

IB
MIBM Configuration Management Version Control

Commands Reference

Version 2 Release 2

SC09-1635-01

IBM IBM Configuration Management Version Control

Commands Reference

Version 2 Release 2

SC09-1635-01

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page ix.

Second Edition (Dec 1993)

This edition applies to Version 2, Release 2, Modification Level 0, of IBM Configuration Management Version Control/6000 (Program
5765-207), IBM Configuration Management Version Control for HP systems (Program 5765-202), IBM Configuration Management
Version Control for Sun systems (Program 5622-063), and to all subsequent releases and modifications until otherwise indicated in
new editions. Make sure you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR
1150 Eglinton Avenue East
North York, Ontario, Canada. M3C 1H7

You can also send your comments by facsimile (attention: RCF Coordinator), or you can send your comments electronically to IBM.
See “Communicating Your Comments to IBM” for a description of the methods. This page immediately precedes the Readers’
Comment Form at the back of this publication.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1993. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . ix
Trademarks and Service Marks . ix

About This Book . xi
Who Should Read This Book . xi
What You Should Know . xi
How To Use This Book . xi
Highlighting Conventions . xii
Related Publications . xii

Changes and Additions for CMVC Version 2 xv
Changes of Command Syntax for OS/2 Client xvi

Chapter 1. General Command Information . 1
Flags . 2

Action Flags . 2
Attribute Flags . 2
Flag Arguments . 2
Using Standard Input for Arguments . 4

Environment Variables . 4
Methods of Setting Environment Variables . 6

Authority Requirements . 6
Base Authority . 6
Superuser Privilege . 6
Implicit Authority . 7
Explicit Authority . 7
Restricted Authority . 7

How to Read Syntax Statements . 8
A Note on Examples . 8

Chapter 2. Access . 9
Syntax . 9
Action Flags . 9
Attribute Flags . 10
Examples . 10
Related Information . 11

Chapter 3. Approval . 13
Syntax . 13
Action Flags . 14
Attribute Flags . 14
Examples . 15
Related Information . 16

Chapter 4. Approver . 17
Syntax . 17
Action Flags . 17
Attribute Flags . 18
Examples . 18
Related Information . 18

 Copyright IBM Corp. 1993 iii

Chapter 5. Component (Componen) . 19
Syntax . 20
Action Flags . 20
Attribute Flags . 21
Examples . 21
Related Information . 22

Chapter 6. Coreq . 23
Syntax . 23
Action Flags . 23
Attribute Flags . 24
Examples . 24
Related Information . 24

Chapter 7. Defect . 25
Syntax . 25
Action Flags . 26
Attribute Flags . 28
Examples . 29
Related Information . 31

Chapter 8. Environment (Environ) . 33
Syntax . 33
Action Flags . 33
Attribute Flags . 34
Examples . 34
Related Information . 35

Chapter 9. Feature . 37
Syntax . 37
Action Flags . 38
Attribute Flags . 40
Examples . 41
Related Information . 42

Chapter 10. File . 43
Syntax . 44
Action Flags . 45
Attribute Flags . 47
Examples . 49
Related Information . 51

Chapter 11. Fix . 55
Syntax . 55
Action Flags . 56
Attribute Flags . 57
Examples . 57
Related Information . 58

Chapter 12. Host (Hostcmd) . 59
Syntax . 59
Action Flags . 59
Attribute Flags . 60
Examples . 60

iv CMVC Commands Reference

Related Information . 61

Chapter 13. Level . 63
Syntax . 64
Action Flags . 64
Attribute Flags . 65
Examples . 67
Related Information . 68

Chapter 14. LevelMember (Levelmem) . 69
Syntax . 69
Action Flags . 69
Attribute Flags . 70
Examples . 70
Related Information . 70

Chapter 15. Migrate . 73
Syntax . 73
Action Flags . 74
Attribute Flags . 74
Examples . 75
Related Information . 75

Chapter 16. Notify . 77
Syntax . 77
Action Flags . 77
Attribute Flags . 78
Examples . 78
Related Information . 79

Chapter 17. Release . 81
Syntax . 82
Action Flags . 82
Attribute Flags . 83
Examples . 84
Related Information . 85

Chapter 18. Report . 87
Syntax . 87
Action Flags . 88
Attribute Flags . 88
Examples . 89
Related Information . 92

Chapter 19. Size . 95
Syntax . 95
Action Flags . 95
Attribute Flags . 96
Examples . 97
Related Information . 97

Chapter 20. Test . 99
Syntax . 99
Action Flags . 99

 Contents v

Attribute Flags . 100
Examples . 100
Related Information . 101

Chapter 21. Track . 103
Syntax . 103
Action Flags . 104
Attribute Flags . 105
Examples . 106
Related Information . 106

Chapter 22. User . 107
Syntax . 107
Action Flags . 107
Attribute Flags . 108
Examples . 108
Related Information . 109

Chapter 23. Verify (Verifycm) . 111
Syntax . 111
Action Flags . 111
Attribute Flags . 112
Examples . 112
Related Information . 113

Appendix A. Report-Raw Output . 115
AccessDownView . 115
AccessView . 115
ApprovalView . 116
ApproverView . 116
Authority . 116
Cfgcomproc . 117
Cfgrelproc . 117
ChangeView . 117
CompView . 117
Config . 118
DefectDownView . 118
DefectView . 119
EnvView . 120
FeatureDownView . 120
FeatureView . 121
FileView . 121
FilesOutView . 122
FixView . 122
HostView . 123
Interest . 123
LevelMemberView . 123
LevelView . 123
NoteView . 124
NotifyDownView . 124
NotifyUpView . 124
NotifyView . 125
ReleaseView . 125
SizeView . 125

vi CMVC Commands Reference

TestView . 126
TrackView . 126
Users . 127
VerifyView . 127

Glossary . 129

 Contents vii

viii CMVC Commands Reference

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM licensed program in this publication is not intended to
state or imply that only IBM’s licensed program may be used. Any functionally
equivalent product, program or service that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, NY 10577, USA.

Trademarks and Service Marks
The following terms, denoted by an asterisk (*), used in this publication, are
trademarks or service marks of International Business Machines Corporation in the
United States or other countries:

The following terms, denoted by a double asterisk (**), used in this publication, are
trademarks of other companies as follows:

HP Hewlett-Packard Company
INFORMIX Informix Software, Inc.
Network File System Sun Microsystems, Inc.
NFS Sun Microsystems, Inc.
ORACLE Oracle Corporation
OSF/Motif Open Software Foundation, Inc.
PVCS Version Manager INTERSOLV, Inc.
SoftBench Hewlett-Packard Company
Sun Sun Microsystems, Inc.
SYBASE Sybase, Inc.

AIX IBM IBMLink
Operating System/2 OS/2 PROFS

 Copyright IBM Corp. 1993 ix

x CMVC Commands Reference

About This Book

This book is part of the documentation library supporting the IBM* Configuration
Management Version Control (CMVC) licensed programs. It describes all of the
CMVC commands you can use from the command line interface.

Who Should Read This Book
All CMVC users who want to perform tasks by entering commands from a standard
shell should read this book. These users include those who want to write shell
scripts using CMVC commands, those who cannot access the CMVC graphical
user interface (GUI) program because they work on ASCII (nongraphics) terminals,
and those who want to use the command line interface as a fast path alternative to
the GUI.

What You Should Know
You should read the book IBM CMVC Concepts, SC09-1633, before you use
CMVC. It introduces the fundamentals of the configuration management, version
control, change control, and problem tracking features in the CMVC licensed
programs. It also defines the concepts that are the foundation of CMVC actions
and establishes their interrelationships.

You should be familiar with your operating system because you access the CMVC
licensed programs through that environment.

How To Use This Book
Read Chapter 1, “General Command Information” on page 1 for an overview of the
CMVC commands you can issue from the command line interface and an
explanation of the command syntax.

If you have used a previous version of CMVC, read “Changes and Additions for
CMVC Version 2” on page xv to see the changes and additions made to CMVC
commands.

The remaining chapters describe the commands in detail. Each chapter describes
one command and includes:

� Description of the command and an overview of its purpose
� Syntax statements of the command, one statement per action flag
� Action flags you can use with the command
� Attribute flags that apply to the command
� Examples of CMVC commands

 � Related information.

The appendix describes the fields for various CMVC views and tables.

A glossary is provided at the back of this book.

 Copyright IBM Corp. 1993 xi

 Highlighting Conventions
The style conventions that are used in CMVC command syntax are described in
“How to Read Syntax Statements” on page 8. The following highlighting
conventions are also used in this book:

Bold Commands, flags, files, directories, field names, and other items
predefined by CMVC appear in bold. Valid abbreviations for
commands are also in bold.

Italic Arguments or options whose names or values must be supplied by
you appear in italics. Italics are also used for emphasis, for the first
occurrence in text of terms that appear in the glossary, and for titles of
books.

Monotype Examples of specific data values, examples of text that you might see
displayed, messages, or information that you should type appear in
monotype.

 Related Publications
The following books contain additional information about CMVC and are shipped
with this product.

� IBM CMVC Concepts, SC09-1633, provides the basis for your understanding of
CMVC. It describes in detail the concepts and processes involved in using
CMVC.

� IBM CMVC Server Administration and Installation, SC09-1631 contains detailed
information for planning, installing, customizing, operating, and maintaining the
CMVC server.

� IBM CMVC User’s Guide, SC09-1634, describes all CMVC actions as
implemented in the graphical user interface (GUI) on the AIX, Sun-OS, and
HP-UX platforms.

� IBM CMVC User’s Reference, SC09-1597, contains the reference lists, tables,
and state diagrams for CMVC. It also describes how the message-integrated
CMVC uses the Broadcast Message Server (BMS) to fully integrate with other
integrated development environment tools.

� IBM CMVC Client Installation and Configuration, SC09-1596, contains detailed
information needed to install and configure the CMVC client on (GUI) on the
AIX*, Sun-OS**, and HP-UX** platforms.

� NetLS Quick Start Guide, SC09-1661, provides the information needed to set
up the Network License System (NetLS) software to work with CMVC.

� Managing Software Products with the Network License System, SC09-1660,
provides the information needed to manage the use of the NetLS software with
CMVC.

These two books are shipped with the OS/2 workstation client for CMVC, and can
be ordered separately:

� IBM CMVC Client/2 Getting Started, SC09-1599, contains detailed information
about installing and configuring the OS/2 workstation client for CMVC.

xii CMVC Commands Reference

� IBM CMVC Client/2 User's Guide, SC09-1783, contains step-by-step
information on how to use the graphical user interface for the OS/2 workstation
client.

For information on databases and operating systems used with CMVC, refer to your
specific database or operating system documentation.

 About This Book xiii

xiv CMVC Commands Reference

Changes and Additions for CMVC Version 2

The table below shows those commands that have changed between CMVC
Versions 1 and 2, and those commands that have been added to CMVC Version 2.

Version 1 Commands Version 2 Additions/Changes

Access -delete Added new flag: -inherited

Not applicable Access -restrict {-login Name ... | -inherited} -authority
Name -component Name -family Name -become Name
[-verbose]

Component -create Add new mandatory flag: -process Name

Component -modify Add optional flag: -process Name

Component -view Add optional flag: -processInfo

Not applicable Defect -configInfo -raw -family Name [-become Name]

Not applicable Defect -design Number ... [-remarks Text] -verbose -family
Name [-become Name]

Defect -modify Add optional flag: -name Number

Defect -open Add optional flag: -name Number

Not applicable Defect -review Number ... [-remarks Text] [-verbose] -family
Name [-become Name]

Not applicable Defect -size Number ... [-remarks Text] [-verbose] -family
Name [-become Name]

Defect -view Add optional flag: -processInfo

Not applicable Feature -configInfo -raw -family Name [-become Name]

Feature -modify Add optional flag: -name Number

Feature -open Add optional flag: -name Number

Feature -view Add optional flag: -processInfo

Not applicable File -configInfo -raw -family Name [-become Name]

File -create Add optional flag: -fmode Octal_number

File -modify Add optional flag: -fmode Octal_number

Level -assign Supports multiple level names

Level -check Supports multiple level names

Level -commit Supports multiple level names

Level -complete Supports multiple level names

Level -create Supports multiple level names

Level -delete Supports multiple level names

Level -extract Supports multiple level names. -node and -root are now
required.

Level -modify Supports multiple level names.

Level -view Supports multiple level names.

Release -create Supports multiple level names. +/-binding flags no longer
supported. Add required flag: -process Name Add optional
flags: [-approver Name] [-environment Name -tester Name]

 Copyright IBM Corp. 1993 xv

Version 1 Commands Version 2 Additions/Changes

Release -delete Supports multiple level names.

Release -extract Supports multiple level names.

Not applicable Release -link Name ... -to Name -family Name [-date
yy/mm/dd | -committed] [-defect Number ... | -feature
Number ...] [-become Name] [-verbose]

Release -modify Supports multiple release names. Add optional flags:
-process Name [-approver Name] [-environment Name
-tester Name]

Release -recreate Supports multiple release names. Add optional flags:
[-approver Name] [-environment Name -tester Name]

Release -view Supports multiple release names. Add optional flags:
-processInfo

Not applicable User -configInfo -raw -family Name [-become Name]

Changes of Command Syntax for OS/2 Client
The following table lists the five commands that have been changed for the OS/2
client for CMVC, together with the standard CMVC commands:

Standard CMVC Command OS/2 Client Command

Component Componen

Environment Environ

Host Hostcmd

LevelMember LevelMem

Verify Verifycm

xvi CMVC Commands Reference

Chapter 1. General Command Information

This chapter introduces all the CMVC commands that you can issue from the
command line. The executable programs for these commands are installed in the
/usr/lpp/cmvc/bin directory when you install the CMVC client code. For
information about installation, see the book IBM CMVC Client Installation and
Configuration. This chapter also outlines the authority required to issue commands
and tells you how to use action and attribute flags with the commands, how to use
CMVC environment variables, and how to read the command syntax found in this
book.

The purpose of each CMVC command is shown in Figure 1.

Figure 1. Summary of CMVC Commands

Command Purpose

Access Identifies explicit authority for user IDs using component access lists.

Approval Records approvers’ opinions about proposed changes in a release on approval records.

Approver Specifies approvers of changes for releases using approver lists.

Component Creates and maintains a component hierarchy for project control and management.

Coreq Identifies tracks as corequisites, that is, tracks that must be included in the same level.

Defect Monitors the reporting, evaluation, and resolution of problems.

Environment Specifies environments and testers for releases using environment lists.

Feature Monitors the suggestion, evaluation, and implementation of design changes and
enhancements.

File Places files in the CMVC environment and allows users to work with them.

Fix Monitors the status of file changes (fixes) made for a component using fix records.

Host Identifies client access on the host list associated with a user ID.

Level Defines and works with levels of file changes within a release.

LevelMember Identifies tracks that must be included in or deleted from a level.

Migrate Migrates all versions of SCCS text files into the CMVC environment.

Notify Identifies notification interest for user IDs using component notification lists.

Release Creates and maintains releases to group project-related files.

Report Searches database tables for information on CMVC objects.

Size Records sizing information for defects and features using sizing records.

Test Records testers' opinions about test results using environment test records.

Track Creates and maintains tracks to monitor the progress of changes in a release.

User Creates user IDs and maintains information about the owners.

Verify Indicates the outcome of defects and features using verification records.

 Copyright IBM Corp. 1993 1

 Flags
Two types of flags are associated with commands: action flags and attribute flags.
You can type the names of flags in any order on the command line.

A flag is a negative (-) or a positive (+) symbol followed by a lowercase word on
the command line. The symbols associated with each flag are not interchangeable.

You can abbreviate both action and attribute flags; however, the number of letters
required to make a flag unique within a command depends on the names of all of
the other flags (both action and attribute flags) associated with that command.
Valid abbreviations for all flags appear in bold within their related command's action
and attribute flag tables.

 Action Flags
Every command has action flags associated with it. These action flags represent
the actions that you can perform for a command. When you use the command line
to perform a CMVC action, you must specify one command and only one action
flag. You do not have to type the action flag directly after the command.

For example, you can perform six actions using the User command. Each of these
tasks requires one of the following action flags:

-configInfo Displays configurable field properties for users
-create Creates a new user ID
-delete Deletes an existing user ID
-recreate Recreates a previously deleted user ID
-modify Changes information related to a user ID
-view Displays current information for a user ID

 Attribute Flags
Some action flags have mandatory attribute flags associated with them; others have
optional attribute flags.

For example, the -login and -address attribute flags are mandatory when you use
the -create action flag for the User command. The other attribute flags are optional.

User -create -login billyb -address williamb@vroom1 -name "William Bronson"

-area Dept45ð +super

You get the same results if you rearrange the order of the flags and abbreviate
some of them.

User -login billyb -name "William Bronson" -ad williamb@vroom1 -create -ar

Dept45ð +super

Syntax indicates the attribute flags that are mandatory.

 Flag Arguments
In most cases, you have to type additional information for an action or attribute flag.
This additional information is an argument. The seven types of arguments, their
format and their restrictions, are listed in Figure 2 on page 3.

2 CMVC Commands Reference

Figure 2. Flag Arguments and Syntax

Argument Format Example Restrictions

Date yy/mm/dd 93/04/29 You must use numbers
separated by slashes.
Blanks are not permitted.

Name One alphanumeric
string

42tool You cannot use blanks,
vertical bars (|), or ASCII
control characters. Nor can
you use shell
metacharacters unless they
are quoted.ñ

Name ... One or more
alphanumeric
strings

prod1 prod2 prod3 You cannot use vertical bars
(|), or ASCII control
characters. Nor can you
use shell metacharacters
unless they are quoted.ñ
Blanks are permitted to
separate unique strings.

Number Numeric stringò 823 You must use numbers.
Blanks are not permitted.

Number ... One or more
numeric stringsó

411 1124 1 362 You must use numbers.
Blanks are permitted to
separate unique strings.

Octal_Number Numeric string 750 You must use numbers from
0 to 7. Blanks are not
permitted.

Text Alphanumeric
strings enclosed in
quotations

“Not able to verify.” You cannot use vertical bars
(|), or ASCII control
characters. Nor can you
use shell metacharacters
unless they are quoted.ñ

ñ For information on ASCII control characters and the shell you are using, refer to your
operating system documentation.

ò When used with a -defect or -feature flag, an alphanumeric string is acceptable and,
consequently, the restrictions for Name apply.

ó When used with a -defect or -feature flag, one or more alphanumeric strings are
acceptable and, consequently, the restrictions for Name ... apply.

 Chapter 1. General Command Information 3

If you specify a list of arguments for more than one flag, the action is performed for
every possible combination of arguments. For example:

Track -create -defect 1 2 -release one two

creates four tracks, as shown in Figure 3.

Figure 3. Creating CMVC Tracks

Tracks Defect Release

1) 1 one

2) 1 two

3) 2 one

4) 2 two

One track is referenced by defect 1 and release one, another by defect 1 and
release two, another by defect 2 and release one, and another by defect 2 and
release two.

Using Standard Input for Arguments
To specify an argument using standard input, use “-” as the argument type. You
can specify only one flag per command in this way. In the following example of
standard input from a keyboard, you can type the remarks flag argument directly
from the keyboard:

Defect -open -component debugr -sev 3 -remarks -

Press Enter to create additional lines on which to type the text. When you are
finished entering the text, press Enter to create a new line and then press Ctrl D to
end standard input.

In the following example of standard input from a file, the -remarks argument is
equivalent to the contents of the file you specified:

Defect -open -component debugr -sev 3 -remarks - < /tmp/defect.descr

Note: The shell interprets environment variables when used in arguments,
including text. For example, in -remarks "The sun is $path", the value of $path is
substituted.

 Environment Variables
You can set environment variables to describe the CMVC environment in which you
are working. The names of the CMVC environment variables, the purpose they
serve, and the CMVC flag that is the equivalent to each environment variable are
listed in Figure 4 on page 5.

Make sure you set your CMVC_FAMILY environment variable because this
information is required with every command.

4 CMVC Commands Reference

Figure 4. CMVC Environment Variables and Flags

Environment
Variable

Purpose Flag

CMVC_FAMILY Identifies the CMVC family you are working
with.

-family

CMVC_BECOME Identifies the user ID you want to issue
CMVC commands from, if the user ID differs
from your login. You assume the access
authority of the user ID you specify.

-become

CMVC_RELEASE Specifies a release. -release

CMVC_COMPONENT Specifies a component. -component

CMVC_TOKEN_EXPIRY Specifies the expiry time for a NetLS token. Not applicable

CMVC_TOP Specifies a directory prefix. -top

You can override the value you set for an environment variable by using the
corresponding flag. In Figure 5, an X indicates the CMVC commands that use the
CMVC environment variable values.

Figure 5 (Part 1 of 2). CMVC Commands and Related Environment Variables

CMVC_FAMILY CMVC_RELEASE CMVC_COMPONENT CMVC_BECOME CMVC_TOP

Access X X X

Approval X X X

Approver X X X

Component X X

Coreq X X X

Defect X X X

Environment X X X

Feature X X X

File X X X X X

Fix X X X X

Host X X

Level X X X

LevelMember X X X

Migrate X X X X X

Notify X X X

Release X X X

Report X X

Size X X X X

 Chapter 1. General Command Information 5

Figure 5 (Part 2 of 2). CMVC Commands and Related Environment Variables

CMVC_FAMILY CMVC_RELEASE CMVC_COMPONENT CMVC_BECOME CMVC_TOP

Test X X X

Track X X X

User X X

Verify X X

Methods of Setting Environment Variables
For methods of setting your environment variables, refer to your operating system
documentation.

For example, you can use the following command to set the CMVC_FAMILY
environment variable using the Korn shell:

export CMVC_FAMILY=familyName@hostname@portnumber

Where hostname is the name of the server host for the family, and portnumber is the
TCP/IP port number assigned to the family. If you do not specify the port number, it
is obtained from the system configuration database (for example, the file
/etc/services). If you do not specify the server host, the family name resolves to
the network address of the server either in the file /etc/hosts or in the host
database (that is, the nameserver).

 Authority Requirements
Different authority requirements are attached to each of the actions in CMVC. Five
types of authority control the actions you can or cannot perform.

 Base Authority
If you have a valid CMVC user ID, you can perform these unrestricted base
authority actions:

� Open defects and features
� Modify the information associated with your user ID
� View information associated with any user ID
� Add notes to existing defects or features

 � Generate reports

 Superuser Privilege
If you have been granted CMVC superuser privilege by a family administrator or
someone else with superuser privilege, you can perform all possible actions in your
CMVC family. There are five actions that only a superuser can do: create a user
ID, create the first host list entry for a user ID, delete a user ID, recreate a user ID,
and grant superuser privilege to a user ID.

Note: Superuser privilege is not related to the operating system superuser
classification.

6 CMVC Commands Reference

 Implicit Authority
Implicit authority allows you to perform actions on the basis of ownership. For
example, if you open a defect, you become the originator of the defect and have
the implicit ability to perform certain actions, such as, canceling the defect or
verifying its outcome. Similarly, if you own a component, a release, or a feature,
you have implicit authority related specifically to those roles as well. You have this
implicit authority until you relinquish ownership of the object in question.

 Explicit Authority
Explicit access authority is specified for you for a component. Granting explicit
authority provides control over who can perform specific actions for the component.

Your family administrator can group sets of actions according to access authority
groups. You are assigned to one or more of these groups by a component owner.
The authority groups you belong to for any given component are inherited for all
descendant components unless they are restricted.

For specific actions used to create access authority groups, refer to the IBM CMVC
User’s Reference. For a list of the preconfigured authority groups shipped with this
product, which your family administrator may choose to use, refer to the IBM CMVC
User’s Reference.

 Restricted Authority
You can be restricted from performing certain actions at a specific component by
someone with AccessRestrict authority who wishes to control which users inherit
authority from the parent components. The authority can be restricted for specific
users with the authority group or for all users with the group. CMVC notifies you if
your specific authority is restricted or if you are a subscriber of the AccessRestrict
action for the component. If all inherited users are restricted for the component,
then only those users who have subscribed to the AccessRestrict action are
notified.

Note: Restricted authority is not inherited and does not affect implicit authority or
superuser privilege.

When an action flag is described in this book, the authority required to perform the
action is shown in the columns next to it. If explicit authority is required, the table
indicates the specific action that must be included in your access authority group.
Superuser privilege will be listed in the explicit authority column if only a superuser
can perform that action.

For more information on authority requirements, refer to the book IBM CMVC
Concepts.

 Chapter 1. General Command Information 7

How to Read Syntax Statements
This manual uses the braces and brackets representation of command syntax. The
style conventions listed in Figure 6 apply to the command syntax.

Figure 6. Reading Syntax Statements

Style Usage

bold Items you must enter exactly as shown, such as commands, flags, and
symbols. The valid abbreviations for commands and flags appear in bold, with
the optional part of the command or flag shown in regular type. For example,
Access or +super.

Italic Arguments or options whose values you must supply. For example, Name or
Text.

... Parameter can be repeated on the command line. For example, -login Name...
means that you can enter more than one argument for the -login flag.

[] Optional parameters are enclosed in square brackets. For example,
[-description Text].

{ } There is more than one parameter choice, but one is required.

| Choose one parameter only. [a|b] indicates that you can choose a or b, or
neither a nor b. {a|b} indicates that you must choose either a or b.

- Standard input. See page 4 for discussion of using this method.

A Note on Examples
� No -family flag is shown. All examples assume that you have set a value for

your CMVC_FAMILY environment variable.

� All examples assume that information is entered on a single line. Use a
backslash (\) if you require more than one line.

� Some flags are abbreviated; however, most examples contain the full flag name
for clarity.

8 CMVC Commands Reference

 Chapter 2. Access

Use the Access command to create entries on the component access list, delete
entries from this list and restrict authority for entries (including those normally
inherited from ancestor components) on the list. Each entry associates a user ID
and a preconfigured access authority group. The authority group specifies the set
of actions a user ID has the authority to perform in relation to the component. For
details of the access authority groups shipped with CMVC, refer to the IBM CMVC
User’s Reference. Existing authority groups can be modified and new ones can be
defined by a family administrator.

A user ID can have more than one entry on the access list for a given component.
A user ID inherits explicit authority from all ascendant components for that
component and has the accumulation or superset of all authority groups defined for
those ascendant components, unless the authority is restricted.

You cannot grant another user any access authority that is not defined for your own
user ID.

 Syntax
The syntax statements for the Access command are:

Access -create -login Name ... -authority Name -component Name
-family Name [-become Name] [-verbose]

Access -delete {-login Name ... | -inherited } -authority Name
-component Name -family Name [-become Name]
[-verbose]

Access -restrict {-login Name ... | -inherited } -authority Name
-component Name -family Name [-become Name]
[-verbose]

 Action Flags
The action flags of the Access command and their required authority are listed in
Figure 7.

Figure 7. Access Action Flags

Action Flag Purpose Implicit Authority Explicit Authority

-create Adds entries to a component access list. Component owner AccessCreate

-delete Deletes entries from a component list or
deletes the restriction on authority for
entries on a component access list.

Component owner AccessDelete

-restrict Restricts authority (including inherited
authority) for entries on a component
access list.

Component owner AccessRestrict

 Copyright IBM Corp. 1993 9

 Attribute Flags
The attribute flags of the Access command are listed in Figure 8.

Figure 8. Access Attribute Flags

Attribute Flag
and Argument

Purpose

-authority Name Specifies a preconfigured access authority group for the user ID.

-become Name Specifies the CMVC user ID to validate your authority to perform this action, only if the
CMVC user ID differs from your login.
(Environment Variable: CMVC_BECOME)

-component Name Specifies the component associated with the access list.
(Environment Variable: CMVC_COMPONENT)

-family Name Specifies the family for which this command is being issued.
(Environment Variable: CMVC_FAMILY)

-inherited Indicates all users in the CMVC family.

-login Name ... Specifies one or more CMVC user IDs.

-verbose Indicates that you want to see a confirmation message after you issue this command.

 Examples
The following are examples of Access command actions:

1. To give developer access authority to CMVC user ID maria, for the graphix
component and all its descendents, type:

Access -create -login maria -authority developer -component graphix

This creates an entry on the access list associated with the graphix component
giving user ID maria the authority to perform all actions included in the
developer access authority group.

2. To give writer access authority to CMVC user IDs maria and john for the
graphix component and all its descendents, type:

Access -create -login maria john -authority writer -component graphix

This creates two entries on the access list associated with the graphix
component.

3. To remove writer access from user ID maria for the graphix component, type:

Access -delete -login maria -authority writer -component graphix

This deletes the entry from the access list.

4. To restrict the actions in the access authority group developer+ for the CMVC
user ID richard in the graphix component, type:

Access -restrict -login richard -authority developer+ -component graphix

This creates an entry on the access list associated with the graphix

component restricting the user ID richard the authority from performing all
actions included in the developer+ access authority group.

10 CMVC Commands Reference

5. To restrict the actions in the access authority group releaselead for all users
inheriting the releaselead access authority group from all parents of the
confidential component, type:

Access -restrict -inherited -authority releaselead -component

confidential

This creates an entry on the access list associated with the confidential

component restricting all users who inherited the releaselead access authority
group from performing actions in the releaselead access authority group.

6. To remove the restricted authority group releaselead for all users inheriting this
access authority group from all parents of the confidential component, type:

Access -delete -inherited -authority releaselead -component confidential

This deletes the entry from the access list and permits users with the
releaselead authority in parent components of the confidential component to
perform all actions in the releaselead access authority group at the
confidential component.

 Related Information
See commands: Component, Report.

Use the Report command to obtain more information on existing authority groups:

 � Report -vi authority

� Report -vi authority -w "name ='developer' "

� Report -vi authority -w "action ='FileCheckIn' "

For a list of the access authority groups shipped with CMVC, refer to the IBM
CMVC User’s Reference.

See your family administrator, or refer to the book IBM CMVC Server
Administration and Installation for information about configuring new access
authority groups and modifying existing ones.

 Chapter 2. Access 11

12 CMVC Commands Reference

 Chapter 3. Approval

Use the Approval command to record on approval records approvers' opinions
about proposed changes to files in a release. You can only use this command for
a track that is in the approve state. The Approval command provides greater
control over changes made to releases as final deadlines approach.

Approval records are created automatically every time a track is created for a
release that has an approver list. You can also create additional approval records
for a track, with the Approval command, without changing the approver list
associated with the release. For information on changing the approver list, refer to
Chapter 4, “Approver” on page 17. You can also use the Approval command to
delete track approval records or assign them to other users.

Owners of an approval record must indicate on it whether they accept or reject the
changes proposed by the track. An abstain option is available.

The state of the approval record controls whether the associated track can move to
the fix state. When all approval records are in the accept or abstain state, the track
moves automatically to the fix state. If one or more approval records is in the reject
state, the track cannot move to the fix state.

 Syntax
The syntax statements for the Approval command are:

Approval -abstain -release Name ... -family Name [-become Name]
{ -defect Number ... -feature Number ... }
[-approver Name] [-verbose]

Approval -accept -release Name ... -family Name [-become Name]
{ -defect Number ... -feature Number ... }
[-approver Name] [-verbose]

Approval -assign -to Name -release Name ... -family Name [-verbose]
{ -defect Number ... -feature Number ... }
[-approver Name] [-become Name]

Approval -create -approver Name -release Name ... -family Name
{ -defect Number ... -feature Number ... }
[-become Name] [-verbose]

Approval -delete -approver Name -release Name ... -family Name
{ -defect Number ... -feature Number ... }
[-become Name] [-verbose]

Approval -reject -release Name ... -family Name [-become Name]
{ -defect Number ... -feature Number ... }
[-approver Name] [-verbose]

 Copyright IBM Corp. 1993 13

 Action Flags
The action flags of the Approval command and their required authority are listed in
Figure 9.

Figure 9. Approval Action Flags

Action Flag Purpose Implicit Authority Explicit Authority

-abstain Abstains from accepting or rejecting the
proposed file changes for the specified
track.

Owner of approval
record

ApprovalAbstain

-accept Approves the proposed file changes for the
specified track.

Owner of approval
record

ApprovalAccept

-assign Assigns an existing approval record to
another user ID. The owner of that user
ID becomes the owner of the approval
record.

Owner of approval
record

ApprovalAssign

-create Creates an approval record for a track.
This action does not change the approver
list.

Note: To perform this action, the
associated release's process must include
the approval subprocess.

Track owner ApprovalCreate

-delete Deletes an existing approval record for a
specified user ID and track.

N/A ApprovalDelete

-reject Rejects the proposed changes for the
specified track and keeps the track in the
approve state. This prevents the track
from moving to fix. Tracks that are not
approved can be canceled.

Owner of approval
record

ApprovalReject

 Attribute Flags
The attribute flags of the Approval command are listed in Figure 10.

Figure 10 (Part 1 of 2). Approval Attribute Flags

Attribute Flag
and Argument

Purpose

-approver Name Specifies the user ID of the owner of the approval record.

-become Name Specifies the CMVC user ID to validate your authority to perform this action, only if the
CMVC user ID differs from your login.
(Environment Variable: CMVC_BECOME)

-defect Number ... Specifies the defects for which proposed changes need to be approved. Each defect and
release combination identify a track.

-family Name Specifies the family for which this command is being issued.
(Environment Variable: CMVC_FAMILY)

-feature Number ... Specifies the features for which proposed changes must be approved. Each feature and
release combination identifies a track.

14 CMVC Commands Reference

Figure 10 (Part 2 of 2). Approval Attribute Flags

Attribute Flag
and Argument

Purpose

-release Name ... Specifies the releases in which work is being tracked for a defect or a feature.
(Environment Variable: CMVC_RELEASE)

-to Name Specifies the user ID to which you want to reassign the approval record. The user ID you
specify becomes the owner of the approval record.

-verbose Indicates that you want to see a confirmation message after you issue this command.

 Examples
The following are examples of Approval command actions:

1. The track referencing defect 147 in release 2ðgraphix is in the approve state.
To create an approval record so that jack must approve the proposed changes
for that track, type:

Approval -create -release 2ðgraphix -defect 147 -approver jack

An approval record is created and its owner is jack. When you specify a value
for the -release flag, any existing value set for the CMVC_RELEASE
environment variable is ignored. This action can only be done for releases that
have an approver list, even though the action does not modify the list.
Releases without approver lists result in tracks being created with an initial
state of fix and only when a track is in the approve state can approval records
be created or acted upon.

2. You own an approval record that is in the ready state. It refers to the changes
proposed for a track created to monitor work for feature 179 in the release
specified in your CMVC_RELEASE environment variable. To indicate that you
approve of the proposed changes for feature 179, type:

Approval -accept -feature 179

The approval record moves to the accept state. You do not have to specify the
-release flag because the CVMC_RELEASE environment variable was set.

3. You have superuser privilege. To delete the approval record owned by maria

for a track addressing feature 2431 in release 1ðgraphix, type:

Approval -delete -release 1ðgraphix -feature 2431 -approver maria

The approval record is deleted. The track must still be in the approve state for
a superuser to be able to delete the approval record.

4. You own two approval records, one for the work required to resolve defect 9122
in release 1ðgraphix and the other for the work required to resolve the same
defect in release 2ðgraphix. To assign both of these approval records to pam,
type:

Approval -assign -release 1ðgraphix 2ðgraphix -defect 9122 -to pam

The approval records are now owned by pam.

 Chapter 3. Approval 15

 Related Information
See commands: Approver, Defect, Feature, Release, Report, Track.

16 CMVC Commands Reference

 Chapter 4. Approver

Use the Approver command to create entries on, and delete entries from, a
release approver list. Each entry associates a user ID with a release, making the
owner of the user ID an approver for any proposed changes to address defects or
features in the specified release. The release approver list provides greater control
over changes made to releases as final deadlines approach.

Every time a track is created for a release to address a defect or a feature,
approval records are created for each of the user IDs on the approver list
associated with that release (providing that the release’s process includes the
approval subprocess). Each approval record refers to one defect or feature in one
release and is owned by one approver. Approvers must use the Approval
command to accept or reject the proposed changes. Modifying an approver list
does not change existing approval records.

Approval records that are accepted allow the track to move to the fix state. If one or
more approvers rejects an approval record, the track cannot move to the fix state.

 Syntax
The syntax statements for the Approver command are:

Approver -create -login Name ... -release Name -family Name
[-become Name] [-verbose]

Approver -delete -login Name ... -release Name -family Name
[-become Name] [-verbose]

 Action Flags
The action flags of the Approver command and their required authority are listed in
Figure 11.

Figure 11. Approver Action Flags

Action Flag Purpose Implicit Authority Explicit Authority

-create Adds user IDs to a release approver list. Release owner ApproverCreate

-delete Deletes user IDs from a release approver
list.

Note: You cannot delete the last entry in
an approver list if it is associated with a
release whose process includes the
approval subprocess.

Release owner ApproverDelete

 Copyright IBM Corp. 1993 17

 Attribute Flags
The action flags of the Approver command are listed in Figure 12.

Figure 12. Approver Attribute Flags

Attribute Flag
and Argument

Purpose

-become Name Specifies the CMVC user ID to validate your authority to perform this action, only if the
CMVC user ID differs from your login.
(Environment Variable: CMVC_BECOME)

-family Name Specifies the family for which this command is being issued.
(Environment Variable: CMVC_FAMILY)

-login Name ... Identifies CMVC user IDs as members of an approver list.

-release Name Specifies the release with which the approver list is associated.
(Environment Variable: CMVC_RELEASE)

-verbose Indicates that you want to see a confirmation message after you issue this command.

 Examples
The following are examples of Approver command actions:

1. To make the owners of user IDs jack and smitty approvers for any changes
that may be proposed for the 1ðdebugr release, type:

Approver -create -login jack smitty -release 1ðdebugr

Two entries are added to the approver list for the 1ðdebugr release. Approval
records are created for jack and smitty when new tracks are created in
reference to the 1ðdebugr release.

2. To delete the approver list entry identifying the owner of user ID maria as an
approver for the tools release, type:

Approver -delete -login maria -release tools

Maria is deleted from the approver list.

3. To add user IDs maria, john, and kevin to the approver list associated with the
release you have specified in your CMVC_RELEASE environment variable,
type:

Approver -create -login maria john kevin

Three entries are made to the approver list for the release set in your
environment variable, one for each of the user IDs you specified.

 Related Information
See commands: Approval, Defect, Feature, Release, Report, Track.

18 CMVC Commands Reference

 Chapter 5. Component (Componen)

Use the Component command (or the Componen command for the OS/2 client) to
create and maintain a component structure for project control and management.
The component structure or hierarchy consists of a top level component called root.
Every component below root is linked to one or more parent components and zero
or more child components. Use -link and -unlink to redefine an existing
component structure.

You can create, delete, and recreate components, modify their properties, or view
information about them.

When you create a component, you become its owner and have implicit authority to
define the access list and the notification list for that component. Although you
have implicit authority to define the access list, you cannot add to that list until you
have some level of authority defined on the access list. Therefore, when you first
become the owner of a component, someone with enough authority must give you
authority to create access for additional users. When you become the owner of a
component, you may want to ask the component creator to give you access
authority so that you can add other users to the access list. The access and
notification list entries for a component apply to all descendant components via
inheritance, unless access has been specifically restricted. As component owner,
you also have implicit authority to manage that component and other objects
relating to it.

When creating a component, you must specify a preconfigured process for the
component using the -process flag. A process groups different combinations of
CMVC subprocesses. CMVC subprocesses determine the states that apply to the
defects and features associated with a component. For component processes, the
DSR (design, size, review) and verify subprocesses can be specified for defects,
features, or both. Processes are configured by your family administrator who can
modify current processes or define new ones. For a list of the valid component
processes and the CMVC subprocesses they include, use the Report -view
cfgcomproc command. You can change the process for an existing component
using the -modify flag. For more information on how CMVC subprocesses relate
to the states of CMVC objects, refer to the book IBM CMVC Concepts.

You can delete a component only if there are no files, child components, releases,
active features, active defects, or active sizing records associated with it. The
component's access and notification lists are deleted when it is deleted, and the
component is detached from its parents. You cannot reuse the name of a deleted
component to create another component; however, you can recreate a deleted
component.

When you recreate a deleted component, you have to create new access and
notification lists for it. The original access and notification lists are not recreated;
however, the recreated component does inherit the access and notification
information from all of the components above it in the hierarchy.

 Copyright IBM Corp. 1993 19

 Syntax
The syntax statements for the Component command are:

Component -create Name ... -parent Name -family Name
-process Name [-owner Name]
[-description Text] [-become Name] [-verbose]

Component -delete Name ... -family Name [-become Name]
[-verbose]

Component -link Name ... -parent Name -family Name [-become Name]
[-verbose]

Component -modify Name ... -family Name { -process Name
-owner Name -name Name -description Text }
[-become Name] [-verbose]

Component -recreate Name ... -parent Name -family Name [-become Name]
[-verbose]

Component -unlink Name ... -parent Name -family Name [-become Name]
[-verbose]

Component -view Name ... -family Name [-long | -processInfo]
[-become Name] [-verbose]

 Action Flags
The action flags of the Component command and their required authority are listed
in Figure 13.

Figure 13 (Part 1 of 2). Component Action Flags

Action Flag
and Arguments

Purpose

Implicit Authority

Explicit Authority

-create Name ... Creates components with the specified
names. (Component names must be
unique within a family.)

Parent component
owner

CompCreate for
parent component

-delete Name ... Deletes the specified components. (You
cannot delete the root component.)

Component owner CompDelete

-link Name ... Attaches components to an existing
component. The components you list with
this flag become child components of the
component you specify with the -parent
attribute flag.

Component owner
of component
being linked

CompLink for
component being
linked

-modify Name ... Modifies properties of the specified
components.

Component owner CompModify

-rec reate Name ... Recreates components as child
components of the parent component.
(Use the -parent flag to specify the
parent.)

Component owner
of new parent
component

CompRecreate for
parent component

20 CMVC Commands Reference

Figure 13 (Part 2 of 2). Component Action Flags

Action Flag
and Arguments

Purpose

Implicit Authority

Explicit Authority

-unlink Name ... Detaches components from a parent
component. (The components being
unlinked must still be linked to at least one
parent component.)

Component owner
of component
being unlinked

CompUnlink in
component being
unlinked

-view Name ... Shows all current information for the
specified components.

Component owner CompView

 Attribute Flags
The attribute flags of the Component command are listed in Figure 14.

Figure 14. Component Attribute Flags

Attribute Flag
and Argument

Purpose

-become Name Specifies the CMVC user ID to validate your authority to perform this action, only if the
CMVC user ID differs from your login.
(Environment Variable: CMVC_BECOME)

-description Text Specifies a description of the component.

-family Name Specifies the family for which this command is being issued.
(Environment Variable: CMVC_FAMILY)

-long Displays more information for the specified components, including all child and parent
components, in reference to the -view action flag.

-name Name Specifies a new name for an existing component.

-owner Name Specifies the user ID of the component owner.

-parent Name Specifies the parent component. You must specify this with -create , -link , -unlink or
-recreate action flags.

-processI nfo Displays the current process setting and associated CMVC subprocesses for the specified
components when used with the -view action flag.

-process Name Specifies a process when creating or modifying a component. Processes are configured by
your family administrator. For a list of the valid component processes and the CMVC
subprocesses they include, use the Report -view cfgcomproc command.

-verbose Indicates that you want to see a confirmation message after you issue this command.

 Examples
The following are examples of Component command actions:

1. To create a new child component called docs for the existing graphix
component, and to assign the IBM shipped process preship to it, type:

Component -create docs -parent graphix -description "Technical Info"

-process preship

The docs component is created with the preship process specified. It inherits
the access and notification defined at the graphix component and at all
components above it in the hierarchy provided access has not been restricted.

 Chapter 5. Component (Componen) 21

Note: The access and notification lists for the docs component do not show
the inherited access and notification information. Additional access and
notification can be defined by creating access and notification lists for the docs

component.

2. To delete a component called archiveð1, type:

Component -delete archiveð1

The component called archiveð1 is deleted only if it has no child components,
no releases, no associated files, no active defects, no active features, or no
active sizing records referencing it.

3. To give pam ownership of the graphix component that you currently own, type:

Component -modify graphix -owner pam

Ownership is re-assigned.

4. To change the name, description, and process of the existing component called
graphix, type:

Component -modify graphix -name graphixðð -description

"Version ðð of graphix files" -process prototype

The component graphix is renamed to graphixðð. The description indicates
that this component refers to version 00 graphix files. The process for the
component is changed to prototype.

5. To link two existing components, docs and etc, so that etc is the parent
component to the docs component, type:

Component -link docs -parent etc

The component docs becomes a child component of the component etc. The
docs component inherits access and notification information from the etc

component. It does not lose existing access and notification information from its
own access and notification lists.

6. To recreate the deleted tools component so that it exists as a child component
of the graphixðð component, type:

Component -recreate tools -parent graphixðð

The component tools is now a child component of graphixðð. It inherits the
access and notification information from the graphixðð component.

7. To view information about an existing component called debugr, type:

Component -view debugr

All information for the component called debugr is displayed.

 Related Information
See commands: Access, File, Notify, Report.

22 CMVC Commands Reference

 Chapter 6. Coreq

Use the Coreq command to create and delete corequisite relationships between
two or more tracks that are in the fix or integrate states. (A track is identified by a
defect identifier and a release name or by a feature identifier and a release name.)
The tracks you identify as corequisites must all apply to the same release to be
compiled together. Tracks defined as prerequisites by CMVC must also be
compiled together. For a discussion of prerequisite tracks, refer to the book IBM
CMVC Concepts.

Identify corequisite relationships between tracks to indicate that work being done for
a given feature or defect is dependent on changes to files associated with another
defect or feature and must therefore be built together (committed together) so that
the resulting code works correctly. This action ensures that a level that includes
one or more groups of corequisite tracks cannot be committed unless all the tracks
in the corequisite group are included in the level.

Once you identify two or more tracks as corequisites, you can add additional tracks
to that corequisite group without identifying all of the tracks already in the group.
You only have to specify one track from the existing group and the new track or
tracks you want to add to the group. If you specify one track from each of two or
more groups of corequisites, the associated groups are merged into one corequisite
group.

When you delete one track from a corequisite group containing only two tracks, no
corequisite group remains. You must have at least two tracks to create a
corequisite group of tracks.

 Syntax
The syntax statements for the Coreq command are:

Coreq -create { -defect Number ... -feature Number ... } -release Name
-family Name [-become Name] [-verbose]

Coreq -delete { -defect Number ... -feature Number ... } -release Name
-family Name [-become Name] [-verbose]

 Action Flags
The action flags of the Coreq command and their required authority are listed in
Figure 15.

Figure 15. Coreq Action Flags

Action Flag Purpose Implicit Authority Explicit Authority

-create Creates a corequisite relationship between
the specified tracks.

Note: To perform this action, the
associated release's process must include
the level subprocess.

Track owner of all
specified tracks

CoreqCreate

-delete Deletes the specified tracks from an
existing group of corequisite tracks.

Track owner of all
specified tracks

CoreqDelete

 Copyright IBM Corp. 1993 23

 Attribute Flags
The attribute flags of the Coreq command are listed in Figure 16.

Figure 16. Coreq Action Flags

Attribute Flag
and Argument

Purpose

-become Name Specifies the CMVC user ID to validate your authority to perform this action, only if the
CMVC user ID differs from your login.
(Environment Variable: CMVC_BECOME)

-defect Number ... Specifies one or more defects that define corequisite tracks.

-family Name Specifies the family for which this command is being issued.
(Environment Variable: CMVC_FAMILY)

-feature Number ... Specifies one or more features that define corequisite tracks.

-release Name Specifies the release in which the tracks exist.
(Environment Variable: CMVC_RELEASE)

-verbose Indicates that you want a confirmation message after you issue this command.

 Examples
The following are examples of Coreq command actions:

1. Tracks exist for feature 318, defect A329, and defect B312 in reference to the
graphix11 release. To indicate that these three tracks are corequisites, type:

Coreq -create -feature 318 -defect A329 B312 -release graphix11

The tracks now belong to a corequisite group.

2. To add defect 322 to the group of corequisite tracks created in example 1,
type:

Coreq -create -defect A329 322 -release graphix11

By naming one of the tracks from the existing corequisite group along with a
new track, you identify the new track as a corequisite of each of the tracks in
the existing group.

3. To delete the track for feature 318 from the corequisite group defined in
example 2, when your CMVC_RELEASE environment variable is set to the
graphix11 release, type:

Coreq -delete -feature 318

The track for feature 318 in release graphix11 is no longer part of the
corequisite group of tracks.

 Related Information
See commands: Defect, Feature, Report, Track.

While corequisites are defined by users, prerequisites are identified by CMVC.
Therefore, you can create and delete corequisite relationships, but you cannot
modify prerequisite relationships. For more information about corequisite and
prerequisite relationships, refer to the book IBM CMVC Concepts.

24 CMVC Commands Reference

 Chapter 7. Defect

Use the Defect command to report problems by opening defects. Also use this
command to modify properties of defects, change the state of defects, and view
information about defects.

When you open a defect, you become the originator of the reported defect. You
must describe the problem you think needs to be resolved and the primary
component affected by the problem. The owner of the component you assign the
defect to becomes the defect owner. That person must respond to the defect by
accepting it, returning it, or assigning it to a different component or user ID. (If the
defectDSR subprocess is included in the managing component’s process, then the
defect owner must respond to it by designing it, returning it, or assigning it to a
different component or user ID.)

As the originator of the defect, you can cancel or reopen it if it is returned by the
defect owner, and you can modify selected properties of a defect.

Originators of duplicate defects are also notified when the corresponding active
defect or feature is closed or canceled. They can either cancel or reopen the
duplicate defect, as appropriate.

The states a defect moves through depends on the CMVC subprocesses included
in its associated component process. A component process can include the
defectDSR (design, size, review) or defectVerify subprocesses, or none at all. For
more information on the defect states and their relationship to CMVC
subprocesses, refer to the book IBM CMVC Concepts.

Note: Because your family administrator can modify or delete certain configurable
defect fields and create new fields, the attributes for the -open and -modify actions
listed in this section may be different from those in your family or may not appear at
all. Those listed here represent the shipped default fields only. For a list of the
field properties and flags in use in your family, use the Defect -configInfo
command or see your family administrator. For more information on configurable
fields, refer to the book IBM CMVC Server Administration and Installation.

 Syntax
The syntax statements for the Defect command are:

Defect -accept Number ... -family Name [-answer Name]* [-remarks Text]
[-become Name] [-verbose]

Defect -assign Number ... -family Name { -component Name -owner Name }
[-remarks Text] [-become Name] [-verbose]

Defect -cancel Number ... -family Name [-remarks Text] [-become Name]
[-verbose]

Defect -configInfo -family name [-become Name] [-raw]

Defect -design Number ... -family Name [-remarks Text] [-become Name]
[-verbose]

 Copyright IBM Corp. 1993 25

Defect -modify Number ... -family Name { -severity Name -answer Name
-environment Name -reference Name -priority Name
-symptom Name -release Name -originator Name
-target Name -level Name -abstract Text -phaseFound Name
-phaseInject Name -prefix Name -name Number }
[-remarks Text] [-become Name] [-verbose]

Defect -note Number ... -remarks Text -family Name [-become Name]
[-verbose]

Defect -open -remarks Text -component Name -family Name
[-name Number] [-environment Name] [-severity Name]*
[-reference Name] [-prefix Name]* [-symptom Name]*
[-phaseFound Name]* [-level Name] [-abstract Text]
[-release Name] [-become Name] [-verbose]

Defect -reopen Number ... -family Name [-remarks Text] [-become Name]
[-verbose]

Defect -return Number ... -family Name [-remarks Text]
[-answer Name | -duplicate Name]*
[-become Name] [-verbose]

Defect -review Number ... -family Name [-remarks Text] [-become Name]
[-verbose]

Defect -size Number ... -family Name [-remarks Text] [-become Name]
[-verbose]

Defect -verify Number ... -family Name [-remarks Text] [-become Name]
[-verbose]

Defect -view Number ... -family Name [-long | -processInfo]
[-become Name] [-verbose]

Note: Arguments marked with an asterisk (*) are required when no default value is
set for the CMVC family.

 Action Flags
The action flags of the Defect command and their required authority are listed in
Figure 17.

Figure 17 (Part 1 of 3). Defect Action Flags

Action Flag
and Argument

Purpose

Implicit Authority

Explicit Authority

-accept Number ... Accepts defects that are in the open or
review states as problems to be resolved
(depending on the subprocess
configuration of the component).

Defect owner DefectAccept

-assign Number ... Reassigns defects to another owner or
another component. The owner of the
user ID or component becomes the new
defect owner.

Defect owner,
Defect originator

DefectAssign

-cancel Number ... Cancels defects that are in the open state
or returned state.

Defect originator DefectCancel

26 CMVC Commands Reference

Figure 17 (Part 2 of 3). Defect Action Flags

Action Flag
and Argument

Purpose

Implicit Authority

Explicit Authority

-con figInfo Shows configurable field properties for
defects in the specified family. (The
information is returned in a fixed ASCII
table format.)

N/A N/A

-design Number ... Moves defects to the design state or
specifies design text. Defects can move to
the design state from the open, returned,
design, size, or review state.

Defect owner DefectDesign

-modify Number Modifies selected properties of defects:

-answer Defect owner DefectModify

-name
-originator
-severity

Defect originator DefectModify

-abstract
-environment
-level
-prefix
-reference
-release
-phaseFound ñ

-phaseInject ñ
-priority ñ

-symptom ñ

-target ñ

Defect originator,
Defect owner

DefectModify

-note Number ... Adds remarks to defects. These notes
cannot be modified or deleted once they
are in the system.

N/A N/A

-open Opens a defect. (A unique identifier is
generated by CMVC to identify the new
defect, unless you specify an identifier
using the optional -name flag.)

N/A N/A

-reopen Number ... Reopens defects that are in the returned
state or the canceled state.

Defect originator DefectReopen

-return Number ... Returns defects that are in the open,
design, size, review, or working states. (A
working defect can be returned only if it
does not have tracks associated with it.)

Defect owner DefectReturn

-rev iew Number ... Moves defects from the size state to the
review state so that the proposed design
implementation and sizing information can
be reviewed.

Defect owner DefectReview

-size Number ... Moves defects from the design state to the
size state for sizing. (Design text must first
be entered using Defect -design
-remarks).

Defect owner DefectSize

 Chapter 7. Defect 27

Figure 17 (Part 3 of 3). Defect Action Flags

Action Flag
and Argument

Purpose

Implicit Authority

Explicit Authority

-veri fy Number ... Moves defects from the working state to
the verify state.

Defect owner DefectVerify

-view Number ... Shows all current information for the
specified defects.

Defect owner,
Defect originator

DefectView

ñ These shipped default flags can be changed or deleted by your family administrator and may not appear as listed.
For a list of the configurable flags in use in your family, use the Defect -configInfo command.

 Attribute Flags
The attribute flags of the Defect command are listed in Figure 18.

Figure 18 (Part 1 of 2). Defect Attribute Flags

Attribute Flag
and Argument

Purpose

-abstract Text Enters concise text to summarize a defect. Up to 63 characters are allowed. This text
appears in reports and notification messages. (If this flag is not specified when you are
opening a defect, the first 63 characters or the text up to the first new-line character of the
-remarks flag serve as the abstract.)

-answer Name Specifies an answer code when accepting, modifying, or returning a defect.

-become Name Specifies the CMVC user ID to validate your authority to perform this action, only if the
CMVC user ID differs from your login.
(Environment Variable: CMVC_BECOME)

-com ponent Name Specifies the name of the component when opening or assigning a defect. The environment
variable is not used for Defect -assign .
(Environment Variable: CMVC_COMPONENT)

-duplicate Name Specifies that another defect or feature (that is not canceled, returned, or closed) already
exists to address the defect being returned.

-environment Name Specifies the environment where a defect was discovered, for example, AIX* or OS/2*
environments.

-family Name Specifies the family for which this command is being issued.
(Environment Variable: CMVC_FAMILY)

-level Name Specifies the level in which the defect was discovered.

-long Displays detailed information for the specified defect; including the defect history, all notes
attached to the defect, all tracks and verification records associated with the defect, and any
duplicate defects or features and their originators, in reference to the -view action flag.

-name Number Specifies the defect identifier. Up to 15 alphanumeric characters are allowed for
user-generated defect IDs. (CMVC checks the uniqueness of the ID. If the ID already
exists in CMVC, the action fails and you receive a message indicating that the identifier is
not unique. You must then enter a new identifier or allow CMVC to generate one.)

-or iginator Name Specifies the user ID of the new originator when you modify a defect. The originator's
verification record must be reassigned manually using Verify -assign when the defect is in
either the working state or the verify state.

28 CMVC Commands Reference

Figure 18 (Part 2 of 2). Defect Attribute Flags

Attribute Flag
and Argument

Purpose

-owner Name Specifies the user ID of the new owner when you assign a defect.

-pre fix Name Identifies a prefix that categorizes the defect by type. This value precedes the defect
identifier in report output.

-pro cessInfo Displays the current process setting and associated CMVC subprocesses for the component
associated with the specified defects when used with the -view action flag.

-raw Produces report output in raw format:

� Information retrieved from each field is separated by the vertical bar delimiter.
� Each line of output corresponds to one database record.

-reference Name Assigns a value, name, or keyword to a defect. Or refers to a previous defect or feature
when opening or modifying a defect.

-release Name Specifies a particular release to trigger the defect verification process when the track for this
release moves to the complete state.

-remarks Text Describes the change being requested, the actual design for the defect, or the reason for
modifying or changing the state of the defect. Once you issue a command which adds
remarks, you cannot change the remarks (that is, you cannot use Defect -modify to change
the remarks). To move a defect to the size state, you must have entered some design text
using the -remarks flag within the -design action.

-severity Name Specifies the severity of the problem that the defect was opened to resolve.

-verb ose Indicates that you want to see a confirmation message after you issue this command.

-phaseF ound Nameñ When opening or modifying a defect, specifies the development phase in progress when the
defect was discovered.

-phaseI nject Nameñ When modifying a defect, specifies the development phase in progress when the defect was
injected in the code.

-pri ority Nameñ When modifying a defect, specifies the timing or scheduling requirements for resolving a
defect.

-symptom Nameñ Specifies the symptom associated with the defect.

-target Nameñ Specifies a target (such as, a level or a date) for defect resolution or availability.

ñ These shipped default flags can be changed or deleted by your family administrator and may not appear as listed.
For a list of the configurable flags in use in your family, use the Defect -configInfo command.

 Examples
The following are examples of Defect command actions:

1. Assume default values are set for phaseFound, symptom, and prefix. To open
a defect with a severity rating of 3 against the debugr component, using the
text from an existing file to describe the defect, type:

Defect -open -component debugr -sev 3 -remarks - < /tmp/defect.descr

A new defect with the severity rating of 3 is opened against the component
called debugr. The dash (-) after the -remarks flag indicates the location of
the redirected input. The redirection symbol (<) indicates that the file
/tmp/defect.descr contains the remarks, that is, the description of the problem.
The first 63 characters are used as the abstract.

 Chapter 7. Defect 29

The defect identifier is displayed on the screen when the command is
completed successfully.

You are the originator of this defect because you opened it, and the component
owner is the owner of the defect.

2. To change the severity rating for defect 4312 and to change the existing value
in the reference field, type:

Defect -modify 4312 -sev 3 -reference BADMSG

The severity level of defect 4312 is changed to 3, and the reference is changed
to BADMSG.

3. To assign defect 4312 to the graphix component, type:

Defect -assign 4312 -component graphix

Defect 4312 is assigned to the graphix component; therefore, the owner of the
graphix component becomes the owner of defect 4312.

4. Assume that you are the originator of defect 4298 and this defect is currently in
the returned state. To cancel this defect, type:

Defect -cancel 4298 -remarks "This was a user error."

As the originator, you could have also canceled this defect if it was in the open
state.

5. Assume that you are a defect owner. To return a defect someone opened
against your component because it is a duplicate of a defect that is currently in
the working state, type:

Defect -return 4245 -duplicate 4197

Defect 4245 is associated with defect 4197 as a duplicate. Defect 4245 is moved
to the returned state, and its answer code becomes duplicate. A verification
record is created for the originator of defect 4245 and it exists in reference to
defect 4197. Originators of all duplicate defects and features must complete
verification records when the active defect is in the verify state.

6. Assume that you are the originator of defect 1424. It is returned to you by the
defect owner. To reopen defect 1424, type:

Defect -reopen 1424 -remarks "Disagree with restriction classification"

Defect 1424 moves to the open state.

7. Assume that you own a component against which someone opened defect
4312. To accept defect 4312, and associate it with the answer code your family
administrator has configured to represent an enhancement (enh), type:

Defect -accept 4312 -answer enh

Defect 4312 is moved to the working state with an answer code for
enhancement. (Defect answer codes are defined by the family administrator.)

8. To view information about defect 4244, including its history, all notes, tracks,
and verification records, process name and associated subprocess settings,
type:

Defect -view 4244 -long

9. To view the configurable field properties for the defects in family rdev, type:

Defect -configInfo -family rdev

30 CMVC Commands Reference

 Related Information
See commands: Feature, Fix, Report, Size, Track, Verify.

Use the Report command to get more information on existing configuration table
values:

� Report -vi config
� Report -vi config -w "name = 'symptom' "

To see the defect state diagrams, refer to the IBM CMVC User’s Reference.

 Chapter 7. Defect 31

32 CMVC Commands Reference

 Chapter 8. Environment (Environ)

Use the Environment command (or Environ command for the OS/2 client) to
create and modify entries on, and delete entries from a release environment list.
Each environment list entry consists of an environment name and the user ID of a
designated tester for that environment. You can specify the environments in which
a resolved defect or an implemented feature must be tested. One user can be
responsible for testing more than one environment, so a user ID can have more
than one entry on the environment list.

Test records are created according to the environment list of the release for each
track that is created for that release. See the Test command for information on
entering environment test results. If an environment list does not exist for a release,
then the testing process using test records is bypassed for all tracks associated
with that release.

 Syntax
The syntax statements for the Environment command are:

Environment -create Name ... -tester Name -release Name -family Name
[-become Name] [-verbose]

Environment -delete Name ... -release Name -family Name
[-become Name] [-verbose]

Environment -modify Name ... -tester Name -release Name -family Name
[-become Name] [-verbose]

 Action Flags
The action flags of the Environment command and their required authority are
listed in Figure 19.

Figure 19. Environment Action Flags

Action Flag
and Arguments

Purpose

Implicit Authority

Explicit Authority

-create Name ... Creates one or more environment list
entries for a release by specifying an
environment and a user who is responsible
for testing in that environment.

Release owner EnvCreate

-delete Name ... Deletes one or more environment list
entries for a release.

Note: You cannot delete the last entry in
an environment list if it is associated with a
release whose process includes the test
subprocess.

Release owner EnvDelete

-modify Name ... Modifies one or more environment list
entries for a release.

Release owner EnvModify

 Copyright IBM Corp. 1993 33

 Attribute Flags
The attribute flags of the Environment command are listed in Figure 20.

Figure 20. Environment Attribute Flags

Attribute Flag
and Argument

Purpose

-become Name Specifies the CMVC user ID to validate your authority to perform this action, only if the
CMVC user ID differs from your login.
(Environment Variable: CMVC_BECOME)

-family Name Specifies the family name for which this command is being issued.
(Environment Variable: CMVC_FAMILY)

-release Name Specifies the release with which the environment list is associated.
(Environment Variable: CMVC_RELEASE)

-tester Name Specifies the user responsible for testing in a given environment.

-verbose Name Indicates that you want to see a confirmation message after you issue this command.

 Examples
The following are examples of Environment command actions:

1. Assume you own the debugr release. Work being done in reference to that
release needs to be tested in the PCVersion1 environment as well as in the
PCVersion2 environment. To specify john as the tester on the environment list
associated with the debugr release, type:

Environment -create PCVersion1 PCVersion2 -tester john -release debugr

Two new environment list entries are created for the debugr release: one for
the PCVersion1 environment and one for the PCVersion2 environment. The
owner of the user ID john is responsible for testing both environments.
Therefore, john owns 2 test records for every track that is created for the
debugr release.

2. To delete all entries for environment ModelA from the environment list
associated with the release set in your CMVC_RELEASE environment variable,
type:

Environment -delete ModelA

The environment ModelA is deleted from the list for the release specified by the
CMVC_RELEASE environment variable.

3. To indicate that the new tester for PCVersion2 in the graphix release is lisa,
type:

Environment -modify PCVersion2 -tester lisa -release graphix

The owner of the user ID lisa replaces the previous person responsible for
testing the PCVersion2 environment for the graphix release.

34 CMVC Commands Reference

 Related Information
See commands: Test, Track, Release, Report.

 Chapter 8. Environment (Environ) 35

36 CMVC Commands Reference

 Chapter 9. Feature

Use the Feature command to open requests for design changes or ideas for future
functions. Also use this command to delete, modify properties of, change the state
of, and view information about features.

When you open a feature, you become the originator of the feature. You must
describe the proposed design change and name the primary component affected by
the feature. The owner of the component you assign the feature to becomes the
feature owner. That person responds to the feature by moving it to the design state,
returning it, or assigning it to a different component or user ID. (If the featureDSR
subprocess is not included in the managing component’s process, then the feature
owner must respond to it by accepting it, returning it, or assigning it to a different
component or user ID.)

As the originator of the feature, you can cancel or reopen it if it is returned by the
feature owner, and you can modify selected properties of a feature.

Originators of duplicate features are also notified when the corresponding active
defect or feature is closed or canceled. Thus they can either cancel or reopen the
duplicate feature, as appropriate.

The states a feature moves through depends on the CMVC subprocesses included
in its associated component process. A component process can include the
featureDSR (design, size, review) or featureVerify subprocesses, or none at all.
For more information on the feature states and their associated subprocesses, refer
to the IBM CMVC Concepts manual.

Note: Because your family administrator can modify or delete certain configurable
feature fields and create new fields, the attributes for the -open and -modify
actions listed in this section may be different from those in your family or may not
appear at all. Those listed here represent the shipped default fields only. For a list
of the field properties and flags in use in your family, use the Feature -configInfo
command or see your family administrator. For more information on configurable
fields, refer to the IBM CMVC Server Administration and Installation manual.

 Syntax
The syntax statements for the Feature command are:

Feature -accept Number ... -family Name [-remarks Text] [-become
Name] [-verbose]

Feature -assign Number ... -family Name [-remarks Text] [-verbose]
{ -component Name -owner Name } [-become Name]

Feature -cancel Number ... -family Name [-remarks Text] [-become
Name] [-verbose]

Feature -configInfo -family name [-become Name] [-raw]

Feature -design Number ... -family Name [-remarks Text] [-become
Name] [-verbose]

 Copyright IBM Corp. 1993 37

Feature -modify Number ... -family Name { -prefix Name -name Number
-target Name -reference Name -originator Name
-abstract Text -priority Name } [-remarks Text]
[-become Name] [-verbose]

Feature -note Number ... -remarks Text -family Name [-become Name]
[-verbose]

Feature -open -remarks Text -component Name -family Name
[-name Number] [-prefix Name]* [-reference Name]
[-abstract Text] [-become Name] [-verbose]

Feature -reopen Number ... [-remarks Text] [-become Name]
[-verbose]

Feature -return Number ... -family Name [-duplicate Name]
[-remarks Text] [-become Name] [-verbose]

Feature -review Number ... -family Name [-remarks Text]
[-become Name] [-verbose]

Feature -size Number ... -family Name [-remarks Text]
[-become Name] [-verbose]

Feature -verify Number ... -family Name [-remarks Text]
[-become Name] [-verbose]

Feature -view Number ... -family Name [-long | -processInfo]
[-become Name] [-verbose]

Note: Arguments marked with an asterisk (*) are required when no default value is
set in the configuration table for the CMVC family.

 Action Flags
The action flags of the Feature command and their required authority are listed in
Figure 21.

Figure 21 (Part 1 of 2). Feature Action Flags

Action Flag
and Arguments

Purpose

Implicit Authority

Explicit Authority

-accept Number ... Accepts features that are in the open or
review states as enhancements to be
implemented (depending on the
subprocess configuration of the
component).

Feature owner FeatureAccept

-assign Number ... Assigns features to another owner or
another component.

Feature owner,
Feature originator

FeatureAssign

-cancel Number ... Cancels features that are in the open state
or the returned state.

Feature originator FeatureCancel

-con figInfo Shows configurable field properties for
features in the specified family. (The
information is returned in a fixed ASCII
table format.)

N/A N/A

38 CMVC Commands Reference

Figure 21 (Part 2 of 2). Feature Action Flags

Action Flag
and Arguments

Purpose

Implicit Authority

Explicit Authority

-design Number ... Moves features to the design state or
specifies design text. (Features can move
to the design state from the open,
returned, design, size, or review state.)

Feature owner FeatureDesign

-modify Number ... Modifies selected properties of features:

-name
-originator

Feature originator FeatureModify

-abstract
-prefix
-reference
-priority ñ

-target ñ

Feature originator,
Feature owner

FeatureModify

-note Number ... Adds remarks to features. These notes
cannot be modified or deleted after they
are in the system.

N/A N/A

-open Opens a feature. (A unique identifier is
generated by CMVC to identify the new
feature unless you specify an identifier
using the optional -name flag.)

N/A N/A

-reopen Number ... Reopens features that are in the returned
state or the canceled state.

Feature originator FeatureReopen

-return Number ... Returns features from any state except the
verify state, closed state, or canceled
state. (A working feature can be returned
only if it does not have tracks associated
with it.)

Feature owner FeatureReturn

-rev iew Number ... Moves features from the size state to the
review state so that the proposed design
implementation and sizing information can
be reviewed.

Feature owner FeatureReview

-size Number ... Moves features from the design state to
the size state for sizing. (Design text must
first be entered using Feature -design
-remarks).

Feature owner FeatureSize

-veri fy Number ... Moves features from the working state to
the verify state.

Feature owner FeatureVerify

-view Number ... Shows information about features. Feature owner,
Feature originator

FeatureView

ñ These shipped default flags can be changed or deleted by your family administrator and may not appear as listed.
For a list of the flags in use in your family, use the Feature -configInfo command.

 Chapter 9. Feature 39

 Attribute Flags
The attribute flags of the Feature command are listed in Figure 22.

Figure 22 (Part 1 of 2). Feature Attribute Flags

Attribute Flag
and Argument

Purpose

-abstract Text Enters concise text to summarize a feature. Up to 63 characters are allowed. This text
appears in reports and notification messages. (If this flag is not specified when you open a
feature, the first 63 characters or the text up to the first new-line character of the -remarks
flag serves as the abstract.)

-become Name Specifies the CMVC user ID to validate your authority to do this action, only if the CMVC
user ID differs from your login.
(Environment Variable: CMVC_BECOME)

-com ponent Name Specifies the name of the component when opening or assigning a feature. The environment
variable is not used for Feature -assign .
(Environment Variable: CMVC_COMPONENT)

-duplicate Name Specifies that another defect or feature (that is not canceled, returned, or closed) already
exists to address the feature being returned.

-family Name Specifies the family for which this command is being issued.
(Environment Variable: CMVC_FAMILY)

-long Displays information for the specified feature including the feature history, all notes attached
to the feature, all sizing, track, and verification records associated with the feature and any
duplicate defects or features and their originators, in reference to the -view action flag.

-name Number Specifies the feature identifier. Up to 15 alphanumeric characters are allowed for
user-generated feature IDs. (CMVC checks the uniqueness of the ID. If the ID already
exists in CMVC, the action fails and you receive a message indicating that the identifier is
not unique. You must then enter a new identifier or allow CMVC to generate one.)

-or iginator Name Specifies the user ID of the new originator when modifying a feature. The originator's
verification record must be reassigned manually using Verify -assign when the feature is in
either the working state or the verify state.

-owner Name Specifies the user ID of the new owner when you assign a feature.

-pre fix Name Categorizes features by type. This value precedes the feature identifier in report output.

-pro cessInfo Displays the current process setting and associated CMVC subprocesses for the component
associated with the specified features when used with the -view action flag.

-raw Produces report output in raw format:

� Information retrieved from each field is separated by the vertical bar delimiter.
� Each line of output corresponds to one database record.

-reference Name Assigns a value, name, or keyword to a feature. Or refers to a previous defect or feature
when opening or modifying a feature.

-remarks Text Describes the change being requested, the actual design for the feature, or the reason for
modifying or changing the state of the feature. Once you issue a command which adds
remarks, you cannot change the remarks (that is, you cannot use Feature -modify to
change the remarks.) To move a feature to the size state, you must have entered some
design text using the -remarks flag within the -design action.

-verbose Indicates that you want to see a confirmation message after you issue this command.

40 CMVC Commands Reference

Figure 22 (Part 2 of 2). Feature Attribute Flags

Attribute Flag
and Argument

Purpose

-pri ority Name ñ When modifying a feature, specifies the timing or scheduling requirements for implementing
a feature.

-target Nameñ When opening or modifying a feature, specifies a target (such as, a level or a date) for
feature implementation or availability.

ñ These shipped default flags can be changed or deleted by your family administrator and may not appear as listed.
For a list of the flags in use in your family, use the Feature -configInfo command.

 Examples
The following are examples of Feature command actions:

1. To open a feature against the debugr component, assuming there is a default
prefix value set, type:

Feature -open -rem "Change format of parameter values display"

-component debugr

A feature change request is created against the debugr component.

The feature identifier appears on the screen when the command is completed.

You are the originator of this feature because you opened it. The owner of
component debugr is the owner of the feature.

2. Assume that you are the owner of feature 4312. To assign it to another
component, type:

Feature -assign 4312 -component graphix

Feature 4312 is assigned to the graphix component; the owner of graphix
becomes the new owner of this feature.

3. Assume that you are the originator of feature 4298 and that it is currently in the
returned state. To cancel this feature, type:

Feature -cancel 4298

4. Assume that you are the originator of feature 4245 and that it is currently in the
canceled state. To reopen that feature, type:

Feature -reopen 4245 -remarks "Disagree with restriction

classification"

Feature 4245 is now in the open state. It is reopened against the component
that owned it when the feature was canceled.

5. Assume that you are a component owner and that feature 4312 was opened
against your component. To move that feature to the design state, type:

Feature -design 4312

Feature 4312 is moved to the design state. You can issue the Feature -design
command with the -remarks flag when you are ready to enter actual design
information. You can issue the Feature -design command more than once.

 Chapter 9. Feature 41

6. Assume that you are the owner of feature 3129. This feature is in the design
state and text has been entered using Feature -design -remarks. To move the
feature to the size state, type:

Feature -size 3129

Feature 3129 is moved to the size state. Once it is in the size state, you can
create sizing records using the Size command. (One sizing record is required
for each component and release combination affected by the feature change.)

7. Assume that you own feature 4312 and that it is currently in the review state.
After you have reviewed the feature information, you decide to accept the
feature for implementation. To accept the feature, and therefore move it to the
working state, type:

Feature -accept 4312

Feature 4312 moves from the review state to the working state. Tracks and fix
records are created according to the sizing records for this feature.

8. To view information about feature 1244, including its purpose, originator, owner,
and current state, type:

Feature -view 1244

9. To view the field properties for the features in family rdev, type:

Feature -configInfo -family rdev

 Related Information
See commands: Defect, Fix, Report, Size, Track, Verify . To see the feature state
diagrams, refer to the IBM CMVC User’s Reference.

42 CMVC Commands Reference

 Chapter 10. File

Use the File command to bring files into the CMVC development environment and
to work with individual files once they are in this environment. You must bring a file
into the CMVC development environment by creating it on the CMVC server using
File -create . The file must already exist on the CMVC client's file system before
you can bring it under CMVC control.

You create and access files in CMVC by issuing File commands from your current
working directory. For details concerning the relative placement of files when you
create them using the command line interface, refer to “Related Information” on
page 51.

When you create a file in CMVC, you must associate it with a release (to relate the
file to a development effort) and with a component (to control the ownership of and
the access to a file). You also have the option of specifying a file mode when
creating a file using the -fmode flag. (If file mode is not specified, the current file
mode is used.) After a file is successfully created in CMVC, CMVC modifies the
file permissions of the working copy of the file left on the client to read-only. All
subsequent File access commands must specify the file name and release name to
identify the correct file.

By default, files are created as text files, although you can specify whether a file is
a text or binary file at the time you create it. If your CMVC uses Source Code
Control System (SCCS) as the underlying version control system, the following text
type files are created as binary type files by CMVC:

� An ASCII control character, SOH (start of header or control-A), at the beginning
of a line

� An ASCII control character, NUL, anywhere in the file

The contents of the files are not affected. There are no restrictions on text files if
your CMVC uses PVCS Version Manager** as the underlying version control
system.

File path names within the CMVC environment must be unique for a release. Files
that have a unique base name within a release can be specified by their base
name; other files (for example, Makefile) must be specified by their full path name
when performing CMVC actions against the file.

You can perform various actions against files in CMVC, depending on the authority
you have in the access lists for the components that manage the files. Copies of
files can be extracted, or files can be checked out for editing and subsequently
checked in to save the changes. Various properties of files can be modified, such
as, the path name, release, component, and file mode. Files can be deleted and
then recreated. Destroying files permanently removes the database record for the
files from the CMVC environment. Destroyed files cannot be recreated. However,
the names of destroyed files can be used to create new files within the CMVC
development environment.

Actions performed on files can be undone, although certain limitations apply. The
-undo action negates the most recent action that changed a file. For files in a

 Copyright IBM Corp. 1993 43

release whose process includes the track subprocess, each uncommitted change
can be undone in backward sequential order.

When working with files in a release whose process includes the track and level
subprocesses, multiple sets of file changes can be checked in and included in one
level; however, other types of file changes can be specified only once in a level.
For example, a file can be created or deleted or renamed or recreated or linked in
one level, but a file cannot be created and renamed in one level. However, an
existing uncommitted -create action can be undone so that you can create a file
with the desired name.

Files can be linked to identify them as either shared or common files. A file is
shared if it is a member of more than one release, and different versions of the file
are used in each release. Shared files follow separate paths of development but
are based on the same initial file. A file is common if it is a member of more than
one release, and the same version of the file is being used in those releases.
Common files follow a single path of development.

You can define a common file for releases whose process does not include the
track subprocess; however, commonality is broken when a change is made to the
file. For a discussion of the CMVC track subprocess, refer to the book IBM CMVC
Concepts. If the track subprocess is included in the release process, CMVC
maintains commonality of files unless common versions are forced using the -force
flag. For more information about breaking commonality, refer to “Related
Information” on page 51.

Note: Because your family administrator can create new fields, the attributes for
the -create and -modify actions listed in this section may be different from those in
your family. Those listed here represent the shipped default fields only. For a list
of the field properties and flags in use in your family, use the File -configInfo
command or see your family administrator. For more information on configurable
fields, refer to the book IBM CMVC Server Administration and Installation.

 Syntax
The syntax statements for the File command are:

File -checkin Name ... -release Name -family Name [-common Name ...]**
[-force] [-remarks Text] [-relative Name | -top Name]
[-defect Number ... -feature Number ...]*
[-become Name] [-verbose]

File -checkout Name ... -release Name -family Name [-force] [-stdout]
[-relative Name | -top Name] [-become Name] [-verbose]

File -configInfo -family name [-become Name] [-raw]

File -create Name ... -component Name -release Name -family Name
[-fmode Octal_number] [-relative Name | -top Name]
[-binary] [-defect Number ... -feature Number ...]*
[-remarks Text] [-become Name] [-verbose]

File -delete Name ... -release Name -family Name [-top Name]
[-defect Number ... -feature Number ...]* [-force]
[-common Name ...] [-become Name] [-verbose]

File -destroy Name ... -release Name -family Name [-top Name]
[-become Name] [-verbose]

44 CMVC Commands Reference

File -extract Name ... -release Name -family Name [-version Name]
[-nokeys] [-stdout] [-relative Name | -top Name]
[-dmask Octal_number] [-fmask Octal_number]
[-become Name] [-verbose]

File -link Name ... -to Name -release Name -family Name
[-version Name] [-defect Number ... -feature Number ...]*
[-top Name] [-become Name] [-verbose]

File -lock Name ... -release Name -family Name [-force] [-top Name]
[-become Name] [-verbose]

File -modify Name ... -release Name -family Name
{ -fmode Octal_number -component Name }
[-top Name] [-become Name] [-verbose]

File -recreate Name ... -release Name -family Name [-top Name]
[-defect Number ... -feature Number ...]* [-force]
[-common Name ...]** [-become Name] [-verbose]

File -rename Name -path Name -release Name -family Name [-top Name]
[-defect Number ... -feature Number ...]* [-force]
[-common Name ...]** [-become Name] [-verbose]

File -resolve Name ... -release Name -family Name [-quiet] [-top Name]
[-become Name] [-verbose]

File -undo Name ... -release Name -family Name [-top Name]
[-defect Number ... -feature Number ...]* [-force]
[-common Name ...]** [-become Name] [-verbose]

File -unlock Name ... -release Name -family Name [-become Name]
[-relative Name | -top Name] [-verbose]

File -view Name ... -release Name -family Name [-long] [-top Name]
[-become Name] [-verbose]

Note: Arguments marked with an asterisk (*) are required for files associated with
a release whose process includes the CMVC track subprocess. Arguments marked
with a double asterisk (**) can be specified if the files are associated with a release
whose process includes the CMVC track subprocess.

 Action Flags
The action flags of the File command and their required authority are listed in
Figure 23.

Figure 23 (Part 1 of 3). File Action Flags

Action Flag
and Arguments

Purpose

Implicit Authority

Explicit Authority

-checki n Name ... Submits to the CMVC server the changes
made to a specified file.ñ (Any associated
tracks must be in the fix state and the
associated fix records in the ready or
active state.)

Component owner
User who checked
out or locked the
file

FileCheckIn
[FileForceIn]

 Chapter 10. File 45

Figure 23 (Part 2 of 3). File Action Flags

Action Flag
and Arguments

Purpose

Implicit Authority

Explicit Authority

-checko ut Name ... Retrieves a working copy of a specified file
and locks it for editing purposes. Only the
most recent version of a file can be
checked out.

Component owner FileCheckOut
[FileForceOut]

-con figInfo Shows configurable field properties for files
in the specified family. (The information is
returned in a fixed ASCII table format.)

N/A N/A

-create Name ... Creates files with the specified names; this
creates a CMVC record for the file and
copies it to the server.ñ Files must have
unique path names within a release.

Component owner FileAdd

-delete Name ... Deletes the specified files.ñ A file's
association with a release whose process
includes the track subprocess cannot be
deleted if changes are pending for that file.

Component owner FileDelete
[FileDeleteForce]

-des troy Name ... Destroys the specified files. The CMVC
record for the file is removed so that a new
file can be created using the same file
name. Files associated with a release
whose process includes the track
subprocess must be deleted and
committed before the destroy action can
be performed.

Component owner FileDestroy

-extract Name ... Retrieves a copy of a specified file. The
current version is extracted by default.

Component owner FileExtract

-link Name ... Makes common or shared files in the
specified release.ñ

Component owner FileLink

-loc k Name ... Locks a file in the CMVC server. This
prevents other users from checking out the
file. Only the current version of a file can
be locked.

Component owner FileLock
[FileLockForce]

-modi fy Name ... Reassigns the file to another component or
changes the file permission. When
reassigning the file to another component,
the component you specify manages
access to the file. (Different components
can manage different versions of the same
file.)

Component owner FileModify

-rec reate Name ... Recreates previously deleted files.ñ Component owner FileRecreate
[FileRecreaForce]

-rename Name Specifies a new path name for a file.ñ Component owner FileRename
[FileRenameForce]

-resolve Name ... Displays the full path name in a specific
release for specified file base names.

N/A N/A

46 CMVC Commands Reference

Figure 23 (Part 3 of 3). File Action Flags

Action Flag
and Arguments

Purpose

Implicit Authority

Explicit Authority

-und o Name ... Undoes the most recent uncommitted
action that changed specified files.

Component owner FileUndo

If the track subprocess is included in
the release process, you can undo:ñ

� The most recent uncommitted delete,
rename, recreate, or check-in action in
one or more of the releases where the
file is common. All tracks related to the
most recent change must be in the fix
state.

� The most recent uncommitted create
or link in a single release. The
-common flag is ignored. All tracks
related to the most recent change must
be in the fix state.

� Multiple check-in actions, up to the
latest committed version of the
specified file.

If the track subprocess is not included in
the release process, you can undo multiple
check-in actions back to the first version of
a file created within the CMVC
environment (or back to the last version of
a file committed by a track).

-unl ock Name ... Unlocks a file that is checked out so that it
is no longer reserved for editing purposes
and so that no changes are submitted to
the server. Or, unlocks a file that has
been previously locked using -lock .

Component owner
User who has the
file locked

FileUnlock

-view Name ... Shows all information for the specified
files.

Component owner FileView

ñ If the file is associated with a release whose process includes the CMVC track subprocess, you must specify the
tracks associated with this action by giving the defect or feature identifier and release name.

 Attribute Flags
The attribute flags of the File command are listed in Figure 24.

Figure 24 (Part 1 of 3). File Attribute Flags

Attribute Flag
and Argument

Purpose

-become Name Specifies the CMVC user ID to validate your authority to perform this action, only if the
CMVC user ID differs from your login.
(Environment Variable: CMVC_BECOME)

 Chapter 10. File 47

Figure 24 (Part 2 of 3). File Attribute Flags

Attribute Flag
and Argument

Purpose

-binary Indicates that the file being created is a binary file.
(Default type is text.)

-comm on Name ... Specifies the releases in which common files are to be maintained or whether the
specific file change is to apply to all releases in which the file is common. All releases
must be specified unless the -force flag is specified as well.

-comp onent Name Specifies the name of the component that manages access and notification for a file.
(Different components can manage different versions of the same file.) The
environment variable is not used for File -modify .
(Environment Variable: CMVC_COMPONENT)

-defect Number... Specifies the defect identifier if the file being acted upon is associated with a release
whose process includes the track subprocess.ñ

-dmask Octal_number Specifies the read, write, and execute directory permissions in octal notation for the
extracted file. Default is 750 (read, write and execute access for directory owner, read
and execute access for others in the owner's group, and no access for all other users).

-family Name Specifies the family name for which this command is being issued.
(Environment Variable: CMVC_FAMILY)

-feature Number... Specifies the feature identifier if the file being acted upon is associated with a release
whose process includes the track subprocess.ñ

-fmask Octal_number Specifies the read, write, and execute file permissions in octal notation for the
extracted files. Default is the file’s mode less the write permission for the file owner,
others in the owner’s group and all others. The -fmask flag overrides the -fmode
setting.

-fmo de Octal_number Specifies the file mode in CMVC when creating or modifying a file. If no mode is
specified, the current file mode is accepted.

-fo rce Forces a break between common files when using -lock, -checkout, -checkin,
-delete, -recreate, -rename, or -undo .

-lon g Displays information for the specified files, including the file history, whether the file is
checked out for editing, all associated common files, and any change information.
(The file change information includes the existing active changes for the file, the defect
or feature, and file version associated with those changes.)

-nokeys Indicates that keywords should not be expanded when a file is extracted.

-path Name Specifies a new file path name when renaming a file.
(File names, consisting of the base name and the path name, must be unique within a
release.)

-quiet Suppresses explanatory remarks and new line characters in the output of File
-resolve .

-raw Produces report output in raw format:

� Information retrieved from each field is separated by the vertical bar delimiter.
� Each line of output corresponds to one database record.

-rela tive Name Creates, checks in, checks out, or extracts the specified file relative to the directory
location specified according to the complete path name of the file. Directories are
created if necessary when extracting or checking out in order to copy the file by its full
path name.

-release Name Specifies the associated release for the specified files.ñ
(Environment Variable: CMVC_RELEASE)

48 CMVC Commands Reference

Figure 24 (Part 3 of 3). File Attribute Flags

Attribute Flag
and Argument

Purpose

-remarks Text Adds explanatory remarks when checking in or creating a file. Up to 15 999
characters are permitted.

-stdout Redirects the specified file to standard output when extracting it from the CMVC
server.

-to Name Specifies the release in which you want to create a link for a common or shared file;
use it when you link specified files.

-top Name Specifies the leading portion of the path name that is a subset of the current working
directory on the client machine.
(Environment Variable: CMVC_TOP)

-verb ose Indicates that you want to get a confirmation message when you issue this command.

-vers ion Name Specifies the version of the file you want to extract or link. File versions are specified
by an SCCS or PVCS identification number.

Note: PVCS is not supported on the CMVC for Sun systems or CMVC for HP
systems products.

ñ If the file is associated with a release whose process includes the CMVC track subprocess, you must specify the
tracks associated with this action by giving the defect or feature identifier and release name.

 Examples
The following are examples of File command actions:

1. Assume that your current working directory (cwd) is /u/jane , and your
CMVC_TOP environment variable is set to /u/jane . You have a file with the
path name /u/jane/src/bar/option/tic.c on your workstation. To create this file
within the CMVC development environment as src/bar/option/tic.c and
associate it with a release whose process includes the track subprocess, type:

File -create src/bar/option/tic.c -component graphs -release 32charting

-defect 341

The file src/bar/option/tic.c is created as a member of the 32charting

release. The file is managed by the graphs component. The file is created as
part of the fix for defect 341.

2. To rename an existing file in a release whose process includes the track
subprocess, type:

File -rename debugr/src/xyz.c -path debugr/v2/xyz2.c -release 2ðdebugr

The file debugr/src/xyz.c in release 2ðdebugr is renamed debugr/v2/xyz2.c.

3. Assume that your CMVC_RELEASE environment variable is set to the release
associated with the file src/bar/option/tic.c. To reassign that file to another
component, type:

File -modify src/bar/option/tic.c -component debugr

4. To create a common file between two releases, type:

File -link debugr/x.c -release 1ðdebugr -to 2ðdebugr -defect 866

 Chapter 10. File 49

The current version of the file debugr/x.c in release 1ðdebugr is linked to the
2ðdebugr release. This creates a common file link between the releases
1ðdebugr and 2ðdebugr for the current version of the file in release 1ðdebugr.

If the releases 2ðdebugr and release 1ðdebugr both have the track subprocess
included in their release process, future changes to the file debugr/x.c must
reference a track for each release to maintain file commonality.

If the track subprocess is not included in the process of both releases, no track
is required but the file becomes a shared file once the file is changed in
reference to either release.

5. Assume that your CMVC_RELEASE environment variable is set to the release
associated with a file you want to extract. To extract a copy of the file, type:

File -extract graphix/x.c -stdout > View_x.c

File graphix/x.c in the release specified by the CMVC_RELEASE environment
variable is copied to the file View_x.c in your current working directory. If the
-stdout flag is not specified, the file is copied to your current working directory
using the base name, x.c.

6. Assume that your cwd is /u/jane/graphix , and your CMVC_TOP environment
variable is set to /u/jane . To check out a working copy of a file and lock it for
editing, type:

File -checkout x.c -release 1ðgraphix

In this example, the value of the CMVC_TOP environment variable, /u/jane, is
stripped from the head of the user's current working directory. The result
indicates the name of the file, graphix/x.c, within the CMVC environment.
The file is copied to /u/jane/graphix with the name x.c, and the current
version of the file for the release 1ðgraphix is locked.

7. Assume that your CMVC_RELEASE environment variable is set to the release
associated with the file graphix/x.c and that the track subprocess is included
in the associated release process. Your current working directory is
/u/jane/test, and your CMVC_TOP environment variable is not set. To check
in that file after editing, type:

File -checkin graphix/x.c -defect 8117 5412

Changes made to the file graphix/x.c are submitted to the CMVC server
creating a new version of the file. The changes relate to the tracks
corresponding to defects 8117 and 5412 in the release indicated by the
CMVC_RELEASE environment variable. The edited file x.c must exist in your
current working directory. If x.c was a unique base name within the release,
you would only have to specify the base name.

8. To unlock a file that was checked out, type:

File -unlock debugr/x.c -release 11debugr

The file debugr/x.c in the 11debugr release is no longer locked.

9. To undo the most recent change to a file, type:

File -undo debugr/x.c

The change submitted most recently for file debugr/x.c in the release indicated
by the CMVC_RELEASE environment variable is reversed or undone. If the
track subprocess is not included in the associated release process, the -undo
action only affects the most recent File -checkin command; if the track

50 CMVC Commands Reference

subprocess is included in the associated release process, -undo affects the
most recent -checkin , -create , -delete , -recreate , -rename , or -link action.

10. To view information about a specified file, type:

File -view graphix/x.c -release 1ðgraphix

To obtain additional information about a specified file, include the -long option
with File -view by typing:

File -view graphix/x.c -release 1ðgraphix -long

File information for the file graphix/x.c is displayed, including the file history,
whether or not the file is locked for editing, all common files, and change
information.

11. To view the fields properties for the file in family rdev, type:

File -configInfo -family rdev

 Related Information
See commands: Level, Component, Defect, Feature, Release, Report, Track.

For a list of supported keywords, refer to the IBM CMVC User’s Reference.

Accessing Files and Determining Location
You must always provide a file name and a release when you access a file that is
under CMVC control or place a file under CMVC control. Four methods of
accessing files are described below. All examples provided assume that your
CMVC_RELEASE environment variable is set.

 Method 1
If a file has a base name that is unique within the release, then you can specify just
the base name in the command. When you perform a checkout, CMVC writes to
the cwd. When you perform a checkin, CMVC looks in the cwd for the base name.

For example, assume that you have a file named src/cat/cmvc.msg , and there is
no other file called cmvc.msg in the release. You can use File -checkout

cmvc.msg or File -checkin cmvc.msg.

 Method 2
If a file has a base name that is not unique; that is, the base name is used for
multiple files in the release, then you must specify the full path name.

For example, assume that you have a number of Makefile files but you only want
to work with src/cat/Makefile . You must use File -checkout src/cat/Makefile to
have the file copied to your cwd, or File -checkin src/cat/Makefile to indicate
the location of the file on your host.

 Method 3
You have the option of using the -relative flag to specify where to access the file
on the client, regardless of cwd. This option writes or reads the file according to its
full path name as opposed to its base name.

The -relative flag can be used only with the extract , create , checkout , checkin ,
and unlock actions.

 Chapter 10. File 51

Example 1: File -checkout src/cat/Makefile -relative /tmp writes the file to
/tmp/src/cat/Makefile .

Example 2: File -checkout cmvc.msg -relative /tmp writes the file to
/tmp/src/cat/cmvc.msg .

In both of these examples, the directories /tmp/src and /tmp/src/cat are created if
they do not already exist.

 Method 4
You can set a value for the CMVC_TOP environment variable. Though this
variable is similar to the -relative flag, it is used only when it matches the leading
portion of your current working directory (cwd). The CMVC_TOP environment
variable can also be used with all file actions.

Determining the Server Pathname by the CMVC Client
The CMVC client determines the server pathname as follows:

1. If the CMVC_TOP environment variable is not set, or if CMVC_TOP is not a
subset of the current working directory (cwd), then

server pathname = user-supplied pathname

Example 1 : CMVC_TOP is not set

CMVC_TOP = (Not set)
cwd = /u/jane/workspace

File -checkout src/cat/cmvc.msg

/src/cat/cmvc.msg becomes the server pathname.

Example 2 : CMVC_TOP is not subset of cwd

CMVC_TOP = /u/pat
cwd = /u/jane/workspace

File -checkout src/cat/cmvc.msg

/src/cat/cmvc.msg becomes the server pathname.

2. If the CMVC_TOP environment variable is set, and if CMVC_TOP is a subset
of the current working directory (cwd)

server pathname = (cwd - CMVC_TOP) + user-supplied pathname

Example 3: CMVC_TOP is set and is a subset of cwd

CMVC_TOP = /u/jane/workspace
cwd = /u/jane/workspace/src/cat

File -checkout cmvc.msg

/src/cat/cmvc.msg becomes the server pathname.

If the server pathname is a basename, the server will resolve it to the full path
name in the specified release. The resolved pathname must be unique or an error
message is issued.

Example 4: CMVC_TOP is a subset of cwd and server pathname is a basename

CMVC_TOP = /u/jane/workspace
cwd = /u/jane/workspace

52 CMVC Commands Reference

File -checkout cmvc.msg

The server resolves cmvc.msg /src/cat/cmvc.msg as the server pathname.

This assumes that the src/cat/cmvc.msg is the only pathname in that release that
has basename cmvc.msg.

Determining Destination Pathname by the Client
After the CMVC server completes the specified file action, the client determines the
destination pathname as follows:

1. If the CMVC_TOP environment variable is not set, or if CMVC_TOP is not a
subset of the current working directory (cwd)

destination pathname = cwd + resolved server pathname

Example 5: CMVC_TOP is not set or is not a subset of cwd

CMVC_TOP = /u/jane/workspace
cwd = /u/pat

File -checkout src/cat/cmvc.msg

or

File -checkout cmvc.msg

write the file to /u/pat/cmvc.msg

2. If the CMVC_TOP environment variable is set, and if CMVC_TOP is a subset
of the current working directory (cwd)

destination pathname = CMVC_TOP + resolved server pathname

Example 6: CMVC_TOP is set and is a subset of cwd

CMVC_TOP = /u/jane/workspace
cwd = /u/jane/workspace/src

File -checkout cat/cmvc.msg

writes the file to /u/jane/workspace/src/cat/cmvc.msg

If the -relative flag is set, then the -top flag, CMVC_TOP environment variable, and
the cwd are ignored.

Example 7: The -relative flag is set

CMVC_TOP = /u/jane/workspace
cwd = /u/jane/workspace/src

File -checkout cmvc.msg -relative /tmp

or

File -checkout src/cat/cmvc.msg -relative /tmp

write the file to /tmp/src/cat/cmvc.msg

 Chapter 10. File 53

Common Files in Releases
When a common file is checked out for editing, it is locked in all releases where it
is common. If the release process includes the track subprocess, you only need to
do one check-in to have the change reflected in all releases in which the file is
common. CMVC maintains commonality of files unless uncommon versions are
forced using the -force flag. If you need to edit a locked file and cannot wait for the
file to be checked in, you can break the common link (and thus the lock on the
common version) by specifying the -force flag when you issue File -checkout .
The force applies only in that release so that the file associated with that release is
no longer common. You must explicitly link files to make them common after that
time.

When a common file is checked in using the File -checkin command, a track must
be specified for each release in which the file is common. The associated tracks
must be in the fix state and the associated fix records in the ready or active state.
(A track is identified by a defect identifier and a release name or by a feature
identifier and a release name.)

If you want to check in or modify (for example, rename, delete) a common file, and
you do not want the changes to be reflected in the other releases in which the file
is common, use the -force flag to break the common link. If you want to check in
or modify a common file, but you want the changes to be reflected in some of the
releases to which the file is common but not in others, use the -force flag as well
as the -common flag. Provide names of the releases for which you want to
maintain file commonality (excluding the name of the release associated with the
file you are checking in or modifying), as arguments to the -common flag.

54 CMVC Commands Reference

 Chapter 11. Fix

Fix records are associated with tracks. A fix record is used to reflect the status of
all the file changes made to resolve a defect (or implement a feature) for a release
in reference to one component. A track has one or more fix records associated with
it, depending on the number of components in which files are changed. The
component manages the files that need to be changed in relation to the track.

Use the Fix command to create, delete, and reassign fix records and to change the
state of fix records.

Each fix record is uniquely identified by a defect or feature identifier, a release, and
a component. The owner of a fix record is, by default, the owner of the related
component; however, this ownership can be reassigned using the -assign action
flag.

Each fix record refers to the file changes required within one component. The state
of the fix record indicates the state of file changes for that component.

Fix records are created according to the sizing records of a feature or defect at the
time a track is created for the feature or defect. They are created in the notReady
state if the associated track is in the approve state, otherwise they are created in
the ready state. Additional fix records are created if files are changed and checked
in to the CMVC development environment for a defect or a feature in a component
for which there is no existing fix record. In this case, the fix record is in the active
state. The active state means that file changes have been checked in for the defect
or feature in the component. You can create fix records using the -create action
flag if a track is in the approve state or the fix state.

Use the -complete action flag to indicate that the file changes necessary to fix the
defect or feature within that component are completed. This moves the fix record
to the complete state.

When all fix records for the track are completed, it moves from the fix state to the
integrate state. Use the -activate action flag to reactivate a fix record that is in the
complete state if additional file changes are needed. This can only be done if the
track is in the fix state.

If you decide that no file changes are required for a component that has a fix
record, you can use the -delete action flag to delete the fix record from the
associated track.

 Syntax
The syntax statements for the Fix command are:

Fix -activate { -defect Number ... -feature Number ... }
 -family Name -release Name ... -component Name
[-become Name] [-verbose]

Fix -assign -to Name { -defect Number ... -feature Number ... }
 -release Name ... -component Name -family Name
[-become Name] [-verbose]

 Copyright IBM Corp. 1993 55

Fix -complete { -defect Number ... -feature Number ... }
 -family Name -release Name ... -component Name
[-become Name] [-verbose]

Fix -create { -defect Number ... -feature Number ... } -release Name ...
-component Name -family Name
[-developer Name] [-become Name] [-verbose]

Fix -delete { -defect Number ... -feature Number ... } -release Name ...
-component Name -family Name
[-become Name] [-verbose]

 Action Flags
The action flags of the Fix command and their required authority are listed in
Figure 25.

Figure 25. Fix Action Flags

Action Flag Purpose Implicit Authority Explicit Authority

-activate Moves a fix record from the complete state
to the active state so that additional file
changes can be made.ñ (You can only
change the fix record state if the
corresponding track is in the fix state.)

Owner of fix
record, Component
owner, Track
owner

FixActive

-assign Assigns ownership of a fix record to
another user ID.ñ (You cannot reassign the
component.)

Owner of fix
record, Component
owner, Track
owner

FixAssign

-compl ete Moves a fix record to the complete state to
indicate that all file changes required in the
associated component are completed.ñ If
no other fix records exist, or if all other
records are completed, this causes the
track to change from the fix state to the
next valid state governed by the release’s
process.

Owner of fix
record, Component
owner, Track
owner

FixComplete

-create Creates a fix record for a track in relation
to a component.ñ You can only create a fix
record if the track is in the approve state or
the fix state.

Defect owner,
Feature owner,
Track owner

FixCreate

-delete Deletes the fix record for the specified
track and component. (You cannot delete
a fix record that is in the active state or the
complete state because it has file changes
associated with it.)

Defect owner,
Feature owner,
Track owner

FixDelete

ñ To perform this action, the associated release's process must include the fix subprocess.

56 CMVC Commands Reference

 Attribute Flags
The attribute flags of the Fix command are listed in Figure 26.

Figure 26. Fix Attribute Flags

Attribute Flag
and Argument

Purpose

-become Name Specifies the CMVC user ID to validate your authority to perform this action, only if the
CMVC user ID differs from your login.
(Environment Variable: CMVC_BECOME)

-compo nent Name Specifies the component that manages the files that need to be changed.
(Environment Variable: CMVC_COMPONENT)

-defect Number ... Specifies one or more defect identifiers for the fix records.

-developer Name When creating a fix record, specifies the user ID of the owner of the fix record.

-family Name Specifies the family for which this command is being issued.
(Environment Variable: CMVC_FAMILY)

-feature Number ... Specifies one or more feature identifiers for the fix records.

-release Name Specifies the release to which this fix record applies.
(Environment Variable: CMVC_RELEASE)

-to Name When assigning a fix record, specifies the user ID of the new owner.

-verbose Indicates that you want to see a confirmation message after you issue this command.

 Examples
The following are examples of Fix command actions:

1. Assume that file changes are required to resolve defect 9ð9 in release 21gos.
The component graphix manages the files that need to be changed. To create
a fix record, type:

Fix -create -defect 9ð9 -component graphix -release 21gos

A fix record is created to monitor changes made to files in the graphix
component to resolve defect 9ð9 for the release 21gos. The owner of the new
fix record is the owner of the graphix component.

2. Assume that you own a fix record that monitors changes made to files in the
debugr component for the track referencing feature 955 in release 21gos. To
reassign that fix record to joel if your CMVC_RELEASE environment variable
is set to 21gos, type:

Fix -assign -feature 955 -component debugr -to joel

The fix record is now owned by joel. If your CMVC_RELEASE environment
variable was not set to the proper release, you would have had to use the
-release attribute flag.

3. Assume additional file changes are required to files managed by component
graphix for the track referencing defect 412 and release font38. Also, assume
that the CMVC_COMPONENT and the CMVC_RELEASE environment
variables are set to graphix and font38, respectively, and the track is in the fix
state. To reactivate the fix record, type:

Fix -activate -defect 412

 Chapter 11. Fix 57

The fix record for defect 412 in the component and release specified in the
environment variables is moved to the active state and additional file changes
can now be checked in.

 Related Information
See commands: Component, Defect, Feature, File, Release, Track.

58 CMVC Commands Reference

 Chapter 12. Host (Hostcmd)

Use the Host command (or the Hostcmd command for the OS/2 client) to create
and delete entries on a CMVC user's host list. Each entry identifies client access
for a user ID on one host, and consists of a user ID and a host in the format
login@hostName. The Host command is used in conjunction with the User
command when initially creating a new user ID. A host list is attached to a user ID
and must have at least one entry to establish client access for the user. Additional
entries can be defined to allow a user to complete CMVC commands from multiple
hosts (and logins).

A CMVC superuser must create the first host list entry for a new user ID. The
owner of the user ID can make subsequent entries to gain client access on the
hosts where he or she has logins. Each user ID can have multiple host list entries.

When using the -become flag or the CMVC_BECOME environment variable, you
require an entry on the host list of the user ID specified by -become . This gives
you authority to act on behalf of that user ID.

Host list entries can be deleted; however, a user ID must always have one host list
entry to be able to access CMVC. If all host list entries are deleted for a user ID,
only a CMVC superuser can create a host list entry to reestablish client access for
that user ID.

 Syntax
The syntax statements for the Host command are:

Host -create Name ... -family Name [-login Name] [-become Name]
[-verbose]

Host -delete Name ... -family Name [-login Name] [-become Name]
[-verbose]

 Action Flags
The action flags of the Host command and their required authority are listed in
Figure 27.

Figure 27 (Part 1 of 2). Host Action Flags

Action Flag
and Argument

Purpose

Implicit Authority

Explicit Authority

-create Name ... Creates one or more host list entries for an
existing user ID, using the format
login@hostName. The login is optional if it
matches the user's current login.

The initial host list entry for each user must
be created by someone with CMVC
superuser privilege.

Owner of the
User ID

Superuser

 Copyright IBM Corp. 1993 59

Figure 27 (Part 2 of 2). Host Action Flags

Action Flag
and Argument

Purpose

Implicit Authority

Explicit Authority

-delete Name ... Deletes one or more host list entries for an
existing user ID, using the format
login@hostName. The login is optional if it
matches the user's current login. Each
user must have at least one host list entry
to have CMVC access.

Owner of the
User ID

Superuser

 Attribute Flags
The attribute flags of the Host command are listed in Figure 28.

Figure 28. Host Attribute Flags

Attribute Flag
and Argument

Purpose

-become Name Specifies the CMVC user ID to validate your authority to perform this action, only if the
CMVC user ID differs from your login.
(Environment Variable: CMVC_BECOME)

-family Name Specifies the family for which this command is being issued.
(Environment Variable: CMVC_FAMILY)

-login Name Specifies the CMVC user ID for which you want to create or delete a host list entry.

-verbose Indicates that you want to see a confirmation message after you issue this command.

 Examples
The following are examples of Host command actions:

1. Assume that your login on host lab1 is jane and you have an identical CMVC
user ID that has a host list entry for lab1; that is, the CMVC user ID jane has a
host entry for jane@lab1. You also have the login jane on two other hosts,
lab2 and lab3 (which should also be on the network), and you want to use
CMVC on those hosts as well. To give yourself CMVC client access on these
additional hosts, type:

Host -create lab2 lab3 -login jane

The host list entries jane@lab2 and jane@lab3 are created for your existing
CMVC user ID jane. Because your login on the current host is identical to the
CMVC user ID for which you are making a host list entry, the command could
also be:

Host -create lab2 lab3

2. Assume that jane and pete are logins on host lab2. To give them access to
the admin CMVC user ID at that host, type:

Host -create jane@lab2 pete@lab2 -login admin

Adding the above host list entries for the user ID admin allows logins jane and
pete to perform CMVC commands using the CMVC user ID admin, while logged

60 CMVC Commands Reference

on to the host lab2. They can use the -become attribute flag to move between
the admin user ID and their own user ID.

Note: You assume the access authority of the user ID you specify.

3. Assume that you are logged on to host lab2 with the CMVC user ID jane. That
user ID does not have superuser privilege. You have a host list entry for user
ID admin (that is, jane@lab2 is on the host list for admin), and that user ID
does have superuser privilege. To give the user ID george superuser privilege,
you must become user admin to issue the command successfully. Type:

User -modify george +super -become admin

The user ID george is given superuser privilege.

4. Assume that your user ID joan has a number of host list entries, one for the
host johnson.kap.uwo.com. To delete that entry from the host list associated
with your user ID, type:

Host -delete joan@johnson.kap.uwo.com

Your user ID, joan, can no longer perform CMVC commands from that host.

5. To see all the host list entries for user ID shirley, type:

User -view shirley -long

 Related Information
See command: User.

 Chapter 12. Host (Hostcmd) 61

62 CMVC Commands Reference

 Chapter 13. Level

Use the Level command to create and delete levels, commit the file changes
related to levels, extract the file tree represented by levels, and obtain information
about existing levels.

A level group is a set of file changes for a release. To create a level, you assign a
name to it and relate it to a release. You then define a set of tracks as level
members. (For information on how to define tracks as level members, refer to
Chapter 14, “LevelMember (Levelmem)” on page 69.) These tracks represent the
files that have been changed in relation to that level. If you create a level, you
become the level owner by default. You can reassign ownership of the level to
another user.

A level can be extracted at any time after tracks are added as level members. A
delta file tree, which contains only the files that have been changed for the level, is
extracted by default. You can also extract a full file tree that contains all of the files
for the level, once the level has been committed.

Combining the delta file tree (for a current level) with a full file tree (for the last
committed level) results in a complete directory structure of all files in a release.
This directory structure incorporates the new file changes. You can compile this
directory structure and test it to make sure that the results are acceptable. This
process of making file changes, extracting a delta and a full file tree, combining the
two into a new directory structure and compiling it, can be repeated as needed.

When you want to make permanent all file changes associated with the level, you
can move the level to the commit state. To do this, all level member tracks must
be in the integrate or commit state, and all prerequisite and corequisite tracks must
be included in the level. You also need explicit access authority to commit a level.

If you have explicit access authority, you can indicate when a level is ready for
formal testing by specifying that the level is complete. This action changes the
state of the associated tracks to test if an environment list exists for the release
associated with the tracks, otherwise, the tracks move to the complete state.

If a level has been committed, you can extract a full file tree that includes all the
files in the associated release at the version that was current when the level was
committed. You can process and distribute a committed level for testing; however,
you cannot modify a level or the file changes associated with that level after it has
been committed.

Note: If Network File System** (NFS**) server daemons are running on a host,
you can extract a level to that host and specify a directory location for the file tree.
The directory to which you are extracting must be exported via the NFS system.
The NFS client daemons must also be running on the CMVC server.

 Copyright IBM Corp. 1993 63

 Syntax
The syntax statements for the Level command are:

Level -assign Name ... -to Name -release Name -family Name
[-become Name] [-verbose]

Level -check Name ... -release Name -family Name [-long]
[-become Name] [-verbose]

Level -commit Name ... -release Name -family Name [-become Name]
[-verbose]

Level -complete Name ... -release Name -family Name [-become Name]
[-verbose]

Level -create Name ... -release Name -family Name [-type Name]*
[-become Name] [-verbose]

Level -delete Name ... -release Name -family Name [-become Name]
[-verbose]

Level -extract Name ... -release Name -family Name -root Name
-node Name [-full] [-nokeys] [-fmask Octal_number]
[-dmask Octal_number] [-uid Number] [-gid Number]
[-become Name] [-verbose]

Level -modify Name ... -release Name -family Name { -name Name
-type Name } [-become Name] [-verbose]

Level -view Name ... -release Name -family Name [-long]
[-become Name] [-verbose]

Note: Arguments marked with an asterisk (*) are required when no default value is
set for the CMVC family.

 Action Flags
The action flags of the Level command and their required authority are listed in
Figure 29 on page 65.

64 CMVC Commands Reference

Figure 29 (Part 1 of 2). Level Action Flags

Action Flag
and Argument

Purpose

Implicit Authority

Explicit Authority

-assign Name ... Assigns ownership of levels to another
user ID.

Level owner LevelAssign

-check Name ... Lists the outstanding prerequisite and
corequisite tracks for the specified levels.

Level owner LevelCheck

-comm it Name ... Moves the specified levels to the commit
state where they can no longer be
modified.ñ All file changes associated with
level members become permanent.

N/A LevelCommit

-comp lete Name ... Moves the specified levels to the complete
state where they are ready to be tested.
All level members change to the test or
complete state.

N/A LevelComplete

-create Name ... Creates levels with the specified names.ñ
The user who creates a level is the level
owner by default.

Release owner LevelCreate

Figure 29 (Part 2 of 2). Level Action Flags

Action Flag
and Argument

Purpose

Implicit Authority

Explicit Authority

-delete Name ... Deletes the specified levels before they are
committed.

Level owner LevelDelete

-extract Name ... Creates a file tree by extracting the files
defined by the member tracks of specified
levels. The default is to extract only
changed files.

Note: When extracting multiple levels,
you must specify the level names in the
chronological order in which they were
committed or created.

Level owner LevelExtract

-modify Name ... Changes the name or type of the specified
levels. Type is configured by family. Use
the Report command to find out the level
types for your family.

Level owner LevelModify

-view Name ... Shows all current information for the
specified levels.

Level owner LevelView

ñ To perform this action, the associated release’s process must include the level subprocess.

 Attribute Flags
The attribute flags of the Level command are listed in Figure 30 on page 66.

 Chapter 13. Level 65

Figure 30 (Part 1 of 2). Level Attribute Flags

Attribute Flag
and Argument

Purpose

-become Name Specifies the CMVC user ID to validate your authority to perform this action, only if the
CMVC user ID differs from your login.
(Environment Variable: CMVC_BECOME)

-dmask Octal_number Specifies the read, write, and execute directory permissions for extracted files in octal
notation. Default is 750 (read, write and execute access for directory owner, read and
execute access for others in the owner's group, and no access for all other users).

-family Name Specifies the family for which this command is being issued.
(Environment Variable: CMVC_FAMILY)

-fmask Octal_number Specifies the read, write, and execute file permissions for extracted files in octal
notation. Default is the file’s mode less the write permission for the file owner, others
in the owner’s group and all others.

-fu ll Name Includes all of the files in a release in the extracted file tree. Use to extract a full file
tree. Only available for committed levels.

-gid Number Assigns group ownership of extracted files by specifying the internal number that
uniquely identifies the group to the system. The default group value assigned to the
extracted files is the CMVC family's GID.

-long Displays a detailed version of current information for levels, including all track
members for -view ; details about prerequisites and corequisites for -check .

Figure 30 (Part 2 of 2). Level Attribute Flags

Attribute Flag
and Argument

Purpose

-name Name Renames an existing level.

-nod e Name Specifies a remote host on which to place an extracted file tree. Use the -root
attribute flag with this attribute flag. NFS must be installed and running on the remote
host system.

-nok eys Indicates that you do not want to substitute assigned values in place of keywords
imbedded in the extracted files.

-release Name Specifies the release associated with the level.
(Environment Variable: CMVC_RELEASE)

-root Name Specifies a directory on the designated remote host where the extracted file tree is to
be placed. This attribute flag is used only in conjunction with the -node flag.

-to Name Specifies the new level owner when assigning a level.

-type Name Specifies the type of level when creating or modifying a level. A default type might be
established for your family. (Use the Report command to find out the level types for
your family.)

-uid Number Assigns user ownership of extracted files by specifying the internal number that
uniquely identifies the user to the system. The default owner assigned to the extracted
files is the CMVC family's UID.

-verbose Indicates that you want to see a confirmation message after you issue this command.

66 CMVC Commands Reference

 Examples
The following are examples of Level command actions:

1. Assume that level type has a default value. To create a level called 9ð32 for the
21debugr release, type:

Level -create 9ð32 -release 21debugr

A new level called 9ð32 is created for the 21debugr release. You are its owner,
and it is in the working state. Use the LevelMember command to add tracks
to the level.

2. Assume level 9032 is in the integrate state. To check whether any outstanding
prerequisites or corequisites exist in level 9ð32 for release 21debugr, type:

Level -check 9ð32 -release 21debugr

Any existing unsatisfied prerequisite and corequisite tracks required for level
9ð32 for the 21debugr release are listed.

3. To commit level 9ð29 when your CMVC_RELEASE environment variable is set
to the release associated with the level, type:

Level -commit 9ð29

Level 9ð29 for the release defined by the CMVC_RELEASE environment
variable is committed. At this point, all track members of this level move to the
commit state, committing all files changed in relation to those tracks.

4. Assume that you want to extract all of the files for the committed level 9ð32 to a
specific directory and host. Also assume that the directory /tmp has been
exported on the host johnson.kap.uwo.com with write permission given to the
CMVC server. To place the full file tree in the /tmp directory of the host
johnson.kap.uwo.com, type:

Level -extract 9ð32 -release 21debugr -full -node

johnson.kap.uwo.com -root /tmp

The full file tree is placed relative to the /tmp directory on the host named
johnson.kap.uwo.com. A full file tree produces a snapshot of all the files in a
release at the time the level was committed.

5. Assume that you own level b1992 and that your CMVC_RELEASE environment
variable is set to the release associated with that level. To assign the level to
user ID sara, type:

Level -assign b1992 -to sara

The person with the CMVC user ID sara becomes the new owner of the level
b1992 for the release defined by the CMVC_RELEASE environment variable. If
the environment variable was set differently, you would have had to use the
-release attribute flag to specify the appropriate release for the level.

6. To view information about level b1992 for release debugr, including all of its
level members, type:

Level -view b1992 -release debugr -long

 Chapter 13. Level 67

 Related Information
Files that have been deleted or renamed in the current level must be deleted from
an extracted file tree. CMVC creates a file named .gone that specifies the full path
name of each file deleted or renamed that has not already been committed. This
file is extracted with the files in a delta tree extraction. Extracting the delta file tree
of an uncommitted level extracts all files listed in the .gone file.

After merging a delta tree with a base file tree, or when extracting noncommitted
levels, run the following command from the top of the extracted file tree to remove
deleted and renamed files from the tree:

xargs rm < .gone

Where .gone is a file created as part of the extraction that contains the names of
all of the deleted and renamed files.

When you extract a committed level, any files that were contained in that level
when it was committed are accessed. When you destroy a file, the database
record for that file is destroyed but the file remains on the server, so that previously
committed levels can be re-built.

See commands: Defect, Feature, File, LevelMember, Report, Track.

For a list of supported keywords, refer to the IBM CMVC User’s Reference.

68 CMVC Commands Reference

 Chapter 14. LevelMember (Levelmem)

Use the LevelMember command (or the LevelMem command on the OS/2 client)
to specify the tracks you want to include in a given level. The tracks must be in the
fix state or the integrate state. A single track can be a member of more than one
level. After a track is committed in a level, the other levels in which it is a member
ignore the committed track.

By making a track part of a level, you associate the files changed in relation to that
track with the specified level. These files must be members of the release
associated with the level.

You cannot create level members for, or delete level members from, a level after it
is committed.

 Syntax
The syntax statements for the LevelMember command are:

LevelMember -create -level Name -release Name -family Name
{ -defect Number ... -feature Number ... }
[-become Name] [-verbose]

LevelMember -delete -level Name -release Name -family Name
{ -defect Number ... -feature Number ... }
[-become Name] [-verbose]

 Action Flags
The action flags of the LevelMember command and their required authority are
listed in Figure 31.

Figure 31. LevelMember Action Flags

Action Flag Purpose Implicit Authority Explicit Authority

-create Creates tracks as members of a specific
level.

Note: To perform this action, the
associated release's process must include
the level subprocess.

Level owner MemberCreate

-delete Deletes tracks as members of a specific
level.

Level owner MemberDelete

 Copyright IBM Corp. 1993 69

 Attribute Flags
The attribute flags of the LevelMember command are listed in Figure 32.

Figure 32. LevelMember Attribute Flags

Attribute Flag
and Argument

Purpose

-become Name Specifies the CMVC user ID to validate your authority to perform this action, only if the
CMVC user ID differs from your login.
(Environment Variable: CMVC_BECOME)

-defect Number ... Specifies defects to identify the tracks you want to include in, or remove from, a level.

-family Name Specifies the family for which this command is being issued.
(Environment Variable: CMVC_FAMILY)

-feature Number ... Specifies features to identify the tracks you want to include in, or remove from, a level.

-level Name Specifies the name of the level for which you are creating or deleting level members.

-release Name Specifies the release associated with this level.
(Environment Variable: CMVC_RELEASE)

-verbose Indicates that you want to see a confirmation message after you issue this command.

 Examples
The following are examples of the LevelMember command actions:

1. Assume that level 9ð12 already exists and you own it. To create level members
using the tracks for defect 8761 and 869ð in release 21graphix, type:

LevelMember -create -defect 8761 869ð -release 21graphix -level 9ð12

All files changed in reference to the tracks for defects 8761 and 869ð in the
release 21graphix are included in level 9ð12. Level 9ð12 must be associated
with release 21graphix.

2. Assume that you own level 9ð1ð. To delete a level member, specifically the
track for feature 8744 in the release defined in your CMVC_RELEASE
environment variable, type:

LevelMember -delete -feature 8744 -level 9ð1ð

The track for feature 8744 in the release identified by your CMVC_RELEASE
environment variable is deleted from the level 9ð1ð. Level 9ð1ð must be
associated with the release defined in the CMVC_RELEASE environment
variable.

 Related Information
See commands: Defect, Feature, File, Level, Report, Track.

To delete a track from a level to make more file changes, you must issue the
following commands:

1. LevelMember -delete for the track.

2. Track -fix to move the track to the fix state.

3. Fix -activate to indicate changes are not complete for the track. (Do this for
components where files need to be changed.)

70 CMVC Commands Reference

After you make the file changes for the track, you must issue the following
commands:

1. Fix -complete to indicate the fixes are complete.

2. LevelMember -create to make the track a member of the level once again.

 Chapter 14. LevelMember (Levelmem) 71

72 CMVC Commands Reference

 Chapter 15. Migrate

Use the Migrate command to migrate all versions or deltas of specified SCCS text
files into the CMVC development environment that uses SCCS as the underlying
version control mechanism, and associate them with a component and a release.
This migrates all versions of the file so that subsequent development can make use
of any previous deltas of the file. You must specify one version of the file at the
time of migration as the current version of the file under CMVC control. That file
will be the current version in its release. Any other migrated version can be linked
to another release for a different development effort.

If you want to associate the files with a release whose process includes the track
subprocess, you must also specify a defect or feature identifier. The track
associated with the defect or feature identifier in the release must be in the fix
state, and the fix records must be in either the active state or the ready state (or
not exist).

All SCCS files contain information about the creation of a particular delta and the
resulting remarks about it. When migrating SCCS files, CMVC captures this
information on a version record for a particular delta only if the user who made the
delta has a CMVC user ID. Otherwise, the user ID of the person performing the
migration is stored on the version record. If you want to ensure that the people
who made the changes are identified on the version records, you must create a
CMVC user ID for each of them prior to migrating the files. (For more information
on creating user IDs, refer to Chapter 22, “User” on page 107.)

The migrate command is primarily designed for use with the shell scripts Filemap
and Filemigrate, which generate the required command line syntax for successfully
performing the migration. For more information about these shell scripts, refer to
the IBM CMVC Server Administration and Installation manual. You can, however,
use the Migrate command without these shell scripts.

 Syntax
The syntax statement for the Migrate command is:

Migrate -migrate Name ... -component Name -version Name -family Name
-release Name [-relative Name | -top Name]
[-defect Number ... -feature Number ...]
[-become Name] [-verbose]

 Copyright IBM Corp. 1993 73

 Action Flags
The action flag of the Migrate command and its required authority is listed in
Figure 33.

Figure 33. Migrate Action Flag

Action Flag
and Argument

Purpose

Implicit Authority

Explicit Authority

-migrate Name ... Migrates the named SCCS files to the
CMVC development environment. All
versions of the specified files will be
migrated. Migrating creates a record for
the files and a version record for each
version.

Component owner FileAdd

 Attribute Flags
The attribute flags of the Migrate command are listed in Figure 34.

Figure 34. Migrate Attribute Flags

Attribute Flag
and Argument

Purpose

-become Name Specifies the CMVC user ID to validate your authority to perform this action, only if the
CMVC user ID differs from your login.
(Environment Variable: CMVC_BECOME)

-component Name Specifies the component that will manage the file.
(Environment Variable: CMVC_COMPONENT)

-defect Number ... If the track subprocess is included in the release process, specifies the defects to identify
tracks for the files.

-family Name Specifies the family for which this command is being issued.
(Environment Variable: CMVC_FAMILY)

-feature Number ... If the track subprocess is included in the release process, specifies the features to identify
tracks for the files.

-rela tive Name Indicates that the files can be accessed relative to the specified directory location.

-release Name Specifies the release with which the files will be associated under CMVC control.
(Environment Variable: CMVC_RELEASE)

-top Name Indicates the leading portion of the path name that is a subset of the current working
directory on the client workstation.
(Environment Variable: CMVC_TOP)

-verb ose Indicates that you want to receive a confirmation message after you issue this command.

-vers ion Name Specifies the SCCS version to be linked to the file record and used as a base for future
changes to the file. Use any one of the existing SCCS version numbers.

74 CMVC Commands Reference

 Examples
The following are examples of Migrate command actions:

1. To migrate the SCCS file s.fileAA from directory /u/sccstree/version1/userA

to the CMVC development environment and associate it with release userA.r1

and component tvlas, making version 1.4 the current version, type:

Migrate -release userA.r1 -migrate version1/userA/fileAA

-component tvlas -relative /u/sccstree -version 1.4

The migrated file is named version1/userA/fileAA , and version 1.4 will be the
base for future file changes in reference to the development effort under
release userA.r1.

2. Assume that your CMVC_RELEASE environment variable is set to release
44dev6, and that this is a release whose process includes the track subprocess.
To migrate the s.fileBB from the directory/u/sccstree/version1/userA to
CMVC and associate it with release 44dev6 and component tvlas, type:

Migrate -migrate version1/userA/fileBB -defect 1199 -component

tvlas -relative /u/sccstree -version 1.4

The migrated file is named version1/userA/fileBB , and version 1.4 of the file
will be used as the base version for future file changes. The changes made to
the file will be referencing the track associated with defect 1199.

 Related Information
See commands: Component, Defect, Feature, File, Release, Report, Track.

 Chapter 15. Migrate 75

76 CMVC Commands Reference

 Chapter 16. Notify

By default, you receive implicit notification when an action is required on your part.
To receive additional notification (out of interest), entries can be made to
notification lists for specific components.

Use the Notify command to create entries on a component notification list, and
delete entries from it. Each entry associates a user ID with a preconfigured
notification interest group. The interest group identifies the set of actions a user ID
is notified of in relation to the component. For a list of the notification interest
groups shipped with CMVC, refer to the IBM CMVC User’s Reference. Current
interest groups can be modified and new ones can be defined by your family
administrator.

Notification messages are sent to the address specified for each user ID when the
user ID is created; the address can be modified using User -modify .

A user ID can have more than one entry on the notification list for a given
component. Interest groups defined on notification lists are inherited down the
component hierarchy, even though the notification lists of child components do not
show the notification list entries being inherited from ancestor components.

 Syntax
The syntax statements for the Notify command are:

Notify -create -login Name ... -interest Name -component Name
-family Name [-become Name] [-verbose]

Notify -delete -login Name ... -interest Name -component Name
-family Name [-become Name] [-verbose]

 Action Flags
The action flags of the Notify command and their required authority are listed in
Figure 35.

Figure 35. Notify Action Flags

Action Flag Purpose Implicit Authority Explicit Authority

-create Creates one or more notification list entries
for a specified component.

Component owner NotifyCreate

-delete Deletes one or more notification list entries
from the specified component. Owners of
user IDs do not need special authority to
delete their user IDs from a notification list.

Component owner,
Owner of user ID

NotifyDelete

 Copyright IBM Corp. 1993 77

 Attribute Flags
The attribute flags of the Notify command are listed in Figure 36.

Figure 36. Notify Attribute Flags

Attribute Flag
and Argument

Purpose

-become Specifies the CMVC user ID to validate your authority to perform this action, only if the
CMVC user ID differs from your login.
(Environment Variable: CMVC_BECOME)

-component Name Specifies the component associated with the notification list.
(Environment Variable: CMVC_COMPONENT)

-family Name Specifies the family for which this command is being issued.
(Environment Variable: CMVC_FAMILY)

-interest Name Specifies a preconfigured notification interest group for the specified user ID.

-login Name ... Specifies one or more CMVC user IDs as members of the notification list.

-verbose Name Indicates that you want to see a confirmation message after you issue this command.

 Examples
The following are examples of Notify command actions:

1. You own the graphix component. To create notification list entries for the
owners of user IDs pam, jack, and lisa with general notification interest for
that component, type:

Notify -create -login pam jack lisa -interest general -component

graphix

Three entries are made to the notification list associated with the graphix

component, one for each of the user IDs you specified with the -login attribute
flag. Each is notified when an action configured in the general notification
interest group is performed in reference to the graphix component or to any
child components of that component. If this group includes the DefectOpen
action, then these users are notified each time a defect is opened against the
graphix component.

2. You do not own the debugr component, but you want to remove a notification
list entry for that component for your own user ID, pam. To remove the
notification list entry that gives you developer interest at that component, type:

Notify -delete -login pam -interest developer -component

debugr

You are no longer notified when actions configured for the developer interest
group are performed in reference to the debugr component or its child
components.

78 CMVC Commands Reference

 Related Information
See commands: Component, Report.

Use the Report command to view the interest groups and the actions they include.
For example:

� Report -vi interest | pg

For a list of the notification groups shipped with CMVC, refer to the IBM CMVC
User’s Reference.

See your family administrator, or read the IBM CMVC Server Administration and
Installation manual for information about configuring new notification interest groups
and modifying existing ones.

 Chapter 16. Notify 79

80 CMVC Commands Reference

 Chapter 17. Release

Use the Release command to create, modify, delete, and recreate releases, extract
the set of files associated with a release, link files within releases with those in
other releases, and view information about existing releases.

A release group is a set of files that must be built, tested, and distributed as a
whole. Release names must be unique within a family, and a release must be
created in relation to a component to manage access and notification for the
release. If you create a release, you become its owner and you have implicit
authority to define an approval list and an environment list for that release.

When creating a release, you must choose a preconfigured process for the release
using the -process flag. A process groups different combinations of CMVC
subprocesses. CMVC subprocesses determine the states of the tracks within a
release. For release processes, the track, approval, fix, level, and test CMVC
subprocesses can be specified. Processes are configured by your family
administrator who can modify current processes and define new ones. For a list of
the valid release processes and the CMVC subprocesses they include, use the
Report -view cfgrelproc command.

You can change the process for an existing release using the -modify flag. For
more information on how CMVC subprocesses relate to the states of CMVC
objects, refer to the book IBM CMVC Concepts.

To modify an environment or a tester for a release, use the Environment
command (or Environ command if you are using the OS/2 client). See Chapter 8,
“Environment (Environ)” on page 33 for more information.

To modify an approver for a release, use the Approver command to add or delete
an approver. See Chapter 4, “Approver” on page 17 for more information.

You cannot delete releases that have files, outstanding tracks, noncommitted
levels, or active sizing records associated with them. You cannot reuse the name
of a deleted release, but you can recreate a deleted release and modify the name
of a recreated release.

When you link files in one release to those in another, you can link the current or
the committed version of each active file. The current version is the default setting.
If you are linking files to a release whose process includes the track subprocess,
you must supply the defect or feature identifier for the associated tracks.

When you extract files associated with a release, the current version of the
associated files is extracted by default. Alternatively, you can extract files changed
after a certain date. For a release whose process includes the track and level
subprocesses, you can extract the last committed version of the files.

Note: If NFS server daemons are running on a host, you can extract a release to
that host and specify a directory location for the file tree. The directory to which you
are extracting must be exported via the NFS system. The NFS client daemons
must also be running on the CMVC server.

 Copyright IBM Corp. 1993 81

 Syntax
The syntax statements for the Release command are:

Release -create Name... -component Name -process Name
-family Name [-environment Name -tester Name]*
[-approver Name]* [-description Text] [-owner Name]
[-become Name] [-verbose]

Release -delete Name ... -family Name [-become Name] [-verbose]

Release -extract Name ... -node Name -root Name -family Name [-nokeys]
[-date yy/mm/dd | -committed] [-fmask Octal_number]
[-dmask Octal_number] [-uid Number] [-gid Number]
[-become Name] [-verbose]

Release -link Name ... -to Name [-date yy/mm/dd | -committed]
[-defect Number ... -feature Number ...]* -family Name
[-become Name] [-verbose]

Release -modify Name ... -family Name { -name Name
-component Name [-process Name]
[-environment Name -tester Name]*
[-approver Name]* -description Text -owner Name }
[-become Name] [-verbose]

Release -recreate Name ... -family Name [-environment Name -tester Name]*
[-approver Name]* [-become Name] [-verbose]

Release -view Name ... -family Name [-processInfo]
[-become Name] [-verbose]

Note: Arguments marked with an asterisk (*) are required only when their related
subprocess has been specified for the release.

 Action Flags
The action flags of the Release command and their required authority are listed in
Figure 37.

Figure 37 (Part 1 of 2). Release Action Flags

Action Flag
and Argument

Purpose

Implicit Authority

Explicit Authority

-create Name ... Creates releases with the specified names. N/A ReleaseCreate

-delete Name ... Deletes the specified releases. Releases
cannot have files, outstanding tracks,
noncommitted levels, or active sizing
records associated with them.

Release owner ReleaseDelete

-extract Name ... Extracts the file tree for the specified
releases. By default, the current version of
all files in the releases are extracted.

Release owner ReleaseExtract

-link Name ... Links the active files in a specified release
to those in another specified release. If
the -committed or -date flag is not
supplied, the current version of each file is
linked by default.

Release owner ReleaseLink

82 CMVC Commands Reference

Figure 37 (Part 2 of 2). Release Action Flags

Action Flag
and Argument

Purpose

Implicit Authority

Explicit Authority

-modify Name ... Modifies the properties of the specified
releases:

-process
-owner
-name

Release owner ReleaseModify

-component Release owner ReleaseModify and
ReleaseCreate in the
new component.

-recreate Name ... Recreate previously deleted releases. Release owner ReleaseRecreate

-view Name ... Shows all current information for the
specified releases.

Release owner ReleaseView

 Attribute Flags
The attribute flags of the Release command are listed in Figure 38.

Figure 38 (Part 1 of 2). Release Attribute Flags

Attribute Flag and
Argument

Purpose

approver Name Specifies the user ID of the approver to be added to the approver list if the approval
subprocess is included in the release process.

-become Name Specifies the CMVC user ID to validate your authority to perform this action, only if the
CMVC user ID differs from your login.
(Environment Variable: CMVC_BECOME)

-comm itted Indicates that the last committed version of the files in the release are to be extracted
or linked.

-comp onent Name Specifies the component associated with the release when creating or modifying the
release. The environment variable is not used for Release -modify .
(Environment Variable: CMVC_COMPONENT)

-date Date Indicates that files modified in the release since the specified date are to be extracted
or linked.

-defect Number ... Specifies the defect identifier if the track subprocess is included in the process of the
release to which files are being linked.

-description Text Adds a description of a release when creating or modifying it.

-dmask Octal_number Specifies the read, write, and execute directory permissions for the extracted files in
octal notation. Default is 750 (read, write and execute access for directory owner, read
and execute access for others in the owner's group, and no access for all other users).

-environment Name Specifies the environment in which the testing is to be done if the test subprocess is
included in the release process. (The tester/environment name combination becomes
an entry on the environment list for the release.)

 Chapter 17. Release 83

Figure 38 (Part 2 of 2). Release Attribute Flags

Attribute Flag and
Argument

Purpose

-family Name Specifies the family for which this command is being issued.
(Environment Variable: CMVC_FAMILY)

-feature Number ... Specifies the feature identifier if the track subprocess is included in the process of the
release to which files are being linked.

-fmask Octal_number Specifies the read, write, and execute file permissions for the extracted files in octal
notation. Default is the file’s mode less the write permission for the file owner, others
in the owner’s group, and all others.

-gid Number Specifies ownership of extracted files by identifying the internal number that uniquely
identifies the group to the system. The default group value assumed for the extracted
files is the CMVC family's GID.

-name Name Specifies a new name for an existing release when renaming it.

-node Name Specifies a remote host on which to place the extracted file tree. Use the -root
attribute flag in conjunction with this attribute flag.

-nok eys Name Indicates that you do not want to substitute assigned values in place of keywords
imbedded in the files when the files are extracted.

-owner Name Specifies the user ID of the release owner when creating or modifying a release.

-processI nfo Displays the current process setting and its associated CMVC subprocesses for the
specified releases when used with the -view action flag.

-process Name Specifies a process when creating or modifying a release. Processes for your
environment are configured by your family administrator. For a list of the valid release
processes and the CMVC subprocesses they include, use the Report -view
cfgrelproc command.

-root Name Specifies the directory on the designated host where the extracted file tree is to be
placed.

-tester Name Specifies the user responsible for testing in the given environment if the test
subprocess is included in the release process. (The tester/environment name
combination becomes an entry on the environment list for the release.)

-to Name Specifies the associated release that contains the files you want to link.

-uid Number Specifies ownership of extracted files by identifying the internal number that uniquely
identifies the user to the system. The default owner of the extracted files is the CMVC
family's UID.

-verbose Specifies that you want to see a confirmation message after you issue this command.

 Examples
The following are examples of Release command actions:

1. To create a release named 1ðdebugr with the process preship (which specifies
the CMVC track, approval, fix, level and test subprocesses), type:

Release -create 1ðdebugr -process preship -environment PCVersion1

-tester john -approver jack

The release 1ðdebugr is created with preship as its process. As the preship

process includes the CMVC test subprocess, an environment, PCVersion1, and
an initial tester, john, are specified. And because the preship process
includes the CMVC approval subprocess, an approver, jack, is specified.

84 CMVC Commands Reference

2. You own release 1ðdebugr. To make pam the new owner, type:

Release -modify 1ðdebugr -owner pam

Pam now owns the release 1ðdebugr.

3. You own release 1ðdebugr. To change the process associated with the release
to prototype, type:

Release -modify 1ðdebugr -process prototype

The release now has prototype as its process.

4. To link the committed version of release 1ðdebugr to release 2ðdebugr, type:

Release -link 1ðdebugr -to 2ðdebugr -committed -defect 12

The committed version of the files in 1ðdebugr are linked to release 2ðdebgr.

5. You own the 21graphix release. To extract all of the files associated with that
release that have been changed since January 18, 1993, and write the files to
the /tmp/test/graphix directory of the host astro, type:

Release -extract 21graphix -node astro -root /tmp/test/graphix -date

93/ð1/18 -gid 2 -uid 21ð

A file tree is created on the machine astro relative to the location
/tmp/test/graphix . This file tree represents all files associated with the
21graphix release that have been changed since January 18, 1993. NFS must
be installed and running on astro and the directory identified by the -root flag
must be exported so that CMVC can write to it.

 Related Information
See commands: Approver, Component, Environment, File, Track.

For a list of supported keywords, refer to the IBM CMVC User’s Reference.

 Chapter 17. Release 85

86 CMVC Commands Reference

 Chapter 18. Report

Use the Report command to query the tables and views associated with CMVC
and generate output showing the results of that query. CMVC uses the information
provided in a Report command to build an SQL SELECT statement. The -view
flag specifies the database table or view to query, and the -where flag specifies the
selection criteria for the query.

You can issue queries to generate reports of data from tables and views with the
-view action flag. If you do not specify selection criteria, such as the fields and the
search conditions you want to use, the report query selects all entries for the table
or view indicated. The -help flag displays a list of valid table and view names that
you can use as arguments for the -view flag. All view and table names as well as
their corresponding fields are listed in the IBM CMVC User’s Reference.

Views are also available to report all inherited notification list members for a
specified component; these are designated by the postfix UpView. You must
specify a component in the selection criteria of the Report command to query this
view.

Views are available to report all objects of a certain type for all descendents of a
specified component; these views are designated by the postfix DownView.
Downviews are valid for Defect , Feature , Access , and Notify . You must specify a
component in the selection criteria of the Report command to query this view.

The Text argument of the -where attribute flag defines the search criteria and the
conditions of the data you want to select, and it must follow Structured Query
Language (SQL) syntax rules for the database used by your CMVC installation. It
can include subselects and valid SQL functions. For a discussion of SQL syntax
and its use, refer to your database product documentation.

By default, report results are displayed in 132 column tabular format, but you can
request the output to be displayed in 80 column stanza format or in long format,
which is a combination of stanza and tabular formats. You can also request output
in raw format if you want the results to be used in another program or utility.

 Syntax
The syntax statements for the Report command are:

Report -help -family Name [-become Name] [-verbose]

Report -testClient -family Name [-become Name] [-verbose]

Report -testServer -family Name [-become Name] [-verbose]

Report -view Name -family Name [-where Text] [-become Name]
[-stanza | -raw | -table | -long] [-verbose]

 Copyright IBM Corp. 1993 87

 Action Flags
The action flags of the Report command and their required authority are listed in
Figure 39.

Figure 39. Report Action Flags

Action Flag
and Argument

Purpose

Implicit Authority

Explicit Authority

-help Displays a list of the valid view and table
names you can use as arguments for the
-view flag.

N/A N/A

-view Name Specifies the database table or view you
want to query. You can use a unique
prefix abbreviation of the table and view
names.

N/A N/A

-testC lient Tests the availability of the CMVC
message catalog on the client's host, and
returns a message informing the user of its
availability.

N/A N/A

-testS erver Tests the availability of the CMVC
message catalog on the CMVC server, and
returns a message informing the user of its
availability.

N/A N/A

 Attribute Flags
The attribute flags of the Report command are listed in Figure 40.

Figure 40 (Part 1 of 2). Report Attribute Flags

Attribute Flag
and Argument

Purpose

-become Name Specifies the CMVC user ID to validate your authority to perform this action, only if your
client login differs from your CMVC user ID.
(Environment Variable: CMVC_BECOME)

-family Name Specifies the family for which this command is being issued.
(Environment Variable: CMVC_FAMILY)

-long Produces report output in stanza format, with additional important information shown in
tabular format:

� Each database record is a stanza.
� Each stanza line consists of a field and its corresponding values.

-raw Produces report output in raw format:

� Information retrieved from each field is separated by the vertical bar delimiter.
� Each line of output corresponds to one database record.

For the order and description of field names that are output for various views, refer to
Appendix A, “Report-Raw Output” on page 115.

-stanza Produces report output in stanza format:

� Each database record is a stanza.
� Each stanza line consists of a field and its corresponding values.

88 CMVC Commands Reference

Figure 40 (Part 2 of 2). Report Attribute Flags

Attribute Flag
and Argument

Purpose

-table Produces report output in tabular format:

� Each field is displayed as a column heading
� Field values appear under respective column headings
� Each row corresponds to one database record

This is the default format of report output.

-verbose Indicates that you want to see a confirmation message after you issue this command.

-where Text Defines the selection criteria to query the specified table or view using valid SQL syntax.

 Examples
The following are examples of Report command actions:

1. To display all users who have developer authority for the graphix component,
type:

Report -view accessView -where "compname = 'graphix' AND

authorityName='developer'"

The above command could be abbreviated to:

Report -vi accessv -w "compname = 'graphix' AND

authorityName='developer'"

This shows access explicitly defined for the graphix component. Additional
access may be inherited at the component level.

2. To display all the approval records for the 2ðgraphix release that were updated
on or after December 1, 1993, type:

Report -view approvalview -where "releasename='2ðgraphix' AND

lastupdate > '93/12/ð1'"

Because date fields include the date of the action as well as the time of the
action, the approval records selected using the above example are those that
were updated after 12:00 p.m. on November 30,1993. The date field must be
enclosed in single quotation marks because it is a character type field.

3. To display all members of the approver list for any of the debugger releases,
type:

Report -view approverView -where "releasename like '%debug%'"

The percent sign (%) is a wildcard character used with the like operator to
match zero or more characters. For a more granular search, you can use the
underscore (_) wildcard character instead to match a single character.

4. To display all authority groups that include the LevelCommit action, type:

Report -view authority -where "action = 'LevelCommit'"

5. To display all actions that are included in the definition of the general authority
group, type:

Report -view authority -where "name = 'general'"

 Chapter 18. Report 89

6. To display all levels for the 2ðdebugr release that have been updated on or
after April 29, 1993, type:

Report -view levelView -where "releaseName='2ðdebugr' AND

lastUpdate > '93/ð4/29'"

Because date fields include date and time, the levels selected using the above
example are those that were updated after 12:00 p.m. on April 28,1993. The
date field must be enclosed in single quotation marks because it is a character
type field.

7. To display, in raw format, all levels that were committed earlier than March
3,1993, type:

Report -view levelView -where "commitDate < '93/ð3/ð3'" -raw

The levels committed on or before 12:00 p.m. on March 3, 1993 are selected.
The date field must be enclosed in single quotation marks because it is a
character type field.

8. To display all returned defects originated by the user ID jack, type:

Report -view defectView -where "originLogin = 'jack' AND state =

'returned'"

9. To display all defects for the graphix component that are in the working state,
type:

Report -view defectView -where "state = 'working' AND compName =

'graphix'"

10. To display all defects in the open or working state that are owned by users in
the area e5ð, type:

Report -view defectView -where "state in ('open','working') AND

ownerArea='e5ð'"

If some user areas are E5ð, they are not selected.

11. To display all release environment list entries that designate the user jack as
the tester of the PCVersion1 environment, type:

Report -view envView -where "userlogin = 'jack' AND name = 'PCVersion1'"

12. To display the release environment list members for the 21debugr release,
type:

Report -view envView -where "releaseName = '21debugr'"

13. To display member files of the 1ðdebugr release that were last updated on or
after August 8, 1993, type:

Report -view fileView -where "releaseName = '1ðdebugr' AND lastUpdate >

'93/ð8/ð7'"

The date field must be in the yy/mm/dd format, and it must be enclosed in
single quotation marks because it is a character type field. Because the date
field includes date and time, all files updated after August 7, 1993 at 12:00 p.m.
are selected.

14. To display member files of the 2ðgraphix release that currently are checked
out, type:

Report -view filesOutView -where "releaseName = '2ðgraphix'"

90 CMVC Commands Reference

15. To display all actions that define the developer interest group, type:

Report -view interest -where "Name = 'developer'"

16. To display all the notes for defect 7627 that were added before September 2,
1993, type:

Report -view noteView -where "defectName = '7627' AND addDate

< '93/ð9/ð2'"

The date field must be in the yy/mm/dd format, and it must be enclosed in
single quotation marks because it is a character type field.

17. To display all the notes for defect 4866 written by the owners of the user IDs
sam and sara, type:

Report -view noteView -where "defectName = '4866' AND (userlogin =

'sam' OR userlogin = 'sara')"

18. To display all test records for the environment PCVersion2 that have reject or
abstain test results recorded, type:

Report -view testView -where "envName = 'PCVersion2' AND (state

= 'reject' OR state = 'abstain')"

19. To display all test records for the defect 9821 that have an environment name
beginning with PCV, type:

Report -view testView -where "envName like 'PCV%' AND

defectName = '9821'"

20. To display all existing tracks for defect 549ð that are in the fix state, type:

Report -view trackView -where "defectName = '549ð' AND state = 'fix'"

21. To display all existing tracks created on or after September 17, 1993 for the
21debugr release, type:

Report -view trackView -where "releasename = '21debugr' AND

addDate > '93/ð9/16'"

22. To display all users in areas that include tools as part of the area name, type:

Report -view users -where "area like '%tools%'"

23. To display all users who have CMVC superuser privilege, type:

Report -view users -where "superuser = 'yes'"

24. To display the most recently created defect, type:

Report -view defectview -where "id=(select max(id) from defects

where prefix in (select name from Config where type = 'defectPrefix'))"

25. To display an order by clause with two column names, type:

Report -view changeview -where "defectName = '1491'

AND releaseName ='projectA_rel1' order by versionSID asc,

pathName desc"

Asc orders the path name column in ascending order and desc orders the path
name column in descending order. This query reports changes to files in
ascending order, and the path names of the files in descending order.

 Chapter 18. Report 91

26. To display all tracks that are in the integrate state and that are not in a level,
type:

Report -vi trackview -w "state='integrate'

AND releasename='projectA_r1'

and id not in (select trackid from levelmembers)"

27. To display all file changes for src/kernal/ibmesa/io/dkios.c that were
committed in a level on or before October 21, 1993, type:

Report -vi changeview -w "pathname =

'src/kernel/ibmesa/io/dkios.c' and levelname in

(select name from levelview where commitdate < '93/1ð/21')"

 Related Information
For the order and description of field names that are output for various views when
you issue the Report command using the -raw flag, refer to Appendix A,
“Report-Raw Output” on page 115. For a list of the views and a description of their
fields, or a list of the tables that can be specified as subselects in the -where
clause and a description of their fields, refer to the IBM CMVC User’s Reference.

Basic SQL rules for defining queries are:

1. The views and their columns can be typed in any manner, if you supply the full
name of the view or column name. You can use all uppercase letters, all
lowercase letters, or a mixture of both when typing the names of the views and
their columns. You must supply the full name of the view and column; however,
views can be abbreviated except as part of a subselect in a -where clause.

2. When searching for specific values you must type the value of the field exactly
as it exists in the database. The database values are case sensitive.

3. Enclose text with imbedded blanks in single quotation marks.

4. Date fields include date and time. The correct format is yy/mm/dd hh:mm:ss.

5. Use the following relational operators (also called comparison operators) to
describe a relationship between two values:

= Equal to.

<> or != Not equal to.

> Greater than. The difference for different data types is:

� Character: later in the alphabet (where lowercase letters are
greater than uppercase letters, and uppercase letters are
greater than numbers)

� Date: later date.

>= Greater than or equal to. The difference for different data types
is:

� Character: later in the alphabet or equal to
� Date: later date.ñ

< Less than. The difference for different data types is:

� Character: earlier in the alphabet
� Date: earlier date.

92 CMVC Commands Reference

<= Less than or equal to. The difference for different data types is:

� Character: earlier in the alphabet or equal to
� Date: earlier date.ñ

in Search for one or more items you specify in a list.

not in Search for any items that do not appear on the list you specify.

like Search for a string similar to the one you specify; use wildcard
characters in place of other characters to expand the search.

between Search for items falling between two items that you type.

is null Search for values that are set to null or those for which no
values have been assigned. Null differs from the values of zero
(ð) and blank ().

ñ Selections in reports for date fields using <= or >= return the same information
as if you entered < or >, respectively. This is because the date data type
consists of a date and a time. Use the like operator with the < or > operators
respectively, to return <= or >= information. See examples 2, 6, and 27 in the
“Examples” section of this chapter.

6. Use the following wildcard characters in place of other characters in a string:

% represents zero or more characters in a string.
_ represents one character in a string.

7. Issue search conditions that are connected by keywords such as AND, OR,
NOT.

8. Enclose values for char fields in single quotation marks.

9. Subselects can be defined. For a list of tables and descriptions of their fields,
refer to the IBM CMVC User’s Reference.

10. SQL functions can be used.

 Chapter 18. Report 93

94 CMVC Commands Reference

 Chapter 19. Size

Use the Size command to create, delete, and reassign sizing records for a defect
or feature that is in the size state, or to indicate sizing information. A sizing record
must be created explicitly by the defect or feature owner. A sizing record indicates
the time and resources needed to resolve a defect or implement a feature in one
component for a release. Each sizing record is uniquely identified by a defect or
feature identifier, a component, and a release.

If you are the owner of the component in which the defect must be resolved or the
feature must be implemented then, by default, you are also the owner of the sizing
record. Sizing information must be entered as text on a sizing record.

All sizing records must be marked either with accept or reject in order to move the
defect or feature from the size state to the review state. Tracks and fix records are
created for all sizing records marked accept, when the defect or feature is
accepted.

 Syntax
The syntax statements for the Size command are:

Size -accept { -defect Number ... -feature Number ... }
-component Name ... -release Name -family Name
-sizing Text [-become Name] [-verbose]

Size -assign -to Name { -defect Number ... -feature Number ... }
-component Name ... -release Name -family Name
[-become Name] [-verbose]

Size -create { -defect Number ... -feature Number ... }
-component Name ... -release Name -family Name
[-become Name] [-verbose]

Size -delete { -defect Number ... -feature Number ... }
-component Name ... -release Name -family Name
[-become Name] [-verbose]

Size -reject { -defect Number ... -feature Number ... }
-component Name ... -release Name -family Name
[-become Name] [-verbose]

 Action Flags
The action flags of the Size command and their required authority are listed in
Figure 41.

Figure 41 (Part 1 of 2). Size Action Flags

Action Flag
and Argument

Purpose

Implicit Authority

Explicit Authority

-accept Indicates that the sizing information is
entered and complete for the
corresponding defect, feature, release, and
component. This action is used to record
initial sizing information.

Sizing record
owner

SizeAccept

 Copyright IBM Corp. 1993 95

Figure 41 (Part 2 of 2). Size Action Flags

Action Flag
and Argument

Purpose

Implicit Authority

Explicit Authority

-assign Reassigns ownership of the specified
sizing record to another user ID.

Sizing record
owner

SizeAssign

-create Creates a sizing record for the
corresponding defect, feature, release, and
component.

Note: To perform this action, the
associated component's process must
include the DSR subprocess.

Defect or Feature
owner

SizeCreate

-delete Deletes the specified sizing record. Defect or Feature
owner

SizeDelete

-reject Indicates that resolving the defect or
implementing the feature does not require
changes in the corresponding component.
(If old sizing information exists for this
sizing record, it is deleted.)

Sizing record
owner

SizeReject

 Attribute Flags
The attribute flags of the Size command are listed in Figure 42.

Figure 42. Size Attribute Flags

Attribute Flag
and Argument

Purpose

-become Name Specifies the CMVC user ID to validate your authority to perform this action, only if the
CMVC user ID differs from your login.
(Environment Variable: CMVC_BECOME)

-component Name ... Specifies the components for these sizing records.
(Environment Variable: CMVC_COMPONENT)

defect Number ... Specifies the defect identifier for these sizing records.

-family Name Specifies the family for which this command is being issued.
(Environment Variable: CMVC_FAMILY)

-feature Number ... Specifies the feature identifier for these sizing records.

-release Name Specifies the release for this sizing record.
(Environment Variable: CMVC_RELEASE)

-sizing Text Specifies sizing information for the proposed defect or feature change in the specified
component and release.

-to Name Specifies the user ID of the user who is responsible for sizing the specified defect or
feature, when assigning ownership of a sizing record.

-verbose Indicates that you want to see a confirmation message after you issue this command.

96 CMVC Commands Reference

 Examples
The following are examples of Size command actions:

1. To create a sizing record for feature 483 in the graphix component for the
21graphix release, type:

Size -create -feature 483 -component graphix -release 21graphix

A sizing record is created for feature 483 in the graphix component for the
21graphix release. Ownership defaults to the owner of the graphix component.

2. You own the sizing record for feature 483 in the graphix component for the
2ðgraphix release. To assign the sizing record to user ID mary, type:

Size -assign -feature 483 -component graphix -release 2ðgraphix -to mary

Ownership, and thus the sizing responsibility, of the sizing record is reassigned
to the user mary. The sizing record is uniquely defined by the feature number
483, release 2ðgraphix, and component graphix.

3. Assume you own the sizing record for feature 483 in component graphix for
release 21graphix. To specify that 10 person days are required to implement
that feature, type:

Size -accept -feature 483 -component graphix -release 21graphix -sizing

"1ð person days"

The sizing information is entered for feature 483 in component graphix for the
release 21graphix.

4. Assume you also own the sizing record for defect APAR2ð in component
charting for release 32charting. If no changes are required in that
component, and thus no additional resources are required, type:

Size -reject -defect APAR2ð -component charting -release

32charting

The -reject action flag indicates that no changes are required for defect APAR2ð
in the component charting for the release 32charting.

 Related Information
See commands: Feature, Defect, Release, Report, Track.

 Chapter 19. Size 97

98 CMVC Commands Reference

 Chapter 20. Test

Use the Test command to indicate the results of an environment test on a test
record associated with a track. A track is referenced by a defect identifier and a
release, or a feature identifier and a release.

If a release has an environment list, test records are created according to the
entries in that list whenever a new track is created for that release (providing that
the release’s process includes the test subprocess). Each test record includes the
environment name and user ID specified on the release environment list, and the
defect or feature identifier of the track. The owner of the user ID is the tester, and
owns the test record.

Test records are activated (that is, they are moved to the ready state) when the
associated track moves to the test state and the proposed change (whether for
resolving a defect or implementing a feature) is ready for environment testing.
When results are entered for all the environment test records associated with a
track, the state of that track changes to complete. Even if you reject a test record,
the track changes to the complete state. You should open another defect or feature
to address the changes still required.

 Syntax
The syntax statements for the Test command are:

Test -abstain { -defect Number ... -feature Number ... } -family Name
-release Name ... -environment Name ... [-tester Name]
[-become Name] [-verbose]

Test -accept { -defect Number ... -feature Number ... } -family Name
-release Name ... -environment Name ... [-tester Name]
[-become Name] [-verbose]

Test -assign -to Name { -defect Number ... -feature Number ... }
-release Name ... -environment Name ... -family Name
[-tester Name] [-become Name] [-verbose]

Test -reject { -defect Number ... -feature Number ... } -family Name
-release Name ... -environment Name ... [-tester Name]
[-become Name] [-verbose]

 Action Flags
The action flags of the Test command and their required authority are listed in
Figure 43.

Figure 43 (Part 1 of 2). Test Action Flags

Action Flag Purpose Implicit Authority Explicit Authority

-abstain Abstains from testing for a release
environment.

Owner of test
record

TestAbstain

-accept Indicates successful results for a release
environment test.

Owner of test
record

TestAccept

 Copyright IBM Corp. 1993 99

Figure 43 (Part 2 of 2). Test Action Flags

Action Flag Purpose Implicit Authority Explicit Authority

-assign Assigns a test record to another user ID. Owner of test
record

TestAssign

-reject Indicates unsuccessful results for a release
environment test.

Owner of test
record

TestReject

 Attribute Flags
The attribute flags of the Test command are listed in Figure 44.

Figure 44. Test Attribute Flags

Attribute Flag
and Argument

Purpose

-become Name Specifies the CMVC user ID to validate your authority to perform this action, only if
the CMVC user ID differs from your login.
(Environment Variable: CMVC_BECOME)

-defect Number ... Specifies the defects associated with the test records. Testing must be done to
determine whether or not these defects were resolved in the specified
environments.

-environment Name ... Specifies the environment in which testing must be done.

-family Name Specifies the family for which this command is being issued.
(Environment Variable: CMVC_FAMILY)

-feature Number ... Specifies the features associated with the test records. Testing must be done to
determine whether or not these features were properly implemented in the specified
environments.

-release Name ... Specifies the release associated with the test records.
(Environment Variable: CMVC_RELEASE)

-tester Name Performs Test actions on a test record owned by a different user. By naming the
tester, this flag identifies the test record to be modified.

-to Name When reassigning ownership of a test record, specifies the user ID of the user who
is to become the new tester.

-verbose Indicates that you want to see a confirmation message after you issue this
command.

 Examples
The following are examples of Test command actions:

1. Assume that you are responsible for testing whether or not defect 7966 was
successfully resolved in the PCVersion1 environment for release tripod3. To
accept the test record for that track if your CMVC_RELEASE environment
variable is set to tripod3, type:

Test -accept -defect 7966 -environment PCVersion1

The test record you own is marked accept, indicating successful test results.
The track moves to the complete state if this is the last test record for the track
to be marked with test results.

100 CMVC Commands Reference

2. Assume that you have superuser privilege and that your CMVC_RELEASE
environment variable is set to tripod3. To indicate that jane, the owner of the
test record for defect 7966 in release tripod3, will abstain from marking test
results in the PCVersion2 environment, type:

Test -abstain -defect 7966 -environment PCVersion2 -tester jane

The test record owned by the user jane for defect 7966 in the environment
PCVersion2 is marked abstain. You could mark the test record owned by
another user because you have superuser privilege. The track moves to the
complete state if this is the last test record for the track to be marked with test
results.

3. Assume that you own the test record for feature 7562 in release 2ðgos and
environment Model1. To assign this test record to user ID bob so that the
owner of that user ID assumes the testing responsibility, type:

Test -assign -to bob -feature 7562 -environment Model1 -release 2ðgos

 Related Information
See commands: Defect, Environment, Feature, Level, Release, Report, Track.

 Chapter 20. Test 101

102 CMVC Commands Reference

 Chapter 21. Track

The Track command is used to create, modify, reassign, delete, and view
information about a track, and to change the state of a track. The states a track
moves through depends on the CMVC subprocesses included in the associated
release process. A release process can include the track, approval, fix, level, or
test subprocesses, or none at all. For more information on the track states and
their associated subprocesses, refer to the book IBM CMVC Concepts.

The purpose of a track is to monitor the progress of changes to resolve a defect or
implement a feature.

A track does not have its own name or number; instead, a track is identified by a
release and a defect identifier or by a release and a feature identifier. The user
who creates the track becomes the owner of the track unless a different owner is
specified when the track is created.

If a defect or feature is linked to more than one release, multiple tracks exist for
that defect or feature. The tracks required for a defect or feature are created
according to the accepted sizing records, when the defect or feature changes to the
working state. Defect or feature owners can create additional tracks if the defect or
feature is in the working state.

To determine the prerequisite and corequisite tracks for a particular track, use the
Track -check action. Specify the level name to determine the prerequisite and
corequisite tracks relative to an earlier committed level. You will get a list of all
prerequisite and corequisite tracks including those for file changes which were
committed after the commit date of the specified level.

 Syntax
The syntax statements for the Track command are:

Track -assign -to Name { -defect Number ... -feature Number ... } -release
Name ... -family Name [-become Name] [-verbose]

Track -cancel { -defect Number ... -feature Number ... } -release Name ...
-family Name [-become Name] [-verbose]

Track -check { -defect Number ... -feature Number ... } -release Name ...
-family Name [-level Name] [-become Name] [-verbose]

Track -commit { -defect Number ... -feature Number ... } -release Name ...
-family Name [-become Name] [-verbose]

Track -complete { -defect Number ... -feature Number ... } -release Name ...
-family Name [-become Name] [-verbose]

Track -create { -defect Number ... -feature Number ... } -release Name ...
-family Name [-owner Name] [-target Name]
[-become Name] [-verbose]

Track -fix { -defect Number ... -feature Number ... } -release Name ...
-family Name [-become Name] [-verbose]

Track -integrate { -defect Number ... -feature Number ... } -release Name ...
-family Name [-become Name] [-verbose]

 Copyright IBM Corp. 1993 103

Track -modify -target Name { -defect Number ... -feature Number ...}
-release Name ... -family Name [-become Name]
[-verbose]

Track -test { -defect Number ... -feature Number ... } -release Name ...
-family Name [-become Name] [-verbose]

Track -view { -defect Number ... -feature Number ... } -family Name
-release Name ... [-long] [-become Name] [-verbose]

 Action Flags
The action flags of the Track command and their required authority are listed in
Figure 45.

Figure 45 (Part 1 of 2). Track Action Flags

Action Flag Purpose Implicit Authority Explicit Authority

-assign Reassigns ownership of specified tracks to
another user ID.

Track owner TrackAssign

-cancel Cancels the specified tracks. This is valid
only if no changes have been made to files
referencing the tracks.

Defect owner,
Feature owner

TrackCancel

-check Displays the prerequisite and corequisite
tracks for the specified tracks.

Track owner TrackCheck

-comm it Changes the state of the specified tracks
from integrate to commit, when no file
changes have been made for the track.
This is required only if the track is not
committed in a level.

Track owner TrackCommit

-comp lete Changes the state of the specified tracks
from test to complete when no file changes
have been made for the track. No
additional state changes can occur after a
track reaches the complete state.

Track owner TrackComplete

-create Creates a track for the specified defect or
feature in a given release.ñ If there is no
approver list for the related release, then
the new track is created in the fix state. If
an approver list exists, the initial state is
approve.

Defect owner,
Feature owner

TrackCreate

-fix Moves the specified tracks from the
integrate state to the fix state.

Track owner TrackFix

-integrate Changes the state of the specified tracks
from fix to the next valid state governed by
the release’s process. For a release
whose process includes the level
subprocess, this action is only valid if no
file changes have been made for the track
and the track is not committed in a level.

Track owner TrackIntegrate

104 CMVC Commands Reference

Figure 45 (Part 2 of 2). Track Action Flags

Action Flag Purpose Implicit Authority Explicit Authority

-modify Modifies the target field for the specified
tracks.

Track owner TrackModify

-test Changes the state of the specified tracks
from commit to test. This is required only if
the track is not committed in a level.
Normally this occurs when you issue Level
-complete .

Track owner TrackTest

-view Shows all information for the specified
tracks.

Track owner TrackView

ñ To perform this action, the associated release’s process must include the track subprocess.

 Attribute Flags
The attribute flags of the Track command are listed in Figure 46.

Figure 46. Track Attribute Flags

Attribute Flag
and Argument

Purpose

-become Name Specifies the CMVC user ID to validate your authority to perform this action, only if the
CMVC user ID differs from your login.
(Environment Variable: CMVC_BECOME)

-defect Number ... Specifies the defect identifiers if the tracks are created to resolve defects.

-family Name Specifies the family for which this command is being issued.
(Environment Variable: CMVC_FAMILY)

-feature Number ... Specifies the feature identifiers if the tracks are created to implement features.

-level Name Specifies the name of the committed level to use as a base when determining prerequisite
and corequisite tracks for a given track.

-long Displays detailed track information including the track approval records, the file changes
associated with the track, the fix records and test records for the track, and the levels in
which the track is a member.

-owner Name When creating a track, specifies the user ID of a user who is to be the track owner.

-release Name ... Specifies the releases associated with the tracks.
(Environment Variable: CMVC_RELEASE)

-target Name Specifies a target, such as a level in which the track is to be included as a level member, or
a date on which you expect to complete the fixes for the track.

-to Name When assigning ownership of a track, specifies the user you want to assume track owner
responsibility.

-verbose Specifies that you want to receive a confirmation message after you issue this command.

 Chapter 21. Track 105

 Examples
The following are examples of Track command actions:

1. To create tracks for a defect that requires resolution for three releases, type:

Track -create -defect 8734 -release 2ðgraphix 1ðgraphix 21charting

Three tracks are created for defect 8734, one for each of the three releases.

2. To reassign owner responsibility for a track to the user ID jack, type:

Track -assign -feature 88ð3 -release 2ðgraphix -to jack

3. Assume that the track for defect 8734 and the release specified by your
CMVC_RELEASE environment variable is not a member of a level. To change
the track from integrate state to fix state, type:

Track -fix -defect 8734

The track is moved from the integrate state to the fix state. If a track is in a
level, you must delete it from the level before you can move it back to the fix
state.

4. To check whether prerequisite or corequisite tracks exist for a track relative to a
particular level, type:

Track -check -defect 8734 -release 1ðgraphix -level 9ð28

All prerequisite and corequisite tracks that exist for the track for defect 8734 in
the 1ðgraphix release are displayed, including those for file changes committed
after the commit date of the level 9ð28.

5. To view information about a specified track associated with the release set in
the CMVC_ RELEASE environment variable, type:

Track -view -defect 8667

 Related Information
See commands: Approval, Coreq, Defect, Feature, Fix, Level, Release, Report,
Size, Test.

106 CMVC Commands Reference

 Chapter 22. User

Use the User command to create new user IDs, to modify information associated
with user IDs, and delete user IDs. Superuser privilege is required to create user
IDs for new users, delete other user IDs, and modify the superuser privilege of a
user. You can modify your own user ID information, but cannot give yourself
CMVC superuser privilege.

Although the User command establishes required user ID information, actual host
access for a user ID must be created with the Host command.

User IDs cannot be deleted if they have work pending or they own objects. You
cannot use a deleted user ID but you can recreate it and rename it.

Note: Because your family administrator can create new fields, the attributes for
the -create and -modify actions listed in this section may be different from those in
your family. Those listed here represent the shipped default fields only. For a list
of the field properties and flags in use in your family, use the User -configInfo
command or see your family administrator. For more information on configurable
fields, refer to the book IBM CMVC Server Administration and Installation.

 Syntax
The syntax statements for the User command are:

User -configInfo -family name [-become Name] [-raw]

User -create -login Name -address Name -family Name [-name Text]
[-area Name] [+super] [-become Name] [-verbose]

User -delete Name ... -family Name [-become Name] [-verbose]

User -modify Name ... -family Name { -login Name -name Text -address
Name -area Name [+super | -super] } [-become Name]
[-verbose]

User -recreate Name ... -family Name [-become Name] [-verbose]

User -view Name ... -family Name [-long] [-become Name]
[-verbose]

 Action Flags
The action flags of the User command and their required authority are listed in
Figure 47.

Figure 47 (Part 1 of 2). User Action Flags

Action Flag
and Argument

Purpose

Implicit Authority

Explicit Authority

-configInfo Shows configurable field properties for
users in the specified family. (The
information is returned in a fixed ASCII
table format.)

N/A N/A

-create Adds user IDs by specifying a value for the
-login flag. User IDs must be unique
within a family.

N/A Superuser

 Copyright IBM Corp. 1993 107

Figure 47 (Part 2 of 2). User Action Flags

Action Flag
and Argument

Purpose

Implicit Authority

Explicit Authority

-delete Name ... Deletes specified user IDs. N/A Superuser

-modify Name ... Modifies information associated with
specified user IDs. Only a superuser can
modify superuser privilege.

Owner of user ID Superuser

-recreate Name ... Recreates previously deleted user IDs. N/A Superuser

-view Name ... Shows information about specified user
IDs.

N/A N/A

 Attribute Flags
The attribute flags of the User command are listed in Figure 48.

Figure 48. User Attribute Flags

Attribute Flag
and Argument

Purpose

-address Name Specifies a user's mail address in the form login@hostname.

-area Name Specifies the work area or department of a user.

-become Name Specifies the CMVC user ID to validate your authority to perform this action, only if the
CMVC user ID differs from your login.
(Environment Variable: CMVC_BECOME)

-family Name Specifies the family for which this command is being issued.
(Environment Variable: CMVC_FAMILY)

-log in Name Specifies a CMVC user ID.

-lon g Displays user information plus the hosts associated with this user ID.

-name Text Specifies the user's full name.

-raw Produces report output in raw format:

� Information retrieved from each field is separated by the vertical bar delimiter.
� Each line of output corresponds to one database record.

+super Grants CMVC superuser privilege to a specified user ID.

-super Removes CMVC superuser privilege for a specified user ID.

-verbose Specifies that you want to receive a confirmation message after you issue this command.

 Examples
The following are examples of User command actions:

1. To create a user ID for a new user, type:

User -create -login dorrie -address dorrie@cansas -name "Julie Karland"

-area tools

A new user is created with the user ID dorrie and the mailing address
dorrie@cansas. Since CMVC superuser authority was not specified, this user
does not have this authority.

108 CMVC Commands Reference

2. To delete a user ID, type:

User -delete jack

The user ID jack is deleted. You can delete a user ID only if all associated
objects the user ID owns have been deleted or reassigned, and the user ID is
removed from approver, environment, access, and notification lists. A deleted
user ID can be recreated.

3. To modify information for a user, type:

User -modify dorothy +super

This grants CMVC superuser privilege for the user with the login name dorothy.

4. To modify information for multiple user IDs, type:

User -modify jack sally -area toolsð7 -super

This changes the area specification to toolsð7 for the user IDs jack and
sally. It also removes CMVC superuser privilege for both user IDs.

5. To view information for specified user IDs, type:

User -view dorothy jack sally

This displays the user information for the specified user IDs.

6. To view the field properties for the User record in family rdev, type:

User -configInfo -family rdev

 Related Information
See commands: Host, Report.

 Chapter 22. User 109

110 CMVC Commands Reference

 Chapter 23. Verify (Verifycm)

Use the Verify command (or the Verifycm command for the OS/2 client) to verify
the resolution of defects or the implementation of features, or to reassign ownership
of existing verification records.

A verification record is created for the originator of a defect or a feature when the
defect or feature is accepted and the component that manages the defect or
feature has a process which includes the defectVerify or featureVerify
subprocesses respectively. Additional verification records are created for the
originators of duplicate defects or features, and attached to the active defect or
feature. Defects can be specified as duplicates of features, and features can be
specified as duplicates of defects.

Verification records become active when a defect or feature changes from the
working state to the verify state. When results have been recorded for all the
verification records for a defect, and when all of that defect's tracks are complete,
the defect changes from the verify state to the closed state. The same is true for a
feature.

The defect or feature moves to the closed state even if you indicate unsuccessful
results by marking your verification with -reject . In this case, you should open a
new defect or feature to address the changes still required.

 Syntax
The syntax statements for the Verify command are:

Verify -abstain { -defect Number ... -feature Number ... } -family Name
[-tester Name] [-become Name] [-verbose]

Verify -accept { -defect Number ... -feature Number ... } -family Name
[-tester Name] [-become Name] [-verbose]

Verify -assign -to Name { -defect Number ... -feature Number ... }
-family Name [-tester Name] [-become Name]
[-verbose]

Verify -reject { -defect Number ... -feature Number ... } -family Name
[-tester Name] [-become Name] [-verbose]

 Action Flags
The action flags of the Verify command and their required authority are listed in
Figure 49.

Figure 49 (Part 1 of 2). Verify Action Flags

Action Flag
and Argument

Purpose

Implicit Authority

Explicit Authority

-abstain Indicates that the owner of the verification
record refrains from verifying defect
resolution or feature implementation.

Owner of
verification record

VerifyAbstain

-accept Indicates successful verification of the
defect resolution or feature implementation.

Owner of
verification record

VerifyAccept

 Copyright IBM Corp. 1993 111

Figure 49 (Part 2 of 2). Verify Action Flags

Action Flag
and Argument

Purpose

Implicit Authority

Explicit Authority

-assign Reassigns the ownership of the verification
record for a specified defect or feature to
another user.

Owner of
verification record

VerifyAssign

-reject Indicates unsuccessful verification of the
defect resolution or feature implementation.

Owner of
verification record

VerifyReject

 Attribute Flags
The attribute flags of the Verify command are listed in Figure 50.

Figure 50. Verify Attribute Flags

Attribute Flag
and Argument

Purpose

-become Name Specifies the CMVC user ID to validate your authority to perform this action only if the
CMVC user ID differs from your login.
(Environment Variable: CMVC_BECOME)

-defect Number ... Specifies the defect identifiers associated with the verification records.

-family Name Specifies the family for which this command is being issued.
(Environment Variable: CMVC_FAMILY)

-feature Number ... Specifies the feature identifiers associated with the verification records.

-tester Name Identifies the owner of the verification record, if you are performing the verification for
someone else.

-to Name When assigning ownership of a verification record, specifies the user ID of the new owner.

-verbose Specifies that you want to receive a confirmation message after you issue this command.

 Examples
The following are examples of Verify command actions:

1. To indicate that a defect resolution was verified successfully, type:

Verify -accept -defect 976

2. To indicate that a defect resolution was not verified successfully, type:

Verify -reject -defect 1ðð1

3. To reassign ownership of a verification record, type:

Verify -assign -feature 899 -to lee

If you are a superuser, the current owner of the verification record for feature
899, or you have VerifyAssign explicit authority, then you can type the above
line to reassign that verification record to the user ID lee.

112 CMVC Commands Reference

 Related Information
See commands: Defect, Feature, Release, Track.

 Chapter 23. Verify (Verifycm) 113

114 CMVC Commands Reference

 Appendix A. Report-Raw Output

This appendix shows the field names for various views and tables, listed in the
order that is output by the -raw option of the Report command. The table and
view names that you must use with the -view flag are in large bold type in the left
margin. Field names in italics provide data output, but cannot be used as search
criteria. Specify values for date fields in the format yy/mm/dd hh:mm:ss.

When entering a query, do not abbreviate the field names. In most cases you
receive only an error message if you abbreviate a field name. However, depending
on the database used by your installation, some abbreviations could be interpreted
incorrectly and give inaccurate information. For example, if your installation uses
an ORACLE** database and you replace the field names userLogin or userName
with user , you will not receive an error message; however, the search will return
with no records found.

Note: The data types listed are for the INFORMIX** and SYBASE** databases.
The ORACLE database equivalents are int for number, varchar for char, and text in
table for long.

Because CMVC allows your family administrator to modify and delete certain
configurable fields and to create new ones, the following field names may differ
from the output you receive. For information on the configurable fields used in your
environment, see your family administrator.

 AccessDownView
Access List Entries, Including Those of Child Components

Fieldname[length] Datatype Description

childCompName[63] char Child Component Name

userLogin[31] char User's CMVC User ID

userName[63] char User's Full Name

userArea[31] char User's Work Area or Department

authorityName[31] char Access Authority Name

authorityType[15] char Access Authority Type (‘granted’ or
‘restricted’)

 AccessView
Component Access List Entries

Fieldname[length] Datatype Description

compName[63] char Component Name

userLogin[31] char User's CMVC User ID

userName[63] char User's Full Name

userArea[31] char User's Work Area or Department

 Copyright IBM Corp. 1993 115

Fieldname[length] Datatype Description

authorityName[31] char Access Authority Name

authorityType[15] char Access Authority Type (‘granted’ or
‘restricted’)

 ApprovalView
Track Approval Records

Fieldname[length] Datatype Description

defectPrefix[31] char Defect or Feature Prefix

defectName[31] char Defect or Feature Identifier

releaseName[31] char Release Name

userLogin[31] char Approver's CMVC User ID

userName[63] char Approver's Full Name

userArea[31] char Approver's Work Area or Department

state[15] char Approval Record State

addDate[25] char Date Created

lastUpdate[25] char Date of Last Update

defectReference[31] char Defect or Feature Reference

defectAbstract[127] char Defect or Feature Abstract

defectType[7] char ‘defect’ or ‘feature’

 ApproverView
Release Approver List Entries

Fieldname[length] Datatype Description

releaseName[31] char Release Name

userLogin[31] char Approver's CMVC User ID

userName[63] char Approver's Full Name

userArea[31] char Approver's Work Area or Department

 Authority
Access Authority Groups

Fieldname[length] Datatype Description

name[31] char Access Authority Group Name

action[15] char Name of Action

116 CMVC Commands Reference

 Cfgcomproc
Component Process Names and Subprocesses

Fieldname[length] Datatype Description

name[31] char Component Process Name

config[15] char Name of Active Subprocess

 Cfgrelproc
Release Process Names and Subprocesses

Fieldname[length] Datatype Description

name[31] char Release Process Name

config[15] char Name of Active Subprocess

 ChangeView
File Changes

Fieldname[length] Datatype Description

releaseName[31] char Release Name

defectName[31] char Defect or Feature Identifier

levelName[31] char Name of Level where Change is Committed

versionSID[47] char Version ID of Changed File

pathName[195] char File's Full Path Name

type[8] char Type of File Change

defectReference[31] char Defect or Feature Reference

defectAbstract[127] char Defect or Feature Abstract

defectPrefix[31] char Defect or Feature Prefix

userLogin[31] char CMVC User ID of Person who Made the
Change

userName[63] char Full Name of Person who Made the Change

userArea[31] char Work Area of Person who Made the
Change

 CompView
Component Properties

Fieldname[length] Datatype Description

name[63] char Component Name

userLogin[31] char Component Owner's CMVC User ID

userName[63] char Component Owner's Full Name

userArea[31] char Component Owner's Work Area or
Department

addDate[25] char Date Created

 Appendix A. Report-Raw Output 117

Fieldname[length] Datatype Description

dropDate[25] char Date Deleted

lastUpdate[25] char Date of Last Update

description[127] char Component Description

compProcess[31] char Process Name

featureDSR[3] char Feature Design Size Review Subprocess
(‘yes’ or ‘no’)

featureVerify[3] char Feature Verify Subprocess (‘yes’ or ‘no’)

defectDSR[3] char Defect Design Size Review Subprocess
(‘yes’ or ‘no’)

defectVerify[3] char Defect Verify Subprocess (‘yes’ or ‘no’)

 Config
Configurable Data Definitions

Fieldname[length] Datatype Description

type[15] char Name of Configuration Data Type

name[31] char Data Name

dflt[3] char Default Value (‘yes’ or ‘no’)

value1 number not currently used

value2 number not currently used

description[127] char Description of Data Name

 DefectDownView
Defect Properties, Including Those of Child Components

Fieldname[length] Datatype Description

prefix[31] char Defect Prefix

name[31] char Defect Identifier

childCompName[63] char Component Name

releaseName[31] char Release Name

ownerLogin[31] char Defect Owner's CMVC User ID

state[15] char Defect State

answer[31] char Accept or Return Answer Type

severity[31] char Severity Level

abstract[127] char Defect Abstract

age number Defect Age

envName[31] char Environment where Discovered

levelName[31] char Level where Discovered

duplicate[31] char Duplicate Defect or Feature Identifier

lastUpdate[25] char Date last Updated

addDate[25] char Date Created

118 CMVC Commands Reference

Fieldname[length] Datatype Description

assignDate[25] char Date when Reassigned

responseDate[25] char Date Accepted or Returned

endDate[25] char Date Closed or Canceled

ownerName[63] char Defect Owner's Full Name

ownerArea[31] char Defect Owner's Work Area or Department

reference[31] char Defect Reference

originLogin[31] char Defect Originator's CMVC User ID

originName[63] char Defect Originator's Full Name

originArea[31] char Defect Originator's Work Area or
Department

 DefectView
Defect Properties

Fieldname[length] Datatype Description

prefix[31] char Defect Prefix

name[31] char Defect Identifier

compName[63] char Component Name

releaseName[31] char Release Name

ownerLogin[31] char Defect Owner's CMVC User ID

state[15] char Defect State

answer[31] char Accept or Return Answer Type

severity[31] char Severity Level

abstract[127] char Defect Abstract

age number Defect Age

envName[31] char Environment where Discovered

levelName[31] char Level where Discovered

duplicate[31] char Duplicate Defect or Feature Identifier

lastUpdate[25] char Date last Updated

addDate[25] char Date Created

assignDate[25] char Date Reassigned

responseDate[25] char Date Accepted or Returned

endDate[25] char Date Closed or Canceled

ownerName[63] char Defect Owner's Full Name

ownerArea[31] char Defect Owner's Work Area or Department

reference[31] char Defect Reference

originLogin[31] char Defect Originator's CMVC User ID

originName[63] char Defect Originator's Full Name

originArea[31] char Defect Originator's Work Area or
Department

 Appendix A. Report-Raw Output 119

Fieldname[length] Datatype Description

symptom[171]ñ char Symptom or Problem

phaseFound[171]ñ char Phase where Discovered

phaseInject[171]ñ char Phase where Introduced

priority[171]ñ char Priority Type for Resolution Scheduling

target[171]ñ char Target for Defect Resolution

ñ These field names are only applicable for the manufacturer default settings.

 EnvView
Release Environment List Entries

Fieldname[length] Datatype Description

name[31] char Environment Name

releaseName[31] char Release Name

userLogin[31] char Tester's CMVC User ID

userName[63] char Tester's Full Name

userArea[31] char Tester's Work Area or Department

 FeatureDownView
Feature Properties, Including Those of Child Components

Fieldname[length] Datatype Description

prefix[31] char Feature Prefix

name[31] char Feature Identifier

childCompName[63] char Child Component Name

ownerLogin[31] char Feature Owner's CMVC User ID

ownerName[63] char Feature Owner's Full Name

state[15] char Feature State

abstract[127] char Feature Abstract

age number Feature Age

duplicate[31] char Duplicate Defect or Feature Identifier

lastUpdate[25] char Date of Last Update

addDate[25] char Date Created

assignDate[25] char Date Reassigned

responseDate[25] char Date Accepted or Returned

endDate[25] char Date Closed or Canceled

ownerArea[31] char Feature Owner's Work Area or Department

reference[31] char Feature Reference

originLogin[31] char Feature Originator's CMVC User ID

120 CMVC Commands Reference

Fieldname[length] Datatype Description

originName[63] char Feature Originator's Full Name

originArea[31] char Feature Originator's Work Area or
Department

 FeatureView
Feature Properties

Fieldname[length] Datatype Description

prefix[31] char Feature Prefix

name[31] char Feature Identifier

compName[63] char Component Name

ownerLogin[31] char Feature Owner's CMVC User ID

ownerName[63] char Feature Owner's Full Name

state[15] char Feature State

abstract[127] char Feature Abstract

age number Feature Age

duplicate[31] char Duplicate Defect or Feature Identifier

lastUpdate[25] char Date of Last Update

addDate[25] char Date Created

assignDate[25] char Date Reassigned

responseDate[25] char Date Accepted or Returned

endDate[25] char Date Closed or Canceled

ownerArea[31] char Feature Owner's Work Area or Department

reference[31] char Feature Reference

originLogin[31] char Feature Originator's CMVC User ID

originName[63] char Feature Originator's Full Name

originArea[31] char Feature Originator's Work Area or
Department

priority[171]ñ char Priority Type for Scheduling

target[171]ñ char Target for Feature Implementation

ñ These field names are only applicable for the manufacturer default settings.

 FileView
File Properties

Fieldname[length] Datatype Description

baseName[127] char File Base Name

releaseName[31] char Release Name

compName[63] char Component Name

versionSID[47] char Last Committed File Version ID

 Appendix A. Report-Raw Output 121

Fieldname[length] Datatype Description

addDate[25] char Date Created

dropDate[25] char Date Deleted

lastUpdate[25] char Date of Last Update

pathName[195] char File Path Name

nuVersionSID[47] char Current File Version ID

nuAddDate[25] char New Creation Date

nuDropDate[25] char New Deletion Date

nuPathName[195] char New File Path Name

userLogin[31] char CMVC user ID who locked or checked out
the file. NULL means file not locked or
checked out.

fmode[4] char File Permission

 FilesOutView
Files Currently Locked for Editing

Fieldname[length] Datatype Description

fileNuPath[195] char File Path Name

releaseName[31] char Release Name

checkOutDate[25] char Date File Locked

newSID[47] char New File Version ID

userLogin[31] char User's CMVC User ID

userName[63] char User's Full Name

userArea[31] char User's Work Area or Department

 FixView
Fix Records

Fieldname[length] Datatype Description

defectName[31] char Defect or Feature Identifier

releaseName[31] char Release Name

compName[63] char Component Name

state[15] char Fix Record State

userLogin[31] char Fix Record Owner's CMVC User ID

userArea[31] char Fix Record Owner's Work Area or
Department

defectAbstract[127] char Defect or Feature Abstract

addDate[25] char Date Created

lastUpdate[25] char Date of Last Update

userName[63] char Fix Record Owner's Full Name

defectPrefix[31] char Defect or Feature Prefix

122 CMVC Commands Reference

Fieldname[length] Datatype Description

defectType[7] char ‘defect’ or ‘feature’

defectReference[31] char Defect or Feature Reference

 HostView
User Host List Entries

Fieldname[length] Datatype Description

login[31] char User's Login Name on Host

name[127] char Host Name

userLogin[31] char User's CMVC User ID

userName[63] char User's Full Name

userArea[31] char User's Work Area or Department

 Interest
Notification Interest Groups

Fieldname[length] Datatype Description

name[31] char Interest Group Name

action[15] char Name of Action

 LevelMemberView
Level Members

Fieldname[length] Datatype Description

levelName[31] char Level Name

releaseName[31] char Release Name

defectName[31] char Defect or Feature Identifier

defectReference[31] char Defect or Feature Reference

trackUserLogin[31] char Track Owner's CMVC User ID

trackUserName[63] char Track Owner's Full Name

trackUserArea[31] char Track Owner's Work Area or Department

defectPrefix[31] char Defect or Feature Prefix

 LevelView
Level Properties

Fieldname[length] Datatype Description

name[31] char Level Name

releaseName[31] char Release Name

type[31] char Level Type

userLogin[31] char Level Owner's CMVC User ID

 Appendix A. Report-Raw Output 123

Fieldname[length] Datatype Description

userName[63] char Level Owner's Full Name

userArea[31] char Level Owner's Work Area or Department

addDate[25] char Date Created

commitDate[25] char Date Committed

lastUpdate[25] char Date of Last Update

state[15] char Level State

 NoteView
Defect Notes

Fieldname[length] Datatype Description

defectName[31] char Defect or Feature Identifier

defectReference[31] char Defect or Feature Reference

action[15] char Action Occurring when Note Added

addDate[25] char Date Note Added

userLogin[31] char User's CMVC User ID

userName[63] char User's Full Name

userArea[31] char User's Work Area or Department

defectPrefix[31] char Defect or Feature Prefix

remarks[15999] long Text of Remarks

 NotifyDownView
Notification List Members, Including Descendant Members

Fieldname[length] Datatype Description

childCompName[63] char Child Component Name

userLogin[31] char User's CMVC User ID

userName[63] char User's Full Name

userArea[31] char User's Work Area or Department

userAddress[159] char User's Mailing Address

interestName[31] char Interest Group Name

 NotifyUpView
Notification List Entries, Including Those Inherited from Parent Components

Fieldname[length] Datatype Description

parentName[63] char Parent Component Name

userLogin[31] char User's CMVC User ID

userName[63] char User's Full Name

userArea[31] char User's Work Area or Department

124 CMVC Commands Reference

Fieldname[length] Datatype Description

userAddress[159] char User's Mailing Address

interestName[31] char Interest Group Name

 NotifyView
Notification List Entries

Fieldname[length] Datatype Description

compName[63] char Component Name

userLogin[31] char User's CMVC User ID

userName[63] char User's Full Name

userArea[31] char User's Work Area or Department

userAddress[159] char User's Sendmail Address

interestName[31] char Interest Group Name

 ReleaseView
Release Properties

Fieldname[length] Datatype Description

name[31] char Release Name

compName[63] char Component Name

relProcess[31] char Process Name

userLogin[31] char Release Owner's CMVC User ID

userName[63] char Release Owner's Full Name

userArea[31] char Release Owner's Work Area or Department

addDate[25] char Date Created

dropDate[25] char Date Deleted

lastUpdate[25] char Date of Last Update

description[127] char Release Description

track[3] char Track Subprocess (‘yes’ or ‘no’)

approve[3] char Approval Subprocess (‘yes’ or ‘no’)

fix[3] char Fix Subprocess (‘yes’ or ‘no’)

lvl[3] char Level Subprocess (‘yes’ or ‘no’)

test[3] char Test Subprocess (‘yes’ or ‘no’)

 SizeView
Sizing Records

Fieldname[length] Datatype Description

featureName[31] char Feature or Defect Identifier

featureReference[31] char Feature or Defect Reference

 Appendix A. Report-Raw Output 125

Fieldname[length] Datatype Description

compName[63] char Component Name

releaseName[31] char Release Name

sizing[127] char Text of Sizing Information

addDate[25] char Date Created

state[7] char Size Record State

userName[63] char Size Record Owner's Full Name

userLogin[31] char Size Record Owner's CMVC User ID

userArea[31] char Size Record Owner's Work Area or
Department

lastUpdate[25] char Date of Last Update

featurePrefix[31] char Feature or Defect Prefix

featureAbstract[127] char Feature or Defect Abstract

 TestView
Environment Test Records

Fieldname[length] Datatype Description

releaseName[31] char Release Name

defectPrefix[31] char Defect or Feature Prefix

defectName[31] char Defect or Feature Identifier

envName[31] char Environment Name

state[15] char Environment Test Record State

addDate[25] char Date Created

lastUpdate[25] char Date of Last Update

userLogin[31] char Test Record Owner's CMVC User ID

defectAbstract[127] char Defect or Feature Abstract

userName[63] char Test Record Owner's Full Name

userArea[31] char Test Record Owner's Work Area or
Department

defectReference[31] char Defect or Feature Reference

 TrackView
Track Properties

Fieldname[length] Datatype Description

releaseName[31] char Release Name

defectName[31] char Defect or Feature Identifier

defectReference[31] char Defect or Feature Reference

state[15] char Track State

target[31] char Target for Completion

addDate[25] char Date Created

126 CMVC Commands Reference

Fieldname[length] Datatype Description

userLogin[31] char Track Owner's CMVC User ID

userName[63] char Track Owner's Full Name

userArea[31] char Track Owner's Work Area or Department

actual[31] char Name of Level where Track is Committed

lastUpdate[25] char Date of Last Update

defectPrefix[31] char Defect or Feature Prefix

defectAbstract[127] char Defect or Feature Abstract

 Users
User ID Properties

Fieldname[length] Datatype Description

login[31] char User's CMVC User ID

name[63] char User's Full Name

area[31] char User's Work Area or Department

address[159] char Mailing Address

addDate[25] char Date Created

dropDate[25] char Date Deleted

lastUpdate[25] char Date of Last Update

superUser[3] char Superuser Privilege (‘yes’ or ‘no’)

 VerifyView
Verification Record Properties

Fieldname[length] Datatype Description

defectName[31] char Defect or Feature Identifier

state[15] char Verification Record State

addDate[25] char Date Created

userLogin[31] char Verification Record Owner's CMVC User ID

userArea[31] char Verification Record Owner's Work Area or
Department

type[15] char ‘original’ or ‘duplicate’

userName[63] char Verification Record Owner's Full Name

defectAbstract[127] char Defect or Feature Abstract

lastUpdate[25] char Date of Last Update

defectPrefix[31] char Defect or Feature Prefix

defectReference[31] char Defect or Feature Reference

compName[63] char Component Name

 Appendix A. Report-Raw Output 127

128 CMVC Commands Reference

 Glossary

Glossary terms are defined as they are used in this
manual. If you cannot find the term for which you are
looking, refer to the IBM Dictionary of Computing,
SC20-1699.

A
access list . A CMVC object that controls access to
development data. A list of user ID-authority group
pairs attached to a component, designating users and
the corresponding authority access they are being
granted for all objects managed by this component or
any of its descendants. It also contains the user
ID-authority group pairs designating users who are
restricted from performing actions at a specific
component.

action . A task performed by the CMVC server and
requested by a CMVC client. A CMVC action
corresponds to issuing one CMVC command.

approval record . A status record on which an
approver must give an opinion of the proposed file
changes required to resolve a defect or implement a
feature in a release.

approver . A user who approves changes within a
specific release.

approver list . A list of user IDs attached to a release,
representing the users who must approve file changes
required to resolve a defect or implement a feature in
that release.

authority . The right to access development objects
and perform CMVC commands. See also access list,
base authority, explicit authority, implicit authority,
restricted authority, and superuser privilege.

B
base authority . The set of actions granted to a user
whenever a user ID is created within a CMVC family.

base file tree . The base set of files, associated with a
release, to which changes are applied over time. Each
committed level or track for a release updates the base
file tree for that release.

C
change control . Controlling changes to files by
verifying access authority and the files' status prior to
checking files in and out.

child component . All components in each CMVC
family, with the exception of the root component, must
be created in reference to an existing component. The
existing component is referred to as the parent
component, while the new component becomes known
as the child component. A parent component can have
more than one child component. See also component.

command . A request to perform an operation or run a
program from the command line interface. In CMVC, a
command consists of the command name, one action
flag, and zero or more attribute flags.

common file . A file that is contained in two or more
releases and the same version of the file is the current
version for those releases. See also shared file.

comparison operator . An operator used in
comparison expressions, such as, > (greater than), <
(less than), >= (greater than or equal to), <= (less than
or equal to), and = (equal to).

component . A CMVC object that simplifies project
management, organizes project data into structured
groups, and controls configuration management
properties. Component owners can control access to
development data (see access list) and configure
notification about CMVC actions (see notification list).
Components exist in a parent-child hierarchy, with
descendent components inheriting access and
notification information from ancestor components.

configuration management . The process of
identifying, managing, and controlling software modules
as they change over time.

corequisite tracks . Two or more tracks designated as
corequisites by a user so that all tracks in the
corequisite group must be included as members in the
same level. If a track is added to a level then all tracks
that have a corequisite relationship with that track must
also be included in the same level before the level is
committed.

 Copyright IBM Corp. 1993 129

D
database . A systemized collection of data that can be
accessed and operated upon by a data processing
system for a specific purpose.

default query . A database search, defined for a
specific CMVC GUI window, that is issued each time
the CMVC GUI window is opened. See also search.

defect . A CMVC object used to formally report a
problem. The user who opens a defect is the defect
originator.

delete . Deleting a development object, such as, a file
or a user ID. Certain objects can be deleted only if
certain criteria are met. Most objects that are deleted
can be re-created.

delta file tree . A directory structure representing only
those files that have been changed in reference to the
tracks included in a specified level.

destroy . The only CMVC development object that can
be destroyed in CMVC is a file. Destroying a file
removes the file record from the database on the CMVC
server.

E
environment . A user-defined testing domain for a
particular release. Also used as a defect field, in which
case it is the environment where the problem occurred.

environment list . A CMVC object used to specify
environments in which a release should be tested. A
list of environment-user ID pairs attached to a release,
representing the user responsible for testing each
environment. Only one tester can be identified per
environment.

explicit authority . The ability to perform an action
against a CMVC object because you have been granted
the authority to perform that action.

extract . A CMVC action you can perform on a file,
level, or release. A file extraction results in the
specified file being copied to the client workstation. A
level extraction and release extraction result in copying
the files associated with the level or release to a
designated workstation.

F
family . A logical organization of related development
data. A single CMVC server can support multiple
families. The data in one family cannot be accessed
from another family.

family administrator . A user who is responsible for all
nonsystem related tasks for one or more CMVC families
such as planning, configuring, and maintaining the
CMVC environment and managing user access to those
families.

feature . A CMVC object used to formally request a
functional addition or enhancement. The user who
opens a feature is the feature originator.

file . A collection of data that is stored by the CMVC
server and retrieved by a path name. Any text or binary
file used in a development project can be created as a
CMVC file. For example, source code, executable
programs, documentation, or test cases. See also
common file, shared file.

fix record . A status record that is associated with a
track and is used to monitor the phases of change
within each component that is affected by a defect or
feature for a specific release.

full file tree . A directory structure representing a
complete set of active files associated with a release.

G
GID. A number which uniquely identifies a files' group
to the operating system.

GUI. The OSF/Motif**-based CMVC graphical user
interface program.

H
host . Host node, host computer, or host system.

host list . A list associated with each CMVC user ID
which indicates the client hosts that can access CMVC
and act on behalf of the CMVC user. The list is used
by the CMVC server to authenticate the identity of a
CMVC client upon receipt of a CMVC command. Each
entry consists of a login, a CMVC user ID, and a host
name.

130 CMVC Commands Reference

I
implicit authority . The ability to perform an action
against a CMVC object without being granted explicit
authority. This authority is implicitly granted due to
object ownership. Contrast with explicit authority and
base authority.

inheritance . The passing of configuration
management properties from parent component to child
component. The configuration management properties
that are inherited are access and notification.
Inheritance within a component hierarchy is cumulative.

L
level . A collection of tracks which represent a set of
changed files within a release. Levels are only
associated with releases whose processes include the
track and level subprocesses.

level member . A track that has been added to a level.

lock . Prevent editing access to a file stored within the
CMVC development environment so that only one user
can make changes to a given file at one time.

login . User identification.

N
notification list . A CMVC object allowing component
owners to configure notification. A list of user
ID-interest group pairs attached to a component,
designating users and the corresponding notification
interest they are being granted for all objects managed
by this component or any of its descendants.

O
operator . A symbol that represents an operation to be
done. See comparison operators.

originator . The user who opens a defect or feature
and is responsible for verifying the outcome of the
defect or feature on a verification record. This
responsibility can be reassigned.

owner . The user who is responsible for a CMVC
object within a CMVC family, either because they
created the object or because they were assigned
ownership of that object.

P
parent component . See child component and
component.

prerequisite tracks . If a file has been changed to
resolve more than one defect or feature then the track
referenced by the first change is a prerequisite of the
track referenced by the later changes. A track is a
prerequisite to another track if:

1. File changes have been checked in, but not
committed, in reference to the first track, and

2. One or more of those same files is then checked
out, changed, and checked in again in reference to
the second track.

problem tracking . The process of tracking all reported
defects through to resolution and proposed features
through to implementation.

process . A combination of CMVC subprocesses,
configured by the family administrator, that controls the
general movement of CMVC objects (defects, features,
tracks and levels) from state to state within a
component or release. See also subprocess and state.

Q
query . A structured request for information from a
database. For example, search for all defects that are
currently in the open state. See also default query and
search.

R
release . A CMVC object that groups all of the files that
make up one version of a product.

restricted authority . The restriction of a user's ability
to perform certain actions at a specific component.

root component . The initial component that is created
when a CMVC family is configured. All components in
a CMVC family are descendants of the root component.
Only the root component has no parent component.

S
search . The act of scanning one or more data
elements of a set in a database to find elements that
have certain properties.

shared file . A file that is shared between two or more
releases. See also common file.

sizing record . A status record created for each
component-release pair affected by a proposed defect

 Glossary 131

or feature. The sizing record owner must indicate
whether the defect or feature affects the specified
component-release pair and the approximate amount of
work needed to resolve the defect or implement the
feature within the specified component-release pair.

state . Tracks, levels, features, and defects all move
through various states during their life cycles. An
object's current state determines which actions may be
performed against it. See also process and
subprocess.

subprocess . CMVC subprocesses govern the state
changes for CMVC objects. The design, size, review
(DSR) and verify subprocesses are configured for
component processes. The track, approve, fix, level,
and test subprocesses are configured for release
processes. See also process and state.

superuser privilege . A user who is granted superuser
privilege. Superuser privilege allows a user to perform
any action available in the CMVC family.

Note: Superuser privilege is internal to CMVC and not
related to your operating system.

T
test record . A status record used to record the
outcome of an environment test performed for a specific
level of a release once the defect is resolved or the
feature is implemented.

tester . A user responsible for testing the resolution of

a defect or the implementation of a feature for a specific
level of a release and recording the results on a test
record.

track . A CMVC object created to monitor the progress
of changes within a release to resolve a specific defect
or implement a specific feature.

U
UID. A number which uniquely identifies a login on a
host and controls the ownership of a file within the file
system.

user . A person with an active user ID and access to
one or more CMVC families.

V
verification record . A status record which must be
marked by the originator of a defect or a feature before
the defect or feature can move to the closed state. This
allows the originator to verify the resolution or
implementation of the defect or feature they opened.

version control . The storage of multiple versions of a
single file along with information about each version.

view . An alternative and temporary representation of
data from one or more tables.

132 CMVC Commands Reference

Please Tell Us What You Think!

IBM Configuration Management Version Control
Commands Reference
Version 2 Release 2

Publication No. SC09-1635-01

We hope you found this book useful and informative. If you like what we've done, please let
us know; if not, please tell us why. We'll use your comments to make the book better.

Please use one of the methods listed below to send your comments to IBM. Whichever
method you choose, make sure you send your name, address, and telephone number to
receive a reply.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate, without obligation.

� To send comments by mail or fax, use the form titled “What Do You Think?” on the
following page.

If you're mailing from a country other than the United States, you can give the form to
the local IBM branch office or IBM representative for postage-paid handling.

To fax the form, use this number: (919) 469-7718.

� To send comments electronically, use one of the following network IDs:

IBM Mail Exchange USIB5DNQ at IBMMAIL
Internet KFRYE@CARVM3.VNET.IBM.COM

Thank you! Your comments help us make the information more useful for you.

What Do You Think?

IBM Configuration Management Version Control
Commands Reference
Version 2 Release 2

Publication No. SC09-1635-01

We're in business to satisfy you. If we're succeeding, please tell us; if not, let us know how we can do
better.

Overall, how satisfied are you with this book?

Very
Satisfied Satisfied

Neither
Satisfied

nor
Dissatisfied Dissatisfied

Very
Dissatisfied No Opinion

Overall satisfaction

How satisfied are you that the information in this book is:

Accurate

Complete

Easy to find

Easy to understand

Well organized

Applicable to your
tasks

Please tell us how we can improve this book:

May we contact you to discuss your responses? Ø Yes Ø No ô

 Fax

Note that IBM may use or distribute the responses to this form without obligation.

Name Address

Company or Organization

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

What Do You Think?
SC09-1635-01 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Information Development
Department T45
PO Box 60000
Cary, NC 27511-8519

Fold and Tape Please do not staple Fold and Tape

SC09-1635-01

IBM

Printed in U.S.A.

SCð9-1635-ð1

