword.
Example Declarators.
Initializers . .
Related lnformatlon .
C/C++ Data Mapping .
C++ Function Specifiers
C++ References
Initializing References
Related Information .

57
57
57
58
59
60
60
62
63
64
65
67

69
69
70
71
71
71
71
72
72
72
72
73
73
75
81
82
84
84
85
85
86
87
88
89
90
94
99

100

106

113

119

119

120

122

123

125

126

127

128

129

129

129

130

130

Chapter 6. Expressions and Operators 133

Operator Precedence and Associativity.

Examples of Expressions and Precedence .

iV 0S/390 V2R6.0 C/C++ Language Reference

133
135

Operands
Ivalues
Examples of lvalues
Related Information .
Primary Expressions .
C++ Scope Resolution Operator ()
Parenthesized Expressions ()
Constant Expressions
Function Calls ()
Array Subscript [] (Array Element
Specification) . e
Dot Operator (.) .
Arrow Operator (—>)
Unary Expressions
Increment (++).
Decrement (—-)
Unary Plus (+).
Unary Minus (-) .
Logical Negation (!) .
Bitwise Negation (7) .
Address (&)
Indirection (*) .
Cast Expressions .
sizeof (Size of an Object)
digitsof and precisionof (C Only)
C++ new Operator .
C++ delete Operator.
C++ throw Expressions .
Binary Expressions
Multiplication (*) .
Division (/).
Remainder (%).
Addition (+)
Subtraction (-). .
Bitwise Left and Right Sh1ft (<< >>)
Relational (< > <= >=) . .
Equality (== !=)
Bitwise AND (&) .
Bitwise Exclusive OR ()
Bitwise Inclusive OR (1)
Logical AND (&&)
Logical OR (I I') .
C++ Pointer-to-Member Operators (* —>*)
Conditional Expressions .
Type of Conditional C Express10ns .
Type of Conditional C++ Expressions .
Examples of Conditional Expressions .
Assignment Expressions
Simple Assignment (=) .
Compound Assignment.
Comma Expression (,)

Chapter 7. Implicit Type Conversions
Integral Promotions .
Standard Type Conversions
Signed-Integer Conversions
Unsigned-Integer Conversions
Floating-Point Conversions
Pointer Conversions .
Reference Conversions . .
Pointer-to-Member Conversions .

135
136
136
136
136
137
137
138
139

140
141
141
142
142
143
143
143
144
144
144
145
145
146
147
147
151
152
152
152
153
153
153
154
154
155
156
157
157
158
158
159
160
160
161
161
161
162
162
164
165

167
167
167
168
168
168
168
169
169

Function Argument Conversions.
Other Conversions
Arithmetic Conversions.

Chapter 8. Functions
Functions Overview . . .
C++ Enhancements to C Functlons .
Function Declarations
C Function Declarations
C++ Function Declarations. .
Examples of Function Declarations .
Function Definitions .
Related Information .
The main() Function .
Arguments to main . .
Example of Arguments to main .
Calling Functions and Passing Arguments
Passing Arguments in C++
Examples of Calling Functions
Passing Arguments by Reference
Default Arguments in C++ Functions .
CBC3X06B . .
Restrictions on Default Arguments .
Evaluating Default Arguments
Function Return Values. .
Using References as Return Types
Pointers to Functions
C++ Inline Functions

Chapter 9. Statements
Labels

Examples .

Related Information .
Block . . .

Initialization w1th1n Block Statements .

Example . .

Related Information .
break .

Restrictions .

Examples .

Related Information .
continue .

Restrictions .

Examples .

Related Information .
do. . . .

Example. .

Related Information .
Expression .

Examples

Resolving Amb1guous Statements in C++ .

for.
Examples .
Related Information .
goto .
Example .
if
Examples
null
Example .
return

170
170
170

.173

173
173
174
174
175
176
178
184
184
184
185
185
187
187
188
190
190
191
191
192
193
193
195

.197

197
197
198
198
198
199
199
200
200
200
201
202
202
202
203
203
204
204
205
205
205
206
207
208
208
209
209
210
210
211
211

Value of a return Expression and Function

Value .

Examples .

Related Information .
switch

Restrictions .

Examples .

Related Information .
while .

Example. .

Related Information .

Chapter 10. Preprocessor Directives
Preprocessor Overview .
Preprocessor Directive Format
Phases of Preprocessing. .
Macro Definition and Expansion (#defme)
Object-Like Macros .
Function-Like Macros
Scope of Macro Names (#undef)
Examples of #undef Directives
Single Number Sign Operator (#)
Examples of the # Operator
Related Information . .
Macro Concatenation with the ## Operator .
Double Number Sign Operator (##).
Preprocessor Error Directive (#error)
Related Information .
File Inclusion (#include)
Predefined Macro Names .

211
212
212
212
214
214
216
216
217
217

219
219
220
220
221
221
222
225
225
225
226
226
226
227
228
228
228
229

ANSI/ISO Standard Predefined Macro Names 230

0S/390 C/C++ Predefined Macro Names
Examples of Predefined Macros .
Conditional Compilation Directives.
#if, #elif .
#ifdef .
#ifndef
#else .
#endif . .
Examples of Condltlonal Compllatlon
Directives .
Line Control (#line) .
Example of #line Directives

Null Directive (#) .

Pragma Directives (#pragma) .
Restrictions on #pragma Directives .
IPA Considerations
chars .
checkout.
comment
convlit
csect . .
define (C++ Only)
disjoint (C Only) .
environment (C Only)
export
filetag
hdrstop .
implementation (C++ Only)
info (C++ Only)
inline (C Only) - also see nomhne

231
236
237
238
239
239
240
240

240
241
242
242
243
245
247
247
248
248
249
250
251
251
252
253
253
254
255
255
255

Contents V

isolated_call 257
langlvl 259
linkage 260
longname 261
map . 262
margins . F 264
noinline (C and C++) also see inline . 265
options (C Only) 266
pack . . 267
page (C Only) 270
pagesize (C Only). 270
priority (C++ Only) 270
runopts . . 271
sequence. 272
skip (C Only) . 273
strings . . 273
subtitle (C Only) 274
target (C Only) 274
title (C Only) 275
variable . 275
wsizeof . 275
Part 3. C++ Language Elements .279
Chapter 11. C++ Classes .281
C++ Classes Overview . 281
Classes and Structures . 281
Aggregate Classes 282
Declaring Class Objects . 282
Class Names . 283
Using Class Objects . 284
Scope of Class Names 286
CBC3X10E . 286
Incomplete Class Declarat1ons 287
Nested Classes. 287
Local Classes . 288
Local Type Names 289
Chapter 12. C++ Class Members and
Friends . .291
Class Member Lists . 291
Data Members. 292
Class-Type Class Members 292
Member Functions . . 293
const and volatile Member Functlons . 293
Virtual Member Functions . 294
Special Member Functions . 294
Inline Member Functions . 294
Member Function Templates . 295
Member Scope. 295
CBC3X11A . 295
Pointers to Members. 297
CBC3X11B . 297
The this Pointer 298
CBC3X11C . 298
CBC3X11D . 299
Static Members 300
Using the Class Access Operators w1th Statlc
Members 301
Static Data Members 302

Vi 0S/390 V2R6.0 C/C++ Language Reference

Static Member Functions
Member Access

Classes and Access Control

Access Specifiers .
Friends .

CBC3X11I

CBC3X11]J

Friend Scope

Friend Access .

Chapter 13. C++ Overloadlng
Overloading Functions .
CBC3X12A .
Declaration Matching . .
Restrictions on Overloaded Functrons .
Argument Matching in Overloaded Functions
Sequence of Argument Conversions
Trivial Conversions .
Overloading Operators .
CBC3X12B . .
General Rules for Overloadmg Operators
Operands of Overloaded Operators.
Restrictions on Overloaded Operators .
Overloading Unary Operators
Overloading Binary Operators
Special Overloaded Operators
Overloaded Assignment
Overloaded Function Calls.
Overloaded Subscripting
Overloaded Class Member Access
Overloaded Increment and Decrement.
Overloaded new and delete

Chapter 14. Special C++ Member
Functions Co
Constructors and Destructors OverV1ew
Constructors .
Default Constructors
Copy Constructors
Construction Order of Class Ob]ects
Explicitly Constructing Objects
Destructors . P
Free Store
Temporary Objects
Related Information .
User-Defined Conversions .
Conversion by Constructor
Conversion Functions
Initialization by Constructor .
Explicit Initialization.
Initializing Base Classes and Members
Construction Order of Derived Class Objects
Copying Class Objects .
Copy Restrictions.
Copy by Assignment
Copy by Initialization

Chapter 15. C++ Inheritance
Inheritance Overview
Multiple Inheritance .

303
304
304
305
306
306
307
308
309

. 311

311
311
312
312
312
313
314
315
315
316
316
317
317
318
319
319
319
320
320
321
322

. 325

325
326
326
327
327
328
328
330
333
334
334
335
335
336
336
338
339
340
340
341
341

. 343

343
344

The Inheritance Design Process . 345
Direct and Indirect Base Classes . 345
Polymorphism . 346
Derivation . 346
CBC3X14A . 347
CBC3X14B . 347
CBC3X14C . . 348
Syntax of a Derived Class Declarat1on . 348
Inherited Member Access . 349
Protected Members . 350
Derivation Access of Base Classes 350
Access Declarations . 351
Access Resolution. 353
Access Summary . 355
Multiple Inheritance . 356
Virtual Base Classes . 357
Multiple Access . 357
Accessible Base Classes . 358
Ambiguous Base Classes 358
Virtual Functions . . 359
Ambiguous Virtual Funct1on Calls . 361
Virtual Function Access. 362
Abstract Classes . 363
Chapter 16. C++ Templates . 365
Templates Overview . 365
CBC3X15A . . 367
Structuring Your Program Us1ng Templates . 367
File stack.h . 368
File stackdef.h . 368
Class Templates 369
Class Template Declarat1ons and Def1n1t1ons 370
Reference and Uniqueness . 371
Nontype Template Arguments 371
Explicitly Defined Template Classes 373
Function Templates . . 373
Example of a Function Template . 373
Overloading Resolution for Template Funct1ons 374
Defining Template Functions . . 375
Explicitly Defined Template Functlons 375
Function Template Declarations and Defmltlons 376
Differences between Class and Function Templates 377
CBC3X15B . . 377
Member Function Templates . 377
Friends and Templates . 379
Static Data Members and Templates 380
Chapter 17. C++ Exception Handling 381
C++ Exception Handling Overview . 381
Formal and Informal Exception Handling. 382
Using Exception Handling . 382
Transferring Control . 384
CBC3X16A . 385
CBC3X16F . 386
Catching Exceptions . 387
Matching Exceptions Thrown and Except1ons
Caught . . 387
Order of Catching 388
Nested Try Blocks 388
Rethrowing an Exception . 389

Using a Conditional Expression in a Throw

Expression 390
Constructors and Destructors n Except1on
Handling39
CBC3X16D39
Exception Specifications 393
Exception Specification Syntax 393
Empty Exception Specifications 394
Functions without an Exception Spec1f1cat10n 394
Other Exception Specifications 394
Special Exception Handling Functions. 395
unexpected() 39
terminate() 39
set_unexpected() and set termmate()39
Example of Us1ng the Except1on Handling
Functions . . .o 3%

Part 4. Appendixes .399

Appendix A. C and C++ Compatibility 401

C++ Constructs Not Found in ANSI/ISOC . . . 401
Constructs Found in Both C++ and ANSI/ISO C 401
Character Array Initialization. 401
Character Constants 402
Class and typedef Names 402
Class and Scope Declarations. 402
const Object Initialization 403
Definitions 403
Definitions within Return or Argument Types 403
Enumerator Type. 403
Enumeration Type 403
Function Declarations 403
Functions with an Empty Argument Llst .. 404
Global Constant Linkage 404
Jump Statements 404
Keywords 404
main() Recursion. 404
Names of Nested Classes 404
Pointerstovoid 405
Prototype Declarations 405
Return without Declared Value 405
_STDC__ Macro. 405
typedefs in Class Declarat10ns 405
Interactions with Other Products 406

Appendix B. Common Usage C

Language Level . . 407

Appendix C. Conforming to POSIX

1003.1. . 409

Appendix D. Conforming to ANSI/ISO

Standards S 411

Implementation-Defined Behav1or S
Identifiers41
Characters 412
String Conversion 413
Integers 413
Floating-Point 413

Contents Vil

Arrays and Pointers .
Registers.

Structures, Uruons, Enumerat1ons, Blt F1elds

Declarators .

Statements .

Preprocessing Dlrectlves
Library Functions.

Error Handling

Signals .
Translation Limits .
Streams, Records, and Files
Memory Management .
Environment

Localization

Time .

Glossary .
Bibliography

0S/390 . .
VS COBOL II Release 4

viii 0S/390 V2R6.0 C/C++ Language Reference

. 414
. 414

414

. 415
. 415
. 415
. 416
. 416
. 417
. 417
. 418
. 419
. 419
. 420
. 420

.421

. 449
. 449
. 449

COBOL FOR MVS & VM Release 2.

COBOL for OS/390 & VM Version 2 Release 1

PL/I for MVS & VM Release 1 Modification 1
OS PL/I Version 2 Release 3 . .

VS FORTRAN Version 2 Release 6 .
CICS/ESA Version 4 Release 1

CICS Transaction Server for OS/390 Release 2

DB2 Version 3 Release 1

DB2 Version 4 Release 1

DB2 Version 5 Release 1
IMS/ESA Version 4 Release 1.
IMS/ESA Version 5 Release 1.
IMS/ESA Version 6 Release 1.
QMF Version 3 Release 2
VSAM

INDEX.

Readers’ Comments — We'd Like to
Hear from You

449
450
450
450
450

450

450
451
451
451
451
451
451
452
452

. 453

. 463

Notices

Any reference to an IBM licensed program in this publication is not intended to
state or imply that only IBM’s licensed program may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY, 10594, USA.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Canada Ltd.,
Department 071, 1150 Eglinton Avenue East, North York, Ontario M3C 1H7,
Canada. Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

This publication may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may include
the names of individuals, companies brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

This publication documents intended Programming Interfaces that allow the
customer to write OS/390 C/C++ programs.

Any interfaces, including service component interfaces, that are not documented in
the OS/390 C/C++ publications are not formal interfaces. You should not build
any dependencies on these interfaces, as IBM can change or remove interfaces at
any time, without notice.

Any pointers in this publication to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these Web
sites. IBM accepts no responsibility for the content or use of non-IBM Web sites
specifically mentioned in this publication or accessed through an IBM Web site that
is mentioned in this publication.

Standards

Extracts are reprinted from IEEE Std 1003.1—1990, IEEE Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 1: System
Application Program Interface (API) [C language], copyright 1990 by the Institute
of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE P1003.1a Draft 6 July 1991, Draft Revision to
Information Technology—Portable Operating System Interface (POSIX), Part 1:

© Copyright IBM Corp. 1996, 1998 ix

System Application Program Interface (API) [C Language], copyright 1992 by the

Institute of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE Std 1003.2—1992, IEEE Standard Information
Technology—Portable Operating System Interface (POSIX)—Part 2: Shells and
Utilities, copyright 1990 by the Institute of Electrical and Electronic Engineers, Inc.

Extracts are reprinted from IEEE Std P1003.4a/D6—1992, IEEE Draft Standard
Information Technology—Portable Operating System Interface (POSIX)—Part 1:
System Application Program Interface (API)—Amendment 2: Threads Extension [C
language], copyright 1990 by the Institute of Electrical and Electronic Engineers,

Inc.

Extracts from ISO/IEC 9899:1990 have been reproduced with the permission of the
International Organization for Standardization (ISO) and the International
Electrotechnical Commission (IEC). The complete standard can be obtained from
any ISO or IEC member or from the ISO or IEC Central Offices, Case postale 56,
CH - 1211 Geneva 20, Switzerland. Copyright remains ISO and IEC.

Extracts from X/Open Specification, Programming Languages, Issue 4 Release 2,
copyright 1988, 1989, February 1992, by the X/Open Company Limited, have been
reproduced with the permission of X/Open Company Limited. No further
reproduction of this material is permitted without the written notice from the

X/Open Company Ltd, UK.

Trademarks

The following terms, which may be denoted by a single asterisk (*), are trademarks
of International Business Machines Corporation in the United States or other

countries or both:

AD/Cycle
AIX/6000
BookManager
C/MVS

CICs
COBOL/370
DATABASE 2
DFSMS/MVS
ESCON

IBM
IMS/ESA
MVS/SpP
OpenEdition
OS OPEN
0S5/400

QMF

5/370

SOM
SQL/DS
System Object Model

VM/ESA
3090

X 0S5/390 V2R6.0 C/C++ Language Reference

AFP

AT

C Set ++
C++/MVS
CICS/ESA
CUA

DB2
DFSMSdfp
GDDM
IBMLink
MVS/DFP
MVS/XA
Operating System/2
0Ss/2
PROFS
RACF
S/390
SOMobjects
System /370
Systems Application
Architecture
VSE/ESA
3890

AIX

AS/400

C/370

Common User Access
CICSPlex

CT

DFSMS

DRDA

Hiperspace

IMS

MVS/ESA

Open Class

Operating System /400
0S/390

PS/2

RETAIN

SAA

SP

System /390
VisualAge

VTAM
400

Microsoft, Windows, Windows NT, and the Windows logo are registered
trademarks of Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through X/Open Company Limited.

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

Notices

xi

xii 0S/390 V2R6.0 C/C++ Language Reference

Part 1. Introduction

This part describes how to use the OS/390 C/C++ Language Reference, and how
to find additional information in the OS/390 C/C++ library. This part introduces
the IBM OS/390 C/C++ product.

Describes how to use this book in relation to the OS/390 C/C++
information library and related OS/390 documentation.

Introduces the OS/390 C/C++ product and its key features, related OS/390
environments such as OS/390 UNIX System Services, and other OS/390
tools that are useful when using OS/390 C/C++.

© Copyright IBM Corp. 1996, 1998 1

2 0S/390 V2R6.0 C/C++ Language Reference

Chapter 1. About This Book

This book describes the IBM C language and C++ language definitions which
comply with the POSIX and XPG4 standards, and which the OS/390 Language
Environment implements. Use this book if you are a programmer who needs to
understand the support that IBM OS/390 C/C++ provides.

Who Should Use This Book

This book is intended for programmers who will write C or C++ applications
under the OS/390 operating system. This book is a reference rather than a tutorial.
It assumes that you have some experience with writing C or C++ programs and
are familiar with the OS/390 operating system.

A Note about Examples

Examples that illustrate the use of the OS/390 C/C++ compiler use a simple style.
They are instructional examples, and do not attempt to minimize run time,
conserve storage, or check for errors. The examples do not demonstrate all the uses
of C/C++ language constructs. Some examples are only code fragments and will
not compile without additional code.

© Copyright IBM Corp. 1996, 1998 3

IBM OS/390 C/C++ and Related Publications

This section summarizes the content of the IBM OS/390 C/C++ publications and
shows where to find related information in other publications.

Table 1. ©OS/390 C/C++ Publications

Book Title and Number

Key Sections/Chapters in the Book

0S5/390 C/C++ Programming Guide,
5C09-2362

Guidance information for:

¢ C/C++ input and output

* Debugging OS/390 C programs that use input/output

* Using linkage specifications in C++

¢ Combining C and assembler

* Creating and using DLLs

* Using threads in an OS/390 UNIX® application

 Using threads in an OS/390 UNIX application

* Reentrancy

* Using the decimal data type in C and C++

* Handling exceptions, error conditions, and signals

¢ Optimizing code

* Optimizing your C/C++ code with Interprocedural Analysis

* Network communications under OS/390 UNIX

¢ Interprocess communications using OS/390 UNIX

e Structuring a program that uses C++ templates

 Using environment variables

* Using System Programming C facilities

* Library functions for the System Programming C facilities

* Using runtime user exits

* Using the OS/390 C multitasking facility

* Using other IBM products with OS/390 C/C++ (CICS*, CSP, DWS, DB2*,
GDDM*, IMS*, ISPE, QMF*)

* Direct-to-SOM support under OS/390 C/C++

* Internationalization: locales and character sets, code set conversion utilities,

mapping variant characters
e POSIX character set
* Code point mappings
* Locales supplied with OS/390 C/C++
¢ Charmap files supplied with OS/390 C/C++
¢ Examples of charmap and locale definition source files
* Converting code from code character set IBM-1047
* Using built-in functions
¢ Programming considerations for OS/390 UNIX C/C++

0S5/390 C/C++ User’s Guide, SC09-2361

Guidance information for:

* 0S5/390 C/C++ examples

¢ Compiler options

* Binder options and control statements

* Specifying OS/390 Language Environment runtime options

* Compiling, IPA Linking, binding, and running OS/390 C/C++ programs

 Using precompiled headers

* Utilities (Object Library, DLL Rename, CXXFILT, DSECT Conversion, Code
Set and Locale, ar and make, BPXBATCH)

 Diagnosing problems

* Cataloged procedures and REXX EXECs supplied by IBM

* Error messages and return codes

4 0S/390 V2R6.0 C/C++ Language Reference

Table 1. OS/390 C/C++ Publications (continued)

Book Title and Number Key Sections/Chapters in the Book
0S5/390 C/C++ Language Reference, Reference information for:
SC09-2360 ¢ The C and C++ Languages

* Lexical elements of OS/390 C and OS/390 C++

* Declarations, expressions and operators

* Implicit type conversions

* Functions and statements

* Preprocessor directives

e C++ classes, class members, and friends

¢ C++ overloading, special member functions, and inheritance
¢ C++ templates and exception handling

* OS5/390 C and OS/390 C++ compatibility

0S5/390 C/C++ Run-Time Library Reference information for:
Reference, SC28-1663 ¢ C header files

* C Library functions
0S/390 C Curses, SC28-1907 Reference information for:

|
|
|
|
[+ Curses concepts

[* Key data types

| * General rules for characters, renditions, and window properties
[* General rules of operations and operating modes

[Use of macros

| * Restrictions on block-mode terminals

[* Curses functional interface

| * Contents of headers

[* The terminfo database

0S5/390 C/C++ Compiler and Run-Time | Guidance and reference information for:
Migration Guide, SC09-2359 ¢ Common migration questions

* Application executable program compatibility
* Source program compatibility

* Input and output operations compatibility

* Class library migration considerations

* Changes between releases of OS/390

¢ C/370* V1 to V2 compiler changes

* Other migration considerations

0S5/390 C/C++ Reference Summary, Summary tables for:

5X09-1313 ¢ Character set, trigraphs, digraphs, and keywords
* Escape sequences, storage classes

* Predefined and derived types, type qualifiers

* Operator precedence, redirection symbols

» fprintf() format, type characters, and flag characters
» fscanf() format and type characters

e _ amrc structure

* Hardware exceptions and signals

¢ Compiler return codes

* Compiler options

 #pragma directives

* Library functions

« Utilities

Chapter 1. About This Book

Table 1. OS/390 C/C++ Publications (continued)

Book Title and Number

Key Sections/Chapters in the Book

0S/390 C/C++ IBM Open Class Library
User’s Guide, SC09-2363

Guidance information for:

* Using the Complex Mathematics Class Library: Review of complex
numbers, header files, constructing complex objects, mathematical
operators for complex, friend functions for complex, handling complex
mathematics errors

 Using the I/O Stream Class Library: Introduction, getting started,
advanced topics, and manipulators

¢ Using the Collection Class Library: Overview, instantiating and using,
element and key functions, tailoring a collection implementation,
polymorphic use of collections, support for notifications, exception
handling, tutorials, problem solving, compatibility with previous releases,
thread safety

* Using the Application Support Class Library: Introduction, String classes,
Exception and Trace classes, Date and Time classes, controlling threads and
protecting data, the IBM Open Class* notification framework, Binary
Coded Decimal classes

0S/390 C/C++ IBM Open Class Library
Reference, SC09-2364

Reference information for:

¢ Complex Mathematics Class Library
¢ I/O Stream Class Library

¢ Collection Class Library

* Application Support Class Library

0S5/390 C/C++ SOM-Enabled Class
Library User’s Guide and Reference,
5C09-2366

Guidance and reference information for:

¢ C++ SOM (RRBC-enabled) versions of Collection and Application Support
Class Libraries

* Cross-language SOM version of the Collection Class Library

Debug Tool User’s Guide and Reference,
5C09-2137

Guidance and reference information for:

* Preparing to debug programs

* Debugging programs

* Using Debug Tool in different environments
* Language-specific information

* Debug Tool reference

APAR and BOOKS files (Shipped
with Program materials)

Partitioned data set CBC.SCBCDOC on the product tape contains the
members, APAR and BOOKS, which provide additional information for using
the IBM OS/390 C/C++ licensed program, including;:

* Isolating reportable problems

* Keywords

* Preparing an Authorized Program Analysis Report (APAR)

* Problem identification worksheet

* Maintenance on OS/390

* Late changes to OS/390 C/C++ publications

Note: For complete and detailed information on linking and running with OS/390 Language Environment and using
the OS/390 Language Environment runtime options, refer to the OS/390 Language Environment Programming Guide,
5C28-1939. For complete and detailed information on using interlanguage calls, refer to OS/390 Language Environment
Writing Interlanguage Applications, SC28-1943.

The following table lists the OS/390 C/C++ and related publications. The table
groups the publications according to the tasks they describe.

6 0S/390 V2R6.0 C/C++ Language Reference

Table 2. Publications by Task

Tasks

Books

Planning, preparing, and migrating to OS/390 C/C++

0S5/390 C/C++ Compiler and Run-Time Migration Guide,
SC09-2359

0S/390 Language Environment Customization, SC28-1941
0S5/390 UNIX System Services Planning, SC28-1890
0S5/390 Planning for Installation, GC28-1726

0S/390 Task Atlas, available on the OS/390 Library
page on the World Wide Web
(http://www.s390.ibm.com/0s390/bkserv)

Installing

0S/390 Program Directory
0S/390 Planning for Installation, GC28-1726
0S5/390 Language Environment Customization, SC28-1941

Coding programs

0S/390 C/C++ Run-Time Library Reference, SC28-1663
0S/390 C/C++ Language Reference, SC09-2360

0S5/390 C/C++ Reference Summary, SX09-1313

0S5/390 C/C++ Programming Guide, SC09-2362
0S5/390 Language Environment Concepts Guide,
GC28-1945

0S5/390 Language Environment Programming Guide,
SC28-1939

0S/390 Language Environment Programming Reference,
S5C28-1940

0S5/390 C/C++ IBM Open Class Library User’s Guide,
SC09-2363

0S/390 C/C++ IBM Open Class Library Reference,
SC09-2364

0S5/390 C/C++ SOM-Enabled Class Library User’s Guide
and Reference, SC09-2366

Coding and binding programs with interlanguage calls

0S5/390 C/C++ Programming Guide, SC09-2362
0S5/390 C/C++ Language Reference, SC09-2360
0S5/390 Language Environment Programming Guide,
SC28-1939

0S5/390 Language Environment Writing Interlanguage
Applications, SC28-1943

DFSMS/MV'S Program Management, SC26-4916

Compiling, binding, and running programs

0S5/390 C/C++ User’s Guide, SC09-2361

0S5/390 Language Environment Programming Guide,
SC28-1939

0S5/390 Language Environment Debugging Guide and
Run-Time Messages, SC28-1942

DFSMS/MVS Program Management, SC26-4916
0S/390 Messages Database, available on the OS/390
Library page in the World Wide Web
(http://www.s390.ibm.com/0s390/bkserv)

Compiling and binding applications in the OS/390 UNIX

environment

0S/390 C/C++ User’s Guide, SC09-2361

0S5/390 UNIX System Services User’s Guide, SC28-1891
0S5/390 UNIX System Services Command Reference,
SC28-1892

DFSMS/MVS Program Management, SC26-4916

Compiling and binding SOM applications with OS/390
SOMobjects*

0S5/390 SOMobjects Programmer’s Guide, GC28-1859
0S5/390 C/C++ Programming Guide, SC09-2362
0S/390 C/C++ User’s Guide, SC09-2361

Chapter 1. About This Book

7

Table 2. Publications by Task (continued)

Tasks

Books

Debugging programs

README file

Debug Tool User’s Guide and Reference, SC09-2137
0S5/390 C/C++ User’s Guide, SC09-2361

0S/390 C/C++ Programming Guide, SC09-2362
0S5/390 Language Environment Programming Guide,
SC28-1939

0S/390 Language Environment Debugging Guide and
Run-Time Messages, SC28-1942

0S5/390 UNIX System Services Messages and Codes,
SC28-1908

0S5/390 UNIX System Services User’s Guide, SC28-1891
0S5/390 UNIX System Services Command Reference,
S5C28-1892

0S5/390 UNIX System Services Programming Tools,
SC28-1904

Using shells and utilities in the OS/390 UNIX
environment

0S/390 C/C++ User’s Guide, SC09-2361

0S5/390 UNIX System Services Command Reference,
SC28-1892

0S5/390 UNIX System Services Messages and Codes,
SC28-1908

Using sockets library functions in the OS/390 UNIX
environment

0S5/390 C/C++ Run-Time Library Reference, SC28-1663

Porting a UNIX Application to OS/390

0S5/390 UNIX System Services Porting Guide

This guide contains useful information about
supported header files and C functions, sockets in an
0S/390 UNIX environment, process management,
compiler optimization tips, and suggestions for
improving the application’s performance after it has
been ported. The Porting Guide is available as a PDF
file which you can download, or as web pages which
you can browse, at the following URL:
http://www.s390.1ibm.com/unix/bpxalpor.html

Performing diagnosis and submitting an Authorized
Program Analysis Report (APAR)

0S5/390 C/C++ User’s Guide, SC09-2361
CBC.SCBCDOC(APAR) on 0OS/390 C/C++ product
tape

Quick reference

05/390 C/C++ Reference Summary, SX09-1313

Multimedia Tutorial

For a new way of learning C++ programming, you can
order the CD-ROM Experience C++: A Multimedia
Tutorial, SK2T-1158. This tutorial runs in DOS.

Note: For information on using the prelinker, see the appendix on prelinking and linking OS/390 C/C++ programs
in the OS/390 C/C++ User’s Guide. As of Release 4, this appendix contains information that was previously in the
chapter on prelinking and linking OS/390 C/C++ programs in the OS/390 C/C++ User’s Guide. It also contains
prelinker information that was previously in the OS/390 C/C++ Programming Guide.

Hardcopy Books

The following OS/390 C/C++ books are available in hardcopy:
* 0S5/390 C/C++ Run-Time Library Reference, SC28-1663

* 08/390 C/C++ User’s Guide, SC09-2361

* 0S5/390 C/C++ Programming Guide, SC09-2362

* 0S5/390 C/C++ Reference Summary, SX09-1313

* 0S5/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363

8 05/390 V2R6.0 C/C++ Language Reference

e (0S/390 C Curses, SC28-1907
e 05/390 C/C++ Compiler and Run-Time Migration Guide, SC09-2359
e Debug Tool User’s Guide and Reference, SC09-2137

You can purchase these books on their own, or as part of a set. You receive the
0S5/390 C/C++ Compiler and Run-Time Migration Guide, SC09-2359 at no charge.
Feature code 8009 includes the remaining books.

Softcopy Books

All of the OS5/390 C/C++ publications (except for the O5/390 C/C++ Reference
Summary) are available in softcopy book format. The books are available on the
tape that accompanies the OS/390 product, and on a CD-ROM called the IBM
Online Library Omnibus Edition: OS/390 Collection, SK2T-6700.

To read the softcopy books, the BookManager* Read (Program 5684-062, 5695-046)
licensed program must be available on your operating system. BookManager Read
provides access to online information as an alternative to hard copy documents.
You can read, search, make notes, and select sections of text to print.

Also available are BookManager Read/DOS (Program 73F6-022) for the DOS
operating system, and BookManager Read/2 (Program 73F6-023) for the OS/2
operating system. With these products, you can download online books to your
workstation and read them.

If your system has BookManager Read installed, you can enter the command
BOOKMGR to start BookManager and display a list of books available to you. If
you know the name of the book that you want to view, you can use the OPEN
command to open the book directly.

Note: If your workstation does not have graphics capability, BookManager Read
cannot correctly display some characters, such as arrows and brackets.

You can also browse the books on the World Wide Web by clicking on "The
Library" link on the OS/390 home page. The URL for this page is:

http://www.s390.1ibm.com/0s390/index.html

Softcopy Examples

Most of the larger examples in the following books are available in
machine-readable form:

* 0S5/390 C/C++ Language Reference, SC09-2360

e (0S/390 C/C++ User’s Guide, SC09-2361

* 0S5/390 C/C++ Programming Guide, SC09-2362

e 0S5/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363

e 0S5/390 C/C++ IBM Open Class Library Reference, SC09-2364

e 0S5/390 C/C++ SOM-Enabled Class Library User’s Guide and Reference, SC09-2366

In the following books, a label on an example indicates that the example is
distributed in softcopy. The label is the name of a member in the data sets
CBC.SCBCSAM or CBC.SCLBSAM. The labels have the form CBCxyyy or CLBxyyy, where
x refers to a publication:

* Rand X refer to the O5/390 C/C++ Language Reference, SC09-2360

* G refers to the O5/390 C/C++ Programming Guide, SC09-2362

Chapter 1. About This Book 9

e U refers to the OS/390 C/C++ User’s Guide, SC09-2361
* A refers to the OS/390 C/C++ IBM Open Class Library User’s Guide, SC09-2363

Examples labelled as CBCxyyy appear in the OS/390 C/C++ Language Reference, the
0S/390 C/C++ Programming Guide, and the O5/390 C/C++ User’s Guide. Examples
labelled as CLBxyyy appear in the OS/390 C/C++ IBM Open Class Library User’s
Guide.

An exception applies to the example names for the Collection Class Library which
do not follow a naming convention. These examples are in the OS/390 C/C++ IBM
Open Class Library Reference, SC09-2364 and in the OS/390 C/C++ SOM-Enabled Class
Library User’s Guide and Reference, SC09-2366. For the 05/390 C/C++ SOM-Enabled
Class Library User’s Guide and Reference, SC09-2366, the label refers to a member
name in the data set CBC.SCLBXSM.

0S/390 C/C++ on the World Wide Web

Additional information on OS/390 C/C++ is available on the World Wide Web.
The URL for the OS/390 C/C++ home page is:

http://www.software.ibm.com/ad/c390/index.htm1

This page contains late-breaking information about the OS/390 C/C++ product,
including the compiler, the class libraries, and utilities. It also contains a tutorial on
the source level interactive debugger. There are links to other useful information,
such as the OS/390 C/C++ information library and the libraries of other OS/390
elements that are available on the Web. The OS/390 C/C++ home page also
contains information on active Beta programs, samples that you can download,
C/370 product newsletters, and links to other related Web sites.

C/C++ News...

IBM also publishes the C/370 Compiler Newsletter. This free newsletter keeps
subscribers up to date on the latest product releases. It also provides coding hints
and tips, questions and answers, and news about C/370 products and IBM OS/390
C/C++.

To take advantage of this free publication, send your name, full mailing address,
and phone number, as follows:

* Send a message electronically to the following network ID :
— Internet: inetc370@ca.ibm.com
— IBMMAIL: ibmmail(caibmrxz)

* Mail your request to:

EDITOR, C/370 Compiler Newsletter
IBM Canada Ltd. Laboratory
9/604/895/TOR

895 Don Mills Road

NORTH YORK ONTARIO CANADA M3C 1W3

How to Read the Syntax Diagrams

This book describes the syntax for commands, directives, and statements, using the
following structure:

10 0S/390 V2R6.0 C/C++ Language Reference

* Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

A double right arrowhead indicates the beginning of a command, directive, or
statement. A single right arrowhead indicates that it is continued on the next
line. In the following diagrams, "statement" represents a command, directive, or
statement.

A\
A

»»>—statement

The following indicates a continuation; the opposing arrowheads indicate the
end of a command, directive, or statement.

»>—statement >«

Diagrams of syntactical units other than complete commands, directives, or
statements look like this:

»»>—statement »><

* Required items are on the horizontal line (the main path).

»>—statement—required_item ><

* Optional items are below the main path.

»»>—statement >«
|—optz’onal_i ltemJ

 If you can choose from two or more items, they are vertical in a stack.
If you must choose one of the items, one item of the stack is on the main path.

»—statement—[requ ired_choicel ><
requi red_choiceZJ

If choosing one of the items is optional, the entire stack is below the main path.

»>—statement |
i:optional_choicel:‘
0

ptional_choice2

* An arrow that returns to the left above the main line indicates an item that you
can repeat.

»>—statement—Y

repeatable item ><

Chapter 1. About This Book 11

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.

* Keywords are not italicized, and should be entered exactly as shown (for
example, pragma). You must spell keywords exactly as shown in the syntax
diagram. Variables are in lowercase italics (in hardcopy), for example, identifier.
They represent user-supplied names or values.

* If the syntax diagram shows punctuation marks, parentheses, arithmetic
operators, or other nonalphanumeric characters, you must enter them as part of
the syntax.

Note: You do not always require the white space between tokens. You should,
however, include at least one blank space between tokens unless otherwise

specified.
The following syntax diagram example shows the syntax for the #pragma comment
directive.
(1) (2) (3) (4)
> f#————pragma comment >
(5) (6) (9) (10)
»—(———compiler) >
—date
—timestamp
copyright
|:user | L (7) (8)
, "—token_sequence—"
Notes:

This is the start of the syntax diagram.
The symbol -# must appear first.
The keyword -pragma must follow the -# symbol.

1

2

3

4 The keyword -comment must follow the keyword -pragma.

5 An opening parenthesis must follow the keyword -comment.
6

The comment type must be entered only as one of the following: -compiler,
-date, -timestamp, -copyright, or -user.

7 If the comment type is -copyright or -user, and an optional character string
is following, a comma must be present after the comment type.

8 A character string must follow the comma. The character string must be
enclosed in double quotation marks.

9 A closing parenthesis is required.
10 This is the end of the syntax diagram.

The following examples of the #pragma comment directive are syntactically correct
according to the diagram above:

#pragma comment (date)
#pragma comment (user)
#pragma comment (copyright,"This text will appear in the module")

12 0S/390 V2R6.0 C/C++ Language Reference

Chapter 2. About IBM OS/390 C/C++

The C/C++ feature of the IBM OS/390 licensed program provides support for C
and C++ application development on the OS/390 platform. The C/C++ feature is
based on the C/C++ for MVS/ESA* product.

IBM OS/390 C/C++ includes:

A C compiler (referred to as the OS/390 C compiler)

A C++ compiler (referred to as the OS/390 C++ compiler)

A set of C++ class libraries

Application Support Class and Collection Class Library source
A mainframe interactive Debug Tool (optional)

A set of utilities for C/C++ application development

IBM offers the C language on other platforms, such as the AIX*, IBM Operating
System/2* (OS/2*), IBM Operating System/400* Version 3 (OS/400%*), Sun Solaris,
VM/ESA*, VSE/ESA*, and Windows® operating systems. The AIX, OS/2, OS/400,
Sun Solaris, and Windows operating systems also offer the C++ language.

Changes for Version 2 Release 6

0S5/390 C/C++ has made the following changes for this release:

Added support for the Institute of Electrical and Electronics Engineers (IEEE)
binary floating-point data type, in conformance with the IEEE 754 standard, as
applicable to the S/390* environment. For details on the OS/390 C/C++
support, see the description of the FLOAT option in the OS/390 C/C++ User’s
Guide. In addition, two related sub-options have been introduced, ARCH(3) and
TUNE(3). The two sub-options support the new G5 processor architecture, and
IEEE binary floating-point data. Refer to the ARCHITECTURE and TUNE compiler
options in the OS/390 C/C++ User’s Guide for details.

Complete IEEE binary floating-point support for OS/390 and its elements
requires that you apply small programming enhancements (SPEs) to OS/390
V2R6.0, and to specific releases of some software. These SPEs are delivered as
program temporary fixes (PTFs). Consult your System Programmer to ensure
that the SPE PTFs you require for IEEE binary floating-point support, as
documented in the OS/390 Planning for Installation publication, are applied to
your system. The OS/390 Planning for Installation publication documents the
complete software requirements for IEEE binary floating-point support on
0S5/390.

Improved the performance of the Binary Coded Decimal (BCD) class library, and
its compatibility with the decimal data type in C, and other 5/390 languages.
For details, see Using the C++ Decimal Data Type in the OS5/390 C/C++
Programming Guide.

Added support for the Tong long integer data type. For more details, see

4 i “ and L ” . The run-time
library, including functions such as printf() and scanf(), does not support the
Tong Tong data type at this time.

Added a new compiler option, PORT, that enables you to increase the syntax
checking for the #pragma pack directive in your code. This option is helpful

© Copyright IBM Corp. 1996, 1998 13

when porting code that contains #pragma pack directives or packed data from
other platforms. For more information on the PORT option, see the OS/390 C/C++
User’s Guide.

* Added a new compiler option, FASTTEMPINC, that enables you to improve your
compilation time for C++ class templates if you use a large number of recursive
templates in an application. For more information on the FASTTEMPINC option,
see the O5/390 C/C++ User’s Guide.

* Retroactive to OS/390 Version 1 Release 3, the IBM Open Class Library is
licensed with the base operating system. This enables applications to use this
library at run time without having to license the OS/390 C/C++ compiler
feature(s) or to use the DLL Rename Utility.

* The level of optimization you get when you specify the OPT(1), or OPT, compiler
option is the same as when you specify 0PT(2). For more information on the
OPTIMIZATION option see the OS/390 C/C++ User’s Guide.

* The OS/390 C++ class library header files are now distributed in the hierarchical
file system (HFS) in directory /usr/1pp/ioclib/include.

* As part of the name change of OpenEdition* to O5/390 UNIX System Services,
occurrences of OpenEdition have been changed to OS/390 UNIX System Services
or its abbreviated name, OS/390 UNIX, throughout the OS/390 C/C++
information library. OpenEdition may continue to appear in messages, panel text,
and other code locations.

The C/C++ Compilers

The following sections describe the C and C++ languages and the OS/390 C/C++
compilers.

The C Language

The C language is a general purpose, versatile, and functional programming
language, which allows a programmer to create applications quickly and easily. C
provides high-level control statements and data types as do other structured
programming languages. It also provides many of the benefits of a low-level
language.

The C++ Language

The C++ language is based on the C language, but incorporates support for
object-oriented concepts. Refer to Appendix A. C and C++ Compatibility” onl
ﬁm for a detailed description of the differences between OS/390 C++ and
0S/390 C.

The C++ language introduces classes, which are user-defined data types that may
contain data definitions and function definitions. You can use classes from
established class libraries, develop your own classes, or derive new classes from
existing classes by adding data descriptions and functions. New classes can inherit
properties from one or more classes. Not only do classes describe the data types
and functions available, but they can also hide (encapsulate) the implementation
details from user programs. An object is an instance of a class.

The C++ language also provides templates and other features that include access

control to data and functions, and better type checking and exception handling. It
also supports polymorphism and the overloading of operators.

14 0S/390 V2R6.0 C/C++ Language Reference

Common Features of the OS/390 C and C++ Compilers

The C or C++ compilers offer many features to help your work:
* Optimization support.

— Algorithms to take advantage of S/390 architecture to get better optimization
for speed and use of computer resources through the OPTIMIZE and IPA
compile-time options.

— The OPTIMIZE compile-time option to instruct the compiler to optimize the
machine instructions it generates, to produce faster-running object code,
thereby optimizing application performance at run time.

— Interprocedural Analysis (IPA), to perform optimizations across compilation
units, thereby optimizing application performance at run time.

— The precompiled header facility, to save information from one compilation
unit for use in another or to reuse information when re-compiling the source
compilation unit, thereby improving performance at compile time.

* DLLs (dynamic link libraries) to reduce application size, and dynamically link to
exported variables and functions at run time.

IBM OS/390 C/C++ provides support for generating DLLs in a way similar to
the way OS/2 generates DLLs. DLLs allow a function reference or a variable
reference in one executable to use a definition located in another executable at
run time. You can use both load-on-reference and load-on-demand DLLs. When
your program calls a DLL function, or references a DLL, IBM OS/390 C/C++
provides a load-on-reference DLL. Your application code explicitly controls
load-on-demand DLLs at the source level.

You can use DLLs to split applications into smaller modules and improve
system memory usage. DLLs also offer more flexibility for building, packaging,
and redistributing applications.

* Full program reentrancy.

With reentrancy, many users can simultaneously run a program. A reentrant
program uses less storage if it is stored in the LPA (link pack area) or ELPA
(extended link pack area) and simultaneously run by multiple users. It also
reduces processor I/O when the program starts up, and improves program
performance by reducing the transfer of data to auxiliary storage. OS/390 C
programmers can design programs that are naturally reentrant. For those
programs that are not naturally reentrant, C programmers can use constructed
reentrancy. To do this, compile programs with the RENT option and use the
program management binder supplied with OS/390, or the OS/390 Language
Environment Prelinker (prelinker) and program management binder. The
0S/390 C++ compiler always ensures that C++ programs are reentrant.

* Locale-based internationalization support derived from the IEEE POSIX
1003.2-1992 standard. Also derived from the X/Open CAE Specification, System
Interface Definitions, Issue 4 and Issue 4 Version 2. This allows programmers to
use locales to specify language/country characteristics for their applications.

* The ability to call and be called by other languages such as assembler, COBOL,
PL/1, and Fortran, to enable programmers to integrate OS/390 C/C++ code
with existing applications.

* Exploitation of OS/390 and OS/390 UNIX technology.

0S/390 UNIX is an IBM implementation of the open operating system
environment, as defined in the XPG4 and POSIX standards.

* When used with OS5/390 UNIX and OS/390 Language Environment, support for
the following standards at the system level:

Chapter 2. About IBM 0S/390 C/C++ 15

— A subset of the extended multibyte and wide character functions as defined
by the Programming Language C Amendment 1. This is ISO/IEC
9899:1990/ Amendment 1:1994(E)

- ISO/IEC 9945-1:1990(E)/IEEE POSIX 1003.1-1990
— A subset of IEEE POSIX 1003.1a, Draft 6, July 1991
— IEEE Portable Operating System Interface (POSIX) Part 2, P1003.2

— A subset of IEEE POSIX 1003.4a, Draft 6, February 1992 (the IEEE POSIX
committee has renumbered POSIX.4a to POSIX.1c)

— X/Open CAE Specification, System Interfaces and Headers, Issue 4 Version 2

— A subset of IEEE 754-1985 (R1990) IEEE Standard for Binary Floating-Point
Arithmetic (ANSI), as applicable to the S/390 environment.

— X/Open CAE Specification, Network Services, Issue 4
* Year 2000 support.

0S/390 C Compiler Specific Features

In addition to the features common to OS/390 C/C++, the OS/390 C compiler
provides you with the following capabilities:

* The ability to write portable code that conforms to the following standards:
All elements of the ISO standard ISO/IEC 9899:1990 (E)

— ANSI/ISO 9899:1990[1992] (formerly ANSI X3.159-1989 C)

X/Open Specification Programming Language Issue 3, Common Usage C
FIPS-160

* System programming capabilities, which allow you to use OS/390 C in place of
assembler

* Additional optimization capabilities through the INLINE compile-time option

* Extensions of the standard definitions of the C language to provide
programmers with support for the OS/390 environment, such as fixed-point
(packed) decimal data support

Features That Are Specific to the OS/390 C++ Compiler

In addition to the features common to OS/390 C/C++, the OS/390 C++ compiler
provides you with the following;:

* An implementation based on the definition of the language that is contained in
the Draft Proposal International Standard for Information Systems—
Programming Language C++ (X3]J16/92-00091). The OS/390 C++ compiler also
conforms to a subset of the C++ ANSI/ISO (Draft) Standard (X3]J16/93-0062).

* System Object Model (SOM) support, through the SOM Interface Definition
Language (IDL) compiler available with OS/390 SOMobjects. You can use the
IDL compiler and associated emitters to create language-specific bindings that
define the interface to a SOM object. This enables OS/390 C++ programs to
share SOM objects with other languages. In addition, SOM enables
release-to-release binary compatibility.

With Direct-to-SOM (DTS) support in the OS/390 C++ compiler, you can
generate SOM objects directly from C++ code. You do not need to create and
process the IDL first. You can write virtually the same code you do when
creating C++ objects.

Note: The OS/390 C++ compiler no longer supports IDL generation through the
IDL compile-time option. This option instructed the compiler to generate

16 0S/390 V2R6.0 C/C++ Language Reference

IDL. Mixed-language or distributed object applications used IDL. If you
need IDL for your applications, you should now code it yourself instead
of generating it through the IDL compile option.

C++ template support and exception handling consistent with VisualAge* C++
product implementations.

Utilities

The OS/390 C/C++ compilers provide the following utilities:

The Object Library Utility to update partitioned data set (PDS) libraries of object
modules and Interprocedural Analysis (IPA) object modules

The DLL Rename Utility to make selected DLLs a unique component of the
applications with which they are packaged

The CXXFILT Utility to map OS/390 C++ mangled names to the original source

The localedef Utility to read the locale definition file and produce a locale object
that the locale-specific library functions can use

The DSECT Conversion Utility to convert descriptive assembler DSECTs into
0S5/390 C/C++ data structures

The C/C++ Model Tool to provide online help for C/C++ #pragma directives
and runtime library functions. These functions are other than the C Curses
functions, and are at the level that is supplied in OS/390 Release 2

Class Libraries

IBM OS/390 C/C++ provides a base set of class libraries, called C/C++ IBM Open
Class, which is consistent with that available in other members of the VisualAge
C++ product family. These class libraries are:

The I/0 Stream Class Library

The I/0 Stream Class Library lets you perform input and output (I/0)
operations independent of physical I/O devices or data types that are used. You
can code sophisticated I/O statements easily and clearly, and define input and
output for your own data types. You can improve the maintainability of
programs that use input and output by using the I/O Stream Class Library.

The Complex Mathematics Class Library

The Complex Mathematics Class Library lets you manipulate and perform
standard arithmetic on complex numbers. Scientific and technical fields use
complex numbers.

The Application Support Class Library

The Application Support Class Library provides the basic abstractions that are
needed during the creation of most C++ applications, including String, Date, and
Time.

The Application Support Class library is available in a C++ SOM version as well
as the regular C++ native version.

The Collection Class Library

The Collection Class Library implements a wide variety of classical data
structures such as stack, tree, list, hash table, and so on. Most programs use
collections. You can develop programs without having to define every collection.
Programmers can start programming by using a high level of abstraction, and
later replace an abstract data type with the appropriate concrete implementation.
Each abstract data type has a common interface for all of its implementations.
The Collection Class Library provides programmers with a consistent set of

Chapter 2. About IBM 0S/390 C/C++ 17

building blocks from which they can derive application objects. The library
design exploits features of the C++ language such as exception handling and
template support.

The Collection Class Library is available in a C++ SOM and a cross-language
SOM version, as well as the regular C++ native version.

All of the libraries that are described above are thread-safe, except the
cross-language SOM version of the Collection Class Library.

All of the libraries that are described above are available in both static and DLL
formats. OS/390 C/C++ packages the Application Support Class and Collection
Class libraries together in a single DLL. For compatibility, separate side-decks are
available for the Application Support Class and Collection Class libraries, in
addition to the side-deck available for the combined library.

Note: Retroactive to OS/390 Version 1 Release 3, the IBM Open Class Library is
licensed with the base operating system. This enables applications to use
this library at run time without having to license the OS5/390 C/C++
compiler feature(s) or to use the DLL Rename Utility.

Class Library Source

The Class Library Source consists of the following:
* Application Support Class Library source code
* Collection Class Library source code (C++ native and C++ SOM only)

¢ Instructions for building the Application Support Class and Collection Class
Libraries in C++ native (static and DLL) versions

¢ Instructions for building the Application Support Class and Collection Class
Libraries in C++ SOM (static and DLL) versions

* Class Library Language Environment message file source

¢ Instructions for building the Class Library Language Environment message files

The Debug Tool

IBM 0S/390 C/C++ supports program development by using a mainframe
interactive Debug Tool. This optionally available tool allows you to debug
applications in their native host environment, such as CICS/ESA, IMS/ESA*, DB2,
and so on. The Debug Tool provides the following support and function:

* Step mode

* Breakpoints

* Monitor

* Frequency analysis

* Dynamic patching

You can record the debug session in a log file, and replay the session. You can also
use the Debug Tool to help capture test cases for future program validation or to

further isolate a problem within an application.

You can specify either data sets or hierarchical file system (HFS) files as source
files.

18 0S/390 V2R6.0 C/C++ Language Reference

0OS/390 Language Environment

IBM OS/390 C/C++ exploits the C/C++ runtime environment and library of
runtime services available with OS/390 Language Environment (formerly
Language Environment for MVS & VM, Language Environment/370 and LE/370).

0S/390 Language Environment consists of four language-specific runtime libraries,
and Base Routines and Common Services; see @ 0S/390 Language
Environment establishes a common runtime environment and common runtime
services for language products, user programs, and other products.

C/C++ COBOL PL/I FORTRAN

Language Language Language Language
Specific Specific Specific Specific
Library Library Library Library

Language Environment Base Routines and Common Services

Figure 1. Libraries in OS/390 Language Environment

The common execution environment is composed of data items and services that
are included in library routines available to an application that runs in the
environment. The OS5/390 Language Environment provides a variety of services:

* Services that satisfy basic requirements common to most applications. These
include support for the initialization and termination of applications, allocation
of storage, interlanguage communication (ILC), and condition handling.

* Extended services that are often needed by applications. OS/390 C/C++
contains these functions within a library of callable routines, and include
interfaces to operating system functions and a variety of other commonly used
functions.

* Runtime options that help in the execution, performance, and diagnosis of your
application.

¢ Access to operating system services; OS/390 UNIX services are available to an
application programmer or program through the OS/390 C/C++ language
bindings.

* Access to language-specific library routines, such as the OS/390 C/C++ library
functions.

The Program Management Binder

The binder provided with OS/390 combines the object modules, load modules, and
program objects comprising an OS/390 application. It produces a single output
program object or load module that you can load for execution. The binder
supports all C and C++ code, provided that you store the output program in a
PDSE (Partitioned Data Set Extended) member or an HFS file.

Chapter 2. About IBM 0S/390 C/C++ 19

If you cannot use a PDSE member or HEFS file, and your program contains C++
code, or C code that is compiled with any of the RENT, LONGNAME, DLL or IPA
compile-time options, you must use the prelinker.

Using the binder without using the prelinker has the following advantages:
* Faster rebinds when recompiling and rebinding a few of your source files

* Rebinding at the single compile unit level of granularity (except when you use
the IPA compile-time option)

* Input of object modules, load modules, and program objects

¢ Improved long name support:
— Long names do not get converted into prelinker generated names
— Long names appear in the binder maps, enabling full cross-referencing
— Variables do not disappear after prelink
— Fewer steps in the process of producing your executable program

The prelinker provided with OS/390 Language Environment combines the object
modules comprising an OS/390 C/C++ application and produces a single object
module. You can link-edit the object module into a load module (which is stored in
a PDS), or bind it into a load module or a program object stored in a PDS, or a
PDSE or HFS file.

0OS/390 UNIX System Services (OS/390 UNIX)

0S/390 UNIX provides capabilities under OS/390 to make it easier to implement
or port applications in an open, distributed environment. OS/390 UNIX Services
are available to OS/390 C/C++ application programs through the C/C++ language
bindings available with OS/390 Language Environment.

Together, the OS/390 UNIX Services, OS/390 Language Environment, and OS/390
C/C++ compilers provide an application programming interface that supports
industry standards.

0S/390 UNIX provides support for both existing OS/390 applications and new

0S/390 UNIX applications:

* C programming language support as defined by ISO/ANSI C

¢ C++ programming language support

* C language bindings as defined in the IEEE 1003.1 and 1003.2 standards; subsets
of the draft 1003.1a and 1003.4a standards; X/Open CAE Specification: System
Interfaces and Headers, Issue 4, Version 2, which provides standard interfaces
for better source code portability with other conforming systems; and X/Open
CAE Specification, Network Services, Issue 4, which defines the X/Open UNIX
descriptions of sockets and X/Open Transport Interface (XTI)

* 0OS/390 UNIX Extensions that provide OS/390-specific support beyond the
defined standards

e The OS/390 UNIX Shell and Utilities feature, which provides:
— A shell, based on the Korn Shell and compatible with the Bourne Shell

— Tools and utilities that conform to the X/Open Single UNIX Specification, also
known as X/Open Portability Guide (XPG) Version 4, Issue 2, and provide
0S/390 support. The following utilities are included:

ar Creates and maintains library archives

20 0S/390 V2R6.0 C/C++ Language Reference

BPXBATCH

c89

gencat

lex

make

yacc

c++

mkcatdefs

runcat

dspcat
dspmsg

Allows you to submit batch jobs that run shell commands,
scripts, or OS/390 C/C++ executable files in HFS files from a
shell session

Compiles, assembles, and binds OS/390 UNIX C applications

Merges the message text source files Messagefile (usually
*.msg) into a formatted message Catalogfile (usually *.cat)

Automatically writes large parts of a lexical analyzer based on
a description that is supplied by the programmer

Helps you manage projects containing a set of interdependent
files, such as a program with many OS/390 C/C++ source
and object files, keeping all such files up to date with one
another

Allows you to write compilers and other programs that parse
input according to strict grammar rules

Support for other utilities such as:

Compiles, assembles, and binds OS/390 UNIX C++
applications

Preprocesses a message source file for input to the gencat
utility

Invokes mkcatdefs and pipes the message catalog source data
(the output from mkcatdefs) to gencat

Displays all or part of a message catalog

Displays a selected message from a message catalog

The OS/390 UNIX Debugger feature, which provides the dbx interactive
symbolic debugger for OS/390 UNIX applications

0S/390 UNIX, which provides access to a hierarchical file system (HFS), with
support for the POSIX.1 and XPG4 standards

0S/390 C/C++ 1/0 routines, which support using HFS files, standard OS/390
data sets, or a mixture of both

Application threads (with support for a subset of POSIX 4a)
Support for OS/390 C/C++ DLLs

0S/390 UNIX offers program portability across multivendor operating systems,
with support for POSIX.1, POSIX.1a (draft 6), POSIX.2, POSIX 4a (draft 6), and
XPG4.2.

To application developers who have worked with other UNIX environments, the
0S/390 UNIX Shell and Utilities are a familiar environment for C/C++ application
development. If you are familiar with existing MVS development environments,
you may find that the OS/390 UNIX environment can enhance your productivity.
Refer to the OS/390 UNIX System Services User’s Guide for more information on the

Shell and Utilities.

0OS/390 C/C++ Applications with OS/390 UNIX C/C++ Functions

Most OS/390 UNIX C functions are available at all times. However, to use some
0S5/390 UNIX C functions, you must run an OS/390 C/C++ program on a system
where the OS/390 UNIX kernel is available and active. In some situations, you
must also specify the POSIX(ON) runtime option. This is required for the POSIX.4a

Chapter 2. About IBM 0S/390 C/C++ 21

threading functions, and the system and signal handling functions where the
behavior is different between POSIX/XPG4 and ANSI. Refer to the OS5/390 C/C++
Run-Time Library Reference for more information about requirements for each
function.

You can invoke an OS/390 C/C++ program that uses OS/390 UNIX C functions
using the following methods:

¢ Directly from the OS/390 UNIX Shell.

* From another program, or from the OS/390 UNIX Shell, using one of the exec
family of functions, or the BPXBATCH utility from TSO or MVS batch.

*+ Using the POSIX system() call.

* Directly through TSO or MVS batch without the use of the intermediate

BPXBATCH utility. In some cases, you may require the POSIX(ON) runtime
option.

Input and Output

The C/C++ runtime library that supports the OS/390 C/C++ compiler supports
different input and output (I/O) interfaces, file types, and access methods. The
C++ I/0 Stream Class Library provides additional support.

I/O Interfaces

The C/C++ runtime library supports the following I/O interfaces:

C Stream I/O
This is the default and the ANSI-defined I/O method. This method
processes all input and output by character.

Record I/O
The library can also process your input and output by record. A record is a
set of data that is treated as a unit. It can also process VSAM data sets by
record. Record I/0 is an OS/390 C/C++ extension to the ANSI standard.

TCP/IP Sockets 1/0
0S/390 UNIX provides support for an enhanced version of an
industry-accepted protocol for client/server communication that is known
as sockets. A set of C language functions provides support for OS/390
UNIX sockets. OS/390 UNIX sockets correspond closely to the sockets that
are used by UNIX applications that use the Berkeley Software Distribution
(BSD) 4.3 standard (also known as OE sockets). The slightly different
interface of the X/Open CAE Specification, Networking Services, Issue 4, is
supplied as an additional choice. This interface is known as X/Open
Sockets.

The OS/390 UNIX socket application program interface (API) provides
support for both UNIX domain sockets and Internet domain sockets. UNIX
domain sockets, or local sockets, allow interprocess communication within
05/390 independent of TCP/IP. Local sockets behave like traditional UNIX
sockets and allow processes to communicate with one another on a single
system. With Internet sockets, application programs can communicate with
others in the network using TCP/IP.

22 0S/390 V2R6.0 C/C++ Language Reference

In addition, the C++ I/O Stream Library supports formatted I/O in C++. You can
code sophisticated I/O statements easily and clearly, and define input and output
for your own data types. This helps improve the maintainability of programs that
use input and output.

File Types

In addition to conventional files, such as sequential files and partitioned data sets,
the C/C++ runtime library supports the following file types:

Virtual Storage Access Method (VSAM) Data Sets
0S5/390 C/C++ has native support for three types of VSAM data
organization:

* Key-sequenced data sets (KSDS). Use KSDS to access a record through a
key within the record. A key is one or more consecutive characters that
are taken from a data record that identifies the record.

* Entry-sequenced data sets (ESDS). Use ESDS to access data in the order
it was created (or in the reverse order).

* Relative-record data sets (RRDS). Use RRDS for data in which each item
has a particular number (for example, a telephone system with a record
associated with each number).

For more information on how to perform I/O operations on these VSAM
file types, see the O5/390 C/C++ Programming Guide.

Hierarchical File System Files
When you are running under MVS, TSO (batch and interactive), or IMS
environments, OS/390 C/C++ recognizes a Hierarchical File System (HFS)
file. The name specified on the fopen() or freopen() call has to conform to
certain rules (described in the OS/390 C/C++ Programming Guide). You can
create regular HFS files, special character HFS files, or FIFO HFS files. You
can also create links or directories.

Memory Files
Memory files are temporary files that reside in memory. For improved
performance, you can direct input and output to memory files rather than
to devices. Since memory files reside in main storage and only exist while
the program is executing, you primarily use them as work files. You can
access memory files across load modules through calls to non-POSIX
system() and C fetch(); they exist for the life of the root program.
Standard streams can be redirected to memory files on a non-POSIX
system() call using command line redirection.

Hiperspace* Expanded Storage
Large memory files can be placed in Hiperspace expanded storage to free
up some of your home address space for other uses. Hiperspace expanded
storage or high performance space is a range of up to 2 gigabytes of
contiguous virtual storage space. A program can use this storage as a
buffer (1 gigabyte = 2° bytes).

Additional 1/O Features
IBM 0S/390 C/C++ provides additional I/O support through the following

features:
* User error handling for serious I/0O failures (SIGIOERR)

Chapter 2. About IBM 0S/390 C/C++ 23

Improved sequential data access performance through enablement of the
DESMS/MVS support for 31-bit sequential data buffers and sequential data
striping on extended format data sets

Full support of PDS/Es on OS/390 — including support for multiple members
opened for write

Overlapped 1/0 support under OS/390 (NCP, BUFNO)
Multibyte character I/O functions
Fixed-point (packed) decimal data type support in formatted I/O functions

Support for multiple volume data sets that span more than one volume of
DASD or tape

Support for Generation Data Group 1/O

The System Programming C Facility

The System Programming C (SP C) facility allows you to build applications that
require no dynamic loading of OS/390 Language Environment libraries. It also
allows you to tailor your application to better utilize the low-level services
available on your operating system. SP C offers a number of advantages:

You can develop applications that you can execute in a customized environment
rather than with OS/390 Language Environment services. Note that if you do
not use OS/390 Language Environment services, only some built-in functions
and a limited set of C/C++ runtime library functions are available to you.

You can substitute the OS/390 C language in place of assembler language when
writing system exit routines, by using the interfaces that are provided by SP C.

SP C lets you develop applications featuring a user-controlled environment, in
which an OS/390 C environment is created once and used repeatedly for C
function execution from other languages.

You can utilize co-routines, by using a two-stack model to write application
service routines. In this model, the application calls on the service routine to
perform services independently of the user. The application is then suspended
when control is returned to the user application.

Interaction with Other IBM Products

When you use OS/390 C/C++, you can write programs that utilize the power of
other IBM products and subsystems:

Cross System Product (CSP)

Cross System Product/Application Development (CSP/AD) is an application
generator that provides ways to interactively define, test, and generate
application programs to improve productivity in application development. Cross
System Product/Application Execution (CSP/AE) takes the generated program
and executes it in a production environment.

Note: You cannot compile CSP applications with the OS/390 C++ compiler.
However, your OS5/390 C++ program can use interlanguage calls (ILC) to
call OS/390 C programs that access CSP.

Customer Information Control System (CICS)

You can use the CICS/ESA Command-Level Interface to write C/C++

application programs. The CICS Command-Level Interface provides data, job,

and task management facilities that are normally provided by the operating
system.

24 0S/390 V2R6.0 C/C++ Language Reference

Note: Code preprocessed with CICS/ESA versions prior to V4 R1 is not
supported for OS/390 C++ applications. OS/390 C++ code preprocessed
on CICS/ESA V4 R1 cannot run under CICS/ESA V3 R3.

« DATABASE 2 (DB2)

DB2 programs manage data that is stored in relational data bases. The IBM
DATABASE 2 licensed program runs on OS/390.

You can access the data by using a structured set of queries that are written in
Structured Query Language (SQL). The DB2 program uses SQL statements that
are embedded in the program. The SQL translator (DB2 preprocessor) translates
the embedded SQL into host language statements that perform the requested
functions. The OS/390 C/C++ compilers compile the output of the SQL
translator. The DB2 program processes a request, and processing returns to the
application.

* Data Window Services (DWS)

The Data Window Services (DWS) part of the Callable Services Library allows
your OS/390 C or OS/390 C++ program to manipulate temporary data objects
that are known as TEMPSPACE and VSAM linear data sets.

¢ Information Management System (IMS)

The Information Management System/Enterprise Systems Architecture
(IMS/ESA) product provides support for hierarchical databases.

* Interactive System Productivity Facility (ISPF)

0S/390 C/C++ provides access to the Interactive System Productivity Facility
(ISPF) Dialog Management Services. A dialog is the interaction between a person
and a computer. The dialog interface contains display, variable, message, and
dialog services as well as other facilities that are used to write interactive
applications.

* Graphical Data Display Manager (GDDM)

GDDM provides a comprehensive set of functions to display and print
applications most effectively:

- A windowing system that the user can tailor to display selected information
— Support for presentation and keyboard interaction
— Comprehensive graphics support
— Fonts — including support for double-byte character set (DBCS)
— Business image support
— Saving and restoring graphics pictures
— Support for many types of display terminals, printers, and plotters
* Query Management Facility (QMF)

0S5/390 C supports the Query Management Facility (QMF), a query and report
writing facility, which allows you to write applications through a callable
interface. You can create applications to perform a variety of tasks, such as data
entry, query building, administration aids, and report analysis.

Additional Features of OS/390 C/C++

Feature Description

Multibyte Character Support OS/390 C/C++ supports multibyte characters for those national languages such as
Japanese whose characters cannot be represented by a single byte.

Chapter 2. About IBM 0S/390 C/C++ 25

Feature

Description

Wide Character Support

Multibyte characters can be normalized by OS/390 C library functions and encoded in
units of one length. These normalized characters are called wide characters.
Conversions between multibyte and wide characters can be performed by string
conversion functions such as wcstombs (), mbstowcs (), wesrtombs (), and mbsrtowes(),
as well as the family of wide-character I/O functions. Wide-character data can be
represented by the wchar_t data type.

Extended Precision
Floating-Point Numbers

0S/390 C/C++ provides three S/370 floating-point number data types: single
precision (32 bits), declared as float; double precision (64 bits), declared as doubTe;
and extended precision (128 bits), declared as Tong double.

Extended precision floating-point numbers give greater accuracy to mathematical
calculations.

As of Release 6, OS/390 C/C++ also supports IEEE 754 floating-point representation.
By default, float, double, and Tong double values are represented in IBM S/390
floating point format. However, the IEEE 754 floating-point representation is used if
you specify the FLOAT(IEEE754) compile option. For details on this support, see the
description of the FLOAT option in the OS/390 C/C++ User’s Guide.

Command Line Redirection

You can redirect the standard streams stdin, stderr, and stdout from the command
line or when calling programs using the system() function.

National Language Support

0S/390 C/C++ provides message text in either American English or Japanese. You can
dynamically switch between the two languages.

Locale Definition Support

0S/390 C/C++ provides a locale definition utility that supports the creation of
separate files of internationalization data, or locales. Locales can be used at run time to
customize the behavior of an application to national language, culture, and coded
character set (code page) requirements. Locale-sensitive library functions, such as
isdigit(), use this information.

Coded Character Set (Code
page) Support

The OS/390 C/C++ compiler can compile C/C++ source written in different EBCDIC
code pages. In addition, the iconv utility converts data or source from one code page
to another.

Selected Built-in Library
Functions

Selected library functions, such as string and character functions, are built into the
compiler to improve performance execution. Built-in functions are compiled into the
executable, and no calls to the library are generated.

Multitasking Facility (MTF)

Multitasking is a mode of operation where your program performs two or more tasks
at the same time. OS/390 C provides a set of library functions that perform
multitasking. These functions are known as the Multitasking Facility (MTF). MTF uses
the multitasking capabilities of OS/390 to allow a single OS/390 C application
program to use more than one processor of a multiprocessing system simultaneously.

Packed Structures and
Unions

0S/390 C provides support for packed structures and unions. Structures and unions
may be packed to reduce the storage requirements of a OS/390 C program.

Fixed-point (Packed)
Decimal Data

0S5/390 C supports fixed-point (packed) decimal as a native data type for use in
business applications. The packed data type is similar to the COBOL data type COMP-3
or the PL/I data type FIXED DEC, with up to 31 digits of precision.

The Application Support Class Library provides the Binary Coded Decimal Class for
C++ programs.

Long Name Support

For portability, external names can be mixed case and up to 1024 characters in length.
For C++, the limit applies to the mangled version of the name.

System Calls

You can call commands or executable modules using the system() function under
0S/390, OS/390 UNIX, and TSO. You can also use the system() function to call EXECs
on OS/390 and TSO, or Shell scripts using OS/390 UNIX.

Exploitation of ESA

Support for OS/390, IMS/ESA, Hiperspace expanded storage, and CICS/ESA allows
you to exploit the features of the ESA.

26 0S/390 V2R6.0 C/C++ Language Reference

Feature

Description

Exploitation of hardware

Use the ARCHITECTURE compiler option to select the minimum level of machine
architecture on which your program will run. ARCH(3) enables support for IEEE 754
Binary Floating-Point instructions. ARCH(2) instructs the compiler to generate faster
instruction sequences available only on newer machines.

Use the TUNE compiler option to optimize your application for a selected machine
architecture. Tune(3) optimizes your application for the new G5 processor. TUNE(2)
optimizes your application for other architectures. For information on which machines
and architectures support the above options, refer to the ARCHITECTURE and TUNE
compiler information in the OS/390 C/C++ User’s Guide.

Chapter 2. About IBM 0S/390 C/C++ 27

28 0S/390 V2R6.0 C/C++ Language Reference

Part 2. The C and C++ Languages

This part of the Language Reference describes the language elements that are
common to C and C++. It also describes the C++ constructs that support
object-oriented programming.

Provides a brief overview of the features of C and C++, including a
description of the C++ constructs that support object-oriented
programming.

Chapter4_Lexical Elements of C and C+dl

Describes the basic elements of C and C++.

Describes the declarations and declarators. It also describes program
linkage, storage classes, fundamental data types, and initialization of the
fundamental data types.

Describes the expressions and standard C and C++ operators used in
computation.

Describes the standard conversions performed on the fundamental data
types.

Describes the form and use of functions, including function declarations
and definitions.

Describes the statements used to control the execution sequence of
programs.

B TR YT

© Copyright IBM Corp. 1996, 1998

Discusses preprocessor directives and OS/390 C/C++ pragmas.

29

30 0S/390 V2R6.0 C/C++ Language Reference

Chapter 3. Introduction to C and C++

This chapter describes the C and C++ programming languages that are
implemented by OS/390 C/C++ and shows you how to structure C and C++
source programs. It also briefly summarizes the differences between C and C++,
and discusses the principles of object-oriented programming. Specifically, it
discusses the following topics:

o PCas Prngramq" on page 44

. I”Qanp in C++” on page 44

1Q: 77

7 I . . . 173

Overview of the C Language

C is a programming language that is designed for a wide variety of programming
tasks. You can use it for system-level code, text processing, graphics, and many
other application areas.

The C language described here is consistent with the Systems Application
Architecture Common Programming Interface (also known as the SAA C Level 2
interface). It is also consistent and with the International Standard C
(ANSI/ISO-IEC 9899-1990[1992]). This standard has officially replaced American
National Standard for Information Systems—Programming Language C
(X3.159-1989) and is technically equivalent to the ANSI** C standard.

C supports several data types, including character, packed decimal, integer,
floating-point, and pointer — each in a variety of forms. In addition, C also
supports arrays, structures (records), unions, and enumerations.

The C language contains a concise set of statements, with functionality that is
added through its library. This division enables C to be both flexible and efficient.

An additional benefit is that the language is consistent across different systems.

The C library contains functions for input and output, mathematics, exception
handling, string and character manipulation, dynamic memory management, as

© Copyright IBM Corp. 1996, 1998 31

Overview of the C Language

well as date and time manipulation. Use of this library helps to maintain program
portability, because the underlying implementation details for the various
operations need not concern the programmer.

The OS/390 C/C++ Run-Time Library Reference describes all of the C library
functions.

C Source Programs

A C source program is a collection of one or more directives, declarations, and
statements that is contained in one or more source files. The resulting collection of
files constitutes a compilation unit.

Statements Specify the action the program performs.

Directives Instruct the preprocessor to act on the text of the
program. Pragma directives affect compiler
behavior.

Declarations Establish names and define characteristics such as

scope, data type, and linkage.

Definitions Are declarations that allocate storage for data
objects or define a body for functions. An object
definition allocates storage and may optionally
initialize the object.

A function declaration precedes the function body. The function body is a compound
statement that can contain declarations and statements that define what the
function does. The function declaration declares the function name, its parameters,
and the data type of the value it returns.

A program must contain one, and only one, function called main(). The main()
function is the first function that a program calls when you run the program.

Note: This is not the case for C++ programs. If a C++ program instantiates an
object in file scope, OS/390 C/C++ executes the constructor for that object
first.

By convention, main() is the starting point for running a program. It typically calls
other functions. A program usually stops running at:

e The end of the main() function

e A return statement in the main() function

* An exit function call.

32 0S/390 V2R6.0 C/C++ Language Reference

C Source Programs

CBC3RAAA

This is the source code of a simple C program:

[**

*% This is an example of a simple C program
*%/

#include <stdio.h> /* Standard I/0 Tibrary header that
contains macros and function declarations
such as printf used below */

#include <math.h> /* Standard math library header that
contains macros and function declarations
such as cos used below */

#define NUM 46.0 /* Preprocessor directive */

double x = 45.0; /* External variable definitions */

double y = NUM;

int main(void) /* Function definition
for main function */

{

double z; /* Local variable definitions */
doubTe w;
z = cos(x); /* cos is declared in math.h as

double cos(double arg) */
w = cos(y);
printf ("cosine of x is %f\n", z); /* Print cosine of x */
printf ("cosine of y is %f\n", w); /* Print cosine of y */
return 0;

}

This source program defines main() and declares a reference to the functions cos
and printf. The program defines the global variables x and y, initializes them, and
declares two local variables z and w.

C Source Files

A C source file is a text file that contains all or part of a C source program. It can
include any of the functions that the program needs. To create an executable
module or program object, you compile the separate source files individually and
then link or bind them as one program. With the #include directive, you can
combine source files into larger source files. The resulting collection of files that are
seen by the compiler in a single compilation is known as a compilation unit. A
compilation unit does not necessarily constitute the entire program.

A source file contains any combination of directives, declarations, and definitions.
You can split items such as function definitions and large data structures between
source files, but you cannot split them between compiled files. Before you compile
the source file, the preprocessor alters the source file in a predictable way. The
preprocessor directives determine what changes the preprocessor makes to the
source text. As a result of the preprocessing stage, OS/390 C/C++ completes the
preprocessor directives and expands macros. It may create a new source file that
contains C statements, processed directives, declarations, and definitions.

Chapter 3. Introduction to C and C++ 33

C Source Files

It is sometimes useful to gather variable definitions into one source file and declare
references to those variables in any source files that use them. This procedure
makes definitions easy to find and change, if necessary. You can also organize
constants and macros into separate files and include them into source files as
required.

The following example is a C program in two source files. The main() and max()
functions are in separate files. The program starts by running the main() function.

CBC3RAAB - Source File 1

/**

* Source file 1 - main function *
**/

#define ONE 1
#define TWO 2
#define THREE 3

extern int max(int, int); /* Function declaration =/

int main(int argc, char * argv[]) /* Function definition =x/

{

int u, w, X, y, z;

= 5
= 2;

= max(u, ONE);
max (w,TWO) ;

= max(x,THREE);
= max(y,z);
return z;

N< X = N <
]

}

CBC3RMAX - Source file 2

[k gk ke kok R Kk kkh kR KR KA KK KKKk kkkkk R Kk kkh kR KKK I F KKK Kk Kk kkk kR Hkkk ok k ok ok kR *
* Source file 2 - max function *
**/
int max (int a,int b) /* Function definition */
if (a>b)
return (a);
else
return (b);

}

The first source file declares the function max(), but does not define it. This is an
external declaration, a declaration of a function defined in source file 2. Four
statements in main() are function calls of max ().

The lines beginning with a number sign (#) are preprocessor directives. They direct
the preprocessor to replace the identifiers ONE, TWO, and THREE with the digits 1, 2,
and 3. The directives do not apply to the second source file.

The second source file contains the function definition for max (), which the
function main() calls four times. After you compile the source files, you can bind
and run them as a single program.

34 0S/390 V2R6.0 C/C++ Language Reference

Program Execution

Program Execution

Every program must have a function called main() and usually contains other
functions.

The main() function is the starting point for running a program. OS/390 C/C++
executes the statements within the main() function sequentially. There may be calls
to other functions. A program usually stops running at the end of the main()
function, although it can stop at other points in the program.

You can make your program modular by creating separate functions to perform a
specific task or set of tasks. The main() function calls these functions to perform
the tasks. When your program makes a function call, it executes statements
sequentially. It starts with the first statement in the function until it encounters a
statement that alters the flow of control. The function returns control to the calling
function at the return statement or at the end of the function.

You can declare any function to have parameters. When you call functions, they
receive values for their parameters from the arguments that you pass in the calling
functions. You can declare parameters for the main() function so you can pass
values to main() from the command line. The command line processor that starts
the Eroaram can pass such values as described in I'The main() Function” onl

Scope in C

An identifier becomes visible with its declaration. The region where an identifier is
visible is the identifier’s scope. The four kinds of scope are:

* Block

¢ Function

* File

* Function prototype.

The location of the identifier determines where the identifier is declared. See

[Identifiers” on page 56 for more information on identifiers.

Block Scope

The identifier’s declaration is located inside a statement block. A block starts with
an opening brace ({) and ends with a matching closing brace (}). An identifier with
block scope is visible from the point where you declare it to the closing brace that
ends the block. You can also refer to block scope as local scope.

You can nest block visibility. A block that is nested inside a block can contain
declarations that reuses names declared in the outer block. The new declaration
applies to the inner block. OS5/390 C/C++ restores the original declaration when
program control returns to the outer block. A name from the outer block is visible
inside inner blocks that do not redefine the name.

Chapter 3. Introduction to C and C++ 35

Scope in C
Function Scope

The only type of identifier with function scope is a label name. You implicitly
declare a label by its appearance in the program text. A label is visible throughout
the function that declares it. A goto statement transfers control to the label that is
specified on the goto statement. The label is visible to any goto statement that
appears in the same function as the label.

File Scope

The identifier’s declaration appears outside of any block or parameter list. It is
visible from the point in the program where you declare it to the end of the source
file. If source files are included by #include preprocessor directives, those files are
considered to be part of the source. The identifier will be visible to all included
files that appear after the declaration of the identifier. You can declare the identifier
again as a block-scope variable. The new declaration replaces the file-scope
declaration until the end of the block.

Function Prototype Scope

The identifier’s declaration appears within the list of parameters in a function
prototype. It is visible from the point where you declare it to the closing
parenthesis of the prototype declaration.

Example of Scope in C

The following example declares the variable x on line 1, which is different from the
x it declares on line 2. The declared variable on line 2 has function prototype scope
and is visible only up to the closing parenthesis of the prototype declaration. The
variable x declared on line 1 resumes visibility after the end of the prototype
declaration.

1 int x = 4; /* variable x defined with file scope */

Tong myfunc(int x, long y); /* variable x has function %/
/* prototype scope */

2

3

4 int main(void)
5

6 /* . . . x/
7

}

The following program illustrates blocks, nesting, and scope. The example shows
two kinds of scope: file and block. The main() function prints the values 1, 2, 3,
0, 3, 2, 1 on separate lines. Each instance of i represents a different variable.

36 0S/390 V2R6.0 C/C++ Language Reference

#include <stdio.h>
int i = 1; /*

int main(int argc, char * argv[])
— {
printf("%d\n", 1i); /*

— {
inti=2,]=3; /%

printf("%d\nzd\n", i, j); /*

{
int i = 0; /*
/*
printf("%d\n%d\n", i, j); /*

1

printf("%d\n", i); /*
— }
printf("%d\n", 1i); /*
return 0;

— }

Related Information

e I‘C Sonrce Files” on page 33

. ” . I 17

. P’Fhapfpr 8 Functions” on page 173

e F'Labels” on page 197

G ”

’ ”

. I"QCnpp in C++” on page 44

Scope in C

i defined at file scope */

Prints 1 =/

i and j defined at
block scope */
Prints 2, 3 */

i is redefined in a nested block */
previous definitions of i are hidden */
Prints 0, 3 =/

Prints 2 */

Prints 1 */

Program Linkage

The association, or lack of association, between two identical identifiers is known
as linkage. The kind of linkage that an identifier has depends on the way you

declare it.

A file scope identifier has one of the following kinds of linkage:

Internal Identical identifiers within a single source file refer to the same

data object or function.

External Identical identifiers in separately compiled files refer to the same

data object or function.

No linkage Each identical identifier refers to a unique object.

Note: Program linkage is not the same as a function calling convention, which you
can refer to as linkage. While it relates to program linkage, a calling

Chapter 3. Introduction to C and C++ 37

Program Linkage

convention concerns itself with C++ linkage specifications and the use of
certain keywords. This section only discusses program linkage.

Use linkage specifications to link to non-C++ declarations. In C, the #pragma
Tinkage directive specifies non-C declarations.

See FLinl re Specifications — Linking to non-C+ E;gg;ams_gn_pa.gejd” for more

information.

Internal Linkage

The following kinds of identifiers have internal linkage:

 All identifiers with file or block scope that have the keyword static in their
declarations. Functions with static storage class are visible only in the source
file in which you define them.

* C++ inline functions.

* C++ identifiers declared at file scope with the specifier const and not explicitly
declared extern. In C, const objects have external linkage by default.

You can define a variable that has static storage class within a block or outside a
function. If the definition occurs within a block, the variable has internal linkage
and is only visible within the block after you can see its declaration. If the
definition occurs outside a function, the variable has internal linkage. It is available
from the point where it is defined to the end of the current source file.

A class is local to its compilation unit if it has no static members or no inline
member functions, and if it has not been used in the declaration of an object,
function, or class.

If the declaration of an identifier has the keyword extern and if a previous
declaration of the identifier is visible at file scope, the identifier has the same
linkage as the first declaration.

External Linkage

The following kinds of identifiers have external linkage:

¢ Identifiers with file or block scope that have the keyword extern in their
declarations, and the previously visible declaration is not static.
If a previous declaration of the identifier is visible at file scope, the identifier has
the same linkage as the first declaration. For example, a variable or function that
is first declared with the keyword static and later declared with the keyword
extern has internal linkage.

* Function identifiers declared without storage-class specifiers.

* Object identifiers that have file scope declarations without a storage-class
specified. OS/390 C/C++ allocates storage for such object identifiers.

¢ Static class members and no inline member functions.

You can define identifiers that are declared with the keyword extern in other
compilation units.

38 0S/390 V2R6.0 C/C++ Language Reference

Program Linkage

No Linkage

The following kinds of identifiers have no linkage:

* Identifiers that do not represent an object or a function, including labels,
enumerators, typedef names, type names, and template names

* Identifiers that represent a function argument
* Identifiers declared inside a block without the keyword extern

Storage Duration

Storage duration determines how long storage for an object exists. An object has
either static storage duration or automatic storage duration, but this depends on its
declaration.

Static storage 0S/390 allocates this storage at initialization and it
remains available until the program ends. Objects
have static storage duration if they:

* Have file scope OR
* Have external or internal linkage OR
* Contain the static storage class specifier.

Automatic storage 0S/390 C/C++ allocates and removes this storage
according to the scope of the identifier. Objects
have automatic storage duration if they are either
one of the following;:

* Parameters in a function definition

* Declared at block scope and do not have any
storage class specifier

¢ Declared at block scope, and contain the
register or auto storage class specifier.

For example, storage for an object declared at block
scope is allocated when the identifier is declared
and removed when the closing brace (}) is reached.

Note: Objects can also have heap storage duration. OS/390 C/C++ creates heap
objects at run time and allocates storage for them by calling a function such
asmalloc().

Name Spaces

The compiler sets up name spaces to distinguish among identifiers referring to
different kinds of entities. Identical identifiers in different name spaces do not
interfere with each other, even if they are in the same scope.

You must assign unique names within each name space to avoid conflict. You can
use the same identifier to declare different objects as long as each identifier is
unique within its name space. The syntactic context of an identifier within a
program lets the compiler resolve its name space without ambiguity.

You can redefine identifiers in the same name space but within enclosed program

blocks as described in 'Scope in C” on page 33,

Chapter 3. Introduction to C and C++ 39

Name Spaces

Within each of the following four name spaces, the identifiers must be unique.

* Tags of these types must be unique within a single scope:
- Enumerations
— Structures and unions

* Members of structures, unions, and classes must be unique within a single
structure, union, or class type.

* Statement labels have function scope and must be unique within a function.

* All other ordinary identifiers must be unique within a single scope:
— Function names
— Variable names
— Names of function parameters
— Enumeration constants
— typedef names.

Structure tags, structure members, variable names, and statement labels are in four
different name spaces. No conflict occurs among the four items named student in
the following example:

int get_item()

struct student /* structure tag */
{
char student[20]; /* structure member */
int section;
int id;
} student; /* structure variable =/

goto student;
student:; /* null statement label */
return (0);

}

0S/390 C/C++ interprets each occurrence of student by its context in the
program. For example, when student appears after the keyword struct, it is a
structure tag. When student appears after either of the member selection operators
. or ->, the name refers to the structure member. When student appears after the
goto statement, OS/390 C/C++ passes control to the null statement label. In other
contexts, the identifier student refers to the structure variable.

Related Information

° I:IS C// 3 H

Command-Line Arguments

The maximum allowable length of a command-line argument for OS/390
Language Environment is 64K.

0S/390 C/C++ treats arguments that you enter on the command line differently in
different environments. The following lists how argv and argc are handled.

40 0S/390 V2R6.0 C/C++ Language Reference

Under OS/390 Batch
argc
argv[0]
argv[l to n]

Under IMS

argc

argv[0]

Under CICS

argc

argv[0]

Under TSO Command
argc
argv[0]
argv[l to n]

Under TSO Call

Without the ASIS option:
argc

argv

With the ASIS option:
argc

argv[0]

argv[l to n]

Under OS/390 UNIX Shell

argc
argv[0]
argv[l to n]

Command-Line Arguments

Returns the number of strings in the argument line
Returns the program name in uppercase

Returns the arguments as you enter them

Returns 1

Is a null pointer

Returns 1

Returns the transaction ID

Returns the number of strings in the argument line
Returns the program name in uppercase

Returns the arguments exactly as you enter them

Returns the number of strings in the argument line

Returns the program name and arguments in
lowercase

Returns the number of strings in the argument line
Returns the program name in uppercase

Arguments entered in uppercase are returned in
lowercase. Arguments entered in mixed or
lowercase are returned as entered.

Returns the number of strings in the argument line
Returns the program name as you enter it

Returns the arguments exactly as you enter them

The only delimiter for the arguments that are passed to main() is white space.
0S/390 C/C++ uses commas passed to main() by JCL as arguments and not as

delimiters.

The following example appends the comma to the 'one' when passed to main().

//FUNC EXEC PCGO,GPGM='FUNC',

!/ PARM.GO=("one",
// "two')

Chapter 3. Introduction to C and C++ 41

Command-Line Arguments

For more information on restrictions of the command-line arguments, refer to the
0S5/390 C/C++ User’s Guide.

Related Infor

G

mation

Overview of the C++ Language

C++ is an object-oriented language based on the C programming language. It can
be viewed as a superset of C. Almost all of the features and constructs available in
C are also available in C++. However, C++ is more than just an extension of C. Its
additional features support the programming style known as object-oriented
programming. Several features that are already available in C, such as input and
output may be implemented differently in C++. In C++ you may use the
conventional C input and output routines or you may use object oriented input
and output by using the I/O Stream class library.

C++ was developed by Bjarne Stroustrup of AT&T Bell Laboratories. It was
originally based on the definition of the C language stated in The C Programming
Language by Brian W. Kernighan and Dennis M. Ritchie. This C language definition
is commonly called K&R C. Since then, the International Standards Organization C
language definition (referred to here as ANSI/ISO C) has been approved. It
specifies many features that K&R left unspecified. Some features of ANSI/ISO C
have been incorporated into the current definition of C++, and some parts of the
ANSI/ISO C definition have been motivated by C++.

While there is currently no C++ standard comparable to the ANSI/ISO C
definition, an ISO committee is working on such a definition. The OS/390 C++
compiler implementation is based on the definition of the language contained in
the Draft Proposal International Standard for Information Systems-Programming
Language C++ (X3]J16/92-00091). The OS/390 C++ compiler also conforms to a
subset of the C++ ANSI/ISO (Draft) Standard (X3]16/93-0062).

C++ Support for Object-Oriented Programming

42

Object-oriented programming is based on the concepts of data abstraction,
inheritance, and polymorphism. Unlike procedural programming, it concentrates on
the data objects that are involved in a problem and how they are manipulated, not
on how something is accomplished. Based on the foundation of data abstraction,
object-oriented programming allows you to reuse existing code more efficiently
and increase your productivity.

Data Abstraction

Data abstraction provides the foundation for object-oriented programming. In
addition to providing fundamental data types, object-oriented programming
languages allow you to define your own data types, called user-defined or abstract

0S/390 V2R6.0 C/C++ Language Reference

Object-Oriented Programming

data types. In the C programming language, related data items can be organized
into structures. These structures can then be manipulated as units of data. In
addition to providing this type of data structure, object-oriented programming
languages allow you to implement a set of operations that can be applied to the
data elements. The data elements and the set of operations applicable to the data
elements together form the abstract data type.

To support data abstraction, a programming language must provide a construct
that can be used to encapsulate the data elements and operations that make up an
abstract data type. In C++, this construct is called a class. An instance of a class is
called an object. Classes are composed of data elements called data members and
member functions that define the operations that can be carried out on the object.
Classes also contain typedefs, enums, and other classes.

Encapsulation

Another key feature of object-oriented programming is encapsulation. Encapsulation

means a class can hide the details of:

* The representation of its data members

* The implementation of the operations that can be performed on these data
members

Application programs manipulate objects of a class using a clearly defined
interface. As long as this interface does not change, you can change the
implementation of a class without having to change the application programs that
use the class. Encapsulation provides the following advantages:

* Users of a class do not have to deal with unnecessary implementation details.

* Programs are easier to debug and maintain.

* Permitted alterations are clearly specified.

In C++, encapsulation is accomplished by specifying the level of access for each
member of a class. Both the data members and member functions of a class can be
declared public, protected, or private depending on the kind of access required.

Note: C++ encapsulation is not a security mechanism. It is possible to circumvent
the class access controls that make encapsulation possible. The language is
not designed to prevent such misuse.

Inheritance

Inheritance lets you reuse existing code and data structures in new applications. In
C++, inheritance is implemented through class derivation. You can extend a library
of existing classes by adding data elements and operations to existing classes to
form derived classes. A derived class has all the members of its parent or base class,
as well as extensions that can provide additional features. When you create a new
derived class, you only have to write the code for the additional features. The
existing features of the base class are already available.

A base class can have more than one class derived from it. In addition, a derived
class can serve as a base class for other derived classes in a hierarchy. Typically, a
derived class is more specialized than its base class.

A derived class can inherit data members and member functions from more than

one base class. Inheritance from more than one base class is called multiple
inheritance.

Chapter 3. Introduction to C and C++ 43

Object-Oriented Programming

Dynamic Binding and Polymorphism

Another key concept that allows you to write generic programs is dynamic or late
binding. Dynamic binding allows a member function call to be resolved at run time,
according to the run-time type of an object reference. This permits each
user-defined class in an inheritance hierarchy to have a different implementation of
a particular function. Application programs can then apply that function to an
object without needing to know the specifics of the class to which the object
belongs.

In C++, dynamic binding hides the differences between members of a group of
classes in an inheritance hierarchy from the application program. At run time, the
system determines the specific class of the object and invokes the appropriate
function implementation for that class.

Dynamic binding is distinguished from static or compile-time binding, which
involves compile-time member function resolution according to the static type of
an object reference.

Other Features of C++

C++ provides several other powerful extensions to the C programming language.
Among these are:

* Constructors and destructors, which are used to initialize and destroy class
objects

* Overloaded functions and operators, which let you extend the operations a
function or operator can perform on different data types

¢ Inline functions, which can make programs more efficient

* References, which allow a function to modify its arguments in the calling
function

¢ Template functions and classes, which allow the definition of generic classes and
functions

* Object-Oriented Exception handling, which provides transfer of control and
recovery from errors and other exceptional circumstances

C++ Programs

C++ programs contain many of the same programming statements and constructs

as C programs:

* C++ has many of the same fundamental types (built-in) data types as C, as well
as some types that are not built-in to C. For example, packed decimal is
supported in C but not C++.

* Like ANSI/ISO C, C++ allows you to declare new names for existing (perhaps
complex) types by using the typedef construct. These new type names are not
new types.

* In general, the scope and storage class rules for C also apply in C++.

¢ C and C++ have the same set of arithmetic and logical operators.

A C++ name can identify any of the following:
* An object

* A function

* A set of functions

44 0S/390 V2R6.0 C/C++ Language Reference

C++ Programs

e An enumerator
* A type

* A class member
* A template

* A value

e A label

A declaration introduces a name into a program and can define an area of storage
associated with that name.

An expression can be evaluated and is composed of operations and operands. An
expression ending with a ; (semicolon) is called a statement. A statement is the
smallest independent computational unit. Functions are composed of groups of one
or more statements.

A C++ program is composed of one or more functions. These functions can all
reside in a single file or can be placed in different files that are linked to each
other. In C++, a program must have one and only one non-member function called
main().

The following is a simple C++ program containing declarations, expressions,
statements, and two functions:

Chapter 3. Introduction to C and C++ 45

C++ Programs

CBC3X02D

[**
*% A simple C++ program containing declarations,
**% expressions, statements, and two functions:

*%/
#include <math.h> // contains definition of fabs()
const double multiplier=2.2; // variable initialization
const double common_ratio=3.1; // variable initialization
double geo_series(double a, double r) // function definition
{

if (r == 1.0) // if statement

return -1.0; // return statement

else return -2.0;
int main() // program execution begins here

double sum; // variable declaration

sum = geo_series(multiplier, common ratio); // function call

/] ..

return 0;

Scope in C++

The area of the code where an identifier is visible is referred to as the scope of the
identifier. The four kinds of scope are:

* Local

* Function

» File

* Class

The scope of a name is determined by the location of the name’s declaration.

A type name first declared in a function return type has file scope. In the following
example, Y has file scope:

struct Y { int a; int b } foo(int a) { . }

A type name first declared in a function argument list has local scope. In the
following example, X has local scope:

int foo(struct X { int a; int b; } x, int y) {

}

A function name that is first declared as a friend of a class is in the first nonclass
scope that encloses the class.

If the friend function is a member of another class, it has the scope of that class.
The scope of a class name first declared as a friend of a class is the first nonclass
enclosing scope. See LEri - for more information.

Local Scope

A name has local scope if it is declared in a block. A name with local scope can be
used in that block and in blocks enclosed within that block, but the name must be
declared before it is used. When the block is exited, the names declared in the
block are no longer available.

46 0S/390 V2R6.0 C/C++ Language Reference

Scope in C++

Formal argument names for a function have the scope of the outermost block of
that function.

If a local variable is a class object with a destructor, the destructor is called when
control passes out of the block in which the class object was constructed.

When one block is nested inside another, the variable names from the outer block
are usually visible in the nested block. However, if an outer block name is
redefined in a nested block, the new declaration is in effect in the inner block. The
original declaration is restored when program control returns to the outer block.

This is called block visibility. See k&ﬁﬁmpﬂl&hﬂm.ﬂp&ta&(.)ian_page_ﬂi

for infomation on scope resolution.

Function Scope

The only type of identifier with function scope is a label name. A label is implicitly
declared by its appearance in the program text and is visible throughout the
function that declares it.

File Scope

A name has file scope if its declaration appears outside of all blocks and classes. A
name with file scope is visible from the point where it is declared to the end of the
source file. The name is also made accessible for the initialization of global
variables. If a name is declared extern, it is also visible, at link time, in all object
files being linked. Global names are names declared with file scope.

Class Scope

The name of a class member has class scope and can only be used in the following

cases:

* In a member function of that class

* In a member function of a class derived from that class

* After the . (dot) operator applied to an instance of that class

 After the . (dot) operator applied to an instance of a class derived from that
class

* After the -> operator applied to a pointer to an instance of that class

* After the -> (arrow) operator applied to a pointer to an instance of a class
derived from that class

+ After the :: (scope resolution) operator applied to the name of a class

* After the :: (scope resolution) operator applied to a class derived from that
class.

For more information on class scope, see l‘Scope of Class Names” on page 284.

Simple C++ Input and Output

Like C, the C++ language has no built-in input and output facilities. Instead, input
and output facilities for C++ are provided by the I/O Stream Library. For
compatibility with C, C++ also supports the standard I/O functions of C. The I/O
Stream Library supports a set of I/O operations, written in the C++ language, for
the built-in types. You can extend these facilities to provide input and output
functions for user-defined data types.

Chapter 3. Introduction to C and C++ 47

Input and Output

For a complete description of the I/O Stream Library, see the OS/390 C/C++ IBM
Open Class Library Reference.

There are four predefined 1/O stream objects that you can use to perform standard
1/0:

* cout

e cin

e cerr

* clog

You can use these in conjunction with the overloaded shift operators, << (insertion
or output) and >> (extraction or input). To use streams and operators, you must
include the header file iostream.h. The following example prints Hello World! to
standard output:

CBC3X02F

[x*
** Hello World
*%/

#include <iostream.h>
void main()

{
}

cout << "Hello World!" << endl;

The manipulator endl acts as a newline character, causing any output following it
to be directed to the next line. Because it also causes any buffered output to be
flushed, end1 is preferred over \n to end lines.

Output (cout, cerr, and clog)

The cout stream is associated with standard output. You can use the output
operator in conjunction with cout to direct a value to standard output. The
following example prints out three strings in a row and produces the same result
as the previous example, printing Hello World! to standard output.

CBC3X02G
[**

*%x Another Hello World, illustrating concatenation with cout

*%/

#include <iostream.h>
void main()

{
cout << "Hello "
<< "World"
<< II!II
<< endl;

}

Output operators are defined to accept arguments of any of the fundamental data
types, as well as pointers, references, and array types. You can also overload the
output operator to define output for your own classes.

48 0S/390 V2R6.0 C/C++ Language Reference

Input and Output

The cerr and clog streams direct output to standard error. cerr provides
unbuffered output, while clog provides buffered output. The following example
checks for a division by zero condition. If one occurs, a message is sent to standard
error.

CBC3X02H

[x%
Check for a division by zero condition.
=% If one occurs, a message is sent to standard error.

*%/
#include <iostream.h>

main()
{
double vall, val2;
cout << "Divide Two Values" << endl;
cout << "Enter two numeric values: " << endl;
cin >> vall >> val2;
if (val2 == 0)
{ cerr << "The second value must be non-zero" << endl;
return;
}

cout << "The answer is " << vall / val2 << endl;

}
Input (cin)

The cin class object is associated with standard input. You can use the input
operator in conjunction with cin to read a value from standard input. By default,
white space (including blanks, tabs, and new lines) is disregarded by the input
operator. For example:

CBC3X02I
[**

**% This example illustrates the cin operator
*%/

#include <iostream.h>
main()
{
double vall, val2;
cout << "Enter two numeric values:" << endl;
cin >> vall >> val2;
cout << "The first value entered is " << vall
<< " and the second value is "
<< val2 << "." << endl;

}

If the values 1.2 and 3.4 are entered through standard input, the above program
prints the following to standard output:

Enter two numeric values:

1.2

3.4

The first value entered is 1.2 and the second value is 3.4.

Any white space entered between the two numeric values is disregarded by the
input operator.

Chapter 3. Introduction to C and C++ 49

Input and Output

The input operator is defined to accept arguments of any of the fundamental data
types, as well as pointers, references and array types. You can also overload the
input operator to define input for your own class types.

Linkage Specifications — Linking to non-C++ Programs

You can link C++ object modules to object modules produced using other source
languages such as C and Fortran by using a linkage specification.

The syntax is:

»—exter‘n—string-literal—|:declaration J <
{(— }

|—decZarationJ

The string-literal is used to specify the linkage associated with a particular function.
For example:

CBC3X02J

[x%
** This example illustrates linkage specifications
*%/

extern "C" int printf(const charx,...);
void main()

{
}

printf("hello\n");

Here the string-literal, "C", tells the C++ compiler that the routine printf(const
char*,...) is a C library function. Note that string literals used in linkage
specifications are not case-sensitive.

Some valid values for string-literal are:

"C++" Default

"c" C type linkage

2

For more information on string literals, see EXStri
specification information, see the O5/390 C/C++ Programming Guide.

. For linkage

If the value of string-literal is not recognized, C type linkage is used.

50 0S/390 V2R6.0 C/C++ Language Reference

Chapter 4. Lexical Elements of C and C++

This chapter describes the following lexical elements of C and C++:

» ETokens]
« FSource Program Character Set/l

Tokens

During preprocessing and compilation, OS/390 C/C++ treats source code as a
sequence of tokens. There are five different types of tokens:

* Identifiers

* Keywords

* Literals

e Operators

* Other separators

You should separate adjacent identifiers, keywords, and literals with white space.
You should separate other tokens by white space to make the source code more
readable. White space includes blanks, horizontal and vertical tabs, new lines, form
feeds, and comments.

Source Program Character Set

The following lists the basic character set that must be available at both compile
and run time:

* The uppercase and lowercase letters of the English alphabet

abcdefghijklmnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

¢ The decimal digits 0 through 9
06123456789
* The following graphic characters:

VU s () x+, -/
s <=>2[\N] _ {1}~

* The caret (') character in ASCII (bitwise exclusive OR symbol), which may be
represented by the equivalent not (=) character on EBCDIC systems

* The split vertical bar () character in ASCII, which you may represent by the
vertical bar (|) character on EBCDIC systems

* The space character

* The control characters that represent new-line, horizontal tab, vertical tab, and
form feed, and end of string (NULL character).

0S/390 C/C++ uses the number sign (#) character for preprocessing only, and
treats the _ (underscore) character as a normal letter.

© Copyright IBM Corp. 1996, 1998 51

Character Set

The execution character set also includes control characters that represent alert,
backspace, carriage return, and new-line.

In a source file, a record contains one line of source text; the end of a record
indicates the end of a source line.

The encoding of the following characters from the basic character set may vary
between the source-code generation environment and the runtime environment:

PECLINLY T

The OS/390 C/C++ compiler normalizes the encoding of source files indicated by
the #pragma filetag directive and the LOCALE compile time option to the encoding
defined by code page 1047.

The compiler uses the character set that is specified for the LOCALE option for any
output. This includes:

* Listings that contain identifier names and source code

* String literals and character constants that are emitted in the object code

* Messages generated by the compiler

However, this does not include the source-code annotation in the pseudo-assembly
listings.

Depending on the EBCDIC encoding that your installation uses, you can express
the " and | characters as = and ! respectively. This book refers to the ~ and |
symbols as the caret and vertical bar, respectively. If you do not specify the NOLOCALE
compile-time option, OS/390 C/C++ does not perform normalization. It assumes
that the character set encoding is the IBM-1047 code page. In this case, it
recognizes both the broken and unbroken vertical bars as the vertical bar. The caret
and logical not sign are recognized as the caret. For a detailed description of the
#pragma filetag directive and the LOCALE option, refer to the description of
internationalization, locales, and character sets in the OS5/390 C/C++ Programming
Guide.

The compiler recognizes and supports the additional characters (the extended
character set) which you can meaningfully use in string literals and character
constants. The support for extended characters includes the multibyte character
sets.

0S/390 systems represent multibyte characters by using Shiftout <S0> and Shiftin
<SI> pairs. Strings are of the form:

<S0> x y z <SI>

Or they can be mixed:

<S0> x <SI>y z
x <S0> y <SI> z

In the above, two bytes represent each character between the <5SO> and <SI> pairs.
0S/390 C/C++ restricts multibyte characters to character constants, string
constants, and comments.

Refer to the OS/390 C/C++ Run-Time Library Reference for a discussion on strings
that are passed to library routines, and to I/Character Constants” on page 64 of this
book for information on character constants. If you specify a lowercase a as part of
an identifier name, you cannot substitute an uppercase A in its place. You must use
the lowercase letter.

52 0S/390 V2R6.0 C/C++ Language Reference

Character Set

Trigraph Sequences

Some characters from the C character set are not available in all environments. You
can enter these characters into a C source program by using a sequence of three
characters that are called a trigraph. The trigraph sequences are:

?7= # number sign
22([left bracket
??7) 1 right bracket
?7< { left brace

27> } right brace
7?7/ \ backslash

27 ’ caret

7?1 | vertical bar
?7- - tilde

The preprocessor replaces trigraph sequences with the corresponding
single-character representation by using the code page that is indicated by the
LOCALE option. If you do not specify the LOCALE option, the preprocessor uses code
page 1047.

At compile time, the compiler translates the trigraphs found in string literals and
character constants into the appropriate characters they represent. These characters
are in the coded character set you select by using the LOCALE compiler option.

Note: The OS/390 C/C++ compiler will compile source files that were edited
using different encoding of character sets. However, they might not compile
cleanly. OS/390 C/C++ does not compile source files that you edit with the
following:

* A character set that does not support all the characters that are specified
above, even if the compiler can access those characters by a trigraph.

* A character set for which no one-to-one mapping exists between it and
the character set above.

Note: The exclamation mark (!) is a variant character. Its recognition depends on
whether or not the LOCALE option is active. For more information on variant

characters, refer to the OS/390 C/C++ Programming Guide.

Example
some_array??(i??) = n;

Represents:
some_array[i] = n;

Digraph Sequences
You can represent unavailable characters in an C++ source program by using a
combination of two keystrokes that are called a digraph sequence. The preprocessor

reads digraphs as tokens during the preprocessor phase.

Note: OS/390 C/C++ supports digraphs for C++ only.

Chapter 4. Lexical Elements of C and C++ 53

Character Set

The digraph sequences are:

N

number sign
left bracket
right bracket
left brace
right brace

A

A e
N

BN
\

\
HH oo o e —

N

o
%

preprocessor macro concatenation operator

You can create digraphs by using macro concatenation. OS/390 C/C++ does not
replace digraphs in string literals or in character literals. For example:

char xs = "<%%>"; // stays "<%%>"

switch (c)
case '<&' : { /x ... x/ } /] stays '<%'
case '%>' : { /* ... %/ } /] stays '%>'

}

The NODIGRAPH option disables processing of digraphs. The NODIGRAPH option is on
by default.

The DIGRAPH option is described in the OS/390 C/C++ User’s Guide.

Additional Keywords
If you use the digraph option, you can represent unavailable characters in a C++
source program by using the following keywords:
Keyword Symbol
bitand &
and &&
bitor |
or I
xor
compl
and_eq &=
or_eq |=
xor_eq =
not !
not_eq =

These keywords are only reserved in C++ programs that are compiled with the
DIGRAPH option. O5/390 C/C++ User’s Guide describes the DIGRAPH option.

Comments

Comments begin with the /* characters. They end with the */ characters, and can
span more than one line. You can put comments anywhere the language allows
white space.

54 0S/390 V2R6.0 C/C++ Language Reference

Comments

The preprocessor replaces comments during preprocessing by a single space
character.

Multibyte characters can also be included within a comment.

Note: The /* or */ characters that are found in a character constant or string literal
do not start or end comments.

In the following program, line 6 is a comment:
#include <stdio.h>

int main(void)
{

printf("This program has a comment.\n");

/* printf("This is a comment line and will not print.\n"); */
return 0;

}

ONOOT B WMN =

Because the comment on line 6 is equivalent to a space, the output of this program
is:

This program has a comment.

Because the comment delimiters are inside a string literal, line 5 in the following
program is not a comment.

#include <stdio.h>

int main(void)
{

printf("This program does not have \
/* NOT A COMMENT =/ a comment.\n");
return 0;

}

CONOOT P WN =

The output of the program is:
This program does not have /* NOT A COMMENT */ a comment.

You cannot nest comments. Each comment ends at the first occurrence of */.

The following example highlights the comments:

/<JARprogramflui thiinestedficomments /]

#include <stdio.h>

1

2

3

4

5 int main(void)
6 |

7 test_function();
8 return 0;

9

}

11 int test_function(void)
12 {

13 int number;

14 char letter;

20 return 999;
21 '}

Chapter 4. Lexical Elements of C and C++ 55

Comments

In test_function, the compiler reads the /+ in line 15 through the */ in line 18 as
a comment. It reads the comment at line 19 as C language code which causes
errors at that line. To avoid commenting over comments already in the source
code, you should use conditional compilation preprocessor directives to cause the
compiler to bypass sections of a program. For example, instead of commenting out
the above statements, change line 2 and lines 15 to 19 in the following way:

2 #define TEST_FUNCTION 0

16 #if TEST_FUNCTION

17 number = 55;

18 letter = 'A';

19 /*number = 44;x/

20 #endif /*TEST_FUNCTION */

[‘Chapter 10 Preprocessor Directives” on page 219 describes conditional

compilation preprocessor directives. You can include multibyte characters with a
comment.

C++ Comments

If the SSCOMM compiler option is in effect when you compile a C program, double
slashes (//) also specify the beginning of a comment. C++ permits double-slash
comments as part of the language definition.

A C++ comment can span more than one physical source line if it is joined into
one logical source line with line-continuation (\) characters. You can represent the
backslash character with a trigraph.

Identifiers

An arbitrary number of letters or digits comprise an identifier. Identifiers provide
names for the following language elements:

* Functions

* Data objects

* Labels

* Tags

* Parameters

* Macros

* Typedefs

* Structure and union members

An identifier has the form:

letter letter »><
E_ digit—
—

56 0S/390 V2R6.0 C/C++ Language Reference

Identifiers

Special Characters in Identifiers

The first character in an identifier must be a letter or the underscore (_) character.
The compiler reserves identifiers beginning with an underscore, however, for
identifiers at file scope.

Identifiers that begin with two underscores or an underscore that is followed by a
capital letter, are reserved in all contexts.

Avoid creating identifiers that begin with an underscore for function names and
variable names.

At the extended and compatible language levels, C++ identifiers can contain the $
character. At the ANSI language level, identifiers can begin with the underscore but
not with a $ (dollar sign).

Although the names of system calls and library functions are not reserved words if
you do not include the appropriate headers, avoid using them as identifiers.
Duplication of a predefined name can lead to confusion for the maintainers of your
code and can cause errors at link time or run time. If you include a library in a
program, be aware of the function names in that library to avoid name
duplications. You should always include the appropriate headers when using
standard library functions.

Case Sensitivity in Identifiers

The compiler distinguishes between uppercase and lowercase letters in identifiers.
For example, PROFIT and profit represent different objects.

Note: If you do not use the OS/390 C compiler long name support, you may
receive an error message if you use either STOCKONHOLD and stockonhold as
external identifiers. For more information on long name support, see
’ " . For more information on the binder and the
prelinker, see the 05/390 C/C++ User’s Guide. Also see 'OS/390 C/C+4]

IExiemaJ_Nam&BAa.ppJng_on_pagaﬁﬂ” and LQSﬁQO_LQng_Nam&Su.p.p.o.ﬂ'_oﬂ’ "
page 59

Significant Characters in Identifiers

In general, OS/390 C/C++ truncates external and internal identifiers after 1024
characters. However, the C compiler truncates external identifiers after 8 characters
if the NOLONGNAME compile-time option is in effect. Also, the C++ compiler truncates
external identifiers that do not have C++ linkage after 8 characters if the
NOLONGNAME compile-time option is in effect.

Keywords

Keywords are identifiers that are reserved by the language for special use. Although
you can use them for preprocessor macro names, it is poor programming style.
Only the exact spelling of keywords is reserved. For example, auto is reserved ,
but AUTO is not. The following table lists the keywords common to both the C and
C++ languages. The ANSI/ISO C language definition includes these keywords:

Chapter 4. Lexical Elements of C and C++ 57

Identifiers

Table 3. Keywords Common to C and C++

auto doubTe int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

The C++ language also reserves the following keywords:

Table 4. C++ Keywords

asm _Export private throw
__cdecl friend protected try
catch inline public virtual
class new template wchar_t
delete operator this

Future versions of the C++ compiler may reserve the following keywords, so you
should avoid using them in your applications:

Table 5. C++ Keywords (Future)

bool false reinterpret_cast typeid
const_cast mutable static_cast typename
dynamic_cast namespace true using
explicit

The C compiler reserves the _ Packed keyword.

0S/390 C/C++ External Name Mapping

0S/390 C/C++ maps the names of variables or functions that have external
linkages to names that are used in the object module. When you compile an
0S/390 C/C++ program, refer to the following guidance for using names of
variables or functions with external linkage:

* Do not use names of the library functions for user-defined functions.

* Some functions in the C library and C runtime environment begin with two
underscores (__). Do not use an underscore as the first letter of an identifier.

¢ The compiler maps each underscore to an at sign (@) for external names without
C++ linkage, except when you compile a program with the LONGNAME
compile-time option. In that case, the underscore remains as an underscore.

* IBM-provided functions have names that begin with IBM, CEE, and PLI. Avoid
using these names as the OS/390 C/C++ compiler changes these names to
prevent conflicts between runtime functions and user-defined names. It changes
all static or extern variable names that begin with IBM, CEE, and PLI in your
source program to IB$, CE$, and PL$, respectively, in the object module. If you
are using interlanguage calls, avoid using these prefixes. The compiler of the
calling or called language may or may not change these prefixes in the same
manner as the OS/390 C/C++ compiler does. All of this is completely integrated
into the OS/390 C/C++ compiler, Debug Tool, and LE/370.

To call an external program or access an external variable that begins with IBM,
CEE, and PLI, use the #pragma map preprocessor directive. The following is an
example of #pragma map that forces an external name to be IBMENTRY.

#pragma map (ibmentry,"IBMENTRY")

58 0S/390 V2R6.0 C/C++ Language Reference

Identifiers

For more information on the #pragma map directive, see 'map” on page 262

0OS/390 Long Name Support

If you do not specify the LONGNAME option when you compile your code with the C
compiler, the compiler maps an underscore to an at sign. It also truncates external
names to 8 characters and changes them to uppercase. The C++ compiler makes
the same changes to external identifiers that do not have C++ linkage if you do not
specify the LONGNAME option.

For example, consider if you compile the following C program and do not specify
the LONGNAME option:

int test name[4] = { 4, 8, 9, 10 };
int test_namesum;

int main(void) {
int i;
test _namesum = 0;

for (i = 0; i < 4; i++)
test_namesum += test_name[i];
printf("sum is %d\n", test_namesum);

}

In the above example, the C compiler displays the following message:
ERROR CBC3244 ./sum.c:2 External name TEST_NAM cannot be redefined.

The compiler changes the external names test_namesum and test_name to
uppercase and truncates them to 8 characters. If you specify the CHECKOUT
compile-time option, the compiler will generate two informational messages to this
effect. Because the truncated names are now the same, the compiler produces an
error message and terminates the compilation.

If you compile the previous program with the LONGNAME compile-time option, the
compiler does not produce any warning or error messages. However, if you specify
the LONGNAME option, you must bind your program with the binder to produce a
program object in a PDSE. Otherwise you must use the prelinker.

The LONGNAME compile-time option supports mixed case, external names of up to
1024 characters for OS/390 C/C++ programs.

Object modules that are produced by compiling with LONGNAME have external
names that are mixed case and up to 1024 characters long. Object modules that are
produced by compiling with NOLONGNAME have uppercase external names that are
limited to a length of 8 characters.

To use external C names that are longer than 8 characters or external C++ names
without C++ linkage that are longer than 8 characters, you can, in your source
code:

* Use the #pragma map directive to map long external names in the source code to
8 or less characters in the object module.

#pragma map (verylongname,"sname")

* Use the long name support that is provided by the compile-time option
LONGNAME. To use the long name support, you must do the following:

— Use the LONGNAME compile-time option when compiling your program.

Chapter 4. Lexical Elements of C and C++ 59

Identifiers

— Use the binder to produce a program object in a PDSE, or use the prelinker.
For more information on the binder and on the prelinker, see the O5/390
C/C++ User’s Guide.

Constants

A constant does not change its value while the program is running. The value of
any constant must be in the range of non-negative representable values for its type.

C/C++ contains the following types of constants (also called literals):
* Integer

* Floating-Point

* Fixed-Point Decimal Constants (C Only)

* Character

 String

* Enumeration

Enumerations” on page 90 discusses enumeration constants, which belong to the

lexical class of identifiers. For more information on data types, see

Epﬂﬂlﬁets_on_pa.ge_&d‘ ” .

Integer Constants

Integer constants represent integer values. You can represent integer constants in
decimal, hexadecimal, or octal values.

decimal_constant >
Eoctal_constant
hexadecimal_constant— i:

L]]
T

L] fm—
) |:L:|

Note that the suffixes in the above syntax diagram are not case-sensitive; that is, 1
and L are the same to the compiler.

An integer constant without a suffix cannot have a value greater than ULONG_MAX.
An integer constant with a suffix that contains LL cannot have a value greater than
ULONGLONG_MAX. In these cases, the compiler will issue an out of range error message.
For information on the ULONG_MAX and the ULONGLONG_MAX macros, see the OS/390
C/C++ Run-Time Library Reference.

Data Types for Integer Constants

0S/390 C/C++ determines the data type of an integer constant by the form, value,
and suffix of the constant. The following lists the integer constants and shows the
possible data types for each constant. The compiler uses the smallest data type that
can represent the constant value to store the constant.

60 0S/390 V2R6.0 C/C++ Language Reference

Constants

Table 6. Data Types for Integer Constants

Constant Data Type

unsuffixed decimal int, Tong int, unsigned long int

unsuffixed octal int, unsigned int, Tong int, unsigned long
int

unsuffixed hexadecimal int, unsigned int, long int, unsigned long
int

suffixed by u or U unsigned int, unsigned long int

suffixed by 1 or L long int, unsigned Tong int

suffixed by both u or U, and 1 or L unsigned long int

suffixed by 11 or LL long Tong int, unsigned long long int

suffixed by both u or U, and 11 or LL unsigned Tong long int

A plus (+) or minus (-) symbol can precede an integer constant. OS/390 C/C++
treats it as a unary operator rather than as part of the constant value.

Decimal Constants

A decimal constant contains any of the digits 0 through 9. The first digit cannot be 0.

»—digit 1 to 9——digit 0 to 9 >

0S/390 C/C++ interprets integer constants that begin with the digit 0 as an octal
constant, rather than as a decimal constant.

The following are examples of decimal constants:

485976
-433132211
+20

5

Hexadecimal Constants

A hexadecimal constant begins with the 0 digit that is followed by either an x or X.
This is followed by any combination of the digits 0 through 9 and the letters a
through f or A through F. The letters A (or a) through F (or f) represent the values
10 through 15, respectively.

> Ox————digit_0_to_f ><
o) Laigi £ 0 to F

The following are examples of hexadecimal constants:

Chapter 4. Lexical Elements of C and C++ 61

Constants

0x3b24
0XF96
0x21
0x3AA
0X29b
0X4bD

Octal Constants

An octal constant begins with the digit 0 and contains any of the digits 0 through 7.

»—0—Y—digit 0 to 7 >

The following are examples of octal constants:

0

0125
034673
03245

Floating-

Point Constants

A floating-point constant consists of following parts:

An integral part
A decimal point
A fractional part
An exponent part
An optional suffix

Both the integral and fractional parts are made up of decimal digits. You can omit
either the integral part or the fractional part, but not both. You can omit either the
decimal point or the exponent part, but not both.

v
v

v
A

: —Y—digit
I—digitJ L‘ exponent ’—/

Y digit .
L‘ exponent ’—/

Y digit | exponent |

— — T -

Exponent:

—

e Y _digit |
Le) L] !

62 0S/390 V2R6.0 C/C++ Language Reference

Constants

The representation of a floating-point number on a system is unspecified. If a
floating-point constant is too large or too small, the result is undefined by the
language.

The suffix f or F indicates a type of float, and the suffix 1 or L indicates a type of
Tong double. If you do not specify a suffix, the floating-point constant has a type
double.

A plus (+) or minus (-) symbol can precede a floating-point constant. The compiler
treats it as a unary operator rather than as part of the constant value.

The following are examples of floating-point constants:

Floating-Point Constant Value
5.3876e4 53,876

4e-11 0.00000000004
le+b 100000
7.321E-3 0.007321
3.2E+4 32000

0.5e-6 0.0000005
0.45 0.45

6.e10 60000000000

Fixed-Point Decimal Constants (C Only)

Fixed-point decimal constants are an IBM extension to ANSI/ISO C. This type is
available when you specify the LANGLVL(EXTENDED) compile-time option.

A fixed-point decimal constant has a numeric part and a suffix that specifies its
type. The numeric part can include a digit sequence that represents the
whole-number part, followed by a decimal point (.), followed by a digit sequence
that represents the fraction part. Either the integral part or the fractional part, or
both must be present.

A fixed-point constant has the form:

»—— . —Y—digit_0_to 9

A\
A

o]

Y digit 0 to 9 . —Y—digit 0 to 9

Y digit 0 to 9

Y digit 0 _to 9

Chapter 4. Lexical Elements of C and C++ 63

Constants

A fixed-point constant has two attributes:
Number of digits (size)
Number of decimal places (precision).

The suffix D or d indicates a fixed-point constant.

The following are examples of fixed-point decimal constants:

Fixed-Point Constant (size, precision)
1234567890123456D (16, 0)
12345678.12345678D (16, 8)
12345678.d (8,0)
.1234567890d (10, 10)
12345.99d (7,2)
000123.990d (9, 3)
0.00D (3,2)

For more information on fixed-point decimal data types, see the OS/390 C/C++
Programming Guide.

Character Constants

A character constant contains a sequence of characters or escape sequences that are
enclosed in single quotation mark symbols.

Y
A

»—L—_I—'— character !
L |:escape_sequence—l

At least one character or escape sequence must appear in the character constant.
The characters can be any from the source program character set, excluding the
single quotation mark, backslash, and new-line symbols. The prefix L indicates a
wide character constant. A character constant must appear on a single logical
source line.

The value of a character constant that contains a single character is the numeric
representation of the character in the character set that is used at compile time. The
value of a wide character constant containing a single multibyte character is the
code for that character, as defined by the mbtowc () function. If the character
constant contains more than one character, the last 4 bytes represent the character
constant. In C++, a character constant can contain only one character.

In C, a character constant has type int. In C++, a character constant has type char.
A wide character constant has type wchar_t, and is used to represent multibyte
characters. Multibyte characters represent characters that use more than one byte
for their encoding. Each multibyte character requires up to 4 bytes for its encoding.
You can represent the double quotation mark symbol by itself. You must, however,

use the backslash symbol that is followed by a single quotation mark symbol (\')
as an escape sequence to represent the single quotation mark symbol.

64 0S/390 V2R6.0 C/C++ Language Reference

Constants

You can represent the new-line character by the \n new-line escape sequence. You
can represent the backslash character by the \\ backslash escape sequence.

The following are examples of character constants:

I |\||
|0| |(|
! |\n|
|7| |\117|
e

String Literals

A string constant or literal contains a sequence of characters or escape sequences
that are enclosed in double quotation mark symbols.

The maximum size of a string literal on OS/390 C/C++ is 32,765 bytes.

»—L—_I—"—E' character " >
L escape_sequence—|

The prefix L indicates a wide-character string literal.

0S/390 C/C++ appends a null ('\0') character to each string. For a wide character
string (a string prefixed by the letter L), the value ';\0' of type wchar_t is
appended. By convention, programs recognize the end of a string by finding the
null character.

The compiler retains multiple spaces that are contained within a string constant.
To continue a string on the next line, you can use two or more consecutive strings.

The compiler concatenates adjacent string literals to produce a single string. You
cannot concatenate a wide string constant with a character string constant. For

example:

"hello " "there" /* is equivalent to "hello there" =/
"hello " L"there" /* is not valid */
"hello" "there" /* is equivalent to "hellothere" */

Another way to continue a string is to use the line continuation sequence (\
symbol that is immediately followed by a new-line character). A carriage return
must immediately follow the backslash. In the following example, the string literal
second causes a compile-time error.

char *first = "This string continues onto the next\

line, where it ends."; /* compiles successfully. */
char *second = "The comment makes the \ /% continuation symbol */
invisible to the compiler."; /* compilation error. */

Characters in concatenated strings remain distinct. For example, the string "\xab”
occupies 2 bytes of storage. The first byte contains the value X'ab', and the second
byte contains the value X'00' which is the trailing null character. The string
"\xa\xb"” occupies 3 bytes of storage that contains the values X'0a’, X'Ob', and X'00'.

Chapter 4. Lexical Elements of C and C++ 65

Constants

Following any concatenation, OS/390 C/C++ appends a '\0' of type char at the
end of each string. C++ library functions find the end of a string by scanning for
this value. For a wide-character string literal, OS/390 C/C++ appends a '\0' of
type wchar_t. For example:

char *first = "Hello "; /* stored as "Hello \0" */

char *second = "there"; /* stored as "there\0" */
char *third = "Hello " "there"; /* stored as "Hello there\0" =/

A character string constant has type array of char and static storage duration. A
wide character string constant has type array of wchar_t and static storage duration.

You should be careful when modifying string literals because the resulting
behavior depends on whether your strings are stored in read /write static memory.
C strings are read/write by default. C++ strings are readonly by default.

Use the #pragma strings directive to change the default storage for string literals.
“ describes the #pragma strings directive.

0S/390 C/C++ stores string literals in static storage which can be modified like
any other storage location. C/C++ has the concept of readonly and writeable strings.
This deals with how C/C++ stores multiple occurrences of strings, rather than
whether or not you can modify the strings.

When a string literal appears more than once in the program source, how that
string is stored depends on whether strings are readonly or writeable. If strings are
readonly, then OS/390 C/C++ allocates only one location for that string. All
occurrences will refer to that one location. If strings are writeable, then each
occurrence of the string will have a separate, distinct storage location.

By default, the C compiler will consider strings to be writeable. Note that for
readonly #pragma strings, the compiler will put literal strings in an area of storage
that is potentially read only. For writable #pragma strings, it will put them in an
area of storage that is always modifiable.

Use the escape sequence \n to represent a new-line character as part of the string.
Use the escape sequence \\ to represent a backslash character as part of the string.
You can represent the single quotation mark symbol by itself ', but you use the
escape sequence \" to represent the double quotation mark symbol.

For example:

CBC3X02K
[**

** This example illustrates escape sequences in string Titerals

*%/

#include <iostream.h>
void main ()

{

char *s ="Hi there! \n";

cout << s;

char *p = "The backslash character \\.";
cout << p << endl;

char *q = "The double quotation mark \".\n";
cout << q ;

}

This program produces the following output:

66 0S/390 V2R6.0 C/C++ Language Reference

Constants

Hi there!
The backslash character \.
The double quotation mark ".

Escape Sequences

You can represent any member of the execution character set by an escape sequence.
You can use escape sequences to put unprintable characters in character and string
literals. For example, you can use escape sequences to put such characters as tab,
carriage return, and backspace into an output stream.

v
A

x—hexadecimal_digits

»—\—Eescape_sequence_character
octal _digits

An escape sequence contains a backslash (\) symbol followed by one of the escape
sequence characters or an octal or hexadecimal number. A hexadecimal escape
sequence contains an x followed by one or more hexadecimal digits (0-9, A-F, a-f).
An octal escape sequence uses up to three octal digits (0-7). The value of the
hexadecimal or octal number specifies the value of the desired character or wide
character.

Note: The line continuation sequence (\ followed by a new-line character) is not
an escape sequence. You can use it in character strings to indicate that the

current line continues on the next line.

The escape sequences and the characters they represent are:

Escape Sequence Character Represented
\a Alert (bell, alarm)

\b Backspace

\f Form feed (new page)
\n New-line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\! Single quotation mark
\" Double quotation mark
\? Question mark

\\ Backslash

The value of an escape sequence represents the code point of the code page you
use at run time. OS/390 C/C++ translates escape sequences during preprocessing.
For example, on a system that uses the ASCII character codes, the value of the
escape sequence \x56 is the letter V. On a system that uses EBCDIC character
codes, the value of the escape sequence \xE5 is the letter V.

Use escape sequences only in character constants or in string literals. OS/390
C/C++ issues a message only if it does not recognize an escape sequence.

Chapter 4. Lexical Elements of C and C++ 67

Constants

In string and character sequences, when you want the backslash to represent itself
(rather than the beginning of an escape sequence), you must use a \\ backslash
escape sequence. For example:

cout << "The escape sequence \\n." << endl;

This statement results in the following output:
The escape sequence \n.

The following program prints the character 'a' four times to standard output, and
then prints a new line:

CBC3X02L

/#% CBC3X02L
*x This example illustrates escape sequences
*%/

#include <iostream.h>
void main()

char a,b,c,d,e;

a='a';

b=129; // EBCDIC integer value
c='\201"'; // EBCDIC octal value
d="\x81"'; // EBCDIC hexadecimal value
e="\n';

cout << a << b << ¢ << d << g}

68 0S/390 V2R6.0 C/C++ Language Reference

Chapter 5. Declarations

A declaration establishes the names and characteristics of data objects and functions
used in a program. A definition allocates storage for data objects or specifies the
body for a function. When you define a type, OS/390 C/C++ does not allocate
storage. This chapter discusses the following topics on declarations:

o FDeclarations Querview’]

e ‘Ct+ Function qur‘iﬁprQ” on page 129

o 'Ca+ References” on page 129

Declarations Overview

Declarations determine the following properties of data objects and their
identifiers:

* Scope, which describes the visibility of an identifier in a block or source file. For
a complete description of scope, see !Scape in C” on page 35

* Linkage, which describes the association between two identical identifiers. See

EProgram Tinkage” on page 37 for more information.

* Storage duration, which describes when the system allocates and frees storage

for a data object. See l!Starage Duration” on page 39 for more information.

* Type, which describes the kind of data the object is to represent.

The lexical order of elements when you declare a data object is as follows:

* Storage duration and linkage specification, that are described in EStarage Clasd
E E ’” 23

» Type specification, described in [Tyzpe Specifiers” on page 83

* Declarators, which introduce identifiers and make use of type qualifiers and
storage qualifiers, described in Z

* Initializers, which initialize storage with initial values, described in

[‘Chapter 8 Functions” on page 173 describes function declarations.

All data declarations have the form:

© Copyright IBM Corp. 1996, 1998 69

Declarations Overview

A4 l(declarator ;——><
storage_class_specifier— l—initializerJ
type_specifier
type_qualifier

y
Y

C++ Notes:

1. One of the fundamental differences between C++ and C is the placement of
variable declarations. Although you can declare variables in the same way, in
C++, you can put variable declarations anywhere in the program. In C,
declarations must come before any statements in a block.

In the following C++ example, the variable d is declared in the middle of the
main() function:

#include <iostream.h>

void main()

{

int a, b;

cout << "Please enter two integers" << endl;

cin >> a >> b;

int d = a + b;

cout << "Here is the sum of your two integers:" << d << endl;
}

2. A given function, object, or type can have only one definition. It can have more
than one declaration as long as all of the declarations match. If you never call a
function and never take its address, then you do not have to define it. If you
declare an object, but never use it, or use it only as the operand of sizeof, you
do not have to define it. You can declare a given class or enumerator more than
once.

The following table shows examples of declarations and definitions. The identifiers
that are declared in the first column do not allocate storage; they refer to a
corresponding definition. In the case of a function, the corresponding definition is
the code or body of the function. The identifiers that are declared in the second
column allocate storage; they are both declarations and definitions.

Table 7. Examples of Declarations and Definitions

Declarations Declarations and Definitions

extern double pi; double pi = 3.14159265;

float square(float x); float square(float x) { return x*x; }
struct payroll; struct payroll {

char *name;
float salary;
} employee;

Block Scope Data Declarations

You can only put a block scope data declaration at the beginning of a block. It
describes a variable and makes that variable accessible to the current block. All
block scope declarations that do not have the extern storage class specifier are
definitions and allocate storage for that object.

You can declare a data object with block scope with any one of the following
storage class specifiers:

70 0S/390 V2R6.0 C/C++ Language Reference

Block Scope Data Declarations

* auto

* register
* static
* extern

If you do not specify a storage class specifier in a block-scope data declaration,
05/390 C/C++ uses the default storage class specifier auto. If you specify a
storage class specifier, you can omit the type specifier. If you omit the type
specifier, all variables in that declaration receive type int.

Initialization

You cannot initialize a variable that is declared in a block scope data declaration
that has the extern storage class specifier.

The types of variables you can initialize and the values that uninitialized variables

receive vary for that storage class specifier. See l/Storage Class Specifiers” onl

for details on the different storage classes.

Storage

The duration and type of storage vary for each storage class specifier.

Declarations with the auto or register storage class specifier result in automatic
storage duration. Declarations with the extern or static storage class specifier
result in static storage duration.

Related Information

° G 7

. I"Qfm‘agp Class Q.pp(*ifiprq” on page 73

. 4 by ”

o Pextern anragp Class qur‘iﬁpr” on page 79

7 . Iy 173

7 .) 77

7 IPE) . 77

. I”Tvpp QPP(*ifiPrq” on page 85

File Scope Data Declarations

A file scope data declaration appears outside any function definition. It describes a
variable and makes that variable accessible to all functions that are in the same file
and whose definitions appear after the declaration.

A file scope data definition is a data declaration at file scope that also causes OS/390
C/C++ to allocate storage for that variable. All objects whose identifiers are

declared at file scope have static storage duration.

Use a file scope data declaration to declare variables that you want to have
external linkage.

Chapter 5. Declarations 71

File Scope Data Declarations

The only storage class specifiers you can put in a file scope data declaration are
static and extern. All file scope variables that are defined with static storage
class have internal linkage; other file scope variables have external linkage. If you
specify the storage class, you can omit the type specifier. If you omit the type
specifier, all variables that are defined in that declaration receive the type int.

Initialization

You can initialize any object with file scope. If you do not initialize a file scope
variable, its initial value is zero of the appropriate type. If you do initialize it, a
constant expression must describe the initializer. Otherwise, it must reduce to the
address of a previously declared variable at file scope, possibly added to a constant
expression. Initialization of all variables at file scope takes place before the main
function begins running.

Storage

All objects with file scope data declarations have static storage duration. OS/390
C/C++ allocates storage at run time which it frees when the program stops
running.

Related Information

Objects

An object is a region of storage that contains a value or group of values. You can
access each value by using its identifier or by using a complex expression that
refers to the object. In addition, each object has a unique data type. OS/390 C/C++
establishes both the identifier and data type of an object in the object declaration.

The data type of an object determines the initial storage allocation for that object
and the interpretation of the values during subsequent access. You can also use it
in any type-checking operations.

C++ has built-in, or standard, data types, and user-defined data types. Standard
data types include signed and unsigned integers, floating-point numbers, and
characters. User-defined types include enumerations, structures, unions, and
classes.

In C++ code, you reference objects by variables or references. A variable also
represents the location in storage that contains the value of an object.

You commonly refer to an instance of a class type as a class object. The individual
data members of an instantiated class object are also called objects. The set of all
member objects comprises a class object.

72 0S/390 V2R6.0 C/C++ Language Reference

Storage Class Specifiers

Storage Class Specifiers

The storage class specifier you use within the declaration determines whether:
* The object has internal, external, or no linkage.
* The object is stored in memory or in a register, if available.

* The object receives the default initial value 0 or an indeterminate default initial
value.

* The object is referenced throughout a program or only within the function,
block, or source file where you have defined the variable.

* The storage duration for the object is static or automatic. For static, OS/390
C/C++ maintains storage throughout the program run time. For automatic,
05/390 C/C++ maintains storage only during the execution of the block where
the object is defined.

For a function, the storage class specifier determines the linkage of the function.

Declarations with the auto or register storage-class specifier result in automatic
storage duration. Those with the extern or static storage-class specifier result in
static storage.

Most local declarations that do not include the extern storage-class specifier
allocate storage; however, function declarations and type declarations do not
allocate storage.

The only storage-class specifiers allowed in a global or file scope declaration are
static and extern.

This section describes the following storage class specifiers:
e auto

* extern

* register

e static

auto Storage Class Specifier

The auto storage class specifier lets you define a variable with automatic storage.
0S/390 C/C++ restricts its use and storage to the current or contained block. The
storage class keyword auto is optional in a data declaration. You cannot use it in a
parameter declaration. You must declare a variable that has the auto storage class
specifier within a block. You cannot use it for file scope declarations.

Automatic variables require storage only while the function in which they are
declared is active. Consequently, defining variables with the auto storage class can
decrease the amount of memory that is required to run a program. However,
having many large automatic objects may cause you to run out of stack space.

Declaring variables with the auto storage class can also make code easier to
maintain. A change to an auto variable in one function never affects another
function (unless you pass it as an argument).

Initialization

You can initialize any auto variable except parameters. If you do not initialize an
automatic object, its value is indeterminate. If you provide an initial value, the

Chapter 5. Declarations 73

Storage Class Specifiers

expression that represents the initial value can be any valid C or C++ expression.
For structure and union members, the initial value must be a valid constant
expression if you use an initializer list. Each time an objects definition (auto or
register) is encountered during program execution, its initialization, if any, is done.

Note: If you use the goto statement to jump into the middle of a block, automatic
variables defined before the label that is jumped to are not initialized.

Storage

Objects with the auto storage class specifier have automatic storage duration. Each
time a block is entered, storage for auto objects that are defined in that block is
made available. When the block is exited, the objects are no longer available for
use.

If you define an auto object within a function that you invoke recursively, OS/390
C/C++ allocates memory for the object at each invocation of the block.

Examples of auto Storage Class

The following program shows the scope and initialization of auto variables. The
function main defines two variables, each named auto_var. The first definition
occurs on line 10. The second definition occurs in a nested block on line 13. While
the nested block is running, only the auto_var that is created by the second
definition is available. During the rest of the program, only the auto_var that is
created by the first definition is available.

CBC3RAAF:

1 /**
2 **% Example illustrating the use of auto variables #**
3 **/
4

5 #include <stdio.h>

6

7 int main(void)

8

9 void call_func(int passed var);

10 auto int auto_var = 1; /* first definition of auto_var x/
11

12 {

13 int auto_var = 2; /* second definition of auto_var =*/
14 printf("inner auto_var = %d\n", auto_var);

15 }

16 call_func(auto_var);

17 printf("outer auto_var = %d\n", auto_var);

18 return 0;

19 1}
20
21 void call_func(int passed_var)
22 {
23 printf("passed_var = %d\n", passed_var);
24 passed_var = 3;
25 printf("passed var = %d\n", passed_var);
26}

This program produces the following output:

inner auto_var = 2
passed var =1
passed_var = 3
outer auto_var =1

74 0S/390 V2R6.0 C/C++ Language Reference

Storage Class Specifiers

The following example uses an array that has the storage class auto to pass a
character string to the function sort. The function sort receives the address of the
character string, rather than the contents of the array. The address enables sort to
change the values of the elements in the array.

CBC3RAAG:

[Kk ke ko ok ok ok K kK xF I IR hKhhhh kI hhh kKK H ok kKK T I IR hKhhhh kI *hh kKK H ok *
x% Sorted string program -- this example passes an array name =
** to a function *k

***/

#include <stdio.h>
#include <string.h>

int main(void)

{
void sort(char *array, int n);
char string[75];
int length;

printf("Enter lTetters:\n");

scanf("%74s", string);

length = strlen(string);

sort(string,length);

printf("The sorted string is: %s\n", string);

return(0);

}

void sort(char =*array, int n)

{
int gap, i, j, temp;

for (gap = n / 2; gap > 0; gap /= 2)
for (i = gap; i < n; i++)
for (j = 1 - gap; j >= 0 &% array[j] > array[j + gap]l;
{ J -= gap)
temp = array[j];
array[j] = array[j + gap];
array[j + gap] = temp;

}

When you run the program, interaction with the program could produce:

Output Enter letters:
Input zyfab
Output The sorted string is: abfyz

Related Information

extern Storage Class Specifier

The extern storage class specifier lets you declare objects and functions that
several source files can use. All object declarations that occur outside a function

Chapter 5. Declarations 75

Storage Class Specifiers

and that do not contain a storage class specifier declare identifiers with external
linkage. All function definitions that do not specify a storage class define functions
with external linkage.

You can distinguish an extern declaration from an extern definition by the
presence of the keyword extern and the absence of an initial value. If the keyword
extern is absent or if there is an initial value, the declaration is also a definition;
otherwise, it is just a declaration. An extern definition can appear only at file
scope.

An extern variable, function definition, or declaration also makes the described
variable or function usable by the succeeding part of the current source file. This
declaration does not replace the definition. The declaration describes the variable
that is externally defined.

If a declaration for an identifier already exists at file scope, any extern declaration
of the same identifier that is found within a block refers to that same object. If no
other declaration for the identifier exists at file scope, the identifier has external
linkage.

An extern declaration can appear outside a function or at the beginning of a block.
If the declaration describes a function or appears outside a function and describes
an object with external linkage, the keyword extern is optional.

If you do not specify a storage class specifier, the function has external linkage. It
is an error to include a declaration for the same function with the storage class
specifier static before the declaration with no storage class specifier because of the
incompatible declarations. Including the extern storage class specifier on the
original declaration is valid, and the function has internal linkage.

In OS/390 C++, you can declare functions with the following:

Linkage By specifying

C extern "C"

C++ extern "C++

(O extern "0S"

PLI extern "PLI"
builtin extern "builtin"
COBOL extern "COBOL"

FORTRAN extern "FORTRAN"

There are some limitations to using extern to specify non-C++ linkage for a
function. While the C++ language supports overloading, other languages do not.
The implications of this are:

* You cannot overload a function that has non-C++ linkage:

extern "FORTRAN"{int func(int);}
extern "FORTRAN"{int func(int,int);} // not allowed-compiler
// will issue an error message
* You cannot declare a function with a linkage specification if you have already
used the same function name in a declaration without a linkage specification:
int func(int);
extern "FORTRAN"{int func(int,int);} // not allowed-compiler
// will issue an error message

76 0S/390 V2R6.0 C/C++ Language Reference

Storage Class Specifiers

* You can overload a function as long as it has C++ (default) linkage. Therefore,
0S/390 C/C++ allows the following series of statements:
extern "FORTRAN"{int func(int,int);}

int func(int); // function with C++ Tinkage
int func(int,int); // overloaded function with C++ linkage

* You cannot redefine a function that has a linkage specification:

extern func(int);
extern "FORTRAN"{int func(int,int);} // not allowed-compiler
// will issue an error message
For more information, see “ Using Linkage Specifications in C++ ” in the OS5/390
C/C++ Programming Guide, or refer to OS/390 Language Environment Writing
Interlanguage Applications.

The following fragments illustrate the use of extern "C":
extern "C" int cf(); //declare function cf to have C Tinkage

extern "C" int (xc_fp)(); //declare a pointer to a function,
// called c_fp, which has C Tinkage

extern "C" {
typedef void(xcfp _T)(); //create a type pointer to function with C

// linkage

void cfn(); //create a function with C linkage

void (xcfp)(); //create a pointer to a function, with C
// Tlinkage

}

Linkage compatibility affects all C library functions that accept a user function

pointer as a parameter. Use the extern "C" linkage specification to ensure that the

declared linkages are the same. An example of these library functions is gsort();
refer to the OS5/390 C/C++ Run-Time Library Reference for more information.

The following example fragment uses extern "C" with gsort().
#include <stdlib.h>

// function to compare table elements
extern "C" int TableCmp(const void *, const void *); // C linkage
extern void * GenTable(); // C++ linkage

void main() {
void *table;

table = GenTable(); // generate table
gsort(table, 100, 15, TableCmp); // sort table, using TableCmp
// and C library routine gsort();
}

C++ Note: In C++, an extern declaration cannot appear in class scope.
Initialization

You can initialize any object with the extern storage class specifier at file scope.
You can initialize an extern object with an initializer that must do either of the
following:

¢ Appear as part of the definition and the initial value must be described by a
constant expression.

* Reduce to the address of a previously declared object with static storage
duration. You can modify this object by adding or subtracting an integral
constant expression.

Chapter 5. Declarations

77

Storage Class Specifiers

If you do not explicitly initialize an extern variable, its initial value is zero of the
appropriate type. Initialization of an extern object is completed by the time the
program starts running.

Storage

extern objects have static storage duration. OS/390 C/C++ allocates memory for
extern objects before the main function begins running. When the program finishes
running, OS/390 C/C++ frees the storage.

Controlling External Static

Certain program variables with the extern storage class may be constant and never
be updated. If this is the case, it is not necessary to have a copy of these variables
made for every user of the program. In addition, there may be a need to share
constant program variables between C and another language.

Examples of extern Storage Class

The following program fragment shows how to force an external program variable
to be part of a program that includes executable code and constant data. It uses the
#pragma variable(varname, NORENT) directive:

#pragma variable(rates, NORENT)
extern float rates[5] = { 3.2, 83.3, 13.4, 3.6, 5.0 };

extern float totals[5];

int main(void) {

}

In this example, you compile the source file with the RENT option. The executable
code includes the variable rates as you specify the #pragma variable(rates,
NORENT). The writable static includes the variable totals. Each user has a personal
copy of the array totals, and all users of the program share the array rates. This
sharing may yield a performance and storage benefit.

The #pragma variable(varname, NORENT) does not apply to, and has no effect on,
program variables with the static storage class. OS/390 C/C++ always includes
program variables with the static storage class with the writable static. An
informational message appears if you write to a nonreentrant variable when you
specify the C CHECKOUT compile-time option.

When you specify #pragma variable(varname, NORENT) for a variable, ensure that
your program never writes to this variable. Program exceptions or unpredictable
program behavior may result should this be the case. In addition, you must
include #pragma variable(varname, NORENT) in every source file where you
reference or define the variable.

For more information on the RENT and NORENT compile-time options, refer to the
0S/390 C/C++ User’s Guide.

The following program shows the linkage of extern objects and functions. It
declares the extern object total on line 12 of File 1 and on line 11 of File 2. The
definition of the external object total appears in File 3. The example defines
extern function tally in File 2. The function tally can be in the same file as main
or in a different file. Because main precedes these definitions and main uses both

78 0S/390 V2R6.0 C/C++ Language Reference

Storage Class Specifiers

total and tally, main declares tally on line 11 and total on line 12.

CBC3RAH]1 (File 1):

1 /**

2 ** The program receives the price of an item, adds the *k

3 ** tax, and prints the total cost of the item. *k

5 Kk kKK xR KK KA B B *xk [

6

7 #include <stdio.h>

8

9 int main(void)

10 { /* begin main */
11 void tally(void); /% declaration of function tally =/
12 extern float total; /* first declaration of total */
13

14 printf("Enter the purchase amount: \n");

15 tally();

16 printf("\nWith tax, the total is: %.2f\n", total);

17

18 return(0);

19 } /* end main */

CBC3RAH?2 (File 2):

/**

*% This file defines the function tally *k
**/

1
2
3
4 #include <stdio.h>

6 #define tax_rate 0.05
7

8

9

void tally(void)

{ /* begin tally =/
10 float tax;
11 extern float total; /* second declaration of total =x/
12
13 scanf("%f", &total);
14 tax = tax_rate * total;
15 total += tax;
16} /* end tally */

CBC3RAHS3 (File 3):
1 float total;

When you run this program and interaction with it, it could produce the following:

Output Enter the purchase amount:
Input 99.95
Output With tax, the total is: 104.95

The following program shows extern variables that are used by two functions.
Both functions main and sort can access and change the values of the extern

variables string and length. Consequently, main does not have to pass parameters

to sort.

Chapter 5. Declarations

79

Storage Class Specifiers

CBC3RAAL

/***
** Sorted string program -- this example shows extern *%
*x used by two functions *k

***/

#include <stdio.h>
#include <string.h>

char string[75];
int length;

int main(void)
void sort(void);

printf("Enter Tetters:\n");

scanf("%s", string);
length = strlen(string);
sort();

printf("The sorted string is: %s\n", string);

return(0);
1

void sort(void)
int gap, i, j, temp;

for (gap = length / 2; gap > 0; gap /= 2)
for (i = gap; i < length; i++)
for (j = 1 - gap;
Jj >= 0 &% string[j] > string[j + gap];
j -= gap)

temp = string[j];
string[j] = string[j + gap];
string[j + gap] = temp;
}
1

When you run this program, interacting with it could produce the following:

Output Enter letters:
Input zyfab
Output The sorted string is: abfyz

The following code fragment shows a static variable varl, which gets defined at
file scope and then declared with the storage class specifier extern. The second
declaration refers to the first definition of varl, and so it has internal linkage.

static int varl;

extern int varl;

Rela}ted Information

° s : ”

80 0S/390 V2R6.0 C/C++ Language Reference

Storage Class Specifiers

register Storage Class Specifier

The register storage class specifier marks heavily used objects (such as loop
control variables). It indicates that the compiler should try to minimize access time
to the object by placing its value in a machine register, if possible. Because of the
limited size and number of registers available on OS/390 systems, few variables
can actually be put in registers. The object is treated as having the storage class
specifier auto.

0S/390 C/C++ requires the register storage class specifier in a block-scope data
definition. It also requires it in a parameter declaration that describes an object that
has the register storage class. You must define an object that has the register
storage class specifier within a block. Or, you must declare it as a parameter to a
function.

Initialization

You can initialize any register object except parameters. If you do not initialize an
automatic object, its value is indeterminate. If you provide an initial value, the
expression that represents the initial value can be any valid C or C++ expression.
For structure and union members, the initial value must be a valid constant
expression if you use an initializer list. The program then sets the object to that
initial value each time it enters the program block that contains the object’s
definition.

Storage

Objects with the register storage class specifier have automatic storage duration.
Each time a block is entered, storage for register objects that are defined in that
block is made available. When the block is exited, the objects are no longer
available for use.

If a register object is defined within a function that you invoke recursively,
0S/390 C/C++ allocates the memory for the variable at each invocation of the
block.

Restrictions

You cannot use the register storage class specifier in data scope declarations.

C++ Notes: In C programs, you cannot apply the address (&) operator to register
variables. However, C++ lets you take the address of an object with
the register storage class. For example:

register i;
int* b = &i; // valid in C++, but not in C

Related Information

Chapter 5. Declarations 81

Storage Class Specifiers

static Storage Class Specifier

The static storage class specifier lets you define objects with static storage
duration and internal linkage, or to define functions with internal linkage.

You can define an object that has the static storage class specifier within a block
or at file scope. If the definition occurs within a block, the object has no linkage. If
the definition occurs at file scope, the object has internal linkage.

Initialization

You can initialize any static object with a constant expression or an expression
that reduces to the address of a previously declared extern or static object,
possibly modified by a constant expression. If you do not provide an initial value,
the object receives the value of zero of the appropriate type.

Storage

Objects with the static storage class specifier have static storage duration. OS/390
C/C++ allocates the storage for a static variable when the program begins
running. When the program finishes running, it frees the memory.

Usage

You can use static variables when you need an object that retains its value from
one execution of a block to the next execution of that block. Using the static
storage class specifier keeps the system from reinitializing the object each time the
block where the object is defined runs.

If a local static variable is a class object with constructors and destructors,
0S/390 C++ constructs the object when control passes through its definition for
the first time. If a constructor creates a local class object, OS/390 C++ calls its
destructor immediately before, or as part of, the calls of the atexit() function.

Restrictions
You cannot declare a static function at block scope.
Examples of Static Storage Class

The following program shows the linkage of static identifiers at file scope. This
program uses two different external static identifiers named stat_var. The first
definition occurs in file 1. The second definition occurs in file 2. The main()
function references the object defined in file 1. The var_print() function
references the object defined in file 2:

82 0S/390 V2R6.0 C/C++ Language Reference

Storage Class Specifiers

CBC3RAJ1 (File 1):

/**
** Program to illustrate file scope static variables *%

**/

#include <stdio.h>

extern void var_print(void);
static stat_var = 1;

int main(void)

{

printf("filel stat _var = %d\n", stat_var);
var_print();
printf("FILEl stat var

%d\n", stat_var);

return(0);

1
CBC3RAJ?2 (File 2):

/**
*x This file contains the second definition of stat_var *k

**/
#include <stdio.h>

static int stat _var = 2;

void var_print(void)

{
}

printf("file2 stat_var = %d\n", stat_var);

This program produces the following output:

filel stat_var =1
file2 stat_var = 2
FILEL stat var =1

The following program shows the linkage of static identifiers with block scope.
The function test () defines the static variable stat_var. This variable retains its
storage throughout the program, even though test() is the only function that can
refer to stat_var.

CBC3RAAK:

/**
** Program to illustrate block scope static variables *%
Jekokdkodokok ok ok ko ke ok ok ok k T T kkkkkkkkkhkkhkhhhkkhhk ok *kkkkkk [

#include <stdio.h>

int main(void)
{
void test(void);
int counter;
for (counter = 1; counter <= 4; ++counter)
test();

return(0);

}

void test(void)

{
static int stat_var = 0;
auto int auto_var = 0;

Chapter 5. Declarations 83

Storage Class Specifiers

stat_var++;
auto_var++;
printf("stat var = %d auto_var = %d\n", stat_var, auto_var);

}

This program produces the following output:

stat_var = 1 auto_var =1
stat_var = 2 auto_var =1
stat_var = 3 auto_var =1
stat_var = 4 auto_var =1

Related Information

typedef

A typedef declaration lets you define your own identifiers which you can use in
place of type specifiers such as int, float, and double. A typedef declaration does
not reserve storage. The names you define using typedef are not new data types.
They are synonyms for the data types or combinations of data types they
represent.

The syntax of a typedef declaration is:

v
A

»»—typedef—type_specifier—identifier—;

When an object is defined using a typedef identifier, the properties of the defined
object are exactly the same as if the object were defined by explicitly listing the
data type associated with the identifier.

C++ Note: A C++ class defined in a typedef without being named is given a
dummy name and the typedef name for linkage. Such a class cannot
have constructors or destructors. For example:
typedef class {

Trees();
} Trees;

Here the function Trees() is an ordinary member function of a class
whose type name is unspecified. In the above example, Trees is an
alias for the unnamed class, not the class type name itself.
Consequently, Trees() cannot be a constructor for that class.

Examples of typedef Declarations

The following statements declare LENGTH as a synonym for int and then use this
typedef to declare Tength, width, and height as integral variables:

typedef int LENGTH;
LENGTH length, width, height;

84 0S/390 V2R6.0 C/C++ Language Reference

Storage Class Specifiers

The following declarations are equivalent to the above declaration:
int length, width, height;

Similarly, you can use typedef to define a class type (structure, union, or C++
class). For example:

typedef struct {

int scruples;
int drams;
int grains;

} WEIGHT;

You can then use the structure WEIGHT in the following declarations:

WEIGHT chicken, cow, horse, whale;

Related Information

P’Fhapfpr 11 C++ Classes” on page 281l

F‘Constructors and Destriictors Overview” an page 324

Type Specifiers

Type specifiers indicate the type of the object or function you are declaring. The
fundamental data types are:

Characters
Floating-Point Numbers
Integers

Enumerations

Void

From these types, you can derive:

Pointers
Arrays
Structures
Unions
Functions

The integral types are char, wchar_t(C++ only), and int of all sizes. Floating-point
numbers can have types float, double, or Tong double. You can collectively refer
to integral and floating-point types as arithmetic types. In C++ only, you can also
derive the following;:

References

Chapter 5. Declarations 85

Type Specifiers

e Classes
e Pointers to Members

In C++, enumerations are not an integral type, but they can be subject to integral
promotion, as described in L ions”

You can give names to both fundamental and derived types by using the typedef
specifier.

Characters

There are three character data types: char, signed char, and unsigned char. These
three data types are not compatible. If you specify LANGLVL(ANSI), the C compiler
recognizes char, unsigned char, and signed char as distinct types. They are always
distinct types in C++.

The character data types provide enough storage to hold any member of the
character set you program uses at run time. The amount of storage that is allocated
for a char is implementation-dependent. The OS/390 C/C++ compiler represents a
character by 8 bits, as defined in the CHAR_BIT macro in the <1imits.h> header.

The default character type behaves like an unsigned char. To change this default,

use #pragma chars, described in I'chars” on page 247,

If it does not matter whether a char data object is signed or unsigned, you can
declare the object as having the data type char. Otherwise, explicitly declare signed
char or unsigned char. When a char (signed or unsigned) is widened to an int, its
value is preserved.

To declare a data object that has a character type, use a char type specifier. The
char specifier has the form:

> char =
i:unsigned:‘
signed

The declarator for a simple character declaration is an identifier. You can initialize
a simple character with a character constant or with an expression that evaluates to
an integer.

Use the char specifier in variable definitions to define such variables as follows:
arrays of characters, pointers to characters, and arrays of pointers to characters.
Use signed char or unsigned char to declare numeric variables that occupy a
single byte.

C++ Note: For the purposes of distinguishing overloaded functions, a C++ char is
a distinct type from signed char and unsigned char.

Examples of Character Data Types

The following example defines the identifier end_of_string as a constant object of
type char. It has the initial value \0 (the null character):

const char end_of_string = '\0';

86 0S/390 V2R6.0 C/C++ Language Reference

Type Specifiers
The following example defines the unsigned char variable switches as having the
initial value 3:

unsigned char switches = 3;

The following example defines string_pointer as a pointer to a character:
char xstring_pointer;

The following example defines name as a pointer to a character. After initialization,
name points to the first letter in the character string "Johnny":

char *name = "Johnny";

The following example defines a one-dimensional array of pointers to characters.
The array has three elements. Initially they are a pointer to the string "Venus", a
pointer to "Jupiter”, and a pointer to "Saturn":

static char *planets[] = { "Venus", "Jupiter",
"Saturn" };

Related Information

4 ”

Floating-Point Variables
There are three types of floating-point variables: float, double, and long doubTe.
The amount of storage that is allocated for a float, a double, or a Tong double is
implementation-dependent. On all compilers, the storage size of a float variable is
less than or equal to the storage size of a double variable.

To declare a data object that has a floating-point type, use the float specifier.

The float specifier has the form:

float »<
Edoub]e
long double—

The declarator for a simple floating-point declaration is an identifier. Initialize a
simple floating-point variable with a float constant or with a variable or expression
that evaluates to an integer or floating-point number. The storage class of a
variable determines how you initialize the variable.

Note that OS/390 C/C++ supports IEEE binary floating-point Varlables as well as
IBM S/390 hexadecimal floating-point variables. For details, see =
, or the section on the FLOAT option in the OS/390 C/C++ User’s Guide.

Chapter 5. Declarations 87

Type Specifiers

Examples of Floating-Point Data Types

The following example defines the identifier pi as an object of type doubTe:
doubTe pi;

The following example defines the float variable real_number with the initial
value 100.55:

static float real_number = 100.55f;

The following example defines the float variable float_var with the initial value
0.0143:

float float_var = 1.43e-2f;

The following example declares the Tong double variable maximum:
extern Tong double maximum;

The following example defines the array table with 20 elements of type double:
double table[20];

Relateo_l Information

° s _ 7

° 7 . . ”

Fixed-Point Decimal Data Types (C Only)

Use the type specifier decimal(n,p) to declare fixed-point decimal variables and to
initialize them with fixed-point decimal constants. For this type specifier, decimal is
a macro that is defined in <decimal.h>. Remember to include <decimal.h> if you
use fixed-point decimals in your program.

Fixed-point decimal types are classified as arithmetic types. The decimal(n,p) type
specifier designates a decimal number with # digits, and p decimal places. n is the
total number of digits for the integral and decimal parts combined. p is the number
of digits for the decimal part only. For example, decimal (5,2) represents a number,
such as, 123.45 where n=5 and p=2. The value for p is optional. If you leave it out,
the default value is 0.

In the type specifier, n and p have a range of allowed values according to the
following rules:

p<=n

1 <= n <= DEC_DIG

0 <= p <= DEC_PRECISION

Note: <decimal.h> defines DEC_DIG (the maximum number of digits 1) and
DEC_PRECISION (the maximum precision p). Currently, it uses a maximum of
31 digits for both limits.

The following examples show how to declare a variable as a fixed-point decimal
data type:

decimal(10,2) x;

decimal(5,0) y;

decimal(5) Z;

decimal(18,10) =*ptr;

decimal(8,2) arr[100];

88 0S/390 V2R6.0 C/C++ Language Reference

Type Specifiers

In the previous example:

* x can have values between -99999999.99D and +99999999.99D.

e y and z can have values between -99999D and +99999D.

* ptris a pointer to type decimal(18,10).

* arr is an array of 100 elements, where each element is of type decimal(8,2).

The fixed-point decimal type specifier has the form:

) »><

»»>—decimal—(—constant_expression |_ J
,—constant_expression

05/390 C/C++ evaluates the first constant_expression as a positive integral constant
expression. The second constant_expression is optional. If you leave it out, the
default value is 0. The type specifiers, decimal (n,0) and decimal(n) are
type-compatible.

Integer Variables

Integer variables fall into the following categories:

e short int or short or signed short int or signed short

* signed int or int

e Tong int or long or signed long int or signed Tong

* long Tong int or Tong long or signed Tong Tong int or signed long long
* unsigned short int or unsigned short

* unsigned or unsigned int

* unsigned Tong int or unsigned long

* unsigned long long int or unsigned long long

The default integer type for a bit field is unsigned. The amount of storage that is
allocated for integer data is implementation-dependent.

0S/390 C/C++ provides three sizes of integer data types. Objects that are of type
short have a length of 2 bytes of storage. Objects that are of type Tong have a
length of 4 bytes of storage. Objects that are of type Tong Tong have a length of 8
bytes of storage. An int data type represents the most efficient data storage size on
the system (the word-size of the machine) and receives 4 bytes of storage.

The unsigned prefix indicates that the object is a nonnegative integer. Each
unsigned type provides the same size storage as its signed equivalent. For
example, int reserves the same storage as unsigned int. Because a signed type
reserves a sign bit, an unsigned type can hold a larger positive integer than the
equivalent signed type.

To declare a data object that has an integer data type, use an int type specifier.

The int specifier has the form:

Chapter 5. Declarations 89

Type Specifiers

v
A

int
uns1gnj short
i:s1gned |—1'ntJ
long
|—1 ongJ |—1'ntJ

unsigned

The declarator for a simple integer definition or declaration is an identifier. You
can initialize a simple integer definition with an integer constant or with an
expression that evaluates to a value that you can assign as an integer. The storage
class of a variable determines how you can initialize the variable.

C++ Note: When the arguments in overloaded functions and overloaded operators
are integer types, two integer types that both come from the same
group are not treated as distinct types. For example, you cannot
overload an int argument against a signed int argument.

C++ Querloading” on page 311l describes overloading and argument

matching.

Examples of Integer Data Types

The following example defines the short int variable flag:
short int flag;

The following example defines the int variable result:
int result;

The following example defines the unsigned Tong int variable ss_number as
having the initial value 438888834:

unsigned long ss_number = 438888834ul;

The following example defines the identifier sum as an object of type int. The
initial value of sum is the result of the expression a + b:

extern int a, b;
auto sum = a + b;

Related Information

Enumerations

An enumeration data type represents a set of values that you declare. You can
define an enumeration data type and all variables that have that enumeration type
in one statement. You can also declare an enumeration type separately from the
definition of variables of that type. You refer to the identifier that is associated
with the data type (not an object) as an enumeration tag.

90 0S/390 V2R6.0 C/C++ Language Reference

Type Specifiers

C++ Note: In C, an enumeration has an implementation-defined integral type. This
restriction does not apply to C++. In C++, an enumeration has a
distinct type that does not have to be integral.

Declaring an Enumeration Data Type
An enumeration type declaration contains the enum keyword that is followed by an

optional identifier (the enumeration tag) and a brace-enclosed list of enumerators.
Commas separate each enumerator in the enumerator list.

—

»>—enum B] {—Y—enumerator } ;
identifier

A\
A

The keyword enum, that is followed by the identifier, names the data type (like the
tag on a struct data type). The list of enumerators provides the data type with a
set of values.

C++ Note: In C, each enumerator represents an integer value. In C++, each
enumerator represents a value that you can convert to an integral

value.

An enumerator has the form:

»»—identifier »<
|—=—integral_consL‘ant_expressionJ

To conserve space, you can store enumerations in spaces smaller than the storage
required by an int data type.

Enumeration Constants

When you define an enumeration data type, you specify a set of identifiers that the
data type represents. Each identifier in this set is an enumeration constant.

The value of the constant is determined in the following way:

1. An equal sign (=) and a constant expression after the enumeration constant
gives an explicit value to the constant. The identifier represents the value of the
constant expression.

2. If you do not assign an explicit value, the leftmost constant in the list receives
the value zero (0).

3. Identifiers with no explicitly assigned values receive the integer value that is
one greater than the value that is represented by the previous identifier.

In C, enumeration constants have type int.
In C++, each enumeration constant has a value that can be promoted to a signed
or unsigned integer value and a distinct type that does not have to be integral. Use

an enumeration constant anywhere an integer constant is allowed, or for C++,
anywhere a value of the enumeration type is allowed.

Chapter 5. Declarations 91

Type Specifiers

Each enumeration constant must be unique within the scope in which the
enumeration is defined. In the following example, the declarations of average on
line 4 and of poor on line 5 cause compiler error messages:

func()

{
enum score { poor, average, good };
enum rating { below, average, above };
int poor;

OB WN -

}

The following data type declarations list oats, wheat, barley, corn, and rice as
enumeration constants. The number under each constant shows the integer value.
enum grain { oats, wheat, barley,

corn, rice };
/* 0 1 2 3 4 x/

enum grain { oats=1, wheat, barley, corn, rice };
/* 1 2 3 4 5 */

enum grain { oats, wheat=10, barley, corn=20, rice };
/* 0 10 11 20 21 */

It is possible to associate the same integer with two different enumeration
constants. For example, the following definition is valid. The identifiers suspend
and hold have the same integer value.

enum status { run, clear=5, suspend, resume, hold=6 };
/* 0 5 6 7 6 */

The following example is a different declaration of the enumeration tag status:

enum status { run, create, clear=5, suspend };
/% 0 1 5 6 %/

Defining Enumeration Variables

An enumeration variable definition contains an optional storage class specifier, a
type specifier, a declarator, and an optional initializer. The type specifier contains
the keyword enum that is followed by the name of the enumeration data type. You
must declare the enumeration data type before you can define a variable that has
that type.

The initializer for an enumeration variable contains the = symbol that is followed
by an expression.

In C, the initializer expression must evaluate to an int value. In C++, the initializer
must behave the same type as the associated enumeration type.

The first line of the following example declares the enumeration tag grain. The
second line defines the variable g_food and gives g_food the initial value of barley
(2).

enum grain { oats, wheat, barley, corn, rice };

enum grain g_food = barley;

In C, the type specifier enum grain indicates that the value of g_food is a member
of the enumerated data type grain. In C++, the value of g_food has the
enumerated data type grain.

92 0S/390 V2R6.0 C/C++ Language Reference

Type Specifiers

C++ also makes the enum keyword optional in an initialization expression like the
one in the second line of the preceding example. For example, both of the
following statements are valid C++ code:

enum grain g_food = barley;
grain cob_food = corn;

Defining an Enumeration Type and Enumeration Objects

You can define a type and a variable in one statement by using a declarator and an
optional initializer after the type definition. To specify a storage class specifier for
the variable, you must put the storage class specifier at the beginning of the
declaration. For example:

register enum score { poor=1, average, good } rating = good;

C++ also lets you put the storage class immediately before the declarator. For
example:

enum score { poor=1, average, good } register rating = good;

Either of these examples is equivalent to the following two declarations:

enum score { poor=1, average, good };
register enum score rating = good;

Both examples define the enumeration data type score and the variable rating.
Variable rating has the storage class specifier register, the data type enum score,
and the initial value good.

Combining a data type definition with the definitions of all variables which have
that data type lets you leave the data type unnamed. For example:

enum { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday } weekday;

The above example defines the variable weekday, which you can assign to any of
the specified enumeration constants.

Example Program Using Enumerations

The following program receives an integer as input. The output is a sentence that
gives the French name for the weekday that is associated with the integer. If the
integer does not correspond with a weekday, the program prints "C'est le
mauvais jour."

CBC3RAAN:
[*%

*+ Example program using enumerations
*%/

#include <stdio.h>
enum days {
Monday=1, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday
} weekday;
void french(enum days);
int main(void)

{

int num;

Chapter 5. Declarations 93

Type Specifiers

printf("Enter an integer for the day of the week. "
"Mon=1,...,Sun=7\n");

scanf("%d", &num);

weekday=num;

french (weekday) ;

return(0);

}

void french(enum days weekday)

switch (weekday)
{
case Monday:
printf("Le jour de la semaine est Tundi.\n");
break;
case Tuesday:
printf("Le jour de la semaine est mardi.\n");
break;
case Wednesday:
printf("Le jour de la semaine est mercredi.\n");
break;
case Thursday:
printf("Le jour de Ta semaine est jeudi.\n");
break;
case Friday:
printf("Le jour de la semaine est vendredi.\n");
break;
case Saturday:
printf("Le jour de la semaine est samedi.\n");
break;
case Sunday:
printf("Le jour de Ta semaine est dimanche.\n");
break;
default:
printf("C'est Te mauvais jour.\n");
}
1

Related _Information

° 7 . 7

° 4 ”

Pointers

A pointer type variable holds the address of a data object or a function. A pointer
can refer to an object of any one data type except to a bit field or a reference.
Additionally, in C, a pointer cannot point to an object with the register storage
class.

Some common uses for pointers are:
* To access dynamic data structures such as linked lists, trees, and queues.

* To access elements of an array, or members of a structure, or members of a C++
class.

* To access an array of characters as a string.

* To pass the address of a variable to a function. (In C++, you can also use a
reference to do this.) By referencing a variable through its address, a function

can change the contents of that variable. /Calling Functions and Passing
[Arguments” on page 189 describes passing arguments by reference.

94 0S/390 V2R6.0 C/C++ Language Reference

Type Specifiers
Declaring Pointers

The following example declares pcoat as a pointer to an object that has type long:

extern Tong *pcoat;

If the keyword volatile appears before the *, the declarator describes a pointer to
a volatile object. If the keyword volatile comes between the * and the identifier,
the declarator describes a volatile pointer. The keyword const operates in the
same manner as the volatile keyword. In the following example, pvolt is a
constant pointer to an object that has type short:

short * const pvolt;

The following example declares pnut as a pointer to an int object that has the
volatile qualifier:

extern int volatile *pnut;

The following example defines psoup as a volatile pointer to an object that has
type float:

float * volatile psoup;

The following example defines pfowl as a pointer to an enumeration object of type
bird:

enum bird *pfowl;

The next example declares pvish as a pointer to a function that takes no
parameters and returns a char object:

char (*pvish)(void);
Assigning Pointers

When you use pointers in an assignment operation, you must ensure that the types
of the pointers in the operation are compatible.

The following example shows compatible declarations for the assignment
operation:

float subtotal;
float * sub_ptr;

sub_ptr = &subtotal;
printf("The subtotal is %f\n", xsub_ptr);

The next example shows incompatible declarations for the assignment operation:

double Teague;
int * minor;

minor . &league; /* error */
Initializing Pointers

The initializer is an = (equal sign) followed by the expression that represents the
address that the pointer is to contain. The following example defines the variables
time and speed as having type double and amount as having type pointer to a
double. The example initializes pointer amount to point to total:

Chapter 5. Declarations 95

Type Specifiers

doubTe total, speed, *amount = &total;

The compiler converts an unsubscripted array name to a pointer to the first
element in the array. By specifying the name of the array, you can assign the
address of the first element of an array to a pointer. The following two sets of
definitions are equivalent. Both define the pointer student and initialize student to
the address of the first element in section:

int section[80];
int *student = section;

The above example is equivalent to the following:

int section[80];
int *student = §ion[0];

You can assign the address of the first character in a string constant to a pointer by
specifying the string constant in the initializer.

The following example defines the pointer variable string and the string constant
"abcd". The pointer string is initialized to point to the character a in the string
"abcd".

char *string = "abcd";

The following example defines weekdays as an array of pointers to string constants.
Each element points to a different string. The pointer weekdays[2], for example,
points to the string "Tuesday".

static char *weekdays[] =

"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"
}s

You can also initialize a pointer to NULL by using any integer constant expression
that evaluates to 0. For example, char * a=0;. Such a pointer is a NULL pointer. It
does not point to any object.

Restrictions on C Pointers

The OS/390 C compiler supports only the pointers that are obtained in one of the

following ways:

* Directly from a malloc/calloc/realloc call

* As an address of a data type (that is, &variable)

¢ From constants

* Received as a parameter from another C function

* Directly from a call to an OS/390 Language Environment service that allocates
storage, such as CEEGTST

Any bitwise manipulation of a pointer can result in undefined behavior.

You cannot use pointers to reference bit fields or objects that have the register
storage class specifier.

Packed and nonpacked objects have different memory layouts. Consequently, a
pointer to a packed structure or union is incompatible with a pointer to a
corresponding nonpacked structure or union. As a result, comparisons and
assignments between pointers to packed and nonpacked objects are not valid.

96 0S/390 V2R6.0 C/C++ Language Reference

Type Specifiers

You can, however, perform these assignments and comparisons with type casts. In
the following example, the cast operation lets you compare the two pointers, but
you must be aware that ps1 still points to a nonpacked object:

int main(void)

{

_Packed struct ss #psl;
struct ss *ps2;

psl = (_Packed struct ss *)ps2;

}

Using Pointers

You can use two operators when you are working with pointers, the address (&)
operator, and the indirection (*) operator. You can use the & operator to refer to the
address of an object. For example, the following statement assigns the address of x
to the variable p_to_x. It defines the variable p_to_x as a pointer.

int x, *p_to_x;

p_to_x = &x;

The * (indirection) operator lets you access the value of the object a pointer refers
to. The following statement assigns to y the value of the object to which p_to_x
points:

float y, *p_to_x;

y = *p_to_x;

The following statement assigns the value of y to the variable that *p_to_x
references:

char y ,
*p_to_x,

*p;to_x =Y
Pointer Arithmetic

You can perform a limited number of arithmetic operations on pointers. These
operations are:

* Increment and decrement

* Addition and subtraction

* Comparison

e Assignment

The increment (++) operator increases the value of a pointer by the size of the data

object the pointer refers to. For example, if the pointer refers to the second element
in an array, the ++ makes the pointer refer to the third element in the array.

Chapter 5. Declarations 97

Type Specifiers

The decrement (--) operator decreases the value of a pointer by the size of the
data object the pointer refers to. For example, if the pointer refers to the second
element in an array, the -- makes the pointer refer to the first element in the array.

You can add a pointer to an integer, but you cannot add a pointer to a pointer.

If the pointer p points to the first element in an array, the following expression
causes the pointer to point to the third element in the same array:

p=p+2;
If you have two pointers that point to the same array, you can subtract one pointer

from the other. This operation yields the number of elements in the array that
separate the two addresses to which the pointers refer.

You can compare two pointers with the following operators: ==, !=, <, > <;;=,

and >=. See I‘Chapter 6_Expressions and Operators” on page 133 for more

information on these operators.

You define pointer comparisons only when the pointers point to elements of the
same array. You can perform pointer comparisons that use the == and != operators
even when the pointers point to elements of different arrays.

You can assign to a pointer the address of a data object, the value of another
compatible pointer or the NULL pointer.

Example Program Using Pointers

The following program contains pointer arrays:

CBC3RAAQ:

R R IR T T T T T T T *kkkkkk
** Program to search for the first occurrence of a specified *k
*% character string in an array of character strings. *k

**/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE 20
#define EXIT_FAILURE 999

int main(void)

{
static char *names[] = { "Jim", "Amy", "Mark", "Sue", NULL };
char * find_name(char **, char *);
char new_name[SIZE], *name_pointer;

printf("Enter name to be searched.\n");
scanf("%s", new_name);
name_pointer = find_name(names, new_name);
printf("name %s%sfound\n", new_name,
(name_pointer == NULL) ? " not " : " ");
exit (EXIT_FAILURE);
} /* End of main */

/**

*x Function find_name. This function searches an array of *%
*% names to see if a given name already exists in the array. *k
*k It returns a pointer to the name or NULL if the name is *k
*x not found. *%

98 0S/390 V2R6.0 C/C++ Language Reference

Type Specifiers

*% *%*

*% char **arry is a pointer to arrays of pointers (existing names) *x
*x char *strng is a pointer to character array entered (new name) *x

char = find_name(char **arry, char *strng)

{

for (; *arry != NULL; arry++) /* for each name x/
if (strcmp(*arry, strng) == 0) /* if strings match x/
return(*arry); /* found it! */
return(*arry); /* return the pointer x/

} /* End of find_name */

Interaction with this program could produce the following sessions:

Output Enter name to be searched.
Input Mark

Output name Mark found

OR:

Output Enter name to be searched.
Input Deborah

Output name Deborah not found

Related Information

G 7

. 7 . e 7

7 Iy . 77

’ 7

’ . . $\77

void Type

The void data type always represents an empty set of values. The only object that
you can declare with the type specifier void is a pointer.

When a function does not return a value, you should use void as the type specifier
in the function definition and declaration. An argument list for a function that
takes no arguments is void.

You cannot declare a variable of type void, but you can explicitly convert any
expression to type void. The resulting expression can only be used as one of the
following:

* An expression statement

* The left operand of a comma expression

¢ The second or third operand in a conditional expression.

Chapter 5. Declarations 99

Type Specifiers

Arrays

Example of void Type

Line 7 of the following example declares the function find_max() as having type
void. Lines 15 through 26 contain the complete definition of find_max().

Note: The use of the sizeof operator in line 13 is a standard method of
determining the number of elements in an array.

CBC3RAAM:

1 [**

2 *x Example of void type

3 ok

4 #include <stdio.h>

5

6 /* declaration of function find_max */

7 extern void find_max(int x[], int j);

8

9 int main(void)

10

11 static int numbers[] = { 99, 54, -102, 89 };
12

13 find_max (numbers, (sizeof(numbers) / sizeof(numbers[0])));
14

15 return(0);

16}

17

18 void find_max(int x[], int j)
19 { /* begin definition of function find_max */

20 int i, temp = x[0];

21

22 for (i =1; i < j; i++)

23 {

24 if (x[i] > temp)

25 temp = x[i];

26 }

27 printf("max number = %d\n", temp);

28 } /+ end definition of function find_max =*/

An array is an ordered group of data objects. Refer to each object as an element. All
elements within an array have the same data type.

Use any type specifier in an array definition or declaration. Array elements can be
of any data type, except function or, in C++, a reference. You can, however, declare
an array of pointers to functions.

Declaring Arrays

The array declarator contains an identifier that is followed by an optional subscript
declarator. An identifier that is preceded by an * (asterisk) is an array of pointers.

A subscript declarator has the form:

] v »<

»—[

l—cons tant_express ionJ I—[—cons tant_expression—] J

100 0S/390 V2R6.0 C/C++ Language Reference

Type Specifiers

The subscript declarator describes the number of dimensions in the array and the
number of elements in each dimension. Each bracketed expression, or subscript,
describes a different dimension and must be a constant expression. Note that the [
and | characters can be represented by the trigraphs ??(and ??) respectively.

The following example defines a one-dimensional array that contains four elements
that have type char:

char list[4];

The first subscript of each dimension is 0. The array 1ist contains the elements:
Tist[0]
Tist[1]
Tist[2]
Tist[3]

The following example defines a two-dimensional array that contains six elements
of type int:

int roster[3][2];

0S/390 C/C++ stores multidimensional arrays in row-major order. When you are
referring to elements in order of increasing storage location, the last subscript
varies the fastest. For example, consider the following elements of array roster:
roster[0][0]

roster[0] [1]

roster[1][0]

roster[1][1]

roster[2] [0]

roster[2] [1]

0S/390 C/C++ stores the elements of roster as:

roster[0][0] roster[0][1] roster[1][0] ...

You can leave the first, and only the first, set of subscript brackets empty in the
following instances:

* Array definitions that contain initializations

* extern declarations

¢ Parameter declarations.

In array definitions that leave the first set of subscript brackets empty, the
initializer determines the number of elements in the first dimension. In a
one-dimensional array, the number of initialized elements becomes the total
number of elements. In a multidimensional array, OS/390 C/C++ compares the
initializer to the subscript declarator to determine the number of elements in the
first dimension.

An unsubscripted array name (for example, region instead of region[4])
represents a pointer whose value is the address of the first element of the array,
provided the array has previously been declared. An unsubscripted array name
with square brackets (for example, region[]) is allowed in the following contexts:
* In arrays that are declared at file scope

* In the argument list of a function declaration

Chapter 5. Declarations 101

Type Specifiers

In function declarations and declarations with the extern specifier, the only
dimension you can leave empty is the first one. You must specify the sizes of
additional dimensions.

In extended modes, you can also use unsubscripted array names in the following
contexts:

* In union members

* As the last member of a structure

Whenever an array is used in a context (such as a parameter) where it cannot be
used as an array, the identifier is treated as a pointer. The two exceptions are when
you use an array as an operand of the sizeof or the address (&) operator.

Initializing Arrays

The initializer for an array contains the = symbol that is followed by a
comma-separated list of constant expressions that are enclosed in braces ({ }). You
do not need to initialize all elements in an array. Elements that are not initialized
(in extern and static definitions only) receive the value 0 of the appropriate type.

Note: Array initializations can be either fully braced (with braces around each
dimension) or unbraced (with only one set of braces that enclose the entire
set of initializers). Avoid placing braces around some dimensions and not
around others.

The following definition shows a completely initialized one-dimensional array:
static int number[3] = { 5, 7, 2 };

The array number contains the following values:

Element Value
number[0] 5
number[1] 7
number[2] 2

The following definition shows a partially initialized one-dimensional array:
static int numberl[3] = { 5, 7 };

The values of numberl are:

Element Value

numberl1[0] 5

numberl[1] 7

numberl[2] 0

Instead of an expression in the subscript declarator that defines the number of

elements, the following one-dimensional array definition defines one element for
each initializer specified:

static int item[1 = {1, 2, 3, 4, 5 };

102 0S/390 V2R6.0 C/C++ Language Reference

Type Specifiers

The compiler gives item the five initialized elements:

Element Value
item[0] 1
item[1] 2
item[2] 3
item[3] 4
item[4] 5

You can initialize a one-dimensional character array by specifying:

* A brace-enclosed, comma-separated, list of constants, each of which can be
contained in a character

* A string constant. (Braces that surround the constant are optional.)

Initializing a string constant places the null character (\0) at the end of the string if
there is room, or if you do not specify the array dimensions.

The following definitions show character array initializations:
{ 1 J 1 s 1 a 1 . 1 n 1 } ;

{ "Jan" } ;

n J an n ;

static char namel[]
static char name2[]
static char name3[4]

These definitions create the following elements:

Element Value Element Value Element Value
namel[0] J name2[0] J name3[0] J
namel[1] a name2[1] a name3[1] a
namel[2] n name2[2] n name3[2] n
name2[3] \0 name3[3] \0

Note that the following definition would result in the null character being lost:
static char name[3]="Jan";

In C, the compiler accepts name[3] with no warning or error messages. In C++, the
compiler generates an error message that states the character array must be at least
4 characters in size to accept the string literal. To initialize this array in C++, use
character-by-character initialization, for example:

static char name[3]={'Jd','a','n'};

You can initialize a multidimensional array by the following methods:

* Listing the values of all elements you want to initialize, in the order that the
compiler assigns the values. The compiler assigns values by increasing the
subscript of the last dimension fastest. This form of a multidimensional array
initialization looks like a one-dimensional array initialization. The following
definition completely initializes the array month_days:

static month_days[2][12] =
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,

31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
}s

* Using braces to group the values of the elements you want initialized. You can
put braces around each element, or around any nesting level of elements. The

Chapter 5. Declarations 103

Type Specifiers

following definition contains two elements in the first dimension. (You can
consider these elements as rows.) The initialization contains braces around each
of these two elements:

static int month_days[2][12] =

{
1, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
]-,

{3
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
}s

* Using nested braces to initialize dimensions and elements in a dimension
selectively.

The following definition explicitly initializes six elements in a 12-element array:
static int matrix[3][4] =

The initial values of matrix are:

Element Value Element Value

matrix[0] [0]
matrix[0] [1]
matrix[0] [2]
matrix[0] [3]
matrix[1][0]

matrix[1][2]
matrix[1][3]
matrix[2] [0]
matrix[2][1]
matrix[2][2]

P w o o N =
o O o o1 O ©

matrix[1][1] matrix[2] [3]

You cannot have more initializers than the number of elements in the array.

C++ Notes:
1. In C++, you can use a zero-sized array in a class definition, but it must be
non-static.

2. In a class definition, the zero-sized array must be the last non-static data
member. You can use members such as functions, static data members, and
typedefs after the zero-sized array.

3. You cannot use a class that contains a zero-sized array as a base class.
Example Programs Using Arrays
The following program defines a floating-point array that is called prices.

The first for statement prints the element values of prices. The second for
statement adds five percent to the value of each element of prices. of total.

104 0S/390 V2R6.0 C/C++ Language Reference

Type Specifiers
CBC3RAAOQ:

[**

*+ Example of one-dimensional arrays
*%/

#include <stdio.h>
#define ARR SIZE 5

int main(void)

{
static float const prices[ARR SIZE] = { 1.41, 1.50, 3.75, 5.00, .86 };
auto float total;
int i;

for (i = 0; 1 < ARR_SIZE; i++)
{

printf("price = $5.2f\n", prices[il);
}

printf("\n");
for (i = 03 i < ARR_SIZE; i++)
{

total = prices[i] * 1.05;

printf("total = $%.2f\n", total);
}

return(0);

}

This program produces the following output:
price = $1.41
price = $1.50
price = $3.75
price = $5.00
price = $0.86
total = $1.48
total = $1.57
total = $3.94
total = $5.25
total = $0.90

The following program defines the multidimensional array salary_tb1. A for loop
prints the values of salary_tb1.

Chapter 5. Declarations 105

Type Specifiers

CBC3RAAP:
[**
**% Example of a multidimensional array

*%/

#include <stdio.h>
#define ROW_SIZE 3
#define COLUMN_SIZE 5

int main(void)
{
static int salary_tb1[ROW_SIZE][COLUMN_SIZE] =
{
{ 500, 550, 600, 650, 700 ',
{ 600, 670, 740, 810, 880 },
{ 740, 840, 940, 1040, 1140 }
}s

int grade, step;

0; grade < ROW_SIZE; ++grade)
0; step < COLUMN_SIZE; ++step)

for (grade
for (step

{
printf("salary_tb1[%d] [%d] = %d\n", grade, step,
salary_tb1[grade] [step]);
}

return(0);

}

This program produces the following output:

salary_tb1[0] [0] = 500
salary tb1[0] [1] = 550
salary_tb1[0] [2] = 600
salary_tb1[0] [3] = 650
salary_tb1[0] [4] = 700
salary_tb1[1] [0] = 600
salary _tb1[1] [1] = 670
salary_tb1[1] [2] = 740
salary tb1[1] [3] = 810
salary_tb1[1] [4] = 880
salary_tbh1[2] [0] = 740
salary_tb1[2] [1] = 840
salary_tb1[2] [2] = 940
salary tb1[2] [3] = 1040
salary_tb1[2] [4] = 1140

Relat_ed Information

° s

° ’ oy ”

Structures

A structure contains an ordered group of data objects. Unlike the elements of an
array, the data objects within a structure can have varied data types. Each data
object in a structure is a member or field.

106 0S/390 V2R6.0 C/C++ Language Reference

Type Specifiers

Use structures to group logically related objects. For example, to allocate storage
for the components of one address, define the following variables:

int street no;
char *street_name;
char *city;

char *prov;

char *postal_code;

To allocate storage for more than one address, group the components of each
address by defining a structure data type and as many variables as you need to
have the structure data type.

In the following example, lines 1 through 7 declare the structure tag address:

1 struct address {

2 int street_no;

3 char *street name;
4 char *city;

5 char *prov;

6 char xpostal_code;
7
8
9
0

struct address perm_address;
struct address temp_address;
struct address *p _perm_address = &perm address;

—_

The variables perm_address and temp_address are instances of the structure data
type address. Both contain the members described in the declaration of address.
The pointer p_perm_address points to a structure of address and is initialized to
point to perm_address.

Refer to a member of a structure by specifying the structure variable name with
the dot operator (.) or a pointer with the arrow operator (->) and the member
name. For example, both of the following assign a pointer to the string "Ontario"
to the pointer prov that is in the structure perm_address:

perm_address.prov = "Ontario";
p_perm_address -> prov = "Ontario";

All references to structures must be fully qualified. In the example, you cannot
reference the fourth field by prov alone. You must reference this field by
perm_address.prov.

Structures with identical members but different names are not compatible and
cannot be assigned to each other. Structures are not intended to conserve storage. If
you need direct control of byte mapping, use pointers. ['Dat Operator ()” od

page 141 and E/Arrow Operator (=>)” on page 141 describe structure member
references.

You cannot declare a structure with members of incomplete types. See W

h%LpesLan_pageJ.Lq for more information.

Declaring a Structure

A structure type declaration describes the members that are part of the structure. It
contains the struct keyword that is followed by an optional identifier (the
structure tag), and a brace-enclosed list of members.

A structure declaration has the form:

Chapter 5. Declarations 107

Type Specifiers

v
A

»> struct identifier
I—_PackedJ

—

{(—Y—member—;—\—}

I—identifierJ

The keyword struct followed by the identifier (tag) names the data type. If you do
not provide a tag name to the data type, you must put all variable definitions that
refer to it within the declaration of the data type.

The list of members provides the data type with a description of the values that
you can stored in the structure.

A structure member definition has the form:

v
A

»—type_specifier—'rdecZarator]
|_ J :—constant_expression
declarator

If a : (colon) and a constant expression follow the member declarator, the member
represents a bit field. A member that does not represent a bit field can be of any

data type and can have the volatile or const quahflerLDed.a.tin.g_and_LLsm.g_Bd
Eields in Structures” on page 110 describes bit fields.

You can redefine identifiers that are used as structure or member names to
represent different objects in the same scope without conflicting. You cannot use
the name of a member more than once in a structure type. You can, however, use
the same member name in another structure type that is defined within the same
scope.

You cannot declare a structure type that contains itself as a member. You can,
however, declare a structure type that contains a pointer to itself as a member.

Defining a Structure Variable

A structure variable definition contains an optional storage class keyword, the
struct keyword, a structure tag, a declarator, and an optional identifier. The
structure tag indicates the data type of the structure variable.

C++ Note: The keyword struct is optional in C++.

You can declare structures that have any storage class. Most compilers, however,
treat structures that are declared with the register storage class specifier as
automatic structures.

Initializing Structures

The initializer contains an equal sign (=) followed by a brace-enclosed,
comma-separated, list of values. You do not have to initialize all members of a
structure. However, you need to initialize all members in the structure prior to the
member of interest. For example, if you are interested in initializing the fifth

108 0S/390 V2R6.0 C/C++ Language Reference

Type Specifiers

member of a structure, you must initialize the first four members, as well. You do
not have to initialize the sixth and subsequent members. You cannot initialize
unnamed bit fields.

The following definition shows a completely initialized structure:

struct address {
int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;
}s
static struct address perm_address =
{ 3, "Savona Dr.", "Dundas", "Ontario", "L4B 2Al1"};

The values of perm_address are:

Member Value
perm_address.street_no 3

perm_address.street_name address of string "Savona Dr."
perm_address.city Address of string "Dundas"
perm_address.prov Address of string "Ontario"

perm_address.postal _code Address of string "L4B 2A1"

The following definition shows a partially initialized structure:

struct address {
int street_no;
char xstreet_name;
char *city;
char *prov;
char *postal_code;
}s
struct address temp_address =
{ 44, "Knyvet Ave.", "Hamilton", "Ontario" };

The values of temp_address are:

Member Value

temp_address.street_no 44

temp_address.street name address of string "Knyvet Ave."
temp_address.city address of string "Hamilton"
temp_address.prov address of string "Ontario"
temp_address.postal_code value depends on the storage class.

Note: The initial value of uninitialized structure members like
temp_address.postal code depends on the storage class associated with the
member. See L ifierg” for details on the
initialization of different storage classes.

Chapter 5. Declarations 109

Type Specifiers

Declaring Structure Types and Variables

To define a structure type and a structure variable in one statement, put a
declarator and an optional initializer after the type definition. To specify a storage
class specifier for the variable, you must put the storage class specifier at the
beginning of the statement.

For example:

static struct {
int street_no;
char *street_name;
char *city;
char *prov;
char *postal_code;
} perm_address, temp_address;

Because this example does not name the structure data type, perm_address and
temp_address are the only structure variables that will have this data type. Putting
an identifier after struct, lets you make additional variable definitions of this data
type later in the program.

The structure type (or tag) cannot have the volatile qualifier, but you can define a
member or a structure variable as having the volatile qualifier.

For example:

static struct classl {
char descript[20];
volatile Tong code;
short complete;
} volatile filel, file2;
struct classl subfile;

This example qualifies the structures filel and file2, and the structure member
subfile.code as volatile.

Declaring and Using Bit Fields in Structures

A structure or a C++ class can contain bit fields that allow you to access individual
bits. You can use bit fields for data that requires just a few bits of storage. A bit
field declaration contains a type specifier followed by an optional declarator, a
colon, a constant expression, and a semicolon. The constant expression specifies
how many bits the field reserves.

Bit fields with a length of 0 must be unnamed. You cannot reference or initialize
unnamed bit fields. A zero-width bit field causes the next field to be aligned on the
next container boundary where the container is the same size as the underlying
type as the bit field. A _Packed structure, a bit field of length 0, causes the next
field to align on the next byte boundary.

The maximum bit-field length is implementation dependent.
For portability, do not use bit fields greater than 32 bits in size.

The following restrictions apply to bit fields. You cannot:
* Define an array of bit fields

* Take the address of a bit field

* Have a pointer to a bit field

* Have a reference to a bit field (C++ only)

110 0S/390 V2R6.0 C/C++ Language Reference

Type Specifiers

In C, you can declare a bit field as type int, signed int, or unsigned int. Bit fields
of the type int are equivalent to those of type unsigned int.

The default integer type for a bit field is unsigned.
A bit field cannot have the const or volatile qualifier.

The following structure has three bit-field members kingdom, phylum, and genus,
occupying 12, 6, and 2 bits respectively:
struct taxonomy {

int kingdom : 12;

int phylum : 6;

int genus : 2;

}s

C++ Note: Unlike ANSI/ISO C, C++ bit fields can be any integral type or
enumeration type. When you assign an out-of-range value to a bit field,
0S/390 C/C++ preserves the low-order bit pattern and assigns the
appropriate bits.

If a series of bit fields does not add up to the size of an int, padding can take
place. OS/390 C/C++ determines the amount of padding by the alignment
characteristics of the structure members. In some instances, bit fields can cross
word boundaries.

The following example declares the identifier kitchen to be of type struct on_off:

struct on_off {
unsigned Tight : 1;
unsigned toaster : 1;
int count; /* 4 bytes x/
unsigned ac : 4;
unsigned : 4;
unsigned clock : 1;
unsigned : 0;
unsigned flag : 1;
} kitchen ;

The structure kitchen contains eight members that total 16 bytes. The following
table describes the storage that each member occupies:

Member Name Storage Occupied

light

toaster

(padding — 30 bits)
count

ac

(unnamed field)
clock

(padding — 23 bits)
flag

(padding — 31 bits)

1 bit

1 bit

To next int boundary

The size of an int

4 bits

4 bits

1 bit

To next int boundary (unnamed field)
1 bit

To next int boundary

Chapter 5. Declarations 111

Type Specifiers

All references to structure fields must be fully qualified. For instance, you cannot
reference the second field by toaster. You must reference this field by
kitchen.toaster.

The following expression sets the 1ight field to 1:
kitchen.light = 1;

When you assign a value that is out of its range to a bit field, OS/390 C/C++
preserves the bit pattern and assigns the appropriate bits. The following expression
sets the toaster field of the kitchen structure to 0 because it assigns only the least
significant bit to the toaster field:

kitchen.toaster = 2;
Declaring a Packed Structure

To qualify a C structure as packed, use _Packed qualifier on the structure
declaration.

C++ Note: C++ does not support the _Packed qualifier. To change the alignment of
C++ structures, use the #pragma pack directive (supported by both C

and C++). Refer to Ipack” on page 267 for information on this directive.

Packed and nonpacked structures cannot be assigned to each other, regardless of
their type.

Example Program Using Structures
The following program finds the sum of the integer numbers in a linked list:

CBC3RAAS:
[**

*% Example program illustrating structures using linked Tists
*%/

#include <stdio.h>

struct record {
int number;
struct record *next_num;

}s

int main(void)

{
struct record namel, name2, name3;
struct record *recd_pointer = &namel;
int sum = 0;

namel.number
name2.number
name3.number

144,
203;
488;

namel.next_num
nameZ.next_num
name3.next_num

&name?2;
&name3;
NULL;

while (recd_pointer != NULL)

{
sum += recd_pointer->number;
recd_pointer = recd_pointer->next_num;

}

112 0S/390 V2R6.0 C/C++ Language Reference

Type Specifiers
printf("Sum = %d\n", sum);

return(0);

}

The structure type record contains two members: the integer number and next_num,
which is a pointer to a structure variable of type record.

The example assigns the following values to the record type variables namel,
name2, and name3:

Member Name Value

namel.number 144

namel.next_num The address of name2

name2.number 203

name2.next_num The address of name3

name3.number 488

name3.next_num NULL (Indicating the end of the linked list.)

The variable recd_pointer is a pointer to a structure of type record. OS/390
C/C++ initializes it to the address of namel (the beginning of the linked list).

The while loop causes the linked list to be scanned until recd_pointer equals NULL.
The following statement advances the pointer to the next object in the list :

recd pointer = recd pointer->next_num;

Related Information

4 7

. 7 e - 77

. G ”

I'Dot Oppmfnr () on page 141

o "Arrow ()ppmfnr (=>)" on page 141

Unions

A union is an object that can hold any one of a set of named members. The
members of the named set can be of any data type. OS/390 C/C++ overlays the
members in storage.

The storage allocated for a union is the storage required for the largest member of
the union (plus any padding that is required so that the union will end at a natural
boundary of its strictest member).

C++ Notes:

1. In C++, a union can have member functions, including constructors and
destructors, but not virtual member functions. You cannot use a union as a base
class nor derive it from a base class.

Chapter 5. Declarations 113

Type Specifiers

2. A C++ union member cannot be a class object that has a constructor, destructor,
or overloaded copy assignment operator. In C++, you cannot declare a member
of a union with the keyword static.

Declaring a Union

A union type declaration contains the union keyword followed by an identifier
(optional) and a brace-enclosed list of members.

A union declaration has the form:

v
A

union {—Y—member—; }

[N

l—qualifier—l l—identifier—|

The identifier is a tag you give to the union that is specified by the member list. If
you specify a tag, you can make any subsequent declaration of the union (in the
same scope) by declaring the tag and omitting the member list. If you do not
specify a tag, you must put all variable definitions that refer to that union within
the statement that defines the data type.

The list of members provides the data type with a description of the objects that
you can store in the union.

A union member definition has the form:

»—type_specifier—'rdeclarator _| <
_| :—constant_expression

I—. declarator

You can reference one of the possible union members the same way as you
reference a member of a structure.

For example, the following code assigns '\n' to the first element in the character
array birthday, a member of the union people:
union {

char birthday[9];

int age;

float weight;

} people;

people.birthday[0] = '\n';

A union can represent only one of its members at a time. In the example, the union
people contains either age, birthday, or weight but never more than one of these.
The printf statement in the following example does not give the correct result
because people.age replaces the value that is assigned to people.birthday in the
first line:

1 people.birthday = "03/06/56";

2 people.age = 38;

3 printf("%s\n", people.birthday);

114 0S/390 V2R6.0 C/C++ Language Reference

Type Specifiers
Defining a Union Variable

A union variable definition contains an optional storage class keyword, the union
keyword, a union tag, and a declarator. The union tag indicates the data type of
the union variable.

Type Specifier: The type specifier contains the keyword union that is followed by
the name of the union type. You must declare the union data type before you can

define a union that has that type.

You can define a union data type and a union of that type in the same statement
by placing the variable declarator after the data type definition.

Declarator: The declarator is an identifier, possibly with the volatile or const
qualifier.

Initializer: You can only initialize the first member of a union.

The following example shows how you would initialize the first union member
birthday of the union variable people:

union {
char birthday[9];
int age;

float weight;
} people = {"23/07/57"};

Defining a Union Type and a Union Variable

To define union type and a union variable in one statement, put a declarator after
the type definition. The storage class specifier for the variable must go at the
beginning of the statement.

Defining Packed Unions
To qualify a C union as packed, use _Packed.

C++ Note: C++ does not support the _Packed qualifier. To change the alignment of
C++ unions, use the #pragma pack directive (which both C and C++
sugEort). For more information on this directive, see

Packed and nonpacked unions cannot be assigned to each other, regardless of their
type.

The #pragma pack does not affect the memory layout of the union members. Each
member starts at offset zero. The #pragma pack directive does affect the total
alignment restriction of the whole union.

In the following example, each of the elements in the nonpacked n_array is of type
union uu:

union uu {
short a;
struct {
char x;
char y;
char z;
} b
}s

Chapter 5. Declarations 115

Type Specifiers

union uu n_array[2];
/* _Packed union is not supported for C++ =/
_Packed union uu p_array[2];

Because it is not packed, each element in the nonpacked n_array has an alignment
restriction of 2 bytes. (The largest alignment requirement among the union
members is that of short a.) There is 1 byte of padding at the end of each element
to enforce this requirement.

In the packed array, p_array, each element is of type _Packed union uu. Because
every element aligned on the byte boundary, each element has a length of only 3
bytes, instead of the 4 bytes in the previous example.

The following equivalent C++ example uses the #pragma pack directive instead of
the _Packed qualifier:

union uu {
short a;
struct {
char x;
char y;
char z;
} b
}s

union uu n_array[2];
#pragma pack(pack)

union uu p_array[2];

#pragma pack(reset)

Anonymous Unions in C

You can declare unions without declarators if they are members of another
structure or union. Refer to unions without declarators as anonymous unions. C
supports anonymous unions only when you use the LANGLVL (COMMONC) compiler
option.

Members of an anonymous union can be accessed as if they were declared directly
in the containing structure or union. For example, given the following structure:

struct s {
int a;
union {
int b;
float c;
}s /* no declarator */
} kurt;

You can make the following statements:
5 .

kurt.a s
36;

kurt.b

116 0S/390 V2R6.0 C/C++ Language Reference

Type Specifiers
You can also declare an anonymous union:
1. By creating a typedef and using the typedef name without a declarator:
typedef union {
int a;
int b;
} UNION_T;

struct sl {
UNION_T;
int c;

} dave;

2. By using an existing union tag without a declarator:
union ul {

int a;
int b;

}s

struct sl {
union ul;
int c;

} dave;

In both of the examples, you can access the members as dave.a, dave.b, and
dave.c.

An anonymous union must be a member of, or nested within, another anonymous
union that is a member of a named structure or union. If you declare a union at
file scope without a declarator, its members are not available to the surrounding
scope. For example, the following union only declares the union tag tom:

union tom {
int b;
float c;

}s

You cannot use the variables b and ¢ from this union at file scope, and so the
following statements generate errors:

b = 5;

c = 2.5

Anonymous Unions in C++

A C++ anonymous union is a union without a class name. A declarator cannot
follow an anonymous union. An anonymous union is not a type; it defines an
unnamed object and it cannot have member functions.

The member names of an anonymous union must be distinct from other names
within the scope in which the union is declared. You can use member names
directly in the union scope without any additional member access syntax.

For example, in the following code fragment, you can access the data members i
and cptr directly because they are in the scope that contains the anonymous
union. Because i and cptr are union members and have the same address, you
should only use one of them at a time. The assignment to the member cptr will
change the value of the member 1.

Chapter 5. Declarations 117

Type Specifiers

void f()

{

union { int i; charx cptr ; };

//

//

//

i=5;

cptr = "string_in_union"; // overrides i

}

An anonymous union cannot have protected or private members. You must declare
a global anonymous union with the keyword static.

Examples of Unions

The following example defines a union data type (not named) and a union variable
(named Tength). The member of Tength can be a Tong int, a float, or a double.
union {
float meters;
double centimeters;
long inches;
} length;

The following example defines the union type data as containing one member. The
member can be named charctr, whole, or real. The second statement defines two
data type variables: input and output.
union data {

char charctr;

int whole;

float real;

bs

union data input, output;

The following statement assigns a character to input:
input.charctr = 'h';

The following statement assigns a floating-point number to member output:
output.real = 9.2;

The following example defines an array of structures that is named records. Each
element of records contains three members: the integer id_num, the integer
type_of input, and the union variable input. The variable input has the union data
type defined in the previous example.
struct {

int id_num;

int type_of_input;

union data input;

} records[10];

The following statement assigns a character to the structure member input of the
first element of records:

records[0] .input.charctr = 'g';

118 0S/390 V2R6.0 C/C++ Language Reference

Type Specifiers

o IArrow Opprafnr (=>)" on page 141|

Incomplete Types

Incomplete types are the type void, an array of unknown size, or structure, union,
or enumeration tags that have no member lists. For example, the following are
incomplete types:

void *incomplete_ptr;
struct dimension linear; /* no previous definition of dimension */

In the preceding example, void is an incomplete type that you cannot complete.
You must complete structure or union and enumeration tags before using them to
declare an object. You can, however, define a pointer to an incomplete structure or
union.

Declarators

A declarator designates a data object or function. Declarators appear in all data
definitions and declarations, and in some type definitions.

In a declarator, you can specify the type of an object to be an array, a pointer, or a
reference. You can specify that the return type of a function is a pointer or a

reference. You can also perform initialization in a declarator.

A declarator has the form:

A4
Y

identifier >
L*J I—(—declar‘ator‘—)J —(—)

Y _subscript_declarator

Lqualifie,«J i subdeclarator i

—

subdeclarator:

}—[identifier }
(—subdeclarator—)J I—subscrz'pt_decZaratorJ

A qualifier is one of:

Chapter 5. Declarations 119

Declarators

e const
e volatile

The OS/390 C compiler also implements the _Packed qualifier, and the OS/390
C++ compiler also implements the _Export qualifier.

In C, you cannot declare or define a volatile or const function. C++ class member
functions can be qualified with const or volatile.

A declarator can contain a subdeclarator. A subdeclarator has the form:

v
v

v

identifier
I—(—subdeclarator‘—)J

v *

i:vo] atile—
const

[
>

Y
A

l—subscript_decZarator‘J

A subscript declarator describes the number of dimensions in an array and the
number of elements in each dimension. A subscript declarator has the form:

»—l

]

Y
A

|—cons tant_express ionJ

[—constant_expression—]

A simple declarator consists of an identifier, which names a data object. For
example, the following block scope data declaration uses initial as the declarator:

auto char initial;
The data object initial has the storage class auto and the data type char.

You can define or declare a structure, union, or array. Use a declarator that
contains an identifier which names the data object, and some combination of
symbols and identifiers which describe the type of data that the object represents.

The following declaration uses compute[5] as the declarator:
extern long int compute[5];

volatile and const Qualifiers

The volatile qualifier maintains consistency of memory access to data objects. It
tells the compiler that the variable should always contain its current value even
when optimized. This is necessary so the variable can be queried when an
exception occurs. OS/390 C/C++ reads volatile objects from memory each time it
needs their value, and writes back to memory each time they are changed.

120 0S/390 V2R6.0 C/C++ Language Reference

Declarators

The volatile qualifier is useful for data objects that have values that can change in
ways unknown to your program (such as the system clock). Do not change or
move portions of an expression that reference volatile objects.

The const qualifier explicitly declares a data object as a data item that you cannot
change. OS5/390 C/C++ sets its value at initialization. You cannot use const data
objects in expressions that require a modifiable lvalue. For example, a const data
object cannot appear on the left side of an assignment statement. (An lvalue is an
expression whose address you can take; you can examine or change the object that
the Ivalue represents. For more information on lvalues, see [lvalues” on page 134.)

These type qualifiers are only meaningful in expressions that are Ivalues.

For a volatile or const pointer, you must put the keyword between the * and the
identifier. For example:

int * volatile x; /* x is a volatile pointer to an int x/
int * const y = &z; /* y is a const pointer to the int variable z */

For a pointer to a volatile or const data object, the type specifier, qualifier, and
storage class specifier can be in any order. For example:

volatile int =*x; /* x is a pointer to a volatile int =*/
or

int volatile =x; /* x is a pointer to a volatile int =/
const int =*y; /* y is a pointer to a const int =/
or

int const *xy; /* y is a pointer to a const int =/

In the following example, the pointer to y is a constant. You can change the value
that y points to, but you cannot change the value of y:

int * const y

In the following example, the value to which y points is a constant integer and you
cannot change it. However, you can change the value of y:

const int * y

For other types of volatile and const variables, the position of the keyword
within the definition (or declaration) is less important. For example:
volatile struct omega {
int Timit;
char code;
} group;

The above example provides the same storage as:
struct omega {
int Timit;
char code;
} volatile group;

In both examples, only the structure variable group receives the volatile qualifier.
Similarly, if you specified the const keyword instead of volatile, only the
structure variable group receives the const qualifier. The const and volatile
qualifiers when applied to a structure, union, or class also apply to the members of
the structure, union, or class.

Chapter 5. Declarations 121

Declarators

Although enumeration, structure, and union variables can receive the volatile or
const qualifier, enumeration, structure, and union tags do not carry the volatile
or const qualifier. For example, the blue structure does not carry the volatile
qualifier:
volatile struct whale {

int weight;

char name[8];

} beluga;

struct whale blue;

The keywords volatile and const cannot separate the keywords enum, struct, and
union from their tags.

You can declare or define a volatile or const function only if it is a C++ member
function. You can define or declare any function to return a pointer to a volatile
or const function.

You can put more than one qualifier on a declaration, but you cannot specify the
same qualifier more than once on a declaration.

_Packed Qualifier (C Only)

0S5/390 C/C++ stores data elements of structure and unions in memory on an
address boundary specific for that data type. For example, a double value is stored
in memory on a doubleword (8-byte) boundary. There may be gaps left in memory
between structure and union elements to align elements on their natural
boundaries. You can reduce the padding of bytes within a structure or union by
packing.

The _Packed qualifier removes padding between members of structures and affects
the alignment of unions whenever possible. However, the storage that is saved
using packed structures and unions may come at the expense of run time
performance. Most machines access data more efficiently if the data aligns on
appropriate boundaries. With packed structures and unions, members are generally
not aligned on natural boundaries. The result is that operations using the
class-member access operators (. and ->) are slower.

Note: OS/390 C/C++ aligns pointers on their natural boundaries, 4 bytes, even in
packed structures and unions.

You can only use _Packed with structures or unions. If you use _Packed with other
types, OS/390 C/C++ generates a warning message, and the qualifier has no effect
on the declarator it qualifies. Packed and nonpacked structures and unions have
different storage layouts.

You cannot perform comparisons between packed and nonpacked structures, or
unions of the same type. Packed and nonpacked structures or unions cannot be
assigned to each other, regardless of their type.

You cannot pass a packed union or packed structure as a function parameter if the
function expects a nonpacked version. If the function expects a packed structure or
a packed union, you cannot pass a nonpacked version as a function parameter.

122 0S/390 V2R6.0 C/C++ Language Reference

Declarators

If you specify the _Packed qualifier on a structure or union that contains a
structure or union as a member, the qualifier is not passed on to the contained

structure or union. See 'Pragma Directives (#pragma)” on page 243 for more

information on #pragma pack.

___cdecl Keyword (C++ Only)

Use the __cdecl keyword to set linkage conventions for function calls in C++
applications. You can use the __cdecl linkage keyword at any language level. The
__cdecl keyword instructs the compiler to read and write a parameter list by using
C linkage conventions.

To set the __ cdecl calling convention for a function, place the linkage keyword
immediately before the function name or at the beginning of the declarator. For
example:

void _ cdecl f();
char (__cdecl *fp) (void);

0S/390 C/C++ allows the __cdecl keyword on member functions and nonmember
functions. These functions can be static or non-static. It also allows the keyword on
pointer-to-member function types and the typedef specifier.

Note: The compiler accepts both _cdecl and __cdecl (both single and double
underscore).

Following is an example:

// C++ nonmember functions
void _ cdecl f1();
static void _ cdecl f2();

// pointer to member function type
char (__cdecl *A::mfp) (void);

// typedef
typedef void (* _cdecl void_fcn) (int);
// C++ member functions
class A {
public:
void _ cdecl func();
static void _ cdecl funcl();

}

// Template member functions
template <class T> X {
public:
void _ cdecl func();
static void _ cdecl funcl();

}

// Template functions
template <class T> T _ cdecl foo(T i) {return i+l;}
template <class T> T static _cdecl foo2(T i) {return i+l;}

Semantics of __ cdecl

The __cdecl linkage keyword only affects parameter passing; it does not prevent
function name mangling. Therefore, you can still overload functions with
non-default linkage. Note that you only acquire linkage by explicitly using the
__cdecl keyword. It overrides the linkage that it inherits from an extern "Tinkage"
specification.

Chapter 5. Declarations 123

Declarators

Following is an example:

void _ cdecl foo(int); // C linkage with name mangled
void _ cdecl foo(char); // overload foo() with char is 0K
void foo(int(*)()); // overload on Tinkage of function

void foo(int (__cdecl *)()); // pointer parameter is 0K

extern "C++" {
void _ cdecl foo(int); // foo() has C Tinkage with name mangled
1

extern "C" {
void _ cdecl foo(int); // foo() has C linkage with name mangled
1

Overrides of a virtual function must have the same linkage as the introducing
function, otherwise an error diagnostic is issued. Following is an example:
class A {
public:
virtual void _ cdecl func();
b

class B : public A {

pubTic:

virtual void func(); // error 1731, Function linkage differs
1 // from the overridden function

If the function is redeclared, the linkage keyword must appear in the first
declaration, otherwise OS/390 issues an error diagnostic. Following are two
examples:
int c_cf();
int _ cdecl c_cf(); // error 1251, the previous declaration
// did not have a linkage specification
int __cdecl c_cf();
int c_cf(); // 0K, the Tinkage is inherited from
// first declaration

Examples of __ cdecl Use

Prior to the Version 2 Release 4 OS/390 C/C++ compiler, the C++ function pointer
could not pass in the C function parameter list as the compiler did not support
__cdec] linkage. The following examples illustrate how you can pass in the C
parameter list by using the __cdecl linkage:

Example 1

/Ty */

/* C++ source file */

e */

//

// C++ Application: passing a C++ function pointer to a C function

//

#include <stdio.h>

void _ cdecl callexx() { // C++ function declares with
printf(" I am a C++ function\n"); // C calling convention

1

void (__cdecl *pl)(); // declare a function pointer

// with __cdecl Tinkage

extern "C" {
void CALLC(void (__cdecl *pp)()); // declare an extern C function

124 0S/390 V2R6.0 C/C++ Language Reference

Declarators

} // accepting a _ cdecl function
// pointer

void main() {
pl = callcxx; // assign the function pointer
// to a __cdecl function

CALLC(p1); // call the C function with
// the __cdecl function pointer
}

Example 2

2 */
/* C source file */
[e m e e e e e e nceecemmeaees */
/* */
/* C Routine: receiving a function pointer with C Tinkage */
/* */

#include <stdio.h>
extern void CALLC(void (*pp)()){

printf(" I am a C function\n");

(*pp) ()5 // call the function passed in
1

_Export Keyword

Use the _Export keyword (in C++ applications only) with a function name or
external variable to declare that it is be exported (made available to other
modules). For example:

int _Export anthony(float);

The above statement exports the function anthony, if you define the function
within the compilation unit. You must define the function in the same compilation
unit in which you use the _Export keyword.

05/390 C/C++ allows _Export only at file scope. You cannot use it in a typedef.
You cannot apply the _Export keyword to the return type of a function. For
example, the following declaration causes an error :

int _Export = a(); // error

If the _Export keyword is repeated in a declaration, OS/390 C/C++ issues a
warning when you specify the info(gen) option.

Since _Export is part of the declarator, it affects only the closest identifier. In the
following declaration, _Export only modifies a:

int _Export a, b;
You can use _Export at any language level.
The _Export keyword is an alternative to the #pragma export() directive.

To export member functions, you may apply the _Export keyword to the function
declaration, but the function definition must not be inlined. For example:

Class X {
public:

void _Export Print();

Chapter 5. Declarations 125

Declarators
s
void X::Print() {
}

The above example will cause the function X::Print() to be exported.

C++ Note: It is not possible to export C++ inlined functions even with the #pragma
export () directive.

If the you apply the _Export keyword to a class, then OS/390 C/C++
automatically exports any static members of that class. In the example below, both
X::Print() and X::GetNext () will be exported.

Class _Export X {
public:

void Print();
int GetNext();

}s
void X::Print() {

}
int X::GetNext() {

}

You can apply the _Export keyword to SOM classes. The function main() cannot be

exported. For a description of #pragma export, see Lex.pn.r_f_on_pa.gﬁ_m

For more information on using DLLs and exporting functions, see the OS/390
C/C++ Programming Guide.

Example Declarators

The following table describes some declarators:

Table 8. Example Declarators

Example Description

int owner owner is an int data object.

int *node node is a pointer to an int data object.

int names[126] names is an array of 126 int elements.

int *action() action is a function returning a pointer to an int.

volatile int min min is an int that has the volatile qualifier.

int * volatile volume volume is a volatile pointer to an int.

volatile int * next next is a pointer to a volatile int.

volatile int * sequence[5] sequence is an array of five pointers to volatile int
objects.

extern const volatile int op_system_clock is a constant and volatile integer

op_system_clock with static storage duration and external linkage.

_Packed struct struct_type s s is a packed structure of type struct_type.

Related Information

. s . ”

126 0S/390 V2R6.0 C/C++ Language Reference

Declarators

Initializers

An initializer is an optional part of a data declaration that specifies an initial value
of a data object.

An initializer has the form:

»—[(Y __expression) | ><
= expression
’,9

Y _expression }

l

{—

C++ Note: Only C++ allows the form (expression).

The initializer consists of the = symbol that is followed by an initial expression or a
braced list of initial expressions that are separated by commas. The number of
initializers must not be more than the number of elements you will initialize. An
initializer list with fewer initializers than elements, can end with a comma,
indicating that the rest of the uninitialized elements are initialized to zero. The
initial expression evaluates to the first value of the data object.

To assign a value to a scalar object, use the simple initializer: = expression. For
example, the following data definition uses the initializer = 3 to set the initial value
of group to 3:

int group = 3;

For unions, structures, and aggregate classes, the set of initial expressions must be
enclosed in brace brackets ({ }) unless the initializer is a string literal. Aggregate
classes refer to classes with no constructors, base classes, virtual functions, or
private or protected members.

If the initializer of a character string is a string literal, the brace brackets are
optional. You must separate individual expressions by using commas. You can
enclose groups of expressions in braces and separate them by using commas.

In an array, structure, or union that you have initialized using a brace-enclosed
initializer list, OS/390 C/C++ implicitly initializes any members or subscripts that

are not initialized to zero of the appropriate data type.

The section for the data type describes the initialization properties of each data
type.

Chapter 5. Declarations 127

Initializers

C++ Notes:

1.

You can use an initializer of the form (expression) to initialize fundamental
types in C++. For example, the following two initializations are identical:

int group = 3;
int group(3);

You can also use the (expression) form to initialize C++ classes. See

Enitialization by Constructor” on page 33d for more information on initializing

classes.

You can initialize variables at file scope with nonconstant expressions.
ANSI/ISO C does not allow this.

If your code jumps over declarations that contain initializations, the compiler
generates an error. For example, the following code is not valid in C++:

goto skiplabel; // error - jumped over declaration
int i = 3; // and initialization of i

skiplabel: i = 4;

You can initialize classes in external, static, and automatic definitions. The
initializer contains an equal sign (=) that is followed by a brace-enclosed,
comma-separated, list of values. You do not need to initialize all members of a
class.

The following example explicitly initializes the first eight elements of the array
grid. The remaining four elements that are not explicitly initialized are initialized
as if they were explicitly initialized to zero.

static short grid[3] [4] = {0, 0, 0, 1, 0, 0, 1, 1};

The initial values of grid are:

Element Value Element Value

grid[e] [6]
grid[0] [1]
grid[0] [2]
grid[0] [3]
grid[1] [6]
grid[1] [1]

grid[1] [2]
grid[1] [3]
grid[2] [6]
grid[2] [1]
grid[2] [2]
grid[2] [3]

ol oo o]
[clclBololl S

Related Information

7 . . . 173

7 : ”

F'Painters” on page 94

128 0S/390 V2R6.0 C/C++ Language Reference

C/C+plus; Data Mapping

C/C++ Data Mapping

The System /390 architecture has the following boundaries in its memory mapping:
* Byte

e Halfword

 Fullword

* Doubleword

The code that is produced by the C/C++ compiler places data types on natural
boundaries. Some examples are:

* Byte boundary for char

* Byte boundary for decimal(n,p) (C only)
* Halfword boundary for short int

* Fullword boundary for int

* Fullword boundary for long int

* Fullword boundary for pointers

* Fullword boundary for float

* Doubleword boundary for double

* Doubleword boundary for Tong double

For each external defined variable, the OS/390 C/C++ compiler defines a writeable
static data instance of the same name. The compiler places other external variables,
such as those in programs that you compiled with the NORENT compiler option, in
separate CSECTs that are based on their names.

C++ Function Specifiers

The function specifiers inline and virtual are used only in C++ function

declarations, which are described in tEunchnn_DedaxannnsLon_pa.gfﬂﬂ

You can use the function specifier inline to suggest to the compiler that it
incorporate the code of a function into your program code at the point of the call.
For more information, see [‘C++ Inline Functions” on page 194

You can only use the function specifier virtual in nonstatic member function

declarations. For more information, see [‘Virtual Functions” on page 359.

C++ References

A C++ reference is an alias or an alternative name for an object. All operations that
are applied to a reference act on the object the reference refers to. The address of a
reference is the address of the aliased object.

You can define a reference type by placing the & after the type specifier. You must
initialize all references except function parameters when you define them.

Because you pass arguments of a function by value, a function call does not
modify the actual values of the arguments. If a function needs to modify the actual
value of an argument, you must pass the argument by reference. This is as opposed
to being passed by value. You can pass arguments by reference by using either
references or pointers. In C++, this is transparent. Unlike C, C++ does not force
you to use pointers if you want to pass arguments by reference. For example:

Chapter 5. Declarations 129

C++ References

int f(int&);
void main()

{

extern int i;
f(i);
1

You cannot tell from the function call f(i) that it is passing the argument by
reference.

You cannot refer to NULL.

Initializing References

The object that you use to initialize a reference must be of the same type as the
reference. Otherwise, it must be of a type that is convertible to the reference type.
If you initialize a reference to a constant by using an object that requires
conversion, you create a temporary object. The following example creates a
temporary object of type float:

int i;

const floatd f = i; // reference to a constant float

Attempting to initialize a nonconstant reference with an object that requires a
conversion is an error.

Once a reference has been initialized, it cannot be modified to refer to another
object. For example:

int numl = 10;
int num2 = 20;

int &RefOne = numl; // valid

int &RefOne = num2; // error, two definitions of RefOne
RefOne = num2; // assign num2 to numl

int &RefTwo; // error, uninitialized reference
int &RefTwo = num2; // valid

Note that the initialization of a reference is not the same as an assignment to a
reference. Initialization operates on the actual reference by initializing the reference
with the object it is an alias for. Assignment operates through the reference on the
object to which it refers.

You can declare a reference without an initializer:

* When you use it as an argument declaration

¢ In the declaration of a return type for a function call

* In the declaration of class member within its class declaration
* When you explicitly use the extern specifier.

You cannot have references to any of the following:
* Other references

* Bit fields

* Arrays of references

* DPointers to references

Related Information

° t/E é |] R E ”] 88

G . 7”7

130 0S/390 V2R6.0 C/C++ Language Reference

C++ References

Chapter 5. Declarations

131

C++ References

132 0S/390 V2R6.0 C/C++ Language Reference

Chapter 6. Expressions and Operators

Expressions are sequences of operators, operands, and punctuators that specify a
computation. OS/390 C/C++ evaluates expressions based on the operators that the
expressions contain and the context in which they are used.

An expression can result in an Ivalue, rvalue, or no value, and can produce side
effects in each case.

C++ Note: You can define C++ operators to behave differently when they are
applied to operands of class type. Refer to this as operator overloading.
This chapter describes the behavior of operators that are not
overloaded. The C language does not permit overloading.

This chapter discusses the following topics:

. I"ﬂpp‘mfnr Precedence and Assaciativity’]

Related Information

. a . ”

° / : ”

Operator Precedence and Associativity

Two operator characteristics determine how operands group with operators:
precedence and associativity. Precedence is the priority for grouping different types
of operators with their operands. Associativity is the left-to-right or right-to-left
order for grouping operands to operators that have the same precedence.

For example, in the following statements, the value of 5 is assigned to both a and b
because of the right-to-left associativity of the = operator. The value of c is
assigned to b first, and then the value of b is assigned to a.

b =29;

c=5;

a=b=c;

Because the above example does not specify the order of subexpression evaluation,
you can explicitly force the grouping of operands with operators by using
parentheses.

© Copyright IBM Corp. 1996, 1998 133

Operator Precedence and Associativity

In the following expression, the * and / operations are performed before + because
of precedence. In addition, b is multiplied by c before it is divided by d because of
associativity:
a+bxc/d

The following table lists the C and C++ language operators in order of precedence
and shows the direction of associativity for each operator. In C++, the primary
scope resolution operator (::) has the highest precedence, followed by the other
primary operators. In C, because there is no scope resolution operator, the other
primary operators have the highest precedence. The comma operator has the
lowest precedence. Operators that appear in the same group have the same
precedence.

Operator Name Associativity Operators

Primary scope resolution left to right

Primary left to right O r1 . -

Unary right to left |
-

(type_name) sizeof new
delete digitsof!
precisionof!

C++ Pointer-to-Member left to right K>k
Multiplicative left to right * [%
Additive left to right + -

Bitwise Shift left to right < >>
Relational left to right < > <= >=
Equality left to right == I=
Bitwise Logical AND left to right &

Bitwise Exclusive OR left to right “or-
Bitwise Inclusive OR left to right |

Logical AND left to right &

Logical OR left to right [
Conditional right to left ?
Assignment right to left = 4= o= %= [= <<=

Comma left to right ,

Do not specify the order of evaluation for function call arguments or for the
operands of binary operators. Avoid writing ambiguous expressions such as:

z = (x * ++y) / funcl(y);
func2 (++i, x[i]);

In the example above, all C language implementations may not evaluate ++y and
funcl(y) in the same order. If y had the value of 1 before the first statement, you
will not know whether or not the value of 1 or 2 is passed to funcl(). In the
second statement, if i had the value of 1, you will not know whether the first or
second array element of x[] is passed as the second argument to func2().

1. C only

134 0S/390 V2R6.0 C/C++ Language Reference

Operator Precedence and Associativity

The example does not specify the order of grouping operands with operators in an
expression that contains more than one instance of an operator with both
associative and commutative properties. The operators that have the same
associative and commutative properties are: *, +, &, | (or }), and ~ (or 7). You can
force the grouping of operands by grouping the expression in parentheses.

Examples of Expressions and Precedence

The parentheses in the following expressions explicitly show how the compiler
groups operands and operators. If parentheses do not appear in these expressions,
the compiler groups the operands and operators as indicated by the parentheses.

total = (4 + (5 * 3));
total = (((8 = 5) / 10) / 3);
total = (10 + (5/3));

The above example does not specify the order of grouping operands with
operators that are both associative and commutative. Consequently, the compiler
can group the operands and operators in the following expression:

total = price + prov_tax + city_tax;

It groups them in the following ways:

total = (price + (prov_tax + city_tax));
total = ((price + prov_tax) + city tax);
total = ((price + city tax) + prov_tax);

If the values in this expression are integers, the grouping of operands and
operators does not affect the result. Because intermediate values are rounded,
different groupings of floating-point operators may give different results.

In certain expressions, the grouping of operands and operators can affect the result.
For example, in the following expression, each function call might be modifying
the same global variables.

a =b() +c()+d0;

This expression can give different results that depend on the order in which the
functions are called.

If the expression contains operators that are both associative and commutative and
the order of grouping operands with operators can affect the result of the
expression, separate the expression into several expressions. For example, the
following expressions could replace the previous expression if the called functions
do not produce any side effects that affect the variable a.

a=b();

a +=c();

a += d();

Operands

Most expressions can contain several different, but related, types of operands. The
following type classes describe related types of operands:

Integral Character objects and constants, objects that have
an enumeration type, and objects that have the
type short, int, Tong, Tong long, unsigned short,
unsigned int, unsigned Tong, or unsigned long
long

Chapter 6. Expressions and Operators 135

Operands

Arithmetic Integral objects and objects that have the type
float, double, and Tong double.

Scalar Arithmetic objects and pointers to objects of any
type. Also C++ references.

Aggregate Arrays, structures, and unions. Also C++ classes.

Many operators cause conversions from one data type to another. W

Lmplicit Type Conversions” on page 167 discusses conversions.

Ivalues

An [value is an expression whose address you can take. You can examine or change
the object that the lvalue represents. A modifiable lvalue is an expression that
represents an object that you can change. It is typically the left operand in an
assignment expression. For example, array names and const objects are not
modifiable Ivalues, but static int objects are.

All assignment operators evaluate their right operand and assign that value to
their left operand. The left operand must evaluate to a reference to an object.

The address operator (&) requires an lvalue as an operand while the increment (++)
and the decrement (--) operators require a modifiable lvalue as an operand.

Examples of lvalues

Expression lvalue
x = 42, X
*ptr = newvalue; *ptr
at+ a

Related Information

e ['Dot Oppm‘mr () on page 141]

o "Arrow Opprafnr (=>)" on page 141

° a 12

o “Address (&)’ on page 144

Primary Expressions

A primary expression can be:

¢ An identifier

* A qualified class name

e A string literal

* A parenthesized expression

* A constant expression

* A function call

* An array element specification

* A structure or union member specification

136 0S/390 V2R6.0 C/C++ Language Reference

Primary Expressions

All primary operators have the same precedence and have left-to-right
associativity.

C++ Scope Resolution Operator (::)

The scope resolution operator (::) is used to qualify hidden names so that you can
still use them. You can use the unary scope operator if an explicit declaration of
the same name in a block or class hides a file scope name, for example:

int i = 10;

int f(int i)

{

}

return 1 ? i : :: i; // return global i if local i is zero

You can use the class scope operator to qualify class names or class member names.
You can use a hidden class member name by qualifying it with its class name and
the class scope operator. Whenever you follow a class name by a :: operator,
0S/390 C/C++ interprets the name as a class name.

In the following example, the declaration of the variable X hides the class type X.
However, you can still use the static class member count by qualifying it with the
class type X and the scope resolution operator.

#include <iostream.h>

class X

{
pubTic:

static int count;
1

int X::count = 10; // define static data member
void main ()
{

int X = 0; // hides class type X

cout << X::count << endl; // use static member of class X

}

The scope resolution operator is also discussed in [!Class Names” on page 283 and
in I’QCnpp of Class Names” on page 284

Parenthesized Expressions ()

Use parentheses to explicitly force the order of expression evaluation. The
following expression does not contain any parentheses that are used for grouping
operands and operators. The parentheses that surround weight, zipcode form a
function call. Note how the compiler groups the operands and operators in the
expression according to the rules for operator precedence and associativity:

-discount * item + handling(weight, zipcode) < .10 * item

The following expression is similar to the previous expression, but it contains
parentheses that change the grouping of the operands and operators:

Chapter 6. Expressions and Operators 137

Primary Expressions

(-discount = (item + handling(weight, zipcode))) < (.10 * item)

L] I

In an expression that contains both associative and commutative operators, you
can use parentheses to specify the grouping of operands with operators. The
parentheses in the following expression guarantee the order of grouping operands
with the operators:

x=f+ (g+h);
Constant Expressions

A constant expression is an expression with a value that may be determined during
compilation. It cannot be changed at runtime, it can only be evaluated. You can
compose a constant expression with the following:

* Integer constants

* Character constants

* Floating-point constants

* Enumeration constants

* Address constants

* Other constant expressions

Some constant expressions, such as string literals or address constants, are lvalues.

The C and C++ languages require integral constant expressions in the following

places:

* In the subscript declarator, as the description of an array bound

* After the keyword case in a switch statement

e In an enumerator, as the numeric value of an enum constant

* In a bit-field width specifier

* In the preprocessor #if statement (enumeration constants, address constants,
and sizeof cannot be specified in the preprocessor #if statement.)

* In the initializer of a file scope data definition.

In all these contexts, except for an initializer of a file scope data definition, the
constant expression can contain integer, character, and enumeration constants, casts
to integral types, and sizeof expressions. You can initialize function-scope static
and extern declarations.

In a file scope data definition, the initializer must evaluate to a constant or to the
address of a static storage (extern or static) object (plus or minus an integer
constant) that is defined or declared earlier in the file. The constant expression in
the initializer can contain the following:

* integer, character, enumeration, and float constants

* casts to any type

* sizeof expressions

* unary address expressions (static objects only)

0S/390 C/C++ does not allow functions, class objects, pointers, and references

unless they occur in sizeof expressions. Comma operators and assignment
operators cannot appear in constant expressions.

138 0S/390 V2R6.0 C/C++ Language Reference

Primary Expressions

Examples of Constant Expressions

The following examples show constants that are used in expressions.

Expression Constant
x = 42; 42
extern int cost = 1000; 1000

y =3 % 29; 3 %29

Function Calls ()

A function call is a primary expression that contains a simple type name and a
parenthesized argument list. The argument list can contain any number of
expressions that are separated by commas. It can also be empty.

For example:

stub()

overdue(account, date, amount)
notify(name, date + 5)
report(error, time, date, ++num)

0S/390 C/C++ evaluates the arguments, and initializes each formal parameter
with the value of the corresponding argument. The semantics of argument passing
are identical to those of assignments. Assigning a value to a formal parameter
within the function body changes the value of the parameter within the function,
but has no effect on the argument.

The type of a function call expression is the return type of the function. The return
statement in the function definition determines the return value. The result of a
function call is an lvalue only if the function returns a reference. A function can
call itself.

If you want a function to change the value of a variable, pass a pointer to the
variable you want changed. When a pointer is passed as a parameter, the pointer is

copied; the object pointed to is not copied. (See I'Painters” on page 94.)

05/390 C/C++ converts arguments that are arrays and functions to pointers before
passing them as function arguments.

Arguments passed to nonprototyped C functions undergo conversions. OS/390
C/C++ converts short or char parameters to int, and float parameters to doubTe.

Use a cast expression for other conversions. (See (!Cast Expressions” on page 147

for more information.)

An implicit declaration of extern int func(); is assumed. Consequently, in C
only, if a function definition has external linkage and a return type of int, you can
make calls to the function before you explicitly declare it. This is not true in C++.

The compiler compares the data types that are provided by the calling function
with the data types that the called function expects. The compiler also performs
type conversions if the declaration of the function is either:

¢ In function prototype format and the parameters differ from the prototype
OR

* Visible at the point where you call the function.

Chapter 6. Expressions and Operators 139

Primary Expressions

For example, the declaration of funct is a prototype. When you call function funct,
0S/390 C/C++ converts parameter f to a double, and parameter c to an int:
char * funct (double d, int i);

I% oooo*/

void main(void)

float f;
char c;
funct(f, c¢) /* f is a double, c is an int */
}

The order in which parameters are evaluated is not specified. Avoid such calls as:
method(samplel, batch.process--, batch.process);

In this example, the compiler may evaluate batch.process-- last, causing the last
two arguments to be passed with the same value.

In the following example, main passes func two values: 5 and 7. The function func
receives copies of these values and accesses them by the identifiers: a and b. The
function func changes the value of a. When control passes back to main, the actual
values of x and y are not changed. The called function func only receives copies of
x and y, not the values themselves.

CBC3X06C
[**

**% This example illustrates function calls

*%/
#include <stdio.h>

void func (int a, int b);
int main(void)

int x =5,y =17;

func(x, y);
printf("In main, x = %d y
1

return(0);

%d\n", X, y);

void func (int a, int b)
{

a += b;

printf("In func, a = %d b
}

%d\n", a, b);

This program produces the following output:
12 b=17
5 y =17

See l'Chapter 8 Functions” on page 173 for detailed characteristics of functions.
Array Subscript [] (Array Element Specification)

In func, a
In main, x

A primary expression followed by an expression in [] (square brackets) specifies
an element of an array. You can refer to the expression within the square brackets
as a subscript.

The primary expression must have a pointer type, and the subscript must have
integral type. The result of an array subscript is an lvalue.

140 0S/390 V2R6.0 C/C++ Language Reference

Primary Expressions

The first element of each array has the subscript 0. The expression contract[35]
refers to the 36th element in the array contract.

In a multidimensional array, you can reference each element (in the order of
increasing storage locations) by incrementing the rightmost subscript most
frequently.

For example, the following statement gives the value 100 to each element in the
array code[4] [3][6]:

for (first = 0; first <= 3; ++first)
for (second = 0; second <= 2; ++second)
for (third = 0; third <= 5; ++third)
code[first] [second] [third] = 100;

Consider the following expression:
*((expl) + (exp2))

By definition, the above expression is identical to the following expression:
expl[exp2]

The above expression is also identical to the following:
exp2[expl]

v ”

explains how to define and use an array.

Dot Operator (.)

Use the . (dot) operator to access structure or C++ class members that use a
structure object. Specify the member by using a primary expression, followed by a
. (dot) operator, followed by a name. For example:

roster[num] .name
roster[num] .name[1]

The primary expression must be an object of type class, struct, or union. The
name must be a member of that object.

The value of the expression is the value of the selected member. If the primary
expression and the name are lvalues, the expression value is also an Ivalue.

For more information on class members, see I“C hapter 12. C++ Class Members and

Eriends” on page 201l See also [lnions” on page 113 and FStrmctires” on page 108,

Arrow Operator (—>)

Use the -> (arrow) operator to access structure or C++ class members using a
pointer. A primary expression, that is followed by an -> (arrow) operator, that is
followed by a name, designates a member of the object to which the pointer points.
For example:

roster -> name

The primary expression must be a pointer to an object of type class, struct, or
union. The name must be a member of that object.

Chapter 6. Expressions and Operators 141

Primary Expressions

The value of the expression is the value of the selected member. If the name is an
Ivalue, the expression value is also an lvalue.

For more information on class members, see [‘Chapter 12. C++ Class Members and

Eriends” on page 291l See also lnions” onpage 113 and EStructures” on page 104,

Unary Expressions

A unary expression contains one operand and a unary operator. All unary operators
have the same precedence and have right-to-left associativity.

As indicated in the following descriptions, you can perform the usual arithmetic
conversions on the operands of most unary expressions. See

Conversions” on page 170 for more information.

The following table summarizes the operators for unary expressions:

Increment (++) Decrement (--) Unary Plus (+)
Unary Minus (-) Logical Negation (!) Bitwise Negation (")
Address (&) Indirection (*) Cast (type_name)
sizeof digitsof precisionof

new delete throw

Increment (++)

The increment operator (++) adds 1 to the value of an operand. If the operand is a
pointer, it increments the operand by the size of the object to which it points. The
operand receives the result of the increment operation. The operand must be a
modifiable Ivalue of arithmetic or pointer type.

You can put the ++ before or after the operand. If it appears before the operand,
0S/390 C/C++ increments the operand, and uses the incremented value in the
expression. If you put the ++ after the operand, OS/390 C/C++ uses the value of
the operand in the expression before it increments the operand. For example:

play = ++playl + play2++;

is equivalent to the following three expressions:

playl = playl + 1;
play = playl + play2;
play2 = play2 + 1;

C++ Note: C++ distinguishes between prefix and postfix forms of the increment
operator: The result of a C++ postfix increment has the same type as
the operand, except for possible integral promotion, but is not an
Ivalue. The result of a C++ prefix increment has the same type as the
operand, except for possible integral promotion, and is an Ivalue. The C
language makes no such distinction. The result in C has the same type
as the operand, except for possible integral promotion, but is not an
lvalue.

You can perform the usual arithmetic conversions on the operand. See I‘Arithmetid

”

142 0S/390 V2R6.0 C/C++ Language Reference

Unary Expressions

Decrement (—-)

The decrement operator (--) subtracts 1 from the value of an operand. If the
operand is a pointer, it decreases the operand by the size of the object to which it
points. The operand receives the result of the decrement operation. The operand
must be a modifiable lvalue.

You can put the decrement operator before or after the operand. If it appears
before the operand, OS/390 C/C++ decrements the operand, and uses the
decremented value in the expression. If the -- appears after the operand, the
current value of the operand is used in the expression and the operand is
decremented.

For example:
play = --playl + play2--;

is equivalent to the following three expressions:
playl = playl - 1;

play = playl + play2;

play2 = play2 - 1;

C++ Note: C++ distinguishes between prefix and postfix forms of the decrement
operator. The result of a C++ postfix decrement has the same type as
the operand, except for possible integral promotion, but is not an
Ivalue. The result of a C++ prefix decrement has the same type as the
operand, except for possible integral promotion, and is an lvalue. The C
language makes no such distinction. The result in C has the same type
as the operand, except for possible integral promotion, but is not an
lvalue.

0S/390 C/C++ performs the usual arithmetic conversions on the operand. See

FArthmetic — bl
Unary Plus (+)

The unary plus operator (+) maintains the value of the operand. The operand can
have any arithmetic type. The result is not an lvalue.

The result has the same type as the operand, except for possible integral
promotion.

Note: Any plus sign in front of a constant is not part of the constant.
Unary Minus (-)

The unary minus operator (-) negates the value of the operand. The operand can
have any arithmetic type. The result is not an lvalue.

For example, if quality has the value 100, -quality has the value -100.

The result has the same type as the operand, except for possible integral
promotion.

Note: Any minus sign in front of a constant is not part of the constant.

Chapter 6. Expressions and Operators 143

Unary Expressions

Logical Negation (!)

The logical negation operator (!) determines whether the operand evaluates to 0
(false) or nonzero (true). The expression yields the value 1 (true) if the operand

evaluates to 0. It yields the value 0 (false) if the operand evaluates to a nonzero
value. The operand must have a scalar data type, but the result of the operation
has always type int and is not an lvalue.

The following two expressions are equivalent:

Iright;
right == 0;

Bitwise Negation ()

The bitwise negation operator () yields the bitwise complement of the operand. In
the binary representation of the result, every bit has the opposite value of the same
bit in the binary representation of the operand. The operand must have an integral
type. The result has the same type as the operand, but is not an lvalue.

Suppose a short integer x represents the decimal value 5. The 16-bit binary
representation of x is:

0000000000000101

The expression “x yields the following result (that is represented here as a 16-bit
binary number):

1111111111111010
Note that you can represent the ~ character by the trigraph ?7?-.

The 16-bit binary representation of ~0 is:
1111111111111111

Address (&)

The address operator (&) yields a pointer to its operand. The operand must be an
Ivalue, a function designator, or a qualified name. It cannot be a bit field, nor can it
have the storage class register.

If the operand is an Ivalue or function, the resulting type is a pointer to the
expression type. For example, if the expression has type int, the result is a pointer
to an object that has type int.

If the operand is a qualified name and the member is not static, the result is a
pointer to a member of class. It has the same type as the member. The result is not
an lvalue.

Suppose you define p_to_y as a pointer to an int, and you define y as an int. The
following expression assigns the address of the variable y to the pointer p_to_y:

p_to_y = &y;

Refer to ‘Painters” an page 94 for related information.

C++ Note: You can use the & operator with overloaded functions only in an
initialization or assignment where the left side uniquely determines

144 0S/390 V2R6.0 C/C++ Language Reference

Unary Expressions

which version of the overloaded function is used. For more

information, see !‘Overloading Functions” on page 311.

Indirection (*)

The indirection operator (*) determines the value to which the pointer-type
operand points.

The operand cannot be a pointer to an incomplete type. The operation yields an
Ivalue or a function designator if the operand points to a function. OS/390 C/C++
converts arrays and functions to pointers.

The type of the operand determines the type of the result. For example, if the
operand is a pointer to an int, the result has type int.

Do not apply the indirection operator to any pointer that contains an address that
is not valid, such as NULL. The result is not defined.

Suppose you define p_to_y as a pointer to an int, and you define y as an int.
Then, following the expressions cause the variable y to receive the value 3:

p_to_y = &y;
*p_to_y = 3;

See also 'Painters” an page 94

Cast Expressions

Use the cast operator for explicit type conversions. The cast operator converts the
value of the operand to a specified data type and performs the necessary
conversions to the operand for the type.

For C, the operand must be scalar, and the type must be either scalar or void. For
C++, the operand can have class type. If the operand has class type, you can cast it
to any type for which the class has a user-defined conversion function.
'Conversion Functions” on page 335 describes user-defined conversion functions.

The result of a cast is not an lvalue unless the cast is to a reference type. When you
cast to a reference type, OS/390 C/C++ does not perform user-defined
conversions, and the result is an lvalue.

There are two types of casts that take one argument:
» C-style casts, with the format (X)a. Both C and C++ allow these casts.

* function-style casts with one argument, such as X(a). Only C++ allows these
casts.

Both types of casts convert the argument a to the type X. In C++, they can invoke a
constructor, if the target type is a class, or they can invoke a conversion function, if

the source type is a class. They can be ambiguous if both conditions hold.

A function-style cast with no arguments, such as X(), creates a temporary object of
type X. If X is a class with constructors, the default constructor X::X() is called.

Chapter 6. Expressions and Operators 145

Unary Expressions

A function-style cast with more than one argument, such as X(a,b), creates a
temporary object of type X. This object must be a class with a constructor that takes
two arguments of types compatible with the types of a and b. The constructor is
called with a and b as arguments.

e For more information on implicit conversions that use constructors, see

I:/c] C | | 2 33d

* You can also do explicit conversions using conversion functions. For more

”

information, see l!Conversion Functions” on page 333,

» Standard Type Conversions” on page 167 describes implicit conversions using

standard types.

sizeof (Size of an Object)

The sizeof operator yields the size in bytes of the operand. You cannot use the
sizeof operation on the following:

* A bit field

* A function

¢ An undefined structure or class

* An incomplete type (such as void)

The operand can be the parenthesized name of a type or an expression.

The compiler must be able to evaluate the size at compile time. The expression is
not evaluated; there are no side effects. For example, the value of b is 5 from
initialization to the end of program runtime:

#include <stdio.h>

int main(void){
int b = 5;
sizeof (b++);
return(0);

}

The result is an integer constant.

The size of a char object is the size of a byte. For example, if a variable x has type
char, the expression sizeof(x) always evaluates to 1.

The result of a sizeof operation has type size_t. This type is an unsigned integral
type that the <stddef.h> header file defines.

The size of an object is determined on the basis of its definition. The sizeof
operator does not perform any conversions. If the operand contains operators that
perform conversions, the compiler does take these conversions into consideration.
The compiler performs the usual arithmetic conversions due to the following
expression. The result of the expression x + 1 has type int (if x has type char,
short, or int or any enumeration type). It is equivalent to sizeof(int):

sizeof (x + 1);

Except in preprocessor directives, you can use a sizeof expression wherever you
require an integral constant. A very common use for the sizeof operator is to
determine the size of objects that are referred to during storage allocation, input,
and output functions.

146 0S/390 V2R6.0 C/C++ Language Reference

Unary Expressions

Another use of sizeof is in porting code across platforms. You should use the
sizeofoperator to determine the size that a data type represents, for example:

sizeof(int);

Using the sizeof operator with decimal(n,p) results in the total number of bytes
that are occupied by the decimal type. OS/390 C/C++ implements decimal data
types using the native packed decimal format. Each digit occupies half a byte. The
sign occupies an additional half byte. The following example gives you a result of
6 bytes:

sizeof(decimal(10,2));

C++ Notes: The result of a sizeof expression depends on the type to which it is
applied:

An array The result is the total number of bytes
in the array. For example, in an array
with 10 elements, the size is equal to
10 times the size of a single element.
The compiler does not convert the
array to a pointer before evaluating
the expression.

A class The result is always nonzero. It is
equal to the number of bytes in an
object of that class including any
padding required for placing class
objects in an array.

A reference The result is the size of the referenced
object.

digitsof and precisionof (C Only)

The digitsof and precisionof operators yield information about decimal types or
an expressions of the decimal type. The <decimal.h> header file defines the
digitsof and precisionof macros.

The digitsof operator gives the number of significant digits of an object, and
precisionof gives the number of decimal digits. That is,

digitsof(decimal (n,p)) =
precisionof(decimal (n,p)) = p

The results of the digitsof and precisionof operators are integer constants. See

[‘Fixed-Point Decimal Constants (C Only)” on page 63 and I'Fixed-Point Decimal
Data Types (C Qnly)” on page 88 for more information about decimal types.

C++ new Operator

The new operator provides dynamic storage allocation. The syntax for an allocation
expression that contains the new operator is:

v

»—L—_I—ncw (—type—)
H |—(—ar‘gument list—) J I—new typeJ

Chapter 6. Expressions and Operators 147

Unary Expressions

v
A

|—(—initial_value—)J

If you prefix new with the scope resolution operator (::), your program uses the
global operator new(). If you specify an argument_list, your program uses the
overloaded new operator that corresponds to that arqument_list. The type is an
existing built-in or user-defined type. A new_type is a type that you have not
already defined. It can include type specifiers and declarators.

Use an allocation expression that contains the new operator to find storage in free
store for the object you are creating. The new expression returns a pointer to the
object created. You can use it to initialize the object. If the object is an array, it
returns a pointer to the initial element.

You can use the routine set new handler() to change the default behavior of new.
See I’pr_npmr_hqnﬂ]pr() — Set Behavior for new Failure” on page 15d for more

information.

You cannot use the new operator to allocate function types, void, or incomplete
class types because these are not object types. However, you can allocate pointers
to functions with the new operator. You cannot create a reference with the new
operator.

When the created object is an array, only the first dimension can be a general
expression. All subsequent dimensions must be constant integral expressions. The
first dimension can be a general expression even when you are using an existing
type. You can create an array with zero bounds with the new operator. The
following example returns a pointer to a unique object:

char * ¢ = new char[0];

An object created with operator new() or operator new[] () exists until the
program ends, or you call the operator delete() or operator delete[] (). These
calls destroy the objects and deallocate the memory pointed to.

If you use parentheses within a new_type, they should also surround the new_type
to prevent syntax errors. In the following example, OS/390 C++ allocates storage
for an array of pointers to functions:

void f();

void g();

void main()

void (+*p) (), (**q)();
// declare p and q as pointers to pointers to void functions
p = new (void («[31)());
// p now points to an array of pointers to functions
q = new void(*[3])(); // error
// error - bound as 'q = (new void) (*[3])();"
p[0] = f; // p[0] to point to function f
ql2] = g; // q[2] to point to function g
p[0]1(); // call f()
} ql2]1()s // call g()

However, the second new causes an erroneous binding of:
q = (new void) (*[3])()

148 0S/390 V2R6.0 C/C++ Language Reference

Unary Expressions

The type of the created object cannot contain class declarations, enumeration
declarations, or const or volatile types. It can contain pointers to const or
volatile objects.

For example, you can use const char*, but not charx const.

You can supply additional arguments to new by using the argument_list, also called
the placement syntax. If you use placement arguments, a declaration of operator
new() or operator new[] () with these arguments must exist. For example:
#include <stddef.h>

class X

{
public:

void* operator new(size t,int, int){ /* ... */ }
1

//
//
// .
void main ()

{
}

X+ ptr = new(1,2) X;

For more information on the class member operator new() and operator new[] ()

function, see 'Qverloaded new and delete” an page 327 and I‘Eree Stare” o

. For more information on constructing and destructing class objects with
new and delete, see t‘Canstriictors and Destriictors Overview” on page 329

Member Functions and the new() and newl[]() operators

When an object of a class type is created with the new operator, the member
operator new() function (for objects that are not arrays) or the member operator
new[] () function (for arrays of any number of dimensions) is implicitly called. The
first argument is the amount of space requested.

The following rules determine the storage allocation function that OS/390 C++
uses:

1. If your own operator new[] () exists, the object is an array, and it does not use
the :: (scope resolution) operator, OS/390 C++ uses your operator new[] ().

2. If you have not defined an operator new[] () function, the global ::operator
new[] () function defined in <new.h> is used. The allocation expression of the
form ::operator new[] () ensures that the global new operator is called, rather
than your class member operator.

3. If your own operator new() exists, and the object is not an array, and the ::
operator is not used, your operator new() is used.

4. If you have not defined an operator new() function, the global ::operator
new() function defined in <new.h> is used. The allocation expression of the form
::operator new() ensures that the global new operator is called, rather than
your class member operator.

When a nonclass object is created with the new operator, the global ::operator
new() is used.

The order of evaluation of a call to an operator new() is undefined in the

evaluation of arguments to constructors. If operator new() returns 0, the
arguments to a constructor may or may not have been evaluated.

Chapter 6. Expressions and Operators 149

Unary Expressions

Initializing Objects Created with the new Operator

You can initialize objects that are created with the new operator in several ways.
For nonclass objects, or for class objects without constructors, a new initializer
expression can be provided in a new expression by specifying (expression) or ().
For example:

double* pi = new double(3.1415926);

int* score = new int(89);

float* unknown = new float();

If a class has a constructor, you must provide the new initializer when you allocate
any object of that class. The arguments of the new initializer must match the
arguments of a class constructor, unless the class has a default constructor.

You cannot specify an initializer for arrays. You can initialize an array of class
objects only if the class has a default constructor. OS/390 C++ calls the constructor
to initialize each array element (class object).

Initialization using the new initializer is performed only if new successfully
allocates storage.

For more information on the class member operator new() and operator new[] ()
function, see !‘Qverloaded new and delete” on page 327 in i
QOperatord, and E'Free Stare” an page 330, For more information on constructing and

destructing class objects with new and delete, see [!‘Canstructars and Destructord

Dverview” on page 325

set_new_handler() — Set Behavior for new Failure

When the new operator creates a new object, it calls the operator new() or operator
new[] () function to obtain the needed storage.

When new cannot allocate storage to create a new object, it calls a new handler
function if one has been installed by a call to set_new_handler(). The
set_new_handler() function is defined in <new.h>. Use it to call a new handler you
have defined or the default new handler.

The set_new_handler() function has the prototype:

typedef void(*PNH) ();
PNH set_new_handler(PNH);

set_new_handler() takes as an argument a pointer to a function (the new handler),
which has no arguments and returns void. It returns a pointer to the previous new
handler function.

If you do not specify your own set_new_handler() function, new returns the NULL
pointer.

The following program fragment shows how you could use set_new_handler() to
return a message if the new operator cannot allocate storage:

#include <iostream.h>
#include <new.h>
void no_storage()
{
cerr << "Operator new failed: no storage is available.\n";
exit(1l);
}

150 0S/390 V2R6.0 C/C++ Language Reference

Unary Expressions

main()

{
set_new_handler(&no_storage);
// Rest of program ...
}

If the program fails because new cannot allocate storage, the program exits with the
message:

Operator new failed: no storage is available.
C++ delete Operator

The delete operator destroys the object created with new by deallocating the
memory associated with the object.

The delete operator has a void return type. It has the syntax:

»—L—_I—de1ete—object_pointer

A\
A

The operand of delete must be a pointer returned by new, and cannot be a pointer
to constant. If an attempt to create an object with new fails, the pointer returned by
new will have a zero value. However, it can still be used with delete. Deleting a
null pointer has no effect.

The delete[] operator frees storage allocated for array objects created with new[].
The delete operator frees storage allocated for individual objects created with new.

It has the syntax:

>>—I_—_I—Cle1 ete— [—] —array

A\
A

The result of deleting an array object with delete is undefined, as is deleting an
individual object with delete[]. You do not need to specify the array dimensions
with delete[].

The results of attempting to access a deleted object are undefined because the
deletion of an object can change its value.

If you have defined a destructor for a class, delete invokes that destructor.
Whether a destructor exists or not, delete frees the storage pointed to by calling
the function operator delete() of the class if one exists.

The global ::operator delete() is used in the following cases:
* The class has no operator delete().

* The object is of a nonclass type.

* The ::delete expression deletes the object.

The global ::operator delete[] () is used in the following cases:

* The class has no operator delete[] ()
* The object is of a nonclass type

Chapter 6. Expressions and Operators 151

Unary Expressions

» The object is deleted with the ::delete[] expression.

The default global operator delete() only frees storage allocated by the default
global operator new(). The default global operator delete[] () only frees storage
allocated for arrays by the default global operator new[] ().

For more information on the class member operator new() and operator new[] ()

7

functions, see LDsLeﬂaaded.nemLan.d.d.elete_on_pa.geﬁﬂ in

bpel:ataﬁ] and tEree Store” on page 330, For more information on constructing and
t'‘Constructors and Destructors

destructing class objects with new and delete, see

bsmwww ” .

C++ throw Expressions

A throw expression is used to throw exceptions to C++ exception handlers. It
passes control out of the block enclosing the throw statement to the first C++
exception handler whose catch argument matches the throw expression. A throw
expression is a unary expression of type void.

For more information on the throw expression, see hmpfm' 17 Cat Fympfinﬂ

Binary Expressions

A binary expression contains two operands that are separated by one operator.

Not all binary operators have the same precedence. The table in the section
I’Oppmfm‘ Precedence and Assaciativity” on page 133 shows the order of

precedence among operators. All binary operators have left-to-right associativity.

The order in which the operands of most binary operators are evaluated is not
specified. To ensure correct results, avoid creating binary expressions that depend
on the order in which the compiler evaluates the operands.

As indicated in the following descriptions, OS/390 C++ performs the usual
arithmetic conversions on the operands of most binary expressions. See
[‘Arithmetic Conversions” an page 17d for more information.

The following table summarizes the operators for binary expressions:

Multiplication (*) Division (/) Remainder (%)
Addition (+) Subtraction (-) Bitwise Shifts (<< >>)
Relational (< > <= >=) Equality (== !=) Bitwise AND (&)
Bitwise Exclusive OR (") Bitwise Inclusive OR (1) Logical AND (&&)
Logical OR (! I) Pointer-to-Member (.* —>%)

Multiplication (*)

The multiplication operator (*) yields the product of its operands. The operands
must have an arithmetic type. The result is not an lvalue. OS/390 C/C++ performs

the usual arithmetic conversions on the operands. See I‘Arithmetic Conversions” onl

152 0S/390 V2R6.0 C/C++ Language Reference

Binary Expressions

Because the multiplication operator has both associative and commutative
properties, the compiler can rearrange the operands in an expression that contains
more than one multiplication operator. Consider the following example:

sites * number * cost

The above expression can be interpreted in any of the following ways:

(sites * number) * cost
sites * (number * cost)
(cost * sites) * number

Division (/)

The division operator (/) yields the quotient of its operands. The operands must
have an arithmetic type. The result is not an Ivalue.

If both operands are positive integers and the operation produces a remainder,
0S/390 C/C++ ignores the remainder. For example, expression 7 / 4 yields the
value 1 (rather than 1.75 or 2). On all IBM C and C++ compilers, if either operand
is negative, the result is rounded towards zero.

The result is undefined if the second operand evaluates to 0.

0S/390 C/C++ performs the usual arithmetic conversions on the operands. See

’ ”

Remainder (%)

The remainder operator (%) yields the remainder from the division of the left
operand by the right operand. For example, the expression 5 % 3 yields 2. The
result is not an lvalue.

Both operands must have an integral type. If the right operand evaluates to 0, the
result is undefined. If either operand has a negative value, the result is such that
the following expression always yields the value of a if b is not 0 and a/b is
representable:

(a/b)=*b+a%b;
The sign of the remainder is the same as the sign of the quotient.

The usual arithmetic conversions on the operands are performed. See

CQM@LSIQQS—QH—F&%@J-ZG” .
Addition (+)

The addition operator (+) yields the sum of its operands. Both operands must have
an arithmetic type, or one operand must be a pointer to an object type and the
other operand must have an integral type.

When both operands have an arithmetic type, OS/390 C/C++ performs the usual
arithmetic conversions on the operands. The result has the type produced by the

conversions on the operands and is not an Ivalue.

You can add a pointer to an object in an array to a value that has integral type.
The result is a pointer of the same type as the pointer operand. The result refers to

Chapter 6. Expressions and Operators 153

Binary Expressions

another element in the array, offset from the original element by the amount that is
specified by the integral value. If the resulting pointer points to storage that is
outside the array, other than the first location outside the array, the result is
undefined. The compiler does not check the boundary of the pointers. For
example, after the addition, ptr points to the third element of the array:

int array[5];

int *ptr;

ptr = array + 2;

See 'Poi ions” and [‘Pointer Arithmetic” on page 97 for

more information about expressions that contain pointers.

Subtraction (-)

The subtraction operator (-) yields the difference of its operands. Both operands
must have an arithmetic type, or the left operand must have a pointer type and the
right operand must have the same pointer type or an integral type. You cannot
subtract a pointer from an integral value.

When both operands have an arithmetic type, OS/390 C/C++ performs the usual
arithmetic conversions on the operands. The result has the type produced by the
conversions on the operands and is not an lvalue.

When the left operand is a pointer and the right operand has an integral type, the
compiler converts the value of the right to an address offset. The result is a pointer
of the same type as the pointer operand.

If both operands are pointers to the same type, the compiler converts the result to
an integral type that represents the number of objects separating the two
addresses. Behavior is undefined if the pointers do not refer to objects in the same
array.

See [Painter Conversions” on page 168 and [Painter Arithmetic” on page 97 for

more information about expressions that contains pointers.

Bitwise Left and Right Shift (<< >>)

The bitwise shift operators (<< >>) move the bit values of a binary object. The left
operand specifies the value to shift. The right operand specifies the number of
positions that the bits in the value are shifted. The result is not an Ivalue. Both
operands have the same precedence and are left-to-right associative.

Table 9. Bitwise Shift Operators

Operator Usage
<< Indicates the bits are to be shifted to the left.
>> Indicates the bits are to be shifted to the right.

Each operand must have an integral type. The compiler performs integral
promotions on operands with integral type. Then it converts the right operand to
type int. The result has the same type as the left operand (after the arithmetic
conversions).

The right operand should not have a negative value or a value that is greater than
or equal to the width in bits of the expression being shifted. The result of bitwise

shifts on such values is unpredictable.

154 0S/390 V2R6.0 C/C++ Language Reference

Binary Expressions

If the right operand has the value 0, the result is the value of the left operand
(after the usual arithmetic conversions).

The << operator fills vacated bits with zeros. For example, if 1eft_op has the value
4019, the bit pattern (in 16-bit format) of Teft_op is:

0000111110110011

The expression left_op << 3 yields:
0111110110011000

The following table shows the behavior of the >> operator:

Left Operand Type Result of >>

unsigned type The vacated bits are filled with zeros.

Nonnegative unsigned The integral part of the quotient of the left operand divided by the

type quantity 2, raised to the power of the right operand. The vacated
bits of a signed value are filled with a copy of the sign bit of the
unshifted value.

Negative signed type The language does not specify how the vacated bits produced by
the >> operator are filled.

Relational (< > <= >=)

The relational operators (< > <= >=) compare two operands and determine the
validity of a relationship. If the relationship that is stated by the operator is true,
the value of the result is 1. If false, the value of the result is 0. The result is not an
Ivalue.

The following table describes the four relational operators:

Table 10. Relational Operators

Operator Usage

< Indicates whether the value of the left operand is less than the value of the
right operand.

> Indicates whether the value of the left operand is greater than the value of
the right operand.

<= Indicates whether the value of the left operand is less than or equal to the
value of the right operand.

>= Indicates whether the value of the left operand is greater than or equal to

the value of the right operand.

Both operands must have arithmetic types or be pointers to the same type. The
result has type int.

If the operands have arithmetic types, OS/390 C/C++ performs the usual
arithmetic conversions on the operands.

When the operands are pointers, the locations of the objects to which the pointer
refer determine the result. If the pointers do not refer to objects in the same array,
the result is not defined.

You can compare a pointer to a constant expression that evaluates to 0. You can

also compare a pointer to a pointer of type voidx. OS/390 C/C++ converts the
pointer to a pointer of type void=.

Chapter 6. Expressions and Operators 155

Binary Expressions

If two pointers refer to the same object, you can consider them to be equal. If two
pointers refer to data members of the same union, they have the same address
value.

If two pointers refer to elements of the same array, or to the first element beyond
the last element of an array, the pointer to the element with the higher subscript
value has the higher address value.

You can only compare members of the same object with relational operators.

Relational operators have left-to-right associativity. For example, consider the
following expression:

a<bh<=c

0S/390 C/C++ interprets the expression as follows:
(a <b) <=c

If the value of a is less than the value of b, the first relationship is true and yields
the value 1. The compiler then compares the value 1 with the value of c.

Equality (== =)

The equality operators (== !=), like the relational operators, compare two operands
for the validity of a relationship. The equality operators, however, have a lower
precedence than the relational operators. If the relationship that is stated by an
equality operator is true, the value of the result is 1. Otherwise, the value of the
result is 0.

The following table describes the two equality operators:

Table 11. Equality Operators
Operator Usage

== Indicates whether the value of the left operand is equal to the value of the
right operand.

l= Indicates whether the value of the left operand is not equal to the value of
the right operand.

Both operands must have arithmetic types or be pointers to the same type. Or, one
operand must have a pointer type and the other operand must be a pointer to void
or NULL. The result has type int.

If the operands have arithmetic types, OS/390 C/C++ performs the usual
arithmetic conversions on the operands.

If the operands are pointers, the locations of the objects to which the pointers refer
determines the result.

If one operand is a pointer and the other operand is an integer having the value 0,
the == expression is true only if the pointer operand evaluates to NULL. The !=
operator evaluates to true if the pointer operand does not evaluate to NULL.

You can also use the equality operators to compare pointers to members that are of

the same type but do not belong to the same object. The following expressions
contain examples of equality and relational operators:

156 0S/390 V2R6.0 C/C++ Language Reference

Binary Expressions

time < max_time == status < complete
letter != EOF

Note: Do not confuse the equality operator (==) with the assignment (=) operator.

For example:

if(x == 3) Evaluates to 1 if x is equal to three. You should code
equality tests like this with spaces between the operator and
the operands to prevent unintentional assignments.

while

if(x = 3) 0S/390 C/C++ takes this to be true, because (x = 3)
evaluates to a non-zero value (3). The expression also
assigns the value 3 to x.

Bitwise AND (&)

The bitwise AND operator (&) compares each bit of its first operand to the
corresponding bit of the second operand. If both bits are 1’s, OS/390 C/C++ sets
the corresponding bit of the result to 1. Otherwise, it sets the corresponding result
bit to 0.

Both operands must have an integral type. OS/390 C/C++ performs the usual
arithmetic conversions on each operand. The result has the same type as the
converted operands.

Because the bitwise AND operator has both associative and commutative
properties, the compiler can rearrange the operands in an expression that contains
more than one bitwise AND operator.

The following example shows the values of a, b, and the result of a & b
represented as 16-bit binary numbers:

bit pattern of a 0000000001011100
bit pattern of b 0000000000101116
bit pattern of a & b 0000000000001160

Note: Do not confuse the bitwise AND (&) operator with the logical AND (&&)
operator. For example,

1 & 4 evaluates to 0
while
1 && 4 evaluates to 1

Bitwise Exclusive OR ()

The bitwise exclusive OR operator (') compares each bit of its first operand to the
corresponding bit of the second operand. If both bits are 1’s or both bits are 0s,
0S/390 C/C++ sets the corresponding bit of the result to 0. Otherwise, it sets the
corresponding result bit to 1.

Both operands must have an integral type. OS/390 C/C++ performs the usual

arithmetic conversions on each operand. The result has the same type as the
converted operands and is not an lvalue.

Chapter 6. Expressions and Operators 157

Binary Expressions

Because the bitwise exclusive OR operator has both associative and commutative
properties, the compiler can rearrange the operands in an expression that contains
more than one bitwise exclusive OR operator. Note that you can represent the ~
character by the trigraph, ??".

The following example shows the values of a, b, and the result of a "b
represented as 16-bit binary numbers:

bit pattern of a 00000000010111600
bit pattern of b 0000000000101110
bit pattern of a) 0000000001110010

Note: The bitwise exclusive OR may appear as a ~ on your screen. For more
information on these symbols, refer to the OS/390 C/C++ Programming Guide.

Bitwise Inclusive OR (|)

The bitwise inclusive OR operator (|) compares the values (in binary format) of
each operand. It yields a value whose bit pattern shows which bits in either of the
operands has the value 1. If both of the bits are 0, the result of that bit is 0;
otherwise, the result is 1.

Both operands must have an integral type. OS/390 C/C++ performs the usual
arithmetic conversions on each operand. The result has the same type as the
converted operands and is not an lvalue.

Because the bitwise inclusive OR operator has both associative and commutative
properties, the compiler can rearrange the operands in an expression that contains
more than one bitwise inclusive OR operator. Note that you can represent the |
character by the trigraph, ??!.

The following example shows the values of a, b, and the result of a | b
represented as 16-bit binary numbers:

bit pattern of a 0000000001011100
bit pattern of b 0000000000101110
bit pattern of a | b 0000000001111110
Note:

* The bitwise OR may appear as a i on your screen. For more information
on these symbols, refer to the OS/390 C/C++ Programming Guide.

* Do not confuse the bitwise OR (|) operator with the logical OR (||)
operator. For example,

1 | 4 evaluates to 5
while
1 || 4 evaluates to 1

Logical AND (&&)

The logical AND operator (&) indicates whether both operands have a nonzero
value. If both operands have nonzero values, the result has the value 1. Otherwise,
the result has the value 0.

158 0S/390 V2R6.0 C/C++ Language Reference

Binary Expressions

Both operands must have a scalar type. OS/390 C/C++ performs the usual
arithmetic conversions on each operand. The result has type int and is not an
Ivalue.

Unlike the & (bitwise AND) operator, the && operator guarantees left-to-right
evaluation of the operands. If the left operand evaluates to 0, OS/390 C/C++ does
not evaluate the right operand.

The following examples show how the expressions that contain the logical AND
operator are evaluated:

Expression Result
180 0
18& 4 1
08&& 0 0

The following example uses the logical AND operator to avoid division by zero:
(y 1=0) 8& (x / y)

The expression x / y is not evaluated when y != 0 evaluates to 0.

Note: The logical AND (&&) should not be confused with the bitwise AND (&)
operator. For example:

1 && 4 evaluates to 1
while
1 & 4 evaluates to 0

Logical OR (||)

The logical OR operator (| |) indicates whether either operand has a nonzero value.
If either operand has a nonzero value, the result has the value 1. Otherwise, the
result has the value 0.

Both operands must have a scalar type. The usual arithmetic conversions on each
operand are performed. The result has type int and is not an lvalue.

Unlike the | (bitwise inclusive OR) operator, the || operator guarantees
left-to-right evaluation of the operands. If the left operand has a nonzero value,
0S/390 C/C++ does not evaluate the right operand.

The following examples show how OS/390 C/C++ evaluates expressions that
contain the logical OR operator:

Expression Result

1
1
0

DO =

o B o

The following example uses the logical OR operator to conditionally increment y:

+x || ++y;

0S/390 C/C++ does not evaluate the expression ++y when the expression ++x
evaluates to a nonzero quantity.

Chapter 6. Expressions and Operators 159

Binary Expressions

Note: The logical OR may appear as a i i on your screen. For more information on
these symbols, refer to the OS/390 C/C++ Programming Guide.

Note: Do not confuse the logical OR (| |) with the bitwise OR (|) operator. For
example:

1 || 4 evaluates to 1
while
1 | 4 evaluates to 5

C++ Pointer-to-Member Operators (.* —>%)

There are two pointer-to-member operators: .* and —>x.

Use the .* operator to dereference pointers to class members. The first operand
must be a class type. If the type of the first operand is class type T, or is a class
that has been derived from class type T, the second operand must be a pointer to a
member of a class type T.

Use the ->* operator to also dereference pointers to class members. The first
operand must be a pointer to a class type. If the type of the first operand is a
pointer to class type T, or is a pointer to a class derived from class type T, the
second operand must be a pointer to a member of class type T.

The .* and ->* operators bind the second operand to the first. This results in an
object or function of the type specified by the second operand.

If the result of .* or ->* is a function, you can only use the result as the operand
for the () (function call) operator. If the second operand is an lvalue, the result of
.* or ->* is an lvalue.

For more information on pointer-to-member operators, see ['Painters to Memhers|

Conditional Expressions

A conditional expression is a compound expression that contains a condition
(operand,), an expression to be evaluated if the condition has a nonzero value
(operand,), and an expression to be evaluated if the condition has the value 0
(operands).

Conditional expressions have right-to-left associativity. OS/390 C/C++ evaluates
the left operand first, and then evaluates only one of the remaining two operands.

The conditional expression contains one two-part operator. The ? symbol follows
the condition, and the : symbol appears between the two action expressions.
0S/390 C/C++ treats all expressions that occur between the ? and : as one
expression.

The first operand must have a scalar type. The type of the second and third
operands must be one of the following:

e An arithmetic type

* A compatible pointer, structure, or union type

* void.

160 0S/390 V2R6.0 C/C++ Language Reference

Conditional Expressions

The second and third operands can also be a pointer or a null pointer constant.

Two objects are compatible when they have the same type but not necessarily the
same type qualifiers (volatile, or const). Pointer objects are compatible if they
have the same type or are pointers to void.

0S5/390 C/C++ evaluates the first operand, and its value determines whether

0S/390 C/C++ evaluates the second or third operand:

* If the value is not equal to 0, it evaluates the second operand.
* If the value is equal to 0, it evaluates the third operand.

The result is the value of the second or third operand.

If the second and third expressions evaluate to arithmetic types, OS/390 C/C++
performs the usual arithmetic conversions on the values. The following tables
show how the types of the second and third operands determine the type of the

result.

Type of Conditional C Expressions

Type of One Operand

Type of Other Operand

Type of Result

Arithmetic

Arithmetic

Arithmetic type after usual
arithmetic conversions

Structure or union type

Compatible structure or
union type

Structure or union type with
all the qualifiers on both
operands

void

void

void

Pointer to compatible type

Pointer to compatible type

Pointer to type with all the
qualifiers specified for the

type

Pointer to type

NULL pointer (the constant 0)

Pointer to type

Pointer to object or
incomplete type

Pointer to void

Pointer to void with all the
qualifiers specified for the

type

Type of Conditional C++ Expressions

Type of One Operand

Type of Other Operand

Type of Result

Reference to type

Reference to type

Reference after usual
reference conversions

Class T

Class T

Class T

Class T

Class X

Class type for which a
conversion exists. If more
than one possible conversion
exists, the result is
ambiguous.

throw expression

Other (type, pointer,
reference)

Type of the expression that is
not a throw expression

Examples of Conditional Expressions

The following expression determines which variable has the greater value, y or z,
and assigns the greater value to the variable x:

x=(y>z)?2y: z;

Chapter 6. Expressions and Operators 161

Conditional Expressions

The following is an equivalent statement:

if (y > z)
X =Y;
else
X = Z;

The following expression calls the function printf, which receives the value of the
variable c, if ¢ evaluates to a digit. Otherwise, printf receives the character
constant 'x'.

printf(" ¢ = %c\n", isdigit(c) ? ¢ : 'x');

If the last operand of a conditional expression contains an assignment operator, use
parentheses to ensure that the expression evaluates properly. For example, the =
operator has higher precedence than the ?: operator in the following expression:
int i,j,k;

(i==7)?23+ :k-=7j;

This expression generates an error because OS/390 C/C++ interprets it as if it
were parenthesized this way:

int 1,j,k;

((1==7) 2§+ :k) =J;

That is, k is treated as the third operand, not the entire assignment expression k =
Jj. The error arises because a conditional expression is not an lvalue, and the
assignment is not valid.

To make the expression evaluate correctly, enclose the last operand in parentheses:
int 1,3,k;
(i==7) 23+ : (k=1

Assignment Expressions

An assignment expression stores a value in the object that is designated by the left
operand. There are two types of assignment operators: simple assignment and
compound assignment.

The left operand in all assignment expressions must be a modifiable lvalue. The
type of the expression is the type of the left operand. The value of the expression
is the value of the left operand after the assignment has completed.

In C, the result of an assignment expression is not an lvalue. The result of an
assignment expression is an lvalue in C++.

All assignment operators have the same precedence and have right-to-left
associativity.

Simple Assignment (=)

The simple assignment operator (=) stores the value of the right operand in the
object that is designated by the left operand.

Both operands must have arithmetic types, the same structure type, or the same
union type. Otherwise, both operands must be pointers to the same type, or the
left operand must be a pointer and the right operand must be the constant 0 or
NULL.

162 0S/390 V2R6.0 C/C++ Language Reference

Assignment Expressions

If both operands have arithmetic types, the system converts the type of the right
operand to the type of the left operand before the assignment.

If the right operand is a pointer to a type, the left operand can be a pointer to a
const of the same type. If the right operand is a pointer to a const type, the left
operand must also be a pointer to a const type.

If the right operand is a pointer to a type, the left operand can be a pointer to a
volatile of the same type. If the right operand is a pointer to a volatile type, the
left operand must also be a pointer to a volatile type.

If the left operand is a pointer to a member, the right operand must be a pointer to
a member or a constant expression that evaluates to zero. OS/390 C/C++ converts
the right operand to the type of the left operand before assignment.

If the left operand is an object of reference type, the assignment is to the object that
is denoted by the reference.

If the left operand is a pointer and the right operand is the constant 0, the result is
NULL.

Pointers to void can appear on either side of the simple assignment operator.

A packed structure or union can be assigned to a nonpacked structure or union of
the same type. A nonpacked structure or union can be assigned to a packed
structure or union of the same type.

If one operand is packed and the other is not, OS/390 C/C++ remaps the layout of
the right operand to match the layout of the left. This remapping of structures
might degrade performance. For efficiency, when you perform assignment
operations with structures or unions, you should ensure that both operands are
either packed or nonpacked.

Note: If you assign pointers to structures or unions, the objects they point to must

both be either packed or nonpacked. See [Initiali .

for more information on assignments with pointers.

You can assign values to operands with the type qualifier volatile. You cannot
assign a pointer of an object with the type qualifier const to a pointer of an object
without the const type qualifier. For example:

const int *pl;
int *p2;
p2 = pl; /* this is NOT allowed */

pl = p2; /* this IS allowed */

The following example assigns the value of number to the member employee of the
structure payroll:

payroll.employee = number;

The following example assigns in order the value 0 (zero) to strangeness, the
value of strangeness to charm, the value of charm to beauty, and the value of
beauty to truth:

truth = beauty = charm = strangeness = 0;

Chapter 6. Expressions and Operators 163

Assignment Expressions

Note: The assignment (=) operator should not be confused with the equality
comparison (==) operator. For example:

if(x == 3) Evaluates to 1 if x is equal to three
while
if(x = 3) Is true because (x = 3) evaluates to a non-zero value (3).

The expression also assigns the value 3 to x.

Compound Assignment

The compound assignment operators consist of a binary operator and the simple
assignment operator. They perform the operation of the binary operator on both
operands and give the result of that operation to the left operand.

The following table shows the operand types of compound assignment
expressions:

Operator Left Operand Right Operand
+=or -= Arithmetic Arithmetic

+= or -= Pointer Integral type
*=,/=, and %= Arithmetic Arithmetic

<<=, >>=, &=, = and |= Integral type Integral type

Note that the expression:
a=*=b+c

is equivalent to:
a=ax(b+c)

and not:
a=ax*b+c

The following table lists the compound assignment operators and shows an
expression that uses each operator:

Operator Example Equivalent Expression

+= index += 2 index = index + 2

-= *(pointer++) -= 1 *pointer = *(pointer++) - 1
*= bonus *= increase bonus = bonus * increase

/= time /= hours time = time / hours

%= allowance %= 1000 allowance = allowance % 1000
<<= result <<= num result = result << num

>>= form >>= 1 form = form >> 1

&= mask &= 2 mask = mask & 2

"= test "= pre_test test = test ~ pre_test

flag |= ON

flag = flag | ON

Although the equivalent expression column shows the left operands (from the

example column) that OS/390 C/C++ evaluates twice, OS/390 C/C++ evaluates
the left operand only once.

164 0S/390 V2R6.0 C/C++ Language Reference

Comma Expression

Comma Expression (,)

A comma expression (,) contains two operands that are separated by a comma.
Although the compiler evaluates both operands, the value of the right operand is
the value of the expression. The compiler evaluates the left operand, possibly
producing side effects, and discards the value. The result of a comma expression is
not an lvalue.

Both operands of a comma expression can have any type. All comma expressions
have left-to-right associativity. OS/390 C/C++ fully evaluates the left operand
before the right operand.

In the following example, if omega has the value 11, the expression increments
delta and assigns the value 3 to alpha:

alpha = (delta++, omega % 4);

Any number of expressions separated by commas can form a single expression.
The compiler evaluates the leftmost expression first. The value of the rightmost
expression becomes the value of the entire expression.

For example, the value of the expression:
intensity++, shade * increment, rotate(direction);

is the value of the expression:
rotate(direction)

The primary use of the comma operator is to produce side effects in the following

situations:

* Calling a function

* Entering or repeating an iteration loop

* Testing a condition

* Other situations where you require a side effect, but not the immediate result of
the expression

To use the comma operator in a context where the comma has other meanings,
such as in a list of function arguments or a list of initializers, you must enclose the
comma operator in parentheses. For example, the following function has only three
arguments: the value of a, the value 5, and the value of c.

fla, (t =3,t+2),c);

The value of the second argument is the result of the comma expression in
parentheses, which has the value 5:

t=3,t+2

Chapter 6. Expressions and Operators 165

Comma Expression

The following table gives some examples of the uses of the comma operator:

Statement

Effects

for (i=0; i<2; ++i, f());

A for statement in which i is incremented and
f() is called at each iteration.

if (f(), ++i, i>1)
{ /* ... %/}

An if statement in which function f() is called,
variable i is incremented, and variable i is tested
against a value. The first two expressions within
this comma expression are evaluated before the
expression i>1. Regardless of the results of the
first two expressions, the third is evaluated and
its result determines whether the if statement is
processed.

func((++a, f(a)));

A function call to func() in which a is
incremented, the resulting value is passed to a
function f(), and the return value of f() is
passed to func(). The function func() is passed
only a single argument, because the comma
expression is enclosed in parentheses within the
function argument list.

166 0S/390 V2R6.0 C/C++ Language Reference

Chapter 7. Implicit Type Conversions

There are two kinds of implicit type conversions: standard conversions and
user-defined conversions. This chapter describes the standard type conversions that
are listed below:

4 . ”

o User-Defined Conversions” an page 334

Integral Promotions

You can use certain fundamental types wherever you can use an integer. You can
convert the following fundamental types through integral promotion:

* char

* wchar_t

e short int

* enumerators

* objects of enumeration type

* integer bit fields (both signed and unsigned)

Except for wchar_t, if you cannot represent the value by an int, OS/390 C/C++
converts the value to an unsigned int. For wchar_t, if an int can represent all the
values of the original type, OS/390 C/C++ converts the value to the type that can
best represent all the values of the original type. For example, if a Tong can
represent all the values, the value is converted to a Tong.

Standard Type Conversions

Many C and C++ operators cause implicit type conversions, which change the type
of a value. When you add values that have different data types, OS/390 C/C++
first converts both values to the same type. For example, when you add a short
int value and an int value together, the compiler converts the short int value to
the int type.

Implicit type conversions can occur when you:

* Prepare an operand for an arithmetic or logical operation

* Assign an lvalue that has a different type than the assigned value

¢ Provide a prototyped function that has a different type than the parameter

* Specify a value in the return statement of a function that has a different type
from the defined return type for the function

© Copyright IBM Corp. 1996, 1998 167

Standard Type Conversions

You can perform explicit type conversions by using the cast operator or the
function style cast. For more information on explicit type conversions, see

Expressions” on page 143.

Signed-Integer Conversions

The compiler converts a signed integer to a shorter integer. It does this by
truncating the high-order bits and converting the variable to a longer signed
integer by sign-extension.

Conversion of signed integers to floating-point values generally takes place
without loss of information. However, when you convert an int, a Tong int, or a
Tong Tong int value to a float, some precision may be lost. When converting a
Tong Tong int type to a float, OS/390 C/C++ rounds to the nearest representable
number. When converting a signed integer to an unsigned integer, OS/390 C/C++
converts the signed integer to the size of the unsigned integer. It interprets the
result as an unsigned value.

When converting a Tong Tong int type to packed decimal, the resulting size is
decimal(20,0).

Unsigned-Integer Conversions

You can convert an unsigned integer to a shorter unsigned or signed integer by
truncating the high-order bits. OS/390 C/C++ converts an unsigned integer to a
longer unsigned or signed integer by zero-extending. Zero-extending pads the
leftmost bits of the longer integer with binary zeros.

When you convert an unsigned integer to a signed integer of the same size, no
change in the bit pattern occurs. However, the value changes if you set the sign bit.

Floating-Point Conversions

If you convert a float value to a double, it undergoes no change in value. If you
convert a double to a float OS/390 C/C++ represents it exactly, if possible. If the
compiler cannot exactly represent the double value as a float, the value loses
precision. If the value is too large to fit into a float, the result is undefined.

When OS/390 C/C++ converts a floating-point value to an integer value, it
discards the decimal fraction portion of the floating-point value in the conversion.
If the result is too large for the given integer type, the result of the conversion is
undefined.

Pointer Conversions

0S/390 C/C++ performs pointer conversions when you use pointers. These
conversions include pointer assignment, initialization, and comparison.

You can convert a constant expression that evaluates to zero to a pointer. This

pointer will be a null pointer (pointer with a zero value), and is guaranteed not to
point to any object.

168 0S/390 V2R6.0 C/C++ Language Reference

Standard Type Conversions

You can convert any pointer to an object that is not a const or volatile object to a
void*. You can also convert any pointer to a function to a voidx, provided that a
void* has sufficient bits to hold it.

You can generally convert an expression with type array of some type to a pointer
to the initial element of the array. You cannot do this conversion when the
expression is used as the operand of the & (address) operator or the sizeof
operator.

Generally, you can convert an expression with a type of function returning T to a
pointer to a function returning T. You cannot perform this conversion when the
expression is used as the operand of the & (address) operator, the () (function call)
operator, or the sizeof operator.

You can convert an integer value to an address offset.

You can convert a pointer to a class A to a pointer to an accessible base class B of
that class, as long as the conversion is not ambiguous. The conversion is
ambiguous if the expression for the accessible base class can refer to more than one
distinct class. The resulting value points to the base class subobject of the derived
class object. A null pointer (pointer with a zero value) is converted into itself.

For more information on pointer conversions, see 'Painter Arithmetic” an page 97.

Reference Conversions

A reference conversion can be performed wherever a reference initialization occurs,
including reference initialization done in argument passing and function return
values. You can convert a reference to a class to a reference to an accessible base
class of that class, as long as the conversion is not ambiguous. The result of the
conversion is a reference to the base class subobject of the derived class object.

You can perform reference conversion if OS/390 C/C++ allows the corresponding
pointer conversion.

Pointer-to-Member Conversions

Pointer-to-member conversion can occur when you initialize, assign, or compare
pointers to members.

A constant expression that evaluates to zero converts to a distinct pointer to a
member.

Note: A pointer to a member is not the same as a pointer to an object or a pointer
to a function.

You can convert a pointer to a member of a base class to a pointer to a member of

a derived class, if the following conditions are true:

* The conversion is not ambiguous. The conversion is ambiguous if multiple
instances of the base class are in the derived class.

* You can convert a pointer to the derived class to a pointer to the base class. If
this is the case, the base class is accessible. See L i

Classes” on page 350 for more information.

Chapter 7. Implicit Type Conversions 169

Standard Type Conversions

For more information, see [‘Painters to Members” on page 297 and l‘C++

Pointer-to-Member Operators (* —>*" on page 160.

Function Argument Conversions

If no function prototype declaration is visible when you call a function, the
compiler can perform default argument promotions. These promotions consist of
the following:

* Integral promotions.

* Arguments with type float that convert to type doubTe.

Other Conversions

By definition, the void type has no value. Therefore, you cannot convert it to any
other type. No other value can be converted to void by assignment. However, a
value you can explicitly cast to void.

You cannot convert between structure or union types.

When a packed decimal type is converted to a Tong Tong int type, OS/390 C/C++
discards the fractional part.

In C, when you define a value by using the enum type specifier, OS/390 C/C++
treats the value as an int. Conversions to and from an enum value proceed as for

the int type.

In C++, you can convert from an enum to any integral type but not from an integral
type to an enum.

There are no standard conversions between class types.

Arithmetic Conversions

Most C++ operators perform type conversions to bring the operands of an
expression to a common type. Or, they extend short values to the integer size used
in OS/390 operations. The conversions depend on the specific operator and the
type of the operand or operands. However, many operators perform similar
conversions on operands of integer and floating-point types. These standard
conversions are known as the arithmetic conversions because they apply to the types
of values that are ordinarily used in arithmetic.

You can use arithmetic conversions to match the operands of arithmetic operators.

170 0S/390 V2R6.0 C/C++ Language Reference

Arithmetic Conversions

Arithmetic conversion proceeds in the following order:

Operand Type

Conversion

One operand has Tong double type

The other operand is converted to Tong
doubTe type.

One operand has double type

The other operand is converted to double.

One operand has float type

The other operand is converted to float.

One operand has unsigned Tong Tong int
type

The other operand is converted to unsigned
long Tong int.

One operand has Tong Tong int type

The other operand is converted to Tong Tong
int.

One operand has unsigned Tong int type

The other operand is converted to unsigned
long int.

One operand has unsigned int type and the
other operand has Tong int type and the
value of the unsigned int can be represented
in a Tong int

The operand with unsigned int type is
converted to long int.

One operand has unsigned int type and the
other operand has Tong int type and the
value of the unsigned int cannot be
represented in a Tong int

Both operands are converted to unsigned
long int

One operand has long int type

The other operand is converted to long int.

One operand has unsigned int type

The other operand is converted to unsigned
int.

Both operands have int type

The result is type int.

Note: On OS/390 C/C++, an int type and a long type are the same length, so
unsigned int cannot be represented by a signed Tong.

Chapter 7. Implicit Type Conversions 171

Arithmetic Conversions

172 0S/390 V2R6.0 C/C++ Language Reference

Chapter 8. Functions

This chapter describes the structure and use of functions in C and C++.
Specifically, it discusses the following topics:

. I:IEJ]DCIJO.DS ()szel:m'em'j
. I:/C Enl tsto CF t /:l

4 . ”

G : : ”

o F‘Cx+ Inline Functions” on page 194

Related Information

. s : ”

° G : . ”

e I‘Chanter 13 C++ QOverloading” on page 311
I (&) I (o4

. P’Chapfpr 14 Qppri;\] C++ Member Functions” on page 324

INT; . ”

Functions Overview

Functions specify the logical structure of a program and define how particular
operations are to be implemented. A function declaration consists of a return type, a
name, and an argument list. Use the declaration to declare the format and
existence of a function prior to using the function. A function definition contains a
function declaration and the body of the function. A function can only have one
definition.

Both C++ and ANSI/ISO C use the style of declaration that is called prototyping. A
function prototype refers to the return type, name, and argument list components of
a function. The compiler uses the prototype to check argument types and to
convert arguments. Prototypes can appear several times in a program, if the
declarations are compatible. They allow the C compiler to check for mismatches
between the parameters of a function call and those in the function declaration.

C++ Note: C++ functions must use prototypes. Usually, you place them in header
files, while you place function definitions in source files. Only C allows
functions that do not have prototypes.

C++ Enhancements to C Functions

The C++ language provides many enhancements to C functions. These are:

* Reference arguments, described in I'Passing Arguments by Reference” orl

© Copyright IBM Corp. 1996, 1998 173

C++ Enhancements to C Functions

¢ Default arguments, described in [‘Default Arguments in C++ Functions” onl

* Reference return types, described in [llsing References as Return Types” onl

* Inline functions, described in ECas Inline Functions” on page 193

* Member functions, introduced in Member Functions” on page 293

* Overloaded functions, introduced in E!Querloading Functions” on page 311
* Operator functions, introduced in IQuerloading Qperators” on page 315

+ Constructor functions and destructor functions, introduced in Constructors and

”

¢ Conversion functions, introduced in kCnnsLewm_EunchmsLm_pa.ge_ﬁﬂ
* Virtual functions, introduced in (Virtual Functions” on page 3594
* Function templates, introduced in Eunction Templates” on page 373

Function Declarations

A function declaration establishes the name and the parameters of the function.

>
>p

v

i:extern:‘ l—]1'nkage_spec1'f1'erJ I—type_specifier—l

static

-

v
A

»—function_declarator—(—Y B o)
parameter- i:const

volatile—

A C function is declared implicitly by its appearance in an expression if it has not
been defined or declared previously. The implicit declaration is equivalent to a
declaration of extern int func_name(). The default return type of a function is
int. Implicit declarations are only valid in C.

To indicate that the function does not return a value, declare it with a return type
of void.

C++ Note: Only C++ supports the use of the const and volatile specifiers.
C Function Declarations

A function cannot be declared as returning a data object having a volatile or
const type. It can, however, return a pointer to a volatile or const object. Also, a
function cannot return a value that has a type of array or function.

If the called function returns a value that has a type other than int, you must
declare the function before the function call. Even if a called function returns a
type int, explicitly declaring the function prior to its call is good programming
practice.

174 0S/390 V2R6.0 C/C++ Language Reference

Function Declaration

Some declarations do not have parameter lists; the declarations simply specify the
types of parameters and the return values, such as in the following example:

int func(int,long);
C++ Function Declarations

In C++, you can specify the qualifiers volatile and const in member function
declarations. You can also specify exception specifications in function declarations.
You must declare all C++ functions before you can call them.

You cannot define types in return or argument types. For example, the following
declarations are not valid in C++:

void print(struct X { int i; } x);

//error

enum count{one, two, three} counter(); //error

This example attempts to declare a function print() that takes an object x of class
X as its argument. However, you cannot have the class definition within the
argument list. In the attempt to declare counter(), the enumeration type definition
cannot appear in the return type of the function declaration. The two function
declarations and their corresponding type definitions can be rewritten as follows:
struct X { int i; };

void print(X x);

enum count {one, two, three};

count counter();

Multiple Function Declarations

All function declarations for a particular function must have the same number and
type of arguments, and must have the same return type and the same linkage
keywords. These return and argument types are part of the function type, although
the default arguments are not.

For the purposes of argument matching, consider ellipsis and linkage keywords as
a part of the function type. You must use them consistently in all declarations of a
function. If the only difference between the argument types in two declarations is
in the use of typedef names or unspecified argument array bounds, the
declarations are the same. A const or volatile specifier is also part of the function
type, but can only be part of a declaration. Or it can be part of a nonstatic member
function definition.

Declaring two functions that differ only in return type is not valid function
overloading, and the compiler flags it as an error. For example:

void f();
int f(); // error, two definitions differ only in
// return type
int g()
{
return f();

Checking Function Calls

The compiler checks C++ function calls by comparing the number and type of the
actual arguments used in the function call with the number and type of the formal
arguments in the function declaration. It performs implicit type conversion when
necessary.

Chapter 8. Functions 175

Function Declaration

Argument Names in Function Declarations

You can supply argument names in a function declaration, but the compiler
ignores them except in the following two situations:

1. If two argument names have the same name within a single declaration, which
is an error.

2. If an argument name is the same as a name outside the function, the program
hides the name outside the function. You cannot use the name in the argument
declaration.

In the following example, the third argument intersects is meant to have
enumeration type subway_line. The name of the first argument, however, hides
this name. The declaration of the function subway() causes a compile-time error
because subway_1line is not a valid type name in the context of the argument
declarations.

enum subway line {yonge, university, spadina, bloor};

int subway(char * subway line, int stations,
subway line intersects);

Examples of Function Declarations

The following example defines the function absolute() with the return type
double. Because this is a noninteger return type, the example declares absolute
prior to the function call.

CBC3RAAV

[x*
**% This example shows how a function is declared and defined
*%/

#include <stdio.h>
double absolute(double);

int main(void)
double f = -3.0;
printf("absolute number = %1f\n", absolute(f));

return (0);

}

double absolute(double number)

if (number < 0.0)
number = -number;

return (number);

}

Specifying a return type of void on a function declaration indicates that the
function does not return a value. The following example defines the function
absolute() with the return type void. The function main(), declares absolute()
with the return type void.

176 0S/390 V2R6.0 C/C++ Language Reference

Function Declaration

CBC3RAAW

[**

** This example uses a function with a void return type
*%/

#include <stdio.h>

int main(void)

{
void absolute(float);
float f = -8.7;

absolute(f);

return(0);

}

void absolute(float number)

{
if (number < 0.0)
number = -number;

printf("absolute number = %f\n", number);

}

The following code fragments show several function declarations. The first
fragment declares a function f that takes two integer arguments and has a return
type of void:

void f(int, int);

The following code fragment declares a function f1(). f1() takes an integer
argument, and returns a pointer to a function that takes an integer argument and
returns an integer:

int (*f1(int))(int);

Alternatively, you can use a typedef for the complicated return type of function
f1():

typedef int pfl(int);
pflx fl(int);

The following code fragment declares a pointer pl to a function that takes a
pointer to a constant character and returns an integer:

int (*pl) (const charx);

The following example declares an external function f2(). f2() takes a constant
integer as its first argument, and can have variable numbers and types of other
arguments. It returns type int:

int extern f2(const int ...);

Function f3() takes an int argument with a default value. This is the value that is
returned from function f2(), and that has a return type of int:

const int j 5;

int f3(int x = f2(3));

See 'Default Arguments in C=++ Functions” on page 190 for more information

about default function arguments.

Chapter 8. Functions 177

Function Declaration

Function f6() is a constant class member function of class X with no arguments,
and with an int return type:
class X

{
pubTic:

int f6() const;
}s

See l'const and volatile Member Functions” on page 293 for more information

about constant member functions.

Function f4() takes no arguments, has return type void, and can throw class
objects of types X and Y.

class X;

class Y;

/1

//

// .
void f4() throw(X,Y);

Function f5() takes no arguments, has return type void, and cannot throw an
exception.

void f5() throw();

Related Information:

° 4 ”

° 7 by Z

Function Definitions

A function definition contains a function declaration and the body of a function. It
specifies the function name, formal parameters, the return type, and storage class
of the function.

i:extern:‘ |—Zinkage_specifierJ |—type_specz'fierJ

static

v

»—function_declarator block_statement———>»<

I—par‘ameter_declarat ionJ

A function definition (either prototype or nonprototype) contains the following;:

* An optional storage class specifier, extern or static, which determines the scope
of the function. If you do not specify a storage class specifier, the function has
external linkage.

* An optional linkage specifier, which determines the linkage of the function. If you
do not specify a linkage specifier, the function has the default linkage.

* An optional tfype specifier, which determines the type of value that the function
returns. If you do not provide a type specifier, the function has type int.

178 0S/390 V2R6.0 C/C++ Language Reference

Function Definitions

* A function declarator provides the function with a name. It can further describe
the type of the value that the function returns. The declarator can also list any
parameters that the function expects and their types. It encloses the parameters
that the function expects in parentheses.

e A block statement, which contains data definitions and code.

A nonprototype function definition can also have a list of parameter declarations,
which describe the types of arguments that the function can receive. In
nonprototype functions, parameters that are not declared have type int.

A function can call itself. In addition, other functions can call the function. Unless a
function definition has the storage class specifier static, functions that appear in
other files or modules can also call the function. You can directly invoke functions
with a storage class specifier of static from within the same source file only.

Consider a function that has the storage class specifier static, or a return type
other than int. In this case, the function definition or a declaration for the function
must appear before a call to the function, and must be in the same file as the call.

If a C function definition has external linkage and a return type of int, you can
make calls to the function before it is visible. This is because the compiler assumes
an implicit declaration of extern int func();. This is not true for C++.

All declarations for a given function must be compatible; that is, the return type
must be the same, and the parameters must have the same type.

The default type for the return value and parameters of a function is int, and the
default storage class specifier is extern. If the function does not return a value or if
you do not pass any parameters to it, use the keyword void as the type specifier.

A function can return a pointer or reference to a function, array, or to an object
with a volatile or const type. In C, you cannot declare a function as a struct or
union member. (This restriction does not apply to C++.)

A function cannot have a return type of function or array. In C, a function cannot
return any type that has the volatile or const qualifier. (This restriction does not

apply to C++.)

You cannot define an array of functions. You can, however, define an array of
pointers to functions.

In the following example, ary is an array of two function pointers. The example
type casts the values that are assigned to ary for compatibility:

Chapter 8. Functions 179

Function Definitions

CBC3RAAT

[x*
** This example uses an array of pointers to functions
*%/

#include <stdio.h>

int funcl(void);
void func2(double a);

int main(void)
{
double num;
int retnum;
void (*ary[2]) ();
ary[0] = ((void(*)())funcl);
ary[1] = ((void(*)())func2);

retnum=((int (*)())ary[0])(); /* calls funcl =/
printf("number returned = %i\n", retnum);
((void (*) (double))ary[1]) (num); /* calls func2 =/

return(0);

1
int funcl(void)

int number=3;
return number;

}

void func2(double a)
{

a=333.3333;

printf("result of func2 = %f\n", a);
1

The following example is a complete definition of the function sum:
int sum(int x,int y)

{
}

return(x + y);

The function sum has external linkage and returns an object that has type int. It
has two parameters of type int that are declared as x, and y. The function body
contains a single statement that returns the sum of x and y.

Function Declarator

A function declarator contains an identifier that names a function, and a contains a
list of the function parameters. You should always use prototype function
declarators because you can check the function parameters with them. C++
functions must have prototype function declarators.

Function Declarator Syntax:

»>—declarator—(——parameter _declaration list) ><

v

identifier

180 0S/390 V2R6.0 C/C++ Language Reference

Function Definitions
Parameter Declaration List Syntax:
[

»—'—Estorage_class_specz’fier
type_specifier—— —L—_I—declarator
type_qualifier———— *

—abstract_declarator

v

T)

Abstract Declarator Syntax:

] (—abstract_declarator—)
* direct_abstract_declarator ’—/
direct_abstract_declarator:

—abstract_declarator [] }
L |—cons tant_express ionJ J
()

|—parame ter_declaration_l ist‘J

Prototype Function Declarators: You should declare each parameter within the
function declarator. Any calls to the function must pass the same number of
arguments as there are parameters in the declaration.

Nonprototype Function Declarators: You should declare each parameter in a
parameter declaration list following the declarator. If you do not declare a parameter,
it has type int.

The compiler widens char and short parameters to int, and widens float
parameters to double. The compiler performs no type checking between the
argument type and the parameter type for nonprototyped functions. As well, it
does not check to ensure that the number of arguments matches the number of
parameters.

You should declare each value that a function receives in a parameter declaration
list for nonprototype function definitions that follows the declarator.

A parameter declaration determines the storage class specifier and the data type of
the value.

The only storage class specifier that OS/390 C/C++ allows is the register storage

class specifier. It allows any type specifier for a parameter. If you do not specify
the register storage class specifier, the parameter will have the auto storage class

Chapter 8. Functions 181

Function Definitions

specifier. In C only, if you omit the type specifier and you are not using the
prototype form to define the function, the parameter will have type int, as follows:

int func(i,j)

/* i and j have type int =*/
1

In C only, you cannot declare a parameter in the parameter declaration list if it is
not listed within the declarator.

Ellipsis and void

An ellipsis at the end of a parameter declaration indicates that the number of
arguments is equal to, or greater than, the number of specified argument types. At
least one parameter declaration must come before the ellipsis. Where the compiler
permits, an ellipsis that is preceded by a comma is equivalent to a simple ellipsis.
The comma before the ellipsis is optional in C++ only.

int f(int,...);

For information on how to pass multiple arguments, refer to the sections
describing va_arg, va_end(), and va_end() in OS/390 C/C++ Run-Time Library
Reference.

The compiler promotes parameters as needed, but does not check the types of the
variable arguments.

You can declare a function with no arguments in two ways:
int f(void); // ANSI/ISO C Standard

int f(); // C++ enhancement
// Note: In ANSI/ISO C, this declaration means that
// f may take any number or type or parameters

An empty argument declaration list or the argument declaration list of (void)
indicates a function that takes no arguments. You cannot use void as an argument
type, although you can use types that are derived from void (such as pointers to
void).

In the following example, the function f() takes one integer parameter and returns
no value, while g() expects no parameters and returns an integer.

void f(int);
int g(void);

Function Body

The body of a function is a block statement.

The following function body contains a definition for the integer variable big_num,
an if-else control statement, and a call to the function printf():
void Targest(int numl, int num2)

{

int big_num;
if (numl >= num?2)

big_num = numl;
else

182 0S/390 V2R6.0 C/C++ Language Reference

Function Definitions
big_num = num2;

printf("big num = %d\n", big num);
1

Examples of Function Declarators

The following example contains a function declarator sort with table and Tength.
The example declares table as a pointer to int, and declares length as type int.
Note that the compiler implicitly converts arrays as parameters to a pointer to the

type.

CBC3RAAU
[**

**% This example illustrates function declarators.
% Note that arrays as parameters are implicitly
**% converted to a pointer to the type.

*%/

#include <stdio.h>
void sort(int table[], int length);

int main(void)
{
int table[]1={1,5,8,4};
int Tength=4;
printf("length is %d\n",length);
sort(table,length);
1

void sort(int table[], int length)
{

int i, j, temp;

for (i = 0; i < Tength -1; i++)
for (j =1 + 1; j < length; j++)
if (table[i] > table[j])

temp = table[i];
table[i] = table[j];
table[j] = temp;

1

}

The following examples contain prototype function declarators:

double square(float x);
int area(int x,int y);
static char *search(char);

The following example illustrates how you can use a typedef identifier in a
function declarator:
typedef struct tm_fmt { int minutes;
int hours;
char am_pm;
} struct_t;
Tong time_seconds(struct_t arrival)

The following function, set_date, declares a pointer to a structure of type date as a
parameter. date_ptr has the storage class specifier register.

Chapter 8. Functions 183

Function Definitions

set_date(register struct date =date_ptr)
{

date_ptr->mon = 12;

date_ptr->day = 25;

date_ptr->year = 87;
1

Related Information

The main() Function

When a program begins running, the system automatically calls the function main,
which marks the entry point of the program. Every program must have one
function named main. You cannot call any other function in the program main. A
main function has the form:

ain—()—block_statement
Evoi d} i:voi d—
int parameters—

v
A

By default, main has the storage class extern and a return type of int. You can also
declare main to return void.

In C++, you cannot declare main as inline or static. You cannot call main from
within a program or take the address of main.

Arguments to main

You can declare the function main with or without parameters. Although you can
give any name to these parameters, you can refer to them as argc and argo.

The first parameter, argc (argument count), has type int. It indicates how many
arguments you entered on the command line when running the program.

The second parameter, argv (argument vector), has type array of pointers to char
array objects. char array objects are null-terminated strings.

The value of argc indicates the number of pointers in the array argo. If a program
name is available, the first element in argov points to a character array. This array
contains the program name or the invocation name of the program you are
running. If the name cannot be determined, the first element in argv points to a
null character.

The compiler counts this name as one of the arguments to the function main. For
example, if you only enter the program name on the command line, argc has a
value of 1, and argo[0] points to the program name.

Regardless of the number of arguments that are entered on the command line,
argulargc] always contains NULL.

184 0S/390 V2R6.0 C/C++ Language Reference

main()

Example of Arguments to main

The following program backward prints the arguments entered on a command line
such that the last argument is printed first:

#include <stdio.h>
int main(int argc, char xargv[])
{
while (--argc > 0)
printf("%s ", argv[argc]);
1

Consider invoking this program from a command line with the following:
backward stringl string2
This gives the following output:

string2 stringl

The arguments argc and argv would contain the following values:

Object Value

argce 3

argv[0] pointer to string "backward"
argv[1] pointer to string "stringl"
argv[2] pointer to string "string2"
argv[3] NULL

Note: Be careful when entering mixed case characters on a command line because
some environments are not case sensitive. Also, the exact format of the
string pointed to by argu[0] is system dependent.

Related Information

4 . 7)

Calling Functions and Passing Arguments

A function call specifies a function name and a list of arguments. The calling
function passes the value of each argument to the specified function. The argument
list is surrounded by parentheses, and each argument is separated by a comma.
The argument list can be empty. When you call a function, OS/390 C/C++ uses
the actual arguments to initialize the formal arguments.

The type of an actual argument is checked against the type of the corresponding

formal argument in the function prototype. All standard and user-defined type
conversions are applied, as necessary.

Chapter 8. Functions 185

Calling Functions and Passing Arguments

For example:

#include <iostream.h>

#include <math.h>

extern double root(double, double); // declaration
double root(double value, double base) // definition

double temp = exp(log(value)/base);
return temp;

}

void main()
{
int value = 144;
int base = 2;
// Call function root and print return value
cout << "The root is: " << root(value,base) << endl;

}
The output is The root is: 12

In the above example, the function root is expecting arguments of type doubTe.
Consequently, the two int arguments, value and base, are implicitly converted to
type double when you call the function.

The arguments to a function are evaluated before the function is called. When a
function call passes an argument, the function receives a copy of the argument
value. If the value of the argument is an address, the called function can use
indirection to change the contents to which the address points. In a case like
f(g(x)), a function is used as an argument. Consequently, OS/390 C/C++
evaluates the function g(x), and uses the result of the evaluation as the argument
for function f.

If you pass an array as an argument, OS/390 C/C++ uses a pointer to the array as
the argument.

0S/390 C/C++ converts arguments that are passed to parameters in prototype
declarations to the declared parameter type. For nonprototype function
declarations, OS/390 C/C++ promotes the char and short arguments to int, and
float to doubTe.

You cannot pass a packed structure argument to a function that expects a
nonpacked structure of the same type and vice versa. (The same applies to packed
and nonpacked unions.)

The order in which arguments are evaluated and passed to the function is
implementation-defined.

For example, the following sequence of statements calls the function tester:
int x;

x =13

tester(x++, x);

The call to tester in the example may produce different results on different
compilers. Depending on the implementation, OS/390 C/C++ may evaluate x++
first, or it may evaluate x first. To avoid the ambiguity and have x++ evaluated
first, replace the preceding sequence of statements with the following;:

int x, y;
x =1;
y = Xt+;

tester(y, x);

186 0S/390 V2R6.0 C/C++ Language Reference

Calling Functions and Passing Arguments

Passing Arguments in C++

In C++, if you pass a nonstatic class member function as an argument, OS/390
C/C++ converts the argument to a pointer-to-the-member.

Consider a class that has a destructor or a copy constructor that does more than a
bitwise copy. Passing a class object by value results in the construction of a
temporary constructor that is actually passed by reference.

It is an error when a function argument is a class object and all of the following
properties hold:

* The class needs a copy constructor

* The class does not have a user-defined copy constructor

* You cannot generate a copy constructor for that class

For more information on copy constructors, see 'Constructors” on page 324.

Examples of Calling Functions

The following statement calls the function startup and passes no parameters:
startup();

The following function call causes copies of a and b to be stored in a local area for
the function sum(). The function sum() runs using the copies of a and b.

sum(a, b);

The following function call passes the value 2 and the value of the expression
a + b tosum():

sum(2, a + b);

The following statement calls the functions printf() and sum(). The function
printf() receives a character string and the return value of sum(). The function
sum() receives the values of a and b:

printf("sum = %d\n", sum(a,b));

The following program passes the value of count to the function increment.
increment increases the value of the parameter x by 1.

CBC3RAAX

[**
**% This example shows how an argument is passed to a function
*%/
#include <stdio.h>
void increment(int);
int main(void)
{
int count = 5;
/* value of count is passed to the function */
increment (count) ;
printf("count = %d\n", count);

return(0);

Chapter 8. Functions 187

Calling Functions and Passing Arguments

void increment(int x)

{

++X3

printf("x = %d\n", x);
1

The output illustrates that the value of count in main remains unchanged:

X =6
count = 5

In the following example, main passes the address of count to increment. This
example has changed the function increment to handle the pointer. It declares the
parameter x as a pointer. The contents to which x points are then incremented.

CBC3RAAY

[**
** This example shows how an address is passed to a function
*%/

#include <stdio.h>

int main(void)

{
void increment(int *x);
int count = 5;

/* address of count is passed to the function =/
increment (&count) ;
printf("count = %d\n", count);

return(0);

}

void increment(int *x)

{

++*xX;
printf("+x = %d\n", *x);

}

The output shows that the above example increases the variable count:

*X = 6
count = 6

Passing Arguments by Reference

The term pass-by-reference describes a general method of passing arguments from a
calling routine to a called routine. If you use a reference type as a formal
argument, you can make a pass-by-reference call to a function. In a
pass-by-reference call, you can modify the values of arguments in the calling
function in the called function. In pass-by-value calls, you can only pass copies of
the arguments to the function.

C++ Note: The term reference in the context of C++ refers to a specific way of
declaring objects and functions.

You cannot pass ellipsis arguments as references.

When the actual argument cannot be referenced directly by the formal argument,
the compiler creates a temporary variable that is referenced by the formal

188 0S/390 V2R6.0 C/C++ Language Reference

Calling Functions and Passing Arguments

argument. It is initialized using the value of the actual argument. In this case, the
formal argument must be a const reference.

You can use reference arguments declared const to pass large objects efficiently to
functions. You do not need to make a temporary copy of the object that is passed
to the function. Because you declare the reference as const, the function cannot
change the actual arguments, for example:

void printbig (const bigvar&); // Function prototype

When you call the function printbig, it cannot modify the object of type bigvar
because a constant reference passes the object.

The following example shows how arguments are passed by reference. Note that
0S/390 C/C++ initializes the reference formal arguments with the actual
arguments, when you call the function.

CBC3X06A

[**

**% This example shows how arguments are passed by reference
*%/

#include <iostream.h>
void swapnum(int &i, int &j)

int temp = i;
i=3s
Jj = temp;

1

//

//

//

main()

int a =10, // a is 10

b = 20; // b is 20
swapnum(a,b); // now a is 20 and b is 10
cout << "A js :" << a

<< "and B is :"

<< b << endl;

}

When the function swapnum() is called, the actual values of the variables a and b
are exchanged because they are passed by reference. The output is:

A is : 20 and B is : 10

For the values of the actual arguments to be modified by the function swapnum(),
you must define the formal arguments of swapnum() as references.

Chapter 8. Functions 189

Default Arguments in C++ Functions

Default Arguments in C++ Functions

In C++, you can provide default values for function arguments. All default
argument names of a function are bound by declaring the function. OS/390 C/C++
checks the types of all functions at declaration, and evaluates them at each point of
call.

CBC3X06B

[**
** This example illustrates default function arguments
*%/

#include <iostream.h>

int a = 1;

int f(int a) {return a;}

int g(int x = f(a)) {return f(a);}

int h()
{
a=2;
{
int a = 3;
return g();
}
1
main()

cout << h() << endl;

}

In this example, the a referred to in the declaration of g() is the one at file scope. It
has the value 2 when g() is called. Consequently, this example prints 2 to standard
output. The value of a is determined after entry into function h(), but before the
call to g() is resolved.

A default argument can have any type.

A pointer to a function must have the same type as the function. Attempts to take
the address of a function by reference without specifying the type of the function
produce an error. Arguments with default values do not affect the type of a
function.

The following example shows that a function with default arguments does not
change its type. The default argument allows you to call a function without
specifying all of the arguments. It does not allow you to create a pointer to the
function that does not specify the types of all the arguments. You can call function
f without an explicit argument, but you cannot define the pointer badpointer
without specifying the type of the argument:

int f(int = 0);

void g()
{
int a = f(1); // ok
int b = f(); // ok, default argument used
}
int (*pointer)(int) = &f; // ok, type of f() specified (int)
int (*badpointer)() = &f; // error, badpointer and f have

// different types. badpointer must
// be initialized with a pointer to
// a function taking no arguments.

190 0S/390 V2R6.0 C/C++ Language Reference

Default Arguments in C++ Functions

Restrictions on Default Arguments

Of the operators, only the function call operator and the operator new can have
default arguments when you overloaded them.

Arguments with default values must be the trailing arguments in the function
declaration argument list. For example:

void f(int a, int b = 2, int ¢ = 3); // trailing defaults

void g(int a = 1, int b = 2, int c); // error, leading defaults

void h(int a, int b = 3, int ¢); // error, default in middle

Once you provide a default argument in a declaration or definition, you cannot
redefine that argument, even to the same value. However, you can add default
arguments that are not given in previous declarations. For example, the last
declaration below attempts to redefine the default values for a and b:

void f(int a, int b, int c=1); // valid

void f(int a, int b=1, int c); // valid, add another default

void f(int a=1, int b, int c¢); // valid, add another default
void f(int a=1, int b=1, int c=1); // error, redefined defaults

You can supply any default argument values in the function declaration or in the
definition. All subsequent arguments must have default arguments supplied in this
declaration, or a previous declaration of the function.

You cannot use local variables in default argument expressions. For example, the
C++ compiler generates errors for both function g() and function h() below:
void f(int a)
{

int b=4;

void g(int c=a); // Local variable "a" inaccessible

void h(int d=b); // Local variable "b" inaccessible

}
Evaluating Default Arguments
When you call a function that is defined with default arguments with the trailing

arguments missing, OS/390 C/C++ evaluates the default expressions, for example:
void f(int a, int b = 2, int ¢ = 3); // declaration

/] ...

int a = 1;

f(a); // same as call f(a,2,3)
f(a,10); // same as call f(a,10,3)
f(a,10,20); // no default arguments

0S/390 C/C++ checks the default arguments against the function declaration and
evaluates them when you call the function. The order of default argument
evaluation is undefined. Default argument expressions cannot use formal
arguments of a function, for example:

int f(int q = 3, int r = q); // error

The value of g may not be known when it is assigned to r. Consequently, the
argument r cannot be initialized with the value of the argument q. Consider
rewriting the above function declaration as follows:

int g=5;

int f(int q = 3, int r = q); // error

Chapter 8. Functions 191

Default Arguments in C++ Functions

In the above example, the value of r in the function declaration still produces an
error because the variable q defined outside of the function is hidden by the
argument g declared for the function. Similarly:

typedef double D;
int f(int D, int z = D(5.3)); // error

Here, the compiler interprets the type D within the function declaration as the
name of an integer. The example hides the type D in the argument D. The cast
D(5.3) is therefore not interpreted as a cast because D is the name of the argument
not a type.

In the following example, you cannot use the nonstatic member a as an initializer.
The member a does not exist until an object of class X is constructed. You can use
the static member b as an initializer, because OS/390 C++ creates b independently
of any objects of class X. You can declare the member b after you use it as a default
argument. The default values are not analyzed until after the final brace, }, of the
class declaration.

class X

{
int a;
f(int z = a) ; // error
g(int z = b) ; // valid
static int b;

}s

You must put parentheses around default argument expressions that contain
template references:

class C {
void f(int i = X<int,5>::y);
1

In the above example, the C++ compiler cannot process the default argument
X<int,5>::y until the end of the class. Consequently, it cannot tell that the <
represents the start of a template argument list and not the less than operator.

To avoid error messages, put parentheses around the expression that contains the
default argument:

class C {
void f(int i = (X<int,5>::y));
}s

Function Return Values

A value must be returned from a function unless the function has a return type of
void. A return statement specifies the return value. The following code fragment
shows a function definition, including the return statement:

int add(int i, int j)

{

return i + j; // return statement

}

The function add() can be called, as shown in the following code fragment:

int a = 10,
b = 20;
int answer = add(a, b); // answer is 30

192 0S/390 V2R6.0 C/C++ Language Reference

Function Return Values

In this example, the return statement initializes a variable of the returned type. The
example initializes the variable answer with the int value 30. The compiler checks
the type of the returned expression against the returned type. It performs all
standard and user-defined conversions, as necessary.

The following return statements show different ways of returning values to a

caller:

return; // Returns no value

return result; // Returns the value of result
return 1; // Returns the value 1

return (x * x); // Returns the value of x * x

Other than main(), if a function that does not have type void returns without a
value (as in the first return statement shown in the example above) the result
returned is undefined. In C++, the compiler issues an error message as well.

If main has a return type of int, and does not contain a return expression, it returns
the value zero.

Each time a function is called, new copies of its local variables are created. You can
reuse the storage for a local variable after the function has terminated.
Consequently, the function should not return a pointer to a local variable, or a
reference to a local variable.

If the function returns a class object, you may create a temporary ob!'ect if the class

has copy constructors or a destructor. For more information, see

Using References as Return Types

References can also be used as return types for functions. The reference returns the
Ivalue of the object to which it refers. This allows you to place function calls on the
left side of assignment statements. Use referenced return values when overloading
assignment operators and subscripting. This way, you can use the results of the
overloaded operators as actual values.

Note: Returning a reference to an automatic variable gives unpredictable results.

For more information, see ['Special Qverloaded Operators” on page 319.

Pointers to Functions

A pointer to a function points to the address of the function’s executable code. You
can use pointers to call functions and to pass functions as arguments to other
functions. You cannot perform pointer arithmetic on pointers to functions. Use the

__cdecl keyword to declare a pointer to a function as a C linkage. For more
information, refer to P’_rr‘]pp] T(pynvnrr] (Crt ﬂn]y\" on page 19’1.

Both the return type and argument types of the function determine the type of a
pointer to a function.

A declaration of a pointer to a function must have the pointer name in

parentheses. Without them, the compiler interprets the statement as a function that
returns a pointer to a specified return type. For example:

Chapter 8. Functions 193

Pointers to Functions

int *f(int a); // function f returning an intx
int (xg)(int a); // pointer g to a function returning an int

In the first declaration, OS/390 C/C++ interprets f as a function that takes an int
as argument. It returns a pointer to an int. In the second declaration, OS/390
C/C++ interprets g as a pointer to a function that takes an int argument and that
returns an int.

Under OS/390 C/C++, if you pass a function pointer to a function, or the function
returns a function pointer, the declared or implied linkages must be the same. Use
the extern keyword with declarations in order to specify different linkages. Refer
toL ifier” for more information.

The following example illustrates the correct and incorrect uses of function
pointers under OS/390 C/C++ :

#include <stdlib.h>

extern "C" int cf();

extern "C++" int cxxf(); // C++ is included here for clarity;
// it is not required; if it is
// omitted, cxxf() will still have
// C++ linkage.

extern "C" int (*c_fp)();

extern "C++" int (xcxx_fp)();

typedef int (xdft_fp T)();

typedef int (dft_f T)();

extern "C" {
typedef void (*cfp_T)();
typedef int (*cf pT)();
void cfn();
void (*cfp)();

}

extern "C++" {
typedef int (xcxxf_pT)();
void cxxfn();
void (*cxxfp)();

}
extern "C" void f_cprm(int (*f)()) {
int (*s)() = cxxf; // error, incompatible Tinkages-cxxf has
// C++ linkage, s has C Tinkage as it
// is included in the extern "C" wrapper
cxxf_pT j = cxxf; // valid, both have C++ Tinkage
int (*i)() = cf; // valid, both have C linkage
1
extern "C++" void f_cxprm(int (*f)()) {
int (*s)() = cf; // error, incompatible Tinkages-cf has C
// Tinkage, s has C++ Tinkage as it is
// included in the extern "C++" wrapper
int (*1)() = cxxf; // valid, both have C++ Tinkage
cf pT j = cf; // valid, both have C linkage
1
main() {
c_fp = cxxf; // error - c_fp has C Tinkage and cxxf has
// C++ linkage
cxx_fp = cf; // error - cxx_fp has C++ linkage and

// cf has C Tinkage
dft_fp T dftfpTl = cf; // error - dftfpTl has C++ linkage and
// cf has C linkage

194 0S/390 V2R6.0 C/C++ Language Reference

Pointers to Functions

dft f T =dftfT3 = c¢f; // error - dftfT3 has C++ linkage and
// cf has C Tlinkage
cxxf; // valid

cxxf; // wvalid

dft_fp T dftfpTs
dft f T *dftfT6

c_fp = cf; /] valid
cxx_fp = cxxf; // valid
f_cprm(cf); // valid
f_cxprm(cxxf); // valid

// The following errors are due to incompatible linkage of function
// arguments, type conversion not possible

f_cprm(cxxf); // error - f_cprm expects a parameter with
// C linkage, but cxxf has C++ Tinkage
f_cxprm(cf); // error - f_cxprm expects a parameter

// with C++ linkage, but cf has C Tinkage
}

For OS/390, linkage compatibility affects all C library functions that accept a
function pointer as a parameter. The gsort () function is an example of these
functions (see L ifier” for a sample program).
Refer to the OS/390 C/C++ Run-Time Library Reference for more information.

For more information on pointers, see ILEomJ;ensLon_pa.ge_QAl and [Painted

”

C++ Inline Functions

Use inline functions to reduce the overhead of a normal function call. Use the
inline function specifier, or define a member function within a class or structure
definition to declare a function.

The inline specifier is a suggestion to the C++ compiler that it can perform an
inline expansion. Instead of transferring control to and from the function code
segment, you may directly substitute a modified copy of the function body for the
function call.

You can declare and simultaneously define an inline function. If you declared the
function with the keyword inTine, you can declare it without a definition. The
following code fragment shows an inline function definition. Note that the
definition includes both the declaration and body of the inline function.

inline int add(int i, int j) { return i + j; }

Both member functions and nonmember functions can be inline, and both have
internal linkage.

The use of the inline specifier does not change the meaning of the function. The

inline expansion of a function may not preserve the evaluation order of the actual
arguments.

Chapter 8. Functions 195

C++ Inline Functions

196 0S/390 V2R6.0 C/C++ Language Reference

Chapter 9. Statements

This chapter describes the C and C++ language statements that are listed below:

Related Information

. I"QPnpp in C” on page 35

. I”anpp in C++” on page 44

. 4 : ”

o P’Chapfpr 6 Fxprpqqinnc and Opprafm‘q” on page 133

3 P’Chapfpr 8 Functions” on page 173

Labels

A label is an identifier that allows your program to transfer control to other
statements within the same function. It is the only type of identifier that has
function scope. Control is transferred to the statement following the label by means
of the goto or switch statements.

A labelled statement has the form:

A\
A

»»>—identifier—:—statement

The label is the identifier and the colon (:) character.

The case and default labels can only appear within the body of a switch
statement.

Examples

comment_complete : ; /* null statement label =/
test_for null : if (NULL == pointer)

© Copyright IBM Corp. 1996, 1998 197

Labels

Related Information

° t/S CII 35

Block

A block statement, or compound statement, lets you group any number of data
definitions, declarations, and statements into one statement. The compiler treats all
definitions, declarations, and statements that are enclosed within a single set of
braces as a single statement. You can use a block wherever a single statement is
allowed.

A block statement has the form:

v

v

type_definition————— I—s tatemen tJ
file_scope_data_declaration—
block_scope_data_declaration—

»»—{

In C, any definitions and declarations must come before the statements.

Redefining a data object inside a nested block hides the outer object while the
inner block runs. If a data object is usable within a block and your program does
not redefine its identifier, all nested blocks can use that data object.

Initialization within Block Statements

Initialization of an auto or register variable occurs each time the block is run
from the beginning. If you transfer control from one block to the middle of another
block, initializations are not always performed. You cannot initialize an extern
variable within a block.

You only initialize an auto or static local object once, when control passes
through its declaration for the first time. OS/390 C/C++ initializes a static
variable that is initialized with an expression other than a constant expression to 0
before entering its block for the first time.

C++ Note: Unlike ANSI/ISO C, in C++, jumping over a declaration or definition
that contains an initializer is an error. For example, the following code
produces an error in C++:
goto skiplabel;

int i=3 // error, jumped over declaration of i with initializer
skiplabel: i=4;

198 0S/390 V2R6.0 C/C++ Language Reference

Block

When control exits from a block, all objects with destructors that are defined in the
block are destroyed. Your program calls the destructor for an auto or a static local
object, only if it constructed the object. Your program must call the destructor
before, or as part of, the atexit function.

Your program also destroys local variables that are declared in a block on exit. It
destroys automatic variables defined in a loop at each iteration.

Example

The following program shows how the values of data objects change in nested
blocks:

CBC3RAA1

1 /**

2 *x This example shows how data objects change in nested blocks.
*%/

#include <stdio.h>

3
4
5
6 int main(void)
7 A
8
9
10

int x = 1; /* Initialize x to 1 =/
inty = 3;

11 if (y > 0)

12 {

13 int x = 2; /* Initialize x to 2 =/

14 printf("second x = %4d\n", x);

15

16 printf("first x = %4d\n", x);

17

18 return(0);

19 }

The program produces the following output:

second x = 2
first x = 1

The function main defines two variables that are named x. The definition of x on
line 8 retains storage while main is running. However, because the definition of x
on line 13 occurs within a nested block, line 14 recognizes x as the variable defined
on line 13. Because line 16 is not part of the nested block, the compiler recognizes
x as the variable defined on line 8.

Related Information

Chapter 9. Statements 199

break

break

A break statement lets you end an iterative statement (do, for, while) or a switch
statement, and exit from it at any point other than the logical end.

A break statement has the form:

»»—break—; ><

In an iterative statement, the break statement ends the loop and moves control to
the next statement outside the loop. Within nested statements, the break statement
ends only the smallest enclosing do, for, switch, or while statement.

In a switch body, the break passes control out of the switch body to the next
statement outside the switch body.

Restrictions

A break statement can only appear in the body of an iterative statement or a
switch statement.

Examples

The following example shows a break statement in the action part of a for
statement. If the ith element of the array string is equal to '\0', the break
statement causes the for statement to end.
for (i = 0; i < 5; i++)
{

if (string[i] == '\0")

break;

length++;

}

The following is an equivalent for statement, if string does not contain any
embedded null characters:

for (i = 0; (i < 5)& (string[i] !'= '\0'); i++)
{

length++;
}

The following example shows a break statement in a nested iterative statement.
The outer loop goes through an array of pointers to strings. The inner loop
examines each character of the string. When OS/390 C/C++ processes the break
statement, the inner loop ends and control returns to the outer loop.

CBC3RAA2

[x*
**% This program counts the characters in the strings that are
% part of an array of pointers to characters. The count stops
*% when one of the digits 0 through 9 is encountered
*% and resumes at the beginning of the next string.
%

/

#include <stdio.h>
#include <ctype.h>

200 0S/390 V2R6.0 C/C++ Language Reference

#define SIZE 3

int main(void)
{
static char *strings[SIZE] = { "ab", "chd", "e5" };
int i;
int Tetter_count = 0;
char *pointer;

for (i = 03 i < SIZE; i++) /* for each string */
/* for each character */
for (pointer = strings[i]; *pointer != '\0'; ++pointer)

/* if a number
if (isnum(*pointer))
break;
letter_count++;

}

printf("letter count = %d\n", Tetter_count);

return(0);

}

The program produces the following output:
Tetter count = 4

The following example is a switch statement that contains several break
statements. Each break statement indicates the end of a specific clause and ends

the switch statement.

CBC3RAA

[**
**% This example shows a switch statement with break statements.

*%/
#include <stdio.h>
enum {morning, afternoon, evening} timeofday = morning;
int main(void) {
switch (timeofday) {
case (morning):
printf("Good Morning\n");

break;

case (evening):
printf("Good Evening\n");

break;
default:
printf("Good Day, eh\n");
}
}
Related Information

Chapter 9. Statements

break

201

continue

continue

A continue statement lets you end the current iteration of a loop. Program control is
passed from the continue statement to the end of the loop body.

A continue statement has the form:

»»—continue—; ><

The continue statement ends the processing of the action part of an iterative (do,
for, or while) statement. It also moves control to the condition part of the
statement. If the iterative statement is a for statement, control moves to the third
expression in the condition part of the statement. It then moves to the second
expression (the test) in the condition part of the statement.

Within nested statements, the continue statement ends only the current iteration of
the do, for, or while statement immediately enclosing it.

Restrictions
A continue statement can only appear within the body of an iterative statement.
Examples

The following example shows a continue statement in a for statement. The
continue statement causes processing to skip over those elements of the array
rates that have values less than or equal to 1.

CBC3RAA3
[**

**% This example shows a continue statement in a for statement.

*%/

#include <stdio.h>
#define SIZE 5

int main(void)
{
int i;
static float rates[SIZE] = { 1.45, 0.05, 1.88, 2.00, 0.75 };

printf("Rates over 1.00\n");
for (i = 0; i < SIZE; i++)
{
if (rates[i] <= 1.00) /+ skip rates <= 1.00 =x/
continue;
printf("rate = %.2f\n", rates[i]);

return(0);

}

The program produces the following output:
Rates over 1.00

rate = 1.45
rate = 1.88
rate = 2.00

202 0S/390 V2R6.0 C/C++ Language Reference

continue

The following example shows a continue statement in a nested loop. When the
inner loop encounters a number in the array strings, that iteration of the loop
ends. Processing continues with the third expression of the inner loop. The inner
loop ends when it encounters the "\0” escape sequence.

CBC3RAA4

[x%

**% This program counts the characters in strings that are part
% of an array of pointers to characters. The count excludes
*% the digits 0 through 9.

*%/

#include <stdio.h>
#include <ctype.h>
#define SIZE 3

int main(void)
{
static char *strings[SIZE] = { "ab", "chd", "e5" };
int i;
int letter_count = 0;
char *pointer;

for (i = 0; i < SIZE; i++) /* for each string */
/* for each character */
for (pointer = strings[i]; *pointer != '\0'; ++pointer)
/* if a number */

if (isnum(*pointer))
continue;
letter_count++;

printf("letter count = %d\n", Tetter_count);

return(0);

}

The program produces the following output:
Tetter count = 5

Compare this program with the program in Bad, which shows the use of the break
statement to perform a similar function.

Related Information

do

A do statement repeatedly runs a statement until the test expression evaluates to 0.
Because of the order of processing, OS/390 C/C++ runs the statement at least
once.

A do statement has the form:

A\
A

»»>—do—statement—while—(—expression—)—;

Chapter 9. Statements 203

do

The body of the loop is run before the controlling while clause is evaluated.
Further processing of the do statement depends on the value of the while clause. If
the while clause does not evaluate to 0, the statement runs again. When the while
clause evaluates to 0, the statement ends. The controlling expression must be
evaluate to a scalar type.

A break, return, or goto statement can end the processing of a do statement, even
when the while clause does not evaluate to 0.

Example

The following statement prompts the user to enter a 1. If the user enters a 1, the
statement ends. If not, it displays another prompt. The example contains
error-checking code to verify that the user entered an integer value and to clear the
input stream if an error occurs.

CBC3X07E
[**

**% This example illustrates the do statement.

*%/

#include <iostream.h>
void main()

int replyl;
char c;
do
{
cout << "Enter a 1: ";
cin >> replyl;
if (cin.fail())
{
cerr << "Not a valid number." << endl;
// Clear the error flag.
cin.clear(cin.rdstate() & “ios::failbit);
cin.ignore(cin.rdbuf()->in_avail());

}

while (replyl != 1);
1

Related Information

204 0S/390 V2R6.0 C/C++ Language Reference

Expression

Expression
An expression statement contains an expression. The expression can be null.
‘Chapter 6 Expressions 1 describes expressions.
An expression statement has the form:
I—expr‘ess ionJ
An expression statement evaluates the given expression. Use it to assign the value
of the expression to a variable or to call a function.
Examples
printf("Account Number: \n"); /* call to the printf */
marks = dollars * exch_rate; /* assignment to marks */
(difference < 0) ? ++losses : ++gain; /* conditional increment =x/
switches = flags | BIT MASK; /* assignment to switches */

Resolving Ambiguous Statements in C++

There are situations in C++ where a statement can be parsed as both a declaration

and as an expression. Specifically, a declaration can look like a function call in

certain cases. The compiler resolves these ambiguities by applying the following

rules to the whole statement:

¢ If the compiler can parse the statement as a declaration but there are no
declaration specifiers, and the statement is inside the body of a function. The
compiler assumes the statement is an expression.

The following statement, for example, is a declaration at file scope of the
function f() that returns type int. There is no declaration specifier and int is
the default, but at function scope this is a call to f():
03

* In every other case, if the compiler can parse the statement as a declaration, it
assumes the statement is a declaration. The following statement, for example, is
a declaration of x with redundant parentheses around the declarator, not a
function-style cast of x to type int:

int(x);

In some cases, C++ syntax does not distinguish between expression statements and
declaration statements. The ambiguity arises when an expression statement has a
function-style cast as its leftmost subexpression. (Note that, because C does not
support function-style casts, this ambiguity does not occur in C programs.) If the
compiler can interpret the statement both as a declaration and as an expression, it
interprets the statement as a declaration statement.

Note: The ambiguity is resolved only on a syntactic level. The resolution does not
use the meaning of the names, except to assess whether or not they are type
names.

The compiler resolves the following expressions into expression statements because

the ambiguous subexpression is followed by an assignment or an operator. In these
expressions, type_spec can be any type specifier:

Chapter 9. Statements 205

Expression

type_spec(i)++; // expression statement
type_spec(i,3)<<d; // expression statement
type_spec(i)->1=24; // expression statement

In the following examples, the ambiguity cannot be resolved syntactically, and the
compiler interprets the statements as declarations. type_spec is any type specifier:
type_spec(*1) (int); /1 declaration
type_spec(J) [5]; /1 declaration
type_spec(m) = { 1, 2 }; // declaration
type_spec(*k) (float(3)); // declaration

The last statement above causes a compile-time error because you cannot initialize
a pointer with a float value.

Any ambiguous statement that is not resolved by the above rules is by default a
declaration statement. All of the following are declaration statements:

type_spec(a); // declaration
type_spec(*b) () ; // declaration
type_spec(c)=23; // declaration
type_spec(d),e,f,g=0; // declaration
type_spec(h) (e,3); // declaration

C++ resolves another ambiguity between expression statements and declaration

statements by requiring an explicit return type for function declarations within a
block:

a(); // declaration of a function returning int
// and taking no arguments
void func()

{

int a(); // declaration of a function

int b; // declaration of a variable
a(); // expression-statement calling function a()
b; // expression-statement referring to a variable

}

The last statement above does not produce any action. It is semantically equivalent
to a null statement. However, it is a valid C++ statement.

for

A for statement lets you do the following:

* Evaluate an expression before the first iteration of the statement (initialization)

* Specify an expression to determine whether or not the statement should be
processed (controlling part)

 Evaluate an expression after each iteration of the statement

* Repeatedly process the statement if the controlling part does not evaluate to
Zero.

A for statement has the form:

»—for—(; ;) >
|—express ionl J |—express ionZJ |—expr‘ess ion3J

»—statement ><

expression1 Is the initialization expression. OS/390 C/C++

206 0S/390 V2R6.0 C/C++ Language Reference

for

evaluates it only before it processes the statement
for the first time. You can use this expression to
initialize a variable. If you do not want to evaluate
an expression prior to the first iteration of the
statement, you can omit this expression.

expression2 Is the controlling part. OS/390 C/C++ evaluates it
before each iteration of the statement. It must
evaluate to a scalar type.

If it evaluates to 0 (zero), the statement is not
processed and control moves to the next statement
following the for statement. If expression2 does not
evaluate to 0, OS/390 C/C++ processes the
statement. If you omit expression2, it is as if the
expression had been replaced by a nonzero
constant. In addition, the for statement is not
terminated by failure of this condition.

expression3 0S/390 C/C++ evaluates this after each iteration
of the statement. You can use this expression to
increase, decrease, or reinitialize a variable. This
expression is optional.

A break, return, or goto statement can cause a for statement to end, even when
the second expression does not evaluate to 0. If you omit expression2, you must use
a break, return, or goto statement to end the for statement.

C++ Note: In C++ programs, you can also use expressionl to declare a variable as
well as initialize it. If you declare a variable in this expression, the
variable has the same scope as the for statement and is not local to the
for statement.

Examples

The following for statement prints the value of count 20 times. The for statement
initially sets the value of count to 1. After each iteration of the statement, it
increments count.

for (count = 1; count <= 20; count++)
printf("count = %d\n", count);

The following sequence of statements accomplishes the same task. Note the use of
the while statement instead of the for statement.
count = 1;
while (count <= 20)
{
printf("count = %d\n", count);
count++;

}

The following for statement does not contain an initialization expression:
for (; index > 10; --index)

{
list[index] = varl + var2;
printf("list[%d] = %d\n", index, Tist[index]);

The following for statement will continue running until scanf receives the letter e:

Chapter 9. Statements 207

for

for (53)
{
scanf("%c", &letter);
if (letter == '\n')
continue;
if (lTetter == 'e')
break;
printf("You entered the letter %c\n", Tetter);

}

The following for statement contains multiple initializations and increments. The
comma operator makes this construction possible. The first comma in the for
expression is a punctuator for a declaration. It declares and initializes two integers,
i, and j. The second comma, a comma operator, allows the program to increment
both i and j at each step through the loop.

for (int 1 =0, j = 50; i < 10; ++i, j += 50)

{

}

cout << "i = " << i << "and j = " << j << endl;

The following example shows a nested for statement. It prints the values of an
array that has the dimensions [5] [3]:
for (row = 0; row < 5; row++)
for (column = 0; column < 3; column++)
printf("%d\n", table[row][column]);

0S/390 C/C++ processes the outer statement as long as the value of row is less
than 5. Each time the outer for statement is executed, the inner for statement sets
the initial value of column to zero. It executes the statement of the inner for
statement 3 times. The inner statement is executed as long as the value of column is
less than 3.

Related Information

goto

A goto statement causes your program to unconditionally transfer control to the
statement that is associated with the label that is specified on the goto statement.

A goto statement has the form:

»—goto—Ilabel identifier—; >

Because the goto statement can interfere with the normal sequence of processing, it
makes a program more difficult to read and maintain. Often, a break statement, a
continue statement, or a function call can eliminate the need for a goto statement.

If you use a goto statement to transfer control to a statement inside of a loop or
block, initializations of automatic storage for the loop do not take place. Thus, the
result is undefined. The label must appear in the same function as the goto.

208 0S/390 V2R6.0 C/C++ Language Reference

goto

If your program exits an active block by using a goto statement, OS/390 C/C++
destroys any local variables when it transfers control from that block.

Example

The following example shows a goto statement that is used to jump out of a
nested loop. You can write this function without using a goto statement.

CBC3RAAG

[x*
**% This example shows a goto statement that is used to

*% jump out of a nested loop.
*%/

#include <stdio.h>
void display(int matrix[3][3]);

int main(void)

{
int matrix[3][3]={1,2,3,4,5,2,8,9,10};
display(matrix);
return(0);

}

void display(int matrix[3][3])
{

int i, J;

for (i = 0; i < 3; i++)
for (3 = 0; J < 3; j++)

if ((matrix[i]1[3] < 1) |} (matrix[i][3] > 6))
goto out_of_bounds;
printf("matrix[%d] [%d] = %d\n", i, j, matrix[i][j]);
}
return;
out_of bounds: printf("number must be 1 through 6\n");

An if statement lets you conditionally process a statement when the specified test
expression evaluates to a nonzero value. The expression must evaluate to a scalar
type. You can optionally specify an else clause on the if statement. If the test
expression evaluates to 0 and an else clause exists, the statement associated with
the else clause runs. If the test expression evaluates to a nonzero value, the
statement following the expression runs and the else clause is ignored.

An if statement has the form:

»>—if—(—expression—)—statement B >
el se—statememtJ

When if statements are nested and else clauses are present, a given else is
associated with the closest preceding if statement within the same block.

Chapter 9. Statements 209

if

Examples

The following example causes grade to receive the value A if the value of score is
greater than or equal to 90.

if (score >= 90)
grade = 'A';

The following example displays Number is positive if the value of number is
greater than or equal to 0. If the value of number is less than 0, it displays Number
is negative.
if (number >= 0)

printf("Number is positive\n");
else

printf("Number is negative\n");

The following example shows a nested if statement:
if (paygrade == 7)
if (level >= 0 && level <= 8)
salary *= 1.05;
else
salary *= 1.04;
else
salary *= 1.06;
cout << "salary is " << salary << endl;

The following example shows a nested if statement that does not have an else
clause. Because an else clause always associates with the closest if statement, you
may have to use braces. The braces force a particular else clause to associate with
the correct if statement. In this example, omitting the braces causes the else
clause to associate with the nested if statement.
if (kegs > 0) {

if (furlongs > kegs)

fpk = furlongs/kegs;

}

else
fpk = 03

The following example shows an if statement nested within an else clause. This
example tests multiple conditions. OS/390 C/C++ performs the tests in order of
their appearance. If it evaluates one test to a nonzero value, OS/390 C/C++ runs
the statement, and ends the entire if statement.
if (value > 0)

++increase;
else if (value == 0)

++break_even;

else
++decrease;

null

The null statement performs no operation. It has the form:

»— » <

A null statement can hold the label of a labeled statement or complete the syntax
of an iterative statement.

210 0S/390 V2R6.0 C/C++ Language Reference

null

Example

The following example initializes the elements of the array price. Because the
initializations occur within the for expressions, a statement is only needed to finish
the for syntax; no operations are required.

for (i =05 1 < 3; price[i++] = 0)

>

You can use a null statement when you require a label before the end of a block
statement, for example:

void func(void) {
if (error_detected)
goto depart;
/* further processing =/
depart:; /* null statement required */

}

return

A return statement ends the processing of the current function and returns control
to the caller of the function.

A return statement has the form:

»>—return |_ . J 5 <
expression

A return statement in a function is optional. The compiler issues a warning if it
does not find a return statement in a function that is declared with a return type. If
the compiler reaches the end of a function without encountering a return
statement, it passes control to the caller. The compiler passes this control as if it
had encountered a return statement without an expression. A function can contain
multiple return statements.

Value of a return Expression and Function Value

If an expression is present on a return statement, OS/390 C/C++ returns the value
of the expression to the caller. If the data type of the expression is different from
the function return type, OS/390 converts the return value. It performs this
conversion as if the value of the expression was assigned to an object with the
same function return type.

If a return statement does not contain an expression, the value of the return
statement is undefined. If a return statement in a function declared with a return
type that is not void does not contain an expression, an error message is issued.
The result of calling the function is unpredictable, for example:

int funcl()
{

return;

1
int func2()

{
return (4321);

}

Chapter 9. Statements 211

return

void main() {

int a=funcl(); // result is unpredictable!
int b=func2();

1

You cannot use a return statement with an expression when you declare the
function as returning type void.

C++ Note: In C++, if a function returns a class object with constructors, OS/390
C/C++ may construct a temporary class object. The temporary object is
not in the scope of the function that returns the temporary object, but is
local to the caller of the function.

When OS/390 C/C++ returns a function, it destroys all temporary local variables.
If local class objects with destructors exist, OS/390 C/C++ calls destructors. For

more details, see 'Tempaorary Objects” on page 333.

Examples

return; /* Returns no value */
return result; /* Returns the value of result x/
return 1; /* Returns the value 1 */
return (x * Xx); /* Returns the value of x * x =/

The following function searches through an array of integers to determine if a
match exists for the variable number. If a match exists, the function match returns
the value of i. If a match does not exist, the function match returns the value -1
(negative one).

int match(int number, int array[], int n)

{

int i;

for (i = 03 i < n; i++)
if (number == array[i])
return (i);
return(-1);

}

Related Information

3 I’Chapfpr 8. Functions” on page 173

° 4 12

switch

A switch statement lets you transfer control to different statements within the switch
body depending on the value of the switch expression. The switch expression must
evaluate to an integral value. The body of the switch statement contains case
clauses that consist of:

* A case label

* An optional default label

* A case expression

* A list of statements

If the value of the switch expression equals one of the case expression values,
0S/390 C/C++ processes the statements that follow that case expression. If not, it
processes any default label statements.

212 0S/390 V2R6.0 C/C++ Language Reference

switch

A switch statement has the form:

A\
A

»>—switch—(—expression—)—switch_body

You enclose the switch body in braces. The switch body can contain definitions,
declarations, case clauses, and a default clause. Each case clause and default clause
can contain statements.

v v »

type_definition l—case_clauseJ
file_scope_data_declaration—
block_scope_data_declaration—

»»—{

|—de fault_claus eJ |—cas ecl auseJ

Note: An initializer within a type_definition, file_scope_data_declaration, or
block_scope_data_declaration is ignored.

A case clause contains a case label which is followed by any number of statements. A
case clause has the form:

v

»>—case_label Statement ><

A case label contains the word case, followed by an integral constant expression
and a colon. You can put multiple case labels anywhere that you can put one case
label. A case label has the form:

A\
A

»»—Y case—integral _constant_expression—:

A default clause contains a default label that is followed by one or more statements.
You can put a case label on either side of the default label. A switch statement
can have only one default label. A default_clause has the form:

> default—: Y _statement >
I—case_labe lJ I—case_labe ZJ

Chapter 9. Statements 213

switch

The switch statement passes control to the statement following one of the labels or
to the statement following the switch body. The value of the expression that
precedes the switch body determines which statement receives control. You can
refer to this expression as the switch expression.

05/390 C/C++ compares the value of the switch expression with the value of the
expression in each case label. If it finds a matching value, it passes control to the
statement following the case label that contains the matching value. If there is no
matching value but there is a default label in the switch body, control passes to
the default labelled statement. If it does not find a matching value, and there is no
default label anywhere in the switch body, it does not process any part of the
switch body.

0S5/390 C/C++ passes control to a statement in the switch body. It passes control
out of the switch body only when it encounters a break statement, or encounters
the last statement in the switch body.

If necessary, OS/390 C/C++ performs an integral promotion on the controlling
expression. It also converts all expressions in the case statements to the same type
as the controlling expression.

Restrictions

The switch expression and the case expressions must have an integral type. The
value of each case expression must represent a different value and must be a
constant expression.

Only one default label can occur in each switch statement. You cannot have
duplicate case labels in a switch statement.

You can put data definitions at the beginning of the switch body. However, the
compiler does not initialize auto and register variables at the beginning of a
switch body.

C++ Note: You can have declarations in the body of the switch statement. In C++,
you cannot normally transfer control over a declaration containing an
initializer. However, you can transfer control if the declaration is
located in an inner block that is completely bypassed by the transfer of
control. You must contain all declarations within the body of a switch
statement that contains initializers in an inner block.

Examples

The following switch statement contains several case clauses and one default
clause. Each clause contains a function call and a break statement. The break
statements prevent control from passing down through each statement in the
switch body.

If the switch expression evaluated to '/', the switch statement would call the
function divide. Control would then pass to the statement following the switch

body.

char key;

cout << "Enter an arithmetic operator\n");
cin >> key;

214 0S/390 V2R6.0 C/C++ Language Reference

switch

switch (key)
{

case '+':
add();
break;

case '-':
subtract();
break;

case 'x':
multiply();
break;

case '/':
divide();
break;

default:
cout << "The key you pressed is not valid\n";
break;

}

If the switch expression matches a case expression, OS/390 C/C++ processes the
statements following the case expression. It processes these statements until it
encounters a break statement, or reaches the end of the switch body. In the
following example, break statements are not present. If the value of text [i] is
equal to 'A', the compiler increments all three counters. If the value of text[i] is
equal to 'a', Tettera and total are increased. Only total is increased if text[i] is
not equal to 'A' or 'a’'.

char text[100];

int capa, lettera, total;

for (i=0; i<sizeof(text); i++) {

switch (text[i])
{
case 'A':
capatt;
case 'a':
letterat+;
default:
total++;

}

The following switch statement performs the same statements for more than one
case label:

CBC3RABI

[**
**% This example contains a switch statement that performs

*x the same statement for more than one case label.
*%/

#include <stdio.h>
int main(void)
{ int month;
/* Read in a month value */

printf("Enter month: ");
scanf("%d", &month);

Chapter 9. Statements 215

switch

/* Tell what season it falls into */
switch (month)
{
case 12:
case 1:
case 2:
printf("month %d is a winter month\n", month);
break;

case 3:

case 4:

case 5:
printf("month
break;

N
o

is a spring month\n", month);

case 6:

case 7:

case 8:
printf("month
break;

N
o

is a summer month\n", month);

case 9:

case 10:

case 11:
printf("month
break;

N
o

is a fall month\n", month);

case 66:
case 99:
default:
printf("month %d is not a valid month\n", month);

return(0);

}

If the expression month has the value 3, OS/390 C/C++ passes control to the
following statement:

printf("month %d is a spring month\n", month);

The break statement passes control to the statement following the switch body.

Related Information

. 0 ”

while

A while statement repeatedly runs the body of a loop until the controlling
expression evaluates to 0.

A while statement has the form:

»»>—while—(—expression—)—statement ><

0S/390 C/C++ evaluates the expression to determine whether or not to process
the body of the loop. The expression must be convertible to a scalar type. If the
expression evaluates to 0, the body of the loop never runs. If the expression does

216 0S/390 V2R6.0 C/C++ Language Reference

while

not evaluate to 0, OS/390 C/C++ processes the loop body. After the body has run,
control passes back to the expression. Further processing depends on the value of
the condition.

A break, return, or goto statement can cause a while statement to end, even when
the condition does not evaluate to 0.

Example

In the following program, item[index] triples each time the value of the expression
++index is less than MAX_INDEX. When ++index evaluates to MAX_INDEX, the while
statement ends.

CBC3RAA7
[**

*% This example illustrates the while statement.
*%/

#define MAX_INDEX (sizeof(item) / sizeof(item[0]))
#include <stdio.h>

int main(void)

{
static int item[] = { 12, 55, 62, 85, 102 };
int index = 0;

while (index < MAX_INDEX)
item[index] *= 3;
printf("item[%d] = %d\n", index, item[index]);
++index;

}

return(0);

}

Related Information

o Fretirn” on page 211

Chapter 9. Statements 217

while

218 0S/390 V2R6.0 C/C++ Language Reference

Chapter 10. Preprocessor Directives

This chapter describes the following topics on C preprocessor directives:

Preprocessor Overview

Preprocessing is a step that takes place before compilation that lets you:

Replace tokens in the current file with specified replacement tokens.

Imbed files within the current file.

Conditionally compile sections of the current file.

Generate diagnostic messages.

Change the source line number of the next line, and change the file name of the
current file.

A token is a series of characters that are delimited by white space. The only white
space that is allowed on a preprocessor directive is a blank (space), the horizontal
tab, and comments. The new-line character can also separate preprocessor tokens.

The preprocessed source program file must be a valid C or C++ program.

The following directives control the preprocessor:

#define Defines a preprocessor directive.

#undef Removes a preprocessor macro definition.

#error Defines text for a compile-time error message.

#include Inserts text from another source file.

#if Conditionally suppresses portions of source code, depending on
the result of a constant expression.

#ifdef Conditionally includes source text if you define a macro name.

#ifndef Conditionally includes source text if you do not define a macro
name.

© Copyright IBM Corp. 1996, 1998 219

Preprocessor Overview

#else Conditionally includes source text if the previous #if, #ifdef,
#ifndef, or #elif test fails.

#elif Conditionally includes source text if the previous #if, #ifdef,
#ifndef, or #elif test fails, depending on the value of a constant
expression.

#endif Ends conditional text.

#1line Supplies a line number for compiler messages.

#pragma Specifies implementation-defined instructions to the compiler.

[‘Preprocessor Directive Eormat’] defines the format of a preprocessor directive .

Preprocessor Directive Format

Preprocessor directives begin with the # token that is followed by a preprocessor
keyword. The # token must appear as the first character that is not white space on
a line. The # is not part of the directive name and you can separate it from the
name with white spaces.

A preprocessor directive ends at the new-line character unless the last character of
the line is the \ (backslash) character. If the \ character appears as the last
character in the preprocessor line, the preprocessor interprets the \ and the
new-line character as a continuation marker. The preprocessor deletes the \ (and
the following new-line character) and splices the physical source lines into
continuous logical lines.

Except for some #pragma directives, preprocessor directives can appear anywhere in
a program.

Phases of Preprocessing

Preprocessing appears as if it occurs in several phases.

1. It introduces new-line characters as needed to replace system-dependent
end-of-line indicators, and performs any other system-dependent character-set
translations. It replaces trigraph (C and C++:) and digraph (C++ only)
sequences with equivalent single characters.

2. It deletes each \ (backslash) that is followed by a new-line character pair. It
appends the next source line to the line that contained the sequence.

3. It decomposes the source text into preprocessing tokens and sequences of white
space. A single white space replaces each comment. A source file cannot end
with a partial token or comment.

4. It executes preprocessing directives, and expands macros.

5. It replaces escape sequences in character constants and string literals by their
equivalent values.

6. It concatenates adjacent string literals.
The rest of the compilation process operates on the preprocessor output, which is

syntactically and semantically analyzed and translated. The compiler output is
then linked as necessary with other programs and libraries.

220 0S/390 V2R6.0 C/C++ Language Reference

#define

Macro Definition and Expansion (#define)

A preprocessor define directive directs the preprocessor to replace all subsequent
occurrences of a macro with specified replacement tokens.

A preprocessor #define directive has the form:

»»—#—define—identifier \\ J
(—)

l—ident‘ifierJ

v

v

> »<

i:identifiej
character

The #define directive can contain an object-like definition or a function-like
definition.

Object-Like Macros

An object-like macro definition replaces a single identifier with the specified
replacement tokens. The following object-like definition causes the preprocessor to
replace all subsequent instances of the identifier COUNT with the constant 1000:

#define COUNT 1000

Consider the following statement:
int arry[COUNT];

If the above statement appears after this definition and in the same file as the
definition, the preprocessor changes the statement to the following statement, in
the output of the preprocessor:

int arry[1000];

Other definitions can make reference to the identifier COUNT:
#define MAX_COUNT COUNT + 100

The preprocessor replaces each subsequent occurrence of MAX_COUNT with
COUNT + 100. The preprocessor then replaces COUNT + 100 with 1000 + 100.

If a number that is partially built by a macro expansion is produced, the
preprocessor does not consider the result to be a single value. For example, the
following will not result in the value 10.2 but in a syntax error:

#define a 10
a.2

Using the following also results in a syntax error:

#define a 10
#define b a.ll

Chapter 10. Preprocessor Directives 221

#define

Identifiers that are partially built from a macro expansion may not be produced.
Therefore, the following example does not produce the identifier abcdefg, and
results in a syntax error:

#define d efg
abcd

Function-Like Macros

Function-like macro definition:
An identifier followed by a parameter list in parentheses and the
replacement tokens. OS/390 C/C++ imbeds the parameters in the
replacement code. White space cannot separate the identifier (which is the
name of the macro) and the left parenthesis of the parameter list. A comma
must separate each parameter. For portability, you should not have more
than 31 parameters for a macro.

Function-like macro invocation:
An identifier followed by a list of arguments in parentheses. A comma
must separate each argument. Once the preprocessor identifies a
function-like macro invocation, it substitutes an argument. It replaces a
parameter in the replacement code by the corresponding argument. The
preprocessor completely replaces any macro invocations that are contained
in the argument itself, before the argument replaces its corresponding
parameter in the replacement code.

The following line defines the macro SUM as having two parameters a and b and
the replacement tokens (a + b):

#define SUM(a,b) (a + b)

This definition would cause the preprocessor to change the following statements (if
the statements appear after the previous definition):

SUM(x,Yy) 3
d * SUM(x,y);

C
C

In the output of the preprocessor, these statements would appear as follows:

(x +y);
d* (x +y);

C
C

Use parentheses to ensure correct evaluation of replacement text. For example,
consider the following definition:

#define SQR(c) ((c) * (c))

The above definition requires parentheses around each parameter ¢ in the
definition. This way, it can correctly evaluate an expression such as the following
one:

= SQR(a + b);

The preprocessor expands this statement as follows:
y = ((a+b) » (a+bh));

Without parentheses in the definition, the preprocessor does not preserve the
correct order of evaluation, and its output is:

y=1(a+bx*a+b);

ee 'Operator Precedence and Assaciativity” on page 133, and l‘Parenthesized
Ex.pxessm&_@_on_pa.ge_m for more information about using parentheses.

222 0S/390 V2R6.0 C/C++ Language Reference

#define

The preprocessor converts the aguments of the single number sign operator (#) and
the double number sign operator ## before it replaces parameters in a function-like
macro.

The number of arguments in a macro invocation must be the same as the number
of parameters in the corresponding macro definition.

Commas in the macro invocation argument list do not act as argument separators
when they are:

* In character constants
¢ In string literals
* Surrounded by parentheses.

Once defined, a preprocessor identifier remains defined and in scope independent
of the scoping rules of the language. The scope of a macro definition begins at the
definition and it does not end until it encounters a corresponding #undef directive.
If there is no corresponding #undef directive, the scope of the macro definition
lasts until the end of the compilation unit.

The preprocessor does not fully expand a recursive macro. For example, consider
the following definition:

#define x(a,b) x(a+l,b+l) + 4

And assume the following macro definition:
x(20,10)

The above macro definition expands to the following, rather than trying to expand
the macro x over and over, within itself:

x(20+1,10+1) + 4
After the preprocessor expands the macro x, the macro is a call to function x().

You do not require a definition to specify replacement tokens. The following
definition removes all instances of the token debug from subsequent lines in the
current file:

#define debug

You can change the definition of a defined identifier or macro with a second
preprocessor #define directive. However, the second preprocessor #define directive
must be preceded by a preprocessor #undef directive. This is described in

” . The #undef directive nullifies the first
definition, so that you can use the same identifier in a redefinition.

Within the text of the program, the preprocessor does not scan character constants
or string constants for macro invocations.

Chapter 10. Preprocessor Directives 223

#define
Examples of #define Directives

The following program contains two macro definitions and a macro invocation that
refers to both of the defined macros:

CBC3RAAS:

[**

**% This example illustrates #define directives.

*% Example CBC3RAA9 shows the effect of preprocessor
*% macro replacement on this program.

*%/
#include <stdio.h>

#define SQR(s) ((s) * (s))

#define PRNT(a,b) \
printf("value 1 = %d\n", a); \
printf("value 2 = %d\n", b);

int main(void)
{
int x
int y

2;
3;

PRNT(SQR(x),y) s

return(0);

}

After the preprocessor interprets this program, it is replaced by code that is
equivalent to the following:

CBC3RAAO9:

[x%

** This example shows the effect of the preprocessor macro
**% replacement on the program in example CBC3RAA8.

*%/
#include <stdio.h>

int main(void)
{
int x = 2;
inty = 3;

d\n", ((x) * (x)));
%d\n", y);

printf("value 1
printf("value 2

return(0);

}

This program produces the following output:

value 1 = 4
value 2 = 3

224 0S/390 V2R6.0 C/C++ Language Reference

#undef

Scope of Macro Names (#undef)

A preprocessor undef directive causes the preprocessor to end the scope of a
preprocessor definition.

A preprocessor #undef directive has the form:

»>—#—undef—identifier >

If you have not currently defined the identifier as a macro, the preprocessor
ignores #undef.

Examples of #undef Directives

The following directives define BUFFER and SQR:

#define BUFFER 512
#define SQR(x) ((x) * (x))

The following directives nullify these definitions:

#undef BUFFER
#undef SQR

The preprocessor does not replace any occurrences of the identifiers BUFFER and
SQR that follow these #undef directives with any replacement tokens. Once the
definition of a macro has been removed by an #undef directive, the identifier can
be used in a new #define directive.

Single Number Sign Operator (#)

The # (single number sign) operator converts a parameter of a function-like macro
into a character string literal. For example, consider defining the macro ABC by
using the following directive:

#define ABC(x) #x

The preprocessor expands all subsequent invocations of the macro ABC into a
character string literal that contains the argument that is passed to ABC. For

example:

Invocation Result of Macro Expansion
ABC(1) "1"

ABC(Hello there) "Hello there"

Note that you can represent the single number sign character # by the trigraph ??=.

Do not confuse the # operator with the null directive documented in

Directive (#)” on page 242

Use the # operator in a function-like macro definition according to the following
rules:

Chapter 10. Preprocessor Directives 225

Operator

The preprocessor converts a parameter that follows the # operator in a
function-like macro into a character string literal that contains the argument that
is passed to the macro.

The preprocessor deletes white-space characters that appear before or after the
argument that is passed to the macro.

The preprocessor uses a single space character to replace multiple white-space
characters that are imbedded within the argument that is passed to the macro.
If the argument that is passed to the macro contains a string literal, and if a \
(backslash) character appears within the literal, the preprocessor inserts a second
\ character before the original one when it expands the macro.

If the argument passed to the macro contains a " (double quotation mark)
character, a \ character is inserted before the " when the macro is expanded.

If the argument passed to the macro contains a ' (single quotation mark)
character, a \ character is inserted before the ' when the macro is expanded.
The conversion of an argument into a string literal occurs before macro
expansion on that argument.

If more than one ## operator or # operator appears in the replacement list of a
macro definition, the order of evaluation of the operators is not defined.

If the result of the macro expansion is not a valid character string literal, the
behavior is undefined.

See I'Eunction-T ike Macros” an page 229 for more information about function-like

macros.

Examples of the # Operator

The following examples demonstrate the use of the # operator:

#define STR(x) #x

#define XSTR(x) STR(x)

#define ONE 1
Invocation Result of Macro Expansion
STR(\n II\nII I\nl) II\n \II\\n\II \I\\n\lll
STR(ONE) "ONE"
XSTR(ONE) "
XSTR("hell0") "\"hello\""

Related Information

4 ”

Macro Concatenation with the ## Operator

The double number sign operator (##) concatenates two tokens in a macro
invocation (text or arguments), that a macro definition contains.

Consider a macro, XY, which is defined using the following directive:

#define XY(x,y) x##y

The preprocessor concatenates the last token of the argument for x with the first
token of the argument for y.

226 0S/390 V2R6.0 C/C++ Language Reference

Operator

For example,

Invocation Result of Macro Expansion
XY(1, 2) 12
XY (Green, house) Greenhouse

Note that you can represent the # character by the trigraph ??=.
Double Number Sign Operator (##)

Use the double number sign operator (##) according to the following rules:

e The ## operator cannot be the very first or very last item in the replacement list
of a macro definition.

* The preprocessor concatenates the last token of the item in front of the ##
operator with the first token of the item that follows the ## operator.

* Concatenation takes place before the preprocessor expands any macros in
arguments.

e If the result of a concatenation is a valid macro name, the result is available for
further replacement. It is available even if it appears in a context in which it is
not normally available.

* If more than one ## operator or # operator appears in the replacement list of a
macro definition, the order of evaluation of the operators is not defined.

Examples of the ## Operator

The following examples demonstrate the use of the ## operator:

#define ArgArg(x, y) x##y
#define ArgText(x) X##TEXT
#define TextArg(x) TEXT##x
#define TextText TEXT##text
#define Jitter 1

#define bug 2

#define Jitterbug 3
Invocation Result of Macro Expansion
ArgArg(Tlady, bug) Tadybug
ArgText(con) conTEXT
TextArg(book) TEXThook
TextText TEXTtext
ArgArg(Jitter, bug) 3

Rel

Chapter 10. Preprocessor Directives 227

#error

Preprocessor Error Directive (#error)

A preprocessor error directive causes the preprocessor to generate an error message
and causes the compilation to fail.

The #error directive has the form:

»>—#—error———character

v
A

Use the #error directive as a safety check during compilation. For example, if your
program uses preprocessor conditional compilation directives, put #error
directives in the source file. The directives prevent code generation if a section of
the program is reached that should be bypassed.

For example, consider the following directive:
#error Error in TESTPGM1 - This section should not be compiled

The above directive generates the following error message:
Error in TESTPGM1 - This section should not be compiled

Related Information
. Feondiona Com o Dieioes Y

File Inclusion (#include)

A preprocessor include directive causes the preprocessor to replace the directive with
the contents of the specified file.

A preprocessor #include directive has the form:

»>—#—include ! file_name—"
[o]
< file_name—>
/1

You can specify an OS/390 data set or an HFS file for filename. Use double slashes
(//) before the filename to indicate that the file is an OS/390 data set. Use a single
slash (/) anywhere in the filename to indicate an HFS file. See the OS/390 C/C++
User’s Guide for more information on specifying include file names.

The preprocessor resolves macros that are contained in an #include directive. After
macro replacement, the resulting token sequence must consist of a file name that is
enclosed in either double quotation marks, or the characters < and >.

For example:

#define MONTH <july.h>
#include MONTH

228 0S/390 V2R6.0 C/C++ Language Reference

#include

If you enclose the file name in double quotation marks ("), the preprocessor
searches the directories or libraries that contain the user source files. It then
searches a standard or specified sequence of places, until it finds the specified file.
For example:

#include "payroll.h"

If you enclose the file name in the characters < and >, the preprocessor searches
only the standard or specified places for the specified file. For example:

#include <stdio.h>

The new-line and > characters cannot appear in a file name that is delimited by <
and >. The new-line and " (double quotation marks) characters cannot appear in a
file name that is delimited by double quotation marks. However, the > character
can appear in such a file name.

For more information about include file search paths and compiler options, see the
0S5/390 C/C++ User’s Guide.

Declarations that are used by several files can be placed in one file and included
with #include in each file that uses them. For example, the following file defs.h
contains several definitions and an inclusion of an additional file of declarations:
/* defs.h %/

#define TRUE 1

#define FALSE 0

#define BUFFERSIZE 512

#define MAX_ROW 66

#define MAX_COLUMN 80

int hour;

int min;

int sec;

#include "mydefs.h"

You can embed the definitions that appear in defs.h with the following directive:
#include "defs.h"

In the following example, a #define combines several preprocessor macros to
define a macro. This macro represents the name of the C standard 1/O header file.
A #include makes the header file available to the program.

#define I0_HEADER <stdio.h>

#include I0 HEADER /* equivalent to specifying #include <stdio.h> */

Predefined Macro Names

0S/390 C/C++ provides the following predefined macro names:

v ”

. I"OQ/’:{QO C /C++ Predefined Macro Names” on page 231

These predefined names cannot be subject to a #define or #undef preprocessor
directive.

Chapter 10. Preprocessor Directives 229

Predefined Macro Names

ANSI/ISO Standard Predefined Macro Names

Both C and C++ provide the following predefined macro names as specified in the
ANSI/ISO C language standard:

Macro Name

__DATE__

_ FILE__

_LINE__

_sTDC__

230 0S/390 V2R6.0 C/C++ Language Reference

Description

A character string literal that contains the date
when the source file was compiled.

The value of _ DATE__ changes as the compiler
processes any include files that are part of your
source program. The date is in the form:

"Mmm dd yyyy"

where:

Mmm Represents the month in an abbreviated
form (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug,
Sep, Oct, Nov, or Dec).

dd Represents the day. If the day is less than
10, the first d is a blank character.

yyyy Represents the year.

A character string literal that contains the name of
the source file.

The value of _ FILE__ changes as the compiler
processes include files that are part of your source
program. You can set it with the #1ine directive,

described in ELine Cantrol (#line)” on page 241,

An integer that represents the current source line
number.

The value of _LINE__ changes during compilation
as the compiler processes subsequent lines of your
source program. You can set it with the #1ine

directive, described in I‘Line Control (#line)” od

The integer 1 (one) indicates that the C compiler
conforms to the ANSI/ISO standard. For C
programs, the compiler sets this macro to the
integer 1 (one) to indicate that the C compiler
conforms to the ANSI/ISO standard. For C++
programs, the compiler does not define this macro.
The macro has the integer value 0 when you use it
in a #if statement. This indicates that the C++
language is not a proper superset of C, and that
the compiler does not conform to ANSI/ISO C.

For more information on how C++ differs from
ANSI/ISO C, see Appendix A C and Cadl
Compatibility” on page 401l The integer 0 (zero)
indicates that C++ does not conform to the
ANSI/ISO C language standard.

_TIME__

__cplusplus

Predefined Macro Names

Note: If you set the language level to anything
other than ANSI, this macro is undefined.

A character string literal that contains the time
when the source file was compiled.

The value of _ TIME__ changes as the compiler
processes any include files that are part of your
source program. The time is in the form:

"hh:mm:ss"

where:

hh Represents the hour.

mm Represents the minutes.

ss Represents the seconds.

Note: The MVS command SET DATE does not affect

the value returned by this macro, or the
value returned by the time() function.

For C++ programs, the preprocessor sets this macro
to the integer 1, which indicates that the compiler
is a C++ compiler. Note that this macro name has
no trailing underscores.

0S/390 C/C++ Predefined Macro Names

05/390 C/C++ provides the following predefined macros. It defines the value of
all these macros when you use the corresponding #pragma directive or compiler

option.
Macro Name

__ANSI__

__BFP__

__EXTENDED__

_SAA__

_SAA L2

Description

C Only. This macro allows only language
constructs that conform to ANSI/ISO C standard.
It is defined as 1 by using the #pragma
Tanglv1(ansi) directive or LANGLVL(ANSI) compile
option.

This macro allows Language Environment headers
to map functions such as sin(x) to appropriate LE
calls. OS/390 C/C++ sets this macro to 1 when
you specify binary floating point (BFP) mode by
using the FLOAT(IEEE) compiler option.

This macro allows additional language constructs
that are provided by the OS/390 C/C++
implementation. It is defined by using the #pragma
Tanglv1 (extended) directive or LANGLVL(EXTENDED)
compile option.

C Only. This macro allows only language
constructs that conform to the most recent level of
SAA C standards. It is defined as 1 by using the
#pragma Tanglvl(saa) directive or LANGLVL (SAA)
compile option.

C Only. This macro allows only language

Chapter 10. Preprocessor Directives 231

Predefined Macro Names

__CODESET _

__COMPAT__

__COMPILER VER__

__COMMONC__

_DLL__

_ FILETAG__

__FUNCTION__

__HHW_370__

232 0S/390 V2R6.0 C/C++ Language Reference

constructs that conform to SAA Level 2 C
standards. It is defined as 1 by using the #pragma
langlvl(saal2) directive or LANGLVL(SAAL2)
compile option.

A string literal that represents the character code
set of the LOCALE compile option. If you do not use
the LOCALE compile option, the macro is undefined.

C++ Only. The macro is defined as 1 by using the
LANGLVL (COMPAT) compile option or the #pragma
Tanglv1(compat) directive for C++ language files. It
indicates that the compiler allows language
constructs that are compatible with earlier versions
of the C++ language.

The compiler version. The format of the version
number that is provided by the macro is hex
PVRRMMMM:
* P represents the compiler product
- 0 for C/370
- 1 for AD/Cycle C/370 and C/C++ for
MVS/ESA
- 2 for OS5/390 C/C++
* V represents the version number
* RR represents the release number
* MMMM represents the modification number

In OS/390 C/C++ Version 2 Release 6, the value of
the macro is X'22060000'.

C Only. Allows language constructs that are
defined by XPG. The _ EXTENDED__ macro enables
many of the constructs that _ COMMONC__ does. The
compiler defines the _ COMMONC__ macro as 1 when
you use the #pragma Tanglv1(commonc) directive or
the LANGLVL(COMMONC) compile-time option.

This macro allows you to write conditional code
that depends upon whether or not you have
compiled your program as DLL code. For C++, the
preprocessor always defines the macro as 1. For C,
the preprocessor defines the macro as 1 if you
specify the DLL compiler option. Otherwise, it is
undefined.

A string literal that represents the character code
set of the filetag pragma associated with the
current file. If no filetag pragma is present, the
macro is undefined.

The value of _ FILETAG__ changes as the compiler
processes include files that are part of your source
program.

A character string that contains the name of the
function that the OS/390 C/C++ is currently
compiling.

Indicates that the host hardware is System/370.

__HOS_MVS__

_IBMC

__IBMCPP__

__LOCALE__

__LONGNAME__

Predefined Macro Names

The preprocessor predefines this macro to a value
of 1 for C and C++ compilers on System/370.

Indicates that the host operating system is OS/390.
05/390 C/C++ predefines this macro to have a
value of 1.

C only. This macro indicates the version number of
the OS/390 C compiler. The format of the version
number that is provided by the macro is integer
PVRRM:
* P represents the compiler product

- 0 for C/370

- 1 for AD/Cycle C/370 and C/C++ for

MVS/ESA

- 2 for OS/390 C/C++
* V represents the version number
* RR represents the release number
* M represents the modification number

In OS/390 C/C++ Version 2 Release 6, the value of
the macro is 22060.

C++ Only. This macro indicates the version number
of the OS5/390 C++ compiler. The format of the
version number that is provided by the macro is
integer PVRRM:
* P represents the compiler product

— 0 for C/370

- 1 for AD/Cycle C/370 and C/C++ for

MVS/ESA

- 2 for OS5/390 C/C++
* V represents the version number
* RR represents the release number
* M represents the modification number

In OS/390 C/C++ Version 2 Release 6, the value of
the macro is 22060.

This macro contains a string literal that represents
the locale of the LOCALE compile option. If you do
not supply a LOCALE compile option, the macro is
undefined.

The following example illustrates how to set the
runtime locale to the compile-time locale:

main()

setlocale(LC_ALL, _ LOCALE_);

}

For C, the integer 1 indicates that you have
specified the LONGNAME compile option or pragma.
Otherwise the macro is undefined. For C++, the
value of __LONGNAME__ is always 1, even if you
specify NOLONGNAME.

Chapter 10. Preprocessor Directives 233

Predefined Macro Names

MVS_

__SOM_ENABLED _

__STRING_CODE_SET__

__TEMPINC__

234 0S/390 V2R6.0 C/C++ Language Reference

C++ Note: In C++, long names are always in the
compilation unit. The LONGNAME compile
option in C++ controls whether
non-C++ names will be truncated and
uppercased, or left alone. You can use
this option to interface with existing C
code that was compiled with
NOLONGNAME, so that the names match.

For OS/390 C/C++ programs, OS/390 C/C++ sets
this macro to 1, which indicates that you are
compiling the program on OS/390.

Note: This macro is the same as __HOS_MVS__.

This macro is defined when you use the SOM
compile options. It indicates that OS/390 C/C++
supports native SOM. This option turns on implicit
SOM mode, and includes the file <som.hh>.

This macro allows you to change the code page
that the compiler uses for character string literals
(character data enclosed in double quotation
marks). To use this macro, you must specify it with
the DEFINE compiler option. The following example
shows you how to do this:

DEFINE(__STRING_CODE_SET _="1508859-1")

This macro affects all source files that are processed
within a compilation unit, including user header
files, and system header files. All string literals
within a compilation unit must use the same code
page. Note that you can also use the CONVLIT
compiler option instead of this macro. For more
information on this option, see the O5/390 C/C++
User’s Guide.

The macro does not affect the following types of

string literals:

* String literals that are used in #include
directives

e String literals that are used in #pragma directives

* String literals that are used to specify linkage,
such as extern "C" (C++ only)

The following restrictions apply to this macro:

* You cannot specify this macro if the SOM compiler
option is in effect.

* You cannot specify this macro if you have also
used predefined macros (such as _ TIMESTAMP__)
that return string literals.

C++ Only. This macro indicates that the compiler is
using the template-implementation file method of
resolving template functions. It is defined as 1 if
you are using the TEMPINC compile option.

__TARGET_LIB

__THW 370

_ TIMESTAMP__

Predefined Macro Names

The target library version. The format of the
version number provided is hex PVRRMMMM:
* P represents the C or C/C++ library product
- 0 for C/370
— 1 for Language Environment/370 and
Language Environment for MVS & VM
— 2 for OS5/390 Release 2 and later
* V represents the version number
* RR represents the release number
¢ MMMM represents the modification number.

In OS/390 C/C++ Version 2 Release 6, the value of
the macro is X'22060000'.

This macro indicates that the target hardware is
System/370. OS/390 C/C++ predefines this macro
to have a value of 1 for C and C++ compilers
targeting System/370.

A character string literal that contains the date and
time when the source file was last modified.

The value of _ TIMESTAMP__ changes as the
compiler processes any include files that are part of
your source program. The date and time are in the
form:

"Day Mmm dd hh:mm:ss yyyy"

where:

Day Represents the day of the week (Mon, Tue,
Wed, Thu, Fri, Sat, or Sun).

Mmm Represents the month in an abbreviated
form (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug,
Sep, Oct, Nov, or Dec).

dd Represents the day. If the day is less than
10, the first d is a blank character.

hh Represents the hour.
mm Represents the minutes.
ss Represents the seconds.

yyyy Represents the year.

This macro is available for Partitioned Data Sets
(PDSs/PDSEs) and HFS source files only. For PDSE
or PDS members, the ISPF timestamp for the
member is used if present. For PDSE/PDS
members with no ISPF timestamp, sequential
datasets, or in stream source in JCL, OS/390
C/C++ returns a dummy timestamp. For HFS files,
0S5/390 C/C++ uses the system timestamp on an
HEFS source file. Otherwise, it returns a dummy
timestamp, "Mon Jan 1 0:00:01 1990".

Chapter 10. Preprocessor Directives 235

Predefined Macro Names

__TOS_MVS__ This macro indicates that the target operating
system is OS/390. OS/390 C/C++ predefines this
macro to a value of 1.

_370__ This macro indicates that the program is compiled
or targeted to run on System/370. OS/390 C/C++
predefines this macro to a value of 1 for backward
compatibility with earlier releases. For current
programs, use _ 370__.

Note: OS/390 C/C++ does not provide a _LONG_LONG predefined macro. If your
code requires this macro, you can define it by using the DEFINE option under
TSO or batch, or the -D option in an OS/390 UNIX environment.

Examples of Predefined Macros
CBC3X08A

[**

** This example illustrates the _ FUNCTION__ predefined macro
=% in a C program.

*%/

#include <stdio.h>
int foo(int);

main(int argc, char *xargv) {

int k = 1;
printf (" In function %s \n", FUNCTION_);
foo(k);

}

int foo (int i) {
printf (" In function %s \n", FUNCTION_);
1

The output of this example is:

In function main
In function foo

CBC3X08B
[**

*% This example illustrates the _ FUNCTION__ predefined macro
*% in a C++ program.
*%/

#include <stdio.h>
int foo(int);

main(int argc, char *xargv) {

int k = 13
printf (" In function %s \n", FUNCTION_);
foo(k);

}

int foo (int i) {
printf (" In function %s \n", FUNCTION_);
}

The output of this example is:

In function main(int, char *x)
In function foo (int)

236 0S/390 V2R6.0 C/C++ Language Reference

Predefined Macro Names

CBC3X08C

[**

** This example illustrates the _ FUNCTION__ predefined macro
% in a C++ program with virtual functions.

*%/

#include <stdio.h>

class X { public: virtual void func() = 0;};

class Y : public X {
public: void func() { printf("In function %s \n", __ FUNCTION_);}
1

main() {
Y aaa;
aaa.func();

}

The output of this example is:
In function Y::func()

Related Information

° 4 ”

. 2 i : ”

Conditional Compilation Directives

A preprocessor conditional compilation directive causes the preprocessor to
conditionally suppress portions of the source code compilation. These directives
test a constant expression or an identifier. They determine which tokens the
preprocessor should pass on to the compiler and which tokens it should bypass
during preprocessing. The directives are:

o #if

o #ifdef

+ #ifndef

e t#else

« #elif

e #endif

The preprocessor conditional compilation directive spans several lines:

* The condition specification line

* Lines containing code that the preprocessor passes on to the compiler if the
condition evaluates to a nonzero value (optional)

* The #else line (optional)

* Lines containing code that the preprocessor passes on to the compiler if the
condition evaluates to zero (optional)

* The preprocessor #endif directive

For each #if, #ifdef, and #ifndef directive, there are zero or more #elif
directives, zero or one #else directive, and one matching #endif directive. You can

consider all the matching directives to be at the same nesting level.

You can nest conditional compilation directives. The following directives match the
first #else with the #if directive.

Chapter 10. Preprocessor Directives 237

Conditional Compilation Directives

#ifdef MACNAME

/* tokens added if MACNAME is defined */
if TEST <=10

/* tokens added if MACNAME is defined and TEST <= 10 */

else

/* tokens added if MACNAME is defined and TEST > 10 %/
endif
#else

/* tokens added if MACNAME is not defined */
#endif

Each directive controls the block immediately following it. A block consists of all
the tokens that start on the line that follows the directive and ends at the next
conditional compilation directive at the same nesting level.

The preprocessor processes directives in the order in which it encounters them. If
an expression evaluates to zero, the preprocessor ignores the block that follows the
directive.

Consider when the preprocessor ignores a block following a preprocessor directive.
In that case, the tokens are examined only to identify preprocessor directives
within that block so that the preprocessor can determine the conditional nesting
level. It ignores all tokens other than the name of the directive.

The preprocessor processes the first block whose expression is nonzero only. It
ignores the remaining blocks at that nesting level. Consider if the preprocessor has
not processed the blocks at that nesting level and there is a #else directive. In that
case, it processes the block following the #else directive. If it has not processed
any of the blocks at that nesting level and there is no #else directive, the
preprocessor ignores the entire nesting level.

#if, #elif

The #if and #elif directives compare the value of the expression to zero.

If the constant expression evaluates to a nonzero value, the preprocessor passes the
tokens that immediately follow the condition to the compiler.

Consider when the expression evaluates to zero and the conditional compilation
directive contains a preprocessor #elif directive. In that case, the preprocessor
passes the source text located between the #elif and the next #elif or
preprocessor #else directive on to the compiler. The #elif directive cannot appear
after the preprocessor #else directive.

All macros are expanded, any defined expressions are processed and all remaining
identifiers are replaced with the token 0.

v
A

i i f—_l—cons tant_expression——token_sequence
elif

The expressions that are tested must be integer constant expressions with the
following properties:
* They must perform arithmetic using lTong int values.

238 0S/390 V2R6.0 C/C++ Language Reference

Conditional Compilation Directives

* The expression can contain defined macros. No other identifiers can appear in
the expression.

¢ The constant expression can contain the unary operator defined. This operator
can be used only with the preprocessor keyword #if. The following expressions
evaluate to 1 if you have defined the identifier in the preprocessor; otherwise
they evaluate to 0 (zero):

defined identifier
defined(identifier)

For example:
#if defined(TEST1) || defined(TEST2)

Note: If you have not defined a macro, the preprocessor assigns a value of 0 (zero)
to it. In the following example, TEST must be a macro identifier:
#if TEST >=1
printf("i = %d\n", i);
printf("array[i] = %d\n", array[i]);
#elif TEST < 0
printf("array subscript out of bounds \n");
#endif

#ifdef

The #ifdef directive checks for the existence of macro definitions.

If you have defined the identifier that is specified as a macro, the preprocessor
passes the tokens that immediately follow the condition on to the compiler.

The preprocessor #ifdef directive has the form:

»»—#—ifdef—identifier——token_sequence

A\
A

The following example defines MAX_LEN to be 75 if EXTENDED is defined for the
preprocessor. Otherwise, the example defines MAX_LEN to be 50.

#ifdef EXTENDED

define MAX_LEN 75
#else

define MAX_LEN 50
#endif

#ifndef

The #ifndef directive checks for the existence of macro definitions.

If you have not defined the identifier that is specified as a macro, the preprocessor
passes on the tokens that immediately follow the condition to the compiler.

The preprocessor #ifndef directive has the form:

Chapter 10. Preprocessor Directives 239

Conditional Compilation Directives

v

»»—#—1ifndef—identifier

token_sequence ><

An identifier must follow the #ifndef keyword. The following example defines
MAX_LEN to be 50 if EXTENDED is not defined for the preprocessor. Otherwise, the
example defines MAX_LEN to be 75.

#ifndef EXTENDED

define MAX_LEN 50

#else

define MAX_LEN 75
#endif

#else

Consider when the condition specified in the #if, #ifdef, or #ifndef directive
evaluates to 0, and the conditional compilation directive contains a #else directive.
In that case, the preprocessor passes the source text located between the #else
directive and the #endif directive to the compiler.

The preprocessor #else directive has the form:

v

»»—#—else token_sequence ><

#endif

The preprocessor #endif directive ends the conditional compilation directive.

It has the form:

»>—if—endif)

Examples of Conditional Compilation Directives

The following example shows how you can nest preprocessor conditional
compilation directives:

#if defined(TARGET1)

define SIZEOF_INT 16

ifdef PHASE2

define MAX_PHASE 2
else

define MAX_PHASE 8
endif

#e1if defined(TARGET2)
define SIZEOF_INT 32
define MAX_PHASE 16

#else

define SIZEOF_INT 32
define MAX_PHASE 32

#endif

240 0S/390 V2R6.0 C/C++ Language Reference

Conditional Compilation Directives

The following program contains preprocessor conditional compilation directives:

CBC3RABC

[**
**% This example contains preprocessor

**% conditional compilation directives.
*%/

#include <stdio.h>

int main(void)

{
static int array[] = { 1, 2, 3, 4, 5 };
int i;

for (i = 0; 1 <= 4; i++)
{

array[i] *= 2;

#if TEST >= 1
printf("i = %d\n", i);
printf("array[i] = %d\n", array[i]);
#endif

}

return(0);

}

Line Control (#line)

A preprocessor line control directive supplies line numbers for compiler messages. It
causes the compiler to view the line number of the next source line as the specified
number.

A preprocessor #1ine directive has the form:

»>—#—1 1nerecimaZ_constant
I—"—fi le_name—"J
c

haracters

A\
A

In order for the compiler to produce meaningful references to line numbers in
preprocessed source, the preprocessor inserts #1ine directives where necessary. For
example, it inserts them at the beginning of and at the end of included text.

A file name specification that is enclosed in double quotation marks can follow the
line number. If you specify a file name, the compiler views the next line as part of
the specified file. If you do not specify a file name, the compiler views the next
line as part of the current source file.

The file_name should be:

* A fully qualified sequential dataset

* A fully qualified PDS or PDSE member
* An HFS path name

The entire string is taken unchanged as the alternate source file name for the
compilation unit (for example, for use by the debugger). Consider if you are using
it to redirect the debugger to source lines from this alternate file. In this case, you

Chapter 10. Preprocessor Directives 241

#line

must ensure the file exists as specified and the line number on the #1ine directive
matches the file contents. The compiler does not check this.

The token sequence on a #11ine directive is subject to macro replacement. After
macro replacement, the resulting character sequence must consist of a decimal
constant, optionally followed by a file name that is enclosed in double quotation
marks.

If you do not specify file_name, the preprocessor takes the line number to refer to
the current source file.

Note: The compiler ignores #1ine directives when the EVENTS compiler option is in
effect.

Example of #line Directives

You can use #1ine control directives to make the compiler provide more
meaningful error messages. The following program uses #11ine control directives to
give each function an easily recognizable line number:

CBC3RABD

[**
*% This example illustrates #1ine directives.
*%/

#include <stdio.h>
#define LINE200 200

int main(void)
func_1();
func_2();

1

#1ine 100
func_1()

printf("Func_1 - the current Tine number is %d\n", _LINE_);

}

#1ine LINE200O
func_2()
{

}

printf("Func_2 - the current 1ine number is %d\n", _LINE_);

This program produces the following output:

Func_1 - the current Tine number is 102
Func_2 - the current Tine number is 202

Null Directive (#)

The null directive performs no action. It consists of a single # on a line of its own.

Do not confuse the null directive with the # operator or the character that starts a
preprocessor directive.

242 0S/390 V2R6.0 C/C++ Language Reference

(Null Directive)

In the following example, if MINVAL is a defined macro name, the preprocessor
takes no action. If MINVAL is not a defined identifier, the preprocessor defines

MINVAL to 1.

#ifdef MINVAL

#
#else

#define MINVAL 1
#endif

Pragma Directives (#pragma)

A pragma is an implementation-defined instruction to the compiler. It has the

general form:

v

»>—#—pragma

character_sequence ><

In the above syntax diagram, character_sequence is a series of characters that gives a
specific compiler instruction and arguments, if any.

The character_sequence on a pragma is not subject to macro substitutions, unless

otherwise stated.

You can specify more than one pragma construct on a single #pragma directive. The
compiler ignores unrecognized pragmas.

The OS/390 C/C++ compiler recognizes the following pragmas:

chars

checkout

comment

convlit

csect

define

disjoint

environment

Sets the sign type of character data.

Controls the diagnostic messages that are
generated by the C compiler CHECKOUT option, and
the C++ compiler INFO option.

Places a comment into the object module. Under
some circumstances it places the comment in the
load module as well. This pragma must appear
before any C or C++ code.

Provides a means for changing the assumed code
page for character string literals.

Identifies the name for either the code, static, or
test control section (CSECT). The IPA Link step
does not use this name; it uses CSECT names that
are specified in the IPA control file.

C++ Only. This pragma forces the definition of a
template class without actually defining an object
of the class.

C Only. This pragma lists the identifiers that are
not aliased to each other within the scope of their
use.

C Only. Use OS/390 C code as an assembler
substitute.

Chapter 10. Preprocessor Directives 243

#pragma

export

filetag

hdrstop

implementation

info

inline

isolated_call

langlvl

linkage

longname

map

margins

noinline

options

pack

page

pagesize

priority

runopts

244 0S/390 V2R6.0 C/C++ Language Reference

Declares that an external function or variable is to
be exported.

Specifies the code set in which the source code was
entered.

Manually terminates the initial sequence of
#include directives that are being considered for
precompilation. This pragma must appear before
any code.

C++ Only. This pragma tells the compiler the name
of the file that contains the function template
definitions. These definitions correspond to the
template declarations in the include file that
contains the pragma.

C++ Only. This pragma controls the diagnostic
messages that are generated by the INFO compiler
option.

C Only. This pragma specifies that a C function is
to be inlined.

Lists functions that do not alter data objects visible
at the time of the function call.

Selects the C or C++ language level for
compilation.

C Only. This pragma identifies the linkage or
calling convention that is used on a function call.

Specifies that the compiler is to generate
not-truncated and mixed case names in the object
module that is produced by the compiler. It must
appear before any code.

Tells the compiler to convert all references to an
identifier to a new name.

Specifies the columns in the input line to scan for
input to the compiler.

Specifies that a C or C++ function is not to be
inlined.

C Only. This pragma specifies options to the
compiler in your source program.

Specifies the alignment rules to use for the
structures, unions, and classes that follow it.

C Only. This pragma skips pages of the generated
source listing.

C Only. This pragma sets the number of lines per
page for the generated source listing.

C++ Only. This pragma specifies the order in
which OS/390 C/C++ initializes static objects at
run time.

Specifies a list of run-time options for OS/390
C/C++ to use at execution time.

sequence

skip

strings

subtitle

target

title

variable

wsizeof

#pragma

Defines the section of the input line that is to
contain sequence numbers.

C Only. This pragma skips lines of the generated
source listing.

Sets storage type for strings.

C Only. This pragma places text on generated
source listings.

C Only. This pragma specifies the operating system
or run-time environment for which OS/390 C/C++
creates the object module. It must appear before
any C code.

C Only. This pragma places text on generated
source listings.

Specifies that OS/390 C/C++ is to use the named
object in a reentrant or non-reentrant fashion.

Specifies the behavior of the sizeof operator either
to that prior to the C/C++ Version 1 Release 3
compilers, or to the OS/390 C/C++ compiler.

The following pragmas are used in Direct-to-SOM applications and are valid in
0S/390 C++ only. Refer to the 05/390 C/C++ Programming Guide for information

about these pragmas.

* SOM

* SOMAsDefault

* SOMAttribute

* SOMCallStyle

* SOMClassInit

* SOMClassName
* SOMClassVersion
¢ SOMDataName
* SOMDefine

* SOMMetaClass

¢ SOMMethodAppend
¢ SOMMethodName
* SOMNoDataDirect

¢ SOMNoMangling
¢ SOMNonDTS
* SOMReleaseOrder

Restrictions on #pragma Directives

The following table lists the restrictions on using #pragma directives, and shows
whether a directive is valid in C, C++, or both. A blank entry in the table indicates

no restrictions.

Table 12. Restrictions on #pragmas

#pragma Restriction on Number of Restriction on Placement C C++
Occurrences
chars Once. On the first #pragma directive, and before yes yes

any code or directive, except for the
pragmas filetag, longname, langlvl or
target, which may precede this directive.

Chapter 10. Preprocessor Directives 245

#pragma

Table 12. Restrictions on #pragmas (continued)

#pragma Restriction on Number of Restriction on Placement C C++
Occurrences
checkout yes yes
comment The copyright directive can The copyright directive must appear yes yes
appear only once. before any C or C++ code.
csect Three times. Once for code, yes yes
once for static data, and once
for debug information.
convlit yes yes
define Wherever a declaration is allowed. yes
disjoint Wherever a declaration is allowed. yes
environment yes
export Cannot export the main() function. yes yes
filetag Once per file scope. On the first #pragma directive, and before yes yes
any code or directive, except for all
conditional compilation directives (such
as #if or #ifdef) which may precede this
directive.
hdrstop yes yes
implementation Wherever a declaration is allowed. yes
info yes
inline At file scope. yes
isolated_call Wherever a declaration is allowed. yes yes
noinline At file scope. yes yes
Tanglvl Once. On the first #pragma directive, and before yes yes
any code or directive, except for the
pragmas filetag, longname, chars or
target, which may precede this directive.
Tinkage Can appear more than once for yes
each function, as long as one
#pragma does not contradict
another #pragma.
Tongname Once. On the first #pragma directive, except for yes yes
pragmas filetag, chars, Tanglvl or
target, which may precede this directive.
map yes yes
margins yes yes
options Before any C code. yes
pack yes yes
page yes
pagesize yes
priority yes
runopts yes yes
sequence yes yes
skip yes
strings Once. Before any C or C++ code. yes yes

246 0S/390 V2R6.0 C/C++ Language Reference

#pragma

Table 12. Restrictions on #pragmas (continued)

#pragma Restriction on Number of Restriction on Placement C C++
Occurrences
subtitle yes
target Once. On the first #pragma directive, and before yes
any code or directive, except for pragmas
filetag, chars, Tanglvl, or Tongname,
which may precede this directive.
title yes
variable yes yes
wsizeof yes yes

IPA Considerations

chars

Interprocedural Analysis (IPA), through the IPA compiler option, is a mechanism
for performing optimizations across the compilation units of your OS/390 C or
C++ program. IPA also performs optimizations not otherwise available with the
C/C++ compiler. Refer to the OS/390 C/C++ Programming Guide for an overview of
IPA.

Many #pragma directives do not have any special behavior under IPA. They have
the same effect on a program compiled with or without the IPA option.

You may see changes during the IPA Link step, due to the effect of a #pragma
directive. The IPA Link step detects and resolves the conflicting effects of #pragma
directives, and the conflicting effects of #pragma directives and compiler options
that you specified for different compilation units. There may also be conflicting
effects between #pragma directives and equivalent compiler options that you
specified for the IPA Link step.

IPA resolves these conflicts similar to the way it resolves conflicting effects of
compiler options that are specified for the IPA Compile step and the IPA Link step.
The Compiler Options Map section of the IPA Link step listing shows the
conflicting effects between compiler options and #pragma directives, along with the
resolutions.

For those #pragma directives where there are special considerations for IPA, the
following #pragma descriptions include IPA-related information.

The #pragma chars directive specifies that the compiler is to treat all char objects as
signed or unsigned.

»—#—pr‘agma—char‘s—(—Eunsi gned) <

signed

This pragma must appear on the first #pragma directive. It must also appear before
any code or directive, except for the pragmas filetag, Tongname, Tanglvl or
target. These pragmas may precede this directive. Once specified, it applies to the

Chapter 10. Preprocessor Directives 247

#pragma

rest of the file and you cannot turn it off. If a source file contains any functions
that you want to compile without #pragma chars, place these functions in a

different file.

The default character type behaves like an unsigned char.

checkout

The #pragma checkout directive is a OS/390 C/C++ directive and an addition to

the SAA Standard.

This pragma can appear anywhere that a preprocessor directive is valid.

»»—#—pragma—checkout— (—[resumc

) »<

suspendJ

With #pragma checkout, you can suspend the diagnostics that the CHECKOUT C
compiler option or the INFO C++ compiler option performs during specific portions
of your program. You can then resume the same level of diagnostics later in the

file.

Nested #pragma checkout directives are allowed and behave as the following

example demonstrates:

/* Assume CHECKOUT(PPTRACE) had been specified =*/

#pragma checkout(suspend) /* No CHECKOUT diagnostics are performed */

#prz;g.;r;la checkout(suspend) /* No effect =/

#pr‘e'lén}a checkout(resume) /* No effect =/]

#pr‘ég.lr'na checkout(resume) /+ CHECKOUT(PPTRACE) diagnostics continue =*/
comment

The #pragma comment directive places a comment into the object module. This
pragma must appear before any C or C++ code or directive in a source file. The
"token_sequence” field in this pragma has a 1024-byte limit.

»»>—#—pragma—comment

»—(——compiler
—date

—timestamp

—[copyright
user4

The comment type can be:

compiler

|—,—"—token_sequence—"J

The compiler appends its name and version in an END

information record at the end of the generated object module.
0S/390 C/C++ does not include the name and version when it
generates an executable, nor does it load the name and version into

248 0S/390 V2R6.0 C/C++ Language Reference

#pragma

memory when it runs the program. This information can be
printed out using the C370LIB utility with the MAP option.

date The compiler appends the date and time of compilation in an END
information record at the end of the generated object module.
0S5/390 C/C++ does not include the date and time when it
generates an executable nor does it load the date and time into
memory when it runs the program. This information can be
printed out using the C370LIB utility with the MAP option.

timestamp The compiler appends the date and time of the last modication of
the source in an END information record at the end of the
generated object module. OS/390 C/C++ does not include the date
and time when it generates an executable nor does it load the date
and time into memory when it runs the program. This information
can be printed out using the C370LIB utility with the MAP option.

If OS/390 C/C++ cannot find the timestamp for a source file, the
#pragma comment directive returns Mon Jan 1 0:00:01 1990.

copyright The compiler places text that is specified by the token_sequence, if
any, into the generated object module. When OS/390 C/C++
creates an executable, it includes the token_sequence in the load
module. The module is loaded into memory when OS/390 C/C++
runs the program.

user The compiler places the text that is specified by the token_sequence,
if any, into the generated object module. When OS/390 C/C++
creates an executable, the token_sequence is included in the load
module. Note that OS/390 C/C++ does not necessarily load it into
memory when it runs the program. OS/390 C/C++ places the
token_sequence on END records in columns 34 to 71.

The characters in the token_sequence field, if specified, must be enclosed in double
quotation marks (").

You can display the object-file comments by using the MAP option for the C370LIB
utility.

IPA Considerations

The #pragma comment directive affects the IPA Compile step only if the OBJECT
suboption of the IPA compile option is in effect.

During the partitioning process in the IPA Link step, the compiler places the text
string information #pragma comment at the beginning of partition 0. Partition 0 is
the initialization partition.

The #pragma convlit directive allows you to suspend the string literal conversion
that the convlit compiler option performs during specific portions of your
program. You can then resume the conversion at some later point in the file.

»»—#—pragma—conv1i t—(—Eres ume]) >
suspend

Chapter 10. Preprocessor Directives 249

#pragma

csect

The pragma is effective only when you specify the CONVLIT compile option.

If you select the PPONLY option, OS/390 C/C++ echoes the convlit pragma to the
expanded source file.

You can nest #pragma convlit directives. They behave as the following example
demonstrates:

/* Assume CONVLIT (<codepage>) had been specified =/
#pragma convlit(suspend) /* No string Titeral conversion =/

#pragma convlit(suspend) /* No effect =/ j
#pragma convlit(resume) /* No effect =/

#pragma convlit(resume) /* String literal conversion continues =*/

Macros, user-defined and pre-defined, are replaced before tokenization; therefore,
using #pragma convlit(suspend) and #pragma convlit(resume) around a macro
definition would have no effect.

For example:

/* No effect on macro definition when using #pragma convlit(suspend)
and #pragma convlit(resume)=*/

main() {
#pragma convlit (suspend)

#define str "Hello World!"
puts(str); /* macro str is not converted */

#pragma convlit(resume)

puts(str); /* macro str is converted */

The #pragma csect directive identifies the name for either the code, static, or
debug control section (CSECT).

v
A

STATIC

»—#—pragma—csect—(—ECODE ,—" name "—)
TEST

It is a OS/390 C/C++ specific pragma, and an addition to the SAA Standard.

code Specifies the CSECT that contains the executable code (C functions) and
constant data.

static Designates the CSECT that contains all program variables with the static
storage class and all character strings.

test Designates the CSECT that contains debug information. You must specify
the TEST option.

The above syntax encloses the name in double quotation marks. This is the name
that is used for the applicable CSECT (code, static, or test). OS/390 C/C++ does
not map the name in any way, including uppercasing. If the name is greater than 8

250 0S/390 V2R6.0 C/C++ Language Reference

#pragma

characters, you must turn on the LONGNAME option. The name must not conflict with
the name of an exposed name (external function or object) in a source file. In
addition, it must not conflict with another #pragma csect directive or #pragma map
directive. For example, the name of the code CSECT must differ from the name of
the static and test CSECTs.

At most, three #pragma csect directives can appear in a source program as follows:
* One for the code CSECT

* One for the static CSECT

* One for the debug CSECT

Consider when there is no #pragma csect directive in the source file and you
specify the CSECT compile option. In this case, OS/390 C/C++ automatically
generates CSECT names from the source file name. For examples that show the file
names that are generated when using either the #pragma csect or the CSECT
compile option, see the section that describes the CSECT option in the OS5/390 C/C++
User’s Guide.

Private code has a disadvantage. When new code is linked to an executable
containing old code, the new code replaces the old. The old code, however, is not
discarded from the executable. The size of the executable will grow, and you may
get duplicates of functions. Naming the CSECTs with this directive replaces the old
code with the new, and removes the old code from the executable. If you want
replacement and removal, name the code, static, and test CSECT.

IPA Considerations

Use the #pragma csect directive when naming regular objects only if the OBJECT
suboption of the IPA compile option is in effect. Otherwise, the compiler discards
the CSECT names that #pragma csect generated.

Refer to the IPA Link Step chapter in the OS/390 C/C++ User’s Guide for
information on how the IPA Link step sets CSECT names.

define (C++ Only)

The #pragma define directive forces the definition of a template class without
actually defining an object of the class.

A\
A

»»>—#—pragma—define—(—template class_name—)

The pragma can appear anywhere that a declaration is allowed. Use the pragma to
organize your program to efficiently or automatically generate template functions.

disjoint (C Only)
The #pragma disjoint directive lists the identifiers that are not aliased to each
other within the scope of their use. In the following syntax diagram, identifier is the

name of a variable:

»»>—ipragma disjoint >

Chapter 10. Preprocessor Directives 251

#pragma

—(identifier—Y—, identifier—I—)——»<

The directive informs the compiler that none of the identifiers listed shares the
same physical storage, which provides more opportunity for optimizations. If any
identifiers actually share physical storage, the pragma may give incorrect results.

The pragma can appear anywhere in the source program that a declaration is
allowed. An identifier in the directive must be visible at the point in the program
where the pragma appears. The identifiers in the disjoint name list cannot refer to
any of the following:

* A member of a class, structure, or union

* A structure, union, or enumeration tag

* An enumeration constant

* A typedef name

> A label

You must declare the identifiers before using them in the pragma. Your program
must not dereference a pointer in the identifier list nor use it as a function
argument before it appears in the directive.

The following example shows the use of #pragma disjoint.
int a, b, *ptr_a, *ptr_b;

#pragma disjoint(xptr_a, b) /% *ptr_a never points to b */
#pragma disjoint(*ptr_b, a) /* *ptr_b never points to a */
one_function()

{
b = 6;
ptr_a = 7; / Assignment will not change the value of b =/

another_function(b); /* Argument "b" has the value 6 =/

}

External pointer ptr_a does not share storage with and never points to the external
variable b. Consequently, assigning 7 to the object to which ptr_a points will not
change the value of b. Likewise, external pointer ptr_b does not share storage with
and never points to the external variable a. The compiler can assume that the
argument to another_function has the value 6 and will not reload the variable
from memory.

environment (C Only)

The #pragma environment directive is an OS/390 C directive, and an addition to
the SAA Standard.

»>—#—pragma—environment— (—function |_ J) >
,holib

252 0S/390 V2R6.0 C/C++ Language Reference

export

filetag

#pragma

With the #pragma environment directive, you can use OS/390 C code as an

assembler substitute. See the OS5/390 C/C++ Programming Guide for more

information on this use. The directive allows you to do the following:

* Specify entry points other than main

* Omit setting up an OS/390 C environment on entry to this function

* Specify several system exits that are written in OS/390 C code in the same
executable

If you specify nolib, the environment is established, and the library is not loaded
at run time. If you do not specify anything, the library is loaded.

Note: If you specify any other value than nolib after the function name, behavior
is not defined.

The #pragma export directive declares that a function or variable is to be exported.
It also specifies the name of the function or variable to be referenced outside the
module. You can use this #pragma to export functions or variables from a DLL
module.

»—#—pragma—expor‘t—(—Efunction) ><
variabl e—l

#pragma export is an OS/390 C/C++ specific directive and an addition to the SAA
standard.

With the #pragma export directive, you can export specific functions and variables
to the users of your DLL. See the O5/390 C/C++ Programming Guide for more
information on creating and using DLLs.

You can specify this pragma anywhere in the DLL source code, on its own line, or
with other pragmas. You can also specify it before or after the definition of the
variable or function. You must externally define the exported function or variable.

Note: You cannot export the main() function. You can also use the _Export
keyword to export a function.

IPA Considerations

If you specify this #pragma in your source code in the IPA Compile step, you
cannot override the effects of this #pragma on the IPA Link step.

The #pragma filetag directive specifies the code set in which the source code was
entered.

v
A

»»—#—pragma—Tfiletag—(—"code set name"—)

Since the # character is variant between code sets, use the trigraph representation
??= instead of # as illustrated below.

Chapter 10. Preprocessor Directives 253

#pragma

The #pragma filetag directive must appear at most once per source file. It must
appear before the first statement or directive, except for all conditional compilation
directives, which may precede this directive. For example:

??=ifdef COMPILER_VER /* This is allowed. */
??=pragma filetag ("code set")

??=endif

It should not appear in combination with any other #pragma directives. For
example, the directive is incorrect:

??=pragma filetag ("IBM-1047") export (baffle_1)

If there are comments before the pragma, OS/390 C/C++ does not translate them
to the code page that is associated with the LOCALE option.

See the OS/390 C/C++ Programming Guide for details on using this directive with
the LOCALE option.

hdrstop

The #pragma hdrstop directive manually terminates the initial sequence of
#include directives that are being considered for precompilation.

v
A

»»>—#—pragma—hdrstop

It has no effect under the following conditions:

¢ The initial sequence of #include directives has already ended

* You do not specify either the GENPCH option or the USEPCH option
* It does not appear in the primary source file

The O5/390 C/C++ User’s Guide describes how to structure your files so the
compiler can take full advantage of the precompiled headers.

Examples

The following example only precompiles the header hl.h by using the file
default.pch (provided you specify USEPCH or GENPCH). If you specify
USEPCH(dave.pch) GENPPCH(john.pch), the compiler will look for the precompiled
headers in john.pch and will regenerate them if they are not found or not usable.

#include "hl.h"

#pragma hdrstop

#include "h2.h"

main () {}

The following example does not use nor does it generate precompiled headers for
the compilation, even if you specify GENPCH or USEPCH.

#pragma hdrstop

#include "hl.h"

#include "h2.h"

main () {}

254 0S/390 V2R6.0 C/C++ Language Reference

#pragma
implementation (C++ Only)
The #pragma implementation directive tells the compiler the name of the file

containing the function-template definitions. These definitions correspond to the
template declarations in the include file which contains the pragma.

v
A

»>—#—pragma—implementation—(—string literal—)

This pragma can appear anywhere that a declaration is allowed. Use this pragma
to organize your program to efficiently or automatically generate template
functions.

Note: #pragma implementation is only effective if the TEMPINC option is in effect. If

the NOTEMPINC option is in effect, you must test the value of the _ TEMPINC__
macro, and conditionally include the required source.

info (C++ Only)

The #pragma info directive controls the diagnostic messages that are generated by
the INFO compile option.

A\
A

»—#—pragma—info—(—[suspendJ)
resume

You can use this pragma directive in place of the INFO option.

Use #pragma info suspend to suspend the diagnostics that the INFO compiler
option performs during specific portions of your program. You can then use
#pragma info resume to resume the same level of diagnostics later in the file.

You can also use #pragma checkout to suspend or resume diagnostics.

The OS5/390 C/C++ User’s Guide describes the INFO option.

inline (C Only) - also see noinline

The #pragma inline directive specifies whether or not the function is to be inlined.
The pragma can be anywhere in the source, but must be at file scope. #pragma
inTine has no effect if you have not specified the INLINE or the OPT compiler
option.

A\
A

»>—#—pragma inline (—function—)
l—noi nli ne—|

The #pragma inline directive is an OS/390 C directive and is an addition to the
SAA Standard.

The #pragma noinline directive is an OS/390 C/C++ directive and is an addition
to the SAA Standard.

Chapter 10. Preprocessor Directives 255

#pragma

If you specify #pragma inline, the function is inlined on every call. The function is
inlined in both selective (NOAUTO) and automatic (AUTO) mode. For OS/390 C++, you
can inline functions using the inline keyword.

If you specify #pragma noinline in your C or C++ program, the function is never
inlined when you call it. This pragma has no effect when you specify NOAUTO with
the OS/390 C INLINE compile option.

The default when compiling with the OPTIMIZE option is to inline functions even if

the OS/390 C++ inline keyword has not been specified. The default when

compiling with the NOOPTIMIZE option is to only inline C++ functions that are:

* Implicitly inlined; that is when the code for a member function is included
inside a class definition

* Explicitly inlined; that is when the inline keyword is used when declaring a
function

For OS/390 C++, you can place the #pragma noinline directive anywhere in the
source. For OS/390 C it must be at file scope.

The #pragma noinline directive is the only way to turn off inlining of functions
that have been implicitly or explicitly inlined. It also takes precedence over the
0S/390 C++ inline keyword.

IPA Considerations

The compiler uses the IPA Link control file directive in the following cases:

* If you specify both the #pragma noinline directive and the IPA Link control file
inline directive for a function

* If you specify both the #pragma inline directive and the IPA Link control file
noinline directive for a function

Example

CBC3RABE:

/* this example shows how #pragma inline may be used */
#pragma csect(code,"MYCFILE")

#pragma csect(static,"MYSFILE")

#pragma options (INLINE)

#include <stdio.h>
#include <stdlib.h>

static int (writerecord) (int, char *);
#pragma inline (writerecord)
int main()

int chardigit;
int digit;

printf("Enter a digit\n");
chardigit = getchar();

digit = chardigit - '0';
if (digit <0 || digit > 9)
{

printf("The digit you entered is not between 1 and 8\n");
exit(99);

256 0S/390 V2R6.0 C/C++ Language Reference

}

switch(digit)

{

case 0:
writerecord(0, "entered 0");
break;

case 1:
writerecord(l, "entered 1");
break;

default:
writerecord(9, "entered other");

}

}

static int writerecord (int digit, char *phrase)

{
switch (digit)
{

case 0:
printf("writerecord 0: ");
printf("%s\n", phrase);
break;

case 1:
printf("writerecord 1: ");
printf("%s\n", phrase);
break;

case 2:
printf("writerecord 2: ");
printf("%s\n", phrase);
break;

case 3:
printf("writerecord 3: ");
printf("%s\n", phrase);
break;

default:
printf("writerecord X: ");
printf("%s\n", phrase);

}

return 0;

}

isolated_call

#pragma

The #pragma isolated_call directive lists functions that do not alter data objects
visible at the time of the function call. In the following syntax diagram, identifier is
a primary expression that can be an identifier, operator function, conversion

function, or qualified name:

v

»>—#—pragma—isolated_call—(identifier

The pragma must appear before calls to the functions in the identifier list. You
must declare the identifiers that are listed before using them in the pragma. They
must be of type function, or a typedef of function. If a name refers to an
overloaded function, all variants of that function declared before the pragma are

marked as isolated calls.

Chapter 10. Preprocessor Directives 257

#pragma

The pragma informs the compiler that none of the functions listed has side effects.
For example:

* Accessing a volatile object

* Modifying an external object

* Modifying a file

Otherwise, you can consider calling a function that does any of the above to be
side effects.

Consider any change in the state of the run-time environment a side effect. Passing
function arguments by reference is one side effect that OS/390 C/C++ allows. In
general, however, functions with side effects can give incorrect results when listed
in #pragma isolated call directives.

Marking a function as isolated indicates to the optimizer that external and static
variables cannot be changed by the called function. It also indicates that references
to storage can be deleted from the calling function where appropriate. Do not
specify a function that calls itself or relies on local static storage. Listing such
functions in the #pragma isolated_call directive can give unpredictable results.

When a function is marked as isolated, the compiler can make more optimistic
assumptions about what variables the function modifies. The compiler may move
function calls to functions that are flagged as isolated to a different location in the
code or even remove them entirely.

The following example routines shows you when to use the #pragma
isolated_call directive (routine addmult). It also shows you when not to use it
(routines same and check):

#include <stdio.h>
#include <math.h>

int addmult(int opl, int op2);
#pragma isolated_call(addmult)

/* This routine is a good candidate to be flagged as isolated as its =/
/* result is constant with constant input and it has no side effects. */
int addmult(int opl, int op2) {

int rsit;

rs1t = opl*op2 + op2;
return rsit;

}

/* The routine 'same' should not be flagged as isolated as its state =/
/* (the static variable delta) can change when it is called. */
int same(double opl, double op2) {

static double delta = 1.0;

double temp;

temp = (opl-op2)/opl;

if (fabs(temp) < delta)
return 1;

else {
delta = delta / 2;
return 0;

}

}

/* The routine 'check' should not be flagged as isolated as it has a */
/* side effect of possibly emitting output. */
int check(int opl, int op2) {

258 0S/390 V2R6.0 C/C++ Language Reference

langlvl

if (opl < op2)
return -1;

if (opl > op2)
return 1;

#pragma

printf("Operands are the same.\n");

return 0;

}

IPA Considerations

If you specify this #pragma in your source code in the IPA Compile step, you
cannot override the effects of this #pragma on the IPA Link step.

The #pragma Tanglvl directive selects the C or C++ language level for compilation.

»»—#—pragma—Ilanglvl—(——ansi) ><

commonc—
extended—
saa
saal2
compat—

You can only specify this pragma only once in a source file. It must appear before
any statements in a source file. The compiler uses predefined macros in the header
files to make declarations and definitions available that define the specified

language level.

The default language level is EXTENDED.

ansi

extended

commonc

Saa

Defines the predefined macros _ ANSI__and _ STDC__ and
undefines other 1anglv1 variables. It allows only language
constructs that conform to ANSI/ISO C standards.

Defines the predefined macro _ EXTENDED__ and undefines other
Tanglvl variables. The default language level is EXTENDED. OS/390
C/C++ defines the _ EXTENDED _ macro as 1. Note that #pragma
Tang1v1 (EXTENDED) has no effect in the OS/390 UNIX environment.
In OS/390 UNIX, you must use the compile option

LANGLVL (EXTENDED) instead of the pragma.

Defines the predefined macro _ COMMONC__ and _ EXTENDED__ and
undefines other Tanglvl variables. This language level allows
compilation of code that contains constructs defined by the
X/Open Portability Guide (XPG) Issue 3 C language (referred to as
Common Usage C). It is roughly equivalent to what is commonly
known as K&R C. See X

[Level” on page 407 for more information about the OS/390 C/C++

implementation of Common Usage C.

05/390 C/C++ does not support this macro for C++.

Defines the predefined macro _ SAA__ and undefines other Tanglv]
variables. OS/390 C/C++ does not support this macro for C++.

Chapter 10. Preprocessor Directives 259

#pragma

saal2 Defines the predefined macro _ SAA_L2__ and undefines other
Tanglv1 variables. OS/390 C/C++ does not support this macro for
C++.

compat Defines the predefined macro _ COMPAT__ and undefines other

Tanglv1 variables. This macro is not supported for C. It is provided
for cfront compatibility.

The #pragma Tanglv1(extended) permits packed decimal types and it issues a
warning message when it detects assignment between integral types and pointer

types.

The #pragma langlvl(ansi) does not permit packed decimal types and issues an
error message when it detects assignment between integral types and pointer
types. Packed decimal applies to C only.

If you specify #pragma langlvi(ansi), OS/390 C/C++ does not allow the NOEXH
compile option, since NOEXH breaks ANSI conformance. The EXH and NOEXH compile
options apply to C++ only.

The LANGLVL compile option has the same effect as this pragma. The O5/390 C/C++
User’s Guide describes this option.

linkage

The #pragma 1inkage directive identifies the entry point of modules that are used
in interlanguage calls.

»»—#—pragma—1inkage—(—identifier, 0S)————>«
FETCHABLE
PLI
COBOL-
FORTRAN

I—, RETURNCODEJ

The identifier either identifies the name of the function that is to be the entry point
of the module. Or, it identifies a typedef that will be used to define the entry
point.

In C++, you accomplish this by using extern "linkage-type" when declaring an
identifier, for example,

extern "FORTRAN" void f();
extern "COBOL" void g();

The #pragma 1inkage directive also designates other entry points within a program
that you can use in a fetch operation.

The following are the linkage entry points:

FETCHABLE Specifies a name, other than main, as an entry point within the
program. This pragma also indicates that this name (identifier in the
syntax diagram) can be used in a fetch() operation. See the
0S5/390 C/C++ Run-Time Library Reference for more information on
the use of the fetch() library function.

260 0S/390 V2R6.0 C/C++ Language Reference

#pragma

0S Designates an entry point (identifier in the syntax diagram) as an 0S
linkage entry point. 0S linkage is the basic linkage convention that
is used by the operating system.

PLI Designates an entry point (identifier in the syntax diagram) as a
PL/I linkage entry point.

COBOL Designates an entry point (identifier in the syntax diagram) as a
COBOL linkage entry point.

FORTRAN Designates an entry point (identifier in the syntax diagram) as a
FORTRAN linkage entry point.

You can specify the RETURNCODE keyword with the FORTRAN keyword
for C programs only. OS/390 C/C++ does not support it for C++.
RETURNCODE indicates to the compiler that the routine named by
identifier is a FORTRAN routine, which returns an alternate return
code. It also indicates that the routine is defined outside the
compilation unit. You can retrieve the return code by using the
fortrc() function (refer to the OS/390 C/C++ Run-Time Library
Reference for more information). If the compiler finds the function
definition inside the compilation unit, it issues an error message.
Note that you can define functions outside the compilation unit,
even if you do not specify the RETURNCODE keyword.

You can use a typedef in a #pragma 1inkage directive to associate a specific linkage
convention with the typedef of a function.

typedef void func_t(void);
#pragma linkage (func_t,0S)

In the example, the #pragma 1inkage directive associates the 0S linkage convention
with the typedef func_t. This typedef can be used in C declarations wherever a
function type specifies the type function of 0S linkage type.

Refer to OS5/390 Language Environment Writing Interlanguage Applications for more
information about interlanguage calls.

longname

The #pragma Tongname directive specifies that the compiler is to generate
not-truncated and mixed case names in the object module that is produced by the
compiler. These names can be up to 1024 characters in length.

»>—#—pragma Tongname ><
|—no] ongname—|

If you use the #pragma Tongname directive for an OS/390 C or C++ program, you
must either use the binder to produce a program object in a PDSE, or you must
use the prelinker. The binder, IPA Link step, and prelinker support the long name
directory that is generated by the Object Library utility for autocall.

If you specify the NOLONGNAME compile option, the compiler ignores the #pragma

Tongname directive. If you specify the LONGNAME compile option, the compiler
ignores the #pragma nolongname.

Chapter 10. Preprocessor Directives 261

#pragma

map

Note: The OS/390 C compiler defaults to the NOLONGNAME compile option, and the
0S/390 C++ compiler defaults to the LONGNAME compile option.

Under OS/390 C, if you specify the ALIAS compile option, the compiler creates a
NAME control statement, but no ALIAS control statements. You can use the OS/390 C
Object Library Utility to create a library of object modules with a long name
directory which supports autocall of long name symbols.

If you have more than one preprocessor directive, #pragma longname may be
preceded only by #pragma filetag, #pragma chars, #pragma langlvl, and #pragma
target. Some directives, such as #pragma variable and #pragma Tinkage are
sensitive to the name handling.

For OS/390 C++, you must specify #pragma longname and #pragma nolongname
before any code. Otherwise, the compiler issues a warning message.

If you use #pragma map to associate an external name with an identifier, the
external name is produced in the object module. That is, #pragma map has the same
behavior with or without the #pragma Tongname directive.

The #pragma nolongname directive directs the compiler to generate truncated and
uppercase names in the object module produced by the compiler. When the
#pragma nolongname directive is specified, only functions that do not have C++
linkage are given truncated and uppercase names. More details on external name
mapping are provided in the section, m Also, if you have more than one
preprocessor directive, #pragma nolongname must be the first one.

If you specify either #pragma nolongname or the NOLONGNAME option, and this results
in mapping of two different source code names to the same object code name, the
compiler will not issue an error message.

IPA Considerations

You must specify either the LONGNAME compile option or the #pragma longname
preprocessor directive for the IPA Compile step (unless you are using the c89
utility). Otherwise, you receive an unrecoverable compiler error.

The #pragma map directive tells the compiler to convert all references to an
identifier to "name".

#pragma map is a OS/390 C/C++ directive and an addition to SAA standard. If you
use the #pragma map directive, the C/C++ name in the source file is not visible in
the object deck. The map name represents the object in the object deck.

#pragma map for OS/390 C

For C, #pragma map has the form:

v
A

»»>—#—pragma—map—(—identifier—,—"name"” —)

identifier A name of a data object or function with external linkage.

262 0S/390 V2R6.0 C/C++ Language Reference

#pragma

name The external name that the compiler binds to the given object or
function.

The directive can appear anywhere within a single compilation unit. It can appear
before any declaration or definition of the named object or function.

You should enclose name in double quotation marks. The maximum length for
external names is 8 characters. This is because external names in object modules
can be 8 characters at most without the LONGNAME compile option. The compiler
keeps it as specified on the #pragma map directive in mixed case. It must not
conflict with the name in another #pragma map or #pragma csect directive.

The map name is an external name, thus you must not use it in the source file to
reference the object. If you use the map name in the source file to access the
corresponding object, the compiler treats it as a new identifier.

The compiler produces an error message if you give more than one map name to
an identifier. Two different identifiers can have the same map name.

The compiler resolves the identifiers appearing in the directive, including any type
names used in the prototype argument list. The compiler resolves them as though
the directive had appeared at file scope, independent of its actual point of
occurrence.

For example:

extern "C" int func(int);
#pragma map(func, "funcnamel") // maps ::func

#pragma map for OS/390 C++

For OS/390 C++, #pragma map has the form:

»>—#—pragma—map >

»—(identifier ,—"name" —) >
L _

func_or_op_identifier—(—argument_list—)

identifier A name of a data object or a nonoverloaded
function with external linkage.

func_or_op_identifier A name of a function or operator with external
linkage. The name can be qualified.

arqument_list A prototype list for the named function or operator.

name The external name that is bound to the given

object, function, or operator.

The directive can appear anywhere within a single compilation unit. It can appear
before any declaration or definition of the named object, function, or operator. The
compiler resolves the identifiers appearing in the directive, including any type
names used in the prototype argument list. It resolves them as though the directive
had appeared at file scope, independent of its actual point of occurrence.

Chapter 10. Preprocessor Directives 263

#pragma

For example:
int func(int);

class X

{
public:
void func(void);
#pragma map(func, "funcnamel") // maps ::func
#pragma map(X::func, "funcname2") // maps X::func

}s

In C++, you should not use #pragma map to map the following:
* C++ Member functions

* Opverloaded functions

¢ Objects generated from templates

* Functions with C++ linkage, or builtin linkage

Such mappings override the compiler-generated names, which could cause IPA
Link or binder errors.

IPA Considerations

The use of the #pragma map directive for variables will inhibit the global coalescing
optimization of these variables during the IPA Link step.

margins

The #pragma margins directive specifies the margins in the source file that are to be
scanned for input to the compiler. You cannot specify columns (m,n) for OS/390
C++. The #pragma nomargins directive specifies that the entire input source record
is to be scanned for input to the compiler.

#pragma margins is a OS/390 C/C++ directive and an addition to the SAA
Standard.

#pragma margins for OS/390 C

»—#—pragma—[margi ns— (—m—,—n—) >
nomargi ns;

#pragma margins for OS/390 C++

»>—#—pragma argins _| ><
nomargins

In the syntax diagram, you can specify the following parameters for OS/390 C:

m The first column of the source input that contains a valid C program. The
value of m must be greater than 0, and less than 32761.

Also, m must be less than or equal to the value of n.

n The last column of the source input that contains a valid C program. The
value of n must be greater than 0, and less than 32761.

264 0S/390 V2R6.0 C/C++ Language Reference

#pragma

You can assign an asterisk (*) to n. The asterisk indicates the last column of
the input record. For example, if you specify #pragma margins(8,*), the
compiler scans from column 8 to the end of the record for input source
statements.

You can use #pragma margins and #pragma sequence together. If they
reserve the same columns, #pragma sequence has priority and it reserves
the columns for sequence numbers. For example, assume columns 1 to 20
are reserved for the margin, and columns 15 to 25 are reserved for
sequence numbers. In this case, the margin will be from column 1 to 14,
and the columns reserved for sequence numbers will be from 15 to 25.

For more information on the #pragma sequence directive, refer to

v ”

The margin setting specified by the #pragma margins directive applies only to the
source file or include file in which it is found. It has no effect on other #include
files. The #pragma margins and the #pragma nomargins directives come into effect on
the line following the directive. They remain in effect until the compiler encounters
another #pragma margins or #pragma nomargins directive, or until the compiler
reaches the end of the file.

If you use the compile options MARGINS or NOMARGINS with the #pragma margins or
#pragma nomargins directives, the #pragma directives override the compile options.
The compile option specified will be in effect up to, and including, the #pragma
margins or #pragma nomargins directive.

For OS/390 C++, the #pragma margins specifies that columns 1 through 72 in the
input record are to be scanned for input to the compiler. The input file can have

fixed or variable record length. The compiler ignores any text in the source input
that does not fall within the range.

For OS/390 C, the default setting is MARGINS(1,72) for fixed-length records, and
NOMARGINS for variable-length records. For OS/390 C++, the default is NOMARGINS.

noinline (C and C++) - also see inline

The #pragma noinline directive is an OS/390 C/C++ directive and is an addition to
the SAA Standard.

The #pragma noinline specifies that the function is never inlined when you call it.
This pragma has no effect when you specify NOAUTO with the OS/390 C INLINE
compile option.

You can place the #pragma noinline directive anywhere in a C++ program. The
directive must be at file scope in a C program.

The #pragma noinline directive is the only way to turn off inlining of functions
that have been implicitly or explicitly inlined at compile time. It also takes
precedence over the OS/390 C/C++ inline keyword.

s . . . 17

See Linline (C Only) - also see noinline” on page 253 for more information. For
more information on how to use #pragma noinline, refer to the OS/390 C/C++
User’s Guide.

Chapter 10. Preprocessor Directives 265

#pragma

IPA Considerations

If you use either the #pragma inline or the #pragma noinline directive in your
source, you can later override them with an appropriate IPA Link control file
directive during the IPA Link step. For example:

* If you specify both the #pragma noinline directive and the IPA Link control file
inTine directive for a function.

* If you specify both the #pragma inline directive and the IPA Link control file
noinline directive for a function.

options (C Only)

The #pragma options directive specifies a list of compile options that are to be
processed as if you had typed them on the command line or on the CPARM
parameter of the IBM-supplied cataloged procedures.

B

v

»»—#—pragma—options—(Y option) ><

The only compile options that are allowed on a #pragma options directive are:

AGGREGATE | NOAGGREGATE ALIAS|NOALIAS ANS | NOANS

ARCH CHECKOUT | NOCHECKOUT DECK | NODECK
GONUMBER | NOGONUMBER HWOPTS | NOHWOPTS® INLINE|NOINLINE
LIBANSI |NOLIBANSI MAXMEM | NOMAXMEM OBJECT |NOOBJECT
OPTIMIZE|NOPTIMIZE RENT | NORENT SERVICE |NOSERVICE
SPILL|NOSPILL START |[NOSTART TEST|NOTEST
UPCONV | NOUPCONV TUNE |NOTUNE XREF | NOXREF

Note: ' The compiler accepts the HWOPTS|NOHWOPTS option, but you should use the
ARCHITECTURE option instead.

For a detailed description of these options refer to the OS/390 C/C++ User’s Guide.
If you use a compile option that contradicts the options that are specified on the
#pragma options directive, the compile option overrides the options on the #pragma

options directive.

If you specify an option more than once, the compiler uses the last one you
specified.

If you use one of the following compile options, the compiler inserts the option
name at the bottom of your object module to indicate that it used the option:

ALIAS ANSIALIAS ARCHITECTURE
GONUMBER HWOPTS INLINE

LIBANSI MAXMEM OPTIMIZE (all Tevels)
RENT SPILL START

TARGET (all targets) TEST TUNE

UPCONV

266 0S/390 V2R6.0 C/C++ Language Reference

pack

#pragma
IPA Considerations

You cannot specify the IPA compile-time option for #pragma options.

Refer to the OS/390 C/C++ User’s Guide for descriptions of how different compile
options affect IPA processing.

The #pragma pack directive specifies the alignment rules to use for the structures,
unions, and classes that follow it. The C compiler performs packing on definitions if
you specify _Packed and on declarations if you specify #pragma pack. The C++
compiler does not support _Packed, so it can only perform packing on declarations.
This means that the packing applies to type-specifiers and not declarators.

»>—#—pragma—pack—() ><
—1
—2
—4
—full
—packed—
—twobyte—
—reset—
where:
full Is 4-byte boundary alignment. It is the system default boundary
alignment. This is the same as #pragma pack()and #pragma
pack(4).
packed Is 1-byte boundary alignment. This is the same as #pragma pack(1).
twobyte Is 2-byte boundary alignment. This is the same as #pragma pack(2).
reset Returns the alignment to the previous alignment rule.

The #pragma pack directive packs all structures and unions that follow it in the
program along a boundary specified in the directive. It continues to pack until
another #pragma pack directive changes the packing boundary. The #pragma pack
directive does not apply to forward declarations of structures or unions. For
example, in the following code fragment, the alignment for struct S is full. This is
the rule when the declaration list is declared:

#pragma pack(packed)

struct S;

#pragma pack(full)

struct S { int i, j, ks }3

The compiler packs declarations or types. This is different from the _Packed
keyword in OS5/390 C, where packing is also performed on definitions. For
portability, you should use #pragma pack instead of the _Packed keyword.

The #pragma pack directive does not have the same effect as declaring a structure
as _Packed. The _Packed keyword removes all padding between structure members,
while the #pragma pack directive only specifies the boundaries to align the
members.

Normal structure alignment aligns the structure members on their natural
boundaries and ends the structure on its natural boundary. The alignment of the

Chapter 10. Preprocessor Directives 267

#pragma

structure is that of its strictest member. The compiler performs normal alignment
when your program meets one of the following conditions:

* It does not specify the #pragma pack directive

* It specifies #pragma pack() before the structure declaration

* It specifies #pragma pack(full) before the structure declaration

To change the alignment back to what it was before the last #pragma pack, use the
reset option.

Consider if, by default, the compiler packs data types along boundaries smaller
than those specified by #pragma pack. The compiler still aligns them along the
smaller boundaries. For example, the compiler always aligns type char along a
1-byte boundary, regardless of the value of #pragma pack.

Consider when more than one #pragma pack directive appears in a structure
defined in an inlined function. In that case, the #pragma pack directive that is in
effect at the beginning of the structure takes precedence.

If you are porting code from other platforms that contain #pragma pack directives
or packed data, consider using the PORT compiler option to increase the syntax
checking for the #pragma pack directive in your code. This option will allow you to
adjust the error recovery action the compiler takes if the # pragma pack is
incompatible with the OS/390 C/C++ # pragma pack. For more information on
using the PORT option, see the OS/390 C/C++ User’s Guide.

Alignment of Nested Structures

A nested structure has the alignment that precedes its declaration, not the
alignment of the structure in which it is contained.

#pragma pack () // full alignment
struct nested {

int x;

char y;

int z;
}s
#pragma pack(1) // 1-byte alignment
struct packedcxx{

char aj;

short b;

struct nested sl; // full alignment

bs
Alignment of Unions

You can also perform packing in a union. Each member starts at offset zero, and
the entire union spans as many bytes as its largest element. The #pragma pack
affects the total alignment restriction of the whole union. Consider the following
example:

Without Packing:

union uu {
short a;
struct {
char x;
char y;
char z;

268 0S/390 V2R6.0 C/C++ Language Reference

#pragma
} bs
b

union uu array[2];

First, consider the non-packed array. Each of its elements is of type union uu.
Since it is non-packed, every element has an alignment restriction of 2 bytes. The
largest alignment requirement among the union members is that of short a. There
is one byte of padding at the end of each element to enforce this requirement.

— array[0] ———— array[l] ———

With #pragma pack(packed):
#pragma pack(packed)

union uu {
short a;
struct {
char x;
char y;
char z;
} b;
}s

union uu pl_array[2];

Now consider the packed array pl_array. Since the example specifies #pragma
pack(packed), the alignment restriction of every element is the byte boundary.
Therefore, each element has a length of only 3 bytes, as opposed to the 4 bytes of
the previous case.

— p_array[0] —r— p_array[l] —

For information on calling C packed structures or unions from C++, see the OS/390
C/C++ Programming Guide.

For information on packing C structures, see L_Packed Qualifier (C Only)” onl

Examples

In a header file, file.h:
#pragma pack(packed)

struct jeff{ /* this structure is packed */
float bill; /* along 1-byte boundaries */
int *chris;

}

#pragma pack(reset) /* reset to previous alignment rulex/

Chapter 10. Preprocessor Directive